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1. INTRODUCTION

Throughout this paper, unless otherwise specified, all rings are assumed to be commu-
tative, associative, with identity, and all modules are assumed to be unital. In [HH4], the
author, jointly with Craig Huneke, introduced the notion of tight closure for submodules
of finitely generated modules over certain Noetherian rings. The definition is first made
in characteristic p using the action of the Frobenius endomorphism. A notion for finitely
generated algebras over a field of characteristic zero is then obtained by reduction to char-
acteristic p. No satisfactory notion in mixed characteristic has yet been proposed. Tight
closure theory has produced a host of new results and improvements of old results. We
refer to the introductions of [HH1-4, 6, 8-10] for more detail, and to these papers as well
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as [Ab1-2, AHH, FeW, HH11, Hul-2, Gla, Sm1-3, Vel] and [Wil] for the full development
of tight closure theory. The applications include invariant theory (for background, cf. [B],
[Hr1-2], [Ke]), the Briancon-Skoda theorem (for background, cf. [BrS, LS, LT, Sk]|) and
the local homological conjectures (for background, cf. [Du, EvG1-3, Hol-3, 5-7, PS1-2,
Rol-5, SJ).

The existence of a “sufficiently good” parallel theory in mixed characteristic would settle
many long standing conjectures.

Our objective in this paper is to introduce a new closure operation, solid closure, defined
a priori in a characteristic-free manner. The author originally hoped that this theory might
play, in mixed characteristic, a role analogous to that of tight closure theory in equal
characteristic. Solid closure does turn out to agree, in characteristic p, with the notion of
tight closure if the ring is well-behaved (for example, if the ring is finitely generated over an
excellent local ring, or if RP? C R is module-finite (cf. [Ku2]), or, more generally, if the ring
has a completely stable weak test element in the sense of §6 of [HH4]; see §8). However,
an example of Paul Roberts [Ro6] proves that, in equal characteristic zero, solid closure is
“too big.” Cf. (7.22-4). Roberts’ example shows, for example, that in the ring K[[z,y, z]]
or K[x,y, 2], where K is a field of characteristic zero and x,y, z are formal indeterminates,
the element 22y?2? is in the solid closure of the ideal (2?,4?, z*). Thus, ideals of regular
rings of dimension three need not be solidly closed in equal characteristic zero, which is
quite different from the situation in positive characteristic.

However, it is still not clear whether every ideal is solidly closed in a regular ring of
mixed characteristic. Oddly, if (V,pV) is a discrete valuation ring of mixed characteristic
p then 2%y?2? is not in the solid closure of (z*,y*,2%) in V[[z,y, 2]] (but we do not know
whether the ideal is solidly closed), while (z*,y%, 2*) is solidly closed in Z[z,y, z]. We do
not know whether (p?, 22, y?) is solidly closed in V[[z,y]] (nor in V[z,y]). Roberts’ result
is discouraging, but in some ways it makes the study of solid closure even more intriguing.
The reader is referred to §7 and §13 for further discussion of the issues raised here. We
note one more point: as a consequence of these remarks, solid closure does not commute
with localization, because the solid closure of (z%,4?%,2%) in Q[z,y, 2] is not the expansion
of the solid closure of (23,4, 2%) in Z[z, y, 2].

Regardless of whether every ideal turns out to be solidly closed in regular rings of mixed
characteristic (that would imply the direct summand conjecture in general), solid closure
has a number of aspects that make it worthwhile to study. It gives a novel perspective on
tight closure in characteristic p that leads to new results: e.g., Theorem (5.9), viewed as a
result about tight closure (this is done explicitly in Corollary (8.8)), is new. Although ideals
of regular rings are not solidly closed in general, the solid closure of an ideal is contained
in the integral closure and is usually much smaller, even in equal characteristic zero and in
mixed characteristic. For example, if V' is the ring of p-adic integers, x = x1, ... ,z,, and
R = V|[[x]], every ideal of R containing p is solidly closed, while the integral closure of the
ideal (p,zf, ... ,2%) is pR + (x)*R. Moreover, the solid closure point of view leads to a
characterization of tight closure in complete local domains of characteristic p in terms of
contracted expansions from a suitable balanced big Cohen-Macaulay algebra: see Theorem

(11.1).

Insofar as possible, this manuscript is self-contained. We shall not need to make much
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use of the theory of tight closure except in §8 and §11, where we compare the two theories,
and in those sections we can easily spell out just what is needed.

We next give a brief description of the notion of solid closure for the case of ideals. First
note that when we refer to a “local ring (R, m, K)” we mean a Noetherian ring R with a
unique maximal ideal m and residue field K = R/m.

(1.1) Definitions. If R 1s a domain, we shall say that an R-module M 1is solid if
Hompr(M,R) # 0. We shall say that an R-algebra S is solid if it is solid as an R-module.

(1.2) Definition. Let I C R be an ideal of a Noetherian ring R and let x € R. If R is a
complete local domain we say that x is in the solid closure I* of I if there exists a solid
R-algebra S such that © € 1S. (Note: the notation I™ was used for the solid closure of
I in an earlier version of this manuscript.) More generally, x € I* if for every complete
local domain B arising as the quotient by a minimal prime of the completion of Ry, for
some mazimal ideal m of R, the image of x in B is in (IB)*.

There is a similar notion for submodules of a finitely generated R-module: see (5.1).

(1.3) Remarks. A module-finite extension S of a Noetherian domain R is always a solid
R-algebra. However, in more general situations, even when S and R are both finitely
generated over a base field K, it is a subtle and difficult problem to decide whether S is
a solid R-algebra for specific choices of R and S. The problem is that the elements of
Homp(S, R) correspond to the solutions of an infinite system of linear equations over R
(although only countably infinite in the main case, where S is finitely generated as an
R-algebra).

We view the condition that S be solid as an R-algebra as a nondegeneracy condition.
The reason for the choice of the term is that if R is normal and S is a solid R-algebra
then S does not contain any elements of the fraction field of R that are not in R: see
Proposition (2.9).

The manuscript is structured as follows. In §2 we develop the basic properties of solid
modules and algebras. In §3 we do likewise for formally solid modules and algebras over
a Noetherian ring: this notion is convenient in studying solid closure, since the latter is
defined in terms of passage to various complete local domains associated with R. In §4
we introduce the notion of a generic forcing algebra for a triple (M, N,u) where N C M
are modules and u € M; these map to the other algebras S such that 1 ® u is “forced”
into Im (S ® N — S ® M). This enables us to characterize when u is in the solid closure
N*yu of Nin M as follows: u € N* ; iff the triple (M, N,u) has a formally solid generic
forcing algebra. These ideas and a number of others are explored in §5, where the basic
properties of solid closure are proved. Many of the results are parallel to those of [HH4]
for tight closure, but the proofs are different. In some instances we have referred to [HH4]
for “isolated” arguments that can be read without reference to other parts of [HH4].

In §6 we study minimal solid algebras (they have no proper solid quotients), and exhibit
better behavior than other solid algebras in a number of useful ways. In §7 we study rings
in which every ideal is solidly closed, producing a theory parallel to the theory of weakly
F-regular rings initiated in [HH4]. In §8 we show that solid closure agrees with tight
closure for sufficiently good rings of characteristic p, including algebras essentially of finite
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type over an excellent local ring. In §11 we show more: over a complete local domain R,
an element is in the tight closure of an ideal if and only if it is in its contracted expansion
from a big Cohen-Macaulay algebra, and a big Cohen-Macaulay algebra is solid. This
result also enables us to see that a certain equal characteristic zero notion of tight closure
is contained in the solid closure. Moreover, the arguments give a new proof of the existence
of big Cohen-Macaulay algebras in characteristic p which is simpler than the argument of
[HHT7]. However, it does not yield the weakly functorial behavior which is a very important
consequence of the results of [HHT7]: see [HH12].

In §9 a rather elementary criterion for when an element is in a solid closure over a
complete local domain is developed in terms of the behavior of multiples of certain formal
power series.

In §10 we introduce a theory of shadow homology, which is parallel to the theory of
phantom homology initiated in [HH4] and pursued in [Abl], [HHS8], and [AHH]. We are
able to obtain an equicharacteristic analogue of the phantom acyclicity criteria developed
in [HH4] and [HH9], but the proof makes use of the existence of big Cohen-Macaulay
algebras in equal characteristic, which one has either from [HH7] or from the arguments
of §11 here (see also [HH5] and [Hu2]). Note that the result of [HH7] asserts that the
integral closure of a complete (or excellent) local domain of characteristic p in an algebraic
closure of its fraction field is a big Cohen-Macaulay algebra for the ring, which implies the
existence of big Cohen-Macaulay algebras for all local rings of equal characteristic.

In §12, we consider solid closure over rings of dimension two. We prove, in particular,
that over a complete local domain of dimension two, an element is in the solid closure of
an ideal if and only if it is in the contracted expansion of the ideal from a big Cohen-
Macaulay algebra. The point is that in dimension two any solid algebra can be mapped to
a big Cohen-Macaulay algebra. But this is false in dimension three in equal characteristic
7er0.

In §13 we make some further remarks concerning the behavior of solid closure in reg-
ular rings. We discuss what is known about which ideals are, or are not, solidly closed.
Connections with the Briancon-Skoda theorem are discussed.

The title of the final section is self-explanatory.

To maximize its accessibility the theory of solid closure is presented here as indepen-
dently as possible of tight closure theory. Nonetheless, it is, most definitely, an offshoot of
tight closure theory, and it would not exist without the enormous contributions of Craig
Huneke to the development of tight closure.

2. SOLID MODULES AND SOLID ALGEBRAS

The definitions of solid module and solid algebra were given in (1.1). Although we
are mainly interested in the case where R is a Noetherian ring, for the moment we shall
not impose any finiteness conditions. The following results give some basic properties of
solid modules and algebras. Although most of these results are elementary, they are very
important, particularly Corollaries (2.3) and (2.4) and Theorem (2.11). While R is often
Noetherian in the applications, it is rare for a solid R-module M to be finitely generated
as an R-module: the main case is where M 1is a finitely generated R-algebra.
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(2.1) Proposition. Let R be a domain.

(a)

If M, N are solid R-modules (or algebras) then M @r N is a solid R-module (or
algebra). (The same then applies to a nonempty finite family of solid R-modules or
solid R-algebras.)

If M - N 1s a surjection of R-modules and N 1s a solid R-module then M 1s a solid
R-module.

If S 1s an R-algebra and some S-module M 1s a solid R-module then S is a solid
R-algebra.

If S 1s a solid R-algebra then there exists an R-module homomorphism «o:S — R such
that o(1) # 0.

If M 1s a solid R-module and S 1s an extension domain of R then S @rp M 1is a
solid S-module (in particular, we may take S to be any localization of R). In fact, if
a: M — R has image J # 0, then ids @r o : S @r M — S has image JS # 0.

If T 1s a solid R-algebra then every R-algebra S that has an R-homomorphism to T
is a solid R-algebra. In particular, T and a polynomial ring (in an arbitrary number
of variables over T ) are solid or not alike.

If M is a solid R-module (or R-algebra) and N s the submodule (or ideal) of M
consisting of all elements that are killed by an element of R — {0}, then M/N is a
solid R-module (or algebra). In fact, any R-homomorphism M — R kills N and so
factors M — M/N — R.

If M is a solid R-module (or algebra) and {Ix}x is a family of ideals of R such
that (", Ix = (0), then M/((, IxM) 1s a solid R-module (or algebra). In fact, any
R-homomorphism M — R kills (), I\M and so factors M — M/((), IxM) — R.

A finutely presented R-module 1s solid if and only of it 1s fasthful. In particular, a
finitely generated module over a Noetherian domain R is solid if and only of it 1s
fathful.

A direct sum of R-modules 1s solid if and only if at least one of the summands s solid.
If M 1s an R-module such that N @r M 1s solid for some choice of R-module N then
M s solid.

If M 13 a solid R-module with a finite filtration M = My O My_1 O --- O My then at
least one of the factors My, /M;, for 0 <1 < h —1, s solid.

Let S be a solid R-algebra. If J is an ideal of S such that J* =0, then S/.J is a solid
R-algebra. In particular, if S 1s Noetherian then Syeq 1s a solid R-algebra.

Proof. (a) If a:M — R and f: N — R are nonzero maps with images I, J (nonzero
ideals of R) then there is a bilinear map M x N — R sending (u,v) to a(u)f(v), and the
corresponding map v: M @r N — R has nonzero image I.J.

(b) It is clear that if N — R is nonzero then the composite map M — N — R is
nonzero (it has the same image).

(¢) Fix u € M that has nonzero image under an R-homomorphism a: M — R and define
B:S — R by B(s) = a(su).

(d) Fix a nonzero R-homomorphism 3: S — R and suppose that 3(s) # 0 for some fixed
element s € S. Then 7: S — R defined by ~(t) = §(st) has the required property.

(e) This is obvious.
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(f) The first statement follows from (c), taking M = T (or from (d), choosing a: T — R
with a(1) # 0 and composing with the structural R-homomorphism S — T'). The second
statement follows because each of T and the polynomial ring over T has a T-algebra map
to the other (one is the obvious inclusion; for the other, kill the variables), and these
T-algebra maps are necessarily R-algebra maps as well.

(g) This is obvious.

(h) This follows from the observation that, since [y M will map into Iy for all A, (), IxM
will map into (), Ix = (0).

(i) It is clear from (g) that a solid module must be faithful. Now suppose that M is
finitely presented and faithful. Let W = R — {0}. Then W~'M # 0, and so can be
mapped onto the field F = W™'R. Since M is finitely presented, W~ 'Hompg(M, R) =
Homp(W ™' M, F), and so Homg(M, R) # 0.

(j) This is obvious.

(k) Map a (necessarily nonzero) free R-module G onto N. Then G @g M maps onto
N @r M and so is solid by (b). Since G @r M is a direct sum of copies of M, M must be
solid by (j).

(1) If one has that 0 = N — M — M/N — 0 is exact then a map M — R is either
nonzero on N, so that N is solid, or factors through M /N, so that M /N is solid. This
handles the case h = 2 (the case h = 1 is trivial), while the general case follows easily by
induction on h.

(m) S has a finite filtration S 2 J D J2? D ... J! D ... D J" = (0). Hence, by part (1),
Jt/J*1 s solid for some 4. Since this is an (S/.J)-module, S/.J is solid by part (¢). O

(2.2) Proposition. Let R C S be domains. Let M be an S-module viewed also as an

R-module via restriction of scalars.

(a) If S is embeddable, as an R-module, in a product of copies of R (this is true, for
example, if S is embeddable in a free R-module) and M s solid as an S-module then
M s solid as an R-module.

(b) If Homg(S,R) is embeddable, as an S-module, in a product of copies of S (this is
true, for example, if Homgr(S, R) is embeddable in a free S-module), and M is solid

as an R-module, then M 1s solid as an S-module.

Proof. (a) If S C P, where P is a product of copies of R, and a: M — S is nonzero,
then some element of a(M) C P has a nonzero entry in one coordinate: let P — R
be the product projection corresponding to that coordinate. Then the composite map
M — S — P — R is R-linear and nonzero.

(b) Suppose that a: M — R is nonzero and R-linear. Define 3: M — Hompg(S, R) to be
the S-linear map whose value on u € M is the homomorphism 6, defined by 6,(s) = a(su).
Note that (3 is nonzero, for if a(u) # 0 then 6, (1) = a(u) # 0. Suppose that Hompg(S, R) C
Q, a product of copies of S. Then F(M) C @, and we may choose a product projection
() — S that is nonzero on some element of 3(M) (since (M) # 0). The composite

map M LN Homp(S,R) — @ — S yields a nonzero S-linear homomorphism M — S, as
required. [

The following immediate corollary is very important in the applications:
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(2.3) Corollary (independence of ring for module-finite extensions). Let R C S
be a module-finite extension of domains, where R is Noetherian. Let M be an S-module.

Then M is solid as an S-module if and only if M 1is solid as an R-module.

Proof. Since S (respectively, Hompg(S, R)) is finitely generated and torsion-free as an R-
module (respectively, S-module) it is embeddable in a free R-module (respectively, S-
module). Thus, both parts of Proposition (2.2) apply. 0O

This also yields:

(2.4) Corollary (local cohomology criterion). Let (R,m, ) be a complete local do-
main of Krull dimension d. An R-module M is solid if and only if HL (M) # 0.

Proof. We can represent R as a module-finite extension of a complete regular local ring
(A,q,K). Then M is solid as an R-module if and only if it is solid as an A-module.
Moreover, since ¢R is primary to m, Hg(M) = HZ (M). Thus, there is no loss of generality
in assuming that R is regular. In this case E = HZ (R) is an injective hull for the residue
field of R and Homp(_, E) is faithfully exact. Then HS (M) = M @p HS(R) = M @r E
is nonzero if and only if Homg(M @ g E, E) # 0. By the adjointness of ® g and Homp the
latter may be identified with Hompg(M, Hompg(E, F)) = Hompg(M, R) (since R is complete,
we have that Homg(E, F) 2 R, by Matlis duality). Thus, HZ (M) # 0 if and only if its
Matlis dual, Hompg(M, R), is not zero. O

(2.5) Remarks on local cohomology. We use [GrHa] as a general reference for local coho-
mology.

(a) Let m be an ideal of a Noetherian ring R and let x = x4, ... ,24 be a sequence
of elements of R such that m and I = (x)R have the same radical. Then the functors
H}(_) and H/,(_) may be identified. (E.g., if (R,m, K) is local we may choose X to
be a system of parameters for R.) Let © = xy---24 and for each 7, 1 < i < d, let
Yi = X1 Ti_1Tip1 T4, 50 that z;y; = @ for 1 < i < d. Then HY(R) = H}i(R) may
be identified with R, /(3 ,Im R,,) and if M is any R-module we have that HZ (M) &
HI(R)®rM = M,/(Y.,Im M,,). (We have written “Im” for precision: the maps M,, —
M, may not be injective if one or more of the x; is a nonzerodivisor.)

(b) With notation as in (a), let x* denote x%, ... 2. Note that, alternatively, we may
view HZ (R) as lim R/(x') where the maps between consecutive terms in the direct limit
system are induced by multiplication by # = 1 - - - 4 on the copies of R in the numerators,
oras (Ry, /ImnR) @p -+ @r (R, /Im R). From this last characterization it is easy to see
that if m has the same radical as (1, ... ,24)R, n has the same radical as (z1, ... ,z.)R

and ¢ has the same radical as m + n, then Hg'i'e(R) = H,‘i(R) @r HL(R).

(¢) As a consequence of the discussion in (a), if R is complete local ring with system of
parameters x, then M is solid if and only if M, # El Im M,,.

(d) If S is an R-algebra then S, and > .ImS,, C S, are both S-modules, and S, is
generated as an S-module by the elements 1/x". Let z; denote the image of y; in S,. Then
HE (S) # 0if and only if for some ¢ (equivalently, for all large t) 1/2" ¢ 5 (32, S-(1/2)N)
in S;. This holds if and only if there exists ¢ such that (equivalently, for all sufficiently large
t) 2Nt g (2, ... 2))S for all N € N (if the 2’s are zerodivisors one can still multiply
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by a sufficiently high power of x to get a valid equation with denominators cleared). Said
slightly differently:

(2.6) Observation. Let R be a Noetherian ring, let x1, ... ;24 € R, let m be an ideal
of R having the same radical as (x1,...,2q)R, and let S be an R-algebra. (E.g., we
may have that (R,m, K) is a local ring of dimension d and that xq, ... x4 1s a system of

parameters.) Then HE(S) # 0 if and only if there exists an integer t such that whenever
(1 za)f € (2N, ..., 2))S for Nk €N then N <k+t. O

(2.7) Remark. Let (R,m,K) — (S,n,L) be a local homomorphism of local rings and let
X =21, ... ,2q be a system of parameters for R. Note that the images of the z’s in S are
part of a system of parameters for S if and only if killing them drops the dimension of S
by d = dim R. Since the radicals of (x)S and mS are the same, an equivalent condition is
that (#) dim S = dim R + dim S/m.S, and this condition is evidently independent of the
system of parameters. It suffices if ht mS > dim R (in which case ht mS = dim R, since
m.S' is generated up to radicals by dim R elements), and the condition that ht mS = dim R
is equivalent to (#) if S is equidimensional and catenary (for then ht J+dim S/J = dim S
for every ideal .J of S).

Corollary (2.4) and the above discussion imply:

(2.8) Corollary. Let (R,m,K) be a complete local domain, let (S,n,L) be a local ring,
and let (R,m,K) — (S,n, L) be a local homomorphism such that

dim S = dim R + dim S/mS.

Let M be any S-module such that HI™S(M) # 0; if S is a complete local domain this
simply means that M is solid as an S-module. (The condition HI™S(M) # 0 holds for
any finitely generated S-module with dim M = dim S.) Then M s a solid R-module.

Proof. Let d = dim R. Choose a system of parameters =y, ... ,x4 for R. The hypothesis
implies that xq, ..., x4 can be extended to a system of parameters xy, ... , 24,21, ..., Ze
for S, where dim S = d + e. (For finitely generated modules over a local ring, the highest
nonvanishing local cohomology module with support in the maximal ideal occurs at the
dimension of the module.) In any case, assume that HIT¢(M) # 0. This module may be
identified with H;f"’e(S) ®g M. Let I be the ideal generated by the z’s in R and let J be
the ideal generated by the z’s in S. By (2.5¢) we have that HIT¢(S) = Hé(S) @5 H(S)
and so HIT(M) = (H{4(S) ®s H5(S)) ®s M = (H}(R) ®r S) @s H5(S) @s M =
Hi(R)@r (S ©s M @5 H3(S) = Hy (R)@r(M @5 H5(S)) = (H, (R)©rM) @5 H5(S) =
HY (M) ®s H5(S). Since this module is not zero, we must have that HZ (M) # 0, and
then Corollary (2.4) shows that M is solid over R. O

The following result (that solid extensions tend not to adjoin fractions) is part of the
reason for the use of the word “solid.”

(2.9) Proposition. Let R be a Noetherian domain, let a,b € R with b # 0 and let S be
a solid R-algebra. Suppose that a € bS. Then the element a/b of the fraction field of R is
integral over R. Hence, if R is normal, a/b € R.
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In consequence, if S 1s a domain solid over the Noetherian domain R and 6 € S s
algebraic over R, then 6 is integral over R.

Proof. We begin with the proof of the statement in the first paragraph. We may assume
that a # 0. Since the normalization of R in its fraction field F is an intersection of discrete
valuation rings contained in F. if a/b is not integral over R we may choose a discrete
valuation ring V with R C V C F and a/b ¢ V. We may replace R,S by V.V @r S
by Proposition (2.1e). Thus, we may assume without loss of generality that R =V is a
discrete valuation ring and that a/b ¢ V. By Proposition (2.1g) we may replace S by a
quotient that is torsion-free over V. Then ¢ = b/a is in the maximal ideal of V', and we
have that a € bS = acS. Since a is not a zerodivisor in 5, it follows that 1 € ¢S, i.e., that
¢ is a unit in S, and so S = ¢"9 for every positive integer n. But then, by Proposition
(2.1h), S =), ¢"S must map to zero in V', since (], ¢"V = (0). This is a contradiction.

Now consider the situation in the second paragraph. Since 6 is algebraic over R it
satisfies an equation .. b;6' = 0 for some positive integer n with the b, € R and
b= b, # 0. It follows that b is integral over R and so R[bf] is module-finite over R. Then
S is also solid over R[bf] by Theorem 2.3. Since b8 € bS it follows from the statement in
the first paragraph that the fraction b8/b = 6 is integral over R[bf], and since this ring is
module-finite over R, 6 is integral over R. [

(2.10) Discussion. In Proposition (2.1e) it was noted that, quite trivially, if M is a solid
R-module and S is an extension domain of R then S®gr M is a solid S-module. Somewhat
surprisingly, when R is a Noetherian domain this remains true without the hypothesis that
the map of domains R — S be injective. Before giving the proof, we note the following:

(2.11) Lemma. Let J be a nonzero ideal of a Noetherian domain R and let Py, ... Py
be height one prime ideals of R.
(a) If each of the rings Rp is a discrete valuation ring for P € {Py, ..., P,} then there

18 an R-homomorphism 6:J — R such that 8 takes on a value not i any of the P;,
ie, (7)€ U, Pi.

(b) There is a module-finite extension R’ of R within its fraction field and an R'-linear
map JR' — R’ that takes on a value outside any of the primes of R’ that lie over one
of the P;: n fact, it takes on a value in R outside any of the P;.

Proof. Let W =J; P;.

(a) W'R is a semilocal Dedekind domain and, hence, a PID. Tt follows that there is an
isomorphism ¢: W='J — W' R as modules over T = W~!R. Since Homp(W~'J,T) =
W~'Hompg(J, R), ¢ has the form w™'6 for some w € W and 6 € Homg(J, R). Since Im ¢
contains 1 € W™ R, we have that 6 takes on the value w € W.

(b) The normalization of a one-dimensional semilocal Noetherian domain D is also a
one-dimensional semilocal Noetherian domain, although it need not, in general, be module-
finite over D. (Cf. [N], Theorem 33.2, which guarantees that the integral closure is
Noetherian. The fact that there are only finitely many maximal ideals follows easily from
the fact that there only finitely many maximal ideals in D.) Such a normalization is
therefore a PID. Let S be the normalization of R. Then W~1S is the normalization of
W~IR, which is a one-dimensional semilocal ring. Thus, W~!S is a PID, and we can
choose a W1 S-linear map ¢: JW ™15 — W~1S that is an isomorphism. Suppose that
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u/w' maps to 1 under this homomorphism, where u € JS and w’ € W. Then u maps to
w’. Choose a finite set of generators j, of J as an R-module and choose w € W such that
the elements ¢(j,) are all of the form s,/w with every s, € S. Choose a module-finite
extension R’ of R contained in S such that v € JR' and such that the s, are in R'. The
restriction of we to JR' has image contained in R’ (if we have several elements a, € R’
then w¢, which is W' S-linear, maps > ayj, to Y, a,wd(j,) = >, ays,, which is in
R'.) Thus, the restriction of w¢ to JR' yields an R'-linear map of JR' to R’ whose value
onuisww € W. O

We are now ready to prove a very important result:

(2.12) Theorem (persistence of solidity). Let R be a Noetherian domain and let M
be a solid R-module. Then for any homomorphism R — S, where S 1s a domain, S @r M
18 a solid S-module.

Proof. Let P = Ker (R — S) and let P = P, D --- D Py = (0) be a saturated chain of
primes in R descending from P. The map R — S factors R - R/Py — -+ — R/Py — S.
By the associativity of @, in order to prove the result for the composite map it suffices to
prove it for each map in the chain. The problem of proving that S @ M is solid over S
thereby reduces to proving the result in two cases: one is the case of an inclusion, and the
other is the case where the domain S is obtained from the domain R by killing a height one
prime. Since we have already done the case of an inclusion, we may assume that S = R/ P,
where P is a height one prime of S.

Fix a nonzero homomorphism a: M — R with image J # (0). By Lemma (2.11) we
can choose a module-finite extension domain R’ of R within the fraction field of R and an
R'-linear map 6: JR' — R’ that takes on a value in R — P. Let ) be a prime ideal of R’
lying over P. Then M' = R' @ M is solid over R’, by Proposition (2.1e), and, in fact,
idr: @R a gives an R'-linear map o' of R’ @r M to R’ with image JR’'. Tt follows that the
composite map 3 = #a’ from M’ to R’ takes on a value in R — P: this value will be an
element of R’ — (). Thus, if we tensor with S’ = R’ /() we obtain a nonzero (R'/Q)-module
homomorphism M'/QM' — R'/Q, so that M'/QM' is solid over R'/Q).

Now, R'/Q is a module-finite extension of R/P, and so it follows from Corollary (2.3)
that M'/QM’ is solid over R/P. But then

M'/QM' = (R'/Q) @r M = (R'/Q) ®r/p ((R/P) ©r M)

is solid over R/P, and it follows from Proposition (2.1k) that (R/P) @r M is solid over
R/ P, as required. O

3. FORMALLY SOLID MODULES AND ALGEBRAS

We begin with two definitions.

(3.1) Definition. Let m be a mazimal ideal of R. We shall refer to the R-algebra obtained
by completing the local ring R with respect to its mazimal ideal and then killing a minimal
prime as a complete local domain of R.
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(3.2) Definition. Let R be a Noetherian ring. We shall say that an R-module M is
formally solid if for every complete local domain B of R, B @r M 1s solid over B.

From this definition we have at once:

(3.3) Proposition. Let R be a Noetherian ring and let M be an R-module.

(a) M 1is formally solid if and only if for every mazimal ideal m of R, M, is formally
solid over R,,.

(b) If R s local, M is formally solid over R if and only ifﬁ@R M s formally solid over
R.

(¢) If R is complete local, M 1is formally solid if and only if for every minimal prime p of
R, (R/p) @r M 1s formally solid over R/p.

(d) If R us complete local, M 1is formally solid over R if and only if M is solid over R. O

We also note:

(3.4) Proposition. Let R be a Noetherian ring.

(a) If M, N are formally solid R-modules (or algebras) then M @gr N is a formally solid
R-module (or algebra). (The same then applies to a nonempty finite family of solid
R-modules or solid R-algebras.)

(b) If M - N 1is a surjection of R-modules and N s a formally solid R-module then M
18 a formally solid R-module.

(¢) If S is an R-algebra and some S-module M is a formally solid R-module then S is a
formally solid R-algebra.

(d) If an R-algebra has S has an R-algebra map to a formally solid R-algebra T, then S
is formally solid. In particular, T and a polynomial ring (in an arbitrary number of
variables) over T are formally solid or not alike.

(e) M s formally solid over R if and only if Myeq = Ryeqa @r M s formally solid over
Ryca (if and only if Mycq 1s formally solid over R).

(f) A finitely generated R-module M 1is formally solid if and only if Myeq = Ryea @r M
18 fasthful over Ry.q.

(g) If M is an R-module such that N @r M 1is formally solid for some choice of R-module
N then M s formally solid.

Proof. (a) This follows from the fact that B&gr (M @rN) = (BrM)®2p (B®gr N) and
part (a) of Proposition (2.1).

(b) This follows from the right exactness of @ and part (b) of Proposition (2.1).

(¢) Let B be a complete local domain of R and apply part (¢) of Proposition (2.1) to
B ®@r M viewed as a module over B @r S.

(d) This is immediate from part (c).

(e) This is immediate from the fact that the complete local domains of R are the same
as the complete local domains of R,.4, viewed as R-algebras.

(f) By part (e), we may assume that R is reduced. Note that M is faithful if and only if
R can be embedded in a finite direct sum of copies of M. Thus, faithfulness is preserved by
flat base change, and is preserved when we localize and complete. Hence, if M is faithful,
it remains faithful when we pass to the completed localization of R at a maximal ideal. If

p is a minimal prime of R, then (R/p) @r M is still supported at p, and so (R/p) @r M
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is faithful over R/p, and hence, solid over R/p. This shows that if M,.q is faithful over
R,cq, then M is formally solid.

Now suppose that R is reduced but that M is not faithful. Then M is killed by some
element z that is not nilpotent. Localize R at a maximal ideal m containing | J, Anngz’.
Then the image of z is still not nilpotent in R,,, and kills M,,. Likewise, the image of x
in the completion C' of R is not nilpotent, and so we may kill a minimal prime p of C' to
obtain a complete local domain B of R such that the image of = is nonzero in B.

(g) For every complete local domain B of R, B&r(N @r M) 2 (BRrN)@p(B@rM)
is solid over B, and so B @ g M is solid over B by Proposition (2.1k). O

In (3.7) we shall prove that the property of being formally solid is preserved by arbitrary
Noetherian base change. We first note:

(3.5) Lemma. Let M be a formally solid module over a complete local ring R and let S
be a Noetherian R-algebra. Then S @r M s formally solid over S.

Proof. Tt suffices to prove that C' @r M is solid over C' after a further base change to a
complete local domain C'. Therefore, we may assume without loss of generality that S = C'
is a complete local domain. Choose a minimal prime p of R contained in Ker (R — C).
Then (R/p) @r M is solid over R/p by the hypothesis on M, and we may apply Theorem
(2.12) to the base change R/p — C. O

We shall also need:

(3.6) Lemma. Let (R,m,K) — (S,n,L) be a local homomorphism of local rings and
suppose that at least one of the following conditions holds:
(a) R, S are complete local domains and ht mS > ht m ( = dim R).
(b) R, S are complete local rings and for every minimal prime p of R there is a prime
ideal q of S lying over p such that ht m(S/q) > ht (m/p) ( = dimR/p).

(¢) S is faithfully flat over R.

Then every S-module W that 1s formally solid as an S-module is formally solid as an
R-module.

Moreover, if M 1s an R-module such that S @r M 1is formally solid as S-module then
M s formally solid as an R-module.

Proof. The second conclusion follows from the first conclusion by Proposition (3.4g).

(a) By (2.8) (see also Remark (2.7)) and the height condition on S, we have that W is
solid over R.

(b) Fix a minimal prime p of R and fix a prime ideal q of S such that q lies over p and
ht m(S/q) > ht m/p. Since W is formally solid over S, by (3.3e) it is solid over S. By
Theorem (2.12), (S/q) @s W = S/q@prsy (R/p @r W) is solid over S/q, and so part (a)
applied to R/p — S/q shows that R/p @r W is solid over R/p. Since this holds for every
minimal prime p of R, we see that (b) is implied by (a) (which is, of course, a special case
of (b)).

(¢) The map R — Sis also faithfully flat and, in consequence, satisfies the condition in
(b). To see this, note that if p is a minimal prime of R then S/pS is faithfully flat over
R/p, and we can choose a minimal prime g of pS (which will be a minimal prime of S,
since Sq is nilpotent modulo pSy and pRy is nilpotent) such that dim S/q = dim S/pS.
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Now, dim S/pS = dim R/p + dim ((S/pS)/m(S/pS)) ( = dim R/p + dim S/mS), by the
flatness of S/pS over R/p (cf. [Mat] (13.B) Theorem 19 (2)). Thus,

dim S/q = dim R/p + dim (S/mS) > dim R/p + dim ((S/q)/m(S/q)),

so that the dimension of S/q falls by at least dim R/p when one kills m(S/q), and this
shows that ht m(S/q) > dim R/p, as required.

Now, the fact the W is formally solid over S 1mphes that S Qr W = S ®zp (R @r W) is
formally solid over S and so, by part (b), over R. This implies that Ror W is formally
solid over R and so W is formally solid over R, as required. O

Part (c) of this result is globalized in Theorem (3.8) below.

Notice that in part (b) there may be a suitable choice of g although there is no minimal
prime of S that gives a suitable choice of q. For example, let R = K[z, y]] with K a field
and let S = R[[u,v]]/(zv — yu). Then R C S and has the unique minimal prime p = (0),
and ht mS = 1, so that we may not choose g = (0) (the only minimal prime of S), but we
may take q = (u,v)S.

We can now prove the following result of basic importance:

(3.7) Theorem (persistence of formal solidity). If M is a formally solid module over

a Noetherian ring R and S 1s a Noetherian R-algebra then S @r M s formally solid over
S.

Proof. Tt suffices to prove this when S is replaced by a complete local domain to which
it maps. We may therefore assume that S is a complete local domain. Let P be the
contraction of the maximal ideal of S to R, let m be a maximal ideal of R containing P,
and let T be the completion of the ring R,,. Let ) be a prime ideal of T lying over P.
Then the map R — S factors R — R, — Rp — (Rp)”— S while the faithfully flat map
Rp — Tg induces a faithfully flat map (Rp)~— (Tg)", and the map R — (Rp)”— (Tg)~
also factors R — R, — T — (Tg)". The fact that M is formally solid over R is preserved
when we make a base change from R to T by Proposition (3.3a,b), and since T is complete
we may then make a further base change to (Tg)™ by Lemma (3.5). By Lemma (3.6), since
(Tq)™ is faithfully flat over (Rp)”, we have that (Rp) ®r M is formally solid over (Rp)~
But we may then make a base change from (Rp)”~ to S by a second application of Lemma
(3.5), since (Rp)~ is complete. [

(3.8) Theorem. If the Noetherian ring S s faithfully flat over a Noetherian ring R and
W s a formally solid S-module then W 1s a formally solid R-module.

Hence, iof M 1s an R-module such that S @r M 1is formally solid over S, then M s
formally solid over R.

Proof. As in the proof of (3.6), the second conclusion follows from the first.

Let m be a maximal ideal of R and let @) be a prime ideal of S lying over m. Then
R, — Sq is faithfully flat. By Theorem (3.7), W is formally solid over Sg. By Theorem
(3.6), Wg is formally solid over R,,. Since Wg = Sg @g,, W, it follows from Proposition
(3.4g) that W, is formally solid over R as well. Since this holds for every maximal ideal
m of R, the result follows from Proposition (3.3a). O

We also note:
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(3.9) Proposition. If R is Noetherian, a faithfully flat R-module M is formally solid.

Proof. The hypothesis is preserved when we pass from R to a complete local domain of
R. Thus, we may assume that (R, m, K) is a complete local domain with dim R = d. But

then HL (M) = HS(R)@r M #0. O

4. GENERIC FORCING ALGEBRAS

(4.1) Definition. Let R be a Noetherian ring, let N C M be finitely generated R-modules,
and letu € M. We shall say that an R-algebra S is a forcing algebra for the triple (M, N, u)
if the image of w in S @rp M is in Im (S @r N — S®@r M).

It is trivial to verify that:

(4.2) Observation. The R-algebra S is a forcing algebra for the triple (M, N,u) if and
only if it 1s a forcing algebra for the triple (M/N,0,%), where w denotes the image of u in
M/N. If T s a forcing algebra for (M, N,u) and there is a homomorphism T — S then
S is also a forcing algebra for (M, N,u). O

(4.3) Discussion and definition. Let R* 2 R M/N — 0 be a finite presentation of
M/N, where A = (r;;) is an h x k matrix over R that gives the map and if we choose a
vector (1, ... ,7;) € R" that represents @ in R" /Im R* = M /N, then S will be a forcing
algebra for the triple (M, N,u) if and only if the image of w in S ®@pg (M/N) is 0, which is
equivalent to the statement that the image of (ry, ... ,rp) is zero in S @ g (R"/Im R¥). If
we write (r1, ... ,rp) instead as a column vector p this is equivalent to the existence of a
column vector ¢ in S* such that Ao is the image of p.

We can therefore construct a forcing algebra for (M, N,u) by adjoining indeterminates
Xy, ..., X to R and then killing the ideal generated by the entries of the matrix AX — p
in the polynomial ring R[Xy, ..., X}], where X is the column vector whose entries are
the X;. We shall refer to this algebra as the generic forcing algebra for (M, N,u) for the
data A, p. We shall also say that it is a generic forcing algebra for (M, N,u). Let T be the
generic forcing algebra for the data A, p. Given any other forcing algebra S for (M, N, u),
we can map T to S by sending the X; to the entries of the vector ¢ whose existence was
observed above.

Thus, if one fixes a generic forcing algebra for (M, N, u), all other forcing algebras may
be viewed as, simply, the algebras to which it maps. This explains the terminology.

If I =(ay,...,ar)R and u = r € R then there is a generic forcing algebra for (R, I, u)
of the particularly simple form

k
RIXy, ... . X)) aiXi—r).
=1
Here, we are using the data A = (ay ... ap)and p=(r).

With this terminology, we observe the following:
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(4.4) Proposition. Let R be a Noetherian ring. Let N C M be finitely generated R-
modules and let w € M. Let T be a generic forcing algebra for (M, N,u) for the data A,
p.

(a) If S is any R-algebra, let A’, p' denote the images of A, p under the homomorphism
R — S applied to every entry. Then S @r T 1s a generic forcing algebra for the triple
(S@r M,S @r N,1®u) for the data A’, p'.

(b) T maps as an R-algebra to every other forcing algebra for the triple (M, N,u). O

(4.5) Discussion. It is natural to ask how the generic forcing algebras for (M, N,u) over
R vary with choice of data A, p. Roughly speaking, they are uniquely determined as R-
algebras up to “adjunction of indeterminates”: see Proposition (4.6) below for a precise
statement. We make the following observations:

(a) If one changes only p the algebra does not change, up to R-isomorphism. For p
will change by adding a vector of the form Af, where 3 has entries in R, and the matrix
AX — (p+ AB) becomes AX' — p if we let X' = X — 3, i.e., if we make a translation of

coordinates over R.

(b) Suppose that we change the presentation of M /N by using the same generators for
M but a possibly different set of generators for the relations. We may understand the effect
on the generic forcing algebra by comparing each of the algebras with the algebra obtained
by using the union of the two sets of relations. This enables us to consider only what
happens when one enlarges the set of relations by adjoining some additional “redundant”
relations. This is equivalent to giving the matrix A some additional columns, each of which
is a linear combination of the columns already present.

For simplicity, we may consider the case where there is just one column, which we may
suppose has the form A¢d for some column vector § over R. Then there is one new variable,
Xpt1, and if X is the column vector whose entries are Xy, ... , X}, then to define the new
generic forcing algebra we must kill the entries of AX + A6 X1 —p = AX' — p if we let
X" =X + Xp416. We see that by using coordinates X', X4 (this is a linear change of
coordinates) we have changed the R-isomorphism class of the generic forcing algebra by
adjoining an indeterminate.

Thus, if S, T are two generic forcing algebras for (M, N,u) that arise from data that
differs only by altering the relations chosen in the presentation of M /N, then there are
indeterminates Y =Y, ... .Y, and Z = Zy, ... , Z, such that S[Y] = T[Z] over R.

(¢) Suppose that we change the generators of M. By comparing what happens for
each of two sets of generators with what happens when their union is used, we see that it
suffices to understand what happens when a set of generators is enlarged, and it is enough
to consider the case where we insert a single new redundant generator. Indeed, we may
assume that we have chosen generators uy, ... ,up for M and that the new generator is
—(ajur + - -+ apup). Then we get a new presentation in which the matrix, in block form,

. (A « . . .
is , where « is a column vector whose entries are the a’s, the 0 is a row vector of

0 1

length k, and the element 1 represents a size one block with the single entry 1. We may

p

then take the replacement of p to be (0

). If we write our vector of indeterminates as
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X . .
X' = ( ), where X retains its former meaning, then

Xht1
A « X () _ [AX +aXht1 —p
0 1 Xnt1 0/ Xht1 '
Killing the entries of this matrix produces the same generic forcing algebra as before, up
to R-isomorphism.

We can summarize the content of this discussion as follows:

(4.6) Proposition. If R is a Noetherian ring, N C M are finitely generated R-modules,
u€ M, and S, T are two generic forcing algebras for (M, N,u) for possibly different data,
then there are finite sets of indeterminates Y, Z such that S[Y] = T[Z] as R-algebras. O

5. SOLID CLOSURE

We first want to extend Definition (1.2) to the case of submodules of finitely generated
modules.

(5.1) Definition. Let R be a Noetherian ring, let N C M be finitely generated R-modules,
and let w € M. If R is a complete local domain we say that u is in the solid closure N*
(or N*X 1) of N in M over R if there is a solid R-algebra S such that the image 1 @u of u
in SQprM isin Im(S@rN — S@pM). In other words, w € N* if and only if (M, N, u)
has a forcing algebra S that is solid as an R-algebra.

In the general case, we say that x is in the solid closure N* (or N* ) of N in M over
R if for every complete local domain B of R, the image of x in B @r M s in the solid
closure of Im(B @r N — B@r M) in B @r M over B. In other words, every complete
local domain B of R has a solid B-algebra S such that the image of x in S @p M 1s in
]m(S Qr N — SQr M)

(5.2) Discussion and notations. Let T denote the image of x in M/N. For any given
R-algebra S, the image of @ in S @r M isin Im (S @r N — S @r M) if and only if the
image of 7 in S @r (M/N) is 0. It follows that = is in N*; if and only if 7 is in O*M/N.
We may also map a finitely generated free module G onto M, let H be the inverse image
of N in GG and let y be an element of G that maps to = under the surjection G — M. Then
x € N*,if and only if y € H* .

It follows that issues about solid closures of submodules may be reduced either to the
case where the submodule is zero, or to the case where the ambient module is free.

When G is free we denote by HS the module Im (S®@r H — S®pgG). This is analogous
to the notation used when G = R and H is an ideal of R. When the base ring, say R,
is understood we shall often use the notation Mg for S @r M, and the notation (Ng) to
denote Im (Ng — Mg). Of course, (Ng) depends not only on N and S but also on the map
N — M, the base ring R, and the R-algebra structure of S. Nonetheless, this notation is
convenient, and it will only be used when the ambiguity is not a problem.

Solid closure may be described alternatively in terms of formal solidity for generic forcing
algebras.
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(5.3) Proposition. Let R be a Noetherian ring, let N C M be finitely generated R-

modules, and let w € M. Then the following conditions are equivalent:

(a) u € N*M.

(b) For every complete local domain B of R, there is a solid forcing algebra for the triple
(BQr M,B®@r N,1®u) over B.

(¢) For every complete local domain B of R, there is a finitely generated solid forcing
algebra for (B @r M,B @r N,1 @ u) over B.

(d) For every complete local domain B of R, some (equivalently, every) generic forcing
algebra for (B @pr M,B @r N,1 @ u) over B is solid.

(e) Some forcing algebra for (M, N,u) over R is formally solid.

(f) Some (equivalently, every) generic forcing algebra for (M,N,u) over R is formally
solud.

Proof. (a) and (b) are equivalent by virtue of the definition of solid closure. The weak form
of (d) (“some”) implies (¢) and (¢) evidently implies (b). On the other hand, (b) implies
the strong form of (d) (“every”), since if T is a forcing algebra over B then for every generic
forcing algebra S, S maps as a B-algebra to T and we may apply Proposition (2.1f). This
shows that (a), (b), (¢) and both forms of (d) are equivalent. Assume these conditions. Let
Sk denote a generic forcing algebra for (M, N,u) over R. Then for every complete local
domain B of R, Sp = B @r Sk is a generic forcing algebra for (B @r M,B @r N,1 @ u)
over B. It is then clear that if some choice of Sk is formally solid then the weak form of
(d) holds, while if the strong form of (d) holds then every choice of Sg must be formally
solid. Thus, both the strong and weak forms of (f) are equivalent to (d). Since (f) = (e)
= (d) in its weak form (similarly), all these conditions are equivalent. O

In the next two propositions we explore the basic properties of solid closure without
using the notion of a generic forcing algebra nor the notion of formal solidity. There is
little cost in doing so. However, these notions provide a very easy proof for Theorem (5.6),
given the stability theorem for formally solid modules that we have already established.

(5.4) Proposition. Let R be a Noetherian ring, let M be a finitely generated R-module,
let N, N', and P denote submodules of M, and let I denote an ideal of R. If there is no
subscript on a solid closure, the subscript is understood to be M.

(a) N*y is a submodule of M containing N.

(b) If PC N C M then P*Xy; C N*y and P*y C PXy,.

(¢) If Ny C My, ..., Ny € My are finitely many inclusions of finitely generated modules
over R then for every complete local domain B of R there is a solid B-algebra S such
that the image of Ni*M,» in S @r M; = (M;)s is contained ((N;)g) for 1 <i < h.
(N*)* — N*x

(NNN')* C N*N'*,

(N + N')* = (N* 4+ N'*)*,

(IN)*X = (I*NX*)*x,

An arbitrary intersection of solidly closed submodules of M s solidly closed.

The solid closure of the ideal (0) in R is the nilradical J of R. The solid closure N*
of N in M contains JM.

=

N7 N
—
e e e S e N

D= =]
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(j) Let Ryeq = R/J with J as in (1) just above and let Preg = Ryeqg @r P for every
R-module P. Then the solid closure of N in M over R is the same as the inverse
image in M of the solid closure of Im (Nyea — Myea) in Myea, and the latter may be
calculated either considering these modules over Ry.q or considering them over R.

(k) An elementu € M is in N* s if and only if for every minimal prime p of R, the image
of w in M/pM is in the solid closure of Im(N/pN — M/pM) in M/pM, calculated
over R/pR.

() (N:MI)*M C N*Xyim I and (N:RP)*R C N*u:r P. Moreover, N¥X i I and
N*y:r P are solidly closed in M and R, respectively.

(m) If My, ..., My are finitely generated R-modules, N; C M; for 1 < i < h, and P;
denotes the solid closure of N; in M;, then the solid closure of Ny & -+ & Np in
My&®- - DO Mpas Pr--- @ Py

Proof. (a) Suppose that uj,us € N* and that r is an element of R. We must show that
ruy and uq + us are in NX. Let B be a complete local domain of R. We must show that
there is a solid B-algebra S such that the images of ruy; and uy + ug in Mg are in (Ng).
There exist solid B-algebras Sy, Sz such that the image of u; is in (Ng,) for ¢ = 1,2. This
remains true when S; is mapped further. Since both S; and S; map as B-algebras to
S = 51 ®p 52, it suffices to observe that 51 ®p S5 is also a solid B-algebra, by Proposition
(2.1a). (It is obvious that N* D N.)

(b) This is immediate from the definition.

(c) Choose finitely many generators u;; of N; for every i. Given B, for every i, j there
is a solid B-algebra S;; such that the image of u;; in S;; @gp M is in <(Ni)s,»j>' Let S
be the tensor product over B of the finitely many solid B-algebras 9;;, which is solid by
Proposition (2.1a).

(d) By part (a), N* C (N*)*, and so it suffices to show that if u € (N*)* then
u € N*. Let B be any complete local domain of R. We must show that there is a solid
B-algebra S such that the image of v in Mg is in (Ng). By part (¢) we know that we can
choose a solid B-algebra Sy such that the image of N* in Ms, is contained in (Ng, ). We
also know that we can choose a solid B-algebra S3 such that image of u in Mg, is in (Ng,).
It follows easily that with S = S; @p S the image of v is in contained in (Ng) (the fact
that S; maps to S shows that this image contains the image of N*, and the fact that S,
maps to S then shows that it contains u).

(e) This is a consequence of the first part of (b).

(f), (g) By (a), N+ N' C N* N'* (respectively, IN C I* N*), so that C follows
from (b). Let P = N 4 N’ (respectively, IN) and let Q = N* +N'* (respectively, X N*).
Let B be a complete local domain of R. We must show that there is a solid B-algebra S
such that the image of Q* in Mg is contained in (Ps). But by part (¢) we can choose S
such that the images of Q*, N*, and N'* (respectively, Q*, N*, and I'*) are contained
respectively in (Qs), (Ng), and (N'g) (respectively, in (Qs), (Ng), and I1S). It follows
that the image of Q* is contained in the sum of the images of Ng and N'g (respectively,
the product of I.S with the image of Ng), and this is the same as the image of Ps.

(h) This follows from the first part of (b).

(i) Since any nilpotent of R is killed by a map to a complete local domain of R, it is
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clear that (0)* D J. But if f is an element of R that is not nilpotent then there is a
maximal ideal m of R that contains Ker (R — Ry), and the image of f in R,, is also not
nilpotent. Since R,, injects into its completion C', the image of f in C' is not nilpotent,
and so there is a minimal prime ideal p of C' that does not contain f. It follows that the
image of f in B = C'/p (a complete local domain of R) is not zero, and so f ¢ (0)*, as
required.

The second statement follows from the fact that the image of JM is zero in Mp for any
complete local domain B of R.

(j) The complete local domains B of R are obviously in bijective correspondence with
the complete local domains of R,.q, and the nilradical of R is killed in mapping to any
complete local domain B of R. For each solid algebra S over a complete local domain B
of R,

S@r(M/N)=ZSQR,., (Rrea @r (M/N)) = S @R, .q (Mrea/Im Nyea).

The result is immediate from these remarks.

(k) Let py, ... ,pn be the minimal primes of R. For every localization R, of R, the
minimal primes of R,, are given by the expansions of those p; contained in m. Every
minimal prime q of the completion B of R,, lies over a unique minimal prime of pR,,
of R,, (where p is a unique minimal prime of R) since R, — By will be faithfully flat.
Conversely, if p is a minimal prime of R contained in m and ¢ is a minimal prime of pB
then ¢ is a minimal prime of B (again consider the map R, — By; the elements of pR are
nilpotent and qBy is nilpotent modulo pBy). It follows that every complete local domain B
of R corresponds to a complete local domain of some R/p for a (unique) choice of minimal
prime p of R, and every complete local domain of any R/p is a complete local domain of
R as well. The stated result is then immediate.

(1) The second statement implies the first, since N*:; I (respectively, N*: P) is solidly
closed and contains N:j; I (resepctively, N:g P). Let u be an element of (N¥*:y, I)*
(respectively, (N*:g P)*). Let B be a complete local domain of R and let S be a solid
B-algebra such that u is in ((N*:3; I)¢) (respectively, such that u is in (N*:gr P)g)).
It follows that the image of Tu (respectively, uP) is in ((N*)/). After replacing S by a
possibly larger solid B-algebra, we may assume that this image in turn is contained in
(Ng). Thus, for every complete local domain B of R there is a solid B-algebra S such that
the image of Tu (respectively, uP) is contained in (Ng). It follows that Iu (respectively,
uP) C N*, and so u € N*:3; I (respectively, N¥X:g P).

(m) It is an immediate consequence of the definition that if

u:(ul,...,uh)E(Nl@"'@Nh)*

then u; is in Ni* for all 7. The fact that if u € €p;, Ni* then u € (P, Ni)* 1s also immediate
if one uses part (¢) and observes that for every complete local domain B of R, there is a

single solid B-algebra S such that u; € Im(S®@g N; — S @r M;) for 1 <: < h. O

(5.5) Proposition. Let N C M be finitely generated modules over a Noetherian ring R.
Let w e M.

(a) u is in the solid closure of N in M over R if and only if for every mazimal ideal m

of R, u/1 is in the solid closure of Np, i M,, over R,,.
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(b) If R 1s local, then u is in the solid closure of N in M over R if and only if its image
in M is in the solid closure of]/\\f over R.

(¢) Suppose that u is multiplied into N by a power of a mazimal ideal m of R. Then u is
in the solid closure of N in M over R if and only if u/1 is in the solid closure of Ny,
wm M, over R,,.

(d) If M/N 1is supported only at one mazimal ideal m of R (so that the natural map
M/N — (M/N)m = My, /N is an isomorphism), then the solid closure of Ny, in
M., over R,, is the expansion of the solid closure of N in M over R.

(e) Suppose that R = H?:l R; is a finite product of rings. (Then every R-module M has
a canonical decomposition M = H?:l M; where M; 1s an R;-module, and 1f N C M
the decomposition N = H?:l N; is such that for all i, N; C M;.) In this situation
an element v = (uy, ... ,up) of a finitely generated R-module M = H?:l M; 1s in the
solid closure of N = H?:l N; € M over R if and only iof for alle, 1 <1 < h, u; 18 in
the solid closure of N; in M; over R;.

Proof. (a) Every complete local domain of R, is a complete local domain of R, and every
complete local domain of R is a complete local domain of R, for some m.

(b) The complete local domains of R are the same as the complete local domains of R.

(c) For any maximal ideal ¢ # m, the image of u in M, is in the image of N, and so
the statement follows at once from part (a).

(d) By Discussion (3.3) we may assume that N = 0, and so M = M/N is supported
only at m and M = M,,. The result is then immediate from part (c).

(e) This is immediate from the fact (a) that one may test for membership in a solid
closure locally on the maximal ideals of R. O

(5.6) Theorem (persistence of solid closure). Let R be a Noetherian ring. Let N C
M be finitely generated R-modules and suppose that u € M is in N* ;. Then for every
ring homomorphism h: R — S, where S 1s Noetherian, we have that the image 1 @ u of u
in Mg is in the solid closure of (Ng) in Mg over S.

In particular, if u € R is in I* g for an ideal I of R then h(u) € (IS)*S over S.

Proof. The statement of the second paragraph is immediate from the assertion in the first
paragraph. To prove the former, let T' denote a generic forcing algebra for (M, N, u) over
R. By the equivalence of (a) and (f) in Proposition (5.3), T is formally solid over R. By
the persistence theorem for formally solid modules, Theorem (3.7), S@r T is formally solid
over S, and it is a generic forcing algebra for (S@r M, S@rN,1®u) over S, by Proposition
(4.4a). Thus, a second application of the equivalence of (a) and (f) in Proposition (5.3)
yields the desired conclusion. O

A very simple but extremely useful consequence of the above is:

(5.7) Corollary. Let R — S be any homomorphism of Noetherian rings and let J be a
solidly closed ideal of S. Then the contraction I of J to R s solidly closed in R.

Proof. Let u € I*p. Then Theorem (5.6) implies that the image of v in S is in (IS)*S
and, hence, in J*g, since I maps into J. But J¥g = .J, so that u is in the contraction of

Jto R O
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(5.8) Corollary. Let R be a Noetherian ring, let N C M be finitely generated R-modules,
and let u € M. Then u € N*¥y; if and only if for every homomorphism of R to a complete
local domain B, the image of u in Mp 1s in the solid closure over B of (Ng) in Mp.

Proof. The “if” part is clear from the definition of solid closure, while the “only if” part
is immediate from Theorem (5.6). O

(5.9) Theorem. Let R — S be a ring homomorphism of Noetherian rings, let N C M be
finitely generated R-modules, and let u € M. Suppose that the image of w in Mg 1s in the
solid closure of (Ng) in Mg over S. Suppose also that at least one of the following three
conditions holds:
(a) S is faithfully flat over R.
(b) R — S s a local homomorphism of complete local rings and for every minimal prime
p of R there is a prime ideal q of S lying over p such that ht m(S/q) > ht m/p.
(¢) For every mazimal ideal m of R and minimal prime p of (Ry,)” there is a prime ideal Q
of S lying over m and a prime ideal q of (Sq)~ lying over p such that ht m((SQ)A/cD >
dim ((Rm)7/b).
Then w 1s in the solid closure of N in M over R.

Proof. By the equivalence of (a) and (f) in Proposition (5.3), we know that there is a
formally solid S-algebra T that is a forcing algebra for (S @r M,S @r N,1 @ u), which
trivially implies that T is a forcing algebra for (M, N,u) over R. By applying Theorem
(3.8) in case (a) and Lemma (3.6b) in case (b), we see that T is formally solid over R.

To prove (c), note that to show that u € N¥,; it suffices to prove this for 1 @ u in
Mp with (Ng) replacing N for every ring B of the form (R,,)"/p. By Theorem (5.6), if
C = (Sq)7/q then 1 ® u is in the solid closure of Im (C' @g N) in C ®s M over C. Since
B — C satisfies the hypothesis of (b), the result is immediate from part (b). O

Proposition (2.9) coupled with Theorem (5.6) yields:

(5.10) Theorem. Let R be a Noetherian ring and let I be an ideal of R. Then I* is

contained in the integral closure I of 1. B
Moreover, if I is a principal ideal then I* = 1.

Proof. Let u € I'* and suppose that u ¢ I. Then there is a ring homomorphism from R to
a discrete valuation ring V such that the image @ of u in V is not in IV. By Theorem (5.6),
a is in (IV)*V over V. We therefore have a counterexample in the discrete valuation ring
V. Since IV is principal, say IV = bV with b € V, and since V is normal, the fact that
a € (bV)* implies, by Proposition (2.9), that a/b € V, i.e. that a € bV, a contradiction.
This completes the proof of the statement in the first paragraph.

To prove the statement in the second paragraph we may assume that I = bR. It will
suffice to show that if a € I then a is in I®; we have already established the other inclusion
in general. To accomplish this it suffices to consider what happens after we replace R by
a complete local domain of R. The expansion of [ is still generated by the image of b and
the image of a will still be in I. Thus, we may assume without loss of generality that R is
a complete local domain. If b = 0 then (0) = I = I = I'* and we are done. If b # 0 then
an equation of integral dependence for a on bR shows that a/b is integral over R. But then
S = R[a/b] is a solid R-algebra, and a € bS, so that a € I'*, as required. [
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The following result is a strong parallel, for solid closure, of Proposition (8.18) of [HH4],
which is a corresponding result for tight closure. It shows, in particular, that over a normal
Noetherian ring the solid closure of a torsion-free module embedded in a projective module
is independent of the embedding.

(5.11) Proposition. Let R be a reduced Noetherian ring and let M, N, F, G be finitely

generated R-modules.

(a) If M/N is torsion-free, then N is solidly closed in M. More generally, N*y may
be identified with a submodule of N' = Ker (M — (RO)_l(M/N)>, where R° denotes
the set of elements of R not i any minimal prime of R. If N s torsion-free, then
N’ C(R°)"'N.

(b) If N C G C F, where G is projective and F is any module, then N¥Xp NG = N*g.
Hence, if G is solidly closed in F, then N¥Xp = N¥q.

(¢) If R is normal, and G C F with G projective and F torsion-free, then G is solidly
closed. If an arbitrary module N has embeddings in two possibly distinct finitely gen-
erated projective modules F and G, then N*X p 2 NXq canonically.

Proof. (a) The argument is identical with that used for part (a) of Proposition (8.18) of
[HH4], and is omitted.

(b) Suppose that there is an element = in N* p but not in N* . Then this remains true
after replacing R by a suitable localization and killing a submodule of F' maximal with
respect to being disjoint from the image of G. We may therefore suppose that (R, m, K) is
local, that G is free, and that F' is an essential extension of G. It follows that F' is torsion-
free, and consequently we may replace F' by an essential extension that is free. Thus, we
may assume that 3: G — F'is a map of free modules with matrix B, and the injectivity of
B implies that b = det (B) is a nonzerodivisor in R. This remains true when we complete,
which does not affect any relevant issue. Finally, we may replace the complete ring R by
its quotient by a minimal prime p: we replace G, F by their tensor products with R/p and
N by the image of (R/p) @r N in (R/p) @r F (or its image in (R/p) ®r G; since b ¢ p,
the induced map (R/p) @r G — (R/p) @r F remains injective). By the definition of solid
closure, p may be chosen so that the image of x is not in the solid closure of (the new) N
in (the new) G. As remarked above, the image of b will be nonzero, and so the induced

map G B, F will still be injective. Thus, there is no loss of generality in assuming that R
is a complete local domain and that G — F' is an injection of free modules of equal rank.
Choose data A, p for the triple (G, N,z). Then BA, Bp give data for the triple (F, N, z).
To complete the argument, it will suffice to show that if the generic forcing algebra T for
the data BA, Bp for the triple (F, N, z) is solid over R, then so is the generic forcing
algebra S for the data A, p for the triple (G, N, ) over R.

But T is obtained from R[X] by killing the entries of the matrix BAX—Bp = B(AX —p),
while S is obtained from R[X] by killing the entries of the matrix AX — p. Thus, there
is an obvious surjection T — 5. We claim that the kernel of this map is an R-torsion
module. The point is that we may multiply B(AX — p) by the classical adjoint adj B of
B, and this produces b(AX — p), which shows that b kills Ker (T — S). By Proposition
(2.1g), T is solid over R if and only if S is solid over R.

(¢) The argument is the same as for part (¢) of Proposition (8.18) of [HH4] (the argument
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requires knowing that over one-dimensional regular rings, every submodule of every finitely
generated module is solidly closed: this is proved in (7.13) and (7.17) below). O

6. MINIMAL SOLID ALGEBRAS

Many of the problems that we shall encounter concerning the properties of solid alge-
bras can be reduced to the case of what we shall call minimal solid algebras. The minimal
solid algebras, which are defined just below, are better behaved than ordinary solid al-
gebras in a number of ways. We shall illustrate this by showing that the minimal solid
algebras finitely generated over a complete one-dimensional local domain are simply the
module-finite extension domains. (This cannot, however, be true in higher dimensions: see

Example (6.6).)

(6.1) Definition and discussion. Let R be a domain. We shall say that a solid R-algebra
S is a minimal solid R-algebra if S has no proper homomorphic image that is a solid
R-algebra. Thus, every solid Noetherian R-algebra maps onto a minimal solid R-algebra.
Likewise, if R is Noetherian, then every finitely generated solid R-algebra maps onto
a minimal finitely generated solid R-algebra. The solid Noetherian R-algebras can be
described as the Noetherian R-algebras that map onto a minimal solid R-algebra. When
a solid R-algebra S is not Noetherian, it is not clear whether the family of ideals I such
that S/I is solid will have a maximal element.

Of major interest is the case where R is Noetherian and S is finitely generated over R.

(6.2) Proposition. Let R be a domain and let S be a minimal solid R-algebra.

(a) If M is a solid S-module then M is a solid R-module.

(b) If S us Noetherian then S is a domain. (Thus, S is an extension domain of R.)

(¢) If S C T is a ring extension such that every nonzero element of T has a nonzero
T-multiple in S, (e.g., if T is a domain and the extension of fraction fields S5y C T\q)
is algebraic), and T s a solid R-algebra then T is a minimal solid R-algebra.

(d) If S is a domain then every extension domain T that is finitely presented as an S-
module 1s a minimal solid R-algebra.

(e) If R is a Noetherian domain and R' is a module-finite extension domain of R then an

R'-algebra S 1s minimal solid over R' if and only if it is minimal solid over R.

Proof. (a) Choose a nonzero S-module map M — S and call the image I, so that I is a
nonzero ideal of S. There exists a nonzero R-module map S — R. If this map kills I then
it factors S —» S/I — R, which implies that S/I is a solid R-algebra, a contradiction. If it
does not kill I then the composite map M — S — R is nonzero.

(b) S has a finite filtration as an S-module with factors that are of the form S/ P, where
P is a varying prime ideal of S. By Proposition (2.1), part (1), at least one of these factors
is a solid R-module. Since no proper homomorphic image of S is a solid R-module, P must
be (0), so that S is a domain.

(¢) Suppose that T has a proper homomorphic image T//.J, J # 0, that admits a nonzero
R-module map to R. By Proposition (2.1d) we may assume that this map is nonzero on
the identity element of T/J. When we restrict the map to S, we get a nonzero R-module
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map S — R that kills JN S and so induces a nonzero R-module map S/(JNS) — R. The
hypothesis implies that J NS = (0), which contradicts the minimality of S.

(d) T is solid over S by Proposition (2.1i) and so is solid over R by (a) above. It is then
minimal by (¢) above.

(e) By Theorem (2.3), S is solid over R if and only if it is solid over R’. But it is also
true that each given proper homomorphic image S/.J of S is solid over R if and only if it
is solid over R’, by the same result. [

We next want to characterize the minimal solid finitely generated algebras over a one-
dimensional local ring. We first observe:

(6.3). Proposition. Let (R,m,K) be a complete one-dimensional local domain, let x €
m — {0}, and let M be a torsion-free R-module. Then M 1is solid if and only if M #* xM.

Thus, if M 1s a torsion-free R-algebra , M 1s solid if and only if the image of x 1 R 1s
not a unait.

Proof. The single element = is a system of parameters for R. By the local cohomology
criterion (2.4), a necessary and sufficient condition for M to be solid is that M, /Im M not
be zero. If M is torsion-free the condition that u/z" be in the image of M in M, for all
w € M and all h is that M = 2" M for all h. This conditon when h = 1 is that M = =M,
which in turn implies that M = 2" M for all h. O

(6.4) Theorem. Let (R,m,K) be a complete local domain of dimension one. A finitely
generated R-algebra S 1s a minimal solid R-algebra if and only if S 1s a module-finite
extension domain of R.

Proof. S is a domain, and z is not invertible in S. It follows that we may choose a maximal
ideal g of S containing x. If S has dimension two or more then it has infinitely many primes
of height one. Not all of these can contain z, since those that contain x will be minimal
primes of #S. If P is a height one prime not containing x such that P C q then S/P is
torsion-free as an R-module (since © ¢ P) and x is not invertible in S/P. Thus, S/P is also
solid, contradicting the minimality of S. It follows that S has a maximal ideal containing
x (and, hence, m) of height at most one. Let 7 be the transcendence degree of the fraction
field of S over R and let ¢ be the transcendence degree of S/q = S4/qSy over K = R/m.
Since ¢ is maximal, § = 0. By [Mat] (14.C) Theorem 23 (the dimension formula), we have
that ht q =ht P+t — ¢, so that ht ¢ =14 7. Since ht q < 1, we must have that ht g =1
and 7 = 0. Thus, S is algebraic over R. By Theorem (2.9), since S is solid over R, S must
be integral over R and, hence, module-finite over R. [

(6.5) Corollary. Let R be a complete local domain of dimension one. Then a finitely
generated R-algebra S 1s solid if and only 1f S has a homomorphic image that is a module-
finite extension of R.

Proof. 1t S is solid it can be mapped onto a minimal solid R-algebra, and the result is
then immediate from Theorem (6.4). On the other hand, an algebra that can be mapped
onto a module-finite extension of R is solid by Proposition (2.1), parts (i) and (f). O

(6.6) Ezample. It cannot be true in the equal characteristic case that a minimal solid
finitely generated algebra over a complete local domain of dimension 3 is necessarily
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module-finite over the domain, even when the domain is regular. To see this, choose
T to be a complete normal domain of dimension 3 containing a field of characteristic zero
such that T is not Cohen-Macaulay. Such domains exist even when the coefficient field
is algebraically closed. Represent T' as module-finite over a complete regular local ring R
(necessarily a formal power series ring in three variables over a field). Let z, y, z be the
variables in R. Then, since T is not Cohen-Macaulay there is a relation uz = va + wy with
u,v,w € T and u ¢ (x,y)T. By Theorem (10.11) below, u is in the solid closure of (z,y)T
in T, and so the generic forcing algebra T[Z, Z'|/(u — *Z — yZ') is a finitely generated
solid T-algebra. Thus, it can be mapped onto a minimal solid T-algebra S, which will also
be a minimal solid R-algebra. We claim that S cannot be module-finite over T (which is
equivalent to being module-finite over R). Suppose that it were module-finite. Let d be the
degree of the extension of fraction fields, [G : F], with G = S(oy and F' = T(). Then, since
T is normal, (1/d) Traceq/p gives a T-module retraction of S to T. Since u € (z,y)S, it
would follow (applying the retraction) that u € (z,y)T, a contradiction. O

7. S-REGULAR RINGS

In parallel with tight closure theory, we define a Noetherian ring R to be weakly S-
reqular if every ideal of R is solidly closed, and S-reqular if W™ R is weakly S-regular for
every multiplicative system W in R. (Solid closure does not commute with localization;
we do not know whether weakly S-regular implies S-regular.) In characteristic p, and in
dimension at most two, regular rings are S-regular. We shall see later that for well-behaved
rings of characteristic p, the notion of weak S-regularity coincides with that of weak F-
regularity. Cf. Corollary (8.9). On the other hand, by a result of Paul Roberts [Ro6] (cf.
(7.22) and (7.23)), an S-regular ring of equal characteristic zero is forced to have a rather
small dimension: see Corollary (7.24) below. The situation for regular local rings of mixed
characteristic remains mysterious.

Quite generally, S-regular rings are normal, and a weakly S-regular ring containing a
field is Cohen-Macaulay. We do not know whether an S-regular ring is Cohen-Macaulay
in mixed characteristic.

We first observe:

(7.1) Proposition. Let R be a Noetherian ring.

(a) R is weakly S-reqular if and only if every ideal of R primary to a mazimal ideal is
solidly closed.

(b) R is weakly S-reqular if and only if Ry, is weakly S-reqular for every mazimal ideal
m of R.

(¢) If (R,m, K) is local, then R is weakly S-regular if and only if R is weakly S-reqular.

(d) If (R,m, K) is local, a sufficient condition for it to be S-reqular is that there exist a
sequence of solidly closed irreducible m-primary ideals {I;}¢ cofinal with the powers of

m. In fact, if such a sequence exists, then for all finitely generated R-modules N C M,
N s solidly closed in M.

Proof. (a) This is a consequence of the fact that every proper ideal of a Noetherian ring
is an intersection of a (usually infinite) family of ideals primary to maximal ideals.
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(b) The ideals ¢ primary to m in R are in bijective with correspondence with the ideals
primary to mR,, in R,, via expansion and contraction, and ¢ is solidly closed in R if and
only if ¢R,, is solidly closed in R,,, by Proposition (5.5d).

(¢) The ideals ¢ primary to m in R are in bijective correspondence with the ideals
primary to mR = @ in R via expansion and contraction, and ¢ is solidly closed in R if
and only if qﬁ = ¢ is solidly closed in ﬁ, by Proposition (5.5b).

(d) Since N = (),(N +m'M) it suffices to do the case where M /N has finite length. By
Discussion (5.2) we may assume that N = 0 and that M has finite length. Choose I so that
it kills M and view M as a module over R/I;, which is self-injective (i.e., 0-dimensional
Gorenstein), since I is m-primary and irreducible. Then R/I; is the only indecomposable
injective module over R/, and the injective hull of M over R/I; will be a finite direct sum
of copies of R/I;. Thus, M C (R/;)" for some nonnegative integer h. Since I; is solidly
closed in R, 0 is solidly closed in R/I;, and so 0 is solidly closed in (R/I;)"* by Proposition
(5.4m). But then 0 is solidly closed in M by the second part of Proposition (5.4b). O

(7.3) Definition. We shall say that elements xq, ... ,xq in a Noetherian ring R are
parameters if for every prime ideal P O (x1,...,2q4)R, the images x1/1, ... ,2q/1 of
these elements in R form part of a system of parameters for Rp. In particular, an element
x not in the union of the minimal primes of R 1s called a parameter.

(7.4) Definition. We shall say that a Noetherian ring R is S-rational if every ideal
generated by parameters is solidly closed.

(7.5) Remarks. The terminology is parallel to that used for tight closure: a Noetherian
ring R for which tight closure is defined such that every ideal generated by parameters is
tightly closed is called F-rational. See [HH9] and [FeW] for further discussion. The reason
for this terminology is that, in equal characteristic 0, the F-rational rings may coincide
with the rings R such that Spec R has rational singularities. Cf. [Sm1,3].

(7.6) Proposition. Let R be a Noetherian ring. Suppose either that:
(a) (0) is solidly closed (this is equivalent to the statement that R is reduced) and that
every principal ideal generated by a parameter is solidly closed or
(b) every ideal generated by a parameter is solidly closed and the zero-dimensional con-
nected components of Spec R, if any, are reduced.
Then R 1s normal.

Proof. Since (b) = (a) it will suffice to prove that R is normal assuming (b). Suppose that
R = Ry x--- X Ry, where each Spec R; is connected. The parameters in R correspond to
h-tuples (x1, ... ,xp) such that every z; is a parameter in R;. If z; is a parameter in R,
then

y=(1,...,1, 2;,1,...,1)

is a parameter in R. From the fact that yR is solidly closed in R, it follows that z;R;
is solidly closed in R;, by Proposition (5.5e). Thus, the condition that every parameter
generate a solidly closed ideal is inherited by the rings occurring as factors in the product
decomposition of R, and so we may assume without loss of generality that Spec R is
connected.
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If dim R = 0, then, by hypothesis, R is reduced and so R is a field. If dim R > 1 then
every principal ideal generated by a parameter in R is integrally closed, by Theorem (5.10).
But this implies that R is normal: see Lemma (5.9) of [HH4]. O

(7.7) Corollary. If R is S-regular (or S-rational) then R is normal.
Proof. If R is S-rational then the condition in Proposition (7.6a) holds. O

In order to show that the property of being S-rational passes to local rings at maximal
ideals we first note:

(7.8) Lemma. Let m be a mazimal ideal of Noetherian ring R and let I be an ideal of
Ry, generated by a system of parameters of length d (thus, dim R,, = d). Then there is an
wdeal J of R generated by d parameters such that JR,, = I.

Proof. We use induction on d. If d =0 then I = (0) in R,, and we may take J = (0) C R.
Assume that d > 1. We claim that there is an element # € R, not in any minimal prime
of R, such that /1 is part of a minimal set of generators for I. To see this, let Iy and I4
denote the contractions of I and m/ to R and let pq, ... ,pp denote the minimal primes of
R. We wish to choose z in In — (I; UJ, py). Since all but at most one of the ideals Iy, p,
are prime, we can do this unless Iy C Iy or I C p = p,, for some minimal prime of p of R.
The former is impossible because I, mI are equal to the expansions of their contractions
to R, which would imply I C mI (and so I = (0)) if Iy € I;. On the other hand, Iy is the
contraction of an R,,-primary ideal of R,, and so is primary to m. If Iy C p then m C p
and so m = p and dim R,,, = 0.

Thus, we can choose x as specified. We may now apply the induction hypothesis to
the ring R/x R, the maximal ideal m /xR, and the ideal IR,,/xRy,. Since /1 is part of a
minimal set of generators for I R,,, it is part of a system of parameters generating I, and the
ideal IR, /xR,, will be generated by d—1 parameters. By the induction hypothesis we can
choose parameters ¥y, ...,y _, in R/xR (where the y; € R and the bar indicates images
modulo zR) such that the images of the ¥; in R,,/tR,, generate IR,,/xR,,. The fact
that x is not in any minimal prime of R then implies that x, y1, ... ,y4—1 are parameters
in R, and these elements evidently satisfy the required condition. [

(7.9) Proposition. Let R be a Noetherian ring.

(a) R is S-rational if and only if Ry, is S-rational for every mazimal ideal m of R.

(b) If (R,m,K) is local, then R is S-rational if and only if every ideal generated by a
(full) system of parameters is solidly closed.

(¢) If (R,m, K) is local, then R is S-rational if and only if R is S-rational.

(d) If (R,m,K) 1s Cohen-Macaulay local and x1, ... x4 is one system of parameters,
then R is S-rational if and only if (2%, ... ,2l) is solidly closed for infinitely many
values of t.

(e) If R is Gorenstein, then R is weakly S-reqular if and only if it is S-rational.

Proof. (b) Let x1, ...,z be part of a system of parameters and extend it to a full system
of parameters x1, ... , x4 for some d > k. Then

(1, ... ,l’k)R:ﬂ(l'l, ey Thy Thgyy - 2R,
t



28 MELVIN HOCHSTER

and each of the ideals in the intersection is generated by a full system of parameters and,
hence, solidly closed.

(a) To prove “if” assume that every R,, is S-rational and let I be an ideal of R generated
by parameters. Suppose that u € I*p — I. Then this is preserved upon localization at
some maximal ideal m of R, and we must have I C m. But then IR,, is generated by part
of a system of parameters in R,,, a contradiction.

To prove “only if”, note that by part (b) it suffices to show that if I is generated by
a system of parameters in R, then I is solidly closed. If not, we can choose u € R such
that u/1 € I* —I. Choose .J, an ideal generated by parameters in R, such that JR,, = I.
Then J = J*, since R is S-rational. Let J’ be the contraction of JR,, to R, which is the
same as the set of elements multiplied into .J by an element of R — m. Thus, J' = J:pw
for a single element w € R — m. Then .J’ is an m-primary ideal of R and is solidly closed
by part (1) of Proposition (5.4). Since u/1 ¢ I = JR,,, we have that u ¢ .J'. But then the
fact that u ¢ J* = Jis preserved by localization at m, by Proposition (5.5¢), and so u
is not in the solid closure of J'R,, = I, a contradiction.

(¢) By part (b), we need only consider ideals I generated by full systems of parameters
in R (and ]/%\), and there is a bijection between such ideals in R and such ideals in R given by
expansion (or completion) and contraction. The issue of whether such an ideal is solidly
closed is unaffected by completion, since R/I = R\/IE and we may apply Proposition
(5.5Dh).

(d) 'y =y1, ... ,yaq is any full system of parameters then the local cohomology module
HY(R) = H(dy)R(R) is the direct limit of modules R/(y, ... ,y))R, and the maps in
the system are injective. Thus, R/(y)R embeds in H¢ (R), which is also the increasing
union of submodules isomorphic with R/(z!, ... ,z5)R. It follows that R/(y)R embeds
in R/(z%, ... ,2})R for any sufficiently large value of ¢. If (2!, ... ,2%)R is solidly closed
in R, then 0 is solidly closed in R/(z%, ... ,z%)R, which implies that 0 is solidly closed in
R/(y1, ... ,ya)R, and so (y1, ... ,ya)R is solidly closed in R.

(e) Since both properties are local on the maximal ideals of R it suffices to prove the
case where (R, m, K') is local of dimension d. Let 2y, ... , 24 be a system of parameters for
R andlet I = (!, ... ,2%)R. Then the sequence {I;}; consists of m-primary irreducible
ideals and is cofinal with the powers of m. By the F-rationality of R, the ideals I are
solidly closed, and by Proposition (7.1d) this implies that R is weakly F-regular. O

(7.10) Remark. In §10 we shall see that every S-rational ring containing a field is Cohen-
Macaulay. We do not know whether this is true in mixed characteristic.

(7.11) Corollary. Every local ring of a weakly S-regular ring or of an S-rational ring is
analytically normal.

Proof. The properties of weak S-regularity and S-rationality are preserved by localization
at a maximal ideal and by completion. Thus, the result is clear for maximal ideals. But if
P is a prime ideal of R, m is a maximal ideal of R containing P and () is a prime ideal of
the completion T of R that lies over @), then (Rp)~— (Tg)” is faithfully flat. Since T is
normal and complete, T is excellent and normal, and so (Tg)” is normal. It follows that
(Rp)” is normal as well. O
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The normality of weakly S-regular rings enables us to prove a converse to Proposition

(7.1d).

(7.12) Proposition. A local ring (R,m, K) is weakly S-reqular if and only if there exists
a sequence of solidly closed irreducible m-primary ideals {I;}; cofinal with the powers of
m.

Proof. The sufficiency of the condition was established in Proposition (7.1d). On the other
hand, if (R, m, K) is weakly S-regular then it is normal and so approzimately Gorenstein
in the sense of [Hod] (see also Discussion (8.6) on p.75 of [HH4] for a summary), which
means precisely that there exists a sequence of m-primary irreducible ideals {I;}; cofinal
with the powers of m. These ideals will all be solidly closed, since R is S-regular. O

(7.13) Theorem. If R is weakly S-regular and N C M are finitely generated R-modules
then N s solidly closed in M.

Proof. Suppose, to the contrary, that v € N* 3 — N. Then this will be preserved upon
localization at a suitable maximal ideal m of R. Hence, there is no loss of generality
in assuming that R is local. But then the result follows from Proposition (7.12) and
Proposition (7.1d). O

(7.14) Discussion. We recall that a map of R-modules N — M is called pure if for every
R-module @, Q@ ®r N — Q ®r M is injective. In particular, N — M itself must be an
injection. This is a weakening of the condition that the map embed N as a direct summand
of M over R. This weaker condition has the advantage that it is stable under taking direct
limits. See §6 of [HR1], §5 (a) of [HR2], and [Hod]. If M/N is finitely presented over R
then N — M is pure if and only if it splits (see, for example, Corollary 5.2 on p. 142 of
[HR2]). When R is Noetherian, an injection N < M is pure if and only if N — Mj splits
for every submodule My of M containing the image of N such that M/Im N is finitely
generated. If R is a complete local ring and R — M is pure, then it splits without any
finiteness condition on M: see the second paragraph of the proof of Corollary (6.24), p.
59, of [HH4].

The purity of R «— M implies that for every ideal I of R, IM N R = I, since applying
(R/I) ®@r _ yields an injection.

(7.15) Proposition. Suppose that A C R are Noetherian rings and that the injection
A — R 1s pure, or even that every ideal of A is contracted from R. Then if R is weakly
S-reqular, so is A. In particular, if A 1s a direct summand of R as an A-module, and R
18 weakly S-reqular then so is A.

Proof. If I C A, then I is the contraction of IR C R, and so [ is solidly closed in A by
Corollary (5.7). O

Although the following result is easy, it is rather important:

(7.16) Proposition. Let R be a Noetherian ring.

(a) If R is a Noetherian ring and S is a module-finite extension (or, more generally, a
formally solid extension), then IS N R C I* for every ideal I of R.

(b) If R is weakly S-regular, then R is pure in every formally solid extension algebra.
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(¢) If R is weakly S-regular, then R is a direct summand, as a module over itself, of every
module-finite extension ring.

(d) If R is weakly S-reqular and complete local, then R is a direct summand, as a module
over itself, of every solid R-algebra.

Proof. Part (a) is obvious, and (b) follows from (a) together with the fact that weakly
S-regular rings are normal, hence, approximately Gorenstein, and so the contractedness of
ideals implies purity. Part (c) is immediate from (b) and the fact that pure implies split
when the cokernel is finitely presented. Part (d) is immediate from (b) and the fact that
when a complete local ring is a pure submodule of a module the map splits: cf. the second

paragraph of the proof of (6.24) in [HH4]. O
We next note:

(7.17) Proposition. A Noetherian ring of dimension at most one is weakly S-regular if
and only if it 18 reqular, i.e., if and only if 1t 1s a finite product of Dedekind domains, in
which case it 1s S-reqular.

Proof. Since a weakly S-regular ring is normal, and a normal Noetherian ring of dimension
at most one is regular, “only if” is clear. Thus, we only need to show that a regular
Noetherian ring R of dimension at most one is S-regular. It will suffice to show that every
local ring of R is weakly S-regular. But the local rings of R are discrete valuation rings or
fields. In such a ring every ideal is principal. Since the solid closure of a principal ideal is
equal to the integral closure and since every principal ideal in a normal ring is integrally
closed, it follows that in a field or discrete valuation ring every ideal is solidly closed. [

We shall see later that not every regular local ring is S-regular: this is false in equal
characteristic zero in dimension bigger than or equal to 3, by a result of Paul Roberts
[Ro6]. But it is true in characteristic p and in dimension at most two that regular rings
are S-regular, and it is an open question for regular local rings of mixed characteristic. To
explore this question further, we first observe:

(7.18) Proposition. Let (R, m, K) be an analytically irreducible local Gorenstein domain
of dimension d with system of parameters xy, ... ,xq, let [ = (l’i—i—l, . ,:1;2+1)R, fort >0,
let I = I, letx = 2y -+ 24, and let u denote an element of R whose image in R/I generates
the socle.

Let Yi, ..., Yy denote indeterminates over R and let Gy = x'u — Ele xf""lYi. Then R
is weakly S-reqular if and only if for all t > 0 (equivalently, for infinitely many values of
t>0) Hi(RIV)/(Gy)) = 0.

Note here that HY, (R[Y]/(Gy)) = H} (R[Y]/(Gy)).

Proof. If R is weakly S-regular then, evidently, all the ideals I; are solidly closed. On the
other hand, these ideals form a sequence of m-primary ideals cofinal with the powers of
the maximal ideal, and so R is weakly S-regular if and only if infinitely many of the I; are
solidly closed, by Proposition (7.12). Since the image of x'u generates the socle in R/I;
for every t > 1, any ideal strictly larger than I; must contain z'u. Thus, I; is solidly closed
if and only if z'u is not in its solid closure, i.e., if and only if a generic forcing algebra
for (R, I;,x'u) is not formally solid. R[Y]/(G}) is evidently a generic forcing algebra for
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(R, I;, x'u). Thus, the condition for it not to be formally solid is that ﬁ@RR[ Y]/(Gy) not be
solid. By Corollary (2.4), this is equlvalent to the conditon that H, (R@R RIY/(Gy)) =

and this module may be identified with R @ HY (RIY]/(Gy)) = HE (R[Y]/(Gy)), since
every element of HZ (N) is killed by a power of m for every R-module N. [

In particular, the criterion of this result is valid when R is a regular local ring and the
x’s are a system of parameters and, in that case, the z’s may be chosen to be a minimal
set of generators of the maximal ideal of R, in which case we may take u = 1. In this very
important special case we therefore have:

(7.19) Corollary. Let (R, m, K) be a reqular local ring of dimension d and suppose that
T1y ... g 18 a reqular system of parameters, i.e., that m = (w1, ... ,xq)R. Let Yy, ..., Yy
denote indeterminates over R and let Gy denote the polynomial x} .-zl — E;i 1 2ty
Then R is weakly S-regular iof and only if for all t > 0 (equivalently, for infinitely many

values of t > 0) HE (R[Y]/(Gy)) =0. O

(7.20) Theorem. Let R be a reqular Noetherian ring.
(a) If R has positive prime characteristic p then R is S-reqular.
(b) If dim R <2 then R is S-reqular.

Proof. In both cases it suffices to show that the local rings of R are weakly S-regular, and
these may be replaced by their completions. Thus, we need only show that a complete
regular local ring satisfying one of the two hypotheses is weakly S-regular.

(a) Let @y, ..., 24 be a minimal set of generators for the maximal ideal of R. We use
the notation of Proposition (7.18) and Corollary (7.19) here. We may take u = 1. Consider
R[Y]/(Gy). In this ring S we have that 2! € I,11S. Taking ¢'* powers where ¢ = p¢ yields
that 29" € I,44,S. Since (gt + q) — ¢t = ¢ is unbounded, Observation (2.6) shows that
H(S)=0.

(b) Since we have already handled the case where dim R < 1 we may assume that R
is a complete regular local domain of dimension 2, with regular system of parameters x,
r9, and take u = 1. Let T = Z[X1, X2,Y7,Y3]/(G¢) where G; denotes the polynomial
(X1X2)" — 2?21 Yin"i'l. We can map T to S = R[Y]/(G,) by sending X; to x; and Y; to
Y; for i = 1, 2. Then H%(S) >~ S @7 H(2X1,X2)T(T)'

But H(X X )T(T) is shown to vanish in §6 of [HoT7], pp. 545-547. The groups Hs 4.
studied there are the graded pieces (with respect to a certain Z2-grading: ¢ € Z? here) of
H(2X1,X y7(T). See Corollary (6.11) of [Ho7]. 0O

(7.21) Remarks. The result of part (a) is implicit in [Hol] as well as in [Ho7], while the
result of part (b) is implicit in [HoT].

(7.22) Discussion: some multigraded local cohomology modules. Let d and t be positive
integers, let Xy, ..., X4, Y7, ..., Yy be indeterminates over Z, and let

d
GZ(Xr--Xd)t—ZYin“.
141
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In [Ho7], pp.544-552, there is a study of the d'* local cohomology modules HY(Ry ;) of the
rings

Rd,t = Z[le 7Xd7Y17 7Yd]/(Gd7t)7

with support in I = (X, ..., X4)R. More specifically, a Z-grading is introduced such that
the degree of X; is the i** row of a size d identity matrix and the degree of ¥ has —1 in
the 7" spot and #’s elsewhere. The ¢! graded piece Hy . is calculated, in a certain sense,
as an abelian group. These groups are shown to be divisible. When d = 2 they are also
shown to be finitely generated, and, hence, 0. The question is raised as to whether these
groups must always vanish. This has recently been answered negatively by Paul Roberts.

(7.23) Discussion: Roberts’ calculation. We continue the notation of (7.22). In these
terms, Roberts” main result in [Ro6] is that if d = 3 then Q ®7 H3 3. # 0 when ¢ =
(—2,—2,—2). This is the same as the degree (—2,—2, —2) graded piece of H}(Q @z R32)
with I = (21,22, 23). In particular, H}(Q @z R 2) # 0. As an immediate consequence we
have:

(7.24) Corollary. Let f, g, h be any three elements in a Noetherian ring S of equal
characteristic zero. Then f2g*h? is in (f3, g%, h*)*. In particular, if x1, x2, x3 are part
of a system of parameters for an equicharacteristic zero regqular local ring of dimension

three (or any equicharacteristic zero local ring of dimension at least three) then x¥x3x% is

in (23,23, 23)%.
In consequence, a weakly S-reqular ring (or an S-rational ring) containing the rationals

has dimension at most two.

Proof. To prove the first statement note that it suffices to do so after passing to a complete
local domain of R. Thus, we may assume that R is a complete local domain. If any of f,
g, or h is a unit the conclusion is clear. Thus, we may assume that all three are in the
maximal ideal of the ring. Then there is a local homomorphism of A = Q[[ X, X2, X3]]
to R carrying Xy, Xo, X3 to f, g, h respectively, and by the persistence of solid closure,
Theorem (5.6), it suffices to prove the result when the ring is Q[[ X1, X2, X3]] and f, ¢, h
are X1, X2, X3. The relevant generic forcing algebra is then B = A[Y7,Y3,Y3]/(G) where

3
G=X{X;X] - ) Yix},

=1

and so it will suffice to prove that H3(B) # 0 with J = (X;,X2, X3)B. But H3(B)

is lim 4 B/(X{, X!, X1)B (where the maps between consecutive modules are induced by

multiplication by X; X5 X3 acting on the copies of B in the numerators). Let R =
Q[X1, Xo, X3,Y1,Y2,Y3]/(G). Then R/(X], X XHR = B/(X!, X, X!)B, and it follows
that H3(B) = H}(R) with I = (X1, X2, X3)R. But this R is precisely the ring Q @z R3 »
discussed in (7.23), and the result is now immediate from Paul Roberts’ result in [Ro6].
The final statement follows at once: if one had an S-regular ring of dimension at least
three containing Q, it would have a local ring (at some maximal ideal) of dimension at
least three, and that local ring would still be S-regular, by Proposition (7.1b). Choose

r1,72, 73 in the local ring so that they are part of a system of parameters. Then x7232% €
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(23,23, 23)% = (23,23, #3), and this contradicts the monomial conjecture, which is known
in equal characteristic. (The proof for the S-rational case is the same, using Proposition

(7.9a).) O

(7.25) Remarks. Despite this result, if R = Z[x] or S = Z[[x]] with x =z, ... ,2,, any
ideal I generated by monomials in the 2’s is solidly closed either in R or in S. In fact, over
R, N is solidly closed in M, where M is a finitely generated R-module, if M /N is torsion-
free over Z: see Theorem (13.1b). The result for I C S follows from Theorem (13.1a),
since I = () {I + pS : p prime in Z}. E.g., (23,23, 23) is solidly closed in Z[zy, v2, 23] and
in Z[[x1, 22, 23]].

The reader is referred to §13 for further discussion.

8. COMPARISON WITH TIGHT CLOSURE IN CHARACTERISTIC P

Our main objective in this section is to show that in many good cases in characteristic
p, including the case of algebras essentially of finite type over an excellent local ring, the
notion of tight closure defined in [HH4] coincides with the notion of solid closure defined
here. The key point is that both can be tested after passing to a complete local domain
of R. One of the main results is Theorem (8.6), which shows that the tight closure is
always contained in the solid closure and that the two notions agree when the ring has a
completely stable weak test element (this includes the case where the ring is essentially of
finite type over an excellent local ring).

In §11 we shall prove that for a complete local domain of characteristic p, an element
is in the tight closure of a submodule of a finitely generated module M if and only if it
is in the expansion after tensoring with a big Cohen-Macaulay algebra. Since big Cohen-
Macaulay algebras over a complete local domain are always solid, this is a refinement of
the result discussed in the preceding paragraph. In §11 we shall also use this result on big
Cohen-Macaulay algebras to show that the solid closure contains the tight closure (defined
via reduction to characteristic p) for rings containing @, insofar as tight closure can be
defined.

In the theory of tight closure one needs a technical device, namely, the theory of com-
pletely stable test elements (described in Definition (8.3¢) below), to control behavior as
one passes to the completion of a local ring.

The definitions, discussion, and results given in (8.1) through (8.5) below sketch rapidly
all that we need concerning the theory of tight closure from [HH4|, [HH3], and [HH9].

(8.1) Discussion and definitions. We recall that if R is a ring of positive prime charac-
teristic p, and F¢, for ¢ € N, denotes the e’ iteration of the Frobenius endomorphism of
R (so that F¢(r) = r?"), we can define a right exact functor F¢ (or, more precisely, F%,)
from R-modules to R-modules that preserves finite generation by applying the functor
S®@pr _, where § denotes R viewed as an R-algebra via the structural homomorphism F°.
Quite generally, for any R-algebra S, S @gr _ is a right exact functor from R-modules to
S-modules that preserves finite generation, whose value on R is S, and such that images
of R-free modules are S-free. If g denotes the structural homomorphism R — S, then

this functor sends M = Coker (R" 4, R¥), where A is given by the matrix (r;;), to the
cokernel of the map of free S-modules given by the matrix g(A) = (g(rij)>.
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In the present instance, rather confusingly, S = R, so that the functor sends R-modules
to R-modules. Note that F¢(Coker (rij)> = Coker (r?j), where ¢ = p°.

The functors F¢ are known as the Peskine-Szpiro or Frobenius functors. In the general
situation of a base change from R-modules to S-modules, where S is an R-algebra , there
is a map M — S ®@gr M as R-modules. We shall write the image of u € M in F¢(M) as
u?". Because S = R in our case, S @r M has two R-module structures. We shall always
work with the one obtained by viewing it as an S-module and then “remembering” that
S = R. With this convention, the map u — u?" is linear in the sense that (ru)pe = Py,
When N C M we shall denote the image of F¢(N) in F¢(M) as NP1, This notation is
somewhat imprecise, since one needs to know what M and the embedding N C M are.

When M = R and N = I is an ideal of R, I?"] denotes the ideal of R generated by the
(pe)th powers of the elements of I.

(8.2) Notation. We shall denote by R° the multiplicative system consisting of all elements
of R not in any minimal prime ideal of R. If R is a domain, R° = R — {0}.

(8.3) Definitions. Let R be a Noetherian ring of positive prime characteristic p.

(a) If N C M are finitely generated R-modules, we say that u € M is in the tight closure
N*ur (or simply N* if M is clear from the context) of N in M over R if there exists
an element ¢ € R® such that cu?” € NP1 in Fe(M) for all sufficient large nonnegative
integers e.

(b) An element ¢ € R° s called a ¢'-weak test element, where ¢' is a power of p, if for
every pair of finitely generated R-modules N C M and every element uw € M, u 1s in
N*ar if and only if cu?” € NP1 in Fe(M) for all p¢ > ¢'. If ¢ =1, then c is called a
test element.

(c) An element ¢ € R° is called a completely stable ¢'-weak test element if its image in
the completion of every local ring of R is a ¢'-weak test element for that local ring. If
q' = 1 then c 1s called a completely stable test element.

(8.4) Remarks. Tight closure and the notion of test element are introduced in [HH4], but
see also [HH1-3] and [Hul]. The theory is further pursued in [HH6] and [HH8-11]. The

following result on the existence of completely stable test elements, which follows from

Theorems (5.10) and (6.20) of [HH9] will suffice for our purpose here:

(8.5) Theorem. Let R be a Noetherian ring of characteristic p and suppose either
(i) that R is an algebra essentially of finite type over an excellent local ring or
(ii) that R is module finite over RP = F(R), i.e., that the Frobenius endomorphism is a
finite morphism.
Suppose that ¢ € Ryeq 15 such that (Ryed)e 18 reqular (such elements ¢ always exist).
Then ¢ has a power that is a completely stable ¢'-weak test element for some ¢'. If R s
reduced then ¢ has a power that 1s a test element.

Thus, a ring satisfying (1) or (i) has a completely stable weak test element. O

(8.6) Theorem. Let N C M be finitely generated modules over a Noetherian ring R of
characteristic p.
(a) N*y C NX*yy.
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(b) If R has a completely stable weak test element, then N*p = N*

Proof. Suppose that u € N*3;. This is preserved upon completion and also upon killing a
minimal prime of the completion. Thus, (a) will follow if one can show tight closure and
solid closure agree for complete local domains. (b) will also follow from the complete local
domain case if one can show that if a given element u € M is not in N*j;, then one can
choose a complete local domain B of R such that up is not in Ng*y;, over B. But the
fact that one has a completely stable ¢/-weak test element ¢ shows that cu?” ¢ NP in
Fe¢(M) for some p® > ¢', and this continues to be the case after localizing at a suitable
maximal ideal and then after completion at that maximal ideal. We can then preserve
that the image of u is not in the tight closure after killing a suitable minimal prime of the
complete local ring so obtained by (6.25) of [HH4] generalized to the case of modules (the
argument is valid without essential change).

Thus, both parts of the theorem follow if we can establish that for a complete local
domain (R,m,K), one has N*3; = N*;;. The fact that N*,; C N*jp; is implicit in
Theorem (5.22) of [HH10]. Let u € M and suppose that there is a solid R-algebra S such
that 1@u € (Ng). We may choose an R-module map 6: S — R such that (1) = ¢ € R—{0}.
If we apply F¢ we find that 1 ® v is in

Im (S @p FG(N) = S@rFR(M)) =Im (S @r NPT = 5 @p Fh(M)).

For every R-module W the map 6: 5 — R induces a map S @r W — W sending s ® w to
O(s)w. If Wy C W the diagram:

SOrWy —— S@rW

l l

Wo — w

commutes. Applying this with W = F¢(M) and Wy = Nl we find that the image of
1@ uP is cu?” and is in NP1, Since this holds for all e, we have that u € N*y,

Now suppose that R is a complete local domain of dimension d and that u € N*; for
some u € M. Let S be the generic forcing algebra for (M, N,u) for, say, the data A, p,
so that S = R[X]/J, where J is generated by the entries of AX — p. To complete the
argument, it will suffice to show that HZ (S) # 0.

Let zq, ... ,x4 be a system of parameters for R. Let x = x1 --- x4. We shall prove that

at ¢ (211 L. H'I)S for all . By Observation (2.6) this condltlon is sufficient to imply
that H,gﬁ( ) # 0

Suppose to the contrary that =t € (2171, ... ,:1;2""1)5 for some fixed t. Then we can lift

this to R[X]: we have that

$t+1F + G, where G € J.

Mg

(#)

=1

We shall obtain a contradiction. To this end, let b be a positive integer that is an upper
bound for all the numbers deg F;.
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The fact that u is in the tight closure of N in M implies that p is in the tight closure
of the column space of A. We therefore have that for all e > 0, ¢p?” = F¢(A)y., where
F¢(A) denotes the matrix obtained from A by raising every entry to the p® power and
where 3. is a vector over R. Taking (p¢)™ roots, if we let ¢, = c'/?° then c.p = Az, for
every e > 0, where z. is a vector over R'/?° depending on e. Consider the equations (#)
over the domain (Rl/pe)ce, and substitute X = ce_lze. This substitution makes the entries

of AX — p vanish, and since these generate J, it makes GG vanish. This yields

d
ZXMF ze).

If we multiply both sides by ¢! we clear denominators on the right, and we obtain
APt e (@ RSP RYPT
for all e > 0. Raising both sides to the (p¢)™* power yields
cb(:Jct)pe € <($§+1, fi""l)R) [v7]

for all e > 0. Let K be a coefficient field for R and let A = K[[zy, ... ,24]], a regular
ring over which R is module-finite. Replace ¢® by a nonzero multiple ¢/ in A. Then for all
e > 0 we have that

c’(:Jct)pe € ((:E’i"’l)pe, ,(:I;ffl)pe)R N A,
and by the main result of [Hol] (or by Theorem (7.20a) and Proposition (7.16¢) here,
which recover that result) this is

((2F1P°, L (5P A,

(One may also use the main result of §7 of [HH4] concerning operations on ideals generated
by monomials in parameters to get a contradiction here.) This shows that x' is in the tight

closure of the ideal (™', ... ,:1;2""1)14, a contradiction, since every ideal of a regular ring

of characteristic p is tightly closed by Theorem (4.4) of [HH4]. O

(8.7) Remark. If one defines the formal tight closure of a submodule N of a finitely
generated R-module M over a Noetherian ring R of positive prime characteristic to consist
of all elements u € M such that for every complete local domain B of R, the image 1 ® u

of win B ®@gr M is in the tight closure, over B, of (Ng), then it is readily apparent from
(8.6) that the formal tight closure of N in M is the same as N*

(8.8) Corollary. Let R — S be a homomorphism of Noetherian rings of characteristic p
such that R has a completely stable weak test element. Suppose also that

(*) for every mazimal ideal m of R and minimal prime p of (Rp)” there is a prime ideal
Q of S lying over m and a prime ideal q of (Sq)~ lying over p such that ht m((SQ)A/cD >

dim (B ) 7p).
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(In particular, this condition holds whenever S is faithfully flat over R.)
Suppose as well that the image of u in S @r M 1is in the tight closure of the (Ng) in
S ®@r M over S. Then u 1s in the tight closure of N in M over R.

Proof. Since the image of v is in the tight closure (Ng) in S @r M, by Theorem (8.6a) it
is in the solid closure. We may then apply (5.9¢) to conclude that u € N*,; over R, and
by Theorem (8.6b) it follows that u € N*3; over R. O

The result above is an enormous improvement upon Theorem (5.31) of [HH10], in two
ways. First, the height condition (*) above is very much weaker than the condition that
R — S be “formally height preserving” in the sense of [HH10]. The latter condition, in
essence, restricts ) to be a minimal prime of mS, so that m expands to an ideal primary to
the maximal ideal of (Sg)~, and then requires that dim (Sg)7/p(Sq)” > dim (R, ) /p(Rm )™
(Cf. (5.30a) of [HH10].) To simplify notation, let B = (R,,)/p(Rmn)” and let C =
(Sq)/p(Sq)”~ Thus, B — C is alocal homomorphism of complete local rings such that the
maximal ideal of B expands to the maximal ideal of C'. The condition that dim C' > dim B
implies that dim C' = dim B and that B — C is injective (otherwise, the image of B has
dimension d smaller than that of B, and the maximal ideal of B will be the radical of an
ideal generated by d elements). Thus, while no prime q of C' is mentioned in the definition,
any minimal prime q of C such that dim C'/q = dim C must lie over (0) in B. It follows
that R — S is formally height preserving if and only if for every maximal ideal m of R and
minimal prime p of (R,,)”, there are a minimal prime @ of mS and a minimal prime q of
(Sg)” lying over p in (R,,)” such that ht m(Sq)7/q > dim (R,,)/p. (This is equivalent to
dim (Sq)7/a = dim (o) /9.

It is now clear that condition (*) is much weaker than “formally height preserving”.
(Consider the example given after the proof of Lemma (3.6): m.S is a prime of height one
in S.)

The second point is that, even in situations where R — S is formally height preserving
(even, in fact, when R — S is faithfully flat), Corollary (8.8) above has an advantage,
because one does not need to worry about the technical hypotheses (i) or (ii) that are

needed for Theorem (5.31) of [HH10].
We also have the following immediately from Theorem (8.6):

(8.9) Corollary. Let R be a Noetherian ring of characteristic p.

(a) If R is weakly S-regular (respectively, S-reqular, respectively, S-rational) then R is
weakly F-reqular (respectively, F-reqular, respectively, F-rational).

(b) If R has a completely stable weak test element then R is weakly F-reqular (respectively,
F-reqular, respectively, F-rational) if and only if R is weakly S-regular (respectively,
S-reqular, respectively, S-rational). O

(8.10) Corollary. Let R be a Noetherian ring of characteristic p such that either:
(i) R is weakly F-reqular and has a completely stable weak test element or
(i1) The completion of every local ring of R at a maximal ideal is weakly F-regular.
(In particular, (ii) is satisfied if R is reqular.) Let S be a formally solid R-algebra. Then
R — S 1s pure as a map of R-modules. In particular, if R s a reqular domain and S 1s a
solid R-algebra, then R — S 1s pure as a map of R-modules.
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Proof. Since (i) implies (ii), it suffices to prove the result when (ii) holds. R — S is pure
if and only if R,,, — S, is pure for every maximal ideal m of R, and the issue of whether
R,, — Sy, is pure is unaffected by applying (Rp, ) ®@r,, _ . It follows that we may assume
that R is complete local, weakly F-regular, and that R — S is solid. But then R is
S-regular and normal. Since R is normal, it is approximately Gorenstein in the sense of
[Hod] (cf. also Discussion (8.6) on p. 75 of [HH4] and the proof of (7.12) here), and so to
prove that R — S is pure it suffices to prove that every ideal of R is contracted from 5.
But this is immediate from the definition of solid closure and the fact that every ideal of

R is solidly closed. 0O

(8.11) Remark. The result of P. Roberts [Ro6] shows that, in equal characteristic zero, if R
is regular and R — S is solid it is not the case that R is necessarily pure in S. For example,
let I be a field of characteristic zero, let R = K[[z1, 22, 23]], and let S = R[y1,y2,y3]/(9)
where g = 232322 — Ele yiz?. By Roberts’ result R — S is solid, but (z%,23,23)S N R
contains x3x523, so that (23,23, 23)R is not contracted from S.

We do not know what the situation is if, for example, R is a regular local ring of mixed
characteristic.

9. A FORMAL POWER SERIES CRITERION

Our objective is to give a remarkably elementary characterization of when an element
of a complete local domain is in the solid closure of an ideal I. The main result is Theorem
(9.3) below. The idea can be generalized to the case of modules: see Remark (9.4c). We
need some preliminary definitions and discussion and a lemma.

(9.1) Definitions and discussion. Let X = Xy, ..., X, be indeterminates over a ring R
and let y = yq, ... ,y, be analytic indeterminates over R. Then there is an R-module iso-
morphism between the R-module homomorphisms of R[X] to R and the formal power series
ring R[[y]] that sends the homomorphism ¢: R[X] — R to the power series ) o(X")y”,
where v = (v, ..., ;) is a multi-index running through N”, X” denotes X;* --- X}, and
similarly for y"”.

Call a power series Y r,y” special if for every v with all entries positive, r, = 0. A
special power series may alternatively be described as one which is a finite sum of elements
from the power series rings over R in the proper subsets of the variables yy, ..., yy,.

Thus, a special power series is simply one that does not “honestly involve” all the
variables in any one of its nonzero monomial terms. The special power series are the
obvious R-module complement in R[[y]] for the principal ideal (yy - - yn).

(9.2) Lemma. Let notation be as in (9.1). Let rq, ... ,rn, r € R, and let

n

f:r—ZriXi.

41

Let z = y1 - yn and let z; = H]‘;éiyj; so that z = y;z; for every i. Then an R-module
homomorphism ¢: R[X] — R kills the ideal fR[X] (and so corresponds to an R-module
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homomorphism of S = R[X]/fR[X] to R) if and only if the corresponding power series g

has the property that (rz — Z?—i—l rizi)g 1s special in the sense of Definition (9.1).

Proof. Let ey, ..., e, be the standard free basis for Z". The ideal (r — Z?—i—l riXi)R[X] is

spanned as an R-module by the elements

n n

XV(T_ZriXi) =rX"V —ZriX”"i'ei

41 41

as v runs through N". Thus, the power series g = > a,y" represents a map that factors

through S if and only if
ra, = Zriau—l—ei

for all v € N”. This condition can be described in terms of the power series ¢ as follows:
rg=>. riyi_lg modulo terms on the right with a negative exponent. Note that the terms
with a negative exponent will actually involve only one y; to a negative power, and that
negative power will be —1. Let 7, denote the ring of formal power series over R in the
variables y; for j # ¢. Then ¢ satisfies the condition cited above if and only if we have

rg=>Y riy g+ > v hi
[}

?

with h; € T;. Multiplying through by z = yy - - -y, yields (rz =Y. riz)g € >, z;T;. Thus,
if g corresponds to a map S — R then (rz — ). riz;)g is special. On the other hand, if
(rz — >, riz;)g is special, so that it is in ). T}, it is clear that the value must actually be
in El z;T;: since z and the z;’s are all in the ideal generated by the z;’s, every monomial
term in the expansion of (rz — ). r;z;)g must be divisible by at least one of the z; (i.e.,

(z1, ... ,zn)R[YI N, T =>, zT;). O

(9.3) Theorem. Let (R,m,I) be a complete local domain, let I = (rq, ... ,rn)R be an
wdeal and letr € R. Lety = y1, ... ,yn be analytic indeterminates over R. Let z = y1 -+ - ypn
and for 1 <1 < n let z; = Hj;éiyj' If r # 0 or if I # (0) then r € I* if and only if
rz —»..riz; has a nonzero multiple in R[[y]] that is special in the sense of (9.1).

Proof. Let S = R[X1,...,X,]/(r — > 7, riX;), which is a generic forcing algebra for
(R,I,r). The result follows at once from Lemma (9.2), since S is solid (i.e., has a nonzero
R-module homomorphism to R) if and only if the power series ¢ corresponding to the
induced map R[X]| - S — R is nonzero and (rz — Y. r;z;)g is special. Since R][[y]] is a
domain and the elements r, r; are not all zero, ¢ is nonzero if and only if (rz — . rizi)g

1s nonzero. [

(9.4) Remarks. (a) Evidently, one can use the criterion of Theorem 9.3 to define solid
closure for ideals in complete local domains. This definition has the advantage of being
very elementary, in a certain sense: one does not even have to know what an R-module
homomorphism is to understand it. However, virtually every other property of solid closure
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becomes more obscure from this point of view. It is not even immediately clear that 7 C I'*.
(One can see this directly as follows: if, in fact, r =) a;r; then

rz — Zrizi = Z a;riz — Zrizi = Z(l — aYi)TiZ,
and multiplication by [];(1 — a;y;)~" produces

S (] = ajyi) iz

v jFi

The i'* term in the sum does not involve y;, and so we have produced the required special
multiple.)

(b) Let notation be as in the proof of Theorem (9.3), so that S is a generic forcing
algebra for (R, I,r). The proof of (9.2) shows that Homg(S, R) is simply the R-module of
power series g € R|[[y]] such that (rz — > . r;z;)g is special.

When dim R = d and (R, m, K') is Gorenstein (as well as being a complete local domain),
and, in particular, when R is regular, Hompg(S, R) is the same as the dual, into an injective
hull of K over R, of HZ (S) = S@r HE (R) (the injective hull of K over R may be identified
with HZ (R)). Thus, in this complete Gorenstein local domain case, we have identified the
dual of HZ (S) with the R-module of power series g such that (rz — 3. r;z;)g is special.

(c) We may also characterize tight closure for modules in similar terms. Let A = (r;;)
(an h x n matrix over R) and p (an h x 1 column vector over R) be data for a generic
forcing algebra for a triple (M, N,u). The question of when u is in the solid closure of N
in M is equivalent to the question of when the column vector p is in the solid closure of
the column space of 4 in R". Let r; be the i** entry of p. The generic forcing algebra S
may be written as R[X1, ..., X,]/(f1, ..., fn) where f; is the polynomial E]‘ ri;i X; — 1.
The R-module maps from S to R may be viewed as the maps from R[X] to R that kill the
ideal of R[X] generated by the f;. Since this ideal is the sum (as an abelian group) of the
principal ideals generated by the f;, it is necessary and sufficient that the map R[X] — R
kill all of the ideals f;R[X]. As before, the map R[X] — R is represented by a formal
power series g € R][[y]], and the condition on ¢ is that for all i, 1 <7 <k, (r;z — E]‘ riiZi)g
be special. Thus, u is in the solid closure of N in M if and only if there is a nonzero power
series ¢g such that all of the products (r;z — E]‘ rijz;)g are special.

10. SHADOW HOMOLOGY

We introduce the notion of shadow homology, which is parallel to the notion of phantom
homology in tight closure theory (cf. [HH4], §9 and [HHS8]). We show that certain of the
results of [HH4] and [HHS8] concerning phantom homology have analogues for shadow
homology. For example, the conditions developed for the phantom acyclicity of a finite
free complex in Theorem (9.8) of [HH4] and Theorem 3.22 of [HHS|] are essentially valid
for shadow acyclicity if the ring contains a field. However, the proof of this fact in the
equal characteristic zero case uses the existence of big Cohen-Macaulay algebras!

We begin with a definition.
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(10.1) Definition. Let M, denote a complex of modules
o Mgy 5 M S My

over a Noetherian ring R. We shall say that that an element w € H;(M,) is a shadow
element of the homology group if for some (equivalently, every) element of Kere that
represents it 1s in the solid closure of Imd in M;. We shall say that M, has shadow
homology at the i'" spot if every element of H;(M,) is a shadow element. We shall say
that a left complex (so that M; vanishes for « < 0) is shadow acyclic if Mo has shadow
homology at the i*" spot for all i > 1.

The following result is trivial but of great usefulness:

(10.2) Proposition. Let R — S be a homomorphism of Noetherian rings and let M, be
a complex of finitely generated R-modules. Then the induced map H;(Ms) — H;(S®@r Ma,)
sends shadow elements to shadow elements (now working over S ).

In particular, if M, has shadow homology at the it" spot and S is weakly S-reqular then
the map H;(M,) — H;(S @r M,) is zero.

Proof. Suppose that u € Z = Ker(M; — M;_y) represents a shadow element in the
homology, so that it is in the solid closure of B = Im (M;4+1 — M;). Then by Theorem
(5.6) on the persistence of solid closure, 1 @ u will be in the solid closure of the image of
S®pr B in S ®r M;, and this is the same as the image of S @r M;+1 in S ®@r M,.

The second statement is then immediate. [

To pursue the theory further we shall make use of the the existence of big Cohen-
Macaulay algebras in the equal characteristic case.

(10.3) Definition. If (R,m,K) is a local ring we shall say that an R-module M s a
big Cohen-Macaulay module if there 1s some system of parameters xy, ... ,xq for R that
18 a reqular sequence on M, by which we mean not only that x; 1s a nonzerodivisor on
M/(x1, ... x;20)M for 1 <i<d—1, but also that (x4, ... ,xq)M # M. If every system
of parameters is a reqular sequence on M, then R s called a balanced big Cohen-Macaulay
module (cf. [Sh]).

An R-algebra S is called a (balanced) big Cohen-Macaulay algebra if it is a (balanced)
big Cohen-Macaulay R-module.

The existence of big Cohen-Macaulay modules for equicharacteristic local rings was
established in [Ho2]. Quite recently, the existence of big Cohen-Macaulay algebras in the
equicharacteristic case was proved as well, in [HHT7] (see also [HH5], [Hu2] and [HH12]):

(10.4) Theorem. If (R,m,K) is an equicharacteristic local ring, then there is a ring
homomorphism R — S such that mS # S and such that every system of parameters for
R 1s a reqular sequence on S. Thus, S is a balanced big Cohen-Macaulay algebra for R.
Moreover, S may be chosen to be quasilocal (and R — S local).

If R is a complete (or excellent) local domain of positive prime characteristic p, one

may choose S to be the integral closure RT of R in an algebraic closure of its fraction field.
(Note that R — RY is local if R is complete). O

The connection with solid closure comes from the following observation:
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(10.5) Proposition. Let (R,m, K) be a local ring of dimension d. Let M be a big Cohen-

Macaulay module (or algebra) for R.

(a) RorMisa big Cohen-Macaulay module (or algebra) for R.

(b) (ﬁ/p) ®@r M s solid over ﬁ/p for at least one minimal prime p of R such that
dimR/p = dim R (= dim R).

(c) ]fﬁ has only one minimal prime, then M s formally solid.

Proof. (a) Since Risa faithfully flat extension of R and a system of parameters for R is
a system of parameters for ﬁ, R ®r M is a big Cohen-Macaulay module for R.

(b) We may replace R, M by ]/%\, R ®pr M. Thus, we may assume that R is complete.
Let x = 1, ... ,724 be a system of parameters for R that is a regular sequence on M.
Then HZ (M) = H(dx)(M) is nonzero, since the maps

M/(zh, oo el )M — M/ et M

in the direct limit system which may be used to compute H(dx)(M) (these maps are induced
by multiplication by 2 --- 24 on the numerators) are all injective. Then R has a finite

filtration
R=Jy2J 2---2J,=(0)

in which each factor .J;/.J;+1 occurring is of the form R/P; for some prime ideal P; of R,
and there is a corresponding filtration for M, namely

M =JoM 2D JM D2 J,M=(0).

It follows that HY (J;M/J;x1M) # 0 for at least one choice of i. Since the surjection
Ji @rp M — J;M sends the image of J;11 @p M to J;y1 M, it follows that there is a
surjection of (J;/Jiy1) @r M =2 (R/P;) @r M onto Ji41 M/ J;M. Thus, there is a prime
ideal P; of R such that Hi((R/Pi) QR M) # 0. But since (R/P;) @r M may be viewed
as a module over R/P; for the purpose of computing local cohomology (replacing m by
m(R/P;)), this cannot happen unless dim R/P = d, i.e., unless P; = p is a minimal prime
of R such that dim R/p = d.
(¢) This is immediate from (b). O

Thus:

(10.6) Corollary. Let R be a complete local domain. Then an R-algebra that has an
R-algebra homomorphism to a big Cohen-Macaulay algebra for R 1s solid. O

It is reasonable to ask, whether, conversely, when R is a complete local domain, every
solid R-algebra can be mapped to a big Cohen-Macaulay algebra for R. This is true if
dim R < 2: see §12. But if dim R > 3 it is false, in general, when R contains a field of
characteristic 0, as the examples just below show. We do not know what the situation is
when R has characteristic p or is of mixed characteristic.

(10.7) Ezamples. (a) Let G = SL(n, K), where K is a field of characteristic zero, and let
X = (zi;) denote an n X (n 4 1) matrix of indeterminates over K. Let S = K[z;;];; be the
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polynomial ring in the entries of X, and let G act K-linearly on R by sending the entries
of X to the entries of o X for all @ € G. Then the ring of invariants R = S is well known
(cf. [We]) to be generated by the n + 1 size n minors Ay, ... ,A,q1 of X, and these are
algebraically independent. To be precise, we shall use A; to denote the product of (—1)/
with the determinant of the n x n matrix obtained by deleting the j* column of X. Every
row of X gives a relation on the Aj;’s, namely

n+1

(#) > wiiA;=0.

i=1

The Reynolds operator is a K-linear retraction p that sends the A" graded piece [S], of
S to the h'" graded piece [R], of R. (It kills the sum of irreducible G-submodules of [S]},
on which G acts non-trivially.) Moreover, p yields a degree preserving R-module retraction
S — R. We refer to [We] and [Mum)] for details. Let R, § denote the completions of R and
S with respect to the ideals (A;); R and (:1;”)”5 respectlvely Evidently, p also induces a

retraction S — R as R- modules, so that S is a solid R- algebra.

We want to observe that S cannot, however, be embedded in an R-algebra such that
Ay, ..., Apyq is a regular sequence if n > 2. If T were such an algebra then we would
have from the relations (#) given above that each x;; is in the ideal of T generated by
the A, for v # j (since z;; multiplies A; into that ideal). But then (x;;);;T C (A;),T.
On the other hand, each A; is in the n'" power of the ideal (z;;);; R even over R, so that
(A;);T C <($”)”R>n But this shows that (A;);T C ((Aj)jT>n, which is impossible if
the A; form a regular sequence on T

(b) In the example considered in Remark (8.11), S cannot be mapped to a big Cohen-
Macaulay R-algebra T, since zz2z3 will still be in the ideal (23, 23,23) in T, and this
cannot happen if 21, z9, z3 is a regular sequence on T.

(10.8) Finite projective complexzes and formal minheight. If a:G — G’ is any map of
finitely generated projective modules let I1(a) denote the ideal that is the image of the
map G @r Homp(G',R) — R sending ¢ @ f to f(a(g)), and let I;(a) = Iy (A'a) for t > 0
with the convention Ip(a) = R. Let rank o denote the largest integer ¢ such that I;(a) # 0
(this is determinantal rank: when G, G’ are free, I;(«) is the ideal generated by the size ¢
minors of a matrix for «).

Let G4 denote a finite complex of finitely generated projective modules over the nonzero
Noetherian ring R, say

()—>Gd—>---—>Gii>Gi_1—>---—>GO—>O7

and assume for simplicity that each G; is locally free of constant rank b; (the ranks are

automatically constant if Spec R is connected). Let r; = E?Zi(—l)j_ibi. Let § be a
function from the ideals of R to N U {oo}, such as depth, height, or minheight. We say
that the complex G, satisfies the standard conditions on rank and 6 if for all 7, 1 <17 <d,
rank o; = r; and 5<In. (ozi)> > 1. Thus, a complex satisfies the standard conditions on rank

and depth if and only if it is acyclic ([BE]). Moreover, by the results of [HH4] §9, [HHS]
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§3, and, especially, Proposition (5.4) of [AHH], if R is a homomorphic image of a Cohen-
Macaulay ring and of characteristic p, then G4 and all its images under the iterates of the
Frobenius functor have phantom homology in positive degree (i.e., Go is stably phantom

acyclic) if and only if R,y.q @r Go satisfies the standard conditions on rank and minheight.
(The minheight mnht I of an ideal I is defined as

min {ht I(R/p) : p is a minimal prime of R}.

See [HHS], §2.) Thus, one would hope to have an analogous result for solid closure, and this
is the case in equal characteristic. We do not know whether the analogous result in mixed
characteristic holds. The equal characteristic result is remarkably simple to prove, given
the existence of big Cohen-Macaulay algebras. To avoid issues arising from pathology of
the ring, we shall work with formal minheight of the ideals: we define the formal minheight
of I as

inf{mnht I(R,,)": m is a maximal ideal of R}.

Evidently, it suffices to consider m 2 I. If R is universally catenary then minheight does
not change upon completion, and the formal minheight of I is the same as the minheight

of I. We refer the reader to §2 of [HHS].

(10.9) Theorem. Let R be a Noetherian ring of equal characteristic and let Go be a
finite complex finitely generated projective modules of constant rank. Suppose that Ryeq @R
Go satisfies the standard conditions on rank and formal minheight. Then G has shadow
homology in positive degree.

Proof. If we tensor with a complete local domain of R the standard conditions on rank
and formal minheight continue to hold (note that the nilpotents are automatically killed;
the ranks cannot go up, and do not decrease because all the ideals of minors have formal
minheight at least one). Hence, it suffices to consider the case where R is a complete
local domain, so that minheight agrees with height. Let S denote a balanced big Cohen-
Macaulay algebra for R. By Appendix B of [Nor] (cf. also Theorem (1.2.3) of [Abl]),
S @r Ge 1s acyclic. It follows that, for 1 > 1, every cycle in G; is in the solid closure of
the boundaries, since it is in the expansion of the boundaries to S @r G;, and S is a solid

R-algebra by (10.5). O

(10.10) Remark. The conclusion of (10.9) is valid in mixed characteristic if dim R < 2,
or, more generally, whenever every complete local domain of R has a big Cohen-Macaulay
algebra (in dimension two, one may use the normalization).

Similarly, we have:

(10.11) Theorem. Let R be a Noetherian ring of equal characteristic and let xq, ... ,x,
be elements of R such that the formal minheight of I = (x4, ... ,xn)R 1s at least n. Let
J=(x1,...,0n—1)R. Then J:gx,R C J*.

Proof. Tt suffices to see this once we expand I,.J to a complete local domain of R. The
result is clear if any element of J becomes a unit or if x, becomes a unit. Thus, we may
assume that R is a complete local domain and zq, ... ,x, are in the maximal ideal. The
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desired conclusion now follows by expanding to a big Cohen-Macaulay algebra S for R, as

in (10.9). O

(10.12) Remark. Suppose that a finite complex G,o of finitely generated projective R-
modules 1s such that R,.q @r G satisfies the standard conditions on rank and formal
minheight. (We may work with minheight if the ring is universally catenary.) Then this is
preserved when one tensors with an R-algebra S provided that the map R — S preserves
formal minheight, i.e., provided that for every ideal I of R, the formal minheight of IS is
at least as big as the formal minheight of I. For example, if R is a complete local domain
and the standard conditions on rank and height hold over R, then they hold after applying
S ®@gr _ for any complete local domain S module-finite over R.

(10.13) Remark. One would really like to have much stronger results than (10.11) com-
parable to the results on iterated operations for tight closure obtained in §7 of [HH4]. For
example, suppose for simplicity that xy, ..., 2z, is a system of parameters in a complete
local domain R. One would like to have that for integers ¢t > 1,

(1) (@1, sty 2 Xirwn © (21, T, Tl )X

While this can be proved in characteristic p using tight closure results, it is false in equal
characteristic zero, and we do not know whether it holds in mixed characteristic, even if
the ring is regular. In fact, if the ring is regular, the iterated use of instances of () can be
used to show that

(zf, ... 2l )X g (zr o 2n) T C (@, o 2n) X #R,

n

for all + > 1, and then it follows that that (2%, ... L) is solidly closed for all . This in
turn implies that regular rings are S-regular. Because of the example of Roberts [Ro6], we
know that regular rings of dimension three or more are not S-regular in equal characteristic
zero, and this shows that (1) fails in general in dimension three in equal characteristic zero.

We do not know what happens in complete local domains of mixed characteristic.

11. Bic COHEN-MACAULAY ALGEBRAS AND
TIGHT CLOSURE IN EQUAL CHARACTERISTIC ZERO

Let N C M be finitely generated modules over a locally excellent domain R of charac-
teristic p. It is an open question whether

(1) an element u € M is in N* s if and only if it is in the expansion of N to RT @ g M,
where R* is the integral closure of R in an algebraic closure of its fraction field.

Some evidence for this can be found in [Sm1, Sm2], where it is shown to be true for ideals
of R generated by parameters. (More generally, it is established in [Ab3] that, given the
result of [Sm2], then (1) holds whenever M /N has finite phantom projective dimension.)

It should be noted that the question can be reduced to studying complete local domains.
For a complete local domain R of characteristic p, RT is a balanced big Cohen-Macaulay
module. The following result can therefore be viewed as a weakened version of (1). How-
ever, the result is of considerable interest in its own right: for example, it gives a new proof
that balanced big Cohen-Macaulay algebras exist in characteristic p. However, this proof
does not yield the existence of big Cohen-Macaulay algebras in the weakly functorial sense
discussed in detail in [HH12], which is very important for certain applications.
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(11.1) Theorem. Let R be a complete local domain (or analytically irreducible excellent
local domain) of characteristic p, and let N C M be finitely generated R-modules. Let
u € M. Then u € N*y (= N*u) if and only if there exists a balanced big Cohen-
Macaulay algebra S over R such that 1 @ u € (Ng).

Proof. The “if” direction is clear, since a big Cohen-Macaulay algebra over an analytically
irreducible domain is formally solid: see (10.5). To prove “only if” we begin with the
generic forcing algebra T over R for the triple (M, N,u) and perform successive algebra
modifications with respect to relations on various systems of parameters for R (the precise
meaning is given below). If no finite sequence of such modifications

T=T—-T —- =T,

is such that
(#) 1= y;b;
=1

with the 6; in T, and the y’s a set of generators for the maximal ideal of R, then a certain
direct limit of such modifications will serve as a balanced big Cohen-Macaulay module for
R. The details of this kind of argument are discussed at length in [HH12] (see §§(3.1)—
(3.7) of [HH12], especially (3.6) and (3.7)), and here we shall only give the proof of the key
point, that a finite sequence of modifications cannot lead to the relation (#). Here, when
we say that T;41 1s an algebra modification of T; with respect to a relation on parameters
for R we mean that for that value of : there exists part of a system of parameters

(2) (1) ()

Ty e Ty Ty
for R and a relation
k;
0 = 300
t=1
with S(i),sgi) € T; such that
. . ki . .
Tivr =T, 200 = alV20)
t=1

with the Z,Ei) indeterminates over Tj.
We can assume without loss of generality that M is free here, and that N is the column
space of a matrix o = (a;;) which is, say, v by p. Then we may take T to be the algebra

R[Z;O), ,Z,(LO)]/Ql where 2 is the ideal generated by the entries of the column matrix
(0)

aZ©® —u: here, Z(9 is the 4 x 1 column whose entries are the z; ' and u € M has been

written as a v X 1 column.
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For 0 <1 < r we define a certain finite subset ¥; C T; and an integer b(j) € N by
reverse induction on ¢ in the following manner:

(1) ¥, is the set whose elements are the §’s occurring in the relation (#) 1 = 2?21 y;0;
m T;.

(2) If 0 < j < rand X; C T; has been defined for ¢ > j while b(i) has been defined for
r > 1> j define ¥;_; and b(y) as follows. Express each element of £; as a polynomial

over T;_; in the standard generators (the images of the Z,Ej)) for T; over T;_y. Let b(y)
be the greatest degree of any of these polynomials. Let ¥;_; consist of the coefficients
of these polynomials and the elements s/~ 35‘7_1)
the construction of T} from T;_.

occurring in the relation used in

(3) Express the elements of ¥ as polynomials in the standard generators (the images of

the ZEO)) of Ty over R, and let b(0) be the greatest degree of any of these polynomials.

Thus, (1) gets the ¥’s started. Repeated application of (2) enables one to construct
b(r) and ¥,_q, b(r — 1) and ¥, _2, ..., b(1) and ¥g. Finally, (3) specifies b(0).

We next define two “intertwined” sequences of integers
B(0), ... ,B(r) € Nand B(0), ... ,B(r) € N

from the b(i) by the following recursive rules:
(i) #(0) =1 and B(0) = b(0).
(ii) For0<i<r, B(1 +1)=B(i)+ 1 and Bz + 1) =b(i + 1)5(1 + 1) + B(3).

We let B = B(r).

Next, choose a test element ¢ for tight closure in R: this is possible by Theorem (6.1a)
of [HH9]. Then for any sequence of elements xy, ... , 2541 of R that are part of a system
of parameters, if w € (21, ... ,2k):r Tht1 then cw? € (zf, ..., 2} )R for all ¢ = p°, since
tight closure “captures” colon ideals for parameters: see, for example, Theorem (4.7) of
[HH4] or the much more extended discussion in §7 of [HH4]. Of course, since u € N*yy
we also have that for all ¢, cu? € N4, Taking ¢'* roots we can assert instead that the
following two conditions hold:

(i) For all ¢, ¢'/%u € NR'9 C R @r M and

(i1) For all ¢, if @1, ... , 2541 is part of a system of parameters for R then
w € (21, ... ,2)Ripg 241 implies that My € (21, ... ,:L'k)Rl/q.

Now let R*™ = Uq R'4. We note the following fact:

(ii°) For all ¢, if @1, ... , 241 is part of a system of parameters for R then

w € (1, ... ,25)R>:gee Tp41 implies that M e (1, ... ,25)R™.

To see why, suppose that wrpyy = Ele x;w; with w, wy, ... ,w; € R®. The point
is that we may choose a power of p, say @, so large that () > ¢ and such that all the

elements w@, wiQ are in R. Taking Q" powers we see that w® € (:L’lQ, ,:L'kQ)R:R J}kQ_|_1.
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It follows that cw® € (:z:l‘Q, ,:z:kQ)R from (ii). Since Q/q > 1 we have as well that
Q1@ ¢ (:L'lQ, ,:JckQ)R. Taking Q" roots yields that ¢'/%w € (zy, ... ,z3)R>.

The next point is this: we shall show that for every integer ¢ = p® there are R-algebra
homomorphisms ¢;: T; — R, 0 < ¢ < r, such that the images of the generators of T;
over T;_1 (or over R if i = 0) are contained in the cyclic R*-submodule of RS° generated
by ¢ 8()/4 while the image of ¥; C T; is contained in the cyclic R®-submodule of R
spanned by ¢~ B()/4 Moreover, each ;41 extends ¢;, 0 < i < r.

Notice that we defined the integers (3(i), B(i), and, in particular, the integer B = B(r)
before introducing ¢, so that, evidently, these integers are independent of .

To define tg: T — RZ° we note that the fact that ¢y € NR'Y yields a solution of
the matrix equation aZy = u for the 20 in ¢~'/4R'4. We let ¢y be the unique R-algebra
map sending 20 to the element of ¢~!'/¢R'/4 given by this solution. Since the elements of
Yo are polynomials of degree b(0) in the 29, they map into b/ aRt/a,

Now suppose that we have constructed ¢;: T; — R2° such that the generators map into
¢=PWO/aR>® and ; maps into ¢~ BW/IR>® where 0 < i < r. We want to extend t; to

k;

(##) Tipr =Tt o A1 60 =3l 47,

t=1

where there is a relation

ko

) (9

Ecli)-FlS(i) = 1’51 3551 :

1

Z
t

In the sequel we sometimes omit the superseripts (V) and write k = k;. By the construction

of the ¥'s, the elements s(*) Sgi) are in Y;. It follows that we obtain a relation

9

E

xt¢i(3t)7

Try1ti(s) =

-
I

1

where the elements ¥;(s), 1;(s,) are all in c~BOW/aRoe et Yi(s) = oC—BW/1 and Yi(se) =
o= B4 with o, oy in R*. Then

k

Tgp410 = E T0¢

t=1
in R*, and so by condition (ii®) above we have that

k

Mg = g 4Ty,

t=1

where the elements 7, € R*. This yields an equation

o= Z :I;t(th_l/q)

t=1
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and hence
pi(s) = ae— B /q

xt(th—B(i)/q)(c—l/q)

I
hE

t=1

xt(th—ﬁ(iH)/q)'

I
hE

t=1

By the formula (##) defining T;41 we can extend ©; from T; to T;4; by sending each
Z,El) to me~PU+1/4 The generators are mapping into ¢ B0HD/4R>® a5 required. Now
each element of ;11 can be written as a polynomial of degree at most b(i 4+ 1) in these
generators with coefficients in ¥;, and the value of such a polynomial will lie in

(e~ AHD/a)p (1) =B(i) fa poe — =Bli+D/a oo

as required.
We are now ready for the dénouement. We apply 1, to the equation (#) 1 = 2?21 y;0;
to obtain the equation

1= Z yivr(05)
j=1

holding in R%®. The value of ,(6;) lies in ¢=B/9R> where B = B(r). Multiplying by
¢B/1 we obtain that ¢B/¢ € mR™ for every ¢ = p¢. Taking ¢'* powers, we have that
B e mldR>® N R for every ¢ = p°. Since IR® N R C I* for any ideal I (v € IR°NR
implies that 1- w97 ¢ Il7] for all q¢'), we find that ¢® € (ml4)* for all . We emphasize
again that B = B(r) is independent of ¢. Since ¢ is a test element, we have that

e eB = B¢ ﬂm[q] C ﬂmq: (0),
q q

a contradiction. O

(11.2) Remark. We may apply (11.1) in instances where we know that the element v is in
N* or even N. For example, we can take M = R, N = R, and u = 0. The result of (11.1)
then shows that R has a balanced big Cohen-Macaulay algebra. This is a new proof of the
existence of big Cohen-Macaulay algebras in characteristic p, independent of the results of

[HHT].

(11.3) Comparison of solid closure with tight closure in equal characteristic zero. We next
want to show that that if N C M are finitely generated modules over a Noetherian ring R
containing Q then N*; C N*,, insofar as * is defined. To this end we want to use the
“biggest” version of N*js considered in [HH11]. The appropriate notation is N*F@Q: we
refer the reader to [HH11] for details, but we give a brief description below.
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There is no loss of generality in assuming that M is free and that N is the span of the
columns of a v x g matrix o = (a;;) over R. The following then gives the “biggest” version
of tight closure: u € N*F@; if for every map of R to a complete local domain S there
exists a finitely generated Z-algebra B, a prime ideal () of B, and a map of Bg to S such
that:

(1) B hasa v xpumatrix ap that maps to the image of a over S, so that if we define Mp =
BY and Np as the column space of ap in Mp, then S®@p (Mp/Np) = S@r (M/N).
Moreover, Mp has an element up that mapsto 1 ® u in S @r M.

(2) B/Q is smooth over Z: this may be achieved by localizing B at one element not in ¢
and Z at one nonzero integer h. (It then follows that for every prime p not dividing
h, B/(Q + pB) is regular of characteristic p.) For p not dividing h we denote by W,
the multiplicative system in B consisting of elements not in any minimal prime of
the radical ideal @ + pB, and we let B(p) denote Wp_lB/pB. We write Mp, for
B(p) ®p Mp and Np,) for the image of B(p) @p Np in Mp,).

(3) For all but finitely many primes p of Z with p not dividing h, we have that 1 @ u €
NB<P>*MB<p> over B(p).

(11.4) Theorem. Let R be any Noetherian ring contamming Q. Let N C M be finitely
generated R-modules. Then N*FQy C N*y. Moreover, if R is a complete local domain
and v € N*FQy; then there is a balanced big Cohen-Macaulay R-algebra T such that 1@ u
18 wn the expansion of N to T @r M.

Proof. Let u € N*F®; and let S be a complete local domain of R. It suffices to show
the result after replacing R, M, N, u by S, S®@gr M, (Ns), 1 @ u. Thus, we may assume
that R is a complete local domain. We have B — Bg — R as in the definition of *F@.
The contraction of the maximal ideal of R to B is a prime (Jg contained in (). It is easy
to see that we can preserve (1), (2), (3) working with B, instead of Bg. Thus, we may
assume that Bg — R is a local homomorphism. We may replace Bg by its image in R
without affecting any relevant issues. We may therefore also assume that the map Bg — R
is injective. We shall complete the argument by proving the final assertion: since a big
Cohen-Macaulay algebra over a complete local domain is solid, this will suffice.

We note that if we factor Bg — B’Q, — R (where the maps are local and B’ is a

finitely generated Z-algebra) then the image up of up continues to be in NB/*EQM]/B,

where Mp = B' @p M and Np: is Im (B’ @ Np — Mp).

Our objective is to show that u is forced into the expansion of N to a big Cohen-
Macaulay algebra. As in the proof of (11.1), if not, a generic forcing algebra T = T(°)
for (M, N,u) will have a sequence of algebra modifications with respect to relations on
segments of various systems of parameters,

TO) oo ),

such that 1 = 2?21 yi0;, where the y; generate the maximal ideal of R and the 6; € T,
Because R is the direct limit of local rings B’Q, where B’ is a finitely generated Z-
subalgebra of R and ' is the contraction to B’ of the maximal ideal of R, we have that
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the map Bg — R factors Bg — B’Q, — R in such a way that all the systems of parameters

involved, the y’s, all coefficients from R needed in the construction of the sequence T(),
all coefficients from R needed to describe the s in terms of the standard generators of the
T’s, etc. are actually in B’. Moreover, it is shown in [HH11], Theorem (3.5.1), using the
main result of [ArR], that B, — R factors By, — Bg, — R where B” is a domain of the
same sort in which a specified set of sequences of parameters (i.e., each sequence is part of
a system of parameters) retain the property of being sequences of parameters. (Here, the
dimension of B” may be much larger than that of R.) We do not assume that the map
B" — R is necessarily injective. We change notation and write Bg for By,. Note that by
localizing B at one element not in () we may further assume that any given finite set of
elements of Bg is in B. Thus, we may assume that we have a sequence of algebras

Tp = Tg)) — Tg) — = Tg)

over B such that

(1) Tp is a generic forcing algebra for (Mp, Np,up).

(2) For 0 <1 < r, Tg—H) is an algebra modification of Tg) with respect to a relation
on parameters for @ (by which we mean that the “parameters” can be extended to a
sequence of ht @) elements that generate an ideal whose radical is Q).

(3) TV =~ RepTY.

(4) 1=, yibi in T,

Notice that the map B — R will factor B’ — R where B’ is the normalization of B
and R" is a suitable module-finite extension of R. Thus, there is no loss of generality in
assuming that B is normal: these replacements do not affect any relevant issues. It follows
that for all but finitely many primes p of Z, B/pB is normal (although it may not be a
domain): see, for example, [HH11], Proposition (2.3.17).

We now get a contradiction by passing to characteristic p for suitable p: we only require
that

(1) B/pB be normal,

(2) the image of each sequence of parameters used in defining the sequence of algebra
modifications T(9 remain a sequence of parameters, and

(3) up(py be in the tight closure of N,y in Mp,).

We consider B/pB localized at a minimal prime P of Q(B/pB): call this ring C'. Notice
that C is a localization of B(p), so that uc is in the tight closure of Ne in Me where
Mc = C®ppyMp(py, and uc, Neo indicate the images of up(py, C @ p(,y Np(p) respectively
in Mc. Then Te = C®@pTg is a generic forcing algebra for (Mc, No, uc) and the algebras
Tg) =C®p Tg) form a sequence of modifications of exactly the sort considered in (11.1).
The image of the relation 1 = 3.7 | y;6; then contradicts (11.1), since C' is normal and,
hence, analytically irreducible. [

(11.5) Corollary (Briangon-Skoda theorem for solid closure). Let I be an ideal

of an equicharacteristic ring R generated by at most d elements and let & € N. Then
Td+k C (TFF1)k,
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Proof. The issues are unaffected by passing to a complete local domain. In characteristic
p the result follows Theorem (5.4) of [HH4]. In equal characteristic zero the result follows

from the fact that (Ik'H)*EQ C (I**1)* just established and the results of [HH11]. O

(11.6) Remark. Likewise, whenever a result for tight closure in equal characteristic zero
shows that it is “big enough” to contain a certain ideal or module, the same will hold for
solid closure. On the other hand, we generally do not understand the situation in mixed
characteristic.

12. THE CASE OF DIMENSION TWO

In this section we make a detailed exploration of solid algebras and solid closure in
dimension two. The main result here is that an algebra over a two-dimensional complete
local domain is solid if and only if it cam be mapped to a big Cohen-Macaulay algebra:
see Theorem (12.5). We first need:

(12.1) Definition. Let R be a ring, let x,y € R and let M be an R-module. Let I =
(z,y)R. We denote by © = O(a,y; M) the submodule

{u € My, : for some h € N, " € ImM} C M,,.

Thus, ©/(Im M) C M, /(Im M) is H) (M, /(Im M)).

Note that given an arbitrary R-linear map M — N there is an induced map M,, — Ny,
and that this map carries O(x,y; M) to O(x,y; N). Thus, O(z,y; _ ) is a covariant functor
from R-modules to R-modules. Notice also that if we have a homomorphism R — R’
carrying z, y to z’, y' and M is an R'-module, then

Oz, y"s M) = O(x,y; g M),

where the subscript on the left of M indicates over which ring we are considering it as a
module.

If M = R is an integral domain with fraction field L and 2 is an ideal of R, then Nagata
defines the A-transform S(2A; R) as

{f € L:for some h € N,A"f C R}.

In case A = I = (z,y)R this agrees with O(z,y; R). Nagata makes a deep study of the
A-transform in Chapter V of [N1], pp. 41-60, including examples where it is not finitely
generated as an R-algebra, even though R is an affine domain over a field.

(12.2) Discussion. We want to make some observations about regular sequences x, y of
length two on an R-module M. Let I = (z,y).

(a) If 2u = yv then v € yM and v € zM. If 2°u = y'v, where s, t are positive integers,
then v € y'M and v € z5M. (That v € M is part of the definition of regular sequence.
But if v = 20’ then 2(u — yv') = 0 and since x is not a zerodivisor on M, u = yv’. The
second statement follows because z*, y' is also a regular sequence on M.)
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(b) If @, y is a regular sequence on M then y, = is a regular sequence on M if and only
if y is not a zerodivisor on M. (The other condition that is needed is proved in (a)).

(¢) If @, y is a regular sequence on M, then x, y and y, x are both regular sequences
on the I-adic completion M (= lim M/I'M) of M. (Let {my}n be a Cauchy sequence
in M representing an element p of the completion. If yu = 0 then ym,, is eventually in
(', y"™ )M for any given t, say ym, = z'u, + y'*!
that m,, —y'v, is in 2! M and so, for all t, m,, is eventualbiin (x',y")M. The argument i(ir

Vp. Then y(m, — y'v,) = 2'u, shows

z is the same. Now suppose that {m,}, represents y € M and {p,}, represents = € M.
Suppose that zpu = yr. For all ¢, 2m, — ypy, is in (2!, y" )M for all sufficiently large n,
so that we may choose n(t) arbitrarily large such that

TMp(t)y — YPn(t) — xt—i—lun(t) + yH—lvn(t)v

and then
(M) — T Uniry) = Y(Pary + Y Vn(n)-

Thus we may choose an increasing sequence n(t) such that the preceding equation holds,
and {m, 1y — Uity }es {Pn(t) — ¥'0n(p }¢ are Cauchy sequences indexed by ¢ with limits
i, ™ as before. Using these to replace the original sequences, we see that there is no loss of
generality in assuming that @m,, = yp, for all n. It follows that p, = xz, for all n (notice
that z, is uniquely determined). For all ¢, 22, — xz,41 € (2'! y")M for large n, say

T(2n = Zny1) = 2 gn + y'ha,

so that z(z, — 2p41 — 2'gn) = y'hy, and then z, — 2,41 — 2'g, € y* M, which shows that
for all ¢ and for all sufficiently large n, z, — zp41 € (2',y")M. Thus, {z,}, is a Cauchy

sequence, and it follows that xp = ym implies that # € M. Since we have already seen
that x, y are both nonzerodivisors on M, z, y is a permutable regular sequence on M).

(d) There is an obvious map M — M whose kernel is N, I'M.
We also note:

(12.3) Corollary. Let (R,m) be a local ring of dimension two, let x, y be a system of
parameters, and let M be an R-module such that x, y is a reqular sequence on M. Then
every system of parameters for R is a reqular sequence on M.

Proof. Given systems of parameters =, y and u, v, we can choose z so that =, z and u, z
are both systems of parameters. The chain of systems of parameters
TyYs T,25 2,05 2,U5 U2y UV

shows that it suffices to consider the case where we permute the two parameters, handled
in (12.2¢) (note that every pair of elements determines the same topology on M), and the
case where the two systems of parameters have their first elements in common, say z, y
and x, z. But this case is clear, since, modulo xR, y has a power that is divisible by z. [

With these preliminaries out of the way, we next observe:



54 MELVIN HOCHSTER

(12.4) Lemma. Let R be a ring, let v,y € R, and let M be an R-module. Let © =

O(x,y; M). Let I = (x,y)R. Then:

(a) x, y are nonzerodivisors on O and x, y is a possibly improper reqular sequence on ©.

(b) If M is an R-algebra, then © is an R-subalgebra of My,.

(¢) If N is any R-module such that x, y are nonzerodivisors on N and x, y 1s a possibly
improper reqular sequence on N, then every R-module map ¢: M — N factors uniquely
oM — O — N. Moreover:

(1) If, in addition, N s I-adically separated and there exists a nonzero R-module
map ¢: M — N, then x, y is a reqular sequence on ©. (It suffices that Im¢
not be contained in (), I'N.)

(2) If, instead, we assume in addition that M, N are R-algebras and the map
M — N 1is an R-algebra homomorphism, then © — N 1is also an R-algebra
homomorphism.

(d) The following conditions are equivalent:

(i) M can be mapped R-homomorphically to an R-module N on which x, y form a
reqular sequence in such a way that the image of M is not contained in [\, I'N.

(i1) There is a nonzero R-linear map from M to an I-adically separated R-module
N on which x, y form a reqular sequence.

(iii) There is a nonzero R-linear map from M to an I-adically complete and sepa-
rated R-module N on which x, y form a reqular sequence.

(iv) Im (M — ©) is not contained in (), I'O.

(e) If M is an R-algebra, then M has an R-algebra homomorphism to an R-algebra S
such that x, y is a reqular sequence on S if and only if (x,y)0© # O, i.e., if and only if
1 ¢ (z,y)0. In this case, © itself is an R-algebra on which x, y is a reqular sequence.

Proof. The map ¢ kills the kernel of the map M — M,,. There is no loss of generality
in replacing M by its quotient by this kernel, and we henceforth assume that =, y are
nonzerodivisors on M, so that M C M,,. This does not change O.

(a) It is clear that @, y are nonzerodivisors on © C M,,. If 26 = y8’ with 6.6’ € O then
7 =60/y =6 /x is multiplied into M by a power of I, since both x7 and y7 are multiplied
into M by I® for s > 0, and then I*T!'7 C M. Thus, 7 € ©, which shows that §' € 20.

(b) If a power of I multiplies each of 6, §' into the image of M, then the sum of the two
exponents will yield a power of I that multiplies 6 4+ 6’ (respectively, #6’) into the image
of M.

(c) The map ¢: M — N induces a map ¢ : M, — N,,. The key point is that the
image of © is contained in N. For suppose § € ©. Then for large t, 2'0 = v and y'6 = v
are in M. Then

#'0(8) = (a'8) = Y(u) = d(u) = u' € N

and, similarly, y%1/(f) = v’ € N. But then y'u’ = 2'v’ shows that v’ is a multiple of 2! in
N, say v’ = z'u”, and then x'(8) = z'u” shows that ¢(§) = u” € N. The uniqueness is
obvious, since xy is not a zerodivisor on N.

To prove (1), note that if I® = © then I'® = O for all t € N, and then the same will be
true for the image of © in N. Since N is [-adically separated, this implies that the image
of © is 0, a contradiction, since the image of M is not zero. (The parenthetical comment
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follows from the fact that we may replace N by N, and the induced map © — N will be
nonzero provided that Im © is not contained in (), I*N.)

(2) is a consequence of the fact that the map is constructed as the restriction of the
induced may t: My, — Ny, and ¢ is evidently an algebra homomorphism.

(d) (iii) = (ii) = (i) is obvious. Given (i), we replace N by N: since Ker (N — ]V) =
N, I'N, we obtain a complete module as required. Thus, (i), (ii), and (iii) are equivalent.
Part (¢) (1) shows that (ii) = (iv). To complete the proof it will suffice to show that (iv)
= (iii). But given (iv), we have that the induced map M — O is not zero, and so O # 0.
It is then automatic that © =+ I@ and x, y is a regular sequence on &) by part (a) and
(12.2¢).

(e)If 1 ¢ (x,y)O then it is clear from part (a) that z, y is a regular sequence on 0, since
(z,y)® # ©. On the other hand, from part (¢) (2) the R-algebra map M — S factors
M — © — S, where these are maps of R-algebras. If (z,y)S # S then 1 ¢ (z,y)S, from
which it is clear that 1 ¢ (z,y)0. O

(12.5) Theorem. Let (R,m,I) be a complete local domain of dimension at most two
with system of parameters x, y. Then an R-algebra S 1s solid if and only if it has an
R-algebra homomorphism S — T such that x, y are nonzerodivisors on T and x, y 1s a
reqular sequence on T, so that T 1s a big Cohen-Macaulay algebra for R. We may choose
T = O(x,y; R @r S) where R may be chosen to be either the normalization of R or
the Sa-ification of R (the latter may be identified with O(x,y; R) and is a subring of the
normalization of R). We may also choose T = O(x,y;S).

Proof. We have that R'@g S is solid over R' and admits an R'-linear map ¢ to R’ such that
the image of 1 is not zero. It then follows from Lemma (12.4) that x, y are nonzerodivisors
onT = O(x,y; R @r S) and that z, y is a regular sequence on T, since z, y is a regular
sequence on R', since R is (z,y)R -adically separated, and since the map ¢ is not zero.

Since R — S — O(z,y; R @r S) = T factors R — S — T" — T with T' = O(x,y;S),
we must also have that 1 ¢ (z,y)T’, and so T is a big Cohen-Macaulay algebra over R to
which S maps as well. [

(12.6) Corollary. Let (R, m, K) be a complete local domain of dimension two with system
of parameters v,y € m, let N C M be finitely generated R-modules, let uw € M, and let
S be a generic forcing algebra for the triple (M, N,u). Then u is in the solid closure of
N if and only if with © = O(x,y;S) (defined in (12.1)) we have that (x,y)0 # O, i.e.,
1¢(x,9)0. O

We use this criterion in an example:

(12.7) Ezample. Let R = K[[X,Y, Z]]/(9) = K|[[z,y, z]], where K is a field of character-
istic zero and ¢ = X® 4+ Y3 4+ Z%, and let I = (2,y)R. Then I**@ = [*_ First note
that 22 € I*¢¢ C [*PQ: see [HH11], Example (2.2.4). Since we know that [*F@ C 1k,
if we show that » ¢ I* then it will follow that I*¢ = [* = (z,y,2%) (and also that
I*EQ = (2,y,2%)), for any ideal strictly larger than (z,y, 2?) must contain z. But z € I'*
if and only if R can be mapped to an algebra S on which x, y is a regular sequence and

z €IS,
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Thus, it will suffice to show that if 2% +y* + 2% = 0 in S, with 3 invertible in S (actually,
we know that S O Q here) and z = ux 4+ vy, then z, y cannot be a regular sequence in S
(we have changed notation, using the same letters , y, z for the images of the original x,
y, z in S). But then 2* + y* + (uz 4+ vy)® = 0 which can be rewritten as:

(u3 + 1):1;3 + (3u2v)(:1;2y) + (3uv2)(:1;y2) + (U3 + 1)y3 =0.

If z, y is a regular sequence on S then the relations on the elements 2®, 2%y, zy?, y* are
spanned by the quadruples

(y,—,0,0), (0,y,—x,0) and (0,0,y, —x).
This implies that

with a,b,c € 5, yielding

(1) u?+1=ay or (1°) u? = —1+ay
(2) 3uv = —ax + by
(3) 3uv? = —bx +cy
(4) v+ 1= —cx or (4°) v = —1—cx

Multiplying (1°) and (4°) together, we obtain that u*v® € 1 4 (2,y)S while equation
(2) (or (3)) shows that 3u®v® € (z,y)S, and, since 3 is invertible, u®v® € (z,y)S. Thus,
1 € (z,y)S, a contradiction. O

(12.8) Remark. We do not know, in general, whether, over a complete local domain of
dimension two and equal characteristic zero, the big equational tight closure, *#@ | agrees
with the solid closure, * .

13. REGULAR RINGS REVISITED

We have already noted (cf. (7.24)) that, as a consequence of a local cohomology cal-
culation of P. Roberts, in the regular rings K[z,y, z] and Kl[z,y, z]], where K is a field
of characteristic zero, we have that z2y?2% € (2*,y%, 2*)*. Nonetheless, there are sev-
eral positive results on when ideals in regular rings are solidly closed that yield useful

information.

(13.1) Theorem. Let R be a reqular Noetherian ring. Let I C R be an ideal and let

N C M be finitely generated R-modules.

(a) Suppose that p is a prime integer and that R/pR is reqular. Then every ideal of R
containing p s solidly closed in R. More generally, of M/N 1is killed by p, then N 1is
solidly closed i M.

(b) Suppose that R is a finitely generated Z-algebra of characteristic zero. Then every
ideal T of R such that R/I is torsion-free over Z is solidly closed. More generally, if
M/N s torsion-free over Z, then N is solidly closed in M.

Proof. (a) It suffices to prove the final statement. We may assume without loss of generality
that N = 0. Suppose that u € M is in the solid closure of 0 in M. Then this remains true
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when we take images in S @g M, where S = R/pR. Since S is regular of characteristic p
and S @p M = M, we have that u is in 0% 3y over S, which is 0, and so u = 0 as required.

(b) By part (a), it will suffice to prove that N = ﬂp(N + pM) as p runs through the
positive prime integers such that R/pR is regular, since for every such p, N 4+ pM is solidly
closed in M. Since R is regular, Q @7 R is smooth over Q, and so for some b € Z — {0},
Ry is smooth over Zj. It follows that for all positive prime integers p not dividing b that
R/pR is smooth over Z/pZ, and, hence, regular. Thus, the set of p such that R/pR is
regular is infinite. The result now follows from (13.2), given immediately below, applied

to M/N. O

(13.2) Theorem. Let M be a finitely generated module over R, where R is a finitely
generated Z.-algebra, and suppose that M s torsion-free as a Z-module. Then ﬂpePpM =0
for any infinite set P of prime integers.

Proof. By the lemma of generic freeness (see [HR1], Lemma (8.1), p. 146), we may choose
a nonzero integer a € Z such that M, is free over Z,. Since M is torsion-free over Z,
M C M,. Let () be the set of primes in P not dividing a: it is still infinite. We have that
ﬂpePpM C ﬂpEQ pM,, which is zero simply because M, is Z,-free and mperZa =0. O

(13.3) Corollary. Let R be a regular domain finitely generated over Z, with Z C R, and
suppose that S is a solid R-algebra. Then Q @z R — Q ®z S 1s pure.

Proof. Suppose that T' C U where T is a normal Noetherian domain and U is an extension
ring. We claim that T — U is pure if and only if every ideal of T' is contracted from U (of
course, “only if” is trivial). To see this, note that the issue is local on the maximal ideals
m of T, and so it suffices that, for every such m, T}, be pure in U,,. Since T}, is normal, it
is approximately Gorenstein by the results of [Ho4], and it follows from the results of that
paper that T, is pure in U, if every ideal B of T, primary to mT, is contracted from
Uy, and B will be the expansion of its contraction 2 to T, which is primary to m. But if
t/f € BU, =AU, witht € T —2 and f € R— m, then gt is in the contraction of AU to
T for some g € T — m, and so if 2 is contracted from U it follows that gt € . Since 2 is
m-primary, it follows that ¢ € 2, a contradiction. This establishes the claim.

We now apply this with T=Q ®z R and U = Q ®z S.

Thus, it suffices to show that every ideal of Q ®z R is contracted from Q ®7z S. Such
an ideal J will have the form I(Q ®z R), where I is its contraction to R. Since R/I
embeds into Q @z (R/I), it follows that R/I is torsion-free over Z. Thus, by (13.1b), I is
solidly closed. Since R — S is solid, it is injective; moreover, since [ is solidly closed, I is
contracted from S. But if u € J(Q®z S)N(Q @z R) then a multiple of u by some nonzero
integer h will be an element of R, and, multiplying further by a nonzero integer k, we have

that khu € IS N R = I. Since kh is a unit of Q ®z R, we have that u € J. O

(13.4) Remark. In the case where S is module-finite over R this follows rather trivially
from a trace argument, but it does not appear that a trace argument can be used to recover
the general case of (13.3).

(13.5) Proposition. Let R be any Noetherian ring that does not contamm Q, and let
X1, ..., X, be formal indeterminates over R. Let My, ..., My, and M be monomaials in
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the X; in S = R[[X1, ..., X,]], and let I = (M, ... ,My)S. Then M € I* in S if and
only if M € 1.

Proof. Since Q is not contained in R, for some positive prime integer p, p has no inverse in
R. Then pR is contained in a maximal ideal m of R, where K = R/m has characteristic p.
Given a counterexample, it remains a counterexample when we pass to K[[X1, ..., X,]],
a contradiction, since this is a regular ring of characteristic p. [

(13.6) Ezample. In Z[ X1, Xo, X3] we have that (X7, X3, X?3) is solidly closed, by (13.1b).
If V is a discrete valuation ring of mixed characteristic p, then in VI[[Xy, X5, X3] we do
not know whether (X7, X3, X3) is solidly closed, but we know at least that X7 X3X? is
not in the solid closure, by (13.5). Both these examples show that solid closure does not
commute with localization, since X2 X3 X? is in the solid closure after we localize at Z — {0}

(respectively, V' — {0}). Cf. (7.24).

(13.7) Remarks. Let (V,pV) be a discrete valuation ring of mixed characteristic p such
that p generates the maximal ideal and let R = V[[Xy, ..., X,]]. Note that an ideal
generated by monomials in p, X1, ..., X, is solidly closed provided that p is in the ideal
(by (13.1a)), and that we know something about the behavior of the solid closure of an
ideal generated by monomials in the X’s only (i.e., with no positive powers of p occurring)
from (13.5). However, we do not know whether, when n = 3, there is a positive integer h

such that p" X2X2X2 is in (X}, X3, X3)*.

Some weak results about the solid closures of monomial ideals can be obtained by
mapping to rings of lower dimension. To illustrate the technique, we prove:

13.8) Theorem. Let z z be elements generating an ideal of height three in a Noe-
Y g g g

therian ring R. Assume either

1) that 2-1g 1s not in any height three minimal prime of (x.y, z)R (this 1s automatic 1

) g p 'Y,
2 1g 1s mwvertible in R) or
(i1) that Ryeq has characteristic 2.
Then xyz ¢ (x%,y2, 22)*.

Proof. If we have a counterexample we can localize at a suitable minimal prime of (z,y, z)
(not containing 2 - 1x in case (1)) complete, and kill a minimal prime. By the persistence
of solid closure, we still have a counterexample. Thus, there is no loss of generality in
assuming that z, y, z is part of a system of parameters in a complete local domain R, and
that either (i) 2 = 2- 1g is a unit or (ii) R has characteristic 2. In the second case the
result is immediate from Theorem (7.15a) of [HH4] and the fact that solid closure agrees
with tight closure in this case, and we henceforth assume that we are in case (i), where 2
is a unit of R. Now map R to

S=R[UV]/(z —(U*+V?),y = (U*=V?),z-UV).

Since R has dimension 3, R[[U, V]] has dimension 5, and it is clear that U, V, x, y, z is a
system of parameters, whence

UV,e— (U +V?,y — (U =V?),2 - UV
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is a system of parameters for R[[U,V]]. It follows that the images u, v of U, V in S are
a system of parameters for the two-dimensional complete local ring S. In S, z, y, 2 map
to u? + v?, u? —v?, and uv. Thus, it will suffice to show that if S is a complete local
ring of dimension two in which 2 is a unit and u, v is a system of parameters, then with
z=u?+v? y=u?—v? 2z =uv we have that zyz ¢ (2%,y2,22)* in S. As before, we may
kill a suitable minimal prime. Thus, we may assume that S is a two-dimensional complete
local domain. But then if zyz € (22,2, 22)* we can find a big Cohen-Macaulay algebra T
over S such that u, v is a regular sequence on T and zyz € (2%,y% 22)T, by (12.5). This
says that (u* — v*)uv € (u* + vt u?v?)T. Moreover, we may complete T with respect to
the (u,v)T-adic topology (equivalently, with respect to the mT-adic topology, where m is
the maximal ideal of S, since each of (u,v)S and m has a power contained in the other). It
follows (cf. Corollary (12.3)) that every system of parameters for S is a regular sequence
on T. Now, since uv, u* 4+ v* is also a system of parameters for S it is a regular sequence
on T, and so
ut — ot e <u4 + v4, (uv)2>:T uv = (u4 + v4,uv)

which yields

ut — vt = a(u4 + v4) + buv

or

(a — 1)u4 + buv + (a + 1)1)4 =0.

It follows that
(a—1,b,a+1) = c(v,—u®,0) + d(0, —v* u),

ie,a=14cv, b= —cu®—dv®, a = —1+du. Subtracting the third equation from the first
shows that 2 € (u,v)T is not a unit of T, and, hence, not a unit of R, a contradiction. O

(13.9) Remark. It is hopeless to try to show, by mapping to lower dimensional regular
rings, that if f, g, h are a system of parameters in a local ring of mixed characteristic and
of dimension 3 then f2g2h% ¢ (f3,¢®,h3)*. The key point is that, by the Briancon-Skoda
theorem, one has thatf2g?h? € (f?, ¢*, h?) for any three elements f, g, h of a regular ring
of dimension at most two. A detailed explanation is given in (6.8) of [Ho§].

14. QQUESTIONS

In this concluding section we discuss a number of questions about the behavior of solid
closure which, so far as the author knows, are open.

(14.1) Question. Is every ideal of a regular local ring of mized characteristic solidly
closed?

Roberts’ calculation, discussed in (7.23) and (7.24), is discouraging, but the question
seems to remain open in mixed characteristic. An affirmative answer would show that
a regular local ring of mixed characteristic is pure in any solid algebra over it, and, in
particular, is a direct summand of every module-finite extension algebra.

It would be interesting to know, given an ideal I generated by monomials in a regular
system of parameters for a regular local ring R, precisely when another such monomial is
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in the solid closure of I. We understand the situation in characteristic p, where every ideal
is solidly closed in a regular ring, and Roberts’ calculation shows that the answer may
be complicated in the equal characteristic case. Mixed characteristic remains mysterious.
But we may ask:

(14.2) Question. If it is not true that every ideal of a mized characteristic reqular local
ring 18 solidly closed, can one find a variant closure operation for which this is true and
that 1s sufficiently well-behaved to yield a proof of the direct summand conjecture?

Suppose we denote this enigmatic closure for an ideal I C R by I®. If we know that
when S is a module-finite extension domain of a complete local domain R then ISNR C I¢
and that I® = I if the ring R is regular, then the operation is “sufficiently well-behaved.”

(14.3) Question. If a complete local domain (R, m) has residual characteristic p, is it
true that an R-algebra S is solid if and only iof S can be mapped to a balanced big Cohen-
Macaulay algebra T for R?

This is true in dimension two without restriction on the characteristic, by Theorem
(12.5), and false in equal characteristic zero in dimension greater than or equal to three, by
Examples (10.7a,b). The author feels that it is much more likely to be true in characteristic
p than in mixed characteristic.

The following is a closely related question:

(14.4) Question. Let (R,m) be a complete local domain of residual characteristic p and
let S be a solid R-algebra. Is every algebra modification of S with respect to a system of
parameters for R again solid over R¥

See the first paragraph of the proof of Theorem (11.1) for a discussion of algebra modi-
fications. Briefly, if x = x¢, ... , z, is a system of parameters for a complete local domain
R, and S is an R-algebra, by an algebra modification (of type k, where 0 < k < n) with
respect to x of S over R we mean an S-algebra T of the form

Rlz1, ooy zi)/(Sk41 — Zl’jzj)v

J=1

where sgy1 € S is such that there exist sy, ... ,sp € S satisfying xp1854+1 = Ele TS
in S.

In fact, (14.3) and (14.4) can easily be shown to be equivalent. Assume (14.3). Then S
can be mapped to a balanced big Cohen-Macaulay algebra T for R, and it is easy to see
that any algebra modification S’ of S can also be mapped to T. Since T is solid, it follows
that S’ is solid. On the other hand, assume that (14.4) holds. Then every finite sequence
of algebra modifications of S (the systems of parameters and types may vary) yields a solid
R-algebra T, and for such an algebra we have that m is contracted from T, i.e., 1 ¢ mT.
But then, as in §3 of [HH12|, we may construct a balanced big Cohen-Macaulay algebra
for R to which S maps as a direct limit of algebras obtained by finite sequences of algebra
modifications of 5.
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We note that (14.3) reduces to the case where S is finitely generated over R. (It suffices
to check the “only if” part. But if S cannot be mapped to a balanced big Cohen-Macaulay
algebra for R then it has a finite sequence of algebra modifications, S =Ty — --- — T}
such that 1 € mT}. It is easy to see that some finitely generated subalgebra Sy of S will
also have such a sequence of modifications, and Sy is also solid over R if S is.)

Any finitely generated solid algebra over R maps onto a minimal solid algebra (cf. (6.1)),
also finitely generated over R. If we view R as a finite module over a complete regular
local ring A, the minimal solid algebras over R are also minimal solid algebras over A (cf.
(6.2¢)). We are therefore led to the following question:

(14.5) Question. What are the minimal solid algebras over a complete regular local do-
main, especially in characteristic p and in mized characteristic?

Of course, the question is answered in dimension one by Theorem (6.4).

Finally, we ask:

(14.6) Question. Is the Briangon-Skoda theorem for “solid closure” valid in arbitrary
Noetherian rings? That 1s, given an ideal I generated by n elements in an arbitrary Noe-
therian ring of mized characteristic p, is I" C I*? (One may also ask whether various
versions of the Briang¢on-Skoda theorem hold, e.q., 1s Itk C (I*¥H* for every nonnega-
tive integer k.)

To prove this for a given ring R, it suffices to prove it for the complete local domains of
R. The result is known in equal characteristic, by Corollary (11.5). Thus, one may reduce
to the case of a complete local domain of mixed characteristic.

The above questions give just a small taste of what remains to be done in the study of
solid algebras and solid closure.

BIBLIOGRAPHY

[Ab1] Aberbach, I., Finite phantom projective dimension, Amer. J. Math., to appear.
[Ab2]

, Test elements in excellent rings with an application to the uniform Artin-Rees property,
Proc. Amer. Math. Soc., to appear.

[Ab3] , Tight closure in F-rational rings, preprint.

[AHH] Aberbach, 1., M. Hochster, and C. Huneke, Localization of tight closure and modules of finite
phantom projective dimension, J. Reine Angew. Math. (Crelle’s Journal) 434 (1993), 67-114.

[ArR] Artin, M. and C. Rotthaus, A structure theorem for power series rings, in Algebraic Geometry
and Commutative Algebra: in honor of Masayoshi Nagata, Vol. I, Kinokuniya, Tokyo, 1988, 35-44.

[B] Boutot, J.-F., Singularités rationelles et quotients par les groupes réductifs, Invent. Math. 88
(1987), 65-68.

[BrS]  Briancon, J. and H. Skoda, Sur la cléture intégrale d’un idéal de germes de fonctions holomorphes
en un point de C™, C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951.

[BuE] Buchsbaum, D. and D. Eisenbud, What makes a complez exact, J. of Algebra 25 (1973), 259-268.

[Du]  Dutta, S. P., On the canonical element conjecture, Trans. Amer. Math. Soc. 299 (1987), 803-811.

[EvG1] Evans, E.G. and Griffith P., The syzygy problem, Annals of Math. 114 (1981), 323-333.

[ , Syzygies, London Math. Soc. Lecture Note Series 106, Cambridge University Press, Cam-

bridge, 1985.

, The syzygy problem, in Commutative Algebra, Math. Sci. Research Inst. Publ. 15,

Springer-Verlag, New York - Berlin - Heidelberg, 1989, pp. 213-225.




62

[EGA]

[FeW]

[Gla]
[GrTia]
[Hol]
[Ho2]

[Ho3]

[Hod]
[Ho5]
[Ho6]
[Ho7]

[Ho8]

MELVIN HOCHSTER

Grothendieck, A. (rédigés avec la collaboration de J. Dieudonné), Eléments de géométrie algébrique
IV: Etude local des schémas et des morphismes de schémas (Seconde partie), 1. H. E. S. Publ.
Math. (Paris) N° 24 (1965), 1-231.

Fedder, R. and K. Watanabe, A characterization of F-regularity in terms of F-purity, in Commu-
tative Algebra, Math. Sci. Research Inst. Publ. 15, Springer-Verlag, New York - Berlin - Heidelberg,
1989, pp. 227-245.

Glassbrenner, D. J., Invariant rings of group actions, determinantal rings, and tight closure,
Thesis, University of Michigan, 1992.

Grothendieck, A. (notes by R. Hartshorne), Local Cohomology, . Lecture Notes in Math. No. 41,
Springer-Verlag, New York - Berlin - Heidelberg, 1967.

Hochster, M., Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51
(1973), 25-43.

, Topics in the homological theory of modules over commutative rings, C.B.M.S. Regional
Conf. Ser. in Math. No. 24, A.M.S., Providence, R.I., 1975.

, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, in

Proceedings of the Queen’s University Commutative Algebra Conference, Queen’s Papers in Pure
and Applied Math. 42, 1975, pp. 106-195.

, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231
(1977), 463-488.

, Some applications of the Frobenius in characteristic 0, Bull. Amer. Math. Soc. 84 (1978),
886-912.

, Cohen-Macaulay rings and modules, Proc. of the International Congress of Mathemati-

cians, Helsinki, Finland, Vol. T, Academia Scientarium Fennica, 1980, pp. 291-298.

, Canonical elements in local cohomology modules and the direct summand conjecture, J.
of Algebra 84 (1983), 503-553.
, Tight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure, in

Proc. of the Summer Research Conference on Commutative Algebra (held at Mt. Holyoke College,
July, 1992), to appear (in these proceedings).

Hochster, M. and J.A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection
of determinantal loci, Am. J. Math. 93 (1971), 1020-1058.

Hochster, M. and C. Huneke, Tightly closed ideals, Bull. Amer. Math. Soc. 18 (1988), 45-48.

, Tight closure, in Commutative Algebra, Math. Sci. Research Inst. Publ. 15, Springer-
Verlag, New York - Berlin - Heidelberg, 1989, pp. 305-324.

, Tight closure and strong F-regularity, Mémoires de la Société Mathématique de France,
numéro 38 (1989), 119-133.

, Tight closure, invariant theory, and the Brian¢on-Skoda theorem, J. Amer. Math. Soc. 3
(1990), 31-116.

, Absolute integral closures are big Cohen-Macaulay algebras in characteristic p, Bull.
Amer. Math. Soc. (New Series) 24 (1991), 137-143.

, Tight closure and elements of small order in integral extensions, J. of Pure and Appl.
Algebra 71 (1991), 233-247.

, Infinite integral extensions and big Cohen-Macaulay algebras, Annals of Math. 135
(1992), 53-89.

—, Phantom homology, Memoirs Amer. Math. Soc. Vol. 103, No. 490 (1993), 1-91.
_, F-regularity, test elements, and smooth base change, preprint.

_, Tight closures of parameter ideals and splitting in module-finite extensions, preprint.
, Tight closure in equal characteristic zero, in preparation.

, Applications of the existence of big Cohen-Macaulay algebras, preprint.

Hochster, M. and J.I.. Roberts, Rings of invartants of reductive groups acting on reqular rings are
Cohen-Macaulay, Advances in Math. 13 (1974), 115-175.

, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), 117-172.
Huneke, C., An algebraist commuting in Berkeley, Mathematical Intelligencer 11 (1989), 40-52.




SOLID CLOSURE 63

, Absolute integral closures and big Cohen-Macaulay algebras, in Proc. of the 1990 Intern.

Congress of Mathematicians, Kyoto 1990, Vol. I, Math. Soc. of Japan, Springer-Verlag, New York
- Berlin - Heidelberg, 1991, pp. 339-349.

, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), 203-223.

Kunz, E., Characterizations of regular local rings of characteristic p, Am. J. Math. 91 (1969),
T72-784.

, On Noetherian rings of characteristic p, Am. J. Math. 98 (1976), 999-1013.

Lipman J. and A. Sathaye, Jacobian ideals and a theorem of Briancon-Skoda, Michigan Math. J.
28 (1981), 199-222.

Lipman, J. and B. Teissier, Pseudo-rational local rings and a theorem of Brian¢on-Skoda about
integral closures of 1deals, Michigan Math. J. 28 (1981), 97-116.

Matsumura, H., Commutative Algebra, Benjamin, 1970.

Mumford, D.; Geometric Invariant Theory, Springer-Verlag, New York, 1965.

Nagata, M., Lectures on the Fourteenth Problem of Hilbert, Tata Institute of Fundamental Re-
search, Bombay, 1965.

, Local Rings, Interscience, New York, 1972.

Northcott, D. G., Finite Free Resolutions, Cambridge Tracts in Math. 71, Cambridge University
Press, Cambridge, 1976.

Peskine, C. and L. Szpiro, Dimension projective finie et cohomologie locale, . H.E.S. Publ. Math.
42 (Paris) (1973), 323-395.

, Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1421-1424.

Roberts, P., Two applications of dualizing complexes over local rings, Ann. Sci. Ec. Norm. Sup. 9
(1976), 103-106.

, Cohen-Macaulay complexes and an analytic proof of the new intersection conjecture, J.
of Algebra 66 (1980), 225-230.

, The vanishing of intersection multiplicities of perfect complexes, Bull. Amer. Math. Soc.
13 (1985), 127-130.

, Le théoréme d’intersection, C. R. Acad. Sc. Paris Sér. T 304 (1987), 177-180.

, Intersection theorems, in Commutative Algebra, Math. Sci. Research Inst. Publ. 15,
Springer-Verlag, New York - Berlin - Heidelberg, 1989, pp. 417-436.

, A computation of local cohomology, in Proc. of the Summer Research Conference on
Commutative Algebra (held at Mt. Holyoke College, July, 1992), to appear (in these proceedings).
Serre, J.-P., Algébre Locale - Multiplicités, Springer-Verlag Lecture Notes in Math. 11, Springer-
Verlag, New York - Berlin - Heidelberg, 1965.

Sharp, R. Y., Cohen-Macaulay properties for balanced big Cohen-Macaulay modules, Math. Proc.
Cambridge Philos. Soc. 90 (1981), 229-238.

Skoda, H., Applications des techniques L?> a la théorie des idéauz d’une algébre de fonctions
holomorphes avec poids, Ann. Scient. Ec. Norm. Sup. 4éme série t. 5 (1972), 545-579.

Smith, K. E.; Tight closure of parameter ideals and F-rationality, Thesis, University of Michigan,
1993.

, Tight closure of parameter ideals, Invent. Math., to appear.
, Fl-rational rings have rational singularities, preprint.

Velez, J., Openness of the F-rational locus, smooth base change, and Koh’s conjecture, Thesis,
University of Michigan, 1993.

Watanabe, K.-1., Study of F-purity in dimension two, in Algebraic Geometry and Commutative
Algebra in honor of Masayoshi Nagata, Vol. 11, Kinokuniya, Tokyo, 1988, pp. 791-800.

, F-regular and F-pure normal graded rings, J. of Pure and Applied Algebra 71 (1991),
341-350.

Weyl, H., The Classical Groups, Princeton Univ. Press, Princeton, New Jersey, 1946.

Williams, L., Uniform stability of kernels of Koszul cohomology indexed by the Frobenius endo-
morphism, Thesis, University of Michigan, 1992; and preprint.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1003, USA



