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JACOBIAN THEOREM
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0. INTRODUCTION

In this paper we shall give a version of the theorem of Lipman and Sathaye on Jacobian
ideals proved in [LS] (their Theorem 2). The result presented here has substantially weaker
hypotheses than in [LS]. Lipman and Sathaye used their theorem to prove the Briangon-
Skoda theorem [BrS] (which was first proved using the analytic criterion for membership
in an ideal in [Sk]; see also [LT] for background). Their result has also turned out to be
very important in providing explicit test elements in tight closure theory (accounts of the
latter are given in [HH1-8], [Ho2-3], [Hu], and [Br]; [HHS], in particular, treats the use of
the Lipman-Sathaye theorem in constructing test elements).

In the main theorem, Theorem (2.1) of §2 (the reader may want to consult its statement,
at this point), there are two separate ways in which the hypothesis in [LS] on the map
R — S is weakened: first, while the ring S is still required to be torsion-free and generically
étale over R, S is not required to be a domain. Second, the regularity condition on R is
relaxed even to the point where we do not need to assume that R is Cohen-Macaulay: a
condition on the map R — S is needed, but it is significantly weaker than assuming that
R be Cohen-Macaulay. In this connection, we introduce in (1.2) what might be thought of
as a relative analogue of the Serre condition S; that is defined in terms of a presentation
S over R, but later shown to be independent of the presentation: cf. Theorem (1.8). It
turns out that we can replace the Cohen-Macaulay condition on R in the Lipman-Sathaye
theorem by the condition that S be relatively So presentable over R in the sense defined
in §1. A key point is that when R — S has this property, it is preserved when we adjoin
an element of the normalization of S: see Theorem (1.9). However, we still do need to
assume that R is regular when localized at a prime lying under a height one prime of the

normalization of S.
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The proof of Theorem (2.1) here is modeled on the “down-to-earth” proof of Lipman-
Sathaye, and we shall make frequent references to [LS]. One difference is that we need
many sources of elements in “very general position,” particularly indeterminate linear
combinations of generators of ideals. We are able to do this by replacing R at the outset
by a localization R(t) of a polynomial ring in infinitely many variables over R.

As mentioned above, the next section is devoted to developing the required theory of
“presentation S; conditions.” The main result is stated in Theorem (2.1) of §2. The proof
is outlined in §2, and then the details of the various steps are supplied in §§3-5.

1. DEPTH PROPERTIES IN PRESENTATIONS

Definition-Discussion (1.0). In this section fix an integer ¢ > 1, let R be a Noetherian
domain that satisfies the Serre condition S; (if i = 1, the fact that R is a domain guarantees
this), and let S be a reduced algebraic R-torsion-free extension of R essentially of finite
type over R. Thus, if K is the fraction field of R, then K ®pg S is a finite product of finite
algebraic field extensions of /C. In later sections we shall assume as well that S is generically
étale over R, by which we mean that L ®g S is a finite product of finite separable algebraic
extensions of . We have that as R-algebras, S = T'/I, where T is a localized polynomial
ring in finitely many variables over R, and we shall refer to the corresponding surjection
T — S as an L-presentation of S over R, where the “L-” is an indication that we are
permitting T" to be a localization of a polynomial ring. Informally we may also say that
S = T'/I is an L-presentation of S. An L-presentation is a presentation if T' is a polynomial

ring in finitely many variables over R.

Remark (1.1). Notice that the minimal primes of I all have the same height in this sit-
uation: since the elements of R are nonzerodivisors in S, the situation is unaffected by
localizing at the multiplicative system R — {0}, and thus we may assume that R is a field
and S is a finite product of finite field extensions. Suppose that 7' is a localization of the
polynomial ring Ty C T'. Then the minimal primes of I must correspond to maximal ideals
of Ty (or else S would transcendental over R) and so all have the same height.

Definition (1.2). Let R — S be as in (1.0). We shall say that an L-presentation n: T — S
with Ker n = [ is relatively S; if, with h = ht I, for every prime ideal P of T containing I,
depth of Tp > min {ht P, h + i}. (Note that this implies depthy I = ht I.)

It will be convenient to have a name for the sort of ideal described above.

Definition (1.3). Let T be a Noetherian ring. An ideal I of T all of whose minimal primes
have height h will be said to be of CMy; type if for every prime ideal P containing I,
depthTp > min {ht P, h +i}. (Again, note that this implies depthr I = ht I.)
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With the terminology of (1.3) and R — S as in (1.0), an L-presentation S = T'/I over
R is relatively S; if and only if I is of CM4; type in 7. Since R is a domain, 7" has no
embedded primes, and (1.1) shows that the ideal I associated with the presentation has
the property that all of its minimal primes have the same height. We shall say that an
ideal all of whose minimal primes have height i has pure height h. Evidently, a Noetherian
ring T is Cohen-Macaulay if and only if every ideal of pure height is of CM; type for all
i

Although we have given Definition (1.3) without restriction on 7', in the sequel we shall
almost alway be assuming that T satisfies the Serre condition S; when we discuss ideals of
CM,; type. Likewise, in the sequel, when discussing the relatively S; condition in (1.2), we
shall almost always be assuming, as indicated in (1.0), that R satisfies the Serre condition
S;.

Discussion (1.4): behavior of depth and dimension under flat base change. For use in the
proof of the very important Lemma (1.5) that follows, we note two well known facts: if
(T,P) — (W,Q) is a flat local homomorphism of local rings, and B = W/PB is the
closed fiber, then dimW = dimT + dim B ([Mat], (13.B) Theorem 19 (2), p. 79), and
depth W = depthT + depthB ([Mat], (21.C) Corollary 1, p. 154). This implies at once,
for example, that if T satisfies S; and W is flat over T' with Cohen-Macaulay fibers (or S;
fibers), then W satisfies S;.

We shall make extensive use of the following alternative characterization of when an
ideal I is of CM; type.

Lemma (1.5). Let T be a Noetherian ring that is S;. Let I C T be an ideal of pure
height h. Let fi, ..., fr be generators of I. Let t,; be indeterminates over T, 1 < p < h,
1<j<r, andlet g, = Z§:1 tujfi- Then the following are equivalent:

(1) I has CMy; type.

(2) In some faithfully flat extension W of T, IW has height equal to its depth h, and

contains a reqular sequence of length h generating an ideal J such that W/J is S;.

n the polynomial ring = i 1, j], the elements g1, ...,gn form a regular
3) In th ) al ring W Tt,; |, the el t [
sequence generating an ideal J such that W/.J is S;.

(4) In the localization Wy of the ring W from part (3) at some (resp., every) multiplica-
tive system U consisting of polynomials whose coefficients generate the unit ideal, the

elements g1, ..., gn form a reqular sequence generating an ideal J such that W/J is

Si.

Proof. We shall prove (3) =(2) =(1) =(3). Note that each Wy as in (4) above is faithfully
flat over T', and so we also have (3) =((4) for all U ) =((4) for some U ) =(2) as well.
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(3) =(2) is obvious. To see that (2) =(1), note that, after a faithfully flat extension
T — W, the ideal IW has the same height as I and the same depth as I. Thus, I has
height and depth h. Now let P be a prime ideal of R containing I of height greater than
h. Then there is a minimal prime @) of PW lying over P, and Tp — W will be faithfully
flat with a zero-dimensional fiber. The depth and dimension of W are the same as the
depth and dimension of Tp: cf. the discussion preceding (1.5). When we kill J in Wy, the
depth and dimension drop by h, and we obtain an S; ring. This shows that Wg has the
required depth, and, hence, so does Rp.

It remains to prove that (1) =>(3). The fact that the elements g; form a regular sequence
is proved in [Hol]. Let @ be a prime containing J = (g1, ... ,gs) in W = T[t,; : p, j].
First suppose that ) contains I. We must show that the depth of Wg is at least the
smaller of ht @), h + i, since this will give the correct depth once we kill J. Then @ lies
over a prime P of T that contains I. Then the depth of Rp is at least min {ht P, h + i},
and by [Mat], (13.B) Theorem 19 (2), p. 79, we have ht Q = ht P+ dim B, where B is the
fiber Wq/PW¢, and depthW¢g = depthTp + depthB by [Mat], (21.C) Corollary 1, p. 154.

But the fibers of T'— W are Cohen-Macaulay (in fact, regular), and so

depthWg >

min {ht P, h + i} + depthB =

min {ht P, h + i} + dim B >

min {ht P+ dim B, h+ i+ dim B} =
min {ht @, h+ i+ dim B} >

min {ht @, h + i}, as required.

It remains only to consider the case where @) fails to contains I. Then one of the
generators f; of I is a unit in Tp, where P is the contraction of @) to T'. Again, we pass to
Tp, and renumber so that f, is a unit. Then the equations g,, that we are killing simply
solve for the indeterminates ¢,, in terms of the others, and the quotient by J may be

identified with Tp[t,; : 1 < p < h,1 < j < r], a polynomial ring over Tp. Since this ring
is S; so is the polynomial ring, and the result follows. [

We shall later need the following fact whose proof is really a variant of the argument
that (1) =(3) in Lemma (1.5) above.

Lemma (1.6). Let I be an ideal of pure height h in a Noetherian ring T such that T is S;.
Let uy, ... ,up be a reqular sequence in I such that T/(uy, ... ,up)T is S;. Let f1, ..., f:
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be generators of I. Let k be an integer, 1 < k < h. Let t,; be indeterminates over T,
1< pu<k,1<j53<handlet t;”- also be indeterminates over T, k < u < h,1 <35 <r. Let
W be the ring obtained by adjoining all these independent indeterminates toT'. Then the k
elements g, = Z?:l ujty;, 1 < p <k, together with the h — k elements g,, = Z§:1 fitys
k < p < h, give a reqular sequence in IW such that the quotient of W by the ideal they

generate is S;.

Proof. Consider a prime () of W that contains the g’s. The specified depth condition on

Wao/(g1, ..., gn) is equivalent to the condition that the depth of W be at least the lesser
of ht @), h + 1.

If @ contains all the elements uq, ... ,u; this follows because, after we kill this regular
sequence, the quotient ring Wq /(u1, ... ,up) is S;, since it is flat over T'/(uq, ... , up) with

regular fibers. If () fails to contain all the wu;, we replace R by its localization at the
contraction P of () to T. We may assume that in each of the first & of the g,,, one of the u;
is invertible, permitting us to use g, = 0 to solve for one of the ¢,; in terms of the others.
But then P 2 I as well, and so in each of the last n — & of the g, at least one of the f;
is invertible, permitting us to solve for one of the #,; in terms of the others. This means
that the quotient by (g1, ..., gn) may be identified with a polynomial ring over Tp, and
the result follows from the fact that T"is S;. [

Note that if R is Cohen-Macaulay then so is 7', and it is then automatic that every
L-presentation is relatively S; for all 4.

Our next results are aimed at showing that when S has a relatively S; presentation over
R, then every presentation of S over R is relatively .S;.

Lemma (1.7). Let R — S be a homomorphism as in (1.0). Let S = T/I be an L-
presentation of S as an R-algebra that is relatively S;, and let Ty be a polynomial ring in

finitely many variables over R contained in T such that T s a localization of Ty.

(a) If U is a multiplicative system in T with image V in S then Ty /Iy is a relatively S;
L-presentation of Sy over R.

(b) (Descent of localizations.) Assume that the S; locus is open in rings essentially of finite
type over R (which holds if R is either a homomorphic image of a Cohen-Macaulay
ring or if R is excellent). If T = (To)u for a multiplicative system U in Ty, there is
an element w € U such that if Ty = To[1/u], and I = I NTy, then S; = Ty /11 is a

relatively S; L-presentation.

Proof. Part (a) is clear, since the set of localizations at primes containing I can only
become smaller as we localize T'. It is worth noting that the condition that I have pure
height is needed here: otherwise, the height of I might increase after localization.
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To prove part (b), note that localizing at finitely many elements is equivalent to lo-
calizing at their product. We may make several choices of u, T}, each time localizing at
one more element to get additional conditions to hold. Choose generators fi, ..., f, for
I and initially choose u so that these will be in T;. Thus, we may assume that [ = I1T.
Let h = htI. Introduce hr new indeterminates ¢,; and define g1, ..., gs as in part (3)
of Lemma (1.5). Then we know that U~ 'Ty[t,; : p, 5]/(91, --- ,9n) is Si, by Lemma
(1.5). This means that U meets the defining radical ideal of the non-S; locus in the ring
Ti[tu; : i, 31/(g1, ..., gn) (our hypothesis guarantees that this locus is closed). Thus, we
may choose u; € U meeting that radical ideal. Replacing T} by its localization at uy, we
see that we can localize at just one element and get Ti[t,; : &, 71/(91, --- ,gn) to be S;
(this is a new choice of T1), and so by part (3) of Lemma (1.5), Ty — T3/I; is relatively
S; for this new choice of T7. [

Theorem (1.8) (independence of presentation). Let R — S be a homomorphism as
in (1.0) and suppose that S has an L-presentation over R that is relatively S;. Then every
L-presentation of S over R is relatively S;.

Proof. Step 1. We first consider the case where S is finitely generated over R and we are
considering only presentations of S over R, i.e., T is required to be a polynomial ring.
Given two presentations T — S, T' — S, we can compare both with T ®r T’ — S. By
induction on the number of variables in T”, we reduce to considering a presentation T — S
and another T[X] — S, where X is a new indeterminate. Let s be the image of X and
let z € T map to s. We may replace X by X — z, and so assume that X maps to 0 in S.
Thus, if I = Ker (T' — S), the kernel of the second presentation will be IT[X] + XT[X].
The primes of T[X] containing the kernel are in bijective correspondence with the primes
of T containing I, and the depth condition is obviously satisfied for Tp if and only if
it is satisfied for T'[X]q, where Q = PT[X]|+ XT|[X] is the corresponding prime, since
T[X]o/(X) = Tp, and X is a nonzerodivisor.

Step 2. We next consider the case where S is finitely generated over R, but can be
written S = Sy[1/s] where s € Sy. Let Ty — Sy be a presentation of Sy with kernel Iy and
and v € Ty an element that maps to s. Then we have a surjection Tp[1/v] — S, which is an
L-presentation, and we also have a presentation To[X]| — S extending Ty — Sy, where X
maps to 1/s. The kernel of the latter is I; = ITp[X]|+ (Xv—1). Again, there is a bijection
between the primes of Ty[1/v] containing Iy (or primes of Ty containing Iy and not v) and
the primes of Tp[X ] containing Iy, and the depths in the localizations at the latter primes
are all one greater: we can see this, because we can start by killing Xv — 1, which gives
the correspondence. Thus an L-presentation of this type is relatively S; presentable if and
only if the corresponding presentation is relatively S; presentable.

Step 3. We now consider the general case. Let Ty be a polynomial ring in finitely many
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variables over R and U a multiplicative system in Ty such that U~!T, — S is a relatively
S; L-presentation of S over R. By Lemma (1.7) (b) we can choose a localization T} of T
at one element and such that the restriction of 7" — S gives a surjection 77 — S that is a
relatively S; L-presentation, and S is a localization of S;. By part (a), every localization
Ss of S7 at one element has an L-presentation T5 — Ss that is relatively S; and such that
T, is a localization of a polynomial ring at one element. It follows that S is a localization
of a finitely generated R-subalgebra S; with the following property: every presentation of
S1, and every presentation of any localization S1[1/u], is relatively S;.

Now consider some other L-presentation (U’')~1T” — S. Then we can choose a local-
ization T of T" at one element of U’ whose image S7 in S contains S1, and we can choose
w € S1 C 87 such that S|[1/w] = S1[1/w], where w is invertible in S. Thus, S7[1/w] has
a presentation that is relatively S;.

Suppose that w = 7/y where 7 € T' and y € U’. Since w is invertible in S, we can
choose a € T" and z € U’ such that ar/yz = 1 in S, i.e., and then there exists v € U’
such that var = vyz. Then S] localized at the image ¢ of vyz contains 1/w, since that
can be represented as a/z, and so Sz = S7[1/(] has the property that every presentation is
relatively S;, since it is a localization of S1[1/w] at one element, and hence a localization
of Sy at one element. But T{[1/vyz] is a localization of T at an element of U’ mapping
onto Sy. From Step 2 we know that this L-presentation is also relatively S; (since the
corresponding presentation will be), and then by (1.7) (a), (U')™1T" — S is relatively
S;. O

The following fact will be critical in the proof of the Lipman-Sathaye Jacobian theorem.

Theorem (1.9). Let R — S be as in (1.0). Suppose that S is relatively S; presentable
over R. Let s be an element of the total quotient ring of S that is integral over S. Then
S[s] is relatively S; presentable over R. Hence, any subring of the integral closure of S

module-finite over R is relatively S; presentable over R.

Moreover, if T — R is an L-presentation with kernel I of height h such that g1, ... ,gn
is a regular sequence in I with the property that T/(g1, ... ,gn) is S;, and we extend T — S
to T[X]| — S[s] by sending X to s, then there is a polynomial F monic in X in the kernel,
and T[X]/(g1, --. s gn, F) is S;.

Proof. We first establish the last statement. Let B =T/(g1, ... ,gn) and
C=T[X]/(91, .- 90, F) = B[X]/(f)

where f is the image of F' in B[X] and is still monic in X. Clearly, B[X]/(f) is flat (and
even free) over B with zero-dimensional (hence, Cohen-Macaulay) fibers, and so is S;.
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The first part now follows. After tensoring with R, S,T Rlt,; : i, j] = R[t] we get such
a regular sequence in T[t] such that the quotient is S;, by Lemma (1.5) (3). When we
adjoin X the result of the paragraph above together with Lemma (1.5) (2) shows that we
have a relatively S; presentation of S[s]. O

The following fact is used in Discussion (1.11) to show that there are many case where
R — S as in (1.0) is such that S is relatively So presentable over R, but R is not Cohen-
Macaulay.

Proposition (1.10). Let R — S be as in (1.0) (in particular, R satisfies S;) and let Ry
be a domain flat over R with S; fibers. Suppose that S is relatively S; presentable over R.
Then Ry — Ry ®p S satisfies (1.0) and is relatively S; presentable over Ry.

Proof. Let T — S be an L-presentation (with kernel I of pure height h)that is relatively
S;. After adjoining indeterminates ¢,,; as in (1.5) we obtain a regular sequence g1, ..., gn

in the expansion of I such that T[t]/(g1, ... ,9n) is S;. The main point is that R; Qg
T[t)/(g1, ---,9n) s S;. Cf. (1.4). O

Discussion (1.11). We conclude this section with an example which shows that the prop-
erty that S be relatively So presentable over R is weaker than the assumption that R be
Cohen-Macaulay.

One way to see this is to let Ry be Cohen-Macaulay normal of finite type over an
algebraically closed field K, and let B denote a finite type K-algebra that is normal but
not Cohen-Macaulay. Take any extension of Sy of R as in (1.0). This will be relatively So-
presentable simply because R is Cohen-Macaulay. It is easy to see that R = B®g Ry —
B®k Sy = S is still relatively So presentable (apply (1.10) with R = Ry and Ry = Bk Ry),
but R is not Cohen-Macaulay.

2. STATEMENT OF THE THEOREM AND A SKETCH OF THE PROOF

Throughout the rest of this paper R denotes a Noetherian domain with fraction field
IC, and S denotes an algebra essentially of finite type over R (i.e., a localization at some
multiplicative system of a finitely generated R-algebra) such that S is torsion-free and
generically étale over R (by which we mean that £ = K ®g S is a finite product of finite
separable algebraic field extensions of ). We shall denote by S’ the integral closure of S
in £. We shall see that S” is module-finite over S if R is regular or excellent (cf. (2.7)).

If A and B are subsets of £ we denote by A:z B the set {u € L:uB C A}. If T is a
subring of £ and A is a T-module, then so is A :, B.
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We shall write Jg,r for the Jacobian ideal of S over R. If S is a finitely generated
R-algebra, so that we may think of S as R[X1, ..., Xn]/(f1, ..., fm), then Jg/ g is the
ideal of S generated by the images of the size n minors of the Jacobian matrix (0f;/0x;)
under the surjection R[X] — S. This turns out to be independent of the presentation.
Moreover, if s € S, then Jg ,r = Js/rSs. From this one sees that if S is essentially of
finite type over R and one defines Jg,r by choosing a finitely generated subalgebra Sy of
S such that S = W18, for some multiplicative system W of Sy, and takes Js/r to be
Js,/rS, then Jg/p is independent of the choices made. The result we aim to prove is:

Theorem (2.1) (Generalized Lipman-Sathaye Jacobian theorem). Let R be a
Noetherian domain with fraction field IC. Assume also that the Ss locus is open in algebras
essentially of finite type over R.* Let S be an extension algebra essentially of finite type
over R such that S is torsion-free and generically étale over R. Suppose that for every
maximal ideal M of S with contraction P to R, Rp is normal, and Saq has a relatively
Sy presentation over Rp.? Let L =K ®g S and let S' be the integral closure of S in L.
Assume that S’ is module-finite over S.® Suppose that for every height one prime ideal Q
of S', Ronr is reqular. Then S":z Jsi/p € Sz Jg/R-

Overview of the Proof.

(2.2) Step 1: The local case suffices. Note that it is enough to prove the result when
S is replaced by its various localizations at maximal ideals. Thus, we may assume that S
is local, although we shall only make this assumption at certain points in the proof. When
S is local we may also replace R by its localization at the contraction of the maximal ideal
of S, and so there is likewise no loss of generality in assuming that R is local and that
R — S is local homomorphism (i.e., the maximal ideal of R maps into that of S). Because
of this reduction to the local case, throughout the rest of the argument we assume that R
is a normal local domain and, in particular, that R satisfies Ss.

(2.3) Step 2: Adjoining indeterminates. If 7 = {t, : A € A} is a family of in-
determinates over a Noetherian ring R we denote by R(7) or sometimes even R(t) the
localization of the polynomial ring R[ty : A € A] at the multiplicative system consisting
of all polynomials whose coefficients generate the unit ideal. This ring is Noetherian even
when the family of indeterminates is infinite (cf. [HH7], Remark 2.18, especially the final,
parenthetical paragraph) and faithfully flat over R with geometrically regular fibers, since

IThis holds automatically if R is excellent or if R is a homomorphic image of a Cohen-Macaulay ring.

2This is automatic if R is normal and Cohen-Macaulay, or if R is normal and S has a relatively Ss
presentation over R.

3This is automatic if R is regular or excellent: cf. (2.7).



10 MELVIN HOCHSTER

it is a direct limit of smooth R-algebras and flat maps and happens to be Noetherian. To
prove Theorem (2.2) it suffices to consider R(t) — R(t) ®r S instead of R — S. Note that
the normalization of R(t) ®r S is R(t) @r S’: it is normal because it is a localization of a
polynomial ring over S’. Note that the map R(t) — R(t) ®g S is the direct limit of maps
R(To) — R(Ty) ®r S as Tp runs through finite subsets of 7.

Note that if R has the property that algebras essentially of finite type over R have
open S; locus, then so does R(t). It suffices to see this for algebras of finite type over
R(t) and each of these arise from a finite type algebra Sy over R(7p) (where 7y is finite)
by a base change R(7p) — R(t) that is faithfully flat with regular fibers. But then @ in
R(t) ®R(1) So with contraction P to Sy is such that the localization at @ is S; if and only
if (So) p has property S, i.e., the locus that we want in Spec (R(t) ®g(7,) So) is the inverse
image of an open set in Spec Sy (since Sy is essentially of finite type over R).

Note also that if R — S has the property that every height one prime of S’ lies over a
prime P in R such that Rp is regular, the same is true for R(t) — R(t) ®g S. Since the
latter ring is flat over S, a height one prime there lies over either a height one or height 0
prime of S: in either case, that in turn lies over a prime Py in R such that Rp, is regular
(if the contraction to S is height 0, the prime lies over 0 in R). Thus, R(t)p will be a
Noetherian localization of a polynomial ring over Rp,, and, hence, regular.

Thus, we may replace R — S by R(t) — S(t) in proving the theorem, where the set
of indeterminates is infinite. This will prove useful in constructing regular sequences in
sufficiently general position.

(2.4) Step 3: Presenting S over R. Let T denote a localization of R[Xq, ..., X,,]
that maps onto S, and let I denote the kernel. Let U denote the complement in 7" of the
set of minimal primes Py, ..., P, of of I in T'. Since S is reduced, I = ﬂ:zl P;. Since
S is a torsion-free R-module, the minimal primes of I do not meet R, and correspond to
the minimal primes of I(K ® T'). Since killing any of these minimal primes produces an
algebraic extension of K, they must correspond to maximal ideals of K[X7y, ..., X,,], and
it follows that the P; all have the same height, which must be the same as the number of
variables, n. Thus, U~!T is a semilocal regular ring in which each of the maximal ideals
M; = P,UIT is generated by n elements.

(2.5) Step 4: Special sequences and the modules Wg,g. Call a sequence g1, ..., gn
of n elements of I special if it generates each of the M;, is a regular sequence in T', and
all of the associated primes of the ideal it generates are of height n. We shall show that
special sequences exist (this is really only using that S has a relatively S; presentation
over R), and that there are sufficiently many of them that the images of the elements
det (0g,;/0X;) in S with g1, ... , g, special generate the Jacobian ideal. Moreover, when
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g1, ..., gn is special the image of det(dg;/0X;) in S is not a zerodivisor in S, and so has
an inverse in £. Given 6: T — S and a special sequence g1, ..., g, we define a map
.. T:p1
P: (917 7gn) T Ny
(917 s 7gn)T

by sending the class of u to @/, where @ is the image of u in S and + is the image of
det (0g;/0X;) in S. We shall show that ® is injective. A priori, its image depends on the
choice of T'— S and on the choice of the special sequence ¢4, ..., g,, but the image turns
out to be independent of these choices, and so we have constructed a finitely generated
canonically determined S-module Wg,r C L.

(2.6) Step 5: The main idea of the argument. It will turn out that, quite generally,
Ws/r € S:cJs/r- The result then follows from two further observations. The first is
that when S is normal, this is an equality. (The idea is to show that Wg,p is then Ss,
which forces @ with its image restricted to S:z Jg/g to be an isomorphism — this can
be verified after localizing at height one primes of S. This is the only place in the proof
where we use the hypothesis that S has a relatively Sy presentation over R.) The second
is that when one enlarges S to S; = S[si| by adjoining one integral fraction s; € £ (so
that S C Sy C §'), then Wg,/p C Ws/g. Repeated application of this fact yields that
Wsi/r € Wg/r and then we have

S":pJsyr =Wsi/p CWs/g € S:zJs/R,
and we are done. In the sequel we shall systematically fill in the details of this outline.

We conclude this section with a result, essentially in [LS] but not stated in this gener-
ality, which shows that the normalization S’ of S is module-finite over S under very mild
hypotheses on R.

Fact (2.7) (finiteness of the normalization). Let S be torsion-free, generically étale,
and essentially of finite type over a normal Noetherian domain R. Suppose that the com-
pletion of every local ring of R is reduced (which holds if R is either reqular or excellent).

Then the normalization S’ of S over R is module-finite over S.* [

4Sketch of proof. Let Sy € S be finite type over R with S = (Sp)w . Since localization commutes with
normalization, we may replace S by Sp and assume S is finite type over R. The integral closure of S is
the product of the integral closures of the domains obtained by killing a minimal prime of S. Hence, we
may assume S is a domain. Each of finitely many generators for S over R satisfies an algebraic equation
over R with leading coefficient r,, say, and so with » =[], r, € R — {0}, S[1/r] is integral over R[1/7].
The integral closure of the normal domain R[1/7] in the fraction field £ of S[1/r] is the same as the
normalization of S[1/r], and is module-finite over S[1/r] by Prop. (31.B) of Chapter 12 of [Mat]. We may
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3. BEGINNING THE PROOF: EXISTENCE OF SPECIAL SEQUENCES

Throughout the rest of this paper R denotes a normal Noetherian domain with fraction
field I, and S denotes an algebra essentially of finite type over R (i.e., a localization at
some multiplicative system of a finitely generated R-algebra) such that S is torsion-free
and generically étale over R (by which we mean that £L = K ®p S is a finite product of
finite separable algebraic field extensions of ). We shall denote by S’ the integral closure
of S in L, and we shall assume that it is a finite module over S. We also assume that S
is relatively S; presentable over R. (We shall not need that it is relatively S, presentable
until §4.) Let T — S be an L-presentation with kernel I of pure height n. Recall that
a regular sequence g1, ...,¢g, of length n in I is special if g4, ..., g, generate ITp for
every minimal prime P of I, and all minimal primes of (g1, ..., g,)T have height n. We
construct many special sequences after replacing R,S,T by their tensor products over R
with R(7), where T is consists of infinitely many new indeterminates as in (2.3). We
denote the results of tensoring R, S, T with R(7) = Ry by Ry, S1, and T}, respectively.
We write I; for the expansion of I to T, so that S; = Ty /I;. In later sections we shall
change notation and write R, S, T for the rings denoted Ri, S1, 11 here.

Lemma (3.1). With hypothesis as in the paragraph above, there are sufficiently many
special sequences g1, ... ,gn in Iy that the Jacobian ideal Jg, /g, is generated by the images
of elements det (0g;/0Xy) for gi, ... ,gn special (where the Xy, are the indeterminates
generating the polynomial ring of which T is the localization). Moreover, if Ty is local,
given any two special sequences there is a finite sequence (which we shall refer to as a
chain) of special sequences with one of them as first term and the other as last term with
the following property: given any two consecutive terms, one is obtained from the other
by letting an invertible matrix over Ry act, or else the two consecutive sequences differ in

only one term.

Proof. Pick generators fq, ..., f, for I. Let [t,;] be an 7 x r matrix of indeterminates
from the infinite set 7. The elements g, = 2;21 [itu; give a new set of generators for I,

enlarge S by adjoining finitely many elements of its normalization and so obtain a domain S such that
S[1/r] is normal for some r # 0. By Lemma 4 of Ch. 12 of [Mat], S has finite normalization if Sg does
for every maximal ideal @ of S. Choose s € S with £ = K[s]. Let R1 = R[s] and P = QN R1. Then Sg is
a localization of (R1)p[S], and S is generated over (R1)p by elements of its fraction field. By a result of
[Rees], if the completion of a local domain B is reduced, then the normalization of any algebra C finitely
generated over B by fractions is module-finite over C. Thus, it suffices to show that the completion of
(R1)p is reduced. We may replace R by its localization at the contraction of P, and so we may assume
that (R, m) is local with reduced completion. The completion of (R1)p is one of the local rings of the
completlon of Ry w1th respect to m. Thus, it suffices if this completion of R1 is reduced. But this is
Ri1 ®r R C L®R Rx~r Rk (K ®r R) and the result follows because K @ r R is reduced and L/K is
separable.
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because the determinant of [¢,;] is invertible in R;. By Lemma (1.5) applied with i = 1,
any n of these generators form a regular sequence W = T'[t,,; : pj] such that the ideal they
generate has no embedded primes (the last follows from the fact that the quotient is Sy).
Because the map W — T} is flat with Cohen-Macaulay fibers, the sequence retains these
properties. Next, we want check that any n of these generate after localizing at a minimal
prime P of I;. Since they generate I, it is certainly true that we can choose n of them
to generate I;(7T1)p. Given the symmetric roles played by the indeterminates, it must be
true that any n generate. Since we may use all n elements subsets of this set of generators
of I;, we obtain enough elements to generate the Jacobian ideal.

Now suppose that we have two special sequences in I;. They only involve finitely many
of the indeterminates in 7. After replacing R by R(7y) for a suitable finite subset 7q of
T, and making corresponding changes in S, T, we may assume without loss of generality
that the two special sequences are in 7.

We choose n? 4+ nr new indeterminates from 7 to construct two n x n matrices o, 3
of indeterminates from 7 as well as an n X r matrix «v. We replace one special sequence
by letting a act on it: call it a1, ... ,a,. We replace the other by letting # act on it:
call the result by, ... ,b,. Also let v act on the f1, ..., f, to form n linear combinations,
say g1, ... ,9gn, of the f1, ..., f, with indeterminate coefficients. If we replace the terms
in ay, ...,a, one at a time by the f’s, we make a chain from a4, ... ,a, to f1, ..., fn.
We can then reverse the process to make a chain from fy, ..., f,, to by, ..., b,, changing
only one term at a time. The fact that each of the sequences formed is a regular sequence
generating an ideal with no embedded primes is a consequence of Lemma (1.6). The proof
that these sequence all generate I;(T)p = P(T1)P for each minimal prime P of I; reduces
to studying the vector space V = P(Ty)p/P?(T1)p. One needs to know that given two sets
of generators for this vector space, one can take general linear combinations of the first set
(i.e., with indeterminate coefficients), say vy, ..., v of them, together with general linear
combinations of the second, and if the number of these is dim V', they will be a basis. The
point is that the elements vy, ..., v; form part of a basis. To decide whether the remaining
elements complete the basis one may pass to V/Span{vy, ... ,vx}. Since we are working
with elements that span this space, this is clear. [

4. THE MAP ¢ AND THE MODULES Wg/r

Our next main goal is to construct the maps ® mentioned briefly in (2.5). Throughout
this section we assume that R is a normal Noetherian domain, with fraction field IC, that
S is a torsion-free generically étale R-algebra with total quotient ring £ (by hypothesis, a
finite product of separable field extensions of ), that T is a localization of the polynomial
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ring R[X1, ..., X,] that maps onto S, with kernel I, and that the minimal primes of I in
T are Py, ..., P.. We also assume that S is relatively S; presentable over R. However,
in parts (c), (d) and (f) of Theorem (4.4), we shall need the stronger hypothesis that S
is relatively So presentable over R. Furthermore, we assume that R — S has arisen from
Ry — Sy satisfying the same conditions by tensoring with R = Ry(7) for some infinite
family 7 of indeterminates, so that the results of Lemma (3.1) are applicable.

Lemma (4.1). Let g1, ...,9n, € I. Let X denote Xy, ..., X,,. Then the images of the
g;j in R[X|p, generate P,R[X|p, if and only if det(0g;/0X;) ¢ P,. (The same holds if
we only assume that g1, ... ,g9n € P,.) Hence, if g1, ... ,9n is a special sequence in I,

then the image vy of det (0g;/0X;) is not a zerodivisor in S, and so represents an invertible

element of the total quotient ring L of S.

Proof. The last statement clearly follows from the first, and we prove the first under the
assumption that ¢, ...,9, € P = P,. Let M be the maximal ideal corresponding to P
in L[ X]. Then PR[X|p = K[X]um, and so this is really a statement about when elements
of M generate M in K[X]. For the rest of this proof we shall write £ (instead of, say,
L,) for the residue field R[X]p, which is the same as the residue field of K[X|r. It is
critical in what follows that L is separable over K. Consider the universal K-derivation
d : K[X] = Qxx)/x, the module of Kahler differentials, which is the free module K[ X]-
module generated by the elements dXi, ...,dX,. Of course, if f € K[X] then df =
Z?Zl(ﬁf/aazj) dz;. The restriction of d to M gives a K-linear map M — Qi x}/x, and
by the defining property of a derivation it sends M? — MQxx1/kc- Thus, there is an
induced map of IC-vector spaces

5: M/M? = L ®xx) Qcpx)/kc-

Both modules are L£-vector spaces and it follows from the defining property of a derivation
that ¢ is actually L-linear. Since K[X]a¢ is regular of dimension n, M/M? is an n-
dimensional vector space over £. The key point is that under the hypothesis that L is
separable over IC, the map d is an isomorphism of L-vector spaces. This is well known,
but we give a very short proof. The map  sends the elements represented by generators
g1, - - » gn for M to the elements represented by the dg;, and so it has a matrix which is the
image of the matrix (dg;/0x;) after mapping the entries to £. Thus, J is an isomorphism
if and only if the Jacobian determinant det (dg;/0x;) has nonzero image in £. But this
determinant generates J. ik, and so d is an isomorphism if and only if the Jacobian ideal
of £ over K is L. But we may use any presentation of £ over K to calculate J./x, and so
we may instead use £ = K[Z]/f(Z) where Z here represents just one variable and where
[ is a single separable polynomial. The Jacobian determinant is then the value of f'(Z7)
in L, which is not zero by virtue of the separability.



PRESENTATION DEPTH AND THE LIPMAN-SATHAYE JACOBIAN THEOREM 15

Thus, ¢ is an L-isomorphism. Moreover, we have already seen that if gq, ..., g, are
generators of M then the Jacobian determinant is not 0 in £. But the converse is also
clear, because if g1, ..., g, are any elements of M, they generate M if and only if their
images in M /M? span this vector space over £, by Nakayama’s lemma, and this will be
the case if and only if their further images in £ ®x[x] Qx[x]/kc span that vector space over
L, since § is an isomorphism, i.e., if and only if the images of the dg; span. But this is
equivalent to the assertion that the images of the columns of the matrix (Jg;/0z;), after
the entries are mapped to £, span an n-dimensional space, i.e., to the nonvanishing of
det (0g;/0x;) in L, which is, of course, equivalent to its not being in P. [

(4.2) The definition of ¢ and Wg,g. We continue the conventions in the first paragraph
of this section, but because we shall let both S and its presentation vary we shall write 6
for the map T' — S and we shall denote by g a special sequence g1, ..., g, in I. We may
then temporarily define

(g1, -+ gn)T T [)

(91, -+ 9n)T

by sending the class of u to u/y where @ is the image of w in £, and + is the image of
det (0g;/0x;) in L: the element v is invertible in £ by Lemma (4.1). We shall often write
® when # and g are understood. We shall soon show that the image of ® is contained

0,9

— L

in S:z Jg/r- Once this is established we shall change the definition of ® very slightly by
restricting its range to be S:z Jg/p C L.

We note that ((gl, coeygn)T i [)/(gl, oo sgn)T =2 Homp(T/I, T/ (91, --. ,90)T).

We shall denote the image of ®g 4 in L by Wg/r(0,g). However, we shall see just below
that it is independent of the choices of § and g, and once we know this we shall simply
write it as Wg/pr C L.

(Lemma (4.3). The map @y 4 is injective, and its image in L is independent of the choice
of g, and of the choice of 0. Its image is contained in S:z Jg/R.

Proof. The domain of ® may be thought of as the submodule of T/ (g1, ... , g,)T consisting
of elements killed by I. Since g1, ... ,g, is a special sequence, the associated primes of
g1, --- ,gn are all minimal, and it suffices to show that the map is injective after localizing
at each minimal prime of (g1, ... ,g,)T. If the prime does not contain I the domain of
® becomes 0 after localization and there is nothing to prove. If the prime contains I it is
one of the P,, and after localization the map becomes the composition of the isomorphism
Tp,/P,Tp, = Lp, with the automorphism of Lp, induced by multiplication by the image

of 7, which is nonzero.

To prove for a fixed presentation that the map is independent of the choice of special
sequence suppose that we have two special sequences that yield maps with different images.
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We can preserve the fact that the images are different while localizing at a suitable prime
or even maximal ideal of T: S is replaced by its localization at a corresponding prime.
Thus, there is no loss of generality in assuming that 7" and S are local. The sequences in
question remain special as we localize. But we may now apply Lemma (3.1) to conclude
the existence of a finite chain of special sequences joining the two that we are comparing
such that any two consecutive sequences differ either in at most one spot, or by the action
of an invertible matrix over R. Thus, we need only make the comparison when the two
sequences differ in just one term, and since the sequences are permutable we may assume
without loss of generality that one of them is ¢4, ..., g, and the other is hq, ..., h,, where
hj = g; for 7 > 2. We set up an isomorphism

o (glv 7gn)T:TI ~ (hh 7hn)T:TI
' (gl, ,gn)T (hl, ,hn)T

as follows. If u is an element of (g1, ... ,gn)T 7 I then since ul C (g1, ... ,gn)T we may

write uhy = vgy + w, where w € (g2, ..., gn)T = (ho, ..., hy)T. We map the class
of u to the class of v. Note that any such v is automatically in (hy, ..., h,)T ¢ 1. (If
a € I then avg; + aw = auhy. Now, au = bg; + w’ where w’ € (g2, ..., g,)T and so
avg; + aw = bg1hy + w'h; and so g1(av — bhy) = w'hy —aw € (go, ..., gn)T. Since g;
is not a zerodivisor on (g2, ..., gn)T, we have that av — bhy € (g2, ..., gn)T, and so
av € (hy, g2, ..., gn)T = (h1, ..., hy,)T, as required, for all a € I.) Next note that the
choice of v given u is unique modulo (g2, ..., g,)T. Thus, we have defined a map from
(91, - -+ »gn)T 7 I to ((hl, coe s h)T g [)/(hl, .. hp)T. Tt is easy to see that this map
kills (g1, -..,9,)T and so we have a map as required. It is also clear that if we similarly

define a map
(hiy «ovsho)T I (g1, - ygn) T I
(hh 7h’n)T (917 7gn)T

it will be an inverse for the map already constructed.

To complete the proof of the independence of the image from the choice of special
sequence we note that the following diagram commutes:

(gl,...,gn)TZTI g (hl,...,h,n)TiTI
(917 7gn)T (hl, ,h,n)T

o o
L

L e
1.

To see this, one simply needs to see that if

n
(%) uhy —vg; = thgj
i=2
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in T, then u/y = ¥/n in cL, where -y, n are the respective images of det (0g;/0X;) and
det (Oh;/0X;) in L, i.e., that udet (0h;/0X;) = vdet (0g;/0X;) modulo I. By differenti-
ating (x) with respect to each X; in turn and using the fact that all the g; and h; are in
I, we see that
n
uVhy —oVg = thng modulo [

j=2
which implies (x).

For a given special sequence g it is obvious from the definition of ®g , that v multiplies
the image of ®y , into S C L. Since the image is independent of the choice of special
sequence, and since by Lemma (3.1) as the special sequence varies the values of v generate
Js/r, it follows that the image is contained in S:z Jg/g.

It remains only to prove that the image of ®7 , is independent of the choice of §:T — S
as well. We first consider the case of a finitely generated R-algebra S. The choice of
a presentation is equivalent to the choice of a finite set of generators for S over R. We
can compare the results from each of two different presentations with the result from
their union, and so it suffices to see what happens when we enlarge a set of generators.
By induction, it suffices to show that the image does not change when we enlarge a set of
generators by one element, and so we may assume that we have 0 : T = R[ Xy, ... , X, » S
and an extension of 8, 8": T[X,,+1] = S by sending X,, 11 to s. Let T" = T[X,,+1]. We can
choose an element F' € T such that F' maps to s in S, and it follows easily that the kernel

I'of 0" is I + (X411 — F). Tt also follows easily that if g = g1, ... , g, is special in I then
9 =91, ..., gn+1 with g,11 = X,,11 — F is a special sequence in I'. The larger (size n+1)
Jacobian matrix has the same determinant v as the size n Jacobian matrix of g1, ..., gp
with respect to X, ..., X, and it is easy to check that there is an isomorphism
- (915 -5 9n) T L (91, o Gngp)T i I
(915 -, 90)T (915 - s gn41)T"
which is induced by the inclusion (g1, ... ,9n)T:7I C (91, .-+ ygn+1)T :7+ I'. Since the
Jacobian determinants are the same we have a commutative diagram
(91, -5 9) Tl 7 (915 oo Gy )T i I
(915 -+ s 9n)T " (g1 g )T
q>9,gl J@G,,g,
L — L
1,

and this yields that the images are the same.

We have now justified the notation Wg,g when S is finitely generated over R. We leave
it to the reader to verify that if s is a nonzerodivisor in S, then Wgs-1)/r = (Wg/R)s, and
that Wg,g(0) is independent of § when S is essentially of finite type over R. [
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Proposition (4.4). Let S be generically étale, torsion-free and essentially of finite type
over the Noetherian normal domain R. Assume that S is relatively S1 presentable over R.
Let W = Wg/R.

(a) For any multiplicative system U in S, Wy -1g/p = U-'W.
(b) W is torsion-free over S.

For the remaining parts, assume that S is relatively Sy presentable over R (automatic

in part (e), since R is regular).

(c) For every prime ideal P of S, if u, v is part of a system of parameters for Sp then it
is a regular sequence on Wp. (Thus, W is Ss.)

(d)y f W C W' C L and Wp = W, for all height one primes of S and for all minimal

primes of S that are also maximal ideals, then W = W'.

(e) If R — S is a local homomorphism of regular local rings then Jg/g is principal and
wW==8 L JS/R-

(f) If S is normal and Rp is reqular for every prime ideal P of R lying under a height
one prime ideal Q) of S, then W = S: Jg/g.

Proof. Part (a) is essentially the last part of (4.3), while (b) is evident from the fact that
W C L, by definition.

To prove (c) note that by (a) we may assume that S is local and that u, v is part of
a system of parameters. We may choose a presentation #:7T — S and think of W as &
((g1, -+ »90)T:7 1)/ (g1, - .., gn)T, where the sequence gy, ... , g, is not only special, but
has the additional property that T'/(g1, ... ,gn) is S2. Let ug, vg € T be representatives of
u, v. Then up+ I cannot be contained in the union of the associated primes of (g1, ..., gn)
(these are the same as the minimal primes), or else it will be contained in one of them
by [Kap], Theorem 124. Since this will contain I, it will be a minimal prime of I, and
contradicts the statement that u is part of a system of parameters in S = T/I. Thus,
we can replace ug by an element u; representing u such that g1, ..., gy, u1 is a regular
sequence in T'. Similarly, vg 4+ I cannot be contained in the union of the associated primes
of (g1, ... ,9n, u1)T, or else it is contained in one of them, say (). Thinking modulo I,
we see that, since () contains wug, vg, it has height at least two more than I. But then
(Q has depth at least n + 2, a contradiction, since it is supposedly an associated prime
of an ideal generated by a regular sequence of length n + 1. Thus, we may choose u1, vy
in T representing u, v respectively and such that g1, ..., g, u1, v1 is a regular sequence.
Clearly, uy, v; form a regular sequence on T'/(g1, ... ,gn)T. We claim they also form a
regular sequence on the set of elements killed by I. It is clear that u; remains not a
zerodivisor on this set. Suppose that v1z = u;y where z, y are killed by I. Then z = uyx,
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y = —vyx where, a priori, x € T/(g1, ... ,9,)T. But Iz = 0 and so Tujz = 0, and since
w1 is not a zerodivisor on T'/(g1, ... ,gn)T, it follows that Iz = 0 as well.

Part (d) is a standard consequence of what we proved in part (c), but we give a short
argument. If W # W' we can localize at a minimal prime of the support of W’'/W and
preserve the counterexample. By hypothesis, this prime cannot have height one (nor height
0, since if a height 0 prime is not maximal then we can localize at it in two steps: first
localize at a height one prime that contains it). Thus, we may assume that S is local of
height two or more, and that W’'/W is a nonzero module of finite length. It follows that
we can choose an element € W' — W and part of a system of parameters u, v for S such
that uz and vz are in W. The relations v(uz) = u(vz) over W together with part (c) show
that uz € uW, and it follows that z € W after all, a contradiction.

To prove (e) note that when R is regular so is 7', and so T — S will be a surjection
of local rings. The kernel of such a surjection must be generated by part of a minimal
set of generators for the maximal ideal of T'. It follows that [ is a prime and we have
I = (g1, ...,gn)7T is itself generated by a suitable special sequence. Then Jg,p is generated
by v = det (9g;/0X;), and ((g1, .- s gn)T 7 1) /(91, - ,9u)T = (I:71)/I =T/I = S and
® sends 1 to %, so that W = S%, and one sees that S:z Jg/p = S:£vS = W, as claimed.

To prove (f) it suffices by (d) to consider the problem after localizing at a height one
or zero prime () of S, and, without affecting the issue, one may also localize R at its
contraction. If the prime of S has height 0, so does its contraction to R, and both rings
become regular after localization. If the prime of S has height one, then, again, both rings
become regular after localization, S because it is normal and R by hypothesis. In either
case the result follows from part (e). O

5. A CRITICAL LEMMA AND THE FINAL STEP OF THE PROOF

The following result of Lipman and Sathaye is critical in establishing that Wg,/g de-
creases as S is increased by adjoining integral fractions.

Lemma (5.1) (Lipman-Sathaye. Let T be a commutative ring, Y an indeterminate,
and J an ideal of T[Y] such that J contains a monic polynomial h in'Y of degree d, and
such that J also contains an element of the form oY — B where o, 3 € T are such that
Jiry1aT'[Y] = J, i.e., such that « is not a zerodivisor modulo J. Let G C T be an ideal
of T with G C J. Then for every element v € T[Y] such that vJ C (h, G)T[Y] there is a

h
u € T such that u(JNT) C G and such that v = u g—Y modulo J.

Proof. See Lemma (3.17) on p. 216 of [LS]. O
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We now use this to prove:

Theorem (5.2). If Sy is obtained from S by adjoining finitely many integral fractions of
,C, then Wsl/R - WS’/R-

Proof. By induction on the number of fractions adjoined, it is obviously sufficient to prove
this when Sy = S[\], where ) is a single element of £. Choose a presentation 0: T — S and
a special sequence g1, ..., g, in the kernel I. Let Y be a new indeterminate and extend
6 to a map T[Y]| — S[A] by sending Y to A. Since A is integral over S there is a monic
polynomial h = h(Y') € T[Y] of degree say, d, in the kernel J of T[Y] — S[A]. If A € S
there is nothing to prove so that we may assume that d > 2. Since A is in £ we may also
choose o and 3 in T with a not a zerodivisor on I such that oY — [ is in the kernel.
Consider the image of A(Y') in S[Y]. There will be a certain subset of the minimal primes
of § such that the image of A is a multiple root of the image of h modulo those primes.
If that set of primes is empty, we shall not alter h. If it is not empty choose an element
of S that is not in any of those minimal primes but that is in the others, and represent
it by an element ¢ € T. Then h(Y) + t(aY — ) has the property that its image modulo
any minimal prime of S has the image of A as a simple root, and so we may assume, using
this polynomial in place of the original choice of h, that A is a monic polynomial of degree
d > 2 such that image of A modulo every minimal prime of £ is a simple root of the image
of h.

Because h is monic in Y, the sequence g1, ...,9y,, h is a regular sequence, and the

h
Jacobian determinant with respect to X1, ..., X,, Y is vy BV where v is det (0g;/0X;).

T oh . . . .. . .
Our choice of h implies that F% has image that is not in any minimal prime of £, and it

follows, using Lemma (1.9), that g1, ..., gn, h is a special sequence in .J and can be used
to calculate Wgz/r. Let v € (g1, ..., gn, h)T[Y]:ppy)J. We may now apply Lemma (5.1)
with this T, Y, J, v, «, § and h, while taking G = (g1, ... ,gn)T. Note that JAT = I. Now,

v gives rise to a typical element, the image of v/(vy 3—Y) in £, in Wgy/r, and we want to

show that this element is in Wg/p. Pick u as in Lemma (5.1). Then u € (g1, ... ,g,)T:7 1
oh oh oh

and since v = u E» modulo J, this image is the same as the image of (u 8—)/('}/ 8_) =u/y,
Y ) Y

and so is in Wg/g, as required. [

(5.3) The proof of the main theorem. Theorem (5.2) and Proposition (4.4f) justify the
argument given much earlier in (2.6), and the proof of Theorem (2.1) is now complete. [
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