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This book contains an exposition of several topics from commutative algebra and alge-
braic geometry that straddle the border between the two subjects. We first describe some
of the ideas from intersection theory that are needed: we give here a geometric descrip-
tion along the lines of [F] (cf. also [FM], [BFM]). We then survey some questions in local
algebra that, despite first appearances, turn out to be intimately related to intersection
theory. Finally, we discuss specifics about what is done in the book under review. It is
worth pointing out right away that several of the subtle problems in local algebra that
Roberts settled (handling the last and most difficult case, where the ring does not contain
a field) can be settled using the Frobenius endomorphism in positive characteristic, and
either by analytic methods or by reduction to positive characteristic if the ring contains a
field of characteristic zero. However, none of these methods seems to work when the ring
does not contain a field.

One of the basic ideas of intersection theory is to define a graded abelian group, the
Chow group, A,(X) of a variety (or, more generally, of a scheme) X, spanned by equivalence
classes of subvarieties (the equivalence is an algebraic analogue of homotopy), and then
have certain “intersection operations” acting on these classes producing an answer well-
defined up to equivalence. The Chern classes, Chern characters (here one needs to allow
rational coefficients) and other intersection operators that arise may be thought of simply
as operators on all Chow groups enjoying certain kinds of functorial behavior. Where
do these intersection operations come from? Sometimes one is simply intersecting with
a subvariety or more general closed set — the reader should be warned, however, that
in order to get well-defined operations it may be necessary to impose conditions on the
closed set. However, one hopes, if the ambient variety is smooth, to be able to intersect
with any closed subvariety. More caution is needed here. Intersecting a subvariety V with
itself in this theory does not give anything like the same subvariety back. Since one is
working with equivalence classes one should think instead of replacing one of the copies
of V' by something equivalent that meets the original V' in a “better” (roughly speaking,
more general) way: the intersection will, typically, be smaller than V.

In classical versions of intersection theory practitioners worried a great deal about prov-
ing “moving lemmas” that allowed one to show that there really did exist a variety equiv-
alent to one specified but in sufficiently “good” position relative to another. It turns out
that such issues can be avoided, and a wonderful treatment along different lines is given
in [F].

A very important point is that certain subvarieties of codimension one are closely related
to line bundles, and that this enables one to replace the operation of intersecting with
subvarieties of codimension one by the operation of restricting a line bundle. By pursuing
this idea one can eliminate moving lemmas and even get a theory that works in contexts
where there is no base field, such as algebraic schemes over a discrete valuation ring or some
other regular ring. Moreover, one can associate intersection operators called Chern classes
with arbitrary vector bundles (equivalently, locally free sheaves), not just line bundles:
this is analogous to what is done in topology.



The Chow group A,(X) = @, Ax(X) is simple to define formally: to get Ay (X) one
starts in degree k with the free abelian group generated by the subvarieties of dimension!
k, and then one kills certain divisors: for each subvariety of dimension k + 1, say W,
and each nonzero element f of the field of rational functions on W, one kills the divisor,
div f, of f, which is defined to be ), (ordy f)[V] as V runs through the finitely many
k-dimensional subvarieties of W for which f has nonzero order.?

Proper morphisms in algebraic geometry are an analogue of the notion from complex
analysis (inverse images of compact sets are compact), but are defined via the property
of taking closed sets to closed sets even after a base change. Proper morphisms, includ-
ing closed immersions, induce a functorial pushforward on Chow groups that preserves
degree.® Flat morphisms with a well-defined relative dimension 7, including open im-
mersions and structural maps of bundles, induce a contravariant flat pullback* on Chow
groups that shifts degrees upward by r. The intersection operators that one constructs
have certain standard compatibilities with these pullbacks and pushforwards, including a
so-called projection formula: we say a bit more about this below.

The intersection operators determined by line bundles play a central role, and we want
to describe these next. The main point is that, given a line bundle L and a subvariety V
of dimension k, one gets a class in Ag_1(V) simply by restricting the line bundle to V.
This idea enables one to define ¢1(L), the first Chern class of L. Why does a line bundle
on V determine a class a in A1 (V)7

To make the connection, we first think about going in the other direction. Suppose
one has an effective Cartier divisor D on V, which simply means a closed subvariety of
codimension one defined locally by a single equation, i.e., by the vanishing of a single
regular function. For a sufficiently fine open cover, on each open set one can choose a
function defining D. On overlaps of pairs of open sets in this cover one has two choices,
and there is a unit that multiplies one choice to the other. These units give the transition
data to define a line bundle. It is natural to associate the class of the effective Cartier
divisor (counting its components with suitable multiplicities) with this line bundle, and
this turns out to be independent of choices, up to rational equivalence.

To describe how one may associate a class « € Ai_1(V') with a line bundle L that may
not come from an effective Cartier divisor one may make use of the process of blowing up.®

1Tn the classical case of varieties over a field Krull dimension is used, but a somewhat different notion
of dimension is used in the more general case of schemes of finite type over a regular base.

2To determine the order, one assigns a one-dimensional local ring A = OV7W to V: this may be
thought of as the regular functions on an open affine that meets V, localized at the prime that defines its
intersection with V. The order of an element f of A — {0} is the length of A/fA: this function extends to
a group homomorphism from the nonzero elements of the fraction field to the integers.

31f f: X — Y is proper and V C X is a variety than fi([V]) = d[W] with W = f(V) when dim W =
dim V', where d is the degree of the function field R(V') over R(W); if dim W < dim V' then f([V]) = 0.

4f f: X — Y is flat, and V C Y is a variety, f*([V]) is [f~1(V)]:= zZec length((f)zj_l(v))[Z],
where C is the set of irreducible components of f~(V) (for each Z, dim Z = dimV + r).

5 Blowing up a closed subscheme Z of X is a very general device that produces a map f:Y — X that
is a proper morphism and an isomorphism of Y — f~1(Z) — X — Z. If X is a variety, the map ¥ — X
is both proper and birational. A key point is that f~!(Z) is an effective Cartier divisor on Y. If one
blows up a (closed, rational) point in A™ its inverse image in the blow-up Y is a copy of P"~!: roughly
speaking, in Y the point has been replaced by the set of lines in A” through it.
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For a suitable blow-up f:Y — V, any line bundle has a pullback of the form L; ® L5 1
where the L; are line bundles corresponding to effective Cartier divisors. The L; are
associated with classes 3; € Ai_1(Y) as described earlier, and the class « that we seek
will be f*(ﬁl) o f*(ﬁZ)

We can now describe Chern classes of arbitrary vector bundles F on X. One can choose
a proper flat morphism 7:Y — X such that 7#*FE has a filtration by line bundles. The
ith Chern class c¢;(F) of E can be viewed as being determined® by the ith elementary
symmetric function of the first Chern classes of these line bundles. ¢;(F) is an operator
that lowers degrees by ¢ on A,(X). Actions of various Chern classes and characters are
often indicated with the symbol N. An example of the kind of projection formula mentioned
earlier is that if X — Y is proper, E is a vector bundle on Y, and o € A,(X), then the
fle(FE) N a) = a(B)N fila).

Once one has defined Chern classes of vector bundles one can show that if £ is the total
space of a vector bundle over a base X, then A,(X) = A,(F) via flat pullback: the map
shifts degrees by the rank of E. The inverse of this map can be thought of as a Gysin
homomorphism that intersects arbitrary classes in A,(F) with X, embedded as a closed
set in F via the zero section of the vector bundle.

When X — Y is a regular embedding of codimension d (so that X is determined, locally,
by the vanishing of an ideal generated by a regular sequence of length d — the case where
d = 1 is that of an effective Cartier divisor) one wants, roughly speaking, to intersect
arbitrary classes in A,(Y) with X and get classes in A,(X): the graded degree should
drop by d. Gysin homomorphisms of this sort can be defined by systematic exploitation of
the idea of deformation to the normal cone. One finds a flat family over a line almost all of
whose fibers are simply the original map X — Y, but at an isolated point the fiber is the
inclusion of X in the normal bundle to X in Y, a vector bundle over X. The problem of
constructing the general Gysin homomorphism can then be reduced to the vector bundle
case described above.

Deformations of this sort are easy to describe algebraically in the affine case. Suppose
that Y corresponds to Spec R and that X is defined by an ideal I. The algebra R[I/T,T] C
R[T,1/T], where T is an indeterminate, is flat over K[T']. If one specializes T to a nonzero
scalar in K the fiber is R, while if one specializes T to zero the fiber is the associated
graded ring grfR = R/I®I/I?®1?/I>&® ---. The technique used in [F] is a globalization
of this construction. When I is locally generated by a regular sequence, Spec (gr ;R) is a
vector bundle over Spec R/I.

When X is a smooth variety of dimension n over a field K, the diagonal map of §: X —
X x X is a regular embedding, and the problem of intersecting the classes associated with
two subvarieties V and W within X may be replaced by the problem of intersecting V' x W
with A = §(X), the diagonal in X x X. For smooth X, if one lets A*(X) be defined by
taking A*(X) = A,,_;(X) for every i, then the intersection product gives the structure of
a graded commutative associative ring to A*(X), the Chow ring.

There is an important further point to be made here: in many instances, one can get

60ne can choose m, a composition of structural morphisms of projectivized vector bundles, such that
et Au(Y) = Au(X) is onto (and 7% : A (X) — A«(Y) is a split monomorphism). One has ¢;(E) Na =
(¢ (m*E) N B) where 74(8) = a. The formal definition is different from this characterization.



intersections to be defined in a rather small ambient closed subscheme, say Z, of X. The
class in A,(Z) pushes forward to the class in A,(X). This idea is pursued vigorously in
[F], leading to “refined” Gysin homomorphisms and intersection operators of many sorts.
For example, when one intersects two pure-dimensional subschemes V' and W of a smooth
variety X, the intersection can actually be obtained as a class in A,(VNW). In particular,
if V and W meet in an isolated point, one can replace X, V, W by their intersections
with an affine open neighborhood of this point, and so assume that the intersection, set-
theoretically, is P. If V and W meet properly, which in this case means that the sum of
their dimensions is the dimension of X, then one can assign an intersection multiplicity to
this point P in V N the intersection is given by a class o in A¢(P), which turns out to
be Z[P], and the intersection multiplicity is the coefficient of [P] in .

One can also define Chern characters: one allows rational coefficients, and then the
Chern character of a vector bundle that has a filtration by line bundles is the sum of the
formal exponentials of first Chern classes associated with the line bundles. Although one
is substituting the operators on A,(X) in a formal power series, the higher order terms
may be dropped, since they will act by shifting degrees down by more than the dimension
of X, and so are zero. The formula can be rewritten in terms of the Chern classes of the
vector bundles and makes sense even when there is no filtration by line bundles. One can
also define the Todd class td E' of a vector bundle E similarly: if one has a filtration by
line bundles, it is the product of the formal power series for /(1 — e~%) evaluated on the
first Chern classes of the line bundles in the filtration, and the definition can be extended
to the general case as for Chern characters. Again, one needs rational coefficients here.
When X is smooth over a field K, its Todd class is the Todd class of its tangent bundle.

In this context one can prove Riemann-Roch theorems and Riemann-Roch formulas of
a very general sort. These can be rather technical to state: one may be starting with
a complex of vector bundles and a map of singular varieties. But if one has a proper
morphism of smooth varieties, and just one vector bundle, these results correspond to the
Grothendieck Riemann-Roch theorem. The theorem can be thought of as remedying the
failure of proper pushforward on vector bundles (defined, thinking K-theoretically, as the
alternating sum of all the direct images) to commute with the Chern character map. The
cure is to multiply by the Todd class of the tangent bundle, and then one gets an operator
that commutes with proper pushforward.

An important part of the theory presented in [F] is that there is a theory of localized
Chern characters in the following sense: given a bounded complex of vector bundles F,
on Y that is exact off a closed set X, if & € A,(Y)g one can assign a class chx (F,) N a €
A.(X)g that pushes forward to >, (—1)*ch(E;) N in A.(Y)g and has all the naturality
properties that one could possibly hope for: the definition, based on the so-called “graph
construction,” is extremely complicated.”

"However, the localized Chern character may be characterized axiomatically by (i) compatibility with
proper morphisms and open immersions, (ii) additivity on short exact sequences of bounded complexes
that are exact off X, (iii) the fact that for vector bundles E’ on Y, ch¥ (E’ ® E,) = ch(E’|x)ch) (E,),
together with, finally, (iv) the fact that if D is an effective Cartier divisor on a variety Y and E, is the
length one complex 0 — Oy (—D) C Oy — 0 (where Oy (—D) is simply the sheaf of ideals in Oy that
defines D, so that Hi(Ee) = 0 and Ho(Es) = Op), then ch}(Es) N [Y] = (td (N))~! N [D], where N is
the normal bundle to D in Y, which is the same as Oy (D)|p; Oy (D) = Oy (-D)~1.



The localized Chern characters lead to Riemann-Roch theorems and formulas for sin-
gular X. Suppose, for simplicity, that X is locally closed in a projective scheme over
S = Spec K, i.e., X is quasi-projective over S. Let Ky(X) be the Grothendieck group of
coherent sheaves on X. One can define a map 7x : Ko(X) — A.(X)q as follows. Let F be
a coherent sheaf on X. Embed X as a closed subscheme in some M smooth over S, and
resolve the pushforward sheaf of F to M by a finite complex E, of locally free sheaves on
M. Let T be the tangent bundle of M over S restricted to X. The value of 7x on [F] is
defined to be td (T) - ch (E,) N [M] € A,(X)g, which is independent of the choice of M
and the resolution E,. The compatibility of the map 7x with proper morphisms together
with its other functorial properties yields a very good Riemann-Roch theorem.

One can also develop an important Riemann-Roch formula as follows. Let Eq be a
complex of locally free sheaves on X that is exact off a closed Z C X and F a coherent
sheaf on X. Then the homology sheaves H;(Fo ®0, F) are supported on Z, and so
define classes [H;(Ee ® F)] in K¢(Z). The Riemann-Roch formula asserts that, in A.(Z)q,
> (=12 ([Hi(Ee ® F)]) = chy (Ba) N 7x (F).

Roberts used a version of this formula to solve several important problems in local
algebra. For this, the theory described above needs to be generalized: one allows K to be
a suitable regular local ring instead of a field. In order to build the theory in this generality
(or even greater generality: [F] develops the theory for schemes of finite type over any base
scheme that is regular) one needs to use a different notion of dimension from the usual
Krull dimension — a notion that has better stability properties under passing to dense
open sets. The notion that is used does agree with Krull dimension for finitely generated
algebras over a field.®

We now want to change tacks and discuss some conjectures and theorems in local algebra
many of which may seem to have nothing whatsoever to do with intersection theory. But
they are all connected with intersection theory, and for those that are known in all cases,
deep results in intersection theory have been the key to their proof. The statements
discussed below, except (14), are all known to be true for rings containing a field. Some,
thanks to Roberts, are known in complete generality. But many remain conjectures in
the case of local rings of mixed characteristic (formal power series in n variables over
the p-adic integers is an example of one such ring), where the fraction field of the ring
has characteristic zero but the residue field has prime characteristic p > 0 because the
integer p is in the maximal ideal. The discussion that follows their statements will make
the situation clear. Many, but not all, are discussed in Roberts’ book. The ones that
are known in all cases were proved by Roberts in mixed characteristic using, in part, the
intersection theory presented in [F| that was described above. However, (14) is not known
even for rings containing a field, even in positive characteristic.

8To be precise, if the regular base scheme is S and V is an integral scheme of finite type over S such
that the closure of its image in S is T, one defines dimg V' as the sum of the transcendence degree of
the extension of function fields from that of T to that of V' minus the codimension of T in S. E.g., if
S = Spec A, T = Spec A/P, and V = Spec B, so that S < T <« V corresponds to A — A/P C B, this
dimension is the transcendence degree of the fraction field of B over that of A/P minus the dimension of
the local ring Ap. This theory is set up so that dimg S = 0. Note that if S = Spec A where A is a regular
local ring that is not a field, f is a nonzero element of the maximal ideal of A, and V' = Spec Ay, then
dimV =dim S — 1 (using Krull dimension) but dimg V' = dimg S.



In all of the following R is a local ring, i.e., a Noetherian ring with a unique maximal
ideal, unless otherwise specified, and M (and N) are finitely generated R-modules.

(1)

(2)
(3)

(4)

(10)

(11)

(12)

The zerodivisor theorem. If M # 0 has finite projective dimension (i.e., M has
a finite projective resolution: the projective dimension is the length of the shortest
such) and r € R is not a zerodivisor on M, then r is not a zerodivisor on R. (Cf.
[Aus], [PS1].)

Bass’ question. If M # 0 and has a finite injective resolution, then R is a Cohen-
Macaulay ring. (Cf. [Bass].)

The intersection theorem. If M ®r N # 0 is has finite length, then the Krull

dimension of N (i.e., of R modulo the annihilator of N) is at most the projective
dimension of M. (Cf. [PS1].)

The new intersection theorem. Let 0 — G,, — --- — Gy — 0 denote a finite
complex of free modules over R such that @, H;(G,) has finite length but is not 0.
Then the Krull dimension of R < n. (Cf. [PS2], [Rol].)

The improved new intersection conjecture. Let 0 — G,, — --- — Gy — 0
denote a finite complex of free modules over R such that H;(G4) has finite length for
i > 0 and Ho(G,) has a minimal generator that is killed by a power of the maximal
ideal. Then dim R < n. (Cf. [Ho3].)

The direct summand conjecture. If R C S is a module-finite ring extension with
R a regular ring (R need not be local, but the problem reduces at once to the local
case), then R is a direct summand of S as an R-module. (Cf. [Hol-3].)

The canonical element conjecture. Let x1, ..., x4 be a system of parameters for
R, let G4 denote a projective resolution of the residue field of R with Gy = R, and
let Ko denote the Koszul complex of R with respect to x4, ..., xq. Lift the identity
map R = Ky — Gy = R to a map of complexes. Then, no matter what the choice
of system of parameters or lifting, the last map from R = K4 — G4 is not 0. (Cf.
[Ho3|, [Du2].)

Existence of balanced big Cohen-Macaulay modules conjecture. There is a
(not necessarily finitely generated) module W over R such that mpW # W and every
system of parameters for R is a regular sequence on W. (Cf. [Ho2].)

Cohen-Macaulayness of direct summands conjecture. If R is a direct summand
of a regular ring S as an R-module, then R is Cohen-Macaulay (R need not be local,
but the result reduces at once to the case where R is local). (Cf. [HR], [Bou|, [HH1].)

The vanishing conjecture for maps of Tor. Let A C R — S be homomorphisms
where R is not necessarily local (one can reduce to that case, however), with A,
S regular and R module-finite over A. Let W be any A-module. Then the map
Tor#(W, R) — Tor{*(W, S) is zero for all i > 1. (Cf. [HH1], [HH3], [Rang].)

The strong direct summand conjecture. Let A C R be a map of complete local
domains, and let QQ be a height one prime ideal of R lying over © A, where A and A/xA
are regular. Then zA is a direct summand of Q as an A-module. (Cf. [Rang].)

Existence of weakly functorial big Cohen-Macaulay algebras conjecture.
Let R — S be a local homomorphism of complete local domains. Then there exists an



R-algebra Bg that is a balanced big Cohen-Macaulay algebra for R, an S-algebra Bs
that is a balanced big Cohen-Macaulay algebra for S, and a homomorphism B — Bg

BR —_— BS
such that T T commutes. (Cf. [HH3].)

R —— S
(13) Serre’s conjecture on multiplicities. Suppose that R is regular of dimension d,
and that M @ N has finite length. Then x(M, N), defined as the alternating sum
of the lengths of the modules Tor (M, N), is 0 if dim M + dim N < d and positive if
the sum is equal to d (the sum cannot exceed d: that was proved by Serre). (Cf. [Se].)

(14) Small Cohen-Macaulay modules conjecture. If R is complete, then there exists
a finitely generated R-module M # 0 such that some (equivalently, every) system of
parameters for R is a regular sequence on M. (Cf. [Ho2].)

(1) was conjectured in [Aus], while (2) was raised as a question in [Bass]. These state-
ments may seem unrelated, both to each other and to intersection theory, but in [PS1]
both were shown to follow from (3), and (3) was proved in characteristic p > 0 and in
certain cases for rings containing a field of characteristic 0 by reduction to characteristic
p. The general case of (3) reduces to the case where N = R/I is cyclic, and if M is cyclic
as well, one is studying R/(I +.J) =2 M ®r N, and Spec R/(I + J) is the scheme-theoretic
intersection of the closed subschemes defined in Spec R by I and J. (4) is a generalization
of (3) that was proved by Peskine and Szpiro and, independently, by Roberts (cf. [PS2],
[Rol]). In [Ho2], (8) was proved in equal characteristic and used to prove (1) — (4) in
equal characteristic. (5), (6), and (7) are known to be equivalent in the open case (mixed
characteristic), and to follow from (8) in general. (Cf. [Hol-3], [Du2].) Interest in (5) was
sparked by [EvG] in their proof of another homological conjecture, the syzygy theorem, in
equal characteristic. Roberts gave an analytic proof of (5) in characteristic 0 in [Ro].

Tight closure theory has given a new perspective on the local homological conjectures
and has led both to new proofs, sharper theorems, and further conjectures. We refer the
reader to [HH1] and [Hu| for more detail. Closely related is the existence, in a weakly
functorial sense (cf. (12)), of big Cohen-Macaulay algebras in characteristic p > 0 first
proved in [HH2] and extended to equal characteristic zero in [HH3], where many applica-
tions of the existence of weakly functorial big Cohen-Macaulay algebras are explored. The
very powerful vanishing conjecture for maps of Tor given in (10) can be proved in equal
characteristic using either tight closure theory or the existence of these algebras.

In very recent work [Rang] it is shown that (11) and (10) are equivalent. Thus, (11),
which is a new conjecture, may be viewed in one way as a rather new theorem in the equal
characteristic case, while in mixed characteristic, where both (11) and (10) are open, it
provides a very down-to-earth approach for attacking (10).

Serre’s conjecture on multiplicities has been an open question since the publication of
[Se], and has been a strong impetus for research in local algebra. It has been long known
that the existence of finitely generated Cohen-Macaulay modules (14) would suffice to
prove positivity in the case where intersection multiplicities are supposed to be positive,
but there has been little progress on the existence of finitely generated Cohen-Macaulay



modules: they are not known to exist in dimension 3, even in equal characteristic. Roberts
[Ro3] and Gillet-Soulé [GS], independently, were the first to prove the vanishing part of
the conjecture in full generality in mixed characteristic. Roberts used the ideas of [F], and
the proof is given in the work under review.

The following diagram summarizes these implications:

13
/\
14 1
N\ /!
8 — 7605 — 4 — 3
/" / N\
12 — 11,10 2

N\
9

where statements separated by commas (7,6,5 in one case and 11,10 in the other) are
equivalent. Notice that this graph is connected: these questions are all related and form
part of a very large picture.

Summary of status: (1) — (4) are known in all cases. (5) — (13) are known for rings
containing a field but not in mixed characteristic (but in the case of (13) only the positivity
is an open question). (14) is not known except in dimension at most two, even if the ring
contains a field, regardless of characteristic.”

The new intersection theorem (4) (and hence all of (1) — (4)) was proved by Paul Roberts
in [Ro4] (see also [Ro5]) and the proof is given in his book: it depends on the Riemann-Roch
formula as well as a subtle result on the behavior of lengths in characteristic p > 0.

Roberts’ book gives an exposition of that part of the material from [F], as well as
topics in commutative and homological algebra, needed to settle (1)—(4) and also the
vanishing statement in (13) (i.e., the case where the sum of the dimensions of M and N
is smaller than d).'° Roberts’ treatment is very much an algebraic one: for example, a

9Some conjectures discussed in [PS1] have turned out to be false: [Heit] gives a counterexample to
the rigidity conjecture. [DHM] gives an example where the intersection of multiplicity (defined using Tor)
of a pair of modules, one of finite length and of finite projective dimension (but the other not of finite
projective dimension) is negative. Two other questions raised in [PS1] remain very much open. Cf. [PS1,
Th. 0.10]. Suppose that R is local, and that M, N are nonzero finitely generated modules with M of
finite projective dimension. One question asks whether the length of a maximal regular sequence in the
annihilator of M is equal to dim R — dim M. The other is this: suppose, moreover, that M ® g N has finite
length. Is dim M + dim N < dim R? Affirmative answers to these two questions together imply (3) on the
list above (which is now known, [Ro4-5]). An affirmative answer to the second question would strengthen
the parenthetical comment for the regular case made in (13). But these questions are open even in equal
characteristic.

10The work of de Jong on alterations [DelJ] has been used by Gabber, as explained in [Ber], to give a
new proof of the vanishing part of (13), and to prove non-negativity of x(M, N) when the dimensions of
the modules add to d: positivity in that case remains, in general, an open question.



sheaf on Proj A, where A is a graded ring, is defined as an equivalence class of graded
modules. The book is remarkably self-contained. In an astonishingly brief space, the
author develops a huge amount of material and gets to proofs of some very hard, very deep
theorems. Unavoidably, in making this material available to algebraists with a minimum
of machinery from algebraic geometry, some geometric insight is lost. The use of graded
and multigraded algebras replaces geometry. Many of the main results of [F| are proved
in the context where the author needs them, including a local Riemann-Roch formula, the
proof of which makes use of a splitting principle for complexes.

The first part of the book develops the basic theory of the Chow group and prerequisites
from homological algebra and the theory of local Noetherian rings that are needed in the
later chapters. Among the less standard topics are discussions of dualizing complexes,
the uses of the Frobenius endomorphism and of Hilbert-Kunz and Dutta multiplicities,
and there is a very brief discussion of tight closure theory and reduction of problems
from equal characteristic zero to positive characteristic p. The second part of the book
contains a highly algebraic treatment of projective schemes, Chern classes, Grassmanni-
ans, and of local Chern characters. Versions of the Riemann-Roch theorem and the local
Riemann-Roch formula are proved. The final chapter includes several applications, includ-
ing Roberts’ proofs of the vanishing part of Serre’s conjecture and his proof of the new
intersection theorem, both in mixed characteristic. There are exercise sets at the ends of
most chapters.

This book will be of enormous value to algebraists who want to gain an understanding of
the powerful techniques presented in [F|, and how they can be applied to local algebra. It
will likewise be of great service to algebraic geometers who want to gain some understanding
of the subtler parts of local algebra. I hope that all of its readers will go on to a fuller
exploration of both the ideas of intersection theory and the ideas from local algebra that
are introduced in Roberts’ book.
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