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ABSTRACT. It is shown both in characteristic p > 0 and in mixed characteristic p > 0 that
if R is a perfect ring in the first case or R/pR is perfect in the second case, then, under some
additional conditions, the radical of a finitely generated ideal has finite Tor dimension, and
bounds are obtained. Let Rt denote the integral closure of the domain R in an algebraic
closure of its fraction field. The results are applied to show that R is not coherent when
R 1s Noetherian of dimension at 3, and, under additional restrictions, when the dimension
is 2. Motivation for this question connected with tight closure theory is discussed.

§1 INTRODUCTION

Throughout this paper all rings are commutative, associative, with identity, and all
modules are unital. Following [Ar2], if R is an integral domain, we refer to an integral
closure of R in an algebraic closure of its field of fractions as an absolute integral closure
for R, or even as the absolute integral closure of R, and denote it RT. Evidently, it is
unique up to non-unique isomorphism, since this is true for algebraic closures of fields.

The advent of the recent theory of tight closure, for which we give [HH1] as a basic
reference, and its intimate connection with rings of the form RT, for which we refer the
reader to [HH2|, [HH4], and [Sm], has created tremendous motivation for studying these
rings. Even if one is only interested in the behavior of Noetherian rings, it is now clear
that the behavior of the rings R when R is Noetherian provides a wealth of information.
Moreover, the properties of these rings turn out to be utterly surprising.

In the next section we review some of the properties of absolute integral closures and
their connections with tight closure theory and the existence of big Cohen-Macaulay
algebras. We also explain in some detail why the question of whether these rings are
coherent or not is very natural from the point of view of tight closure theory.

In the third section we prove some surprising results on finiteness of Tor dimension of
certain ideals in these and some related rings. Some of what is proved is foreshadowed
in [Ho2].
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In the fourth section we use these results to prove that if R is a complete regular local
domain of characteristic p, R is not coherent in general if its Krull dimension is at least
two.

§2 ABSOLUTE INTEGRAL CLOSURES, TIGHT
CLOSURE, AND BIG COHEN-MACAULAY ALGEBRAS

A domain is called absolutely integrally closed if it has no proper domain extension
that is integral over it. It is easy to see that R is absolutely integrally closed if and only if
every monic polynomial over R has a factorization over R with monic linear factors. By
virtue of this characterization, the property is retained if one kills a prime ideal. Another
characterization is that R is absolutely integrally closed if and only if its fraction field
is algebraically closed and R is normal, i.e., integrally closed in its fraction field. The
property of being absolutely integrally closed is prserved by localization at an arbitary
mutliplicative system.

Every domain R has an integral extension domain RT that is absolutely integrally
closed: simply choose an algebraic closure L of the fraction field K of R, and let R be
the integral closure of R in L. Tt follows that RT is unique, as an R-algebra, up to (non-
unique) R-isomorphism, since the algebraic closure of a field is unique up to (non-unique)
isomorphism. In fact, it is easy to see that if P is prime in R and ) is a prime of R
lying over P, then (R/P)* = RT/Q, and that if W is a multiplicative system in R then
(WTIR)T = (W1)(RT).

R™ has some surprising properties: the sum of two (or any family of prime ideals) is
either all of RY or prime, and the sum of two (or any family) of primary ideals is primary
to the sum of the corresponding primes. Cf. [Ar2], [HH2].

If R is a complete or Henselian local domain, then R™ is quasilocal, i.e., has a unique
maximal ideal.

We note the following, which is the main result of [HH2].

Theorem 2.1. Let R be an excellent domain of characteristic p such that R s local
(or semilocal, and with all mazimal ideals of the same height). Then every system of
parameters for R is a reqular sequence in RT.

Here, when R is semilocal with all maximal ideals of height n, by a system of parameters
we mean a sequence i, ..., T, of length n in the Jacobson radical of R such that
R/(x1, ..., xn)R is zero dimensional.

It is worth noting that the result corresponding to Theorem 2.1 is false in equal char-
acteristic zero in dimension 3 or higher.

Thus, although R™ is not a Noetherian ring, it has quite astonishing properties that
make it, in some ways, better behaved than a Noetherian ring. Our interest in properties
of RT related to coherence is motivated, in part, by the following important open question.



Question 2.2. Suppose that R is a locally excellent Noetherian domain and let I be an
ideal of R. Is the tight closure I'* of I the same as IR N R?

It is known that ITRT N R C R* quite generally (confer [HH3]) and it is shown that
Question 2.2 has an affirmative answer for ideals generated by parameters in [Sm], and,
using this, for ideals of finite phantom projective dimension in [Ab2] (see also [Abl] and
[AHH] for the basic theory of modules of finite phantom projective dimension). There
is a question analogous to (2.2) for modules, and there is a result in [Ab2] for modules,
but, for simplicity, we are restricting attention to the ideal case here.

Proposition 2.3. Let R be a Noetherian domain of characteristic p and let I be an ideal
of R. Let u be an element of R. If (I 4+ (u))R* is finitely related and u is in the tight
closure of I, then u is in IRT N R. In particular, if R is locally excellent and R/(I + uR)
has finite phantom projective dimension and u € I* then v € IRT N 1.

Proof. Since R is Noetherian, I is finitely generated, and the fact that (I + (u))R™ is
finitely related implies that the ideal IR™ :p+ u is a finitely generated ideal, call it .J,
of RY. Since u is in the tight closure I, we can choose a nonzero element ¢ of R such
that cu? € Il9 for all ¢ = p® > 0, which shows that ¢'/% € ITR'¢ C IR*, so that
¢4 € IRT gy u for all large ¢ and, hence, for all ¢ = p°. Tt follows that the finitely
generated ideal J contains all the elements ¢'/¢. But this is impossible if .J is not the unit
ideal. To see this, choose a module-finite extension domain S of R containing generators
of J, and let m be a maximal ideal of S containing .J. Then there is a Noetherian
valuation domain V' containing S such that the maximal ideal tV of V lies over m. It
follows that all the elements ¢'/? are in tV+. But the valuation (with values in the
integers) associated with V extends to a valuation v of VT to the rational numbers, and

for sufficiently large ¢, v(c'/9) = %v(c) will be smaller than v(t), a contradiction.

The final statement is now immediate: the finite phantom resolution for the quotient
R/(I+(u)) becomes acyclic when one tensors with R, from which it follows that R/(I+
(u))R™ has a finite free resolution over R, and this implies at once that (I + (u))R* is
finitely related. O

Thus, if RT were coherent, one would have at once that I* = IR N R for every ideal
I of R, which in turn would imply that tight closure localizes well. We shall soon see that
coherence itself fails for RT. It is still possible that some weaker property than coherence,
but still strong enough to make some form of the argument given in the proof of (2.3) go
through, does hold. Ironically, our proof of the failure of coherence in Rt makes use of
the fact that very strong vanishing theorems for Tor hold for R*: these are discussed in
the next section.

§3 TOR DIMENSION OF RADICAL IDEALS IN PERFECT REDUCED RINGS

We recall that an R-module M has finite Tor dimension at most d if, equivalently:
(1) For all modules N, TorlR(M, N) =0 for all 7 > d.
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(2) M has a left resolution by flat modules of length at most d.
(3) For any projective resolution Go of M, the image of G4 — G4—1 is flat (i.e., any
dth module of syzygies is flat).

By convention, Tor dim0 = —1. Note that Tor dim M = 0 iff M is a nonzero flat
module and Tor dim M = 1 if and only if M is not flat but there are flat modules
G1 g GO such that M & Go/Gl.

For the rest of this section fix a positive prime integer p. We shall use the letter “q” to

represent p®, where e is a nonnegative integer. In this section all the rings R considered
are either perfect of prime characteristic p (meaning that the Frobenius endomorphism is
an automorphism) or else have the property that R/ Rad(pR) is perfect. More precisely,
we shall always assume that R has one of the following two properties:

(1) R is aring of characteristic p such that the Frobenius endomorphism F: R — R
is an automorphism (note that this implies that R is reduced), or

(2) Risareduced ring, p is a nonzerodivisor in R, Rad pR is a direct limit of principal
ideals generated by roots of p, and R/ Rad pR is perfect.

Note that rings satisfying these conditions are almost never Noetherian. Condition
(2) implies that Rad pR is flat as an R-module, since every root of p will also be a
nonzerodivisor, and a direct limit of flat modules (in this case, free modules) is flat.

Note as well that any reduced ring R of characteristic p has a purely inseparable (in
the sense that every element has some p° th power in R) extension ring R that is perfect
(and this extension is unique, up to unique R-isomorphism): R* may be constructed as
the direct limit of the system

rRELERERLE ... LRpERE .
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where F'is the Frobenius endomorphism. This limit system of rings isomorphic with R
and injective maps may be thought of instead as

e+41

RCRYP C RM/P" c...C RU/» Cc RU/»T ...,

Also note that if R is any domain containing Z, then R* satisfies (2), as does any
normal integral extension S of R closed under taking pth roots. The point is that Rad pR
will be the increasing union | J, p.S, where the elements p. are constructed recursively:
po = p and, for all e, petq is a pth root of p.. (If u € RadpR then u™ € pR for all
n > 0, and so we may choose n = ¢ = p° such that u? = ps = (p.)?s with s € S. Then

(u/pe)? € S and so u/p. is a fraction integral over S and, hence, in S, so that u € p.S.
Thus, Rad pS =, peS.

Theorem 3.1. Suppose that I C R is an ideal with I = Rad(fy, ..., fa)R and R is as
in (1) or (2) above, and also suppose that x4 = p in case (2). Then Tor dim R/I < d.
Moreover, in case (2), if p is not a zerodivisor on the R-module M then TorZR(R/I, M)=0
if e >d—1.

We postpone the proof until after we have discussed some preliminary material.



Remark 3.2. Let {Ry}rca be a direct limit system of rings with direct limit R. For
each A € A let M) and Ny by Ry-modules, and suppose that the {My}rea is a direct
limit system, where each map My — M, with A < 1 is Ry-linear. Assume that {Ny}xea
is a direct limit system in the same sense. Then the respective direct limits M and N
are R-modules, and for all : we may identify TorlR(M, N) with the direct limit of the
modules TorlRA (My, Ny). See [CE, Chapter VI, exercise 17].

We recall some notation and facts from [Ho2]. When R is perfect of characteristic p, an
ideal J is radical if and only if J = F~!(J), where F is the Frobenius endomorphism. Tt
follows that the sum of two (or any number of) radical ideals is radical, and that a finite
product of radical ideals is radical (and is the same as their intersection). The radical of
the principal ideal 2R is the same as the ideal | J, 2'/P° R, and we sometimes denote this
ideal by (x*)R. Let Jy, ..., J, be ideals in a ring S. For each i let Ko(.J;;S) be the
complex 0 = J; - 5 —=0. If J=J, ..., J, then

Kuo(3:8) = (K Ku(Ji; S).
=1

We have the following proposition from [Ho2]:

Proposition 3.3. If T is a perfect algebra of char p > 0 and J = Jy, ..., J, 18 a se-
quence of ideals such that J; = F~1(J;), at most one of which is not flat, then Ko(J;T) is
acyclic. In particular, if x1, ..., xn are nonzerodivisors in T then Ko((2°),...,(25°);T)

is a flat resolution of T/((x3°),...,(x2)).

n

Proof of 3.1. We first consider the situation of (1), where R is perfect. Since every R-
module is a direct limit of finitely presented R-modules, it suffices to show for every finite
matrix p of elements of R that, with M = Coker p, Tor;(R/I,M) = 0 for ¢ > d. Let
K = 7Z/pZ and let S vary through rings of the form S§° C R, where Sy is a finitely
generated subalgebra of R containing the f’s and the entries of y. For every such S,
let p1g denote the map of free S-modules represented by p. Let Mg = Cokerpug. Let
Is =Rad(zy, ..., 24)S. Then by (3.2) we may view Tor%(R/I, M) as the direct limit of
the modules Torfg(S/Ig, Ms), and so it suffices to consider the case where R is replaced by
S. Since Tor dim may be calculated locally, we may assume that R has the form T°° where
(T,m) is a Noetherian local ring containing the f’s. In particular, we have that T, and,
hence, R, has only finitely many minimal primes. Suppose that I = Rad(fy, ..., fa).

Assume first that ht I > 0. We want to show that we may choose d generators for
(f1, ..., fa)T avoiding the minimal primes of T' (since the set of zerodivisors of a reduced
ring is the union of the minimal primes). Since m(fy, ..., fa) € U{P : P minimal in T}
we have by [Kap], Theorem 124 that for each i, there exists g; € m(f1, ..., fa)T such
that f; + ¢; is not in any minimal prime of T. Replacing f; by f; + ¢g; we may assume
that each f; is a nonzerodivisor in T and, hence, in R. Then Ko ((f7°),...,(f°); R) is a
flat resolution of R/ ((f7°)+--- + (f3°)) = R/I, by Proposition 3.3.

Suppose now that ht(fy, ..., f2)T = 0. If d = 0 there is nothing to prove, so assume
that d > 1. Then (f1, ..., fa)T is not (0), and so cannot be contained in all the minimal
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primes of T. Let ¢ ¢ I be an element in the intersection of all the minimal primes of T
not containing (f1, ..., fa)T. Let J = (¢*°) in R.

Then I + J is a radical ideal of positive height and I N J = 0. Thus we have a short
exact sequence

0—-R/(INJ)=R—R/I®&R/]J— R/(I+J)—0.

It follows that the Tor dimension of R/I & R/.J is at most the supremum of the Tor
dimensions of R and R/(I + .J), and so Tor dim R/I < Tor dim R/(I 4+ .J). Thus, it will
suffice to show that Tor dim R/(I 4+ J) < d. Since I + J has positive height, it will be
enough to show that it is the radical of a d generator ideal. But, writing f = f1, we have
that I +.J = Rad(g+ f, fa, -+, fa)R, because, since fg = 0, we have that f* = f(g+ f)
and g* = g(g + f).

We now consider the case where R satisfies (2). If d = 0 there is nothing to prove,
so we assume that d > 1 and f; = p. Let N = syz M be the kernel of a map Q —» M,
where Q is free. Then Tor®(R/I, M) = Tor! | (R/I, N) for i > d since d > 1, and so it
suffices to prove the last statement in the theorem, concerning the case where p is not a
zerodivisor on M. In this case, consider a free resolution

=G, = =Gy =M =0

for M. Since p, and, hence, any root of p is a nonzerodivisor on all of these modules, if
u denotes any root of p we have that the subcomplex

= uG, — - = uGy —uM — 0
is exact. Let J = Rad pR. Taking a directed union, we obtain that the subcomplex
= JGy — = JGy — JM — 0
is exact, and hence that
= Gy /Gy — - = Go /TGy — M/JM — 0

is exact. This yields a free resolution of M/JM over the ring R/JR. If we drop the
term M/JM and use the resulting free complex to compute TorlR/J(R/I, M/ JM), we
see that this module is isomorphic to Tor!(R/I, M). Now, the first module R/I in the
first Tor may be thought of as (R/.J)/(I/.J). Since R/.J is a perfect ring, and since /.J is
the radical of the ideal generated by the d — 1 elements that are the images of fa, ..., f4
in this ring, the characteristic p form of (3.1) shows that Tor?/J(R/I,M/JM) = 0 for
1 >d—1, as required. [



Corollary 3.4. Let R be a perfect ring. Then the ideal (2°°) is flat for every v € R.

Proof. By Theorem 3.1, Tor dim R/(2>°) < 1, so (2*°) is flat by condition (3) of the

definition of Tor dimension. [

In fact, one may prove Corollary 3.4 directly by using the equational condition for
flatness of a module M (relations on M come from relation already in R) and reducing
immediately to the case that R = S where S is Noetherian. Theorem 3.1 (in case (1))
then follows as a direct application of Theorem 3.3.

Theorem 3.5. Let R be a Noetherian domain, let QQ be a mazimal ideal in S = RT, and
letm=QNR. Let d =dim R,,. Then if S/Q has characteristic p > 0, Tor dims S/Q <
d. If S has characteristic p, then Tor dimg S/Q) = d, while if S has characteristic 0 while
S/Q has characteristic p (i.e., the mized characteristic case) then Tor dimg S/Q > d—1.
Furthermore Tor dimg S/Q = d in all mized characteristic cases if and only if the direct
summand conjecture holds in mized characteristic.

Proof. Choose a system of parameters zq, ..., 4 in the maximal ideal of R,. In
mixed characteristic p, we may additionally suppose that ¥y = p. The calculation of
Tor dimg S/Q is local on the maximal ideals of S, and localizing at any maximal ideal
other than () makes S/@Q vanish, so that Tor dimg S/Q = Tor dims, S/@Q (note that
S/Q = Sq/QSq). But QS¢g will be the radical of (x4, ..., 24)S¢g, and so either con-
dition (1) or condition (2) needed to apply Theorem 3.1 will hold, so that Theorem 3.1
yields that Tor dims, S/@Q < d. It remains to see that this Tor dimension is at least d in
the equal characteristic p case and is at least d — 1 in mixed characteristic, and is equal
to d in mixed characteristic if and only if the direct summand conjecture holds.

Now suppose that there is an Sg-module M and a regular sequence yy, ... , yz in Q@S¢
on M of length k. Suppose also that QSgM # M. Then if the highest nonvanishing
Tor;SQ (S/Q,M/(y1, ..., yx)M) occurs when i = h (not all can vanish, for our hypoth-

esis implies that the Tor does not vanish when i = 0), then the highest nonvanishing
Tor;SQ (S/Q, M) occurs when i = h+k. (By induction on k, this reduces at once to the

case where k = 1. Let y = y;. The exact sequence 0 — M 5 M — M/yM — 0 yields a
long exact sequence for Tor in which every third map is given by multiplication by y and

so is 0, i.e., one has short exact sequences 0 — Toer (S/Q, M) — Toer (S/Q,M/yM) —
Torffl(S/Q, M) — 0 for all j, and the stated result now follows easily).

Next note that in mixed characteristic there is an Sg-module M such that x4, ..., 24
is a regular sequence on M, while if S has characteristic p we can choose M such that
Ty, ..., xq is a regular sequence on M. Morover, in both cases, QM #* M. In the
characteristic p case one may use the fact that Sg is a direct limit of local rings of
characteristic p in which =1, ..., x4 is a system of parameters. The construction of big
Cohen-Macaulay modules by modification will work for the direct limit, for if some finite
sequence of modifications of the direct limit were “bad” in the sense of [Hol], this would
also be true for one of the algebras in the direct limit system. In the mixed characteristic
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case one applies the same construction to the ring obtained from Sg by killing a minimal
prime of p.

This remark, coupled with the observation in the preceding paragraph, shows that the
Tor dimension of S/ must be at least d — 1 in mixed characteristic and must be at least
d in characteristic p.

We now do a finer analysis which makes the connection with the direct summand
conjecture in mixed characteristic. The technique we use also gives a second proof that
the Tor dimension is at least d in characteristic p. Thus, we shall continue to consider
both cases.

We first note that if there is a module M such that Toer (S/Q,M) # 0 then, by a
direct limit argument there is also such a module that is finitely generated. Since M will
then have a finite filtration in which the factors are cyclic modules, there must be such
a module which is cyclic. Moreover, since Sq/.J is the direct limit of the modules Sg/.Jo
where Jp runs through the finitely generated subideals of .J, it follows that if there exists

M such that Toer (S/Q, M) # 0 then there exists such an M of the form Sq/J where
J is finitely generated.

To proceed further, we want to construct an explicit flat resolution of S/@Q that can
be used to calculate the d th Tor. This has already been done in [Ho2|, although in
slightly different generality. Again, assume that xy, ..., 4 is a system of parameters
and that z; = p in the mixed characteristic case. If 2 is any nonzero element of Sg, let
zp denote a p" th root of z for all n > 1. These may be chosen so that zf = z,_; for
all n > 1, where zo = z. As earlier, let (2*°) denote the union of the principal ideals
generated by the z, in the domain Sg. This is a flat ideal of Sg, since it is a direct union
of principal ideals, each of which is a free module over Sg. This union is independent of
how the roots are chosen, since the ring contains all roots of unity. Note that if y, z are
two nonzero elements of the ring then (y>) ®s, (¢°°) may be naturally identified with
(y>°)(z>°) and this ideal is the same as ((yz)®). Then the total complex of the tensor
product of the complexes 0 — (25°) — Sg — 0 gives a flat complex and this complex
is acyclic.! Tt now follows that the Tor dimension of S/Q is d if and only if there exists
a finitely generated ideal I of Sg such that the last non-trivial map in the resolution of
S/Q has a kernel after we apply ®s,Sq/I. To check this, it is convenient to think of the

1One may use the arguments of [Ho2], but we give a brief sketch of a simpler argument. We prove
the result by induction on the number of z; (but require that £1 = p in the mixed characteristic
case). By the induction hypothesis, tensoring the first & — 1 of the short complexes together gives
fz_ll (29°), which is a radical ideal (this may be checked modulo (2°) in the

mixed characteristic case, and then in either mixed characteristic or characteristic p follows from the

a resolution of J =

fact that in characteristic p, the p th root of a sum is the sum of the p th roots). We need only show
that when we tensor the flat resolution of Sg/J that we have by induction with the short resolution
0 — (x7°) = Sg — 0, the resulting total complex is acyclic. But its homology consists of the modules

TortSQ (Sq/J,Sq/(x5°)). Since the second entry has a flat resolution of length 1, only the Tor for t=1 is

a problem, and TorlsQ (So/Jd,Sq/(x5°)) = Jn(27°)/J(x5°). Consider any element u in the intersection
of the two ideals. Since u has a p th root v in the ring and both ideals are radical, v is in each of the
ideals. Then u = v~ !v is in the product of the ideals, since we may think of one factor as being in J
and the other in (27°).



complex in a slightly different way. We may think of the complex 0 — (2{°) — Sg — 0
as the directed union of the complexes 0 — (2;,) — S¢ — 0, and the latter may be
identified with the Koszul complex 0 — Sg — Sg — 0, where the map may be identified
with multiplication by x;,. Then in the direct limit system, the map on the left copy of
Sg in the n th complex is given by multiplication by :1;];7;_11_1. Tensoring these together, we
see that the resolution of S/@Q over Sq is given by the direct limit of the (homological)
Koszul complexes Ko(214, ..., Tan; S¢). After tensoring with Sg/I we have that the
kernel at the d th spot is the annihilator of I, = (21n, ..., ¥4n) in Sg/I, and so the
condition for the Tor dimension of S/Q to be d is that there exist a finitely generated
ideal I of Sg and an element v in the n th annihilator that is not killed by mapping
forward. But then we can give an example with the same properties in which Sg/I is
replaced by S¢g/I,: we can map Sqg/I, to Sg/I so that the image of the class of 1 is u.
The class of 1 cannot map to 0 as we map forward in the direct limit system, or the same
will be true for u. As we map 1 forward its image is represent by the product of the z;,
to a power of the form s/q, where ¢ is a power of p, say p°, and 0 < s < ¢ is an integer.
Let z; = @inte. The condition wanted is that (21 --- z4)® € (2], ..., zJ) in Sg with
s < ¢. If the monomial conjecture (or direct summand conjecture: they are equivalent)
holds then this is the case, since Sq is a direct limit of Noetherian local domains in which
Z1, ..., Zq 18 a system of parameters, and the Tor dimension will be d. This gives a
second proof in characteristic p, where the monomial conjecture is known to hold. On
the other hand, if the Tor dimension is always d then the direct summand conjecture
holds: one only needs the case where R is a formal power series ring over a discrete
valuation ring (in which case S = R™T is already quasilocal). The fact that the conditions
holds for suitable parameters implies that the local cohomology of S with support in the
maximal ideal does not vanish, and this implies the direct summand conjecture by the
results of [Ho2]. O

As demonstrated in Theorem 3.5, the Tor dimension of RT when R is a local ring of
mixed characteristic is intimately connected to the homological conjectures, however, we

wish to point out that RT is rarely a balanced big Cohen-Macaulay algebra in this case.

Proposition 3.6. Let R be a complete domain having mized characteristic. If dim R > 4
then R is not a balanced big Cohen-Macaulay algebra for R.

Proof. Since R is a complete domain, R is module finite over the regular ring A =

Vl{[za,...,xq]] where V is a complete valuation domain with maximal ideal pV. Hence
Rt = AT. If S is a normal module finite extension algebra of A and @ € Spec S lies
over (z2,... ,x4)A then the ring S¢ is a normal ring containing the rationals, and hence

splits out of any module finite extension via the trace map. Thus any bad relation on
T2,...,2q4 in Sg remains a bad relation in (AT)g = (Ag)T = (Sg)*. If d > 4 then
dim Sg > 3 and so an Sg can always be obtained which is not Cohen-Macaulay.

Proposition 3.6 leaves open the question of whether or not a system of parameters
which includes p can be a regular sequence on RT. Another interesting question to
answer is whether or not RT/Rad(pR) is a big Cohen-Macaulay algebra of some sort



when R is a (complete) local domain of mixed characteristic.

Theorem 3.5 gives no information when the ring involved is equal characteristic 0. We
ask the following question:

Question 3.7. If R is a complete local domain containing Q then is the Tor dimension
of Tor dim R™ /mpg+ equal to dim R?

Lemma 3.8. Let (R,m) be a quasi-local ring of dimension d such that every d-element,
m-primary ideal 1s a reqular sequence. If every finitely generated m-primary ideal s
contained in a d-generated ideal then Tor dim R/m < d.

Proof. We have that R/m is the direct limit of the rings R/I, where I runs through the
finitely generated m-primary ideals. Computing Tor commutes with direct limits and if
I C(x1,...,2q) we get Torgp1(R/I,_) — Torgp1(R/(x1, ..., 24),_) = 0. Hence we
have that Torgyi(R/m,_)=0. O

Corollary 3.9. Let (R, m) be a complete domain of dimension two containing Q. Then
if every finitely generated m-primary ideal of RT is contained in a two-generated ideal of
R* we have Tor dim RY /mp+ = 2.

Proof. RT is a direct limit of two-dimensional normal and, hence, Cohen-Macaulay rings.
Thus, every pair of elements of RT generating a height 2 ideal is an BT sequence. Now
we may apply Lemma 3.8. [

We do not know if the conditions of Corollary 3.9 are satisfied. By an easy induction
it suffices to show that any three-generated m p+-primary ideal (x,y, z) is contained in a
two-generated m p+-primary ideal (u,v). Under these conditions Rt = k[[u,v]] and we
can assume that (z,y,2) = (u,v,z). Then z satsifies a monic polynomial with coefficients

in kf[u,v]].

Lemma 3.10. If z satisfies a polynomial of the form X™ — f(u,v) then (u,v,z) is con-
tained in a two-generated ideal of RT.

Proof. We may assume that z” = f(u,v) where f(u,v) € k[[u,v]]. If f has a factor
g which is a regular parameter in k[[u'/",v]] for some h then (u,v,z) C (¢'/", ¢"\R*
where k[[u'/", v]] = k[[g.¢']]. We now show that we can force this to happen (possibly
after making a module finite extension). Without loss of generality, we may assume f is
irreducible in k[[u, v]]. Then k[[u,v,]]/(f) is a complete one dimensional domain and has
normalization k'[[t]] where k' is a finite algebraic extension of k. Then u maps to yt"* for
some unit v € k'[[t]]. v has an h'" root (after a finite extension) since char(k') = 0, so
after a change of variables we may assume that u maps to t*. Thus the map extends to
E'[[u'/" v]] and is onto. Thus the kernel of the map has the form (v — G(u'/")) where
G(t) is the image of v in k'[[t]]. Since f maps to 0, f is a multiple of v — G(u'/"), which
is a regular parameter in &'[[u'/? v]]. O
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Remark 3.11. We do not know how to get the desired result when the element z satisfies
a general equation of degree 3 or higher. For instance if z satisfies Bt 4y ayr =0
in k[[z,y]]T we do not know if (x,y, z) R is contained in a two-generated ideal.

§4. FAILURE OF COHERENCE IN ABSOLUTE
INTEGRAL CLOSURES IN CHARACTERISTIC p

In this section we show that the absolute integral closure of any Noetherian domain
of characteristic p and dimension d > 3 is not coherent. We will do this by examining
2-generated height one ideals in the divisor class group of extensions of the ring. First
we note the implication of coherence for BT on projective dimensions.

Proposition 4.1. Let S be any perfect integral extension of a Noetherian ring. If S 1s
coherent then pdg S/I < oo for any finitely generated ideal I C S. If dimS < d then
pde S/I < d.

Proof. Suppose that S is integral over R. Since finite projective dimension can be checked
locally we need only show that pdg S,/I1S, < oo for every maximal ideal n € Spec S.
Let P =nNR and let d = dim Rp. Then dim S5, = d since R C S is integral. If
T1, ..., xq 18 a s.0.p. for Rp then nS = Rad(xy, ..., 24)S,. Since S is coherent so
is S, ([Gl, Theorem 3.4.2]) and S, /IS, has an S,-resolution by finitely generated S,
modules ([Gl, Corollary 3.5.2]). Since S, is quasi-local there is a minimal resolution of
Sn/1S, and the it" betti number is given by the vector space dimension over S, /nS, of
Tor;g" (Sn/ISn, Sn/nSy). Sy is perfect, so by Theorem 3.1, Tor dim S, /nS,, < d, hence
pdS,/IS, <d. O

Corollary 4.2. Let R be any Noetherian domain of finite Krull dimension. If RV is
coherent then RT has finite finitistic projective dimension d = Krull dim R.

We need the following result in [Val:

Lemma 4.3. [Va, Theorem 5.21 and proof] Let (R, m) be a quasi-local coherent domain.
If pdR/(a,b) < oo then pd R/(a,b) < 2.

Suppose that R is a normal Noetherian domain. Then the divisor class group Cl(R)
is an abelian group measuring how far R is from being a UFD. Whenever R — S is an
injective module-finite map of normal domains then there are maps Cl(R) — CI(S) and
Cl(S) — CI(R) such that the composite map is multiplication by [S : R] on CI(R) (see
[B]). In particular, if some element u of CI(R) is mapped to 0 € CI(S) then u is a torsion
element of CI(R).

Proposition 4.4. Let (R, m) be an excellent normal Noetherian domain of characteristic
p and let (a,b)R be a height one ideal. If RT is coherent then there is an element s € RT,
not in any minimal prime of (a,b)R™, for which [(a,b)Rs] € CI(Ry) is a torsion element.
If R 1s Henselian then we may take s = 1.
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Proof. By Proposition 4.1 and Lemma 4.3, pdp+ R1/(a,b) < 2. Either (a,b)R* is prin-
cipal, or projective of rank 1, or has a resolution

[a 0]

0—Q — (R")? RT — R"/(a,b) — 0

where @ is projective of rank 1. If (a,b)Rt = aR* then [(a,b)R[a]] = 0. If (a,b)RT is
projective then it becomes free after localizing at some element s € R, i.e., (a,b)R} is
principal so we are done. Assume now that the third condition holds. Choose s € Rt
not in any minimal prime of (a,b)R™ such that Q, = R}. In this case we get a resolution

(HR?Mw e

Rj —>Rj/(a,b) -0

where ht(u,v)RY = 2 and hence u,v is an R} -regular sequence (since R is a directed
union of normal rings). Thus a and b have a GCD in R}. Letting T be the normalization
of Ry[ar,u,v] (where a = au, b = —av) we get [(a,b)Ts] = [@Ts] = 0 in Cl(Ts). Thus by

the above remark, [(a,b)R;] is a torsion element.

If R is Henselian then R™ is quasi-local, in which case all projectives are free, so there
is no need to localize. [

Theorem 4.5. Let (R,m) be a complete local domain of characteristic p having dimen-
sion d > 3. Then RT is not coherent.

Proof. Let S be a regular domain contained in R over which R is module finite. Then
St = RT so we may assume that R is regular. Let u,v,w be regular parameters for R.
Let T = R[z] = R[Z]/(Z* — Zw — uv). Then T is a local normal domain and (z,u)T
is a height one prime ideal of T which has infinite order in Cl(T). Complete rings are
Henselian, therefore BT = T is not coherent by Proposition 4.4. [

We can now show that R is not coherent for any domain of dimension three or higher.

Theorem 4.6. Let R be any Noetherian domain of characteristic p. If dim R > 3 then
R* is not coherent.

Proof. Coherence is stable under localization under any multiplicative set, so if m is any
maximal ideal of height at least 3, then (R—m)~'RT = (R,,)™ is coherent. Thus we can
assume that R is local. Let () be any minimal prime of R such that dim R = dim R/Q
Letting S = R/Q we have an injection R — S. In this case we can consider RT to be a
subring of ST. Let n = R* N'mg4+. If RT is coherent then so is R;. By Theorem 4.5,
ST is not coherent, and by the proof of Theorem 4.5, we know that the ideal (z,u)S™
is not of finite projective dimension over S*, where » satisfies z? = zv — wu and u, v, w
is part of a system of parameters in . But we can pick u,v,w to live in R, and then
z € RT. By Proposition 4.1 and Lemma 4.3, if R is coherent then (z,u)R;} has a finite
free resolution of length at most 2, which will become an ST resolution upon tensoring
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with S* (this follows from the generalized version of the Buchsbaum-Eisenbud acyclicity
criterion since heights of ideals cannot go down in the map R} — ST). Therefore RT is
not coherent. [

We turn now to the case where dim R = 2. We first record the following facts, for
which we are indebted to Dale Cutkosky.

Theorem 4.7. Let k be the algebraic closure of a finite field and suppose that (R,m)
is a complete normal domain of dimension 2 with R/m = k. Then Cl(R) is a torsion

group.

Proposition 4.8. Let k be a field of positive transcendence degree over Z/(p). Then
there exists a finite extension K of k, and F € K[[x,y, z]] such that R = K[[x,y, z]]/F
is @ normal domain of dimension 2 and CI(R) contains elements of infinite order.

Theorem 4.9. Let (R, m) be a complete local domain containing a field of positive tran-
scendence degree over Z/(p). Then RT is not coherent.

Proof. Let k be a coefficient field for R. Then by the Cohen structure theorem, RT = A™,
where A = k[[u,v]] is regular. Since k has positive transcendence degree over Z/(p), R
may be assumed to be of the form given by Proposition 4.8 (knowing that K is a finite
algebraic extension of k gives that R is module finite over A). Thus we may assume
that there are elements of infinite order in CI(R). Let I C R be an ideal such that [IR]
has infinite order in CI(R). If RY is coherent then pdpy RT/IRT < 2 by Proposition
4.1. IR cannot be principal (since [IR] has infinite order) so pdp, RT/IRT = 2. But
then there is a module finite normal extension S O R such that pdg S/IS = 2. In this
case IS = aJS where ht(JS) > 2 by the Hilbert—-Burch theorem, which in turn implies
that [IR] is torsion, contradicting the fact that [IR] has infinite order. Thus RT is not
coherent. 0O

Remark 4.10. Let k& be the algebraic closure of Z/(p) and let (R, m) be a complete
normal domain with R/m = k. Then Theorem 4.7 shows that Cl(A) is torsion. In this
case every 2 elements in BT do have a GCD, so every two-generated ideal in R' has
finite projective dimension. To see this let a, b € RT. We can assume a, b € R and R is
normal. Then [(a,b)R] is torsion in Cl(R), so for some n, (a,b)” = ~.J where ht(.J) > 2.
But then (a”,b") = ~(¢, d) where ht(c,d) > 2, hence v'/" is GCD(a,b) in CI(R). O

Remark 4.11. The method of proof used in this section to show R is not coherent in
many situations does not address the projective dimesion of R /IR when ht(I) > 1.
This is of independent interest, and may be the only way to show RT lacks coherence in
situation of Remark 4.9.
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