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1 Introduction

Let (R, m,k) be a regular local ring of Krull dimension n and let M be a
finite length R-module. We will write a minimal free resolution of M as

0— R — ... R 5 R — M —0,

where {a!,...,a}M} are the Betti numbers of M. Giving lower bounds
for these Betti numbers has been a long standing problem in commutative
algebra. In fact, in 1977, Buchsbaum and Eisenbud made the following
conjecture [BE]:

Conjecture 1. Let R be a regular local ring of Krull dimension n and M
be a finite length R-module. Then o' > (7) for t =0,...,n.

Shortly after Buchsbaum and Eisenbud’s paper appeared, this problem
was submitted to Hartshorne’s problem list by M. Horrocks [Ha]. For this
reason, Conjecture 1 is often referred to as Horrocks’ Problem. In this paper
we will refer to it as the BEH Conjecture.
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Buchsbaum and Eisenbud originally showed [BE]| that if a resolution of M
has an associative multiplicative structure (such as the Koszul complex has,
for instance), then the #*® Betti number of M is larger than the ¢** binomial
coefficient for all £ = 0,...,n. They also pointed out, however, that in an
appendix due to V. Khimich in a paper by Avramov [Av] it is shown that
there exists a finite length module for which no associative multiplicative
resolution can exist.

Further progress was made on BEH in [EG] by Evans and Griffith. They
showed that if M is a direct sum of quotients of monomial ideals, then the
Betti numbers of M satisfied the conjecture. In 1987, Huneke and Ulrich [HU]
showed that the Betti numbers of M must satisfy the bound if M is cyclic
and Ann(M) is in the linkage class of a complete intersection. Charalambous
[Ch] and Santoni [S] did independent work which proved the multigraded case
in general. Charalambous, in fact, showed that in the monomial case, the
bound is never sharp except when M is a complete intersection.

In 1997, Chang [C] proved the following theorem:

Theorem 1.1 (Chang). Let (R, m,k) be a regular local ring of Krull di-
mension n and let M be a finite length R-module such that m*M = 0. Then
the Betti numbers oM of M satisfy a} > (?), 1<t<n.

This case of the BEH conjecture is the starting point for our investiga-
tion of the substantially more general situation handled in this paper. To
understand the connection note that m? kills M if and only if there are
non-negative integers a, b such that the sequence

0— (R/m)* = M — (R/m)” =0

is exact. Now it is clear that our result, stated immediately following, is an
extension of Chang’s work:

Theorem 1.2 (Main Theorem). Let (R, m,k) be a reqular local ring of
Krull dimension n and let M be an R-module of finite length. Suppose that
there 1s a short exact sequence

0— é(R/L,) - M — é(R/J,,) — 0,

where Iy, ..., 1,, and Jy,...,Jy are ideals generated by R-sequences. If J, C
I, forallv=1,...,a andn =1,...,b, orif I, C J, for all v, n, then the
Betti numbers o' of M satisfy o > (}), 1 <t <n.
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Thus, the BEH conjecture holds for the class of modules described in the
statement of the theorem. The proof of this result, is given at the end of §3.

We are able to remove the inclusion requirements on the .J, and I, in
the case that one of the positive integers a, b, is very much larger! than the
other. This elementary combinatorial argument is given in §5: see Theorem
5.1.

The idea of the proof of 1.2 is much more difficult. It depends on devel-
oping a method for passing from M to a new extension,

0— é(R/m) - M — é(R/m) — 0,

in such a way that M’ is guaranteed to have Betti numbers that are at least
as small as the Betti numbers of M. We may then apply Chang’s theorem
to complete the argument.

We produce M' by making certain generic choices. The key effort is
showing that the connecting homomorphisms in the long exact sequence for
Ext(_, k) for the extension defining M are given by a matrix of polynomial
functions in a certain large number of coefficients needed to make explicit all
the information in the hypothesis of the theorem. For the detailed statement
see Theorem 3.2. We lay the groundwork for this argument in §2. We
complete this program in Section 3 utilizing the relationship between the
Yoneda pairing and connecting homomorphisms for Ext. Generic choices of
the coefficients mentioned determine an extension

0— é(R/m) =M — PR/m) —0

in such a way that the connecting homomorphisms in the long exact sequence
for Extg(_, k) have maximal rank. We use the fact that the Betti numbers
can be calculated as the k-vector space dimension of the modules Ext’h( _, k)
to show that we can guarantee that o > oM for allt =0,..., n.

Our hope is that the methods used here may be applied much more
generally to reduce many cases of the theorem to other, more tractable ones.
Note, for example, that in our passage from the M to M’ the length of the
module is typically reduced dramatically, and the structure of the module
M’ is substantially simpler than that of M. In §4 we use related ideas to
single out a class of modules of particular interest for the BEH conjecture.

't suffices if a > 252b+ 1 or b > 22a + 1.
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2 Preliminaries

Let (R, m, k) be a regular local ring and M, A, and B be R-modules. Note
that we can calculate the Betti numbers of each of these modules using
Extr(_,k), that is, o = dim, Exth,(M, k), of = dim Exth(A, k), and
aBf = dim, Exth (B, k) for all t. If we have a short exact sequence,

0—=B—-M-—A—0, (1)

then we form the long exact sequence in Extg(_, k), which is

oM M
..._>ka§—1 t_71>ka§1_>ka£v[_>ka? 6ﬁ_>ka§1+1_>....

Note that we reference the connecting homomorphism, 6, with the middle
module in the short exact sequence (1), although a more precise indicator
would be the element of Exty,(B, A) that the short exact sequence represents.

This yields the equality
o = o +af —rank(6M,) — rank(sM). (2)

To find a module which has Betti numbers at most equal to those of M, it
is enough to find an extension for which the flanking modules are known to
have Betti numbers at most equal to those of A and B respectively, while
the new connecting homomorphisms have rank the same as or larger than
the original ones. The pursuit of this idea will eventually permit us to reduce
the proof of Theorem 1.2 to Chang’s theorem.

Remark 2.1. We want to apply this discussion to the situation in the hy-
pothesis of Theorem 1.2. We require the inclusions J, C I, foralln =0,...,b
and v = 0,...,a because when they hold the calculation of the relevant Ext
module is greatly simplified, giving a very useful structure that enables us
to calculate as well the connecting homomorphisms of all extensions of this
sort simultaneously in terms of certain parameters. The remarks that follow
begin the elaboration if this idea.

Remark 2.2. Let R be a ring (it need not be Noetherian) and let 0 be
an R-linear map from a free R-module on a finite set of generators >; and
a free R-module on another finite set of generators X, where the two sets



of generators have not necessarily been given linear orderings. In this case,
by the matriz of # we mean the function from ¥; x ¥y to R whose value
on (o1,09) is the coefficient of o9 in R when 6(oy) is written as an R-linear
combination of the elements of Y.

Remark 2.3. Now let fi, ..., f, be a regular sequence in R, and denote
by J = (fi, ..., fn)R the ideal they generate. Suppose that J C I. Then
Ext’,(R/J, R/I) = (R/I)(;‘L). Moreover, once the generators fi, ..., fy for
J are fized, this Ext module has a “canonical” R/I-free basis indexed by the

j element subsets of {1, ..., n}. We refer to this basis as the standard basis.

To see this, we may use the Koszul complex K.(fi, ..., fq; R) as a free
resolution of R/J: if Uy, ..., U, is a basis for the free module in degree
one such that U; maps to f;, then the elements U; A --- A U;; such that
i1 < --- <, are a free basis for the free R-module K; = K;(fi, ..., fo; R).
Since I contains J, when we apply Hompg(_, R/I) the maps in the complex
all become 0, and the j th module may be identified with Hompg(K;, R/I) =
Hompg(K;, R/J)®R/I. We may take as an (R/I)-free basis the image of the
“dual” basis for Homg(K;, R/I). In particular, Exty(R/J, R/I) = (R/I)",
and we have a canonical or standard free basis given that we have a specific
regular sequence f1, ..., f, generating J. (In fact, we can replace R/I by any
R-module N that is killed by J: in that case the same argument shows that
Ext/(R/J, N) 2 N® () which we may think of Ext/(R/.J, R/.J) ®x N.)

In the next section we show how to use this basis information to calculate
the connecting homomorphism in the cases with which we are concerned.

3 Extensions

The Yoneda pairing for Ext is treated in great detail in MacLane’s book on
Homology [Mac], especially in Chapter III, §6 and §9 (Theorem 9.1 gives the
relationship with connecting homomorphisms). The following description (cf.
[Mac], Ch., III, §6, Exercise 2.) will be useful for us here: given R modules
A, B, C and integers j, h > 0 we want to give a map

Ext% (A, B) ®x Ext’,(B, C) — Ext}"(A, C).

The Yoneda pairing may be constructed by specifying for each element
¢ € Exth(4, B) a map BExt}(B, C) — Ext%, (A, C). Let P, and Q, be
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projective resolutions of A and B respectively over R. Then ( is represented
by n € Homg(Py, B) mapping to 0 in Homg(P, 1, B). The map n lifts to a
map P, — )y, and this extends to a map of complexes:

©— Py > Phi > Py > 0
e Q) = QL Q) —— 0

Thus, we have a map Pj,,; — Q; for all j > 0. When we apply Hompg(_, C)
and take cohomology, we get induced maps

A Exth(B, C) — Ext™ (A, €).

The Yoneda pairing sends ¢ ® 5 to A¢(f). This map is independent of the
choices that we made, and is R-bilinear.

Remark 3.1. We need to comment on what happens in case one of the three
modules is a finite direct sum. If A (respectively, C') is a finite direct sum,
then since Ext commutes with finite direct sum in either variable module,
both sides in the Yoneda pairing split into corresponding terms, and the pair-
ing is simply the direct sum of the pairings coming from the individual terms.
However, if B is a finite direct sum of, say, s terms B;, the right hand side
splits into the sum of s? terms while the left hand side is unaffected. In this
case the pairing is 0 on summands of the form Ext’,(A, B;) ® Ext}(By, C)
for i # 1" and is the Yoneda pairing for A, B;, C' for summands of the form
Ext® (A, B;) ®g Ext)(B;, C). This is easily deduced from the construction
described above and the corresponding facts for Hom.

The following theorem shows that there is a sort of “universal” matrix
for certain Yoneda pairings when the modules have a certain form, and con-
stitutes one of the key ingredients for proving the main result. It will allow
us, likewise, to calculate connecting homomorphisms in a general setting.

Before stating the theorem we need to fix a considerable amount of no-
tation. Let ¢, n be fixed integers, 0 < t < n, where n > 1. Let u;;, vj;
for 1 < i, 5 < n be 2n? indeterminates over Z. Suppose that R is any ring
(it need not be Noetherian), that zy, ..., x,, fi, ..., fu, and g1, ..., g, are
regular sequences in R, that f is the n x 1 column matrix (f;), ¢ is the n x 1
column matrix (g;), and x is the n x 1 column matrix (z;). Let (r4;), (si;)



be two n x n matrices over R such that f = (r;;)g and g = (s;,)z. Let
I, J, and M be the ideals (g1, ..., g.)R, (f1, ..., fu)R, and (21, ..., z,)R,
respectively. Note that Extp(R/J, R/I) @ Exth(R/I, R/M) is free over
R/M, and has a free basis corresponding to the Cartesian product of the
free bases for the two factor modules provided by Remark 2.3. Likewise,
Extp(R/I, R/ M) is free over R/ M, and has a free basis provided by Re-
mark 2.3.

Theorem 3.1 (universal polynomials for Yoneda pairings). Let ¢, n,

wij, and vi; be as in the preceding paragraph. Then there is an (tfl) X n(?)

matriz I'} with entries Pi; € Zu;j,vij] with the following property. If R
15 a ring as in the preceding paragraph, then for all choices of fi, ..., fn,
G1s ooy Gns T1y - -y T, (T35), and (s;5) as above, and with all notations as in

the preceding paragraph, the matrixz of the Yoneda pairing
Extn(R/J, R/I) ® ExtY,(R/I, R/M) — Ext(R/J, R/M),

with respect to the bases indicated in the preceding paragraph, is T} (r, s), the
result of substituting w;; = ri; and v;; = s;; in the various polynomial entries
of the matriz I'}.

Proof. Let Xy, ..., X,, be additional indeterminates over Z and let T =
Zlu;j, vij, X;]. Let X be the n x 1 column vector X;, let G be the n x 1
column vector (v;;) X, with entries Gy, ..., Gy, and let F' be the nx 1 column
vector (u;;)G, with entries Fi, ..., F,,. By a result, for example, of [Ho],
Fi, ..., F, and Gy, ..., GG, are regular sequences in 7. Consider the ring
homomorphism ¢ : T'— R that sends X; to x;, u;; to r;; and v;; to s;; for all
i J.
We have the Yoneda pairing
Exty(T/(G), T/(F)) ®r Ext}(T/(F), T/(X)) — Ext}" (T/(G), T/(X))

over T'. Since both sides are free over T'/(X) 2 Z[u, v], the map will be given
by a matrix [' of polynomials in u, v. We need to check that when when we
specialize the u;; and v;; under the map 7" — R, that we get the Yoneda
pairing

ExtL(R/J, R/I) ® Exth(R/I, R/m) — Ext(R/J, R/m)

over R. For this purpose, we think of the pairing as constructed in Re-
mark 2.3 over T, using Koszul complexes to resolve T/(F) and T/(G) re-
spectively. A key point is that when we apply R ®r _, these complexes
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become free resolutions of R/.J and R/I respectively over R. It suffices to
see that the Yoneda pairing “specializes” correctly for each fixed choice of
free generator of Exty(T/(F), T/(G)), using the standard generators of Re-
mark 2.3. The i*" free generator w; corresponds to the map sending the U;
to 1 in T'/(G) and the other U;, j # i, to 0. These “specialize” to the cor-
respondingly numbered standard generators of Exty,(R/.J, R/I): for each of
the w; : Ky(Fy, ..., F; T) — T/(G), when one applies R @7 _ one gets the
corresponding map of K;(fi, ..., fn; R) to R/I, sending U; to 1 € R/I and
the other Uj;, j # 4, to 0. Now, once one has constructed a map of complexes
over 1" that gives the Yoneda pairing, if one applies R ®7 _, one gets a map
of complexes over R that gives the corresponding Yoneda pairing over R, and
the result follows. H

Remark 3.2. It is important to note that M does not appear anywhere in the
above statement. As indicated earlier, Theorem 3.1 provides a calculation of
the Yoneda pairing in great generality.

It is now quite straightforward, although notationally cumbersome, to
generalize Theorem 3.1 to the case where each complete intersection is re-
placed by a direct sum of complete intersections. As in the case of Theorem
3.1 we give a preliminary discussion of the multiple items needed to state the
result.

Let t, n be fixed integers, 0 < t < n, where n > 1. Let a and b be
positive integers. Let u%”m, Ug-/) for 1 <i,j<n 1<v<a 1<n<bbe
abn? +an? indeterminates over Z. Suppose that R is any ring (it need not be

Noetherian), that for all , v (varying as above) a1, ..., x,, fl("), o £ and

g .., gt are regular sequences in R, that £ is the n x 1 column matrix

(fi(")), that ¢ is the nx1 column matrix (g(y)), and that x is the nx1 column

matrix (z;). Suppose also that for all n, v that (rl(:/j’")) and (SEUJ)) are n. X n
matrices over R such that f = rl(:/j’"))g(”) and g = (sE?)x Let I, J,,
and M be the ideals (g%y), e gT(LV))R, (fl("), e fé")), and (xq, ..., x,)R,
respectively. Note that every

Extp(R/J,, R/1,) ®g Exth(R/L,, R/ M)

is free over R/ M, and has a free basis corresponding to the Cartesian prod-

uct of the free bases for the two factor modules provided by Remark 2.3.
Likewise, Exty(R/I,, R/M) is free over R/ M, and has a free basis provided
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by Remark 2.3. Since Ext commutes with finite direct sums in either variable
module, we get a free basis over R/ M for

b a a
Exth(ED R/ J,, D R/L) ®r Extio(@D R/, R/M)
n=1 v=1 v=1

and for Extgl(@zzl R/J,, R/M).

Theorem 3.2 (Universal Yoneda polynomials for sums). Let ¢, n, a,

b, uz(-;-/’"), and UE;) be as in the preceding paragraph. Then there is an b(til) X

a*bn(}) matriz I’En’a’b) with entries Qi € Z[uz(-;-j’n),vgj’n)] with the following
property. If R is a ring as in the preceding paragraph, then for all choices

of fl("), L f g%y), R (7“8.”")), and (sg’)) as above, and
with all notations as in the preceding paragraph, the matriz of the Yoneda

PALTING

b a a
Exty, (@D R/J,. @ R/1L) ®r Extl (€D R/L., R/M)
n=1 v=1 v=1

b
— Extiy (6D R/ Jy. RIM),

n=1

with respect to the bases indicated in the preceding paragraph, is an’a’b)(r, s),
(VJI) — (Vﬂ?) d (V)
maial entries of the matrix F,ﬁ"’“””.

the result of substituting u = SE;) in the various polyno-

Proof. Because Ext distributes over finite direct sums in either variable and
the Yoneda pairing is bilinear, by Remark 3.1 this reduces at once to Theorem
3.1: the difference is that now we need to keep track of a matrix for every
choice of 7 and v that gives the expressions for the generators of .J,, in terms of
those of I,,, and a matrix for every v that gives expressions for the generators
of I, in terms of the generators of M. O

We are now ready to prove our main result.

Proof. (Of the Main Theorem 1.2.) By taking Matlis duals (equivalently,
applying Ext%(_, R)) we may interchange the roles of the two direct sums



of ideals in the extension. Thus, we may assume without loss of generality
that every .J, is contained in every I, rather than the other way round.

Since we may replace R by R(z), the localization of R[z] at mR][z], we
may assume without loss of generality that K is infinite.

We shall show that for every module M arising as an extension of the
form under consideration, there is an extension producing a module M’ that
has Betti numbers at least as large as those of M, and such that M’ satisfies
the hypotheses of Chang’s theorem. Evidently, this implies our theorem.

We adopt the notations of Theorem 3.2 to describe the extension

0— é(R/L,) - M — é(R/J,,) — 0,

with (R, m, K) the regular local ring and with M = m = (xq, ..., z,)R,
where the x; are a minimal set of generators of m. Choose a regular sequence
gg'j), ..., ¢ generating I, for every v, and a regular sequence fl("), L f
generating J, for every 7. Because of the containments .J, C I,, for every
(v,m) we can choose a matrix (rg-”")) over R such that f" = (rg-”"))g(”),
in the notations of Theorem 3.2. Likewise, with the same notations, since
every I, C m, for every v we can choose a matrix (sg’)) over R such that
g = (SE;))J) We have a standard set of generators for

b a

Exth (ED(R/ ), B(R/L))

77:1 v=1
by Remark 2.3, and the identification of the displayed Ext with

P Exty(R/J,, R/1,).
n,v

Each of the ab terms in this latter direct sum has a standard free basis,
with n elements, over R/I,. The element € of this Ext corresponding to the
extension with which we are working can therefore be represented by giving
abn coefficients ¢, ,; from R needed for these standard generators (they are
not unique, of course).

By Theorem 9.1 of [Mac|, the connecting homomorphism § in the long
exact sequence for Ext%(_, K) obtained from the short exact sequence

0— é(R/L,) — M — é(R/Jn) —0
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is given by taking the Yoneda pairing

b a a
Exty(EP R/ Ty, @ R/L) ©r Ext}y, (P R/L, R/m)
n=1 v=1 v=1

b
— Extiy (D R/ J,, R/m),
n=1
and restricting it to the element ¢ € Extp, (@2:1 R/ J,, @._, R/1,) corre-
sponding to M. That is ) () is the image of ¢®~ under the Yoneda pairing.
We introduce abn new indeterminates w,, ; corresponding to the ¢, , ;. It fol-
lows from Theorem 3.2 and this discussion that there is a bn (’Z) X aan( " )

t+1
matrix A" with entries in Z[ug’m, vg-/), Wy, ;] such that the matrix of 6}/
is obtained from A{™*? by specializing the ug;/’"), vl(;) and w,,; to rg.”"),

®)
1]
ranks of the 6™ only depend on the images of the the elements r
and ¢, ; modulo m.

We now want to think in terms of constructing new extensions (and con-
sequently new modules M’ to replace M) by allowing the elements r, s, and
¢ to vary (we are omitting the various subscripts and superscripts). We think
of the residues of these elements modulo m as varying in Ko’ +en+abn ap
affine algebraic variety over K. We may assume that the elements r, s, ¢
have been chosen so that their residues are in “general position,” by which
we simply mean that they have been chosen to avoid finitely many closed
subsets of the affine space K’ +tan’+abn Specifically, we want all of the ma-
trices (rg-j’")) and (sz(;/)) to be invertible modulo m, and we want the ranks
of all of the finitely many connecting homomorphisms (each coming from a
n,a,b)

(

s;:", and ¢, ;, respectively, and then applying K ®p _. In particular, the

(v,m) ()
i 0 Sij o

matrix of polynomials Al u, v, w) considered mod m) to be as large as
possible. When we do this we get new ideals [, with new sets of n genera-
tors: but all of these new ideals are equal to m, because of the invertibility
conditions that we have placed on the matrices. Likewise, the new ideals J,
that we get are also all equal to m.

All these are still generated by regular sequences, and so the ranks of the
connecting homomorphisms corresponding to the extension of direct sums
that comes from this new “general position” data are determined by the
A™@ (4 . w). Therefore we have constructed an extension

0> K* M - K'—0
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such that when one forms the long exact sequence for Ext%(_, K) coming
from it, the ranks of the connecting homomorphisms are all at least as large
as they were for the original short exact sequence. As already noted in §2,
formula (2), for a short exact sequence

0=B—-M-—A-=0

one has
o = ot + af —rank(6M,) — rank(sM).

In the transition from M to M’, a* and of do not change, while the ranks
of the connecting homomorphisms can only increase. Thus, o™ > oM for
all £. The result now follows from Chang’s Theorem 1.1 applied to M'. O

4 Ext-General Modules

It will be convenient in this section to assume that the residue class field of
the local ring (R, m, K) is infinite. There is no loss of generality in making
this assumption in studying the BEH conjecture.

We shall say that a finite length module M over a regular local ring
(R, m, K) is Ext-general if for every submodule B of M, with A = M/B,
the connecting homomorphisms in the long exact sequence for Ext%(_, K)
coming from the short exact sequence 0 - B —+ M — A — 0 all have max-
imum rank. Let ¢ be the element of Exty,(A, B) corresponding to the short
exact sequence. As noted earlier, by Theorem 9.1 of [Mac] the connecting
homomorphisms are induced by the Yoneda pairings

Extp(A, B) @ Exth(B, K) — Extt (A, K)

by restricting the first element in the pairing to be e. Clearly, the ranks
only depend on the image of ¢ in K ®p Exty(A, B), and maximum rank
for all connecting homomorphisms will evidently be achieved on a Zariski
dense open subset of the affine variety corresponding to the vector space
K ®r Exth(A, B).

Given any R-module M that is not Ext-general, we can construct an R-
module of the same length that has Betti numbers no larger than those of
M, and with at least one of them strictly smaller. For we can choose

0—-B—-M-—-A4A-=0
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such that at least one of the associated connecting homomorphisms does
not have maximum possible rank. With € as above we simply replace this
extension by another

0—>B—>M —>A—0

in which the element ¢ has been chosen so that its image has general position
in K®@pExty(A, B). This cannot decrease the ranks of any of the connecting
homomorphisms, and will increase at least the one that was not already
maximum. This will produce an extension such that the module M’ will have
Betti numbers less than or equal to those of M, by formula (2) of §2, with
at least one of them strictly smaller. We shall say that M’ is an immediate
generalization of M. A finite sequence of immediate generalizations will
produce a module of the same length as M that we call a generalization of M.
Given any finite length module M, it has a generalization, necessarily of the
same length, which is Ext-general, for a sequence of successive generalizations
is bounded in length by the sum of the Betti numbers of the original module:
the sum decreases by at least one at each stage.

In particular, if there is a counterexample to the BEH conjecture, there
is a counterexample in which the module is Ext-general. A study of Ext-
general modules may be helpful in attacking the conjecture. Of course, these
ideas are closely related to the proof of the main results here.

5 A Combinatorial Case

We desire greatly, of course, to remove the condition from Theorem 1.2 that
the J,, C I,. Currently we can do this only by adding conditions on a and b.
We record the following elementary result.

Theorem 5.1. Suppose that I,...,1,, and Jyi,...,J, C R are ideals gener-
ated by R-sequences and that M occurs in a short exact sequence

b

0— EPR/L) - M~ PR/, — 0.

v=1 n=1
b(:jr;f) +1 orb > a(?ff) + 1.
In particular, if a > b("52) + 1 or b > a(™52) + 1 then oM > (%) for all
i=0,1,...n

Then o} > (%) provided that either a >
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Proof. By taking Matlis duals (equivalently, applying Ext’(_, R)) we may
interchange the roles of ¢ and b. Therefore, we may assume without loss of
generality that b > a. Since the BEH conjecture is known if : =0, 1,n — 1,
or n, we assume throughout the rest of the argument that 2 <: <n — 2.

Since the Betti numbers of the first and third modules in the short exact
sequence of the theorem are a(?) and b(?), respectively, we have from (2) at
the beginning of §2 that

o = a(77> b(?) — rank(6M,) — rank(6M).

A

We use the naive estimates that rank(6}') < a(,,) and rank(5};) < a(?}) for

2 < i < n—2to obtain that oM > a(”)%—b(?)—a(iil)—a(’?) =b(7)—a(,},) =

. i i/ i+1
(%) (b — a(%)), which is > (%) provided that b > a(757) + 1, as claimed.
The final statement now follows because i1 decreases as ¢ increases, and we
need only consider the range 2 <i <n — 2. O
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