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CHAPTER 1

Introduction

1.1 Background and History

1.1.1 Ideals defined by matrix equations: a brief history

The study of ideals generated by “generic” matrix equations has been, and con-

tinues to be, an important direction of research in both Algebra and Algebraic Ge-

ometry. Perhaps most well-known, and earliest studied, are the determinantal ideals

and their associated rings and varieties of the same name. In 1916, Macaulay [28]

proved that the ideal generated by maximal minors of a matrix of indeterminate en-

tries are unmixed. These results were extended to arbitrary sized minors by Eagon

[11] in his 1961 Ph.D. thesis. The following year, Eagon and Northcott [12] proved

the perfection of determinantal ideals by constructing a finite free resolution and, in

1971, Hochster and Eagon [22] developed the method of principal radical systems

to show that determinantal rings are Cohen-Macaulay normal domains. Bruns [3]

computed the divisor class group and, with Herzog [4], calculated the a-invariant. In

1994, Hochster and Huneke [25] proved that determinantal rings have the property

that all ideals are tightly closed in characteristic p > 0.

Geometrically, determinantal rings are related to the homogeneous coordinate

rings of certain Schubert subvarieties of Grassmannians. Their geometric significance

was realized at least as far back as the 1930’s. T. Room [31], in the preface of his
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book “The geometry of determinantal loci,” stated “...it appears that practically

all the loci about the projective properties of which anything is known either are

included in the class of determinantal loci, or are closely connected with it.”

A generalization of determinantal rings and varieties called ladder determinantal

rings and varieties was introduced in 1988 by Abhyankar [1] in his studies of sin-

gularities of Schubert varieties of flag manifolds. Through a series of papers ladder

determinantal rings were shown to be a domain [30], Cohen-Macaulay [20], and nor-

mal [9]. Conca computed the divisor class group [7] and, together with Herzog [10],

using tight closure techniques and a result of K.E. Smith [32], showed that ladder

determinantal rings have rational singularities in characteristic 0.

Not all rings and varieties defined by matrix equations are defined in terms of

determinants, nor have all the rings and varieties defined by matrix equations been as

quick in yielding results as (ladder) determinantal rings. For example, the commuting

variety, defined by pairs of commuting matrices of indeterminates X, Y such that

XY = Y X, was shown to be irreducible in 1955 by Motzkin and Taussky [29] and

by Gerstenhaber [17], through different means in 1961. Yet it remains open as to

whether the commuting variety is reduced or Cohen-Macaulay.

Our thesis investigates the rings and varieties defined by pairs of matrices of

indeterminates whose product is symmetric, that is XY = (XY )tr, and relies on facts

already established for certain specific determinantal rings. Many of the methods

and techniques used in this thesis were originally developed to study determinantal

rings and ladder determinantal rings. Applying these techniques, we prove that these

rings are Cohen-Macaulay and normal. Furthermore, we establish they have rational

singularities in characteristic 0 and we conjecture that all of these rings are F-regular

in characteristic p > 0.
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1.1.2 Singularities

Over the complex numbers varieties are smooth when they are locally analytically

isomorphic with an open set in Cn. The varieties we study are typically not smooth,

but we establish several important properties for the singularities. For example, we

show that they are Cohen-Macaulay and normal (which implies the singular locus

has codimension 2).

In characteristic 0, Hironaka [21] proved that one can always find a smooth va-

riety that maps properly and birationally onto a given variety by a process called

“blowing-up.” The original variety has rational singularities if it is, roughly speaking,

“cohomologically indistinguishable” from a smooth variety that one gets via blowing-

up. We prove that the varieties we study have rational singularities in characteristic

0.

Singularities of a variety in characteristic 0 can often be studied by reduction to

characteristic p > 0 methods, more specifically, by considering the action of Frobenius

on the coordinate ring in characteristic p > 0.

1.1.3 Tight Closure

Although tight closure is primarily a notion for rings of characteristic p, it has

strong connections with the study of the singularities of algebraic varieties over fields

of characteristic zero. The tight closure of an ideal I is a possibly larger ideal,

denoted by I∗, which is always contained in the integral closure of I and is frequently

much smaller. Hochster and Huneke observed that for large classes of rings, the

geometric notion of rational singularities is analogous to a certain property which

could be formulated in terms of tight closure, namely the property that parameter

ideals are tightly closed. These rings were eventually named F-rational rings by
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Fedder and Watanabe [15]. K.E. Smith [32] proved that, in characteristic p > 0,

F-rational rings are pseudo-rational in the sense of Lipman and Tessier [27] and, in

characteristic 0, that F-rational type implies rational singularities. The converse,

that rational singularities in characteristic 0 implies F-rational type, is a theorem of

Hara [18]. Making use of Smith’s result, Conca and Herzog [10] showed that ladder

determinantal varieties have rational singularities.

The theory of tight closure also draws attention to rings in which all ideals are

tightly closed, called weakly F-regular rings. Rings such that all localizations are

weakly F-regular are called F-regular. These properties turn out to be significant.

Hochster-Roberts [26] proved that rings of invariants of linear reductive groups acting

on regular rings are Cohen-Macaulay and, in characteristic p > 0, the closely related

result that direct summands of regular rings are Cohen-Macaulay. These results

were forerunners of tight closure theory. Using tight closure techniques, the Hochster-

Roberts theorem can actually be proved for the much larger class of weakly F-regular

rings [23]. This, in turn, is the characteristic p analogue of Boutot’s theorem [2] which

states that, over an algebraically closed field of characteristic 0, direct summands of

polynomial rings with rational singularities, have rational singularities.

1.2 Notations, Conventions and Known Results

By an N-graded ring, R, we shall always mean a ring R = ⊕n≥0Rn finitely gen-

erated over a field R0 = K. We shall denote by m the homogeneous (irrelevant)

maximal ideal of R. For a graded R-module M , we shall denote by [M ]i the ith

graded piece of M .

By a system of parameters for a N-graded ring R, we shall mean a sequence of

homogeneous elements of R whose images form a system of parameters for Rm.
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We say that I = (x1, . . . , xn), an ideal of R, is a parameter ideal if the images

of x1, . . . , xn form part of a system of parameters in RP , for every prime ideal P

containing I.

Let R be a commutative Noetherian ring of characteristic p > 0, let I be an ideal

of R and let R0 denote the complement of the union of the minimal prime ideals of

R. The tight closure I∗ of I is the set of elements z ∈ R for which there exists c ∈ R0

such that czpe ∈ I [pe] for all e >> 0, where I [pe] denotes the ideal generated by all

elements ape
, a ∈ I. If I = I∗, we say I is tightly closed.

A ring R, of characteristic p > 0, is weakly F-regular if every ideal of R is tightly

closed and is F-regular if every localization is weakly F-regular. R is called F-rational

if every parameter ideal is tightly closed.

We now summarize some known results:

Theorem 1.1. Let R be a Noetherian ring of characteristic p > 0.

a) R is regular ⇒ R is F-regular ⇒ R is weakly F-regular ⇒ R is F-rational ⇒ R

is normal and Cohen-Macaulay (provided R is a homomorphic image of a Cohen-

Macaulay ring). ([24], 3.4, 4.2)

b) For Gorenstein rings, F-rationality and F-regularity are equivalent ([24], 4.7).

c) Suppose that R is, in addition, N-graded over a perfect field with graded maximal

ideal m. Then R is F-rational if and only if Rm is F-rational ([25], 1.4).

1.3 Outline of Main Results

Our main thesis results center on the algebraic varieties defined by pairs of ma-

trices whose product is symmetric. More formally, let A = (aij) and B = (bij)

be matrices of algebraically independent indeterminates, over a field K, of size

n × s, s × n, respectively. For any matrix X, let It(X) denote the ideal gener-
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ated by the t-sized minors of X. Let K[A, B] be the polynomial ring in the 2ns

entries of A and B. Throughout this thesis we denote In,s = I1(AB − (AB)tr),

the ideal of K[A, B] generated by the entries of the n × n skew-symmetric matrix

AB − (AB)tr. Let V n,s = V (In,s) be the algebraic set in A2ns
K corresponding to In,s

and let Rn,s = K[A, B]/In,s, which will be shown to be the coordinate ring associ-

ated to the variety V n,s (this would be clear if we knew that Rn,s is reduced; we shall

prove that it is, in fact, a domain.)

Our main results are that, for all n, s ≥ 1, Rn,s is a Cohen-Macaulay (5.2), normal

domain (5.11) and V n,s has rational singularities in characteristic 0 7.9.

In chapter 2 we establish that Rn,s is a normal Cohen-Macaulay domain in several

cases, which provide “base” cases for proofs by induction. We also show that V n,s is

an irreducible algebraic set for all n, s ≥ 1. Thus we reduce the problem of showing

that Rn,s is a domain to showing that In,s is a radical ideal.

An algebraic set X is often specified as the points V (I) where the elements of

the ideal I vanish. It is typically difficult to prove that I contains all polynomials

that vanish on X (that I is radical). Our key results on Cohen-Macaulayness and

normality are proved by establishing facts like this for a much larger class of auxiliary

ideals. In a number of instances it requires great effort even to show that the sets

arising are irreducible.

The focus of chapter 3 is to establish the irreducibility of the corresponding alge-

braic sets of certain auxiliary ideals. We use these facts, together with the method

of principal radical systems, to show, in chapter 4, that In,s is a radical ideal for all

n, s ≥ 1. It then follows that Rn,s is a domain for all n, s ≥ 1. Using the family

of auxiliary ideals, the main result of chapter 5 is that Rn,s is a Cohen-Macaulay

normal domain for all n, s ≥ 1. We also compute the divisor class group of Rn,s.
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Hara and Watanabe in [19] give a criterion for F-rationality for Cohen-Macaulay

rings which are N-graded algebras finitely generated over R0 = K, a field of charac-

teristic p > 0, which leads us to study the Hilbert function and related invariants,

such as the a-invariant. The a-invariant only depends on the Hilbert polynomial of

Rn,s. Since these rings are Cohen-Macaulay, we can recover this polynomial from

the Hilbert polynomial of the ring modulo a homogeneous system of parameters. In

chapter 6, we explicitly construct a linear homogeneous system of parameters for

Rn,s for all n, s ≥ 1 and are able to show that the a-invariant is negative for all

n, s ≥ 1. We compute its value for n ≤ s + 1 and conjecture its value for n > s + 1.

At this point, proving that Rn,s is F-rational has been reduced to showing that

Rn,s is F-injective. Using Gröbner basis techniques and a result Conca and Herzog

[10] we further reduce F-rationality to showing that, for a certain monomial order,

K[A, B]/in(In,s) is Cohen-Macaulay and in(In,s) is generated by square-free mono-

mials, which we prove in the n ≤ s+1 case. A result of K.E. Smith [32] implies that

V n,s has rational singularities in characteristic 0 for n ≤ s + 1. Using these results

and a criterion due to Kempf [16], we establish that V n,s has rational singularities

in characteristic 0 for all n, s.



CHAPTER 2

Varieties and Complete Intersections

2.1 Pairs of Matrices whose Product is Symmetric

The focus of this chapter is to establish that Rn,s is a Cohen-Macaulay normal

domain in several cases. These facts will serve as “base cases” when proving that

Rn,s is a Cohen-Macaulay normal domain for all n, s ≥ 1. We first establish that V n,s

is an irreducible algebraic set for all n, s ≥ 1, and then show that Rn,s is a complete

intersection for n ≤ s + 1 and is a unique factorization domain for n ≤ s.

Remark 2.1. Note that if L denotes the algebraic closure of K then, since L is

faithfully flat over K, we have that Rn,s ⊆ L ⊗K Rn,s. Thus, we may assume K is

algebraically closed when showing Rn,s is a domain or reduced. What is more, we

may assume K is algebraically closed when proving that Rn,s is Cohen-Macaulay,

since the Cohen-Macaulay property for finitely generated K-algebras is stable under

change of field. Unless otherwise stated, we will assume that K is algebraically closed

henceforth.

8
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2.1.1 The Base Cases

When n = 1 and s ≥ 1 the product of the matrices is a 1× 1 (symmetric) matrix

and In,s is the zero ideal.

(
a11 · · · a1s

)


b11

...

bs1

 =

(
a11b11 + . . . + a1sbs1

)

Thus R1,s is isomorphic to K[A, B], a regular domain of dimension 2s.

When n > 1 and s = 1, our matrices have the form:
a11

...

an1

 ,

(
b11 · · · b1n

)

In,s is generated by the
(

n
2

)
upper (equivalently, lower) triangular entries of the

alternating n× n matrix, AB − (AB)tr. These entries are given by the polynomials:

for 1 ≤ i < j ≤ n

ai1b1j − aj1b1i

We note that, in more general cases, the
(

n
2

)
polynomials generating In,s may be

thought of as coming from the difference of dot products: for 1 ≤ i < j ≤ n,

RA
i · CB

j − RA
j · CB

i

where RA
i denotes the ith row of A and CB

j denotes the jth column of B.

The defining polynomials for In,s (in the s = 1 case) are the same as the 2 × 2

minors of the 2 × s matrix, C, whose rows are Atr and B. It follows that Rn,1 is

isomorphic to K[C]/I2(C), a determinantal ring, which is known [22] to be a normal

Cohen-Macaulay domain of dimension n + 1.
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2.2 Group Actions

We have a right action by K-algebra automorphisms on K[A, B] by GLn(K) ×

GLs(K) given by:

(γ, δ) : (A, B) 7→ (γAδ−1, δBγtr)

where the notation means that the entries of A are mapped to the entries of γAδ−1

and the entries of B are mapped to the entries of δBγtr. This is a right action on

K[A, B] and In,s is stable since AB − (AB)tr maps to γ(AB − (AB)tr)γtr. Thus

induces a right action on Rn,s.

The induced action on V n,s sends

(α, β) 7→ (γαδ−1, δβγtr)

and is a left action on V n,s.

This action preserves the pair (rank(A), rank(B)). One can do row operations on

A, with corresponding column operations on B, and conversely.

Note that we also have an action by Z2 = {0̄, 1̄} on Rn,s and V n,s given by:

1̄ : (A, B) 7→ (Btr, Atr)

1̄ : (α, β) 7→ (βtr, αtr)

2.3 Localization Properties

We want to study what happens when we localize Rn,s at any maximal minor of

A or B.

Proposition 2.2. Let ∆ be any maximal minor of A or B and let M denote the

submatrix associated to ∆, i.e., det(M) = ∆. Then Rn,s
∆ is a regular domain of

dimension 2ns−
(

n
2

)
for n ≤ s and of dimension ns +

(
s+1
2

)
for n ≥ s.
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If Rn,s ⊆ S, we can let (γ, δ) ∈ GLn(S)×GLs(S) act on the pair (A, B) by

(γ, δ) : (A, B) 7→ (γAδ−1, δBγtr) = (A′, B′)

producing a new pair of matrices over S.

I1(AB − (AB)tr)S = I1(A
′B′ − (A′B′)tr)S

because A′B′ − (A′B′)tr = γ(AB − (AB)tr)γtr and AB − (AB)tr = γ−1(A′B′ −

(A′B′))tr(γtr)−1.

Proof: Let m = min{n, s}. By the Z2-action we may assume, without loss of

generality, ∆ is a minor of A. We consider two cases: n ≥ s and n < s. In either

case, by permuting rows and columns, we may further assume that M is the m×m

submatrix of A in the upper left-hand corner.

Case 1: n ≥ s

A has the form:  M

A0


When n = s we take A0 to be the empty set.

(M−1, I) ∈ GLn(Rn,s
∆ )×GLs(R

n,s
∆ ) acts on

(A, B) = (

 M

A0

 ,

(
B0 B1

)
)

to give

(A′, B′) = (

 I

M−1A0

 ,

(
B0(M

−1)tr B1(M
−1)tr

)
)

Then entries of A′
0 = M−1A0, B′

0 = B0(M
−1)tr, B′

1 = B1(M
−1)tr and M along

with 1/∆ generate K[A, B][1/∆] and so the entries of A′
0, B′

0, B′
1 and M are all

algebraically independent over K and K[A, B]∆ = K[A′
0, B

′
0, B

′
1, M ]∆.
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The symmetry condition implies that Rn,s
∆ = K[A, B]∆/In,s is isomorphic to

K[A′
0, B

′
0, B

′
1, M ]∆/(I1(B

′
0 −B′tr

0 ) + I1(B
′
1 − (A′

1B
′
0)

tr) + I1(A
′
1B

′
1 − (A′

1B
′
1)

tr))

After substituting (A′
1B

′
0)

tr for B′
1, the relation A′

1B
′
1 = (A′

1B
′
1)

tr is trivially sat-

isfied using the relation B′
0 = B′tr

0 . Thus Rn,s
∆ is isomorphic to

K[M, A0, B0][1/∆]/(I1(B0 −Btr
0 ))

which is the localization of a polynomial ring, hence a regular domain. We note that

the dimension of Rn,s
∆ = ns +

(
s+1
2

)
when n ≥ s.

Case 2: n ≤ s

A has the form:

(
M |A0

)
When n = s we take A0 to be the empty set.

Let

(I ,


n s-n

n M A0

s-n 0 I

) ∈ GLn(Rn,s
∆ )×GLs(R

n,s
∆ )

act on

(A, B) = (

(
M A0

)
,

 B0

B1

)

Note that δ is given, but

δ−1 =


n s-n

n M−1 −M−1A0

s-n 0 I


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acts (on the right) on A and gives

(A′, B′) = (

(
I 0

)
,

 MB0 + A0B1

B1

)

Then entries of A′
0 = A0, B′

0 = MB0 + A0B1, B′
1 = B1 and M along with 1/∆

generate K[A, B][1/∆] and so the entries of A′
0, B′

0, B′
1 and M are all algebraically

independent over K and K[A, B]∆ = K[A′
0, B

′
0, B

′
1, M ]∆.

The symmetry condition implies that Rn,s
∆ = K[A, B]∆/In,s is isomorphic to

K[A′
0, B

′
0, B

′
1, M ]∆/(I1(B

′
1 −B′tr

1 ))

a localization of a polynomial ring, hence a regular domain. We note that the

dimension of Rn,s
∆ = 2ns−

(
n
2

)
when n ≤ s. �

We also want to remark on what happens when we localize Rn,s at an entry of A

or B. By permuting variables we may assume, without loss of generality, that the

entry is a11. The ring Rn,s[1/a11] is isomorphic to the localization of a polynomial

ring in 2s+n−1 indeterminates over Rn−1,s−1. In fact, following the above argument,

it is easy to see that

Remark 2.3. Rn,s[1/a11] ∼= Rn−1,s−1[a11, . . . , a1s, a21, . . . , an1, b11, . . . , bs1][1/a11]

2.4 On Irreducibility

Theorem 2.4. V n,s is an irreducible algebraic set for all n, s ≥ 1.

V n,s is irreducible if and only if the radical of In,s has a unique minimal prime. Let

∆ denote a maximal minor of A or B. There is a one-to-one correspondence between

primes of Rn,s
∆ and primes of Rn,s not containing ∆. Let P∆(=

⋃
t AnnRn,s∆t) be

the unique minimal prime of Rn,s not containing ∆. To complete the proof of 2.4, it

suffices to show that Rn,s has a unique minimal prime ideal. First we show:
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Proposition 2.5. For any maximal minor, ∆′, of A or B, P∆ = P∆′.

This amounts to showing that no maximal minor of A or B is mapped to zero in

Rn,s
∆ .

Proof: For n ≥ s: we may again assume A and B have the following forms I

A1

 ,

(
B0 B0A

tr
1

)

where B0 is a symmetric s× s matrix and I is the s× s identity matrix.

If ∆′ is a minor of A which consists of h rows of I, then ∆′ is (up to sign) an

(s− h)-sized minor of A1 which does not vanish modulo I1(B0 −Btr
0 ).

Suppose ∆′ is a minor of B. We can factor B so that it has the form

B0

(
I Atr

1

)
Specializing B0 to the identity matrix, we have that ∆′ does not vanish in Rn,s

∆ .

For s ≥ n: We assume our matrices have the form

(
I | 0

)
,

 B0

B1


We only need to see that the n-sized minor of B0 is not mapped to zero. But

specializing B0 to the identity matrix gives a minor which does not vanish in Rn,s
∆ .�

So, for any maximal minor, ∆, of A or B, there exists a unique minimal prime,

P∆, of Rn,s not containing ∆, and all choices of ∆ give the same minimal prime of

Rn,s, say P . Thus, P is killed by a power of the ideal generated by the maximal

minors of both A and B, Im(A) + Im(B) with m =min{n, s}, and

Remark 2.6. If there is another minimal prime of Rn,s, it must contain Im(A)+Im(B).

Proposition 2.7. The algebraic set corresponding to P contains V n,s (i.e., V n,s =

V (P )).
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Proof: Suppose not. Suppose that V n,s = V (P ) ∪ Y , where Y is some algebraic

set. As a subspace of 2ns affine space over K, we may regard

V n,s = {(α, β) ∈Mn×s(K)×Ms×n(K) : αβ = (αβ)tr)}

Pick (α0, β0) ∈ V n,s − V (P ) and let Xβ0 = {(α, β) ∈ V n,s : β = β0}. So

Xβ0 ∩ V n,s = (Xβ0 ∩ V (P )) ∪ (Xβ0 ∩ Y )

But Xβ0 is irreducible, so Xβ0 = Xβ0 ∩ Y , thus Xβ0 ⊆ Y . But on Y all maximal

minors of A and B vanish. So Xβ0 ⊆ V n,s ∩ V (Im(A) + Im(B)). But this is false.

Given a fixed β0 with all maximal minors vanishing there always exists a matrix α0

with some maximal minor not vanishing. Indeed, by letting GLn(K)×GLs(K) act

on Xβ0 7→ Xδβ0γT , we may assume β0 has the form I 0

0 0


where I is the identity matrix of size less than m (= min{n, s}). For any such β0,

choose α0 to be the block matrix formed by the identity matrix of size m in the

upper left-hand corner and zeros elsewhere. �

We have in fact shown

Remark 2.8. Rn,s has a unique minimal prime and the dimension of Rn,s is ns+
(

s+1
2

)
for n ≥ s and is 2ns−

(
n
2

)
for n ≤ s.

By remark 2.6, we note

Remark 2.9. For all n, s ≥ 1, the singular locus of Rn,s contains the ideal generated

by the maximal minors of A and the maximal minors of B.



16

2.5 Complete Intersections

Definition 2.10. Suppose R is the coordinate ring of an affine variety over an alge-

braically closed field K. Then R has the form R = S/I where S is a polynomial ring

over K, and R is called a complete intersection if I is generated by the least possible

number of elements, namely codim(V )= height(I). Then V is the intersection of

codim(V ) hypersurfaces, and I is generated by an S-sequence.

Theorem 2.11. For n ≤ s, Rn,s is a complete intersection and a unique factorization

domain.

Proposition 2.12. For n ≤ s + 1, Rn,s is a complete intersection.

Proof: The dimension of K[A, B] is 2ns and In,s can be generated by
(

n
2

)
elements. For n ≤ s, the dimension of Rn,s is 2ns −

(
n
2

)
. To prove the proposition,

it suffices to show that height of In,s is greater than or equal to
(

n
2

)
, or equivalently

that (2ns)− (2ns−
(

n
2

)
) is less than or equal to

(
n
2

)
.

When n = s + 1, the dimension of Rn,s is 3s(s + 1)/2 and we only need to see

that
(

s+1
2

)
≥ (2s(s + 1)− 3s(s + 1)/2). �

Proposition 2.13. For n ≤ s, Rn,s is a domain.

Proof: Following Theorem 2.10 in [6], we precede by induction on n. The case

n = 1 is handled in 2.1.1. So assume n > 1. Since depthI1(A)+I1(B)K[A, B] = 2ns >

depthIn,sK[A, B] =
(

n
2

)
, I1(A) + I1(B) is not contained in any associated prime of

In,s. By the induction hypothesis and 2.3, Rn,s[1/a11] is a Cohen-Macaulay domain

so the exists a unique minimal prime, P , of Rn,s not containing a11. By 2.8, there

exists only one minimal prime, thus a11 is a nonzerodivisor for Rn,s and Rn,s is a

domain. �
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Proposition 2.14. For n ≤ s, Rn,s is a normal domain.

For this argument, we do not assume K to be algebraically closed.

Proof: Following Theorem 2.11 in [6] In order to show normality we apply criteria

based on Serre’s conditions. By 2.12 and 2.13, we know Rn,s is a Cohen-Macaulay

domain. Thus normality is reduced to showing that Rn,s
P is a regular local ring for

all prime ideals of height at most one. We proceed by induction on the size of the

matrices.

The statements are obvious if n = 1. Let n > 1. Consider a prime ideal P in Rn,s

such that depthRn,s
P ≤ 1. Then depthP̃ K[A, B] ≤ 1. Because of

depthI1(A)+I1(B)K[A, B] = 2ns >

(
n

2

)
+ 1

there is an indeterminate Aij which has residue class aij not contained in P̃ . Clearly

we may assume aij = a11. Then by 2.3 and the inductive hypothesis Rn,s[1/a11] is

normal. Consequently, Rn,s
P is a normal domain. �

We note that the above holds more generally when K is a normal domain.

Lemma 2.15. Any entry of A or B is a prime element of Rn,s.

Proof: By the group action, it suffices to show that a11 is a prime element of Rn,s.

Let ∆ be a maximal minor of B in the lower right-hand corner. Then {a11, ∆} form a

permutable regular sequence for Rn,s. Hence ∆ is a nonzerodivisor for Rn,s/a11R
n,s.

Therefore,

Rn,s/a11R
n,s ⊆ (Rn,s/a11R

n,s)∆ = Rn,s
∆ /a11R

n,s
∆

So it suffices to show that the image of a11 in Rn,s
∆ is prime. Up to multiplication by

a unit, the image is an entry in A which is prime in Rn,s
∆ . Thus any entry in A or B

is prime in Rn,s. �
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Lemma 2.16. Let S be Noetherian domain and x a prime element of S. If Sx is

factorial, then S is factorial.

Proof: See Lemma 2.2.18 in [5]. �

Corollary 2.17. Rn,s is a unique factorization domain for n ≤ s.

Proof: Apply 2.3, 2.15, and 2.16. �



CHAPTER 3

Preliminary Results on Auxiliary Ideals

3.1 Irreducible Families of Algebraic Sets

The next two chapters are devoted to showing that Rn,s is a Cohen-Macaulay

normal domain for all n, s ≥ 1. Since we have already established the claim for

1 ≤ n ≤ s [Theorem 2.11] and s = 1 [Section 2.1.1], we will focus on the cases,

n > s > 1. We use the method of principal radical systems developed by Hochster

and Eagon [22]. The method requires that we establish facts like these for a much

larger family of auxiliary ideals. We use this method to prove

Theorem 3.1. Let K be a field, let n and s be positive integers and let A and B

be matrices of indeterminates over K of size n × s and s × n, respectively. Then

In,s = I1(AB − (AB)tr) is a prime ideal, i.e., Rn,s = K[A, B]/In,s is a domain.

The idea is to include In,s in a large family of ideals. Typically these ideals

are radical rather than prime. The result is proved by reverse induction, in that

the largest ideal(s) in the family are shown to be radical first. The family has the

property that for each ideal I in the family there is an ideal of the I + xR in the

family which, by the induction hypothesis, is known to be radical.

By previous remarks [2.1], we may assume K is algebraically closed. We assume

this throughout this chapter.

19
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We first focus on showing that several of the ideals in our families have radicals

that are prime. Thus, once we show that they are radical, it will follow that they

are prime. We think of points in A2ns
K as corresponding to pairs of matrices of sizes

n× s and s× n over K.

Our approach will be to kill entries in A and B, one at a time, in a carefully

chosen order, in such a way that, eventually, we decrease n or s or both. To this

end, we define several auxiliary ideals in the next section.

3.2 Notation

Let Ji denote the ideal in K[A, B] generated by the first i entries of the first row

of A. Let J ′i denote the ideal generated by the last i entries of the first column of B.

If we make the convention that J0 and J ′0 are the zero ideal, then, for 0 ≤ i ≤ s, we

have

Ji = (a11, . . . , a1i)

J ′i = (bs1, . . . , bs−i+1,1)

Let A|j denote the n× j submatrix formed by the first j columns of A. We make

the natural convention that Is+1(A|s+1) is the zero ideal, thus Ij(A|j) is defined for

1 ≤ j ≤ s + 1.

For n ≥ s, 0 ≤ i ≤ s and 1 ≤ j ≤ s+1, we define the following ideals (in K[A, B])

and closed algebraic sets (in A2ns
K ):

F n,s
i,j = In,s + Ji + Ij(A|j)

Gn,s
i,j = In,s + Js + J ′i + Ij(A|j)

Therefore:

V (F n,s
i,j ) = V (In,s) ∩ V (Ji) ∩ V (Ij(A|j))
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V (Gn,s
i,j ) = V (In,s) ∩ V (Js) ∩ V (J ′i) ∩ V (Ij(A|j))

Remark 3.2. For all n ≥ s and 1 ≤ j ≤ s + 1, F n,s
s,j = Gn,s

0,j and for n > s and

1 ≤ j ≤ s + 1, Gn,s
s,j = F n−1,s

0,j .

Our first step is to show certain ideals in these families have radicals which are

prime ideals (equivalently, the corresponding algebraic set is irreducible).

Theorem 3.3. For n ≥ s, 0 ≤ i ≤ s, 1 ≤ j ≤ s + 1 and i 6= j − 1,

V (F n,s
i,j ) is an irreducible algebraic set.

For n ≥ s, 1 ≤ i ≤ s, 1 ≤ j ≤ s + 1 and i + j ≤ s,

V (Gn,s
i,j ) is an irreducible algebraic set.

Theorem 3.3 will be proved in various cases, which we separate into propositions.

Before we do this, we need to define some notation and make a general reduction.

3.3 Matrix Notations

A and B are matrices of indeterminates. Capital letters with subscripts and/or

primes like A0, B
′, C1, etc., are used for block submatrices after some indeterminates

in A, B have been specialized to 0.

When (A, B) is specialized to a point of A2ns
K , we use (α, β) to represent that

point. Greek letters with subscripts and/or primes like α′, β0, ε1, etc. are used for

block submatrices after the entries of (A, B) have been specialized to elements in the

field.

3.4 Connected Algebraic Groups

Let V be a closed algebraic set and let W be a subset of V . Let v ∈ V . If H

is a connected and, hence, irreducible linear algebraic group acting on both V and
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W and v is in the closure of W , then, for every h ∈ H, hv is in the closure of W .

Therefore it suffices to show that one element of the orbit of V is in the closure of

W .

Remark 3.4. In the sequel, each stabilizer that we consider is a finite product of

general linear groups and affine spaces and, therefore, connected.

3.5 Reductions

Working modulo I1(A|1), our pairs of matrices have the block form:

(

( 1 s-1

n 0 A′

)
,


n

1 B0

s-1 B′

)

and AB = A′B′. Therefore K[A, B]/(In,s + I1(A|1)) is a polynomial ring over

K[A′, B′]/In,s−1, which, when clear from context, we tacitly denote by Rn,s−1. In

this way, it is clear that Rn,s/I1(A|1) is isomorphic to Rn,s−1[B0].

For 0 ≤ k ≤ s and 0 ≤ l ≤ n, let Jk,l denote the ideal generated by the first k

columns of A, the first l rows of A and the first l columns of B. We include these

ideals in our families. If l = n, the ideal Jk,n is generated by the entries of A and B,

hence Jk,n is a maximal (prime) ideal. So there is no loss of generality in assuming

that l < n.

Modulo Jk,l, A and B have the block form:


k s-k

l 0 0

n-l 0 A′

,


l n-l

k 0 B0

s-k 0 B′


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and

AB =

 0 0

0 A′B′


Therefore Rn,s/Jk,l is isomorphic to Rn−l,s−k[B0].

Remark 3.5. In our inductive proofs of ring-theoretic properties that are stable under

polynomial extensions and for which we know the result for smaller sized matrices,

there is no loss of generality in assuming that k = l = 0 and that j > 1.

3.6 Irreducible Cases

Since the property that a ring has a unique minimal prime ideal is stable under

polynomial extension and since this is know for smaller sized matrices, by remark

3.5 we may assume j > 1 when proving K[A, B]/F n,s
i,j or K[A, B]/Gn,s

i,j has a unique

minimal prime.

Let V (Ik+1(α|j)) denote the set of points (α, β) ∈ A2ns
K such that the rank of the

first j columns of α is less than or equal to k.

Proposition 3.6. For n ≥ s, 0 ≤ k ≤ j and 1 < j ≤ s,

V n,s ∩ V (Ik+1(A|j)) is an irreducible algebraic set.

Proof: First note that when k = 0, V n,s∩V (I1(A|j)) is the same as V n,s∩V (Jj,0)),

which is irreducible. So we assume k > 0. We may further assume k < s. Fix k, with

0 < k < s. The subgroup, H, of GLn(K)×GLs(K) that stabilizes V n,s∩V (Ik+1(A|j))

consists of pairs of matrices of the form:
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GLn(K)×


j s-j

j ∗ ∗

s-j 0 ∗


Let U be the subset of V n,s ∩ V (Ik+1(A|j)) where the rank of α is maximal

(rank(α) = s − j + k.) Any point, (α, β), of U has an element in its orbit of

the form:



j − k s-j+k

1 0 0

s-j+k 0 1s−j+k

n-s+j-k-1 0 0

,


1 s-j+k n-s+j-k-1

j-k β0 ς0 ω0

s-j+k 0 ς1 0


with ς1 symmetric. We tacitly use the fact that k < s in order to get the first row of

α to be zero. In doing this, we will also show V (F n,s
s,j ) = (V n,s ∩ V (Js)∩ V (Ij(A|j)))

is irreducible for 1 < j ≤ s.

Let F denote the irreducible family of pairs of matrices with the above form.

By remark 3.4, H is connected (irreducible) and H × F surjects onto U , thus U is

irreducible.

Lemma 3.7. The closure of U , U , in V n,s ∩ V (Ik+1(A|j)) contains the pairs of

matrices (α, β) ∈ V n,s ∩ V (Ik+1(A|j)) such that rank(α|j) = k

Lemma 3.8. U ⊃ {(α, β) ∈ V n,s ∩ V (Ik+1(A|j)) | rank(α|j) ≤ k}

Proof of Lemma 3.7: We proceed by reverse induction on r = Is(α) and we

assume α’s with higher rank are in U . In general, any point in (V n,s ∩V (Ik+1(A|j)))
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with rank(α|j) = k has an element in its orbit of the form:



j-k r s-r+k-j

1 0 0 0

r 0 1r 0

n-r-1 0 0 0





1 r n-r-1

j-k β0 ς0 ω0

r 0 ς1 0

s-r+k-j β2 ς2 ω2


where ς1 is symmetric and r is the rank of α.

In order to show this family of pairs of matrices is contained in U , it is enough

to show that a dense subset is in U . So consider the nonempty open, hence dense,

subset defined by the non-vanishing of the (1, 1) entry of the ω2 block matrix (we

aim to clear the j − k + r + 1 row of β: this leaves α’s form invariant). Up to the

group action, (α, β) have the form:



j-k r 1 s-r+k-j-1

1 0 0 0 0

r 0 1r 0 0

1 0 0 0 0

n-r-2 0 0 0 0





1 r 1 n-r-2

j-k β0 ς0 ω0 ε0

r 0 ς1 0 0

1 0 0 1 0

s-r+k-j-1 β3 ς3 ω3 ε3


where ς1 is symmetric.

By the induction hypothesis, the pairs of matrices of the form:



j-k r 1 s-r+k-j-1

1 0 0 0 0

r 0 1r 0 0

1 0 0 t 0

n-r-2 0 0 0 0





1 r 1 n-r-2

j-k β0 ς0 ω0 ε0

r 0 ς1 0 0

1 0 0 1 0

s-r+k-j-1 β3 ς3 ω3 ε3


where t 6= 0 and ς1 is symmetric are in U , and so the closure (including t = 0) is

contained in U . This proves lemma 3.7. �
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The proof of lemma 3.8 is similar but we use reverse induction on k. Assume α|j

with higher rank are in U .

In general, any point (α, β) in V n,s ∩ V (Ik+1(A|j)) with rank(α|j) < k has an

element in its orbit of the form:



j-k+1 r s-r+k-j-1

1 0 0 0

r 0 1r 0

n-r-1 0 0 0





1 r n-r-1

j-k+1 β0 ς0 ω0

r 0 ς1 0

s-r+k-j-1 β2 ς2 ω2


where ς1 is symmetric and r is the rank of α.

In order to show this family of pairs of matrices is contained in U , it is enough

to show that a dense subset is in U . So consider the nonempty open, hence dense,

subset defined by the non-vanishing of the (j− k +1, 1) entry of the ς0 block matrix.

Up to the group action, (α, β) have the form:



j-k 1 r s-r+k-j-1

1 0 0 0 0

1 0 0 0 0

r 0 0 1r 0

n-r-2 0 0 0 0





1 1 r n-r-2

j-k β0 ς0 ω0 ε0

1 0 1 0 0

r 0 0 ω2 0

s-r+k-j-1 β3 ς3 ω3 ε3


where ω2 is symmetric.

By the induction hypothesis, the pairs of matrices of the form:



j-k 1 r s-r+k-j-1

1 0 0 0 0

1 0 t 0 0

r 0 0 1r 0

n-r-2 0 0 0 0





1 1 r n-r-2

j-k β0 ς0 ω0 ε0

1 0 1 0 0

r 0 0 ω2 0

s-r+k-j-1 β3 ς3 ω3 ε3


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where t 6= 0 and ω2 is symmetric are in U , so the closure (including t = 0) is contained

in U . This proves lemma 3.8. �

When k = j − 1 we note

Corollary 3.9. For n ≥ s and 1 < j ≤ s,

V (F n,s
0,j ) = (V n,s ∩ V (Ij(A|j))) is an irreducible algebraic set.

We also note as a corollary that this proof shows that

Corollary 3.10. For n ≥ s and 1 < j ≤ s,

V (Gn,s
0,j ) = (V n,s ∩ V (Js) ∩ V (Ij(A|j))) is an irreducible algebraic set.

Proposition 3.11. For n ≥ s and 0 ≤ i < s,

V (F n,s
i,s+1) = V n,s ∩ V (Ji) is an irreducible algebraic set.

Proof: Fix i. We may assume i > 0. For each i < k ≤ s, let V n,s
a1k

be the dense

open subset of V n,s such that the a1k entry of α is not zero. Regard V n,s ∩ V (Ji) as

the closed subset of V n,s such that the first i entries of the first row of α are zero.

Consider the map

V n,s
a1k

ϕk→ V n,s ∩ V (Ji)

given by (α, β) 7→ (αδ−1, δβ) where δ−1 is given by adding the 1× s row vector

(
−a11

a1k

, . . . ,
−a1i

a1k

, 0, . . . , 0)

to the kth row of the s × s identity matrix. In other words, this map “clears” the

first i entries of the first row of α.

For each k, V n,s
a1k

is irreducible, hence the image of ϕk is irreducible. Let Wk denote

the closure of the image of ϕk in V n,s ∩ V (Ji). We note that Wk contains all pairs

(α, β) in V n,s ∩ V (Ji) such that the a1k entry of α is not zero
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Remark 3.12. Since the product of any matrix with the zero matrix is always sym-

metric, to show a subset is not empty we take α to be of the form needed and β to

be the zero matrix. For instance, in the above example V n,s
a1k

is nonempty; take α

with a 1 in the (1, k) entry and zeros elsewhere and β to be the zero matrix.

Lemma 3.13. For all k, l with i < k, l ≤ s, Wk = Wl, i.e., they all give the same

irreducible component of V n,s ∩ V (Ji) which we denote by W .

Consider the set, Y ⊂ V n,s ∩ V (Ji) of pairs of matrices (α, β) with a1k 6= 0 and

a1l 6= 0. This is an open subset of both Wk and Wl with non-trivial intersection.

(Take B to be the zero matrix.) Thus Y = Wk = Wl.

Definition 3.14. Let Y be an algebraic set and {Uk} be a finite family of nonempty

irreducible subsets of Y . If for all k, k′, Uk, Uk′ intersect (pairwise) in a nonempty

open subset then the closure of Uk in Y is the same as the closure of Uk′ in Y . When

this occurs, we say that the Uk, “give the same irreducible component.”

Lemma 3.15. W = V n,s ∩ V (Ji)

Whether a pair (α, β) is in W depends on its orbit under the group action. The

subgroup, H, of GLn × GLs which stabilizes V n,s ∩ V (Ji) consists of pairs (γ, δ) of

the following block form:


1 n-1

1 ∗ 0

n-1 ∗ ∗

×


i s-i

i ∗ ∗

s-i 0 ∗


We know W contains all pairs such that α has a nonzero entry in the first row. It

remains to show that W contains V n,s∩V (Js). But by a previous remark, V n,s∩V (Js)

has two irreducible components. So it is enough to show that a dense subset of each

component is contained in W .
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Lemma 3.16. The open subset, U , of V n,s ∩ V (Js) ∩ V (J ′s) where α has maximal

rank (rank(α) = s) is contained in W .

Every pair in U has an element in its orbit of the form



s

1 0

s 1

n-s-1 0


( 1 s n-s-1

s 0 β′ 0

)

with β′ symmetric.

Consider the irreducible family in V n,s ∩ V (Ji)



s-1 1

1 0 t

s-1 1 0

1 0 1

n-s-1 0 0




1 s-1 1 n-s-1

s-1 tω0 ς0 ω0 0

1 tω1 ωtr
0 ω1 0



with ς0 symmetric.

For t 6= 0 this family is contained in W so its closure (including t = 0) is contained

in W . Thus W ⊇ V n,s ∩ V (Js) ∩ V (J ′s).

Lemma 3.17. The open subset, U , of V n,s∩V (Js)∩V (Is(A|s)) where α has maximal

rank (rank(α) = s− 1) is contained in W .

Up to the group action, every pair in U has an element in its orbit of the form



1 s-1

1 0 0

s-1 0 1

n-s 0 0




1 s-1 n-s

1 β0 ς0 ω0

s-1 0 ς1 0


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where ς1 is symmetric.

Consider the irreducible family in V n,s ∩ V (Ji) parameterized by t ∈ A1
k,



1 s-2 1

1 0 0 t

s-2 0 1 0

1 0 0 1

n-s 0 0 0





1 s-2 1 n-s

1 β0 ς0 ω0 ε0

s-2 tω1 ς1 ω1 0

1 tω2 ωtr
1 ω2 0


where ς1 is symmetric. For t 6= 0 this family is contained in W , so its closure is

contained in W (including t = 0). Thus W ⊃ V n,s ∩ V (Js)

Proposition 3.18. For n ≥ s, 1 ≤ i ≤ s and 1 ≤ j ≤ s with i 6= j − 1,

V (F n,s
i,j ) = V n,s ∩ V (Ji) ∩ V (Ij(A|j)) is an irreducible algebraic set.

Proof: We’ve show when i = s and when j = 1, so assume i < s and j > 1.

Let (V n,s ∩ V (Ij(A|j)))a1k
denote the nonempty open (irreducible) subset of V n,s ∩

V (Ij(A|j)) defined by the non-vanishing of the (1, k) entry of α. The group action

on V n,s ∩ V (Ij(A|j)) (as well as the fact that a1k 6= 0) allows us to first clear the

kth column of α (except the first entry), then clear the remaining entries in the first

row of α. Note that this action can drop the rank of α by at most one, so the pairs

obtained from performing such actions remain in our set. As such we have, for each

k such that i < k ≤ s, a map

(V n,s ∩ V (Ij(A|j)))a1k

φk→ V (F n,s
i,j )

If we denote by Wk the closure of the image of φk we have that all such k give the

same irreducible component, denoted W .

Lemma 3.19. W ⊃ V (F n,s
i,j )



31

Remains to show that W contains pairs where the first row of α is zero. That is,

we need to show V n,s ∩ V (Js)∩ V (Ij(A|j)) is contained in W . Since this is a variety,

it is enough to show that the open subset defined by α’s of maximal rank are in W .

The maximum rank for any α in V n,s ∩ V (Js) ∩ V (Ij(A|j)) is s− 1 since α|j can

have a maximum rank of j − 1 and n > s. So up to the group action we need to see

that pairs of matrices in V (F n,s
i,j ) of the form



1 s-1

1 0 0

s-1 0 1

n-s 0 0

,


1 s-1 n-s

1 β0 ς0 ω0

s-1 0 ς1 0



with ς1 symmetric, are in W .

Consider the irreducible family in V (F n,s
i,j ) parameterized by t ∈ A1

K ,



1 s-2 1

1 0 0 t

s-2 0 1 0

1 0 0 1

n-s 0 0 0





1 s-2 1 n-s

1 β0 ς0 ω0 ε0

s-2 tω1 ς1 ω1 0

1 tω2 ωT
1 ω2 0


When t is nonzero, this family is in W , so its closure is contained in W . Thus V (F n,s

i,j )

is irreducible.

Proposition 3.20. For n ≥ s, 1 ≤ i < s− 1 and j = s− i,

V (Gn,s
i,s−i) = V n,s ∩ V (Js) ∩ V (J ′i) ∩ V (Is−i(A|s−i)) is an irreducible algebraic set.

Proof: The subgroup, H, of GLn × GLs which stabilizes V (Gn,s
i,s−i) consists of
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pairs of matrices of the form


1 n-1

1 ∗ 0

n-1 ∗ ∗

×


s-i i

s-i ∗ ∗

i 0 ∗


and a typical pair in V (Gn,s

i,s−i) has the form


s-i i

1 0 0

n-1 α0 α1

,


1 n-1

s-i β0 ς0

i 0 ς1


with the rank of α0 < s− i.

For 1 ≤ k ≤ s− i, if bk1 6= 0 then, the symmetry and rank conditions imply that

the kth column of α is zero. Let Uk be the open subset of V (Gn,s
i,s−i) defined by the

non-vanishing of the bk1 entry of β. Up to the group action, we may assume that the

b11 entry is nonzero. Denote by F the family of matrices in V (Gn,s
i,s−i) of the form:


1 s-1

1 0 0

n-1 0 α′

,


1 n-1

1 1 0

s-1 0 ς ′


F is irreducible by the induction hypothesis and H × F surjects onto Uk for all

k. Thus Uk is irreducible and all such Uk give the same irreducible component,

W = Uk = Uk′

So it remains to show that W ⊇ V (Gn,s
s,s−i). Consider the irreducible family, F ′,

in V (Gn,s
i,s−i) consisting of pairs of the form


1 s-1

1 0 0

n-1 0 α1

,


1 n-1

1 t ς0

s-1 0 ς1


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When t 6= 0, H × F ′ is contained in W , so its closure (including t = 0) is contained

in W . Thus W contains pairs in V (Gn,s
i,s−i) of the form


1 s-1

1 0 0

n-1 0 α1

,


1 n-1

1 0 ς0

s-1 0 ς1


In order to show that W ⊇ V (Gn,s

s,s−i) its enough to show that W contains a dense

subset. Consider the dense open subset on which α1 has maximal rank. The pair

has an element in its orbit of the form



1 s-1

1 0 0

s-1 0 1

n-s 0 0

,


1 s-1 n-s

1 0 ς0 ω0

s-1 0 ς1 0



with ς1 symmetric. But these are in W . �

Proposition 3.21. For n ≥ s, 1 < i < s, 1 < j < s and i + j < s,

V (Gn,s
i,j ) = V n,s ∩ V (Js) ∩ V (J ′i) ∩ V (Ij(A|j)) is an irreducible algebraic set.

Proof: For j < k ≤ s− i, let Uk denote the open (irreducible) subset of V (Gn,s
0,j )

defined by the non-vanishing of the (k, 1) entry of β. We have a map Uk → V (Gn,s
i,j ).

Let Wk the closure of the image of φk. We have that all such k give the same

irreducible component, denoted W .

So it remains to show V (Gn,s
s−j,j) is contained in W . This is an irreducible set, so it

is enough to show a dense subset is contained in W . Consider the open subset such

that β has maximal rank and b11 6= 0. Because of the group action, it is enough to
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show that pairs of the form



1 s-1

1 0 0

s-1 0 α′

n-s 0 0

,


1 s-1 n-s

1 1 0 0

s-1 0 1 0



with α′ symmetric, are in W .

Consider the family of matrices of the form


1 s-1

1 0 0

n-1 −tCα′
j α′




1 n-1

1 1 0

s-1 tej 1


where α′ is symmetric, ej is the jth elementary column vector and Cα′

j denotes the

jth column of the matrix α′.

When t 6= 0, this family is in W so its closure is contained in W . The W =

V (Gn,s
i,j ). �

This completes the proof of Theorem 3.3. �



CHAPTER 4

Principal Radical Systems and the Domain Property

We have already established [2.4] that Rn,s has a unique minimal prime ideal for

all n, s ≥ 1. To prove that Rn,s is a domain is equivalent to proving that In,s is

radical. For this we use the method of principal radical systems mentioned earlier.

We will need the following elementary lemmas (see [22]):

Lemma 4.1. Let S be a Noetherian ring that is either local or N-graded, and let

x ∈ S be in the maximal ideal or be a form of positive degree. Suppose that N is the

nilradical of S, that N is prime, that x /∈ N and that S/xS is reduced. Then N = 0.

Proof: Suppose that u ∈ N . Since S/xS is reduced, we must have that u = xv

for some v ∈ S. Since xv ∈ N , x /∈ N , and N is prime, we must have that v ∈ N .

Therefore N = xN . By Nakayama’s lemma for local or graded rings, N = 0. �

Corollary 4.2. Let S be a Noetherian ring that is either local or N-graded, and let

x ∈ S be in the maximal ideal or be a form of positive degree. Suppose that I is a

(homogeneous in the graded case) proper ideal of S with radical P , where P is prime,

that x /∈ P , and that P + xS is radical. Then I = P , i.e., I is prime. �

Lemma 4.3. Let S be Noetherian, let I be an ideal of S, let J be the radical of I,

and suppose that J ⊆ P where P is prime. Suppose that I + xS is radical where

x /∈ P and that xP ⊆ I. Then I = J , i.e., I is radical.
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Proof: Suppose that u ∈ J . Then u ∈ I + xS, say u = i + xs, where i ∈ I and

s ∈ S. Then xs = u− i ∈ J ⊆ P , and so s ∈ P . Since xP ⊆ I, we have that xs ∈ I

and so u = i + xs ⊆ I. �

In our case, Lemma 4.1 will be used to show that the ideals in our families whose

corresponding algebraic sets are irreducible are radical. Typically we have that V (I)

is irreducible and that (I + x) is radical and we only need to show that x /∈ Rad(I).

This is typically done via a “specialization” argument (i.e., see proof of 4.9).

We typically use Lemma 4.3 to show that the ideals in our families whose cor-

responding algebraic sets are reducible are radical. As it turns out, these ideals

have exactly two minimal primes and we say that these ideals “bifurcate.” Geomet-

rically, this means that the corresponding algebraic set is the union of two irreducible

algebraic sets. In these instances, we systematically use the following notation:

I ∩ J ⊂ ((I ∩ J) + x)

↙ ↘

I J

↘ ↙

I + J

The induction hypothesis implies the result for larger ideals, so we always have

that ((I∩J)+x) is radical and, by Theorem 3.3, we will always have that the radical

of J , the radical of I and the radical of I + J are all prime ideals. To apply Lemma

4.1 we will frequently need to show that xJ ⊆ (I ∩ J). For this we use Cramer’s

Rule:

Proposition 4.4. (Cramer’s Rule:) Let S be a commutative ring and X an

n × n matrix with entries in S. Write X in terms of its columns X = (C1 · · ·Cn).
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Let y1, . . . , yn ∈ R be such that y1C1 + · · · + ynCn = Z for some column matrix Z.

Then for every i we have

yi · det(X) = det(C1 · · ·Z · · ·Cn)

where Z is in the ith position.

With the notation established in Section 3.2, we prove

Theorem 4.5. For n ≥ s, 0 ≤ i ≤ s and 1 ≤ j ≤ s + 1, the families of ideals

F n,s
i,j = In,s + Ji + Ij(A|j)

Gn,s
i,j = In,s + Js + J ′i + Ij(A|j)

are all radical.

We postpone the proof momentarily to discuss two corollaries and an example.

Corollary 4.6. For all n, s ≥ 1, Rn,s is a domain.

And by combining Theorem 4.5 and Theorem 3.3 we have

Corollary 4.7. For n ≥ s, 0 ≤ i ≤ s, 1 ≤ j ≤ s + 1 with i 6= j − 1,

K[A, B]/F n,s
i,j = K[A, B]/(In,s + Ji + Ij(A|j))

is a domain.

For n ≥ s, 1 ≤ i ≤ s, 1 ≤ j ≤ s + 1 and i + j ≤ s,

K[A, B]/Gn,s
i,j = K[A, B]/(In,s + Js + J ′i + Ij(A|j))

is a domain.

Example 4.8. As mentioned earlier [2.1.1], Rn,1 is a domain. For heuristic reasons,

we verify that R2,1 is a domain using the method of principal radical systems. The
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issue at hand is whether I2,1 = (a11b21 − a21b11) is radical. Suppose this were not

obvious and consider the ideal I2,1 + J1 = (a11, a21b11). Both I2,1 + J1 + I1(A|1) =

(a11, a21) and I2,1+J1+J ′1 = (a11, b11) are prime ideals containing I2,1+J1. Applying

Lemma 4.3 we have that if b11(I
2,1+J1+I1(A|1)) ⊆ (I2,1+J1) then I2,1+J1 is radical.

But this is obvious: b11(a11, a21) ⊆ (a11, b11). To show that I2,1 is radical, by Lemma

4.1, it is enough to show that a11 is not in the Rad (I2,1). Specializing a11 to 1 and

all other entries of A and B to zero gives a point where I2,1 vanishes but a11 does

not. Hence, I2,1 is radical.

Proof of Theorem 4.5: We shall prove the claim in cases, which we separate into

propositions. We note that, by remark 3.5 and Theorem 2.11, we may assume the

results if either n or s (or both) decrease and we may assume j > 1. So it remains to

show that the families of ideals F n,s
i,j = In,s+Ji+Ij(A|j), Gn,s

i,j = In,s+Js+J ′i +Ij(A|j)

are radical for n ≥ s, 0 ≤ i ≤ s and 1 < j ≤ s + 1.

Proposition 4.9. For n ≥ s, 0 < i ≤ s and 1 < j ≤ s,

Gn,s
i,j = In,s + Js + J ′i + Ij(A|j) is radical.

Note: Is+1(A|s+1) is the zero ideal thus the case Gn,s
i,s+1 is handled in Proposition 4.11

and the case Gn,s
0,j is handled by Proposition 4.12 (using the families F n,s

s,j . We also

want to note that Ij(A|j) ⊃ Ij+1(A|j+1).

Proof: The result is known by the induction hypothesis and Proposition 4.12

when i = s, so fix i such that 0 < i < s and assume the result is known for larger i

values.

For 1 < j ≤ s − i, Rad(Gn,s
i,j ) is prime Theorem 3.3 and by induction hypothesis

Gn,s
i+1,j = (Gn,s

i,j + bs−i,1) is radical. By Lemma 4.1, it suffices to show that bs−i,1 is not

in Gn,s
i,j . But if we specialize bs−i,1 to 1 and all other entries of A and B to zero, we
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have a point where all the generators of Gn,s
i,j vanish but bs−i,1 does not.

When j > s− i, we have a bifurcation:

In,s + Js + J ′i + Ij(A|j) ⊂ In,s + Js + J ′i+1 + Ij(A|j)

↙ ↘

In,s + Js + J ′s + Ij(A|j) In,s + Js + J ′i + Is−i(A|s−i)

↘ ↙

In,s + Js + J ′s + Is−i(A|s−i)

Which may be written as:

Gn,s
i,j ⊆ (Gn,s

i,j + bs−i,1)

↙ ↘

Gn,s
s,j Gn,s

i,s−i

↘ ↙

Gn,s
s,s−i

Gn,s
i,s−i is prime by Theorem 3.3 and Gn,s

i+1,j = (Gn,s
i,j +bs−i,1) is radical by the induction

hypothesis, by Lemma 4.1 it suffices to show that bs−i,1 Is−i(A|s−i) ⊆ Ij(A|j) modulo

In,s + Js + J ′i .

Let ∆ be any (s− i)-sized minor of A|s−i and let M be the matrix corresponding

to ∆ (i.e., - det (M) = ∆). Write M in terms of its columns, CM
1 . The symmetry

condition implies b1,1C
M
1 + · · ·+ bs−i,1C

M
s−i = [0]. So by Cramer’s rule we have:

Remark 4.10. bk,1 annihilates Is−i(A|s−i) modulo In,s + Js + J ′i for 1 ≤ k ≤ s− i.

This proves our claim. �

Proposition 4.11. For n ≥ s and 0 < i ≤ s,

F n,s
i,s+1 = In,s + Js + J ′i is radical.
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Proof: When i = s the result is known, so assume 1 ≤ i < s. For all such i we

have a bifurcation:

In,s + Js + J ′i ⊆ In,s + Js + J ′i+1

↙ ↘

In,s + Js + J ′s In,s + Js + J ′i + Is−i(A|s−i)

↘ ↙

In,s + Js + J ′s + Is−i(A|s−i)

By Lemma 4.3 and Cramer’s rule (see Remark 4.10) we are done. �

Proposition 4.12. For n ≥ s, 1 ≤ i ≤ s and 1 < j ≤ s,

F n,s
i,j = In,s + Ji + Ij(A|j) is radical.

We prove this in cases:

Lemma 4.13. For 1 < j ≤ s, F n,s
s,j is radical.

Proof: Rad(F n,s
s,j ) is prime and Gn,s

1,j is radical, so it is enough to show that bs1

is not in F n,s
s,j . But specializing bs1 to 1 and all other entries of A and B to zero,

we have a point where all the generators of F n,s
s,j vanish but bs1 does not. So assume

i < s and assume the result for larger i.

Lemma 4.14. For 1 < j ≤ i < s, F n,s
i,j is radical.

Proof: We already know that Rad(F n,s
i,j ) is prime and the F n,s

i+1,j is radical by

the induction hypothesis. So it remains to show that a1,i+1 is not in F n,s
i,j . But

specializing a1,i+1 to 1 and all other entries to zero, we have a point where all the

generators of F n,s
i,j vanish but a1,i+1 does not. �

Lemma 4.15. For 1 ≤ i < s and i = j − 1, F n,s
i,j is radical.
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Proof: When this happens, there is a bifurcation:

F n,s
j−1,j ⊆ F n,s

j,j

↙ ↘

F n,s
j−1,j−1 F n,s

j,j

↘ ↙

F n,s
j,j−1

F n,s
j−1,j−1 and F n,s

j,j are prime, so by Lemma 4.3 we need to show that a1,j Ij−1(A|j−1) ⊆

Ij(A|j) modulo In,s + Ji. This is done by Cramer’s rule 4.4.

Let ∆ be any (j − 1)-sized minor A|j−1 and let M be the matrix corresponding

to ∆ (i.e., - det (M) = ∆). If M̃ denotes the j × j minor of A whose first row is

a11, a12, . . . , a1,j and lower left hand (j−1)-sized block is M (the remaining entries are

forced.) Then by expanding det(M̃) along the first row shows that a1,j Ij−1(A|j−1) ⊆

Ij(A|j) modulo In,s + Ji. �

Lemma 4.16. For 1 ≤ i < j − 1, F n,s
i,j is radical.

Proof: In this case, we know Rad(F n,s
i,j ) is prime and F n,s

i+1,j is radical. Specializing

a1,i+1 to 1 and all other entries to zero, we have a point where all the generators of

F n,s
i,j vanish but a1,i+1 does not. �

Proposition 4.17. For n ≥ s and 1 < j ≤ s + 1,

F n,s
0,j = In,s + Ij(A|j) is radical.

Proof: The result is known when j = s + 1, so assume that 1 < j ≤ s. In

this case, we know Rad(In,s + Ij(A|j)) is prime and In,s + J1 + Ij(A|j) is radical.

Specializing a11 to 1 and all other entries to zero, we have a point where all the

generators of In,s + Ij(A|j) vanish but a11 does not. �
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Proposition 4.18. For n ≥ s and 1 ≤ i ≤ s,

F n,s
i,s+1 = In,s + Ji is radical.

Proof: When i = s we have a bifurcation:

In,s + Js ⊆ In,s + Js + J ′1

↙ ↘

In,s + Js + J ′s In,s + Js + Is(A|s)

↘ ↙

In,s + Js + J ′s + Is(A|s)

It is enough to show that bs1 annihilates Is(A|s). But this was shown earlier (see

4.10). So assume the result for larger i values.

For 1 ≤ i < s, Rad(In,s +Ji) is prime and In,s +Ji+1 is radical. Specializing a1,i+1

to 1 and others to zero, we have a point where all the generators of In,s + Ji vanish

but a1,i+1 does not. �

This completes the proof of Theorem 4.5. �



CHAPTER 5

Cohen-Macaulayness and Normality

In this chapter we prove that Rn,s is Cohen-Macaulay and normal for all n, s ≥ 1.

We refer the reader to Section 3.2 for notational definiteness. We establish the Cohen-

Macaulay property using reverse induction on the size of the matrices to prove:

Theorem 5.1. For n ≥ s and 0 ≤ i ≤ s− 1,

K[A, B]/F n,s
i,s+1

K[A, B]/Gn,s
i,s−i

K[A, B]/Gn,s
i+1,s−i

are Cohen-Macaulay rings.

Corollary 5.2. For all n, s ≥ 1, Rn,s is a Cohen-Macaulay domain.

First, we will need to calculate the dimension of several quotient rings of our

families of ideals.

5.1 Dimension Calculations

We will need the following Theorem, due to Conca [8].

Theorem 5.3. Let K be a field and Z be an m×n (m ≤ n) matrix of indeterminates

in which an s× s submatrix is symmetric. Then the determinantal ring of t-minors
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vanishing, K[Z]/It(Z), associated to Z is a Cohen-Macaulay domain of dimension

(m + n + 1− t)(t− 1)−
(

s
2

)
when t ≤ s.

Proof: See [8]. �

Proposition 5.4. For n ≥ s and 1 ≤ j ≤ s,

the dimension of K[A, B]/F n,s
0,j = K[A, B]/(In,s + Ij(A|j)) is ns +

(
s
2

)
+ j − 1.

Proof: When j = 1 the dimension is ns +
(

s
2

)
by comments preceding Remark

3.5. For j > 1, K[A, B]/(In,s + Ij(A|j)) is a domain so it is enough to calculate the

dimension of (V n,s ∩ V (Ij(A|j))) on an open set.

We take the open set defined by β’s of maximal rank. Up to the group action,

pairs have the form



j s-j

j α0 α1

s-j αtr
1 ς1

n-s 0 0

,


j s-j n-s

j 1 0 0

s-j 0 1 0


with α0 and ς1 symmetric and the j-minors of the first j columns of α vanishing.

Let α′ denote the s × j matrix formed by the first j columns and first s rows of

α. In block form α′ =

 α0

αtr
1

. The ideal generated by the j-minors of the first j

columns of α is the same as Ij(α
′). So the dimension of K[A, B]/(In,s + Ij(A|j)) is

ns +
(

s−j+1
2

)
(the free entries of β and the free entries of ς1) plus the dimension of

K[A0, A1]/(I1(A0 − Atr
0 ) + Ij(A

′)).

First we note that the ideal generated by the j-minors of α′ is the same as

the ideal generated by the j-minors of (α′)tr. By Theorem 5.3 the dimension of

K[A0, A1]/(I1(A0−Atr
0 ) + Ij(A

′)) equals (s + 1)(j − 1)−
(

j
2

)
. Thus the dimension of
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K[A, B]/(In,s + Ij(A|j)) is

ns +

(
s− j + 1

2

)
+ (s + 1)(j − 1)−

(
j

2

)
= ns +

(
s

2

)
+ j − 1.�

Proposition 5.5. For n ≥ s, 1 ≤ i < s and j = s− i,

the dimension of K[A, B]/Gn,s
i,s−i equals ns +

(
s
2

)
− i.

Proof: We note that i + j = s, hence Gn,s
i,s−i is a prime ideal by Corollary 4.7.

As such we compute the dimension of K[A, B]/Gn,s
i,s−i on the open set of V (Gn,s

i,s−i)

where the β’s take maximal rank and b11 is nonzero. Up to the group action pairs

have the form



1 s-i-1 i

1 0 0 0

s-i-1 0 α0 α1

i 0 αtr
1 α2

0 0 0


,



1 s-i-1 i

1 1 0 0 0

s-i-1 0 1 0 0

i 0 0 1 0


with α0 and α2 symmetric.

The dimension of this open set is the number of free entries in β, ns− i, plus the

number of free entries of the symmetric s− 1 sized matrix. �

We note that by Proposition 5.4 the dimension of K[A, B]/Gn,s
s,j equals

ns− s +

(
s

2

)
+ j − 1

.

5.2 Cohen-Macaulay Property

We have already established that Rn,s is a Cohen-Macaulay for n ≤ s + 1 (2.11)

and for s = 1 (2.1.1). We first prove:
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Theorem 5.6. For 1 ≤ j ≤ s, K[A, B]/F s,s
0,j and K[A, B]/F s+1,s

0,j are Cohen-Macaulay

domains.

Proof: By Remark 3.5 we may assume j > 1. It is well-known (see [22]) that the

determinantal ring K[A|j]/Ij(A|j) is a Cohen-Macaulay, normal domain of dimension

(n + 1)(j − 1). If we let A′ denotes the n× (s− j) matrix formed by the last s− j

columns of A and let

Rt(A|j)[A′, B] =
K[A|j]
Ij(A|j)

[A′, B]

denote the polynomial extension of K[A|j]/Ij(A|j) in the entries of A′ and B, we have

that Rt(A|j) is a Cohen-Macaulay domain of dimension (n+1)(j−1)+ns+n(s−j) =

2ns− n + j − 1, when n ≥ s. But in these cases, K[A, B]/F n,s
0,j is a domain (4.7) of

dimension ns +
(

s
2

)
+ j − 1 (5.4). When n = s or n = s + 1, the dimension drops by(

n
2

)
and In,s is generated by

(
n
2

)
elements, thus In,s is generated by a homogeneous

system of parameters in a Cohen-Macaulay ring, thus a regular sequence. �

To complete the proof of the Cohen-Macaulay property, we recall some well-known

results:

Lemma 5.7. Let R be an N-graded algebra finitely generated over R0 = K.

If x is a nonzerodivisor for R and R/xR is Cohen-Macaulay then R is Cohen-

Macaulay.

Lemma 5.8. Consider the short exact sequence:

0→ S/(I ∩ J)→ S/I ⊕ S/J → S/(I + J)→ 0

If S/I and S/J are Cohen-Macaulay rings of dimension m and if S/(I+J) is Cohen-

Macaulay of dimension m + 1, then S/(I ∩ J) is Cohen-Macaulay of dimension m.

Proof of Theorem 5.1: Fix n ≥ s. We assume the result holds for smaller

sized matrices. By Remark 3.5 we may further assume that j > 1. For 1 ≤
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i ≤ s − 1, K[A, B]/F n,s
i−1,s+1 is a domain and a1i is a nonzerodivisor. Therefore,

by Lemma 5.7, we reduce to showing that K[A, B]/(In,s + Js) is Cohen-Macaulay.

But K[A, B]/(In,s + Js) is not a domain. In fact, any minimal prime of Js (in Rn,s)

contains all of the s × s minors of A (= Is(A|s)) or all of the entries of the first

column of B (= J ′s). Let P = In,s + Js + Is(A|s) and Q = In,s + Js + J ′s. It follows

that V (In,s + Js) = V (P ) ∪ V (Q). Since all of these ideals are radical, we have that

In,s + Js = P ∩Q. �

Before going further, we prove:

Proposition 5.9. K[A, B]/Gn,s
i,s−i is Cohen-Macaulay for 1 ≤ i < s, which implies

that K[A, B]/Gn,s
i,s−i+1 is Cohen-Macaulay of the same dimension.

Proof: First note that in these families we have i + j = s and i + j = s + 1,

respectively. When i = s− 1, K[A, B]/Gn,s
s−1,1 is isomorphic to a polynomial ring in

n indeterminates (corresponding to the first row of B) over

K[A′, B′]/I1(A
′B′ − (A′B′)tr)

(A′, B′ are size (n−1, s−1))which, by the induction hypothesis, is Cohen-Macaulay.

Gn,s
s−1,2 bifurcates as:

Gn,s
s−1,2

↙ ↘

Gn,s
s,2 Gn,s

s−1,1

↘ ↙

Gn,s
s,1

Gn,s
s,2 , G

n,s
s−1,1, G

n,s
s,1 are all Cohen-Macaulay and the dimension of the first two is one

more than the third. By Lemma 5.8, Gn,s
s−1,2 is Cohen-Macaulay of dimension

ns +

(
s

2

)
− s + 1
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Now assume the result for larger i.

For any 1 ≤ i < s− 1, Gn,s
i,s−i+1 bifurcates as:

Gn,s
i,s−i+1

↙ ↘

Gn,s
s,s−i+1 Gn,s

i,s−i ⊆ Gn,s
i+1,s−i

↘ ↙

Gn,s
s,s−i

Gn,s
s,s−i+1, G

n,s
s,s−i, G

n,s
i+1,s−i are all Cohen-Macaulay. Since Gn,s

i,s−i is prime, bs−i,1 is a

nonzerodivisor on K[A, B]/Gn,s
i,s−i. The induction hypothesis yields Gn,s

i+1,s−i is Cohen-

Macaulay, so by Lemma 5.7 we have Gn,s
i,s−i is Cohen-Macaulay. And by Lemma 5.8

and dimension considerations, we have that K[A, B]/Gn,s
i,s−i+1 is Cohen-Macaulay of

the same dimension.

Returning to our proof that Rn,s is Cohen-Macaulay, we had reduced the question

to showing that K[A, B]/(In,s + Js) is Cohen-Macaulay. Since In,s + Js bifurcates,

by Lemma 5.8 its enough if K[A, B]/(In,s +Js +J ′s) and K[A, B]/(In,s +Js +Is(A|s))

are Cohen-Macaulay of the same dimension and K[A, B]/Gn,s
s,s is Cohen-Macaulay

of dimension one less. By the induction hypothesis and previous results we have

that K[A, B]/(In,s + Js + J ′s) and K[A, B]/Gn,s
s,s are Cohen-Macaulay of the correct

dimension. So we’ve reduced to showing that K[A, B]/(In,s +Js + Is(A|s)) is Cohen-

Macaulay of dimension ns−
(

s
2

)
. Since this ring is a domain, bs1 is a nonzerodivisor

and it is enough to show K[A, B]/Gn,s
1,s is Cohen-Macaulay of dimension ns+

(
s
2

)
−1.

So by Lemma 5.7, we’re done. Rn,s is a Cohen-Macaulay domain of dimension

ns +
(

s+1
2

)
.
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5.3 Normality

Lemma 5.10. Let S be a Noetherian ring and x an S-regular element.

If Sx is a normal domain and S/xS is reduced, then S is normal.

Theorem 5.11. For all n, s ≥ 1, Rn,s is a normal domain for all n, s > 1.

We know the result when either n ≤ s or s = 1, so fix n > s and assume the

result holds if either n or s (or both) decrease.

K[A, B]/(In,s + J1) is a domain, thus a11 is a Rn,s-regular. So it suffices to show

that the localization of Rn,s at a11 is a normal domain. After localizing a11 and

performing elementary row and column operation we may assume our pairs have the

form:


1 s-1

1 1 0

n-1 0 A′

,


1 n-1

1 B0 (A′B1)
tr

s-1 B1 C ′


with A′C ′ symmetric.

Rn,s localized at a11 is isomorphic to a polynomial ring over

K[A′, C ′][1/a11]/I1(A
′C ′ − (A′C ′)tr)

which is normal by the induction hypothesis.

Remark 5.12. By previous remarks (2.9) we have that the singular locus contains

the ideal Is(A) + Is(B). We have shown that Rn,s is factorial for n ≤ s. To show

normality for n > s it suffices to show that the singular locus has depth greater than

or equal to 2. Since Rn,s is Cohen-Macaulay, it is enough to show that the height of

Is(A) + Is(B) is greater than or equal to 2.

For n ≥ s, K[A, B]/(In,s + Is(A)) is a domain thus ∆ ∈ Is(A) is Rn,s-regular.

Since ∆′ ∈ IS(B) is a nonzerodivisor on K[A, B]/(In,s + Is(A)) the height of the
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ideal generated by ∆, ∆′ is two and the singular locus contains this ideal. This gives

an alternate proof that Rn,s is normal for n ≥ s.

It is well-known that the divisor class group of a unique factorial ring is trivial.

Thus, for n ≤ s, the divisor class group of Rn,s is 0. We note the following results

(see [5], p. 315):

Let R be a Noetherian normal domain

Gauss’ lemma The divisor class group of R is isomorphic to the divisor class group

of R[t] (where t is an indeterminate.)

Nagata’s theorem If S ⊂ R is multiplicatively closed and S is generated by prime

elements then the divisor class group of R is isomorphic to the divisor class group of

S−1R.

Consider the case when n ≥ s + 1, by 2.3 and 2.15, we may repeatedly apply

Gauss’ lemma and Nagata’s theorem and eventually have that the divisor class group

of Rn,s is isomorphic to the divisor class group of Rn−s+1,1. It is well-known (see, for

instance, [6]) that the divisor class group of the determinantal rings defined by the

vanishing of the 2× 2 minors of a 2× n matrix is isomorphic to Z. So we have

Corollary 5.13. The divisor class group of Rn,s is trivial for n ≤ s and is isomorphic

to Z for n > s.



CHAPTER 6

Linear Homogeneous System of Parameters and the
a-invariant

In this chapter we explicitly construct a linear system of parameters for Rn,s for

all n, s ≥ 1 and, using Gröbner bases techniques and deformation theory, we show

that the a-invariant of Rn,s is negative for all n, s ≥ 1.

6.1 Definitions

Throughout this section we fix S = K[X1, . . . , Xn]/I, a polynomial ring over a

field K, and I ⊂ (X1, . . . , Xn). We denote by xi the residue class of Xi for i = 1, . . . , n

and set m = (x1, . . . , xn). Moreover, for the remainder of this thesis, we fix the order

of the indeterminates to be X1 > . . . > Xn and we fix the monomial order to be

revlex, as defined below.

Definition 6.1. The reverse lexicographic order, denoted by the subscript revlex,

is a total ordering of monomials defined as follows: if α = (a1, . . . , an) and β =

(b1, . . . , bn), then xα >revlex xβ means that deg(xα) > deg (xβ) or that deg(xα) =

deg(xβ) and there exists an integer j with 1 ≤ j ≤ n such that ai = bi for i > j while

aj < bj.

We denote by in(f) the initial monomial (with respect to revlex) of a polynomial

f ∈ S, and by in(I) the ideal generated by all in(f), f ∈ I. The reader is referred

51



52

to ([13], Chapter 15) for a more detailed discussion of Gröbner bases.

If I is, in addition, a homogeneous ideal then S = K ⊕ S1 ⊕ S2 ⊕ . . . is graded

and the Hilbert function is defined to be HS(i) = dimK [S]i, while the Hilbert-

Poincaré series is defined to be PS[t] =
∑∞

i=0 dimK [S]it
i. For I homogeneous we

have HS(i) = Hin(S)(i) for all i and dim(S) =dim(S/in(I)) (see [13]).

If y is a nonzerodivisor in S and has degree l, the short exact sequence of graded

modules

0→ S(−l)
y→ S → S/yS → 0

shows that PS/yS(t) = (1 − tl)PS(t). Hence, if y1, . . . , yd is a linear homogeneous

system of parameters and if S is, in addition, Cohen-Macaulay, then we have that

PS/(y1,...,yn)S(t) = (1− t)dPS(t)

We are interested in showing that the a-invariant of Rn,s is negative. We make use

of the fact that the a-invariant of S is the same as the degree of the Hilbert-Poincaré

series viewed as a rational function in t. Obviously we have that the a-invariant of

S equals the a-invariant of S/in(I). But we also have that, in the Cohen-Macaulay

case, if F1, . . . , Fd is a homogeneous system of parameters for S then the a-invariant

of S equal the a-invariant of S/(F1, . . . , Fd)S −
∑d

i=1 deg(Fi)

Remark 6.2. If S is a finitely generated N-graded Cohen-Macaulay algebra over a

field, then the a-invariant of S is negative if and only if the a-invariant of S modulo

a linear homogeneous system of parameters is less than the Krull dimension of S.

6.2 Construction of New Matrices

Let K[xi : 1 ≤ i ≤ 2ns] be the polynomial ring over a field in the 2ns indeter-

minates. We construct two matrices (of indeterminates) X,Y of sizes n × s, s × n,
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respectively. X will be composed of only odd subscripted values and Y of even

subscripted values as follows: For 1 ≤ k ≤ n − 1 the (n − k)th row of X contains

min{k, s} new odd subscripted variables on the left, but with subscripts increasing

from right to left. For 1 ≤ k ≤ n − 1 the kth diagonal (counting from the upper

right corner) of Y contains min{k, s} new even subscripted variables with subscripts

increasing as one moves to the left and up.

Subscripted Subscripted

Position in X Value Position in Y Value

(n− 1, 1) 1 (1, n) 2

(n− 2, 2) 3 (2, n) 4

(n− 2, 1) 5 (1, n− 1) 6

(n− 3, 3) 7 (3, n) 8

(n− 3, 2) 9 (2, n− 1) 10

(n− 3, 1) 11 (1, n− 2) 12

...
...

...
...

(1, 1) 2d− 1 (1, 2) 2d

with d = ns −
(

s+1
2

)
for n ≥ s or d =

(
n
2

)
for n ≤ s. The remaining entries are

assigned the remaining (largest) subscripted values, but their order is not important

for our purposes. We will denote them by *.



54

Example 6.3. When n = 6 and s = 4, our matrices have the form:

X =



x27 x25 x23 x21

x19 x17 x15 x13

x11 x9 x7 ∗

x5 x3 ∗ ∗

x1 ∗ ∗ ∗

∗ ∗ ∗ ∗


, Y =



∗ x28 x20 x12 x6 x2

∗ ∗ x26 x18 x10 x4

∗ ∗ ∗ x24 x16 x8

∗ ∗ ∗ ∗ x22 x14



When n = 4 and s = 6, our matrices have the form:

X =



x11 x9 x7 ∗ ∗ ∗

x5 x3 ∗ ∗ ∗ ∗

x1 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗


, Y =



∗ x12 x6 x2

∗ ∗ x10 x4

∗ ∗ ∗ x8

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


We are interested in the initial ideal, with respect to revlex, of

Jn,s = I1(XY − (XY )tr).

The
(

n
2

)
polynomials generating Jn,s may be thought of as coming from the differences

of dot products:

RX
i · CY

j − RX
j · CY

i 1 ≤ i < j ≤ n

Our construction of X, Y has the nice property that, for 1 ≤ i < j ≤ n,

in(RX
i · CY

j − RX
j · CY

i ) = in(RX
i · CY

j ).

Furthermore, by virtue of our choice of ordering, we have that the initial ideal of Jn,s

contains xixi+1 for 1 ≤ i ≤ 2d − 1, i odd, and where d = ns −
(

s+1
2

)
when n ≥ s
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and d =
(

n
2

)
when n ≤ s. Note that the two formulas for d agree for n = s + 1.

This is not surprising since, when n ≤ s + 1, K[X, Y ]/Jn,s is a complete intersection

domain (see remark 6.5) and, in these cases, we have that the initial monomials of

the generators of Jn,s, the xixi+1’s, are mutually distinct and form a regular sequence

on K[X,Y ]. Thus,

Remark 6.4. For n ≤ s + 1 and for i odd, the xixi+1 actually generate in(Jn,s).

In our examples above, after taking the product, it is easy to see that in(J6,4)

contains {x1x2, x3x4, x5x6, x7x8, x9x10, x11x12, x13x14, . . . , x27x28}, but also contains

x21x14 and in(J4,6) contains {x1x2, x3x4, x5x6, x7x8, x9x10, x11x12}.

Remark 6.5. Since there is no danger of confusion, we denote by

K[X, Y ] = K[xi : 1 ≤ i ≤ 2ns].

By mapping the (i, j) entry of A, B to the (i, j) entry in X, Y , respectively, we have

an obvious isomorphism

Rn,s ∼= K[X, Y ]/Jn,s := Sn,s

6.3 Linear Homogeneous System of Parameters

Let Q be the ideal of K[xi : 1 ≤ i ≤ 2ns] generated by xi for 2d + 1 ≤ i ≤ 2ns

(that is, the *’d entries of both X and Y ) as well as xi − xi+1 for 1 ≤ i ≤ 2d− 1, i

odd.

Theorem 6.6. With the notation above, Q is a linear homogeneous system of pa-

rameters for Sn,s.

We must show that the number of generators of Q equals the dimension of Sn,s and

that the dimension of Sn,s/QSn,s is zero (or equivalently that Sn,s/QSn,s is generated

over K by nilpotent elements.) We will return to the proof after establishing:
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Proposition 6.7. The number of generators of Q equals the dimension of Sn,s.

Proof: By remark 6.5, the dimension of Sn,s equals the dimension of Rn,s.

Identifying every xi in X with either 0 or xi+1, as prescribed above, gives ns gen-

erators. As for the matrix Y , we only have the additional *’d entries, which get

identified to zero. There are ns− d such entries. So Q is generated by 2ns− d linear

polynomials. For n ≤ s,

2ns− d = 2ns−
(

n

2

)
= dim(Sn,s)

and for n ≥ s,

2ns− d = 2ns− (ns−
(

s + 1

2

)
) = ns +

(
s + 1

2

)
= dim(Sn,s) �

Proof of Theorem 6.6: We will show that the

dim(K[X, Y ]/in(Jn,s + Q)) = 0.

This approach will allow us to bound the a-invariant of Sn,s.

The initial ideal of Jn,s contains xixi+1 for 1 ≤ i ≤ 2d− 1, i odd. It is not hard to

see that in(Jn,s +Q) ⊇ (x2
i : 1 ≤ i ≤ 2d− 1, i odd) and, hence, that the dimension of

K[X, Y ]/(in(Jn,s + Q)) is zero. So Q is a linear homogeneous system of parameters

for Sn,s. �

Remark 6.8. For n ≤ s+1, we have that in(Jn,s+Q) = in(Jn,s)+Q = (x2
1, x

2
3, . . . , x

2
2(n

2)−1
).

Clearly, the dimension of K[X, Y ]/in(Jn,s + Q) is zero, but we also note that the

Hilbert function in degree i is given by
((n

2)
i

)
which is well-known, since

K[X, Y ]/in(Jn,s + Q)

is an Artinian complete intersection in
(

n
2

)
indeterminates. By comments preceding

remark 6.2, the a-invariant of Sn,s equals the a-invariant of K[X, Y ]/in(Jn,s + Q)
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minus dim(Sn,s). Thus, for n ≤ s + 1, the a-invariant of Sn,s equals(
n

2

)
− (2ns−

(
n

2

)
) = −2(ns−

(
n

2

)
).

For n > s + 1, the a-invariant of K[X, Y ]/in(Jn,s + Q) is bounded by the a-

invariant of K[X]/(x2
1, . . . , x

2
d) which is d = ns −

(
s+1
2

)
. So, for n > s + 1, to show

the a-invariant of Sn,s is negative, by 6.2, it is enough to show

d = ns−
(

s + 1

2

)
< ns +

(
s + 1

2

)
= dim(Rn,s).

By remark 6.5, we note as a corollary:

Corollary 6.9. For n, s ≥ 1, the a-invariant of Rn,s is negative.

We conjecture that, for n ≥ s + 1, the a-invariant of Rn,s/QRn,s =
(

s+1
2

)
and,

hence, the a-invariant of Rn,s = −ns. We note that this holds for n = s + 1 as well

as the determinantal case, s = 1, n > 1.

Example 6.10. Let us again consider the case when s = 1 and n > 1. By previous

remarks [2.1.1], Rn,1 = K[A, B]/In,1 is isomorphic to K[C]/I2(C):

A =



a1

a2

a3

a4

...

an


, B =

(
b1 b2 b3 b4 . . . bn

)
, C =

 a1 a2 a3 a4 . . . an

b1 b2 b3 b4 . . . bn



With the notation above, it is known that (an, b1, ai − bi+1 : 1 ≤ i ≤ n − 1) is a

system of parameters for K[C]/I2(C). We note that our construction of a system of

parameters agrees with the determinantal case. It is also known that the a-invariant

of K[C]/I2(C) is −n [4], which coincides with our above conjecture in the s = 1 case.



CHAPTER 7

Rational Singularities in Characteristic 0

The purpose of this chapter is to prove that V n,s has rational singularities in

characteristic 0 for all n, s. We first use a criterion for the F-rationality of Cohen-

Macaulay rings in the graded case due to Hara and Watanabe to establish that Rn,s is

F-rational for all n, s if and only if it is F-injective for all n, s. By a result of Conca and

Herzog, it suffices to show that K[A, B]/in(In,s) is F-injective and Cohen-Macaulay

for a suitable monomial order on K[A, B]. We exhibit a certain specific order on

the indeterminates and show, in several cases, that in(In,s) is generated by square-

free monomials and K[A, B]/in(In,s) is Cohen-Macaulay, hence Rn,s is F-rational in

these cases. In particular we show that Rn,s is F-regular for n ≤ s+1, from which it

follows, by a result of K.E. Smith that V n,s has rational singularities in characteristic

0 for n ≤ s + 1. Using the fact that V s,s has rational singularities and a criterion

due to Kempf, we obtain that V n,s has rational singularities in characteristic 0 for

all n, s.

7.1 F-rationality

Singularities of a variety in characteristic 0 can often be studied by reduction

to characteristic p > 0 methods. More specifically, by considering the action of

Frobenius on the coordinate ring in characteristic p > 0.
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A result of Hara and Watanabe [19] states,

Theorem 7.1. Let R be a Cohen-Macaulay, N-graded algebra finitely generated over

R0 = K, a perfect field of characteristic p > 0. Then R is F-rational if and only if

the following three conditions hold: 1) R is F-injective, 2) there exist homogenous

elements uj of positive degree such that every Ruj
is F-rational and the uj generate

an ideal primary to the homogenous maximal ideal of R, and 3) the a-invariant of

R is negative.

In our situation, Property 3 follows by reverse induction on the size of the matrices.

Indeed, if one localizes Rn,s at any ai,j or bi,j, the situation is the same as when one

localizes at a1,1. By 2.3, one gets a polynomial ring, localized at one variable, over a

ring of the form Rn−1,s−1. By 2.1.1, it follows by induction on n or s that this ring

is F-rational.

We have already shown 6.9 that the a-invariant of Rn,s is negative for n, s ≥ 1.

Thus, proving that Rn,s is F-rational for all n, s is equivalent to showing that Rn,s is

F-injective for all n, s.

7.2 Deformation of F-injectivity

A theorem of Conca and Herzog [10] states,

Theorem 7.2. Let S = K[X1, . . . , Xn] be a polynomial ring over a field of charac-

teristic p > 0, let I be contained in the homogenous maximal ideal, m, of S. Let <

be a monomial ordering and let in(I) denote the initial ideal with respect to <.

If S/in(I) is Cohen-Macaulay and F-injective then S/I is Cohen-Macaulay and F-

injective.

The approach to showing that Rn,s is F-injective is twofold: first demonstrate an

order of the indeterminates and show that the initial ideal of In,s is generated by
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square-free monomials. For n ≤ s + 1, this was done in 6.4 and implies the F-purity

of K[A, B]/in(In,s) by Fedder [14] which, in turn implies F-injectivity [26].

Secondly, we need to show that K[A, B]/in(In,s) is Cohen-Macaulay for a suit-

able monomial order. For n ≤ s + 1, it was shown in 6.8 that, using revlex,

K[A, B]/in(In,s) is a complete intersection, hence:

Corollary 7.3. For n ≤ s + 1, Rn,s is F-rational in characteristic p > 0.

Which immediately implies, by a result of K.E. Smith [32]:

Corollary 7.4. For n ≤ s + 1, V n,s has rational singularities in characteristic 0.

Moreover, since complete intersections are Gorenstein, by a result of Hochster and

Huneke [24], we have

Corollary 7.5. For n ≤ s + 1, Rn,s is F-regular in characteristic p > 0.

We conjecture that the rings Rn,s are F-regular for all n, s ≥ 1.

7.3 Rational Singularities in Characteristic 0

The following is a well-known consequence of Kempf’s criterion for rational singu-

larities in ([KKMS], p. 50), which asserts that if a Cohen-Macaulay variety X over a

field of characteristic 0 has a desingularization π : Y → X, then X has rational sin-

gularities if and only if the direct image of the canonical sheaf on Y is the canonical

sheaf on X.

Lemma 7.6. Let X be a reduced and irreducible Cohen-Macaulay variety over a

field of characteristic 0. Suppose that π : Y → X is a proper birational surjection,

and that U ′ ⊆ Y , U ⊆ X are open sets such that the restriction of π to U ′ gives

an isomorphism of U ′ with U . Suppose that Y has rational singularities, and that

Y − U ′ has codimension at least 2 in Y . Then X has rational singularities.
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Proof: Let Y ′ be a desingularization of Y , which will also be a desingularization

of X. The direct image of the canonical sheaf on Y ′ is the canonical sheaf on Y , since

Y has rational singularities. Therefore it suffices to show that the direct image of the

canonical sheaf on Y is the canonical sheaf on X. We may restrict attention to an

open affine set in X and its inverse image in Y . Therefore, we may assume that X is

affine. Let s be a section of the canonical sheaf on X. We may restrict s to U . This

gives a section s′ of the canonical sheaf on Y restricted to U ′, and it suffices to show

that it extends to all of Y . The problem is local on Y : the extension, if it exists, will

be unique, since the canonical sheaf is torsion-free. The defining sheaf of ideals I of

Y −U ′ has height at least two on each open affine, and therefore depth at least two.

Thus, the first local cohomology of the canonical sheaf, which is Cohen-Macaulay,

with support in I, vanishes, and it follows that the section extends. �

In our cases, X will be V n,s where n > s + 1. We think of points in A2ns
K ,

which we will denote by An,s
K × As,n

K , as corresponding to pairs of variable matrices,

(α, β), of respective sizes n × s, s × n over a field K. Given a pair of matrices,

(α, β) ∈ An,s
K ×As,n

K , we denote by [α|βtr] the n×2s matrix whose first s columns are

the columns of the matrix α and whose last s column are the columns of the matrix

βtr. Let Grass(s, n) denote the Grassmann variety of s-dimensional vector subspaces

of affine n-space over K.

Lemma 7.7. For (α, β) ∈ V n,s and for n ≥ s, rank([α|βtr]) ≤ s.

Proof: By 2.4, V n,s is irreducible. So it suffices to prove that the (s + 1)-sized

minors of [α|βtr] vanish on a Zariski open, dense set. Therefore, we may assume that

αβ, α, and β all have maximal rank (= s). But then the column space of α must be

the same as the column space of αβ and the transposed row space of β must be the
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same as the row space of (αβ)tr. Since αβ = (αβ)tr, we have that the column space

of α equals the column space of βtr. �

Corresponding to the notation in Lemma 7.6, we define Y = Y n,s to be the

closed algebraic subset of An,s
K × As,n

K × Grass(s, n) given by triples (α, β, H) where

(α, β) ∈ V n,s, H ⊆ Grass(s, n) and Im([α|βtr]) ⊆ H. We note that given (α, β) ∈

V n,s there exists H ⊆ Grass(s, n) such that H contains the column space of [α|βtr].

Furthermore, H is unique if rank([α|βtr]) = s.

The projection

An,s
K × As,n

K ×Grass(s, n)→ An,s
K × As,n

K

is a projective, hence proper, morphism since Grass(s, n) is a projective variety.

Composing and restricting the range we have a surjective, projective morphism

Y
π→ V n,s

which is an isomorphism on the open, dense subset of V n,s where rank([α|βtr]) = s

(since H is uniquely determined in this case).

To show Y n,s has rational singularities, we give a finite open cover of Grass(n, s)

by open sets Ui
∼= As(n−s) such that the inverse image, Wi, of Ui in Y n,s has the

property that Wi
∼= V s,s × Ui. The Ui are the sets defined by the non-vanishing of

a Plücker coordinate. Without loss of generality, we may assume that, if the n × s

matrix whose column space represents H is γ, the top s × s minor of γ does not

vanish.

Assuming the top minor does not vanish, we get a unique basis for H such that

the top s×s submatrix of γ is the identity. This gives an isomorphism of Ui
∼= As(n−s)
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by letting H correspond to this (n− s)× s matrix, γ0, formed from the last (n− s)

rows of γ.

Y ←↩ Wi
∼= V s,s × As(n−s)

↓ ↓ ↓

Grass(n, s) ←↩ Ui
∼= As(n−s)

Once we have a basis for H, and so a unique representation matrix γ, we get an

isomorphism of the fiber over H

{(α, β) ∈ V n,s | Im([α|βtr]) ⊆ H} ×H

with V s,s.

There exist unique s× s matrices α′, β′ such that α = γα′, β = β′γtr and α′β′ =

(α′β′)tr. There is a one-to-one correspondence that sends (α, β, H) to (α′, β′, γ).

We have established in 7.4 that V s,s has rational singularities. Thus V s,s×A(n−s)s
K

has rational singularities and, hence, so does Y n,s. It remains to show that the

dimension of the variety

{(α, β, H) ⊂ V n,s ×Grass(s, n) | rank(Im([α|βtr])) < s}

is less than or equal to dim(V n,s)− 2 = ns +
(

s+1
2

)
− 2.

The dimension of Grass(s, n) is s(n− s) and, by symmetry, all the fibers have the

same dimension, so it remains to show that the dimension of a fiber of π is less than

or equal to s2 +
(

s+1
2

)
− 2. The dimension of V s,s is s2 +

(
s+1
2

)
[2.8], so it suffices to

show that the height of the ideal Is(A) + Is(B) is greater than or equal to 2. But

this was shown in Remark 5.12.

By Lemma 7.6,

Theorem 7.8. V n,s has rational singularities in characteristic 0 for n > s + 1
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Corollary 7.9. V n,s has rational singularities in characteristic 0 for all n, s.
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ABSTRACT

On the Varieties of Pairs of Matrices whose Product is Symmetric

by

Charles Christopher Mueller

Chair: Melvin Hochster

We study the varieties and their coordinate rings of pairs of matrices of indeter-

minates whose product is symmetric. Hochster and Eagon developed the method

of Principal Radical Systems to show that determinantal rings are Cohen-Macaulay

normal domain. We use this method to show our rings are Cohen-Macaulay normal

domains.

We explicitly construct a linear homogeneous system of parameters for our rings

and show that the a-invariant of our rings is negative. Thus, we reduce the question

of F-rationality to that of F-injectivity by a criterion due to Hara and Watanabe.

Using Gröbner bases techniques and deformation theory, along with a theorem of

Conca and Herzog we establish, in several cases, that our rings are F-injective, hence

F-rational in these cases.

A result of K.E. Smith implies that, in these cases, the corresponding varieties

have rational singularities in characteristic 0. Using these results and a criterion
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due to Kempf, we establish that the varieties of pairs of matrices whose product is

symmetric have rational singularities in characteristic 0.


