Nonnegativity of Intersection Multiplicities in Ramified Regular
Local Rings following Gabber/De Jong/Berthelot

What follows is an exposition of Gabber’s proof that intersection multiplicities in the
sense of Serre are nonnegative, which uses a result of de Jong on the existence of alter-
ations, a weak form of resolution of singularities. The proof is aimed at the only open
case, ramified regular local rings (of mixed characteristic). The argument also shows that
intersection multiplicities vanish when they are supposed to. Strict positivity remains an
open question, so far as I know. The argument presented here is based on an exposi-
tion of Berthelot, P. Berthelot, Altérations de variétes algébriques [d’apres A. J. de Jong],
Séminaire BOURBAKI, 48¢me année, n® 815, pp. 815-01 — 815-39. The work of de Jong
may be found in A. .J. de Jong, Smoothness, semi-stability, and alterations, Preprint 916,
Univ. Utrecht (1995), to appear Publ. Math. LH.E.S. and in A. .J. de Jong, Families of
curves and alterations, preprint (1996). References to the work of Serre are all to his classic
lecture notes, J.-P. Serre, Algebre locale - Multiplicités, Springer-Verlag Lecture Notes in
Math. No. 11, Séconde Edition, 1965.

I have provided more detail than Berthelot concerning a number of points in the proof
(and less in some instances). I have avoided the use of derived categories, although some
familiarity with spectral sequences is essential. Also, the argument given for the indepen-
dence of multiplicity from the choice of a section when intersecting with a constant section
of a trivial vector bundle over a projective scheme is different from that given by Berthelot,
and the use of Artin approximation follows an argument of S. P. Dutta.

I would like to thank Sankar Dutta, Paul Roberts, and Karen Smith for helpful com-
ments.

Mel Hochster
April 16, 1997

Typeset by AsS-TEX



1. The main case

By using Artin approximation and making a faithfully flat extension of a coefficient
ring (which in this case will be a complete discrete valuation ring in which the residual
characteristic generates the maximal ideal), one can reduce to studying the problem when
(A, m, K) is a regular local ring such that A has characteristic 0 but the characteristic p
of A/m = K is positive and p € m?, and such that K is algebraically closed and A is
essentially of finite type over a complete discrete valuation ring. Details are given in an
Appendix.

Let X = Spec A. We are studying Y = Spec A/P and Z = Spec A/Q where P, () are
prime ideals of A such the only point of Y NZ is the closed point s of X, i.e., such that P+Q
is primary to m. We shall write also that S; = Spec(A/m), so that s is the unique point
of S1. By the early results of Serre, these hypotheses imply that dimY + dim Z < dim X.
We are trying to show by induction on dimY + dim Z that y4(Y, Z) > 0, with equality
if dimY + dim Z < dim X, where (Y, Z) = Ei(—l)iﬁ(Torf(A/P, A/Q)), and where ¢
indicates the length of a finite length A-module.

2. The use of an alteration — shifting to projective space

One chooses, using the results of de Jong, a surjective projective morphism Z’ — Z,
where Z' is regular and such that the restriction to some non-empty open affine of 7 is a
finite morphism. Let u be the degree of the extension of function fields. We may view Z’
as closed in a projective space P = P4 = P over A, and let Y’ be the full inverse image

of Y in P.

From the induction hypothesis, the projection formula, and a spectral sequence argu-
ment one can show (and we give further details below) that

XP(Ylv Z/) = MXA(Yv Z)v
where, by definition,

(Y, 2y =) (1)U H (P, Tor)* 0y, 0.2))).

2¥]

Here, Jor indicates sheaf Tor. All but finitely many of the sheaf Tor’s vanish since P is
regular. Since these sheaf Tor’s are supported only on Y’ N Z’, which maps to s under the
map P — X, the Grothendieck cohomology of the sheaf Tor’s is supported only at s and
so has finite length.

One may see that the displayed equality holds in an elementary way as follows. First
choose a finite free resolution of A/P over A in which the modules occurring are finitely
generated free A-modules, and let G4 denote the resolution, but with A/P replaced by 0.



The pullback of this complex to P gives a resolution of Oy by free Op-modules. Now we
may apply ®e,0z to obtain a complex F, that may be thought of as Ge @4 Oz its
homology gives the sheaf Tor’s of Oy with Oz over Op. Then one has that

(Y2 =Y (1)U H (P, TorP Oy, 02:)) = ) (=1 U(H (P, Hy(F.))),

2¥] 2¥]

which, by a spectral sequence argument, is the same as

Y (—L)HUH(H (P, F.))).

2¥]

(One may form an injective Cartan-Eilenberg resolution of the finite complex Fo in the
category of sheaves of abelian groups. We refer the reader to Chapter XVII, Section 1. of
H. Cartan and S. Eilenberg, Homological Algebra, Oxford Univ. Press, 1956 for details,
but we do recall that, in particular, the Cartan-Eilenberg resolution is a double complex
such that the 2th column gives an injective resolution of F; (but with JF; replaced by 0),
while the homology of the rows consists of injectives and the homology of the rows taken
at the 7th spot gives an injective resolution of H;(F.). One gets a new double complex
by taking the global sections of every injective occurring. (For the rows, it turns out that
the construction of the Cartan-Eilenberg complex is such that taking global sections and
taking homology of rows commute.) The two spectral sequences for iterated (co)homology
associated with this double complex of global sections give the required comparison of
Euler characteristics.)

But the complex
H(P,F)=H(P,Ge @4 02)=Ge @4 H(P,0z),

so that ‘ ‘
H;(H'(P,9,)) = Tor(A/P,H(P,04))

and so o ‘
(Y, 2y =) (=1)(Tor (A/ P, H (P,0))),
(]

and the right hand side can be rewritten as

Z(_l)iXA(A/Pv Hi(Pv OZ’))'

?

Because the calculation of H'(P,0 ) commutes with localization on A, we know that for
i > 1each H'(P,Oz), viewed as an A-module, has support strictly smaller than V(Q), and
so all the yA(A/P, H(P,0/)) vanish for i > 1 by the induction hypothesis. Moreover,
when i = 0 the same fact concerning localization shows that H°(P,0z) has a prime
filtration in which p of the factors are copies of A/Q) and the remaining factors are prime
cyclic A/@Q-modules of smaller dimension than A/@Q. The induction hypothesis shows that



the factors of smaller dimension contribute 0 to the Euler characteristic, and the desired
statement follows.

3. Passing to the normal bundle — a spectral sequence of Serre

Consider a finitely generated module M over a Noetherian ring B and suppose that we
have elements xy, ..., z, generating an ideal I of B. We can filter the Koszul complex
Ko = Ko(21, ..., 2,3 M) so that the tth filtered piece of K; is I''K;, where I'"' = B
when ¢t < i. Note that this makes sense because the entries of the matrices defining the
maps in the Koszul complex are in I. Let X; denote the image of x; in I/I?, the first
graded piece of gryB. The spectral sequence associated to this filtration has F; term
Ho(X1, ..., Xy;gr; M) and converges to (an associated graded of) He(x1, ..., @3 M). If
T1, ..., ¥, is a regular sequence, then C' = gr; B is a polynomial ring in the X; over B/I.
See Serre, Ch. IV, Section 3. In particular, Xy, ..., X, is also a regular sequence and
both He(x1, ..., xp; M) and He(Xy, ..., X;;gr; M) can be reinterpreted as Tor’s. Thus,
there is a spectral sequence whose E; term is Tor,C(B/I,ngM) which converges to (an
associated graded of) Tor?(B/I, M), where B/I is viewed as the cyclic C-module obtained
by killing the ideal spanned by all elements of positive degree in C. When B is local, this
spectral sequence turns out to be independent of the choice of minimal generators for I (still
assuming, of course, that I is generated by a regular sequence of length r). One chooses
an invertible matrix that takes one set of generators to the other. This matrix induces
an isomorphism both of the original Koszul complexes (automatically compatible with the
filtrations, which are staggered I-adic) and also of the Koszul complexes of associated
gradeds. Once one identifies the Koszul complexes with the corresponding Tor’s, one has
a canonical spectral sequence over the local ring, independent of the choice of generators
for the complete intersection. This set-up consequently globalizes: B may be replaced
by a Noetherian scheme, M by a coherent sheaf on B, and I by a sheaf of ideals that is
generated locally by a regular sequence of length r. We can define the spectral sequence
locally on the open affines of a cover: they need to be sufficiently small that the ideal is a
complete intersection on each of them. We then need to check that they “glue” correctly
on overlaps of sets in the cover. But if we consider any point in the overlap, they do agree
in a small neighborhood of the point, since we may check this over the local ring of the
point, where the spectral sequence is canonical, i.e., independent of the choice of generators
for the complete intersection. We can now apply this to our situation.

Let J denote the sheaf of ideals on P that defines Z'. Let E be the (total space of) the
normal bundle to Z’ in P, i.e., E = SpecgrsOp, where Spec indicates sheaf Spec. Then
the globalized Serre spectral sequence yields the fact that

XP(OY'v OZ’) = XE(97 OZ’)?

where § = SpecgrqOy/ is viewed as a sheaf on E and Oz on the right indicates the
copy of Z' which corresponds to the zero section of the bundle E. Here, y* is defined
as a double alternating sum of Grothendieck cohomology of sheaf Tor’s once again —
but now, the reason that there are only finitely many sheaf Tor’s is that the zero section
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of a vector bundle is locally a complete intersection in (the total space of) the bundle.
(If one has a short exact sequence of coherent sheaves with finite length Grothendieck
cohomology, say 0 = F — § — H — 0, then, by the long exact sequence for Grothendieck
cohomology, v(9) = x(F) + x(H), where x(F) denotes the alternating sum of the lengths
of the Grothendieck cohomology of F. Now suppose that one has a finite complex F,
of coherent sheaves such that every JF; and every H;(F,) has finite length Grothendieck
cohomology. Then Y, (—=1)'x(F:) = 32, (=1)'x(Hi(F.)), since y is additive. This enables
us to use spectral sequences to compare alternating sums of values of y. Note also that
if we use the defintion of y to eliminate it from the notation, we get the kind of double
alternating sum that we have been discussing.)

4. Passing to the closed fiber

There is a power of m that kills § and one may consider instead of § the various factors
G that occur in the m-adic filtration. When working with one of these GG, one may replace
E by its fiber E; over the closed point and Z' by Z.. We now think of Z! as the zero
section of the bundle Ey. We now want to show that x: (G,0z) > 0, with equality when
the dimension of the support of G is less than r, the rank of F, (and of E). (It turns out
that dim X — (dimY +dim Z) = r — dim G, and the dimension of § is the supremum of the
dimensions of the supports of the various factors G.) The result for § then follows from
the additivity of .

5. A vector bundle argument

We shall show in the next two sections that we can map a trivial bundle over W = Z/
onto Ey, and this is a point we want to examine in considerable detail. Once we have done
this, we may prove nonnegativity by replacing F; by this trivial bundle over Z!, and G by
its pullback. One may check locally that the sheaf Tor’s don’t change. Since the dimension
of the support of G and the dimension of the fiber have increased by the same amount, we
have not disturbed whether a given inequality or equality holds between them. Note that
we will now be working with a new value for r.

Think of the trivial bundle as Ax W, where A is an affine space of some dimension which
we shall take to be the new value of r. Then there is a section A x W = W () through each
point of A of A, say with defining sheaf Oyy(y). The next point is that Y>W(@, Ow)) is
independent of the choice of A\. Let Xy, ..., X, denote coordinate functions in A, so that
we may think of the structure sheaf of A x W as Ow|[Xy, ..., X,], so that if U is an open
affine in W the ring of global sections on U is Ow (U)[Xy, ..., X;]. Then the complex
Ko(X1 — M, ..., X, — Ay G) has its homology the sheaf Tor’s that we need to use to
calculate YW (@, Ow(x)). By the same spectral sequence argument used in the second
section (depending on a Cartan-Eilenberg resolution) we can see that XAXW(G,OW(A))
may be thought of as

S (=D)TIUH} (X = M, o, X = A HY (A X W,G))),

i
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where each N = N; = H'(A x W, G) may also be thought of as an i th higher direct image
of G under the projection map A x W — A. Since this is a projective morphism, each
N is a finitely generated module over K[X, ..., X,]. The fact that y**W (G, Ow)) is
independent of A now follows from the observation that, for any such module N,

Z(_l)ig(ﬂj()(l — M,y ooy, Xp = A N))

J

does not depend on A: it is, in fact, the torsion-free rank of N, since, as a function
of N, it vanishes on modules of dimension smaller than r, has the value 1 when N =

K[X1, ..., X,], and is additive (these remarks follow from Serre: in fact, this number
is the intersection multiplicity of N with K[Xy, ..., X,]/(X1 — M, ..., X, — ;) at the
point A).

We now study y**" (G, Ow(x)) from a different point of view: we choose A carefully
and think of the iterated (co)homology in the other order. Specifically, if dim G < r its
projection onto A is not all of A, and we can choose A so that the the support of G does
not meet W(A) and so the sheaf Tor’s vanish. If dim G = r (i.e., the dimension of its
support is r) we might still be able to choose a point not in the projection of the support
of G on A (actually we would prefer to show this does not happen for some one of the
factors GG, which would then establish strict positivity when the sum of the dimensions of
Y and Z is the dimension of the ambient space), but if the projection map is onto, since
(the support of) G has dimension r and so does A", there must still be a point A with a
finite inverse image in the support of G. Since the intersection of the support of G with
W () is then finite for this choice of A, the higher Grothendieck cohomology all vanishes,
while the sheaf Tor’s can be computed as a direct sum of ordinary Tor’s over local rings
at the finitely many points in the support. Each of these ordinary Tor’s can be viewed as
Koszul homology because the section is defined locally by a regular sequence. The Euler
characteristics of Koszul homology are then positive, by Serre’s results.

Thus, the main point that we have not addressed is why one can map a trivial bundle
onto F,: this is done in the next two sections.

6. The injectivity of a map induced by d

We shall see that mapping a trivial bundle onto E; comes down to showing the injec-
tivity of a map induced by d after tensoring with a residue field. What follows is a local
description of the map, and a more complete explanation of what is happening.

Recall that (A, m, K') is a ramified regular local ring with I algebraically closed, so that
A/m? has, canonically, the structure of a K-algebra: the characteristic is now p and there
is a unique coefficient field. (The argument can be made to work in the equicharacteristic
case, but, on the face of it, it does not work for unramified mixed characteristic regular
local rings. However, one can get around this simply by adjoining a square root of p to
the ring. One can replace modules over the original ring by their tensor products with
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the new ring, and the Tor’s get tensored with the new larger regular ring. The issues
are unaffected, since dimensions don’t change, and modules of finite length stay of finite
length when one tensors, but the length is multiplied by the length of the closed fiber of
the extension of regular rings. Thus, one can reduce to the ramified case.)

Let Afuy, ..., un] = A[u] correspond to one of the open affine pieces U of projective
space over A. Let the intersection of Z" with U be defined by I C Afu]. Let s be the closed
point of Spec A, so that the intersection of Z! with U is defined by I + mAfu].

The restriction of the map d to U is constructed in the discussion that follows. Since
B = (A/m?*)[u] is a K-algebra, there is a well-defined K-linear derivation d : B — Qg /.
By composition with A[u] — B one gets a Z-linear map A[u] — Qg5 which is a derivation.
For any ideal J of A[u] we may restrict this map to J and then we get a composite map
J — Qpx — (B/J) @p Qp/k. From the fact that d is a derivation one sees that this
map kills .J* and that the induced map J/J? — (B/J)@p Qp/k is (B/J)-linear. We shall
continue to denote the map J/J* — (B/J) @p Qp /i by the letter d. Note that if J C .J’
we have a composite map

J)J* = (B]J) @B Qg — (B/J') ©p Qp/x

which we shall also denote by d, although if we need to be precise we may use the notation
dj . It is immediate from the fact that all versions of d are induced by the usual universal
derivation d : B — Qp /g that if J C .J" C J" and one considers

J)J? = J')J* = (B/J") @B Qp /K,

where the first map is induced by J C .J’ and the second map is d s then the composite
is dj . Of course, since we have a surjection Afu] — B, the various tensor products over
B can be written over A[u] instead.

In particular, by taking J = I and J' = I + mA[u] we obtaind : [/I* — C @ Al 2B/ K5
where C = Afu]/(I + mA[u]). Here, I + mA[u] defines the intersection of Z! with U. This
is a “piece” of the map we are interested in, but restricted to the open affine U. Now we
want to show that this map is an injection once we tensor with the residue field of a closed
point of Z! that lies in U. We think of this closed point as a point of Spec Afu], so that it
corresponds to a maximal ideal M of Au] containing I + mA[u]. Taking J = J" = M,
we see that the map

(A[u] /M) @ aguy (1/17) — (A[u] /M) @ agu) (C @ apu) Rp/x)
or
K @ap) (I/1?) = K @ a1 Q)5

factors

K ®A[u] (I/IZ) - M/M2 — K ®A[u] QB/I(v

where K on the left in these tensor products should be thought of as A[u]/M. We may
localize at M before killing M, and then, since Alul]as is regular and Afu|ys/Ins is regular



(since Z' is), Ins is generated by part of a regular system of parameters for Afu]as, and
this shows that the first map is injective. The second is injective by an easy calculation:
the main point is that the Zariski cotangent space M /M? for Alu] for any maximal ideal
M containing m is isomorphic in an obvious way with the Zariski cotangent space at the
corresponding point of B = (A/m?)[u], since m?> C M?, and for the K-algebra B, we may
identify the Zariski cotangent space with (A[u]/M) @ s14) Qp/i. Thus, it is essential to
work with (A/m?)[u] in this part of the argument: one cannot simply work with (A/m)[u]
instead.

7. Mapping a trivial bundle onto the fiber of the normal bundle

Recall that a sheaf is generated by global sections if one can map a direct sum of copies
of the structure sheaf onto it (this direct sum can be taken to be finite in the case of a
coherent sheaf). To show that we can map a trivial bundle onto the total space of the
closed fiber of the normal bundle, we must show that, if Hom indicates sheaf Hom and J
defines Z' in P = PY, then the sheaf

}Comoz,q (Ozé ®oz, 5/52, OZé)
is generated by global sections, and this sheaf may be identified with

}Comoz,(ﬂ/ﬂz, Ozé).

(When no base is specified for sheaf Hom it may be taken over Op, although frequently
one may use the structure sheaf of a smaller subscheme whose defining sheaf of ideals
annihilates both sheaves.)

We proceed as follows. First, recall that S; = Spec K and let X; = Spec(A/m?).
Since p € m? and K is algebraically closed and, in particular, is perfect, the ring A/m?
has characteristic p and has a unique coefficient field K C A/m?, so that X is a scheme
over K in a canonical fashion. In fact for indeterminates Ty, ..., T, over K, A/m? =
KTy, ..., T,)/I* where I = (T, ..., T,). Recall that P = P¥. Note that P, = X; @4 P
has the structure of a scheme over K, since X; does, and that it may also be identified
with X xs, P¥. Also, P¥ may be thought of as P,. If we let Q}gl = 9}31/51’ this product

decomposition induces a direct sum decomposition
1L~ Ol *O1
Qpl - Qpl/Xl @ﬂ— QXl/Sl

where 7 is the product projection Py — X;. One can describe this direct sum decomposi-
tion over an open affine U = Spec A[uy, ..., uy] in algebraic terms as follows:

Qo (U) = Qg oy = (S50 (A/m?)dui) & (A/m[u]) @ ajm> U am2) /5

~

(in fact, for any two K-algebras D, D', we have that there is an isomorphism Q})®KD'/K =
D @K Qb//[( oD QK QE/K); here, take D = A/m? and D' = Kluy, ..., un]).



It follows that

}Comoﬂp(Q}gl , Op, ) = j—COmOHD(Qlf)l /X1 Op, ) ® Hom (7*9&1/51 , Op, )

The first summand on the right may be identified with the tangent sheaf to Py = P¥,
and so is generated by global sections. The second factor is the same as

W*(%OW(Q%A/M)/K? K)).
On an open affine U, this corresponds to the fact that
HOl’l’lR’[u] (IX’[U] ®[( Q%A/mz)/ﬁr, IX’[U]) = IX’[U] ®[( HOl’l’l[((Q%A/mz)/I(, IX’)

It follows that the second summand is also generated by global sections, since the pullback
of a sheaf generated by global sections is generated by global sections, and on the affine
X, every coherent sheaf is generated by global sections.

Thus, }Comoﬂp(Q}gl,O]ps) is generated by global sections on Op,. We have a surjec-
tion Op, — Oz and both are killed by m. Hence, the induced map obtained by ap-
plying Hom (Q}gl, __) is onto, since it may be identified with the result of applying
Homo,, (2p, @ K, ), and the sheaf Qp @ K is locally free on P,. It follows that
}Comoﬂp(Q}al, Oz ) is generated by global sections over PP, and, hence over Z;. To complete
the proof, it will therefore suffice to show that there is a surjection }Comoﬂn(Q}gl, Oz1) —
Homo,, (J/T?, Oz ), or, equivalently, J‘Comoﬂn(Q}gl ® 0z, 0z ) — Homo,, (J/T%, Oz ).

To this end, first note that there is a map d : J/J* — Q}gl ® Oz . The local description
of this map over an open affine U in PP has been discussed in detail in the preceding section.
Moreover, it was shown in the preceding section that if we localize at a point of Z’ and
tensor with the residue field this map 1s injective. The same holds if we consider instead
the induced map 5/52 ® OZé — Q}gl R OZé. Both sheaves are locally free (recall that J is
locally a complete intersection, and also that m kills Oz and that Q}gl ® K is locally free
on P, 2 PY). Tt follows that the dual map of sheaves obtained by applying Hom (_, Oz)
is surjective: it suffices to check this after localizing at a point of Z’, and by Nakayama’s
lemma, it then suffices to prove surjectivity after tensoring with the residue field. But the
maps so obtained are vector space duals to the maps that were shown to be injective in
the preceding section. [

Appendix: The use of Artin approximation

The treatment below is different from the one in Berthelot’s article: in particular spectral
sequences are not used. The argument we give follows the lines of one given by S. P. Dutta,
A theorem on smoothness — Bass-Quillen, Chow groups and intersection multiplicity of
Serre, preprint.
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In studying the question of whether intersection multiplicities of finitely generated mod-
ules over a regular local ring are positive or nonnegative or zero, one may always replace the
ring and the modules by their completions. We indicate here how we may use (M. Artin’s
original version) of the Artin approximation theorem to reduce to the case of a local ring
of an affine algebra over a complete discrete valuation ring.

Recall that Artin’s theorem asserts that if one has a local ring essentially of finite type
over an excellent (e.g., complete) discrete valuation ring then given a finite system of
polynomial equations over the ring with a solution in its completion, then one may find a
solution in the Henselization congruent to the original solution modulo any given power of
the maximal ideal of the completion. This is referred to as “approximating” the original
solution.

The complete ramified regular local ring is well known to have the form

Ve, s zall/(p = f)
where (V,pV) is a complete discrete valuation ring of mixed characteristic p and f is in
the square of the maximal ideal mp of T = V{[z1, ..., 2,]]. Note that V will have a

faithfully flat extension (W, pW) which is also a complete discrete valuation ring such that
p generates the maximal ideal, but such that W/pW is algebraically closed. Thus, we
may replace the original regular local ring A by B = W{[z1, ..., @,]]/(p — f). Then B is
faithfully flat over A and the maximal ideal of A expands to the maximal ideal of B. We
may replace the original modules by their tensor products with B without changing their
dimensions or the Serre multiplicity.

Thus, there is no loss of generality in assuming that A = T/(p — f) where T =
V{[z1, ..., x,]], V is a complete discrete valuation ring with maximal ideal pV, the residue
field K of V (which is also the residue field of A) is algebraically closed, and f € m — T2
Suppose that one has a counterexample: we think of it as being given by a pair of finitely
generated modules M, N over T such that M and N are killed by p — f . We think of

these modules as the cokernels of finite matrices (), (Gnx) over T.

We want to use Artin approximation to replace this example by an example with the

same properties constructed over the Henselization S of the ring V{zy, ..., xp]m, where
mo = (p, @1, ..., n). The Henselization is a direct limit of local rings essentially of finite
type over V]xy, ..., ®n]lm,, and it follows easily that the counterexample descends to a

local ring essentially of finite type over V.

To descend to the Henselization we want to think of f and the a;;, Bir as solutions in
T of a finite system of polynomial equations over S. There will also be additional auxiliary
elements involved in these equations and their solution, i.e., the system of polynomial
equations will involve many variables besides those that correspond to f and and the
aij, Bnx. The idea is to construct a large family of equations satisfied by f, a;j, Bnr, and
some auxiliary elements such that when we take a new solution in S, congruent to the
original solution modulo a certain high power of m7, we can use this solution to get a
counterexample over S. The trick is to express everything that we need to know about
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the original example equationally. We shall write Z for the variable in the equations
corresponding to f, and U;;, Vi for the variables corresponding to the «;;, Bar.

Since, in particular, we may keep the solution the same modulo m?., there is no difficulty
in guaranteeing that the “new” choice of f, call it g, will be in m%. The question is, how
do we keep track of all the other things we need to preserve “equationally.” We explain
how to do this in a sequence of remarks below. In the sequel, we shall use the expression
“keep track of” to mean “keep track of equationally.”

Once we have explained how to keep track of everything equationally we are done: The
new counterexample will consist of a pair of modules over S/(p — ¢). The new modules
will be the cokernels of two matrices: the entries of the defining matrices of M, N are
replaced by the values of the U;j, Vi in S in the new solution provided by using Artin
approximation, and the cokernels of the resulting matrices give the S-modules that we
want to get a counterexample over S. (They will be killed by p — ¢g: see (3) below.)

(1) We can keep track of the fact that a sequence of n 4+ 1 elements is part of a system
of parameters by writing down equations expressing a power of each of p,zy, ..., z,
as a linear combination (the coefficients from the ring that are used will eventually be
auxiliary unknowns) of elements in the sequence. (We also need to keep the elements in
the maximal ideal, but we shall assume here and throughout that we are always keeping
elements the same modulo at least m?2.)

(2) We can keep track of the fact that a sequence of elements is part of a system of pa-
rameters (since the ring is regular, this is equivalent to being a regular sequence) by
extending the sequence to a full system of parameters and keeping track of the full
system.

(3) We can keep track of the fact that p— f (or another element, which may involve variables)
kills a module by writing down equations that express the product of p — f with each
relevant standard basis vector as a linear combination of columns of the matrix defining
the module.

(4) We may keep track of a finite free resolution of a finitely generated module by keeping
track of all the matrices occurring. The condition that we have a complex is certainly
equational in the entries. The condition that the minors of a given size vanish if their
size is greater than the rank is equational. The determinantal ranks of these matrices
are thus preserved if we approximate modulo a high enough power of my (this enables
us to keep nonzero minors whose size is the rank nonzero). The Buchsbaum-Eisenbud
acyclicity criterion guarantees the acyclicity of the new complex if we keep the depths of
the ideals of minors sufficiently big. But this simply requires certain linear combinations
of minors to be regular sequences, and we may apply (2).

(5) We may keep track of the fact that two modules with possibly different presentations are
isomorphic by lifting the map between them and its inverse to maps of free modules. We
may similarly keep track of the fact that the composition of two given maps of finitely
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generated modules is a third given map. Note also that when we have presentations for
two modules we get a presentation for their tensor product.

We may keep track of the fact that we have a short exact sequence of modules as follows.
We construct finite free resolutions of the rightmost and leftmost module in the sequence
and then use these, in the usual way, to construct a resolution of the middle module. In
this way we get a short exact sequence of finite free complexes such that the columns
give resolutions of the original three modules while the rows are split exact. One can
keep track of the acyclicity of the columns as in (4), while it is easy to keep track of the
fact that a short exact sequence of free modules is split exact.

We can keep track of the length and, in fact, the isomorphism class of a finite length
module over T' by using the fact that it has a finite presentation over S.

We can keep track of a finite complex of finitely generated modules and its homology by
breaking it up into short exact sequences that carry the information and keeping track
of all of them.

We can keep track of the fact that a module M has dimension at least h by embedding
a cyclic submodule of M as a nonzero submodule of one obtained by killing part of a
regular sequence of length h. (One can find a cyclic submodule of the form T/P with
the correct dimension, and P will be a minimal prime of an ideal generated by a regular
sequence.) Omne can keep track of the fact that a finitely generated module M has
dimension at most h by exhibiting a sequence of elements yq, ..., y, of the maximal
ideal such that M/(y1, ..., yn)M has finite length. Hence, one can keep track of the
dimension of a finitely generated module.

With these remarks, we see that we can keep track of a counterexample, since we can

keep track of the dimensions of M and N, of the fact that both are killed by p — f, of
the fact that their tensor product is killed by a power of the maximal ideal, of a finite
resolution of M by finitely generated free modules over T'/(p — f), and of the finite length
homology of the complex obtained by tensoring that resolution with N (and, hence, of the
intersection multiplicity) while descending to S.



