PARAMETER-LIKE SEQUENCES AND
EXTENSIONS OF TIGHT CLOSURE

BY MELVIN HOCHSTER

0. INTRODUCTION

We introduce here a notion of closure for ideals (parameter tight closure) in arbitrary
Noetherian rings, including rings of mixed characteristic, that we hope will have properties
parallel to those enjoyed by tight closure in characteristic p. We are not able to prove that
the definition proposed here has all the properties that tight closure does: this remains an
open question. But we can show that it agrees with tight closure in prime characteristic
p > 0, that it is, in general, contained in the solid closure introduced in [Ho8] and [Ho9]
(which is known to be “too large”), and it appears very likely that in many cases it is
smaller than solid closure: cf. Discussion (3.6) and Theorem (3.7). We also show that,
quite generally, including in mixed characteristic, it captures elements of a domain which
are in the expansion of an ideal to an integral extension (sse Theorem (2.5)), and that,
in equal characteristic 0, it has so-called “colon-capturing” properties analogous to those
of tight closure (see Theorem (3.2)). The case of complete local domains suffices for
applications, and so, for simplicity, we often restrict to that case in the sequel.

In fact, closure operations of the kind we have in mind are determined by their behavior
over complete local domains. We describe briefly how the definition goes in that case.
The underlying idea is to define a notion of “parameter-like” sequence in an algebra, not

necessarily Noetherian, over a complete local domain R. The definition is made in terms of
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annihilation properties of certain local cohomology modules. See (2.2) for details. It is, in
fact, the case that a system of parameters of a complete local domain R is parameter-like.
We next define the notion of a “parameter-preserving” algebra S over the complete local
domain R: an R-algebra S is parameter-preserving if and only if every system of parameters
in R is parameter-like in S. We then define the parameter tight closure I% of I C R to be
the smallest ideal J of R containing I such that for every parameter preserving-algebra S
over R, the contraction of JS to R is J.

If R is a complete local domain, it turns out that a parameter-preserving algebra is
solid, which makes the new closure a priori contained in the solid closure defined in [Ho9].
In §3 we show that the solid algebra Roberts uses in [Ro6] to prove that the solid closure
of an ideal in a regular ring of equal characteristic zero can be strictly larger than the
ideal is not parameter-preserving. Thus, it appears to be possible that the parameter tight
closure of any ideal in a regular ring is equal to the ideal, although we cannot prove this.
Moreover, we do not know whether parameter tight closure agrees with any of the equal
characteristic zero notions of tight closure introduced in [HH10]: but we can show that it
contains the largest of them, the big equational tight closure defined there. See Theorem
(3.3).

We shall show that this parameter tight closure has many of the properties that we
want a tight closure theory to have. However, we do not know whether every ideal of a
regular ring is parameter tightly closed, neither in equal characteristic zero nor in mixed
characteristic. If the mixed characteristic case could be established, the direct summand
conjecture would follow.

Of course, we were led to study the notion of parameter-like sequences because of
the possibility of settling many long-standing open questions in mixed characteristic (cf.
[Hol,7], [PS1,2], [Rol-5,7], [H02,3,5,6], [Dul,2], [DHM], [EvG], and [Rang]) via the con-
struction of a suitable analogue of tight closure theory. However, we feel that parameter-
like sequences are worthy of study in their own right even without the potential for this
application: their behavior appears to be subtle even in finitely generated algebras over a
complete local domain.

Other notions, defined quite differently, that generalize tight closure have been explored
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in [Heit1-3] and [HoV]: these are related to ideas from [Sm] and [HH5]. In particular, in
a tremendous breakthrough, [Heit3] resolves the direct summand conjecture in dimension
3. In [Holl] a main result of [Heit3] is used to prove the existence (in a weakly functorial

sense) of big Cohen-Macaulay algebras in dimension 3, even in mixed characteristic.

1. TIGHT CLOSURE IN POSITIVE CHARACTERISTIC

For the theory of tight closure in characteristic p we refer the reader to [Ho8|, [HH1-4,
6-12], [Hu], [Sm], and [Bru]. The equal characteristic zero theory is described in [Ho9] and
[Ho10], and developed in complete detail in [HH10].

For the moment we shall be working over a Noetherian ring R of positive prime char-
acteristic p. In this situation we shall always let e denote an element of the nonnegative
integers N, and write ¢ as an abbreviation for p¢. Thus “for all sufficient large ¢” means

” and so forth.

“for all sufficiently large integers g of the form p©,

Recall that a module M over a local ring (R, m, K) is a balanced big Cohen-Macaulay
module (cf. [Sh]) for R if M # mM and every system of parameters for R is a regular
sequence on M. If M is also an R-algebra it is called a big Cohen-Macaulay algebra for R
(i.e., in the context of algebras we shall always assume “balanced” but we omit the word).

We also recall that if R is a domain then an R-module M is called solid if there exists
a nonzero R-linear map from M to R, i.e., Homgr(M, R) # 0. If (R, M, K) is a complete
local domain of dimension d then it turns out that M is solid if and only if HZ (M) # 0.
An R-algebra is called solid if it is solid when considered as an R-module.

In order to explain, in part, why we are led to consider the notion of parameter tight
closure we first consider four characterizations of tight closure in the characteristic p > 0
case. For simplicity, we consider only the case of ideals, and when it simplifies matters,
we assume that the Noetherian ring R of prime characteristic p > 0 is a complete local
domain. The first characterization given below is actually the definition of tight closure in
positive characteristic. The characterizations (2)and (3) below are consequences of Theo-

rems (11.1) and (8.6b), respectively, of [Ho9]. The characterization (4) is a consequence of
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Theorem (8.17) of [HH4] and the results of [Mo] on Hilbert-Kunz multiplicities. See also
the discussion in [Ho8], p. 179.

(1.1) Characterizations of of tight closure. Let R be a Noetherian ring of prime
characteristic p > 0. Let u € R and let I C R be an ideal. Let I* denote the tight closure
of I.
(1) (Definition) u € I* precisely if there exists ¢ not in any minimal prime of R such
that cu? € Il9 for all nonnegative integers e, where I9 is the ideal generated by all
q th powers of elements of I. (When R is a domain, the condition on ¢ is simply
that it not be 0.)
(2) Let R be a complete local domain. u € I* if and only if u € IS N R for some big
Cohen-Macaulay R-algebra S.
(3) Let R be a complete local domain. u € I* if and only if u € IS N R for some solid
R-algebra S.
(4) Let R be a complete local domain. Assume also that I is m-primary. With J =

({(R) TP
I +uR, we have that v € I'* if and only if lim (B/ )

lim. W = 1. (Here, “¢” indicates

length.)

We present these characterizations because every characterization of tight closure in
prime characteristic p > 0 gives a potential method for generalizing the theory to mixed
characteristic. We want to discuss briefly the difficulties that arise from using these char-
acterizations to help motivate the definitions of the next section.

We first note that an analogue of (1) can be defined in equal characteristic zero by
reduction to characteristic p. This idea gives a very good extension of tight closure theory
to the equal characteristic zero case (cf. [Ho8|, [Ho10], [HH10]), but this definition does
not seem to lead to any highly useful notion in mixed characteristic.

Condition (2) might lead to a notion that is a good notion in all characteristics, but at
this time this idea does little good in mixed characteristic, because big Cohen-Macaulay
algebras are not known to exist in mixed characteristic.

Condition (3) leads to a notion that is explored in the author’s paper [Ho9], but an

example [Ro6] of Paul Roberts shows that solid closure is too big in equal characteristic
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zero (ideals in regular rings of dimension 3 are not always solidly closed). The situation in
mixed characteristic is unresolved, but there it is difficult to prove anything and Roberts’
example is discouraging. Solid closure does give some information, but not enough to
settle, for example, the direct summand conjecture. For further information about this
and related conjectures, we refer the the reader to [Hol,7], [PS1,2], [Ro1-5,7], [Ho02,3,5,6],
[Dul,2], [DHM], [EvG], and [Rang].

In connection with all of these conditions, we note that if R is essentially of finite type
over a field or even over an excellent local ring, and has prime characteristic p > 0, then
u € I* if and only if the image of w is in (ID)* (working over D) for every complete local
domain D to which R maps.! Thus, under mild conditions on the ring, tight closure theory
in prime characteristic p > 0 is determined by its behavior for complete local domains.

Condition (4) merits some further comment. Note that in a complete local domain
(R,m), the tight closure of I is the intersection of the tight closures of the m-primary
ideals containing I, and so tight closure is determined by its behavior on m-primary ideals.
The intriguing condition (4) can be rephrased slightly as follows: for m-primary ideals
I C J in a complete local domain (R, m) of prime characteristic p, J € I* if and only
if I and J have the same Hilbert-Kunz multiplicity. (It is known that, with d = dim R,
((R/T19) = y(q%) + O(¢% 1), where v, the Hilbert-Kunz multiplicity, is a positive real
constant (conjectured, but not known, to be rational) and the term O(¢%~!) is bounded
in absolute value by a constant times ¢¢~1.) Cf. [Mo] for the basic theory, and see [HaMo]
for some surprising examples. This exciting tie-in between tight closure and Hilbert-Kunz
multiplicities has not, so far, led to any possible extensions of tight closure theory to mixed
characteristic.

We want to come back to the conditions (2) and (3). Evidently, if one has a class
of R-algebras contained in the solid R-algebras and containing the big Cohen-Macaulay
R-algebras, one can use it to define a notion of closure that will agree with tight closure
in prime characteristic p > 0 and may give a good notion in equal characteristic 0 and

in mixed characteristic. In the next section we define a class of algebras, the parameter-

1One may use [HH7], Prop. (6.23) and Thm. (6.24) to show “only if’. To prove “if” one may use that
the rings considered have completely stable test elements. One can reduce to looking at the completions
of their local rings and then the quotients of those by minimal primes by [HH4], Prop. (6.25).
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preserving algebras, and prove that it lies between the class of big Cohen-Macaulay algebras
and the class of solid algebras: it is not obvious that parameter-preserving algebras are
solid, but that is the content of Theorem (2.7). We shall show in the sequel that this
class of algebras gives a notion with many of the properties we want, and, so far as we
know, it may have all of the properties that we want. In §3 we show that the algebra that
Roberts uses in [Ro6] to show that solid closure is too big (in the sense that not every ideal
of a regular ring is solidly closed) is not parameter-preserving. Thus, there is no known
“obstruction” to prevent this notion from being a good one in equal characteristic 0 and
in mixed characteristic. But whether it has all the properties one would like remains an

open question.

2. PARAMETER-LIKE SEQUENCES AND
PARAMETER-PRESERVING ALGEBRAS

As discussed earlier, we want to explore here the possibility of defining a closure opera-
tion that is provably useful in all characteristics along the following lines: we first define a
property, parameter-preservation, of algebras that is stronger than being solid but weaker
than being a big Cohen-Macaulay algebra. We then define u to be immediately in the
parameter tight closure of I if u € 1SN R for some algebra S having the specified property.
We then take the parameter tight closure I° of I to be the smallest ideal of R containing I
that is closed under immediate parameter tight closure. We can do something similar for
modules. The detailed definition is given in (2.2).

Although we are primarily interested in complete local domains, it will be convenient
to allow complete local rings of pure dimension as well: recall that R has pure dimension
d if (0) has no embedded prime ideals, and for every minimal prime P of R, the dimension
of R/P is d. This is equivalent to the statement that every nonzero submodule of R has
dimension d. Likewise, we say that an R-module has pure dimension d if it and all of its

nonzero submodules have dimension d.
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Much of the sequel depends on the facts (b) and (c) about local cohomology in the

following:

(2.1) Lemma. Let R be a complete local ring of pure dimension d. Then:

(a) Given any system of parameters xy, ... ,xq for R, R is module-finite over a complete
local ring A C R such that xy, ... ,xq € A and A is either reqular (A can always
be chosen to be reqular in the equal characteristic case), or A is a hypersurface in a
complete regular local ring.

(b) Fori # d, the module H! (R) is annihilated by an ideal of height at least 2 in R. (The
unit ideal has height 400, and so the condition is satisfied if the local cohomology
module vanishes.)

(c¢) Let M be any R-module, not necessarily Noetherian. Let B C R denote the annihilator
of HE (M). Then if HS (M) # 0, dim R/B = d.

Proof. (a) This is quite standard if R contains a field: it has a coefficient field K and
one may choose D = K|[z1, ... ,x4]]. In the mixed characteristic case, choose a coefficient
ring B for R. This means that B C R with mp C m = mpg, that B/mp — R/m is
an isomorphism, and that for some mixed characteristic discrete valuation ring V with
residual characteristic p such that my = pV, either B = V or B = V/(p'). Choose
a map ¢ of V[[X]] = V[[Xy,...,Xq4]] to R so that the X; map to the z;, the given
system of parameters for R. Then image A of V[[X]] in R has pure dimension d, since
R D A is module-finite, and so Ker ¢ C V][ X]] is a pure height one ideal of the unique
factorization domain V[[X]]. But then Ker¢ = (f) is principal, and R is module-finite
over A = VI[[X]]/(f) as required.

(b) Choose A as in part (a). Then, by local duality over the Gorenstein ring A, the
Matlis dual of H?,(R) is Ext%"(R, A), 0 < i < d — 1, and so it suffices to see that the
Ext has an annihilator of height two or more in A: this ideal will expand to an ideal of
height two or more in R. Therefore it suffices to see that for every height one prime @ of
A, ExtilQ (Rg, Ag) =0 for j =d —i # 0. But since Ag is a one-dimensional Gorenstein
ring, the Matlis dual of the localized Ext is Hgﬂé (Rg), which is 0 if 5 > 1, or j < 0,

clearly, and vanishes when j = 1 because R is of pure dimensional one over Ag, and this
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implies that it is Cohen-Macaulay.

(¢) If dimR/B < d, then B contains an element z; that is part of a system of pa-
rameters. Hence, we can choose A C R as in part (a) such that x; € A. Since R
is module-finite over A, the maximal ideal of A expands to an m-primary ideal of R.
Thus, if we think of M is an A-module, the local cohomology does not change, and
we still have that HZ (M) # 0 but that this module is killed by the parameter z;.
We may therefore assume that R = A is a hypersurface. Let E = Er(K) = HZ(R).
Then HY (M) =2 M ®p E is nonzero and killed by z;. But Hompg(_, E) is faith-
fully exact, and so we get that Homg(HZ (M), E) = Homgz(M ®g E, E) is nonzero
and killed by x1, and by the adjointness of tensor and Hom this may be identified with
Homp (M, Hompg(E, E)) = Homg(M, R), since R is complete. Since the Hom is nonzero
and killed by x1, there exists a nonzero map M — R that is killed by x;. But this means
that the image of the map is an ideal of R killed by x1, and x; is not a zerodivisor in R.

This is a contradiction. O

If R is a local ring and .J is any ideal of R, we define J""™* to be the intersection of the
primary components of J corresponding to minimal primes @ of .J such that dim R/Q =
dim R/J. (We have restricted this definition to the local case to avoid difficulties that arise
from rings having maximal ideals with differing heights.) Note that if R is any local ring
of dimension d, then R/(0)"™* has pure dimension d. In fact, (0)"™™* is the largest ideal
I of R such that the dimension of I as an R-module is smaller than d: it consists of all

elements of v € R such that dim Ru < d.

(2.2) Definitions: parameter-like sequences, parameter-preserving algebras,
and parameter tight closure. Although we are primarily interested in complete lo-
cal domains, it will be convenient to allow complete local rings of pure dimension d as well
in certain definitions. Thus, let R be a complete local ring of pure dimension d and let
S be an R-algebra. Let xi, ..., x4 be a system of parameters for R. Let Ty = To(S) be
the quotient of S by the ideal of all elements that have an annihilator of positive height
in R, and, recursively, if T; = 7;(S) has been defined for i < d let T;11 be the quotient of
T;/(x;+1T;) by the ideal of all elements u such dim Ru < d — (i+1). (Note that Ru € T;11
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is killed by (z1, ... ,z;4+1) and that dimR/(z1, ... ,ziy1) = d — (i + 1).) If we need to
make explicit the dependence of 7;(S) on the choices of R and z = x4, ..., x4, we shall
write 7;7%(x; ), but we shall usually omit either or both of R, z.

Call a system of parameters zy, ... ,xq parameter-like in S if T; # 0, and for all 1,
0 < i < d— 1, the height of the annihilator 2; of H& 1=4(T;) in R is at least i + 2. We
note again that we are making the usual convention that the height of the unit ideal is
+00, and so the condition is satisfied whenever H%-17%(T;) vanishes. Since R was assumed
to have pure dimension, it is equivalent to assert that for every ¢, 0 < ¢ < d — 1, either
HY1=4(T;) = 0, or else dim R/A; < d —i — 2.

Call S a parameter-preserving R-algebra if every system of parameters z1, ... ,z4 of R
is parameter-like in S.

Given N C M, finitely generated R-modules, define uv € M to be in the immediate
parameter tight closure of N in M if there exists a parameter-preserving R-algebra S such
that 1 ® w is in the image of S®gr N in S®r M (if M = R and N = [ is an ideal, this
just says that the image of u in S is in IS). Define the first parameter tight closure of N
in M to be the submodule of M generated by the elements in the immediate tight closure
of N. The first parameter tight closure will be a submodule of M containing N. Iterating
this process, we obtain an ascending chain of submodules of M that must stabilize. We
define the stable submodule in this chain to be the parameter tight closure of N in M, and
denote it N]nv‘, or simply N?. When N is an ideal of R, M is understood to be R unless
otherwise specified.

Alternatively, N is the smallest submodule of M containing N that has the property
that for any element v € M and any parameter preserving-algebra S over R, if 1 ® u is in

the image of S ®r N in S ®r M, then u € NI,

The definition of parameter-like is rather technical. The results that follow will help
explain why it was chosen. The key points that will be established are:
(1) A system of parameters in a complete local domain is parameter-like, and module-
finite extensions of complete local domains are parameter-preserving. (Cf. (2.3).)
(2) A big Cohen-Macaulay algebra over R is parameter-preserving. (Cf. (2.6).)
(3) A parameter-preserving algebra is solid. (Cf. (2.7).)
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(4) The algebra that is used in [Ro6] to show that not every ideal in a regular ring is

solidly closed in equal characteristic 0 is not parameter-preserving. (Cf. (3.6) and

(3.7).)

These conditions imply many good properties for this closure operation, the majority

of which are discussed in §3. We now proceed to the proofs.

(2.3) Theorem. If R is a complete local domain then every sequence of elements that a
system of parameters for R is parameter-like in R and in every module-finite extension do-
main of S of R. Hence, every module-finite extension domain of R is parameter-preserving,

including, of course, R itself.

Proof. Fix part of a system of parameters in R: it will also be a system of parameters for
S. One sees by induction on ¢ that T; is a local ring module-finite over R/(x1, ... ,x;),
that T; has pure dimension d — 7, using the remark following Fact (2.1), and that it is a
quotient of S by a proper ideal. Thus, all the T; are nonzero. The fact that the annihilators

of the local cohomology modules are as stated now follows from Lemma (2.1b). O
We next observe:

(2.4) Lemma. Let (R, m) be a complete local ring of pure dimension d, and let S be an

R-algebra. Let x = x1, ... ,xq be a system of parameters in R. Let R; = T.R(x; R) (cf.
Definition (2.2)), and T; = TR (x; S). Then:
(a) Ro = R and for everyi < d, R; is a homomorphic image of R/(x1, ... ,z;)R that has

pure dimension d — 1. Moreover, S; is an R; module. Let y; be the image of x; in R;
fori+1<j<d. Then fori<j<d, 7}1Eii(yi+1, ooy ya; Si) =8j. Thus, ©1, ... ,xq
is parameter-like in S if and only if H*~1(Ty) has an annihilator of height at least
two 1 R, and the images of xo, ..., xq are parameter-like in Ty over R;.

(b) If S’ is flat over S, then for 1 < i < d, T;(S") =2 S" ®s T:(S), and, for all j,
HJ, (7;(5’)) ~ S ®s HJ, (7;(5)) Thus, if x1, ... ,xq is parameter-like in S, then it
is parameter-like in S if and only if S’ ®s Ty # 0. In particular, if S’ is faithfully flat
over S, and x1, ... ,xq 18 parameter-like in S then it is parameter-like in S'. Likewise,

if 8" = W~LS, where W is a multiplicative system in S, then for all i, 0 < i < d, for
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all j, we have that T;(W~1S) = W~IT;, that HTJ;L(TZ-(W*S)) ~ W-tHI (T;), and,

if x1, ..., T4 is parameter-like in S, then it is parameter-like in WS if and only if
W_le # 0.
(c) If x1, ... ,zq is parameter-like in S and Q is any prime in the support of Ty, Sq is

parameter-preserving. Thus, in testing immediate parameter tight closure it suffices

to consider quasilocal R-algebras (S, Q) over R such that m maps into Q.

Proof. (a) Ry = R since R is assumed to have pure dimension, and it is clear that R; is a
homomorphic image of R/(z1, ..., z;), and that T; is a module over R/(xy, ... ,x;). The
statement that R; has pure dimension d — ¢ is immediate by induction on 1.

Let w € R/(z1, ... ,x;) be such that Ru has dimension < d — i in R/(x1, ... ,x;).
If v € T; then the cyclic module Ruv is a homomorphic image of Ru, and so also has
dimension < d — i. It follows that wwv is killed in Tj, and so w kills T;. Thus, T; is an
R;-module. Once we know this, we have at once from the definitions that for ¢ < 57 < d,
7}13(%“, oo, ya; Si) = Sj, and the final statement in part (a) is then clear.

For part (b), first note that this holds when ¢ = 0. The ideal of S’ that we must kill to
form To(S’) is the union of the annihilators in S’ of the positive height ideals of R. For
any such ideal I, the annihilator of I in S’ is the expansion of its annihilator from S, and
so the union is the expansion of the union of the annihilators in S. We may then proceed
by induction on 4. Killing z;y; times the algebra commutes with tensoring with S’ over
S, and the next step is like the formation of T, but working with S;/z;11S; and R;41
instead of S and R. The statement that local cohomology commutes with tensoring with
S’ over S is obvious from the Cech complex method of defining local cohomology, and the
final statement follows at once.

Part (c) is implied at once by part (b). O

(2.5) Theorem. If R is a complete local domain, I is an ideal of R, and S is a module-
finite extension of R then IS N R C It. Hence, if I = I" for every ideal of R, then R is a

direct summand of every module-finite extension.

Proof. We can replace S by a quotient by a minimal prime of S disjoint from the domain

R, and then the first statement is immediate from (2.3) and the definition of parameter
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tight closure. The second statement then follows from the main result of [Ho4]. O

(2.6) Theorem. IfS is a balanced big Cohen-Macaulay algebra for R then S is parameter-

preserving.

Proof. Note that Sy = S, since any height one (or more) ideal of R will contain an element
that is part of a system of parameters, and so the annihilator is 0. By a trivial induction on
i, we have T; = S/(x1, ... ,x;)S, 1 < i < d, which is a big Cohen-Macaulay algebra over
R;. The Cohen-Macaulay condition on S; implies that it has depth d — ¢ on the maximal
ideal of m, and so all the HJ (S;) = 0 for j < d—i, and, in particular, for j =d—1—i. O

(2.7) Theorem. If R is a complete local domain and S is a parameter-preserving R-
algebra, then S is a solid R-algebra. In fact, if dimR = d, x1, ... ,xq is a system of
parameters for R, and the T; are as in Definition (2.2), then we have that for all i,
0<i<d, HST;) # 0. (In particular, this holds when i = 0, which yields the fact that
S itself is solid.)

Proof. We use reverse induction on i to show that all the H%¢(T;) #0,i =d, d—1, ... , 0.
When ¢ = d we have that Ty is a nonzero module killed by x4, ... ,z4 and, hence, by a power
of m. Thus, H?,(T;) # 0. Now suppose that we have shown that a certain H%*(T}) # 0,
1 <4 < d. We must show that HET1=#(T;_;) # 0. Now & = x; is a nonzerodivisor on Tj_;

by the construction for 7;_1, and so we have a short exact sequence
(*) 0— Ti—l i) Ti—l — Ti_l/CUTi_l — 0.

Also, we have a short exact sequence 0 — I — T;_1/xT;—1 — T; — 0 where I is an ideal
of T;—1/xT;_1 consisting of elements that are killed by an ideal of positive height in R;.
This means that every finitely generated R;-submodule of I has dimension < d — ¢ as
an R;-module. We can conclude that H%#(I) = HZ=*+1(T) = 0, and so, from the long
exact sequence for local cohomology, H*(T;_, /xT;_1) & H*(T}) # 0, by the induction
hypothesis.

On the other hand, the short exact sequence (x) displayed above yields a long exact

sequence of local cohomology modules part of which is

HITW(Tioh) = HYE (Tim) — HEH(Ti—y aTioy) — HE PN (Tizy)
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We assume that the last term is 0, and get a contradiction. If the last term is zero, we

have a surjection:
Hy (L) faHy (Tima) — Hi ' (Tima f2Ti)

Since HEH(T;_1/2T;_1) # 0, we know that H&%(T;_1) # 0. By Definition (2.2), since
Ty, ..., T4 is parameter-like in S, if 2 is the annihilator of H%~*(T;_) in R, we have that
dmR/A<d— (i —1)—2=d—1—i. But 2 annihilates HS(T;_,/2T;_1) as well, and
so if B is the annihilator of HE=*(T;_y/xT;_1) we have that dim (R/B) < d —1—i. If we
think of T;_1 /xT;_; as a module over R; (which has pure dimension d — i) we see that we

have a contradiction, by Lemma (2.1c). O

3. THE NEW CLOSURE OPERATION

(3.1) Theorem. For a complete local domain R of prime characteristic p > 0, parameter

tight closure is the same as the tight closure.

Proof. Let N C M be finitely generated R-modules. To show that N9 C M*, it suffices to
show that if u € M is in the immediate parameter tight closure of N in M, then u € M*.
This is immediate from the Theorem (8.6) of [Ho9]: since any parameter-preserving algebra
is solid, by Theorem (2.7), one has that « is in the solid closure of N in M, and then by
it is in N*, by [Ho9, Thm. (8.6)].

The converse follows from Theorem (11.1) of [Ho9]: if w is in N*, then there exists a
big Cohen-Macaulay R-algebra S such that 1 ® u is in the image of S g N in S ®r M,
and S is parameter-preserving by Theorem (2.6). O

(3.2) Theorem. Let R be a complete local domain of equal characteristic, or a complete

local domain of mixed characteristic and dimension at most three.

(a) (Colon capturing property) Let x1, ..., x4 be a system of parameters for R. Then for
1<i<d—1,4fI=(x1,...,2)R, then I : 2,1 C I
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(b) (Analogue of phantom acyclicity) Let Go denote a finite complex of finitely generated
free modules over R that satisfies the standard conditions on rank and height.? Then
for each © > 1, the module of cycles Z; € G; is in the parameter tight closure in G; of

the module of boundaries B;.

Proof. Of course, in the prime characteristic p > 0 case both parts follow from the fact
that parameter tight closure agrees with tight closure, for which the statements in this
theorem are standard.

However, the proof that we give for equal characteristic 0 also handles the positive
characteristic case. By the main results of [HH5] (for characteristic p > 0), [HH9] (for
equal characteristic 0), and [Holl] (for mixed characteristic and dimension at most 3),
R has a big Cohen-Macaulay algebra S. In S, z1, ... ,x4 is a regular sequences and so
I:pa; CI:5 241 CIS. Part (b) follows similarly, because when we apply S ®g _, the

complex S ®r G4 becomes acyclic over S. [

(3.3) Theorem. Let N C M be finitely generated modules over a complete local domain
R of equal characteristic 0. Then N D N*EQ | the big equational tight closure of N in the
sense of [HH10].

Proof. Theorem (11.4) of [Ho9] shows that for any element u of N*EQ there is a big
Cohen-Macaulay algebra S for R such 1 ® u is in the image of S®r N in S®r M. O

(3.4) Theorem. Let R be a complete local domain of dimension at most two. Let N C M
be finitely generated R-modules. Then N is the same as the solid closure of N in M, and
uw € N if and only if there is a big Cohen-Macaulay algebra S for R such that 1 ® u is in
the image of S ®r N in S @ M.

Proof. By Proposition (12.3) and Theorem (12.5) of [Ho9], in the dimension two case, an
algebra over R is solid if and only if it can be mapped further to a big Cohen-Macaulay
algebra. The parameter tight closure is always contained in the solid closure because

parameter-preserving algebras are solid. In dimension two, the converse holds because any

2This means that the sum of the determinantal ranks of the maps to and from G; is the rank of G;,
and that the ideal generated by the rank size minors of a matrix of the map G; — G;—1 has height > 3.
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solid algebra can be mapped further to a big Cohen-Macaulay algebra, and big Cohen-

Macaulay algebras are parameter-preserving. [l

(3.5) Corollary. Owver a complete regular local ring of dimension at most two, every

submodule of every finitely generated module is parameter tightly closed.

Proof. It suffices to check that the immediate parameter tight closure of a submodule is
equal to the submodule. But an element is in it if and only if it gets into the expanded
submodule after tensoring with a big Cohen-Macaulay algebra, by Theorem (3.4). But a
big Cohen-Macaulay algebra over a regular ring is faithfully flat over the regular ring (cf.

the parenthetical argument in 6.7 on p. 77 of [HH5]). O

(3.6) Discussion. Let R = K|[[z1, %2, z3]], where K is the field of rational numbers or any
other field of characteristic 0, and let S = R[y1, y2, y3]/(F'), where F' = :E%:E%.T%—Zj-:l Y.
Then S is solid by a result of Paul Roberts [Ro6]: this shows that the ideal (x3, x3, z3)
is not solidly closed in K[[z1, =2, x3]]. As an indication that parameter tight closure is
likely to behave better than solid closure in equal characteristic 0, we want to prove that
x1,%2, T3 is not a parameter-like sequence in S (which is an example of what is called
a forcing algebra in [Ho9]). The following result handles a much larger class of forcing
algebras, showing that none of them is parameter-preserving. We restrict attention to
dimension > 3, since we already know that every ideal is parameter tightly closed in

complete regular domains of dimension at most 2.

(3.7) Theorem. Let (V,z1V) be a complete discrete valuation ring with residue class
field K (which may or may not be of equal characteristic), and let R = V[[xa, ..., z4]],
d > 3, so that R is a complete reqular local domain of dimension d with regular system
of parameters xy, ... ,xq. Let S = Rlyy, ... ,yql/(F) where yy, ... ,yq are indeterminates

over R and

d
O T
7=1

for some fized integer t > 1. Then S is not parameter-preserving over R. Specifically,
Ty, ...,xq is not parameter-like in S: in fact, Ty—o = S/(x1, ... ,24-2)S is such that

H} (Ty_2) is not killed by an ideal of height two or more in Ry_o = K[[z4_1,14]]
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Proof. Killing an initial segment of x1, ... ,z4_5 in S produces a domain, from which it

follows that T; = S/(z1, ... ,z;)S for 0 <i < d— 2, and

Ta—2 = K[[wa—1,zall[y1, - - - »Yal/ Ya—12h_1 + yazh),

which is a polynomial ring in y1, ... ,y4—2 over B = K[[xg_1, Z4]][Yi—1,Ya)/(G), where G =
Ya—124 | + yart. The definition of parameter-like for z1, ... ,z4 requires that H. (T;_»)
be 0 or else be killed by a height two ideal of Rg_» = K|[[r4_1, T4]]. Since H} (Ty—_2) may
be identified as the polynomials in yy, ... ,y4_2 over H} (B), it suffices to see that this fails
for H! (B). Let u = 2% | and v = —z%, so that B = K[[z4_1,2d)|[Ya—1, Yd]/ (Ya—1u — Yqv).
Since K|[[z4-1,%4]][Yd—1, ya] is a finitely-generated free module over K{[u,v,||[ya—1, ya], we

have that B is module-finite and free over C = K|[u, v, ||[Yd4-1, Ya]/(Yi—1u — yqv). Then
HTln,(B) = H(lmd_l,md)(B) = H(lu,v)(B) =B ®c H(lu,'u)(c)7

and so it will certainly suffice to show that H (1u7v)(0) is a faithful C-module: if it were
annihilated by an ideal of R4 o primary to the maximal ideal, it would be annihilated by
an ideal of C' primary to the maximal ideal.

Let A = K[[u,v]], and let z be an indeterminate over A. Then the A-algebra surjection
Allu, v|[yg—1,y4] — Aluz,vz] sending y4_1 to vz and y,; to uz is easily seen to have

(Ya—1u — yqv) as its kernel, so that
C = Aluz,vz] = AD (u,v) Az @ (u,v)?A22 @ - - -,

the Rees ring, where the direct sum is over A. Let Q) = (u,v)A, the maximal ideal of A.

Thus,

oo

H(lu,v)(c) = @ Hé) (QJ)

j=0
From the short exact sequence 0 — @7 — A — A/Q? — 0 and the corresponding long

exact sequence for Hg(_ ), we have an exact sequence
o= HO(A) = HY(A/Q7) = HH(Q7) — HH(A) — -+
Since A has depth 2 on @, H)(A) = HLH(A) = 0, and so H},(Q7) = HY(A/Q7) = A/Q’.

Thus, H/, ,,(C) =@}, A/@Q7, so that the annihilator is C N; Q7 = (0), as required. [

(w,v)
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4. A GALOIS CONJECTURE

In [Rang] ideas involving the interaction of group cohomology for Galois groups and
local cohomology, as well techniques from number theory, are used to prove certain cases
of the direct summand conjecture. The question that we mention here is related to the
ideas of [Rang] but a bit different, and can be presented in a reasonably elementary way.
An affirmative answer would be sufficient to prove the direct summand conjecture. The
conjecture is true both in equal characteristic p > 0 and in equal characteristic 0, although
the reasons why it is true in those two cases are completely different.

Let V be a complete discrete valuation ring, which may be either equal characteristic
or mixed characteristic. In the mixed characteristic case assume that the residual char-
acteristic p is the generator of the maximal ideal. In either case, denote the generator
of the maximal ideal by x = z;. Let A = V|[[zq, ..., x4]] be a formal power series ring
over V. If D is any domain we denote by D1 an absolute integral closure of D, i.e., the
integral closure of D an algebraic closure of its fraction field (cf. [Ar]). D7 is unique up to
non-unique isomorphism. Let F denote the fraction field of A, and then the fraction field
of AT is an algebraic closure of F, which we denote F, although the notation Ft would
also be appropriate. We shall write G for the group of F-automorphisms of F, which also
acts on AT. Note that AT = A when F has characteristic zero, which includes the case
where A has equal characteristic zero and the case where A has mixed characteristic.

We shall write E for H2 (A), the highest (in fact, the only) nonzero local cohomology
module of A with support in m = my4, since it is also an injective hull E4(K) for the
residue field K = A/m of A over A. We write M for Homa (M, E). If (C,n,L) is
any complete local ring, we shall call a C-module W small if Ec(L), the injective hull
of L = C/n over C, cannot be injected into W. Note that if Ec(L) is a submodule of
W, then it is actually a direct summand of W, since Ex(L) is an injective module. The
condition that a module be small is not a strong restriction.

The result of [Ho7, Thm. (6.1)] implies that in order to prove the direct summand
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conjecture, it suffices to show that the modules H% (A1) are not zero. Now z = x; is a
regular parameter in A, and we have a short exact sequence 0 — At % A+ — A+ /zA4+ —
0. If we contradict the direct summand conjecture and assume that HZ (A1) = 0, part of

the corresponding long exact sequence for local cohomology gives:
o= HIZYAT) B HIZV(AT) —» HE Y (AT /2AT) — 0.

This implies an isomorphism HS Y(AT/zAT) =2 HI-Y(AT)/zHS1(AT). The regular
ring A/xA injects into AT /zAT (because A is normal, the principal ideal zA is con-
tracted from AT). If A provides a counterexample to the direct summand conjecture
of smallest dimension (or if A has mixed characteristic, provides a counterexample, and
r = p), then A/xA is a direct summand of AT /zAT as an (A/xA)-module, and it fol-
lows that HZ"1(A/zA) injects into HE (AT /xAt). Evidently, since G acts on AT,
since m is contained in the ring of invariants of this action, and since x is an invari-
ant, G acts on H& 1(AT)/zHI1(AT), and it is clear that H% '(A/xA) injects into
(Ha-L(A) fsHEH(AT)) T C HEH(A) [z HE (AT).

We therefore will have a contradiction that establishes the direct summand conjecture

if we can prove the following:

(4.1) Galois Conjecture. Let (A,m,K) be a complete reqular local ring of dimension
d with fraction field F, let G be the automorphism group of the algebraic closure F over
F, and let x be a regular parameter in A. Then (Hg;l(A*')/ng;l(A"‘))G is a small
(A/xA)-module.

(4.2) Theorem. The Galois Conjecture (4.1) holds if dim A <2 or if A contains a field.
In fact, in all of these cases (HgL_I(A'*')/a:HgL_l(A“‘))G =0.

Proof. The explanation when A contains a field is quite different depending on whether
the field has characteristic 0 or positive characteristic. In the first case, it turns out that ¢
is an exact functor here, so that what we have is (HﬁL_I(A"‘G)/xH%_l(A"‘G)), and since
A+ = A, this is HA=Y(A)/xHI=Y(A), and HE1(A) = 0. In the positive characteristic
case we know from the main result of [HH5] that At is a big Cohen-Macaulay algebra,
so that H2=1(AT) = 0, and the result follows again. The same argument shows that the

conjecture is true when A has dimension at most two. [
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From the discussion above, we have the following:

(4.3) Theorem. If the Galois Conjecture is true whenever A is a formal power series ring
Vllza, ..., x4]] over a complete discrete valuation domain (V,pV, K) of mized character-

istic and residual characteristic p > 0, then the direct summand conjecture is true. [

5. QUESTIONS

Of course, many open questions remain. We mention some of the most important among

these.

Question 1. In a complete reqular local ring containing the rationals, is every ideal pa-

rameter tightly closed?
Question 2. In an arbitrary complete reqular ring, is every ideal parameter tightly closed?

An affirmative answer to this question would yield the direct summand conjecture in

the general case.

Question 3. Over a complete local domain of equal characteristic 0, does parameter tight

closure agree with big equational tight closure?

Of course, an affirmative answer to Question 3 would yield an affirmative answer for
Question 1, since it is known that every ideal of an equicharacteristic zero regular ring is
tightly closed if one uses big equational tight closure as the operation.

Note that Theorem (3.3) shows that the parameter tight closure contains the big equa-

tional tight closure: it is the converse that is problematic.

Question 4. Do colon-capturing and an analogue of phantom acyclicity hold for parameter

tight closure in mixed characteristic local domains?
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Question 5. Can one characterize parameter-preserving finitely generated algebras over
a complete local domain or parameter-preserving complete local extensions of a complete

local domain in a stmpler way?

Even when S is restricted in this way, the problem does not seem easy. Evidently,

questions about parameter tight closure are abundant.
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