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0. INTRODUCTION

We introduce the notion of quasilength. Let M be a finitely generated module over a
ring R and let x = x1, . . . , xd be a sequence of elements of R. Neither R nor M needs
to be Noetherian. Let I = (x)R. Suppose that M is killed by some power of I. The
I-quasilength of M is the least number of factors in a finite filtration of M by cyclic
modules each of which is a homomorphic image of R/I.

We use the notion of quasilength to define two nonnegative real numbers hdx(M) and
hdx(M) that are intended heuristically as “measures” of the local cohomology module
Hd
I (M). Each may be defined as a lim inf of normalized quasilengths: see §2. The second

is actually a limit. In general, one has

0 ≤ hdx(M) ≤ hdx(M) ≤ ν(M)

where ν(M) denotes the least number of generators of M . Hence, when M = R one has

0 ≤ hdx(R) ≤ hdx(R) ≤ 1

If Hd
I (M) = 0, then hdx(M) = 0 (see Proposition 2.2). We do not have an example in

which we can prove that hdx(R) is strictly between 0 and 1. We can show that hdx(R) = 1
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if and only if hdx(R) = 1 (Theorem 3.8(b) ). In positive prime characteristic p we can
prove that hdx(R) and hdx(R) are equal, and that hdx(R) must be either 0 or 1 (Theorem
3.9). Whether these numbers depend on the choice of the sequence x of generators or
only on M and the radical of the ideal (x) is an open question, although we can show that
the condition that hdx(R) = 1 depends only on the ideal I and d, and not on the choice
of the d generators x1, . . . , xd for I (Theorem 3.8(a) ). In any case, we are inclined to
view the numbers hdx(M) and hdx(M) as giving quantitative information about the “size”
of Hd

I (M).

Note that our basic reference for local cohomology theory is [GrHa].

When d and x are understood from context we shall also refer to hdx(M) as the h-
content of Hd

I (M). The positivity of hdx(R) gives a necessary condition for there to exist
a map of R to a Noetherian ring such that the xi map to generators of an ideal of height
d. In fact, if R contains a field, it is necessary that hdx(R) = 1. See Theorem 4.1.

We are particularly interested in the case where M = R, especially the case where
R is a local ring of Krull dimension d and x is a system of parameters for R. In §4
we study the conjecture that if x1, . . . , xd is a system of parameters for a local ring
R, then hdx(R) = hdx(R) = 1. This conjecture reduces to the case of a complete local
domain. We prove the result (Theorem 4.7) when R is equicharacteristic by reduction to
characteristic p > 0. We prove in the case of an excellent reduced equidimensional local
ring that hdx(R) = hdx(R) without restriction on the characteristic. In mixed characteristic
we prove that hdx(R) = 1 if dim (R) ≤ 2, and that hdx(R) > 0 always. In fact, if µ is
the multiplicity of the system of parameters x and λ is the length of R/(x), we show
that hdx(R) ≥ µ/λ (Theorem 4.6). The conjecture that hdx(R) = 1 for every system
of parameters of every local ring R implies the direct summand conjecture. In mixed
characteristic, we do not know that hdx(R) = 1 even in dimension 3, although the direct
summand conjecture [Heit] and the existence of big Cohen-Macaulay algebras [Ho6] are
known. We cannot deduce the result from the existence of big Cohen-Macaulay algebras
in dimension 3 because we have not been able to prove that if x is a regular sequence in
a ring that is not necessarily Noetherian, then hdx(R) = 1, although we conjecture this.

In §3 we use quasilength to give conditions that may possibly characterize when a
sequence x1, . . . , xd of elements of a ring R has the property that there exists an R-
algebra S such that x1, . . . , xd is a regular sequence on S. We call such a sequence
of elements a latent regular sequence in R. We also consider sequences such that there
exists an R-module M on which the sequence is regular: we refer to these as latent
regular sequences for modules. We do not know whether every latent regular sequence for
modules is a latent regular sequence. These notions are closely related to the notion of
a seed in [Di1–2]. We also introduce the notion of a Q-sequence. We raise the following
question: is a Q-sequence the same as a latent regular sequence? See §3, Question 3.6.

One motivation for our study is that these ideas ought to be useful in investigating
the existence of big Cohen-Macaulay algebras over local rings, including the mixed char-



QUASILENGTH, LATENT SEQUENCES, AND CONTENT OF COHOMOLOGY 3

acteristic case. Another is that results on h-content may well be helpful in studying the
direct summand conjecture, and related conjectures, as indicated above. Thus, these
notions may be useful in settling the local homological conjectures (for background, we
refer the reader to [Du], [EvG1–2], [Heit], [Ho1–5], [PS1–2], and [Ro1–5]). In any case,
in studying quasilength and content one is immediately led to many questions that are
important and appear to be difficult. We conclude this introduction with some examples
of such questions.

Question 0.1. Let Λ be either a field K or an unramified discrete valuation domain
(V, pV ) of mixed characteristic p > 0. Let X1, . . . , Xd, Y1, . . . , Yd be indeterminates
over Λ. We define

f = fd,t = Xt
1 · · ·Xt

d −
d∑
j=1

YjX
t+1
j .

Let
R = Rd,t = Λ[X1, . . . , Xd, Y1, . . . , Yd]/(fd,t).

(In mixed characteristic, one may also consider a variant definition by replacing R by
R/(X1 − p).) We ask whether hdx(R) = 0. The direct summand conjecture follows if one
can prove this, which is a weakening of the condition that Hd

x(R) = 0. See Remark 4.10
and Example 3.11.

Question 0.2. Here is a second question that appears to be difficult. Consider the minors
of an n× (n+ 1) matrix of indeterminates over Z or over a field, where n ≥ 2. Let I be
the ideal they generate. We know that these are not a latent regular sequence (not even
a latent regular sequence on modules): see Example 3.1. Can one calculate the h-content
of Hn+1

I (R)? In characteristic p > 0 it is 0, but over Z or Q we do not know the answer
even if n = 2.

Question 0.3. Finally, suppose that x1, . . . , xd is a regular sequence on R. Let It =
(xt1, . . . , x

t
d)R for every t ≥ 1, and let I = I1. It is easy to see (cf. Proposition 1.2) that

for every t ≥ 1, R/It has a filtration with td factors each of which is isomorphic with
R/(x1, . . . , xd). We conjecture that there is no shorter filtration with cyclic factors that
are homomorphic images of R/I. This is equivalent to the statement that I-quasilength
of R/It is td. This is true if R is Noetherian (see Proposition 1.2(c) ), but we have not
been able to prove this statement in the general case even if d = 2 and n = 3 !
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1. QUASILENGTH

Let R be a ring, M an R-module, and I a finitely generated ideal of R. We define
M to have finite I-quasilength if there is a finite filtration of M in which the factors are
cyclic modules killed by I, so that the factors may be viewed as cyclic (R/I)-modules.
The I-quasilength of M is then defined to be the minimum number of factors in such a
filtration. If M does not have finite I-quasilength, we define its I-quasilength to be +∞.
We denote the I-quasilength of M over R as LRI (M). The ring R and/or the ideal I may
be omitted from the terminology and notation if they are clear from context. We denote
the least number of generators of M over R as νR(M) or simply ν(M), and the length
of M over R as λR(M) or simply λ(M).

Here are some basic properties of I-quasilength.

Proposition 1.1. Let R be a ring, I a finitely generated ideal of R, and M an R-module.

(a) M has finite I-quasilength if and only if M is finitely generated and killed by a power
of I. In fact, ν(M) ≤ LI(M), and ILI(M) kills M .

(b) If M is killed by I, LI(M) = νR(M) = νR/I(M).

(c) If I is maximal, then LI(M) is finite if and only if M is killed by a power of I and
has finite length as an R-module, and then LI(M) = λ(M).

(d) Assume that 0 → M ′ → M → M ′′ → 0 is exact. If M ′ and M ′′ have finite
I-quasilength then so does M , and L(M) ≤ L(M ′) + L(M ′′). If M has finite I-
quasilength then M ′′ does as well, and L(M ′′) ≤ L(M). If M has finite I-quasilength,
then M ′ has finite I-quasilength if and only if it is finitely generated.

(e) If M has a finite filtration in which every factor has finite I-quasilength then M has
finite I-quasilength bounded by the sum of the I-quasilengths of the factors.

(f) If M has finite I-quasilength with InM = 0 and we interpret I0 as R, then L(M) ≤∑n−1
j=0 ν(IjM/Ij+1M) and L(M) ≤

∑n−1
j=0 ν(AnnMIj+1/AnnMIj).

(g) If S is an R-algebra then LSIS(S ⊗RM) ≤ LRI (M).

(h) LI(M) = 0 if and only if M = 0.

(i) If I = P is prime, LP (M) is at least the length of MP as an RP -module.

Proof. Given filtrations of M ′ and M ′′, the filtration of M ′ together with the inverse
image of the filtration of M ′′ in M yields a filtraton of M whose factors are the union of
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the sets of factors from the filtrations of M ′ and M ′′. This proves the first statement in
(d). The second statement follows from the fact that a filtration of length h on M whose
factors are cyclic R/I-modules induces a quotient filtration on M ′′ of the same length
whose factors are also cyclic R/I-modules. We postpone the proof of the third statement
until we have proved part (a).

Part (e) follows from the first statement in part (d) by an immediate induction on the
length of the filtration.

To prove (b), note that if u1, . . . , uh generate M , then the submodules Ru1+ · · ·+Ruj
give a filtration of M whose whose factors are cyclic modules killed by I. Therefore,
L(M) ≤ ν(M).

If M has finite quasilength then, since the factors are all cyclic modules, lifitngs of the
generators of the factors to M generate M . This shows that, in general, ν(M) ≤ L(M).
It follows that ν(M) = L(M) when I kills M .

If 0 → Q′ → Q → Q′′ → 0 is exact, A kills Q′, and B kills Q′′, then AQ ⊆ Q′ and
so AB kills Q. It follows that the product of the annihilators of the factors in a finite
filtration of M kills M . If LI(M) is finite, we therefore have that ILI(M) kills M . On the
other hand ν(M) ≤ LI(M). Part (a) is now proved except for the “if” part. But if M
is finitely generated and killed by Ih, then every IjM is finitely generated (since I and,
hence, each Ij is). From part (e),

LI(M) ≤
h∑
j=0

LI(IjM/Ij+1M) =
h∑
j=0

ν(IjM/Ij+1M)

by part (b), and this completes the proofs of both (a) and (f). The third statement in
part (d) also follows, because whatever power of I kills M also kills M ′.

Both statements in (f) are immediate from parts (e) and (b). If M is finitely generated
and killed by a power of I, then each IjM is finitely generated, and so these give a
filtration of M with finitely generated factors IjM/Ij+1M killed by I. If M is not
Noetherian, some of the factors on the left in the second inequality may need infinitely
many generators: the inequality is true but uninteresting in this case.

Part (c) is clear, because when I = m is maximal, the only nonzero cyclic (R/I)-
module is R/m.

Part (g) is clear because given any finite filtration of M by modules Mj such that
every Mj/Mj−1 is cyclic and killed by I, we may use the images of the S ⊗RMj to give
a filtration of S ⊗RM whose factors are cyclic S-modules killed by IS, and its length is
the same as the length of the original filitration. Note that (g) is obvious if LRI M) =∞.

Part (h) is obvious. Part (i) follows from parts (g) and (c) by choosing S = RP . �

Let Λ be a ring and let T = Λ[X1, . . . , Xd] be a polynomial ring in d variables over Λ.
Let J be an ideal of T generated by monomials in X1, . . . , Xd that contains a power of
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every Xi. Then T/J is a finitely generated free module on the monomials in X1, . . . , Xd

not in J , and we refer to its rank as the co-rank of J . For example, the co-rank of
(Xt1

1 , . . . , X
td
d ) is t1 · · · td.

Now suppose that R is any ring and x1, . . . , xd ∈ R. Suppose that we are given
an ideal A of R generated by monomials in x1, . . . , xd that are given explicitly, in the
sense that the d-tuples of exponents are given explicitly, and that a power of every xi is
given as a generator. If Λ is any ring (one may always use Z) that maps to R, we may
form a corresponding ideal J in Λ[X1, . . . , Xd] generated by those Xh1

1 · · ·X
hd

d such that
xh1

1 · · ·x
hd

d is one of the explicitly given generators of A. We refer, somewhat imprecisely,
to the co-rank of A as the co-rank of J . Alternatively, we say that a monomial is formally
in A if it has the form xk11 · · ·x

kd

d and there is a given generator xh1
1 · · ·x

hd

d of A such
that kj ≥ hj ≥ 0 for 1 ≤ j ≤ d. Then the co-rank of A is the number of monomials in
x1, . . . , xd that are not formally in A.

Proposition 1.2. Let R be a ring, let I = (x1, . . . , xd) be an ideal of R, and let M
and N be R-modules. Let t = (t1, . . . , td) be a d-tuple of positive integers and let It =
(xt11 , . . . , x

td
d ).

(a) If N is finitely generated and killed by It, then LI(N) ≤ t1 · · · td ν(N/IN). In fact,
N has a filtration by t1 · · · td modules such that every factor is a homomorphic image
of N/IN . In particular, LI(R/It) ≤ t1 · · · td.

(b) If x1, . . . , xd is a regular sequence on M and N = M/ItM , then N has a filtration
by t1 · · · td modules each of which is isomorphic to N/IN ∼= M/IM .

(c) If R is ring such that x1, . . . , xd is a regular sequence on a Noetherian R-module
M , then LI(R/It) = t1 · · · td. In particular, if x1, . . . , xd is a regular sequence in a
Noetherian ring R, then LI(R/It) = t1 · · · td.

(d) Let A be an ideal generated by a set of monomials in x1, . . . , xd containing a power
of every xj, and suppose that the number of monomials in the xj not formally in A
is a. Let B be another such ideal such that the number of monomials not formally in
B is b. Suppose that every generator if B is formally in A. Then LI(AM/BM) ≤
(b− a)ν(M/IM).

Proof. (a) N has a filtration by t1 · · · td modules each of which is a homomorphic image
of N/IN . To see this, note that N has a filtration

N ⊇ x1N ⊇ x2
1N ⊇ · · · ⊇ x

t1−1
1 N ⊇ xt11 N = 0

with t1 factors, each of which is a homomorphic image of N/x1N , since there is a sur-
jection N/x1N � xj1N/x

j+1
1 N induced by multiplication by xj1 on the numerators. We

may use induction on d to complete the proof: each of these factors will have a filtration
with t2 · · · td factors killed by (x2, . . . , xd)R as well as x1, and each of these factors will



QUASILENGTH, LATENT SEQUENCES, AND CONTENT OF COHOMOLOGY 7

be of a homomorphic image of N/x1N and therefore of N/IN . The result now follws
from parts (b) and (e) of Proposition (1.1).

(b) With x1 not a zerodivisor, the surjection M/x1M � xj1M/xj+1
1 M induced by

multiplication by xj1 is an isomorphism. This yields a filtration of M/xt11 M by factors
each isomorphic to M/x1M . The result now follows by induction on d from the fact that
x2, . . . , xd is a regular sequence on each of these factors.

(c) We know that LI(R) ≤ t1 · · · td. We obtain a contradiction if LI(R) = h < t1 · · · td.
This remains true when we replace R by R/AnnRM by Proposition 1.1(g), and likewise
when we replace R by its localization at a minimal prime in the support of M/ItM .
Hence, there is no loss of generality in assuming that R is a local ring and that M/ItM
has finite length. The ideals Ji of R that give the filtration of length h (since the factors
are cyclic, Ji+1 is generated over Ji by one element ri+1 such that Iri+1 ⊆ Ji ) may be
expanded to M . The result is a filtration of M with h factors, each of which has the form

(Ji + ri+1R)M
JiM

∼=
ri+1M

(JiM ∩ ri+1M)
.

We have a surejction of M onto the latter (sending u 7→ ri+1u) that kills IM . Hence, the
length of each factor is at most λ(M/IM), and it follows that λ(M/ItM) ≤ hλ(M/IM).
However, M/ItM also has a filtration with t1 · · · td factors each isomorphic with M/IM ,
and it follows that λ(M/ItM) = t1 · · · td λ(M/IM), a contradiction.

(d) The ideal A is generated over B by the set S of monomials in the xj that are
formally in A and not formally in B. The number of monomials in S is b− a, and these
can be adjoined successively to B to give a sequence of ideals

B = B0 ⊆ B1 ⊆ · · · ⊆ Bb−a = B

such that each ideal Bi+1 is generated over its predecessor Bi by one monomial µ such
that, in every instance, Iµ ⊆ Bi. This yields a sequence

BM ⊆ B1M ⊆ · · · ⊆ AM

such that each of the b − a factors is a homomorphic image of M/IM , and the result
follows. �

Remark on notation. Throughout the rest of this paper, we shall frequently use the
notations I and It as in Proposition 1.2 when it is understood what x = x1, . . . , xd is
from context.

Remark 1.3. Quasilength is a natural notion but there are difficulties in working with it.
One of these is that we do not know, a priori, how to choose a filtration of a module which
gives the quasilength or even gives a result that is close to the quasilength. Given a specific
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module, every choice of suitable filtration gives an upper bound for the quasilength, but
it is very hard to prove lower bounds for the quasilength. In some cases, one can get
adequate information from arguments making use of length, but there are many important
cases where this method does not give a result that is close to optimal.

Example 1.4. Let K be an infinite field, Let let S = K[s, t, u, v] be a polynomial ring,
and let R = S/A where A = (uvs, uvt, v2s, v2t)S, the product of the ideals (u, v)S and
(vs, vt)S. Let x1 = vs and x2 = vt. Let I = (x1, x2)R. Then I2 = 0. We can see
that LI(R) = 2 using the filtration 0 ⊆ vR ⊆ R. There are several points that we
want to make. Both of the inequalities in part (f) of Proposition 1.1 are strict in this
case. We have ν(R/I) + ν(I/I2) = 1 + 2 = 3. Let J = (u, v)R. We also have that
AnnRI = J , and ν(R/J) + ν(J) = 1 + 2 = 3. Over an infinite field one might use the
following strategy to attempt to calculate LI(R). Choose generators for the annihilator
of I in R, and consider an element in general position in the vector space they span.
Let this element generate the first ideal in a filtration. Kill this ideal, and then continue
recursively in this way. In the present example, one starts by killing an element of the
form c1u + c2v where c1 and c2 are nonzero scalars. Regardless of how the scalars are
chosen, the quotient is isomorphic with K[s, t, v]/(v2s, v2t). This still has quasilength
2. Therefore, the proposed strategy does not give the quasilength in the example under
consideration: it is nencesary to begin the filtration with an ideal generated by an element
that is, in some sense, in special position in AnnRI. It is appears to be very difficult to
give an algorithm for calculating quasilength even in very simple situations in where the
quasilength is known to be small and the ambient ring is finitely generated over a field.
See also Remark 2.7 and the last paragraph of Example 3.1.

2. HEURISTIC MEASURES OF LOCAL COHOMOLOGY

Suppose that M is a finitely generated module over the ring R, x = x1, . . . , xd,
and I = (x1, . . . , xd)R. Let t = (t1, . . . , td) denote a d-tuple of positive integers. Let
It = (xt11 , . . . , x

td
d )R, and for k ∈ N let t+ k denote the d-tuple (t1 + k, . . . , td + k). We

define

(ItM)lim =
∞⋃
k=0

(
(It+kM) :M (x1 · · · xd)k

)
.

The notation is somewhat inaccurate, since (ItM)lim depends on knowing M , x1, . . . , xd,
and t, not just on ItM . However, we believe that what is meant will always be clear from
the context. Observe that if we allow d-tuples k = (k1, . . . , kd) ∈ Nd, we also have that

(ItM)lim =
⋃
k∈Nd

(
(It+kM) :M xk11 · · · x

kd

d

)
.
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Note that
Hd
I (M) = lim

−→ tM/ItM,

where the maps in the direct limit system are such that the map M/ItM → M/It+kM

is induced by multiplication by xk11 · · ·x
kd

d on the numerators. It follows that (ItM)lim is
the kernel of the composite map M →M/ItM → Hd

I (M), so that

Hd
I (M) = lim

−→ tM/(ItM)lim,

and the maps in the direct limit system are now injective.

We write t ≥ s for s ∈ N to mean that every tj ≥ s.

We now define

hdx(M) = lim
s→∞

inf{
LI
(
M/((ItM)lim)

)
t1 · · · td

: t ≥ s}.

By Proposition 1.2(a), every element of every set is at most

LI(M/It)/(t1 · · · td) ≤ ν(M/ItM) ≤ ν(M),

and since the sets are decreasing with s, the terms in the limit are nondecreasing. Hence:

Propostion 2.1. With notation as above, the limit hdx(M) always exists, and we have
that

0 ≤ hdx(M) ≤ ν(M). �

We emphasize that no finiteness hypotheses are needed. We note:

Proposition 2.2. With notation as above, if Hd
I (M) = 0, then hdx(M) = 0.

Proof. If the local cohomology vanishes, we have that every M/(ItM)lim = 0, and so all
the quasilengths are 0. �

We next introduce a variant notion that, for certain purposes, is easier to work with.
We shall see that when x1, . . . , xd is a system of paramters for an excellent, equidimen-
sional, reduced local ring R and M = R, the two notions agree.

Again, let x1, . . . , xd ∈ R be any sequence of elements of the ring R and let M be a
finitely generated R-module. We define

hdx(M) = lim
s→∞

inf{
LI
(
M/(ItM)

)
t1 · · · td

: t ≥ s}.

This limit exists by the same reasoning used for hdx(M), but we can now assert some-
thing stronger. We first observe:
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Lemma 2.3. Let R, x1, . . . , xd ∈ R and M be as above and let a d-tuple of integers t =
(t1, . . . , td) ≥ 1 be given. Let I = (x1, . . . , xd)R. Let a real number ε > 0 be given. Then
there exists an integer s > 0 such that for all d-tuples of integers T = (T1, . . . , Td) ≥ s,

LI(M/ITM)
T1 · · ·Td

≤
LI(M/ItM)
t1 · · · td

+ ε.

Proof. Use the division algorithm to write

Tj = qjtj + rj , 1 ≤ j ≤ d,

where qj , rj ∈ N and 0 ≤ rj < tj for all j. Let t′ = (q1t1, . . . , qdtd). Then M/ITM has
the submodule It′M/ITM with quotient M/It′M , and so we have

(∗) LI(M/ITM) ≤ LI(M/It′M) + LI(It′M/ITM).

We want to give upper bounds for both terms on the right. We can think of xqjtj
j as

(xtjj )qj . It follows from Proposition 1.1(a) that M/It′M has a filtration with q1 · · · qd
factors each of which is a homomorphic image of M/ItM . Hence,

LI(M/It′M) ≤ q1 · · · qd LI(M/ItM).

By Proposition 1.2(d),

LI(It′M/ITM) ≤
(
T1 · · ·Td − (q1t1) · · · (qdtd)

)
ν(M/IM).

After we divide by T1 · · ·Td, these two estimates coupled with (∗) yield

LI(M/ITM)
T1 · · ·Td

≤
q1 · · · qd LI(M/ItM)

T1 · · ·Td
+ (1− q1t1

T1
· · · qdtd

Td
)ν(M/IM).

The first summand on the right hand side increases if we replace the denominator by
(q1t1) · · · (qdtd). In the second summand, we note that qjtj/Tj is the same as 1− rj/Tj >
1− tj/Tj . Thus,

LI(M/ITM)
T1 · · ·Td

≤
LI(M/ItM)
T1 · · ·Td

+
(
1− (1− t1

T1
) · · · (1− td

Td
)
)
ν(M/IM).

Since t is fixed, it is clear that the second term on the right is eventuallly ≤ ε when the
Tj are sufficiently large. �

This yields:



QUASILENGTH, LATENT SEQUENCES, AND CONTENT OF COHOMOLOGY 11

Theorem 2.4. With notation as in Proposition 2.3,

hdx(M) = inf {
LI(M/ItM)
t1 · · · td

: t ≥ 1} = lim
t→∞

LI(M/ItM)
t1 · · · td

.

If It = (xt1, . . . , x
t
d)R for t ≥ 1, we also have

hdx(M) = lim
t→∞

LI(M/ItM)
td

.

Proof. Let

η = inf {
LI(M/ItM)
t1 · · · td

: t ≥ 1}.

Let γ be any element of the set. By the preceding Lemma, hdx(M) ≤ γ + ε for all ε > 0,
and so hdx(M) ≤ γ. It follows that hdx(M) ≤ η, while the opposite inequality is obvious.
Thus, hdx(M) = η. Let ε > 0 be given. Let

γt =
LI(M/ItM)
t1 · · · td

.

Choose a specific d-tuple τ such that γτ ≤ η+ ε/2. From the Lemma, there exists s such
that for all t ≥ s, γt ≤ (η + ε/2) + ε/2 = η + ε, and so η ≤ γt ≤ η + ε for all t ≥ s. Both
statements about limits follow. �

Remark. Let R � S be a surjective homomorphism of rings, let x = x1, . . . , xd ∈ R,
and let y = y1, . . . , yd be the images of x1, . . . , xd in S. Let J = IS = (y1, . . . , yd)S, let
M, N be S-modules, and let RM denote the R-module obtained from M by restriction
of scalars. Then it is obvious R(JtM)lim = (It RM)lim, that if N is killed by a power of
J then LRI (RN) = LSJ (N), and we may apply this when N = M/(JtM)lim (respectively,
M/JtM) to conclude that hdx(RM) = hdy(M) and that hdx(RM) = hdy(M).

We next observe that both notions of content can only decrease under base change.

Proposition 2.5. Let R→ S be a ring homomorphism, let x1, . . . , xd be a sequence of
elements of R. Let M be any R-module, and let y1, . . . , yd be the images of x1, . . . , xd
in S. Then hdx(M) ≥ hdy(S ⊗RM) and hdx(M) ≥ hdy(M). In particular, hdx(R) ≥ hdx(S)
and hdx(R) ≥ hdy(S).

Proof. The statement for hdx(M) is immediate from Proposition 1.1(g) and the fact that
(xt11 , . . . x

td
d )R expands to (yt11 , . . . y

td
d )S. The argument for hdx(M) is similar, but needs

the fact that the image of
S ⊗R

(
(xt11 , . . . x

td
d )M

)lim
in S ⊗RM is contained in (

(yt11 , . . . y
td
d )(S ⊗RM)

)lim
,

which is entirely straightforward to verify. �
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Proposition 2.6. Let x1, . . . , xd ∈ R, let k1, . . . , kd be positive integers, let y =
xk11 , . . . , x

kd

d , and let M be any R-module. Let I = (x)R and J = (y)R. Let t de-
note a variable d-tuple of positive integers. Let It denote (xt11 , . . . , x

td
d )R, and let Jt

denote (yt11 , . . . , y
td
d )R. We write k · t for the d-tuple whose i th term is kiti.

(a) LI(M/ItM) ≤ k1 · · · kd LJ(M/JtM).

(b)
(
JtM

)lim with respect to y is the same as
(
Ik·tM)

)lim with respect to x.

(c) LI
(
M/(ItM)lim

)
≤ k1 · · · kd LJ

(
M/(JtM)lim

)
.

(d) hdx(M) ≤ hdy(M) and hdx(M) ≤ hdy(M).

Proof. Part (b) follows from the fact that Jt = Ik·t, and the usual identification of the
the local cohomology modules Hd

I (M) and Hd
J(M) and hence of the maps M → Hd

I (M)
and M → Hd

J(M). Parts (a) and (c) follow from the fact that a filtration of the module
ocurring on the right hand side of the inequality that has h factors that are homomorphic
images of R/J can be refined to one that has k1 · · · kd h factors that are homomorphic
images of R/I, since R/J has a filtration with k1 · · · kd factors that are homomorphic
images of R/I. The statements in (d) follow from (a) and (c) and the definitions of
content. �

Remark 2.7. Remark 1.3 and Example 1.4 emphasized the difficulty in finding an algo-
rithm or procedure that calculates quasilength. We want to point out that in trying to
study, for example, hdx(R), it would be very useful to have a procedure if it gave a result
asymptotic to LI(R/It) as t→∞. This may well be much easier than finding a method
that yields precise quasilengths.

Let R ⊆ S be a module-finite extension and let x1, . . . , xd be a sequence of elements
of R. We shall say that the map R ⊆ S is x-split if there is a positive integer h and
an R-linear map S⊕h → R whose image contains a power of every xj , i.e., whose image
has the same radical as (x)R. This holds, in particular, if R ⊆ S is split as a map of
R-modules, in which case we may take h = 1.

Theorem 2.8. Let R ⊆ S be a module-finite extension such that S is generated as
an R-module by r elements. Suppose that this extension is x-split, so that there exists
an R-linear map S⊕h → R whose image is an ideal containing a power of every xi.

Then hdx(R) ≥ hdx(S) ≥ 1
rh

hdx(R), and hdx(R) and hdx(S) are both 0 or both positive. In

particular, if R→ S splits over R, then hdx(R) ≥ hdx(S) ≥ 1
r
hdx(R).

Proof. Let I = (x)R and It be defined as usual. Suppose that we have an R-linear map
θ : S⊕h → R whose image J contains a power of every xi. Suppose that we have a
filtration of S/ItS with L = LSIS(S/ItS) factors each of which is a homomorphic image
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of S/IS. Since S is generated by r elements over R, each factor can be filtered further as
an R-module so that one has a filtration by at most r homomorphic images of R/I. This
yields a filtration of S/ItS by R-submodules with at most rL factors each of which is a
homomorphic image of R/I. We then obtain a filtration F of (S/ItS)⊕h by R-submodules
with at most rhL factors such that every factor is a homomorphic image of R/I.

The map θ induces a map θ : (S/ItS)⊕h → R/ItR whose image is (J+It)/It. We may
apply θ to the R-modules in F to obtain a filtration of (J + It)/It such that the factors
consist of rhL homomorphic images of R/I. This yields

LI(R/It) ≤ rhL+ LRI
(
R/(J + It)

)
≤ rhL+ LRI (R/J) = rhLSIS(S/ItS) + LRI (R/J).

We may now divide by td and take the limit of both sides at t → ∞. Since LRI (R/J)
is constant, we obtain the inequality on the right in the statement of the theorem. The
inequality on the left is the last statement in Proposition 2.5. �

Remark 2.9. Let x = xi. If Rx ⊆ Sx splits over Rx, we can often obtain an R-linear map
S → R whose value on 1 is a power of x. This is true (1) if x is a nonzerodivisor in R, or
(2) if the kernel of R→ Rx is killed by xt for some fixed t, or (3) if S is finitely presented
over R. In each of these cases we can use the composite map S → Sx → Rx (where the
map on the right is the splitting) to get a map f : S → Rx with f(1) = 1. The image
of each of the finitely many generators of S will have the form rj/x

kj for some suitably
large kj . If k is the supremum of the kj , and x is a nonzerodivisor, the values of xkf are
in R, and its value on 1 is xk. More generally, let A be the kernel of R→ Rx and suppose
that it is killed by xt. Let R = R/A. Then, as in the case where x is a nonzerovisor, we
get a map g : S → R whose value on 1 is the image of xk. Since R ∼= xtR ⊆ R, we get a
map S → R whose image on 1 is xt+k. In the case where S is finitely presented, we may
use that

(
HomR(S, R)

)
x
∼= HomRx(Sx, Rx) instead. If, for every i, one of the numbered

conditions holds, then we get a map Sd → R whose image contains a power of every xi.

3. LATENT REGULAR SEQUENCES AND Q-SEQUENCES

We recall that x1, . . . , xd is a latent regular sequence (respectively, a latent regular
sequence for modules) in R if there exists an R-algebra S (respectively, an R-module M)
such that x1, . . . , xd is a regular sequence on S (respectively, M). Note that, by defini-
tion, for the sequence to be regular, we must have that S/(x1, . . . , xd)S 6= 0 (respectively,
that M/(x1, . . . , xd)M 6= 0). Of course, a latent regular sequence is also a latent regular
sequence for modules.

We note that if such an algebra or module exists, then we may localize at a minimal
prime in the support of S/(x1, . . . , xd)S (respectively, M/(x1, . . . , xd)M), so that we
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may assume that S is quasilocal (respectively, that M is a module over a local ring
of R). When we refer to completion in the I-adic topology, we shall always mean the
separated I-adic completion. When we complete S or M with respect to the I-adic
topology, the regular sequence x1, . . . , xd becomes a permutable regular sequence on the
completion. See [BS], Cor. 1.2, Th. 1.3, and Prop. 1.5. Hence, latent regular sequences
(respectively, latent regular sequences on modules) are permutable, i.e., a permutation
of such a sequence is again such a sequence.

Moreover, if R is a local ring, x1, . . . , xd is a system of parameters, and x1, . . . , xd is
a regular sequence on M , a module or algebra, then every system of parameters for R is a
regular sequence on the I-adic completion of M (which is an algebra if M is an algebra).
Again, see [BS]. Thus, the existence of big Cohen-Macaulay algebras over a local ring
is equivalent to the statement that some (equivalent, every) system of parameters is a
latent regular sequence, and there is a parallel statement for modules. Hence, the study
of latent regular sequences is closely related to the study of seeds over a complete local
domains in [Di1–2].

Example 3.1. Let A = (rij) be an n × (n + 1), n ≥ 2, matrix over the ring R, and let
∆1, . . . ,∆n+1 be the sequence of n× n minors of A with alternating signs: specifically,
∆i is the product of (−1)i−1 and the n× n minor obtained by omitting the i th column.
Then ∆1, . . . ,∆n+1 is not a latent regular sequence on modules. To see this, let I be
the ideal that these elements generate, and suppose that they form a regular sequence
on M . Let u ∈ M − IM . Each row of the matrix gives a relation on ∆1, . . . ,∆n+1. If
we multiply by a given element of M , this becomes a relation with coefficients in M . It
follows that every for all i, j, rijM ⊆ IM . But then IM ⊆ InM , since every minor is a
homogeneous polynomial of degree n in the rij . It follows that Iu ⊆ InM , and the fact
that the ∆i form a regular sequence then implies that u ∈ In−1M , a contradiction.

Let Λ denote either Z or a field. Let A = (Xij) denote an n × (n + 1) matrix of
indeterminates over Λ, and let R be the polynomial ring in the Xij over Λ. Let x denote
the sequence of n×n minors of A, and let d = n+ 1. Let I = (x). We are very interested
in the behavior of Hd

I (R). If Λ is a field of characteristic p, we know that Hd
I (R) = 0 by

a result of Peskine and Szpiro [PS1], Prop. 4.1, and, hence, hdx(R) = 0. It follows from
Theorem 3.9 below that hdx(R) = 0 as well. If K is of equal characteristic 0, we know
that Hd

I (R) 6= 0. In this case, B = K[∆1, . . . ,∆n+1], which is a polynomial ring in all
characteristics, is a direct summand as a B-module of R (because it is a ring of invariants
of the linearly reductive group SL(n,K) acting on R), and so Hd

(x)B(B) 6= 0 is a direct
summand over B of Hd

I (R). In equal characteristic 0 and over Z we do not know the
values of hdx(R) and hdx(R).

We can say more. The following argument, using results of [Ly], is due to G. Lyubeznik.
Assume that K has characteristic 0 and continue the notations of the preceding para-
graph. Then Hd

I (R) is a holonomic D-module. After localization at any Xij , the ideal I
is generated by the n−1 size minors of an (n−1)×n matrix, and so Hd

I (R) is supported
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only at the homogeneous maximal ideal. Since it is a holonomic D-module, it follows
from the results of [Ly] that it is a finite direct sum of copies of the injective hull E of
R/m, where m = (xij : i, j)R is the maximal ideal generated by all the variables, and
E ∼= H

(n+1)n
m (R). It follows from the results of [W] that when n = 2, H3

I (R) ∼= H6
m(R).

See also Theorem 6.1 and its proof in [HuKM], where this isomorphism is shown to have
surprising applications. In general, in equal characteristic 0, Hd

I (R) ∼= H
(n+1)n
x′ (R)⊕kn ,

where kn > 0 is an integer, and x is a string formed from the (n+1)n indeterminates xij .
We conjecture that kn = 1 in general, but so far as we know this is an open question except
when n = 2. Note that from Theorem 4.7, it follows that h

(n+1)n
x′ (R) = h

(n+1)n
x′ (R) = 1

in equal characteristic 0 and p > 0 for all n. However, this does not a priori yield any
information about the case where the string of elements from the ring consists only of
the n + 1 minors and the exponent is n + 1, even though the local cohomology module
may be the same. Note that in characteristic p > 0 in the latter case hn+1

x (R) = 0.

Let K be a field and let I be the ideal generated of a 2×3 matrix of indeterminates over
K. To underline the difficulty of calculating I-quasilength, we note that we do not know
what it is for the quotient of R by ideal I2 generated by the squares of the 3 minors.

By mapping to the polynomial ring K[y, z] so that the matrix becomes
(

1 0 0
0 y z

)
,

one sees that the quasilength is at least 4, while it is obviously bounded above by 8 (in
characteristic 2, it is bounded by 7, because the product of the minors is in I2). We have
not been able to prove more.

Example 3.2. It may be tempting to believe that if x1, . . . , xd ∈ R, x1 is not a zerodivisor
in R, but x2, . . . , xd is a latent regular sequence in R/x1R, then x1, . . . , xd is a latent
regular sequence in R. But this is false. Consider the situation in the preceding paragraph
when n = 2 and Λ = K is a field. We have already seen the ∆1, ∆2, ∆3 is not a latent
regular sequence on modules. But the images of ∆2 and ∆3 do form a latent regular
sequence in R/(∆1). Let x, x′, y, z, s, t be new indeterminates over K, let D = xt−x′s−1,
and let S =

(
K[x, x′, s, t]/(D)

)
[y, z]. Map R/(∆1) as a K-algebra to S by sending the

entries of the matrix X to the corresponding entries of the matrix
(
x ys zs
x′ yt zt

)
. Note

that the map is well-defined because the second and third columns of the image matrix
form a matrix with determinant 0. Under this map, the images of ∆2 and ∆3 are −z
and y, respectively, which is a regular sequence in S. �

By an equational constraint on x = x1, . . . , xd and R, we mean a finite family of
polynomials F1, . . . , Fh over Z with coefficients in Z in variables X1, . . . , Xd, Y1, . . . , Ys
(s may vary). We shall say that x and R satisfy the constraint if there do not exist
elements r1, . . . , rs ∈ R such that Fi(x1, . . . , xd, r1, . . . , rs) = 0, 1 ≤ i ≤ h. We shall
say that a condition C on x and R is equational if there is a family of equational constraints
such that x and R satisfy C if and only if x and R satisfy all of the equational constraints
in the family. The following result is already known, except for the terminology of “latent
regular sequences.”
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Theorem 3.3. The condition that x1, . . . , xd ∈ R be a latent regular sequence (respec-
tively, a latent regular sequence for modules) is equational.

We briefly mention the idea of the proof. By a module (respectively, algebra) modifi-
cation of an R-algebra (respectively, module) M of type k with respect to x1, . . . , xd we
mean a map M →M ′, where

xk+1uk+1 =
k∑
i=1

xiui

with all of u1, . . . , uk+1 ∈M , is a relation, 0 ≤ k ≤ d− 1, and M ′ is either

M →M [Z1, . . . , Zk]/(uk+1 −
k∑
i=1

xiZi)

in the algebra case, where the Zj are indeterminates, or

M → (M ⊕Re1 ⊕ · · · ⊕Rek)/R(uk+1 −
k∑
i=1

xiei),

in the module case, where Re1⊕· · ·⊕Rek is an R-free module with free basis e1, . . . , ek.
Then x1, . . . , xd is a latent regular sequence (respectively, a latent regular sequence for
modules) if and only if for every sequence

R→M1 → · · · →Mr

algebra (respectively, module) modifications of types k1, . . . , kr, respectively, we have
that 1 ∈ R does not map into (x1, . . . , xd)Mr. The failure of this condition for specific
r and k1, . . . , kr is easily seen to be equivalent to the failure of an equational constraint
on R. For details in the module case we refer the reader to [Ho2] §4, and for the algebra
case to (3.31) of [HH5]. �

Let x1, . . . , xd ∈ R. Let the notations It and It be as in (2.3) and (2.4). We say that
x1, . . . , xd form a Q-sequence if the following equivalent conditions hold:

(1) For all t = t1, . . . , td, LI(R/It) = t1 · · · td.

(2) For all t ≥ 1, LI(R/It) = td.

(3) hdx(R) = 1.

The equivalence is immediate from Theorem 2.4. We shall show that the condition that
x1, . . . , xd form a Q-sequence depends only on d and the ideal I = (x1, . . . , xd)R. See
Theorem 3.8(a). Moreover, Remark 3.7 and Theorem 3.8(b) give additional equivalent
conditions for x1, . . . , xd to form a Q-sequence (for example, it is equivalent that hdx(R) =
1).

If x1, . . . , xd is a regular sequence in R, we conjecture that x1, . . . , xd is a Q-sequence,
but we cannot prove this even if d = 2. We note:
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Proposition 3.4. The condition that x1, . . . , xd be a Q-sequence in R is equational.

Proof. The failure of the condition is equivalent to the existence of t and h < td such that
R/It has a filtration with h cyclic factors such that each quotient is killed by (x1, . . . , xd).
This in turn is equivalent to the existence of elements r1, . . . , rh ∈ R with rh = 1 such
every xirj is in the ideal generated by xt1, . . . , x

t
d and the ri for i < j. We may then

take the terms in the filtration to be the ideals Jk/It where Jt is generated over It by
r1, . . . , rk. If Zj is the variable corresponding to rj , the polynomials we want to vanish
are Zh − 1 and

XiZj −
j−1∑
ν=1

Yi,j,νZν −
d∑
ν=1

Vi,j,νX
t
ν , 1 ≤ j ≤ h, 1 ≤ i ≤ d,

where the Yi,j,ν and Vi,j,ν are auxiliary variables. �

We also note:

Remark 3.5. Note that an equational condition on x1, . . . , xd holds in R if and only if it
holds for all finitely generated subalgebras of R that contain x1, . . . , xd. Also note that
if we have a direct limit system of rings Rj and for each Rj a sequence of d elements xj

such that xj 7→ xk under Rj → Rk for j ≤ k, then the direct limit of these sequences
satisfies the equational condition if and only if all of the xj satisfy it.

Hence, both observations apply to the following three conditions:

(1) x1, . . . , xd is a latent regular sequence.

(2) x1, . . . , xd is a latent regular sequence for modules.

(3) x1, . . . , xd is a Q-sequence.

Question 3.6. Is it the case that a sequence x1, . . . , xd in R is a latent regular sequence
if and only if it is a Q-sequence? Note that we do not know either direction, since we
have not been able to show that if x1, . . . , xd is a regular sequence in R, then it is a
Q-sequence.

Remark 3.7. If the quasilength of R/It is td, where It = (xt1, . . . , x
t
d)R, then for any

ideal J generated by monomials in the elements x1, . . . , xd that contains contains It,
the I-quasilength of R/J is the co-rank h of J (see the discussion in the two paragraphs
immediately preceding Proposition 1.2). For if R/J has a filtration with k < h factors
that are images of R/I, then R/It has a filtration with k + (td − h) < td factors that
are images of R/I, since LI(J/It) ≤ td − h by Proposition 1.2(d), and this gives a
contradiction. Hence, if x1, . . . , xd is a Q-sequence, the I-quasilength of R/J for any
ideal J generated by monomials in x1, . . . , xd that contains a power of every xi is the
same as the co-rank of J , since J ⊇ It for all sufficiently large t.

We next observe:
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Theorem 3.8. Let R be any ring and let x1, . . . , xd ∈ R.

(a) The condition that hdx(R) = 1 depends only on d and I = (x1, . . . , xd)R, and not on
the specific choice of d generators for I. More specifically, hdx(R) = 1 if and only if

for every integer n, LI(R/It) is the co-rank
(
t+ d− 1

d

)
of the ideal It.

(b) The following conditions are equivalent:

(1) hdx(R) = 1.

(2) x1, . . . , xd is a Q-sequence.

(3) For all d-tuples t of positive integers, LI(R/I lim
t ) = t1 · · · td.

(4) hdx(R) = 1.

Proof. (a) By Remark 3.7, to check that the x1, . . . , xd are a Q-sequence it suffices to
show for any sequence of monomial ideals Jt cofinal with the ideals It that every LI(R/Jt)
is the same as the co-rank of Jt. In particular, we may use Jt = It.

(b) It is clear that (3) ⇒ (4) ⇒ (1) (since hdx(R) ≤ hdx(R) ≤ 1) and we already know
that (1) ⇔ (2). Hence, it suffices to assume (2) and prove (3). Suppose that R/I lim

t has
a filtration with h < t1 · · · td factors that are homomorphic images of R/I. This will also
be true for R/J , where J is obtained by enlarging It using finitely many elements of I lim

t .
Let y denote x1 · · ·xd. Then we may assume without loss of generality that J is contained
It+k : yk for a suitable positive integer k. The cyclic submodule C of R/It+k generated
by yk is killed by J , and so has a filtration with h factors that are images of R/I. But
R/(It + ykR) has co-rank (t1 + k) · · · td + k)− t1 · · · td (we may do this calculation in the
case where the xi are indeterminates over some base ring), and so R/It+k has a filtration
with (t1 +k) · · · (td+k)− t1 · · · td+h < (t1 +k) · · · (td+k), factors that are homomorphic
images of R/I, contradicting the assumption that x1, . . . , xd is a Q-sequence. �

We are now in a position to prove:

Theorem 3.9 (dichotomy in positive characteristic). Let x1, . . . , xd ∈ R, where
R has prime characteristic p > 0. Then hdx(R) must be either 0 or 1. Thus, either x is
a Q-sequence or else hdx(R) = 0. Moreover, hdx(R) = hdx(R).

Proof. Let I denote (x1, . . . , xd)R and let It denote (xt1, . . . , x
t
d)R as usual. Note that

if Q is any power of p, then I
[q]
t = Itq. If the elements do not form a Q-sequence we can

choose an integer t > 0 such that LI(R/It) = h < td. By Remark 3.7, we can replace t
by any larger integer, and so we may assume that t = q = pe is a power of p and that
R/Iq has a filtration in which the factors are h homomorphic images of R/I with h < qd.

We prove by induction on n that R/Iqn has a filtration in which the factors are hn

homomorphic images of R/I. The case n = 1 is given. At the inductive step, assume that
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one has such a filtration for R/Iqn . Let S denote R viewed as an algebra over itself using
the e th iterate F e of the Frobenius endomorphism. By taking images in S ⊗R R/Iqn

we obtain a filtration of S/IqnS with hn factors, each of which is a homorphic image of
S/IS. But S/Iqn = R/Iqn+1 , and S/IS = R/Iq. Thus, R/Iqn+1 has a filtration F with
hn factors, each of which is a homomorphic image of R/Iq. Since R/Iq has a filtration
with h factors each of which is a homomorphic image of R/I, we may refine the filtration
F to a filtration of R/Iqn+1 with h · hn = hn+1 factors, each of which is a homomorphic
image of R/I. This completes the induction.

Since
hn

(qn)d
= (

h

qd
)n and

h

qd
< 1, we have that lim

n→∞

LI(R/Iqn)
(qn)d

= 0.

For the final statement, note that if hdx(R) = 0 then hdx(R) ≤ hdx(R) must also be zero,
while if hdx(R) = 1, then hdx(R) = 1 by Theorem 3.8(b). �

Definition 3.10. Let x1, . . . , xd ∈ R and let I = (x)R. We say that Hd
I (R) is robust

for x if hdx(R) = 1. We show in §4 that if x1, . . . , xd is a system of paramters for an
equicharacteristic local ring (R, m), then Hd

I (R) = Hd
m(R) is robust for x (Theorem 4.7).

Example 3.11: Paul Roberts’s calculation of local cohomology. Let K be a field of char-
acteristic 0. Let

R = K[x1, x2, x3, y1, y2, y3]/(x2
1x

2
2x

2
3 − y1x3

1 − y2x3
2 − y3x3

3)

be the ring R3,2 considered in Question 0.1 of the Introduction, or its localization at
(x, y), or the completion of that ring. The main result of [Ro6] is that H3

(x)(R) 6= 0. This
provides an example of a nonzero local cohomology module that is not robust, since it
is clear that LI(R/I3) is at most 7, and so h3

x(R) ≤ 7/8. We do not know the values of
h3
x(R) and h3

x(R) in this case.

Example 3.12: the case of one element. Let R be any ring. It is quite easy to see that
x ∈ R is a latent regular sequence for modules if and only for all n, xn /∈ xn+1R. The
necessity of this condition is clear. For sufficiency note that J = xR+

⋃
n AnnRxn 6= R,

for if rx+ v = 1 and vxn = 0 then xn = xn · 1 = xn(rx+ v) = rxn+1. If we localize at a
minimal prime Q of J , then the image of x is not nilpotent, and x is in the maximal ideal
of RQ. We may now kill a minimal prime of RQ to obtain a quasilocal domain in which the
image of x is a nonzero element of the maximal ideal, and, hence, a nonzerodivisor. �

Example 3.13: the case of two elements. Let R be any ring and x, y ∈ R. Let I = (x, y),
and let R be the image of R in Rxy. Let Tx,y(R) denote the submodule of Rxy consisting
of all elements u that Inu ∈ R for some positive integer n. It is easy to verify that
S = Tx,y(R) is a subring of Rxy. Then x, y is a latent regular sequence for modules if
and only if (x, y)S 6= S, in which case x, y is a regular sequence on S. See §12 of [Ho5]
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(where Tx,y(R) is denoted Θ(R; x, y)). Thus, x, y is a latent regular sequence for modules
if and only if it is a latent regular sequence.

Example 3.14. Consider the polynomial ring R = K[s, t, u, v], where K is a field. Let
P = (s, t)R and Q = (u, v)R. Then J = PQ = P ∩ Q is the radical of the ideal I =
(x1, x2, x3)R, where x1 = su, x2 = tv, and x3 = sv−tu. In fact, (sv)2−x3sv−x1x2 = 0,
from which it follows that sv is integral over I, and, consequently, tu is integral over I as
well. It is clear that x1, x2, x3 is not a latent regular sequence. To see this, suppose it
were regular on an R-algebra S. Then either PS or QS must be a proper ideal of S or
else PQS = S and this forces IS = S. But, even in the non-Noetherian case, a proper
ideal generated by two elements cannot contain a regular sequence of length 3 ([Nor],
Theorem 13, p. 150).

We next note that by the Mayer-Vietoris sequence for local cohomology, we have an
exact sequence:

· · · → H3
P (R)⊕H3

Q(R)→ H3
I (R)→ H4

P+Q(R)→ H3
P (R)⊕H3

Q(R)→ · · · .

Sincde HI
P (R) = Hi

Q(R) = 0 for i > 2, this gives an isomorphism H3
I (R) ∼= H4

m(R) where
m = P +Q is the maximal ideal of R. Thus, H3

I (R) 6= 0.

Of considerable interest here is that we have not been able to determine whether
x1, x2, x3 is a Q-sequence in any characteristic! We can show that LI(R/In) lies between
cn2 and n3 where c is a positive constant, but have not been to get finer information. In
positive characteristic, we know that x1, x2, x3 is a Q-sequence if and only if h3

x(R) > 0,
which is equivalent to the condition that LI(R/It) > c′n3 for some positive constant c′

and all n, by Theorem 3.9. But we have not been able to prove any such lower bound.
Note that if we map R → K[s, t] as a K[s, t]-algebra by sending u 7→ 1 and v 7→ 1, x
specializes to s, t, s − t. Since R/I maps to K. This shows that LI(R/It) is at least
the K-vector space dimension of K[s, t]/(sn, tn, (s − t)n). Clearly, this is at least the
dimension of K[s, t]/(s, t)n, which is

(n+ 1
2

)
.

Likewise, we cannot determine whether LJ(R/Jn) is bounded below by cn3. Because
J2 ⊆ I ⊆ J , this would yield the corresponding fact for I. We feel that it is striking
that it is very hard to calculate quasilength even in quite simple examples involving a
monomial ideal in a polynomial ring in a small number of variables.

If it turns out that x1, x2, x3 is a Q-sequence, it would show that Q-sequences are not
necessarily latent regular sequences. If x1, x2, x3 is not a Q-sequence in characteristic p
for some p > 0, it would provide an example of a nonzero local cohomology module that
has content 0. Both possibilities are of interest.
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4. THE CASE OF A SYSTEM OF PARAMETERS

Our main objective in this section is to prove the following:

Theorem 4.1. Let x1, . . . , xd be elements of a Noetherian ring R. If the height of the
ideal I = (x1, . . . , xd)R is d, or if R maps to a Noetherian ring S such that the height of
(x1, . . . , xd)S is d, then hdx(R) > 0. Moreover, if we also know that R contains a field,
then hdx(R) = hdx(R) = 1.

By Proposition 2.5, the statement for S is immediate if we can prove the statement
for R. Moreover, we may localize at a minimal prime of I of height d, complete, and
kill a minimal prime of the resulting complete local ring such that the dimension of the
quotient is d. Hence, Theorem 4.1 reduces to the case where x1, . . . , xd is a system of
parameters in a complete local domain of Krull dimension d.

We first want to prove that in every excellent reduced equidimensional local ring R with
system of parameters x1, . . . , xd, we have hdx(R) = hdx(R). We need some preliminary
results.

Lemma 4.2. Let (R, m, K) be a local ring of dimension d ≥ 1. Let x1, . . . , xd be
a system of parameters for R. Let I = (x1, . . . , xd)R, and for each t = t1, . . . , td
consisting of positive integers, let It = (xt11 , . . . , x

td
d )R. Let M be any finitely generated

R-module such that dim (M) < d. Then

(a)

lim
t→∞

λ(M/ItM)
t1 · · · td

= 0.

(b) Suppose that c is part of a system of parameters for R, i.e., that dim (R/cR) =
dim (R)− 1. Then

lim
t→∞

λ(AnnR/It
c)

t1 · · · td
= 0.

Proof. (a) We use induction on dim (R) and dim (M). If dim (M) = 0 then the numerator
is bounded and the result is clear. This also handles the case where dim (R) = 1. Now
suppose that dim (R) ≥ 2. If the result holds for all the factors in a finite filtration of
M , then it holds for M : this comes down to the case of a filtration of length 2, say
0 ⊆M1 ⊆M2 = M . Let M = M/M1. The result follows from the exactness of

0→M1/(ItM ∩M1)→M/ItM →M/ItM → 0
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and the fact that we have a surjection M1/ItM1 � M1/(ItM ∩M1). Thus, there is no
loss of generality in assuming that M is a prime cyclic module. Since we may also assume
that it has positive dimension, it follows that at least one xi, say x1, is a nonzerodivisor
on M . Let M ′ = M/x1M . Then M/ItM has a filtration by t1 homomorphic images of
M ′/(xt22 , . . . . x

td
d )M ′ (whether x1 is a nonzerodivisor or not), and so

λ(M/ItM)
t1 · · · td

≤
λ(M ′/(xt22 , . . . , x

td
d )M ′)

t2 · · · td
.

The result now follows from the induction hypothesis applied to the ring R/x1R, the
system of parameters consisting of the images of x2, . . . , xd in this ring, and the module
M ′.

(b) Let S = R/It and J = AnnSc. Then S/J ∼= cS and so λ(J) = λ(S) − λ(cS) =
λ(S/cS). Thus, it suffices to show that

lim
t→∞

λ
(
R/(It + cR)

)
t1 · · · td

= 0.

This is part (a) applied to R/cR. �

The following result follows at once from Lemma 3.2 on p. 61 of [HH4].

Lemma 4.3. Let R be an excellent equidimensional reduced local ring and let c0 ∈ R
be any element such that Rc0 is Cohen-Macaulay. Then c0 has a power c such that for
every system of parameters x1, . . . , xd for R and for all k, 0 ≤ k ≤ d− 1,

c
(
(x1, . . . , xk)R :R xk+1

)
⊆ (x1, . . . , xk)R

and c kills the Koszul homology Hi(x1, . . . , xk; R) for all i ≥ 1. Moreover, such an
element c may always chosen to be part of a system of parameters for R.

Note that the final statement follows because the localization ofR at its minimal primes
is Cohen-Macaulay, and the Cohen-Macaulay locus is open in an excellent ring, so that
there exists an element c0 not in any minimal prime such that Rc0 is a Cohen-Macaulay
ring.

Lemma 4.4. Let R be an excellent equidimensional reduced local ring of Krull dimension
d and let c be chosen as in Lemma 4.2. Let x1, . . . , xd be any system of parameters, let
t = t1, . . . , td be positive integers and let It = (xt11 , . . . , x

td
d ). Then cdI lim

t ⊆ It.

Proof. Suppose that u ∈ I lim
t . Then we have that

xk11 · · ·x
kd

d u ∈ (xt1+k11 , . . . , xtd+kd

d )R,
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where the ki ∈ N. Let h be the number of ki that are positive. It suffices to show that
chu ∈ It. This reduces at once to the case where there is only one positive value of k, say
k1 (systems of parameters are permutable), for then we obtain that

xk22 · · ·x
kd

d cu ∈ (xt11 , x
t2+k2
2 . . . , xtd+kd

d )R,

and the result follows by induction on h. But if

xk11 u = r1x
t1+k1 +

d∑
j=2

rjx
tj
j

then
xk11 (u− r1xt1) ∈ (xt22 , . . . , x

td
d )R

and we have that
c(u− r1xt1) ∈ (xt22 , . . . , x

td
d )R

from which cu ∈ It follows at once. �

Note that in characteristic p, instead of cd as above, we may use a test element for tight
closure. In fact, it is the development of tight closure (cf. [HH1–3], [Hu] for background)
that inspired this argument.

Theorem 4.5. Let (R, m, K) be an excellent reduced equidimensional local ring of Krull
dimension d and let x1, . . . , xd be a system of parameters. Then hdx(R) = hdx(R).

Proof. It will suffice to show that

lim
t→∞

LI(R/I lim
t )− LI(R/It)
t1 · · · td

= 0.

From the short exact sequence

0→ I lim
t /It → R/It → R/I lim

t → 0

we have that
LI(R/I lim

t ) ≤ LI(R/It) ≤ LI(R/I lim
t ) + LI(I lim

t /It)

and so the difference in the numerator is bounded by

LI(I lim
t /It) ≤ λ(I lim

t /It).

Hence, it suffices to show that

lim
t→∞

λ(I lim
t /It)

t1 · · · td
= 0.
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Choose a parameter c for R as in Lemma 4.2. By Lemma 4.3, I lim
t /It ⊆ AnnR/It

cd for
all t, and the result now follows from Lemma 4.2(b). �

Recall that in any local ring (R, m, K), if x = x1, . . . , xd is a system of parameters
then Lech’s Theorem asserts that

lim
t→∞

λ(R/It)
t1 · · · td

= µ,

where µ is the multiplicity of the system of parameters x. See [Le].

Theorems 4.6 and 4.7 below complete the proof of Theorem 4.1.

Theorem 4.6. Let R be an equidimensional reduced local ring and x1, . . . , xd a system
of parameters for R. Then hdx(R) = hdx(R) ≥ µ/λ(R/I), where µ is the multiplicity of
the system of parameters x1, . . . , xd. If dim (R) ≤ 2, hdx(R) = hdx(R) = 1.

Proof. Since R/It has a filtration by LI(R/It) cyclic modules each of which is a homo-
morphic image of R/I, we have that λ(R/It) ≤ LI(R/It)λ(R/I), and so

LI(R/It)
td

≥ λ(R/It)
td

/λ(R/I).

Taking the limits of both sides as t→∞ yields the required result.

For the final statement it suffices to consider the case of a complete local domain, and
we may replace this ring by its normalization, which is Cohen-Macaulay. The result now
follows from Proposition 1.2(c). �

We can now show that for any equicharacteristic local ring R and system of parameters
x1, . . . , xd, Hd

(x)(R) is robust for x (see Definition 3.10).

Theorem 4.7. For an equicharacteristic local ring of dimension d, if x1, . . . , xd is a
system of parameters, then hdx(R) = hdx(R) = 1. Equivalently, every system of parameters
is a Q-sequence.

Proof. We first consider the case where the ring contains a field of characteristic p. If
there is a counterexample, we may map to a counterexample that is a complete local
domain. Then hdx(R) = hdx(R), and it suffices to show that hdx(R) = 1. By Theorem 4.6,
hdx(R) > 0, and then Theorem 3.9 implies that hdx(R) = 1.

We give a second proof for the characteristic p > 0 case. Again, we complete, and so
we may assume that R is a module-finite extension of a complete regular local ring A
which has x1, . . . , xd are a regular system of parameters. We know that hdx(A) = 1, since
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A is a regular and, hence, Cohen-Macaulay Noetherian ring. Moreover, it is known that
A → R splits over A (see [Ho1], Theorem 2, p. 31), and, hence, hdx(R) > 0 by Theorem
2.8. Again, hdx(R) = 1 then follows from Theorem 3.9.

To show the result in equal characteristic zero, we make use of the fact that whether
x1, . . . , xd is a Q-sequence is an equational condition, by Theorem 3.3. But the main
result Theorem 5.2 of [Ho2] on reduction to characteristic p > 0 then implies the desired
conclusion at once. �

Remark. The argument in the second paragraph of the proof above generalizes as follows.
Let R ⊆ S be a module-finite extension of rings of positive prime characteristic p, and
let x1, . . . , xd ∈ R. Suppose that R ⊆ S is x-split, i.e., that there is an R-linear map
Sh → R whose image contains a power of every xi, which holds if R→ S splits as a map
of R-modules. Then x1, . . . , xd is Q-sequence in R if and only if it is Q-sequence in S.
This is immediate from Theorem 2.8 and Theorem 3.9. �

Remark 4.8. If the direct summand conjecture fails, then for some local ring R we have
a system of parameters x1, . . . , xd such that xt+1

1 · · ·xt+1
d ∈ It. This yields a filtration

of R/It+1 with fewer then (t+ 1)d terms, which shows that hdx(R) < 1 in R. Hence, the
conjecture that hdx(R) = hdx(R) = 1 for every system of parameters of every local ring R
implies the direct summand conjecture.

The following completes the proof of Theorem 4.1.

Corollary 4.9. Let x1, . . . , xd ∈ R, where R is a Nooetherian ring containing a field.
A necessary condition for x1, . . . , xd to map to elements generating an ideal of height d
in some Noetherian ring S is that hdx(R) > 0. If R contains a field, it is necessary that
hdx(R) = 1.

Proof. We may replace S by its localization at a minimal prime of (x)S of height d The
result is now immediate from Proposition 2.5 and Theorems 4.6 and 4.7. �

Remark 4.10. Consider the ring R = Rd,t defined in Question 0.1 of the Introduction. (In
mixed characteristic p, one may alternatively replace R by R/(X1−p).) If one could prove
that hdx(R) = 0, then Corollary 4.9 shows that the images of the Xi in R cannot map
to a system of parameters in a local ring. This establishes the monomial conjecture and,
hence, the direct summand conjecture. (In mixed characteristic, if one uses R/(X1 − p)
it establishes the monomial conjecture in mixed characteristic for systems of parameters
containing p, but Theorem 6.1 of [Ho4] implies that this suffices for the general case.) By
Corollaries 6.10 and 6.11 of [Ho4], we have that Hd

I (R) = 0 in characteristic p, and also
if d = 2 in all characteristics, so that hdx(R) = 0 in those cases. If d ≥ 3, we do not know
whether hdx(R) = 0 in equal characteristic 0, nor in mixed characteristic p.
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