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Preface

The main purpose of the present treatise is to give an account of some of the
topics in algebraic geometry, which, while having occupied the minds of many
mathematicians in previous generations, have fallen out of fashion in modern
times. Often in the history of mathematics, new ideas and techniques make the
work of previous generations of researchers obsolete. This mainly refers to the
foundations of the subject and the fundamental general theoretical facts used
heavily in research. Even the greatest achievements of the past generations,
which can be found, for example, in the work of F. Severi on algebraic cycles
or in the work of O. Zariski in the theory of algebraic surfaces, have been
greatly generalized and clarified so that they now remain only of historical
interest. In contrast, the fact that a nonsingular cubic surface has 27 lines or a
plane quartic has 28 bitangents cannot be improved and continues to fascinate
modern geometers. One of the goals of this present work is then to save from
oblivion the work of many mathematicians who discovered these classic tenets
and many other beautiful results.
In writing this book the greatest challenge the author has faced was distilling

the material down to what should be covered. The number of concrete facts,
examples of special varieties, and beautiful geometric constructions that have
accumulated during the classical period of the development of algebraic geom-
etry is enormous, and what the reader is going to find in the book is only the tip
of the iceberg; a work that is like a taste sampler of classical algebraic geometry.
It avoids most of the material found in other modern books on subject, such
as, for example, [10], where one can find many classical results on algebraic
curves. Instead, it tries to assemble or, in other words, to create a compendium
of material that either cannot be found, is too dispersed to be found easily, or
is not treated adequately by contemporary research papers. On the other hand,
while most of the material treated in the book exists in classical treatises in
algebraic geometry, their somewhat archaic terminology, and what is by now
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iv Preface

completely forgotten background knowledge makes these books useful to but a
handful of experts in classical literature. Lastly, onemust admit that the author’s
personal taste also has much sway in the choice of material.
The reader should be warned that the book is by no means an introduction

to algebraic geometry. Although some of the exposition can be followed with
only a minimum background in algebraic geometry, for example, based on
Shafarevich’s book

Shafarevich
[708] it often relies on current cohomological techniques,

such as those found in Hartshorne’s book
Hartshorne
[379]. The idea was to reconstruct a

result by usingmodern techniques but not necessarily its original proof. For one,
the ingenious geometric constructions in those proofs were often beyond the
author’s abilities to follow them completely. Understandably, the price of this
was often to replace a beautiful geometric argument with a dull cohomological
one. For those looking for a less demanding sample of some of the topics
covered in the book, the recent beautiful book

Beltrametti
[54] may be of great use.

No attempt has been made to give a complete bibliography. To give an idea
of such an enormous task, one could mention that the report on the status of
topics in algebraic geometry submitted to the National Research Council in
Washington in 1928

Topics
[715] contains more than 500 items of bibliography by

130 different authors only on the subject of planar Cremona transformations
(covered in one of the chapters of the present book.) Another example is the
bibliography on cubic surfaces compiled by J. E. Hill

Hill
[394] in 1896 which alone

contains 205 titles. Meyer’s article
Meyer
[515] cites around 130 papers published

between 1896 and 1928. The title search in MathSciNet reveals more than 200
papers refereed since 1940, many of them published only in the past 20 years.
How sad it is when one considers the impossibility of saving from oblivion so
many names of researchers of the past who have contributed so much to our
subject.
A word about exercises: some of them are easy and follow from the defi-

nitions, and some are hard; they are included to provide additional facts not
covered in the main text. In this case, we sometimes indicate the sources for the
statements and solutions.
I am very grateful to many people for their comments and corrections to

many previous versions of the manuscript. I am especially thankful to Sergey
Tikhomirov, whose help in the mathematical editing of the book was essential
for getting rid of many mistakes in the previous versions. The author bears sole
responsibility for all the errors still found in the book.
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1
Polarity

1.1 Polar hypersurfaces
S:1.1

1.1.1 The polar pairing
SS:1.1.1

We will take C as the ground field, although many constructions in this book
works over an arbitrary algebraically closed field.
We will usually denote by � a vector space of dimension = + 1 and denote

by |� | the projective space of lines in � . Its dual vector space will be denoted
by �∨. In Grothendieck’s notation, the projective space P(�) is equal to |�∨ |.
A basis (b0, . . . , b=) in � defines an isomorphism � � C=+1 and identifies |� |

with the projective space P= := |C=+1 |. For any nonzero vector { ∈ � , we denote
by [{] the corresponding point in |� |. If � = C=+1 and { = (00, . . . , 0=) ∈ C=+1
we set [{] = [00, . . . , 0=]. We call [00, . . . , 0=] the projective coordinates of
a point [0] ∈ P=. Another common notation for the projective coordinates of
[0] is (00 : 01 : . . . : 0=), or simply (00, . . . , 0=), if no confusion arises.
We denote by S(�) the symmetric algebra of � , the quotient of the tensor

algebra ) (�) = ⊕3≥0�
⊗3 by the two-sided ideal generated by tensors of the

form { ⊗ | − | ⊗ {. The symmetric algebra is a graded commutative algebra

S(�) =
∞⊕
3=0

(3 (�),

where (3 (�) is the image of � ⊗3 in the quotient algebra. The vector space
(3 (�) is called the 3th symmetric power of � . Its dimension is equal to

(3+=
3

)
.

The image of a tensor {1 ⊗ · · · ⊗ {3 in (3 (�) is denoted by {1 · · · {3 .
The projective space |� | comes with the tautological invertible sheafO |� | (1)

whose space of global sections is identified with �∨. Its 3-th tensor power is
denoted by O |� | (3). Its space of global sections is identified with (3 (�∨).
For any 5 ∈ (3 (�∨), 3 > 0, we denote by + ( 5 ) the corresponding effective
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2 Polarity

divisor from |O |� | (3) |, considered as a closed subscheme of |� |, not necessarily
reduced. We call + ( 5 ) a hypersurface of degree 3 in |� | defined by equation
5 = 0∗ A hypersurface of degree 1 is a hyperplane. By definition, + (0) = |� |
and + (1) = ∅. The projective space |(3 (�∨) | can be viewed as the projective
space of hypersurfaces in |� |. It is equal to the complete linear system |O |� | (3) |.
Using isomorphism (

e2e2
1.2), we may identify the projective space |(3 (�) | of

hypersurfaces of degree 3 in |�∨ | with the dual of the projective space |(3�∨ |.
A hypersurface of degree 3 in |�∨ | is classically known as an envelope of class
3.
The symmetric group S3 has a natural linear representation in � ⊗3 via

permuting the factors. The symmetrization operator ⊕f∈S3f is the projector
operator onto the subspace of symmetric tensors

(3 (�) := (� ⊗3)S3

multiplied by 3!. It factors through (3 (�) and defines a natural isomorphism

(3 (�) → (3 (�).

Replacing � by its dual space �∨, we obtain a natural isomorphism

p3 : (3 (�∨) → (3 (�∨). (1.1) e1

Under the identification of (�∨)⊗3 with the space (� ⊗3)∨, we will be able to
identify (3 (�∨) with the space Hom(�3 ,C)S3 of symmetric 3-multi-linear
functions �3 → C. The isomorphism p3 is classically known as the total
polarization map.
Next, we use that the quotient map � ⊗3 → (3 (�) is the universal symmetric

3-multi-linear map; that is, any symmetric linear map � ⊗3 → � with values
in some vector space � factors through a linear map (3 (�) → �. If � = C,
this gives a natural isomorphism

(� ⊗3)∨ = (3 (�∨) → (3 (�)∨.

Composing it with p3 , we get a natural isomorphism

(3 (�∨) → (3 (�)∨. (1.2) e2

It can be viewed as a perfect bilinear pairing, the polarity pairing

〈, 〉 : (3 (�∨) ⊗ (3 (�) → C. (1.3) eeq2

∗This notation should not be confusedwith the notation of the closed subset in Zariski topology
defined by the ideal ( 5 ) . It is equal to + ( 5 )red.



1.1 Polar hypersurfaces 3

This pairing extends the natural pairing between � and �∨ to the symmetric
powers. Explicitly,

〈;1 · · · ;3 , |1 · · ·|3〉 =
∑
f∈S3

;f−1 (1) (|1) · · · ;f−1 (3) (|3).

One can extend the total polarization isomorphism to a partial polarization
map

〈, 〉 : (3 (�∨) ⊗ (: (�) → (3−: (�∨), : ≤ 3, (1.4) eq2

〈;1 · · · ;3 , |1 · · ·|:〉 =
∑

1≤81≤...≤8: ≤=
〈;81 · · · ;8: , |1 · · ·|:〉

∏
9≠81 ,...,8:

; 9 .

In coordinates, if we choose a basis (b0, . . . , b=) in � and its dual basis
C0, . . . , C= in �∨, then we can identify S(�∨) with the polynomial algebra
C[C0, . . . , C=] and (3 (�∨) with the space C[C0, . . . , C=]3 of homogeneous poly-
nomials of degree 3. Similarly, we identify (3 (�) with C[b0, . . . , b=]3 . The
polarization isomorphism extends by linearity of the pairing on monomials

〈C800 · · · C
8=
= , b

90
0 · · · b

9=
= 〉 =

{
80! · · · 8=! if (80, . . . , 8=) = ( 90, . . . , 9=),
0 otherwise.

One can give an explicit formula for pairing (
eq2eq2
1.4) in terms of differential

operators. Since 〈C8 , b 9〉 = X8 9 , it is convenient to view a basis vector b 9 as the
partial derivation operator m 9 = m

mC 9
.The pairing (

eq2eq2
1.4) becomes

〈k(b0, . . . , b=), 5 (C0, . . . , C=)〉 = �k ( 5 ),

where

�k = k(m0, . . . , m=).

For any monomial @i = m800 · · · m
8=
= and any monomial tj = C

90
0 · · · C

9=
= , we have

@i (tj) =
{ j!
(j−i)! t

j−i if j − i ≥ 0,
0 otherwise.

)ℎ4=, (1.5) eq4

Here and later, we use the vector notation:

i! = 80! · · · 8=!,
(
:

i

)
=
:!
i!
, |i| = 80 + · · · + 8=.

The total polarization 5̃ of a polynomial 5 is given explicitly by the following
formula:

5̃ ({1, . . . , {3) = �{1 · · ·{3 ( 5 ) = (�{1 ◦ . . . ◦ �{3 ) ( 5 ).



4 Polarity

Taking {1 = . . . = {3 = {, we get

5̃ ({, . . . , {) = 3! 5 ({) = �{3 ( 5 ) =
∑
|i |=3

(3
i
)
ai@i 5 . (1.6) exx4

symbolic1 Remark 1.1.1. The polarization isomorphism was known in the classical liter-
ature as the symbolic method. Suppose 5 = ;3 is a 3-th power of a linear form.
Then, �{ ( 5 ) = 3; ({);3−1 and

�{1 ◦ . . . ◦ �{: ( 5 ) = 3 (3 − 1) · · · (3 − : + 1); ({1) · · · ; ({: );3−: .

In classical notation, a linear form
∑
08G8 on C=+1 is denoted by 0G and the

dot-product of two vectors 0, 1 is denoted by (01). Symbolically, one denotes
any homogeneous form by 03G and the right-hand side of the previous formula
reads as 3 (3 − 1) · · · (3 − : + 1) (01):03−:G .
Let us take � = (< (*∨) for some vector space * and consider the linear

space (3 ((< (*∨)∨). Using the polarization isomorphism, we can identify
(< (*∨)∨ with (< (*). Let (b0, . . . , bA ) be a basis in * and (C0, . . . , CA+1) be
the dual basis in *∨. Then, we can take for a basis of (< (*) the monomials
/j. The dual basis in (< (*∨) is formed by the monomials 1

i! x
i. Thus, for any

5 ∈ (< (*∨), we can write

<! 5 =
∑
|i |=<

(<
i
)
0ixi. (1.7) symbol2

In symbolic form, <! 5 = (0G)<. Consider the matrix

Ξ =

©«
b
(1)
0 . . . b

(3)
0

...
...

...

b
(1)
A . . . b

(3)
A

ª®®®¬ ,
where (b (:)0 , . . . , b

(:)
A ) is a copy of a basis in*. Then, the space (3 ((< (*)) is

equal to the subspace of the polynomial algebra C[(b (8)
9
)] in 3 (A + 1) variables

b
(8)
9

of polynomials which are homogeneous of degree < in each column of
the matrix and symmetric with respect to permutations of the columns. Let
� ⊂ {1, . . . , 3} with #� = A + 1 and (�) be the corresponding maximal minor
of the matrix Ξ. Assume A + 1 divides 3<. Consider a product of : = 3<

A+1 such
minors in which each column participates exactly< times. Then, a sum of such
products which is invariant with respect to permutations of columns represents
an element from (3 ((< (*)) which has an additional property that it is invariant
with respect to the group SL(*) � SL(A + 1,C) We can interpret elements of
(3 ((< (*∨)∨) as polynomials in coefficients of 0i of a homogeneous form of
degree 3 in A + 1 variables written in the form (

symbol2symbol2
1.7). We write symbolically an



1.1 Polar hypersurfaces 5

invariant in the form (�1) · · · (�: ) meaning that it is obtained as the sum of such
products with some coefficients. If the number 3 is small, we can use letters,
say 0, 1, 2, . . . , instead of numbers 1, . . . , 3. For example, (12)2 (13)2 (23)2 =
(01)2 (12)2 (02)2 represents an element in (3 ((4 (C2)).
In a similar way, one considers the matrix

©«
b
(1)
0 . . . b

(3)
0 C

(1)
0 . . . C

(B)
0

...
...

...
...

...
...

b
(1)
A . . . b

(3)
A C

(1)
A . . . C

(B)
A

ª®®®¬ .
The product of : maximal minors such that each of the first 3 columns occurs
exactly : times and each of the last B columns occurs exactly ? times represents
a covariant of degree ? and order : . For example, (01)20G1G represents the
Hessian determinant

He( 5 ) = det ©«
m2 5

mG2
1

m2 5
mG1mG2

m2 5
mG2mG1

m2 5

mG2
2

ª®¬
of a ternary cubic form 5 .

The natural isomorphism

(�∨)⊗3 � �0 ( |� |3 ,O |� | (1)�3), (3 (�∨) � �0 ( |� |3 ,O |� | (1)�3)S3

allows one to give the following geometric interpretation of the polarization
isomorphism. Consider the diagonal embedding X3 : |� | ↩→ |� |3 . Then, the
total polarization map is the inverse of the isomorphism

X∗3 : �0 ( |� |3 ,O |� | (1)�3)S3 → �0 ( |� |,O |� | (3)).

We view 00m0 + · · · + 0=m= ≠ 0 as a point 0 ∈ |� | with projective coordinates
[00, . . . , 0=].

Definition 1.1.2. Let - = + ( 5 ) be a hypersurface of degree 3 in |� | and
G = [{] be a point in |� |. The hypersurface

%0: (-) := + (�{: ( 5 ))

of degree 3 − : is called the :-th polar hypersurface of the point 0 with respect
to the hypersurface + ( 5 ) (or of the hypersurface with respect to the point).

exaa Example 1.1.3. Let 3 = 2, i.e.,

5 =

=∑
8=0

U88C
2
8 + 2

∑
0≤8< 9≤=

U8 9 C8C 9
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is a quadratic form on C=+1. For any G = [00, . . . , 0=] ∈ P=, %G (+ ( 5 )) = + (6),
where

6 =

=∑
8=0

08
m 5

mC8
= 2

∑
0≤8≤ 9≤=

08U8 9 C 9 , U 98 = U8 9 .

The linear map { ↦→ �{ ( 5 ) is a map from C=+1 to (C=+1)∨ which can be
identified with the polar bilinear form associated to 5 with matrix 2(U8 9 ).

Let us give another definition of the polar hypersurfaces %G: (-). Choose
two different points 0 = [00, . . . , 0=] and 1 = [10, . . . , 1=] in P= and consider
the line ℓ = 01 spanned by the two points as the image of the map

i : P1 → P=, [D0, D1] ↦→ D00 + D11 := [00D0 + 10D1, . . . , 0=D0 + 1=D1]

(a parametric equation of ℓ). The intersection ℓ∩- is isomorphic to the positive
divisor on P1 defined by the degree 3 homogeneous form

i∗ ( 5 ) = 5 (D00 + D11) = 5 (00D0 + 10D1, . . . , 0=D0 + 1=D1).

Using the Taylor formula at (0, 0), we can write

i∗ ( 5 ) =
∑
:+<=3

1
:!<!

D:0D
<
1 �:<(0, 1), (1.8) eq1.6

where

�:< (0, 1) =
m3i∗ ( 5 )
mD:0 mD

<
1
(0, 0).

Using the Chain Rule, we get

�:< (0, 1) =
∑

|i |=:, |j |=<

(:
i
) (<

j
)
aibj@i+j 5 = �0:1< ( 5 ). (1.9) 1.7

Observe the symmetry

�:< (0, 1) = �<: (1, 0). (1.10) sym

Fixing 0 and letting 1 vary in P=, we obtain a hypersurface + (�:< (0, G)) of
degree 3 − : which is the :-th polar hypersurface of - = + ( 5 ) with respect
to the point 0. When we fix 1 and vary 0 in P=, we obtain the <-th polar
hypersurface + (�:< (G, 1)) of - with respect to the point 1.

Note that

�0:1< ( 5 ) = �0: (�1< ( 5 )) = �1< (0) = �1< (�0: ( 5 )) = �0: ( 5 ) (1).
(1.11) sympol

This gives the symmetry property of polars:

1 ∈ %0: (-) ⇔ 0 ∈ %13−: (-). (1.12) symm
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Since we are in characteristic 0, if < ≤ 3, �0< ( 5 ) cannot be zero for all 0. To
see this, we use the Euler formula:

35 =

=∑
8=0

C8
m 5

mC8
.

Applying this formula to the partial derivation, we obtain

3 (3 − 1) · · · (3 − : + 1) 5 =
∑
|i |=:

(:
i
)
ti@i 5 (1.13) euler

(also called the Euler formula). It follows from this formula that, for all : ≤ 3,

0 ∈ %0: (-) ⇔ 0 ∈ -. (1.14) 1.11

ex:1.1.4 Example 1.1.4. Let "3 be the vector space of complex square matrices of size
3 with coordinates C8 9 . We view the determinant function det : "3 → C as
an element of (3 ("∨

3
), i.e.,a polynomial of degree 3 in the variables C8 9 . Let

�8 9 =
m det
mC8 9

. We have �8 9 (�) = m det
mC8 9
(�). For any point � = (08 9 ) in "3 the

value of �8 9 at � is equal to the 8 9-th cofactor of �. Applying (
exx4exx4
1.6), for any

� = (18 9 ) ∈ "3 , we obtain

��3−1� (det) = �3−1
� (�� (det))

= �3−1
� (

∑
18 9�8 9 ) = (3 − 1)!

∑
18 9�8 9 (�).

(1.15)

Thus, �3−1
�
(det) is a linear function ∑

C8 9�8 9 (�) on "3 . The linear map

(3−1 ("3) → "∨3 , � ↦→ 1
(3 − 1)!�

3−1
� (det),

can be identified with the function � ↦→ adj(�), where adj(�) is the cofactor
matrix (classically called the adjugate matrix of �, but not the adjoint matrix,
as it is often called in modern textbooks).

1.1.2 First polars
SS:1.1.2

Let us consider some special cases. Let - = + ( 5 ) be a hypersurface of degree
3. Obviously, any 0-th polar of - is equal to - and, by (

symmsymm
1.12), the 3-th polar

%03 (-) is empty if 0 ∉ - , and equals P= if 0 ∈ - . Now, take : = 1, 3 − 1.
Using (

exx4exx4
1.6), we obtain

�0 ( 5 ) =
=∑
8=0

08
m 5

mC8
,

1
(3 − 1)!�03−1 ( 5 ) =

=∑
8=0

m 5

mC8
(0)C8 .
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Together with (
symmsymm
1.12), this implies the following:

T11 Theorem 1.1.5. For any smooth point G ∈ - , we have

%G3−1 (-) = TG (-).

If G is a singular point of - , %G3−1 (-) = P=. Moreover, for any 0 ∈ P=,

- ∩ %0 (-) = {G ∈ - : 0 ∈ TG (-)}.

Here and later on, we denote by TG (-) the embedded tangent space of a
projective subvariety - ⊂ P= at its point G. It is a linear subspace of P= equal to
the projective closure of the affine Zariski tangent space )G (-) of - at G (see
Harris
[375], p. 181).
In classical terminology, the intersection - ∩ %0 (-) is called the apparent

boundary of - from the point 0. If one projects - to P=−1 from the point 0,
Then, the apparent boundary is the ramification divisor of the projection map.
The following picture illistrates the polar line of a conic.

0

%0 (-)

-

Figure 1.1 Polar line of a conic pqrr

The set of first polars %0 (-) defines a linear system contained in the complete
linear system

��OP= (3 − 1)
��. The dimension of this linear system ≤ =.

dimension Proposition 1.1.6. The dimension of the linear system of first polars ≤ A if
and only if, after a linear change of variables, the polynomial 5 becomes a
polynomial in A + 1 variables.

Proof Let - = + ( 5 ). It is obvious that the dimension of the linear system of
first polars ≤ A if and only if the linear map � → (3−1 (�∨), { ↦→ �{ ( 5 ) has
kernel of dimension ≥ = − A . Choosing an appropriate basis, we may assume
that the kernel is generated by vectors (1, 0, . . . , 0), 4C2. Now, it is obvious that
5 does not depend on the variables C0, . . . , C=−A−1. �

It follows from Theorem
T11T11
1.1.5 that the first polar %0 (-) of a point 0 with

respect to a hypersurface - passes through all singular points of - . One can
say more.
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P1.1.3 Proposition 1.1.7. Let 0 be a singular point of - of multiplicity <. For each
A ≤ deg - − <, %0A (-) has a singular point at 0 of multiplicity < and the
tangent cone of %0A (-) at 0 coincides with the tangent cone TC0 (-) of - at
0. For any point 1 ≠ 0, the A-th polar %1A (-) has multiplicity ≥ <− A at 0 and
its tangent cone at 0 is equal to the A-th polar of TC0 (-) with respect to 1.

Proof Let us prove the first assertion. Without loss of generality, we may
assume that 0 = [1, 0, . . . , 0]. Then, - = + ( 5 ), where

5 = C3−<0 5< (C1, . . . , C=) + C3−<−1
0 5<+1 (C1, . . . , C=) + · · ·+ 53 (C1, . . . , C=). (1.16) newref

The equation 5< (C1, . . . , C=) = 0 defines the tangent cone of - at 1. The equation
of %0A (-) is

mA 5

mCA0
= A!

3−<−A∑
8=0

(3−<−8
A

)
C3−<−A−80 5<+8 (C1, . . . , C=) = 0.

It is clear that [1, 0, . . . , 0] is a singular point of %0A (-) of multiplicity < with
the tangent cone + ( 5< (C1, . . . , C=)).
Now, we prove the second assertion. Without loss of generality, we may

assume that 0 = [1, 0, . . . , 0] and 1 = [0, 1, 0, . . . , 0]. Then, the equation of
%1A (-) is

mA 5

mCA1
= C3−<0

mA 5<

mCA1
+ · · · + m

A 53

mCA1
= 0.

The point 0 is a singular point of multiplicity ≥ < − A. The tangent cone of
%1A (-) at the point 0 is equal to+ ( m

A 5<
mCA1
) and this coincides with the A-th polar

of TC0 (-) = + ( 5<) with respect to 1. �

We leave it to the reader to see what happens if A > 3 − <.
Keeping the notation from the previous proposition, consider a line ℓ through

the point 0 such that it intersects - at some point G ≠ 0 with multiplicity greater
than one. The closureEC0 (-) of the union of such lines is called the enveloping
cone of - at the point 0. If - is not a cone with vertex at 0, the branch divisor
of the projection ? : - \ {0} → P=−1 from 0 is equal to the projection of the
enveloping cone. Let us find the equation of the enveloping cone.
As above, we assume that 0 = [1, 0, . . . , 0]. Let � be the hyperplane C0 = 0.

Write ℓ in a parametric form D0 + {G for some G ∈ �. Plugging in the equation
(
newrefnewref
1.16), we get

%(C) = C3−< 5< (G1, . . . , G=) + C3−<−1 5<+1 (G1, . . . , G<) + · · · + 53 (G1, . . . , G=) = 0,

where C = D/{.
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We assume that - ≠ TC0 (-), i.e., - is not a conewith vertex at 0 (otherwise,
by definition, EC0 (-) = TC0 (-)). The image of the tangent cone under the
projection ? : - \ {0} → � � P=−1 is a proper closed subset of �. If
5< (G1, . . . , G=) ≠ 0, then a multiple root of %(C) defines a line in the enveloping
cone. Let D: (�0, . . . , �: ) be the discriminant of a general polynomial % =

�0)
: + · · · + �: of degree : . Recall that

�0D: (�0, . . . , �: ) = (−1): (:−1)/2Res(%, %′) (�0, . . . , �: ),

where Res(%, %′) is the resultant of % and its derivative %′. It follows from the
known determinant expression of the resultant that

D: (0, �1, . . . , �: ) = (−1) :
2−:+2

2 �2
0D:−1 (�1, . . . , �: ).

The equation %(C) = 0 has a multiple zero with C ≠ 0 if and only if

D3−< ( 5< (G), . . . , 53 (G)) = 0.

So, we see that

EC0 (-) ⊂ + (D3−< ( 5< (G), . . . , 53 (G))), (1.17)
EC0 (-) ∩ TC0 (-) ⊂ + (D3−<−1 ( 5<+1 (G), . . . , 53 (G))).

It follows from the computation of m
A 5

mCA0
in the proof of the previous proposition

that the hypersurface + (D3−< ( 5< (G), . . . , 53 (G))) is equal to the projection of
%0 (-) ∩ - to �.
Suppose + (D3−<−1 ( 5<+1 (G), . . . , 53 (G))) and TC0 (-) do not share an irre-

ducible component. Then

+ (D3−< ( 5< (G), . . . , 53 (G))) \ TC0 (-) ∩+ (D3−< ( 5< (G), . . . , 53 (G)))

= + (D3−< ( 5< (G), . . . , 53 (G))) \+ (D3−<−1 ( 5<+1 (G), . . . , 53 (G))) ⊂ EC0 (-),

gives the opposite inclusion of (
1616
1.17), and we get

EC0 (-) = + (D3−< ( 5< (G), . . . , 53 (G))). (1.18) eqec

Note that the discriminant D3−< (�0, . . . , �: ) is an invariant of the group
SL(2) in its natural representation on degree : binary forms. Taking the diag-
onal subtorus, we immediately infer that any monomial �800 · · · �

8:
:
entering in

the discriminant polynomial satisfies

:

:∑
B=0

8B = 2
:∑
B=0

B8B .
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It is also known that the discriminant is a homogeneous polynomial of degree
2: − 2 . Thus, we get

: (: − 1) =
:∑
B=0

B8B .

In our case, : = 3 − < and we obtain that

deg+ (D3−< ( 5< (G), . . . , 53 (G))) =
3−<∑
B=0
(< + B)8B

= <(23 − 2< − 2) + (3 − <) (3 − < − 1) = (3 + <) (3 − < − 1).

This is the expected degree of the enveloping cone.

Example 1.1.8. Assume < = 3 − 2, then

D2 ( 53−2 (G), 53−1 (G), 53 (G)) = 53−1 (G)2 − 4 53−2 (G) 53 (G),
D2 (0, 53−1 (G), 53 (G)) = 53−2 (G) = 0.

Suppose 53−2 (G) and 53−1 are coprime. Then, our assumption is satisfied, and
we obtain

EC0 (-) = + ( 53−1 (G)2 − 4 53−2 (G) 53 (G)).

Observe that the hypersurfaces + ( 53−2 (G)) and + ( 53 (G)) are everywhere tan-
gent to the enveloping cone. In particular, the quadric tangent cone TC0 (-) is
everywhere tangent to the enveloping cone along the intersection of+ ( 53−2 (G))
with + ( 53−1 (G)).

For any nonsingular quadric &, the map G ↦→ %G (&) defines a projective
isomorphism from the projective space to the dual projective space. This is a
special case of a correlation.
According to the classical terminology, a projective automorphism of P= is

called a collineation. An isomorphism from |� | to its dual space P(�) is called
a correlation. A correlation c : |� | → P(�) is given by an invertible linear map
q : � → �∨ defined uniquely up to proportionality. A correlation transforms
points in |� | to hyperplanes in |� |. A point G ∈ |� | is called conjugate to a
point H ∈ |� | with respect to the correlation c if H ∈ c(G). The transpose of the
inverse map Cq−1 : �∨ → � transforms hyperplanes in |� | to points in |� |. It
can be considered as a correlation between the dual spaces P(�) and |� |. It is
denoted by c∨ and is called the dual correlation. It is clear that (c∨)∨ = c. If �
is a hyperplane in |� | and G is a point in �, then point H ∈ |� | conjugate to G
under c belongs to any hyperplane � ′ in |� | conjugate to � under c∨.
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A correlation can be considered as a line in (� ⊗ �)∨ spanned by a nonde-
generate bilinear form, or, in other words, as a nonsingular correspondence of
type (1, 1) in |� | × |� |. The dual correlation is the image of the divisor under
the switch of the factors. A pair (G, H) ∈ |� | × |� | of conjugate points is just a
point on this divisor.
We can define the composition of correlations c′ ◦ c∨. Collineations and

correlations form a group ΣPGL(�) isomorphic to the group of outer automor-
phisms of PGL(�). The subgroup of collineations is of index 2.
A correlation c of order 2 in the group ΣPGL(�) is called a polarity. Its

linear representative q, satisfies Cq = _q for some nonzero scalar _. After
transposing, we obtain _ = ±1. The case _ = 1 corresponds to the (quadric)
polarity with respect to a nonsingular quadric in |� | which we discussed in
this section. The case _ = −1 corresponds to a null-system (or null polarity)
which we will discuss in Sections

S:2.1S:2.1
2.1 and

CAG-2:S:10.2CAG-2:S:10.2
10.2. In terms of bilinear forms, a

correlation is a quadric polarity (resp. null polarity) if it can be represented by
a symmetric (skew-symmetric) bilinear form.

T1.1.4 Theorem 1.1.9. Any projective automorphism is equal to the product of two
quadric polarities.

Proof Choose a basis in � to represent the automorphism by a Jordan matrix
�. Let �: (_) be its block of size : with _ at the diagonal. Let

�: =

©«

0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

ª®®®®®®®¬
.

Then,

�: (_) = �:�: (_) =

©«

0 0 . . . 0 _

0 0 . . . _ 1
...

...
...

...
...

0 _ . . . 0 0
_ 1 . . . 0 0

ª®®®®®®®¬
.

Observe that the matrices �−1
:

and �: (_) are symmetric. Thus, each Jordan
block of � can be written as the product of symmetric matrices. Hence, � is the
product of two symmetricmatrices. It follows from the definition of composition
in the group ΣPGL(�) that the product of the matrices representing the bilinear
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forms associated to correlations coincides with the matrix representing the
projective transformation equal to the composition of the correlations. �

1.1.3 Polar quadrics
SS:1.1.3

A (3 − 2)-polar of - = + ( 5 ) is a quadric, called the polar quadric of - with
respect to 0 = [00, . . . , 0=]. It is defined by the quadratic form

@ = �03−2 ( 5 ) =
∑
|i |=3−2

(3−2
i

)
ai@i 5 .

Using (
1.71.7
1.9), we obtain

@ =
∑
|i |=2

(
2
i

)
ti@i 5 (0).

By (
1.111.11
1.14), each 0 ∈ - belongs to the polar quadric %03−2 (-). Also, by

Theorem
T11T11
1.1.5,

T0 (%03−2 (-)) = %0 (%03−2 (-)) = %03−1 (-) = T0 (-). (1.19) tang2

This shows that the polar quadric is tangent to the hypersurface at the point 0.
Consider the line ℓ = 01 through two points 0, 1. Let i : P1 → P= be its

parametric equation, i.e., a closed embedding with the image equal to ℓ. It
follows from (

eq1.6eq1.6
1.8) and (

1.71.7
1.9) that

8(-, 01)0 ≥ B + 1⇐⇒ 1 ∈ %03−: (-), : ≤ B. (1.20) multt

For B = 0, the condition means that 0 ∈ - . For B = 1, by Theorem
T11T11
1.1.5, this

condition implies that 1, and hence ℓ, belongs to the tangent plane T0 (-). For
B = 2, this condition implies that 1 ∈ %03−2 (-). Since ℓ is tangent to - at 0, and
%03−2 (-) is tangent to - at 0, this is equivalent to that ℓ belongs to %03−2 (-).
It follows from (

multtmultt
1.20) that 0 is a singular point of - of multiplicity ≥ B + 1

if and only if %03−: (-) = P= for : ≤ B. In particular, the quadric polar
%03−2 (-) = P= if and only if 0 is a singular point of - of multiplicity ≥ 3.

Definition 1.1.10. A line is called an inflection tangent to - at a point 0 if

8(-, ℓ)0 > 2.

flextangent Proposition 1.1.11. Let ℓ be a line through a point 0. Then, ℓ is an inflection
tangent to - at 0 if and only if it is contained in the intersection of T0 (-) with
the polar quadric %03−2 (-).

Note that the intersection of an irreducible quadric hypersurface & = + (@)
with its tangent hyperplane � at a point 0 ∈ & is a cone in � over the quadric
&̄ in the image �̄ of � in |�/[0] |.
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flexcone Corollary 1.1.12. Assume = ≥ 3. For any 0 ∈ - , there exists an inflection
tangent line. The union of the inflection tangents containing the point 0 is the
cone T0 (-) ∩ %03−2 (-) in T0 (-).

Example 1.1.13. Assume 0 is a singular point of - . By Theorem
T11T11
1.1.5, this

is equivalent to that %03−1 (-) = P=. By (
tang2tang2
1.19), the polar quadric & is also

singular at 0 and therefore it must be a cone over its image under the projection
from 0. The union of inflection tangents is equal to &.

exa4 Example 1.1.14. Assume 0 is a nonsingular point of an irreducible surface -
in P3. A tangent hyperplane T0 (-) cuts out in - a curve � with a singular
point 0. If 0 is an ordinary double point of �, there are two inflection tangents
corresponding to the two branches of� at 0. The polar quadric& is nonsingular
at 0. The tangent cone of � at the point 0 is a cone over a quadric &̄ in P1.
If &̄ consists of two points, there are two inflection tangents corresponding to
the two branches of � at 0. If &̄ consists of one point (corresponding to non-
reduced hypersurface in P1), then we have one branch. The latter case happens
only if & is singular at some point 1 ≠ 0.

1.1.4 The Hessian hypersurface
SS:1.1.4

Let &(0) be the polar quadric of - = + ( 5 ) with respect to some point 0 ∈ P=.
The symmetric matrix defining the corresponding quadratic form is equal to
the Hessian matrix of second partial derivatives of 5

He( 5 ) =
( m2 5

mC8mC 9

)
8, 9=0,...,=

,

evaluated at the point 0.The quadric &(0) is singular if and only if the deter-
minant of the matrix is equal to zero (the locus of singular points is equal to
the projectivization of the null-space of the matrix). The hypersurface

He(-) = + (det He( 5 ))

describes the set of points 0 ∈ P= such that the polar quadric %03−2 (-) is
singular. It is called the Hessian hypersurface of - . Its degree is equal to
(3 − 2) (= + 1) unless it coincides with P=.

mistake Proposition 1.1.15. The following is equivalent:

(i) He(-) = P=;
(ii) there exists a nonzero polynomial 6(I0, . . . , I=) such that

6(m0 5 , . . . , m= 5 ) ≡ 0.
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Proof This is a special case of a more general result about the Jacobian
determinant (also known as the functional determinant) of = + 1 polynomial
functions 50, . . . , 5= defined by

� ( 50, . . . , 5=) = det
(
( m 58
mC 9
)
)
.

Suppose � ( 50, . . . , 5=) ≡ 0. Then, the map 5 : C=+1 → C=+1 defined by the
functions 50, . . . , 5= is degenerate at each point (i.e., 35G is of rank < = + 1
at each point G). Thus, the closure of the image is a proper closed subset of
C=+1. Hence, there is an irreducible polynomial that vanishes identically on the
image.
Conversely, assume that 6( 50, . . . , 5=) ≡ 0 for some polynomial 6 which we

may assume to be irreducible. Then,

m6

mC8
=

=∑
9=0

m6

mI 9
( 50, . . . , 5=)

m 5 9

mC8
= 0, 8 = 0, . . . , =.

Since 6 is irreducible, its set of zeros is nonsingular on a Zariski open set *.
Thus, the vector( m6

mI0
( 50 (G), . . . , 5= (G)), . . . ,

m6

mI=
( 50 (G), . . . , 5= (G)

)
is a nontrivial solution of the system of linear equations with matrix ( m 58

mC 9
(G)),

where G ∈ *. Therefore, the determinant of this matrix must be equal to zero.
This implies that � ( 50, . . . , 5=) = 0 on*, hence it is identically zero. �

noether Remark 1.1.16. It was claimed by O. Hesse that the vanishing of the Hessian
implies that the partial derivatives are linearly dependent. Unfortunately, his
attempted proof was wrong. The first counterexample was given by P. Gordan
and M. Noether in

Gordan
[346]. Consider the polynomial

5 = C2C
2
0 + C3C

2
1 + C4C0C1.

Note that the partial derivatives
m 5

mC2
= C20 ,

m 5

mC3
= C21 ,

m 5

mC4
= C0C1

are algebraically dependent. This implies that the Hessian is identically equal
to zero. We have

m 5

mC0
= 2C0C2 + C4C1,

m 5

mC1
= 2C1C3 + C4C0.

Suppose that a linear combination of the partials is equal to zero. Then,

20C
2
0 + 21C

2
1 + 22C0C1 + 23 (2C0C2 + C4C1) + 24 (2C1C3 + C4C0) = 0.
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Collecting the terms in which C2, C3, C4 enter, we get

223C0 = 0, 224C1 = 0, 23C1 + 24C0 = 0.

This gives 23 = 24 = 0. Since the polynomials C20 , C
2
1 , C0C1 are linearly indepen-

dent, we also get 20 = 21 = 22 = 0.
The known cases when the assertion of Hesse is true are 3 = 2 (any =) and

= ≤ 3 (any 3) (see
Gordan
[346],

Lossen
[497],

Ciliberto
[138]).

Recall that the set of singular quadrics in P= is the discriminant hypersurface
D2 (=) in P=(=+3)/2 defined by the equation

det

©«
C00 C01 . . . C0=
C01 C11 . . . C1=
...

...
...

...

C0= C1= . . . C==

ª®®®®®¬
= 0.

By differentiating, we easily find that its singular points are defined by the
determinants of = × = minors of the matrix. This shows that the singular locus
of D2 (=) parameterizes quadrics defined by quadratic forms of rank ≤ = − 1
(or corank ≥ 2). We say that a quadric Q is of rank : if the corresponding
quadratic form is of this rank. Note that

dim Sing(&) = corank & − 1.

Assume that He( 5 ) ≠ 0. Consider the rational map ? : |� | → |(2 (�∨) |
defined by 0 ↦→ %03−2 (-). Note that %03−2 ( 5 ) = 0 implies %03−1 ( 5 ) = 0 and
hence

∑=
8=0 18m8 5 (0) = 0 for all 1. This shows that 0 is a singular point of - .

Thus, ? is defined everywhere except maybe at singular points of - . So the
map ? is regular if - is nonsingular, and the pre-image of the discriminant
hypersurface is equal to the Hessian of - . The pre-image of the singular locus
Sing(D2 (=)) is the subset of points 0 ∈ He( 5 ) such that Sing(%03−2 (-)) is of
positive dimension.

Here, is another description of the Hessian hypersurface.

steinerian Proposition 1.1.17. The Hessian hypersurface He(-) is the locus of singular
points of the first polars of - .

Proof Let 0 ∈ He(-) and let 1 ∈ Sing(%03−2 (-)). Then,

�1 (�03−2 ( 5 )) = �03−2 (�1 ( 5 )) = 0.

Since �1 ( 5 ) is of degree 3 − 1, this means that T0 (%1 (-)) = P=, i.e., 0 is a
singular point of %1 (-).
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Conversely, if 0 ∈ Sing(%1 (-)), then �03−2 (�1 ( 5 )) = �1 (�03−2 ( 5 )) = 0.
This means that 1 is a singular point of the polar quadric with respect to 0.
Hence, 0 ∈ He(-). �

Let us find the affine equation of the Hessian hypersurface. Applying the
Euler formula (

eulereuler
1.13), we can write

C0 508 = (3 − 1)m8 5 − C1 518 − · · · − C= 5=8 ,

C0m0 5 = 35 − C1m1 5 − · · · − C=m= 5 ,

where 58 9 denote the second partial derivative. Multiplying the first row of
the Hessian determinant by C0 and adding to it the linear combination of the
remaining rows taken with the coefficients C8 , we get the following equality:

det(He( 5 )) = 3 − 1
C0

det

©«
m0 5 m1 5 . . . m= 5

510 511 . . . 51=
...

...
...

...

5=0 5=1 . . . 5==

ª®®®®®¬
.

Repeating the same procedure,but, this time, with the columns, we finally get

det(He( 5 )) = (3 − 1)2

C20
det

©«
3
3−1 5 m1 5 . . . m= 5

m1 5 511 . . . 51=
...

...
...

...

m= 5 5=1 . . . 5==

ª®®®®®¬
. (1.21) affine

Let q(I1, . . . , I=) be the dehomogenization of 5 with respect to C0, i.e.,

5 (C0, . . . , C3) = C30 q(
C1
C0
, . . . ,

C=

C0
).

We have

m 5

mC8
= C3−1

0 q8 (I1, . . . , I=),
m2 5

mC8mC 9
= C3−2

0 q8 9 (I1, . . . , I=), 8, 9 = 1, . . . , =,

where

q8 =
mq

mI8
, q8 9 =

m2q

mI8mI 9
.

Plugging these expressions in (
affineaffine
1.21), we obtain that, up to a nonzero constant
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factor,

C
−(=+1) (3−2)
0 det(He(q)) = det

©«
3
3−1q(I) q1 (I) . . . q= (I)
q1 (I) q11 (I) . . . q1= (I)
...

...
...

...

q= (I) q=1 (I) . . . q== (I)

ª®®®®®¬
, (1.22) affine2

where I = (I1, . . . , I=), I8 = C8/C0, 8 = 1, . . . , =.
Remark 1.1.18. If 5 (G, H) is a real polynomial in three variables, the value of
(
affine2affine2
1.22) at a point { ∈ R= with [{] ∈ + ( 5 ) multiplied by −1

51 (0)2+ 52 (0)2+ 53 (0)2
is

equal to the Gauss curvature of - (R) at the point 0 (see
Fischer2
[304]).

1.1.5 Parabolic points
SS:1.1.5

Let us see where He(-) intersects - . We assume that He(-) is a hypersurface
of degree (= + 1) (3 − 2) > 0. A glance at the expression (

affine2affine2
1.22) reveals the

following fact.

obv Proposition 1.1.19. Each singular point of - belongs to He(-).

Let us see now when a nonsingular point 0 ∈ - lies in its Hessian hypersur-
face He(-).
By Corollary

flexconeflexcone
1.1.12, the inflection tangents in T0 (-) sweep the intersection

of T0 (-) with the polar quadric %03−2 (-). If 0 ∈ He(-), then the polar quadric
is singular at some point 1.
If = = 2, a singular quadric is the union of two lines, so this means that one

of the lines is an inflection tangent. A point 0 of a plane curve - such that there
exists an inflection tangent at 0 is called an inflection point of - .

If = > 2, the inflection tangent lines at a point 0 ∈ - ∩ He(-) sweep a cone
over a singular quadric in P=−2 (or the whole P=−2 if the point is singular). Such
a point is called a parabolic point of - . The closure of the set of parabolic
points is the parabolic hypersurface in - (it could be the whole -).

flex Theorem 1.1.20. Let - be a hypersurface of degree 3 > 2 in P=. If = = 2, then
He(-) ∩ - consists of inflection points of - . In particular, each nonsingular
curve of degree ≥ 3 has an inflection point, and the number of inflection points
is either infinite or less than or equal to 33 (3 − 2). If = > 2, then the set
- ∩ He(-) consists of parabolic points. The parabolic hypersurface in - is
either the whole - or a subvariety of degree (= + 1)3 (3 − 2) in P=.

Example 1.1.21. Let - be a surface of degree 3 in P3. If 0 is a parabolic
point of - , then T0 (-) ∩ - is a singular curve whose singularity at 0 is of
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multiplicity higher than 3 or it has only one branch. In fact, otherwise - has
at least two distinct inflection tangent lines which cannot sweep a cone over a
singular quadric in P1. The converse is also true. For example, a nonsingular
quadric has no parabolic points, and all nonsingular points of a singular quadric
are parabolic.
A generalization of a quadratic cone is a developable surface. It is a special

kind of a ruled surface which is characterized by the condition that the tangent
plane does not change along a ruling. We will discuss these surfaces later in
Chapter 10. The Hessian surface of a developable surface contains this surface.
The residual surface of degree 23 − 8 is called the pro-Hessian surface. An
example of a developable surface is the quartic surface

(C0C3 − C1C2)2 − 4(C21 − C0C2) (C
2
2 − C1C3) = −6C0C1C2C3 + 4C31C3 + 4C0C32 + C

2
0C

2
3 − 3C21C

2
2 = 0.

It is the surface swept out by the tangent lines of a rational normal curve of
degree 3. It is also the discriminant surface of a binary cubic, i.e., the surface
parameterizing binary cubics 00D

3 + 301D
2{ + 302D{

2 + 03{
3 with a multiple

root. The pro-Hessian of any quartic developable surface is the surface itself
Cayley3
[114].
Assume now that - is a curve. Let us seewhen it has infinitelymany inflection

points. Certainly, this happens when - contains a line component; each of its
points is an inflection point. It must be also an irreducible component ofHe(-).
The set of inflection points is a closed subset of - . So, if - has infinitely many
inflection points, it must have an irreducible component consisting of inflection
points. Each such component is contained in He(-). Conversely, each common
irreducible component of - and He(-) consists of inflection points.

We will prove the converse in a little more general form taking care of not
necessarily reduced curves.

common Proposition 1.1.22. A polynomial 5 (C0, C1, C2) divides its Hessian polynomial
He( 5 ) if and only if each of its multiple factors is a linear polynomial.

Proof Since each point on a non-reduced component of -red ⊂ + ( 5 ) is
a singular point (i.e.,all the first partials vanish), and each point on a line
component is an inflection point, we see that the condition is sufficient for
- ⊂ He( 5 ). Suppose this happens and let ' be a reduced irreducible component
of the curve - which is contained in the Hessian. Take a nonsingular point of
' and consider an affine equation of ' with coordinates (G, H). We may assume
thatO',G is included in Ô',G � C[[C]] such that G = C, H = CA n,where n (0) = 1.
Thus, the equation of ' looks like

5 (G, H) = H − GA + 6(G, H), (1.23) affeq
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where 6(G, H) does not contain terms 2H, 2 ∈ C. It is easy to see that (0, 0) is
an inflection point if and only if A > 2 with the inflection tangent H = 0.
We use the affine equation of the Hessian (

affine2affine2
1.22) and obtain that the image of

ℎ(G, H) = det
©«
3
3−1 5 51 52
51 511 512
52 521 522

ª®®¬
in C[[C]] is equal to

det
©«

0 −ACA−1 + 61 1 + 62
−ACA−1 + 61 −A (A − 1)CA−2 + 611 612

1 + 62 612 622

ª®®¬ .
Since every monomial entering in 6 is divisible by H2, GH or G8 , 8 > A , we see

that m6
mH

is divisible by C and m6

mG
is divisible by CA−1. Also, 611 is divisible by

CA−1. This shows that

ℎ(G, H) = det
©«

0 0CA−1 + · · · 1 + · · ·
0CA−1 + · · · −A (A − 1)CA−2 + · · · 612

1 + · · · 612 622

ª®®¬ ,
where · · · denotes terms of higher degree in C. We compute the determinant
and see that it is equal to A (A − 1)CA−2 + · · · . This means that its image in C[[C]]
is not equal to zero unless the equation of the curve is equal to H = 0, i.e., the
curve is a line. �

In fact, we have proved more. We say that a nonsingular point of - is an
inflection point of order A−2 and denote the order by ordflG- if one can choose
an equation of the curve as in (

affeqaffeq
1.23) with A ≥ 3. It follows from the previous

proof that A − 2 is equal to the multiplicity 8(-,He)G of the intersection of the
curve and its Hessian at the point G. It is clear that ordflG- = 8(ℓ, -)G − 2,
where ℓ is the inflection tangent line of - at G. If - is nonsingular, we have∑

G∈-
8(-,He)G =

∑
G∈-

ordflG- = 33 (3 − 2). (1.24) flexorder

1.1.6 The Steinerian hypersurface
SS:1.1.6

Recall that the Hessian hypersurface of a hypersurface - = + ( 5 ) is the locus
of points 0 such that the polar quadric %03−2 (-) is singular. The Steinerian
hypersurface St(-) of - is the locus of singular points of the polar quadrics.
Thus,

St(-) =
⋃

0∈He(- )
Sing(%03−2 (-)). (1.25) steinerian2
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The proof of Proposition
steineriansteinerian
1.1.17 shows that it can be equivalently defined as

St(-) = {0 ∈ P= : %0 (-) is singular}. (1.26) stein

We also have

He(-) =
⋃

0∈St(- )
Sing(%0 (-)). (1.27) hessiann

A point 1 = [10, . . . , 1=] ∈ St(-) satisfies the equation

He( 5 ) (0) ·
©«
10
...

1=

ª®®¬ = 0, (1.28) 1.24

where 0 ∈ He(-). This equation defines a subvariety

HS(-) ⊂ P= × P= (1.29) hs

given by = + 1 equations of bidegree (3 − 2, 1).When the Steinerian map (see
below) is defined, it is just its graph. The projection to the second factor is a
closed subscheme of P= with support at St(-). This gives a scheme-theoretical
definition of the Steinerian hypersurface which we will accept from now on. It
also makes clear why St(-) is a hypersurface, not obvious from the definition.
The expected dimension of the image of the second projection is = − 1.
The following argument confirms our expectation. It is known (see, for

example,
GKZ
[325]) that the locus of singular hypersurfaces of degree 3 in |� | is a

hypersurface

D3 (=) ⊂ |(3 (�∨) |

of degree (= + 1) (3 − 1)= defined by the discriminant of a general degree 3
homogeneous polynomial in = + 1 variables (the discriminant hypersurface ).
Let ! be the projective subspace of |(3−1 (�∨) | that consists of first polars of
- . Assume that no polar %0 (-) is equal to P=. Then,

St(-) � ! ∩ D= (3 − 1).

So, unless ! is contained in D= (3 − 1), we get a hypersurface. Moreover, we
obtain

deg(St(-)) = (= + 1) (3 − 2)=. (1.30) degreest

Assume that the quadric %03−2 (-) is of corank 1. Then, it has a unique
singular point 1 with the coordinates [10, . . . , 1=] proportional to any column
or a row of the adjugate matrix adj(He( 5 )) evaluated at the point 0. Thus,
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St(-) coincides with the image of the Hessian hypersurface under the rational
map

st : He(-) d St(-), 0 ↦→ Sing(%03−2 (-)),

given by polynomials of degree =(3 − 2). We call it the Steinerian map. Of
course, it is not defined when all polar quadrics are of corank > 1. Also, if the
first polar hypersurface %0 (-) has an isolated singular point for a general point
0, we get a rational map

st−1 : St(-) d He(-), 0 ↦→ Sing(%0 (-)).

These maps are obviously inverse to each other. It is a difficult question to
determine the sets of indeterminacy points for both maps.

degst Proposition 1.1.23. Let - be a reduced hypersurface. The Steinerian hyper-
surface of - coincides with P= if - has a singular point of multiplicity ≥ 3.
The converse is true if we additionally assume that - has only isolated singular
points.

Proof Assume that - has a point of multiplicity ≥ 3. We may harmlessly
assume that the point is ? = [1, 0, . . . , 0]. Write the equation of - in the form

5 = C:0 63−: (C1, . . . , C=) + C
:−1
0 63−:+1 (C1, . . . , C=) + · · · + 63 (C1, . . . , C=) = 0,

(1.31) po

where the subscript indicates the degree of the polynomial. Since the multi-
plicity of ? is greater than or equal to 3, we must have 3 − : ≥ 3. Then, a first
polar %0 (-) has the equation

00

:∑
8=0
(: − 8)C:−1−8

0 63−:+8 +
=∑
B=1

0B

:∑
8=0

C:−80
m63−:+8
mCB

= 0. (1.32) po2

It is clear that the point ? is a singular point of %0 (-) of multiplicity ≥
3 − : − 1 ≥ 2.
Conversely, assume that all polars are singular. By Bertini’s Theorem (see

Harris
[375], Theorem 17.16), the singular locus of a general polar is contained in the
base locus of the linear system of polars. The latter is equal to the singular locus
of - . By assumption, it consists of isolated points, hence we can find a singular
point of - at which a general polar has a singular point. We may assume that
the singular point is ? = [1, 0, . . . , 0] and (

popo
1.31) is the equation of - . Then, the

first polar %0 (-) is given by (
po2po2
1.32). The largest power of C0 in this expression

is at most : . The degree of the equation is 3 − 1. Thus, the point ? is a singular
point of %0 (-) if and only if : ≤ 3 − 3, or, equivalently, if ? is at least triple
point of - . �
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Example 1.1.24. The assumption on the singular locus is essential. First, it is
easy to check that - = + ( 5 2), where + ( 5 ) is a nonsingular hypersurface has
no points of multiplicity ≥ 3 and its Steinerian coincides with P=. An example
of a reduced hypersurface - with the same property is a surface of degree 6 in
P3 given by the equation

(
3∑
8=0

C38 )2 + (
3∑
8=0

C28 )3 = 0.

Its singular locus is the curve + (∑3
8=0 C

3
8
) ∩ + (∑3

8=0 C
2
8
). Each of its points is a

double point on - . Easy calculation shows that

%0 (-) = +
(
(

3∑
8=0

C38 )
3∑
8=0

08C
2
8 + (

3∑
8=0

C28 )2
3∑
8=0

08C8
)
.

and

+ (
3∑
8=0

C38 ) ∩+ (
3∑
8=0

C28 ) ∩+ (
3∑
8=0

08C
2
8 ) ⊂ Sing(%0 (-)).

By Proposition
P1.1.3P1.1.3
1.1.7, Sing(-) is contained in St(-). Since the same is true

for He(-), we obtain the following.

Proposition 1.1.25. The intersection He(-) ∩ St(-) contains the singular
locus of - .

One can assign one more variety to a hypersurface - = + ( 5 ). This is the
Cayleyan variety. It is defined as the image Cay(-) of the rational map

HS(-) d �1 (P=), (0, 1) ↦→ 01,

where �A (P=) denotes the Grassmannian of A-dimensional subspaces in P=.
Note that in the case = = 2, the Cayleyan variety is a plane curve in the dual

plane, the Cayleyan curve of - .

caydeg Proposition 1.1.26. Let - be a general hypersurface of degree 3 ≥ 3. Then,

deg Cay(-) =
{∑=

8=1 (3 − 2)8
(=+1
8

) (=−1
8−1

)
if 3 > 3,

1
2
∑=
8=1

(=+1
8

) (=−1
8−1

)
if 3 = 3,

where the degree is considered with respect to the Plücker embedding of the
Grassmannian �1 (P=).

Proof Since St(-) ≠ P=, the correspondence HS(-) is a complete in-
tersection of = + 1 hypersurfaces in P= × P= of bidegree (3 − 2, 1). Since
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0 ∈ Sing(%0 (-)) implies that 0 ∈ Sing(-), the intersection of HS(-) with
the diagonal is empty. Consider the regular map

A : HS(-) → �1 (P=), (0, 1) ↦→ 01. (1.33) re

It is given by the linear system of divisors of type (1, 1) on P= × P= restricted
to HS(-). The genericity assumption implies that this map is of degree one
onto the image if 3 > 3 and of degree two if 3 = 3 (in this case the map factors
through the involution of P= × P= that switches the factors).
It is known that the set of lines intersecting a codimension 2 linear subspaceΛ

is a hyperplane section of the Grassmannian �1 (P=) in its Plücker embedding.
Write P= = |� | andΛ = |! |. Letl = {1∧. . .∧{=−1 for some basis ({1, . . . , {=−1)
of !. The locus of pairs of points (0, 1) = ( [|1], [|2]) in P= × P= such that
the line 01 intersects Λ is given by the equation |1 ∧ |2 ∧ l = 0. This is a
hypersurface of bidegree (1, 1) in P= × P=. This shows that the map (

rere
1.33) is

given by a linear system of divisors of type (1, 1). Its degree (or twice of the
degree) is equal to the intersection ((3 − 2)ℎ1 + ℎ2)=+1 (ℎ1 + ℎ2)=−1, where
ℎ1, ℎ2 are the natural generators of �2 (P= × P=,Z). We have

((3 − 2)ℎ1 + ℎ2)=+1 (ℎ1 + ℎ2)=−1 =

(=+1∑
8=0

(=+1
8

)
(3 − 2)8ℎ81ℎ

=+1−8
2

) (=−1∑
9=0

(=−1
9

)
ℎ
=−1− 9
1 ℎ

9

2
)

=

=∑
8=1
(3 − 2)8

(=+1
8

) (=−1
8−1

)
.

�

For example, if = = 2, 3 > 3, we obtain a classical result

deg Cay(-) = 3(3 − 2) + 3(3 − 2)2 = 3(3 − 2) (3 − 1),

and deg Cay(-) = 3 if 3 = 3.
Remark 1.1.27. The homogeneous forms defining the Hessian and Steinerian
hypersurfaces of + ( 5 ) are examples of covariants of 5 . We already discussed
them in the case = = 1. The form defining the Cayleyan of a plane curve is an
example of a contravariant of 5 .

1.1.7 The Jacobian hypersurface
SS:1.1.7

In the previous sections we discussed some natural varieties attached to the
linear system of first polars of a hypersurface. We can extend these construc-
tions to arbitrary =-dimensional linear systems of hypersurfaces in P= = |� |.



1.1 Polar hypersurfaces 25

We assume that the linear system has no fixed components, i.e., its general
member is an irreducible hypersurface of some degree 3. Let ! ⊂ (3 (�∨)
be a linear subspace of dimension = + 1 and |! | be the corresponding linear
system of hypersurfaces of degree 3. Note that, in the case of linear system
of polars of a hypersurface - of degree 3 + 1, the linear subspace ! can be
canonically identified with � and the inclusion |� | ⊂ |(3 (�∨) | corresponds to
the polarization map 0 ↦→ %0 (-).
Let D3 (=) ⊂ |(3 (�∨) | be the discriminant hypersurface.The intersection

D( |! |) = |! | ∩ D3 (=)

is called the discriminant hypersurface of |! |. We assume that it is not equal to
P=, i.e., not all members of |! | are singular. Let

D̃( |! |) = {(G, �) ∈ P= × |! | : G ∈ Sing(�)}

with two projections ? : D̃→ D( |! |) and @ : D̃→ |! |. We define the Jacobian
hypersurface of |! | as

Jac( |! |) = @(D̃( |! |)).

It parameterizes singular points of singular members of |! |. Again, it may
coincide with the whole P=. In the case of polar linear systems, the discrim-
inant hypersurface is equal to the Steinerian hypersurface, and the Jacobian
hypersurface is equal to the Hessian hypersurface.
The Steinerian hypersurface St( |! |) is defined as the locus of points G ∈ P=

such that there exists 0 ∈ P= such that G ∈ ∩�∈ |! |%0=−1 (�). Since dim ! = =+1,
the intersection is empty, unless there exists � such that %0=−1 (�) = 0. Thus,
%0= (�) = 0 and 0 ∈ Sing(�), hence 0 ∈ Jac( |! |) and� ∈ D( |! |). Conversely,
if 0 ∈ Jac( |! |), then ∩�∈ |! |%0=−1 (�) ≠ ∅ and it is contained in St( |! |). By
duality (

symmsymm
1.12),

G ∈
⋂
�∈ |! |

%0=−1 (�) ⇔ 0 ∈
⋂
�∈ |! |

%G (�).

Thus, the Jacobian hypersurface is equal to the locus of points which belong to
the intersection of the first polars of divisors in |! | with respect to some point
G ∈ St(-). Let

HS( |! |) = {(0, 1) ∈ He( |! |) × St( |! |) : 0 ∈
⋂
�∈ |! |

%1 (�)}

= {(0, 1) ∈ He( |! |) × St( |! |) : 1 ∈
⋂
�∈ |! |

%03−1 (�)}.
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It is clear that HS( |! |) ⊂ P= × P= is a complete intersection of = + 1 divisors
of type (3 − 1, 1). In particular,

lHS( |! |) � pr∗1 (OP= ((3 − 2) (= + 1))). (1.34)

One expects that, for a general point G ∈ St( |! |), there exists a unique
0 ∈ Jac( |! |) and a unique� ∈ D( |! |) as above. In this case, the correspondence
HS( |! |) defines a birational isomorphism between the Jacobian and Steinerian
hypersurface. Also, it is clear that He( |! |) = St( |! |) if 3 = 2.
Assume that |! | has no base points. Then, HS( |! |) does not intersect the

diagonal of P= × P=. This defines a map

HS( |! |) → �1 (P=), (0, 1) ↦→ 01.

Its image Cay( |! |) is called the Cayleyan variety of |! |.
A line ℓ ∈ Cay( |! |) is called a Reye line of |! |. It follows from the definitions

that a Reye line is characterized by the property that it contains a point such
that there is a hyperplane in |! | of hypersurfaces tangent to ℓ at this point. For
example, if 3 = 2 this is equivalent to the property that ℓ is contained is a linear
subsystem of |! | of codimension 2 (instead of expected codimension 3).

The proof of Proposition
caydegcaydeg
1.1.26 applies to our more general situation to

give the degree of Cay( |! |) for a general =-dimensional linear system |! | of
hypersurfaces of degree 3.

deg Cay( |! |) =
{∑=

8=1 (3 − 1)8
(=+1
8

) (=−1
8−1

)
if 3 > 2,

1
2
∑=
8=1

(=+1
8

) (=−1
8−1

)
if 3 = 2.

(1.35) caydeg2

Let 5 = ( 50, . . . , 5=) be a basis of !. Choose coordinates in P= to iden-
tify (3 (�∨) with the polynomial ring C[C0, . . . , C=]. A well-known fact from
the complex analysis asserts that Jac( |! |) is given by the determinant of the
Jacobian matrix

� ( 5 ) =

©«
m0 50 m1 50 . . . m= 50
m0 51 m1 51 . . . m= 51
...

...
...

...

m0 5= m1 5= . . . m= 5=

ª®®®®®¬
.

In particular, we expect that

deg Jac( |! |) = (= + 1) (3 − 1).

If 0 ∈ Jac( |! |), then a nonzero vector in the null-space of � ( 5 ) defines a point
G such that %G ( 50) (0) = . . . = %G ( 5=) (0) = 0. Equivalently,

%0=−1 ( 50) (G) = . . . = %0=−1 ( 5=) (G) = 0.
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This shows that St( |! |) is equal to the projectivization of the union of the null-
spaces Null(Jac( 5 (0))), 0 ∈ C=+1. Also, a nonzero vector in the null space of
the transpose matrix C � ( 5 ) defines a hypersurface in D( |! |) with singularity at
the point 0.
Let Jac( |! |)0 be the open subset of points where the corank of the jacobian

matrix is equal to 1. We assume that it is a dense subset of Jac( |! |). Then,
taking the right and the left kernels of the Jacobian matrix, defines two maps

Jac( |! |)0 → D( |! |), Jac( |! |)0 → St( |! |).

Explicitly, the maps are defined by the nonzero rows (resp. columns) of the
adjugate matrix adj(He( 5 )).

Let q |! | : P= d |!∨ | be the rational map defined by the linear system |! |.
Under some assumptions of generality, which we do not want to spell out, one
can identify Jac( |! |) with the ramification divisor of the map and D( |! |) with
the dual hypersurface of the branch divisor.
Let us now define a new variety attached to a =-dimensional linear system in

P=. Consider the inclusion map ! ↩→ (3 (�∨) and let

! ↩→ (3 (�)∨, 5 ↦→ 5̃ ,

be the restriction of the total polarization map (
e2e2
1.2) to !. Now, we can consider

|! | as a =-dimensional linear system |̃! | on |� |3 of divisors of type (1, . . . , 1).
Let

PB( |! |) =
⋂
�∈ |̃! |

� ⊂ |� |3

be the base scheme of |̃! |. We call it the polar base locus of |! |. It is equal to
the complete intersection of = + 1 effective divisors of type (1, . . . , 1). By the
adjunction formula,

lPB( |! |) � OPB( |! |) .

If smooth, PB( |! |) is a Calabi-Yau variety of dimension (3 − 1)= − 1.
For any 5 ∈ !, let # ( 5 ) be the set of points G = ( [{ (1) ], . . . , [{ (3) ]) ∈ |� |3

such that
5̃ ({ (1) , . . . , { ( 9−1) , {, { ( 9+1) , . . . , { (3) ) = 0

for every 9 = 1, . . . , 3 and { ∈ � . Since

5̃ ({ (1) , . . . , { ( 9−1) , {, { ( 9+1) , . . . , { (3) ) = �{ (1) · · ·{ ( 9−1) { ( 9+1) · · ·{ (3) (�{ ( 5 )),

This can be also expressed in the form

m̃ 9 5 ({ (1) , . . . , { ( 9−1) , { ( 9+1) , . . . , { (3) ) = 0, 9 = 0, . . . , =. (1.36) add
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Choose coordinates D0, . . . , D= in ! and coordinates C0, . . . , C= in � . Let 5̃ be
the image of a basis 5 of ! in (�∨)3 . Then, PB( |! |) is a subvariety of (P=)3
given by a system of 3 multi-linear equations

5̃0 (C (1) , . . . , C (3) ) = . . . = 5̃= (C (1) , . . . , C (3) ) = 0,

where C ( 9) = (C ( 9)0 , . . . , C
( 9)
= ), 9 = 1, . . . , 3. For any _ = (_0, . . . , _=), set 5̃_ =∑=

8=0 _8 5̃8 .

gkz Proposition 1.1.28. The following is equivalent:

(i) G ∈ PB( |! |) is a singular point,
(ii) G ∈ # ( 5̃_) for some _ ≠ 0.

Proof The variety PB( |! |) is smooth at a point G if and only if the rank of the
3 (= + 1) × (= + 1)-size matrix

(0:8 9 ) =
( m 5̃:
mC
( 9)
8

(G)
)
8,:=0,...,=, 9=1,...,3

is equal to =+1. Let 5̃D = D0 5̃0+· · ·+D= 5̃=, whereD0, . . . , D= are unknowns. Then,
the nullspace of the matrix is equal to the space of solutions D = (_0, . . . , _=)
of the system of linear equations

m 5̃D

mD0
(G) = . . . = m 5̃D

mD=
(G) = m 5̃D

mC
( 9)
8

(G) = 0. (1.37) sys1

For a fixed _, in terminology of
GKZ
[325], p. 445, the system has a solution G in

|� |3 if 5̃_ =
∑
_8 5̃8 is a degenerate multilinear form. By Proposition 1.1 from

Chapter 14 of loc.cit., 5̃_ is degenerate if and only if # ( 5̃_) is non-empty. This
proves the assertion. �

For any non-empty subset � of {1, . . . , 3}, let Δ� be the subset of points
G ∈ |� |3 with equal projections to 8-th factors with 8 ∈ �. Let Δ: be the union
of Δ� with #� = : . The set Δ3 is denoted by Δ (the small diagonal).
Observe that PB( |! |) = HS( |! |) if 3 = 2 and PB( |! |) ∩ Δ3−1 consists of 3

copies isomorphic to HS( |! |) if 3 > 2.

Definition 1.1.29. A =-dimensional linear system |! | ⊂ |(3 (�∨) | is called
regular if PB( |! |) is smooth at each point of Δ3−1.

Proposition 1.1.30. Assume |! | is regular. Then

(i) |! | has no base points,
(ii) D̃( |! |) is smooth.
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Proof (i) Assume that G = ( [{0], . . . , [{0]) ∈ PB( |! |) ∩Δ. Consider the linear
map ! → � defined by evaluating 5̃ at a point ({0, . . . , {0, {, {0, . . . , {0), where
{ ∈ � . This map factors through a linear map ! → �/[{0], and hence has a
nonzero 5 in its kernel. This implies that G ∈ # ( 5 ), and hence G is a singular
point of PB( |! |).

(ii) In coordinates, the variety D̃( |! |) is a subvariety of type (1, 3 − 1) of
P= × P= given by the equations

=∑
:=0

D:
m 5:

mC0
= . . . =

=∑
:=0

D:
m 5:

mC=
= 0.

The tangent space at a point ( [_], [0]) is given by the system of = + 1 linear
equations in 2= + 2 variables (-0, . . . , -=, .0, . . . , .=)

=∑
:=0

m 5:

mC8
(0)-: +

=∑
9=0

m2 5_
mC8mC 9

(0). 9 = 0, 8 = 0, . . . , =, (1.38) sys3

where 5_ =
∑=
:=0 _: 5: . Suppose ( [_], [0]) is a singular point. Then, the

equations are linearly dependent. Thus, there exists a nonzero vector { =
(U0, . . . , U=) such that

=∑
8=0

U8
m 5:

mC8
(0) = �{ ( 5: ) (0) = 5̃: (0, . . . , 0, {) = 0, : = 0, . . . , =

and
=∑
8

U8
m2 5_
mC8mC 9

(0) = �{ (
m 5_

mC 9
) (0) = �03−2{ (

m 5_

mC 9
) = 0, 9 = 0, . . . , =,

where 5_ =
∑
_: 5: . The first equation implies that G = ( [0], . . . , [0], [{]) be-

longs to PB( |! |). Since 0 ∈ Sing( 5_), we have �03−1 ( m 5_
mC 9
) = 0, 9 = 0, . . . , =.

By (
addadd
1.36), this and the second equation now imply that G ∈ # ( 5_). By Propo-

sition
gkzgkz
1.1.28, PB( |! |) is singular at G, contradicting the assumption.

�

Corollary 1.1.31. Suppose |! | is regular. Then, the projection

@ : D̃( |! |) → D( |! |)

is a resolution of singularities.

Consider the projection ? : D̃( |! |) → Jac( |! |), (�, G) ↦→ G. Its fibres are
linear spaces of divisors in |! | singular at the point [0]. Conversely, suppose
D( |! |) contains a linear subspace, in particular, a line. Then, by Bertini’s
Theorem all singular divisors parameterized by the line have a common singular
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point. This implies that the morphism ? has positive dimensional fibres. This
simple observation gives the following.

Proposition 1.1.32. Suppose D( |! |) does not contain lines. Then, D̃( |! |) is
smooth if and only if Jac( |! |) is smooth. Moreover, HS( |! |) � St( |! |) �
Jac( |! |).

appl Remark 1.1.33. We will prove later in Example
ex:discrimex:discrim
1.2.3 that the tangent space of

the discriminant hypersurface D3 (=) at a point corresponding to a hypersurface
- = + ( 5 ) with only one ordinary double point G is naturally isomorphic to
the linear space of homogeneous forms of degree 3 vanishing at the point G
modulo C 5 . This implies that D( |! |) is nonsingular at a point corresponding
to a hypersurface with one ordinary double point unless this double point is a
base point of |! |. If |! | has no base points, the singular points of D( |! |) are
of two sorts: either they correspond to divisors with worse singularities than
one ordinary double point, or the linear space |! | is tangent to D3 (=) at its
nonsingular point.
Consider the natural action of the symmetric group S3 on (P=)3 . It leaves

PB( |! |) invarian. The quotient variety

Rey( |! |) = PB( |! |)/S3

is called the Reye variety of |! |. If 3 > 2 and = > 1, the Reye variety is singular.
Example 1.1.34. Assume 3 = 2. Then, PB( |! |) = HS( |! |) and Jac( |! |) =
St( |! |). Moreover, Rey( |! |) � Cay( |! |). We have

deg Jac( |! |) = deg D( |! |) = = + 1, deg Cay( |! |) =
=∑
8=1

(=+1
8

) (=−1
8−1

)
.

The linear system is regular if and only if PB( |! |) is smooth. This coincides
with the notion of regularity of a web of quadrics in P3 discussed in

CossecReye
[172].

A Reye line ℓ is contained in a codimension 2 subspace Λ(ℓ) of |! |, and
is characterized by this condition. The linear subsystem Λ(ℓ) of dimension
= − 2 contains ℓ in its base locus. The residual component is a curve of degree
2=−1 − 1 which intersects ℓ at two points. The points are the two ramification
points of the pencil & ∩ ℓ, & ∈ |! |. The two singular points of the base locus
of Λ(ℓ) define two singular points of the intersection Λ(ℓ) ∩ D( |! |). Thus,
Λ(ℓ) is a codimension 2 subspace of |! | which is tangent to the determinantal
hypersurface at two points.
If |! | is regular and = = 3, PB( |! |) is a K3 surface, and its quotient Rey( |! |)

is an Enriques surface. The Cayley variety is a congruence (i.e., a surface) of
lines in �1 (P3) of order 7 and class 3 (this means that there are 7 Reye lines
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through a general point in P3 and there 3 Reye lines in a general plane). The
Reye lines are bitangents of the quartic surface D( |! |). The quartic surface
has 10 nodes and is called Cayley quartic symmetroid. We refer for the details
to

CossecReye
[172],

DKEII
[259, Chapter 9]. The Reye congruence of lines is also discussed in

GH
[360].

1.2 The Dual Hypersurface
S:1.2

1.2.1 The polar map
SS:1.2.1

Let - = + ( 5 ) for some 5 ∈ (3 (�∨). We assume that it is not a cone. The
polarization map

� → (3−1 (�∨), { ↦→ �{ ( 5 ),

allows us to identify |� | with an =-dimensional linear system of hypersurfaces
of degree 3 − 1. This linear system defines a rational map

p- : |� | d P(�).

It follows from (
symmsymm
1.12) that the map is given by assigning to a point 0 the linear

polar %03−1 (-). We call the map p the polar map defined by the hypersurface
- . In coordinates, the polar map is given by

[G0, . . . , G=] ↦→
[ m 5
mC0

, . . . ,
m 5

mC=

]
.

Recall that a hyperplane �0 = + (
∑
08b8) in the dual projective space (P=)∨ is

the point 0 = [00, . . . , 0=] ∈ P=. The pre-image of the hyperplane �0 under
p- is the polar %0 (-) = + (

∑
08
m 5

mC8
).

If - is nonsingular, the polar map is a regular map given by polynomials of
degree 3 − 1. Since it is a composition of the Veronese map and a projection,
it is a finite map of degree (3 − 1)=.

Proposition 1.2.1. Assume - is nonsingular. The ramification divisor of the
polar map is equal to He(-).

Proof Note that, for any finite map q : - → . of nonsingular varieties, the
ramification divisor Ram(q) is defined locally by the determinant of the linear
map of locally free sheaves q∗ (Ω1

.
) → Ω1

-
. The image of Ram(q) in . is

called the branch divisor. Both of the divisors may be nonreduced. We have
the Hurwitz formula

 - = q
∗ ( . ) + Ram(q), (1.39) hurwitz2
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The map q is étale outside Ram(q), i.e., for any point G ∈ - the homomor-
phism of local ring O. ,q (G) → O-,G defines an isomorphism of their formal
completions. In particular, the pre-image q−1 (/) of a nonsingular subvariety
/ ⊂ . is nonsingular outside the support of Ram(q). Applying this to the polar
map we see that the singular points of %0 (-) = ?−1

-
(�0) are contained in the

ramification locus Ram(?- ) of the polar map. On the other hand, we know that
the set of singular points of first polars is the Hessian He(-). This shows that
He(-) ⊂ Ram(p- ). Applying the Hurwitz formula for the canonical sheaf

 P= = ?
∗
- ( (P=)∨ ) + Ram(p- ).

we obtain that deg(Ram(p- )) = (=+1) (3−2) = deg(He(-)). This shows that
He(-) = Ram(p- ). �

Let us describe the branch divisor. One can show that the pre-image of a
hyperplane �0 in P(�) corresponding to a point 0 ∈ |� | is singular if and
only if its intersection with the branch divisor is not transversal. This means
that the dual hypersurface of the branch divisor is the Steinerian hypersurface.
Equivalently, the branch divisor is the dual of the Steinerian hypersurface.

1.2.2 Dual varieties
SS:1.2.2

Recall that the dual variety -∨ of a subvariety - in P= = |� | is the closure in
the dual projective space (P=)∨ = |�∨ | of the locus of hyperplanes in P= which
are tangent to - at some nonsingular point of - .
The dual variety of a hypersurface - = + ( 5 ) is the image of - under the

rational map given by the first polars. In fact, the point [m0 5 (G), . . . , m= 5 (G)]
in (P=)∨ is the hyperplane + (∑=

8=0 m8 5 (G)C8) in P= which is tangent to - at the
point G.

The following result is referred to as the Reflexivity theorem. Its proof can
found in many modern text-books (e.g.

GKZ
[325],

Harris
[375],

Tevelev
[747],

Zak
[814]).

reflexivitythm Theorem 1.2.2 (Reflexivity Theorem).

(-∨)∨ = -.

It follows from any proof in loc. cit. that, for any nonsingular point H ∈ -∨
and any nonsingular point G ∈ - ,

TG (-) ⊂ �H ⇔ TH (-∨) ⊂ �G .

Here, we continue to identify a point 0 in |� | with a hyperplane �0 in P(�).
The set of all hyperplanes in (P=)∨ containing the linear subspace TH (-∨) is
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the dual linear space of TH (-∨) in P=. Thus, the fiber of the duality map (or
Gauss map)

W : -ns → -∨, G ↦→ TG (-), (1.40)

over a nonsingular point H ∈ -∨ is an open subset of the projective subspace
in P= equal to the dual of the tangent space TH (-∨). Here and later on, -ns

denotes the set of nonsingular points of a variety - . In particular, if -∨ is a
hypersurface, the dual space of TH (-∨) must be a point, and hence, the map W
is birational.

Let us apply this to the case where - is a nonsingular hypersurface. The
polar map is a finite map, hence, the dual of a nonsingular hypersurface is a
hypersurface. The duality map is a birational morphism

p- |- : - → -∨.

The degree of the dual hypersurface -∨ (if it is a hypersurface) is called
the class of - . For example, the class of any plane curve of degree > 1 is
well-defined.
For example, if - is a nonsingular quadric, the dual hypersurface is also

a nonsingular quadric given by the adjugate matrix adj(�), where � is the
symmetric matrix (08 9 ) defined by its equation from Example

exaaexaa
1.1.3.

ex:discrim Example 1.2.3. Let D3 (=) be the discriminant hypersurface in |(3 (�∨) |. We
would like to describe explicitly the tangent hyperplane of D3 (=) at its nonsin-
gular point. Let

D̃3 (=) = {(-, G) ∈ |OP= (3) | × P= : G ∈ Sing(-)}.

Let us see that D̃3 (=) is nonsingular and the projection to the first factor

c : D̃3 (=) → D3 (=) (1.41) projj

is a resolution of singularities. In particular, c is an isomorphism over the open
set D3 (=)ns of nonsingular points of D3 (=).
The fact that D̃3 (=) is nonsingular follows easily from considering the

projection to P=. For any point G ∈ P= the fiber of the projection is the projective
space of hypersurfaces which have a singular point at G (this amounts to = + 1
linear conditions on the coefficients). Thus, D̃3 (=) is a projective bundle over
P=, and hence, is nonsingular.
Let us see where c is an isomorphism. Let �i, |i| = 3, be the projective

coordinates in
��OP= (3)�� = |(3 (�∨) | corresponding to the coefficients of a

hypersurface of degree 3 and let C0, . . . , C= be projective coordinates in P=.
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Then, D̃3 (=) is given by =+1 bihomogeneous equations of bidegree (1, 3−1):∑
|i |=3

8B�iti−4B = 0, B = 0, . . . , =. (1.42) tangent

Here, 4B is the B-th unit vector in Z=+1.
A point (-, [{0]) = (+ ( 5 ), [{0]) ∈ |OP= (3) | × P= belongs to D̃3 (=) if and

only if, replacing �i with the coefficient of 5 at t8 and C8 with the 8-th coefficient
of {0, we get the identities.

We identify the tangent space of |(3 (�∨) | × |� | at a point (-, [{0]) with
the space (3 (�∨)/C 5 ⊕ �/C{0. In coordinates, a vector in the tangent space is
a pair (6, [{]), where 6 = ∑

|i |=3 0iti, { = (G0, . . . , G=) are considered modulo
pairs (_ 5 , `{0). Differentiating equations (

tangenttangent
1.42), we see that the tangent space

is defined by the (= + 1) ×
(=+3
3

)
-matrix

©«
. . . 80G

i−40 . . .
∑
|i |=3 8080�iG

i−40−40 . . .
∑
|i |=3 808=�iG

i−40−4=

...
...

...
...

...
...

. . . 8=G
i−4= . . .

∑
|i |=3 8=80�iG

i−4=−40 . . .
∑
|i |=3 8=8=�iG

i−4=−4=

ª®®¬
where Gi−4B = 0 if i − 4B is not a non-negative vector. It is easy to interpret
solutions of these equations as pairs (6, {) from above such that

∇(6) ({0) + He( 5 ) ({0) · { = 0. (1.43) eeeq

Since [{0] is a singular point of + ( 5 ), ∇( 5 ) ( [{0]) = 0. Also He( 5 ) ({0) · {0 =
0, as follows from Theorem

flexflex
1.1.20. This confirms that pairs (_ 5 , `{0) are

always solutions. The tangent map 3c at the point (+ ( 5 ), [{0]) is given by the
projection (6, {) ↦→ 6, where (6, {) is a solution of (

eeeqeeeq
1.43). Its kernel consists

of the pairs (_ 5 , {) modulo pairs (_ 5 , `{0). For such pairs the equations (
eeeqeeeq
1.43)

give

He( 5 ) ({0) · { = 0. (1.44) zzzz

We may assume that {0 = (1, 0, . . . , 0). Since [{0] is a singular point of + ( 5 ),
we can write 5 = C3−2

0 52 (C1, . . . , C=) + . . .. Computing the Hessian matrix at the
point {0, we obtain that it is equal to

©«
0 . . . . . . 0
0 011 . . . 01=
...

...
...

...

0 0=1 . . . 0==

ª®®®®®¬
, (1.45) m1
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where 52 (C1, . . . , C=) =
∑

0≤8, 9≤= 08 9 C8C 9 . Thus, a solution of (
zzzzzzzz
1.44), not propor-

tional to {0 exists if and only if det He( 52) = 0. By definition, this means that
the singular point of - at G is not an ordinary double point. Thus, we obtain
that the projection map (

projjprojj
1.41) is an isomorphism over the open subset of D3 (=)

representing hypersurfaces with an isolated ordinary singularity.
We can also find the description of the tangent space of D3 (=) at its point

- = + ( 5 ) representing a hypersurface with a unique ordinary singular point
G. It follows from calculation of the Hessian matrix in (

m1m1
1.45), that its corank

at the ordinary singular point is equal to 1. Since the matrix is symmetric, a
vector in its nullspace is orthogonal to the column of the matrix. We know that
He( 5 ) ({0) · {0 = 0. Thus, the dot-product ∇(6) ({0) · {0 is equal to zero. By
Euler’s formula, we obtain 6({0) = 0. The converse is also true. This proves
that

) (D3 (=))- = {6 ∈ (3 (�∨)/C 5 : 6(G) = 0}. (1.46) tandiscr

Now, we are ready to compute the dual variety of D3 (=). The condition
6(1) = 0, where Sing(-) = {1} is equivalent to �13 ( 5 ) = 0. Thus, the tangent
hyperplane, considered as a point in the dual space |(3 (�) | = |(3 (�∨)∨ |
corresponds to the envelope 13 = (∑=

B=0 1Bm8)3 . The set of such envelopes is
the Veronese variety V=

3
, the image of |� | under the Veronese map v3 : |� | →

|(3 (�) |. Thus,
D3 (=)∨ � v3 (P=), (1.47) dualdiscr

Of course, it is predictable. Recall that the Veronese variety is embedded
naturally in |OP= (3) |∨. Its hyperplane section can be identified with a hypersur-
face of degree 3 in P=. A tangent hyperplane is a hypersurface with a singular
point, i.e., a point in D3 (=). Thus, the dual of V=

3
is isomorphic to D3 (=), and

hence, by duality, the dual of D3 (=) is isomorphic to V=
3
.

ex:1.2.4 Example 1.2.4. Let& = + (@) be a nonsingular quadric in P=. Let � = (08 9 ) be
a symmetric matrix defining @. The tangent hyperplane of& at a point [G] ∈ P=
is the hyperplane

C0

=∑
9=0
00 9G 9 + · · · + C=

=∑
9=0
0= 9G 9 = 0.

Thus, the vector of coordinates y = (H0, . . . , H=) of the tangent hyperplane is
equal to the vector � · G. Since � is invertible, we can write G = �−1 · H. We
have

0 = G · � · G = (H · �−1) · � · (�−1 · H) = H · �−1 · H = 0.
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Here, we treat G or H as a row-matrix or as a column-matrix in order the matrix
multiplication makes sense. Since �−1 = det(�)−1adj(�), we obtain that the
dual variety of & is also a quadric given by the adjugate matrix adj(�).

The description of the tangent space of the discriminant hypersurface from
Example

ex:discrimex:discrim
1.2.3 has the following nice application (see also Remark

applappl
1.1.33).

tangste Proposition 1.2.5. Let - be a hypersurface of degree 3 in P=. Suppose 0 is
a nonsingular point of the Steinerian hypersurface St(-). Then, Sing(%0 (-))
consists of an ordinary singular point 1 and

T0 (St(-)) = %13−1 (-).

1.2.3 Plücker formulas
SS:1.2.3

Let - = + ( 5 ) be a nonsingular irreducible hypersurface that is not a cone. Fix
= − 1 general points 01, . . . , 0=−1 in P=. Consider the intersection

- ∩ %01 (-) ∩ . . . ∩ %0=−1 (-) = {1 ∈ P= : 01, . . . , 0=−1 ∈ T1 (-)}.

The set of hyperplanes through a general set of =− 1 points is a line in the dual
space. This shows that

deg -∨ = #- ∩ %01 (-) ∩ . . . ∩ %0=−1 (-) = 3 (3 − 1)=−1. (1.48) degreedual

The computation does not apply to singular - since all polars %0 (-) pass
through singular points of - . In the case when - has only isolated singularities,
the intersection of =−1 polars with - contains singular points which correspond
to hyperplanes that we excluded from the definition of the dual hypersurface.
So, we get the following formula:

deg(-∨) = 3 (3 − 1)=−1 −
∑

G∈Sing(- )
8(-, %01 (-), . . . , %0=−1 (-))G . (1.49) genplucker

To state an explicit formula, we need some definition. Let q = (q1, . . . , q: )
be a set of polynomials in C[I1, . . . , I=]. We assume that the holomorphic map
C= → C: defined by these polynomials has an isolated critical point at the
origin. Let � (q) be the jacobian matrix. The ideal J (q) in the ring of formal
power series C[[I1, . . . , I=]] generated by the maximal minors of the Jacobian
matrix is called the Jacobian ideal of q. The number

`(q) = dimC[[I1, . . . , I=]]/J (q)

is called the Milnor number of q. Passing to affine coordinates, this definition
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easily extends to the definition of the Milnor number `(-, G) of an isolated
singularity of a complete intersection subvariety - in P=.
We will need the following result of Lê Dũng Tráng

Le
[484], Theorem 3.7.1.

Le Lemma 1.2.6. Let / be a complete intersection in C= defined by polynomials
q1, . . . , q: with isolated singularity at the origin. Let /1 = + (q1, . . . , q:−1).
Then

`(q1, . . . , q:−1) + `(q1, . . . , q:−1, q: )

= dimC[[I1, . . . , I=]]/(q1, . . . , q:−1,J (q1, . . . , q: )).

Now, we can state and prove the Plücker–Teissier formula for a hypersurface
with isolated singularities:

teissier Theorem 1.2.7. Let - be a hypersurface in P= of degree 3. Suppose - has
only isolated singularities. For any point G ∈ Sing(-), let

4(-, G) = `(-, G) + `(� ∩ -, G),

where � is a general hyperplane section of - containing G.Then,

deg -∨ = 3 (3 − 1)=−1 −
∑

G∈Sing(- )
4(-, G).

.

Proof We have to show that 4(-, G) = 8(-, %01 (-), . . . , %0=−1 (-))G .Wemay
assume that G = [1, 0, . . . , 0] and choose affine coordinates with I8 = C8/C0. Let
5 (C0, . . . , C=) = C30 6(I1, . . . , I=). Easy calculations employing the Chain Rule,
give the formula for the dehomogenized partial derivatives

G−30
m 5

mC0
= 36 +

∑ m6

mI8
I8 ,

G−30
m 5

mC8
=
m6

mI8
, 8 = 1, . . . , =.

Let � = + (ℎ) be a general hyperplane spanned by = − 1 general points
01, . . . , 0=−1, and ℎ : C= → C be the projection defined by the linear function
ℎ =

∑
U8I8 . Let

� : C= → C2, I = (I1, . . . , I=) ↦→ (6(I), ℎ(I)).

Consider the Jacobian determinant of the two functions (6, ℎ)

� (6, ℎ) =
(
m6

mI1
. . .

m6

mI=

U1 . . . U=

)
.
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The ideal (6, � (6, ℎ)) defines the set of critical points of the restriction of the
map � to - \+ (C0). We have

(6, � (6, ℎ)) = (6, U8
m6

mI 9
− U 9

m6

mI8
)1≤8< 9≤=,

The points (0, . . . , 0, U 9 , 0, . . . , 0,−U8 , 0, . . . , 0) span the hyperplane �. We
may assume that these points are our points 01, . . . , 0=−1. So, we see that
(6, � (6, ℎ)) coincides with the ideal in the completion of local ring OP= ,G
generated by 5 and the polars %08 ( 5 ). By definition of the index of intersection,
we have

8(-, %01 (-), . . . , %0=−1 (-))G = `(6, ℎ).

It remains to apply Lemma
LeLe
1.2.6, where / = + (6) and /1 = + (6) ∩+ (ℎ). �

ex:1.2.8 Example 1.2.8. An isolated singular point G of a hypersurface - in P= is called
an �: -singularity (or a singular point of type �: ) if the formal completion of
O-,G is isomorphic to C[[I1, . . . , I=]]/(I:+11 + I2

2 + · · · + I
2
=). If : = 1, it is an

ordinary quadratic singularity (or a node), if : = 2, it is an ordinary cusp. We
get

`(-, G) = :, `(- ∩ �, G) = 1.

This gives the Plücker formula for hypersurfaces with B singularities of type
�:1 , . . . , �:B

deg -∨ = 3 (3 − 1)=−1 − (:1 + 1) − · · · − (:B + 1). (1.50) plucker1

In particular, when - is a plane curve � with X nodes and ^ ordinary cusps, we
get a familiar Plücker formula

deg�∨ = 3 (3 − 1) − 2X − 3^. (1.51) plucker

Note that, in case of plane curves, `(� ∩ -, G) is always equal to multG- − 1,
where multG- is the multiplicity of - at G.

deg�∨ = 3 (3 − 1) −
∑

G∈Sing(- )
(`(-, G) +multG- − 1). (1.52) pluckercurves

Note that the dual curve �∨ of a nonsingular curve � of degree 3 > 2 is
always singular. This follows from the formula for the genus of a nonsingular
plane curve a nd the fact that � and �∨ are birationally isomorphic. The polar
map � → �∨ is equal to the normalization map. A singular point of �∨
corresponds to a line which is either tangent to � at several points, or is an
inflection tangent. We skip a local computation which shows that a line which
is an inflection tangent at one point with ordfl = 1 (an honest inflection tangent)
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gives an ordinary cusp of �∨ and a line which is tangent at two points which
are not inflection points (honest bitangent) gives a node. Thus, we obtain that
the number X̌ of nodes of �∨ is equal to the number of honest bitangents of
� and the number ˇ̂ of ordinary cusps of �∨ is equal to the number of honest
inflection tangents to �∨.
Assume that � is nonsingular and �∨ has no other singular points except

ordinary nodes and cusps. We know that the number of inflection points is
equal to 33 (3 − 2). Applying Plücker formula (

pluckerplucker
1.51) to �∨, we get that

X̌ =
1
2
(
3 (3 − 1) (3 (3 − 1) − 1) − 3 − 93 (3 − 2)

)
=

1
2
3 (3 − 2) (32 − 9). (1.53) bitangents

This is the (expected) number of bitangents of a nonsingular plane curve. For
example, we expect that a nonsingular plane quartic has 28 bitangents.
We refer for discussions of Plücker formulas to many modern text-books

(e.g.
Fischer
[303],

Fulton
[315],

GH
[360],

GKZ
[325]). A proof of Plücker–Teissiere formula can be

found in
Teissier
[743]. A generalization of the Plücker–Teissier formula to complete

intersections in projective space was given by S. Kleiman
Kleiman2
[451]

1.3 Polar s-Hedra
S:1.3

1.3.1 Apolar schemes
SS:1.3.1

We continue to use � to denote a complex vector space of dimension = + 1.
Consider the polarization pairing (

e2e2
1.2)

(3 (�∨) × (: (�) → (3−: (�∨), ( 5 , k) ↦→ �k ( 5 ).

Definition 1.3.1. k ∈ (: (�) is called apolar to 5 ∈ (3 (�∨) if �k ( 5 ) = 0.We
extend this definition to hypersurfaces in the obvious way.

L11 Lemma 1.3.2. For any k ∈ (: (�), k ′ ∈ (< (�) and 5 ∈ (3 (�∨),

�k′ (�k ( 5 )) = �kk′ ( 5 ).

Proof By linearity and induction on the degree, it suffices to verify the asser-
tion in the case when k = m8 and k ′ = m 9 . In this case, it is obvious. �

Corollary 1.3.3. Let 5 ∈ (3 (�∨). Let AP: ( 5 ) be the subspace of (: (�)
spanned by forms of degree : apolar to 5 . Then,

AP( 5 ) =
∞⊕
:=0

�%: ( 5 )

is a homogeneous ideal in the symmetric algebra S(�).
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Definition 1.3.4. The quotient ring

� 5 = S(�)/AP( 5 )

is called the apolar ring of 5 .

The ring � 5 inherits the grading of S(�). Since any polynomial k ∈ (A (�)
with A > 3 is apolar to 5 , we see that � 5 is annihilated by the ideal m3+1+ =

(m0, . . . , m=)3+1. Thus, � 5 is an Artinian graded local algebra over C. Since
the pairing between (3 (�) and (3 (�∨) has values in (0 (�∨) = C, we see
that AP3 ( 5 ) is of codimension 1 in (3 (�). Thus, (� 5 )3 is a vector space
of dimension 1 over C and coincides with the socle of � 5 , i.e., the ideal of
elements of � 5 annihilated by its maximal ideal.
Note that the latter property characterizes Gorenstein graded local Artinian

rings, see
Eisenbud
[281],

Iarrobino
[422].

Proposition 1.3.5 (F. S. Macaulay). The correspondence 5 ↦→ � 5 is a bi-
jection between |(3 (�∨) | and graded Artinian quotient algebras S(�)/� with
1-dimensional socle.

Proof Let us show how to reconstruct C 5 from S(�)/�. The multiplication
of 3 vectors in � composed with the projection to (3 (�)/�3 defines a linear
map (3 (�) → (3 (�)/�3 � C. Choosing a basis (S(�)/�)3 , we obtain a linear
function 5 on (3 (�). It corresponds to an element of (3 (�∨).

�

Recall that any closed non-empty subscheme / ⊂ P= is defined by a unique
saturated homogeneous ideal �/ in C[C0, . . . , C=]. Its locus of zeros in the affine
space A=+1 is the affine cone �/ of / isomorphic to Spec(C[C0, . . . , C=]/�/ ).

Definition 1.3.6. Let 5 ∈ (3 (�∨). A subscheme / ⊂ |�∨ | = P(�) is called
apolar to 5 if its homogeneous ideal �/ is contained in AP( 5 ), or, equivalently,
Spec(� 5 ) is a closed subscheme of the affine cone �/ of / .

This definition agrees with the definition of an apolar homogeneous form k.
A homogeneous form k ∈ (: (�) is apolar to 5 if and only if the hypersurface
+ (k) is apolar to + ( 5 ).

Consider the natural pairing

(� 5 ): × (� 5 )3−: → (� 5 )3 � C (1.54) pairing3

defined by multiplication of polynomials. It is well defined because of Lemma
L11L11
1.3.2. The left kernel of this pairing consists of k ∈ (: (�) mod AP( 5 ) ∩
(: (�) such that �kk′ ( 5 ) = 0 for all k ′ ∈ (3−: (�). By Lemma

L11L11
1.3.2,
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�kk′ ( 5 ) = �k′ (�k ( 5 )) = 0 for all k ′ ∈ (3−: (�). This implies �k ( 5 ) = 0.
Thus, k ∈ AP( 5 ), and hence, is zero in � 5 . This shows that the pairing (

pairing3pairing3
1.54)

is a perfect pairing. This is one of the nice features of a Gorenstein Artinian
algebra (see

Eisenbud
[281], 21.2).

It follows that the Hilbert polynomial

�� 5 (C) =
3∑
8=0

dim(� 5 )8C8 = 03C3 + · · · + 00

is a reciprocal monic polynomial, i.e., 08 = 03−8 , 03 = 1. It is an important
invariant of a homogeneous form 5 .

E1.3.1 Example 1.3.7. Let 5 = ;3 be the 3-th power of a linear form ; ∈ �∨. For any
k ∈ (: (�) = ((: (�)∨)∨ we have

�k (;3) = 3 (3 − 1) · · · (3 − : + 1);3−:k(;) = 3!; [3−: ]k(;),

where we set

; [8 ] =

{
1
8! ;
8 if : ≤ 3,

0 otherwise.

Here, we view k ∈ (3 (�) as a homogeneous form on �∨. In coordinates,
; =

∑=
8=0 08C8 , k = k(m0, . . . , m=) and k(;) = 3!k(00, . . . , 0=). Thus, we see

that �%: ( 5 ), : ≤ 3, consists of polynomials of degree : vanishing at ;. Assume,
for simplicity, that ; = C0. The ideal �%(C30 ) is generated by m1, . . . , m=, m

3+1
0 .

The Hilbert polynomial is equal to 1 + C + · · · + C3 .

1.3.2 Sums of powers
1.3.2

For any point 0 ∈ |�∨ |, we continue to denote by �0 the corresponding
hyperplane in |� |.
Suppose 5 ∈ (3 (�∨) is equal to a sum of powers of nonzero linear forms

5 = ;31 + · · · + ;
3
B . (1.55) sum2

This implies that, for any k ∈ (: (�),

�k ( 5 ) = �k (
B∑
8=1

;38 ) =
B∑
8=1

k(;8); [3−: ]8
. (1.56) apol

In particular, taking 3 = : , we obtain that

〈;31 , . . . , ;
3
B 〉⊥(3 (�) = {k ∈ (

3 (�) : k(;8) = 0, 8 = 1, . . . , B} = (�/ )3 ,

where / is the closed reduced subscheme of points {[;1], . . . , [;B]} ⊂ |�∨ |
corresponding to the linear forms ;8 , and �/ denotes its homogeneous ideal.
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This implies that the codimension of the linear span 〈;31 , . . . , ;
3
B 〉 in (3 (�∨)

is equal to the dimension of (�/ )3 , hence the forms ;31 , . . . , ;
3
B are linearly inde-

pendent if and only if the points [;1], . . . , [;B] impose independent conditions
on hypersurfaces of degree 3 in P(�) = |�∨ |.

Suppose 5 ∈ 〈;31 , . . . , ;
3
B 〉, then (�/ )3 ⊂ AP3 ( 5 ). Conversely, if this is true,

we have

5 ∈ AP3 ( 5 )⊥ ⊂ (�/ )⊥3 = 〈;
3
1 , . . . , ;

3
B 〉.

If we additionally assume that (�/ ′)3 ⊄ AP3 ( 5 ) for any proper subset / ′ of / ,
we obtain, after replacing the forms ; ′

8
B by proportional ones, that

5 = ;31 + · · · + ;
3
B .

Definition 1.3.8. A polar B-hedron of 5 is a set of hyperplanes �8 = + (;8), 8 =
1, . . . , B, in |� | such that

5 = ;31 + · · · + ;
3
B ,

and, considered as points [;8] in P(�), the hyperplanes �8 impose independent
conditions in the linear system |OP(�) (3) |. A polar B-hedron is called nonde-
generate if the hyperplanes + (;8) are in general linear position (i.e., no = + 1
hyperplanes intersect).

Note that this definition does not depend on the choice of linear forms defining
the hyperplanes. Also, it does not depend on the choice of the equation defining
the hypersurface + ( 5 ). We can also view a polar B-hedron as an unordered set
of points in the dual space. In the case = = 2, it is often called a polar B-gon,
although this terminology is somewhat confusing since a polygon comes with
an order of its set of vertices.. Also, in dimension two, we can employ the
terminology of B-laterals.
The following propositions follow from the discussion above.

apollemma Proposition 1.3.9. Let 5 ∈ (3 (�∨). Then, / = {[;1], . . . , [;B]} is a polar
B-hedron of 5 if and only if the following properties are satisfied

(i) �/ (3) ⊂ AP3 ( 5 );
(ii) �/ ′ (3) ⊄ AP3 ( 5 ) for any proper subset / ′ of / .

prop1 Proposition 1.3.10. A set / = {[;1], . . . , [;B]} is a polar B-hedron of 5 ∈
(3 (�∨) if and only if / , considered as a closed subscheme of |�∨ |, is apolar
to 5 but no proper subscheme of / is apolar to 5 .
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1.3.3 Generalized polar s-hedra
SS:1.3.3

Proposition
prop1prop1
2.45 allows one to generalize the definition of a polar s-hedron. A

polar s-hedron can be viewed as a reduced closed subscheme / of P(�) = |� |∨
consisting of B points. Obviously,

ℎ0 (O/ ) = dim�0 (P(�),O/ ) = B.

More generally, we may consider non-reduced closed subschemes / of P(�) of
dimension 0 satisfying ℎ0 (O/ ) = B. The set of such subschemes is parameter-
ized by a projective algebraic variety HilbB (P(�)) called the punctual Hilbert
scheme of P(�) of 0-cycles of length B.
Any / ∈ HilbB (P(�)) defines the subspace

�/ (3) = P(�0 (P(�),I/ (3))) ⊂ �0 (P(�),OP(�) (3)) = (3 (�).

The exact sequence

0→ �0 (P(�),I/ (3)) → �0 (P(�),OP(�) (3)) → �0 (P(�),O/ ) (1.57) exseq

→ �1 (P(�),I/ (3)) → 0

shows that the dimension of the subspace

〈/〉3 = P(�0 (P(�),I/ (3))⊥) ⊂ |(3 (�∨) | (1.58) spanz

is equal to ℎ0 (O/ ) − ℎ1 (I/ (3)) − 1 = B − 1 − ℎ1 (I/ (3)). If / is reduced
and consists of points ?1, . . . , ?B , then 〈/〉3 = 〈{3 (?1), . . . , {3 (?B)〉, where
{3 : P(�) → P((3 (�)) is the Veronese map. Hence, dim〈/〉3 = B − 1 if the
points {3 (?1), . . . , {3 (?B) are linearly independent. We say that / is linearly
3-independent if dim〈/〉3 = B − 1.

Definition 1.3.11. A generalized B-hedron of 5 ∈ (3 (�∨) is a linearly 3-
independent subscheme / ∈ HilbB (P(�)), which is apolar to 5 .

Recall that / is apolar to 5 if, for each : ≥ 0,

�/ (:) = �0 (P(�),I/ (:)) ⊂ AP: ( 5 ). (1.59) apolarz

According to this definition, a polar s-hedron is a reduced generalized s-hedron.
The following is a generalization of Proposition

apollemmaapollemma
1.3.9.

mainlemma Proposition 1.3.12. A linearly 3-independent subscheme / ∈ HilbB (P(�)) is
a generalized polar B-hedron of 5 ∈ (3 (�∨) if and only if

�/ (3) ⊂ AP3 ( 5 ).
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Proof We have to show that the inclusion in the assertion implies �/ (3) ⊂
AP: ( 5 ) for any : ≤ 3. For any k ′ ∈ (3−: (�) and any k ∈ �/ (:), the product
kk ′ belongs to �/ (:). Thus, �kk′ ( 5 ) = 0. By the duality, �k ( 5 ) = 0, i.e.,
k ∈ AP: ( 5 ). �

kanev Example 1.3.13. Let / ∈ HilbB (P(�)) be the union of : fat points ?: , i.e., at
each ?8 ∈ / the ideal I/,?8 is equal to the <8-th power of the maximal ideal.
Obviously,

B =

:∑
8=1

(=+<8−1
<8−1

)
.

Then, the linear system |I/ (3) | consists of hypersurfaces of degree 3 with
points ?8 of multiplicity ≥ <8 . One can show (see

Iarrobino
[422], Theorem 5.3) that /

is apolar to 5 if and only if

5 = ;
3−<1+1
1 61 + · · · + ;3−<:+1:

6: ,

where ?8 = + (;8) and 68 is a homogeneous polynomial of degree <8 − 1 or the
zero polynomial.
Remark 1.3.14. It is not known whether the set of generalized B-hedra of 5
is a closed subset of HilbB (P(�)). It is known to be true for B ≤ 3 + 1 since
in this case dim �/ (3) = C := dim (3 (�) − B for all / ∈ HilbB (P(�)) (see
Iarrobino
[422], p.48). This defines a regular map of HilbB (P(�)) to the Grassmannian
�C−1 ( |(3 (�) |) and the set of generalized B-hedra equal to the pre-image of a
closed subset consisting of subspaces contained in AP3 ( 5 ). Also, we see that
ℎ1 (I/ (3)) = 0, hence, / is always linearly 3-independent.

1.3.4 Secant varieties and sums of powers
SS:1.3.4

Consider the Veronese map of degree 3

v3 : |� | → |(3 (�) | = |(3 (�∨)∨ |, [{] ↦→ [{3],

defined by the complete linear system |(3 (�∨) | of hypersurfaces of degree 3
in |� |. The image of this map is the Veronese variety V=

3
of dimension = and

degree 3=. It is isomorphic to P=. By choosing a monomial basis ti in the linear
space of homogeneous polynomials of degree 3 we obtain that the Veronese

variety is isomorphic to the subvariety of P
(=+3
3

)
−1 given by equations

�i · �j − �k�m = 0, i + j = k +m,

where �i are dual coordinates in the space of polynomials of degree 3. The
image of P= under the map defined by a choice of a basis of the complete linear
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system of hypersurfaces of degree 3 is called a =-dimensional Veronese variety
of degree 3=.

normcurve Example 1.3.15. Let us specialize and discuss rational normal curves in P=,
classically known as norm-curves. We will frequently use them. Let * be a
two-dimensional linear space with a basis (40, 41) and the dual basis (D0, D1),
the coordinates in *. The space (3 (*) (resp. (3 (*∨)) has a natural mono-
mial basis (430 , 4

3−1
0 41, . . . , 4

3
1 ) (resp. (D

3
0 , D

3−1
0 D1, . . . , D

3
1 )). The polarization

isomorphism

(3 (*)∨ → (3 (*)∨

assigns to D3−80 D81 the linear function on (3 (*) that takes the value 1
3! (3 −

8)!8! on 43−80 481 and zero on all other monomials. This shows that the basis
(
(3
8

)
D3−8{8)8=0,...,3 is the dual basis of (430 , 4

3−1
0 41, . . . , 4

3
1 ). It is also a basis in

(3 (*∨). Thus, any binary form 13 ∈ (3 (*∨) can be written as

13 =

3∑
8=0

(3
8

)
08D

3−8
0 D81, (1.60) binary

so that (00, . . . , 03) are the natural coordinates in the space (3 (U∨). Symboli-
cally, we can write

13 = (0D)3 .

Let us clarify the coordinate-free definition of the Veronese map

v3 : |* | → |(3 (*) |.

It is defined by assigning to U4> + V41 ∈ * the linear function 5 ↦→ 5 (U, V) on
(3 (*∨) = (3 (*)∨. It follows that

v3 ( [U40 + V41]) = [
3∑
8=0

(3
8

)
U3−8V843−80 481] = [(U40 + V41)3] .

In coordinates, this is the map

(D0, D1) ↦→ (D30 , D
3−1
0 D1, . . . , D0D

3−1
1 , D31 ). (1.61) par1

Passing to the projective space, we see that the Veronese map v3 is given by the
complete linear system |(3 (*)∨ | = |O |* | (3) |. The image '3 ⊂ |(3 (*) | of this
map is the Veronese curve of degree 3, or the rational normal curve of degree
3. Its image under any isomorphism |(3 (*) → P3 is a Veronese curve or a
rational normal curve. If we re-denote the coordinates D3−80 D81 by (G0, . . . , G3), a
hyperplane+ (∑3

8=0 08G8) intersects '3 along the closed subscheme isomorphic,
under the Veronese map v3 , to the closed subscheme + (∑3

8=0 08D
3−8
0 D81) of |* |.
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Dually, we have the Veronese map

v∨3 : |*∨ | → |(3 (*∨), [0D0 + 1D1] → [(0D0 + 1D1)3] .

One can use the isomorphism |* | → |*∨ | defined by the pairing*×* → ∧2*

and a choice of an isomorphism
∧2* → C. We make this choice by requiring

that it sends 40 ∧ 41 to 1. In this case (40, 41) ↦→ (−D1, D0). Composing ∨d with
the isomorphism |* | → |*∨ |, we obtain the dual Veronese map

v3 : |* | → |(3 (*∨) |. (1.62) dualveronese

The image of this map is the dual Veronese curve.
The dual Veronese map is given by

[U, V] ↦→ [−VD1 + UD0)3] .

Since the basis of (3 (*∨) is formed by
(3
:

)
D:0D

3−:
1 , the map is given by

[U, V] ↦→ [(−1)3V3 , (−1)3−1V3−1U, . . . , U3] .

The hyperplane in |(3 (*) | corresponding to a point on the dual Veronese curve
'∗
3
cuts out '3 at one point v3 ( [U40 + V41]) with multiplicity 3. We say that

the dual Veronese curve is the locus of 3-osculating hyperplanes of '3 (see
the general definition of osculating hyperplanes in Section

CAG-2:S:10.4CAG-2:S:10.4
10.4.

One can combine the Veronese map and the Segre map to define a Segre-
Veronese variety V=1 ,...,=: (31, . . . , 3: ). It is equal to the image of the map
P=1×· · ·×P=: defined by the complete linear system |OP=1 (31)�· · ·�OP=: (3: ) |.

The notion of a polar B-hedron acquires a simple geometric interpretation
in terms of the secant varieties of the Veronese variety V=

3
. If a set of points

[;1], . . . , [;B] in |� | is a polar B-hedron of 5 , then [ 5 ] ∈ 〈[;31 ], . . . , [;
3
B ]〉, and

hence, [ 5 ] belongs to the (B − 1)-secant subspace of V=
3
. Conversely, a general

point in this subspace admits a polar s-hedron. Recall that for any irreducible
nondegenerate projective variety - ⊂ P# of dimension A its C-secant variety
SecC (-) is defined to be the Zariski closure of the set of points in P# which
lie in the linear span of dimension C of some set of C + 1 linearly independent
points in - .
Counting constants, easily gives

dim SecC (-) ≤ min(A (C + 1) + C, #).

The subvariety - ⊂ P# is called C-defective if the inequality is strict. An
example of a 1-defective variety is a Veronese surface in P5.

A fundamental result about secant varieties is the following Lemma whose
modern proof can be found in

Zak
[814], Chapter II, and in

Dale
[197]
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Lemma 1.3.16 (A. Terracini). Let ?1, . . . , ?C+1 be general C + 1 points in -
and ? be a general point in their span. Then,

T? (SecC (-)) = T?1 (-), . . . ,T?C+1 (-).

The inclusion part

T?1 (-), . . . ,T?C+1 (-) ⊂ T? (SecC (-))

is easy to prove. We assume for simplicity that C = 1. Then, Sec1 (-) contains
the cone � (?1, -) which is swept out by the lines ?1@, @ ∈ - . Therefore,
T? (� (?1, -)) ⊂ T? (Sec1 (-)). However, it is easy to see that T? (� (?1, -))
contains T?1 (-).

Corollary 1.3.17. SecC (-) ≠ P# if and only if, for any C + 1 general points of
- , there exists a hyperplane section of - singular at these points. In particular,
if # ≤ A (C +1) + C, the variety - is C-defective if and only if, for any C +1 general
points of - , there exists a hyperplane section of - singular at these points.

ex1.1.3 Example 1.3.18. Let - = V=
3
⊂ P

(3+=
=

)
−1 be a Veronese variety. Assume

=(C+1)+C >
(3+=
=

)
−1. A hyperplane section of - is isomorphic to a hypersurface

of degree 3 in P=. Thus, SecC (V=3) ≠ |(
3 (�∨) | if and only if, for any C+1 general

points in P=, there exists a hypersurface of degree 3 singular at these points.
Consider a Veronese curve V1

3
⊂ P3 . Assume 2C + 1 ≥ 3. Since 3 < 2C + 2,

there are no homogeneous forms of degree 3 which have C + 1 multiple roots.
Thus, the Veronese curve '3 = {3 (P1) ⊂ P3 is not C-degenerate for C ≥
(3 − 1)/2.

Take = = 2 and 3 = 2. For any two points in P2 there exists a conic singular
at these points, namely the double line through the points. This explains why a
Veronese surface +2

2 is 1-defective.
Another example is V2

4 ⊂ P
14 and C = 4. The expected dimension of Sec4 (-)

is equal to 14. For any five points in P2, there exists a conic passing through
these points. Taking it with multiplicity 2, we obtain a quartic which is singular
at these points. This shows that V2

4 is 4-defective.
The following Corollary of Terracini’s Lemma is called the First Main Theo-

rem on apolarity in
EhrenborgRota
[277]. The authors gave an algebraic proof of this Theorem

without using Terracini’s Lemma.

Corollary 1.3.19. A general homogeneous form in (3 (�∨) admits a polar
B-hedron if and only if there exist linear forms ;1, . . . , ;B ∈ �∨ such that,
for any nonzero k ∈ (3 (�), the ideal �%(k) ⊂ S(�∨) does not contain
{;3−1

1 , . . . , ;3−1
B }.
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Proof A general form in (3 (�∨) admits a polar s-hedron if and only if the
secant variety SecB−1 (V=3) is equal to the whole space. This means that the span
of the tangent spaces at some points @8 = + (;38 ), 8 = 1, . . . , B, is equal to the
whole space. By Terracini’s Lemma, this is equivalent to that the tangent spaces
of the Veronese variety at the points @8 are not contained in a hyperplane defined
by some k ∈ (3 (�) = (3 (�∨)∨. It remains to use that the tangent space of the
Veronese variety at @8 is equal to the projective space of all homogeneous forms
;3−1
8

;, ; ∈ �∨ \ {0} (see Exercise 1.18). Thus, for any nonzero k ∈ (3 (�), it is
impossible that %;3−1

8
; (k) = 0 for all ; and for all 8. But %;3−1

8
; (k) = 0 for all ;

if and only if %;3−1
8
(k) = 0. This proves the assertion. �

The following fundamental result is due to J. Alexander and A. Hirschowitz
Alexander
[7]. A simplified proof can be found in

BrambillaOttaviani
[71] or

Chandler
[124].

alexander Theorem 1.3.20. If 3 > 2, the Veronese variety V=
3
is C-defective if and only if

(=, 3, C) = (2, 4, 4), (3, 4, 8), (4, 3, 6), (4, 4, 13).

In all these cases the secant variety SecC (V=3) is a hypersurface. The Veronese
variety V=2 is C-defective only if 1 ≤ C ≤ =. Its C-secant variety is of dimension
=(C + 1) − 1

2 (C − 2) (C + 1) − 1.

For the sufficiency of the condition, only the case (4, 3, 6) is not trivial. It
asserts that for 7 general points in P3 there exists a cubic hypersurface which
is singular at these points. To see this, we use a well-known fact that any = + 3
general points in P= lie on a Veronese curve of degree = (see, for example,
Harris
[375], Theorem 1.18). So, we find such a curve ' through 7 general points in
P4 and consider the 1-secant variety Sec1 ('). It is a cubic hypersurface given
by the catalecticant invariant of a binary quartic form. It contains the curve '
as it singular locus.
Other cases are easy. We have seen already the first two cases. The third case

follows from the existence of a quadric through nine general points in P3. The
square of its equation defines a quartic with 9 points. The last case is similar.
For any 14 general points, there exists a quadric in P4 containing these points.
In the case of quadrics, we use that the variety of quadrics of corank A is of
codimension A (A + 1)/2 in the variety of all quadrics.

Obviously, if dim SecB−1 (V=3) < dim |(3�∨) | =
(=+3
=

)
− 1, a general form

5 ∈ (3 (�∨) cannot be written as a sum of B powers of linear forms. Since
dim SecB−1 (V=3) ≤ min{(= + 1)B − 1,

(=+3
=

)
− 1}, the minimal number B(=, 3)

of powers needed to write 5 as a sum of powers of linear forms satisfies

B(=, 3) ≥
⌈ 1
= + 1

(
= + 3
=

)⌉
. (1.63)
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If V=
3
is not (B−1)-defective, then the equality holds. Applying Theorem

alexanderalexander
1.3.20,

we obtain the following.

C1.3.11 Corollary 1.3.21.

B(=, 3) =
⌈ 1
= + 1

(
= + 3
=

)⌉
unless (=, 3) = (=, 2), (2, 4), (3, 4), (4, 3), (4, 4). In these exceptional cases
B(=, 3) = = + 1, 6, 10, 8, 15 instead of expected d =−1

2 e, 5, 9, 8, 14.

Remark 1.3.22. If 3 > 2, in all the exceptional cases listed in the previous
corollary, B(=, 3) is larger by one than the expected number. The variety of forms
of degree 3 that can be written as the sum of the expected number of powers
of linear forms is a hypersurface in |OP= (3) |. In the case (=, 3, C) = (2, 4, 5),
the hypersurface is of degree 6, and it is given by the catalecticant matrix
which we will discuss later in this chapter. The curves parameterized by this
hypersurface are Clebsch quartics which we will discuss in Chapter 6. The case
(=, 3) = (4, 3) was studied only recently in

Ottaviani
[564]. The hypersurface is of degree

15. In the other two cases, the equation expresses that the second partials of the
quartic are linearly dependent (see

Geramita
[326], pp. 58-59.)

One can also consider the problem of a representation of several forms
51, . . . , 5: ∈ (3 (�∨) as a sum of powers of the same set (up to proportionality)
of linear forms ;1, . . . , ;B . This means that the forms share a common polar
s-hedron. For example, a well-known result from linear algebra states that two
general quadratic forms @1, @2 in : variables can be simultaneously diagonal-
ized. In our terminology, this means that they have a common polar k-hedron.
More precisely, this is possible if the det(@1 + _@2) has = + 1 distinct roots (we
will discuss this later in Chapter 8 while studying del Pezzo surfaces of degree
4).
Suppose

5 9 =

B∑
8=1

0
( 9)
8
;38 , 9 = 1, . . . , : . (1.64) toeplitz2

We view this as an element q ∈ *∨ ⊗ (3 (�∨), where * = C: . The map q is
the sum of B linear maps q of rank 1 with the images spanned by ;3

8
. So, we

can view each q as a vector in *∨ ⊗ (3 (�∨) equal to the image of a vector in
*∨ ⊗ �∨ embedded in*∨ ⊗ �∨ by D ⊗ ; ↦→ D ⊗ ;3 . Now, everything becomes
clear. We consider the Segre-Veronese embedding

|*∨ | × |�∨ | ↩→ |*∨ | × |(3 (�∨) | ↩→ |*∨ ⊗ (3 (�∨) |

defined by the linear system of divisors of type (1, 3) and view [q] as a point
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in the projective space |*∨ ⊗ (3 (�∨) | which lies on the (B − 1)-secant variety
of V:−1,= (1, 3).

For any linear map q ∈ Hom(*, (3 (�∨)), consider the linear map

Tq : Hom(*, �) → Hom(
2∧
*, (3−1 (�∨)),

defined by

Tq (U) : D ∧ { ↦→ �U(D) (q({)) − �U({) (q(D)).

We call this map the Toeplitz map. Suppose that q is of rank 1 with the image
spanned by ;3 , then Tq is of rank equal to dim

∧2* − 1 = (: − 2) (: + 1)/2.
If we choose a basis D1, . . . , D: in * and coordinates C0, . . . , C= in � , then the
image is spanned by ;3−1 (08D8 − 0 9D 9 ), where ; =

∑
08C8 . This shows that, if q

belongs to SecB−1 ( |*∨ | × |�∨ |),

rank Tq ≤ B(: − 2) (: + 1)/2. (1.65) toeplitz1

The expected dimension of SecB−1 ( |*∨ | × |�∨ |) is equal to B(: + =) − 1.
Thus, we expect that SecB−1 ( |*∨ | × |�∨ |) coincides with |*∨ ⊗ (3 (�∨) | when

B ≥
⌈ :

: + =

(
= + 3
=

)⌉
. (1.66) toeplitz3

If this happens, we obtain that a general set of : forms admits a common polar
s-hedron. Of course, as in the case : = 1, there could be exceptions if the secant
variety is (B − 1)-defective.

E1.3.4 Example 1.3.23. Assume 3 = 2 and : = 3. In this case, the matrix of Tq is a
square matrix of size 3(=+1). Let us identify the spaces*∨ and∧2* bymeans
of the volume form D1 ∧ D2 ∧ D3 ∈

∧3* � C. Also identify q(D8) ∈ (2 (�∨)
with a square symmetric matrix �8 of size = + 1. Then, an easy computation
shows that one can represent the linear map Tq by the skew-symmetric matrix

©«
0 �1 �2
−�1 0 �3
−�2 −�3 0

ª®®¬ . (1.67) toeplitz

Now, the condition (
toeplitz1toeplitz1
1.65) for

B =

⌈ : (=+3
=

)
: + =

⌉
=

⌈3(= + 2) (= + 1)
2(= + 3)

⌉
=


1
2 (3= + 2) if = is even,
1
2 (3= + 1) if = is odd ≥ 3,
3 if = = 1
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becomes equivalent to the condition

L = Pf
©«

0 �1 �2
−�1 0 �3
−�2 −�3 0

ª®®¬ = 0. (1.68) toep

It is known that the secant variety SecB−1 ( |* | × |� |) of the Segre-Veronese
variety is a hypersurface if = ≥ 3 is odd and the whole space if = is even (see
Strassen
[729], Lemma 4.4). It implies that, in the odd case, the hypersurface is equal to
+ (Λ). Its degree is equal to 3(= + 1)/2. Of course, in the even case, the pfaffian
vanishes identically.
In the case = = 3, the pfaffian L was introduced by E. Toeplitz

Toeplitz
[749]. It is an

invariant of the net† of quadrics in P3 that vanishes on the nets with common
polar pentahedron. Following

Gizatullin
[334], we call L the Toeplitz invariant. Let us

write its generators 51, 52, 53 in the form (
toeplitz2toeplitz2
1.64)with = = 3 and B = 1

2 (3=+1) = 5.
Since the four linear forms ;8 are linearly dependent, we can normalize them by
assuming that ;1 + · · · + ;5 = 0 and assume that ;1, . . . , ;5 span a 4-dimensional
subspace. Consider a cubic form

� =
1
3

5∑
8=1

;38 ,

and find three vectors {8 in C4 such that

(;1 ({ 9 ), . . . , ;5 ({ 9 )) = (0 ( 9)1 , . . . , 0
( 9)
5 ), 9 = 1, 2, 3.

Now, we check that 5 9 = �{9 (�) for 9 = 1, 2, 3. This shows that the net spanned
by 51, 52, 53 is a net of polar quadrics of the cubic �. Conversely, we will see
later that any general cubic form in 4 variables admits a polar pentahedron.
Thus, any net of polars of a general cubic surface admits a common polar
pentahedron. So, the Toeplitz invariant vanishes on a general net of quadrics in
P3 if and only if the net is realized as a net of polar quadrics of a cubic.
Remark 1.3.24. Let (=, 3, :, B) denote the numbers for which we have strict
inequality in (

toeplitz3toeplitz3
1.66).We call such 4-tuples exceptional. Examples of exceptional

4-tuples are (=, 2, 3, 1
2 (3= + 1)) with odd = ≥ 2. The secant hypersurfaces in

these cases are given by the Toeplitz invariant Λ. The case (3, 2, 3, 5) was
first discovered by G. Darboux

DarbouxWaring
[200].‡ It has been rediscovered and extended

to any odd = by G. Ottaviani
Ottaviani1
[563]. There are other two known examples.

The case (2, 3, 2, 5) was discovered by F. London
London
[492]. The secant variety

†We employ classical terminology calling a 1-dimensional (resp. 2-dimensional, resp. 3-
dimensional) linear system a pencil (resp. a net, resp. a web).
‡Darboux claimed wrongly that the case (3, 2, 4, 6) is exceptional, the mistake was pointed

out by Terracini
Terracini1
[744] without proof, a proof is in

Carlini
[90].
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is a hypersurface given by the determinant of order 6 of the linear map Tq
(see Exercise 1.30). The examples (3, 2, 5, 6) and (5, 2, 3, 8) were discovered
recently by E. Carlini and J. Chipalkatti

Carlini
[90]. The secant hypersurface in the

second case is a hypersurface of degree 18 given by the determinant of Tq .
There are no exceptional 4-tuples (=, 2, 2, B)

Carlini
[90] and no exceptional 4-tuples

(=, 3, :, B) for large = (with some explicit bound)
Abo
[1]. We refer to

Chipalkatti
[131], where

the varieties of common polar s-hedra are studied.
Remark 1.3.25. Assume that one of the matrices �1, �2, �3 in (

toeplitztoeplitz
1.67) is invert-

ible, say let it be �2. Then,

©«
� 0 0
0 � −�1�

−1
2

0 0 �

ª®®¬·
©«

0 �1 �2
−�1 0 �3
−�2 −�3 0

ª®®¬·
©«
� 0 0
0 � 0
0 −�−1

2 �1 �

ª®®¬ =
©«

0 0 �2
0 � �3
−�2 −�3 0

ª®®¬ ,
where

� = �1�
−1
2 �3 − �3�

−1
2 �1.

This shows that

rank
©«

0 �1 �2
−�1 0 �3
−�2 −�3 0

ª®®¬ = rank � + 2= + 2.

The condition rank� ≤ 2 is known in the theory of vector bundles over the
projective plane as Barth’s condition on the net of quadrics in P=. It does
not depend on the choice of a basis of the net of quadrics spanned by the
quadrics with matrices �1, �2, �3. Under Barth’s condition, the discriminant
curve det(I0�1 + I1�2 + 2�3) = 0 of singular quadrics in the net is a Darboux
curve of degree = + 1 (see

Barth0
[32]).

1.3.5 The Waring problem
SS:1.3.5

The well-known Waring problem in number theory asks about the smallest
number B(3) such that each natural number can be written as a sum of B(3) 3-
th powers of natural numbers. It also asks in how many ways it can be done. Its
polynomial analog asks about the smallest number B(=, 3) such that a general
homogeneous polynomial of degree 3 in =+1 variables can be written as a sum
of B 3-th powers of linear forms. Corollary (

C1.3.11C1.3.11
1.3.21) solves this problem.

Other versions of the Waring problem ask the following questions:

• (W1) Given a homogeneous forms 5 ∈ (3 (�∨), study the variety of sums
of powers VSP( 5 , B)>, i.e., the subvariety of P(�) (B) that consists of polar
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B-hedra of 5 or, more general, the subvariety VSP( 5 , B) of HilbB (P(�))
parameterizing generalized polar s-hedra of 5 .
• (W2) Given B, find the equations of the closure PS(B, 3; =) in (3 (�∨) of
the locus of homogeneous forms of degree 3 which can be written as a
sum of B powers of linear forms.

We can also ask similar questions for several forms in (3 (�∨).
Note that PS(B, 3; =) is the affine cone over the secant variety SecB−1 (V=3).

In the language of secant varieties, the variety VSP( 5 , B)> is the set of linearly
independent sets of B points ?1, . . . , ?B in V=

3
such that [ 5 ] ∈ 〈?1, . . . , ?B〉 and

does not belong to the span of the proper subset of the set of these points. The
variety VSP( 5 , B) is the set of linearly independent / ∈ HilbB (P(�)) such that
[ 5 ] ∈ 〈/〉. Note that there is a natural map

VSP( 5 , B) → � (B, (3 (�)), / ↦→ 〈/〉3 ,

where � (B, (3 (�)) = �B−1 ( |(3 (�) |) is the Grassmannian of B-dimensional
subspaces of (3 (�). This map is not injective in general.

Also, note that for a general form 5 , the variety VSP( 5 , B) is equal to the
closure of VSP( 5 , B)> in the Hilbert scheme HilbB (P(�)) (see

Iarrobino
[422], 7.2). It is

not true for an arbitrary form 5 . One can also embed VSP( 5 ; B)> in P((3 (�))
by assigning to {;1, . . . , ;B} the product ;1 · · · ;B . Thus, we can compactify
VSP( 5 , B)> by taking its closure in P((3 (�)). In general, this closure is not
isomorphic to VSP( 5 , B).
Remark 1.3.26. If (3, =) is not one of the exceptional cases from Corollary
C1.3.11C1.3.11
1.3.21 and

(=+3
3

)
= (= + 1)B for some integer B, then a general form of degree

3 admits only finitely many polar B-hedra. How many? The known cases are
given in the following table.

d n s # reference

2s-1 1 s 1 J. Sylvester
Sylvester
[738]

5 2 7 1 D. Hilbert
Hilbert
[393], H. Richmond

RichmondWaring
[622],

F. Palatini
PalatiniWaring1
[569]

7 2 12 5 A. Dixon and T. Stuart
DixonWaring
[227],

K. Ranestad and F.-O. Schreyer
RS
[607]

8 2 15 16 K. Ranestad and F.-O. Schreyer
RS
[607]

3 3 5 1 J. Sylvester
Sylvester
[738]
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The list contains three cases when there is a unique polar B-hedron. It is con-
jectured that there are no more of such cases. The evidence for this conjecture
can be found in papers by M. Mella

Mella1
[510],

Mella2
[511], where it is proven that there

are no new cases when = = 2, 3 ≥ 5, and = ≥ 3 and = divides
(=+3
=−1

)
.

An explicit description of positive-dimensional varieties of sums of pow-
ers VSP( 5 , B) is known only in a few cases (3, =, B). We will discuss the
cases (3, =, B) = (2B − 1, 1, B), (3, 3, 5) later. For other cases, see papers

IlievRanestad
[424]

((3, =, B) = (3, 5, 10)),
Mukai2
[535], ((3, =, B) = (6, 2, 10)),

DolgachevKanev
[235] ((3, =, B) = (3, 2, 4))

and
RS
[607] ((3, =, B) = (3, 4, 8), (2, 3, 4), (6, 2, 10)),

1.4 Dual Homogeneous Forms
S:1.4

1.4.1 Catalecticant matrices
SS:1.4.1

Let 5 ∈ (3 (�∨). Consider the linear map (the apolarity map)

ap:5 : (:� → (3−: (�∨), k ↦→ �k ( 5 ). (1.69) apolmap

Its kernel is the space AP: ( 5 ) of forms of degree : which are apolar to 5 .
Assume that 5 =

∑B
8=1 ;

3
8
for some ;8 ∈ �∨. It follows from (

apolapol
1.56) that

ap:5 ((
: (�)) ⊂ 〈;3−:1 , . . . , ;3−:B 〉,

and hence,
rank(ap:5 ) ≤ B. (1.70) rank

Since any 5 can be written as a sum of B powers of linear forms if 2B > 3, we
assume that

B ≤ : ≤ 3 − :.

If we choose a basis in � and a basis in �∨, then ap:
5
is given by a matrix of

size
(:+=
:

)
×

(=+3−:
3−:

)
whose entries are linear forms in coefficients of 5 .

Choose a basis b0, . . . , b= in � and the dual basis C0, . . . , C= in �∨. Consider
a monomial lexicographically ordered basis in (: (�) (resp. in (3−: (�∨)). The
matrix of ap:

5
with respect to these bases is called the :-th catalecticant matrix

of 5 and is denoted by Cat: ( 5 ). Its entries 2uv are parameterized by pairs
(u, v) ∈ N=+1 × N=+1 with |u| = 3 − : and |v| = : . If we write

5 =
∑
|i |=3

(
3

i

)
0iti,

then
2uv = 0u+v.
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This follows easily from formula (
eq4eq4
1.5).

Considering 0i as independent variables Ci, we obtain the definition of a
general catalecticant matrix Cat: (3, =).

ex:1.4.1 Example 1.4.1. Let = = 1. Write 5 =
∑3
8=0

(3
8

)
08C

3−8
0 C81. Then

Cat: ( 5 ) =

©«
00 01 . . . 0:

01 02 . . . 0:+1
...

...
...

...

03−: 03−:+1 . . . 03

ª®®®®®¬
.

A square matrix of this type is called a circulant matrix, or a Hankel matrix. It
follows from (

rankrank
1.70) that 5 ∈ PS(B, 3; 1) implies that all (B + 1) × (B + 1) minors

of Cat: ( 5 ) are equal to zero. Thus, we obtain that SecB−1 (V1
3
) is contained in

the subvariety of P3 defined by (B + 1) × (B + 1)-minors of the matrices

Cat: (3, 1) =

©«
C0 C1 . . . C:

C1 C2 . . . C:+1
...

...
...

...

C3−: C3−:+1 . . . C3

ª®®®®®¬
.

For example, if we take B = 1, we obtain that the Veronese curve V1
3
⊂ P3

satisfies the equations C0C1 − C2C3 = 0, where 0 + 1 = 2 + 3. If we take, : = 1,
we get the well-known equations of a rational normal curve

rank(
(
C0 C1 · · · 03−1
C1 C2 · · · 03

)
= 1, (1.71) eqnratnormal

(see, for example,
Harris
[375]). As is easy to see, if we take we take : > 1, we get the

same equations.
Assume 3 = 2: . Then, the Hankel matrix is a square matrix of size : + 1. Its

determinant vanishes if and only if 5 admits a nonzero apolar form of degree
: . The set of such 5 ’s is a hypersurface in the space of binary forms of degree
2: . It contains the Zariski open subset of forms which can be written as a sum
of : powers of linear forms (see section

binarybinary
1.60).

For example, take : = 2. Then, the equation

det
©«
00 01 02
01 02 03
02 03 04

ª®®¬ = 0 (1.72) hankelq

describes binary quartics

5 = 00C
4
0 + 401C

3
0C1 + 602C

2
0C

2
1 + 403C0C

3
1 + 04C

4
1
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which lie in the Zariski closure of the locus of quartics represented in the form
(U0C0 + V0C1)4 + (U1C0 + V1C1)4. Note that a quartic of this form has simple roots
unless it has a root of multiplicity 4. Thus, any binary quartic with simple roots
satisfying equation (

hankelqhankelq
1.72) can be represented as a sum of two powers of linear

forms.
The determinant (

hankelqhankelq
1.72) is an invariant of a binary quartic. The cubic hyper-

surface in P4 defined by equation (
hankelqhankelq
1.72) is equal to the 1-secant variety of a

rational normal curve '4 in P4.

Note that

dim AP8 ( 5 ) = dim Ker(ap85 ) =
(=+8
8

)
− rank Cat8 ( 5 ).

Therefore,

dim(� 5 )8 = rank Cat8 ( 5 ),

and

�� 5 (C) =
3∑
8=0

rank Cat8 ( 5 )C8 . (1.73)

Since the ranks of ap8
5
and its transpose are the same, we obtain

rank Cat8 ( 5 ) = rank Cat3−8 ( 5 )

confirming that �� 5 (C) is a reciprocal monic polynomial.
Suppose 3 = 2: is even. Then, the coefficient at C: in �� 5 (C) is equal to the

rank of Cat: ( 5 ). The matrix Cat: ( 5 ) is a square matrix of size
(=+:
:

)
. One can

show that for a general 5 , this matrix is invertible. A polynomial 5 is called
degenerate if det(Cat: ( 5 )) = 0. It is called nondegenerate otherwise. Thus, the
set of degenerate polynomials is a hypersurface (catalecticant hypersurface)
given by the equation

det(Cat: (2:, =)) = 0. (1.74)

The polynomial det(Cat: (2:, =)) in variables Ci, |i| = 3, is called the catalecti-
cant determinant.

quad Example 1.4.2. Let 3 = 2. It is easy to see that the catalecticant polynomial is
the discriminant polynomial. Thus, a quadratic form is degenerate if and only if
it is degenerate in the usual sense. The Hilbert polynomial of a quadratic form
5 is

�� 5 (C) = 1 + AC + C2,

where A is the rank of the quadratic form.
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Example 1.4.3. Suppose 5 = C30 + · · · + C
3
B , B ≤ =. Then, C80, . . . , C

8
B are linearly

independent for any 8, and hence, rank Cat8 ( 5 ) = B for 0 < 8 < 3. This shows
that

�� 5 (C) = 1 + B(C + · · · + C3−1) + C3 .

Let P be the set of reciprocal monic polynomials of degree 3. One can
stratify the space (3 (�∨) by setting, for any ? ∈ P,

(3 (�∨)? = { 5 ∈ (3 (�∨) : �� 5 = ?}.

If 5 ∈ PS(B, 3; =) we know that

rank Cat: ( 5 ) ≤ ℎ(B, 3, =): = min(B,
(=+:
=

)
,
(=+3−:

=

)
).

One can show that, for a general enough 5 , the equality holds (see
Iarrobino
[422], p.13).

Thus, there is a Zariski open subset of PS(B, 3; =) which is contained in the
strata (3 (�∨)? , where ? =

∑3
8=0 ℎ(B, 3, =)8C8 .

1.4.2 Dual homogeneous forms
SS:1.4.2

In Subsection
SS:1.2.2SS:1.2.2
1.2.2, we introduced the introduced the notion of the dual variety

of a hypersurface, and, in particular, the dual quadric. Using the notion of the
catalecticant matrix, for any homogeneous form of even degree 5 ∈ (2: (�∨),
in a similar fashion one can define the dual homogeneous form 5 ∨ ∈ (2: (�).
If the degree is greater than two, the hypersurface + ( 5 ) differs from the dual
hypersurface + ( 5 )∨.
Consider the pairing

Ω 5 : (: (�) × (: (�) → C, (1.75) conjj

defined by

Ω 5 (k1, k2) = ap:5 (k1) (k2) = �k2 (ap:5 (k1)) = �k1k2 ( 5 ),

where we identify the spaces (: (�∨) and (: (�)∨. The pairing can be con-
sidered as a symmetric bilinear form on (: (�). Its matrix with respect to a
monomial basis in (: (�) and its dual monomial basis in (: (�∨) is the catalec-
ticant matrix Cat: ( 5 ).
Let us identify Ω 5 with the associated quadratic form on (: (�) (the restric-

tion of Ω 5 to the diagonal). This defines a linear map

Ω : (2: (�∨) → (2 ((: (�)∨), 5 ↦→ Ω 5 .

There is also the natural left inverse map of Ω

% : (2 ((: (�)∨) → (2: (�∨)
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defined by multiplication (: (�∨) × (: (�∨) → (2: (�∨). All these maps are
GL(�)-equivariant and realize the linear representation (2: (�∨) as a direct
summand in the representation (2 ((: (�∨)).

Definition 1.4.4. Assume that 5 ∈ (2: (�∨) is nondegenerate. The dual
quadratic form Ω∨

5
of Ω 5 is called the dual homogeneous form of 5 . We

will identify it with the polar bilinear form on (:+ .

Remark 1.4.5. Note that, contrary to the assertion of Theorem 2.3 in
DolgachevDual
[243],

Ω∨
5
is not equal, in general, to Ω 5 ∨ for some 5 ∨ ∈ (2: (+). We thank Bart van

den Dries for pointing out that the adjugate matrix of the catelecticant matrix
is not, in general, a catalecticant matrix as was wrongly asserted in the proof.
Recall that the locus of zeros of a quadratic from @ ∈ (2 (�∨) consists of

vectors { ∈ � such that the value of the polarized bilinear form 1@ : � → �∨

at { vanishes at {. Dually, the set of zeros of @∨ ∈ (2 (�) consists of linear
functions ; ∈ �∨ such that the value of 1@∨ : �∨ → � at ; is equal to zero. The
same is true for the dual form Ω∨

5
. Its locus of zeros consists of linear forms

; such that Ω−1
5
(;: ) ∈ (: (�) vanishes on ;. The degree : homogeneous form

Ω−1
5
(;: ) is classically known as the anti-polar of ; (with respect to 5 ).

Definition 1.4.6. Two linear forms ;, < ∈ �∨ are called conjugate with respect
to a nondegenerate form 5 ∈ (2: (�∨) if

Ω∨5 (;
: , <: ) = 0.

conj Proposition 1.4.7. Suppose 5 is given by (
sum2sum2
1.55), where the powers ;:

8
are

linearly independent in (: (�∨). Then, each pair ;8 , ; 9 is conjugate with respect
to 5 .

Proof Since the powers ;:
8
are linearly independent, we may include them

in a basis of (: (�∨). Choose the dual basis in (: (�). Then, the catalecticant
matrix of 5 has the upper corner matrix of size B equal to the diagonal matrix.
Its adjugate matrix has the same property. This implies that ;:

8
, ;
9

8
, 8 ≠ 9 , are

conjugate with respect to Ω∨
5
. �

1.4.3 The Waring rank of a homogeneous form
SS:1.4.3

Since any quadratic form @ can be reduced to a sum of squares, one can define
its rank as the smallest number A such that

@ = ;21 + · · · + ;
2
A

for some ;1, . . . , ;A ∈ �∨.
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Definition 1.4.8. Let 5 ∈ (3�∨. ItsWaring rankwrk( 5 ) is the smallest number
A such that

5 = ;31 + · · · + ;
3
A (1.76) sum

for some linear forms ;1, . . . , ;A ∈ �∨.

The next result follows immediately from the proof of Proposition
conjconj
1.4.7.

prop3 Proposition 1.4.9. Let Ω 5 be the quadratic form on (: (�) associated to 5 ∈
(2: (�∨). Then, the Waring rank of 5 is greater than or equal to the rank of
Ω 5 .

Let 5 be a nondegenerate form of even degree 2: . By Corollary
C1.3.11C1.3.11
1.3.21,

wrk( 5 ) = B(2:, =) ≥
⌈ 1
= + 1

(
= + 3
3

)⌉
,

with strict inequality only in the following cases:

• 3 = 2,wrk( 5 ) = rank Ω 5 = = + 1;
• = = 2, 3 = 4,wrk( 5 ) = rank Ω 5 = 6;
• = = 3, 3 = 4,wrk( 5 ) = rank Ω 5 = 10;
• = = 4, 3 = 4,wrk( 5 ) = rank Ω 5 = 15.

In all non-exceptional cases,

wrk( 5 ) ≥ 1
= + 1

(
= + 2:
=

)
=

(
= + :
=

)
(= + 2:) · · · (= + :)

2: · · · (: + 1) (= + 1) ≥ rank Ω 5 .

In most cases, we have strict inequality.

1.4.4 Mukai’s skew-symmetric bilinear form
SS:1.4.4

Let l ∈ ∧2 � be a skew-symmetric bilinear form on �∨. It admits a unique
extension to a Poisson bracket {, }l on ((�∨) which restricts to a skew-
symmetric bilinear form

{, }l : (:+1 (�∨) × (:+1 (�∨) → (2: (�∨). (1.77) poisson

Recall that a Poisson bracket on a commutative algebra � is a skew-symmetric
bilinear map � × � → �, (0, 1) ↦→ {0, 1} such that its left and right partial
maps �→ � are derivations.
Let 5 ∈ (2: (�∨) be a nondegenerate form and Ω∨

5
∈ (2 ((: (�)) be its dual

form. For each l as above, define fl, 5 ∈
∧2 (:+1 (�) by

fl, 5 (6, ℎ) = Ω∨5 ({6, ℎ}l).
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mukai Theorem 1.4.10. Let 5 be a nondegenerate form in (2: (�∨) of Waring rank
# = rankΩ 5 =

(=+:
=

)
. For any / = {[ℓ1], . . . , [ℓ# ]} ∈ VSP( 5 , #)>, let 〈/〉:+1

be the linear span of the powers ;:+1
8

in (:+1 (�∨). Then,

(i) 〈/〉:+1 is isotropic with respect to each form fl, 5 ;
(ii) ap:−1

5
((:−1�) ⊂ 〈/〉:+1;

(iii) ap:−1
5
((:−1�) is contained in the radical of each fl, 5 .

Proof To prove the first assertion it is enough to check that, for all 8, 9 , one
has fl, 5 (;:+18

, ;:+1
9
) = 0. We have

fl, 5 (;:+18 , ;:+19 ) = Ω∨5 ({;
:+1
8 , ;:+19 }l) = Ω∨5 (;

:
8 , ;

:
9 )l(;8 , ; 9 ).

Since ℓ:
8
are linearly independent, by Proposition

conjconj
1.4.7, Ω∨

5
(;:
8
, ;:
9
) = 0. This

checks the first assertion.
For any k ∈ (:−1 (�),

�k ( 5 ) = �k (
#∑
8=1

;2:8 ) =
#∑
8=1

�k (;2:8 ) =
(2:)!
(:+1)!

#∑
8=1

�k (;:−1
8 );:+18 .

This shows that ap:−1
5
((:−1 (�)) is contained in 〈/〉:+1. It remains for to check

that fl, 5 (�k ( 5 ), 6) = 0 for any k ∈ (:−1 (�), 6 ∈ (:+1 (�∨), l ∈ ∧2 � .
Choose coordinates C0, . . . , C= in �∨ and the dual coordinates b0, . . . , b= in � .
The space

∧2 � is spanned by the forms l8 9 = b8 ∧ b 9 . We have

{�k ( 5 ), 6}l8 9 = � b8 (�k ( 5 ))� b 9 (6) − � b 9 (�k ( 5 ))� b8 (6)

= � b8k ( 5 )� b 9 (6) − � b 9k ( 5 )� b8 (6) = �kb8 ( 5 )� b 9 (6) − �kb 9 ( 5 )� b8 (6).

For any 6, ℎ ∈ (: (�∨),

Ω∨5 (6, ℎ) = 〈Ω
−1
5 (6), ℎ〉.

Thus,

fl8 9 , 5 (�k ( 5 ), 6) = Ω∨5 (�kb8 ( 5 ), � b 9 (6)) −Ω∨5 (�kb 9 ( 5 ), � b8 (6))

= 〈kb8 , � b 9 (6)〉 − 〈kb 9 , � b8 (6)〉 = �k (� b8 b 9 (6) − � b 9 b8 (6)) = �k (0) = 0.

�

Since ap:−1
5
(�) is contained in the radical of fl, 5 , we have the induced

skew-symmetric form on (:+1 (�∨)/ap:−1
5
(�). By Lemma

L11L11
1.3.2,

(:+1 (�∨)/ap:−1
5 (�) = AP:+1 ( 5 )∨.
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If no confusion arises, we denote the induced form by fl, 5 and call it the
Mukai’s skew-form.
One can also consider the collection of the Mukai skew-forms fl, 5 as a

linear map

f 5 :
2∧
� →

2∧
AP:+1 ( 5 ), l ↦→ fl, 5 ,

or, its transpose

Cf 5 :
2∧

AP:+1 ( 5 )∨ →
2∧
�∨. (1.78) mu2

Let / = {[;1], . . . , [;B]} ∈ VSP( 5 , B)> be a polar B-hedron of a nondegener-
ate form 5 ∈ (2: (�∨) and, as before, let 〈/〉:+1 be the linear span of (: + 1)-th
powers of the linear forms ;8 . Let

! (/) = 〈/〉:+1/ap:−1
5 ((

:−1 (�)). (1.79) mukai2

It is a subspace of (:+1 (�∨)/ap:−1
5
((:−1 (�)) which we identify with the dual

space AP:+1 ( 5 )∨ of AP:+1 ( 5 ).
Now, observe that 〈/〉⊥

:+1 is equal to �/ (: + 1), where we identify / with the
reduced closed subscheme of the dual projective space P(�). This allows one to
extend the definition of ! (/) to any generalized polar B-hedron / ∈ VSP( 5 ; B):

! (/) = �/ (: + 1)⊥/ap:−1
5 ((

:−1 (�)) ⊂ (:+1 (�∨)/ap:−1
5 ((

:−1 (�)).

inj Proposition 1.4.11. Let 5 be a nondegenerate homogeneous form of degree
2: of Waring rank equal to #: =

(=+:
:

)
. Let /, / ′ ∈ VSP( 5 , #: ). Then,

! (/) = ! (/ ′) ⇐⇒ / = / ′.

Proof It is enough to show that

�/ (: + 1) = �/ ′ (: + 1) =⇒ / = / ′.

Suppose / ≠ / ′. Choose a subscheme /0 of / of length #: − 1 that is not a
subscheme of / ′. Since dim �/0 (:) ≥ dim (: (�∨)−ℎ0 (O/ ) =

(=+:
:

)
−#: +1 =

1, we can find a nonzero k ∈ �/0 (:). The sheaf I//I/0 is supported at one
point G and is annihilated by the maximal ideal mG . Thus, mGI/0 ⊂ I/ . Let
b ∈ � be a linear form on �∨ vanishing at G but not vanishing at any proper
closed subscheme of / ′. This implies that bk ∈ �/ (: + 1) = �/ ′ (: + 1) and
hence, k ∈ �/ ′ (:) ⊂ AP: ( 5 ) contradicting the nondegeneracy of 5 . �

Lemma 1.4.12. Let 5 ∈ (2: (�∨) be a nondegenerate form of Waring rank
#: =

(:+=
=

)
. For any / ∈ VSP( 5 , #: )>,

dim ! (/) =
(=+:−1
=−1

)
.



62 Polarity

Proof Counting constants, we see that

dim〈/〉:+1 ≥ dim (:+1 (�) − #: ,

and hence,

dim ! (/) = dim〈/〉⊥:+1 − dim ap:−1
5 ((

:−1 (�)) ≤ #: −
(=+:−1

=

)
=

(=+:−1
=−1

)
.

We have to consider the exceptional cases where wrk( 5 ) = rank Ω 5 . The
assertion is obvious in the case : = 1. The space ! (/) is of expected dimension
unless ;21 , . . . , ;

2
=+1 are linearly dependent. This implies that 5 is a quadratic form

of rank less than = + 1, contradicting the assumption.
Assume = = 2, : = 2 and dim ! (/) > 3, or, equivalently, dim〈/〉3 > 4.

Since AP2 ( 5 ) = {0}, there are no conics passing through / . In particular, no
four points are collinear. Let � be a conic through the points [;1], . . . , [;5] and
let G1, G2 be two additional points on � such that each irreducible component
of � contains at least four points. Since dim〈/〉3 > 4, we can find a two-
dimensional linear system of cubics through [;1], . . . , [;5], G1, G2. By Bezout’s
Theorem, � belongs to the fixed part of the linear system. The residual part is
a 2-dimensional linear system of lines through [;6], an obvious contradiction.

Similar arguments check the assertion in the cases = = 2, : = 3, 4. In the
remaining case = = 3, : = 2, we argue as follows. We have #2 = 10. Assume
! (/) < 6, or, equivalently, dim〈/〉3 > 10. Since AP2 ( 5 ) = {0}, no 4 lines are
collinear (otherwise, a quadric through 3 points on the line, and the remaining 6
points, will contain all ten points). Choose three non-collinear points ?1, ?2, ?3
among the ten points and two general points on each line ?8 ? 9 and one general
point in the plane containing the three points. Then, we can find a 3-dimensional
linear system of cubics in |〈/〉3 | passing through the additional 7 points. It
contains the plane through ?1, ?2, ?3. The residual linear system consists of
quadrics through the remaining 7 points in / . Since no four lines are collinear,
it is easy to see that the dimension of the linear system of quadrics through 7
points is of dimension 2. This contradiction proves the assertion. �

C1.4.9 Corollary 1.4.13. Let 5 ∈ (2: (�∨) be a nondegenerate form of Waring rank
#: =

(=+:
=

)
. Let VSP( 5 , #: )> be the variety of polar polyhedra of 5 . Then, the

map / ↦→ ! (/) is an injective map

VSP( 5 , #: )> → � (
(=+:−1
=−1

)
,AP:+1 ( 5 )∨).

Its image is contained in the subvariety of subspaces isotropic with respect to
all Mukai’s skew forms fl, 5 on AP:+1 ( 5 )∨.

Example 1.4.14. Assume = = 2. Then, wrk( 5 ) = rank Ω 5 =
(:+2

2
)
if and

only if : = 1, 2, 3, 4. In these cases the Corollary applies. We will consider the
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cases : = 1 and : = 2 later. If : = 3, we obtain that VSP( 5 , 10)> embeds in
� (4, 9). Its closure is a K3 surface

Mukai2
[535],

RS
[607]. If : = 4, VSP( 5 , 15)> embeds

in � (5, 15). It consists of 16 points
RS
[607].

1.4.5 Harmonic polynomials
SS:1.4.5

Let @ ∈ (2 (�∨) be a nondegenerate quadratic form on � . For convenience of
notation, we identify @ with the apolarity map ap1

@ : � → �∨. By the universal
property of the symmetric power, the isomorphism @ : � → �∨ extends to
a linear isomorphism (: (@) : (: (�) → (: (�∨) which defines a symmetric
nondegenerate pairing

( , ): : (: (�) × (: (�) → C. (1.80) newpair

It is easy to check that, for any b ∈ (: (�) and { ∈ � ,

(b, {: ) = :!b (;:{ ),

where ;{ ∈ �∨ is the linear function ap1
@ ({).

Let us compare the pairing
newpairnewpair
1.80 with the pairing Ω@: from (

conjjconjj
1.75). Choose

a basis ([0, . . . , [=) in � and the dual basis (C0, . . . , C=) in �∨ such that @ =
1
2 (

∑
C2
8
), so that @([8) = C8 . Then,

(: (@) ((i) = ti .

However,

ap:
@:
((i) = :!ti + @6,

for some 6 ∈ (:−2 (�∨). Thus,

((: (@) − 1
:!

ap:
@:
) ((: (�)) ⊂ @(:−2 (�∨).

Let

H :
@ (�) = (@(:−2 (�∨))⊥ ⊂ (: (�)

be the subspace of @-harmonic symmetric tensors. Inmore convenient language,
exchanging the roles of � and �∨, and replacing @ with the dual form @∨ ∈
(2 (�), we have

H :
@ (�∨) = Ker(�@∨ : (: (�∨) → (:−2 (�∨)).

In the previous choice of coordinates, the operator �@∨ is the Laplace operator
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1
2
∑ m2

mC2
8

. Restricting ap:
@:

to the subspace H :
@ (�), we obtain a nondegenerate

symmetric pairing
H :
@ (�) × H :

@ (�) → C

which coincides with the restriction of 1
:!Ω@: to the same subspace. Changing

� to �∨, we also obtain a symmetric nondegenerate pairing

H :
@ (�∨) × H :

@ (�∨) → C

which can be defined either by the restriction of the pairing (
newpairnewpair
1.80) or by the

quadratic form 1
:!Ω(@∨): . Note that all these pairings are equivariant with

respect to the orthogonal group O(�, @), i.e.,can be considered as pairings of
the linear representations of O(�, @). We have the direct sum decomposition
of linear representations

(: (�) = H :
@ (�) ⊕ @∨(:−2 (�). (1.81) harmpair

The summand @∨(:−2 (�) coincides with ap:−2
@∨ ((

:−2 (�∨)). The linear repre-
sentationH :

@ (�) is an irreducible representation of O(�, @) (see
Goodman
[345]).

Next, let us see that, in the case when 5 is a power of a nondegenerate
quadratic polynomial, the Mukai form coincides, up to a scalar multiple, with
the skew form on the space of harmonic polynomials studied by N. Hitchin in
Hitchin2
[401] and

Hitchin3
[402].

The Lie algebra o(�, @) of the orthogonal group O(�, @) is equal to the Lie
subalgebra of the Lie algebra gl(�) of endomorphisms of � that consists of
operators � : � → � such that the composition � ◦ @−1 : �∨ → � → �

is equal to the negative of its transpose. This defines a linear isomorphism of
vector spaces

2∧
�∨ → o(�, @), l ↦→ l̃ = @−1 ◦ l : � → �∨ → �.

Now, taking l ∈ ∧2 �∨, and identifying (:+1 (�∨)/ap:−1
@:
((:−1 (�)) with

H :+1
@ (�∨), we obtain the Mukai pairing

fl,@: : H :+1
@ (�∨) × H :+1

@ (�∨) → C

on the space of harmonic : + 1-forms on � .

P1.4.8 Proposition 1.4.15. For any 6, ℎ ∈ H :+1
@ (�∨) and any l ∈ ∧2 �∨,

fl,@: (6, ℎ) =
(: + 1)2
:!

(l̃ · 6, ℎ):+1,

where (, ):+1 : (:+1 (�∨) × (:+1 (�∨) → C is the symmetric pairing defined by
(:+1 (@−1).
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Proof It is known that the spaceH :+1
@ (�∨) is spanned by the forms @({):+1,

where { is an isotropic vector for @, i.e.,[{] ∈ + (@) (see
Goodman
[345], Proposition

5.2.6). So, it is suffices to check the assertion when 6 = @({):+1 and ℎ =
@(|):+1 for some isotropic vectors {, | ∈ � . Choose a basis (b0, . . . , b=) in
� and the dual basis C0, . . . , C= in �∨ as in the beginning of this subsection.
An element D ∈ o(�, @) can be written in the form

∑
08 9 C8

m
mC 9

for some skew-
symmetric matrix (08 9 ). We identify (08 9 ) with the skew 2-forml ∈ ∧2 � . We
can also write 6 = (U · C):+1 and ℎ = (V · C):+1, where we use the dot-product
notation for the sums

∑
U8C8 . We have

(D ·6, ℎ):+1 = (: +1)!
(∑

08 9 C8
m

mC 9
(U · C):+1

)
(V) = (: +1)!(: +1) (U · V):l(U · C, V · C).

The computations from the proof of Theorem
mukaimukai
1.4.10, show that

fl,@: (6, ℎ) = Ω∨@: ((U · C)
: , (V · C): )l(U · C, V · C).

It is easy to see that Ω∨
@:

coincides with Ω(@∨): on the subspace of harmonic
polynomials. We have

Ω(@∨):
(
(U · C): , (V · C):

)
= � (U ·C): ( 1

2

∑
b2
8 ): ((V · C): )

= :!� (U ·b ): ((V · C): ) = (:!)2 (U · V): .

This checks the assertion.
�

Computing the catalecticant matrix of @: we find that @: is a nondegenerate
form of degree 2: . Applying Corollary

C1.4.9C1.4.9
1.4.13, we obtain that in the cases listed

in Corollary
C1.3.11C1.3.11
1.3.21, there is an injective map

VSP(@: ,
(=+:
=

)
) → � (

(=+:−1
=−1

)
,H :+1

@ (�∨)). (1.82) inj2

Its image is contained in the subvariety of subspaces isotropic with respect to
the skew-symmetric forms (6, ℎ) ↦→ (D · 6, :):+1, D ∈ o(�, @).
The following Proposition gives a basis in the space of harmonic polynomials

(see
Miles
[518]). We assume that (�, @) = (C=+1, 1

2
∑
C2
8
).

Proposition 1.4.16. For any set of non-negative integers (10, . . . , 1=) such that
18 ≤ 1 and

∑
18 = : , let

�:10 ,...,1=
=

∑
(−1) [00/2] :![00/2]!∏=

8=0 08!
∏=
8=1 (

18−08
2 )!

=∏
8=0

C
08
8
,

where the summation is taken over the set of all sequences of non-negative
integers (00, . . . , 0=) such that

• 08 ≡ 18 mod 2, 8 = 0, . . . , =,
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• ∑=
8=0 08 = : ,

• 08 ≤ 18 , 8 = 1, . . . , =.

Then, the polynomials �:
10 ,...,1=

form a basis of the spaceH :
@ (C=+1).

For any polynomial 5 ∈ C[C0, . . . , C=] one can find the projection � 5 to the
subspace of harmonic polynomials. The following formula is taken from

Vilenkin
[790].

� 5 = 5 −
[:/2]∑
B=1
(−1)B+1 @BΔB 5

2BB!(= − 3 + 2:) (= − 5 + 2:) · · · (= − 2B − 1 + 2:) ,

(1.83) proj

where Δ =
∑ m2

mC2
8

is the Laplace operator.

Example 1.4.17. Let = = 2 so that dim � = 3. The space of harmonic polyno-
mialsH :

@ (�∨) is of dimension
(:+2

2
)
−

(:
2
)
= 2: +1. Since the dimension is odd,

the skew form fl,@: is degenerate. It follows from Proposition
P1.4.8P1.4.8
1.4.15 that its

radical is equal to the subspace of harmonic polynomials 6 such that l̃ · 6 = 0
(recall that l̃ denotes the element of o(�, @) corresponding to l ∈ ∧2 �). In
coordinates, a vector D = (D0, D1, D2) ∈ C3 corresponds to the skew-symmetric
matrix ©«

0 D0 D1
−D0 0 D2
−D1 −D2 0

ª®®¬
representing an endomorphism of � , or an element of

∧2 � . The Lie bracket
is the cross-product of vectors. The action of a vector D on 5 ∈ C[C0, C1, C2] is
given by

D · 5 =
2∑

8, 9 ,:=0
n8 9: C8D 9

m 5

mC:
,

where n8, 9 ,: = 0 is totally skew-symmetic with values equal to 0, 1,−1.
For any { ∈ � , let us consider the linear form ;{ = @({) ∈ �∨. We know

that @({): ∈ H :
@ (�∨) if [{] ∈ + (@). If [{] ∉ + (@), then we can consider the

projection 5{ of (;{): toH :
@ (�∨). By (

projproj
1.83), we get

5{ = ;
:
{ +

[:/2]∑
B=1
(−1)B : (: − 1) · · · (: − 2B + 1)

2BB!(2: − 1) · · · (2: − 2B + 1) @({)
B@B;:−2B

{ . (1.84)

We have

D · ;{ = ;D×{ .
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Since 5 ↦→ D · 5 is a derivation of Sym(�∨) and D · @ = 0, we obtain

D · 5{ = ;D×{
(
:;:−1
{ +

[:/2]∑
B=1
(−1)B : (: − 1) · · · (: − 2B + 1) (: − 2B)@({)B ;:−2B−2

{

2BB!(2: − 1) · · · (2: − 2B + 1)
)
.

(1.85)
This implies that the harmonic polynomial 5D satisfies D · 5D = 0 and hence,
belongs to the radical of the skew form fD,@: . The Lie algebra so(3) is iso-
morphic to the Lie algebra sl(2) and its irreducible representation on the space
of degree : harmonic polynomials is isomorphic to the representation of sl(2)
on the space of binary forms of degree 2: . It is easy to see that the space of
binary forms invariant under a nonzero element of sl(2) is one-dimensional.
This implies that the harmonic polynomial 5D spans the radical of fD,@: on
H :
@ (�∨).
Let 5 ∈ �: (�∨) be a nonzero harmonic polynomial of degree : . The

orthogonal complement 5 ⊥ of 5 with respect to ( , ): : H :
@ (�∨) ×H :

@ (�∨) →
C is of dimension 2: . The restriction of the skew-symmetric form fD,@: to 5 ⊥
is degenerate if and only if 5D ∈ 5 ⊥, i.e., ( 5D , 5 ): = (;:D , 5 ) = 5 (D) = 0. Here,
we used that the decomposition (

harmpairharmpair
1.81) is an orthogonal decomposition with

respect to ( , ): . Let Pf be the pfaffian of the skew form fD,@: on 5 ⊥. It is equal
to zero if and only if the form is degenerate. By above, it occurs if and only if
5 (D) = 0. Comparing the degrees, this gives

+ ( 5 ) = + (Pf).

So, every harmonic polynomial can be expressed in a canonical way as a pfaffian
of a skew-symmetric matrix with entries linear forms, a result due to N. Hitchin
Hitchin4
[403].

1.5 First Examples
S:1.5

1.5.1 Binary forms
SS:1.5.1

Let* be a 2-dimensional linear space and 5 ∈ (3 (*∨) \ {0}. The hypersurface
- = + ( 5 ) can be identified with a positive divisor div( 5 ) = ∑

<8G8 of degree
3 on |* | � P1. Since

∧2* � C, we have a natural isomorphism * → *∨

of linear representations of SL(*). It defines a natural isomorphism between
the projective line |* | and its dual projective line P(*). In coordinates, a point
0 = [00, 01] is mapped to the hyperplane + (01C0 − 00C1) whose zero set is
equal to the point 0. If - is reduced (i.e., 5 has no multiple roots), then,
under the identification of |* | and P(*), - coincides with its dual -∨. In
general, -∨ consists of simple roots of 5 . Note that this is consistent with
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the Plücker–Teissier formula. The degrees of the Hessian and the Steinerian
coincide, although they are different if 3 > 3. Assume that - is reduced. The
partial derivatives of 5 define the polar map 6 : |* | → |* | of degree 3−1. The
ramification divisorHe(-) consists of 23−4 points and it is mapped bĳectively
onto the branch divisor St(-).
Example 1.5.1. We leave the case 3 = 2 to the reader. Consider the case 3 = 3.
In coordinates,

5 = 00C
3
0 + 301C

2
0C1 + 302C0C

2
1 + 03C

3
1 .

All invariants are powers of the discriminant invariant

Δ = 02
00

2
3 + 4000

3
2 + 403

103 − 600010203 − 302
10

2
2. (1.86) cubinv

whose symbolic expression is (12)2 (13) (24) (34)2 (see
Turnbull
[768], p. 244). The

Hessian covariant

� = (0002 − 02
1)C

2
0 + (0003 − 0102)C0C1 + (0103 − 02

2)C
2
1 .

Its symbolic expression is (01)0G1H . There is also a cubic covariant

� = � ( 5 , �) = det
©«
C30 3C20C1 3C0C21 C31
02 −201 00 0
03 −02 −01 00
0 −03 −202 01

ª®®®®¬
with symbolic expression (01)2 (02)21G22

G . The covariants 5 , � and � form a
complete system of covariants, i.e.,generate the module of covariants over the
algebra of invariants.

E1.5.2 Example 1.5.2. Consider the case 3 = 4. In coordinates,

5 = 00C
4
0 + 401C

3
0C1 + 602C

2
0C

2
1 + 403C0C

3
1 + 04C

4
1 .

There are two basic invariants ( and ) on the space of quartic binary forms.
Their symbolic expression are ( = (12)4 and ) = (12)2 (13)2 (23)2. Explicitly,

( = 0004 − 40103 + 302
2, (1.87)

) = 000204 + 2010203 − 000
2
3 − 0

2
104 − 03

2.

Note that) coincideswith the determinant of the catalecticantmatrix of 5 . Each
invariant is a polynomial in ( and ) . For example, the discriminant invariant is
equal to

Δ = (3 − 27)2.
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The Hessian He(-) = + (�) and the Steinerian ((-) = + ( ) are both of
degree 4. We have

� = (0002 − 02
1)C

4
0 + 2(0003 − 0102)C30C1 + (0004 + 20103 − 302

2)C
2
0C

2
1

+2(0104 − 0203)C0C31 + (0204 − 02
3)C

4
1 .

and

 = Δ((00C0 + 01C1)G3 + 3(01C0 + 02C1)G2H + 3(02C0 + 03C1)GH2 + (03C0 + 04C1)H3).

Observe that the coefficients of � (resp.  ) are of degree 2 (resp. 4) in
coefficients of 5 . There is also a covariant � = � ( 5 , �) of degree 6 and
the module of covariants is generated by 5 , �, � over C[(, )]. In particular,
 = U) 5 + V(�, for some constants U and V. By taking 5 in the form

5 = C40 + 6<C20C
2
1 + C

4
1 , (1.88)

and comparing the coefficients, we find

2 = −3) 5 + 2(�. (1.89)

Under identification |* | = P(*), a generalized :-hedron / of 5 ∈ (3 (*∨)
is the zero divisor of a form 6 ∈ (: (*) which is apolar to 5 . Since

�1 ( |� |,I/ (3)) � �1 (P1,OP1 (3 − :)) = 0, : ≥ 3 + 1,

any / is automatically linearly independent. Identifying a point [6] ∈ |(: (*) |
with the zero divisor div(6), we obtain

Theorem 1.5.3. Assume = = 1. Then,

VSP( 5 ; :) = |AP: ( 5 ) |.

Note that the kernel of the map

(: (*) → (3−: (*∨), k ↦→ �k ( 5 )

is of dimension ≥ dim (: (*) − dim (3−: (*∨) = : + 1 − (3 − : + 1) = 2: − 3.
Thus, �k ( 5 ) = 0 for some nonzero k ∈ (: (*), whenever 2: > 3. This shows
that 5 has always generalized polar :-hedron for : > 3/2. If 3 is even, a binary
form has an apolar 3/2-form if and only if det Cat3/2 ( 5 ) = 0. This is a divisor
in the space of all binary 3-forms.
Example 1.5.4. Take 3 = 3. Assume that 5 admits a polar 2-hedron. Then,

5 = (01C0 + 11C1)3 + (02C0 + 12C1)3.

It is clear that 5 has 3 distinct roots. Thus, if 5 = (01C0 + 11C1)2 (02C0 + 12C1)
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has a double root, it does not admit a polar 2-hedron. However, it admits a
generalized 2-hedron defined by the divisor 2?, where ? = (11,−01). In the
secant variety interpretation, we know that any point in |(3 (�∨) | either lies on a
unique secant or on a unique tangent line of the rational cubic curve. The space
AP2 ( 5 ) is always one-dimensional. It is generated either by a binary quadric
(−11b0 + 01b1) (−12b0 + 02b1), or by (−11b0 + 01b1)2.
Therefore, VSP( 5 , 2)> consists of one point or empty but VSP( 5 , 2) always

consists of one point. This example shows that VSP( 5 , 2) ≠ VSP( 5 , 2)> in
general.

1.5.2 Quadrics
SS:1.5.2

It follows from Example
ex1.1.3ex1.1.3
1.3.18 that SecC (V=2 ) ≠ |(

2 (�∨) | if and only if there
exists a quadric with C +1 singular points in general position. Since the singular
locus of a quadric+ (@) is a linear subspace of dimension equal to corank(@)−1,
we obtain that Sec= (V=2 ) = |(

2 (�∨) |. Therefore, any general quadratic form can
be written as a sum of = + 1 squares of linear forms ;0, . . . , ;=. Of course, linear
algebra gives more. Any quadratic form of rank = + 1 can be reduced to sum of
squares of the coordinate functions. Assume that @ = C20 + · · · + C

2
=. Suppose we

also have @ = ;20 + · · · + ;
2
=. Then, the linear transformation C8 ↦→ ;8 preserves

@, and hence, is an orthogonal transformation. Since polar polyhedra of @ and
_@ are the same, we see that the projective orthogonal group PO(= + 1) acts
transitively on the set VSP( 5 , =+ 1)> of polar (=+ 1)-hedra of @. The stabilizer
group � of the coordinate polar polyhedron is generated by permutations of
coordinates and diagonal orthogonal matrices. It is isomorphic to the semi-
direct product 2= o S=+1 (the Weyl group of root systems of types �=, �=),
where we use the notation 2= for the 2-elementary abelian group (Z/2Z)=.
Thus, we obtain

T1.5.3 Theorem 1.5.5. Let @ be a quadratic form in = + 1 variables of rank = + 1.
Then,

VSP(@, = + 1)> � PO(= + 1)/2= oS=+1.

The dimension of VSP(@, = + 1)> is equal to 1
2=(= + 1).

Example 1.5.6. Take = = 1. Using the Veronese map v2 : P1 → P2, we
consider a nonsingular quadric & = + (@) as a point ? in P2 not lying on the
conic � = + (C0C2 − C21). A polar 2-gon of @ is a pair of distinct points ?1, ?2
on � such that ? ∈ 〈?1, ?2〉. The set of polar 2-gons can be identified with
the pencil of lines through ? with the two tangent lines to � deleted. Thus,
, (@, 2)> = P1 \ {0,∞} = C∗. There are two generalized 2-gons 2?0 and 2?∞
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defined by the tangent lines. Each of them gives the representation of @ as ;1;2,
where + (;8) are the tangents. We have VSP( 5 , 2) = VSP( 5 , 2)> � P1.
Let @ ∈ (2 (�∨) be a nondegenerate quadratic form. We have an injective

map (
inj2inj2
1.82)

VSP(@, = + 1)> → � (=,H2
@ (�)) � � (=,

(=+2
2

)
− 1). (1.90) mapq

Its image is contained in the subvariety � (=,H2
@ (�))f of subspaces isotropic

with respect to the Mukai skew forms.
Recall that the Grassmann variety � (<,,) of linear <-dimensional sub-

spaces of a linear space , of dimension # carries the natural rank = vector
bundle S, the universal subbundle. Its fiber over a point ! ∈ � (<,,) is equal
to !. It is a subbundle of the trivial bundle ,� (<,, ) associated to the vector
space, . We have a natural exact sequence

0→ S → ,∨
� (<,, ) → Q → 0,

where Q is the universal quotient sheaf, such that the fiber of Q∨ ⊂ ,� (<,, )
over the point ! ∈ � (<.,) is equal to ! ⊂ , (we will discuss the Grassman-
nians later with great details in Section

S:2.4S:2.4
2.4 and in Chapters 10 and 11.

By restriction, we can view the Mukai form f@ :
∧2 � → ∧2H2

@ (�∨) as
a section of the vector bundle

∧2 S∨ ⊗ ∧2 �∨. The image of VSP(@, = + 1) is
contained in the zero locus of a section of this bundle defined by f@ . Since the
rank of the vector bundle is equal to

(=
2
) (=+1

2
)
, we expect that the dimension of

its zero locus is equal to

dim� (=,
(=+2

2
)
− 1) −

(
=

2

) (
= + 1

2

)
= =(

(=+2
2

)
− 1 − =) −

(
=

2

) (
= + 1

2

)
.

Unfortunately, this number is ≤ 0 for = > 2, so the expected dimension is
wrong. However, when = = 2, we obtain that the expected dimension is equal to
3 = dim VSP(@, 3).We can viewfl,@ as a hyperplane in the Plücker embedding
of � (2,H2

@ (�)) � � (2, 5). So, VSP(@, 3) embeds into the intersection of 3
hyperplane sections of � (2, 5).

chap Theorem 1.5.7. Let @ be a nondegenerate quadratic form on a 3-dimensional
vector space � . Then, the image of VSP(@, 3) in � (2,H2

@ (�)), embedded in
the Plücker space, is a smooth irreducible 3-fold equal to the intersection of
� (2,H2

@ (�)) with a linear space of codimension 3.

Proof We have dimH2
@ (�) = 5, so � (2,H2

@ (�)) � � (2, 5) is of dimension
6. Hyperplanes in the Plücker space are elements of the space |∧2H2

@ (�)∨ |.
Note that the functions B@,l are linearly independent. In fact, a basis b0, b1, b2
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in � gives a basis l01 = b0 ∧ b1, l02 = b0 ∧ b2, l12 = b1 ∧ b2 in
∧2 � .

Thus, the space of sections B@,l is spanned by 3 sections B01, B02, B12 corre-
sponding to the forms l8 9 . Without loss of generality, we may assume that
@ = C20 + C

2
1 + C

2
2 . If we take 0 = C0C1 + C22 , 1 = −C20 + C

2
1 + C

2
2 , we see that

B01 (0, 1) ≠ 0, B12 (0, 1) = 0, B02 (0, 1) = 0. Thus, a linear dependence be-
tween the functions B8 9 implies the linear dependence between two functions.
It is easy to see that no two functions are proportional. So our 3 functions
B8 9 , 0 ≤ 8 < 9 ≤ 2 span a 3-dimensional subspace of

∧2H2
@ (�∨), and hence,

define a codimension 3 projective subspace ! in the Plücker space |∧2H2
@ (�) |.

The image of VSP(@, 3) under the map (
mapqmapq
1.90) is contained in the intersection

� (2, �) ∩ !. This is a 3-dimensional subvariety of � (2,H2
@ (�)), and hence,

contains `(VSP(@, 3)) as an irreducible component. We skip an argument,
based on counting constants, which proves that the subspace ! belongs to an
open Zariski subset of codimension 3 subspaces of

∧2H2
@ (�) for which the

intersection ! ∩ � (2,H2
@ (�)) is smooth and irreducible (see

DolgachevDual
[243]). �

It follows from the adjunction formula and the known degree of � (2, 5) that
the closure of VSP(@, 3)> in � (2,H2

@ (�)) is a smooth Fano variety of degree
5. We will discuss it again in the next chapter.
Remark 1.5.8. One can also consider the varieties VSP(@, B) for B > = + 1. For
example, we have

C20 − C
2
2 =

1
2 (C0 + C1)

2 + 1
2 (C0 − C1)

2 − 1
2 (C1 + C2)

2 − 1
2 (C

2
1 − C2)

2,

C20 + C
2
1 + C

2
2 = (C0 + C2)

2 + (C0 + C1)2 + (C1 + C2)2 − (C0 + C1 + C2)2.

This shows thatVSP(@, =+2),VSP(@, =+3) are not empty for any nondegenerate
quadric & in P=, = ≥ 2.

Exercises
E:1

1.1 Suppose - is a plane curve and G ∈ - is its ordinary double point. Show that the
pair consisting of the tangent line of the first polar %0 (-) at G and the line 0G is
harmonically conjugate (see section

polarlinespolarlines
2.1.2) to the pair of tangents to the branches

of - at G in the pencil of lines through G. If G is an ordinary cusp, then show that
the polar line of %0 (-) at G is equal to the cuspidal tangent of - at G.ex:1.1

1.2 Show that a line contained in a hypersurface - belongs to all polars of - with
respect to any point on this line.ex:1.2

1.3 Find the multiplicity of the intersection of a plane curve � with its Hessian at an
ordinary double point and at an ordinary cusp of �. Show that the Hessian has a
triple point at the cusp.ex:1.3

1.4 Suppose a hypersurface - in P= has a singular point G of multiplicity < > 1.
Prove that He(-) has this point as a point of multiplicity ≥ (= + 1)< − 2=.ex:1.4
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1.5 Suppose a hyperplane is tangent to a hypersurface - along a closed subvariety .
of codimension 1. Show that . is contained in He(-).ex:1.5

1.6 Suppose 5 is the product of 3 distinct linear forms ;8 (C0, . . . , C=). Let � be the
matrix of size (= + 1) × 3 whose 8-th column is formed by the coefficients of
;8 (defined, of course up to proportionality). Let Δ� be the maximal minor of �
corresponding to a subset � of [1, . . . , 3] and 5� be the product of linear forms
;8 , 8 ∉ �. Show that

He( 5 ) = (−1)= (3 − 1) 5 =−1
∑
�

Δ2
� 5

2
�

(
Muir
[531], p. 660).ex:1.6

1.7 Find an example of a reduced hypersurface whose Hessian surface is nowhere
reduced.ex:1.7

1.8 Show that the locus of points on the plane where the first polars of a plane curve
- are tangent to each other is the Hessian of - and the set of common tangents
is the Cayleyan curve.ex:1.8

1.9 Show that each inflection tangent of a plane curve - , considered as a point in the
dual plane, lies on the Cayleyan of - .e:1.9

1.10 Show that the class of the Steinerian St(-) of a plane curve - of degree 3 is
equal to 3(3 − 1) (3 − 2) but its dual is not equal to Cay(-).ex:1.10

1.11 Let D<,= ⊂ P<=−1 be the image in the projective space of the variety of < × =
matrices of rank ≤ min{<, =} − 1.

D̃<,= = {(�, G) ∈ P<=−1 × P= : � · G = 0}

is a resolution of singularities of D<,=. Find the dual variety of D<,=.ex:1.11
1.12 Find the dual variety of the Segre variety B(P= × P=) ⊂ P=2+2=.ex:1.12
1.13 Let - be the union of : nonsingular conics in general position. Show that -∨ is

also the union of : nonsingular conics in general position.ex:1.13
1.14 Let - has only X ordinary nodes and ^ ordinary cusps as singularities. Assume

that the dual curve -∨ has also only X̌ ordinary nodes and ˇ̂ ordinary cusps as
singularities. Find X̌ and ˇ̂ in terms of 3, X, ^.ex:1.14

1.15 Give an example of a self-dual (i.e.,-∨ � -) plane curve of degree > 2.ex:1.15
1.16 Show that the Jacobian of a net of plane curves has a double point at each simple

base point unless the net contains a curve with a triple point at the base pointEnriques-Chisini
[292].ex:1.16

1.17 Let |! | be a general =-dimensional linear system of quadrics in P= and |! |⊥ be
the (

(=+2
2

)
− = − 2)-dimensional subspace of apolar quadrics in the dual space.

Show that the variety of reducible quadrics in |! |⊥ is isomorphic to the Reye
variety of |! | and has the same degree.1.17

1.18 Show that the embedded tangent space of the Veronese variety V=
3
at a point

represented by the form ;3 is equal to the projectivization of the linear space of
homogeneous polynomials of degree 3 of the form ;3−1<.ex:1.18

1.19 Using the following steps, show that V4
3 is 6-defective by proving that for any

seven general points ?8 in P4, there is a cubic hypersurface with singular points
at the ?8’s.
(i) Show that there exists a Veronese curve '4 of degree four through the seven

points.
(ii) Show that the secant variety of '4 is a cubic hypersurface which is singular

along '4.



74 Polarity

ex:1.9
1.20 Let @ be a nondegenerate quadratic form in =+1 variables. Show that VSP(@, =+

1)> embedded in � (=, �) is contained in the linear subspace of codimension =.ex:20
1.21 Compute the catalecticant matrix Cat2 ( 5 ), where 5 is a homogeneous form of

degree 4 in 3 variables.ex:21
1.22 Let 5 ∈ (2: (�∨) and Ω 5 be the corresponding quadratic form on (: (�).

Show that the quadric + (Ω 5 ) in |(: (�) | is characterized by the following two
properties:

• Its pre-image under the Veronese map v: : |� | → |(: (�) | is equal to + ( 5 );
• Ω 5 is apolar to any quadric in |(: (�∨) | which contains the image of the

Veronese map |�∨ | = P(�) → |(: (�∨) | = P((: (�)).
ex:1.22

1.23 Let �: be the locus in |(2: (�∨) | of hypersurfaces + ( 5 ) such that det Cat: ( 5 ) =
0. Show that�: is a rational variety. [Hint: Consider the rational map�: d |� |)
which assigns to + ( 5 ) the point defined by the subspace AP: ( 5 ) and study its
fibres].ex:1.23

1.24 Give an example of a polar 4-gon of the cubic C0C1C2 = 0.ex:1.24
1.25 Find all binary forms of degree 3 for which VSP( 5 , 2)> = ∅.ex:1.25
1.26 Let 5 be a form of degree 3 in = + 1 variables. Show that VSP( 5 ,

(=+3
3

)
)> is an

irreducible variety of dimension =
(=+3
3

)
.ex:1.26

1.27 Describe the variety VSP( 5 , 4), where 5 is a nondegenerate quadratic form in 3
variables.ex:1.27

1.28 Show that a smooth point H of a hypersurface - belongs to the intersection of the
polar hypersurfaces %G (-) and %G2 (-) if and only if the line connecting G and
H intersects - at the point H with multiplicity ≥ 3.ex:1.28

1.29 Show that the vertices of two polar tetrahedra of a nonsingular quadric in P3 are
base points of a net of quadrics. Conversely, the set of 8 base points of a general
net of quadrics can be divided in any way into two sets, each of two sets is the set
of vertices of a polar tetrahedron of the same quadric

Sommerville2
[717].ex:1.29

1.30 Suppose two cubic plane curves+ ( 5 ) and+ (6) admit a common polar pentagon.
Show that the determinant of the 6×6-matrix [Cat1 ( 5 ) Cat1 (6)] vanishes

Frahm
[307].

ex:1.30

Historical Notes

Although some aspects of the theory of polarity for conics were known to
mathematicians ofAncientGreece, the theory originates in projective geometry,
in the works of G. Desargues, G. Monge and J. Poncelet. For Desargues the
polar of a conic was a generalization of the diameter of a circle (when the pole is
taken at infinity). He referred to a polar line as a“transversale de l’ordonnance”.
According to the historical accounts found in

Enriques-Chisini
[292], vol. II, and

CoxeterPG
[174], p. 60, the

name “polaire” was introduced by J. Gergonne. Apparently, the polars of curves
of higher degree appear first in the work of E. Bobillier

Bobillier
[62] and then, with the

introduction of projective coordinates, in the works of J. Plücker
Plucker
[596]. These

geometers were the first to realize the duality property of polars: if a point G
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belongs to the B-th polar of a point H with respect to a curve of degree 3, then
H belongs to the (3 − B)-th polar of G with respect to the same curve. Many
properties of polar curves were stated in a purely geometric way by J. Steiner
Steiner
[723]. As customary for him, with no proofs. Good historical accounts can be
found in

Biggiogero
[57] and

Pascal
[577], p.279.

The Hessian and the Steinerian curves with their relations to the theory
of polars were first studied by J. Steiner

Steiner
[723] who called them conjugate

Kerncurven. The current name for the Hessian curve was coined by J. Sylvester
SylvesterHistory
[739] in honor of O. Hesse who was the first to study the Hessian of a ternary
cubic

Hesse1
[387] under the name der Determinante of the form. The current name

of the Steinerian curve goes back to G. Salmon
SalmonCurves
[652] and L. Cremona

CremonaIntr
[182].

The Cayleyan curve was introduced by A. Cayley in
Cayley1
[102] who called it the

pippiana. The current name was proposed by L. Cremona. Most of the popular
classical text-books in analytic geometry contain an exposition of the polarity
theory (e.g.

ClebschLindemann
[150],

Enriques-Chisini
[292],

SalmonCurves
[652]).

The theory of dual varieties and the generalization of Plücker formulae to
arbitrary dimension is still a popular subject of modern algebraic geometry. It
is well-documented in modern literature, so this topic is barely touched here
(see, for example,

Kleiman
[449]).

The theory of apolarity was a trendy topic of classical algebraic geometry. It
originates from the works of Rosanes

Rosanes
[635] who called apolar forms of the same

degree conjugate forms and Reye
Reye
[615]. who introduced the term “apolar”. The

condition of polarity �k ( 5 ) = 0 was viewed as vanishing of the simultaneous
bilinear invariant of a form 5 of degree 3 and a form k of class 3. It was called
the harmonizant. We refer to a survey of classical results to

Pascal
[577] and to a

modern exposition of some of these results to
DolgachevDual
[243], which we followed here.

TheWaring problem for homogeneous forms originates from a more general
problem of finding a canonical form for a homogeneous form. Sylvester’s result
about reducing a cubic form in four variables to the sum of 5 powers of linear
forms is one of the earliest examples of solution of the Waring problem. We
will discuss this later in the book. F. Palatini was the first who recognized the
problem as a problem about the secant variety of the Veronese variety

Palatini1
[567],

Palatini2
[568] and as a problem of the existence of envelopes with a given number
of singular points (in less general form, the relationship was found earlier by
J. E. Campbell

Campbell
[82]). T he Alexander-Hirschowitz theorem was claimed by

J. Bronowski
Bronowski
[75] in 1933. However, citing C. Ciliberto

CilibertoWaring
[136], he had only a

plausibility argument. The case = = 2 was first established by F. Palatini
Palatini2
[568],

and the case = = 3 was solved by A. Terracini
Terracini2
[745]. Terracini was the first to

recognize the exceptional case of cubic hypersurfaces in P4 Terracini1
[744]. The original

proof of Terracini’s Lemma can be found in
TerraciniLemma
[746]. We also refer to

Geramita
[326] for
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a modern survey of the problem. An excellent historical account and in-depth
theory of the Waring problems and the varieties associated with it can be found
in the book of A. Iarrobino and V. Kanev

Iarrobino
[422].

The fact that a general plane quintic admits a unique polar 7-gon was first
mentioned by D. Hilbert in his letter to C. Hermite

Hilbert
[393]. The proofs were

given later by Palatini
PalatiniWaring2
[570] and H. Richmond

RichmondWaring
[622],

RichmondWaring2
[624]

In earlier editions of his book
SalmonThree
[653] G. Salmon mistakenly applied counting

constants to assert that three general quadrics in P3 admit a common polar pen-
tahedron. G. Darboux

DarbouxWaring
[200] was the fist to show that the counting of constants

is wrong. W. Frahm
Frahm
[307] proved that the net of quadrics generated by three

quadrics with a common polar pentahedron must be a net of polars of a cubic
surface and also has the property that its discriminant curve is a Lüroth quartic,
a plane quartic which admits an inscribed pentagon. In

Toeplitz
[749] E.Toeplitz (the

father of Otto Toeplitz) introduced the invariant Λ of three quadric surfaces
whose vanishing is necessary and sufficient for the existence of a common po-
lar pentahedron. The fact that two general plane cubics do not admit a common
polar pentagon was first discovered by F. London

London
[492]. The Waring Prob-

lem continues to attract the attention of contemporary mathematicians. Some
references to modern literature can found in this chapter.
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Conics and Quadric Surfaces

Ch2

2.1 Self-polar Triangles
S:2.1

2.1.1 Veronese quartic surfaces
SS:2.1.1

Let P2 = |� | and |(2 (�∨) | � P5 be the space of conics in P2. Recall, for this
special case, the geometry of the Veronese quartic surface V2

2, the image of the
Veronese map

v2 : |�∨ | → |(2 (�∨) |, [;] ↦→ [;2] .

If we view (2 (�∨) as the dual space of (2 (�), then the Veronese surface
parameterizes hyperplanes �; in (2 (�) of conics passing through the point [;]
in the dual plane |�∨ |. The Veronese map v2 is given by the complete linear
system |O |�∨ | (2) | = |(2 (�) |. Thus, the pre-image of a hyperplane in |(2 (�∨) |
is a conic in the plane |�∨ |. The conic is singular if and only if the hyperplane is
tangent to the Veronese surface. There are two possibilities, either the singular
conic � is the union of two distinct lines (a line-pair), or it is equal to a double
line. In the first case, the hyperplane is tangent to the surface at a single point.
The point is the image of the singular point [;] of the conic. In the second
case, the hyperplane is tangent to the Veronese surface along a curve ' equal to
the image of the line �red under the restriction of the Veronese map. It follows
that the curve ' is a conic cut out on the Veronese surface by a plane. In
this way, we see that the dual variety of the Veronese surface is isomorphic
to the discriminant cubic hypersurface D2 (2) parameterizing singular conics.
The tangent plane to the Veronese surface at a point [;]2 is the intersection of
hyperplanes which cut out a conic in |�∨ | with singular point [;]. The plane
of conics in |� | apolar to such conics is the plane of reducible conics with one
component equal to the line + (;).
The cubic hypersurface �2 (2) has two 2-dimensional families of planes. A

plane from the first family is a net of conics with a base line + (;). It contains

77
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one point [;2] in V2
2, and it is tangent to the surface at this point. A plane from

the second family is a net of conics with one base point of multiplicity three.
Its members are the line-pairs with a fixed singular point. The intersection of
this plane with the Veronese surface is the set of double lines passing through
the base point. It is a conic in the plane.
Two planes from the first family intersect at one point not lying on V2

2. The
point is the union of their base lines. Two families from the second family
intersect at one points lying on V2

2. It is the double line joining their base points.
The two families of planes in P5 are examples of the largest irreducible families
of mutually intersecting planes in P5 classified by U. Morin

Morin1
[525],

Morin2
[526].

Choosing a basis in � , we can identify the space (2 (�∨) with the space of
symmetric 3 × 3-matrices. The Veronese surface V2

2 in |(2 (�∨) | is identified
with matrices of rank 1. Its equations are given by 2× 2-minors. The variety of
matrices of rank ≤ 2 is the cubic hypersurface whose equation is given by the
determinant.
Replacing � with �∨, we obtain the definition of the dual Veronese surface,

the image of |� | in |(2 (�) | of the map given by the complete linear system of
conics in |� |. Its points are hyperplanes of conics apolar to a conic of rank one.
Choosing a basis (G2, GH, GI, H2, HI, I2) of (2 (�∨) as projective coordinates
(C0, C1, C2, C3, C4, C5) in |(2 (�) |. In these coordinates, the equation of the dual
Veronese surface is given by

rank
©«
C0 C1 C2
C1 C2 C3
C2 C4 C5

ª®®¬ = 1. (2.1) eqveronese

The cubic hypersurface D2 (2) is given by the determinant of the matrix.
The dual basis ( 1

2b
2
0 , b0b1, b0b2,

1
2b

2
1 , b1b2,

1
2b

2
2) (with respect to polarity pair-

ing (
eeq2eeq2
1.3)) gives the equation of the Veronese surface V2

2 in |(2 (�∨) in coordi-
nates (D0, . . . , D5):

rank
©«
2D0 D1 D2
D1 2D2 D3
D2 D4 2D5

ª®®¬ = 1. (2.2) eqveronese

Since any quadratic form of rank 2 in � can be written as a sum of quadratic
forms of rank 1, the secant variety Sec1 (V2

2) coincides with D2 (2). Also, it
coincides with the tangential variety Tan(V2

2), the union of tangent planes
TG (V2

2), x ∈ V2
2. It is singular along the Veronese surface.

Let us look at a possible projection of V2
2 to P4. It is given by a linear

subsystem |+ | of |(2 (�) |. Let  be the apolar conic to all conics from |+ |. It is
a point o in the dual space |(2 (�∨) | equal to the center of the projection. The
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conic  could be nonsingular, a line-pair, or a double line. In the first two cases
o ∉ V2

2. The image of the projection is a quartic surface in P4, called a projected
Veronese surface. If  is nonsingular, o does not lie on Sec1 (V2

2), hence the
projected Veronese surface is a nonsingular quartic surface in P4 = P(+). If  
is a line-pair, then o lies on a tangent plane of V2

2 at some point [;2]. Hence,
it lies on the plane spanning a conic contained in V2

2. The restriction of the
projection map to this conic is of degree 2, and its image is a double line on the
projected Veronese surface. Two ramification points are mapped to two pinch
points of the surface. Finally, o could be on V2

2. The image of the projection is a
cubic surface ( in P4. All conics on V2

2 containing o are projected to lines on (.
So, ( is a nonsingular cubic scroll in P4 isomorphic to the blow-up of V2

2, hence
of P2, at one point. In our notation for rational normal scrolls from Subsection
CAG-2:SS:8.1.1CAG-2:SS:8.1.1
8.1.1 it is the scroll (1,4.
Let us now project V2

2 further to P
3. This time, the linear system |+ | defining

the projection is of dimension 3. Its apolar linear system is a pencil, a line ℓ
in |(2 (�∨) |. Suppose the apolar pencil does not intersect V2

2. In this case the
pencil of conics does not contain a double line, hence contains exactly three
line-pairs. The three line-pairs correspond to the intersection of ℓ with the
cubic hypersurface Sec1 (V2

2). As we saw in above, this implies that the image
( of the projection is a quartic surface with three double lines. These lines
are concurrent. In fact, a pencil of plane sections of ( containing one of the
lines has residual conics singular at the points of intersection with the other
two lines. Since the surface is irreducible, this implies that the other two lines
intersect the first one. Changing the order of the lines, we obtain that each pair
of lines intersect. This is possible only if they are concurrent (otherwise they
are coplanar, and plane containing the lines intersect the quartic surface along
a cubic taken with multiplicity 2).
The projection of a Veronese surface from a line not intersecting V2

2 is called
a Steiner quartic. Choose coordinates C0, C1, C2, C3 such that the equations of the
singular lines are C1 = C2 = 0, C1 = C3 = 0 and C2 = C3 = 0. Then, the equation
of a Steiner surface can be reduced to the form C0C1C2C3 + 64 = 0. By taking
the partial derivatives at the point [1, 0, 0, 0] and general points of the singular
lines, we find that 64 is a linear combination of the monomial C21C

2
2 , C

2
1C

2
3 , C

2
2C

2
3 .

Finally, by scaling the coordinates, we reduce the equation to the form

C0C1C2C3 + C21C
2
2 + C

2
1C

2
3 + C

2
2C

2
3 = 0. (2.3) steinerequation

An explicit birational map from P2 onto the surface is given by

[H0, H1, H2] ↦→ [(−H0+H1+H2)2, (H0−H1+H2)2, (H0+H1−H2)2, (H0+H1+H2)2] .
(2.4) steinerparametrization
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Next, we assume that the center of the projection is line ℓ intersecting V2
2.

In this case, the image of the projection is a cubic scroll, the projection of the
rational normal scroll (1,4 to P3. There are two possibilities, the pencil of conics
defined by ℓ has two singular members, or one singular member, a double line.
This gives two possible cubic scrolls. We will give their equations in the next
Chapter.
Replacing � with |�∨ |, we can define the Veronese surface in |(2 (�) |, the

image of the plane |� | under the map given by the complete linear system of
conics. We leave it to the reader to “dualize” the statements from above.

2.1.2 Polar lines
polarlinesSS:2.1.2

Let � = + (@) be a nonsingular conic. For any point 0 ∈ P2, the first polar
%0 (�) is a line, the polar line of 0. For any line ℓ there exists a unique point 0
such that %0 (�) = ;. The point 0 is called the pole of ℓ. The point 0 considered
as a line in the dual plane is the polar line of the point ℓ with respect to the dual
conic �̌.

One can also define the polar line with pole 0 = [{] as the set of points
conjugate to 0 with respect to �; that is, points 1 = [|] such that 1@ ({, |) = 0,
where 1@ is the associated symmetric bilinear form of @. Dually, one defines
conjugate lines with respect to �.
Borrowing terminology from the Euclidean geometry, we call three non-

collinear lines in P2 a triangle. The lines themselves will be called the sides
of the triangle. The three intersection points of pairs of sides are called the
vertices of the triangle.
A set of three non-collinear lines ℓ1, ℓ2, ℓ3 is called a self-polar triangle with

respect to � if each ℓ8 is the polar line of � with respect to the opposite vertex.
It is easy to see that it suffices that only two sides are polar to the opposite
vertices.

Proposition 2.1.1. Three lines ℓ8 = + (;8) form a self-polar triangle for a conic
� = + (@) if and only if they form a polar triangle of �.

Proof Let ℓ8 ∩ ℓ 9 = [{8 9 ]. If @ = ;21 + ;
2
2 + ;

2
3 , then �{8 9 (@) = 2;: , where

: ≠ 8, 9 . Thus, a polar triangle of � is a self-conjugate triangle. Conversely, if
+ (�{8 9 (@)) = ℓ: , then �{8: {8 9 (@) = �{9: {8 9 (@) = 0. This shows that the conic
� is apolar to the linear system of conics spanned by the reducible conics ℓ8+ℓ 9 .
It coincides with the linear system of conics through the three points ℓ1, ℓ2, ℓ3
in the dual plane. Applying Proposition

prop1prop1
2.45, we obtain that the self-conjugate

triangle is a polar triangle.
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Of course, we can prove the converse by computation. Let

2@ = 000C
2
0 + 011C

2
1 + 022C

2
2 + 2001C0C1 + 2002C0C2 + 2012C1C2 = 0.

Choose projective coordinates in P2 such that ℓ8 = + (C8). Then,

% [1,0,0] (-) = ℓ1 = + (
m@

mC0
) = + (000C0 + 001C1 + 002C2), (2.5)

% [0,1,0] (-) = ℓ2 = + (
m@

mC1
) = + (011C1 + 001C0 + 012C2),

% [0,0,1] (-) = ℓ2 = + (
m@

mC2
) = + (022C2 + 002C0 + 012C1)

implies that @ = 1
2 (C

2
0 + C

2
1 + C

2
2). �

Remark 2.1.2. Similarly, one can define a self-polar (=+1)-hedron of a quadric
in P= and about the reduction of a quadratic form to principal axes in linear
algebra.

Let & = + (@) and & ′ = + (@′) be two quadrics in P1. We say that & and & ′
are harmonically conjugate if the dual quadric of & is apolar to & ′. In other
words, if �@∨ (@′) = 0. In coordinates, if

@ = UC20 + 2VC0C1 + WC21 , @′ = U′C20 + 2V′C0C1 + W′C21 .

then @∨ = W[2
0 − 2V[0[1 + U[2

1, and the condition becomes

−2VV′ + UW′ + U′W = 0. (2.6) harmcong

It shows that the relation is symmetric (one can extend it to quadrics in higher-
dimensional spaces but it will not be symmetric).
Of course, a quadric in P1 can be identified with a set of two points in

P1, or one point with multiplicity 2. This leads to the classical definition of
harmonically conjugate {0, 1} and {2, 3} in P1. We will see later many other
equivalent definitions of this relation.
Let P1 = |* |, where dim* = 2. Since dim

∧2* = 1, we can identify |� |
with P(�). Explicitly, a point with coordinates [0, 1] is identified with a point
[−1, 0] in the dual coordinates. Under this identification, the dual quadric @∨
vanishes at the zeros of @. Thus, (

harmcongharmcong
2.6) is equivalent to the polarity condition

�23 (@) = �01 (@′) = 0, (2.7) polcond

where + (@) = {0, 1}, + (@′) = {2, 3}.

wref Proposition 2.1.3. Let ℓ1, ℓ2, ℓ3 be a triangle with vertices 0 = ℓ1 ∩ ℓ2, 1 =

ℓ1 ∩ ℓ3 and 2 = ℓ2 ∩ ℓ3. Then, the triangle is a self-polar triangle of a conic �
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if and only if 0 ∈ %1 (�) ∩ %2 (�) and the pairs of points � ∩ ℓ3 and (1, 2) are
harmonically conjugate.

Proof Consider the pair � ∩ ℓ3 as a quadric @ in ℓ3. We have 2 ∈ %1 (�), thus
�12 (@) = 0. Restricting to ℓ3 and by using (

polcondpolcond
2.7), we see that the pairs 1, 2 and

� ∩ ℓ3 are harmonically conjugate. Conversely, if �12 (@) = 0, the polar line
%1 (�) contains 0 and intersects ℓ3 at 2, hence coincides with 02. Similarly,
%2 (�) = 01. �

Any triangle in P2 defines the dual triangle in the dual plane (P2)∨. Its sides
are the pencils of lines with the base point of one of the vertices.

dualtri Corollary 2.1.4. The dual of a self-polar triangle of a conic � is a self-polar
triangle of the dual conic �̌.

2.1.3 The Variety of self-polar triangles
SS:2.1.3

Here, we will discuss a compactification of the variety VSP(@, 3) of polar
triangles of a nondegenerate quadratic form in three variables.
Let � be a nonsingular conic. The group of projective transformations of P2

leaving � invariant is isomorphic to the projective complex orthogonal group

PO(3) = O(3)/(±�3) � SO(3).

It is also isomorphic to the group PSL(2) via the Veronese map

v2 : P1 → P2, [C0, C1] ↦→ [C20 , C0C1, C
2
1] .

Obviously, PO3 acts transitively on the set of self-polar triangles of �. We may
assume that � = + (∑ C2

8
). The stabilizer subgroup of the self-polar triangle de-

fined by the coordinate lines is equal to the subgroup generated by permutation
matrices and orthogonal diagonal matrices. It is easy to see that it is isomorphic
to the semi-direct product (Z/2Z)2 oS3 � S4. Thus, we obtain the following:

polartriangles Theorem 2.1.5. The set of self-polar triangles of a nonsingular conic has
a structure of a homogeneous space SO3/Γ, where Γ is a finite subgroup
isomorphic to S4.

A natural compactification of the variety of self-conjugate triangles of a non-
degenerate conic @ is the variety VSP(@, 3) which we discussed in the previous
chapter. In Theorem

chapchap
1.5.7, we have shown that it is isomorphic to the intersec-

tion of the Grassmannian � (3, 5) with a linear subspace of codimension 3. Let
us see this construction in another way, independent of the theory developed in
the previous chapter.
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Let + = V2
2 be a Veronese surface in P5. We view P5 as the projective space

of conics in P2 and V2
2 as its subvariety of double lines. A trisecant plane of+ is

spanned by three linearly independent double lines. A conic � ∈ P5 belongs to
this plane if and only if the corresponding three lines form a self-polar triangle
of �. Thus, the set of self-polar triangles of � can be identified with the set
of trisecant planes of the Veronese surface which contain �. The latter will
also include degenerate self-polar triangles corresponding to the case where
the trisecant plane is tangent to the Veronese surface at some point. Projecting
from� to P4, we will identify the set of self-polar triangles (maybe degenerate)
with the set of trisecant lines of the projected Veronese surface V4. This is a
closed subvariety of the Grassmann variety �1 (P4) of lines in P4.

Let � be a linear space of odd dimension 2: + 1 and let � (2, �) := �1 ( |� |)
be the Grassmannian of lines in |� |. Consider the Plücker embedding

∧2 :
� (2, �) ↩→ �1 (

∧2 �) = |∧2 � |. Any nonzero l ∈ (∧2 �)∨ = ∧2 �∨ defines
a hyperplane �l in |∧2 � |. Consider l as a linear map Ul : � → �∨ defined
by Ul ({) (|) = l({, |). The map Ul is skew-symmetric in the sense that
its transpose map coincides with −Ul . Thus, its determinant is equal to zero,
and Ker(Ul) ≠ {0}. Let {0 be a nonzero element of the kernel. Then, for
any { ∈ � , we have l({0, {) = Ul ({) ({0) = 0. This shows that l vanishes
on all decomposable 2-vectors {0 ∧ {. This implies that the intersection of
the hyperplane �l with � (2, �) contains all lines which intersect the linear
subspace�l = |Ker(Ul) | ⊂ |� |, which we call the pole of the hyperplane �l .
Now, recall the following result from linear algebra (see Exercise 2.1). Let

� be a skew-symmetric matrix of odd size 2: + 1. Its principal submatrices
�8 of size 2: (obtained by deleting the 8-th row and the 8-th column) are
skew-symmetric matrices of even size. Let Pf8 be the pfaffians of �8 (i.e.
det(�8) = Pf2

8 ). Assume that rank(�) = 2: , or, equivalently, not all Pf8 vanish.
Then, the system of linear equations � · G = 0 has one-dimensional null-space
generated by the vector (01, . . . , 02:+1), where 08 = (−1)8+1Pf8 .

Let us go back to Grassmannians. Suppose we have an B + 1-dimensional
subspace , in

∧2 �∨ spanned by l0, . . . , lB . Suppose that, for any l ∈ , ,
rank Ul = 2: , or, equivalently, the pole �l of �l is a point. It follows from
the theory of determinant varieties that the subvariety

{Cl ∈ |
2∧
�∨ | : corank Ul ≥ 8}

is of codimension
( 8
2
)
in |∧2 �∨ | (see

HarrisTu
[376],

KleppeLaksov
[458]). Thus, if B < 4, a general

, satisfies the assumption. Consider a regular map Φ : |, | → |� | defined
by l ↦→ �l . If we take l = C0l0 + · · · + CBlB so that C = (C0, . . . , CB) are
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projective coordinate functions in |, |, we obtain that Φ is given by 2: + 1
principal pfaffians of the matrix �C defining l.

We shall apply the preceding to the case where dim � = 5. Take a general
3-dimensional subspace, of

∧2 �∨. The map Φ : |, | → |� | � P4 is defined
by homogeneous polynomials of degree 2. Its image is a projected Veronese
surface (. Any trisecant line of ( passes through three points on (, which are the
poles of elements |1, |2, |3 from, . These elements are linearly independent,
otherwise their poles lie on the conic image of a line under Φ. But no trisecant
line can be contained in a conic plane section of (. We consider l ∈ , as a
hyperplane in the Plücker space |∧2 � |. Thus, any trisecant line is contained
in all hyperplanes defined by, . Now, we are ready to prove the following.

Theorem 2.1.6. Let -̄ be the closure in �1 (P4) of the locus of trisecant lines
of a projected Veronese surface. Then, -̄ is equal to the intersection of �1 (P4)
with three linearly independent hyperplanes. In particular, -̄ is a Fano 3-fold
of degree 5 with canonical sheaf l-̄ � O-̄ (−2).

Proof As we observed above, the locus of poles of a general 3-dimensional
linear space , of hyperplanes in the Plücker space is a projected Veronese
surface V and its trisecant variety is contained in . = ∩|∈,�| ∩ �1 (P4).
So, its closure -̄ is also contained in . . On the other hand, we know that -̄
is irreducible and 3-dimensional (it contains an open subset isomorphic to the
homogeneous space - = SO(3)/S4). By Bertini’s Theorem, the intersection
of �1 (P4) with a general linear space of codimension 3 is an irreducible 3-
dimensional variety. This proves that . = -̄ . By another Bertini’s Theorem, .
is smooth. The rest is the standard computation of the canonical class of the
Grassmann variety and the adjunction formula. It is known that the canonical
class of the Grassmannian � = �< (P=) of <-dimensional subspaces of P= is
equal to

 � = O� (−= − 1). (2.8) cangras

By the adjunction formula, the canonical class of -̄ = �1 (P4) ∩�1 ∩�2 ∩�3
is equal to O-̄ (−2). �

Corollary 2.1.7. The homogeneous space - = SO(3)/S4 admits a smooth
compactification -̄ isomorphic to the intersection of �1 (P4), embedded via
Plücker in P9, with a linear subspace of codimension 3. The boundary -̄ \ - is
an anti-canonical divisor cut out by a hypersurface of degree 2.

Proof The only unproven assertion is one about the boundary. To check this,
we use that the 3-dimensional group � = SL(2) acts transitively on a three-
dimensional variety - minus the boundary. For any point G ∈ - , consider the
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map `G : � → -, 6 ↦→ 6 · G. Its fiber over the point G is the isotropy subgroup
�G of G. The differential of this map defines a linear map g = )4 (�) → )G (-).
Letting G vary in - , we obtain a map of vector bundles

q : g- = g × - → ) (-).

Now, take the determinant of this map

3∧
q =

3∧
g × - →

3∧
) (-) =  ∨- ,

where  - is the canonical line bundle of - . The left-hand side is the trivial
line bundle over - . The map

∧3 q defines a section of the anti-canonical line
bundle. The zeros of this section are the points where the differential of the map
`G is not injective, i.e., where dim�G > 0. But this is exactly the boundary
of - . In fact, the boundary consists of orbits of dimension smaller than 3,
hence the isotropy of each such orbit is of positive dimension. This shows that
the boundary is contained in our anti-canonical divisor. Obviously, the latter
is contained in the boundary. Thus, we see that the boundary is equal to the
intersection of �1 (P4) with a quadric hypersurface.

�

rmk:2.1.8 Remark 2.1.8. There is another construction of the variety VSP(@, 3) due to
S. Mukai and H. Umemura

Mukai1
[532]. Let +6 be the space of homogeneous binary

forms 5 (C0, C1) of degree 6. The group SL(2) has a natural linear representation
in +6 via linear change of variables. Let 5 = C0C1 (C40 − C

4
1). The zeros of this

polynomial are the vertices of a regular octahedron inscribed in (2 = P1 (C). The
stabilizer subgroup of 5 in SL(2) is isomorphic to the binary octahedron group
Γ � S4. Consider the projective linear representation of SL(2) in |+6 | � P5.
In the loc. cit. it is proven that the closure -̄ of this orbit in |+6 | is smooth and
� = -̄ \ - is the union of the orbits of [C50C1] and [C

6
0]. The dimension of the

first orbit is equal to 2. Its isotropy subgroup is isomorphic to the multiplicative
groupC∗. The second orbit is one-dimensional, and it is contained in the closure
of the first one. The isotropy subgroup is isomorphic to the subgroup of upper
triangular matrices. One can also show that � is equal to the image of P1 × P1

under a SL(2)-equivariant map given by a linear system of curves of bidegree
(5, 1). Thus, � is of degree 10, hence is cut out by a quadric. The image of the
second orbit is a smooth rational curve in � and is equal to the singular locus
of �. The fact that the two varieties are isomorphic follows from the theory
of Fano 3-folds. It can be shown that there is a unique Fano threefold + with
Pic(+) = Z 1

2 + and  3
+
= 40 (see

Iskovskikh
[425, Theorem 3.3.1]).
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2.1.4 Conjugate triangles
SS:2.1.4

Let � = + ( 5 ) be a nonsingular conic. Given a triangle with sides ℓ1, ℓ2, ℓ3, the
poles of the sides are the vertices of a triangle, called the conjugate triangle. Its
sides are the polar lines of the vertices of the original triangle. It is clear that
this defines a duality in the set of triangles. Clearly, a triangle is self-conjugate
if and only if it is a self-polar triangle.
The following is an example of conjugate triangles. Let ℓ1, ℓ2, ℓ3 be three

tangents to � at the points ?1, ?2, ?3, respectively. They form a triangle which
can be viewed as a circumscribed triangle. It follows from Theorem

T11T11
1.1.5 that

the conjugate triangle has vertices ?1, ?2, ?3. It can be viewed as an inscribed
triangle. The lines ℓ′1 = ?2?3, ℓ

′
2 = ?1?3, ℓ

′
3 = ?1?2 are polar lines with respect

to the vertices @1, @2, @3 of the circumscribed triangle (see the picture).

@1

@3
?2

?1

@2

?3

ℓ3

ℓ2

ℓ3

ℓ′2

ℓ′3

ℓ′1

Figure 2.1 Special conjugate triangles Tpqr

In general, let a side ℓ8 of a triangle Δ intersect the conic � at ?8 and ?′8 .
Then, the vertices of the conjugate triangle are the intersection points of the
tangents of � at the points ?8 , ?′8 .

Two lines in P2 are called conjugate with respect to � if the pole of one of
the lines belongs to the other line. It is a reflexive relation on the set of lines.
Obviously, two triangles are conjugate if and only if each of the sides of the
first triangle is conjugate to a side of the second triangle.
Recall the basic notion of projective geometry, the perspectivity. Two tri-

angles are called perspective from a line (resp. from a point) if there exists a
bĳection between their sets of sides (resp. vertices) such that the intersection
points of the corresponding sides (resp. the lines joining the corresponding
points) lie on the same line (resp. intersect at one point). The line is called
the line of perspectivity or perspectrix, and the point is called the center of
perspectivity or perspector. Desargues’ Theorem asserts that the properties of
being perspective from a line or from a point are equivalent.

T2.7.1 Theorem 2.1.9 (M. Chasles). Two conjugate triangles with no common vertex
are perspective.
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Proof Choose coordinates such that the sides ℓ1, ℓ2, ℓ3 of the first triangle
are C0 = 0, C1 = 0, C2 = 0, respectively. Then, the vertices of the first triangle
ℓ2 ∩ ℓ3 = ?1 = [1, 0, 0], ℓ1 ∩ ℓ3 = ?2 = [0, 1, 0] and ℓ1 ∩ ℓ3 = ?3 = [0, 0, 1].
Let

� =
©«
0 1 2

1 3 4

2 4 5

ª®®¬ (2.9) m11

be the symmetric matrix defining the conic. Then, the polar lines ℓ′
8
of the point

?8 is given by the equation UC0+VC1+WC2 = 0, where (U, V, W) is the 8-th column
of �. The vertices of the conjugate triangle are ℓ1 ∩ ℓ′1 = (0, 2,−1), ℓ2 ∩ ℓ′2 =
(4, 0,−1) and ℓ3 ∩ ℓ′3 = (4,−2,−0). The condition that the points are collinear
is the vanishing of the determinant

det
©«
0 2 −1
4 0 −1
4 −2 0

ª®®¬ .
Computing the determinant, we verify that it indeed vanishes. �

Now, let us consider the following problem. Given two triangles {ℓ1, ℓ2, ℓ3}
and {ℓ′1, ℓ

′
2, ℓ
′
3} without common sides, find a conic � such that the triangles

are conjugate to each other with respect to �.
Since dim

∧3 � = 1, we can define a natural isomorphism |∧2 �∨ | → |� |.
Explicitly, it sends the line [; ∧ ; ′] to the intersection point [;] ∩ [; ′]. Suppose
the two triangles are conjugate with respect to a conic�. Let |� | → |�∨ | be the
isomorphism defined by the conic. The composition |∧2 �∨ | → |� | → |�∨ |
must send ℓ8 ∧ ℓ 9 to ℓ′: . Let ℓ8 = [;8], ℓ

′
8
= [; ′

8
]. Choose coordinates C0, C1, C2 in

� , and let -,. be the 3× 3-matrices with the 9 th row equal to coordinates of ℓ8
and ℓ′

8
, respectively. Of course, these matrices are defined by the triangles only

up to scaling the columns. It is clear that the :-column of the inverse matrix
-−1 can be taken for the coordinates of the point ℓ8 ∩ ℓ 9 (here 8 ≠ 9 ≠ :). Now,
we are looking for a symmetric matrix � such that �-−1 = C. . The converse
is also true. If we find such a matrix, the rows of - and . would represent two
conjugate triangles with respect to the conic defined by the matrix �. Fix some
coordinates of the sides of the two triangles. This will fix the matrices -,. .
Now, we are looking for a diagonal invertible matrix � such that

&� = C.�- is a symmetric matrix. (2.10) tepl1

There are three linear conditions 08 9 = 0 98 for a matrix � = (08 9 ) to be
symmetric. So, we have three equations with three unknowns, the entries of the
matrix �. The condition for the existence of a solution must be given in terms
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of a determinant whose entries depend on the coordinates of the sides of the
triangles. We identify ;8 and ; ′8 with vectors in C

3 and use the dot-product in C3

to get the following three equations with unknowns _1, _2, _3:

_1;1 · ; ′2 − _2;2 · ; ′1 = 0
_1;1 · ; ′3 − _3;3 · ; ′1 = 0
_2;2 · ; ′3 − _3;3 · ; ′2 = 0.

The matrix of the coefficients of the system of linear equations is equal to

" =
©«
;1 · ; ′2 −;2 · ; ′1 0
;1 · ; ′3 0 −;3 · ; ′1

0 ;2 · ; ′3 −;3 · ; ′2

ª®®¬ .
The necessary condition is that

det" = (;3 · ; ′1) (;1 · ;
′
2) (;2 · ;

′
3) − (;2 · ;

′
1) (;1 · ;

′
3) (;3 · ;

′
2) = 0. (2.11) tepl2

We also need a solution with nonzero coordinates. It is easy to check (for
example, by taking coordinates in which - or . is the identity matrix), that the
existence of a solution with a zero coordinate implies that the triangles have a
common vertex. This contradicts our assumption.
Note that condition (

tepl1tepl1
2.10) is invariant with respect the action of GL(�) since

any� ∈ GL(�) transforms -,. to�-,�. , and hence, transforms � to C���
which is still symmetric. Taking ;1 = C0, ;2 = C1, ;3 = C2, we easily check that
condition (

tepl2tepl2
2.11) is equivalent to the condition that the two triangles with sides

defined by ;1, ;2, ;3 and ; ′1, ;
′
2, ;
′
3 are perspective from a line. Thus, we obtain the

following:

Corollary 2.1.10. Two triangles with no common side are conjugate triangles
with respect to some conic if and only if they are perspective triangles.

Taking the inverse of the matrix � from (
tepl1tepl1
2.10), we obtain that -−1�−1C�−1

is symmetric. It is easy to see that the 9-th column of -−1 can be taken for the
coordinates of the side of the triangle opposite the vertex defined by the 9-th
column of - . This shows that the dual triangles are conjugate with respect to
the dual quadric defined by the matrix �−1. This proves Desargues’ Theorem,
we used before.

Theorem 2.1.11. Two triangles are perspective from a point if and only if they
are perspective from a line.

Let � be a nonsingular conic and o be a point in the plane but not in �.
The projection from o defines an involution go on � with two fixed points
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equal to the set %o (�) ∩ �. This involution can be extended to the whole
plane such that o and the polar line %o is its set of fixed points. To show
this, we may assume � is the conic + (C0C2 − C21), image of the Veronese map
v2 : P1 → �, [D0, D1] ↦→ [D2

0, D0D1, D
2
1]. We identify a point G = [G0, G1, G2] in

the plane with a symmetric matrix

- =

(
G0 G1
G1 G2

)
,

so that the conic is given by the equation det - = 0. Consider the action of
� ∈ (! (2) on P2 which sends - to C�-�. This defines an isomorphism
from PSL(2) to the subgroup of PGL(3) leaving the conic � invariant. In
this way, any automorphism of � extends to a projective transformation of the
plane leaving � invariant. Any nontrivial element of finite order in PGL(3)
is represented by a diagonalizable matrix, and hence, its set of fixed points
consists of either a line plus a point, or three isolated points. The first case
occurs when there are two equal eigenvalues, and the second one occurs when
all eigenvalues are distinct. In particular, an involution belongs to the first case.
It follows from the definition of the involution g that the two intersection points
of %o (�) with � are fixed under the extended involution g̃. So, the point o,
being the intersection of the tangents to � at these points, is fixed. Thus, the
set of fixed points of the extended involution g̃ is equal to the union of the line
%o (�) and the point o.
As an application, we get a proof of the following Pascal’s Theorem from

projective geometry.

Theorem 2.1.12. Let ?1, . . . , ?6 be the set of vertices of a hexagon inscribed
in a nonsingular conic �. Then, the intersection points of the opposite sides
?8 ?8+1 ∩ ?8+3?8+4, where 8 is taken modulo 3, are collinear.

Proof A projective transformation of P1 is uniquely determined by the images
of three distinct points. Consider the transformation of the conic � (identified
with P1 by a Veronese map) which transforms ?8 to ?8+3, 8 = 1, 2, 3. This
transformation extends to a projective transformation g of the whole plane
leaving � invariant. Under this transformation, the pairs of the opposite sides
?8 ?8+3 are left invariant. Thus, their intersection point is fixed. A projective
transformation with three fixed points on a line fixes the line pointwise. So, all
three intersection points lie on a line. �

The line joining the intersection points of opposite sides of a hexagon is
called the Pascal line. Changing the order of the points, we get 60 Pascal lines
associated with six points on a conic.
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?5•?1•

?3•

?6•

?2
•

?4•

Figure 2.2 Pascal’s Theorem pqr

One can see that the triangle Δ1 with sides ?1?2, ?1?6, ?2?3 and the triangle
Δ2 with sides ?4?5, ?3?4, ?5?6 are in perspective from the Pascal line. Hence,
they are perspective from the pole of the Pascal line with respect to the conic.
Note that not all vertices of the triangles are on the conic.

Via duality, we obtain Brianchon’s Theorem.

Theorem 2.1.13. Let ?1, . . . , ?6 be the set of vertices of a hexagon whose sides
touch a nonsingular conic �. Then, the diagonals ?8 ?8+3, 8 = 1, 2, 3 intersect
at one point.

We leave it to the reader to find two perspective triangles in this situation.
We view a triangle as a point in (P2)3. Thus, the set of ordered pairs of

conjugate triangles is an open subset of the hypersurface in (P2)3 × (P2)3 =
(P2)6 defined by Equation (

tepl2tepl2
2.11). The equation is multilinear and is invariant

with respect to the projective group PGL(3) acting diagonally, with respect to
the cyclic group of order 3 acting diagonally on the product (P2)3 × (P2)3, and
with respect to the switch of the factors in the product (P2)3× (P2)3. It is known
from the invariant theory that the determinant of the matrix " , considered as
a section of the sheaf �0 ((P2)6,O�6

P2 ) must be a linear combination of the
products of the maximal minors (8 9 :) of the matrix whose columns are the six
vectors ;1, ; ′1, ;2, ;

′
2, ;3, ;

′
3 such that each columns occurs in the product once. We

use that det" = 0 expresses the condition that the intersection points ℓ8 ∩ ℓ′8
are collinear.
Fix a basis in Λ3 (�) to define a natural isomorphism

2∧
(

2∧
�) → �, ({1 ∧ {2, |1 ∧ |2) ↦→ ({1 ∧ {2 ∧ |1)|2 − ({1 ∧ {2 ∧ |2)|1.

This corresponds to the familiar identity for the vector product of 3-vectors

({1 × {2) × (|1 ∧ |2) = ({1 × {2 × |1)|2 − ({1 × {2 × |2)|1.

If we apply this formula to �∨ instead of � , we obtain that the line spanned by
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the points ℓ1 ∩ ℓ′1 and ℓ2 ∩ ℓ′2 has equation det(;1, ; ′1, ;2);
′
2 − det(;1, ; ′1, ;

′
2);2 = 0.

The condition that this line also passes through the intersection point ℓ3 ∩ ℓ′3 is

det(;3, ; ′3, det(;1, ; ′1, ;2);
′
2 − det(;1, ; ′1, ;

′
2);2)

= det(;1, ; ′1, ;2) det(;3, ; ′3, ;
′
2) − det(;1, ; ′1, ;

′
2) det(;3, ; ′3, ;2) = 0.

This shows that the determinant in (
tepl2tepl2
2.11) can be written in symbolic form as

(12, 34, 56) := (123) (456) − (124) (356). (2.12) coble1

Remark 2.1.14. Let - be be the symmetric product (P2) (3) = (P2)3/S3 of three
copies of P2. Let T ⊂ - be the open subset of - that consists of triangles; that
is, non-collinear unordered triples of points. Its complement is a hypersurface
in - . Fix a smooth conic � and consider the open subset T ′ of T that consists
of triangles with no vertex on � and no side is tangent to �. Its complement
is the union of two irreducible hypersurfaces in ) . Intersecting the sides of a
triangle ) ∈ T ′ with �, we obtain three pairs of points on �. Conversely, a
triple of pairs of points on � defines a triangle from T ′. The group Aut(P2, �)
acts on T ′ with finite stabilizers isomorphic toS4. Let. be the orbits pace. It is
a 3-dimensional variety. A triple of pairs of points on � defines a hyperelliptic
curve, the double cover of � branched at the six points. Each pair of points
defines a 2-torsion divisor class in Jac(�), and the three pairs define an isotropic
plane in the subgroup Jac(�) [2] � F4

2 of 2-torsion points equipped with the
structure of a symplectic linear space over F2 (see Subsection

SS:5.2.2SS:5.2.2
5.2.2). LetMiso

2
be the moduli space of hyperelliptic curves with a choice of an isotropic plane
in Jac(�) [2]. This is an étale cover ofM2 of degree 15 (the number of isotropic
planes). It follows from above that the variety . = T ′/PO(3) is isomorphic to
Miso

2 . Now, we use that, taking the conjugate triangle with respect to) defines a
biregular involution ℜ of T ′. It is known classically as the Richelot involution.
It is a generalization of Gauss’ arithmetic-geometric mean for elliptic curvets.
We refer to this and related constructions to

DolgachevSelfmap
[253, Example 2].

Note that the locus of fixed points of the Richelot involution ℜ consists of
one point represented by the orbit of a self-conjugate triangle. If we choose the
conic � to be + (G2 − H2 + I2) and take + (GHI) as a self-conjugate triangle, we
obtain the hyperelliptic curve

|2 − (D4 − {4)D{ = 0

together with the isotropic plane defined by the pairs of the Weierstrass points
{(1, 0, 0), (0, 1, 0)}, {(1,±1, 0)}, {(1,±8, 0}. The curve is the unique, up to iso-
morphism, hyperelliptic curve with the group of automorphisms isomorphic
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to the dihedral group �8 of order 8 (Type (VI) in Bolza’s classification of the
automorphism groups of hyperelliptic curves of genus 2

Bolza
[64]).

2.2 Poncelet relation

2.2.1 Darboux’s Theorem
Let� be a conic, and let) = {ℓ1, ℓ2, ℓ3} be a circumscribed triangle. A conic� ′
which has ) as an inscribed triangle is called the Poncelet related conic. Since
passing through a point impose one condition, we have ∞2 Poncelet related
conics corresponding to a fixed triangle ) . Varying ) , we expect to get ∞5

conics, so that any conic is Poncelet related to � with respect to some triangle.
But surprisingly, this is wrong! Darboux’s Theorem asserts that there is a pencil
of divisors ?1 + ?2 + ?3 such that the triangles ) with sides tangent to � at the
points ?1, ?2, ?3 define the same Poncelet related conic.
We shall prove this here. In fact, we shall prove a more general result, in

which triangles are replaced with =-polygons. An =-polygon % in P2 is an
ordered set of = ≥ 3 points (?1, . . . , ?=) in P2 such that no three points
?8 , ?8+1, ?8+2 are collinear. The points ?8 are the vertices of %, the lines ?8 , ?8+1
are called the sides of % (here ?=+1 = ?1). The group S= acts transitively on
the set of =-polygons with the stabilizer subgroup generated by the permutation
(=, = − 1, . . . , 1) and the cyclic subgroup of order =. Therefore, the number of
=-gons with the same set of vertices is equal to =!/2= = (= − 1)!/2.
We say that % circumscribes a nonsingular conic � if each side is tangent to

�. Given any ordered set (@1, . . . , @=) of = points on �, let ℓ8 be the tangent
lines to � at the points @8 . Then, they are the sides of the =-gon % with
vertices ?8 = ℓ8 ∩ ℓ8+1, 8 = 1, . . . , = (ℓ=+1 = ℓ1). The =-gon % circumscribes �.
This gives a one-to-one correspondence between =-gons circumscribing � and
ordered sets of = points on �.

Let % = (?1, . . . , ?=) be a =-gon that circumscribes a nonsingular conic �.
A conic ( is called Poncelet =-related to � with respect to % if all points ?8 lie
on �.

Let us start with any two conics � and (. We choose a point ?1 on ( and
a tangent ℓ1 to � passing through ?1. It intersects ( at another point ?2. We
repeat this construction. If the process stops after = steps (i.e. we are not getting
new points ?8), we get an inscribed =-gon in ( which circumscribes �. In this
case ( is Poncelet related to �. The Darboux Theorem which we will prove
later says that, if the process stops, we can construct infinitely many =-gons
with this property starting from an arbitrary point on (.
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Consider the following correspondence on � × (:

' = {(G, H) ∈ � × ( : GH is tangent to � at G}.

Since, for any G ∈ � the tangent to � at G intersects ( at two points, and, for
any H ∈ ( there are two tangents to � passing through H, so we get that ' is
of bidegree (2, 2). This means if we identify �, ( with P1, then ' is a curve of
bidegree (2, 2). As is well-known, ' is a curve of arithmetic genus one.

nonsingular Lemma 2.2.1. The curve ' is nonsingular if and only if the conics � and (
intersect at four distinct points. In this case, ' is isomorphic to the double cover
of � (or () ramified over the four intersection points.

Proof Consider the projection map c( : ' → (. This is a map of degree 2.
A branch point H ∈ ( is a point such that there is only one tangent to � passing
through H. Obviously, this is possible only if H ∈ �. It is easy to see that ' is
nonsingular if and only if the double cover c( : ' → ( � P1 has four branch
points. This proves the assertion. �

Note that, if ' is nonsingular, the second projection map c� : ' → �

must also have 4 branch points. A point G ∈ � is a branch point if and only
if the tangent of � at G is tangent to (. So we obtain that two conics intersect
transversally if and only if there are four different common tangents.
Take a point (G [0], H[0]) ∈ ', and let (G [1], H[1]) ∈ ' be defined as follows:

H[1] is the second point on ( on the tangent to G [0], G [1] is the point on �
different from G [0] at which a line through H[1] is tangent to �. This defines a
map g�,( : ' → '. This map has no fixed points on ', and hence, if we fix a
group law on ', is a translation map C0 with respect to a point 0. Obviously, we
get an =-gon if and only if C0 is of order =, i.e. the order of 0 in the group law is =.
As soon as this happens, we can use the automorphism for constructing =-gons
starting from an arbitrary point (G [0], H[0]). This is the Darboux Theorem
which we have mentioned above.

gdarboux Theorem 2.2.2 (G. Darboux). Let� and ( be two nondegenerate conics inter-
secting transversally. Then, � and ( are Poncelet =-related if and only if the
automorphism g�,( of the associated elliptic curve ' is of order =. If � and (
are Poncelet = related, then starting from any point G ∈ � and any point H ∈ (
there exists an =-gon with a vertex at H and one side tangent to � at H which
circumscribes � and inscribed in (.

To check explicitly whether two conics are Poncelet related, one needs to
recognize when the automorphism g�,( is of finite order. Let us choose pro-
jective coordinates such that � is the Veronese conic C0C2 − C21 = 0, the image
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of P1 under the Veronese map [C0, C1] ↦→ [C20 , C0C1, C
2
2]. By using a projective

transformation leaving � invariant we may assume that the four intersection
points ?1, ?2, ?3, ?4 of � and ( are the images of the points 0, 1,∞, 0. Then,
' is isomorphic to the elliptic curve given by the affine equation

H2 = G(G − 1) (G − 0).

The conic ( belongs to the pencil of conics with base points ?1, . . . , ?4:

(C0C2 − C21) + _C1 (0C0 − (1 + 0)C1 + C2) = 0.

We choose the zero point in the group law on ' to be the point (G [0], H[0]) =
(?4, ?4) ∈ �×(. Then, the automorphism g�,( sends this point to (G [1], H[1]),
where

H[1] = (_0, _(1 + 0) + 1, 0), G [1] = ((0 + 1)2_2, 20(1 + 0)_, 402).

Thus, G [1] is the image of the point (1, 20
(0+1)_ ) ∈ P

1 under the Veronese map.
The point H[1] corresponds to one of the two roots of the equation

H2 =
20

(0 + 1)_ (
20

(0 + 1)_ − 1) ( 20
(0 + 1)_ − 0).

Weneed a criterion characterizing points (G,±
√
G(G − 1) (G − 0)) of finite order.

Note that different choice of the sign corresponds to the involution G ↦→ −G
of the elliptic curve. So, the order of the points corresponding to two different
choices of the sign are the same. We have the following result of A. Cayley.

Theorem 2.2.3 (A. Cayley). Let ' be an elliptic curve with affine equation

H2 = 6(G),

where 6(G) is a cubic polynomial with three distinct nonzero roots. Let H =∑∞
8=0 28G

8 be the formal power Taylor expansion of H in terms of the local
parameter G at the point ? = (0,

√
6(0)). Then, ? is of order = ≥ 3 if and only

if ���������
22 23 . . . 2:+1
23 24 . . . 2:+2
...

...
...

...

2:+1 2:+2 . . . 22:

��������� = 0, = = 2: + 1,

���������
23 24 . . . 2:+1
24 25 . . . 2:+2
...

...
...

...

2:+1 2:+2 . . . 22:−1

��������� = 0, = = 2:.
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Proof Let ∞ be the point at infinity of the affine curve H2 − 6(G) = 0.
The rational function G (resp. H) has pole of order 2 (resp. 3) at ∞. If = =
2: + 1, the rational functions 1, G, . . . , G: , H, GH, . . . , G:−1H form a basis of the
linear space �0 (�,O� (=∞)). If = = 2: , the same is true for the functions
1, G, . . . , G: , H, GH, . . . , G:−2H. A point ? = (0, 20) is a =-torsion point if and
only if there is a linear combination of these functions which vanishes at this
point with order =. Since G is a local parameter at the point ?, we can expand
H in a formal power series H =

∑∞
:=0 2:G

: . Let us assume = = 2: + 1, the other
case is treated similarly. We need to find some numbers (00, . . . , 02: ) such that,
after plugging in the formal power series,

00 + 01G + . . . + 0:G: + 0:+1H + . . . + 02:G
:−1H

is divisible by G2:+1. This gives a system of = linear equations

08 + 0:+128 + · · · + 0:+1+820 = 0, 8 = 0, . . . , :,
02:22+8 + 02:−123+8 + · · · + 0:+12:+1+8 = 0, 8 = 0, . . . , : − 1.

The first : + 1 equations allow us to eliminate 00, . . . , 0: . The last : equations
have a solution for (0:+1, . . . , 02: ) if and only if the first determinant in the
assertion of the Theorem vanishes.

�

To apply the Proposition we have to take

U =
20

(0 + 1)_ , V = 1 + 20
(0 + 1)_ , W = 0 + 20

(0 + 1)_ .

Let us consider the varietyP= of pairs of conics (�, () such that ( is Poncelet
=-related to�. We assume that� and ( intersect transversally.We already know
that P= is a hypersurface in P5 × P5. Obviously, P= is invariant with respect to
the diagonal action of the group SL(3) (acting on the space of conics). Thus, the
equation of P= is an invariant of a pair of conics. This invariant was computed
by F. Gerbardi

Gerbardi
[329]. It is of bidegree ( 1

4) (=),
1
2) (=)), where ) (=) is equal to

the number of elements of order = in the abelian group (Z/=Z)2.
Let us look at the quotient of P= by PSL(3). Consider the rational map V :

P5×P5 → (P2) (4) which assigns to (�, () the point set�∩(. Thefiber of V over a
subset � of four points in general linear position is isomorphic to an open subset
ofP1×P1, whereP1 is the pencil of conicswith base point �. Sincewe can always
transform such � to the set of points {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]}, the
group PSL(3) acts transitively on the open subset of such 4-point sets. Its
stabilizer is isomorphic to the permutation groupS4 generated by the following
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matrices: ©«
0 −1 0
1 0 0
0 0 1

ª®®¬ ,
©«
1 0 0
0 0 −1
0 1 0

ª®®¬ ,
©«
1 0 −1
0 −1 −1
0 0 −1

ª®®¬ .
The orbit space P=/PSL(3) is isomorphic to a curve in an open subset of
P1 × P1/S4, where S4 acts diagonally. By considering one of the projection
maps, we obtain that P=/PSL(3) is an open subset of a cover of P1 of degree
# equal to the number of Poncelet =-related conics in a given pencil of conics
with 4 distinct base points with respect to a fixed conic from the pencil. This
number was computed by F. Gerbardi

Gerbardi
[329] and is equal to 1

2) (=). A modern
account of Gerbardi’s result is given in

Barth1
[34]. A smooth compactification of

P=/PSL(3) is the modular curve -0 (=) that parameterizes the isomorphism
classes of the pairs (', 4), where ' is an elliptic curve and 4 is a point of order
= in '.

gonethree2 Proposition 2.2.4. Let � and ( be two nonsingular conics. Consider each =-
gon inscribed in � as a subset of its vertices, and also as a positive divisor of
degree = on�. The closure of the set of =-gons inscribed in� and circumscribing
( is either empty, or a 61

=, i.e. a linear pencil of divisors of degree =.

Proof First, observe that two polygons inscribed in � and circumscribing
( which share a common vertex must coincide. In fact, the two sides passing
through the vertex in each polygonmust be the two tangents of ( passing through
the vertex. They intersect� at another two common vertices. Continuing in this
way, we see that the two polygons have the same set of vertices. Now, consider
the Veronese embedding v= of � � P1 in P=. An effective divisor of degree =
is a plane section of the Veronese curve V1

= = v= (P1). Thus, the set of effective
divisors of degree = on� can be identified with the dual projective space (P=)∨.
A hyperplane in (P=)∨ is the set of hyperplanes in P= which pass through a
fixed point in P=. The degree of an irreducible curve - ⊂ (P=)∨ of divisors is
equal to the cardinality of the set of divisors containing a fixed general point of
V1
=. In our case, it is equal to one. �

2.2.2 Poncelet Curves and Vector Bundles
SS:2.2.2

Let � and ( be two Poncelet =-related conics in the plane P2 = |� |. Recall that
this means that there exist = points ?1, . . . , ?= on � such that the tangent lines
ℓ8 = T?8 (�) meet on (. One can drop the condition that ( is a conic. We say
that a plane curve ( of degree = − 1 is Poncelet-related to the conic � if there
exist = points, as above, such that the tangents to � at these points meet on (.
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We shall prove an analog of the Darboux Theorem for Poncelet-related
curves of degree larger than 2. First, we have to remind some constructions in
the theory of vector bundles over the projective plane.
Let P1 = |* |, where * is a two-dimensional vector space and let P2 = |+ |,

where+ is a three-dimensional vector space. A closed embedding v : P1 ↩→ P2

has the image isomorphic to a nonsingular conic, a Veronese curve. This defines
an isomorphism

�∨ = �0 ( |� |,O |� | (1)) � �0 ( |* |,O |* | (2)) = (2 (*∨).

Its transpose defines an isomorphism � � (2 (*). This gives a bĳective corre-
spondence between nonsingular conics and linear isomorphisms � → (2 (*).
Also, since dim

∧2* = 1, a choice of a basis in
∧2* defines a linear isomor-

phism* � *∨. This gives an isomorphism of projective spaces |* | � |* |∨ that
does not depend on a choice of a basis in

∧2*. Thus, a choice of a nonsingular
conic in |� | also defines an isomorphism |�∨ | → |(2 (*) | which must be given
by a nonsingular conic in |�∨ |. This is, of course, the dual conic.
Fix an isomorphism P2 � |(2 (*) | defined by a choice of a conic � in P2.

Consider the multiplication map (2 (*) ⊗ (=−2 (*) → (= (*). It defines a rank
2 vector bundle S=,� on P2 whose fiber at the point G = [@] ∈ |(2 (*) | is
equal to the quotient space (= (*)/@(=−2 (*). One easily sees that it admits a
resolution of the form

0→ (=−2 (*) (−1) → (= (*) → S=,� → 0, (2.13) schbundle

where we identify a vector space + with the vector bundle c∗+ , where c is the
structure map to the point. The vector bundle S=,� is called the Schwarzen-
berger vector bundle associated to the conic �. Its dual bundle has the fiber
over a point G = [@] equal to the linear space

((= (*)/@(=−2 (*))∨ = { 5 ∈ (= (*∨) : �@ ( 5 ) = 0}. (2.14) newap

Embedding |*∨ | in |(= (*∨) | by means of the Veronese map, we will identify
the divisor of zeros of @ with a divisor + (@) of degree 2 on the Veronese
curve '= ⊂ |(= (*∨) |, or, equivalently, with a 1-secant of '=. A hyperplane
containing this divisor is equal to + (@6) for some 6 ∈ (=−2 (*). Thus, the
linear space (

newapnewap
2.14) can be identified with the projective span of + (@). In other

words, the fibres of the dual projective bundle S∨
=,�

are equal to the secants of
the Veronese curve '=.
It follows from (

schbundleschbundle
2.13) that the vector bundle S=,� has the first Chern class

of degree = − 1 and the second Chern class is equal to =(= − 1)/2. Thus, we
expect that a general section of S=,� has =(= − 1)/2 zeros. We identify the
space of sections of S=,� with the vector space (= (*). A point [B] ∈ |(= (*) |
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can be viewed as a hyperplane �B in |(= (*∨) |. Its zeros are the secants of '=
contained in �B . Since �B intersects '= at = points ?1, . . . , ?=, any 1-secant
?8 ? 9 is a 1-secant contained in �B . The number of such 1-secants is equal to
=(= − 1)/2.
Recall that we can identify the conic with |* | by means of the Veronese

map v2 : |* | → |(2 (*) |. Similarly, the dual conic �∨ is identified with |*∨ |.
By using the Veronese map v= : |*∨ | → |(= (*∨) |, we can identify �∨ with
'=. Now, a point on '= is a tangent line on the original conic �, hence =
points ?1, . . . , ?= from above are the sides ℓ8 of an =-gon circumscribing �.
A secant ?8 ? 9 from above is a point in P2 equal to the intersection point
@8 9 = ℓ8 ∩ ℓ 9 . And the =(= − 1)/2 points @8 9 represent the zeros of a section B
of the Schwarzenberger bundle S=,� .

For any two linearly independent sections B1, B2, their determinant B1 ∧ B2
is a section of

∧2 S=,� , and hence, its divisor of zeros belongs to the linear
system |OP2 (= − 1) |. When we consider the pencil 〈B1, B2〉 spanned by the two
sections, the determinant of each member B = _B1 + `B2 has the zeros on the
same curve + (B1 ∧ B2) of degree < − 1.

Let us summarize this discussion by stating and proving the following gen-
eralization of the Darboux Theorem.

Theorem 2.2.5. Let� be a nonsingular conic in P2 and let S=,� be the associ-
ated Scwarzenberger rank 2 vector bundle overP2. Then, =-gons circumscribing
� are parameterized by |�0 (S=,� ) |. The vertices of the polygonΠB defined by a
section B correspond to the subscheme / (B) of zeros of the section B. A curve of
degree = − 1 passing through the vertices corresponds to a pencil of a sections
of S=,� containing B and is equal to the determinant of a basis of the pencil.

Proof A section B with the subscheme of zeros / (B) with ideal sheaf I/ (B)
defines the exact sequence

0→ OP2
B→ S=,� → I/ (= − 1) → 0.

A section of I/ (= − 1) is a plane curve of degree = − 1 passing through / (B).
The image of a section C of S=,� in �0 (I/ (= − 1)) is the discriminant curve
B ∧ C. Any curve defined by an element from �0 (I/ (= − 1)) passes through
the vertices of the =-gon ΠB and is uniquely determined by a pencil of sections
containing B. �

One can explicitly write the equation of a Poncelet curve as follows. First
we choose a basis b0, b1 of the space * and the basis (b30 , b

3−1
0 b1, . . . , b

3
1 )

of the space (3 (*). The dual basis in (= (*∨) is (
(3
8

)
C3−80 C81)0≤8≤3 . Now, the

coordinates in the plane |(2 (*) | are C20 , 2C0C1, C
2
2 , so a point in the plane is a
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binary conic& = 0b2
0 +21b0b1 + 2b2

1 . For a fixed G = [&] ∈ |(
2 (*) |, the matrix

of the multiplication map (=−2 (*) → (= (*), � ↦→ &� is

 (G) =

©«

0

21 0

2 21
. . .

2
. . .

. . .

. . .
. . . 0

. . . 21
2

ª®®®®®®®®®®®®®®¬
.

A section of S=,� is given by 5 =
∑=
8=0 28b

=−8
0 b81 ∈ (

= (*). Its set of consists
of points G such that the vector c of the coefficients belongs to the column
subspace of the matrix  (G). Now, we vary 5 in a pencil of binary forms
whose coefficient vector c belongs to the nullspace of some matrix � of size
(= − 1) × (= + 1) and rank = − 1. The determinant of this pencil of sections
is the curve in the plane defined by the degree = − 1 polynomial equation in
G = [0, 1, 2]

det
(
 (G) · �

)
= 0.

Note that the conic � in our choice of coordinates is + (C21 − C0C2).

Remark 2.2.6. Recall that a section ofS=,� defines a =-gon in the plane |(2 (*) |
corresponding to the hyperplane section �B ∩ '=. Its vertices is the scheme of
zeros / (B) of the section B. Let c : - (B) → P2 be the blow-up of / (B). For a
general B, the linear system of Poncelet curves through / (B) embeds the surface
- (B) in |(= (*∨) |with the image equal to�B∩Sec1 ('=). The exceptional curves
of the blow-up are mapped onto the secants of '= which are contained in �B .
These are the secants ?8 ? 9 , where �B ∩ '= = {?1, . . . , ?=}. The linear system
defining the embedding is the proper transform of the linear system of curves
of degree = − 1 passing through 1

2=(= − 1) points of / (B). This implies that
the embedded surface - (B) has the degree equal to (= − 1)2 − 1

2=(= − 1) =
1
2 (= − 1) (= − 2). This is also the degree of the secant variety Sec1 ('=). For
example, take = = 4 to get that the secant variety of '4 is a cubic hypersurface
in P4 whose hyperplane sections are cubic surfaces isomorphic to the blow-up
of the six vertices of a complete quadrilateral.
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2.2.3 Complex Circles
SS:2.2.3

Fix two points in the plane and consider the linear system of conics passing
through the two points. It maps the plane to P3 with the image equal to a
nonsingular quadric & = + (@). Thus, we may identify each conic from the
linear system with a hyperplane in P3, or using the polarity defined by&, with a
point. When the two points are the points [0, 1,±8] in the real projective plane
with the line at infinity C0 = 0, a real conic becomes a circle, and we obtain
that the geometry of circles can be translated into the orthogonal geometry of
real 3-dimensional projective space. In coordinates, the rational map P2 d P3

is given by

[C0, C1, C2] ↦→ [G0, G1, G2, G3] = [C21 + C
2
2 , C0C1, C0C2, C

2
0] .

Its image is the quadric

& = + (G0G3 − G2
1 − G

2
2).

Explicitly, a point [{] = [U0, U1, U2, U3] ∈ P3 defines the complex circle

(({) : U0 (C21 + C
2
2) − 2C0 (U1C1 + U2C2) + U3C

2
0 = 0. (2.15) sphere

By definition, its center is the point 2 = [U0, U1, U2], its radius square A2 is
defined by the formula

U2
0A

2 = U2
1 + U

2
2 − U0U3 = @(U). (2.16) radius1

Let us express the property that two circles are tangent to each other. It applies
to complex circles as well.

P:2.2.7 Proposition 2.2.7. Let [{], [|] be two points in P3, and let (({), ((|) be two
complex circles corresponding to planes in P3 which are polar to the points
with respect to the quadric & = + (@). Then, the two circles touch each other if
and only if

({, {) (|, |) − ({, |)2 = 0, (2.17) circle

where ({, |) denotes the bilinear form associated to the quadratic form @.

Proof Let ℓ = + (_{ + `|) be the line spanned by the points [{] and [|]. Via
polarity, it corresponds to a pencil of planes in P3. The pre-images of two planes
are tangent if and only if the pencil contains a plane tangent to the quadric &.
Dually this means that the line ℓ is tangent to&. This is equivalent to the binary
form

@(_{ + `|) = _2 ({, {) + 2({, |)_` + `2 (|, |)

having has a double root. Of course, this happens if and only if (
circlecircle
2.17) holds.
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�

Note that relation (
circlecircle
2.17) is of degree 2 in { and |. If we identify the space

of circles with P3, this implies that the pairs of touching complex circles is a
hypersurface in P3 × P3 of bidegree (2, 2). It is easy to see that the diagonal of
P3 × P3 is the double locus of the hypersurface.
Fix two complex irreducible circles (1 = (({) and (2 = ((|) and consider

the variety � of complex circles ((G) touching (1 and (2. It is equal to the quartic
curve � , the intersection of two quadrics &(1 and &(2 of conics touching (1
and (′2. It is given by equations:

({, {) (G, G) − ({, G)2 = (|, |) (G, G) − (|, G)2 = 0.

The quadrics (1 and (2 are cones with vertices ?1 = [{], ?2 = [|], respectively.
Eliminating (G, G) from the equations,we obtain that ' is the union of two planes

Π±(1 ,(2
= + (

√
({, {) (|, G) ±

√
(|, |) ({, G)).

The planes intersect along the line ({, G) = (|, G) = 0. It intersects (1 and
(2 at two points lying on the null-quadric &. Each point corresponds to the
null-circle, i.e. U2

0A
2 = 0 in (

radius1radius1
2.16). It is the union of two lines, each through the

ideal points on + (C0) intersecting at one of the intersection points of the circles
(1 and (2.
In the case where ( and (′ touch each other, the pencil spanned by (1 and (2

is a line component of the quartic curve �. It contains the vertices of the cones,
and hence, enters with multiplicity 2. The residual component is an irreducible
conic.

Theorem 2.2.8 (J. Steiner). Suppose (1 and (2 are in general position. Let
�1, . . . , �= be a sequence of complex circles tangent to (1 and (2 such that
�8+1 is tangent to �8 for all 8 = 1, . . . , = (where �=+1 = �1). Suppose, after <
steps, (< is equal to (1. Then, there is a such sequence starting from any circel
� ′1 tangent to (1 and (2.

Proof Recall that we denoted by � the quartic curve of conics tangent to
(1 and (2. Let �0 be one of the irreducible components of �. It is a conic
isomorphic to P1.

- = {(�,� ′) ∈ �0 × �0 : � touches � ′}.

The pre-image of � ∈ �0 under the projection to the first factor is equal to the
intersection of �0 with the plane tangent to the cone &� and another plane. It
consists of two equal points and another couple of points 0, 1. The double point
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obviously corresponds to the diagonal in �0 × �0. So, if we delete the diagonal
Δ from - , we obtain a curve -0 ⊂ �0 × �0 of bidegree (2, 2).
Let U : -0 → �0 be the first projection. It is a degree 2 map. The only case

where the fiber U−1 (�1) consists of one point is when �1 is one of the two
null-lines touching (1 and (2. Thus, we see that -0 has only two branch points
for each of the two projections - → '. Since its arithmetic genus is equal
to one, it must consist of two irreducible curves +1 and +2 of bidegree (1, 1)
intersecting at two points. Since -0 is obviously invariant with respect to the
switch B of the factors, B(+1) = +2. Let

g : +1 \ Δ→ +1 \ Δ

be the map that sends (�1, �2) ∈ +1 to (�2, �3) ∈ +1. Since +1 � P
1 \ {0, 1} �

C∗, the automorphism g of +1 must be the multiplication by a constant _. The
property that the sequence �1, �2, . . . , �= obtained by iteration of g terminates
is equivalent to that _= = 1. Since this property is independent of a choice of
�1, the assertion follows.

�

Remark 2.2.9. We followed the proof from
Barth1
[34]. When ( and (′ are concentric

real circles, the assertion is evident. The general case of real conics can be
reduced to this case (see

Flato
[305],

Schoenberg
[661]). Poncelet’s and Steiner’s Theorems are

examples of a porism, which can be loosely stated as follows. If one can find one
object satisfying a certain special property then there are infinitely many such
objects. There are some other poristic statements for complex circles: Emch’
Theorem and the zig-zag theorem discussed in

Barth1
[34].

2.3 Quadric Surfaces
S:2.3

2.3.1 Polar Properties of Quadrics
SS:2.3.1

Many of the polar properties of conics admit extension to nonsingular quadrics
in higher-dimensional P=. For example, a self-polar (= + 1)-hedron is defined
as a collection of = + 1 ordered hyperplanes + (;8) in general linear position
such that the pole of each plane + (;8) is equal to the intersection point of
the remaining hyperplanes. Similarly to the case of conics, one proves that a
self-polar (= + 1)-hedron is the same as a polar (= + 1)-hedron of the quadric.
The definition of the conjugate (= + 1)-hedra is a straightforward extension

of the definition of conjugate triangles. We say that two simplexes Σ and Σ′ are
mutually polar with respect to a quadric & if the poles of the facets of ) ′ are
vertices of ) . This implies that the images of :-dimensional faces of ) under
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the polarity defined by& are the opposite (=− :)-dimensional facets of Σ′. The
condition (

tepl1tepl1
2.10) extends to any dimension. However, it does not translate to a

single equation on the coefficients of the linear forms defining the polyhedra.
This time we have a system of =(= + 1)/2 linear equations with =+ 1 unknowns
and the condition becomes the rank condition.
We adopt the terminology of convex geometry to call the set of =+ 1 linearly

independent hyperplanes a simplex. The intersection of a subset of : hyper-
planes will be called an (= − :)-dimensional face. If : = =, this is a vertex , if
: = = − 1, this is an edge, if = = 0 this is a facet .
The notion of perspectivity of triangles extends to quadrics of any dimension.

We say that two simplexes are perspective from a point o if there is a bĳection
between the sets of vertices such that the lines joining the corresponding vertices
pass through the point o. We say that the two simplexes are perspective from
a hyperplane if this hyperplane contains the intersections of corresponding
facets. We have also an extension of Desargues’ Theorem.

Theorem 2.3.1 (G. Desargues). Two simplexes are perspective from a point if
and only if they are perspective from a hyperplane.

Proof Without loss of generality, we may assume that the first simplex Σ is
the coordinate simplex with vertices ?8 = [48] and it is perspective from the
point o = [4] = [1, . . . , 1]. Let @8 = [{8] be the vertices of the second simplex
Σ2. Then, we have {8 = 4+_848 for some scalars _8 . After subtracting, we obtain
{8 − { 9 = _848 − _ 94 9 . Thus, any two edges ?8 ? 9 and @8@ 9 meet at a point A8 9
which lies in the hyperplane � = + (∑=

8=0
1
_8
C8). Since the intersection of the

facet of Σ1 opposite the point ?: with the facet of Σ2 opposite the point @:
contains all points A8 9 with 8, 9 ≠ : , and they span the intersection, we get that
the two simplexes are perspective from �. The converse assertion follows by
duality. �

Remark 2.3.2. As remarked
SK
[702], p.252, the previous assertion is a true space

generalization of the classical Desargues’s Theorem. Other generalization ap-
plies to two space triangles and asserts that the perspectivity from a point
implies that the intersection points of the corresponding sides (which automat-
ically intersect) are collinear.

Let 1@ : � → �∨ be an isomorphism defined by a nonsingular quadric
& = + (@). For any linear subspace ! of � , the subspace 1@ (!)⊥ of � is called
the polar of ! with respect to &. It is clear that the dimensions of a subspace
and its polar subspace add up to the dimension of |� |. Two subspaces Λ and Λ′
of the same dimension are called conjugate if the polar subspace ofΛ intersects
Λ′.
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These classical definitions can be rephrased in terms of standard definitions
of multilinear algebra. Let Λ (resp. Λ′) be spanned by [{1], . . . , [{: ] (resp.
[|1], . . . , [|: ]). For any two vectors {, | ∈ � , let ({, |)@ denote the value of
the polar bilinear form 1@ of @ on ({, |).

L2.2.14 Lemma 2.3.3. Λ and Λ′ are conjugate with respect to & if and only if

det

©«
({1, |1)@ ({2, |1)@ . . . ({: , |1)@
({1, |2)@ ({2, |2)@ . . . ({: , |2)@

...
...

...
...

({1, |: )@ ({2, |: )@ . . . ({: , |: )@

ª®®®®®¬
= 0.

Proof Let 1@ : � → �∨ be the linear isomorphism defined by 1@ . The linear
funtions 1@ ({1), . . . , 1@ ({: ) form a basis of a :-dimensional subspace ! of �∨
whose dual !⊥ is an (= − :)-dimensional subspace of � . It is easy to see that
the spans of {1, . . . , {: and |1, . . . , |: have a common nonzero vector if and
only if !⊥ intersects non-trivially the latter span. The condition for this is that,
under the natural identification

∧: (�∨) and ∧: (�)∨, we have

1@ ({1) ∧ . . . ∧ 1@ ({: ) (|1 ∧ . . . ∧ |: ) = det(({8 , | 9 )@) = 0.

�

It follows from the lemma that the relation to be conjugate is symmetric.

From now on, until the end of this section, we assume that = = 3.
A tetrahedron in P3 with conjugate opposite edges is called self-conjugate.

It is clear that a polar tetrahedron of& is self-conjugate, but the converse is not
true.
Let ) be a tetrahedron with vertices ?1 = [{1], . . . , ?4 = [{4]. Suppose

that two pairs of opposite edges are conjugate with respect to some quadric
&. Then, ) is self-conjugate (see

Sturm2
[736, Bd. III, p. 135], or

Sommerville2
[717, 7.381]). The

proof is immediate. Suppose the two conjugate pairs of edges are (?1?2, ?3?4)
and (?1?3, ?2?4). For brevity, let us denote ({8 , { 9 )@ by (8 9). Then, (13) (24) −
(14) (23) = 0, and (12) (34) − (14) (23) = 0 imply, after subtraction, (13) (24) −
(12) (34) = 0. This means that the remaining pair (?1?3, ?2?3) is conjugate.
We know from Theorem

T2.7.1T2.7.1
2.1.9 that two conjugate triangles are perspective.

In the case of quadrics we have a weaker property expressed in the following
Chasles’ Theorem.

chasles Theorem 2.3.4. [M. Chasles] Let ) and ) ′ be two mutually polar tetrahedracharles1
with respect to a quadric&. Suppose no two opposite edges of ) are conjugate.
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Then, the lines joining the corresponding vertices belong to the same ruling of
lines of some nonsingular quadric & ′.

Proof Let ?1, ?2, ?3, ?4 be the vertices of ) and let @1, @2, @3, @4 be the
vertices of ) ′. In the following, {8, 9 , :, ;} = {1, 2, 3, 4}. By definition, @; is a
pole of the plane spanned by ?8 , ? 9 , ?: and the matching between the vertices
is ?8 ↦→ @8 . Suppose the edge ?8 ? 9 is not conjugate to the opposite edge ?: ?; .
This means that it does not intersect the edge @8@ 9 . This implies that the lines
?8@8 and ? 9@ 9 do not intersect. By symmetry of the conjugacy relation, we also
obtain that the lines ?:@: and ?;@; do not intersect. Together this implies that
we may assume that the first three lines ℓ8 = ?8@8 are not coplanar.
Without loss of generality, we may assume that the first tetrahedron ) is

the coordinate tetrahedron. Let � = (08 9 ) be a symmetric matrix defining the
quadric & and let � = adj(�) = (28 9 ) be the adjugate matrix defining the
dual quadric. The coordinates of facets of ) are columns of � = (08 9 ). The
coordinates of the intersection point of three facets defined by three columns
�8 , � 9 , �: of � are equal to the column �< of �, where < ≠ 8, 9 , : . Thus,
a general point on the line generated by the point [1, 0, 0, 0] has coordinates
[_, `212, 213, 214], and similar for other three lines. Recall that by Steiner’s
construction (see

GH
[360, p. 528], one can generate a nonsingular quadric by

two projectively equivalent pencils of planes through two skew lines. The
quadric is the union of the intersection of the corresponding planes. Apply this
construction to the pencil of planes through the first two lines. They projectively
matched by the condition that the corresponding planes in the pencils contain
the same point [231, 232, _, 241] on the third line. The two planes from each
pencil are defined by the equations

det
©«
C0 C1 C2 C3
1 0 0 0

_211 212 213 214
231 232 _ 234

ª®®®®¬
= C1213234 + C2 (214232 − 212234) − C3213232 + _(C3212 − C1214) = 0,

det
©«
C0 C1 C2 C3
0 1 0 0
221 222 223 224
231 232 _ 234

ª®®®®¬
= C0223234 + C2 (224231 − 221234) − C3223231 + _(C3221 − C1224) = 0,
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Eliminating _, we find the equation of the quadric

(212234 − 224213) (223C0C3 + 214C1C2) + (213224 − 214223) (212C2C3 + 234C0C1)

+(214223 − 212234) (213C1C3 + 224C0C2) = 0.

By definition, the quadric contains the first three lines. It is immediately checked
that a general point [241, 242, 243, _] on the fourth line lies on the quadric. �

The following result follows from the beginning of the proof.

P2.2.17 Proposition 2.3.5. Let ) and ) ′ be two mutually polar tetrahedra. Assume
that ) , and hence ) ′, is self-conjugate. Then, ) and ) ′ are in perspective
from the intersection points of the lines joining the corresponding vertices and
perspective from the polar plane of this point.

One can think that the covariant quadric & ′ constructed in the proof of
Chasles’ Theorem

chasleschasles
2.3.4 degenerates to a quadratic cone. Counting parameters,

it is easy to see that the pairs of perspective tetrahedra depend on the same
number 19 of parameters as pairs of tetrahedra mutually polar with respect to
some quadric. It is claimed in

BakerBook
[29, Volume 3, p. 45], that any two perspective

tetrahedra are, in fact, mutually polar with respect to some quadric. Note that the
polarity condition imposes three conditions, and the self-conjugacy condition
imposes two additional conditions. This agrees with counting constants (5 =
24 − 19).
One can apply the previous construction to the problem of writing a quadratic

form @ as a sum of five squares of linear forms. Suppose we have two self-
conjugate tetrahedra ) and ) ′ with respect to a quadric& that are also mutually
polar with respect to &. By Proposition

P2.2.17P2.2.17
2.3.5, they are perspective. Choose

coordinates such that ) is the coordinate tetrahedron and let � = (08 9 )0≤8, 9≤3
be a symmetric matrix defining&.We know that the equations of facets�8 of) ′
are+ (∑3

9=0 08 9 C 9 ). Since) is self-conjugate, the intersection lines�0∩�1 meet
the coordinate lines C0 = C1 = 0. This means that the equations 020C2 + 030C3 = 0
and 021C2 + 031C3 = 0 have a nonzero solution, i.e. 020031 = 021030. Similarly,
we get that 010032 = 030012 and 001032 = 002031. Using the symmetry of
the matrix, this implies that the six products are equal. Hence, 003013/012 =

023003/002 = 003013/001 are all equal to some number U. Then, the equation
of the quadrics can be written as a sum of five squares

3∑
8=0

088C
2
8 + 2

∑
0≤8< 9≤3

08 9 C8C 9
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=

2∑
8=0
(088 − U083)C28 + (033 − U)C23 + U

−1 (
2∑
8=0

083C8 + UC3)2 = 0.

Here, we assume that � is general enough. The center of the perspectivity of
the two tetrahedra is the pole of the plane + (003C0 + 013C1 + 023C2 + UC3).
The pentad of points consisting of the vertices of a self-conjugate tetrahedron

with regard to a quadric& and the center of the perspectivity o of the tetrahedron
and its polar tetrahedron form a self-conjugate pentad (and pentahedron in the
dual space). This means that the pole of each plane spanned by three vertices
lies on the opposite edge. As follows from above, the pentad of points defined
by a self-conjugate tetrahedron defines a polar polyhedron of & consisting of
the polar planes of the pentad.

Proposition 2.3.6. Let �8 = + (;8), 8 = 1, . . . , 5, form a nondegenerate polar
pentahedron of a quadric & = + (@). Let ?1, . . . , ?5 be the poles of the planes
+ (;8) with respect to &. Then, the pentad ?1, . . . , ?5 is self-conjugate and is a
polar polyhedron of the dual quadric.

Proof Let G8 be the pole of �8 with respect to &. Then, the pole of the plane
spanned by G8 , G 9 , G: is the point G8 9: = �8 ∩ � 9 ∩ �: . We may assume that
@ =

∑4
8=0 ;

2
8
. Then, %G8 9: (&) belongs to the pencilP generated by the remaining

two planes �A , �B . When we vary a point along the edge GAGB , the polar plane
of the point belongs to the pencil P. For one of the points, the polar plane
will be equal to the plane %G8 9: (&), hence this points coincide with G8 9: . By
definition, the pentad is self-conjugate.
The second assertion can be checked by straightforward computation. Since

the polar pentahedron is nondegenerate, we can choose coordinates such that
the polar pentahedron of& is to equal to the union of the coordinate tetrahedron
and the plane + (∑ C8). We can write

2@ =
3∑
8=0

_8C
2
8 + (

3∑
8=0

C8)2

for some nonzero scalars _8 . For any { = (00, 01, 02, 03) ∈ C4, we have

�{ (@) =
3∑
8=0
(0 + _808)C8

where 0 =
∑3
8=0 08 . Let b8 = 0 + _808 be considered as coordinates in the dual

space. We can express 08 in terms of b8 by solving a system of linear equations
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with the coefficient matrix

©«
_0 1 1 1
1 _1 1 1
1 1 _2 1
1 1 1 _3

ª®®®®¬
.

Write 0 9 = ! 9 (b0, . . . , b3) =
∑3
9=0 28 9b 9 , where (28 9 ) is the inverse matrix. Let

{∗
9
= (20 9 , 21 9 , 22 9 , 23 9 ). The dual quadric consists of points (b0, b1, b2, b3) such

that @(00, 01, 02, 03) = 0. This gives the equation of the dual quadric

&∨ = + (
3∑
8=0

_8!8 (b0, b1, b2, b3)2 +
( 3∑
8=0

!8 (b0, b1, b2, b3)
)2).

So, we see that the dual quadric has the polar polyhedron defined by the planes
+ (!8), + (

∑
!8). We have

�{∗
9
(@) =

3∑
8=0
(_808 + 0)28 9 C8 = C 9 , 9 = 0, 1, 2, 3,

hence �∑
{∗
9
(@) = ∑

C 9 . This checks that the points of the pentad are poles of
the planes of the polar pentahedron of &. �

Remark 2.3.7. Let Π1, . . . ,Π# be sets of <-hedra in P=, = > 1, with no
common elements. Suppose that these polyhedra, considered as hypersurfaces
in P= of degree < (the unions of their hyperplanes), belong to the same pencil.
It is easy to see that this is equivalent to that the first two <-hedra Π1,Π2
are perspective from each hyperplane of Π3, . . . ,Π: . The open problem is as
follows.

What is the maximal possible number # (=, <) of such polyhedra?
By taking a general hyperplane, we get # (=, <) ≤ # (2, <). It is known that

# (2, <) ≥ 3 and # (2, 2), # (2, 3) = 4. It was proven by J. Stipins
Stipins
[728] (see

also
Yuzvinsky
[813]) that # (2, <) ≤ 4 for all < and it is conjectured that # (2, <) = 3

for < ≠ 3.
In the next chapter, we will consider the case = = 2, < = 3, # = 4. In the case

= = 3, < = 4, # = 3, the three tetrahedra are called desmic desmic (the name is
due to C. Stephanos

Stephanos
[727]). The configuration of the 12 planes forming three

desmic tetrahedra has a beautiful geometry (see, for example,
Mathews1
[507],

Mathews2
[508]). A

general member of the pencil generated by three desmic tetrahedra is a desmic
quartic surface. It has 12 singular points and represents a special embedding of
a Kummer surface of the product of two isomorphic elliptic curves. We refer to
Hunt
[416] for some modern treatment of desmic quartic surfaces. We will discuss
this later in Example

CAG-2:exp:desmicCAG-2:exp:desmic
12.3.11.
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2.3.2 Invariants of a Pair of Quadrics
SS:2.3.2

Let &1 = + ( 5 ) and &2 = + (6) be two quadrics in P= (not necessarily non-
singular). Consider the pencil + (C0 5 + C16) of quadrics spanned by � and (.
The zeros of the discriminant equation � = discr(C0 5 + C16) = 0 correspond
to singular quadrics in the pencil. In coordinates, if 5 , 6 are defined by sym-
metric matrices � = (08 9 ), � = (18 9 ), respectively, then � = det(C0� + C1�)
is a homogeneous polynomial of degree ≤ = + 1. Choosing different system of
coordinates replaces �, � by &) �&,&) �&, where & is an invertible matrix.
This replaces � with det(&)2�. Thus, the coefficients of � are invariants on
the space of pairs of quadratic forms on C=+1 with respect to the action of the
group SL(=+1). To compute � explicitly, we use the following formula for the
determinant of the sum of two < × < matrices - + . :

det(- + . ) =
∑

1≤81<...<8: ≤=
Δ81 ,...,8: , (2.18) formdet

where Δ81 ,...,8: is the determinant of the matrix obtained from - by replacing
the columns -81 , . . . , -8: with the columns .81 , . . . , .8: . Applying this formula
to our case, we get

� = Θ0C
=+1
0 +

=∑
8=1
Θ8C

=+1−8
0 C8 + Θ=+1C=+1= (2.19) salmon

where Θ0 = det �,Θ=+1 = det �, and

Θ: =
∑

1≤81<...<8: ≤=+1
det(�1 . . . �81 . . . �8: . . . �=+1),

where � = [�1 . . . �=+1], � = [�1 . . . �=+1]. We immediately recognize the
geometric meanings of vanishing of the first and the last coefficients of �. The
coefficient Θ0 (resp. Θ=+1) vanishes if and only if &1 (resp. &2) is a singular
conic.

propx Proposition 2.3.8. Let &1 and &2 be two general quadrics. The following
conditions are equivalent.

(i) Θ1 = 0;
(ii) &2 is apolar to the dual quadric &∨1 ;
(iii) &1 admits a polar simplex with vertices on &2.

Proof First note that
Θ1 = Tr(�adj(�)). (2.20)

Now, adj(�) is the matrix defining &∨1 and the equivalence of (i) and (ii)
becomes clear.
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Since Θ8 are invariants of (&1, &2), we may assume that &1 = + (
∑=
8=0 C

2
8
).

Suppose (iii) holds. Since the orthogonal group of � acts transitively on the
set of polar simplexes of &1, we may assume that the coordinate simplex is
inscribed in &2. Then, the points [1, 0, . . . , 0], . . . , [0, . . . , 0, 1], must be on
&2. Hence,

&2 = + (
∑

0≤8< 9≤=
08 9 C8C 9 ),

and the condition (8) is verified.
Now, suppose (i) holds. Choose coordinates such that&1 = + (

∑
U8C

2
8
). Start

from any point on &2 but not on &1, and choose a projective transformation
that leaves&1 invariant and sends the point to the point ?1 = [1, 0, . . . , 0]. The
quadric &2 transforms to a quadric with an equation in which the coefficient
at G2

0 is equal to 0. The polar line of ?1 with respect to &1 is + (∑=
8=1 U8C8). It

intersects&2 along a quadric of dimension =−2 in the hyperplane C0 = 0. Using
a transformation leaving + (C0) and &1 invariant, we transform & ′2 to another
quadric such that the point ?2 = [0, 1, 0, . . . , 0] belongs to + (C0) ∩ & ′2. This
implies that the coefficients of the equation of & ′2 at C

2
0 and C21 are equal to zero.

Continuing in this way, we may assume that the equation of &2 is of the form
0==C

2
= +

∑=
0≤8< 9≤= 08 9 C8C 9 = 0. The trace condition is 0==U−1

= = 0. It implies
that 0== = 0, and hence the point ?=+1 = [0, . . . , 0, 1] is on &2. The triangle
with vertices [1, 0, . . . , 0], . . . , [0, . . . , 0, 1] is a polar simplex of &1 which is
inscribed in &2. �

Observe that, if &1 = + (
∑
C2
8
), the trace condition means that the conic &2

is defined by a harmonic polynomial with respect to the Laplace operator.

Definition 2.3.9. A quadric &1 is called apolar to a quadric &2 if one of the
equivalent conditions in Proposition

propxpropx
2.3.8 holds. If&1 is apolar to&2 and vice

versa, the quadrics are called mutually apolar.

The geometric interpretation of other invariantsΘ8 is less clear. First note that
a quadratic form @ on a vector space � defines a quadratic formΛ:@ on the space∧: � . Its polar bilinear form is the map

∧: 1@ :
∧: � → ∧: �∨ = (∧: �)∨,

where 1@ : � → �∨ is the polar bilinear form of @. Explicitly, the polar bilinear
form

∧: 1@ is defined by the formula

({1 ∧ . . . ∧ {: , |1 ∧ . . . ∧ |: ) = det(1@ ({8 , | 9 ))

which we already used in Lemma
L2.2.14L2.2.14
2.3.3.

If � is the symmetric matrix defining @, then the matrix defining
∧: @ is

denoted by �(:) and is called the :-th compound matrix of �. If we index the
rows and the columns of �(:) by an increasing sequence � = ( 91, . . . , 9: ) ⊂
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{1, . . . , =+1}, then the entry �(:)
� ,� ′ of �

(:) is equal to the (�, � ′)-minor �� ,� ′ of
�. Replacing each �(:)

� ,� ′ with the minor �
� ′,� taken with the sign (−1) n (� ,� ′) ,

we obtain the definition of the adjugate :-th compound matrix adj(:) (�) (not
to be confused with adj(�(:) )). The Laplace formula for the determinant gives

�(:)adj(:) (�) = det(�)� .

If � is invertible, then �(:) is invertible and (�(:) )−1 = 1
det �adj(�(:) ).

We leave it to the reader to check the following fact.

Proposition 2.3.10. Let &1 = + (@), &2 = + (@′) be defined by symmetric
matrices �, � and let �(:) and � (:) be their :-th compound matrices. Then,

Θ: (�, �) = Tr(�(=+1−:)adj(� (:) )).

exa:2.3.11 Example 2.3.11. Let = = 3. Then, there is only one new invariant to interpret.
This isΘ2 = Tr(�(2)adj(� (2) )). The compoundmatrices �(2) and � (2) are 6×6
symmetric matrices whose entries are 2 × 2-minors of � and � taken with an
appropriate sign. Let � = (08 9 ). The equation of the quadric defined by �(2) is
given by the bordered determinant

det

©«

000 001 002 003 b0 [0
010 011 012 013 b1 [1
020 021 022 023 b2 [2
030 031 032 033 b3 [3
b0 b1 b2 b3 0 0
[0 [1 [2 [3 0 0

ª®®®®®®®®¬
= 0. (2.21) bd1

The equation is called the line-equation or complex equation of the quadric
& defined by the matrix �. If we take the minors b8[ 9 − b 9[8 as Plücker
coordinates in |∧2 C4 |, the line-equation parameterizes lines in P3 which are
tangent to the quadric &. This can be immediately checked by considering a
parametric equation of a line _(b0, b1, b2, b3) + `([0, [1, [2, [3), inserting it in
the equation of the quadric and finding the condition when the corresponding
quadratic form in _, ` has a double root. In matrix notation, the condition is
(b�b) ([�[) − (b�[)2 = 0, which can be easily seen rewritten in the form
of the vanishing of the bordered determinant. The intersection of the quadric
defined by the matrix �(2) with the Klein quadric defining the Grassmannian
of lines in P3 is an example of a quadratic line complex associated to a quadric.
We will discuss this and other quadratic line complexes in Chapter 10.
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Take & = + (∑ C2
8
). Then, the bordered determinant becomes equal to

(
3∑
8=0

b2
8 ) (

3∑
8=0

[8) − (
3∑
8=0

b8[8)2 =
∑

0≤8< 9≤3
(b8[ 9 − b 9[8)2 =

∑
0≤8< 9≤3

?2
8 9 ,

where ?8 9 are the Plücker coordinates. We have

Θ2 (�, �) = Tr(�2) =
∑

0≤8< 9≤3
(18 91 98 − 1881 9 9 ).

The coordinate line C8 = C 9 = 0 touches the quadric&2 when 18 91 98−1881 9 9 = 0.
Thus, Θ2 vanishes when a polar tetrahedron of &1 has its edges touching &2.
It is clear that the invariants Θ: are bihomogeneous of degree (:, = + 1 − 8)

in coefficients of � and �. We can consider them as invariants of the group
SL(=+1) acting on the product of two copies of the space of square symmetric
matrices of size =+1. One can prove that the =+1 invariantsΘ8 form a complete
system of polynomial invariants of two symmetric matrices. This means that
the polynomials Θ8 generate the algebra of invariant polynomials (see

Turnbull
[768, p.

304]).
One can use the invariantsΘ8 to express differentmutual geometric properties

of two quadrics. We refer to
Sommerville2
[717] for many examples. We give only one

example.

tact Theorem 2.3.12. Two quadrics touch each other if and only if

� = D(Θ0, . . . ,Θ=+1) = 0,

where D is the discriminant of a binary form of degree = + 1.

Proof This follows from the description of the tangent space of the discrimi-
nant hypersurface of quadratic forms. The line defining the pencil of quadrics
generated by the two quadrics does not intersect the discriminant hypersurface
transversally if and only if one of quadrics in the pencil is of corank ≥ 2, or one
of the quadrics has a singular point at the base locus of the pencil (see (

tandiscrtandiscr
1.46)).

In the case of pencils the first condition implies the second one. Thus, the con-
dition for tangency is that one of the roots of the equation det(C0� + C1�) = 0
is a multiple root. �

The invariant � is called the tact-invariant of two quadrics.∗ Note that two
quadrics touch each other if and only if their intersection has a singular point.

Corollary 2.3.13. The degree of the hypersurface of quadrics in P= touching
a given nonsingular quadric is equal to =(= + 1).

∗The terminology is due to A. Cayley, taction = tangency.
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Proof This follows from the known property of the discriminant of a binary
form

∑3
8=0 08C

3−8
0 C81. If we assign the degree (3 − 8, 8) to each coefficient 08 , then

the total degree of the discriminant is equal to 3 (3 − 1). This can be checked,
for example, by computing the discriminant of the form 00C

3
0 + 03C

3
1 , which is

equal to 3303−1
0 03−1

3
(see

GKZ
[325, p. 406]). In our case, eachΘ: has bidegree (=+

1−:, :), and we get that the total bidegree is equal to (=(=+1), =(=+1)). Fixing
one of the quadrics, we obtain the asserted degree of the hypersurface. �

2.3.3 Invariants of a Pair of Conics
SS:2.3.3

In this case, we have four invariants Θ0,Θ1,Θ2,Θ3, which are traditionally
denoted by Δ,Θ,Θ′,Δ′, respectively.
The polynomials

('0, '1, '2, '3) = (ΘΘ′,ΔΔ′,Θ′3Δ,Θ3Δ′)

are bihomogeneous of degrees (3, 3), (3, 3), (6, 6), (6, 6). They define a rational
map P5 × P5 d P(1, 1, 2, 2). We have the obvious relation '3

0'1 − '2'3 = 0.
After dehomogenization, we obtain rational functions

- = '1/'2
0, . = '2/'0, / = '3/'2

0

such that - = ./ . The rational functions

. = Θ′Δ/Θ2, / = ΘΔ′/Θ′2

generate the field of rational invariants of pairs of conics (see
Sommerville
[716, p. 280]). The

polynomials '0, '1, '2, '3 generate the algebra of bi-homogeneous invariants
on P5 × P5 with respect to the diagonal action of SL(4) and the GIT-quotient
is isomorphic to the rational surface + (C30C1 − C2C3) in the weighted projective
space P(1, 1, 2, 2). The surface is a normal surface with one rational double
point [0, 1, 0, 0] of type �2. The singular point corresponds to a unique orbit of
a pair of nonsingular conics (�, () such that �∨ is apolar to ( and (∨ is apolar
to �. It is represented by the pair

C20 + C
2
1 + C

2
2 = 0, C20 + nC

2
1 + n

2C22 = 0,

where n = 42c8/3. The stabilizer subgroup of this orbit is a cyclic group of order
3 generated by a cyclic permutation of the coordinates.
Recall that the GIT-quotient parameterizes minimal orbits of semi-stable

points. In our case, all semi-stable points are stable, and unstable points corre-
spond to a pairs of conics, one of which has a singular point on the other conic.
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Using the invariants Δ,Θ,Θ′,Δ′, one can express the condition that the two
conics are Poncelet related.

cayley Theorem 2.3.14. Let � and ( be two nonsingular conics. A triangle inscribed
in � and circumscribing ( exists if and only if

Θ′2 − 4ΘΔ′ = 0.

Proof Suppose there is a triangle inscribed in � and circumscribing (. Ap-
plying a linear transformation, we may assume that the vertices of the triangle
are the points [1, 0, 0], [0, 1, 0] and [0, 0, 1] and � = + (C0C1 + C0C2 + C1C2). Let
( = + (6), where

6 = 0C20 + 1C
2
1 + 2C

2
2 + 23C0C1 + 24C0C2 + 2 5 C1C2. (2.22) gggg

The triangle circumscribes ( when the points [1, 0, 0], [0, 1, 0], [0, 0, 1] lie on
the dual conic (̌. This implies that the diagonal entries 12− 5 2, 02− 42, 01− 32

of the matrix adj(�) are equal to zero. Therefore, we may assume that

6 = U2C20 + V
2C21 + W

2C22 − 2UVC0C1 − 2UWC0C2 − 2VWC1C2. (2.23) g

We get

Θ′ = Tr
(©«

0 1 1
1 0 1
1 1 0

ª®®¬ ·
©«

0 2UVW2 2UWV2

2UVW2 0 2VWU2

2UWV2 2VWU2 0

ª®®¬
)
= 4UVW(U + V + W),

Θ = Tr
(©«
U2 −UV −UW
−UV V2 −VW
−UW −VW W2

ª®®¬
©«
−1 1 1
1 −1 1
1 1 −1

ª®®¬
)
= −(U + V + W)2,

Δ′ = −4(UVW)2.

This checks that Θ′2 − 4ΘΔ′ = 0.
Let us prove the sufficiency of the condition. Take a tangent line ℓ1 to (

intersecting� at two points G, H and consider the tangent lines ℓ2, ℓ3 to ( passing
through G and H, respectively. The triangle with sides ℓ1, ℓ2, ℓ3 circumscribes (
and has two vertices on �. Choose the coordinates such that this triangle is the
coordinate triangle. Then, we may assume that� = + (0C20 +2C0C1+2C1C2+2C0C2)
and ( = + (6), where 6 is as in (

gg
2.23). Computing Θ′2 − 4ΘΔ′, we find that it

is equal to zero if and only if 0 = 0. Thus, the coordinate triangle is inscribed
in �. �
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Darboux’s Theorem is another example of a poristic statement, with respect
to the property of the existence of a polygon inscribed in one conic and cir-
cumscribing the other conic. Another example of a poristic statement is one of
the equivalent properties of a pair of conics from Proposition

propxpropx
2.3.8: Given two

nonsingular conics � and (, there exists a polar triangle of � inscribed in (, or,
in other words, � is apolar to (.
Recall from Theorem

T1.1.4T1.1.4
1.1.9 that any projective automorphism of P= = |� | is

a composition of two polarities q, k : |� | → |�∨ |.

Proposition 2.3.15. Let � and ( be two different nonsingular conics and
6 ∈ Aut(P2) be the composition of the two polarities defined by the conics.
Then, 6 is of order 3 if and only if � and ( are mutually apolar.

Proof Let �, � be symmetric 3 × 3 matrices corresponding to � and (. The
conics � and ( are mutually apolar if and only if Tr(��−1) = Tr(��−1)
= 0. The projective transformation 6 is given by the matrix - = ��−1. This
transformation is of order 3 if and only if the characteristic polynomial |-−_�3 |
of the matrix - has zero coefficients at _, _2. Since Tr(-) = 0, the coefficient
at _2 is equal to zero. The coefficient at _ is equal to zero if and only if
Tr(-−1) = Tr(��−1) = 0. Thus, 6 is of order 3 if and only if Tr(��−1) =
Tr(��−1) = 0. �

Remark 2.3.16. It is immediate that any set of mutually apolar conics is linearly
independent. Thus, the largest number of mutually apolar conics is equal to six.
The first example of a set of six mutually apolar conics was given by F. Gerbardi
Gerbardi0
[327]. The following is a set of mutually apolar conics given by P. Gordan

GordanInv2
[349]:

C20 + nC
2
1 + n

2C22 = 0,
C20 + n

2C21 + nC
2
2 = 0,

A2 (C20 + C
2
1 + C

2
2) + A

√
3(C0C1 + C0C2 + C1C2) = 0,

A2 (C20 + C
2
1 + C

2
2) + A

√
3(−C0C1 − C0C2 + C1C2) = 0,

A2 (C20 + C
2
1 + C

2
2) + A

√
3(−C0C1 + C0C2 − C1C2) = 0,

A2 (C20 + C
2
1 + C

2
2) + A

√
3(C0C1 − C0C2 − C1C2) = 0,

where [ = 42c8/3, A = −
√

3+
√
−5

4 . These six quadrics play an important role in
the theory of invariants of the Valentiner group �, the subgroup of PGL(3)
isomorphic to the alternating group A6. in C3 with the algebra of invariants
generated by three polynomials of degrees 6, 12 and 30. The invariant of degree
6 is the sum of cubes of the six mutually apolar quadratic forms. The invariant
of degree 12 is their product. The invariant of degree 30 is also expressed in
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terms of the six quadratic forms but in a more complicated way (see
Gerbardi2
[328],

GordanInv2
[349]). We refer to

Giz
[335] for further discussion of mutually apolar conics.

Consider the set of polar triangles of � inscribed in (. We know that this set
is either empty or of dimension ≥ 1. We consider each triangle as a set of its
three vertices, i.e. as an effective divisor of degree 3 on (.

gonethree Proposition 2.3.17. The closure - of the set of self-polar triangles with respect
to� which are inscribed in (, if not empty, is a 61

3, i.e. a linear pencil of divisors
of degree 3.

Proof First, we use that two self-polar triangleswith respect to� and inscribed
in ( which share a common vertex must coincide. In fact, the polar line of the
vertex must intersect ( at the vertices of the triangle. Then, the assertion is
proved using the argument from the proof of Proposition

gonethree2gonethree2
2.2.4. �

Note that a general 61
3 contains four singular divisors corresponding to ram-

ification points of the corresponding map P1 → P1. In our case these divisors
correspond to four intersection points of � and (.

Another example of a poristic statement is the following.

Theorem 2.3.18. Let ) and ) ′ be two different triangles. The following asser-
tions are equivalent:

(i) there exists a conic ( containing the vertices of the two triangles;
(ii) there exists a conic Σ touching the sides of the two triangles;
(iii) there exists a conic � with polar triangles ) and ) ′.

Moreover, when one of the conditions is satisfied, there is an infinite number of
triangles inscribed in (, circumscribed around Σ, and all of these triangles are
polar triangles of �.

Proof (iii)⇔ (ii) According to Proposition
apollemmaapollemma
1.3.9, a conic � admits ) as a

polar triangle if the conics in the dual plane containing the sides of the triangle
are all apolar to �. If ) and ) ′ are polar triangles of �, then the two nets of
conics passing through the sides of the first and the second triangle intersect
in the 4-dimensional space of apolar conics. The common conic is the conic
Σ from (ii). Conversely, if Σ exists, the two nets contain a common conic, and
hence, are contained in a four-dimensional space of conics in the dual plane.
The apolar conic is the conic � from (iii).

(iii)⇔ (i) This follows from the previous argument applying Corollary
dualtridualtri
2.1.4.

Let us prove the last assertion. Suppose one of the conditions of the Theorem
is satisfied. Then, we have the conics �, (,Σ with the asserted properties with
respect to the two triangles ),) ′. By Proposition

gonethreegonethree
2.3.17, the set of self-polar
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triangles with respect to � inscribed in ( is a 61
3. By Proposition

gonethree2gonethree2
2.2.4, the set

of triangles inscribed in ( and circumscribing Σ is also a 61
3. Two 6

1
3’s with 2

common divisors coincide. �

Recall from Theorem
tacttact
2.3.12 that the condition that two conics� and ( touch

each other is

27Δ2Δ′2 − 18ΘΘ′ΔΔ′ + 4ΔΘ′3 + 4Δ′Θ3 − Θ′2Θ2 = 0. (2.24)

The variety of pairs of touching conics is a hypersurface of bidegree (6, 6)
in P5 × P5. In particular, conics touching a given conic is a hypersurface of
degree 6 in the space of conics. This fact is used for the solution of the famous
Apollonius problem in enumerative geometry: find the number of nonsingular
conics touching five fixed general conics (see

Fulton
[315], Example 9.1.9).

Remark 2.3.19. Choose a coordinate system such that� = + (C20 + C
2
1 + C

2
2). Then,

the condition that ( is Poncelet-related to � with respect to triangles is easily
seen to be equal to

22
2 − 2123 = 0,

where

det(� − C �3) = (−C)3 + 21 (−C)2 + 22 (−C) + 23

is the characteristic polynomial of a symmetric matrix � defining (. This is a
quartic hypersurface in the space of conics. The polynomials 21, 22, 23 generate
the algebra of invariants of the group SO(3) acting on the space+ = (2 ((C3)∨).
If we use the decomposition + = H@ ⊕ C@, where @ = C20 + C

2
1 + C

2
2 and H@ is

the space of harmonic quadratic polynomials with respect to @, then the first
invariant corresponds to the projection H@ ⊕ C@ → C@. Let v2 : P1 → P2 be
the Veronese map with the image equal to �. Then, the pull-back map

a∗ : + = �0 (P2,OP2 (2)) → �0 (P1,OP1 (4))

defines an isomorphism of the representation H@ of SO(3) with the repre-
sentation (4 ((C2)∨) of SL(2). Under this isomorphism, the invariants 22 and
23 correspond to the invariants ( and ) on the space of binary quartics from
Example

E1.5.2E1.5.2
1.5.2. In particular, the fact that a harmonic conic is Poncelet-related

to � is equivalent to the corresponding binary quartic admiting an apolar bi-
nary quadric. Also, the discriminant invariant of degree 6 of binary quartics
corresponds to the condition that a harmonic conic touches �.
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2.3.4 The Salmon conic
One can also look for covariants or contravariants of a pair of conics, that
is, rational maps |OP2 (2) | × |OP2 (2) | d |OP2 (3) | or |OP2 (2) | × |OP2 (2) | d
|OP2 (3) |∨ which are defined geometrically, i.e. not depending on a choice of
projective coordinates.
Recall the definition of the cross ratio of four distinct ordered points ?8 =
[08 , 18] on P1

'(?1?2; ?3?4) =
(?1 − ?2) (?3 − ?4)
(?1 − ?3) (?2 − ?4)

, (2.25) crossratio

where

?8 − ? 9 = det
(
08 18

0 9 1 9

)
= 081 9 − 0 918 .

It is immediately checked that the cross ratio does not take the values 0, 1,∞.
It does not depend on the choice of projective coordinates. It is also invariant
under a permutation of the four points equal to the product of two commuting
transpositions. The permutation (12) changes ' to −'/(1− ') and the permu-
tation (23) changes ' to 1/'. Thus, there are at most six possible cross ratios
for an ordered set of four points

',
1
'
, 1 − ', 1

1 − ' ,
'

' − 1
,
' − 1
'

.

The number of distinct cross ratios may be reduced to three or two. The first
case happens if and only if one of them is equal to −1 (the other ones will be
2 and 1/2). The unordered set of four points in this case is called a harmonic
quadruple. The second case happenswhen ' satisfies '2+'+1 = 0, i.e. ' is one
of two cubic roots of 1 not equal to 1. In this case we have an equianharmonic
quadruple.
If we identify the projective space of binary forms of degree 2 with the

projective plane, the relation (
harmcongharmcong
2.6) can be viewed as a symmetric hypersurface

� of bidegree (1, 1) in P2 × P2. In particular, it makes sense to speak about
harmonically conjugate pairs of maybe coinciding points. We immediately
check that a double point is harmonically conjugate to a pair of points if and
only if it coincides with one of the roots of this form.
We can extend the definition of the cross ratio to any set of points no three

of which coincide by considering the cross ratios as the point

R = [(?1 − ?2) (?3 − ?4), (?1 − ?3) (?2 − ?4)] ∈ P1. (2.26)

It is easy to see that two points coincide if and only if R = [0, 1], [1, 1], [1, 0].
This corresponds to ' = 0, 1,∞.
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Two pairs of points {?1, ?2} and {@1, @2} are harmonically conjugate in the
sense of definition (

harmcongharmcong
2.6) if and only if '(?1@1; @2?2) = −1. To check this,

we may assume that ?1, ?2 are roots of 5 = UC20 + 2VC0C1 + WC21 and @1, @2 are
roots of 6 = U′C20 + 2V′C0C1 + W′C21 , where, for simplicity, we may assume that
U, U′ ≠ 0 so that, in affine coordinates, the roots G, H of the first equations
satisfy G + H = −2V/U, GH = W/U and similarly the roots of the second equation
G ′, H′ satisfy G ′ + H′ = −2V′/U′, G ′H′ = W′/U′. Then,

'(GG ′; H′H) = (G − G
′) (H′ − H)

(G − H′) (G ′ − H) = −1

if and only if

(G − G ′) (H′ − H) + (G − H′) (G ′ − H) = (G + H) (G ′ + H′) − 2GH − 2G ′H

=
4VV′

UU′
− 2W
U
− 2W′

U′
= −2

UW′ + U′W − 2VV′

UU′
= 0.

So, we see that the two pairs of roots form a harmonic quadruple if and only if
(
harmcongharmcong
2.6) holds.
The expression UW′ + U′W − 2VV′′ is an invariant of a pair ( 5 , 6) of binary

quadratic forms. It is equal to the coefficient at C for the discriminant of 5 + C6.
It is analogous to the invariants Θ and Θ′ for a pair of conics.

The Salmon conic associated to a pair of conics� and� ′ is the locusS(�,� ′)
of points G in P2 such that the pairs of the tangents through G to � and to � ′ are
harmonically conjugate. Note that it makes sense even when G lies on one of
the conics. In this case, one considers the corresponding tangent as the double
tangent.
Let � be a square symmetric 3×3-matrix. The entries of the adjugate matrix

adj(�) are quadratic forms in the entries of �. By polarization, we obtain

adj(_0� + _1�) = _2
0adj(�) + _0_1adj(�, �) + _2

1adj(�),

where (�, �) → adj(�, �) is a bilinear function of � and �.

Theorem 2.3.20. Let � = + (@), � ′ = + (@′), where @ and @′ are quadratic
forms defined by symmetric matrices � = (08 9 ) and � = (18 9 ). Then, the
Salmon conic S(�,� ′) is defined by the matrix adj(adj(�), adj(�)).

Proof By duality, the pencil of lines through a point G = [G0, G1, G2] cor-
responds to the line ℓG = + (G0D0 + G1D1 + G2D2) in the dual plane with
dual coordinates D0, D1, D2. Without loss of generality, we may assume that
G2 = −1. Let �∨, � ′∨ be the dual conics defined by the matrices adj(�) =
(�8 9 ), adj(�) = (�8 9 ). The intersection of the line ℓG with �∨ is equal to two
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points [D0, D1, G0D0 + G1D1] such that

(�00 + �02G0 + �22G
2
0)D

2
0 + (�11 + �12G1 + �22G

2
1)D

2
1

+2(�22G0C1 + �02G1 + �12G0 + �01)D0D1 = 0.

Replacing � with �, we get the similar formula for the intersection of ℓ with
� ′∨. The intersection points [D0, D1, G0D0 + G1D1] correspond to the tangent
lines to � and � ′ passing through the point G. By (

harmcongharmcong
2.6), they are harmonically

conjugate if and only if

(�00 + �02G0 + �22G
2
0) (�11 + �12G1 + �22G

2
1)

+(�00 + �02G0 + �22G
2
0) (�11 + �12G1 + �22G

2
1)

−2(�22G0C1 + �02G1 + �12G0 + �01) (�22G0G1 + �02G1 + �12G0 + �01) = 0.

This gives the equation of the Salmon conic ((�,� ′):

(�22�11 + �11�22 − 2�12�12)G2
0 + (�00�22 + �22�00 − 2�02�02)G2

1

+(�00�11 + �11�00 − 2�01�01)G2 + 2(�02�12 + �12�02 − �22�02 − �02�22)G0G1

+2(�02�11 + �11�02 − �12�01 − �01�12)G0G2

+2(�00�12 + �12�00 − �02�01 − �01�02)G1G2 = 0.

It is easy to see that the symmetric matrix defining this quadratic form is equal
to adj(adj(�), adj(�)). �

Let S(�,� ′) = + (B). Consider the pencil generated by �∨ and � ′∨. In
matrix notation, it is equal to the pencil of matrices adj(�) + Cadj(�). The dual
conics of this pencil form a quadratic family of conics defined by the matrices
adj(adj(�) + Cadj(�)) = |�|� + C( + C2 |� |�, where ( is the matrix defining the
Salmon conic. Its members are tangent to the quartic curve+ (B2−4|�| |� |@@′).
Since the members of the linear pencil pass through the four points �∨ ∩ � ′∨,
all members of the quadratic family are tangent to the four common tangents
of � and � ′. Thus,

+ (B2 − 4|�| |� |@@′) = + (;1;2;3;4), (2.27) salrel

where + (;8) are the common tangents. This implies the following remarkable
property of the Salmon conic.

coolidge Theorem 2.3.21. Let� and� ′ be two conics such that the dual conics intersect
at four distinct points representing the four common tangents of� and (. Then,
the eight tangency points lie on the Salmon conic associated with � and � ′.
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Here, is another proof of the theorem that does not use (
salrelsalrel
2.27). Let G be a

point where the Salmon conic meets �. Then, the tangent line ℓ through G to
� represents a double line in the harmonic pencil formed by the four tangents
through G to � and (. As we remarked before, the conjugate pair of lines must
contain ℓ. Thus, ℓ is a common tangent to � and (, and hence, G is one of the
eight tangency points. Conversely, the argument is reversible and shows that
every tangency point lies on the Salmon conic.
The Salmon conic represents a covariant of pairs of conics. A similar con-

struction gives a contravariant conic in the dual plane, called the Salmon enve-
lope conic S′(�,� ′). It parameterizes lines which intersect the dual conics �
and � ′ at two pairs of harmonically conjugate points. We leave it to the reader
to show that its equation is equal to

(022111 + 011122 − 2012112)D2
0 + (000122 + 022100 − 2002102)D2

1

+(000111 + 011100 − 2001101)D2
2 + 2(002112 + 012102 − 022102 − 002122)D0D1

+2(002111 + 011102 − 012101 − 001112)D0D2

+2(000112 + 012100 − 002101 − 001102)D1D2 = 0.

If we write S′(�,� ′) = + (B′), we find, as above, that + (B′2 − @∨@′∨) is equal
to the union of four lines corresponding to intersection points of � ∩ � ′.
This implies that the Salmon envelope conic passes through the eight points
corresponding to the eight tangents of � and � ′ at the intersection points.
The equation of the Salmon conic is greatly simplified if we simultaneously

diagonalize the quadrics @ and @′ defining� and� ′. Assume @ = C20+C
2
1+C

2
2 , @
′ =

0C20 + 1C
2
1 + 2C

2
2 . Then, the equation of S(�,� ′) becomes

0(1 + 2)C20 + 1(2 + 0)C
2
1 + 2(0 + 1)C

2
2 = 0,

and the equation of S′(�,� ′) becomes

(1 + 2)D2
0 + (2 + 0)D

2
1 + (0 + 1)D

2
2 = 0.

By passing to the dual conic, we see that the dual conic S′(�,� ′)∨ is different
from S(�,� ′). Its equation is

(0 + 2) (0 + 1)C20 + (0 + 1) (1 + 2)C
2
1 + (0 + 1) (1 + 2)C

2
2 = 0.

It can be expressed as a linear combination of the equations of �,� ′ and
S(�,� ′)

(0+2) (0+1)C20 + (0+1) (1+2)C
2
1 + (0+1) (1+2)C

2
2 = (01+12+02) (C

2
0 + C

2
1 + C

2
2)

+(0 + 1 + 2) (0C20 + 1C
2
1 + 2C

2
2) − (0(1 + 2)C

2
0 + 1(2 + 0)C

2
1 + 2(0 + 1)C

2
2).
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Remark 2.3.22. The full system of covariants, and contravariants of a pair of
conics is known (see

Grace
[351], p. 286. ) The curves �,� ′,S′(�,� ′), the Jacobian

of�,� ′, and S(�,� ′) generate the algebra of covariants over the ring of invari-
ants. The envelopes �∨, � ′∨,S′(�,� ′), the Jacobian �∨, � ′∨, and S′(�,� ′)
generate the algebra of contravariants.

2.4 Enumerative Theory of Quadrics
S:2.4

In this section, we discuss a natural compactification of the projective space
of smooth quadrics such that many enumerative problems on quadrics follow
from the intersection theory of this space.

2.4.1 Projective Bundles, Grassmannians, and Tangent Cones
SS:2.4.1

Here we introduce some general background, on which we rely in this section
and also later in Chapter 7. We refer to

Fulton
[315, Appendix B.6] for the details.

First, we remind the reader of the notions of a vector bundle and a projective
bundle, which will be used often in the book (see

Hartshorne
[379]).

According to modern terminology, a vector bundle over a base scheme ( is a
locally free sheaf E of O(-modules. If ( is connected, the rank of E is defined.
A vector bundle of rank one is called an invertible sheaf, or a line bundle. A
geometric version of this is the notion of a geometric vector bundle defined as
the (-scheme

V(E) := Spec(S(E)),

where S(E) is the symmetric algebra of E. This is a scheme over (, so it comes
with a structure morphism ? : V(E) → ( such that ?∗ (OV(E) ) = E.
By definition of the affine spectrum, a homomorphism of invertible sheaves

D : F → E defines a morphism 5D : V(E) → V(F ). It is called a morphism
of vector bundles. It corresponds to a homomorphism D : F → E = ?∗OV(E)
that defines 5 ∗D (F ) → OV(E) .
A subbundle of a vector bundle E is a locally free subsheaf F of E∨ which

is locally split; in other words, the quotient E∨/F is locally free. Passing to
the duals, we get a surjective homomorphism E → F ∨ that defines a closed
embedding V(F ∨) ↩→ V(E).
By definition, a local section B : * → V(E) is defined by a section of

the dual sheaf E∨ = Hom(E,O* ) over *. For any (-scheme - , a morphism
- → V(E) is defined by a homomorphism of O- -modules 5 ∗E → O- . In
particular, taking - → ( to be the inclusion 8 : B = Spec(^(G)) ↩→ ( of
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a closed point B with the residue field ^(B), we obtain a homomorphism of
vector spaces ^(B)=+1 � 8∗E → ^(B) that defines a point of the closed fiber
V(E)B = Spec(8∗ (E)) = Spec(S(^(B)=+1) � A=+1

^ (B) . Thus, we can informally
say that a geometric vector bundle over ( is an algebraic family of vector spaces
parameterized by a scheme (.
A projective bundle associated with E is defined by

P(E) = Proj(S(E)).

It is a projective scheme ? : P(E) → ( over (. For any open affine set
* = Spec(�) of (, ?−1 (*) = Proj(S(E* )). If E is trivialized over*, ?−1 (*) �
Proj(S(�=+1) = Proj(�[C0, . . . , C=]) := P=

�
. Here, C0, . . . , C= is a basis of the free

�-module E* , or the dual basis (coordinates) of the dual �-module E∨
*
.

By definition of the projective spectrum of a graded algebra, P(E) comes
with an invertible sheaf$P(E) (1) (sometimes denoted just by O(1))) satisfying

?∗ ($P(E) (<)) � (< (E), < ≥ 0,

where $P(E) (<) := $P(E) (1)⊗<. As is customary, for any coherent sheaf F
on P(E), we set

F (:) := F ⊗ O(:).

Note that, for any invertible sheaf L on (, P(E) � P(E ⊗ L), however the
sheaves O(1) are different, namely, they differ by ⊗?∗ (L).
For any scheme c : - → ( over (, a morphism of (-schemes 5 : - → P(E)

is defined by an invertible sheafL over - and a surjection q : 5 ∗E → L. When
we trivialize P(E) over * = Spec(�), the surjection q defines A + 1 sections
of L|?−1 (*). This gives a local map G ↦→ [B0 (G), . . . , BA (G)] from 5 −1 (*) to
?−1 (*) = P=

�
. These maps are glued together to define a global map. We have

L = 5 ∗O(1).
The identity morphism idP(E) corresponds to a canonical surjection

?∗E → O(1). (2.28) globalgeneration

In particular, the closed embedding of a closed point 8B : Spec(^(B)) ↩→ (

defines a surjection E → 8∗BE = E(B) and the closed embedding P(E(B)) ↩→
P(E) of the fiber ?−1 (B) of ? : P(E) → (. So, the projective bundle can be
viewed as an algebraic family of =-dimensional projective spaces parameterized
by (.

veroneserel Example 2.4.1. The surjection ?∗E → O(1) defines a surjection ?∗(3 (E) →
O(3). The corresponding morphism v3 : P(E) → P((3 (E)) is called the 3th
Veronese map. By definition, v∗

3
OP((3 (E)) (1) = OP(E) (3). The map of local

sections is defined by the canonical map E∨ → (2 (E∨), B ↦→ B2.
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Another special case is when we have a surjective homomorphism D : E →
E ′ of locally free sheaves. It defines. a surjection S(E) → S(E ′), and hence,
a closed embedding 9D : P(E ′) ↩→ P(E). We have 9∗D (OP(E′) (1)) = OP(E) (1)
and a surjection 9∗D (E) → OP(E′) (1) is equal to 9∗DE → E ′→ OP(E′) (1).

Taking E ′ to be an invertible sheaf L, we obtain a bĳection between sections
of P(E) and surjections E → L.
The closed embedding 9D : P(F ) ↩→ P(E) is a regular embedding. It is

defined by its sheaf ideal I such that the sheaf I/I2 is locally free of rank
equal to the difference between the ranks of E and F . For any closed subscheme
/ of a scheme - , the sheaf I//I2

/
is called the conormal sheaf of - . Its dual

sheaf N//- = H><(I//I2
/
,O/ ) is called the normal sheaf of / . .

The following proposition gives a geometric interpretation of the sheaf
Ker(D)

Sernesi
[704, Proposition 4.6.2].

sernesi Proposition 2.4.2. Let D : E → F be a surjection of locally free sheaves of
O(-modules and 9D : . = P(F ) ↩→ - = P(E) be the corresponding regular
closed embedding of (-schemes. Then

N. /- � 9∗D (?∗Ker(D)∨) (1).

Let Ω8
-/. denote the sheaf or relative Kahler differentials for a morphism of

schemes - → . . We have

Ω8V(E)/( = ?
∗ (

8∧
E) (2.29) canclassproj

and, for any 8 ≥ 1, an exact sequence

0→ Ω8P(E)/( → ?∗ (
8∧
E)(−8) → Ω8−1

P(E)/( → 0. (2.30)

(see
DeligneSGA
[211]). Taking 8 = 1, we obtain an exact sequence

0→ Ω1
P(E)/( → ?∗ (E)(−1) → OP(E) → 0. (2.31) eulerseq0

passing to the duals sheaves, we get the Euler exact sequence

0→ OP(E) → ?∗ (E∨) (1) → ΘP(E)/( → 0, (2.32) eulerseq1

where ΘP(E)/( is the relative tangent sheaf.

We also need to recall the definition of the Grassmannian bundles which
generalize projective bundles.
Let E be a vector bundle over a scheme ( as before. The Grassmannian

bundle � (:, E) represents the functor on the category of schemes over ( that
assigns to a scheme 5 : ) → ( the set of equivalence classes of locally free
quotients of rank : of 5 ∗E∨ on ) . Two such quotients are equivalent if the
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kernels of the surjections onto the quotients coincide. The identity morphism
id� (:,E) defines a projection ? : � (:, E) → ( and a surjection ?∗E → R,
where R is the universal locally free quotient of rank : , called the universal
quotient bundle. Taking it kernel, we get a canonical exact sequence of locally
free sheaves on � (:, E):

0→ K → ?∗E∨ → R → 0. (2.33) universal1

The kernel K is a locally free sheaf of rank = + 1 − : , called the universal
subbundle. †

The surjection ?∗E∨ → R defines a closed embedding

P(R) ↩→ P(?∗E∨) := |E |� (:,E) .

Passing to the closed fibers, we get that each closed point G ∈ � (:, E) defines
a closed embedding of the fibers P(R))G = P(R(G)) ↩→ |E|G = |E(G) |. Thus, a
closed point of � (:, E) can be identified with a : − 1-dimensional projective
subspace of |EG |, or, via projective duality, a codimension : − 1 subspace of
P(E)G . In a linear algebra interpretation, a closed point of � (:, E) is a :-
dimensional linear subspace of E(G), or, equivalently, a quotient of E(G)∨ of
dimension : . For this reason, one uses �:−1 (P(E)) as another notation for
� (:, E). Also, this explains the reason of saying that P(R) is the tautological
subbundle over � (:, E).
This can be expressed by drawing a diagram

P(R)
?

{{

@

$$
P(E∨) � (:, E),

where the projection ? is defined by the projection P(E)� (:,E = P(E) ×(
� (:, E) → P(E).

It is clear that

� (1, E) = P(E), R = O(1),
� (=, E) = � (1, E∨) = P(E∨) := |E |, K∨ = O |� | (1).

More generally, passing to the duals in exact sequence (
universal1universal1
2.33), we get the duality

isomorphism
� (:, E) → � (= + 1 − :, E∨). (2.34)

†The standard notations are Q for the universal quotient bundle, and S for the universal
subbundle, we changed them to avoid some confusion with the notation used in the sequel.
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On fibers, it is the canonical duality map that assigns to a linear subspace ! of
a vector space � its dual subspace �⊥ of linear functions vanishing on !.
The surjection ?∗E → R defines a. surjection

?∗
:∧
E →

:∧
R,

where
∧: R is an invertible sheaf on � (:, E). It defines a closed embedding

9 : � (:, E) ↩→ P(?∗
:∧
E). (2.35)

This canonical embedding is called the Plücker embedding, and the sheaf
det(R) = ∧: E is denoted by O� (:,E) (1).
We leave it to the reader to specialize everything in the case where ( =

Spec(k) is a point and E is a vector space over k.
flag Example 2.4.3. For any< ≤ : , theGrassmannian bundle� (<, :) = � (<,R: ),

where R: is the universal quotient bundle over � (:, E), is called the flag va-
riety. Its closed points over B ∈ ( are flags if subspaces ! ′ ⊂ ! of dimensions
< and : in the projective space P(E)B . It comes with the structural projec-
tions ?1 : � (<, :, E) → � (:, E) of a scheme over � (:, E). There is also the
canonical universal exact sequence

0→ K<,: → ?∗1R: → R<,: → 0,

where R<,: is a locally free sheaf of rank : . The surjection ?∗1E
∨ → ?∗1R: →

R<,: defines the second projection ?2 : � (<, :, E) → � (:, E), such that
R<,: = ?∗2 (R<).
Note the special cases: � (1, :, E) = P(R: ), � (: − 1, :) = P(R∨

:
).

Recall that, in Subsection
SS:1.1.2SS:1.1.2
1.1.2, we introduced the tangent cone TCG (-) of

a hypersurface - = + ( 5 ) ⊂ P= at its closed point. More generally, let / be a
closed subscheme of a scheme . with the ideal sheaf I/ . We define the normal
cone

C/. := Spec (
∞⊕
:=0
I:/ /I:+1/ )

and projective normal cone

PC/. := Proj(
∞⊕
:=0
I:/ /I:+1/ )

(see
Fulton
[315, Appendix B.6]). The natural surjection of algebras

∞⊕
:=0
I:/ /I:+1/ → O. /I/ = O/
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defines the closed embedding / ↩→ C/. . The image is called the vertex of
C/. .

In particular, if / = {H} is a closed point of . , the normal cone is called the
tangent cone (resp. the projective tangent cone). It is denoted by TCH (. ) (resp.
TCH (. )). It is immediate to check that, in the case where . is a hypersurface
and G its closed point, the new definition agrees with our earlier definition of
the tangent cone. The vertex of the tangent cone is the point G.

Recall that the sheaf I//I2
/
is called the conormal sheaf of / in . , and its

dual N//. := (I//I2
/
)∨ is called the normal sheaf of / in . . If / and . are

smooth, we have an exact sequence

0→ I//I2
/ → Ω1

. ⊗ O/ → Ω1
/ → 0,

and, passing to the duals, we have an exact sequence

0→ Θ/ → Θ. ⊗ O/ → N//. → 0, (2.36) definitionnormal

which justifies the name for N//. . If 8 : / = {H} ↩→ . is a point of . , (not
necessarily nonsingular), Θ. = {0}G , and NH/. = 8∗ ((mH,. /m2

H,.
)∨), where

)H (. ) = (mH,. /m2
H,.
)∨ is the Zariski tangent space of. at H (see

Hartshorne
[379, p. 37]).

The surjection S(mH,. /m2
H,.
) → ⊕∞

:=0m
:
H,.
/m:+1

H,.
gives the closed embedding

ofTCH (. ) in the affine schemeSpec(S(mH,. /m2
H,.
)) that can be identifiedwith

the Zariski tangent space.
Recall that the blow-up scheme of . along / , or with center / , is defined by

Bl/ (. ) := Spec(
∞⊕
:=0
I:/ ).

It comes with a birational morphism f : Bl/ (. ) → . which is called the
blowing up morphism. Its exceptional divisor is the scheme-theoretical pre-
image of . which is equal to

E = Proj(
∞⊕
:=0
I:/ /I:+1/ ).

If / ↩→ . is a regular embedding, e.g. both / and . are regular, the sheaf
algebra

⊕∞
:=0 I:/ /I:+1/

coincides with the symmetric algebra S(I//I2
/
) and

E = Proj(S(I//I2
/ )) = P(N∨//. ).
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As we see, E coincides with the projective normal cone. Let

E
9 //

fE

����

-

f

��
/

8 // .

(2.37) blowup

be the commutative diagram, where E is the exceptional divisor of f.
The tautological invertible sheaf OE (1) coincides with the conormal sheaf
IE/I2

E of the Cartier divisor E in Bl/ (. ). By definition of OE (1), we have

(6E)∗ (OE (1)) = I//I2
/ .

Since the ideal sheaf f(I/ ) generates the ideal sheaf IE, there is a surjection

6∗ (S( 5 ∗I//I2
/ )) →

∞⊕
:=0
I:E /I

:+1
/ .

After applying (6� )∗ and taking the affine spectrum, we obtain a closed em-
bedding

�/. ↩→ V(N∨//. ) := Spec(S(I//I2
/ )).

It follows from the definitions that PC/. coincides with the exceptional divisor
of Bl/ (C/. ) → C/. , where we identify . with the vertex of the normal cone
C/. . Of course, this is a special case of a more general fact: if - = Proj(�),
where � = ⊕∞

8=0�8 is a graded algebra over an algebra  with �0 =  and
generated by �1, then� = Spec � is called the affine cover over - ,�0 = Spec �0
is its vertex and the exceptional divisor of the blow-up Bl�0 (�) is isomorphic
to - .
Let 5 : . ′→ . be a morphism, 6 : / ′ = / ×. . ′ = 5 −1 (/) → / . Then,

C/ ′. ′ = 6∗C/. = C/. ×/ / ′. (2.38) conechange

In particular, taking 5 to be a closed embedding 5 : . ′ ↩→ . , we obtain that

Bl/∩. ′ (. ′) � Bl/ (. ) ×. . ′. (2.39) propertransform1

If . ′ ⊂ / , then Bl/∩. ′ (. ′) = f−1 (. ′). Otherwise, it is equal to the proper
transform .̄ ′ of . ′ in Bl/ (. ). The exceptional divisor E′ of f′ : Bl/∩. ′ (. ′) →
. ′ is equal E ×/ . ′.

Recall that, if 5 : - → . is any birational morphism, and . ′ ⊂ . such that
5 −1 (. ′) → . ′ is an isomorphism over an open dense subset* of. ′, the proper
transform of . ′ under 5 is defined to be the closure of 5 −1 (*) in - .

Keep the notation from the previous paragraph, assume that / ⊂ . ⊂ -

are regular embeddings, and let N.̄ /Bl/ (- ) be the normal bundle of the proper
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transform .̄ of . in Bl/ (-). Then the restrictionof f : Bl/ (-) → - to .̄ is
isomorphic to the blow-up a : Bl/ (. ) → . . Moreover,

N.̄ /Bl/ (- ) � a
∗ (N. /- ) ⊗ OBl/ (. ) (−F), (2.40) exseqnormal1

where � ⊂ � is the exceptional divisor of a.
Another useful fact is the existence of the exact sequence of locally free

sheaves on /:
8∗N∨

. ′/. → N
∨
//. → N

∨
//. ′ → 0, (2.41)

where 8 : / ↩→ . ′ and . ′ ↩→ . are closed regular embeddings. If both closed
embeddings are regular, the first arrow is injective, and passing to the duals,
we get an exact sequence

0→ N//. ′ → N∨//. → 8∗N∨
. ′/. → 0. (2.42) exseqnormal2

The surjection N∨
//. → N

∨
//. ′ defines a closed embedding of the exceptional

divisor of Bl/ (. ′) in the exceptional divisor of Bl/ (. ).
For later reference, let us add the following well-known assertion about

the behavior of the canonical class under the blow-up (see
Hartshorne
[379, Chapter II,

Exercise 8.5]).

canblowup Proposition 2.4.4. Consider the diagram (
blowupblowup
2.50), where . and / are smooth

varieties over a field. Then

 . = f
∗ ( - ) + (3 − 1)�,

where 3 is the codimension of / in . .

2.4.2 Intersection theory and Segre classes
SS:2.4.2

Let us recall the definition of the Chow group �(-) of algebraic cycles modulo
rational equivalence.
Let - be an algebraic scheme over a field k. We say that - is an algebraic

variety if it is irreducible and reduced An algebraic :-cycle is an element of the
free abelian group /: (-) generated by the set of points G ∈ - of dimension :
(i.e., the residue field ^(G) of G is of algebraic dimension : over k). We identify
a point G with its closure {G} in - . It is a closed subscheme of - , which is an
algebraic variety of dimension : (a subvariety). We write [+] for + considered
as an element of /: (-). Two :-cycles / and / ′ are called rationally equivalent
if the difference is equal to the projections of a cycleZ(0) − Z(∞) on - × P1

for some cycleZ on the product.
One can give an equivalent definition as follows. A prime divisor p of height
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one in an integral domain � defines a function ordp : � \ {0} → Z by setting
ordp (0) = length(�p/(0p), where 0p is the image of 0 in the local (one-
dimensional) ring �p. This function is extended to a unique homomorphism
&(�)∗ → Z, where &(�) is the field of fractions of �. By globalizing, we
obtain a function ordG : '(-) → Z, where G is a point on - of codimension
1 and '(-) is the field of rational functions on a variety -‡. Now, we define
the subgroup �: (-) of rationally equivalent :-cycles as the group generated
by cycles of the form

∑
G ordGqG, where q is a rational function on a subvariety

. ⊂ - of dimension : + 1. The quotient group �: (-) = /: (-)/�: (-) is
called the Chow group of :-cycles on - . We set

�∗ (-) = ⊕:�: (-).

For any U =
∑
=GG ∈ /0 (-), we define∫

-

U =
∑
G

=G [^(G) : k] .

When - is proper, this extends to �0 (-), and, to the whole �∗ (-), where, by
definition,

∫
-
U = 0 if U ∈ �: (-), : > 0.

For any scheme - , one defines its fundamental class by

[-] =
∑

=+ [+],

where + is an irreducible component of - and =+ is its multiplicity, the length
of O-,[ , where [ is a generic point of + .

For any proper morphism 5 : - → . of schemes, one defines the push-
forward homomorphism

5∗ : �∗ (-) → �∗ (. )

by setting, for any subvariety + ,

f∗ [+] = deg(+/f(+)) [f(+)]

and extending the definition by linearity. Note that deg(+/f(+)) = 0 if the map
+ → f(+) is not of finite degree. One checks that rationally equivalent to zero
cycles go to zero, so the definition is legal. The homomorphism f∗ preserves
the grading of �∗ (-).
The pull-back f∗ : �∗ (. ) → �∗ (-) is defined only for flat morphisms,

regular closed embeddings, and their compositions. For a flat morphism f, one
sets, for any subvariety+ , f∗ [+] = [f−1 (+)]. It shifts the degree by increasing
it by the relative dimension of f.
Recall that aWeil divisor on a normal variety - of dimension = is an element

‡From now, on a variety over a field k means an integral algebraic scheme over k
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of /=−1 (-). It defines a reflexive sheaf O- (�) of rank one (see Subsection
SS:4.1.2SS:4.1.2
4.1.2). A Cartier divisor on - is a section of the sheaf R-/O∗- , where R- is
the constant sheaf of total rings of fractions. The function ordG : R(-) → Z
factors through O∗

-
and defines a homomorphism

CDiv(-) →WDiv(-), � ↦→ [�] =
∑
G

ordG (�)G,

where CDiv(-) (resp. WDiv(-)) is the group of Cartier (resp. Weil) divisors
on - . A Weil divisor � is a Cartier divisor if and only if O- (�) is locally free.

Let � be a Cartier divisior on - . One can restrict it to any subvariety + of
- , and set

� · [+] = [ 9∗ (�)],

where 9 : + ↩→ - is the inclusion morphism of + to - . It is considered as
a cycle on + and also as a cycle on - by means of 9∗ : �∗ (+) → �∗ (-).
This extends by linearity to the intersection � · U of � with any cycle class
U ∈ �∗ (-), so we can consider any divisor � as an endomorphism U ↦→ � · U
of �∗ (-). It depends only on the linear equivalence class of �. By iterating
the endomorphism, we can define, for any Cartier divisors �1, . . . , �: and
U ∈ �< (-), the intersection

�1 · · · ·�: · U ∈ �<−: (-).

For any closed subvariety . containing Supp(�) ∩ + , we can identify � · [+]
with an element of �∗ (. ). In particular, for any . as above, any Cartier divisor
� on - can be considered as a homomorphism

�: (. ) → �:−1 (Supp(�) ∩ . ), U ↦→ � · U.

By definition,
�1 · · ·�: = �1 · · · · · �: · [-] . (2.43) defD

If - is of pure dimension =, this is an element of �=−: (-). We abbreviate
�: = � · · ·� (: times). We also identify �0 (-) with Z if - is a smooth
irreducible algebraic variety. In particular, �= ∈ Z, where = = dim - .
The intersection product of Cartier divisors is commutative and associative;

the projection formula holds and depends only on the linear equivalence classes.
The following property allows one to compute the intersection of divisors on

its resolution of singularities.

pullbackintersection Proposition 2.4.5. Let 5 ”- ′→ - be a propermorphism of complete algebraic
varieties, �1, . . . , �: be Cartier divisors on - and U ∈ �: (- ′).. Then,

5 ∗ (�1) · . . . · 5 ∗ (�: ) · U = �1 · . . . · �: · 5∗U.
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In particular, if U = [- ′],

5 ∗ (�1) · . . . · 5 ∗ (�=) · [- ′] = A (�1 · . . . · �= · [-]),

where A is the degree of 5 (zero if dim - ′ > dim -).

In the case - is smooth, one can extend the intersection theory of divisors to
the intersection theory of all rational equivalence classes of algebraic cycles.
There is a unique product structure on �(-) satisfying

1. For any two subvarieties + and, of - intersecting transversally,

[+] · [,] = [+ ∩,] .

2. If �(-) is graded by the codimension of cycles, then the product preserves
the grading, i.e.,

�: × �< → �:+<, (U, V) ↦→ U · V

that defines a pairing

�2 (-) × �: (-) → �:−2 (-), (U, V) ↦→ U ∩ V.

3. For any morphism 5 : . → - of smooth varieties, there is a unique
homomorphism 5 ∗ : �(-) → �(. ) of graded rings such that

5 ∗ ( [+]) = [ 5 −1 (+)],

where + is a subvariety of - of codimension 2 such that 5 −1 (+) is reduced
and of codimension 2 in . .

4. There is the projection formula:

5∗ ( 5 ∗U · V) = U · 5∗ (V).

We refer to
Fulton
[315] for the intersection theory on singular varieties.

The las property gives an important corollary. Let 5 : - ′→ - be a birational
morphism, for example a resolution of singularities of - . The 5 ∗ (�) is a Cartier
divisor on - ′ if � is. We have

5∗ ( 5 ∗ ( [�1]) · · · · · 5 ∗ ( [�: ]) · [- ′]) = �1 · · · · · [�: ] · [-] .

This shows that we can compute the intersection of divisors on - ′ instead of
- .
For any graded sheaf of algebras A = ⊕8≥0A8 over a scheme . one defines

the cone � = Spec(A), the projective cone PC = Proj(A), and its projective
completion �̂ = Proj(A[I]). The latter comes with a projection ? : �̂ → .

and an invertible sheaf O(1). The closed subscheme+ (I) of �̂ is isomorphic to
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PC, and there is an open embedding 9 : � ↩→ �̂ with complement isomorphic
to + (I).
The Segre class B(�) is defined by

B(�) = ?∗ (
∑
8≥0

21 (O(1))8 · [�̂]) ∈ �∗ (. ). (2.44) segrecone

Wewill be interested in the special case, whereA = ⊕I8
/
/I8+1
/

and� = �/ (-)
is the normal cone of a closed subscheme / in - defined by the Ideal I/ . By
definition,

B(/, -) :=
∑
8≥0

B8 (/, -) := B(�/ (-)) =
∑
8

B8 (� ∈ �∗ (/).

The following are the fundamental properties of Segre classes.

• If / ↩→ - is a regular embedding (equivalently, the conormal bundleN∨
. /- =

I. /I2
.
is locally free), then

B(., -) = 2(N. /- )−1, (2.45) prop1

where 2(F ) denotes the total Chern class of aa coherent sheaf F .
• If 5 : - ′ → - is a proper morphism of irreducible schemes and 6 : / ′ =
5 −1 (/) → / is the restriction of 5 to / ′, then

6∗ (B(/ ′, - ′)) = deg(- ′/-)B(/, -). (2.46) prop2

• If 5 : - ′→ - is flat, and / ′ = 5 −1 (/), then

6∗ (B(/, -)) = B(/ ′, - ′). (2.47) prop3

• If f : -̃ = Bl/ (-) → - is the blow-up of a proper closed subscheme / in
- , and � is the exceptional divisor with the projection fE : � → / , then

B(/, -) =
∑
8≥1
(−1)8−1 (fE)∗ ( [�]8) =

∑
8≥0
(fE)∗ ([8), (2.48) prop4

In the last formula, [ = 21 (O� (1)) ∈ �1 (�), and we identify [8 with [8 ∩ [�].
Moreover, we consider � as a Cartier divisor on - and take [�]8 in the sense
of the definition (

defDdefD
2.43). We have 9∗ ([8) = (−1)8 [�]8+1 by Theorem

cohblowupcohblowup
2.4.6,

where we consider � as a divisor of - and take the intersection product
� 8+1 ∈ �8+1 (-). Then

f∗ (� 8) = 8∗ (fE)∗ ( [�]8) = (−1)8−18∗ ((fE)∗[8−1). (2.49)

Even in the case where - is a smooth algebraic variety, the Segre classes
of arbitrarily closed subscheme / of - are difficult to compute. However, if
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/ ↩→ - is a regular embedding, the property B(/, -) = 2(N//- )−1 makes the
computation much easier.
We will use the diagram (

blowupblowup
2.50) Let

E
9 //

fE

����

-

f

��
/

8 // .

(2.50) blowup

for the standard notations for a blow-up and use Theorem
cohblowupcohblowup
2.4.6 for the intersec-

tion products on the blow-up.
We denote by B8 (/, -) the part of B(/, -) from �8 (/). It follows that

B=−8 (/, -) = (−1)8−1 (fE)∗ ( [�]8) = (fE)∗ ([8−1), = = dim -. (2.51)

In particular, (fE)∗ ( [�]8) = 0, 8 < 3 := codim(/, -). If 8 = 3, we get

B=−3 (/, -) = (−1)3−1 (fE)∗ ( [�]3) = (fE)∗ ([3−1) = 4/ (-) [/],

where 4/ (-) is the multiplicity of / in - (see
Fulton
[315, 4.3]). In particular, if

/ ↩→ - is a regular embedding B=−3 (/, -) = 20 (N//- ) = [/], so 4/ (-) = 1.
Since B=−3−1 (/, -) = −21 (N//- ) ∈ �1 (/) = �=−3−1 (/) if / ↩→ - is a

regular embedding, we get

21 (N//- ) = (−1)3−1 (fE)∗ ( [�]3+1) = (fE)∗ ([3).

A final note, before we go to examples is that, assuming that 8 is a regular
embedding, the homomorphism

(fE)∗ : �0 (�) → �0 (/)

is bĳective. This follows from
Fulton
[315, Proposition 6.7 (d)]. So, we can identify

(−�)= with [=−1 and B0 (/, -).

cohblowup Theorem 2.4.6. Assume 8 : / ↩→ . is a regular embedding. Then, �∗ (-) is
generated by f∗ (�∗ (. )) and 9∗ (�∗ (E)). The multiplication rules, defined by
the cup-product, are the following:

f∗ (U) · f∗ (V) = f∗ (U · V), (2.52)
f∗ (U) · 9∗ (W) = 9∗ (W · f∗ (8∗U)), (2.53)
9∗ (W) · 9∗ (X) = − 9∗ (W · X · [), (2.54)

where U, V ∈ �∗ (. ), W, X ∈ �∗ (E) and [ = 21 (OE (1)). Moreover,

�∗ (E) = f∗ (�∗ (/)) [[],
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where [ satisfies a single relation
3∑
8=0
(−[)8f∗E (23−8 (N//. )) = 0. (2.55) defchern

Moreover, there is an exact sequence that describes the relations between
elements in f∗E (�∗ (/)), f

∗ (�∗ (. )) and 9∗ (�∗ (�)):

0→ �∗ (/)
(8∗ ,6)−→ �∗ (. ) ⊕ �∗ (�)

(f∗ , 9∗)−→ �∗ (-) → 0, (2.56) relationblowup

where 6 : �∗ (/) → �∗ (�) is defined by the formula

6(U) = −f∗E (U) · ((−[)
3−1 +f∗E (21 (N//- )) · (−[)3−2 + · · · +f∗E (23−1 (N//- )).

Note that the formula (
defcherndefchern
2.55) is a special case of the formula that defines the

Chern classes of any locally free sheaf E of rank A
A∑
8=0
(−[)8 ?∗ (23−8 (E)) = 0. (2.57) cohprojbundle

where [ = 21 (OP(E) (1)).
Let 4 be the algebraic class of the exceptional divisor E. It is equal to 9∗ ( [E]),

where [E] is the fundamental class of E. It also follows from the third relation
that

48+1 = (−1)8 9∗ ([8).

iskmanin Example 2.4.7. Let - be a smooth projective variety of dimension = and / be
a closed point in - . Then, E � P=−1 and [ is the class of a hyperplane in E. We
have E: = (−1):−1 9∗ ([:−1). In particular, E= = (−1)=−1, where we, as always,
identify �0 (-) with Z.
Suppose now that / is a smooth subvariety of. of codimension 3 = 2. Then

21 (N//. ) = 21 (. ) · / − 21 (/)[. Applying (
relationblowuprelationblowup
2.56), we get

E3 = −21 (N//. ),
E2 = − 9∗ ([) = −f∗ (/) + 9∗ (f∗E (N//. )).

(2.58) iskformula

For example, if dim. = 3, and / is a smooth curve of genus 6, we get
E2 = −f∗ (/) + (26 − 2 + 21 (-) · /) 9∗ (f), where f is the class of a fiber of fE
in �1 (E).
Finally, formula (

iskformulaiskformula
2.58) gives in this case

E · 9∗ (f) = −1. (2.59)

The Segre classes B8 (/,. ) ∈ �8 (/) are defined by the equality

B8 (/,. ) := (fE)∗ ([8+3−1) = (−1)8+3−1f∗ ( 9∗ (48+3)). (2.60) defsegreclass



136 Conics and Quadric Surfaces

We set
B(/,. ) =

∑
8≥0

B8 (/,. ) ∈ �∗ (/).

In the special case when / ↩→ . is a regular embedding of smooth varieties

B(/,. ) = 1 + B1 (/,. ) + · · · + Bdim / (/,. ) ∈ �∗ (/),

such that
B(/,. ) · 2(N//. ) = [/],

where 2(N//. ) =
∑dim /
8=0 28 (N//. ) ∈ �∗ (/) is the Chern class of the normal

bundle N//. .
ex:blowupspaceex:blowuppoint Example 2.4.8. Let f : . = BlG (-) → - be the blow-up of a closed point on

a smooth algebraic variety - of codimension =. Then NG/- � (8G)∗^(G)= is
the sky-scrapper sheaf supported at G. We have 20 (NG/- ) = [G], 28 (NG/- ) =
0, 8 ≠ 0, and hence, B(G, -) = [G]. This gives

[�]= = (−1)=−3 . (2.61) excurve

This is a familiar formula for the blow-up of a point a smooth algebraic surface
- . The exceptional curve � was classically called an exceptional curve of the
first kind and, nowadays, we just say that � is a (−1)-curve.

Of course, the formula (
excurveexcurve
2.61) can be proved by an elementary argument.

The formula is local, so we may assume that - is a projective subvariety
of P# . Take a hyperplane section �0 that contains G. We embed - , then
f∗ ( [�0]) = [�̄0] + [�], where �̄ is the proper transform of �. Replacing �0
by a hyperplane section not containing G, we get

0 = f∗ ( [�]) · [�] = f∗ [�0] · [�] = ( [�̄0] + [�]) · [�] = 9∗[ + [�]2.

Thus, [�]2 = − 9∗ ([) (in agreement with Theorem
cohblowupcohblowup
2.4.6). Next, we get [�̄0] ·

[�]2 = −[�̄0] · 9∗[ = − 9∗ ([ · 8∗ ( [�0] + [�]) = − 9∗ ([ · 8∗ ( [�]) = 9∗ ([2).
Continuing in this way, we get

� :+1 = (−1): 9∗ ([: ).

ex:blowupsubspace Example 2.4.9. Let %: be a codimension : subspace of P=. Using the exact
sequence (

exseqnormal2exseqnormal2
2.42) for normal sheaves, we get, by induction on : ,

N%:/P= � O% (1)⊕: . (2.62)

It follows that

B(%: , P=) =
1

(1 + ℎ):
= (1−ℎ+ℎ2+· · ·+(−1)8ℎ8+· · · ): =

=−:∑
8=0

(
= − 8 − 1
: − 1

)
(−ℎ)8−:+1,
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where ℎ = 21 (O% (1)) ∈ �∗ (%). This gives

B8 (%: , P=) = (−1)=−:−8
(
= − 8 − 1
: − 1

)
ℎ=−:−8 .

Since dim %: = =−: , ℎ<−:+1 ∈ �=−<−1 (%: ). Let� = P(N∨%:/P= ) = P(O% (−1)⊕: )
be the exceptional divisor of the blow up . = Bl%: (P=). Then,

(fE)∗ ( [�]8) = 0, 8 < : − 1,

and

(fE)∗ ( [�]8) = (−1)8−1B(/, -)=−8 = (−1):−1
(
8 − 1
: − 1

)
ℎ8−:+1

for : − 1 ≤ 8 ≤ = − 1.
In particular,

[�]= = (−1):−1
(
= − 1
: − 1

)
. (2.63)

The simple relation between the Segre class B(/,. ) and 2(N//. fails if
/ ↩→ . is not a regular embedding. For example, if / = {H} is a closed point
of . of multiplicity < > 1, then B(/,. )0 = < [/] and 2(NH,. ) = [/].

A resolution of indeterminacy of a rational map are often obtained by a
sequence of blow-ups of smooth subvarieties and their proper transforms. The
following proposition show how the the Segre class changes under the proper
transform.

proptransformcoh Proposition 2.4.10. Let 8 : . ′ ↩→ . is a closed embedding of smooth varieties
and .̄ ′ be the proper transform of . ′ in - = Bl/ (. ). Then

[.̄ ′] = f∗ ( [. ′]) − 9∗ ( [2(E) · f∗E (B(.
′ ∩ /,. ′)]: ),

where E = f∗E (N//. )/OE (−1) and : = dim. ′.

In the special case where / ⊂ . ′, we get

2(E) = 2(f∗E (N//. )/(1 − [),

and, applying exact sequence (
exseqnormal2exseqnormal2
2.42), we obtain

f∗E (B(.
′ ∩ /,. ′)) = f∗E (B(/,.

′)) = B(/,. )/8∗ (B(. ′, . )).

This gives

[.̄ ′] = f∗ ( [. ′]) − 9∗ (2(f∗E (N//. )/(1 − [) · f
∗
E (B(/,. ))8

∗ (B(. ′, . ))

= f∗ ( [. ′]) − 9∗ ( [f∗E (8
∗ (2(N. ′/. )) (1 + [ + [2 + · · · )]:−1).
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In particular, if : = 1, we get [.̃ ′] = f∗ ( [. ′]) − [�], as expected.
Another special case is when dim. ′ ∩ / ≤ : − 3, for example, . ′ intersects

transversally / . In this case, we obtain

[.̄ ′] = f∗ ( [. ′]). (2.64) fulton6.7.2

Fulton
[315, Corollary 6.7.2].

Example 2.4.11. Let ℓ be a line in P= and / = {G1, . . . , G<} ∈ ℓ be the closed
reduced subset consisting of< distinct points in ℓ. Letf1 : -1 = Bl/ (P=) → P=
and f2 : -2 = Blℓ̄ (-1) → -1. The proper transform ℓ̄ is isomorphic to P1, let ℎ
be the divisor class of a point on ℓ̄. The exceptional divisor � of f1 intersects
ℓ̄ at < points. This gives

Nℓ̄/-1
= f∗1 (Oℓ (1)

⊕=−1) ⊗ Oℓ̄ (−<).

Hence,

B(ℓ̄, -1) = 2(Oℓ̄ (1 − <)⊕=−1)−1 =
1

(1 + (1 − <)ℎ)=−1 ,

We have

B0 (ℓ̄, -1) = (= − 1) (< − 1)ℎ, B1 (ℓ̄, -1) = [ℓ̄] . (2.65)

Let �2 be the exceptional divisor of f2 and �̄1 be the proper transform of the
exceptional divisor �1 of f1. We obtain

[�̄1]= = f∗2 [�1] = (−1)=−1<, [�2]= = (−1)= (= − 1) (< − 1).

2.4.3 The Discriminant Variety of Quadrics
SS:2.4.3

We fix a base scheme ) over an algebraically closed field k of characteristic
? ≠ 2 and a locally free sheaf E of rank = + 1 over ) . For most applications, )
is equal to Spec(k) and E is a vector space � of dimension = + 1, however we
will need this generality for the proofs.

Definition 2.4.12. A quadratic form on E is defined in one of the following
equivalent ways:

(i) a section @ of (2 (E∨);
(ii) a homomorphism @ : E → E∨ such that its transpose E = (E∨)∨ → E∨

coincides with @.
(iii) a homomorphism @ : (2 (E) → O) .
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The set (2 (E∨) of quadratic forms on E is a free O) -module of rank 1
2 (= +

1) (= + 2). Let P = P(E∨), a quadratic form @ ∈ (2 (E∨) defines a section of
OP (2). An element of the linear system |OP (2) | = P(�0 (P,OP (2))∨) is called
a quadric in P and denoted by + (@).
The projective space P((2 (E∨)) = |OP (2) | of quadrics on P will be denoted

by QE . We have
(2 (E∨) = �0 (QE ,OQE (1)).

For any @ ∈ (2 (E∨), let @C : E(C) → E(C)∨ be the corresponding quadratic
form on the fibers. It is a linear map of vector spaces of dimension = + 1. Let

�2 (@) := {C ∈ ) : corank(@C ) ≥ 2}

After we trivialize E on some open affine set * = Spec(�) of ) , and choose a
basis (41, . . . , 4=+1) of E and the dual basis (4∗1, . . . , 4

∗
=+1) of E

∨, we obtain that
@ is given by a symmetric matrix of size = + 1 with coefficients in �. It follows
that �2 (@) is a closed subscheme of ) defined by minors of size = + 2 − 2.

Considered @ as a linear map @ : E → E∨, we can define its exterior power

∧: (@) :
:∧
E →

:∧
E)∨.

This is a quadratic form on
∧: E. Then, �2 (@) is the scheme of zeros of the

section ∧=+2−2 (@).
For any scheme 5 : ) ′ → ) and a sheaf F of O) -modules on ) , we denote

by F) ′ the pull-back 5 ∗F of F on ) ′. Similarly, for any scheme - over ) , we
denote by -) ′ the base change - ×) ) ′ considered as a scheme over ) ′.

Let
uE : EQE → E∨QE ⊗ OQE (1) (2.66) universalquadric

be the homomorphism of locally free sheaves on QE such that, after tensoring
with OQE (−1), its direct image under the structural projection QE → ) is equal
to the tautological homomorphism E⊗(2 (E∨) → E∨. We call uE the universal
quadratic form.

The property of universality is explained as follows. First, we slightly gen-
eralize the notion of a quadratic form by introducing a twisted quadratic form
over a base ) to be a section of (2 (E∨) ⊗ L, or a symmetric map E → E∨ ⊗L,
where L is an invertible sheaf on ) . Then, for any )-scheme 5 : - → ) and
a nonzero quadratic form on E- → E∨- ⊗ L with values in some invertible
sheaf L, there exists a unique morphism of )-schemes q : - → QE such that
@ = 5 ∗ (uE) (up to multiplication by a scalar) and L = 5 ∗OQE (1).
Every coherent sheaf on a scheme ( defines a unique stratification {/ (2)}2≥0

with the following properties:
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1. The restriction of F to / (2) is a locally free sheaf of rank 2.
2. The closure /̄ (2) is contained in ∪2′≥2/ (2′).
3. Any morphism 5 : (′ → ( such that 5 ∗F is locally free factors through∐

2 / (2) ⊂ (.
4. The stratification commutes with the base change.

(see
Sernesi
[704, Theorem 4.2.7]).

We apply this to the case where F = Coker(uE). Then,

/ (2) = {+ (@) ∈ QE : Coker(uE) is locally free of rank 2}.

For each C ∈ ) , the fiber of / (2)C consists of quadrics + (@C ) such that @C :
E(C) → E∨ (C) is of corank 2. We set

QE (2)◦ := / (2),

and

QE (2) := /̄ (2).

By trivializing, E and taking fibers over ) , we find that QE (2) is defined by the
zero scheme of the section ∧=+2−2 (uE) of (2 (∧=+2−2 (E∨)).
There is a stratification by closed subschemes:

QE = QE (0) ⊃ QE (1) ⊃ · · · ⊃ QE (=).

The last open strata QE (=)◦ is closed. It is equal to the image of the Veronese
map

{2 : P(E∨) = |E | → P((2 (E∨)) = |(2E|

defined by the linear system |O |E | (2) |.
Let & = + (@) be a quadric of corank 2 in a projective space |� | and

! = Ker(@) = Im(@)⊥ = Coker(@)∨

be the radical of @, so that |! | = Sing(&). The quadric & is equal to the cone
over a quadric &̄ in |�/! | with the vertex |! |. The singular locus of the cone
& ′ over any quadric &̄ ′ in |�/! | is a subspace |! ′ | containing |! |. The variety
of all quadrics & ′ of corank 2′ ≥ 2 with |! | ⊂ Sing(& ′) can be identified with
Q�/! (2′ − 2) | = Q(!⊥)∨ (2′ − 2).
Varying ! in the Grassmannian � (2, �), we obtain (�/!)∨ = (K∨2 ) (!)

that defines a surjection (2 (E� (2,E) → (2 (K∨2 ) and the closed embedding
QK∨2 = P((

2 (K∨2 )) ↩→ P((2 (E� (2,� )) = QE × � (2, �). After composing it
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with the projection E� (2,�) → QE , we get a morphism ?2 : QK∨2 → QE and a
commutative diagram:

QK∨
2′
= QK∨2 (2

′ − 2)◦ �
� /

?2
′

2
��

?2
′

1

vv

QK∨2
?2

��

?1

$$
� (2′, �) Q� (2′)◦

B2′oo � � / Q� (2)
s2 // � (2, �)

where ?1 is the structural projection and

s2 : QE (2)◦ → G, & ↦→ Sing(&),

considered as a rational map from Q� (2) to � (2, �)).
Let � (2, 2′, �) � � (2,R2′) be the flag variety from Example

flagflag
2.4.3. The pair

of morphisms ?1 : QK2 (2′) → � (2, �), ?2′1 : QK2 (2′ − 2) → � (2′, �) define
a map U : QK2 (2′ − 2) → � (2, 2′, �) such that

QK2 (2′ − 2) � P((2 (K∨2,2′)) = QK∨
2,2′
,

as schemes over � (2, 2′, �). We have the cartesian diagram:

Q� (2′)◦

s2′

��

QK∨2 (2
′ − 2)◦?2oo

U

��

QK∨
2,2′

� (2′, �) � (2, 2′, �)oo

We leave it to the reader to extend the previous discussion to the relative case
where � is replaced by a locally free sheaf E over some base ) that leads to the
following:

vainsencher4 Proposition 2.4.13. Let K2 be the universal subsheaf over � (2, E) and ?1 :
QK∨2 → � (2, E) be the projective bundle of quadrics in P(K2). Let

?2 : QK∨2 (2
′ − 2)◦ ↩→ P((2 (K∨2 )) ↩→ P((2 (E)� (2,E) = QE × � (2, E) → QE

be the composition of the closed embeddings and the projection morphism. For
any 2′ ≥ 2, there is an isomorphism of QE (2′)◦-schemes

Q′K∨
2′
� ?−1

2 (QE (2
′)◦) � QE (2′)◦ ×� (2′,E) � (2,R2′),

where QE (2′)◦ → � (2′, E) is equal to the morphism B2′ .

cor:two Corollary 2.4.14. The projection

?2 : QK∨2 → QE (2)

is isomorphic to the blow-up of the closed subscheme QE (2 + 1) of QE (2).
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It is also isomorphic to the proper transform of QE (2) under the blow-up
BlQE (2+1) (QE).

Proof For simplicity, we assume that E is a vector space over ) = Spec(k).
We leave the general case to the reader. The subscheme QK∨2 (2 + 1) ⊂ QK2
is the relative discriminant hypersurface. In particular, the pre-image of the
closed subscheme Q� (2 + 1) of Q� (2) in QK2 (2 + 1) is a divisor. By the
universal property of the blow-up

Hartshorne
[379, Chapter II, Proposition 7.14], there

is a birational morphism q : QK∨2 → BlQ� (A−1) (Q� ). The rational map s2 :
Q� (2) d � (2, �) ⊂ |∧=+2−2 � | is given by a linear system of hypersurfaces
in Q� generated by the (= + 2 − 2)-minors of the symmetric matrix (�8 9 ) of
projective coordinates on Q� . Its base locus is equal to the subscheme Q� (2 +
1). It is known that the blow-up BlQ� (2+1) (Q� ) resolves the indeterminacy
of the rational map

Hartshorne
[379, Chapter II, Example 7.17.4]. Since the projections

QK∨2 → Q� (2) and QK∨2 → � (2, �) also reserve the indeterminacy of this
map, the schemes QK∨2 and BlQ� (A−1) (Q� ) are isomorphic over the open subset
Q� (2+1)◦. It follows that q is a small contraction. However, Pic(� (2, �)) � Z,
hence Pic(QK∨2 ) � Z

2. The projections to � (2, �) and Q� (2 + 1) are two
extremal divisorial contractions of QK∨2 , there is no small contractions.
The second assertion follows from (

propertransform1propertransform1
2.39). �

cor:two Corollary 2.4.15. Assume 2′ = 2 + 1. There is an isomorphism

QK∨2 (1)
◦ = ?−1

2 (QE (2
′)◦) � QE (2′)◦ ×� (2′,E) P(R2′).

The image of the closed embedding QK∨2 (1)
◦ ↩→ QK∨2 is the relative discrimi-

nant hypersurface in QK∨2 . In particular, if 2 = =− 1, QK∨2 (1)
◦ � P(K∨

=−1) and
the embedding coincides with the Veronese map.

The following proposition is proven in
Vainsencher
[778, Proposition 4.4]. We will give

another proof.

normalbundle1 Proposition 2.4.16. The normal bundleNQE (2)◦/QE is isomorphic to s∗2(2 (R2) (1).

Proof For simplicity of the notation, let us put � = � (2, E), % = QK∨2 ,Q =

QE We identify % with the closure of the graph Γs2 ⊂ Q(2)◦ → �. By
definition, it is the graph of the rational map s2 : Q(2) d �.
Let 9 : Q(2) ×� ↩→ Q×� be the closed embedding. We use exact sequence

(
exseqnormal2exseqnormal2
2.42) to obtain an exact sequence

0→ N%/Q(2)×� → N%/Q×� → 9∗ (NQ(2)×�/Q×�) (2.67) firstexseq

where the last homomorphism is surjective after the restriction to Q(2)◦ × �.
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Let %′ = ?−1
2 (Q(2)

◦) � Q(2)◦. It is the graph of s2. Since the graph is the pre-
image of the diagonal under the map s2 × idG : Γ→ G × G, and the conormal
sheaf of the diagonal is isomorphic to Ω1

�
under any of the two projections

� × � → �, we see that

N%′/Q(2)◦×� � s∗2Θ� . (2.68) secondiso

By Proposition
sernesisernesi
2.4.2,

NΓ/Q×� � s∗2Ker((2 (�)� → (2 (K∨2 ))∨ ⊗ O(1).

The invertible sheaf O(1) is equal to ?∗2OQ (1). We use the exact sequence

0→ (2R∨2 → Ker((2 (�)� → (2 (K∨2 )) → R∨2 ⊗ K∨2 → 0.

Passing to the duals and twisting by O(1), we get an exact sequence

0→ K2 ⊗ R2 (1) → (Ker((2 (�)� → (2 (K∨2 ))∨ (1) → (2 (R2) (1) → 0.

The universal quadratic form u� : �Q → �∨Q (1) defines an isomorphism
K∨2 = E/R∨2 → K2 (1) ⊂ E(1) over Q(2)◦. This gives an exact sequence

0→ s∗2 (K∨2 ⊗R2) → s∗2 (Ker((2 (�)� → (2 (K∨2 ))∨⊗OQ (1)) → s∗2(
2 (R2) (1) → 0.

Now, we use that Θ� � K∨2 ⊗ R2 (see Lemma
CAG-2:tangCAG-2:tang
10.1.1 in Chapter 10), and

applying (
secondisosecondiso
2.68), we obtain an exact sequence

0→ NΓ/Q(2)◦×� → NΓ/Q×� → s∗2(
2 (R2) (1) → 0.

Comparing it with exact sequence (
firstexseqfirstexseq
2.67), we find that

s∗2(
2 (R2) (1) � 9∗ (NQ(2)◦×�/Q×�) � NQ(2)◦/Q.

�

cor:one Corollary 2.4.17.(i) codim(QE (2),QE) = 1
22(2 + 1).

(ii) codim(QE (2 + 1),QE (2)) = 2 + 1.
(iii) QE (2)◦ is the largest open subscheme of QE (2) which is smooth over ) .
(iv) The relative multiplicity multQE (2+1)◦QE (2) of )-subscheme QE (2 + 1)◦ of

QE (2) is equal to 22 .

Proof We know that

codim(Q� (2),Q� ) = dim) QE − dim) QE (2)
= ( 1

2 (= + 2) (= + 1) − 1) − (dim) QK2 + dim) � (2, E))
= 1

2 ((= + 2) (= + 1) − A (A + 1) − 2A (= + 1 − A))
= 1

2 (= + 1 − A) (= + 2 − A) = 1
22(2 + 1).

(2.69)
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This proves (i) and also (ii). Since P((2 (K∨2 )) is smooth over ) and ?2 is an
isomorphism over QE (2)◦, we obtain that QE (2)◦ is smooth over ) .

Passing to fibers over ) , we may assume that E = � is a vector space.
By Proposition

normalbundle1normalbundle1
2.4.16. the exceptional divisor of BlQ� (2+1)◦ (Q� ) is equal to

P(s∗
2+1(

2 (R2+1)). We know from Corollary
cor:twocor:two
2.4.15 that the proper transform of

Q� (2)◦ in BlQ� (2+1) (Q� ) is the projective bundle P(s∗
2+1'

∨
2+1)). It embeds i

via the Veronese map {2 : P(s∗2R2+1) → P(s∗2(2 (R2)). Thus the multiplicity
of Q� (2 + 1)◦ in Q� (2) is equal to the degree of the Veronese variety in each
fiber of the projective bundles over Q� (2 + 1)◦. It is equal to 22 . This proves
(iii) and (iv).

�

Applying
Fulton
[315, Theorem 14.4], we get the following additional property of

the subschemes QE (2):

Corollary 2.4.18. Suppose that the base ) of E is a Cohen-Macaulay scheme.
Then the subschemes QE (2) of QE are Cohen-Macaulay.

Note that, the proof uses the fact due to Eagon and Hochster that, over a field,
the schemes Q� (2) are Cohen-Macaulay.

jz Remark 2.4.19. For anyCohen-Macaulay base scheme) , the subscheme�2 (E)
is of expected codimension 1

22(2 + 1). The same cited Theorem of Fulton im-
plies that �: (E) is Cohen-Macaulay if the equality holds. If ) is regular, one
can also compute the class [�: (E)] in �()):

[�f (E)] = 22 det

©«
2: 2:+1 2:+2 · · · 22:−1
2:−2 2:−1 2: . . . 22:−3
...

...
...

...
...

21

ª®®®®®¬
, (2.70)

where 28 are the Chern classes 28 (E) of E (see
HarrisTu
[376],

Jozefiak
[433]).

For example

[�2 (E)] = 22 det
(
22 23
20 21

)
, [�3 (E)] = 23 det

©«
23 24 25
21 22 23
0 20 21

ª®®¬ .
Using this formula, one can compute the degrees of the varieties Q� (2) in the
case E = � is a vector space. We get

deg(Q� (2)) =
∏

0≤8≤2−1

(=+1+8
2−8

)(28+1
8

) . (2.71)
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For example, if = = 3,

deg(Q� (1)) = 4, deg(Q� (2)) = 10, deg(Q� (3)) = 8.,

and, if = = 4,

deg(Q� (1)) = 5, deg(Q� (2)) = 20, deg(Q� (3)) = 35, deg(Q� (4)) = 16.

Recall that, in Subsection
SS:1.1.2SS:1.1.2
1.1.2, we defined the embedded tangent space

TG (-) of a variety at its closed point G. They are fibers of the embedded
tangent bundle PT(-) = P(P- ), where P is defined by the exact sequence

0→ Ω1
- → P → O- → 0.

Here P = P- (O- ) is the locally free sheaf of principal 1-parts of O- (see
Subsection

CAG-2:SS:10.4.3CAG-2:SS:10.4.3
10.4.3).

cor:2.4.14 Corollary 2.4.20. There is an isomorphism PT(Q� (2)◦) � P(E∨), where

E = s∗2Ker((2 (�∨)Q → (2 (R2) (1).

In particular, there is a canonical isomorphism between T(Q� (2)◦)& and the
linear system |O |� | (2) − Sing(&) | of quadrics vanishing on Sing(&).

Proof The exact sequence

0→ N∨Q� (2)◦/Q� → Ω1
Q� ⊗ OQ(2)◦ → Ω1

Q� (2)◦ → 0

extends to an exact sequence

0→ N∨Q� (2)◦/Q� → PQ� ⊗ OQ(2)◦ → PQ� (2)◦ → 0.

We have PQ� ⊗ OQ(2)◦ � (
2 (�)Q� (−1) ⊗ OQ(2)◦ . This gives

PQ� (2)◦ � s
∗
2Coker((2 (R∨) (−1) → (2 (�)Q� (−1)) � s∗2Ker((2 (�∨Q) → (2 (R2)) (1).

�

In the case 2 = 1, the assertion about the embedded tangent spaces was
proved in Example ]

ex:discrimex:discrim
1.2.3.

Let Q̃(2) be the proper transform of Q(2) in BlQ(2+1)◦ (Q). Applying (
propertransform1propertransform1
2.39)

to the inclusions Q(2 + 1) ⊂ Q(2) ⊂ Q, we find a

Q̃(2) = BlQ(2+1)◦ (Q(2)) ⊂ BlQ(2+1)◦ (Q).

Let � ′ be the exceptional divisor of BlQ(2+1)◦ (Q(2)) and � be the exceptional
divisor of BlQ(2+1) (Q). The fiber of � ′ over & ∈ Q(2 + 1) is the dual space
Sing(&)◦ and the fiber of & in � is the space of quadrics in Sing(&). On
each fiber, the embedding Sing(&)∨ in the space of quadrics on Sing(&) is the
Veronese embedding.
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tangent1 Proposition 2.4.21. Let &0 ∈ Q� (2′)◦ and Π = Sing(&0) and PC&0 (Q� (2))
be the projective tangent cone of &0 in Q� (2), 2 < 2′, that is, the fiber of the
projective tangent cone PCQ� (2+1)Q� (2) at &0. Then,

PC&0 (Q� (2)) = {& ∈ Q� (2) : corank(& ∩ Sing(&0)) ≥ 2}.

The vertex of the normal cone �&0 (Q� (2)) is equal to T&0 (Q� ).

Proof By Proposition
vainsencher4vainsencher4
2.4.13 and Corollary

cor:twocor:two
2.4.15, PC&0 (Q� (2)) is equal

to the fiber of the projection ?2 : QK2 (2′) → Q� (2) over &0. It consists of
quadrics & ∈ Q� (2) with Sing(&) ⊂ Sing(&0). The subspace Sing(&0) is
tangent to & along a quadric in Sing(&0) with singular locus of dimension
≥ 2. �

Consider the restriction of the universal quadratic form (
universalquadricuniversalquadric
2.66) to QE (2)◦m

uE (2) : EQE (2)◦ → E∨QE (2)◦ (1)

and let

V2 := Coker(uE (2)).

Its fiber over & = + (@) ∈ QE (2)◦ is equal to the dual space of the radical of
the quadratic form @. It follows that

V2 = s∗2 (R2) (1),

where R2 is the universal quotient sheaf over � (2, E). Applying Proposition
vainsencher4vainsencher4
2.4.13, we get

NQ(2)◦/Q � (2 (V2) (1). (2.72) tjurinnormal

This important fact was first proven by A. Tjurin
Tjurin3
[754, Theorem 1] (see also

Vainsencher
[778, Proposition 4.4]).

2.4.4 The Space of Complete Quadrics
SS:2.4.4

We keep the notation from the previous subsections. Let det(E) :=
∧B E be

the determinant invertible sheaf of E. Using the non-degenerate pairing
B∧
E ⊗

=+1−B∧
E → det(E),

we can identify
∧= E with E∨ ⊗ det(E) and∧= E∨ with E ⊗ det(E)⊗−1. Then,

∧= (@) defines a quadratic form

@̌ : (E ⊗ det(E))∨ → E ⊗ det(E).
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We call it the dual quadratic form. Trivializing E and det(E) over some open
affine set * = Spec(�) of ) , we obtain that @̌ is given by the adjugate matrix
adj(") = (28 9 ) of cofactors of a symmetric matrix " = (08 9 ) with entries in
� defining @ over*.
In particular, we see that ∧= (1@) = 0 if the corank of 1@ is greater than one

and, if it is equal to one, the corank of @̌ is equal to =.
Let

Ě := (E ⊗ det(E))∨ = E∨ ⊗ det(E)⊗−1,

and

AdjE : QE d QĚ (2.73) adjmap

be the rational map defined by + (@) ↦→ + (@̌). Of course, if E = k=+1, the map
coincides with the map on the projective space of symmetric matrices that takes
a metric " to its inverse "−1.
It is immediate to check that

ˇ̌E = E

and

AdjĚ ◦ AdjE = idQE , AdjE ◦ AdjĚ = idQĚ (2.74)

In particular, when E = O=+1
)

is a free O) -module, AdjE is a birational involu-
tion.
The next theoremwhichwe leavewithout proof describes a smooth resolution

of indeterminacy of the rational map AdjE (see
Vainsencher
[778]).

vainsencher1 Theorem 2.4.22. Let

c := c=−1 ◦ · · · ◦ c1 : CQE = Q=E → Q=−1
E → · · · → Q1

E → QE = Q0
E

be the composition of the blow-up c1 : Q1
E → QE of QE (=), the blow-up

c2 : Q2
E → Q1

E of the proper transform of QE (= − 1), and so on. Then, CQE is
a smooth resolution of the birational map AdjE .

CQE
c

}}

č

!!
QE

AdjE // QĚ

Definition 2.4.23. A closed point in CQ� is called a complete quadric in |E |
of dimension = − 1. The variety CQ� is called the variety of complete quadrics
in |E | of dimension = − 1.
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There is another description of the variety CQE , which is in the case ) =

Spec(k) due to J. Semple. Let

&∧: = + (∧: (@)) ⊂ P(
:∧
�))

In the case where E is a vector space, we know from Example
exa:2.3.11exa:2.3.11
2.3.11 that the

quadric &∧: intersects the Grassmannian variety � (:, �) ⊂ |∧: (�) | along
the subvariety of linear :-dimensional subspaces tangent to& = + (@). We refer
to Chapter 10, where we will discuss the special case where : = 2, known as
the tangential quadratic complex of lines.

laksov Theorem 2.4.24. Let Q′E be the closure of the image of the map

QE (0)◦ →
=∏
8=1

Q∧8 E , & → (&,&∧2, . . . , &∧=).

Then, QE (0)◦ is isomorphic to CQE . Let

d: : CQE → P((2 (
:∧
E))

be the composition of this isomorphism and the projection map
=∏
8=1
P((2 (

8∧
(�)) → P((2 (

:∧
(�)).

Then, d1 = c, d= = č, and the commutative diagram

CQE
d1

}}

d:

##
QE // Q∧: E

resolves the rational map & ↦→ &∧
: .

Let �8 , 8 = 1, . . . , = − 1, be the exceptional divisor of c8 , E8 be the proper
transforms of �8 in CQE , and E= be the proper transform of the discriminant
hypersurface QE (1) in CQE . We call them the boundary divisors in CQE .
Since AdjE ◦ AdjĚ = idQE , the resolution (c, č) satisfies the following

property:

Proposition 2.4.25. Let �8 be the exceptional divisor of c8 : CQ8E → CQ8−1
E

and �̌8 be the exceptional divisor of č8 : CQ8Ě → CQ8−1
Ě . Then

č(�8) = �̌=+1−8 , c(�̌8) = �=+1−8 .
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We denote by /A , 2 ≤ A ≤ = the proper transform of QE (= + 1− A) under cA ,
and set /1 = �1.

We see that
CQE \ c−1 (Q◦E) ∪ E1 ∪ · · ·E= ∩ E=+1,

and there are 2= different types of complete quadrics in |E |. They correspond
to different intersections of 0 ≤ : ≤ = of the boundary divisors. It is proven in
Vainsencher
[778] that the boundary divisors intersect transversally, so that

EA1 ,...,A: = EA1 ∩ · · · ∩ EA: , 1 ≤ A1 < · · · < A: ≤ =

is a smooth codimension : closed subvariety of CQE .
For the future use, let us introduce the following notation:

E◦A1 ,...,A: := EA1 ,...,A: \
⋃

A∉{A1 ,...,A: }
EA1 ,...,A: ,A . (2.75)

Let us give a geometric meaning of a complete quadric in EA1 ,...,A: . For
simplicity, we assume that E is a linear spaces � of dimension = + 1 and leave
the general case to the reader.
First of all, we identify a complete quadric &̃ with its projection Q� if the

projection is an isomorphism at &̃. Thus, a complete quadric of rank = + 1 is a
nonsingular quadric, and a complete quadric& ∈ E= \ (E=∩E) is an irreducible
quadric cone.
Let &̃ ∈ EA1 ,...,A: . Since &̃ ∈ EA1 , the image of &̃ under c= ◦ · · · cA1 : CQ� →

CQA1
�

belongs to /A1 . Its projection & under cA1−1 ◦ · · · ◦ c1 : CQA1
�
→ QE

belongs to QE (A1). Let �A1 = Sing(&) � PA1−1. Since &̃ ∈ EA2 , we, similarly,
find that the image of &̃ under c= ◦ · · · cA2 : CQ� → CQA2−1

�
belongs to /A2 ,

the proper transform of QE (A2) in CQA2−1
�

. By Proposition
vainsencher4vainsencher4
2.4.13, it defines

a quadric of corank A2 − A1 in �A1 . Its singular locus is a subspace of �A1 of
dimension A2 − A1 − 1. Continuing in this way, we find a flag

�A: $ . . . $ �A1

of linear subspaces in |� | of relative dimension =−A: . A complete quadric &̃ ∈
EA1 ,...,A: can be viewed as a collection of quadrics &A8 ⊂ �A8 with Sing(&A8 ) =
�A8+1. We set

rank(&̃) := (A1 + 1, . . . , A: + 1) or(A: + 1, . . . , A1 + 1)

and rank(&̃) = = + 1, if c(&̃) is a smooth quadric.
As we explained earlier, each &A8 can be considered as a smooth quadric

in F ⊥
A8+1 ⊂ P(�). So, we may consider &̃ as a collection of a flag of linear

subspaces �⊥A1 ⊂ · · · ⊂ �
⊥
A:
⊂ P(�) and a smooth quadrics in each �⊥A8 .
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Also, note that a complete quadric can be defined inductively as a nonsingular
quadric in �⊥1 and a complete quadric in �1 of rank (A2 + 1, . . . , A: + 1).
Replacing c with č, we may consider &̃ as a complete quadric &̃∨ in P(�) of

rank (= + 1− A: , . . . , = + 1− A1). It is defined by a flag �⊥A1 ⊂ · · · ⊂ �
⊥
A:
⊂ P(�)

and a smooth quadric in each �A8 .

Let us now consider examples in small dimensions.
completeconics Example 2.4.26. Assume = = 2 and E = � is a three-dimensional linear space.

The space CQ� of complete conics is just the blow-up of the Veronese quartic
surface Q2 (1) of double lines in P5 = Q� . The boundary in CQ� consists of
one divisor E1 ∪ E2.
So, there are four different types of complete conics

1. & is a smooth conic and &̃ can be identified with &. The dual complete
quadric is the dual conic &∨. The flag is just |� | and the rank is (3).

2. &̃ ∈ E◦2 and & is a line-pair with Sing(&) = �2 � P
0. We can identify &̃

with &. The dual complete conic &̃∨ is defined by the flag �⊥2 ⊂ P(�) and
a pair of distinct points on the line �⊥2 .

3. &̃ ∈ E◦1 and & is a double line. The flag is �1 = Sing(&) ⊂ |� | and &̃ is
defined by a pair of distinct points on the line �1. The rank of &̃ is (1). The
dual complete quadric &̃∨ is defined by the flag �⊥1 ⊂ P(�). It is the point
�⊥1 which we agreed to identify with a line-pair.

4. &̃ ∈ E1 ∩ E2 and & is a double line. The flag is �2 ⊂ �1 ⊂ |� | and &̃ is a
quadric in �1 � P

1 singular at the point �2, i.e., a line and a double point
on it. The rank of &̃ is equal to (1, 2) = (2, 1). The dual complete quadric
&̃∨ is defined by the flag �⊥1 ⊂ �

⊥
2 ⊂ P(�) and a quadric in �⊥2 with the

singular point �⊥1 , i.e., a double point on a line.
We see that types 1 and 4 are self-dual, and types 2 and 3 are dual to each

other.

Example 2.4.27. Assume = = 3 and E = � is a linear space of dimension 4.
The space CQ� of complete quadrics in P3 is the composition of two blowing
ups of Q� → Q1

�
→ Q� � P9. The exceptional divisor E1 of the first blow-

up c1 : CQ1
� → Q� is a projective P5-bundle over Q� (3) � v2 (P3). It is

isomorphic to P((2 (R3)), where R3 � ΘP(�) (−1) is the universal rank 3
quotient bundle over � (3, �) � P(�).

The projection č : E1 → Q�∨ (1) is a resolution of singularities of the
discriminate hypersurface in the dual space. It blows down E1 ∩ E2 to QE∨ (2)
and E1 ∩ E2 ∩ E3 to QE∨ (1). We see that its fibers are three-dimensional that
shows that the resolution is different from the resolution of singularities of the
discriminant hypersurface of quadrics from Example

ex:discrimex:discrim
1.2.3.
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There are 8 types of complete quadrics in P3.

1. &̃ = & is a smooth quadric and &̃∨ = &⊥.
2. &̃ ∈ E◦3 identified with the irreducible quadric cone &. Its rank is (3). The

dual quadric is defined by the flag Sing(&)⊥ ⊂ P(�) and a smooth conic in
the plane Sing(&)⊥.

3. &̃ ∈ E◦2 and& is a plane-pair. The flag is �2 = Sing(&) ⊂ |� | and &̃ defines
a smooth quadric in �2 � P

1. The rank of &̃ is equal to (2). We can also
view it as the dual complete quadric defined by the flag �⊥2 ⊂ P(�) and a
smooth quadric in �⊥2 � P1. This can be considered as the dual complete
quadric.

4. &̃ ∈ E◦1 and & is a double plane. The flag is �1 = Sing(&) ⊂ |� | and
&̃ defines a smooth conic in �1 � P2. We agreed to identify it with an
irreducible cone in P(�). The rank of &̃ is equal to (1). We can also view it
as the dual complete quadric defined by the flag �⊥1 ⊂ P(�) and a smooth
quadric in �⊥1 � P0.

5. &̃ ∈ (E3 ∩ E2)◦ and & is a plane-pair. The flag is �2 ⊂ �3 ⊂ |� | and &̃
defines a quadric in �3 � P1 with a singular point at �2. Dually, we can
view &̃ as a smooth conic in �⊥2 � P2 and a smooth quadric in �⊥1 � P1.
The rank of &̃ is equal to (2, 3).

6. &̃ ∈ (E3 ∩ E1)◦ and & is a double plane. The flag is �3 ⊂ �1 ⊂ |� | and &̃
defines a conic in �1 � P

2 which is singular at �3. The rank is (1, 3). The
dual complete quadric is defined by the flag �⊥1 ⊂ �

⊥
3 and defines a conic

in �⊥3 � P2 singular at the point �⊥1 .
7. &̃ ∈ (E1 ∩ E2)◦ and & is a double plane. The flag is �2 ⊂ �1 ⊂ |� | and
&̃ defines a conic in �1 � P

2 with double line �2 � P
1. The rank is (1, 2).

Dually, we can view &̃ as a quadric in �⊥2 � P1 singular at the point �⊥1 .
8. &̃ ∈ E1 ∩ E2 ∩ E3 and & is a double plane. The flag is �3 ⊂ �2 ⊂ �1 ⊂ |� |

and &̃ defines a conic in �1 � P
2 singular along the line �2 and a quadric in

�2 singular at the point �3. Its rank is (1, 2, 3). The dual quadric is defined
by the flag �⊥1 ⊂ �⊥2 ⊂ �⊥3 ⊂ P(�) and a quadric in �⊥3 � P2 singular
along the line �⊥2 and a point on �⊥2 taken with multiplicity two.

We see that the types 1, 3, 6, and 8 are self-dual. The pairs (2, 4), (5, 7) are
dual to each other.

2.4.5 The Intersection Theory on the Space of Complete Quadrics
SS:2.4.7

Suppose we are given # = dim Q� = 1
2 (=

2 + 3=) geometric conditions on
quadrics in P= such that the quadrics satisfying one of the conditions form an
irreducible divisor �8 in Q� . A solution of the enumerative problem gives the
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number of quadrics satisfying all conditions. Since we expect that # divisors
in Q� intersect at finitely many points, we say that the problem is well-defined
when the intersection of the divisors is transversal and their intersection number
could be taken as the solution of the problem.
Unfortunately, this rarely happens. For example, consider the geometric con-

ditions such that each �1, . . . , �: consists of quadrics passing through a point
?1, . . . , ?: and the remaining divisors � ′1, . . . , �

′
#−: are the divisors tangent

to hyperplanes �1, . . . , �#−: . Even, if we additionally assume that the points
and hyperplanes in a general mutual incidence position, when # − : ≥ 3,
our problem is not well-defined. In fact, the linear system of quadrics passing
through ?1, . . . , ?: is of dimension # − : ≥ 3, hence its intersection with the
codimension 3 divisor Q� (=) is not empty. A quadric & from the intersection
contains a line in its singular locus. Hence, & is tangent to all hyperplanes
�1, . . . , �#−: . So, the correct solution must consist of the number of residual
intersection points. To find it, we replace Q� with the space CQ� , and con-
sider the proper transforms �̄8 of the divisors �8 in CQ� . If the intersection
�̄1 ∩ · · · �̄# is transversal, the number of such quadrics is the solution to our
problem.

To find #�̄1 ∩ · · · ∩ �̄# , we use the intersection theory in CQ� .
Let E1, . . . ,E=−1 be the proper transforms to CQ� of the exceptional divisors

�A of each blow-up CQA → CQA−1 from Theorem
vainsencher1vainsencher1
2.4.22. We apply Theorem

cohblowupcohblowup
2.4.6 to each blow-up, and obtain that �(CQ) is freely generated by the divisor
classes `1, 41, . . . , 4=−1 of the divisors E1, . . . ,E=−1 and the class `1 = c

∗ (ℎ),
where ℎ = 21 (Q� (1)) is the divisor class of a hyperplane in Q� . Moreover,
(`1, 41, . . . , 4=−1) is a free basis of �1 (CQ) � Pic(CQ)
We can use another basis formed by `1, . . . , `=, where `: = d∗8 (21 (OQ∧: � ),

where ?8 is the projection of CQ� to Q∧: � from Theorem
laksovlaksov
2.4.24.

prop:twobases Proposition 2.4.28. Let �∗ (CQ� ) be the Chow ring ofCQ� . Then Pic(CQ� ) =
�1 (CQ� ) = �2 (CQ� ,Z) � Z=. The the divisor classes of the boundary di-
visors (41, . . . , 4=) form a basis in Pic(CQ� ). Another basis (`1, . . . , `=)
is formed by the pre-images `8 of the divisor classes of a hyperplane in
P((2 (∧8 �) under the projection c8 : CQ� → P((2 (∧8 �). The two bases
are related as follows:

`: = :`1 − (: − 1)41 − · · · − 4:−1, : = 1, . . . , =, (2.76)
4: = 2`: − `:−1 − `:+1, : = 1, . . . , =, (2.77)

where `0 = `=+1 = 0
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Proof Consider the rational map

Φ: = c: ◦ c−1 : Q� d P((2 (
:∧
�))

which sends a quadric & = + (@) to the quadric &∧: := + (∧:@). If � is a
symmetric matrix associated to 1@ , then+ (∧:@) corresponds to the symmetric
matrix �(:) as defined in Subsection

SS:2.3.2SS:2.3.2
2.3.2. It follows from formula (

bd1bd1
2.21) and

its immediate extension to arbitrary : , that the mapΦ: is given by :× :-minors
of �. They are ofmultiplicity :−8 on the locus of zeros of (:−8)×(:−8)-minors
Eisenbud
[281]. This shows that the mapΦ: is given by the linear system |c∗ (OQ� (:)) −
E:−1 − 2E:−2 − · · · − :E1 |, hence

`: = :`1 − (: − 1)41 − · · · − 4:−1, : = 1, . . . , =.

Inverting the matrix

" =

©«

1 0 . . . . . . 0 0 0
2 −1 . . . . . . 0 0 0
...

...
...

...
...

...
...

: −: + 1 . . . −2 −1 0 0
...

...
...

...
...

...
...

= −= + 1 . . . . . . . . . −2 −1

ª®®®®®®®®®®¬
,

we obtain the second set of relations for : = 1, . . . , = − 1. The last relation
comes from the expression 4= = (= + 1)`1 − =41 − · · · − 4=−1. �

Remark 2.4.29. An attentive reader will notice that the matrix expressing 48 in
terms of `1, . . . , `= coincides with the Cartan matrix of a simple root system of
type �=. This is not a coincidence. The space of complete quadrics is a special
case of a wonderful compactification of homogeneous spaces of semi-simple
algebraic groups of the form �/�, where � is the set of fixed points of an
involution in �. In our case, the homogeneous space is SL(= + 1)/O(= + 1)
and the involution is the transpose involution. The cohomology ring of the
wonderful compactification has two bases correspond to a set of simple roots
and a set of weights of the Lie algebra of SL(= + 1). We refer to

DeConcini3
[206] for the

exposition of this theory.

Now, any geometric condition �8 , considered as a divisor on CQ� can be
expressed as a linear combination

∑=
9=1 U8 9` 9 . The coefficients U8 9 is classically

known as characteristic numbers of the geometric condition �8 . The solution
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of an enumerative problem consists of the evaluation of the number

#∏
8=1
(
=∑
9=1
U8 9` 9 ) =

=∑
81+···+8==#

081 ,...,8=`
81
1 · · · `

8=
= .

Of course, it is a formidable task, and the explicit computations can be made
only for small =.
To compute all the intersection numbers one needs to know the Segre

classes B(/A+1,CQA ). The rather complicated commutation of the normal bun-
dle N/A+1/CQA to

Vainsencher
[778]. For our modest need, that is, consider the case = = 2

and = = 3, we need only the following two lemmas which we will prove.

segreclass1 Lemma 2.4.30. IdentifyingQE (=) with P(E) via the Veronese map v2, we have
the following exact sequence on P(E):

0→ EP(E∨) (1) → v∗2 ((
2 (E∨)P(E) ) (2) → NQE (=)/QE → 0.

In particular, if E = � is a vector space over k, we get

B(Q� (=),Q� ) =
(1 + �)=+1

(1 + 2�)
1
2 (=+2) (=+1)

,

where � = 21 (OP(E) (1)).

Proof The variety Q� (=) is the Veronese variety in P((2 (E)). Let us denote
it by + and P((2 (E)) by P. Let ℎ = 21 (OP (1) and � = 21 (O |E | (1). Under the
Veronese map v2 : |E | → P, v∗2 (ℎ) = 2�.

We use exact sequence (
definitionnormaldefinitionnormal
2.36)

0→ Θ+ /) → ΘP/) ⊗ O+ → N+ ,P → 0

and the Euler exact sequences

0→ OP → (2E∨P (1) → ΘP/) → 0,

and

0→ OP(E) → E∨P(E) (1) → ΘP(E)/) → 0.
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Applying v∗2 to the second exact sequence, we get a commutative diagram:

0 0 0

0 // Θ |E |/) //

OO

v∗2 (ΘP/) ) //

OO

v∗2 (N+ /P)

OO

// 0

0 // E∨ (1)P(E) //

OO

v∗2 ((
2 (E∨)P(E) ) (2) //

OO

N+ /P //

OO

0

0 // OP(E) //

OO

OP(E) //

OO

0 //

OO

0

0

OO

0

OO

0

OO

The assertion about the normal bundle is given by the middle horizontal ex-
act sequence. The assertion about the Segre class follows from the standard
properties of Chern classes. �

Remark 2.4.31. The same proof computes the normal sheaf of the Veronese
variety V=

3
= v3 (P(E)) ⊂ P((3 (E)) for any 3 ≥ 2. We have an exact sequence

0→ EP(E∨) (1) → v∗3 ((
2 (E∨)P(E) ) (3) → NV=

3
/P((3 (E)) → 0.

normalone Lemma 2.4.32.

N/2/CQ1
E
� ?∗1(

2 (R2) ⊗ ?∗2OQ� (2) (1) ⊗ O/2 (−�1),

where (?2, ?1) : /2 → Q� × � (2, E) resolves the indeterminacy of s2 :
Q� (2) d � (2, �).

Proof We denote � (2, E) by G and CQ1
E by CQ1. It follows from the proof

of Proposition
normalbundle1normalbundle1
2.4.16 that both sides coincide over QE (2)◦. Also, there is an

exact sequence

0→ K2 ⊗ R2 → N/2/QE×G → ?∗1(
2 (R2) (1) → 0.

Let a = (c1, idG) : CQ1 × G→ QE × G. Applying (
exseqnormal1exseqnormal1
2.40), we obtain

N/2 ,CQ1 � a∗ (N/2/QE×�) (−�1).

Since /2 ∩ �1 is a divisor in /2, the pre-image of /2 in CQ1 ×G is isomorphic
to /2 × G. The surjection N/2/QE×G → (2 (R2) (1) defines a surjection

N/2 ,CQ1×G → 5 ∗(2 (R2) (−�1),

where 5 : CQ1 × G→ CQ1 is the first projection. The pull-back of both sides
of the assertion under 5 ∗ is a surjection of locally free sheaves of the same rank
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whose restriction to CQ1 \ �1 are isomorphic. Hence they are isomorphic, and
the assertion follows.

�

2.4.6 Enumerative geometry of conics
SS:2.4.6

We start with the case = = 2. We denote CQ� by CQ2.
Applying Proposition

prop:twobasesprop:twobases
2.4.28, we obtain that Pic(Q2) has two bases (`1, `2)

and (`1, 41). They are related by `2 = 2`1 − 41. We also know that 42 =

3`1 − 241 = 2`2 − `1.
Let ? ∈ |� | be a point and Q2, ? be the linear system of conics with base

point ?. Its proper transform to CQ2 is a hypersurface with divisor class `1.
Every geometric divisorial condition is a divisor � in in some linear system
|0`1 + 1`2 |, where (0, 1) are the characteristic numbers. A solution of an
enumerative problem consists of computation of the intersection index of five
divisors �1, . . . , �5. To compute the intersection number, we need to know the
numbers `81`

5−8
2 . Since `2 = 2`1 − 41, it is enough to compute the intersection

numbers `81 · 4
5−8
1 . The following lemma makes it easy.

Lemma 2.4.33.

`814
5−8
1 = 0, 8 ≥ 3.

Proof By the projection formula

`814
5−8
1 = c∗ (ℎ81) · 4

5−8
1 = ℎ81c∗ (4

5−8
1 ).

Since codim(Q2 (1),Q2) = 3, we get c∗ (45−8
1 ) ∈ �2−8 (Q2 (1)), hence c∗ (45−8

1 ) =
0, 8 = 3, 4, 5. �

Obviously, `5
1 = `

5
2 = ℎ

5
1. Now, we have

`4
1`1 = `

4
1 · (2`1 − 41) = 2`5

1 = 2, `3
1 · `

2
2 = `

3
1 · (2`1 − 41)2 = 4.

The remaining numbers `81`
5−8
1 are computed via the duality. We have

`2
1 · `

3
2 = `

3
1 · `

2
2 = 2, `1 · `4

2 = `
4
1 · `2 = 2.

The number `:1 `
5−:
2 gives the solution to the enumerative problem of count-

ing the number of complete conics that pass through : general points and
tangent to 5 − : general lines, provided we proof that the corresponding divi-
sors intersect transversally. This follows from Kleiman’s transversality theorem
KleimanTr
[448]. To apply Kleiman’ theorem we use that the group Aut(P2) acts transi-
tively on the hypersurfaces representing the classes `1 and `2. One can also
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check that the transversal intersection of five enumerative divisors consists of
smooth conics (see

Casos-Alvero
[87]).

Let us add one more condition: a conic is tangent to a fixed smooth conic
�1. Choosing a Veronese map v2 : P1 → �1, the pre-image of any conic �
different from �1 is a divisor of degree 4 in P1. The conic � is tangent to �1 if
this divisor is not reduced. The discriminant variety of binary forms of degree
4 is hypersurface � (�1) in |OP1 (4) | � P4 of degree 6 (see Subsection

SS:1.5.1SS:1.5.1
1.5.1).

It is a cone of degree 6 in Q2 � P
5 with the vertex {�1}. We leave it to the

reader to check that Q2 (1) is the double locus of � (�1). This implies that the
c∗ (� (�1) represents the divisor class 6`1 − 241
Using our computations from the previous example, we get

(2`1 + 2`2)5 = 25 (`5 + 5`4a + 10`3a2 + 10`2a3 + 5`a4 + +a5)

= 25 (1 + 5 · 2 + 10 · 4 + 10 · 4 + 10 · 4 + 5 · 2 + 1) = 3264.

This gives the solution of the classical enumerative problem of finding the
number of conics tangent to a set of five conics. We refer for the history of this
problem to

KleimanHistory
[450].

Similar computations give the answer to the enumerative problem: find the
number of conics passing through : points, tangent to ; lines and 5 − : − ;
conics (see

Bashelor
[40]).

:
;

0 1 2 3 4 5

0 3264 816 184 36 6 1

1 816 224 56 12 2

2 184 56 16 4

3 36 12 4

4 6 2

5 1

Table 2.1 Number of conics passing through : points and tangent to ; lines
and 5 − : − ; conics

Example 2.4.34. Fix three conics in a general position that pass through two
fixed points in the planes. By definition, the conics are complex circles (see
subsection

SS:2.2.3SS:2.2.3
2.2.3). It follows from Proposition

P:2.2.7P:2.2.7
2.2.7 that the number of circles

touching the three circles is equal to the intersection of 3 quadrics in the space
of quadrics. It is expected to be equal to 8. The fact that it is equal to 8 for
a general choice of three conics can be proven by a picture (see the cover
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of the book
Eisenbud3264
[283]. Our enumerative problem gives that the number must be

equal `2
1 (2`1 + 2`2)3 = 184. The discrepancy is explained by the fact that

three conics are special: all of them pass through two fixed points. So, from
the point of view of enumerative geometry of conics, the three fixed conics
are not in a general position. Another special position is when the three fixed
real circles are pairwise tangent. Then the number of real circles that touch the
three fixed circles �1, �2, �3) drops to 2. If :1, :2, :3 denote the curvatures of
�1, �2, �3 (the inverses of their radii), the curvatures of two new circles satisfy
the Descartes’ equation

C2 − 2C (:1 + :2 + :3) − 2(:1:2 + :1:3 + :2:3) = 0.

There is a choice of a solution determined by the order of the set of curvatures.
For example, choosing�4 with the largest curvature, we obtain a new set of three
overlapping circles (�2, �3, �4). Continuing in this way, we get a circle packing
of the plane, called the Apollonian circle packing. similar constructions lead
to Apollonian sphere packings. Because of the great importance of Apollonian
sphere packings in hyperbolic geometry, dynamics and number theory, there
is enormous literature about them. We refer to

DolgachevApollonian
[254], where one can get some

references to the literature and some applications to algebraic geometry.

Remark 2.4.35. We have to warn the reader that not any enumerative problem
of conics can be reduced to the intersection theory on the variety of complete
conics. The proper transforms of the hypersurfaces defining some geometrical
conditions in CQ2 may still have a common subvariety of complete cognacs
(�,�∨), where � is a line with a marked point (see

Semple3
[703, B3] and

KleimanHistory
[450]). To

solve such a enumerative problem one has to use the intersection theory on
some blow-up of CQ2.

vainsencher2 Remark 2.4.36. One can also develop the enumerative theory of conics in a
projective space P= with = > 2

Vainsencher
[778]. Since any conic is contained in a plane,

one replaces the 3-dimensional vector space � by the tautological vector bundle
E over the Grassmannian �2 (P=) of planes in P=. So, a conic becomes a point
in the projective bundle P(E∨) over �2 (P=). The birational map Adj2 becomes
a birational map over �2 (P=) and one can smoothly resolve indeterminacy
of the rational map Adj2 to obtain the variety of complex conics CQ2,P= over
�2 (P=). It comes with two projections

CQ2 (P=)

xx &&
P((2 (E∨))

AdjE // P((2 (E))
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Its fiber over a point Π ⊂ P= is isomorphic to CQ2. The cohomology ring
�∗ (P((2 (E∨)),Z) can also be computed. For example, if = = 3, �2 (P3) =
(P3)∨, and P(E∨) is a projective 5-bundle over P3. Conics of rank one form a
subvariety of P((2 (E∨) and the variety of complete conics is isomorphic to its
blow-up. The second cohomology group is now generated by three cohomology
classes: the class 4 of the exceptional divisor, the class d of the pre-image of
a hyperplane in the base of the bundle, and `1 = 21 (OP(E∨) (1)). We have
2`1 − 4 = a, where `2 = (c∗)∗ (21 (OP((2 (E)) (1))).
Remark 2.4.37. The enumerative problems for complex conics extends to con-
ics over any algebraically closed field of characteristic ≠ 2. However, in charac-
teristic 2, the duality fails since the dual of a smooth conic is a double line. For
example, the number of conics tangent to 5 general conics becomes 51 instead
of 3264

Vainsencher2
[777].

multiple1 Remark 2.4.38. One can also consider higher codimension (multiple) geomet-
ric conditions on conics. For example, the codimension two condition that
conics touch a fixed line at a fixed point. Since the fixed point lies on the line, it
cannot be considered as the product `1 · `2 of two codimension-one conditions.
In fact, the group �2 (CQ) of codimension two algebraic cycles is generated by
`2

1, `1 · `2, `2 only after tensoring withQ. The double condition we considered
is represented by the class B such that 2B = `1 · `2. For example, the number of
conics tangent to a fixed conic and tangent to two lines at fixed points is equal
to 1

4 `
2
1`

2
2 (2`1 + 2`2) = 1

2 (`
2
1`

3
2 + `

3
1`

2
2) = 4.

2.4.7 Enumerative geometry of quadrics in P3
SS:2.4.7

We continue to use the notations Q = Q� ,CQ8
�
= CQ8 . The Picard group

Pic(CQ) has a basis (`1, `2, d) or (`1, 41, 42), related by

`2 = 2`1 − 41, `3 = 3`1 − 2n1 − 42. (2.78) muversuse

For convenience in consulting the classical literature, let us switch to the clas-
sical notations:

(`, a, d) := (`1, `2, `3).

As we explained in the previous subsection, any enumerative problem for
quadrics in P3 requires the computation of the numbers `0 ·a1 ·d2 , 0+1+2 = 9.
We denote these numbers by [0, 1, 2].

First, note that the cohomology class 41 of the proper transform of the
exceptional divisor of c1 : CQ1 → Q in CQ is equal to c∗2 ( [�1]). This
follows from

Fulton
[315, Corollary 6.7.2] because 5 = dim �1 ∩ /2 ≤ dim �1 −
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codim(/2,CQ1) = 5. This implies

`0 · 411 · 4
2
2 = c

∗
2 (c
∗
1 (ℎ

0
1 ) · [�1]1) · 422

= c∗1 (ℎ
0
1 ) · [�1]1 · (c2)∗ (422 ) = (−1)2−1c∗1 (ℎ

0
1 ) · [�1]1B2−3 (/2,CQ1).

(2.79) obsevation1

From this we infer

`0a1d2 = `0 · (2` − 41)1 · (3` − 241 − 42)2

= `0 · a1 · (3` − 241)2 = `0 · a1 · (2a − `)2 ,
(2.80) obsevation2

if 2 = 1, 2. We get

`0a1 = `0 (2` − 41)1 =
1∑
8=0
(−1)828`0+841−81 ,

`0a1d = `0 · a1 · (2a − `) = 2`0a1+1 − `0+1a1 ,
`0a1d2 = `0 · a1 · (2a − `)2 = `0a1+2 − 4`0+1a1+1 + `0+2a1 .

(2.81) observation3

Next, we use the duality

`0a1d2 = `2a1d0

that shows that one needs only to compute

`0a9−0, `0a8−0d, `0a7−0d2,

`6d3, `5ad3, `4a2d3, `3a3d3, `5d4, `4ad4.
(2.82) rest

To compute the numbers `0a1 , it suffices to compute `049−0
1 . We use that

`049−0
1 = c∗1 (ℎ

0
1 ) · [�1]) = ℎ01 · (c1)∗ ( [�1]9−0) = (−1)0−1ℎ01 B3−0 (Q(3),Q).

This immediately gives

`< · a= = 21ℎ<+=1 −
=−6∑
:=0

(
=

:

)
2:ℎ<+:1 · B=−6−: (Q(3),Q). (2.83) observation4

By Proposition
segreclass1segreclass1
2.4.30,

B(Q(3),Q) = (1 + �)4
(1 + 2�)10 = 1 − 16� + 146�2 − 996�3. (2.84)
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Here,� = 21 (OQ(3) (1), whereQ(3) is identifiedwith P(�), Using the formulas
from above, we get

a9 = 29 − 8 · 84 · 8 + 4 · 36 · 16 · 4 − 2 · 146 · 2 · 2 + 998 = 92,
`1a8 = 28 − 4 · 28`3 · [Q(1)] + 16 · 16`2 · � + 146` · �2 = 92,
`2a7 = 27 − 14`3 · [Q(1)] − 16`2 · � = 128 − 112 + 64 = 80,

`3a6 = 26 − `3 · [Q(1)] = 64 − 8 = 56,
`9 = ℎ9

1 = 1.

(2.85)

Of course, the last equality is obvious. Similarly, we compute the remaining
numbers

`4a5 = 32, `5a4 = 16, `6a3 = 8, `7a2 = 4, `8a1 = 2. (2.86)

Using these numbers, and applying (
observation3observation3
2.81), we obtain

`3a5d = `3a5`3 = 2`3a6 − `4a5 = 112 − 32 = 80,

`3a4d2 = `3a4d2 = 4`3a6 − 4`4a5 + `5a4 = 112.
(2.87)

Similarly, we compute

`a7d = 104, `2a6d = 104, `4a4d = 48,

`5a3d = 24, `5a2d = 18, `7ad = 6, `8d = 3,

`7d2 = 9, `6ad2 = 12, `5a2d2 = 36,

`4a3d2 = 72, `3a4d2 = 112, `2a5d2 = 128.

(2.88)

It remains to compute the remaining numbers `0a1d2 with 2 = 3, 4 from
(
restrest
2.82). Let us assume that 2 = 3. Then

`6d3 = `6d3 = `6 (3` − 241 − 42)3 = `6 (2a − ` − 42)3

`6 (−`3+6`2a−12`a2+8a3) − `6 (−3`2+12`a−12a)42+ (−3`+6a)42
2− 4

3
2.

We know from above how to compute the sum in the first bracket. We have

`643
2 = c

∗
1 (ℎ

6
1) (c2)∗ (43

2) = c
∗
1 (ℎ

6
1)B(/2,CQ1)0 = c∗1 (ℎ1) [/2] = ℎ6

1 [Q(2)) = deg(Q(2)) = 10.

Similarly, we get `742
2 = c

∗
1 (ℎ

6
1) (c2)∗ (42

2) = 0 and

`0a142 = `
0 (2` − 41)142 = c

∗
1 (ℎ1) (2g∗ (ℎ1) − [�1])1 (c2)∗ (42).

So, we obtain

`6d3 = `6 (−`3 + 6`2a − 12`a2 + 8a3) − c∗1 (ℎ1) · 42 = 27 − deg(Q(2)) = 17.
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Similarly, we get

`5ad3 = 34, `4a2d3 = 68, `3a3d3 = 104. (2.89)

It remains to compute `5d4 and `4ad4. For this, we will need to compute the
Segre class B1 (/2,CQ1). This yields

B1 (/2,CQ1) = −21 (?∗1(
2R2) ⊗ ?∗2 (OQ(2) (1) ⊗ O/2 (−�1)).

Let ?1 : /2 = P((2K∨2 ) → � (2, �) be the structural projection of the
projective bundle and ?2 : /2 → Q(2) be the projection of the blow-up /2 =

BlQ(3) (Q(2)). The closed embedding inclusion 8 : P((2K∨2 ) ↩→ P((
2 (�))� (2,�)

shows that

[ := O/2 (1) = 8∗OP((2 (�)� (2,� ) ) (1) = ?
∗
2 (ℎ1).

The Chern classes of the sheaf R2 are known. We will show in Subsection
CAG-2:SS:10.1.2CAG-2:SS:10.1.2
10.1.2 that

21 (R2) = f1 := 21 (OG (1)).

Applying
Fulton
[315, Examples 3.2.2 and 14.5.2], we find that 21 ((2R2) = 1 + 3f1.

Hence,

B1 (/2,CQ1) = −3(?∗1 (f1) + c∗1 (ℎ1) − [�1 ∩ /2] .

We have

`5d4 = `5d4 = `5 (2a − ` − 42)4

= `5 (`4 − 8`3a + 24`2a2 − 32`a3 + 16a4) − 4`5 (2a − `)43
2 + `

544
2.

(2.90)

Here, we used that, by above, the terms containing 42 in power one or two are
equal to zero.
We have

`5 (`4 − 8`3a + 24`2a2 − 32`a3 + 16a4) = 81,

4`5 (2a − `)43
2 = 4`5 (3` − 241)43

2 = 12 deg(Q(2)) − 8`441 · [/2])

= 120 − 8ℎ4
1 · (c1)∗ ( [�1 ∩ /2] = 120,

Here, we used that /2 ∩ �1 → Q(3) is a of positive relative dimension, so
(c1)∗ ( [�1 ∩ /2] = 0. It remains to compute the last summand. We have

`544
2 = −c

∗
1 (ℎ1)B1 (/2,CQ1) = 3(c∗1 (ℎ

5
1) (?

∗
1 (f1) + c∗1 (ℎ1) − [�1 ∩ /2])

= 3(c∗1 (ℎ
6
1) · [/2] + c∗1 (ℎ

5
1) · ?

∗
1 (f1)) = 30 + [5 · ?∗1 (f1)
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To compute [5 · ?∗1 (f1), we use that ?∗ (f1) = ?∗1 (21 (O� (2,�) (1)) = c∗2 (a) ·
[/2], hence

c∗1 (ℎ
5
1) · ?

∗
1 (f1) = c∗1 (ℎ

5
1) ·a · [/2] = c∗1 (ℎ

5
1) ·c

∗
1 (3ℎ1−2[�1])−(c2)∗ (42)) · [/2]

= 3c∗1 (ℎ1) · [/2] = 30.

Adding up the summands, we get

`5d4 = 81 − 120 + 60 = 21.

We leave it to the reader to do a similar computation to obtain that

`4ad4 = 42.

Knowing the numbers [0, 1, 2], we can solve other enumerative problems.
Example 2.4.39. In this examplewe compute the number#3 of quadrics tangent
to nine quadrics in a general position. The cohomology class of hypersurface
of complete quadrics tangent to the fixed quadrics is equal to 2(`+a+ d)

DeConcini1
[207].

Thus, we need to compute

29 (` + a + d)9 = 29 (
∑

0+1+2=9

9!
0!1!2!

[0, 1, 2]

After a lengthy computation, we find that

#3 = 666, 841, 088.

Note that the loc.cit. paper contains the numbers #4 (resp. #5) of quadrics in
P4 (resp. P5) that are tangent to 14 (resp. 20) quadrics in general position. The
numbers are

#4 = 48, 942, 189, 946, 470, 400,
#5 = 641, 211, 464, 734, 373, 953, 791, 690, 014, 720.

The Table
schubertquadricsschubertquadrics
2.2 summarizes our compyations. One can also find it Schubert’s

book
SchubertBook
[667, p. 105] or Semple-Roth’s book

SR
[701, Chapter XI, §5]

`9 = 1 `8a = 2 `7a2 = 4 `6a3 = 8 `5a4 = 16
`4a5 = 32 `3a6 = 56 `2a7 = 80 `a8 = 92 a9 = 92
`8d = 3 `7ad = 6 `6a2d = 12 `5a3d = 24 `4a4d = 48

`3a5d = 80 `2a6d = 104 `a7d = 104 `7d2 = 9 `6ad2 = 18
`5a2d2 = 36 `4a3d2 = 72 `3a4d2 = 112 `2a5d2 = 128 `6d3 = 17
`5ad3 = 34 `4a2d3 = 68 `3a3d3 = 104 `5d4 = 81 `4ad4 = 42

Table 2.2 Characteristic numbers for quadrics in P3
schubertquadrics
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In Chapter 11, we will also need to know the characteristic numbers for
quadric cones in P3. A natural guess is that the numbers must be equal to
43`

0a1d2 , 0 + 1 + 2 = 8. However, the hypersurface representing the divisor
class d consists of singular quadrics touching a fixed plane Π. It is equal to
the proper transform in CQ3 of the intersection of the discriminant quartic
hypersurface Δ = Q3 (3) with its first polar with respect to the point dual to Π.
It intersects Δ along a codimension one subvariety of Δ of degree 6 taken with
multiplicity two. Thus, the correct numbers are 2−243`

0a1d2 .
Applying Proposition

prop:twobasesprop:twobases
2.4.28, we get 43 = 2d − a = 4d − a, hence

2−243`
0a1`2 = 2−2 (2d − a) (`0a1d2+1 − `0a1+1d2).

Using the previous table, we can compute the characteristic numbers for cones.
For brevity, we set 2−243`

0a1d2 := `0a1d2 , 0+ 1+ 2 = 8.. In Table
schubertconesschubertcones
2.3 below,

we use that the characteristic numbers `0a1d2 = 0 if 2 > 3. This is because
the vertex of the cone cannot lie in more than 3 different planes.

`8 = 4 `7a = 8 `6a2 = 16 `5a3 = 32 `4a4 = 64
`3a5 = 104 `2a6 = 128 `a7 = 116 a8 = 92
`7d = 6 `6ad = 12 `5a2d = 24 `4a3d = 48 `3a4d = 72

`2a5d = 76 `a6d = 52 a7d = 34 `6d2 = 4 `5ad2 = 8
`4a2d2 = 16 `3a3d2 = 24 `2a4d2 = 24 `a5d2 = 14 `5d3 = 16
`4ad3 = 2 `3a2d3 = 4 `2a3d3 = 4

Table 2.3 Characteristic numbers for cones in P3
schubertcones

Also, note that, via duality, the same table gives the characteristic numbers
for space conics. The condition `0a1d2 , 0 + 1 + 2 = 8, gives the number of
space conics � ⊂ Π with the spanning plane Π passing through 2 general
points, intersecting 1 general lines, and tangent to 0 general planes. Table
refschubertcones can be found in

SchubertBook
[667, p. 95] and in

SR
[701, Chapter XI, §5].

A general one-dimensional family of quadrics in P3 (and in any P=) contains
only quadrics of corank ≤ 1. On the other hand, a general one-dimensional
family of quadric cones in P3 lifted to CQ3 is contained in E3 and intersects E2◦
(resp. E◦1) at finitely many points X (resp. [) corresponding to reducible cones
(resp. point-pairs).

prop:sturm1 Proposition 2.4.40. LetK be an irreducible algebraic family of quadric cones
whose proper transform in CQ3 has the cohomologically class `0a1d2 , 0+1 =
2 = 8. Let U = `0+1a1d2 , V = `0a1+1d2 , W = `0a1d2+1 be the number of
quadric cones in the family passing through a general point, tangent to a
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general line, and tangent to a general plane, respectively. Then

2V = W + 2U + [, 2d = V + X.

Proof We have

X = 42`
0a1d2 , [ = 43`

0a1d2 .

Applying Proposition
prop:twobasesprop:twobases
2.4.28, we obtain

X = (2a − ` − d)`0a1d2 = 2`0a1+1d2+1 − `0+1a1a2 − `0a1d2+1,
[ = (2d − a)`0a1d2 = 2`0a1d2+1 − `0a1+1d2 .

(2.91)

This proves the proposition. �

Exercises
E:2

2.1 Let � be a vector space of even dimension = = 2: over a field k of characteristic
0 and (41, . . . , 4=) be a basis in � . Let l =

∑
8< 9 08 948 ∧ 4 9 ∈

∧2 �∨ and
� = (08 9 )1≤8≤ 9≤= be the skew-symmetric matrix defined by the coefficients 08 9 .
Let ∧:l = l ∧ · · · ∧ l = 0:!41 ∧ · · · ∧ 4= for some 0 ∈ k. The element 0 is
called the pfaffian of � and is denoted by Pf (�).
(i) Show that

Pf (�) =
∑
(∈S

n (()
∏
(8, 9) ∈(

08 9 ,

where ( is a set of pairs (81, 91), . . . , (8: , 9: ) such that 1 ≤ 8B < 9B ≤ 2:, B =
1, . . . , :, {81, . . . , 8: , 91, . . . , 9: } = {1, . . . , =}, S is the set of such sets (,
n (() = 1 if the permutation (81, 91, . . . , 8: , 9: ) is even and −1 otherwise.

(ii) Compute Pf (�) when = = 2, 4, 6.
(iii) Show that, for any invertible matrix �,

Pf (C� · � · �) = det(�)Pf (�).

(iv) Using (iii) prove that

det(�) = Pf (�)2.

(iv) Show that

Pf (�) =
=∑
8=1
(−1)8+ 9−1Pf (�8 9 )08 9 ,

where �8 9 is the matrix of order = − 2 obtained by deleting the 8-th and 9-th
rows and columns of �.

(v) Let � be a skew-symmetric matrix of odd order 2: − 1 and �8 be the
matrix of order 2: − 2 obtained from � by deleting the 8-th row and 8-th
column. Show that the vector (Pf (�1), . . . , (−1)8+1Pf (�8), . . . , Pf (�2:−1))
is a solution of the equation � · G = 0.
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(vi) Show that the rank of a skew-symmetric matrix � of any order = is equal
to the largest < such that there exist 81 < . . . < 8< such that the matrix
�81...8< obtained from � by deleting 8 9 -th rows and columns, 9 = 1, . . . , <,
has nonzero pfaffian .

ex:2.1
2.2 Let V = v2 (P2) be a Veronese surface in P5, where P5 is considered as the space

of conics in P2.
(i) Let Λ be a plane in P5 and NΛ be the net of conics in P2 cut out by

hyperplanes containing Λ. Show that Λ is a trisecant plane if and only if the
set of base points ofNΛ consists of ≥ 3 points (counting with multiplicities).
Conversely, a net of conics through three points defines a unique trisecant
plane.

(ii) Show that the nets of conics with two base points, one of them is infinitely
near, forms an irreducible divisor in the variety of trisecant planes.

(iii) Using (ii), show that the anti-canonical divisor of degenerate triangles is
irreducible.

(iv) Show that the trisecant planes intersecting the Veronese surface at one
point (corresponding to net of conics with one base point of multiplicity 3)
define a smooth rational curve in the boundary of the variety of self-polar
triangles. Show that this curve is equal to the set of singular points of the
boundary.

ex:2.2
2.3 Let * ⊂ (P2) (3) be the subset of the symmetric product of P2 parameterizing

the sets of three distinct points. For each set / ∈ * let !/ be the linear system of
conics containing / . Consider the map 5 : * → �2 (P5), / ↦→ !/ ⊂ |OP2 (2) |.
(i) Consider the divisor � in * parameterizing sets of 3 distinct collinear

points. Show that 5 (�) is a closed subvariety of �2 (P5) isomorphic to P2.
(ii) Show that the map 5 extends to the Hilbert scheme (P2) [3] of 0-cycles /

with ℎ0 (O/ ) = 3.
(iii) Show that the closure �̄ of c−1 (�) in the Hilbert scheme is isomorphic

to a P3-bundle over P2 and the restriction of 5 to �̄ is the projection map to
its base.

(iv) Define the map 5̃ : P → |OP2 (2) |, which assigns to a point in the fiber
?−1 (/) the corresponding conic in the net of conics though / . Show that
the fiber of 5̃ over a nonsingular conic � is isomorphic to the Fano variety
of self-polar triangles of the dual conic �∨.

(v) Let PB = 5̃ −1 (D2 (2)) be the pre-image of the hypersurface of singular
conics. Describe the fibres of the projections ? : PB → (P2) [3] and 5̃ :
PB → D2 (2).2.3

2.4 Identify P1 with its image under the Veronese map v2 : P1 → P2.

(i) Show that any involution of P1 (i.e. an automorphism of order 2) coincides
with the involution of the Veronese conic obtained by projection from a
point not lying on the conic (called the center of the involution).

(ii) Show that two involutions of P1 without common fixed points commute if
and only if the two pairs of fixed points are harmonically conjugate.

(iii) Show that the product of three involutions is an involution if their centers
are collinear (J. Valles). The converse is known for any odd number of
involutions.ex:2.4
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2.5 Prove that two unordered pairs {0, 1}, {2, 3} of points in P1 are harmonically
conjugate if and only if there is an involution of P1 with fixed points 0, 1 that
switches 2 and 3.ex:2.5

2.6 Prove the following Hesse’s Theorem. If two pairs of opposite vertices of a
quadrilateral are each conjugate for a conic, then the third pair is also conjugate.
Such a quadrilateral is called a Hesse quadrilateral. Show that four lines form a
polar quadrilateral for a conic if and only if it is a Hesse quadrilateral.ex:2.6

2.7 A tetrad of points ?1, ?2, ?3, ?4 in the plane is called self-conjugate with respect
to a nonsingular conic if no three points are collinear and the pole of each side
?8 ? 9 lies on the opposite side ?: ?; .

(i) Given two conjugate triangles, show that the vertices of one of the triangles
together with the center of perspectivity form a self-conjugate tetrad.

(ii) Show that the four lines with poles equal to ?1, ?2, ?3, ?4 form a po-
lar quadrilateral of the conic and any nondegenerate polar quadrilateral is
obtained in this way from a self-conjugate tetrad.

(iii) Show that any polar triangle of a conic can be extended to a polar quadri-
lateral.ex:2.7

2.8 Extend Darboux’s Theorem to the case of two tangent conics.ex:2.8
2.9 Show that the secant lines of a Veronese curve '< in P< are parameterized by the

surface in the Grassmannian�1 (P<) isomorphic to P2. Show that the embedding
of P2 into the Grassmannian is given by the Schwarzenberger bundle.ex:2.9

2.10 Let* be a 2-dimensional vector space. Use the construction of curves of degree
= − 1 Poncelet-related to a conic to exhibit an isomorphism of linear representa-
tions

∧2 ((=*) and (=−1 ((2*) of SL(*).ex:2.10
2.11 Assume that the pencil of sections of the Schwarzenberger bundle S=,� has no

base points. Show that the Poncelet curve associated to the pencil is nonsingular
at a point G defined by a section B from the pencil if and only if the scheme of
zeros / (B) is reduced.ex:2.11

2.12 Find a geometric interpretation of vanishing of the invariants Θ,Θ′ from (
salmonsalmon
2.19)

in the case where � or ( is a singular conic.ex:2.12
2.13 Let ?1, ?2, ?3, ?4 be four distinct points on a nonsingular conic �. Show that

the triangle with the vertices � = ?1?3 ∩ ?2?4, � = ?1?2 ∩ ?3?4 and � =

?1?4 ∩ ?2?3 is a self-conjugate triangle with respect to �.ex:2.13
2.14 Show that two pairs {0, 1}, {2, 3} of points in P1 with a common point are never

harmonically conjugate.ex:2.14
2.15 Let (0, 1, 2, 3) be a quadrangle in P2, and ?, @ be the intersection points of two

pairs of opposite sides 01, 23 and 12, 03. Let ?′, @′ be the intersection points of
the line ?@ with the diagonals 02 and 13. Show that the pairs (?, @) and (?′, @′)
are harmonically conjugate.ex:2.15

2.16 Show that the pair of points on a diagonal of a complete quadrilateral defined by
its sides is harmonically conjugate to the pair of points defined by intersection
with other two diagonals.ex:2.16

2.17 Show that a general net of conics admits a common polar quadrangle.ex:2.17
2.18 Show that four general conics admit a unique common polar quadrangle.ex:2.18
2.19 Find the condition on a pair of conics expressing that the associate Salmon conic

is degenerate.ex:2.19
2.20 Show that the triangle formed by any three tangents to two general conics is in

perspective with any three of common points.ex:2.20
2.21 Show that the set of 2= + 2 vertices of two self-polar (= + 1)-hedra of a quadric in
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P= impose one less condition on quadrics. In particular, two self-polar triangles
lie on a conic, two self-polar tetrahedra are the base points of a net of quadrics.ex:2.21

2.22 A hexad of points in P3 is called self-conjugate with respect to a nonsingular
quadric if no four are on the plane and the pole of each plane spanned by three
points lies on the plane spanned by the remaining three points. Show that the
quadric admits a nondegenerate polar hexahedron whose planes are polar planes
of points in the hexad. Conversely, any nondegenerate polar hexahedron of the
quadric is obtained in this way from a self-conjugate tetrad.

2.23 Show that the variety of sums of five powers of a nonsingular quadric surface is
isomorphic to the variety of self-conjugate pentads of points in P3.ex:2.23

2.24 Consider 60 Pascal lines associated with a hexad of points on a conic. Prove the
following properties of the lines.
(i) There are 20 points at which three of Pascal lines intersect, called the

Steiner points.
(ii) The 20 Steiner points lie on 15 lines, each containing four of the points

(the Plücker lines).
(iii) There are 60 points each contained in three Plücker lines (the Kirkman

points).ex:2.24
2.25 Prove the following generalization of Pascal’s Theorem. Consider the 12 inter-

section points of a nonsingular quadric surface & with six edges of a tetrahedron
) with vertices ?1, ?2, ?3, ?4. For each vertex ?8 choose one of the 12 points on
each edge ?8 ? 9 and consider the plane Λ8 spanned by these three points. Show
that the four lines in which each of these four planes meats the opposite face of
the tetrahedron are rulings of a quadric. This gives 32 quadrics associated to the
pair (),&)

ChaslesApercu
[129], p. 400,

BakerBook
[29], v. 3, Ex. 15,

Salmon-Fiedler
[654], p. 362.ex:2.25

2.26 Let Θ0, . . . ,Θ4 be the invariants of a pair of quadric surfaces.
(i) Show that the five products Θ2,Θ0Θ4,Θ1Θ3,Θ

2
1Θ4,Θ

2
3Θ0 generate the

algebra of invariants of bidegrees (<, =) with < = =.
(ii) Show that the GIT-quotient of ordered pairs of quadrics by the group SL(4)

is isomorphic to the hypersurface of degree 6 in theweighted projective space
P(1, 2, 2, 3, 3) given by the equation C1C22 − C3C4 = 0.

(iii Show that the GIT-quotient has a singular line and its general point corre-
sponds to the orbit of the pair + (∑ C2

8
), + ((C20 − C

2
1) + 0(C

2
2 − C

2
3)).ex:2.26

2.27 Let )1 and )2 be two conjugate triangles with respect to a conic �. Find the
condition for � such that the vertices of )1 and )2 lie on a conic, or there exists a
conic tangent to their sides.ex:2.27

2.28 Let � be a smooth conic and ℓ be a line in P2. The pole of ℓ with respect to � is
called the center of �.
(i) Show that the center of the complex circle with respect to the line at infinity

is the center of the circle.
(ii) Fix five lines in a general position. Show that the centers of conics tangent

to any four lines with respect to the remaining line trace a line (called
Newton’s line).ex:2.28

2.29 Show that the subvariety of |OP= (2) | of quadrics in P= that touch a fixed linear
subspace of codimension : < = is a hypersurface of degree =− : . Identify it with
a :th polar hyperface of the discriminant hypersurface.

2.30 Show that the intersection of the discriminant hypersurface of quadrics in P=
with its general first polar hypersurface is a codimension two subvariety of degree
1
2=(= + 1) taken with multiplicity two.semplequadric
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2.31 Show that the tangent hyperplane � to the discriminant hypersurface of quadrics
in P= at its nonsingular point is touching the subvariety of quadrics of rank one
along the space of quadrics of rank one in �.

2.32 Show that the intersection number 48`01
1 `

02
2 d03 , 01 + 02 + 03 = 8, is equal to 208

times the number of quadric cones satisfying the condition `01
1 `

02
2 d03 .ex:2.29

2.33 Show that the intersection number 4142`
01
1 `

02
2 d03 , 01 + 02 + 03 = 7, is equal to

202 times the number of reducible quadrics satisfying the condition `01
1 `

02
2 d03 .

is equal to 208 times the number of quadric cones satisfying the condition
`
01
1 `

02
2 d03 .ex:2.30

2.34 Consider a space conic on P= as a closed point QR , where R is in the universal
quotient bundle over the Grassmannian �2 (P=) of planes in P=.
• Show that CQR is naturally isomorphic to the boundary divisor E=−2 in the

space CQ= of complete quadrics in P=.
• Using the intersection theory on CQ3 show that the number of conics in
P3 which meet 0 given planes, intersect 1 given lines, and whose spanning
planes pass through a given set of 8 − 0 − 1 points is finite, and equal to the
number 28−0−1`01 `

1
2 d

8−0−1 .
• Use the intersection theory on CQR to confirm the previous exercise.
• Compute the number of conics in P3 that are tangent to 8 given quadrics in

a general position.
• Compute the degree of the variety of planes in P3 that intersect 6 general

lines at 6 points lying on a conic.
ex:2.31

2.35 Show that the condition U that a quadric surface contains a given line is equal to

U =
1
4
(2`2

2 − 3(`1 + d)`2
2 + 3(`2

1 + <D
2
3)`2 + 2`1`2d − 2(`3

1 + d
3).

ex:2.32
2.36 Consider the variety � ()) of plane conics that admit a given triangle ) of lines

as its self-conjugate triangle. Show that � ()) is a surface in the space of conics,
and its proper transform in the variety CQ of complete conics is isomorphic to
the blow-up of the plane at three points.ex:2.34

Historical Notes

There is a significant number of books dealing with the analytic geometry
of conics. The most comprehensive source for the history of the subject is
Coolidge’s book

CoolidgeConics
[167]. Many facts and results about real conics treated syn-

thetically can be found in textbooks in projective geometry. Coxeter’s small
book

CoxeterPG
[174] is one of the best.

The theory of polarity for conics goes back to Poncelet
Poncelet
[601]. Polar triangles

and tetrahedra of a conic and a quadric surface were already studied by P.
Serret

Serret
[706]. In particular, he introduced the notions of self-conjugate triangles,

quadrangles and pentagons. These objects were later intensively studied by T.
Reye

ReyeLage
[614],

ReyePolar
[619] and R. Sturm

Sturm2
[736, Bd. 3]. The subject of their study was
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called the Polarraum, i.e., a pair consisting of a projective space together with
a nonsingular quadric.

Pascal’s Theorem was discovered by B. Pascal in 1639 when he was 16 years
old

PascalBlaise
[576] but not published until 1779

PascalBlaise
[576]. It was independently rediscovered

by C. MacLaurin in 1720
MacLaurin
[501]. A large number of results about the geometry

and combinatorics of 60 Pascal lines assigned to six points on a conic have
been discovered by J. Steiner, J. Kirkman, A. Cayley, G. Salmon, L. Cremona
and others. A good survey of these results can be found in Note 1 in Baker’s
book

BakerBook
[29], v.2, and Notes in Salmon’s book

SalmonConics
[651]. We will return to this in

Chapter 9.
Poncelet’s Closure Theorem, which is the second part of Darboux’s Theorem

gdarbouxgdarboux
2.2.2 was first discoverd by J. Poncelet himself

Poncelet
[601]. We refer the reader to the

excellent account of the history of the Poncelet-related conics in
Bos
[67]. A good

elementary discussion of Poncelet’s Theorem and its applications can be found
in Flatto’s book

Flato
[305]. Other elementary and non-elementary treatments of the

Poncelet properties and their generalizations can be found in
Barth1
[34],

Barth2
[35],

CobleBinary1
[156],

CobleBinary2
[158],

GriffithsPoncelet
[358],

GriffithsPoncelet2
[359].

The relationship between Poncelet curves and vector bundles is discussed in
Trautmann1
[764],

Trautmann2
[545],

Trautmann3
[765],

Valles
[780]. The Schwarzenberger bundles were introduced in

Schwarzenberger
[675]. We followed the definition given in

DolgachevKapranov2
[237]. The papers

Mukai1
[532] and

Hitchin1
[400],

Hitchin2
[401] discuss the compactification of the variety of conjugate triangles. The
latter two papers of N. Hitchin also discuss an interesting connection with
Painleve equations.
The notion of the apolarity of conics is due to T. Reye

Reye2
[617]. However,

J. Rosanes
Rosanes2
[636] used this notion earlier under the name conjugate conics. In

the same paper, he also studied the representation of a conic as a sum of four
squares of linear forms. The condition (

tepl2tepl2
2.11) for conjugate conics was first

discovered by O. Hesse in
Hesse3
[389]. He also proved that this property is poristic.

The condition for Poncelet relation given in terms of invariants of a pair of
conics (Theorem

cayleycayley
2.3.14) was first discovered by A. Cayley

CayleyConics
[106],

CayleyConics2
[111].

The theory of invariants of two conics and two quadric surfaces was first
developed by G. Salmon (see

SalmonConics
[651],

SalmonThree
[653], vol. 1). The complete system of

invariants, covariants, and contravariants of a pair of conics was given by J.
Grace and A. Young

Grace
[351]. P. Gordan has given a complete system of 580

invariants, covariants and contravariants of a pair of quadric surfaces
GordanInv
[348].

Later H.W. Turnbull was able to reduce it to 123 elements
Turnbull0
[767]. In a series

of papers of J. Todd, one can find further simplifications and more geometric
interpretations of the systemof combinants of two quadric surfaces

ToddC1
[759],

ToddC2
[760].

A good exposition of the theory of invariants can be found in Sommerville’s
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and Todd’s books
Sommerville2
[717],

ToddBook
[761]. The latter book contains many examples and

exercises, some of which were borrowed here.
Chasles’ Theorem

chasleschasles
2.3.4 about the covariant quadric was proven by him in

Chasles0
[125] and reproved later by N. Ferrers

Ferrers
[300] . A special case was known earlier

to E. Bobillier
Bobillier
[62]. Chasles’ generalization of Pascal’s Theorem to quadric

surfaces can be found in
ChaslesApercu
[129]. Baker’s book

BakerBook
[29], v. 3, gives a good exposition

of polar properties of quadric surfaces.
The proof of Theorem

coolidgecoolidge
2.3.21 is due to J. Coolidge

CoolidgeConics
[167], Chapter VI, §3.

The result was known to G. von Staudt
Staudt
[720] (see

CoolidgeConics
[167], p. 66) and can also be

found in Salmon’s book on conics
SalmonConics
[651], p. 345. Although Salmon writes in the

footnote on p. 345 that “I believe that I was the first to direct the attention to the
importance of this conic in the theory of two conics”, this conic was already
known to Ph. La Hire

LaHire
[476] (see

CoolidgeConics
[167], p. 44 ). In Sommerville’s book

Sommerville
[716],

the Salmon conic goes under the name harmonic conic-locus of two conics.
An excellent historical discussion of the enumerative geometry of conics

can be found in
KleimanHistory
[450]. We will give only a brief account of the main actors

in this historical drama. J. Steiner was the first to attempt to compute the
number of conics touching five fixed conics. However, the problem of finding
the number of circles tangent to three fixed circles goes back to antiquity by the
name Apollonius’s problem. Steiner correctly proved that the variety of conics
tangent to a fixed conic is a hypersurface of degree six, and wrongly concluded
from this that the answer to the enumerative problem is 65 SteinerConics

[722, p. 188]. We
explained the reason of his mistake. This explanation of Steiner’s mistake is
due to L. Cremona

CremonaConics
[184]. In 1861, M. Chasles introduced two characteristic

numbers for enumerative geometry of conics and showed that one characteristic
number introduced earlier by J. de Jonquères is not enough

ChaslesConics
[128]. He was the

first to give the correct answer 3264 of the number of conics touching five
fixed conics. The first modern justification of the number was given by F.
Severi using his residual intersection theory

SeveriConics
[707, Footnote, p. 116]. The name

“Vollständiger Kegelschnitt” is due to B, van der Waerden
Waerden
[794, p. 647]. The

four classes `1, `2, 41, 42 in Pic(CQ) were introduced by Charles as the loci of
conics passing through a point, tangent to a line, to be a double line with two
foci, to be a line-pair, respectively. The relations between (`1, `2) and (41, 42)
was also obtained by Chasles. The numbers `01 `

5−0
2 were first computed by H.

Zeuthen
ZeuthenConics
[816]. The multiple conditions we discussed in Remark

multiple1multiple1
2.4.38 were

first introduced by Charles, who used the formula 23 = `1`2 to express the
condition that a conic is tangent to two fixed lines at fixed points on the lines.
Cremonawas the first to express anymultiple conditions in term of 0d+1f+2g,
where 0, 1, 2 ∈ Q

CremonaConics
[184].

G. Halphen
HalphenConics
[371] was the first to discover that not all enumerative problems
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of conics can be expressed in terms of the intersection theory on the variety of
complete conics.

The characteristic numbers 0`1 + 1`2 + 2d for enumerative geometry of
quadrics were first introduced in 1966, in an unpublished work by Zeuthen (see
ZeuthenPieri
[819]). A more complete theory was developed later by H. Schubert

SchubertConics
[665].

Schubert computed correctly all the intersection numbers `0a1d2; they can be
found in his book

SchubertBook
[667, pp. 104–105]. The book goes beyond the enumerative

geometry of quadrics; for example, one can find there the determination of the
number 5, 819, 539, 783, 680 of twisted cubics tangent to 12 quadrics in P3.
Note that the methods of Schubert were based on the degenerations and the
Charles’ Principle of Correspondence cannot be rigorously justified by modern
techniques, although they lead to correct results. The rigorous methods based
on the intersection theory on appropriate parameter spaces had to wait almost
a hundred years.
The modern theory of the intersection theory on the space of complete

quadrics was first developed in a series of papers by J. Semple
Semple1
[699],

Semple2
[700],

Semple3
[703] for conics and quadric surfaces, A. Alguneid

Alguneid
[4]in dimension 4, and

J. Tyrrell
Tyrrell
[769] for quadrics of arbitrary dimension. A good exposition of a

modern enumerative geometry of quadric surfaces based on the intersection
theory can be found in the book of Semple and Roth

SR
[701, Chapter XI]. The

numbers `0a1a2 computed first by Schubert can also be found in the book.
A good survey of the intersection theory on the varieties of complete

quadrics.is
Laksov
[477]. We refer to the work of C. De Concini and C. Procesi

DeConcini2
[208],

DeConcini3
[206] for theory of generalized varieties of complete quadrics as wonderful
compactifications of certain homogeneous spaces of algebraic groups. the va-
rieties.



3
Plane Cubics

Ch3

3.1 Equations
S:3.1

3.1.1 Elliptic Curves
SS:3.1.1

There are many excellent expositions of the theory of elliptic curves from their
many aspects: analytical, algebraic and arithmetical (a short survey can be
found in Hartshorne’s book

Hartshorne
[379], Chapter IV). We will be brief here.

Let - be a nonsingular projective curve of genus one. By Riemann-Roch, for
any divisor � of degree 3 ≥ 1, we have dim�0 (-,O- (�)) = 3. If 3 > 2, the
complete linear system |� | defines an isomorphism - → �, where� is a curve
of degree 3 in P3−1 (called an elliptic normal curve of degree 3). If 3 = 2, the
map is of degree 2 onto P1. The divisor classes of degree 0 are parameterized
by the Jacobian variety Jac(-) isomorphic to - . Fixing a point G0 on - , the
group law on Jac(-) transfers to a group law on - by assigning to a divisor
class d of degree 0 the divisor class d + G0 of degree 1 represented by a unique
point on - . The group law becomes

G ⊕ H = I ∈ |G + H − G0 |. (3.1) grouplaw

The group of translation automorphisms of - acts transitively on the set
Pic3 (-) of divisor classes of degree 3. This implies that two elliptic nor-
mal curves are isomorphic if and only if they are projectively equivalent. In the
case 3 = 2, this implies that two curves are isomorphic if and only if the two
sets of four branch points of the double cover are projectively equivalent.
In this chapter, we will be mainly interested in the case 3 = 3. The image of

- is a nonsingular plane cubic curve. There are two well-known normal forms
for its equation. The first one is the Weierstrass form and the second one is the
Hesse form. We will deal with the Hesse form in the next subsection. Let us
start with the Weierstrass form.
By Proposition

steineriansteinerian
1.1.17, � = + ( 5 ) has an inflection point ?0. Without loss of

173
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generality, we may assume that ?0 = [0, 0, 1] and the inflection tangent line at
this point has the equation C0 = 0. The projection from ?0 is the double cover
� → P1. It has four ramification points, the intersection points of � with the
first polar. There are four tangent lines to� containing ?0. One of them is+ (C0).
The first polar + ( m 5

mC2
) of the point ?0 is a singular conic that intersects � at

the tangency points of the four tangents, we immediately obtain that it consists
of the line + (C0) and a line + (C2 + 0C1 + 1C0) not passing through the point ?0.
Changing the coordinates, we may assume that the line is equal to + (C2). Now,
the equation of � takes the form

C0C
2
2 + UC

3
1 + VC

2
1C0 + WC1C

2
0 + XC

3
0 = 0,

where U ≠ 0. Replacing C1 with C1 + V

3U C0, and scaling the coordinates, we may
assume that U = 1 and V = 0. This gives us the Weierstrass equation of a
nonsingular cubic:

C0C
2
2 + C

3
1 + 0C1C

2
0 + 1C

3
0 = 0. (3.2) weierstrass

It is easy to see that � is nonsingular if and only if the polynomial G3 + 0G + 1
has no multiple roots, or, equivalently, its discriminant Δ = 403 + 2712 is not
equal to zero.
Two Weierstrass equations define isomorphic elliptic curves if and only if

there exists a projective transformation transforming one equation to another.
It is easy to see that it happens if and only if (U′, V′) = (_3U, _2V) for some
nonzero constant _. This can be expressed in terms of the absolute invariant

9 = 2633 403

403 + 2712 . (3.3) absinv

Two elliptic curves are isomorphic if and only if their absolute invariants are
equal. ∗
The projection [C0, C1, C2] ↦→ [C0, C1] exhibits � as a double cover of P1. Its

ramification points are the intersection points of � and its polar conic + (C0C2).
The cover has four branch points [1, _], [0, 1], where _3 + 0_ + 1 = 0. The
corresponding points [1, _, 0], and [0, 0, 1] on � are the ramification points.
If we choose ?0 = [0, 0, 1] to be the zero point in the group law on �, then
2? ∼ 2?0 for any ramification point ? implies that ? is a 2-torsion point. Any
2-torsion point is obtained in this way.

It follows from the computation above that any nonsingular plane cubic+ ( 5 )
is projectively isomorphic to the plane cubic + (C22C0 + C

3
1 + 0C1C

2
0 + 1C

3
0). The

functions ( : 5 ↦→ 0/27, ) : 5 ↦→ 41/27 can be extended to the Aronhold

∗The coefficient 1728 = 2633 is needed to make this work in characteristic 2 and 3, otherwise
9 would not be defined for example when 0 = 1, 1 = 0 in characteristic 2.
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invariants ( and ) of degrees 4 and 6 of a ternary cubic form. The explicit
expressions of ( and ) in terms of the coefficients of 5 are rather long and can
be found in many places (e.g.

DolgachevLectures
[242],

SalmonCurves
[652]).

Fixing an order on the set of branch points, and replacing them by a projec-
tively equivalent set, we may assume that the cubic polynomial G3 + 0G + 1 is
equal to −G(G − 1) (G − _). This gives an affine equation of �

H2 = G(G − 1) (G − _),

called the Legendre equation.
The number _ is equal to the cross ratio '(@1@2; @3@4) of the four ordered

branch points (@1, @2, @3, @4) = (0, _, 1,∞). The absolute invariant (
absinvabsinv
3.3) is

expressed in terms of _ to give the following formula:

9 = 28 (_2 − _ + 1)3
_2 (_ − 1)2

. (3.4) legendre

Remark 3.1.1. For any binary form 6(C0, C1) of degree 4 without multiple zeros,
the equation

C22 + 6(C0, C1) = 0 (3.5) wew

defines an elliptic curve - in the weighted projective plane P(1, 1, 2). The
four zeros of 6 are the branch points of the projection - → P1 to the first
two coordinates. So, every elliptic curve can be given by such an equation.
The coefficients 0, 1 in the Weierstrass equation are expressed in terms of
the invariants ( and ) of binary quartics from Example

E1.5.2E1.5.2
1.5.2. We have 0 =

−4(, 1 = −4) . In particular.

9 =
27((6)3

((6)3 − 27) (6)2
.

Definition 3.1.2. A nonsingular plane cubic + ( 5 ) with Weierstrass Equation
(
weierstrassweierstrass
3.2) is called harmonic (resp. equianharmonic) if 1 = 0 (resp. 0 = 0).

We leave it to the reader to prove the following:

harmoniccubic Theorem 3.1.3. Let � = + ( 5 ) be a nonsingular plane cubic and 2 be any
point on �. The following conditions are equivalent.

(i) � is a harmonic (resp. equianharmonic cubic).
(ii) The absolute invariant 9 = 1728 (resp. 9 = 0).
(iii) The set of cross ratios of four roots of the polynomial C0 (C31+0C1C

2
0+1C

3
0)

is equal to {−1, 2, 1
2 } (resp. consists of two primitive cube roots of −1).

(iv) The group of automorphisms of � leaving the point 2 invariant is a
cyclic group of order 4 (resp. 6).
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Note that� is a harmonic cubic if and only if the invariant ) of degree on the
space of binary quartic forms (

invbininvbin
1.87) vanishes on the binary form 6 in Equation

(
wewwew
3.5). A quartic binary form on which ) vanishes is called a harmonic binary
quartic. We know that a binary form 6 is harmonic if and only if it admits an
apolar binary quadratic form. One can check that this form is nondegenerate if
and only if 6 has no multiple zeros. In this case it can be written as a sum of
two powers of linear forms ;41 + ;

4
2 . This exhibits an obvious symmetry of order

4. Changing coordinates we can reduce the form to C40 − C
4
1 = (C

2
0 + C

2
1) (C

2
0 − C

2
1).

The pairs of zeros of the factors are harmonically conjugate pairs of points.
This explains the name harmonic cubic.
Theorem

harmoniccubicharmoniccubic
3.1.3 gives a geometric interpretation for the vanishing of the

quadratic invariant ( (
invbininvbin
1.87) on the space of binary quartics. It vanishes if and

only if there exists a projective transformation of order 3 leaving the zeros of a
binary forms invariant.

Another useful model of an elliptic curve is an elliptic normal quartic curve
� in P3. There are two types of nondegenerate quartic curves in P3 that differ
by the dimension of the linear system of quadrics containing the curve. In
terminology of classical algebraic geometry, a space quartic curve is of the first
species if the dimension is equal to 1, quartics of the second species are those
which lie on a unique quadric. Elliptic curves are nonsingular quartics of the
first species. The proof is rather standard (see, for example,

Harris
[375]). By Lemma

CAG-2:two quadricsCAG-2:two quadrics
8.6.1 from Chapter 8, we can write � as the intersection of two simultaneously
diagonalized quadrics

&1 = + (
3∑
8=0

C28 ), &2 = + (
3∑
8=0

08C
2
8 ).

The pencil _&1 + `&2 contains exactly four singular members corresponding
to the parameters [−08 , 1], 8 = 0, 1, 2, 3. The curve � is isomorphic to the
double cover of P1 branched over these four points. This can be seen in many
ways. Later, we will present one of them, a special case of Weil’s Theorem on
the intersection of two quadrics (the same proof can be found in Harris’s book
Harris
[375], Proposition 22.38). Changing a basis in the pencil of quadrics containing
�, we can reduce the equations of � to the form

C20 + C
2
1 + C

2
2 = C

2
1 + _C

2
2 + C

2
3 = 0. (3.6)

The absolute invariant of � is expressed via formula (
legendrelegendre
3.4).
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3.1.2 The Hesse equation
SS:3.1.2

Classical geometers rarely used Weierstrass equations. They preferred Hesse’s
canonical equation of a cubic curve:

C30 + C
3
1 + C

3
2 + 6UC0C1C2 = 0. (3.7) hesse

Let us see that any nonsingular cubic can be reduced to this form by a linear
change of variables.
Since any tangent line at an inflection point intersects the curve with mul-

tiplicity 3, applying (
flexorderflexorder
1.24), we obtain that the curve has exactly 9 inflection

points. Using the group law on an elliptic cubic curve with an inflection point
o as the zero, we can interpret any inflection point as a 3-torsion point. This,
of course, agrees with the fact that the group - [3] of 3-torsion points on an
elliptic curve - is isomorphic to (Z/3Z)2.

Let � be a subgroup of order 3 of - . Since the elements from this group
add up to zero, we see that the corresponding three inflection points ?, @, A
satisfy ? + @ + A ∼ 3o. It is easy to see that the rational function on � with
the divisor ? + @ + A − 3o can be obtained as the restriction of the rational
function <(C0, C1, C2)/;0 (C0, C1, C2), where + (<) defines the line containing the
points ?, @, A and + (;0) is the tangent to � at the point o. There are three cosets
with respect to each subgroup �. Since the sum of elements in each coset is
again equal to zero, we get 12 lines, each containing three inflection points.
Conversely, if a line contains three inflection points, the sum of these points is
zero, and it is easy to see that the three points form a coset with respect to some
subgroup �. Each element of (Z/3Z)3 is contained in four cosets (it is enough
to check this for the zero element).
A triangle containing the inflection points is called an inflection triangle.

There are four inflection triangles and the union of their sides is the set of 12
lines from above. The configuration of 12 lines and 9 points, each line contains
3 points, and each point lies on four lines is the famous Hesse arrangement of
lines (123, 94).
Consider the polar conic of an inflection point. It splits into the union of the

tangent line at the point and another line, called the harmonic polar line of the
inflection point.

Lemma 3.1.4. Let G be a point on an nonsingular cubic �. Any line ℓ passing
through G intersects � at points H, I which are harmonically conjugate to the
pair G, |, where | is the intersection point of the line and the conic polar
%G (�).
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In Subsection
SS:7.2.2SS:7.2.2
7.2.2 we will prove a more general statement where G is a point

of multiplicity 3 − 2 on an irreducible curve of degree 3.

Proposition 3.1.5. Let 0, 1, 2 be three collinear inflection points. The harmonic
polar lines of three inflection points on a line ℓ intersect at the opposite vertex
of the inflection triangle containing ℓ.

Proof Let Δ be the inflection triangle with side ℓ containing the points 0, 1, 2.
Consider the three lines ℓ8 through 0 which join 0 with one of the inflection
point G8 on the side of Δ. Let I8 be the other inflection point on ℓ8 (lying on the
other side). By the previous Lemma, the harmonic polar line intersects each ℓ8
at a point H8 such that the cross ratio '(0H8; C8I8) is constant. This implies that
the harmonic polar line is the line in the pencil of lines through the vertex that,
together with the two sides and the line passing through 0, make the same cross
ratio in the pencil. Since the same is true for harmonic polar lines of the points
1 and 2, we get the assertion. �

It follows from the previous proposition that the nine harmonic polar lines
intersect by three at 12 edges of the inflection triangles, and each vertex belongs
to four lines. This defines the dual Hesse arrangement of lines (94, 123). It is
combinatorially isomorphic to the arrangement of lines in the dual plane which
is defined from the Hesse line arrangement via duality.
Now, it is easy to reduce a nonsingular cubic curve � = + ( 5 ) to the Hesse

canonical form. Choose coordinates such that one of the inflection triangles is
the coordinate triangle. Let @ be one of its vertices, say @ = [1, 0, 0], and G be
an inflection point on the opposite line + (C0). Then, %G (�) is the union of the
tangent to � at G and the harmonic polar of G. Since the latter passes through
@, we have %@2G (�) = %G@2 (�) = 0. Thus, the polar line %@2 (�) intersects
the line + (C0) at three points. This can happen only if %@2 (�) = + (C0). Hence,
+ ( m

2 5

mC20
) = + (C0) and 5 has no terms C20C1, C

2
0C2. We can write

5 = 0C30 + 1C
3
1 + 2C

2
2 + 3C0C1C2.

Since � is nonsingular, it is immediately checked that the coefficients 0, 1, 2
are not equal to zero. After scaling the coordinates, we arrive at the Hesse
canonical form.
It is easy to check, by taking partials, that the condition that the curve given

by the Hesse canonical form is nonsingular is

1 + 8U3 ≠ 0. (3.8) discrm

By reducing the Hesse equation to a Weierstrass forms one can express the
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Aronhold invariants S, T and the absolute invariant 9 in terms of the parameter
U in (

hessehesse
3.7):

S = U − U4, (3.9)
T = 1 − 20U3 − 8U6, (3.10)

9 = 212.33 (U − U4)3
(1 + 8U3)3

. (3.11)

3.1.3 The Hesse pencil
Since the cubic � and its four inflection triangles pass through the same set
of nine points, the inflection points of �, they belong to a pencil of cubic
curves. This pencil is called the Hesse pencil. It is spanned by � and one of
the inflection triangles, say the coordinate triangle. Thus, the Hesse pencil is
defined by the equation

_(C30 + C
3
1 + C

3
2) + `C0C1C2 = 0. (3.12) hessepencil

Its base points are

[0, 1,−1], [0, 1,−n], [0, 1,−n2],
[1, 0,−1], [1, 0,−n2], [1, 0,−n],
[1,−1, 0], [1,−n, 0], [1,−n2, 0], (3.13) points

where n = 42c8/3.They are the nine inflection points of any nonsingularmember
of the pencil. The singular members of the pencil correspond to the values of
the parameters

(_, `) = (0, 1), (1,−3), (1,−3n), (1,−3n2).

The last three values correspond to the three values of U for which the Hesse
equation defines a singular curve.
Any triple of lines containing the nine base points belongs to the pencil and

forms its singular member. Here, they are:

+ (C0), + (C1), + (C2),
+ (C0 + C1 + C2), + (C0 + nC1 + n2C2), + (C0 + n2C1 + nC2), (3.14) lines1

+ (C0 + nC1 + C2), + (C0 + n2C1 + n2C2), + (C0 + C1 + nC2),
+ (C0 + n2C1 + C2), + (C0 + nC1 + nC2), + (C0 + C1 + n2C2).
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We leave it to a suspicious reader to check that

(C0 + C1 + C2) (C0 + nC1 + n2C2) (C0 + n2C1 + nC2) = C30 + C
3
1 + C

3
2 − 3C0C1C2,

(C0 + nC1 + C2) (C0 + n2C1 + n2C2) (C0 + C1 + nC2) = C30 + C
3
1 + C

3
2 − 3nC0C1C2,

(C0 + n2C1 + C2) (C0 + nC1 + nC2) (C0 + C1 + n2C2) = C30 + C
3
1 + C

3
2 − 3n2C0C1C2.

The 12 lines (
lines1lines1
3.14) and nine inflection points (

pointspoints
3.13) form the Hesse configura-

tion corresponding to any nonsingular member of the pencil.
Choose [0, 1,−1] to be the zero point in the group law on �. Then, we

can define an isomorphism of groups q : (Z/3Z)2 → - [3] by sending [1, 0]
to [0, 1,−n], [0, 1] to [1, 0,−1]. The points of the first row in (

pointspoints
3.13) are the

subgroup � generated by q( [1, 0]). The points of the second row are the coset
of � containing q( [0, 1]).

Remark 3.1.6. Note that, varying U in P1 \ {− 1
2 ,−

n
2 ,−

n 2

2 ,∞}, we obtain a
family of elliptic curves -U defined by Equation (

hessehesse
3.7) with a fixed isomorphism

qU : (Z/3Z)2 → -U [3]. After blowing up the 9 base points,we obtain a rational
surface ((3)

5 : ((3) → P1 (3.15) modfam

defined by the rational map P2 d P1, [C0, C1, C2] ↦→ [C0C1C2, C30 + C
3
1 + C

3
2]. The

fiber of 5 over a point (0, 1) ∈ P2 is isomorphic to the member of the Hesse
pencil corresponding to (_, `) = (−1, 0). It is known that (

modfammodfam
3.15) is a modular

family of elliptic curves with level 3, i.e. the universal object for the fine moduli
space of pairs (-, q), where - is an elliptic curve and q : (Z/3Z)2 → - [3] is
an isomorphism of groups. There is a canonical isomorphism P1 � . , where
. is the modular curve of level 3, i.e. a nonsingular compactification of the
quotient of the upper half-planeH = {0 + 18 ∈ C : 1 > 0} by the group

Γ(3) = {� =
(
0 1

2 3

)
∈ SL(2,Z) : � ≡ �3 mod 3},

which acts on H by Möbius transformations I ↦→ 0I+1
2I+3 . The boundary of

�/Γ(3) in. consists of four points (the cusps). They correspond to the singular
members of the Hesse pencil.

3.1.4 The Hesse group
SS:3.1.4

The Hesse group �216 is the group of projective transformations that preserve
theHesse pencil of cubic curves. First, we see the obvious symmetries generated
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by the transformations

g : [C0, C1, C2] ↦→ [C0, n3C1, n
2
3 C2],

f : [C0, C1, C2] ↦→ [C2, C0, C1] .

They define a projective representation of the group (Z/3Z)2.
If we fix the group law by taking the origin to be [0, 1,−1], then g induces

on each nonsingular fiber the translation automorphism by the point [0, 1,−n]
and f is the translation by the point [1, 0,−1].

Theorem 3.1.7. The Hesse group �216 is a group of order 216 isomorphic to
the semi-direct product

(Z/3Z)2 o SL(2, F3),

where the action of SL(2, F3) on (Z/3Z)2 is the natural linear representation.

Proof Let 6 ∈ �216. It transforms a member of the Hesse pencil to another
member. This defines a homomorphism �216 → Aut(P1). An element of the
kernel  leaves each member of the pencil invariant. In particular, it leaves
invariant the curve + (C0C1C2). The group of automorphisms of this curve is
generated by homotheties [C0, C1, C2] ↦→ [C0, 0C1, 1C2] and permutation of co-
ordinates. Suppose f induces a homothety. Since it also leaves invariant the
curve + (C30 + C

3
1 + C

3
2), we must have 1 = 03 = 13. To leave invariant a gen-

eral member we also need that 03 = 13 = 12. This implies that 6 belongs
to the subgroup generated by the transformation f. An even permutation of
coordinates belongs to a subgroup generated by the transformation g. The odd
permutation f0 : [C0, C1, C2] ↦→ [C0, C2, C1] acts on the group of 3-torsion points
of each nonsingular fiber as the negation automorphism G ↦→ −G. Thus, we see
that

 � (Z/3Z)2 o 〈f0〉.

Now, let � be the image of the group �216 in Aut(P1). It acts by permuting
the four singular members of the pencil and thus leaves the set of zeros of the
binary form

Δ = (8C31 + C
3
0)C0

invariant. It follows from the invariant theory that this implies that � is a
subgroup ofA4. We claim that� = A4. Consider the projective transformations
given by the matrices

f1 =
©«
1 1 1
1 Y Y2

1 Y2 Y

ª®®¬ , f2 =
©«

1 Y Y

Y2 Y Y2

Y2 Y2 Y

ª®®¬ .
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The transformations f0, f1, f2 generate a subgroup isomorphic to the quater-
nion group &8 with center generated by f0. The transformation

f3 : [C0, C1, C2] ↦→ [YC0, C2, C1]

satisfies f3
3 = f0. It acts by sending a curve �U from (

hessehesse
3.7) to �YU. It is easy

to see that the transformations f1, f2, f3, g generate the group isomorphic to
SL(2, F3). Its center is (f0) and the quotient by the center is isomorphic to A4.
In other words, this group is the binary tetrahedral group. Note that the whole
group can be generated by transformations f, g, f0, f1. �

Recall that a linear operator f ∈ GL(�) of a complex vector space � of
dimension =+ 1 is called a complex reflection if it is of finite order and the rank
of f − id� is equal to 1. The kernel of f − id� is a hyperplane in � , called the
reflection hyperplane of f. It is invariant with respect to f and its stabilizer
subgroup is a cyclic group. A complex reflection group is a finite subgroup �
of GL(�) generated by complex reflections. One can choose a unitary inner
product on � such that any complex reflection f from � can be written in the
form

B{,[ : G ↦→ G + ([ − 1) (G, {){,

where { is a vector of norm 1 perpendicular to the reflection hyperplane �{ of
f, and [ is a nontrivial root of unity of order equal to the order of f.
Recall the basic facts about complex reflection groups (see, for example,

Springer
[719]):

• The algebra of invariants ((�)� � C[C0, . . . , C=]� is freely generated by
= + 1 invariant polynomials 50, . . . , 5= (geometrically, �/� � C=+1).
• The product of degrees 38 of the polynomials 50, . . . , 5= is equal to the order
of �.
• The number of complex reflections in � is equal to

∑(38 − 1).

All complex reflection groups were classified byG. Shephard and J. Todd
Shepherd
[710].

There are five conjugacy classes of complex reflection subgroups of GL(3,C).
Among them is the group � isomorphic to a central extension of degree 3
of the Hesse group. It is generated by complex reflections B{,[ of order 3,
where the reflection line �{ is one of the 12 lines (

lines1lines1
3.14) in P2 and { is the unit

normal vector (0, 1, 2) of the line + (0C0 + 1C1 + 2C2). Note that each reflection
B{,[ leaves invariant the hyperplanes with a normal vector orthogonal to {. For
example, B (1,0,0) , Y leaves invariant the line + (C0). This implies that each of the
12 complex reflections leave the Hesse pencil invariant. Thus, the image of �
in PGL(3,C) is contained in the Hesse group. It follows from the classification
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of complex reflection groups (or could be checked directly, see
Springer
[719]) that it

is equal to the Hesse group, and the subgroup of scalar matrices from � is a
cyclic group of order 3.
Each of the 12 reflection lines defines two complex reflections. This gives 24

complex reflections in �. This number coincides with the number of elements
of order 3 in the Hesse group, so, there are no more complex reflections in
�. Let 31 ≤ 32 ≤ 33 be the degrees of the invariants generating the algebra
of invariants of �. We have 31 + 32 + 33 = 27, 313233 = 648. This easily
gives 31 = 6, 32 = 9, 33 = 12. There are obvious reducible curves of degrees
9 and 12 in P2 invariant with respect to �. The curve of degree 9 is the union
of the polar harmonic lines. Each line intersects a nonsingular member of the
pencil at nontrivial 2-torsion points with respect to the group law defined by
the corresponding inflection point. The equation of the union of nine harmonic
polar lines is

59 = (C30 − C
3
1) (C

3
0 − C

3
2) (C

3
1 − C

3
2) = 0. (3.16) inv9

The curve of degree 12 is the union of the 12 lines (
lines1lines1
3.14). Its equation is

512 = C0C1C2 [27C30C
3
1C

3
2 − (C

3
0 + C

3
1 + C

3
2)

3] = 0. (3.17) inv12

A polynomial defining an invariant curve is a relative invariant of � (it is an
invariant with respect to the group � ′ = � ∩ SL(3,C)). One checks that the
polynomial 59 is indeed an invariant, but the polynomial 512 is only a relative
invariant. So, there exists another curve of degree 12 whose equation defines
an invariant of degree 12. Recall that the Hesse group acts on the base of the
Hesse pencil via the action of the tetrahedron group A4. It has three orbits with
stabilizers of order 2,3 and 3. The first orbit consists of six points; the fibers
over these points are harmonic cubics. The second orbit consists of four points
such that the fibers over these points are equianharmonic cubics. The third orbit
consists of four points corresponding to singular members of the pencil. It is
not difficult to check that the product of the equations of the equianharmonic
cubics defines an invariant of degree 12. Its equation is

5 ′12 = (C
3
0 + C

3
1 + C

3
2) [(C

3
0 + C

3
1 + C

3
2)

3 + 216C30C
3
1C

3
2] = 0. (3.18) inv122

An invariant of degree 6 is

56 = 7(C60 + C
6
1 + C

6
2) − 6(C30 + C

3
2 + C

3
3)

2. (3.19) inv6

The product of the equations defining 6 harmonic cubics is an invariant of
degree 18

518 = (C30 + C
3
1 + C

3
2)

6 − 540C30C
3
1C

3
2 (C

3
0 + C

3
1 + C

3
2)

3 − 5832C60C
6
1C

6
2 = 0. (3.20) inv18
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3.2 Polars of a Plane Cubic
S:3.2

3.2.1 The Hessian of a plane cubic
SS:3.2.1

Let - = + ( 5 ) be a cubic hypersurface in P=. We know that the Hessian He(-)
is the locus of points 0 ∈ P= such that the polar quadric %0 (-) is singular.
Also, we know that, for any 0 ∈ He(-),

Sing(%0 (-)) = {1 ∈ P2 : �1 (�0 ( 5 )) = 0}.

Since %1 (%0 (-)) = %0 (%1 (-)) we obtain that 1 ∈ He(-).

Theorem 3.2.1. The Hessian He(-) of a cubic hypersurface - contains the
Steinerian St(-). If He(-) ≠ P=, then

He(-) = St(-).

For the last assertion, one only needs to compare the degrees of the hyper-
surfaces. They are equal to = + 3.

In particular, the rational map, if defined,

st−1
- : St(-) → He(-), 0 ↦→ Sing(%0 (-)) (3.21) stcub

is a birational automorphism of the Hessian hypersurface. We have noticed this
already in Chapter 1.

Proposition 3.2.2. Assume - has only isolated singularities. Then, He(-) =
P= if and only if - is a cone over a cubic hypersurface in P=−1.

Proof Let, = {(0, 1) ∈ P= × P= : %0,12 (-) = 0}. For each 0 ∈ P=, the fiber
of the first projection over the point 0 is equal to the first polar %0 (-). For any
1 ∈ P=, the fiber of the second projection over the point 1 is equal to the second
polar %12 (-) = + (

∑
m8 5 (1)C8). Let * = P= \ Sing(-). For any 1 ∈ *, the

fiber of the second projection is a hyperplane in P=. This shows that ?−1
2 (*)

is nonsingular. The restriction of the first projection to * is a morphism of
nonsingular varieties. The general fiber of this morphism is a regular scheme
over the general point of P=. Since we are in characteristic 0, it is a smooth
scheme. Thus, there exists an open subset , ⊂ P= such that ?−1

1 (,) ∩ *
is nonsingular. If He(-) = 0, all polar quadrics %0 (-) are singular, and a
general polar must have singularities inside of ?−1

2 (Sing(-)). This means that
?1 (?−1

2 (Sing(-))) = P=. For any G ∈ Sing(-), all polar quadrics contain G
and either all of them are singular at G or there exists an open subset *G ⊂ P=
such that all quadrics %0 (-) are nonsingular at G for 0 ∈ *G . Suppose that, for
any G ∈ Sing(-), there exists a polar quadric that is nonsingular at G. Since
the number of isolated singular points is finite, there will be an open set of
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points 0 ∈ P= such that the fiber ?−1
1 (0) is nonsingular in ?

−1
2 (Sing(-)). This

is a contradiction. Thus, there exists a point 2 ∈ Sing(-) such that all polar
quadrics are singular at G, therefore, 2 is a common solution of the systems
of linear equations He( 53) (0) · - = 0, 0 ∈ P=. Thus, the first partials of 53
are linearly dependent. Now, we apply Proposition

dimensiondimension
1.1.6 to obtain that - is a

cone. �

Remark 3.2.3. The example of a cubic hypersurface in P4 from Remark
noethernoether
1.1.16

shows that the assumption on singular points of - cannot be weakened. The
singular locus of the cubic hypersurface is the plane C0 = C1 = 0.

Consider a plane cubic � = + ( 5 ) with equation in the Hesse canonical form
(
hessehesse
3.7). The partials of 1

3 5 are

C20 + 2UC1C2, C21 + 2UC0C2, C22 + 2UC0C1. (3.22) partialscubic

Thus, the Hessian of � has the following equation:

He(�) =

������
C0 UC2 UC1
UC2 C1 UC0
UC1 UC0 C2

������ = (1 + 2U3)C0C1C2 − U2 (C30 + C
3
1 + C

3
2). (3.23)

In particular, the Hessian of the member of the Hesse pencil corresponding to
the parameter (_, `) = (1, 6U), U ≠ 0, is equal to

C30 + C
3
1 + C

3
2 −

1 + 2U3

U2 C0C1C2 = 0, (3.24) hessianeq

or, if (_, `) = (1, 0) or (0, 1), then the Hessian is equal to + (C0C1C2).

Lsing Lemma 3.2.4. Let � be a nonsingular cubic in a Hesse’s canonical form. The
following assertions are equivalent:

(i) dim Sing(%0 (�)) > 0;
(ii) 0 ∈ Sing(He(�));
(iii) He(�) is the union of three nonconcurrent lines;
(iv) � is isomorphic to the Fermat cubic + (C30 + C

3
1 + C

3
1);

(v) He(�) is a singular cubic;
(vi) � is an equianharmonic cubic;
(vii) U(U3 − 1) = 0.

Proof Use the Hesse equation for a cubic and for its Hessian. We see that
He(�) is singular if and only if either U = 0 or 1 + 8(− 1+2U3

6U2 )3 = 0. Obviously,
U = 1 is a solution of the second equation. Other solutions are n, n2. This
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corresponds to He(�), where � is of the form + (C30 + C
3
1 + C

3
1), or is given by the

equation

C30 + C
3
1 + C

3
2 + 6n 8C0C1C2 = (n 8C0 + nC1 + C2)3 + (C0 + n 8C1 + C2)3

+(C0 + C1 + n 8C2)3 = 0,

where 8 = 1, 2, or

C30 + C
3
1 + C

3
2 + 6C0C1C2 = (C0 + C1 + C2)3 + (C0 + nC1 + n2C2)3

+(C0 + n2C1 + nC2)3 = 0.

This computation proves the equivalence of (iii), (iv), (v), and (vii).
Assume (i) holds. Then, the rank of the Hessian matrix is equal to 1. It is

easy to see that the first two rows are proportional if and only if U(U3 − 1) = 0.
Thus, (i) is equivalent to (vii), and hence to (iii), (iv), (v) and (vii). The point 0
is one of the three intersection points of the lines such that the cubic is equal to
the sum of the cubes of linear forms defining these lines. Direct computation
shows that (ii) holds. Thus, (i) implies (ii).
Assume (ii) holds. Again the previous computations show that U(U3−1) = 0

and the Hessian curve is the union of three lines. Now, (i) is directly verified.
The equivalence of (iv) and (vi) follows from Theorem

harmoniccubicharmoniccubic
3.1.3 since the trans-

formation [C0, C1, C2] → [C1, C0, 42c8/3C2] generates a cyclic group of order 6 of
automorphisms of � leaving the point [1,−1, 0] fixed. �

involution Corollary 3.2.5. Assume that � = + ( 5 ) is not projectively isomorphic to the
Fermat cubic. Then, the Hessian cubic is nonsingular, and the map 0 ↦→
Sing(%0 (�)) is an involution on He(�) without fixed points.

Proof The only unproved assertion is that the involution does not have fixed
points. A fixed point 0 has the property that �0 (�0 ( 5 )) = �02 ( 5 ) = 0. It
follows from Theorem

T11T11
1.1.5 that this implies that 0 ∈ Sing(�). �

lambdamap Remark 3.2.6. Consider the Hesse pencil of cubics with parameters (_, `) =
(U0, 6U1)

�(U0 ,U) = + (U0 (C30 + C
3
1 + C

3
2) + 6U1C0C1C2).

Taking the Hessian of each curve from the pencil we get the pencil

�(U0 ,U) = + (U0C
3
0 + C

3
1 + C

3
2 + 6U1C0C1C2).

The map �(U0 ,U) → �(U0 ,U) defines a regular map

h : P1 → P1, [U0, U1] ↦→ [C0, C1] = [−U0U
2
1, U

3
0 + 2U3

1] . (3.25) lamdamap
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This map is of degree 3. For a general value of the inhomogeneous parameter
_ = C1/C0, the pre-image consists of three pointswith inhomogeneous coordinate
U = U1/U0 satisfyfing the cubic equation

6_U3 − 2U2 + 1 = 0. (3.26) cubiceq

We know that the points [U0, U1] = [0, 1], [1,− 1
2 ], [1,−

n
2 ], [1,−

n 2

2 ] corre-
spond to singular members of the _-pencil. These are the branch points of the
map h. Over each branch point we have two points in the pre-image. The points

(U0, U1) = [1, 0], [1, 1], [1, n], [1, n2]

are the ramification points corresponding to equianharmonic cubics. A non-
ramication point in the pre-image corresponds to a singular member.
Let �U = �(1,U) . If we fix a group law on a �U = He(�U), we will be

able to identify the involution described in Corollary
involutioninvolution
3.2.5 with the translation

automorphismby a nontrivial 2-torsion point [. Given a nonsingular cubic curve
� togetherwith a fixed-point-free involution g, there exists a unique nonsingular
cubic �U such that � = �U and the involution g is the involution described
in the corollary. Thus, the three roots of Equation (

cubiceqcubiceq
3.26) can be identified with

3 nontrivial torsion points on �U. We refer the reader to Exercise
ex:3.2ex:3.2
3.2 for a

reconstruction of �U from the pair (�U, [).
Recall that the Cayleyan curve of a plane cubic � is the locus of lines ?@

in the dual plane such that 0 ∈ He(�) and 1 is the singular point of %0 (�).
Each such line intersects He(�) at three points 0, 1, 2. The following gives the
geometric meaning of the third intersection point.

Proposition 3.2.7. Let 2 be the third intersection point of a line ℓ ∈ Cay(�)
and He(�). Then, ℓ is a component of the polar %3 (�) whose singular point
is 2. The point 3 is the intersection point of the tangents of He(�) at the points
0 and 1.

Proof From the general theory of linear systems of quadrics, applied to the
net of polar conics of �, we know that ℓ is a Reye line, i.e. it is contained in
some polar conic %3 (�) (see Subsection

SS:1.1.7SS:1.1.7
1.1.7). The point 3 must belong to

He(�) and its singular point 2 belongs to ℓ. Thus, 2 is the third intersection
point of ℓ with �.
It remains for to prove the last assertion. Choose a group law on the curve

He(�) by fixing an inflection point as the zero point. We know that the Steine-
rian involution is defined by the translation G ↦→ G ⊕ [, where [ is a fixed
2-torsion point. Thus, 1 = 0 ⊕ [. It follows from the definition of the group law
on a nonsingular cubic that the tangents T0 (He(�)) and T1 (He(�)) intersect
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at a point 3 on He(�). We have 3 ⊕ 20 = 0, hence 3 = −20. Since 0, 1, 2
lie on a line, we get 2 = −0 − 1 in the group law. After subtracting, we get
3 − 2 = 1 − 0 = [. Thus, the points G and 2 are an orbit of the Steinerian
involution. This shows that 2 is the singular point of %3 (�). By Proposition
tangstetangste
1.2.5, %3 (�) contains the points 0, 1. Thus, 01 is a component of %3 (�). �

It follows from the Proposition from above that the Cayleyan curve of a
nonsingular cubic� parameterizes the line components of singular polar conics
of�. It is also isomorphic to the quotient of He(�) by the Steinerian involution
from Corollary

involutioninvolution
3.2.5. Since this involution does not have fixed points, the

quotient map He(�) → Cay(�) is an unramified cover of degree two. In
particular, Cay(�) is a nonsingular curve of genus one.

Let us find the equation of the Cayleyan curve. A line ℓ belongs to Cay(-)
if and only if the restriction of the linear system of polar conics of - to ℓ is
of dimension 1. This translates into the condition that the restriction of the
partials of - to ℓ is a linearly dependent set of three binary forms. So, write
ℓ in the parametric form as the image of the map P1 → P2 given by [D, {] ↦→
[00D + 10{, 01D + 11{, 02D + 12{]. The condition of the linear dependence is
given by

det
©«
02

0 + 2U0102 20010 + 2U(0112 + 0211) 12
0 + 2U1112

02
1 + 2U0002 20111 + 2U(0012 + 0210) 12

1 + 2U1012
02

2 + 2U0001 20212 + 2U(0011 + 0110) 12
2 + 2U1011

ª®®¬ = 0.

The coordinates of ℓ in the dual plane are

[D0, D1, D2] = [0112 − 0211, 0210 − 0012, 0011 − 0110] .

Computing the determinant, we find that the equation of Cay(-) in the coordi-
nates D0, D1, D2 is

D3
0 + D

3
1 + D

3
2 + 6U′D0D1D2 = 0, (3.27) cayeq

where U′ = (1−4U3)/6U. Note that this agrees with the degree of the Cayleyan
curve found in Proposition

caydegcaydeg
1.1.26. Using formula (

absinv2absinv2
3.9) for the absolute invariant

of the curve, this can be translated into an explicit relationship between the
absolute invariant of an elliptic curve� and the isogenous elliptic curve�/(g4),
where g4 is the translation automorphism by a nontrivial 2-torsion point 4.
Remark 3.2.8. The iterations of the map h from (

lambdamaplambdamap
3.2.6) was studied in

Hollcroft
[406]

and
CataneseSernesi
[101]. It is an interesting example of a complex dynamic in one variable.

The critical points of h are the four equianharmonic cubics in the pencil and its
critical values are the four triangles. Since equianharmonic cubics are mapped
under h to the critical values, the map h is a critically finite map in the sense of
Thurston.
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3.2.2 The dual curve
SS:3.2.3

Write the equation of a general line in the form C2 = D0C0 + D1C1 and plug in
Equation (

hessehesse
3.7). The corresponding cubic equation has a multiple root if and

only if the line is a tangent. We have

(D0C0 + D1C1)3 + C30 + C
3
1 + 6UC0C1 (D0C0 + D1C1)

= (D3
0 + 1)C30 + (D

3
1 + 1)C31 + (3D

2
0D1 + 6UD0)C20C1 + (3D0D

2
1 + 6UD1)C0C21 = 0.

The condition that there is a multiple root is that the discriminant of the
homogeneous cubic form in C0, C1 is equal to zero. Using the formula (

cubinvcubinv
1.86) for

the discriminant of a cubic form, after plugging in, we obtain

(3D2
0D1 + 6UD0)2 (3D0D

2
1 + 6UD1)2 + 18(3D2

0D1 + 6UD0) (3D0D
2
1 + 6UD1) (D3

0 + 1) (D3
1 + 1)

−4(D3
0 + 1) (3D0D

2
1 + 6UD1)3 − 4(D3

1 + 1) (3D1D
2
0 + 6UD0)3 − 27(D3

0 + 1)2 (D3
1 + 1)2

= −27 + 864D3
0D

3
1U

3 + 648D2
0D

2
1U − 648U2D0D

4
1 − 648U2D4

0D1 + 648U2D0D1

+1296U4D2
0D

2
1 − 27D6

1 − 27D6
0 + 54D3

0D
3
1 − 864D3

1U
3 − 864D3

0U
3 − 54D3

1 − 54D3
0 = 0.

It remains for us to homogenize the equation and divide by (−27) to obtain the
equation of the dual curve

D6
0 + D

6
1 + D

6
2 − (2 + 32U3) (D3

0D
3
1 + D

3
0D

3
2 + D

3
2D

3
1)

−24U2D0D1D2 (D3
0 + D

3
1 + D

3
2) − (24U + 48U4)D2

0D
2
1D

2
2 = 0. (3.28) eqdualcubic

According to the Plücker formula (
pluckerplucker
1.51), the dual curve of a nonsingular plane

cubic has nine cusps. They correspond to the inflection tangents of the original
curve. The inflection points are given in (

hessepencilhessepencil
3.12). Computing the equations of the

tangents, we find the following singular points of the dual curve:

[−2<, 1, 1], [1,−2U, 1], [1, 1,−2U], [−2UY, Y2, 1], [−2UY, 1, Y2],

[Y2,−2UY, 1], [1,−2UY, Y2], [1, Y2,−2UY], [Y2, 1,−2U] .

The tangent of � at an inflection point 0 is a component of the polar conic
%0 (�), hence connects 0 to the singular point of the polar conic. This implies
that the tangent line belongs to the Cayleyan curve Cay(�), hence the Cayleyan
curve contains the singular points of the dual cubic. The pencil of plane curves
of degree 6 spanned by the dual cubic �∨ and the Cayleyan cubic taken with
multiplicity 2 is an example of anHalphen pencil of index 2 of curves of degree
6 with nine double base points (see Exercises to Chapter 7).
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3.2.3 Polar B-gons
Since, for any three general points in P2, there exists a plane cubic singular at
these points (the union of three lines), a general ternary cubic form does not
admit polar triangles. Of course this is easy to see by counting constants.
By Lemma

LsingLsing
3.2.4, a nonsingular cubic admits a polar triangle if and only if it

is an equianharmonic cubic. Its polar triangle is unique. Its sides are the three
first polars of � which are double lines.

cubtri Proposition 3.2.9. A plane cubic admits a polar triangle if and only if either
it is a Fermat cubic or it is equal to the union of three distinct concurrent lines.

Proof Suppose� = + (;31 + ;
3
2 + ;

3
3). Without loss of generality, we may assume

that ;1 is not proportional to ;2. Thus, after a linear change of coordinates,
� = + (C30 + C

3
1 + ;

3). If ; (C0, C1, C2) does not depend on C2, the curve � is the
union of three distinct concurrent lines. Otherwise, we can change coordinates
to assume that ; = C2 and get a Fermat cubic. �

By counting constants, a general cubic admits a polar quadrangle. It is clear
that a polar quadrangle {[;1], . . . , [;4]} is nondegenerate if and only if the linear
system of conics in the dual plane through the points [;8] is an irreducible pencil
(i.e. a linear system of dimension 1 whose general member is irreducible). This
allows us to define a nondegenerate generalized polar quadrangle of � as a
generalized quadrangle / of � such that |I/ (2) | is an irreducible pencil.
Let 6(C0, C1) be a binary form of degree 3. Its polar 3-hedron is the divisor

of zeros of its apolar form of degree 3. Thus,

VSP(6, 3) � |AP3 (6) |∨ � P2. (3.29) binap

This implies that any ternary cubic form 5 = C32 + 6(C0, C1) admits degenerate
polar quadrangles.
Also, if � = + (6(C0, C1)) is the union of three concurrent lines then any four

distinct nonzero linear forms ;1, ;2, ;3, ;4 form a degenerate quadrangle of �. In
fact, using the Van der Monde determinant, we obtain that the cubes ;31 , ;

3
2 , ;

3
3 , ;

3
4

form a basis in the space of binary cubic forms. So, the variety of sums of four
powers of� is isomorphic to the variety of four distinct points in P1. Its closure
VSP(�, 4) in the Hilbert scheme Hilb4 (P2) is isomorphic to (P1) (4) � P4.

gener1 Lemma 3.2.10. � admits a degenerate polar quadrangle if and only if it is one
of the following curves:

(i) an equianharmonic cubic;
(ii) a cuspidal cubic;
(iii) the union of three concurrent lines (not necessarily distinct).
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Proof We only have to prove the converse. Suppose

5 = ;31 + ;
3
2 + ;

3
3 + ;

3
4 ,

where ;1, ;2, ;3 vanish at a common point 0 which we identify with a vector in
� . We have

1
3
�0 ( 5 ) = ;1 (0);21 + ;2 (0);

2
2 + ;3 (0);

2
3 + ;4 (0);

2
4 = ;4 (0);

2
4 .

This shows that the first polar %0 (+ ( 5 )) is either the whole P2 or the double line
2ℓ = + (;24). In the first case � is the union of three concurrent lines. Assume
that the second case occurs. We can choose coordinates such that 0 = [0, 0, 1]
and ℓ = + (C2). Write

5 = 60C
3
2 + 61C

2
2 + 62C2 + 63,

where 6: are homogeneous forms of degree : in variables C0, C1. Then, �0 ( 5 ) =
m2 5 = 3C2260+2C261+62. This can be proportional to C22 only if 61 = 62 = 0, 60 ≠

0. Thus,+ ( 5 ) = + (60C
3
2 +63 (C0, C1)). If 63 has no multiple linear factors, we get

an equianharmonic cubic. If 63 has a linear factor with multiplicity 2, we get a
cuspidal cubic. Finally, if 63 is a cube of a linear form, we reduce the latter to
the form C31 and get three concurrent lines.

�

aronhold Remark 3.2.11. Weknow that all equianharmonic cubics are projectively equiv-
alent to the Fermat cubic. The orbit of the Fermat cubic + (C30 + C

3
1 + C

3
2) is

somorphic to the homogeneous space PSL(3)/�, where � = (Z/3Z)2 o S3.
Its closure in |(3 (�∨) | is a hypersurface � and consists of curves listed in the
assertion of the previous Lemma and also reducible cubics equal to the unions
of irreducible conics with its tangent lines. The explicit equation of the hyper-
surface � is given by the Aronhold invariant ( of degree 4 in the coefficients of
the cubic equation. A nice expression for the invariant ( in terms of a pfaffian
of a skew-symmetric matrix was given by G. Ottaviani

Ottaviani
[564].

gener2 Lemma 3.2.12. The following properties are equivalent:

(i) AP1 ( 5 ) ≠ {0};
(ii) dim AP2 ( 5 ) > 2;
(iii) + ( 5 ) is equal to the union of three concurrent lines.

Proof By the apolarity duality,

(� 5 )1 × (� 5 )2 → (� 5 )3 � C,
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we have

dim(� 5 )1 = 3 − dim AP1 ( 5 ) = dim(� 5 )2 = 6 − dim AP2 ( 5 ).

Thus, dim AP2 ( 5 ) = 3 + dim AP1 ( 5 ). This proves the equivalence of (i) and
(ii). By definition, AP1 ( 5 ) ≠ {0} if and only if �k ( 5 ) = 0 for some nonzero
linear operator k =

∑
08m8 . After a linear change of variables, we may assume

that k = m0, and then m0 ( 5 ) = 0 if and only if � does not depend on C0, i.e. �
is the union of three concurrent lines. �

L1 Lemma 3.2.13. Let / be a generalized polar quadrangle of 5 . Then, |I/ (2) |
is a pencil of conics in |�∨ | contained in the linear system |AP2 ( 5 ) |. If / is
nondegenerate, then the pencil has no fixed component. Conversely, let / be a
0-dimensional cycle of length 4 in |� |. Assume that |I/ (2) | is an irreducible
pencil contained in |AP2 ( 5 ) |. Then, / is a nondegenerate generalized polar
quadrangle of 5 .

Proof The first assertion follows from the definition of nondegeneracy and
Proposition

mainlemmamainlemma
1.3.12. Let us prove the converse. Let + (_@1 + `@2) be the pencil

of conics |I/ (2) |. Since AP( 5 ) is an ideal, the linear system ! of cubics of the
form + (@1;1 + @2;2), where ;1, ;2 are linear forms, is contained in |AP3 ( 5 ) |.
Obviously, it is contained in |I/ (3) |. Since |I/ (2) | has no fixed part we may
choose @1 and @2 with no common factors. Then, the map �∨ ⊕ �∨ → �/ (3)
defined by (;1, ;2) → @1;1 + @2;2 is injective, hence dim ! = 5. Assume
dim |I/ (3) | ≥ 6. Choose three points in general position on an irreducible
member � of |I/ (2) | and three non-collinear points outside �. Then, find a
cubic  from |I/ (3) | which passes through these points. Then,  intersects �
with total multiplicity 4 + 3 = 7, hence contains �. The other component of  
must be a line passing through three non-collinear points. This contradiction
shows that dim |I/ (3) | = 5 andwe have ! = |I/ (3) |. Thus, |I/ (3) | ⊂ |AP3 ( 5 ) |
and, by Proposition

mainlemmamainlemma
1.3.12, / is a generalized polar quadrangle of �.

�

Note that not every point in Hilb4 (P2) can be realized as a generalized
quadrangle of a ternary cubic. Each point in the Hilbert scheme Hilb4 (P2) is the
union of subschemes supported at one point. Let us recall analytic classification
of closed subschemes + (�) of length ℎ ≤ 4 supported at one point (see

Briancon
[72]).

• ℎ = 1: � = (G, H);
• ℎ = 2: � = (G, H2);
• ℎ = 3: � = (G, H3), (G2, GH, H2);
• ℎ = 4: � = (G, H4), (G2, H2), (G2, GH, H3).
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The subschemes / of length 4 that cannot be realized as the base scheme of a
pencil of conics, are thosewhich contain a subscheme analytically isomorphic to
one of the following schemes+ (G, H3), + (G, H4), + (G2, GH, H2), or+ (G2, GH, H3).

Theorem 3.2.14. Assume that � is neither an equianharmonic cubic, nor a
cuspidal cubic, nor the union of three concurrent lines. Then,

VSP( 5 , 4) � |AP2 ( 5 ) |∨ � P2.

If � is nonsingular, the complement of Δ = VSP( 5 , 4) \ VSP( 5 , 4)> is a curve
of degree 6 isomorphic to the dual of a nonsingular cubic curve. If � is a nodal
cubic, then Δ is the union of a quartic curve isomorphic to the dual quartic of
� and two lines. If � is the union of a nonsingular conic and a line intersecting
it transversally, Δ is the union of a conic and two lines. If � is the union of a
conic and its tangent line, then Δ = VSP( 5 , 4).

Proof We will start with the case when � is nonsingular. We know that its
equation can be reduced to the Hesse canonical form (

hessehesse
3.7). The space of apolar

quadratic forms is spanned by UD0D1 − D2
2, UD1D2 − D2

0, UD0D2 − D2
1. It is equal

to the net of polar conics of the curve� ′ in the dual plane given by the equation

D3
0 + D

3
1 + D

3
2 − 6UD0D1D2 = 0, U(U3 − 1) ≠ 0. (3.30) ddc

The net |AP2 ( 5 ) | is base-point-free. Its discriminant curve is a nonsingular
cubic, the Hessian curve of the curve � ′. The generalized quadrangles are pa-
rameterized by the dual curve He(� ′)∨. All pencils are irreducible, so there are
no degenerate generalized quadrangles. Generalized quadrangles correspond
to tangent lines of the discriminant cubic. So,

VSP( 5 , 4) = |AP2 ( 5 ) |∨, (3.31) nsq

and VSP( 5 , 4) \ VSP( 5 , 4)> = He(� ′)∨.
Next, assume that � = + (C22C0 + C

3
1 + C

2
1C0) is an irreducible nodal cubic.

The space of apolar quadratic forms is spanned by D2
0, D1D2, D

2
2 − D

2
1 + 3D0D1.

The net |AP2 ( 5 ) | is base-point-free. Its discriminant curve is an irreducible
nodal cubic �. So, all pencils are irreducible, and (

nsqnsq
3.31) holds. Generalized

quadrangles are parameterized by the union of the dual quartic curve �∨ and
the pencil of lines through the double point.
Next, assume that � = + (C30 + C0C1C2) is the union of an irreducible conic and

a line which intersects the conic transversally.
The space of apolar quadratic forms is spanned by D2

1, D
2
2, 6D1D2 − D2

0. The
net |AP2 ( 5 ) | is base-point-free. It is easy to see that its discriminant curve is
the union of a conic and a line intersecting the conic transversally. The line
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component defines the pencil generated by+ (D2
1) and+ (D

2
2). It has no fixed part

but its members are singular. So, all generalized quadrangles are nondegenerate
and (

nsqnsq
3.31) holds. The locus of generalized quadrangles consists of a conic and

two lines.
Next, assume that+ ( 5 ) = + (C0C1C2) is the union of three nonconcurrent lines.

The net |AP2 ( 5 ) | of apolar conics is generated by + (D2
0), + (D

2
1), + (D

2
2). It

is base-point-free. The discriminant curve is the union of three nonconcurrent
lines representing pencils of singular conics which have no fixed component.
Thus, any pencil not containing a singular point of the discriminant curve
defines a nondegenerate polar quadrangle. A pencil containing a singular point
defines a nondegenerate generalized polar quadrangle. Again (

nsqnsq
3.31) holds and

VSP( 5 , 4) \ VSP( 5 , 4)> consists of three nonconcurrent lines.
Finally, let � = + (C0 (C0C1 + C22)) be the union of an irreducible conic and

its tangent line. We check that AP2 ( 5 ) is spanned by D2
1, D1D2, D

2
2 − D0D1. The

discriminant curve is a triple line. It corresponds to the pencil+ (_D2
1+`D1D2) of

singular conicswith the fixed component+ (D1). There are no polar quadrangles.
Consider the subscheme / of degree 4 in the affine open set D0 ≠ 0 defined
by the ideal supported at the point [1, 0, 0] with ideal at this point generated
by (D1/D0)2, D1D2/D2

0, and (D2/D0)2. The linear system |I/ (3) | is of dimension
5 and consists of cubics of the form + (D0D1 (0D1 + 1D2) + 63 (D1, D2)). One
easily computes AP3 ( 5 ). It is generated by the polynomial D0D

2
2 − D

2
0D1 and all

monomials except D2
0D1 and D0D

2
2. We see that |I/ (3) | ⊂ |AP3 ( 5 ) |. Thus, / is

a degenerate generalized polar quadrangle of � and (
nsqnsq
3.31) holds.

�

Remark 3.2.15. We already know the variety VSP( 5 , 4) in the case when �
is the union of concurrent lines. In the remaining cases, which we excluded,
the variety VSP( 5 , 4) is a reducible surface. Its description is too involved to
discuss it here. For example, if � is an equianharmonic cubic, it consists of
four irreducible components. Three components are isomorphic to P2. They
are disjoint and each contains an open dense subset parametrizing degenerate
polar quadrangles. The fourth component contains an open subset of base
schemes of irreducible pencils of apolar conics. It is isomorphic to the blow-
up of |AP2 |∨ at three points corresponding to reducible pencils. Each of the
first three components intersects the fourth component along one of the three
exceptional curves.
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3.3 Projective Generation of Cubic Curves
S:3.3

3.3.1 Projective generation
SS:3.3.1

Suppose we have< different A-dimensional linear systems |!8 | of hypersurfaces
of degrees 38 in P=. Choose projective isomorphisms q8 : PA → |!8 | and
consider the variety

/ = {(_, G) ∈ PA × P= : G ∈ q1 (_) ∩ . . . ∩ q< (_)}. (3.32) inc

The expected dimension of a general fiber of the first projection pr1 : / → PA
is equal to = − <. Assume

• / is irreducible of dimension A + = − <;
• the second projection pr2 : / → P= is of finite degree : on its image - .

Under these assumptions, - is an irreducible subvariety of dimension A +=−<.

pg Proposition 3.3.1.

deg - = BA (31, . . . , 3<)/:,

where BA is the A-th elementary symmetric function in < variables.

Proof It is immediate that / is a complete intersection in PA × P= of <
divisors of type (1, 38). LetΠ be a general linear subspace in P= of codimension
=−<+A . We use the intersection theory from

Fulton
[315]. Let ℎ̄1 and ℎ̄2 be the natural

generators of�2 (PA ×P=,Z) equal to the pre-images of the cohomology classes
ℎ1, ℎ2 of a hyperplane in PA and P=, respectively. We have (pr2)∗ ( [/]) = : [-] .
By the projection formula,

(pr2)∗ ( [/]) = (pr2)∗ (
<∏
9=1
( ℎ̄1 + 3 9 ℎ̄2)) = (pr2)∗ (

<∑
9=1

B 9 (31, . . . , 3<) ℎ̄ 91 ℎ̄
<− 9
2 )

=

<∑
9=1

B 9 (31, . . . , 3<)ℎ<− 92 (pr2)∗ ( ℎ̄
9

1) = BA (31, . . . , 3<)ℎ<−A2 .

Intersecting with ℎ=−<+A2 , we obtain that : deg - = BA (31, . . . , 3<).
�

Since through a general point in P= passes a unique member of a pencil,
: = 1 if A = 1.
The following example is Steiner’s construction of rational normal curves

of degree = in P=. We have already used it in the case of conics, referring the
reader for the details to

GH
[360].
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ex:3.3.2 Example 3.3.2. Let A = 1, < = = and 31 = . . . = 3= = 1. Let ?1, . . . , ?=
be linearly independent points in P= and let P8 be the pencil of hyperplanes
passing through the codimension 2 subspace spanned by all points except ?8 .
Choose a linear isomorphism q8 : P1 → P8 such that the common hyperplane
� spanned by all the points corresponds to different parameters _ ∈ P1.
Let �8 (_) = q8 (_). A line contained in the intersection �1 (_) ∩ . . .∩�= (_)

meets �, and hence � meets each �8 (_). If � is different from each �8 (_), this
implies that the base loci of the pencils P8 meet. However this contradicts the
assumption that the points ?8 are linearly independent. If � = �8 (_) for some 8,
then � ∩� 9 (_) is equal to the base locus of P 9 . Thus, the intersection�1 (_) ∩
. . . ∩ �= (_) consists of the point ?8 . This shows that, under the first projection
pr1 : / → P1, the incidence variety (

incinc
3.32) is isomorphic to P1 . In particular,

all the assumptions on the pencils P8 are satisfied with : = 1. Thus, the image
of / in P= is a rational curve '= of degree =. If q8 (_) = �, then the previous
argument shows that ?8 ∈ '=. Thus, all points ?1, . . . , ?= lie on '=. Since all
rational curves of degree = in P= are projectively equivalent, we obtain that any
such curve can be projectively generated by = pencils of hyperplanes.
More generally, letP1, . . . ,P= be = pencils of hyperplanes. Since a projective

isomorphism q8 : P1 → P8 is uniquely determined by the images of three
different points, we may assume that q8 (_) = + (_0;8 + _1<8) for some linear
forms ;8 , <8 . Then, the intersection of the hyperplanes q1 (_) ∩ . . . ∩ q= (_)
consists of one point if and only if the system of = linear equations with = + 1
unknowns

_0;1 + _1<1 = . . . = _0;= + _1<= = 0

has a 1-dimensional space of solutions. Under some genericity assumption
on the choice of the pencils, we may always assume it. This shows that the
rational curve '= is projectively generated by the pencils, and its equations are
expressed by the condition that

rank
(
;0 ;1 . . . ;=

<0 <1 . . . <=

)
≤ 1.

Observe that the maximal minors of the matrix define quadrics in P= of rank
≤ 4.

Example 3.3.3. Take two pencils P8 of planes in P3 through skew lines ℓ8 .
Choose a linear isomorphism q : P1 → P8 . Then, the union of the lines
q1 (_) ∩ q2 (_) is equal to a quadric surface in P3 containing the lines ℓ1, ℓ2.
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3.3.2 Projective generation of a plane cubic
SS:3.3.2

We consider a special case of the previous construction where = = 2, A = 1 and
< = 2. By Proposition

pgpg
3.3.1, - is a curve of degree 31 + 32. Assume that the

base locus of the pencil P8 consists of 32
8
distinct points and the two base loci

have no points in common. It is clear that the union of the base loci is the set
of 32

1 + 3
2
2 points on - .

Take a pencil of lines P1 and a pencil of conics P2. We obtain a cubic curve
� containing the base point of the pencil of lines and four base points of the
pencil of conics. The pencil P2 cuts out on � a 61

2. We will use the following.

Lemma 3.3.4. For any 61
2 on an irreducible reduced plane cubic curve, the

lines spanned by the divisor from 61
2 intersect at one point on the curve.

Proof The standard exact sequence

0→ OP2 (−2) → OP2 (1) → O� (1) → 0

gives an isomorphism �0 (P2,OP2 (1)) � �0 (�,O� (1)). It shows that the
pencil 61

2 is cut out by a pencil of lines. Its base point is the point whose
existence is asserted in the Lemma. �

The point of intersection of lines spanned by the divisors from a 61
2 was

called by Sylvester the coresidual point of � (see
SalmonCurves
[652], p. 134).

Let � be a nonsingular plane cubic. Pick up four points on �, no three of
them lying on a line. Consider the pencil of conics through these points. Let @
be the coresidual point of the 61

2 on � defined by the pencil. Then, the pencil
of lines through @ and the pencil of conics projectively generate �.
Note that the first projection pr1 : / → P1 is a degree 2 cover defined by the

61
2 cut out by the pencil of conics. It has four branch points corresponding to

lines q1 (_) which touch the conic q2 (_).
There is another way to projectively generate a cubic curve. This time,

we take three nets of lines with fixed isomorphisms q8 to P2. Explicitly, if
_ = [_0, _1, _2] ∈ P2 and q8 (_) = + (0 (8)0 C0 + 0 (8)1 C1 + 0 (8)2 C2), where 0 (8)9 are
linear forms in _0, _1, _2, then � is given by the equation

det
©«
0
(1)
0 0

(1)
1 0

(1)
2

0
(2)
0 0

(2)
1 0

(2)
2

0
(3)
0 0

(3)
1 0

(3)
2

ª®®¬ = 0.

This is an example of a determinantal equation of a plane curve which we will
study in detail in the next Chapter.
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3.4 Invariant Theory of Plane Cubics
S:3.4

3.4.1 Mixed concomitants
SS:3.4.1

The classical invariant theory dealt with objects more general that invariants
of homogeneous forms. Let � , as usual, denote a complex vector space of
dimension = + 1. Recall that the main object of study in the invariant theory is
a mixed combinant, an element Φ of the tensor product

A⊗
8=1

(<8 ((38 (�∨))∨ ⊗
:⊗
8=1

(?8 (�∨) ⊗
B⊗
8=1

(@8 (�)

which is invariant with respect to the natural linear representation of SL(�)
on the tensor product. We will be dealing here only with the cases when
A = 1, :, B ≤ 1. If : = B = 0, Φ is an invariant of degree <1 on the space
(3 (�∨). If : = 1, B = 0, then Φ is a covariant of degree < and order ?. If
: = 0, B = 1, then Φ is a contravariant of degree < and class @. If : = B = 1,
then Φ is a mixed concomitant of degree <, order ? and class @.
Choosing a basis D0, . . . , D= in � , and the dual basis C0, . . . , C= in �∨, one

can write an invariant Φ ∈ (< ((3 (�∨))∨ = (< ((3 (�)) as a homogeneous
polynomial of degree < in coefficients of a general polynomial of degree 3
in D0, . . . , D= which are expressed as monomials of degree 3 in D0, . . . , D=.
Via polarization, we can consider it as a multihomogeneous function of degree
(3, . . . , 3) on (�∗)<. Symbolically, it is written as a product of | sequences
(81 . . . 8=) of numbers from {1, . . . , <} such that each number appears 3 times.
The relation

(= + 1)| = <3

must hold. In particular, there are no invariants if = + 1 does not divide <3.
The number | is called the weight of the invariant. When we apply a linear
transformation, it is multiplied by the |-th power of the determinant.
A covariant Φ ∈ (< ((3 (�∨))∨ ⊗ (? (�∨) can be written as a polynomial

of degree < in coefficients of a general polynomial of degree 3 and of degree
? in coordinates C0, . . . , C=. Via polarization, it can be considered as a multi-
homogeneous function of degree (3, . . . , 3, ?) on (�∨)< × � . Symbolically, it
can be written as a product of | expressions ( 90 . . . 9=) and ? expressions (8)G ,
where each number from {1, . . . , <} appears 3 times. We must have

(= + 1)| + ?= = <3.

A contravariant Φ ∈ (< ((3 (�∨))∨ ⊗ (@ (�) can be written as a polynomial
of degree < in coefficients of a general polynomial of degree 3 and of degree
@ in D0, . . . , D=. Via polarization, it can be considered as a multihomogeneous
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function of degree (3, . . . , 3, @) on (�∨)<×�∨. Symbolically, it can be written
as a product of | expressions ( 90 . . . 9=) and @ expressions (81 . . . 8=)D . We have

(= + 1)| + @= = <3.

A mixed concomitant Φ ∈ (< ((3 (�∨))∨ ⊗ (? (�∨) ⊗ (@ (�) can be written
as a polynomial of degree< in coefficients of a general polynomial of degree 3,
of degree ? in C0, . . . , C=, and of degree @ in D0, . . . , D=. Via polarization, it can
be considered as a multihomogeneous function of degree (3, . . . , 3, ?, @) on
(�∨)< × � × �∨. Symbolically, it can be written as a product of | expressions
( 90, . . . , 9=), ? expressions (8)G and @ expressions (81, . . . , 8=)b , where each
number from {1, . . . , <} appears 3 times. We have

(= + 1)| + (0 + 1)= = <3.

Note that instead of numbers 1, . . . , < classics often employed < letters
0, 1, 2, . . ..
For example, we havemet already the Aronhold invariants S and T of degrees

4 and 6 of a ternary cubic form. Their symbolic expressions are

S = (123) (124) (134) (234) = (012) (013) (023) (123),
T = (123) (124) (135) (256) (456)2 = (012) (013) (024) (14 5 ) (34 5 )2.

3.4.2 Clebsch’s transfer principle
SS:3.4.2

This principle allows one to relate invariants of polynomials in = variables to
contravariants and covariants of polynomials in = + 1 variables.

Start from an invariant Φ of degree < on the space (3 ((C=)∨) of homoge-
neous polynomials of degree 3. We will “transfer it” to a contravariant Φ̃ on the
space of polynomials of degree 3 in =+ 1 variables. First, we fix a volume form
l on � . A basis in a hyperplane* ⊂ � defines a linear isomorphism C= → *.
We call a basis admissible if the pull-back of the volume form under this linear
map is equal to the standard volume form 41∧ . . .∧ 4=. For any U ∈ �∨, choose
an admissible basis ({U1 , . . . , {

U
= ) in Ker(U). For any (;1, . . . , ;<) ∈ (�∨)<, we

obtain = vectors in C=, the columns of the matrix

� =
©«
;1 ({U1 ) . . . ;< ({U1 )
...

...
...

;1 ({U= ) . . . ;< ({U= )

ª®®¬ .
The value of Φ on this set of vectors can be expressed as a linear combination
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of the product of maximal minors |�� |, where each column occurs 3 times. It is
easy to see that each minor �81...8= is equal to the value of ;81 ∧ . . .∧ ;8= ∈

∧= �∨

on {D
81
∧ . . . ∧ {D

8=
under the canonical pairing

=∧
�∨ ×

=∧
� → C.

Our choice of a volume from on � allows us to identify
∧= � with �∨. Thus,

any minor can be considered as multilinear function on (�∨)< × �∨ and its
value does not depend on the choice of an admissible basis in Ker(D). Symbol-
ically, (81 . . . 8=) becomes the bracket expression (81 . . . 8=)D . This shows that
the invariant Φ, by restricting to the subspaces Ker(U), defines a contravariant
Φ̃ on (3 (�∨) of degree < and class @ = <3/=.
Example 3.4.1. Let Φ be the discriminant of a quadratic form in = variables.
It is an invariant of degree < = = on the space of quadratic forms. Its symbolic
notation is (12 . . . =)2. Its transfer to P= is a contravariant Φ̃ of degree = and
class 2=/= = 2. Its symbolic notation is (12 . . . =)2D . Considered as a map
Φ̃ : (2 (�)∨ → (2 (�), the value of Φ̃(@) on D ∈ �∨ is the discriminant of the
quadratic form obtained from restriction of @ to Ker(D). It is equal to zero if
and only if the hyperplane + (D) is tangent to the quadric + (@). Thus, + (Φ̃(@))
is the dual quadric + (@)∨.
Example 3.4.2. Consider the quadratic invariant S on the space of binary forms
of even degree 3 = 2: with symbolic expression (12)2: . We write a general
binary form 5 ∈ (3 (*) of degree 3 symbolically,

5 = (b0C0 + b1C1)2: = ([0C0 + [1C1)2: ,

where (b0, b1) and ([0, [1) are two copies of a basis in* and (C0, C1) is its dual
basis. Then, the coefficients of 5 are equal to

(3
9

)
0 9 , where 0 9 = b 90b

2:− 9
1 =

[
9

0[
2:− 9
1 . Thus, S is equal to

(b0[1 − b1[0)2: =
2:∑
9=0
(−1) 9

(2:
9

)
(b0[1) 9 (b1[0)2:− 9

=

2:∑
9=0
(−1) 9

(2:
9

)
(b 90b

2:− 9
1 ) ([1[

2:− 9
0 ) =

2:∑
9=0
(−1) 9

(3
9

)
0 902:− 9

= 2
( :∑
9=0
(−1) 9

(2:
9

)
0 902:− 9 + 1

2
(2:
:

)
02
:

)
.

(3.33)

We have already encountered this invariant in the case 3 = 3 (see Subsection
binarybinary
1.60).
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The transfer of S is the contravariant of degree 2 and class 3 with symbolic
expression (01D)3 . For example, when 3 = 4, its value on a quartic ternary
form 5 is a quartic form in the dual space which vanishes on lines which cut out
on + ( 5 ) a harmonic set of 4 points. The transfer T of the invariant of degree 3
on the space of quartic binary forms defines a contravariant of class 6. Its value
on a quartic ternary form is a ternary form of degree 6 in the dual space which
vanishes on the set of lines which cut out in + ( 5 ) an equianharmonic set of 4
points.

One can also define Clebsch’s transfer of covariants of degree < and order
?, keeping the factors 8G in the symbolic expression. The result of the transfer
is a mixed concomitant of degree <, order ? and class <3/=.

3.4.3 Invariants of plane cubics
SS:3.4.3

Since this material is somewhat outside of the topic of the book, we state some
of the facts without proof, referring to classical sources for the invariant theory
(e.g.

ClebschLindemann
[150], t. 2,

SalmonCurves
[652]).

We know that the ring of invariants of ternary cubic forms is generated by
the Aronhold invariants S and T. Let us look for covariants and contravariants.
As we know from Subsection

binarybinary
1.60, any invariant of binary form of degree 3 is

a power of the discriminant invariant of order 4, and the algebra of covariants
is generated over the ring of invariants by the identical covariant U : 5 ↦→ 5 ,
the Hessian covariant H of order 2 with symbolic expression (01)0G1G , and
the covariant J = Jac( 5 ,H) of degree 3 and order 6 with symbolic expression
(01)2 (20)1G22

G . Clebsch’s transfer of the discriminant is a contravariant F of
degree 4 and class 6. Its symbolic expression is (01D)2 (23D)2 (02D) (13D). Its
value on a general ternary cubic form is the form defining the dual cubic curve.
Clebsch’s transfer of H is a mixed concomitantΘ of degree 2, order 2 and class
2. Its symbolic expression is (01D)20G1G . Explicitly, up to a constant factor,

Θ = det
©«
500 501 502 D0
510 511 512 D1
520 521 522 D2
D0 D1 D2 0

ª®®®®¬
, (3.34)

where 58 9 = m2 5
mC8mC 9

.
The equation Θ( 5 , G, D) = 0, for fixed G, is the equation of the dual of the

polar conic %G (+ ( 5 )). The equation Θ( 5 , G, D) = 0, for fixed D, is the equation
of the locus of points G such that the first polar %G (+ ( 5 )) is tangent to the
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line + (D). It is called the poloconic of the line + (D). Other description of the
poloconic can be found in Exercise

ex:3.3ex:3.3
3.3.

The Clebsch transfer of � is a mixed concomitant Q of degree 3, order
3 and class 3. Its symbolic expression is (01D)2 (20D)22

G1G . The equation
Q( 5 , G, D) = 0, for fixed D, is the equation of the cubic curve such that second
polars %G2 (+ ( 5 )) of its points intersect + (D) at a point conjugate to G with
respect to the poloconic of + (D). A similar contravariant is defined by the
condition that it vanishes on the set of pairs (G, D) such that the line + (D)
belongs to the Salmon envelope conic of the polars of G with respect to the
curve and its Hessian curve.
An obvious covariant of degree 3 and order 3 is the Hessian determinant

H = det He( 5 ). Its symbolic expression is (012)20G1G2G . Another covariant G
is defined by the condition that it vanishes on the locus of points G such that the
Salmon conic of the polar of G with respect to the curve and its Hessian curve
passes through G. It is of degree 8 and order 6. Its equation is the following
bordered determinant ©«

500 501 502 ℎ0
510 511 512 ℎ1
520 521 522 ℎ2
ℎ0 ℎ1 ℎ2 0

ª®®®®¬
,

where 58 9 = m2 5
mC8mC 9

, ℎ8 =
mH( 5 )
mC8

(see
CayleyMemoir3
[107],

ClebschLindemann
[150], t. 2, p. 313). The algebra of

covariants is generated by U,H,G and the Brioschi covariant
Brioschi
[74] � ( 5 ,H,G)

whose value on the cubic (
hessehesse
3.7) is equal to

(1 + 8U3) (C31 − C
3
2) (C

3
2 − C

3
0) (C

3
0 − C

3
1).

Comparing this formula with (
inv9inv9
3.16), we find that it vanishes on the union

of 9 harmonic polars of the curve. The square of the Hermite covariant is a
polynomial in U,H,G.

The Cayleyan of a plane cubic defines a contravariant P of degree 3 and class
3. Its symbolic expression is (012) (01D) (02D) (12D). Its value on the curve
in the Hesse form is given in (

cayeqcayeq
3.27). There is also a contravariant Q of degree

5 and class 3. In analogy with the form of the word Hessian, A. Cayley gave
them the names the Pippian and the Quippian

CayleyCubicCurve
[108]. If � = + ( 5 ) is given in

the Hesse form (
hessehesse
3.7), then

Q( 5 ) = + ((1 − 10U3) (D2
0 + D

3
1 + D

3
2) − 6U2 (5 + 4U3)D0D1D2).

The full formula can be found in Cayley’s paper
CayleyMemoir3
[107]). He also gives the

formula

H(60P + 1Q) = (−2)03 + 48(2021 + 18)(012 + ()3 + 16(2)13P
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+(8S03 + 3T021 − 24S2012 − TS213)Q,

where the product of a covariant and a contravariant is considered as the
composition of the corresponding equivariant maps.
According to A. Clebsch, Q( 5 ) vanishes on the locus of lines whose polo-

conics with respect to the Cayleyan of � are apolar to their poloconics with
respect to �. Also, according to W. Milne and D. Taylor, Q( 5 ) is the locus of
lines which intersect � at three points such that the polar line of the Hessian
curve H( 5 ) with respect two of the points is tangent to H( 5 ) at the third point
(see [384]). This is similar to the property of the Pippian which is the set of
lines which intersect � at three points such that the polar line with respect to
two of the points is tangent to� at the third point. The algebra of contravariants
is generated by F,P,Q and the Hermite contravariant

Hermite
[386]. Its value on the

cubic in the Hesse form is equal to

(1 + 8U3) (D3
1 − D

3
2) (D

3
2 − D

3
0) (D

3
0 − D

3
1).

It vanishes on the union of nine lines corresponding to the inflection points of
the curve. The square of the Hermite contravariant is a polynomial in F,P,Q.

Exercises
E:2

3.1 Find the Hessian form of a nonsingular cubic given by the Weierstrass equation.ex:3.1
3.2 Let � = He(�) be the Hessian cubic of a nonsingular plane cubic curve � that

is not an equianharmonic cubic. Let g : � → � be the Steinerian automorphism
of � that assigns to 0 ∈ � the unique singular point of %0 (�).
(i) Let �̃ = {(0, ℓ) ∈ � × (P2)∨ : ℓ ⊂ %0 (�)}. Show that the projection
?1 : �̃ → � is an unramified double cover.

(ii) Show that �̃ is isomorphic to the Caylean curve Cay(�).
ex:3.2

3.3 Let � = + ( 5 ) ⊂ P2 be a nonsingular cubic.
(i) Show that the set  (ℓ) of second polars of � with respect to points on a

fixed line ℓ is the dual conic of the poloconic of � with respect to ℓ.
(ii) Show that  (ℓ) is equal to the set of poles of ℓ with respect to polar conics
%G (�), where G ∈ ℓ.

(iii) What happens to the conic  (ℓ) when the line ℓ is tangent to �?
(iv) Show that the set of lines ℓ such that  (ℓ) is tangent to ℓ is the dual curve

of �.
(v) Let ℓ = + (00C0+01C1+02C2). Show that  (ℓ) can be given by the equation

6(0, C) = det

©«

0 00 01 02

00
m2 5

mC20

m2 5
mC0mC1

m2 5
mC0mC2

01
m2 5
mC1mC0

m2 5

mC21

m2 5
mC1mC2

02
m2 5
mC2mC0

m2 5
mC2mC1

m2 5

mC22

ª®®®®®®®¬
= 0.
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(vi) Show that the dual curve�∨ of� can be given by the equation (the Schläfli
equation)

det

©«

0 b0 b1 b2

b0
m26 ( b ,C)
mC20

(b) m26 ( b ,C)
mC0mC1

(b) m26 ( b ,C)
mC0mC2

(b)

b1
m26 ( b ,C)
mC1mC0

(b) m26 ( b ,C)
mC21

(b) m26 ( b ,C)
mC1mC2

(b)

b2
m26 ( b ,C)
mC2mC0

(b) m26 ( b ,C)
mC2mC1

(b) m26 ( b ,C)
mC22

(b)

ª®®®®®®®¬
.

ex:3.3
3.4 Let � ⊂ P3−1 be an elliptic curve embedded by the linear system

��O� (3?0)
��,

where ?0 is a point in �. Assume 3 = ? is prime.

(i) Show that the image of any ?-torsion point is an osculating point of �, i.e.,
a point such that there exists a hyperplane (an osculating hyperplane) which
intersects the curve only at this point.

(ii) Show that there is a bĳective correspondence between the sets of cosets
of (Z/?Z)2 with respect to subgroups of order ? and hyperplanes in P?−1

which cut out in � the set of ? osculating points.
(iii) Show that the set of ?-torsion points and the set of osculating hyperplanes

define a (?2
?+1, ?(? + 1)?)-configuration of ?2 points and ?(? + 1) hyper-

planes (i.e., each point is contained in ?+1 hyperplanes and each hyperplane
contains ? points).

(iv) Find a projective representation of the group (Z/?Z)2 in P?−1 such that
each osculating hyperplane is invariant with respect to some cyclic subgroup
of order ? of (Z/?Z)2.

ex:3.4
3.5 A point on a nonsingular cubic is called a sextactic point if there exists an

irreducible conic intersecting the cubic at this point with multiplicity 6. Show
that there are 27 sextactic points.ex:3.5

3.6 The pencil of lines through a point on a nonsingular cubic curve � contains
four tangent lines. Show that the twelve contact points of three pencils with
collinear base points on � lie on 16 lines forming a configuration (124, 163) (the
Hesse-Salmon configuration).ex:3.6

3.7 Show that the cross ratio of the four tangent lines of a nonsingular plane cubic
curve that pass through a point on the curve does not depend on the point.

3.8 Prove that the second polar of a nonsingular cubic � with respect to the point
0 on the Hessian He(�) is equal to the tangent line T1 (He(�)), where 1 is the
singular point of the polar conic %0 (�).ex:3.8

3.9 Let 0, 1 be two points on the Hessian curve He(�) forming an orbit with the
respect to the Steinerian involution. Show that the line 01 is tangent to the dual of
the Caylean curve Cay(�) at some point 3. Let 2 be the third intersection point
of He(�) with the line 01. Show that the pairs (0, 1) and (2, 3) are harmonically
conjugate.ex:3.9

3.10 Show that from each point 0 on the He(�) one can pass three tangent lines to
the dual curve of Cay(�). Let 1 be the singular point of %0 (�). Show that the
set of the three tangent lines consists of the line 01 and the components of the
reducible polar conic %1 (�).ex:3.10

3.11 Let � = + (∑0≤8≤ 9≤:≤2 08 9: C8 C 9 C: ). Show that the Cayleyan curve Cay(�) can
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be given by the equation

det

©«

0000 0001 0002 b0 0 0
0110 0111 0112 0 b1 0
0220 0221 0222 0 0 b2

20120 20121 20122 0 b2 b1
20200 20201 20202 b2 0 b0
20010 20011 20012 b1 b0 0

ª®®®®®®¬
= 0

ClebschLindemann
[150], p. 245.ex:3.11

3.12 Show that any general net of conics is equal to the net of polars of some cubic
curve. Show that the curve parameterizing the irreducible components of singular
members of the net coincides with the Cayleyan curve of the cubic (it is called
the Hermite curve. of the net)ex:3.12

3.13 Show that the group of projective transformations leaving a nonsingular plane
cubic invariant is a finite group of order 18, 36 or 54. Determine these groups.ex:3.13

3.14 Find all ternary cubics � such that VSP(�, 4)> = ∅.ex:3.14
3.15 Show that a plane cubic curve belongs to the closure of the Fermat locus if and

only if it admits a first polar equal to a double line or the whole space.ex:3.15
3.16 Show that any plane cubic curve can be projectively generated by three pencils

of lines.ex:3.16
3.17 Given a nonsingular conic  and a nonsingular cubic �, show that the set of

points G such that %G (�) is inscribed in a self-polar triangle of  is a conic.ex:3.17
3.18 A complete quadrilateral is inscribed in a nonsingular plane cubic. Show that the

tangent lines at the two opposite vertices intersect at a point on the curve. Also,
show that the three points obtained in this way from the three pairs of opposite
vertices are collinear.ex:3.18

3.19 Let o be a point in the plane outside of a nonsingular plane cubic �. Consider the
six tangents to � from the point o. Show that there exists a conic passing through
the six points on � which lie on the tangents but not equal to the tangency points.
It is called the satellite conic of �

CremonaIntr
[182]. Show that this conic is tangent to the

polar conic %o (�) at the points where it intersects the polar line %o2 (�).ex:3.19
3.20 Show that two general plane cubic curves �1 and �2 admit a common polar

pentagon if and only if the planes of apolar conics |AP2 (�1) | and |AP2 (�2) |
intersect.ex:3.20

3.21 Let � be a nonsingular cubic and  be its apolar cubic in the dual plane. Prove
that, for any point on �, there exists a conic passing through this point such that
the remaining five intersection points with � form a polar pentagon of  

Schlesinger1
[660].ex:3.21

3.22 Let ?, @ be two distinct points on a nonsingular plane cubic curve. Starting from
an arbitrary point ?1 find the third intersection point @1 of the line ??1 with �,
then define ?2 as the third intersection point of the line @@1 with �, and continue
in this way to define a sequence of points ?1, @1, ?2, @2, . . . , @: , ?:+1 on �.
Show that ?:+1 = ?1 if and only if ? − @ is a :-torsion point in the group law
on � defined by a choice of some inflection point as the zero point. The obtained
polygon (?1, @1, . . . , @: , ?1) is called the Steiner polygon inscribed in �.ex:3.22

3.23 Show that the polar conic %G (�) of a point G on a nonsingular plane cubic curve
� cuts out on � the divisor 2G + 0 + 1 + 2 + 3 such that the intersection points
01 ∩ 23, 02 ∩ 13 and 03 ∩ 12 lie on �.ex:3.23

3.24 Show that any intersection point of a nonsingular cubic � and its Hessian curve
is a sextactic point on the latter.ex:3.24

3.25 Fix three pairs (?8 , @8) of points in the plane in general position. Show that the
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closure of the locus of points G such that the three pairs of lines G?8 , G@8 are
members of a 61

2 in the pencil of lines through G is a plane cubic.ex:3.25
3.26 Fix three points ?1, ?2, ?3 in the plane and three lines ℓ1, ℓ2, ℓ3 in general position.

Show that the set of points G such that the intersection points of G?8 with ℓ8 are
collinear is a plane cubic curve

GrassmannCubic
[354].ex:3.26

Historical Notes

The theory of plane cubic curves originates from the works of I. Newton
Newton
[549]

and his student C. MacLaurin
MacLaurin2
[502]. Newton was the first to classify real

cubic curves, and he also introduced the Weierstrass equation. Much later, K.
Weierstrass showed that the equation can be parameterized by elliptic functions,
theWeierstrass functions ℘(I) and ℘(I) ′. The parameterization of a cubic curve
by elliptic functions was widely used for defining a group law on the cubic.
We refer to

Schappacher
[656] for the history of the group law on a cubic curve. Many

geometric results on cubic curves follow simply from the group law and were
first discovered without using it. For example, the fact that the line joining
two inflection points contains the third inflection point was discovered by
MacLaurin much earlier before the group law was discovered. The book of
Clebsch and Lindemann

ClebschLindemann
[150] contains many applications of the group law to

the geometry of cubic curves.
The Hesse pencil was introduced and studied by O. Hesse

Hesse1
[387],

Hesse2
[388]. The

pencil was also known as the syzygetic pencil (see
ClebschLindemann
[150]). It was widely used

as a canonical form for a nonsingular cubic curve. More facts about the Hesse
pencil and its connection to other constructions in modern algebraic geometry
can be found in

Artebani
[22].

The Cayleyan curve first appeared in Cayley’s paper
Cayley1
[102]. The Schläfli

equation of the dual curve from the Exercises was given by L. Schläfli in
Schlafli
[657].

Its modern proof can be found in
GKZ
[325].

The polar polygons of plane cubics were first studied by F. London
London
[492].

London proves that the set of polar 4-gons of a general cubic curve are base
points of apolar pencils of conics in the dual plane. A modern treatment of
some of these results is given in

DolgachevKanev
[235] (see also

Reichstein
[613] for related results). A

beautiful paper by G. Halphen
Halphen
[372] discusses the geometry of torsion points

on plane cubic curves.
Poloconics of a cubic curve are studied extensively in Durège’s book

Durege
[265].

The term belongs to L. Cremona
CremonaIntr
[182] (conic polar in Salmon’s terminology).

O. Schlessinger proved in
Schlesinger1
[660] that any polar pentagon of a nonsingular cubic

curve can be inscribed in an apolar cubic curve.
The projective generation of a cubic curve by a pencil and a pencil of conics
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was first given by M. Chasles. Other geometric ways to generate a plane cubic
are discussed in Durège’s book

Durege
[265]. Steiner polygons inscribed in a plane

cubic were introduced by J. Steiner in
SteinerPolygons
[721]. His claim that their existence is

an example of a porism was given without proof. The proof was later supplied
by A. Clebsch

ClebschPolygons
[142].

The invariants S and T of a cubic ternary form were first introduced by
Aronhold

AronholdCubic
[19]. G. Salmon gave the explicit formulas for them in

SalmonCurves
[652]. The

basic covariants and contravariants of plane cubics were given by A. Cayley
CayleyMemoir3
[107]. He also introduced 34 basic concomitants

Cayley34
[122]. They were later studied

in detail by A. Clebsch and P. Gordan
ClebschGordan
[147]. The fact that they generate the

algebra of concomitants was first proved by P. Gordan and M. Noether
Gordan
[346],

and by S. Gundelfinger
Gundelfinger
[368]. A simple proof for the completeness of the set

of basic covariants was given by L. Dickson
DicksonCubic
[224]. One can find an exposition

on the theory of invariants of ternary cubics in classical books on the invariant
theory

Grace
[351],

Elliott
[286].

Cremona’s paper
CremonaIntr
[182] is a fundamental source of the rich geometry of plane

curves, and in particular, cubic curves. Other good sources for the classical
geometry of cubic curves are books by Clebsch and Lindemann

ClebschLindemann
[150], t. 2, by

H. Durège
Durege
[265], by G. Salmon

SalmonCurves
[652], by H. White

WhiteCubics
[807] and by H. Schroter

Schroeter
[664].



4
Determinantal Equations

Ch4

In this chapter, we will study varieties in P= defined by minors of a matrix
whose entries are homogeneous polynomials on projective coordinates.

4.1 Determinantal Varieties
S:4.1

4.1.1 Determinantal representation
SS:4.1.1

Let* and+ be vector spaces over a field k of dimensions : and <. An element
f ∈ * ⊗ + can be viewed as a linear map f : *∨ → + , or as a bilinear form
on *∨ ⊗ +∨. Under the natural isomorphism g : * ⊗ + → + ⊗ *, the map
f : *∨ → + changes to the transpose map Cf : +∨ → *. In the case * = + ,
the fixed points of g in * ⊗ * correspond to quadratic forms on *∨ which we
studied in Section

S:2.4S:2.4
2.4.

Let (* ⊗ +)A be the subsvariety of tensors f (considered as linear maps) of
rank ≤ A . We denote by |* ⊗+ | the projective space P(*∨ ⊗+∨) and denote by
|* ⊗ + |A the images of (* ⊗ +)A in |* ⊗ + |. The varieties |* ⊗ + |A are closed
subvarieties of the projective space |* ⊗ + |, called the universal determinant
varieties.
We set

;# (f) = Ker(f) ⊂ *∨, A# (f)) = Ker(Cf) ⊂ +∨

the left (resp. the right) kernel of f. We have
;# (f)⊥ = (*∨/;# (f))∨ ⊂ * = Im(Cf),

A# (f)⊥ = (+∨/A# (f))∨ ⊂ + = Im(f).

Let
u*+ : (*∨) |* ⊗+ | → (*∨) |* ⊗+ | (1)

208
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be the universal linear map similar to the one we considered for quadratic forms.
We can consider it as a section of the locally free sheaf (* ⊗ +) |* ⊗+ | (1). For
any scheme - over k, an invertible sheafL on - , and a tensor C ∈ (*⊗+)- ⊗L,
there exists a unique morphism 5 : - → |* ⊗ + | such that 5 ∗ (u*+ ) = C and
5 ∗O |* ⊗+ | (1) = L.
Let

∧8u*+ :
8∧
*∨|* ⊗+ | →

8∧
+|* ⊗+ | (8)

be the 8th exterior power of u*+ . We may consider it as an element of
∧8 (* ⊗

+) |* ⊗+ | (8) =
∧8* |* ⊗+ | ⊗

∧8 +) |* ⊗+ | (8). Then,

|* ⊗ + |A = / (∧A+1u*+ )

is the scheme of zeros of the section ∧8u*+ of
∧A+1.

Let

|* ⊗ + |◦A = {[f] ∈ |* ⊗ + |A : rank(f) = A}.

This is an open subset of |* ⊗ + |A . Assume : ≤ <. Then |* ⊗ + |◦
:
coincides

with the largest open subset of |* ⊗ + | such that Coker(u*+ ) is locally free
sheaf of rank < − : on this subset. Since* |* ⊗+ | is a locally free sheaf, it does
not have torsion subsheaves, hence, we have an exact sequence on |* ⊗ + |

0→ * |* ⊗+ | (−1)∨ u*+→ +|* ⊗+ | → T*+ → 0, (4.1) Texseq

which is locally split over |* ⊗ + |◦
:
. Applying the functor H><, and twisting

by O(−1), we obtain the exact sequence

0→ T ∨*+ (−1) → +∨|* ⊗+ | (−1) → * |* ⊗+ | → EGC1 (T*+ ,O |* ⊗+ |) (−1) → 0

The first exact sequence defines a projective resolution of T|* ⊗+ | of length
2. For any point [f] ∈ |* ⊗ + |, we have depth((T|* ⊗+ |) [f ]) ≤ dim |* ⊗
+ | − 1 = :< − 1. If : < <, then depth((T|* ⊗+ |) [f ]) ≥ 2. By definition, T
is a reflexive sheaf on |* ⊗ + |. . Equivalently, the canonical homomorphism
T*+ → 9∗ 9∗T|* ⊗+ | is an isomorphism, where 9 is an open embedding with
complement of codimension ≥ 2.
If : = <, T|* ⊗+ | is supported on a proper closed subset |* ⊗ + |:−1, hence,
T ∨|* ⊗+ | (−1) = {0}, and T+* = EGC1 (T|* ⊗+ | ,O |* ⊗+ |) (−1) is a reflexive sheaf.
It is equal to the pull-back of T*+ under the transpose isomorphism |+ ⊗* | →
|* ⊗ + |.
The stratification (/2) considered in Subsection

SS:2.4.2SS:2.4.2
2.4.2 identifies /2 with

|* ⊗ + |◦<−A and its closure /2 with |* ⊗ + |<−A . Thus, |* ⊗ + | is stratified by
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closed subsvarieties

|* ⊗ + | = |* ⊗ + |B ⊃ · · · ⊃ |* ⊗ + |A ⊃ · · · ⊃ |* ⊗ + |1 ⊃ ∅,

where B = min{:, <}.
Let T*+ (A) be the restriction of T*+ to ′ |* ⊗ + |A . It is a locally free sheaf

of rank < − A, and |* ⊗ + |′A is the largest subset satisfying this property.
The surjection +|* ⊗+ |′A → T*+ (< − A) (−1) defines a morphism

r*+ (A) : |*⊗+ |′A → � (<−A,+∨) � � (A,+), f ↦→ P(Coker(f)) = |<−A# (f) |

such that T*+ (A) = r*+ (A)∗K(+)∨A , where K(+)A is the universal subsheaf
over the Grassmannian � (A,+). Dually, we get the maps

l*+ (A) : |* ⊗ + |′A → � (A,*) � � (: − A,*∨), f ↦→ |;# (f) |

such that CT*+ (A) := g∗T+* (A) � l*+ (A)∗ (RA ), where R(*)A is the universal
quotient sheaf on � (A,*).
Choosing a basis (41, . . . , 4: ) in * and a basis (4′1, . . . , 4

′
<) in + , we can

identify the linear space *∨ ⊗ + with the linear space of matrices Mat<,: of
size < × : with entries in k, and the projective space |* ⊗ + | with |Mat<,: |.
The subvariety |* ⊗ + |A is identified with the variety of nonzero matrices (up
to scalar multiple) of rank ≤ A.
The following theorem is an analog of Corollary

cor:onecor:one
2.4.17 in the symmetric

case (see
ACGH
[13, Chapter II]).

multdet Theorem 4.1.1. Let MatA (<, :) (A) ⊂ A:×< be the variety of matrices of rank
≤ A . Then,

• MatA (<, :) is an irreducible Cohen-Macaulay variety of codimension (< −
A) (: − A);
• Sing(MatA (<, :)) = MatA−1 (<, :);
• the multiplicity of MatA (<, :) at a point � of rank B ≤ A is equal to

mult�MatA (<, :) =
:−A−1∏
9=0

(< − B + 9)! 9!
(A − B + 9)!(< − A + 9)! ,

in particular,
• the degree of Mat<,: (A) is equal to

deg MatA (<, :) = mult0MatA (<, :) =
:−A−1∏
9=0

(< + 9)! 9!
(A + 9)!(: − A + 9)! .

Note that the formula for the degree of MatA (<, :) is originally due to C.
Segre

SegreDet
[693].



4.1 Determinantal Varieties 211

segrelin Example 4.1.2. The last piece of the stratification |* ⊗ + |1 coincides with
|* ⊗ + |′1. It is isomorphic to |* | × |+ | � P:−1 × P<−1 embedded in |* ⊗ + | �
P:<−1 via the Segre map. Its degree is equal to the degree of the Segre variety
equal to

(:+<−2
:−1

) Harris
[375, Example 18.15]. It agrees with the formula for the degree

of Mat1 (<, :).

tangentspace Proposition 4.1.3. LetT[f ] ( |*⊗+ |) be the embedded tangent space of |*⊗+ |′A
at a point f ∈ |* ⊗ + |′A . Then

T[f ] ( |* ⊗ + |) = |{q : *∨ → + : q(Ker(f)) ⊂ f(*∨)}|

= |{q ∈ * ⊗ + : q(D∗ ⊗ {∗) = 0,∀D∗ ∈ ;# (f), {∗ ∈ A# (f)}|.

Proof Let �|* ⊗ + |A = {([f], G) ∈ |* ⊗ + | × |+ | : G ∈ |f(*∨) |}.
The second projection to |+ | exhibits �|* ⊗ + | as a projective vector bundle of
relative dimension :< − (: − A) (< − A). This implies that �|* ⊗ + |A is a smooth
variety of dimension dim |* ⊗+ |A = :< − (: − A) (< − A). The first projection
to |* ⊗ + | is a proper map which is an isomorphism over |* ⊗ + |′A . It is a
resolution of singularities

cA : �|* ⊗ + |A → |* ⊗ + |A .
It identifies the embedded tangent spaceT[f ] ( |*⊗+ |A ) at a point [f] ∈ |*⊗+ |′A
with the projective space of maps q : *∨ → + such that q(Ker(f)) ⊂ f(*∨).
If we view f as a bilinear form on *∨ ⊗ +∨, then the tangent space consists
of bilinear forms g ∈ * ⊗ + such that g(D∗ ⊗ {∗) = 0 for all D∗ ∈ ;# (f), {∗ ∈
A# (f). �

Remark 4.1.4. There is a notion of a complete collineation similar to the notion
of a complete quadric. A complete collineation is a point in the variety equal
to the closure of the graph of the map

|* ⊗+ |′B → |
2∧
(* ⊗+) | × · · · × |

B∧
(* ⊗+) |, [f] ↦→ ([∧2f], . . . , [∧Bf]),

where B = min{:, <}. We refer the interested reader to
Laksov
[477],

Tyrrell
[769],

Vainsencher3
[779] for

exposition of this theory.

normaldet Proposition 4.1.5. LetN(A) be the normal sheaf of |* ⊗+ |′A in |* ⊗+ |. Then

N(A) � KA (*)∨ ⊗ RA (*) (1),

where RA (*) is the universal quotient sheaf over � (A,*) and RA (*) is the
universal subsheaf over � (A,+).
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Let � be a linear space of dimension =+1. It follows from the universal prop-
erty of the map u*+ that there is a bĳective correspondence between regular
maps q : |� | → |* ⊗ + | with q∗O |* ⊗+ | (1) � O |� | (;) and a homomorphisms
of locally sheaves

q̃ := q∗ (u*+ ) : *∨|� | (−;) → +|� | ,

or, equivalently, a section of (* ⊗ +) |� | (;). The composition of q with the
transpose isomorphism defines the transpose determinantal representation Cq :
|� | → |+ ⊗ * |.
We set

�A (q) = q−1 ( |* ⊗ + |A ) = {G ∈ |� | : rank(q̃(G)) ≤ A}.

Clearly

�A (Cq) = q−1 (g−1 ( |+ ⊗ * |A ).

Definition 4.1.6. A determinantal variety of type ( |:, < |A , =); in |� | � P= is
the pre-image of |* ⊗ + |A under some regular map q : |� | → |* ⊗ + | such
that q∗O |* ⊗+ | (1) � O |� | (;).

We will skip the subscript ; if ; = 1, i.e., we write ( |:, < |A , =) if ; = 1. In this
case, we say that the determinantal representation is linear. We also abbreviate
( |:, : |A , =); = [:A , =]; .
We say that a projective subvariety - ⊂ |� | admits a determinantal rep-

resentation of type ( |:, < |A , =);) if there exists q : |� | → |* ⊗ + | such that
- = �A (q).
We say that a determinantal representation of - ⊂ |� | of type ( [*,+]A , =)3

is proper if, for any A ′ ≤ A

codim(-∩q−1 ( |*⊗+ |A ′), -) = codim( |*⊗+ |A ′ , |*⊗+ |A ) = (A−A ′) (:+<−A−A ′).

In particular, this implies that �A (q) is a Cohen-Macaulay variety of codi-
mension (< − A) (: − A) in |� |

Fulton
[315, Theorem 14.4].

We also say that q : |� | → |* ⊗ + | is transversal if

Sing(q−1 ( |* ⊗ + |A )) = q−1 ( |* ⊗ + |A−1), A < min{<, :}.

The following proposition follows immediately from Proposition
tangentspacetangentspace
4.1.3.

nonsing Proposition 4.1.7. Assume q is proper. A point [G] ∈ �A (q) \ �A−1 (q) is
nonsingular if and only if

dim{G ∈ |� | : q(G) (Ker(q(G)) ⊗ Ker(Cq(G))) = 0} = = + 1 − (< − A) (: − A).
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For example, suppose = = < = 3 and A = 3−1. Let [G] ∈ �3−1 (q)\�3−2 (q).
Then, Ker(q(G)) and Ker(Cq(G)) are 1-dimensional subspaces. Let D∗, {∗ be
their respective bases. Then, [G] is a nonsingular point on�3−1 (q) if and only if
the tensor D∗ ⊗ {∗ is not contained in the kernel of the map Cq : *∨ ⊗+∨ → �∨.
Example 4.1.8. The variety |* ⊗ + |1 is isomorphic to the Segre variety P1 →
P=−1 ↩→ P2=−1. Let |� | be embedded in P2=−1 as a linear subspace defined by
equation C01−C12 = 0, . . . , C0=−C1=−1 = 0, where C8 9 = G8H 9 , 8 = 0, 1, 9 = 0, . . . , =
are projective coordinates in P2=−1. We use the coordinates (C0, . . . , C=) =
(C01, . . . , C0=) in |� |. Then |� | ∩ |* ⊗ + |1 is given by equations expressing the
condition

rank
(
C0 C1 . . . C=−1
C1 C2 . . . C=

)
= 1.

This gives a determinantal representation of type ( |2, =|1, =)1 for a normal
rational curve (or, a Veronese curve) v= (P1) in P= from Subsection

SS:3.3.1SS:3.3.1
3.3.1.

More generally, in Example
ex:1.4.1ex:1.4.1
1.4.1, we considered the catalecticant matrix

Cat: ( 5 ) of size (: + 1) × (3 − : + 1). Assuming B ≤ : ≤ 3 − : , we showed that
the determinant variety of type ( |: +1, 3 − : +1|A , 3)1 defined by the condition

rank(Cat: ( 5 )) ≤ A

coincides with the secant variety SecA ('3) of the Veronese curve V31 ⊂ P
3 .

scroll Example 4.1.9. This example is a generalization of the previous example. Let
(01, . . . , 0: ) be non-negative integers with 01 + · · · + 0: = = − : + 1. Let
!1, . . . , !: be linear subspaces of � of dimensions 08 + 1 such that � =

!1 ⊕ · · · ⊕ !: . Fix a rational normal curve '8 of degree 08 in each |!8 | � P08
and an isomorphism q8 : P1 → '8 (we agree that '8 is a point ?8 if 08 = 0). Let
- = -01 ,...,0: be the join of '1, . . . , ': , that is, the smallest closed subvariety of
|� | that contains all : − 1-dimensional subspaces 〈q1 (C), . . . , q: (C)〉, C ∈ P1. In
other words, -01 ,...,0: is the projection to |� | of the closure of the graph of the
rational map P1 d � (:, �), C ↦→ 〈q1 (C), . . . , q: (C)〉. Yet another description
of -01 ,...,0: is as the image of the projective bundle over P1 P(E), where
E = OP1 (01) ⊕ · · · OP1 (0: ) to P(OP(E) (1)) under the morphism q given by
the complete linear system |OP(E) (1) |. Each surjection E → OP1 defines an
embedding P1 → P(E) whose composition with q is equal to q8 . Let [ =
21 (OP(E) (1)). Since 21 (E) = 01 + · · · + 0: and 28 (E) = 0, 8 > 0, formula (

cohprojbundlecohprojbundle
2.57)

gives

[: = deg(-01 ,...,0: ) = ℎ:−1?∗ (21 (E)) = 01 + · · · + 0: = = − : + 1. (4.2) scolldegree

Of course, this formula can be also obtained by an elementary argument. If
01 = · · · 0B = 0, the variety -01 ,...,0: is a cone over -0B+1 ,...,0: with vertex
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〈?1, . . . , ?B〉 � PB−1 The variety -01 ,...,0: is an example of a scroll which
we will encounter often in the sequel. It is a determinantal variety of type
( |2, = − : + 1|1, =)1. We assume that -01 ,...,0: is not a cone, it is obvious that
a cone over a determinantal variety is a determinantal variety of similar type.
Then -01 ,...,0: is defined by the matrix

� =

(
G
(1)
0 . . . G

(1)
01−1 . . . G

(:)
0 . . . G

(:)
0:−1

G
(1)
1 . . . G

(1)
01 . . . G

(:)
1 . . . G

(:)
0:

)
,

where (G80, . . . , G
8
08
) are projective coordinates in |!8 |. The proof easily follows

from the previous example and is left to the reader. Note that dim -01 ,...,0: =

: = dim Mat1 (2, =− : + 1) − 1, hence, the determinant representation is proper
and -01 ,...,0: are Cohen-Macaulay variety.

Remark 4.1.10. Determinantal varieties are examples of projectively generated
varieties. Let us elaborate.
We consider the map q : |� | → |* ⊗ + | as coming from a linear map

� → * ⊗+ . It can be considered as a tensor in �∨ ⊗* ⊗+ , or, as a linear map
q : *∨ → �∨ ⊗+ . Let � = (08 9 ) be a < × : matrix, where 08 9 ∈ �∨ are linear
forms in variables C0, . . . , C=. Choose coordinates (D1, . . . , D: ) ∈ *∨ in *, and
a basis 4+1 , . . . , 4

+
< in + . Then q is given by

q(D 9 ) =
<∑
8=1

08 94
+
8 , 9 = 1, . . . , : .

Thus, each D =
∑:
9=1 U 9D 9 defines < hyperplanes

�8 (D) = + (
:∑
9=1
08 9U 9 ), 8 = 1, . . . , <.

Each hyperplane vanishes on the subspace �8 = + (081, . . . , 08: ). In classical
terminology, they belong to the star ]�8 [ of �8 . They form a linear subspace
�⊥
9
of the dual space |�∨ |.
Consider the subvariety of P=

- = {G ∈ |� | : G ∈ �1 (D) ∩ . . . ∩ �: (D), for some D ∈ |*∨ |}.

It is clear that

- = {G ∈ |� | : rank�(G) < :}.

If < < : , we have - = P=, so we assume that : ≤ <. If not, we replace �
with its transpose matrix. In this way, we obtain a proper subvariety - of P=,
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a hypersurface, if < = : , with linear determinantal representation - = det �.
For any G ∈ - , let

;# (G) := {D ∈ |*∨ | : G ∈ �1 (D) ∩ . . . ∩ �: (D)}.

Then,

- ′A = {G ∈ - : dim ;# (G) ≥ : − A}, A ≤ : − 1,

is the determinantal subvariety of P= of type ( |:, < |A , =)1 given by the condition
rank�(G) ≤ A .
We will be mostly concerned with the determinantal representations of type
(3, 3)3−1, =); for a hypersurface - = + ( 5 ) in |� | = P= of degree ;3. In this
case, 5 is equal to the determinant of a square matrix of size 3×3 whose entries
are homogeneous polynomials in coordinates in |� | of degree ;.

Note that a proper determinantal representation of - ⊂ P= of type ( |:, < |A , =];
defines two coherent sheaves Tq := q∗T*+ and CTq := q∗ (CT+* ) on |� | = P=.
Assume that : ≤ <, We have an exact sequence:

0→ *∨|� | (−;) → +|� | → Tq → 0,

T ∨q → +∨|� | (−;) → * |� | → CTq → 0,
(4.3) resolvent1

Passing to the duals in the first exact sequence, we get
CTq � EGC1O|� | (Tq),O |� |) (−;) � EGC

1
O|� | (Tq),O |� | (−;)). (4.4) firstext

Assume : < <, then codim( |* ⊗ + |:−1, |* ⊗ + |) = < − : + 1 ≥ 2. For any
coherent sheaf F on |� |, we have

depth(FG) + proj.dim(FG) = = (4.5) auslander

This implies that depth((Tq)G) = =−1. If = ≥ 3, Tq is torsion-free, and, for any
G ∈ |� |, depth((Tq))G ≥ 2. This shows that Tq is a reflexive sheaf on |� |

Hartshorne
[379,

Proposition 1.3]. Recall that a coherent sheaf F on a normal variety - is called
reflexive if, for any open embedding 9 : - \ / , where codim(/, -) ≥ 2, the
canonical homomorphism F → 9∗ 9∗F is an isomorphism. A reflexive sheaf
is free outside a closed subset of codimension ≥ 3.
Restricting the exact sequence to - = �A (q), we obtain that - is equal

to q−1 ( |* ⊗ + |A ). We assume that q is proper, so that codim(�A (q), P=) =
:< − (< − A) (= − A). The surjections +- → Tq (A) and * → CTq (A) define
morphisms

l : - → � (<,+), r : - ′→ � (:,*)

such that l∗R(+) � Tq (A) and r∗R(*) � CTq (A).
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generalization Remark 4.1.11. We can follow the exposition in Section
S:2.4S:2.4
2.4 and replace the

linear spaces* and+ with locally free sheavesU andV on a Cohen-Macaulay
scheme ) over k. This leads to the projective bundle |U ⊗O) V| on ) , and
morphism q : |E | → |U ⊗O) V|. We are not pursuing this, and leave it to the
reader.

4.1.2 Determinantal hypersurfaces and aCM-sheaves
SS:4.1.2

Let F be a coherent sheaf on P= and

Γ∗ (F ) =
∞⊕
:=0

�0 (P=, F (:)).

It is a graded module over the graded ring

( = Γ∗ (OP= ) =
∞⊕
:=0

�0 (P=,OP= (:)) � C[C0, . . . , C=] .

We say that F is an arithmetically Cohen-Macaulay sheaf (aCM sheaf, for
brevity) if " = Γ∗ (F ) is a graded Cohen-Macaulay module over (. Recall
that this means that every localization of " is a Cohen-Macaulay module,
i.e. its depth is equal to its dimension. Let us identify " with the coherent
sheaf on Spec �. The associated sheaf "̃ on Proj ( is isomorphic to F . Let
* = Spec ( \ m0, where m0 = (C0, . . . , C=) is the irrelevant maximal ideal
of the graded ring (. Since the projection * → Proj ( = P= is a smooth
morphism, the localizations of " at every maximal ideal different from m are
Cohen-Macaulay modules if and only if

• FG is a Cohen-Macaulay module over OP= ,G for all G ∈ P=.

The condition that the localization of " = Γ∗ (F ) at m0 is Cohen-Macaulay
is satisfied if and only if the local cohomology �8m0 (") vanish for all 8 with
0 ≤ 8 < dim" . We have �8 (*, ") = ⊕:∈Z�8 (P=, "̃ (:)). The exact sequence
of local cohomology gives an exact sequence

0→ �0
m (") → " → �0 (*, ") → �1

m (") → 0,

and isomorphisms

�8+1m (") � �8 (*, "), 8 > 0.

In the case" = Γ∗ (F ), the map" → �0 (*, ") = Γ∗ ("̃) is an isomorphism,
hence, �0

m (") = �1
m (") = 0. Since the canonical homomorphism Γ̃∗ (F ) →

F is bĳective, the conditions �8m (") = 0, 8 > 1, become equivalent to the
conditions
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• �8 (P=, F (:)) = 0, 1 ≤ 8 < dim Supp(F ), : ∈ Z.

A subvariety - ⊂ P= (as always, reduced and connected) is said to be arith-
metically Cohen-Macaulay is its structure sheaf O- is an aCM sheaf. It follows
from above that - is arithmetically Cohen-Macaulay if and only if

(i) - is Cohen-Macaulay;
(ii) the restriction maps A= : �0 (P=,OP: (:)) → �0 (-,O- (:)) are bĳective for

all : ≥ 0;
(iii) �8 (-,O- (:)) = 0, 8 > 0 and all : .

An embedding - ↩→ P= is called linearly normal of condition (ii) is satified .
Moreover, if, additionally, - is a normal variety, we say that the embedding is
projectively normal. In this case, the projective coordinate ring of - is normal,
and the converse is also true.
Let q : |� | → |* ⊗ + | be a proper determinantal representation of type
( [<, <]<−1, =); . Let - = �<−1 (q). It is a hypersurface of degree 3 = ;<. We
apply the previous discussion to the sheaves

L := T*+ (q), M := CT*+ (q),

We have the exact sequences

0→ *∨|� | (−;) → +|� | → L → 0,

0→ +∨|� | (−;) → * |� | →M → 0.
(4.6) mainrxseq

It follows that proj.dim FG = 1 for all G ∈ - = Supp(F ). This implies that
depth FG = = − 1 for all G ∈ - . In particular, - is hypersurface in P= and the
stalks of FG are Cohen-Macaulay modules over OP= ,G .

Proposition 4.1.12. Assume = > 1.

(i) �8 (P=,L( 9)) = �8 (P=,M( 9)) = 0, 1 ≤ 8 ≤ = − 1, 9 ∈ Z.
(ii) �0 (P=,L( 9)) = �0 (P=,M( 9)) = 0, 9 < 0.

Proof The first assertion follows from the cohomological characterization of
aCM-sheaves. The second assertion follows from twisting exact sequence (

mainrxseqmainrxseq
4.6)

by OP= ( 9) and applying �0. �

Consider the restriction of L (or M) to - . It is a Cohen-Macaulay sheaf
of rank one on - which is an invertible sheaf on - ′ = - \ q−1 ( |* ⊗ + |<−2).
A Cohen-Macaulay sheaf of rank 1 is defined by a Weil divisor on - , not
necessarily a Cartier divisor. Recall the definitions. Let - be a Noetherian
integral scheme of dimension ≥ 1 and - (1) be its set of points of codimension
1 (i.e. points G ∈ - with dimO-,G = 1). We assume that - is regular in
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codimension 1, i.e. all local rings of points from - (1) are regular. In this
case, we can define Weil divisors on - as elements of the free abelian group
WDiv(-) = Z- (1) and also define linear equivalence of Weil divisors and the
group Cl(-) of linear equivalence classes of Weil divisors (see

Hartshorne
[379, Chapter

II, §6]).
We identify a point G ∈ - (1) with its closure � in - . We call it an irreducible

divisor. Any irreducible reduced closed subscheme � of codimension 1 is an
irreducible divisor, the closure of its generic point.
For any Weil divisor �, let O- (�) be the sheaf whose section on an open

affine subset* consists of functions from the quotient field&(O(*)) such that
div(Φ) + � ≥ 0.
It follows from the definition that O- (�) is torsion-free and, for any open

subset 9 : * ↩→ - which contains all points of codimension 1, the canonical
homomorphism of sheaves

O- (�) → 9∗ 9
∗O- (�) (4.7) reflexive

is an isomorphism. These two conditions characterize reflexive sheaves on any
normal integral scheme - . It follows from the theory of local cohomology that
the latter condition is equivalent to the condition that, for any point G ∈ - with
dimO-,G ≥ 2, the depth of the O-,G-module FG is greater than or equal to
2. By equivalent definition, a reflexive sheaf F is a coherent sheaf such that
the canonical homomorphism F → (F ∨)∨ is an isomorphism. The sheaves
O- (�) are reflexive sheaves of rank one. Conversely, a reflexive sheafF of rank
1 on a normal integral scheme is isomorphic to O- (�) for some Weil divisor
�. In fact, we restrict F to some open subset 9 : * ↩→ - with the complement
of codimension ≥ 2 such that 9∗F is locally free of rank 1. Thus, it corresponds
to a Cartier divisor on*. Taking the closure of the corresponding Weil divisor
in - , we get a Weil divisor � on - and it is clear that F = 9∗ 9∗F � O- (�).
In particular, we see that any reflexive sheaf of rank 1 on a regular scheme is
invertible. It is not true for reflexive sheaves of rank > 1. They are locally free
outside of a closed subset of codimension ≥ 3 (see

HartshorneRef
[380]).

Reflexive sheaves of rank 1 form a group with respect to the operation

L · G = ((L ⊗ G)∨)∨, L−1 = L∨.

For any reflexive sheaf L and an integer = we set

L [=] = ((L⊗=)∨)∨.

One checks that

O- (� + � ′) = O- (�) · O- (� ′)
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and the map � ↦→ O- (�) defines an isomorphism from the group Cl(-) to
the group of isomorphism classes of reflexive sheaves of rank 1.
As we observed in (

firstextfirstext
4.4),

M = CT (q) � EGC1OP= (L,OP= (−;)). (4.8) sheafG

In the following, we use some standard facts from the Grothendieck-Serre
duality theory (see

GrothendieckFGA
[365]). We have

EGC1OP= (L,OP= (−;)) � H><O- (L, EGC
1
OP= (O- ,OP= (−;)))

� H><O- (L, EGC1OP= (O- , lP= )) (= − ; + 1) � H><O- (L, l- ) (= − ; + 1)

� H><O- (L,O- (3 − = − 1)) (= − ; + 1) � L∨ (3 − ;),
(4.9)

where L∨ = H><O- (L,O- ). Thus, (
sheafGsheafG
4.8) becomes

M � L∨ (3 − ;). (4.10) sheafGG

normalsheafdet Proposition 4.1.13.

L ·M � O- (3 − ;).

Proof Since the normal sheafN-/P= is isomorphic toO- (3), applying Propo-
sition (

normaldetnormaldet
4.1.5), we obtain the asserted isomorphism over the open subset - ′ of -

with the complement of codimension 2.WritingL = O- (�) andM = O- (� ′)
we obtain that O- (� +� ′) = O- (3− ;) on - ′, and hence, on the whole - . �

We have seen how a determinantal representation of a hypersurface in P=
leads to an aCM sheaf on P=. Now, let us see the reverse construction. Let F
be an aCM-sheaf on P= supported on a reduced and normal hypersurface - .
We assume that F is of rank one on - . It is a reflexive sheaf on - . So, we can
write it as F = O- (�) for some Weil divisor � on - . Let

G = EGC1OP= (L,OP= (−;)) � F
∨ (3 − ;) � O- (−�) (3 − ;). (4.11) dualF

Since " = Γ∗ (F ) is a Cohen-Macaulay module over ( = Γ∗ (OP= ) of depth
=−1, its projective dimension is equal to 1. Since any graded projective module
over the polynomial ring is isomorphic to the direct sum of free modules of
rank 1, we obtain a resolution

0→
<⊕
8=1

([−18] →
<⊕
8=1

([−08] → Γ∗ (F ) → 0,

for some sequences of integers (08) and (18). Passing to the associated sheaves
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on the projective space, it gives a projective resolution of F :

0→
<⊕
8=1
OP= (−18)

q
→

<⊕
8=1
OP= (−08) → F → 0. (4.12) res11

The homomorphism of sheaves q is given by a square matrix � of size <. Its
8 9-th entry is a polynomial of degree 1 9 − 08 . The support - of F is equal to
+ (det �)red. The degree of . = + (det �) is equal to

3 = (11 + · · · + 1<) − (01 + · · · + 0<). (4.13) res2

We assume that the resolution is minimal, i.e. 1 9 > 08 for all 8, 9 . This can
always be achieved by dropping the isomorphic summands in the first and the
second module. The case we considered before is a special case when F is an
aCM sheaf with

01 = . . . = 0< = 0, 11 = . . . = 1< = ;. (4.14) res3

In this case, � is a matrix of homogeneous forms of degree ; = </3.

P4.2.2 Proposition 4.1.14. Let F be an aCM sheaf on P= supported on a reduced
hypersurface - and let (

res11res11
4.12) be its projective resolution. Then, (

res3res3
4.14) holds if

and only if

�0 (-, F (−1)) = �0 (-,G(−1)) = 0, (4.15) van1

where G is its dual sheaf defined in (
dualFdualF
4.11).

Proof Taking global sections in the exact sequence (
res11res11
4.12), we immediately

get that all 08 are non-negative. Taking the dual to the second exact sequence,
we get an exact sequence

0→
<⊕
8=1
OP= (08 − ;)

q
→

<⊕
8=1
OP= (18 − ;) → G → 0. (4.16) res33

Thus, the condition �0 (P=,G(−1)) = 0 implies that 18 ≤ ;. Since 18 > 0 9 ≥ 0,
and 3 = <; =

∑<
8=1 (18 −08), we get that all 18 are equal to ; and all 0 9 are equal

to zero. �

Note that, by duality on - , we get

�0 (-,G(−1)) = �=−1 (-,G∨ (1), l- )

= �=−1 (-, F (; − 3 + 1) (3 − = − 1)) = �=−1 (-, F (; − =)).
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dixon Theorem 4.1.15. LetL = F ,M = G, where F ,G be as in Proposition
P4.2.2P4.2.2
4.1.14.

Assume, additionally, that

L ⊗M � O- (3 − ;).

Then - admits a determinantal representation q : |� | → |* ⊗ + | of type
( |3, 3 |3−1, =); with L = Tq ,M = CTq ,* = �0 (-,L), + = �0 (-,M).

Proof By Proposition
P4.2.2P4.2.2
4.1.14, L admits a projective resolutions (

res11res11
4.12) with

08 = 0 and 18 = ;. It allows us to identifyO⊕<|� | with* |� | , where* = �0 (-,L).
We also have a similar resolution for M which is obtained from the first
resolution by takingH><(−,O |� |) and tensoringwithO |� | (−;). This identifies
O |� | (−;)⊕< with +|� | , where + = �0 (-,M). Let < = dim* = dim+ .
The surjections

+|� | � O⊕<P= → L, * |� | � O⊕<P= →M

define the morphisms

l : Proj(S(L)) → P(+), r : Proj(S(M)) → P(*).

If = = 2, - = - ′, L andM are invertible sheaves on - , hence, - = P(L)) =
P(M). Otherwise - ′ � Proj(S(L)) � Proj(S(M)), and we obtain rational
maps

l : - d P(*), r : - d P(+).

with the set of indeterminacy points of codimension ≥ 2.
Let

k : - → P(* ⊗ +) → P(* ⊗ +) (4.17) adjcurves

to be the composition of (l, r) and the Segre map s2. It is given by the complete
linear system |L ⊗ M| = |O- (3 − 1) | on - . The exact sequence

0→ O |� | (−;) → O |� | (3 − ;) → O- (3 − ;)) → 0

together with vanishing of �1 (P=,OP= (−;)) shows that the map k is equal to
the restriction of a map Ψ : |� | → P(* ⊗ +).
We can viewΨ as defined by a tensor in (3−; (�∨)⊗*∨⊗+∨. In coordinates, it

is a<×<matrix �(C) with entries from the space of homogeneous polynomials
of degree 3 − ;. Since Ψ|- = k, for any point G ∈ - , �(G) = l(G) · Cr(G) is of
rank 1.

Let " be a 2 × 2 submatrix of �(C). Since det" (G) = 0 for G ∈ - , we have
5 | det" . Consider a 3×3 submatrix # of �(C).We have det adj(#) = det(#)2.
Since the entries of adj(#) are determinants of 2 × 2 submatrices, we see that
5 3 | det(#)2. Since - is irreducible, this immediately implies that 5 2 | det(#).
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Continuing in this way, we obtain that 5 <−2 divides all cofactors of the matrix
�. Thus � = 5 2−<adj(�) is a matrix with entries in (; (�∨). It defines a linear
map (; (�) → * ⊗ + . The associated polynomial map

q : |� | → |* ⊗ + |

is a determinantal representation of - of type ( |<, < |, =); . We immediately
check that L = Tq ,M = CTq .

�

hom Remark 4.1.16. In the proof we encounter a birational map

P(* ⊗ +) → P(*∨ ⊗ +∨) = |* ⊗ + |.

It is similar to the adjugate birational map (
adjmapadjmap
2.73) defined for orthogonal matri-

ces. It follows from Example
ex:1.1.4ex:1.1.4
1.1.4 that this map is given by the polars of the

determinantal hypersurface |*⊗+ |3−1. In fact, if � = (C8 9 ) is amatrixwith inde-
pendent variables as entries, then m det(�)

mC8 9
= "8 9 ,where"8 9 is the 8 9-th cofactor

of the matrix �. The map Adj is a birational map since Adj(�) = �−1 det(�)
and the map � → �−1 is obviously invertible. So, the determinantal equation
is an example of a homogeneous polynomial such that the corresponding polar
map is a birational map. Such a polynomial is called a homaloidal polynomial
(see

DolgachevPolar
[240]).

4.1.3 Symmetric and skew-symmetric aCM sheaves
SS:4.1.3

Let F ,G be coherent sheaves on a subscheme ) of P=. Suppose there is a
homomorphism of coherent sheaves on -

U : F → G∨ (#) (4.18)

for some integer # . Passing to duals, we get a homomorphism (G∨)∨ (−#) →
F ∨. After twisting by# , we get a homomorphism (G∨)∨ → F (#). Composing
it with the natural homomorphism G → (G∨)∨, we get a homomorphism

CU : G → F ∨ (#),

which we call the transpose of U.
We take F = L,G = M defined by a determinant hypersurface - ⊂ P=.

Applying Proposition
normalsheafdetnormalsheafdet
4.1.13, we obtain that the homomorphisms U : L →

M∨ (3 − ;) and CU :M → L(3 − ;) are bĳective over - ′. Since L andM are
reflexive sheaves, applying 9∗, where 9 : - ′ ↩→ - , we get isomorphisms on -
L →M(3 − ;) and its transpose CU :M → L(3 − ;) on - .
Suppose F = G, A coherent sheaf F , together with a homomorphism
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U) as above, is called a n-symmetric if U is an isomorphism and CU = nU,
where n = ±1. We say that (F , U) is symmetric if n = 1 and skew-symmetric
otherwise.
Our first observation is that the conditions F → ((F )∨)∨ is an isomorphism

is a necessary condition for the existence of U such that (F , U) is n-symmetric.
In particular, F must be a reflexive sheaf.
Suppose L is n-symmetric. Then L � L∨ (3 − ;) �M(3 − ;). This implies

that
L �M .

We refer for the proof of the following result to
Casnati
[93] and

BeauvilleDet
[51, Theorem B].

T4.2.4 Theorem 4.1.17. Let (F , U) be an n-symmetric aCM sheaf. Assume that -B =
- . Then, it admits a resolution of the form (

res11res11
4.12), where

(01, . . . , 0<) = (11 + # − 3, . . . , 1< + # − 3),

and the map q is defined by a symmetric matrix if n = 1 and a skew-symmetric
matrix if n = −1.

beau Corollary 4.1.18. Suppose (F , U) is a symmetric sheaf with # = 3 − ; satisfy-
ing the vanishing conditions from (

van1van1
4.15). Then,F admits a projective resolution

0→ *∨P= (−1)
q
→ *P= → F → 0,

where * = �0 (P=, F ) and q is defined by a symmetric matrix � with linear
entries. In particular, F � L = T (q) for some determinantal representation
of - = Supp(F ).

Note that, ifL is skew-symmetric, the matrix � is skew-symmetric, hence, q
is not proper. We have �<−1 (q) = P= if < is odd, and �<−1 (q) = �<−2 (q) if
< is even. We will noted discuss the skew-symmetric determinantal represen-
tation, called pfaffian representations, however we refer to the interested reader
to

BeauvilleDet
[51, Theorem B] for the discussion of pfaffian surfaces. Apparently, pfaffian

representations were not studied in classical literature
Suppose q is a symmetric determinantal representation with L � M.

Suppose = + 1 − ; = 2C is even. Twisting the isomorphism L → M =

H><O- (F , l- ) (= + 1 − ;) by −C, we obtain an isomorphism

L(−C) → H><O- (L(−C), l- ).

def:thetachar Definition 4.1.19. A rank 1 torsion-free coherent sheaf \ on a reduced variety
. with canonical sheaf l. is called a theta characteristic if there exists an
isomorphism

U : \ →H><O. (\, l. ).
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Note that in the case when a theta characteristic \ is an invertible sheaf, we
obtain

\⊗2 � l. .

In particular, ifl- is an invertible sheaf andL = O- (�), then � is aQ-Cartier
divisor.
Since U and CU differ by an automorphism of \, and any automorphism of a

rank 1 torsion-free sheaf is defined by a nonzero scalar multiplication, we can
always choose an isomorphism U defining a structure of a symmetric sheaf on
\.
Let - be a reduced normal hypersurface of degree 3 = ;< in P= and let \

be a theta characteristic on - . Assume = + ; − 1 = 2C is even. Then, L = \ (C)
satisfies L(C) � L(C)∨ (3 − ;), and hence, has a structure of a symmetric sheaf
with # = 3 − ;. Assume also that \, considered as a coherent sheaf on P=, is an
aCM sheaf satisfying the assumptions in Proposition

P4.2.2P4.2.2
4.1.14. Then, we obtain

that L admits a resolution

0→ OP= (−;)⊕< → O⊕<P= → L → 0,

defined by a symmetric matrix with homogeneous forms of degree ; as its
entries. The vanishing conditions from Proposition

P4.2.2P4.2.2
4.1.14 translate into one

condition:

�0 (-, \ (C − 1)) = 0. (4.19) nv

4.1.4 Contact hypersurfaces
SS:4.1.4

Let - be a hypersurface of degree 3 in |� | = P= given by the determinantal
representation q : |� | → |* × + | such that q∗O |* ⊗+ | (1) � O |� | (;). We have
dim* = + = : = 3/;.
Let (l, r) : - d P(*) × P(+) ⊂ P(* ⊗ +), be the rational map given by the

left and the right kernel maps given by the aCM-sheaves L andM on - .
They define a bilinear map

A : |L| × |M| = |* | × |+ | → |L ⊗M| � |O- (3 − ;) |, (�1, �2) ↦→ 〈�1, �2〉,
(4.20) ress1

where 〈�1, �2〉 is the unique hypersurface of degree 3 − ; that cuts out the
divisor �1 + �2 on - . Consider the incidence variety

� = {(G, �1, �2) ∈ |� | × |* | × |+ | : G ∈ 〈�1, �2〉}.

It is a hypersurface in |� | × |* | × |+ | of type (3 − ;, 1, 1).
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Proposition 4.1.20. The incidence variety � is given by the bordered determi-
nant

det

©«

01: . . . 01: {0
021 . . . 02: {1
...

...
...

...

0:1 . . . 0:: {:−1
D0 . . . D:−1 0

ª®®®®®®®¬
= 0. (4.21) borddet

Proof The bordered determinant(
borddetborddet
4.21) is equal to (−1): ∑

�8 9D8{ 9 , where
�8 9 is the (8 9)-entry of the adjugate matrix adj(�). For a general point G ∈ - ,
the rank of the adjugate matrix adj(�(G)) is equal to one. Thus, the bordered
determinant defines a bilinear form of rank one in the space *∨ ⊗ +∨ of
bilinear forms on * × + . We can write it in the form (∑ 08{8) (

∑
1 9D 9 ), where

l(G) = [00, . . . , 03−1], r(G) = [10, . . . , 13−1]. The hyperplane+ (
∑
08{8) (resp.

+ (∑ 18D8)) in |* | (resp.|+ |) defines a divisor �1 ∈ |L| (resp. |M|) such that
G ∈ 〈�1, �2〉. This checks the assertion. �

Next, we use the following determinantal identity due to O. Hesse
HesseBit
[390].

L4.1.7 Lemma 4.1.21. Let " = (28 9 ) be a square matrix of size : . Let

� (�; D, {) :=

�����������
211 012 . . . 21: D0
221 022 . . . 22: D2
...

...
...

...
...

2:1 0:2 . . . 2:: D:−1
{0 {2 . . . {:−1 0

�����������
.

Then,

� (�; D, D)� (�; {, {) − � (�; D, {)� (�, {, D) = % det(�), (4.22) hesbord

where % = %(211, . . . , 2:: ; D0, . . . , D:−1; {0, . . . , {:−1) is a polynomial of de-
gree : in variables 08 9 and of degree 2 in variables D8 and { 9 .

Proof Consider � (�; D, {) as a bilinear function in D, { satisfying � (�; D, {)
= � (C �; {, D). We have � (�; D, {) = −∑

�8 9D8{ 9 , where �8 9 is the (8 9)-entry
of adj(�). This gives

� (�; D, D)� (�; {, {) − � (�; D, {)� (�; {, D)

= (
∑

�8 9D8D 9 ) (
∑

�8 9{8{ 9 ) − (
∑

�8 9D8{ 9 ) (
∑

� 98D8{ 9 )

=
∑

D0D1{2{3 (�01�32 − �02�31).
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Observe that �01�32 − �02�31 is equal to a 2 × 2-minor of adj(�). Thus, if
det � = 0, all these minors are equal to zero, and the left-hand side in (

hesbordhesbord
4.22) is

equal to zero. This shows that det �, considered as a polynomial in variables 08 9 ,
divides the left-hand side of (

hesbordhesbord
4.22). Comparing the degrees of the expression

in the variables 08 9 , D8 , { 9 , we get the assertion about the polynomial %. �

Let us see the geometric meaning of the lemma. For a fixed value b of the
coordinates D, the hypersurface )b = + (� (�; b, b)) intersects the hypersur-
face - = + (det �) along the sum of two divisors + (� (�; b, [)) ∈ |L| and
+ (� (�; [, b) ∈ |M|).

We specialize to the case when the determinantal representation is symmet-
ric, i.e., L =M. Then,* = + , and (

hesbordhesbord
4.22) becomes

� (�; D, {)2 − � (�; D, D)� (�; {, {) = % det �. (4.23) bordsym

This time the curve )b = + (� (�; b, b)) cuts out in - the divisor 2�[ , where
�[ ∈ |L|, i.e., it touches - along �[ .
The algebraic family of hypersurfaces+ (� (D, D)) of degree 3 − ; is a family

of contact hypersurfaces of - . Each divisor from this family is touching - along
a divisor of degree 1

2 : (: − 1);. projective transformation of *, the number of
such families of contact curves is equal to the number of non-effective even
theta characteristics on the curve �.
On many occasions in the sequel, we will be discussing quadratic pencils of

hypersurfaces of degree ; in P=. This is a special case where : = 2 and 3 = 2: .
Its universal family is a hypersurface in P1 × P= of bidegree (2, 2:) given by
equation

�(C0, . . . , C=)D2
0 + 2�(C0, . . . , C=)D0D1 + � (C0, . . . , C=)D2

1 = 0,

where �, �, and � are homogenous forms of degree ;. A general point in P= is
contained in two members of the family. The hypersurface � = + (�2 − ��) is
the discriminant hypersurface of the quadratic family. It is the branch divisor of
the projection to the first factor. It is equal to the closure of the set of points that
are contained in only one member of the family. The members of the family are
contact hypersurfaces to �.
We assume that (�, �, �) are coprime. The closed subset + (�, �, �) of P=

consists of base points of the quadratic pencil. If = > 3, it is always non-empty.
Taking the partials, we see that the discriminant hypersurface has singular
points at the base points.
Finally, let us give one more interesting application of bordered symmetric

determinants. Consider the coefficient% = %(C0, . . . , C=; D0, . . . , D:−1; D0, . . . , D:−1)
in (

hesbordhesbord
4.22). Setting [D] = [{], we obtain % = 0. This implies that % can be ex-
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pressed as a polynomial of degree 2 in Plücker coordinates of lines in P:−1.
Thus, % = 0 represents a family of quadratic line complexes in �1 (P:−1).
parameterized by points in P=.

linecomplex Proposition 4.1.22. Let q : |� | → |(2 (*)∨ | define a symmetric linear deter-
minant representation of a hypersurface - in |� |. of a hypersurface - . For
any G ∈ |� | the quadratic line complex + (%(D, {; G)) consists of lines in P(*)
such that the dual subspace of codimension two in |* | is tangent to the quadric
&G = q(G).

Proof Note that the dual assertion is that the line is tangent to the dual quadric
&∨G . The equation of the dual quadric is given by � (�(G); D, D) = 0. A line
spanned by the points [b] = [b0, . . . , b3−1] and [[] = [[0, . . . , [3−1] is tangent
to this quadric if and only if the restriction of this quadric to the line is given
by a singular binary form in coordinates on the line. The discriminant of this
quadratic form is � (�(G); b, b)� (�(G); [, [)−� (�(G); b, [)2. We assume that
the point G is a general point in the plane, in particular, it does not belong to - .
Thus, this expression vanishes if and only if %(b, [) = 0. �

Note that we have already encountered these tangential quadratic line com-
plexes in Example

exa:2.3.11exa:2.3.11
2.3.11.

4.2 Plane Curves
S:4.2

In this section we will consider linear determininantal representations of plane
curves. We will discuss some examples of determinantal representations of
higher degree for plane curves later in Subsection

6.2.16.2.1
6.2.1.

4.2.1 Nonsingular plane curves
SS:4.2.1

Let us first consider a linear determinantal representation q : |� | = P2 →
|* ⊗ + | of a nonsingular plane curve � = + ( 5 ) ⊂ P2 of degree 3. Since � is
nonsingular, q is proper and the sheaves L andM are invertible sheaves on �

L3 Theorem 4.2.1. Let 6 = 1
2 (3 − 1) (3 − 2) be the genus of the curve �. Then

(i) �0 (�,L) � *, �0 (�,M) � +;
(ii) �0 (�,L(−1)) = �0 (�,M(−1)) = {0};
(iii) L ⊗M � O� (3 − 1);
(iv) L �M∨ (3 − 1);
(v) �1 (�,L( 9)) = �1 (�,M( 9)) = {0}, 9 = −1, 0;
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(vi) deg(L) = deg(M) = 1
23 (3 − 1) = 6 − 1 + 3.

Proof Assertions (i)–(iv) were proven in a more general situation in Subsec-
tion

SS:4.1.2SS:4.1.2
4.1.2.By adjunction,l� = O� (3−3). Thus deg(L(−1)) = deg(M)(−1) =

6 − 1. By Riemann-Roch, �0 (�,L(−1) � �1 (�,L(−1)) = 0. Similarly, we
prove that �1 (�,L(−1)) = 0. The vanishing of �1 (�,L) and �1 (�,M) also
follow from Riemann-Roch and (i).
The last equality follows from the fact that the transpose map g : |* ⊗+ | →
|+ ⊗ * | is a projective isomorphism, and q is a projective map, hence, the
degree of T*+ (3 − 1) is equal to the degree of CT*+ (3 − 1), hence, deg(L) =
deg(M) = 1

23 (3 − 1). �

It follows from Theorem
dixondixon
4.1.15 that, conversely, a pair of invertible sheaves

L andM satisfying (i)– (iv) defines a linear determinantal representation q of
� with L = Tq ,M = CTq .

equiv Remark 4.2.2. It follows that a linear determinantal representation of � is
determined by an invertible sheafL such thatL(−1) ∈ Pic6−1 (�) \Θ, whereΘ
is hypersurface in Pic6−1 (�) of effective divisors of degree 6−1. The involution
� ↦→  � −� of Pic6−1 (�) replaces L(−1) withM(−1). A symmetric matrix
� defining the determinant representation is obtained after we choose a basis
in �0 (�,L) and �0 (�,M). Thus, we obtain ththe orbit space of the group
� = GL(3) × GL(3) acting on the set of square matrices of size 3 × 3 with
entries in �∨ by left and right multiplication is isomorphic to Pic6−1 (�) \ Θ.
Let us now consider the symmetric case L = M. Specializing Theorem

L3L3
4.2.1, we get

• L(−1)⊗2 � O� (3 − 3) = l� ;
• deg(L) = 1

23 (3 − 1);
• �0 (�,L(−1)) = {0}.

Recall that the first property implies that \ = L(−1) is a theta characteristic
on� that was defined in Subsection

SS:4.1.3SS:4.1.3
4.1.3. The third property says that \ is non-

effective. So, we obtain that a symmetric linear determinantal representation is
defined by a non-vanishing theta characteristic \ on � and the map

l = r : � → P3 = |* |

is defined by the complete linear system |L| = |\ (1) |.
We can also specialize to the symmetric case the definition of the map (

adjcurvesadjcurves
4.17).

It is a map

k : � → P((2 (*∨)) = |(2* |.
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In coordinates, the map is given by

k(G) = l̃(G) · C l̃(G),

where l̃(G) is the column of projective coordinates of the point l(G). It is clear
that the image of the map k is contained in the variety Q*∨ (1) of rank one
quadrics in P(*) = |*∨ |. It follows from the proof of Theorem

dixondixon
4.1.15 that

there exists a linear map q : P2 → |(2 (*∨) | such that its composition with the
rational map defined by taking the adjugate matrix is equal, after restriction to
�, to the map k. The image of q is a net # of quadrics in |* |. The image q(�)
is the locus of singular quadrics in # . For each point G ∈ �, we denote the
corresponding quadric by &G . The regular map l is defined by assigning to a
point G ∈ � the singular point of the quadric &G . The image - of � in |* | is a
curve of degree equal to degL = 1

23 (3 − 1).

dix2 Proposition 4.2.3. The restriction map

A : �0 ( |* |,O |* | (2)) → �0 (-,O- (2))

is bĳective. Under the isomorphism

�0 (-,O- (2)) � �0 (�,L⊗2) � �0 (�,O� (3 − 1)),

the space of quadrics in |* | is identified with the space of plane curves of
degree 3 − 1. The net of quadrics # is identified with the linear system of first
polars of the curve �.

Proof Reversing the proof of property (iii) from Lemma
L3L3
4.2.1, we see that

the image of � under the map k : � → P(* ⊗ +) spans the space. In our
case, this implies that the image of � under the map � → |(2 (*∨) | spans the
space of quadrics in the dual space. If the image of � in P(*) were contained
in a quadric &, then & would be apolar to all quadrics in the dual space, a
contradiction. Thus, the restriction map A is injective. Since the spaces have the
same dimension, it must be surjective.
The composition of the map 8 : P2 → |O |* | (2) |, G ↦→ &G , and the isomor-

phism |O |* | (2) | � |OP2 (3 − 1) | is a map B : P2 → |OP2 (3 − 1) |. A similar
map B′ is given by the first polars G ↦→ %G (�). We have to show that the two
maps coincide. Recall that %G (�) ∩ � = {2 ∈ � : G ∈ T2 (�)}. In the next
lemma, we will show that the quadrics &G , G ∈ T2 (�), form the line in # of
quadrics passing through the singular point of&2 equal to r(2). This shows that
the quadric &r(G) cuts out in l(�) the divisor r(%G (�) ∩ �). Thus, the curves
B(G) and B′(G) of degree 3 − 1 cut out the same divisor on �, and hence, they
coincide. �



230 Determinantal Equations

Lemma 4.2.4. Let, ⊂ (3 (*∨) be a linear subspace, and |, |s be the locus of
singular hypersurfaces. Assume G ∈ |, |s is a nonsingular point of |, |s. Then,
the corresponding hypersurface has a unique ordinary double point H and the
embedded tangent space TG ( |, |s) is equal to the hyperplane of hypersurfaces
containing H.

Proof Assume , = (3 (+∨). Then, |, |s coincides with the discriminant
hypersurface D3 ( |* |) of singular degree 3 hypersurfaces in |* |. If |, | is a
proper subspace, then |, |s = |, | ∩ D3 ( |* |). Since G ∈ |, |s is a nonsingular
point and the intersection is transversal. It follows from Example

ex:discrimex:discrim
1.2.3 that

TG ( |, |s) = TG (D3 ( |* |)) ∩ |, |. This proves the assertion.
�

We see that a pair (�, \), where � is a plane irreducible curve and \ is
a non-effective even theta characteristic on � defines a net N of quadrics in
P(�0 (�, \ (1))) � P3−1 such that � = Ns. Conversely, let N be a net of
quadrics in P3−1 = |+ |. We know from Corollary

cor:onecor:one
2.4.17 that the singular

locus of the discriminant hypersurface D2 (3 − 1) of quadrics in P3−1 is of
codimension 3 in P3 . Thus, a general net N intersects D2 (3 − 1) transversally
along a nonsingular curve � of degree 3. This gives a representation of �
as a symmetric determinant, and hence, defines an invertible sheaf L and a
non-effective even theta characteristic \. It is easy to see that L is equal to the
pull-back of the invertible sheafV1 on D2 (3 − 1) from Subsection

SS:2.4.2SS:2.4.2
2.4.2. This

gives a dominant rational map of varieties of dimension (32 + 33 − 16)/2

� (3, (2 (*∨))/PGL(*) d |OP2 (3) |/PGL(3). (4.24) eq4.8

The degree of this map is equal to the number of non-effective even theta
characteristics on a general curve of degree 3. In the next chapter, we will see
that the number of non-vanishing theta characteristics on a general nonsingular
curve of genus 6 is equal to 26−1 (26 + 1), where 6 = (3 − 1) (3 − 2)/2 is the
genus of the curve.

ex:d=2 Example 4.2.5. Take 3 = 2. Then, there is only one isomorphism class of L
with degL = 1. Since degL(−1) = −1, ℎ0 (�,L(−1)) = 0, and so, L � M,
and� admits a unique equivalence class of determinantal representationswhich
can be chosen to be symmetric. For example, if� = + (C0C1− C22), we can choose

� =

(
C0 C2
C2 C1

)
.

We have P(*) � P1, and r = l maps � isomorphically to P1. There is only one
family of contact curves of degree one. It is the system of tangents to �. It is
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parameterized by the conic in the dual plane, the dual conic of �. Thus, there
is a natural identification of the dual plane with P((2*).

d=3 Example 4.2.6. Take 3 = 3. Then, Pic6−1 (�) = Pic0 (�) and Θ = Pic0 (�) \
{O� }. Thus, the equivalence classes of determinantal representations are pa-
rameterized by the curve itself minus one point. There are three systems of
contact conics. Let ) be a contact conic cutting out a divisor 2(?1 + ?2 + ?3). If
we fix a group law on � defined by an inflection point o, then the points ?8 add
up to a nonzero 2-torsion point n . We have ?1 + ?2 + ?3 ∼ 2o + n . This implies
that L � O� (2o + n). The contact conic that cuts out the divisor 2(2o + n) is
equal to the union of the inflection tangent line at o and the tangent line at n
(which passes through o). We know that each nonsingular curve can be written
as the Hessian curve in three essentially different ways. This gives the three
ways to write � as a symmetric determinant and also explicitly write the three
algebraic systems of contact conics.
Let (L,M) define a determinantal representation of�. Let l : � ↩→ P(*) be

the reembedding of� inP(*) given by the linear system |L|. For any�0 ∈ |M|,
there exists� ∈ |L| such that�0+� is cut out by a conic. Thus, we can identify
the linear system |L| with the linear system of conics through �0. This linear
system defines a birational map f : P2 d P(*) with indeterminacy points in
�0. The map l : � → P(*) coincides with the restriction of f to �.
Consider the map

(l, r) : � → P(*) × P(+) � P2 × P2.

We claim that

• The image of (l, r) is a complete intersection of three hyperplane sections in
the Segre embedding of the product.

Let us prove it. Consider the restriction map (
ress1ress1
4.20)

* ×+ = �0 (P(*) × P(+),OP(* ) (1) � OP(+ ) (1)) → �0 (-,O- (1)),

where - is the image of � in P(* ⊗ +) under the composition of the map
(l, r) and the Segre map. Here, we identify the spaces �0 (�,L ⊗ M) and
�0 (-,O- (1)). Since the map (

ress1ress1
4.20) is surjective, and its target space is of

dimension 6, the kernel is of dimension 3. So, the image - of� in P(*) ×P(+)
is contained in the complete intersection of three hypersurfaces of type (1, 1).
By the adjunction formula, the intersection is a curve - ′ of arithmetic genus
1. Choose coordinates (D0, D1, D2) in*∨ and coordinates ({0, {1, {2) in + to be
able to write the three hypersurfaces by equations∑

0≤8, 9≤2
0
(:)
8 9
D8{ 9 = 0, : = 1, 2, 3.
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The projection of - to the first factor is equal to the locus of points [D0, D1, D2]
such that the system

2∑
8, 9=0

0
(:)
8 9
D8{ 9 =

2∑
9=0
(

2∑
8=0

0
(:)
8 9
D8){ 9 = 0, : = 1, 2, 3,

has a nontrivial solution ({0, {1, {2). The condition for this is

©«

2∑
8=0
0
(1)
80 D8

2∑
8=0
0
(1)
81 D8

2∑
8=0
0
(1)
82 D8

2∑
8=0
0
(2)
80 D8

2∑
8=0
0
(2)
81 D8

2∑
8=0
0
(2)
82 D8

2∑
8=0
0
(3)
80 D8

2∑
8=0
0
(3)
81 D8

2∑
8=0
0
(3)
82 D8

ª®®®®®®®¬
= 0. (4.25) newdet

This checks that the projection of - ′ to the factor P(*) is a cubic curve, the
same as the projection of - . Repeating the argument, replacing the first factor
with the second one, we obtain that the projections of - ′ and - to each factor
coincide. This implies that - = - ′.

Recall that a linear determinantal representation of � is defined by a linear
map q : � → * ⊗ + . Let us show that its image is the kernel of the restriction
map. We identify its target space �0 (-,O- (1)) with �0 (�,O� (3 − 1)) =
�0 (P2,OP2 (3−1)). In coordinates, themap q is defined by [G] ↦→ ∑

08 9 (G)D 9⊗
{8 , where� = + (det(08 9 )). The restriction map is defined by the map D8 ⊗ { 9 ↦→
�̄8 9 , where �8 9 is a (8 9)-cofactor of the adjugate matrix of (08 9 ) and the bar
means the restriction to �. The composition is given by

G ↦→
∑

0 98�8 9 = det(08 9 ) restricted to �.

Since the restriction of the determinant to � is zero, we see that � can be
identified with the linear system of hyperplane sections of P(*)×P(+) defining
the curve (l, r) (�).
Note that the determinant (

newdetnewdet
4.25) gives a determinantal representation of the

plane cubic � reembedded in the plane by the linear system |L|. It is given by
a linear map *∨ → �∨ ⊗ + obtained from the tensor g ∈ �∨ ⊗ * ⊗ + which
defines the linear map q : � → * ⊗ + .

4.2.2 The moduli space
SS:4.2.2

Let us consider themoduli space of pairs (�, �), where� is a nonsingular plane
curve of degree 3 and � is a matrix of linear forms such that � = + (det �).
To make everything coordinate-free and match our previous notations, we let
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P2 = |� | and consider � as a linear map q : � → * ⊗ + = Hom(*∨, +). Our
equivalence relation on such pairs is defined by the natural action of the group
GL(*) × GL(+) on * ⊗ + . The composition of q with the determinant map
* ⊗+ → Hom(∧3*∨,

∧3 +) � C is an element of (3 (�∨). It corresponds to
the determinant of the matrix �. Under the action of (6, ℎ) ∈ GL(*) ×GL(+),
it is multiplied by det 6 det ℎ, and hence. represents a projective invariant of the
action. Consider q as an element of �∨ ⊗ * ⊗ + , and let

det : �∨ ⊗ * ⊗ +/GL(*) × GL(+) → |(3�∨ |

be the map of the set of orbits defined by taking the determinant. We consider
this map as a map of sets since there is a serious issue here as to whether the
orbit space exists as an algebraic variety. However, we are interested only in the
restriction of the determinant map on the open subset (�∨ ⊗* ⊗ +)> defining
nonsingular determinantal curves. One can show that the quotient of this subset
is an algebraic variety.
We know that the fiber of the map det over a nonsingular curve � is bĳective

to Pic6−1 (�) \ Θ. Let be the universal family of nonsingular plane curves of
degree 3 (and genus 6). It defines a family

c̃ : P826−1
3
→ |(3 (�∨) |

whose fiber over a curve � is isomorphic to Pic6−1 (�). It is the relative Picard
scheme of c. It comes with a divisor T such that its intersection with c̃−1 (�)
is equal to the divisor Θ. It follows from the previous sections that there is an
isomorphism of algebraic varieties

(�∨ ⊗ * ⊗ +)>/GL(*) × GL(+) � P826−1
3
\ T .

This shows that the relative Picard scheme P826−1
3

is a unirational variety. An
easy computation shows that its dimension is equal to 32 + 1.
It is a very difficult question to decide whether the variety P826−1

3
is rational.

It is obviously rational if 3 = 2. It is known that it is rational for 3 = 3 and
3 = 4

Formanek
[306]. Let us sketch a beautiful proof of the rationality in the case 3 = 3

due to M. Van den Bergh
vdB
[782].

Theorem 4.2.7. Assume 3 = 3. Then, P820
3 is a rational variety.

Proof A point of P820 is a pair (�,L), where � is a nonsingular plane cubic
and L is the isomorphism class of an invertible sheaf of degree 0. Let �
be a divisor of degree zero such that O� (�) � L. Choose a line ℓ and let
� = ℓ∩� = ?1 + ?2 + ?3. Let ?8 +� ∼ @8 , 8 = 1, 2, 3, where @8 is a point. Since
?8 − @8 ∼ ? 9 − @ 9 , we have ?8 + @ 9 ∼ ? 9 + @8 . This shows that the lines 〈?8 , @ 9〉
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and 〈? 9 , @8〉 intersect at the same point A8 9 on �. Since, ?8 + @ 9 + A8 9 ∼ �, it is
immediately checked that

?1 + ?2 + ?3 + @1 + @2 + @3 + A12 + A23 + A13 ∼ 3�.

This easily implies that there is a cubic curve that intersects� at the nine points.
Together with �, they generate a pencil of cubics with the nine points as the set
of its base points. Let - = ℓ3 × (P2)3/S3, where S3 acts by

f :
(
(?1, ?2, ?3), (@1, @2, @3)

)
=

(
(?f (1) , ?f (2) , ?f (3) ), (@f (1) , @f (2) , @f (3) )

)
.

The variety - is easily seen to be rational. The projection to ℓ3/S3 � P3

defines a birational isomorphism between the product of P3 and (P2)3. For
each G = (P,Q) ∈ - , let 2(G) be the pencil of cubics through the points
?1, ?2, ?3, @1, @2, @3 and the points A8 9 = 〈?8 , @ 9〉, where (8 9) = (12), (23), (13).
Consider the set * ′ of pairs (G, �), � ∈ 2(G). The projection (D, �) ↦→ D has
fibres isomorphic to P1. Thus, the field of rational functions on - ′ is isomor-
phic to the field of rational functions on a conic over the field C(-). But this
conic has a rational point. It is defined by fixing a point in P2 and choosing
a member of the pencil passing through this point. Thus, the conic is isomor-
phic to P1 and C(- ′) is a purely transcendental extension of C(-). Now, we
define a birational map from P820

3 to -
′. Each (�,L) defines a point of * ′ by

ordering the set ℓ ∩ �, then defining @1, @2, @3 as above. The member of the
corresponding pencil through ?8’s, @8’s, and A8 9 ’s is the curve �. Conversely,
a point (G, �) ∈ - ′ defines a point (�,L) in P820

3. We define L to be the
invertible sheaf corresponding to the divisor @1 + @2 + @3. It is easy to see that
these maps are inverse to each other. �

Remark 4.2.8. If we choose a basis in each space �,*,+ , then a map q : � →
Hom(*,+) is determined by three matrices �8 = q(48). Our moduli space
becomes the space of triples (�1, �2, �3) of 3 × 3 matrices up to the action of
the group � = GL(3) ×GL(3) simultaneously by left and right multiplication

(f1, f2) · (�1, �2, �3) = (f1�1f
−1
2 , f1�2f

−1
2 , f1�3f

−1
2 ).

Consider an open subset of maps q such that �1 is an invertible matrix. Taking
(f1, f2) = (1, �−1

1 ), we may assume that �1 = �3 is the identity matrix. The
stabilizer subgroup of (�3 , �2, �3) is the subgroup of (f1, f2) such that f1f2 =

1. Thus, our orbit space is equal to the orbit space of pairs of matrices (�, �)
up to simultaneous conjugation. The rationality of this space is a notoriously
very difficult problem.
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4.2.3 Singular plane curves
SS:4.2.3

Assume = = 2, and let � be a reduced irreducible curve of degree 3. Let F be
a coherent torsion-free sheaf on �. Since dim� = 1, F is an aCM-sheaf. Also,
the cohomological condition for an aCM sheaf are vacuous, hence, F is an
aCM sheaf. In general, a Cohen-Macaulay module " over a local Noetherian
ring ' admits a dualizing '-module �, and

depth " +max{@ : Ext@
'
(", �) ≠ 0} = dim '

(see
Eisenbud
[281]). In our case, the global dualizing sheaf is

l� = lP2 (�) � O� (3 − 3),

the previous equality implies that EGC@O� (F , l� ) = 0, @ > 0, and

F → � (F ) := H><O� (F , l� ) � F ∨ ⊗ l�

is the duality, i.e. F → � (� (F )) is an isomorphism.
If F satisfies the conditions from Proposition

P4.2.2P4.2.2
4.1.14

�0 (�, F (−1)) = �1 (�, � (F )(−1)) = 0, (4.26) condd

we obtain a determinantal representation � = + (det �) with linear entries. For
a general point G on �, the corank of the matrix �(G) is equal to the rank of F .
We shall assume that

rank F = 1.

In this case, F is isomorphic to a subsheaf of the constant sheaf of rational
functions on �. It follows from the resolution of F that

j(F (−1)) = 0, j(F ) = 3.

Thus,
degF (−1) := j(F (−1)) + ?0 (�) − 1 = ?0 (�) − 1.

Also,
degF = deg� (F ) = 3 + ?0 (�) − 1 = 3 (3 − 1)/2.

Suppose G is a singular point of �. Then, either rank�(G) < 3 − 1, or the
image of the map q : P2 → |* × + |3−1 is tangent to |* × + |3−1 at a point
q(G) ∉ |* ×+ |3−2. The sheaf F is not invertible at G only in the former case.
It is known that the isomorphism classes of rank 1 torsion-free sheaves of

fixed degree 3 on an irreducible reduced algebraic curve � admit a moduli
space which is a projective variety that contains an irreducible component
which compactifies the generalized Jacobian variety Jac3 (�) of � (see

AltmanKleiman
[10],
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Rego
[609]). In the case of plane curves (and, by

Rego
[609], only in this case), the moduli

space is irreducible. Its dimension is equal to ?0 (�). We denote the moduli
space by Jac3 (�).
Let us describe in more detail rank 1 torsion-free sheaves F on �.
Let ? : �̄ → � be the normalization morphism. Its main invariant is the

conductor ideal c, the annihilator ideal of the sheaf ?∗O�̄ . Obviously, it can be
considered as an ideal sheaf in �̄ equal to ?−1 (c) (the image of ?∗ (c) in O�̄
under the multiplication map, or, equivalently, ?∗ (c)/torsion). For any G ∈ �,
cG is the conductor ideal of the normalization '̄ of the ring ' = O�,G equal to∏
H→G O�̄,H . Let

XG = length '̄/'.

Since, in our case, ' is a Gorenstein local ring, we have

dimC '̄/cG = 2 dimC '̄/cG = 2X

(see
Serre
[705], Chapter 4, n.11).

Suppose ' is isomorphic to the localization of C[[D, {]]/( 5 (D, {)) at the
origin. One can compute XG , using the following Jung-Milnor formula (see
Jung
[435],

Milnor
[520], §10).

deg cG = dimC '/� 5 + AG − 1, (4.27) jungmilnor

where � 5 is the ideal generated by partial derivatives of 5 , and AG is the number
of analytic branches of � at the point G.

Let F be the cokernel of the canonical injection of sheaves O� → ?∗ (O�̄ ).
Applying cohomology to the exact sequence

0→ O� → ?∗O�̄ → F→ 0, (4.28) conseq

we obtain the genus formula

j(?∗ (O�̄ )) = j(O�̄ ) = j(O� ) +
∑
G∈�

XG . (4.29) forchar

Consider the sheaf of algebras E=3 (F ) = H><O� (F , F ). Since E=3 (F )
embeds into E=3 (F[), where [ is a generic point of �, and the latter is
isomorphic to the field of rational functions on �, we see that E=3 (F ) is a
coherent O� -algebra. It is finitely generated as a O� -module, and hence, it is
finite and birational over �. We set � ′ = Spec E=3 (F ) and let

c = cF : C′→ �

be the canonical projection. The normalization map �̄ → � factors through
the map c. For this reason, c is called the partial normalization of �. Note that
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� ′ = � if F is an invertible sheaf. The algebra E=3 (F ) acts naturally on F
equipping it with a structure of an O�′-module, which we denote by F ′. We
have

F � c∗F ′.

Recall that for any finite morphism 5 : - → . of Noetherian schemes there is
a functor 5 ! from the category of O. -modules to the category of O- -modules
defined by

5 !M = H><O. ( 5∗O- ,M),

considered as a O- -module. The functor 5 ! is the right adjoint of the functor
5∗ (recall that 5 ∗ is the left adjoint functor of 5∗), i.e.

5∗H><O- (N , 5 !M) � H><O. ( 5∗N ,M), (4.30) adjiso

as bi-functors inM,N . If - and . admit dualizing sheaves, we also have

5 !l. � l-

(see
Hartshorne
[379, Chapter III, Exercises 6.10 and 7.2]).

Applying this to our map c : � ′→ �, and taking N = O�′ , we obtain

F � c∗c
!F .

It is known that, for any torsion-free sheaves A and B on � ′, a morphism
c∗A → c∗B is c∗O�′-linear (see, for example,

BeauvilleCounting
[50], Lemma 3.1). This implies

that the natural homomorphism

HomC′ (A,B) � HomC′ (c∗A, c∗B) (4.31) refl

is bĳective. This gives

F ′ � c!F .

For any F ′ ∈ Jac3 (� ′),

j(F ′) = 3 ′ + j(� ′)

(in fact, this equality is the definition of the degree 3 ′ of F ′, see
MumfordLectures
[539])

3 = deg c∗F ′ = j(c∗F ′) − j(O� )

= j(F ′) − j(O� ) = 3 ′ + j(O�′) − j(O�′).

Definition 4.2.9. The collection of O�,G-modules FG , G ∈ Sing(�), is called
the local type of F (

Piontkowski
[587]). The global invariant is the isomorphism class of

E=3O� (F ).
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It follows from Lemma 1.7 in
Piontkowski
[587] that the global type of F determines the

isomorphism class of F , up to tensoring with an invertible sheaf. Also, it is
proven in the same lemma that the global type depends only on the collection
of local types.

D Lemma 4.2.10. The global types of F and � (F ) are isomorphic, and

c!� (F ) � � (c!F ).

Proof The first assertion follows from the fact that the dualizing functor is
an equivalence of the categories. Taking M = l� in (

adjisoadjiso
4.30), we obtain that

c∗ (� (c!F )) � � (F ). The second assertion follows from (
reflrefl
4.31). �

In fact, by Lemma 3.1 from
BeauvilleCounting
[50], the map

c∗ : Jac3
′
(� ′) → Jac3 (�)

is a closed embedding of projective varieties.
It follows from the duality that j(F ) = −j(� (F )). Thus, the functor
F → � (F ) defines an involution ��′ on Jac?0 (�

′)−1 (� ′) and an involution
�� on Jac?0 (�)−1 (�). By Lemma

DD
4.2.10, the morphism c∗ commutes with the

involutions.
Let us describe the isomorphism classes of the local types of F . Let F̃ =

?−1 (F ) = ?∗ (F )/torsion. This is an invertible sheaf on �̄. The canonical map
F → ?∗ (?∗F ) defines the exact sequence

0→ F → ?∗F̃ → T→ 0, (4.32) cotype

where T is a torsion sheaf whose support is contained in the set of singular
points of �.

The immediate corollary of this is the following.

Lemma 4.2.11. For any G ∈ �,

dimC F (G) = multG�,

whereF (G) denotes the fiber of the sheafF andmultG� denotes themultiplicity
of the point G on �.

Proof Since the cokernel of F → ?∗F̃ is a torsion sheaf, we have

dimC F (G) = dimC F̃ (G) = dimC ?∗ (O�̄ ) (G). (4.33) last

It is clear that the dimension of the fiber of a coherent sheaf is equal to the
dimension of the fiber over the closed point of the formal completion of FG . Let
' (resp. '̄) denote the formal completion of O�,G (resp. its normalization). We
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know that '̄ =
∏
H→G '̄H , where '̄H � C[[C]]. Let (D, {) be local parameters in

' generating the maximal idealm of '. One can choose the latter isomorphism
in such a way that the composition of the map ' → '̄ with the projection map
'̄ → '̄8 is given by

(D, {) ↦→ (C<8
8
,

∞∑
9=<8

0 9 C
9 ),

where< 9 is the multiplicity of the analytic branch of the curve� corresponding
to the point H over G. It follows that

dimC '̄/m = dimC
AG∏
8=1
C[[C]]/(C<8 ) =

AG∑
8=1

<8 = multG�.

Thus, the last dimension in (
lastlast
4.33) is equal to the multiplicity, and we are

done. �

Corollary 4.2.12. Suppose F satisfies (
conddcondd
4.26), and hence, defines a linear

determinantal representation � = + (det �). Then,

3 − rank �(G) = multG�.

We denote by XG (F ) the length of TG . The length XG (F ) of TG is the local
invariant of the O�,G-module FG (see

Greuel
[357]). Let " be a rank 1 torsion-free

module over ' = O�,G and "̄ = " ⊗ '̄/torsion. Let & be the fraction field
of '. Since " ⊗' & � &, one can find a fractional ideal isomorphic to " . It
is known that the isomorphism class of " can be represented by a fractional
ideal � with local invariant X(") = dim "̄/" contained in '̄ and containing
the ideal c('), where c(") is the conductor ideal of '. This implies that local
types of F at G with XG (F ) = X are parameterized by the fixed locus of the
group '∗ acting on the Grassmann variety � (X, '̄/cG) � � (X, 2X) (see

Greuel
[357],

Remark 1.4,
Rego
[609], Theorem 2.3 (d)). The dimension of the fixed locus is equal

to XG . Thus, local types with fixed local invariant X are parameterized by a
projective variety of dimension X.
Example 4.2.13. Let � ′ be the proper transform of � under the blow-up of the
plane at a singular point G ∈ � of multiplicity<G . Since it lies on a nonsingular
surface, � ′ is a Gorenstein curve. The projection c : � ′ → � is a partial
normalization. Let F = c∗O�′ . Then, m<G�,G contains the conductor cG and
c(FG) = m<G−1

�,G
, hence, XG (F ) = <G − 1 (see

Rego
[609], p. 219).

Let F define a linear determinantal representation � = + (det �). We know
that � (F ) defines the linear representation corresponding to the transpose
matrix C �. The case when F � � (F ) corresponds to the symmetric matrix �.
We assume that rank F = 1, i.e. F is a theta characteristic \ on �.
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By duality, the degree of a theta characteritic \ is equal to ?0 (�) − 1 and
j(\) = 0. We know that each theta characteristic \ is isomorphic to c∗\ ′, where
\ ′ is a theta characteristic on the partial normalization of� defined by \. Since,
locally, E=3 (\ ′) � O�′ , we obtain that \ ′ is an invertible sheaf on � ′.
Let Jac(-) [2] denote the 2-torsion subgroup of the group Jac(-) of isomor-

phism classes of invertible sheaves on a curve - . Via tensor product it acts on
the set TChar(�) of theta characteristics on �. The pull-back map ?∗ defines
an exact sequence

0→ � → Jac(�) → Jac(�̄) → 0. (4.34) expic

The group Jac(�̄) is the group of points on the Jacobian variety of �̄, an abelian
variety of dimension equal to the genus 6 of �̄. The group � � O∗

�̄
/O∗

�
has

a structure of a commutative group, isomorphic to the product of additive and
multiplicative groups of C. Its dimension is equal to X =

∑
G XG . It follows from

the exact sequence that

Jac(�) [2] � (Z/2Z)26+1 , (4.35)

where 1 is equal to the dimension of the multiplicative part of �. It is easy to
see that

1 = #?−1 (Sing(�)) − #Sing(�) =
∑
G

(AG − 1). (4.36) k

Proposition 4.2.14. The group Jac(�) [2] acts transitively on the set of theta
characteristics with fixed global type. The order of the stabilizer subgroup of
a theta characteristic \ is equal to the order of the 2-torsion subgroup of the
kernel of c∗ : Jac(�) → Jac(� ′).

Proof Let \, \ ′ ∈ TChar(�) with the isomorphic global type. Since two
sheaves with isomorphic global type differ by an invertible sheaf, we have
\ ′ � \ ⊗ L for some invertible sheaf L. This implies

\ ′ ⊗ L � \ ′∨ ⊗ l� � \∨ ⊗ L−1 ⊗ l� � \ ⊗ L−1 � \ ⊗ L.

By Lemma 2.1 from
BeauvilleCounting
[50], c∗F � c∗F ⊗ L for some L ∈ Jac(�) if and only

if c∗L � O�′ . This gives c∗L2 � O�′ , and hence, c∗ (L) ∈ Jac(� ′) [2]. It
follows from exact sequence (

expicexpic
4.34) (where� is replacedwith� ′) that Jac(� ′) is

a divisible group, hence, the homomorphism ?∗ : Jac(�) [2] → Jac(� ′) [2] is
surjective. This implies that there existsM ∈ Jac(�) [2] such that c∗ (L⊗M) �
O�′ . Thus, we obtain

\ ′ ⊗M � \ ⊗ L ⊗M � \.
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This proves the first assertion. The second assertion follows from the loc. cit.
Lemma. �

Corollary 4.2.15. The number of theta characteristics of global type defined
by a partial normalization c : � ′ → � is equal to 226+1−1′ , where 1′ =
#c−1 (Sing(�)) − #Sing(�).

Recall that a theta characteristic \ defines a symmetric determinantal repre-
sentation of � if and only if it satisfies ℎ0 (\) = 0. So, we would like to know
how many such theta characteritics exist. A weaker condition is that ℎ0 (\) is
even. In this case, the theta characteristic is called even, and the remaining ones
are called odd. The complete answer on the number of even theta characteristics
on a plane curve � is not known. In the case when \ ∈ Jac(�), the answer,
in terms of some local invariants of singularities, can be found in

HarrisTheta
[374] (see

also
Libgober
[486] for a topological description of the local invariants). The complete

answer is known in the case when � has simple (or ADE) singularities.

simplesing1 Definition 4.2.16. A singular point G ∈ � is called a simple singularity if its
local ring is formally isomorphic to the local ring of the singularity at the origin
of one of the following plane affine curves

0: : G2 + H:+1 = 0, : ≥ 1,
3: : G2H + H:−1 = 0, : ≥ 4
46 : G3 + H4 = 0,
47 : G3 + GH3 = 0,
48 : G3 + H5 = 0.

According to
GreuelKnorrer
[356], a simple singularity is characterized by the property that

there are only finitely many isomorphism classes of indecomposable torsion-
free modules over its local ring. This implies that the set TChar(�) is finite if
� is a plane curve with only simple singularities.

The number of even theta characteristics on an irreducible reduced plane
curve � with only simple singularities is given in the following Theorem from
Piontkowski
[587].

Theorem 4.2.17. The number of invertible even theta characteristics on � is

226+1−1 if � has an �4B+1, �4B+2, or �7 singularity,
26+1−1 (26 + 1) if � has no singularities as above, and has an even number

of types �8B+2, �8B+3, �8B+4, �8B+3, �8B+4, �8B+5, �6,

26+1−1 (26 − 1) otherwise.
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The number of non-invertible even theta characteristics on a curve with sim-
ple singularities depends on their known local types. An algorithm to compute
them is given in

Piontkowski
[587].

E4.2.2 Example 4.2.18. Let � be a plane irreducible cubic curve. Suppose it has an
ordinary node. This is a simple singularity of type �1. We have Jac(�) � C∗
and Jac(�) [2] � Z/2Z. The only partial normalization is the normalization
map. There is one invertible theta characteristic \1 with ℎ0 (\1) = 0 and one non-
invertible theta characteristic \2 � ?∗O�̄ (−1) with ℎ0 (\2) = 0. It is isomorphic
to the conductor ideal sheaf on �. Thus, there are two isomorphism classes of
symmetric determinant representations for �. Without loss of generality we
may assume that � = + (C0C22 + C

3
1 + C0C

2
1). The theta characteristic \1 defines the

symmetric determinantal representation

C0C
2
2 + C

3
1 + C0C

2
1 = det

©«
0 C2 C1
C2 −C0 − C1 0
C1 0 −C0

ª®®¬ .
Observe that rank �(G) = 2 for all points G ∈ �. The theta characteristic \2
defines the symmetric determinantal representation

C0C
2
2 + C

3
1 + C0C

2
1 = det

©«
−C0 0 −C1
0 −C1 −C2
−C1 −C2 C1

ª®®¬ .
The rank of �(G) is equal to 1 for the singular point G = [1, 0, 0] and equals 2
for other points on �.

Assume now that � is a cuspidal cubic with equation + (C0C22 + C
3
1). There

are no invertible theta characteristics and there is only one non-invertible. It is
isomorphic to the conductor ideal sheaf on �. It defines the symmetric linear
determinantal representation

C0C
2
2 + C

3
1 = det

©«
0 −C2 −C1
−C2 −C1 0
−C1 0 −C0

ª®®¬ .
Remark 4.2.19. We restricted ourselves with irreducible curves. The case of
reducible nodal curves was studied in

CataneseTheta
[100].
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4.3 Linear Determinantal Representations of Surfaces
S:4.3

4.3.1 Normal surfaces in P3
SS:4.3.1

Let ( be a normal surface of degree 3 in P3. We are looking for an aCM sheaf
L on P3 with scheme-theoretical support equal to (. We also require that L is
of rank 1 and satisfies the additional assumption (

van1van1
4.15)

�0 (P3,L(−1)) = �2 (P3,L(−2)) = 0. (4.37) acm0

Every such L will define a linear determinantal representation of ( defined by
the resolution (

mainrxseqmainrxseq
4.6) of L such that rank �(G) = 3 − 1 for a general point on (.

Since the exact sequence (
mainrxseqmainrxseq
4.6) shows that F is generated by its global

sections, we see that F � O( (�) for some effective Weil divisor �. By taking
a general section of F and applying the Bertini theorem, we may assume that
� is an integral curve, nonsingular outside Sing(().

Recall that, as an aCM sheaf, L satisfies the cohomological condition

�1 (P3,L( 9)) = 0, 9 ∈ Z. (4.38) acm1

Let B be a nonzero section ofL whose zero subscheme is an integral curve such
that L � O( (�). The dual of the map O(

B→ L defines an exact sequence

0→ L∨ ( 9) → O( ( 9) → O� ( 9) → 0. (4.39) acm5

By Serre’s Duality,

�1 ((,L∨ ( 9)) � �1 ((,L(− 9) ⊗ l() � �1 ((,L(3 − 4 − 9)) = 0.

Applying cohomology, we obtain that the restriction map

�0 ((,O( ( 9)) → �0 (�,O� ( 9)) (4.40)

is surjective for all 9 ∈ Z. Recall that, by definition, this means that � is
projectively normal in P3. Conversely, if � is projectively normal, we obtain
(
acm1acm1
4.38).
Before we state the next theorem we have to remind ourselves of some facts

about the intersection theory on a normal singular surface (see
MumfordTopology
[538]).

Let f : (′ → ( be a resolution of singularities that we always assume to be
minimal. Let E = ∑

8∈� �8 be its reduced exceptional locus. For any curve � on
( we denote by f−1 (�) the proper transform of � and define

f∗ (�) := c−1 (�) +
∑
8∈�

=8�8 ,

where =8 are rational numbers uniquely determined by the system of linear
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equations

0 = f∗ (�) · �8 = ·c−1 (�) · � 9 +
∑
8∈�

=8�8 · � 9 = 0, 9 ∈ � .

Now, we define the intersection number � · � ′ of two curves ( by

� · � ′ := f∗ (�) · f∗ (� ′).

This can be extended by linearity to all Weil divisors on (. It coincides with the
usual intersection product on the subgroup of Cartier divisors. Also, it depends
only on the equivalence classes of the divisors.
Recall that ( admits a dualizing sheaf l( . It is a reflexive sheaf of rank 1,

hence, determines the linear equivalence class of a Weil divisors denoted by
 ( (the canonical class of (). It is a Cartier divisor class if and only if ( is
Gorenstein (as it will be in our case when ( is a hypersurface). We have

 (′ = f
∗ ( () + Δ,

where Δ =
∑
8∈� 08�8 is the discrepancy divisor. The rational numbers 08 are

uniquely determined from linear equations

 (′ · ' 9 =
∑
8∈�

08�8 · � 9 , 9 ∈ � .

For any reduced irreducible curve � on ( define

�( (�) := − 1
2 (f

∗ (�) − f−1 (�))2 + 1
2f
−1 (�) · Δ − X,

where X = ℎ0 (?∗O�̄/O� ) is our familiar invariant of the normalization of �.
The following results can be found in

Blache
[60].

blache Proposition 4.3.1. For any reduced curve � on ( and a Weil divisor � let
O� (�) be the cokernel of the natural injective map O( (� − �) → O(�)
extending the similar map on ( \ Sing((). Then,

(i) � ↦→ �( (�) extends to a homomorphismWDiv(()/Div(() → Qwhich
is independent of a resolution;
(ii) j(O� (�)) = j(O� ) + � · � − 2�( (�);
(iii) −2j(O� ) = �2 + � ·  ( − 2�( (�).

Example 4.3.2. Assume that ( has only ordinary double points. Then, aminimal
resolution f : (′ → ( has the properties that Δ = 0 and E = �1 + · · · + �: ,
where : is the number of singular points and each �8 is a smooth rational curves
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with �8 ·  (′ = 0 (see more about this in Chapter 8). Let f−1 (�) · �8 = <8 .
Then, easy computations show that

f∗ (�) = f−1 (�) + 1
2

=∑
8=1

<8�8 ,

�2 = f−1 (�)2 + 1
2

=∑
8=1

<2
8 ,

� ·  ( = f−1 (�) ·  (′ ,

�( (�) =
1
4

:∑
8=1

<2
8 − X.

Now, we are ready to state and to prove the following theorem.

arnaud Theorem 4.3.3. LetL be an aCM sheaf of rank 1. Then,L defines a linear de-
terminantal representation of ( if and only if L � O( (�) for some projectively
normal integral curve � with

deg� = 1
23 (3 − 1), ?0 (�) =

1
6
(3 − 2) (3 − 3) (23 + 1).

Proof Suppose L defines a linear determinantal representation of (. Then, it
is an aCM sheaf isomorphic to O( (�) for some integral projectively normal
curve �, and satisfies conditions (

acm0acm0
4.37) and (

acm1acm1
4.38).

We have

j(L(−1)) = ℎ0 (L(−1)) − ℎ1 (L(−1)) + ℎ2 (L(−1)).

By (
acm0acm0
4.37) and (

acm1acm1
4.38), the right-hand side is equal to ℎ2 (L(−1)). Let � be a

general plane section of ( and

0→ O( (−�) → O( → O� → 0 (4.41) exactseq

be the tautological exact sequence defining the ideal sheaf of �. Tensoring with
L(−1), we obtain an exact sequence

0→ L(−2) → L(−1) → L(−1) ⊗ O� → 0.

It shows that the condition ℎ2 (L(−2)) = 0 from (
acm0acm0
4.37) implies ℎ2 (L(−1)) = 0,

hence
j(L(−1)) = 0. (4.42) acm3

Similar computation shows that

j(L(−2)) = 0. (4.43) acm4
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Tensoring the exact sequence (
exactseqexactseq
4.41) with O( (� − �), we obtain an exact

sequence
0→ L(−2) → L(−1) → O� (� − �) → 0.

Applying the Riemann-Roch Theorem to the sheaf O� (� − �) on �, we get

degO� (� − �) = deg� − 3 = j(O� (� − �)) − j(O� )

= j(L(−1)) − j(L(−2)) − j(O� ) = −j(O� ).

This gives

deg� = 3 − j(O� ) = 3 − 1 + 1
2 (3 − 1) (3 − 2) = 1

23 (3 − 1),

as asserted.
Applying Proposition

blacheblache
4.3.1 (ii), we get,

j($� ) = −� · � + � · � + j(O� (� − �)) + 2�( (�)

= deg� − �2 + j(O� (� − �)) + 2�( (�).

By Proposition
blacheblache
4.3.1 (iii),

�2 = −� ·  ( − 2j(O� ) + 2�( (�) = −(3 − 4) deg� − 2j(O� ) + 2�( (�),

hence
−j(O� ) = (3 − 3) deg� + j(O� (� − �)).

The exact sequence

0→ O( (−�) → O( (� − �) → O� (� − �) → 0

gives

j(O� (� − �)) = j(L(−1)) − j(O( (−1)) = −j(O( (−1)).

Easy computations of the cohomology of projective space gives

j(O( (−1)) =
(
3

3

)
.

Combining all together, we obtain

?0 (�) = 1 − j(O� ) = 1 + 1
23 (3 − 1) (3 − 3) − 1

6
3 (3 − 1) (3 − 2)

=
1
6
(3 − 2) (3 − 3) (23 + 1),

as asserted. We leave it to the reader to reverse the arguments and prove the
converse. �
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Example 4.3.4. We will study the case of cubic surfaces in more detail in
Chapter 9. Let us consider the case of quartic surfaces. Assume first that (
is nonsingular. Then, L � O( (�), where � is a projectively normal smooth
curve of degree 6 and genus 3. The projective normality is equivalent to the
condition that � is not hyperelliptic (Exercise 4.10). We also have ℎ0 (O- (�))
= 4. According to Noether’s theorem, the Picard group of a general surface of
degree ≥ 4 is generated by a plane section. Since a plane section of a quartic
surface is of degree 4, we see that a general quartic surface does not admit a
determinantal equation. The condition that - contains a curve � as in above
imposes one algebraic condition on the coefficients of a quartic surface (one
condition on the moduli of quartic surfaces).
Suppose now that ( contains such a curve. By (

sheafGsheafG
4.8), the transpose deter-

minantal representation � = det C � is defined by the sheaf G � F ∨ (3) �
O( (3� − �), where � is a plane section of (. We have two maps l : ( →
P3, r : ( → P3 defined by the complete linear systems |� | and |3� −� |. Since
�2 = −� · ( −2j(O� ) = 4, the images are quartic surfaces. We will see later,
in Chapter 7, that the two images are related by a Cremona transformation from
|*∨ | = |� |∨ to |+∨ | = |3� − � |∨.
We will find examples with singular surface ( in the next Subsection.

4.3.2 Symmetroid surfaces
SS:4.3.2

These are surfaces in P3 which admit a linear determinantal representation
( = + (det �) with a symmetric matrix �. The name was coined by A. Cayley.
As we know from Subsection

SS:4.1.2SS:4.1.2
4.1.2, the determinantal representation is given

by an aCM sheaf L satisfying

L � L∨ (3 − 1). (4.44)

For example, if ( is a smooth surface of degree 3, we have L � O( (�) and we
must have � ∼ (3 − 1)� − �, where � is a plane section. Thus, numerically,
� = 1

2 (3−1)�, and we obtain�2 = 1
43 (3−1)2, � · ( = 1

23 (3−1) (3−4), and
?0 (�) = 1+ 3

83 (3−1) (3−3). It is easy to see that it disagrees with the formula
for ?0 (�) for any 3 > 1. A more obvious reason why a smooth surface cannot
be a symmetroid is the following. The codimension of the locus of quadrics in
P3 of corank ≥ 2 is equal to 3. Thus, each three-dimensional linear system of
quadrics intersects this locus, and hence, at some point G ∈ (, we must have
rank �(G) ≤ 3 − 2. Since our sheaf F is an invertible sheaf, this is impossible.

So, we have to look for singular surfaces. Let us state the known analog of
Theorem

multdetmultdet
4.1.1 in the symmetric case.
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We know from Remark
jzjz
2.4.19 that

deg Q* (2) =
1
6
3 (32 − 1). (4.45)

Thus, we expect that a general cubic symmetroid has four ordinary points,
a general quartic symmetroid has ten ordinary nodes, and a general quintic
symmetroid has twenty ordinary nodes.
Note that a symmetroid surface of degree 3 is the Jacobian hypersurface of

the web of quadrics equal to the image of the map q : P3 → Q3−1 defined by
the determinantal representation. We identify |� | with a web , of quadrics
in P(*). The surface ( is the discriminant hypersurface D( |� |) of , . The
left kernel map l : ( d P3−1 given by |O( (�) | maps ( onto the Jacobian
surface Jac( |� |) in P(*). |� | is a regular web of quadrics if |� | intersects the
discriminant hypersurface of quadrics in P(*) transversally. In this case, we
have the expected number of singular points on (, and all of them are ordinary
nodes. The surface ( admits a minimal resolution f : (̃ := D̃( |� |) → (. The
map l = l̃ ◦ f−1, where l̃ : (̃ → Jac( |� |). The map is given by the linear
system |f−1 (�) |. The Jacobian surface is a smooth surface of degree equal to
f−1 (�)2.

Proposition 4.3.5. Let (′ be the Jacobian surface of |� |, the image of ( under
the right kernel map r. Assume that |� | is a regular web of quadrics. Then,
Pic((′) contains two divisor classes [, ℎ such that ℎ2 = 3, [2 =

(3
3
)
, and

2[ = (3 − 1)ℎ −
:∑
8=1

�8 ,

where �8 are exceptional curves of the resolution f : (̃ → (.

Proof We identify (′ with the resolution (̃ by means of the map r̃. We take
ℎ = f∗ (O |� | (1)) and [ to be r̃∗ (O(′ (1)). We follow the proof of Proposition
dix2dix2
4.2.3 to show that, under the restriction |OP(* ) (2) | → |O(′ (2) |, the web of
quadrics |� | in |OP(* ) (2) | is identified with the linear system of polars of (.
This is a linear subsystem in |O( (3 − 1) |. Its pre-image in (̃ is contained in
the linear system | (3 − 1)ℎ − ∑:

8=1 �8 |. It is clear that ℎ2 = 3. It follows from
Proposition

jzjz
2.4.19 that 4[2 = (3 − 1)23 − 2

(3+1
3

)
. This easily gives the asserted

value of [2. �

Corollary 4.3.6.
deg (′ = [2 =

(3
3
)
.

Using the adjunction formula, we find

2?0 ([) − 2 = [2
( + [ ·  (′ = [

2 + 1
23 (3 − 1) (3 − 4) =

(3
3
)
+ 1

23 (3 − 1) (3 − 4)
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=
1
3
3 (3 − 1) (23 − 7).

This agrees with the formula for ?0 (�) in Theorem
arnaudarnaud
4.3.3.

It follows from the proposition that the theta characteristic \ defining the
symmetric determinantal representation of ( is isomorphic to O( (�), where
� = f∗ (�) for � ∈ |[ |. We have O( (�)⊗2 � O( (3 − 1) outside Sing((). This
gives \ [2] � O( (3 − 1).

evennodes Remark 4.3.7. Suppose 3 is odd. Let

b := 1
2 (3 − 1)ℎ − [.

Then,
∑:
8=1 �8 ∼ 2b. If 3 is even, we let

b := 1
23ℎ − [.

Then, ℎ + ∑:
8=1 �8 ∼ 2b. So, the set of nodes is even in the former case and

weakly even in the latter case (see
CataneseBabbage
[98]). The standard construction gives a

double cover of (′ ramified only over nodes if the set is even and over the union
of nodes and a member of |ℎ| if the set is weakly even. We will discuss even
and weakly sets of nodes on quartic surfaces in Chapter 12.
The bordered determinant formula (

borddetborddet
4.21) for the family of contact curves

extends to the case of surfaces. It defines a (3 − 1)-dimensional family of
contact surfaces of degree 3 − 1. The proper transform of a contact curve in (′
belongs to the linear system |[ |.

quarticsymmetroid Example 4.3.8. We will consider the case 3 = 3 later. Assume 3 = 4 and the
determinantal representation is transversal, i.e. ( has the expected number 10 of
nodes. Let (′ be its minimal resolution. The linear system [ consists of curves
of genus 3 and degree 6. It maps (′ isomorphically onto a quartic surface in
P3, the Jacobian surface of the web of quadrics defined by the determinantal
representation. The family of contact surfaces is a 3-dimensional family of
cubic surfaces passing through the nodes of ( and touching the surface along
some curve of genus 3 and degree 6 passing through the nodes. The double
cover corresponding to the divisor class b is a regular surface of general type
with ?6 = 1 and 22

1 = 2.
Consider the linear system |2ℎ − �1 | on (′. Since (ℎ − �1)2 = 2, it defines

a degree 2 map onto P2. Since (2ℎ − �8) · � 9 = 0, 8 > 10, the curves �8 , 8 ≠ 1,
are blown down to points. The curve '1 is mapped to a conic  on the plane.
One can show that the branch curve of the cover is the union of two cubic
curves and the conic  is tangent to both of the curves at each intersection
point. Conversely, the double cover of the plane branched along the union
of two cubics, which both everywhere are tangent to a nonsingular conic, is
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isomorphic to a quartic symmetroid (see
CossecReye
[172]). We refer to Chapter 1, where

we discussed the Reye varieties associated to =-dimensional linear systems of
quadrics in P=. In the case of the quartic symmetroid parameterizing singular
quadrics in a web of quadrics in P3, the Reye variety is an Enriques surface.
Assume 3 = 5 and ( has expected number 20 of nodes. The linear system

[ consists of curves of genus 11 and degree 10. It maps (′ isomorphically
onto a surface of degree 10 in P4, the Jacobian surface of the web of quadrics
defined by the determinantal representation. The family of contact surfaces
is a 4-dimensional family of quartic surfaces passing through the nodes of (
and touching the surface along some curve of genus 11 and degree 10 passing
through the nodes. The double cover - of ( branched over the nodes is a
regular surface of general type with ?6 = 4 and 22

1 = 10. It is easy to see that
the canonical linear system on - is the pre-image of the canonical linear system
on (. This gives an example of a surface of general type such that the canonical
linear system maps the surface onto a canonically embedded normal surface, a
counter-example to Babbage’s conjecture (see

CataneseBabbage
[98]).

Exercises
E:4

4.1 Find explicitly all equivalence classes of linear determinantal representations of
a nodal or a cuspidal cubic.ex:4.1

4.2 Show that a general binary form admits a unique equivalence class of symmetric
determinantal representations.ex:4.2

4.3 The following problems lead to a symmetric determinantal expression of a plane
rational curve

Kravitsky
[467].

(i) Show that, for any two degree 3 binary forms ?(D0, D1) and @(D0, D1),
there exists a unique 3 × 3 symmetric matrix �(?, @) = (18 9 ) whose entries
are bilinear functions of the coefficients of ? and @ such that����?(D0, D1) ?({0, {1)

@(D0, D1) @({0, {1)

���� = (D0{1 − D1{0)
∑

18 9D
8
0D
3− 9 { 90{

3− 9
1 .

(ii) Show that the determinant of �(?, @) (the bezoutiant of ?, @) vanishes if
and only if the two binary forms have a common zero.

(iii) Let ?0, ?1, ?2 be three binary forms of degree 3 without common zeros
and � be the image of the map

P1 → P2, [D0, D1] ↦→ [?0 (D0, D1), ?1 (D0, D1), ?2 (D0, D1)] .

Show that � is given by the equation 5 (C0, C1, C2) = |�(C0?1 − C1?0, C0?2 −
C2?0) | = 0.

(iv) Prove that 5 = |C0�(?1, ?2) − C1�(C0, C2) − C2�(C0, C1) | and any symmetric
determinantal equation of � is equivalent to this.

ex:4.3
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4.4 Let � = + ( 5 ) be a nonsingular plane cubic, ?1, ?2, ?3 be three non-collinear
points. Let (�0, �1, �2) define a quadratic Cremona transformation with funda-
mental points ?1, ?2, ?3. Let @1, @2, @3 be another set of three points such that
the six points ?1, ?2, ?3, @1, @2, @3 are cut out by a conic. Let (�0, �1, �2) define
a quadratic Cremona transformation with fundamental points @1, @2, @3. Show
that

�−3 det adj

(
�0�0 �0�1 �0�2
�1�0 �1�1 �1�2
�2�0 �2�1 �2�2

)
is a determinantal equation of �.ex:4.4

4.5 Find determinantal equations for a nonsingular quadric surface in P3.ex:4.5
4.6 Let � ⊂ Mat3 be a linear subspace of dimension 3 of the space of 3× 3 matrices.

Show that the locus of points G ∈ P3−1 such that there exists � ∈ � such that
�G = 0 is defined by

(3
3
)
equations of degree 3. In particular, for any determinantal

equation of a curve �, the images of � under the maps r : P2 → P3−1 and
l : P2 → P3−1 are defined by such a system of equations.ex:4.6

4.7 Show that the variety of nets of quadrics in P= whose discriminant curve is
singular is reducible.ex:4.7

4.8 Let � = + (det �) be a linear determinantal representation of a plane curve � of
degree 3 defiined by a rank 1 torsion-free sheaf F of global type c : � ′ → �.
Show that the rational map l : � → P3−1, G ↦→ |# (�(G)) | extends to a regular
map � ′ → P3−1.ex:4.8

4.9 Let � be a non-hyperelliptic curve of genus 3 and degree 6 in P3.
(i) Show that the homogeneous ideal of � in P3 is generated by four cubic

polynomials 50, 51, 52, 53.
(ii) Show that the equation of any quartic surface containing � can be written

in the form
∑
;8 58 = 0, where ;8 are linear forms.

(iii) Show that ( 50, 51, 52, 53) define a birational map 5 from P3 to P3. The
image of any quartic containing � is another quartic surface.

ex:4.9
4.10 Show that a curve of degree 6 and genus 3 in P3 is projectively normal if and

only if it is not hyperelliptic.ex:4.10
4.11 Let � be a nonsingular plane curve of degree 3 and L0 ∈ Pic6−1 (�) with

ℎ0 (L0) ≠ 0. Show that the image of � under the map given by the complete
linear system L0 (1) is a singular curve.ex:4.11

4.12 Let \ be a theta characteristic on a nonsingular plane curve of degree 3 with
ℎ0 (\) = 1. Show that the corresponding aCM sheaf on P2 defines an equation of
� expressed as the determinant of a symmetric (3 − 1) × (3 − 1) matrix (08 9 (C)),
where 08 9 (C) are of degree 1 for 1 ≤ 8, 9 ≤ 3 − 3, 01 9 (C) are of degree 2, and
03−13−1 (C) is of degree 3

BeauvilleDet
[51].ex:4.12

4.13 Let ( = + (det �) be a linear determinantal representation of a nonsingular quartic
surface in P3. Show that the four 3 × 3 minors of the matrix � obtained from �

by deleting one row define the equations of a projectively normal curve of degree
6 and genus 3 lying on (.ex:4.13

4.14 Show that any quartic surfaces containing a line and a rational normal cubic not
intersecting the line admits a determinantal representation.ex:4.14

4.15 Show that the Hessian hypersurface of a general cubic hypersurface in P4 is
hypersurface of degree 5 whose singular locus is a curve of degree 20. Show that
its general hyperplane section is a quintic symmetroid surface.ex:4.15
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4.16 Let � be a curve of degree # (3) = 3 (3 − 1)/2 and arithmetic genus � (3) =
1
6 (3 − 2) (3 − 3) (23 + 1) on a smooth surface of degree 3 in P3. Show that the
linear system |O( (−�) (3) | consists of curves of degree # (3 + 1) and arithmetic
genus � (3 + 1).ex:4.16

4.17 Let ( be a general symmetroid quintic surface in P3 and |! | be the linear system
of projectively normal curves of degree 10 and genus 11 that defines a symmetric
linear determinantal representation of (. Let (′ be the image of ( under the
rational map Φ : P3 → P3 = |O� |∨ and , be the web of quadrics defining the
linear determinantal representation of (. Consider the rational map ) : P4 d P4

defined by sending a point G ∈ P4 to the intersection of polar hyperplanes
%G (&), & ∈ , . Prove the following assertions (see

Todd
[757].

(i) The indeterminacy locus of ) is equal to (′.
(ii) The image of a general hyperplane � is a quartic hypersurface -� .
(iii) The intersection -� ∩ -� ′ = (′ ∪ �, � is a surface of degree 6.
(iv) Each 4-secant line of � contained in � (there are 20 of them) is blown

down under ) to 20 nodes of -� .
ex:4.17

4.18 Let ?1, . . . , ?5 be five points in P3 in general linear position. Prove the following
assertions (see

ToddBurhardt
[758]).

(i) Show that one can choose a point @8 9 on the line ?8 ? 9 such that the lines
?1@34, ?2@45, ?3@25, ?4@12, ?5@23 form a closed space pentagon.

(ii) Show that the union of five lines ?8 ? 9 and five lines defined in (i) is a
curve of arithmetic genus 11.

(ii) Show that the linear system of quartic surfaces containing the 10 lines
maps P3 to a quartic hypersurface in P4 with 45 nodes (the Burhardt quartic
threefold).

ex:4.18
4.19 Show that the equivalence classes of determinantal representations of a plane

curve � of degree 2: with quadratic forms as entries correspond to aCM sheaves
on � satisfying ℎ0 (F (−1)) = 0 and F (− 1

2 3 − 2)∨ � F (− 1
2 (3 − 2)).ex:4.19

4.20 Show that the union of 3 different hyperplanes in P= always admits a unique
equivalence class of symmetric linear determinant representations.ex:4.20

4.21 Show that the secant varieties of aVeronese varietyV3= are determinantal varieties.

Historical Notes

Apparently, O. Hesse was the first to state clearly the problem of representation
of the equation of a hypersurface as a symmetric determinant of linear forms
HesseBit
[390]. He did it for plane curves of order 4

Hesse4
[391]. He also showed that it can be

done in 36 different ways corresponding to 36 families of contact cubics. For
cubic curves, the representation follows from the fact that any cubic curve can
be written in three ways as the Hessian curve of another cubic curve. This fact
was also proven by Hesse

Hesse1
[387, p. 89].

The fact that a general plane curve of degree 3 can be defined by the determi-
nant of a symmetric 3×3 matrix with entries as homogeneous linear forms was
first proved by A. Dixon

Dixon
[226]. Dixon’s result was reproved later by J. Grace
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and A. Young
Grace
[351]. Modern expositions of Dixon’s theory were given by A.

Beauville
Beauville77
[46] and A. Tyurin

Tjurin1
[752]

Tjurin2
[753].

W. Barth was the first to introduce a non-invertible theta characteristics on a
singular plane curve

Barth0
[32]. It was studied for nodal plane curves by A. Beauville

Beauville77
[46] and F. Catanese

CataneseTheta
[100], and for arbitrary singular curves of degree ≤ 4, by

C.T.C. Wall
Wall
[797].

It was proved by L. Dickson
Dickson
[223] that any plane curve can be written as the

determinant of a not necessarily symmetric matrix with linear homogeneous
forms as its entries. The relationship between linear determinantal represen-
tations of an irreducible plane curve of degree 3 and line bundles of degree
3 (3 − 1)/2 was first established in

Cook
[166]. This was later elaborated by V. Vin-

nikov
Vinnikov
[791]. A deep connection between linear determinantal representations

of real curves and the theory of colligations for pairs of commuting operators
in a Hilbert space was discovered by M. Lifs̆ic

Lifsic
[490] and his school (see

Lifsic2
[491]).

The theory of linear determinantal representation for cubic surfaces was
developed by L. Cremona

Cremona1
[186]. Dickson proves in

Dickson
[223] that a general homo-

geneous form of degree 3 > 2 in A variables cannot be represented as a linear
determinant unless A = 3 or A = 4, 3 ≤ 3. The fact that a determinantal represen-
tation of quartic surfaces is possible only if the surface contains a projectively
normal curve of genus 3 and degree 6 goes back to F. Schur

Schur
[670]. However, it

was A. Coble who was the first to understand the reason: by Noether’s theorem,
the Picard group of a general surface of degree ≥ 4 is generated by a plane
section

Coble
[159], p. 39. The case of quartic surfaces was studied in detail in a series

of papers of T. Room
Room2
[632]. Quartic symmetroid surfaces were first studied by

A. Cayley
CayleyQuartic
[119]. They appear frequently in algebraic geometry. Coble’s paper

CobleSym
[157] studies (in a disguised form) the group of birational automorphisms of
such surfaces. There is a close relationship between quartic symmetroids and
Enriques surfaces (see

CossecReye
[172],

DKEII
[259, Chapter 7] M. Artin and D. Mumford

ArtinMumford
[25]

used quartic symmetroids in their celebrated construction of counter-examples
to the Lüroth Problem. A modern theory of symmetroid surfaces can be found
in papers of A. Beauville

BeauvilleDet
[51] and F. Catanese

CataneseBabbage
[98].

We refer to
BeauvilleDet
[51] for a comprehensive survey of the modern theory of deter-

minantal representations of hypersurfaces based on the theory of aCM sheaves.
In this paper, numerous special examples of determinantal representations are
found.
In classical algebraic geometry, a determinantal representation was consid-

ered as a special case of a projective generation of subvarieties in a projective
space. It seems that the geometric theory of determinantal varieties started from
the work of H. Grassmann in 1856

Grassmann
[355], where he considers the projective
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generation of a cubic surface by three collinear nets of planes. Grassmann’s
construction was greatly generalized in a series of papers by T. Reye

Reye16
[620]. In

the last paper of the series, he studies curves of degree 10 and genus 11, which
lead to linear determinantal representation of quintic surfaces.
Algebraic theory of determinantal varieties started from the work of F. S.

Macaulay
Macaulay
[500], where the fact that the loci of rank ≤ A square matrices are

Cohen-Macaulay varieties can be found. The classical account of the theory
of determinantal varieties is T. Room’s monograph

RoomBook
[633]. A modern treatment

of determinantal varieties can be found in several books
ACGH
[13],

Fulton
[315],

GH
[360].

The book by W. Bruns and U. Vetter
Bruns
[77] gives a rather complete account of

the recent development of the algebraic theory of determinantal ideals. The
formula for the dimensions and the degrees of determinantal varieties in the
general case of < × = matrices and also symmetric matrices goes back to C.
Segre

SegreDet
[693] and G. Giambelli

Giambelli
[331],

Giambelli2
[332].
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Theta Characteristics

Ch5

5.1 Odd and Even Theta Characteristics
S:5.1

We have already defined a theta characteristic in Chapter
Ch4Ch4
4 (see Definition

def:thetachardef:thetachar
4.1.19). In section

S:4.2S:4.2
4.2 we discussed theta characteristics on singular curves.

Here, we will study theta characteristics on a nonsingular projective curve in
more detail.

5.1.1 Theta characteristics and quadratic forms over a field of
characteristic 2

S:5.1.1

Let � be a nonsingular irreducible curve and \ be a theta characteristic on
�. We can consider it either as an invertible sheaf or a divisor on �. By
definition, \⊗2 � l� , or 2� ∼  � . It follows from the definition that two
theta characteristics, considered as divisor classes of degree 6 − 1, differ by a
2-torsion divisor class. Since the 2-torsion subgroup Jac(�) [2] is isomorphic
to (Z/2Z)26, there are 226 theta characteristics. However, in general, there is
no canonical identification between the set TChar(�) of theta characteristics
on � and the set Jac(�) [2]. One can say only that TChar(�) is an affine space
over the vector space of Jac(�) [2] � F26

2 .
There is one more structure on TChar(�) besides being an affine space

over Jac(�) [2]. Recall that the subgroup of 2-torsion points Jac(�) [2] is
equippedwith a natural symmetric bilinear formoverF2, called theWeil pairing.
It is defined as follows (see

ACGH
[13], Appendix B). Let n, n ′ be two 2-torsion

divisor classes. Choose their representatives�, � ′with disjoint supports.Write
div(q) = 2�, div(q′) = 2� ′ for some rational functions q and q′. Then,
q (�′)
q′ (�) = ±1. Here, for any rational function q defined at points G8 , q(

∑
8 G8) =

255
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8 q(G8). Now, we set

〈n, n ′〉 =
{

1 if q(� ′)/q′(�) = −1,
0 otherwise.

Note that the Weil pairing is a symplectic form, i.e. satisfies 〈n, n〉 = 0. One
can show that it is a nondegenerate symplectic form (see

MumTheta
[541]).

For any o ∈ TChar(�), define the function

@o : Jac(�) [2] → F2, n ↦→ ℎ0 (o + n) + ℎ0 (o).

The proof of the following Theorem can be found in
ACGH
[13], p. 290).

Theorem 5.1.1 (Riemann-Mumford Relation). The function @o is a quadratic
form on Jac(�) [2] whose associated symmetric bilinear form is equal to the
Weil pairing.

Later we shall see that there are two types of quadratic forms associated with
a fixed nondegenerate symplectic form: even and odd. They agree with our
definition of an even and odd theta characteristic. The number of even (odd)
theta characteristics is equal to 26−1 (26 + 1) (26−1 (26 − 1)).
An odd theta characteristic o is obviously effective, i.e. ℎ0 (o) > 0. If � is a

canonical curve, then divisor � ∈ |o | satisfies the property that 2� is cut out by
a hyperplane � in the space | � |∨, where � is embedded. Such a hyperplane
is called a contact hyperplane. It follows from above that a canonical curve
either has 26−1 (26 − 1) contact hyperplanes or infinitely many. The latter case
happens if and only if there exists a theta characteristic o with ℎ0 (o) > 1. Such
a theta characteristic is called a vanishing theta characteristic. An example of
a vanishing odd theta characteristic is the divisor class of a line section of a
plane quintic curve. An example of a vanishing even theta characteristic is the
unique 61

3 on a canonical curve of genus 4 lying on a singular quadric.
The geometric interpretation of an even theta characteristic is more subtle.

In the previous chapter, we related theta characteristics, both even and odd,
to determinantal representations of plane curves. The only known geometrical
construction related to space curves that I know is the Scorza construction of a
quartic hypersurface associated to a canonical curve and a non-effective theta
characteristic. We will discuss this construction in Section

S:5.5S:5.5
5.5.

Recall that a quadratic form on a vector space + over a field k is a map
@ : + → k such that @(0{) = 02@({) for any 0 ∈ k and any { ∈ + , and the map

1@ : + ×+ → k, ({, |) ↦→ @({ + |) − @({) − @(|)

is bilinear (it is called the polar bilinear form). We have 1@ ({, {) = 2@({) for
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any { ∈ + . In particular, @ can be reconstructed from 1@ if char(k) ≠ 2. In the
case when char(k) = 2, we get 1@ ({, {) ≡ 0, hence 1@ is a symplectic bilinear
form. Two quadratic forms @, @′ have the same polar bilinear form if and only if
@ − @′ = ;, where ; ({ +|) = ; ({) + ; (|), ; (0{) = 02; ({) for any {, | ∈ +, 0 ∈ k.
If k is a finite field of characteristic 2,

√
; is a linear form on + , and we obtain

1@ = 1@′ ⇐⇒ @ = @′ + ℓ2 (5.1) nonuniq

for a unique linear form ℓ : + → k.
Let 41, . . . , 4= be a basis in + and � = (08 9 ) = (1@ (48 , 4 9 )) be the matrix

of the bilinear form 1@ . It is a symmetric matrix with zeros on the diagonal if
char(k) = 2. It follows from the definition that

@(
=∑
8=1

G848) =
=∑
8=1

G2
8 @(48) +

∑
1≤8< 9≤=

G8G 908 9 .

The rank of a quadratic form is the rank of the matrix � of the polar bilinear
form. A quadratic form is called nondegenerate if the rank is equal to dim+ . In
a coordinate-free way, this is the rank of the linear map+ → +∨ defined by 1@ .
The kernel of this map is called the radical of 1@ . The restriction of @ to the
radical is identically zero. The quadratic form @ arises from a nondegenerate
quadratic form on the quotient space. In the following, we assume that @ is
nondegenerate.
A subspace ! of + is called singular if @ |! ≡ 0. Each singular subspace is

an isotropic subspace with respect to 1@ , i.e. 1@ ({, |) = 0 for any {, | ∈ � .
The converse is true only if char(k) ≠ 2.
Assume char(k) = 2. Since 1@ is a nondegenerate symplectic form, = = 2: ,

and there exists a basis 41, . . . , 4= in + such that the matrix of 1@ is equal to

�: =

(
0: �:

�: 0:

)
. (5.2) matrixJ

We call such a basis a standard symplectic basis. In this basis

@(
=∑
8=1

G848) =
=∑
8=1

G2
8 @(48) +

:∑
8=1

G8G8+: .

Assume, additionally, that k∗ = k∗2, i.e., each element in k is a square (e.g. k is
a finite or algebraically closed field). Then, we can further reduce @ to the form

@(
2:∑
8=1

G848) = (
=∑
8=1

U8G8)2 +
:∑
8=1

G8G8+: , (5.3) 222
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where @(48) = U2
8
, 8 = 1, . . . , =. This makes (

nonuniqnonuniq
5.1) more explicit. Fix a nonde-

generate symplectic form 〈, 〉 : + × + → k. Each linear function on + is given
by ℓ({) = 〈{, [〉 for a unique [ ∈ + . By (

nonuniqnonuniq
5.1), two quadratic forms @, @′ with

the polar bilinear form equal to 〈, 〉 satisfy

@({) = @′({) + 〈{, [〉2

for a unique [ ∈ + . Choose a standard symplectic basis. The quadratic form
defined by

@0 (
2:∑
�=1

G848) =
:∑
8=1

G8G8+:

has the polar bilinear form equal to the standard symplectic form. Any other
form with the same polar bilinear form is defined by

@({) = @0 ({) + 〈{, [@〉2,

where

[@ =

2:∑
8=1

√
@(48)48 .

From now on, k = F2, the field of two elements. In this case, 02 = 0 for
any 0 ∈ F2. The formula (

nonuniqnonuniq
5.1) shows that the set &(+) of quadratic forms

associated with the standard symplectic form is an affine space over + with
addition @ + [, @ ∈ &(+), [ ∈ + , defined by

(@ + [) ({) = @({) + 〈{, [〉 = @({ + [) + @([). (5.4) translate

The number

Arf (@) =
:∑
8=1

@(48)@(48+: ) (5.5) arf

is called the Arf invariant of @. One can show that the Arc invariant is indepen-
dent of the choice of a standard symplectic basis (see

GrossHarris
[361], Proposition 1.11).

A quadratic form @ ∈ &(+) is called even (resp. odd) if Arf (@) = 0 (resp.
Arf (@) = 1).

If we choose a standard symplectic basis for 1@ and write @ in the form
@0 + [@ , then we obtain

Arf (@) =
:∑
8=1

U8U8+: = @0 ([@) = @([@). (5.6) arf2
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In particular, if @′ = @ + { = @0 + [@ + {,

Arf (@′) + Arf (@) = @0 ([@ + {) + @0 ([@) = @0 ({) + 〈{, [@〉 = @({). (5.7) arf3

It follows from (
arf2arf2
5.6) that the number of even (resp. odd) quadratic forms is

equal to the cardinality of the set @−1
0 (0) (resp. @

−1
0 (1)). We have

|@−1
0 (0) | = 2:−1 (2: + 1), |@−1

0 (1) | = 2:−1 (2: − 1). (5.8) even2

This is easy to prove by using induction on : .
Let Sp(+) be the group of linear automorphisms of the symplectic space + .

If we choose a standard symplectic basis then

Sp(+) � Sp(2:, F2) = {- ∈ GL(2:) (F2) : C- · �: · - = �: }.

It is easy to see by induction on : that

|Sp(2:, F2) | = 2:
2 (22: − 1) (22:−2 − 1) · · · (22 − 1). (5.9) grouporder

The group Sp(+) has two orbits in &(+), the set of even and the set of odd
quadratic forms. An even quadratic form is equivalent to the form @0 and an
odd quadratic form is equivalent to the form

@1 = @0 + 4: + 42: ,

where (41, . . . , 42: ) is the standard symplectic basis. Explicitly,

@1 (
2:∑
8=1

G848) =
:∑
8=1

G8G8+: + G2
: + G

2
2: .

The stabilizer subgroup Sp(+)+ (resp. Sp(+)−) of an even quadratic form (resp.
an odd quadratic form) is a subgroup of Sp(+) of index 2:−1 (2: + 1) (resp.
2:−1 (2: − 1)). If + = F2:

2 with the symplectic form defined by the matrix �: ,
then Sp(+)+ (resp. Sp(+)−) is denoted by O(2:, F2)+ (resp. O(2:, F2)−).

Let X → ( be a smooth projective morphism whose fiber -B over a point
B ∈ ( is a curve of genus 6 > 0 over the residue field ^(B) of B. Let Pic=X/S → (

be the relative Picard scheme of X/(. It represents the sheaf in étale topology
on ( associated to the functor on the category of (-schemes defined by assigning
to a (-scheme ) the group Pic3 (- ×( )) of isomorphism classes of invertible
sheaves on - ×( ) of relative degree = over ) modulo tensor product with
invertible sheaves coming from ) . The (-scheme Pic=X/( → ( is a smooth
projective scheme over (. Its fiber over a point B ∈ ( is isomorphic to the Picard
variety Pic=XB/^ (B) over the field ^(B). The relative Picard scheme comes with
a universal invertible sheafU on X ×( Pic=X/( (locally in étale topology). For
any point H ∈ Pic=X/( over a point B ∈ (, the restriction ofU to the fiber of the
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second projection over H is an invertible sheafUH on -B ⊗^ (B) ^(H) representing
a point in Pic= (XB ⊗ ^(H)) defined by H.

For any integer <, raising a relative invertible sheaf into <-th power defines
a morphism

[<] : Pic=X/( → Pic<=X/( .

Taking = = 26 − 2 and < = 2, the pre-image of the section defined by the
relative canonical class lX/( is a closed subscheme of Pic6−1

X/( . It defines a
finite cover

TCX/( → (

of degree 226. The pull-back ofU to TCX/( defines an invertible sheaf T over
P = X ×( TCX/( satisfying T ⊗2 � lP/TCX/( . By a theorem of Mumford
MumTheta
[541], the parity of a theta characteristic is preserved in an algebraic family,
thus the function TCX/( → Z/2Z defined by H ↦→ dim�0 (*H ,TH) mod 2 is
constant on each connected component of TCX/( . Let TCev

X/( (resp. TC
odd
X/()

be the closed subset of TCX/( , where this function takes the value 0 (resp. 1).
The projection TCev

X/( → ( (resp. TCodd
X/( → () is a finite cover of degree

26−1 (26 + 1) (resp. 26−1 (26 − 1)).
It follows from above that TCX/( has at least two connected components.
Now, take ( = |OP2 (3) |ns to be the space of nonsingular plane curves � of

degree 3 and X → |OP2 (3) |ns be the universal family of curves defined by
{(G, �) : G ∈ �}. We set

TC3 = TCX/( , TCev/odd
3

= TCev/odd
X/( .

The proof of the following Proposition can be found in
BeauvilleMon
[47].

beauville2 Proposition 5.1.2. If 3 is even or 3 = 3, TC3 consists of two irreducible
components TC4{

3
and TC>33

3
. If 3 ≡ 1 mod 4, then TC4{

3
is irreducible

but TC>33
3

has two irreducible components, one of which is the section of
TC3 → |OP2 (3) | defined by OP2 ((3 − 3)/2). If 3 ≡ 3 mod 4, then TC>33

3

is irreducible but TC4{
3

has two irreducible components, one of which is the
section of TC3 → |OP2 (3) | defined by OP2 ((3 − 3)/2).

Let TC0
3
be the open subset of TCev

3
corresponding to the pairs (�, o) with

ℎ0 (o) = 0. It follows from the theory of symmetric determinantal representa-
tions of plane curves that TC0

3
/PGL(3) is an irreducible variety covered by

an open subset of a Grassmannian. Since the algebraic group PGL(3) is con-
nected and acts freely on a Zariski open subset of TC0

3
, we obtain that TC0

3
is

irreducible. It follows from the previous Proposition that

TC0
3 = TC

ev
3 if 3 . 3 mod 4. (5.10)
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Note that there exist coarse moduli spacesM4{
6 andModd

6 of curves of genus
6 together with an even (odd) theta characteristic. We refer to

Cornalba
[170] for the

proof of the irreducibility of these varieties and for the construction of certain
compactifications of these spaces. The recent paper of G. Farkas and A. Verra
FarkasVerra
[297] established the birational properties of the varietiesM4{

6 .

5.2 Hyperelliptic curves
S:5.2

5.2.1 Equations of hyperelliptic curves
SS:5.2.1

Let us first describe explicitly theta characteristics on hyperelliptic curves.
Recall that a hyperelliptic curve of genus 6 is a nonsingular projective curve -
of genus 6 > 1 admitting a degree 2 map i : � → P1. By Riemann–Hurwitz
formula, there are 26 + 2 branch points ?1, . . . , ?26+2 in P1. Let 526+2 (C0, C1) be
a binary form of degree 26 + 2 whose zeros are the branch points. The equation
of � in the weighted projective plane P(1, 1, 6 + 1) is

C22 + 526+2 (C0, C1) = 0. (5.11) hypeq

Recall that a weighted projective space P(q) = P(@0, . . . , @=) is defined as the
quotient C=+1 \ {0}/C∗, where C∗ acts by

C : [I0, . . . , I=] ↦→ [C@0 I0, . . . , C
@= I=] .

A more general definition of P(q) which works over Z is

P(q) = Proj Z[)0, . . . , )=],

where the grading is defined by setting deg)8 = @8 . Here, q = (@0, . . . , @=) are
integers ≥ 1. We refer to

DolgachevWeighted
[233] or

Fletcher
[421] for the theory of weighted projective

spaces and their subvarieties. Note that a hypersurface in P(q) is defined by
a homogeneous polynomial where the unknowns are homogeneous of degree
@8 . Thus, equation (

hypeqhypeq
5.11) defines a hypersurface of degree 26 + 2. Although, in

general, P(q) is a singular variety, it admits a canonical sheaf

lP(q) = OP(q) (−|q|),

where |q| = @0 + · · · + @=. Here, the Serre sheaves are understood in the sense
of the theory of projective spectrums of graded algebras. There is also the
adjunction formula for a hypersurface - ⊂ P(q) of degree 3

l- = O- (3 − |q|). (5.12)
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In the case of a hyperelliptic curve, we have

l� = O� (6 − 1).

The morphism i : � → P1 corresponds to the projection [C0, C1, C2] ↦→ [C0, C1]
and we obtain that

l� = i
∗OP1 (6 − 1).

The weighted projective space P(1, 1, 6 + 1) is isomorphic to the projective
cone in P6+2 over the Veronese curve {6+1 (P1) ⊂ P6+1. The hyperelliptic curve
is isomorphic to the intersection of this cone and a quadric hypersurface in P6+1
not passing through the vertex of the cone. The projection from the vertex to the
Veronese curve is the double cover i : � → P1. The canonical linear system
| � | maps � to P6 with the image equal to the Veronese curve {6−1 (P1).
A very useful birational model of a hyperelliptic curve is its plane model as

a curve of degree 6+2 with a singular point o of multiplicity 6. It is obtained as
the image of a regular map q : � → P2 given by the liner series |61

2 + a|, where
a is an effective divisor of degree 6. The image of a is the singular point o, and
a is equal the pre-image of o under the normalization map. In particular, taking
a supported at one point, we obtain that every hyperelliptic curve of genus 6
admits plane model as a curve of degree 6 + 2 with a simple singular points of
type 06−1.

5.2.2 2-torsion points on a hyperelliptic curve
SS:5.2.2

Let 21, . . . , 226+2 be the ramification points of the map i. We assume that
i(28) = ?8 . Obviously, 228 − 22 9 ∼ 0, hence the divisor class of 28 − 2 9 is of
order 2 in Pic(�). Also, for any subset � of the set �6 = {1, . . . , 26 + 2},

U� =
∑
8∈�

28 − #�226+2 =
∑
8∈�
(28 − 226+2) ∈ Pic(�) [2] .

Now, observe that

U�6 =
∑
8∈�6

28 − (26 + 2)226+2 = div(q) ∼ 0, (5.13) zero

where q = C2/(1C0 − 0C1)6+1 and ?26+2 = [0, 1] (we consider the fraction
modulo (

hypeqhypeq
5.11) defining �). Thus,

28 − 2 9 ∼ 228 +
∑

:∈�6\{ 9 }
2: − (26 + 2)226+2 ∼ U�6\{8, 9 } .
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Adding to U� the zero divisor 226+2 − 226+2, we can always assume that #( is
even. Also adding the principal divisor U�6 , we obtain that U� = U�̄ , where �̄
denotes �6 \ �.
Let F�62 � F

26+2
2 be the F2-vector space of functions �6 → F2, or, equiva-

lently, subsets of �6. The sum is defined by the symmetric sum of subsets

� + � = � ∪ � \ (� ∩ �).

The subsets of even cardinality form a hyperplane. It contains the subsets ∅ and
�6 as a subspace of dimension 1. Let �6 denote the quotient space. Elements
of �6 are represented by subsets of even cardinality up to the complementary
set (bifid maps in terminology of A. Cayley). We have

�6 � F
26
2 ,

hence the correspondence � ↦→ U� defines an isomorphism

�6 � Pic(�) [2] . (5.14) weil*

Note that �6 carries a natural symmetric bilinear form

4 : �6 × �6 → F2, 4(�, �) = #� ∩ � mod 2. (5.15) sympform

This form is symplectic (i.e. 4(�, �) = 0 for any �) and nondegenerate. The
subsets

�8 = {28 − 1, 28}, �8 = {28, 28 + 1}, 8 = 1, . . . , 6, (5.16) sympbasis

form a standard symplectic basis.
Under isomorphism (

weil*weil*
5.14), this bilinear form corresponds to theWeil pairing

on 2-torsion points of the Jacobian variety of �.
Remark 5.2.1. The symmetric groupS26+2 acts on �6 via its action on �6 and
preserves the symplectic form 4. This defines a homomorphism

B6 : S26+2 → Sp(26, F2).

If 6 = 1, Sp(2, F2) � S3, and the homomorphism B1 has the kernel isomorphic
to the group (Z/2Z)2. If 6 = 2, the homomorphism B2 is an isomorphism. If
6 > 2, the homomorphism B6 is injective but not surjective.

5.2.3 Theta characteristics on a hyperelliptic curve
SS:5.2.3

For any subset ) of �6 set

o) =
∑
8∈)

28 + (6 − 1 − #)226+2) = U) + (6 − 1)226+2.
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We have
2o) ∼ 2U) + (26 − 2)226+2 ∼ (26 − 2)226+2.

It follows from the proof of the Riemann–Hurwitz formula that

 � = i
∗ ( P1 ) +

∑
8∈�6

28 .

Choose a representative of  P1 equal to −2?26+2 and use (
zerozero
5.13) to obtain

 � ∼ (26 − 2)226+2.

This shows that o) is a theta characteristic. Again adding and subtracting 226+2
we may assume that #) ≡ 6 + 1 mod 2. Since ) and )̄ define the same theta
characteristic, we will consider the subsets up to taking the complementary set.
We obtain a set&6 which has a natural structure of an affine space over �6, the
addition is defined by

o) + U� = o) +� .

Thus, all theta characteristics are uniquely represented by the divisor classes
o) , where ) ∈ &6.
An example of an affine space over + = F26

2 is the space of quadratic forms
@ : F26

2 → F2 whose associated symmetric bilinear form 1@ coincides with the
standard symplectic form defined by (

matrixJmatrixJ
5.2). We identify + with its dual +∨ by

means of 10 and set @ + ; = @ + ;2 for any ; ∈ +∨.
For any ) ∈ &6, we define the quadratic form @) on �6 by

@) (�) = 1
2 (#() + �) − #)) = #) ∩ � + 1

2 #� = 1
2 #� + 4(�, )) mod 2.

We have (all equalities are modulo 2)

@) (� + �) + @) (�) + @) (�)

= 1
2 (#(� + �) + #� + #�) + 4(� + �, )) + 4(�, )) + 4(�, )) = #� ∩ �.

Thus, each theta characteristic can be identified with an element of the space
&6 = &(�6) of quadratic forms on �6 with polar form 4.

Also notice that

(@) + U� ) (�) = @) (�) + 4(�, �) = 1
2 #� + 4(), �) + 4(�, �)

= 1
2 #� + 4() + �, �) = @) +� (�).

Lemma 5.2.2. Let o) be a theta characteristic on a hyperelliptic curve � of
genus 6 identified with a quadratic form on �6. Then, the following properties
are equivalent:
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(i) #) ≡ 6 + 1 mod 4;
(ii) ℎ0 (o) ) ≡ 0 mod 2;
(iii) @) is even.

Proof Without loss of generality, we may assume that ?26+2 is the point (0, 1)
at infinity in P1. Then, the field of rational functions on � is generated by the
functions H = C2/C0 and G = C1/C0. We have

o) =
∑
8∈)

28 + (6 − 1 − #))226+2 ∼ (6 − 1 + #))226+2 −
∑
8∈)

28 .

Any function q from the space ! (o) ) = {q : div(q) + o) ≥ 0} has a unique
pole at 226+2 of order < 26 + 1. Since the function H has a pole of order
26 + 1 at 226+2, we see that q = i∗ (?(G)), where ?(G) is a polynomial of
degree ≤ 1

2 (6 − 1 + #)) in G. Thus. ! (o) ) is isomorphic to the linear space
of polynomials ?(G) of degree ≤ 1

2 (6 − 1 + #)) with zeros at ?8 , 8 ∈ ) . The
dimension of this space is equal to 1

2 (6 + 1 − #)). This proves the equivalence
of (i) and (ii).
Let

* = {1, 3, . . . , 26 + 1} ⊂ �6 (5.17) setU

be the subset of odd numbers in �6. If we take the standard symplectic basis
in �6 defined in (

sympbasissympbasis
5.16), then we obtain that @* = @0 is the standard quadratic

form associated to the standard symplectic basis. It follows from (
arf2arf2
5.6) that @)

is an even quadratic form if and only if ) = * + �, where @* (�) = 0. Let �
consists of : even numbers and B odd numbers. Then, @* (�) = #* ∩ � + 1

2 #� =
< + 1

2 (: + <) = 0 mod 2. Thus #) = #(* + () = #* + #� − 2#* ∩ ( =
(6 + 1) + (: + <) − 2< = 6 + 1 + : − <. Then, < + 1

2 (: + <) is even, hence
3<+: ≡ 0 mod 4. This implies that :−< ≡ 0 mod 4 and #) ≡ 6+1 mod 4.
Conversely, if #) ≡ 6 + 1 mod 4, then : −< ≡ 0 mod 4 and @* (�) = 0. This
proves the assertion. �

5.3 Theta Functions
S:5.3

5.3.1 Jacobian variety
SS:5.3.1

Recall the definition of the Jacobian variety of a nonsingular projective curve
� of genus 6 over C. We consider � as a compact oriented 2-dimensional
manifold of genus 6. We view the linear space �0 (�,  � ) as the space of
holomorphic 1-forms on �. By integration over 1-dimensional cycles, we get a
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homomorphism of Z-modules

] : �1 (�,Z) → �0 (�,  � )∨, ](W) (l) =
∫
W

l.

The image of this map is a lattice Λ of rank 26 in �0 (�,  � )∨. The quotient
by this lattice

Jac(�) = �0 (�,  � )∨/Λ

is a complex 6-dimensional torus. It is called the Jacobian variety of �.
Recall that the cap product

∩ : �1 (�,Z) × �1 (�,Z) → �2 (�,Z) � Z

defines a nondegenerate symplectic form on the group �1 (�,Z) � Z26. Let
U1, . . . , U6, V1, . . . , V6 be a standard symplectic basis. We choose a basis
l1, . . . , l6 of holomorphic 1-differentials on � such that∫

U8

l 9 = X8 9 . (5.18) normm

Let

g8 9 =

∫
V8

l8 .

The complex matrix g = (g8 9 ) is called the period matrix. The basisl1, . . . , l6
identifies �0 (�,  � )∨ with C6 and the period matrix identifies the lattice Λ
with the lattice Λg = [g �6]Z26, where [g �6] denotes the block-matrix of size
6 × 26. The period matrix g = <(g) +

√
−1=(g) satisfies

Cg = g, =(g) > 0.

As is well-known (see
GH
[360]) this implies that Jac(�) is a projective algebraic

group, i.e. an abelian variety. It is isomorphic to the Picard scheme Pic0
�/C.

We consider any divisor � =
∑
=GG on � as a 0-cycle on �. The divisors of

degree 0 are boundaries, i.e. � = mW for some 1-chain V. By integrating over V
we get a linear function on �0 (�,  � ) whose coset modulo Λ = ](�1 (�,Z))
does not depend on the choice of V. This defines a homomorphism of groups
? : Div0 (�) → Jac(�). The Abel-Jacobi Theorem asserts that ? is zero on
principal divisors (Abel’s part), and surjective (Jacobi’s part). This defines an
isomorphism of abelian groups

a : Pic0 (�) → Jac(�) (5.19)

which is called the Abel-Jacobi map. For any positive integer 3 let Pic3 (�)
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denote the set of divisor classes of degree 3. The group Pic0 (�) acts simply
transitively on Pic3 (�) via the addition of divisors. There is a canonical map

D3 : � (3) → Pic3 (�), � ↦→ [�],

where we identify the symmetric product with the set of effective divisors of
degree 3. One can show that Pic3 (�) can be equipped with a structure of a
projective algebraic variety (isomorphic to the Picard scheme Pic3

�/C) such that
the map D3 is a morphism of algebraic varieties. Its fibers are projective spaces,
the complete linear systems corresponding to the divisor classes of degree 3.
The action of Pic0 (�) = Jac(�) on Pic3 (�) is an algebraic action equipping
Pic3 (�) with a structure of a torsor over the Jacobian variety.

Let
,A
6−1 = {[�] ∈ Pic6−1 (�) : ℎ0 (�) ≥ A + 1}.

In particular,,0
6−1 was denoted byΘ in Theorem

dixondixon
4.1.15, where we showed that

the invertible sheaves L0 ∈ Pic6−1 (�) defining a determinantal equation of a
plane curve of genus 6 belong to the set Pic6−1 (�) \,0

6−1. The fundamental
property of the loci,A

6−1 is given by the following Riemann-Kempf Theorem.

RKT Theorem 5.3.1.

,A
6−1 = {G ∈ ,

0
6−1 : multG,0

6−1 ≥ A + 1}.

Here, multG denotes the multiplicity of a hypersurface at the point G.

In particular, we get
,1
6−1 = Sing(,0

6−1).

From now on we will identify Pic0 (�) with the set of points on the Jacobian
variety Jac(�) by means of the Abel-Jacobi map. For any theta characteristic
o the subset

Θ = ,0
6−1 − o ⊂ Jac(�)

is a hypersurface in Jac(�). It has the property that

ℎ0 (Θ) = 1, [−1]∗ (Θ) = Θ, (5.20) thetadiv

where [<] is the multiplication by an integer < in the group variety Jac(�).
Conversely, any divisor on Jac(�) satisfying these properties is equal to,0

6−1
translated by a theta characteristic. This follows from the fact that a divisor � on
an abelian variety � satisfying ℎ0 (�) = 1 defines a bĳective map �→ Pic0 (�)
by sending a point G ∈ � to the divisor C∗G� − �, where CG is the translation
map 0 ↦→ 0 + G in the group variety, and Pic0 (�) is the group of divisor
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classes algebraically equivalent to zero. This fact implies that any two divisors
satisfying properties (

thetadivthetadiv
5.20) differ by translation by a 2-torsion point.

We call a divisor satisfying (
thetadivthetadiv
5.20) a symmetric theta divisor. An abelian

variety that contains such a divisor is called a principally polarized abelian
variety.
LetΘ = ,0

6−1−\ be a symmetric theta divisor on Jac(�). Applying Theorem
RKTRKT
5.3.1 we obtain that, for any 2-torsion point n ∈ Jac(�), we have

multnΘ = ℎ0 (o + n). (5.21) mult

In particular, n ∈ Θ if and only if \ + n is an effective theta characteristic.
According to o, the symmetric theta divisors are divided into two groups: even
and odd theta divisors.

5.3.2 Theta functions
SS:5.3.2

The pre-image of Θ under the quotient map Jac(�) = �0 (�,  � )∨/Λ is a
hypersurface in the complex linear space + = �0 (�,  � )∗ equal to the zero set
of some holomorphic function q : + → C. This function q is not invariant with
respect to translations by Λ. However, it has the property that, for any { ∈ +
and any W ∈ Λ,

q({ + W) = 4W ({)q({), (5.22) th8

where 4W is an invertible holomorphic function on + . A holomorphic function
q satisfying (

th8th8
5.22) is called a theta function with theta factor {4W}. The set of

zeros of q does not change if we replace q with qU, where U is an invertible
holomorphic function on + . The function 4W ({) will change into the function
4W′ ({) = 4W ({)q({+W)q({)−1. One can show that, after choosing an appropriate
U, one may assume that

4W ({) = exp(2c8(0W ({) + 1W)),

where 0W is a linear function and 1W is a constant (see
MumfordAb
[540], Chapter 1, §1).

We will assume that such a choice has been made.
It turns out that the theta function corresponding to a symmetric theta divisor

Θ from (
thetadivthetadiv
5.20) can be given in coordinates defined by a choice of a normalized

basis (
normmnormm
5.18) by the following expression

\
[ &
(

]
(z; g) =

∑
A ∈Z6

exp c8
[
(r+ 1

2&) · g · (r+
1
2&) +2(z+ 1

2() · (r+
1
2&)

]
, (5.23) tetcharacteristic

where & , ( ∈ {0, 1}6 considered as column or raw vectors from F62 . The function
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defined by this expression is called a theta functionwith characteristic. The theta
factor 4_ (I1, . . . , I6) for such a function is given by the expression

4W (z) = exp−c8(m · g ·m − 2z ·m − & · n + ( ·m),

where we write W = g ·m + n for some m, n ∈ Z6. One can check that

\
[ &
(

]
(−z; g) = exp(c8& · ()\

[ &
(

]
(z; g). (5.24) sign

This shows that \
[ &
(

]
(−z; g) is an odd (resp. even) function if and only if

& · ( = 1 (resp. 0). In particular, \
[ &
(

]
(0; g) = 0 if the function is odd. It

follows from (
multmult
5.21) that \

[ &
(

]
(0; g) = 0 if \ is an odd theta characteristic or

an effective even theta characteristic.
Taking & , ( = 0, we obtain the Riemann theta function

\ (z; g) =
∑
r∈Z6

exp c8(r · g · r + 2z · r).

All other theta functions with characteristic are obtained from \ (z; g) by a
translate

\
[ &
(

]
(z; g) = exp c8(& · ( + & · g · &)\ (z + 1

2g · ( +
1
2& ; g).

In this way points on C6 of the form 1
2g · & +

1
2( are identified with elements

of the 2-torsion group 1
2Λ/Λ of Jac(�). The theta divisor corresponding to

the Riemann theta function is equal to ,0
6−1 translated by a certain theta

characteristic ^ called theRiemann constant. Of course, there is no distinguished
theta characteristic; the definition of ^ depends on the choice of a symplectic
basis in �1 (�,Z).
The multiplicity < of a point on a theta divisor Θ = ,0

6−1 − o is equal to the
multiplicity of the corresponding theta function defined by vanishing partial
derivatives up to order < − 1. Thus, the quadratic form defined by \ can be
redefined in terms of the corresponding theta function as

@o ( 1
2g · &

′ + 1
2(
′) = mult0\

[
&+n ′
(+(′

]
(z, g) +mult0\

[ &
(

]
(z, g).

It follows from (
signsign
5.24) that this number is equal to

& · (′ + ( · (′ + (′ · (′. (5.25) con

A choice of a symplectic basis in �1 (�,Z) defines a standard symplectic basis
in �1 (�, F2) � 1

2Λ/Λ = Jac(�) [2]. Thus, we can identify 2-torsion points
1
2g · &

′ + 1
2(
′ with vectors (& ′, (′) ∈ F26

2 . The quadratic form corresponding to
the Riemann theta function is the standard one

@0 ((& ′, (′)) = & ′ · (′.
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The quadratic form corresponding to \
[ &
(

]
(z; g) is given by (

concon
5.25). The Arf

invariant of this quadratic form is equal to

Arf (@o) = & · (.

5.3.3 Hyperelliptic curves again
SS:5.3.3

In this case we can compute the Riemann constant explicitly. Recall that we
identify 2-torsion points with subsets of even cardinality of the set �6 =

{1, . . . , 26 + 2} which we can identify with the set of ramification or branch
points. Let us define a standard symplectic basis in � by choosing the 1-cycle
U8 to be the path which goes from 228−1 to 228 along one sheet of the Riemann
surface � and returns to 228−1 along the other sheet. Similarly, we define the 1-
cycle V8 by choosing the points 228 and 228+1. Choose 6 holomorphic forms l 9
normalized by the condition (

normmnormm
5.18). Let g be the corresponding period matrix.

Notice that each holomorphic 1-form changes sign when we switch the sheets.
This gives

1
2X8 9 =

1
2

∫
U8

l 9 =

∫ 228

228−1

l 9 =

∫ 226+2

228−1

l 9 −
∫ 226+2

228

l 9

=

∫ 226+2

228−1

l 9 +
∫ 226+2

228

l 9 − 2
∫ 226+2

228

l 9 .

Since

2
(∫ 226+2

228

l1, . . . ,

∫ 226+2

228

l6

)
= a(2228 − 2226+2) = 0,

we obtain

](228−1 + 228 − 2226+2) = 1
2 e8 mod Λg ,

where, as usual, e8 denotes the 8-th unit vector. Let �8 , �8 be defined as in (
sympbasissympbasis
5.16).

We obtain that

a(U�8 ) = 1
2 e8 mod Λg .

Similarly, we find that

a(U�8 ) = 1
2g · e8 mod Λg .

Now,we canmatch the set&6 with the set of theta functionswith characteristics.
Recall that the set* = {1, 3, . . . , 26+1} plays the role of the standard quadratic
form. We have

@* (�8) = @* (�8) = 0, 8 = 1, . . . , 6.
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Comparing it with (
concon
5.25), we see that the theta function \

[ &
(

]
(z; g) corre-

sponding to o* must coincide with the function \ (z; g). This shows that

]
6−1
226+2 (o* ) = ]226+2 (o* − :226+2 ) = 0.

Thus, the Riemann constant ^ corresponds to the theta characteristic o* . This
allows one to match theta characteristics with theta functions with theta char-
acteristics.
Write any subset � of �6 in the form

� =

6∑
8=1

n8�8 +
6∑
8=1

[8�8 ,

where & = (n1, . . . , n6), ( = ([1, . . . , [6) are binary vectors. Then,

o*+� ←→ \
[ &
(

]
(z; g).

In particular,

o*+� ∈ TChar(�)ev ⇐⇒ n · [ = 0 mod 2.

Example 5.3.2. We give the list of theta characteristics for a small genus. We
also list 2-torsion points at which the corresponding theta function vanishes.
6 = 1
3 even “thetas”:

o12 = \
[ 1

0
]
(U12),

o13 = \
[ 0

0
]
(U13),

o14 = \
[ 0

1
]
(U14).

1 odd theta:

o∅ = \
[ 1

1
]
(U∅).

6 = 2
10 even thetas:

o123 = \
[ 01

10
]
(U12, U23, U13, U45, U46, U56),

o124 = \
[ 00

10
]
(U12, U24, U14, U35, U36, U56),

o125 = \
[ 00

11
]
(U12, U25, U15, U34, U36, U46),

o126 = \
[ 11

11
]
(U12, U16, U26, U34, U35, U45),
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o234 = \
[ 10

01
]
(U23, U34, U24, U15, U56, U16),

o235 = \
[ 10

00
]
(U23, U25, U35, U14, U16, U46),

o236 = \
[ 01

00
]
(U23, U26, U36, U14, U45, U15),

o245 = \
[ 11

00
]
(U24, U25, U13, U45, U16, U36),

o246 = \
[ 00

00
]
(U26, U24, U13, U35, U46, U15),

o256 = \
[ 00

01
]
(U26, U25, U13, U14, U34, U56).

6 odd thetas:

o1 = \
[ 01

01
]
(U∅, U12, U13, U14, U15, U16),

o2 = \
[ 11

01
]
(U∅, U12, U23, U24, U25, U26),

o3 = \
[ 11

01
]
(U∅, U13, U23, U34, U35, U36),

o4 = \
[ 10

10
]
(U∅, U14, U24, U34, U45, U46),

o5 = \
[ 10

11
]
(U∅, U15, U35, U45, U25, U56),

o6 = \
[ 01

11
]
(U∅, U16, U26, U36, U46, U56).

6 = 3
36 even thetas o∅, o8 9:; ,
28 odd thetas o8 9 .

6 = 4
136 even thetas o8 , o8 9:;<,
120 odd thetas o8 9: .
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5.4 Odd Theta Characteristics
S:5.4

5.4.1 Syzygetic triads
SS:5.4.1

We have already observed that effective theta characteristics on a canonical
curve � ⊂ P6−1 correspond to contact hyperplanes, i.e. hyperplanes every-
where tangent to �. They are also called bitangent hyperplanes (not to be
confused with hyperplanes tangent at ≥ 2 points).

An odd theta characteristic is effective and determines a contact hyperplane, a
unique one if it is nonvanishing. In this section, we will study the configuration
of contact hyperplanes to a canonical curve. Let us note here that a general
canonical curve is determined uniquely by the configuration of its contact
hyperplanes

CS2
[89].

From now on, we fix a nondegenerate symplectic space (+, l) of dimension
26 over F2. Let &(+) be the affine space of quadratic forms with associated
symmetric bilinear form equal to l. The Arf invariant divides &(+) into the
union of two sets&(+)+ and&(+)−, of even or odd quadratic forms. Recall that
&(+)− is interpreted as the set of odd theta characteristics when + = Pic(�)
and l is the Weil pairing. For any @ ∈ &(+) and { ∈ + , we have

@({) = Arf (@ + {) + Arf (@).

Thus, the function Arf is a symplectic analog of the function ℎ0 (o) mod 2 for
theta characteristics.
The set +̃ = +

∐
&(+) is equipped with a structure of a Z/2Z-graded vector

space over F2. It combines the addition on + (the 0-th graded piece) and the
structure of an affine space on&(+) (the 1-th graded piece) by setting @+@′ := {,
where @′ = @ + {. One can also extend the symplectic form on+ to +̃ by setting

l(@, @′) = @(@ + @′), l(@, {) = l({, @) = @({).

Definition 5.4.1. A set of three elements @1, @2, @3 in&(+) is called a syzygetic
triad (resp. an azygetic triad) if

Arf (@1) + Arf (@2) + Arf (@3) + Arf (@1 + @2 + @3) = 0 (resp. = 1).

A subset of : ≥ 3 elements in &(+) is called a azygetic set if any subset of
three elements is azygetic.

Note that a syzygetic triad defines a set of four quadrics in &(+) that add up
to zero. Such a tetrad of quadrics is called a syzygetic tetrad. Obviously, any
subset of three elements in a syzygetic tetrad is a syzygetic triad.
Another observation is that three elements in &(+)− form an azygetic triad

if their sum is an element in &(+)+.
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For any odd theta characteristic o, any divisor �[ ∈ |o | is of degree 6 − 1.
The condition that four odd theta characteristics o8 form a syzygetic tetrad
means that the sum of divisors �o8 are cut out by a quadric in P6−1. The
converse is true if � does not have a vanishing even theta characteristic.

Let us now compute the number of syzygetic tetrads.

5.4.1 Lemma 5.4.2. Let @1, @2, @3 be a set of three elemenst in &(+). The following
properties are equivalent:

(i) @1, @2, @3 is a syzygetic triad;
(ii) @1 (@2 + @3) = Arf (@2) + Arf (@3);
(iii) l(@1 + @2, @1 + @3) = 0.

Proof The equivalence of (i) and (ii) follows immediately from the identity

@1 (@2 + @3) = Arf (@1) + Arf (@1 + @2 + @3).

We have
l(@1 + @2, @1 + @3) = @1 (@1 + @3) + @2 (@1 + @3)

= Arf (@1) + Arf (@3) + Arf (@2) + Arf (@1 + @2 + @3).

This shows the equivalence of (ii) and (iii). �

315 Proposition 5.4.3. Let @1, @2 ∈ &(+)−. The number of ways in which the pair
can be extended to a syzygetic triad of odd theta characteristics is equal to
2(26−1 + 1) (26−2 − 1).

Proof Assume that @1, @2, @3 is a syzygetic triad in &(+)−. By the previous
lemma, @1 (@2 + @3) = 0. Also, we have @2 (@2 + @3) = Arf (@3) + Arf (@2) = 0.
Thus, @1 and @2 vanish at {0 = @2 + @3. Conversely, assume { ∈ + satisfies
@1 ({) = @2 ({) = 0 and { ≠ @1 + @2 so that @3 = @2 + { ≠ @1, @2. We have
Arf (@3) = Arf (@2)+@2 ({) = 1, hence @3 ∈ &(+)−. Since @1 ({) = @1 (@2+@3) =
0, by the previous Lemma @1, @2, @3 is a syzygetic triad.

Thus, the number of the ways in which we can extend @1, @2 to a syzygetic
triad @1, @2, @3 is equal to the cardinality of the set

/ = @−1
1 (0) ∩ @

−1
2 (0) \ {0, {0},

where {0 = @1 + @2. It follows from (
arf2arf2
5.6) that { ∈ / satisfies l({, {0) =

@2 ({) + @1 ({) = 0. Thus, any { ∈ / is a representative of a nonzero element in
, = {⊥0 /{0 � F

26−2
2 on which @1 and @2 vanish. It is clear that @1 and @2 induce

the same quadratic form @ on , . It is an odd quadratic form. Indeed, we can
choose a symplectic basis in + by taking as a first vector the vector {0. Then,
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computing the Arf invariant of @1 we see that it is equal to the Arf invariant of
the quadratic form @. Thus, we get

#/ = 2(#&(,)− − 1) = 2(26−2 (26−1 − 1) − 1) = 2(26−1 + 1) (26−2 − 1).

�

number Corollary 5.4.4. Let C6 be the the number of syzygetic tetrads of odd theta
characteristics on a nonsingular curve of genus 6. Then

C6 =
1
3

26−3 (226 − 1) (226−2 − 1) (26−2 − 1).

Proof Let � be the set of triples (@1, @2, )), where @1, @2 ∈ &(+)− and ) is
a syzygetic tetrad containing @1, @2. We count #� in two ways by projecting �
to the set P of unordered pairs of distinct elements &(+)− and to the set of
syzygetic tetrads. Since each tetrad contains 6 pairs from the set P, and each
pair can be extended in (26−1 + 1) (26−2 − 1) ways to a syzygetic tetrad, we get

#� = (26−1 + 1) (26−2 − 1)
(26−1 (26−1)

2
)
= 6C6 .

This gives

C6 =
1
3

26−3 (226 − 1) (226−2 − 1) (26−2 − 1).

�

Let+ be a vector space with a symplectic or symmetric bilinear form. Recall
that a linear subspace ! is called isotropic if the restriction of the bilinear form
to ! is identically zero.

5.4.4 Corollary 5.4.5. Let {@1, @2, @3, @4} be a syzygetic tetrad in &(+)−. Then,
% = {@1 + @8 , . . . , @4 + @8} is an isotropic -dimensional subspace in (+, l) that
does not depend on the choice of @8 .

Proof It follows from Lemma
5.4.15.4.1
5.4.2 (iii) that % is an isotropic subspace. The

equality @1 + · · · + @4 = 0 gives

@: + @; = @8 + @ 9 , (5.26) eq6.1.6

where {8, 9 , :, ;} = {1, 2, 3, 4}. This shows that the subspace % of + formed by
the vectors @ 9 + @8 , 9 = 1, . . . , 4, is independent of the choice of 8. One of its
bases is the set (@1 + @4, @2 + @4). �
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5.4.2 Steiner complexes
SS:5.4.2

Let P be the set of unordered pairs of distinct elements in&(+)−. The addition
map in &(+)− ×&(+)− → + defines a map

B : P → + \ {0}.

Definition 5.4.6. The set of pairs from the same fiber B−1 ({) of the map B is
called a Steiner complex. It is denoted by Σ({).

It follows from (
eq6.1.6eq6.1.6
5.26) that any two pairs from a syzygetic tetrad belong to

the same Steiner complex. Conversely, let {@1, @
′
1}, {@2, @

′
2} be two pairs from

Σ({). We have (@1 + @′1) + (@2 + @′2) = { + { = 0, showing that the tetrad
(@1, @

′
1, @2, @

′
2) is syzygetic.

5.4.5 Proposition 5.4.7. There are 226 −1 Steiner complexes. Each Steiner complex
consists of 26−1 (26−1 − 1) pairs of elements from &(+)−. An an element @ ∈
&(+)− belongs to a Steiner complex Σ({) if and only if @({) = 0.

Proof Since 226 − 1 = #(+ \ {0}), it suffices to show that the map B : P →
+ \ {0} is surjective. The symplectic group Sp(+, l) acts transitively on+ \ {0}
and onP, and themap B is obviously equivariant. Thus, its image is a non-empty
�-invariant subset of + \ {0}. It must coincide with the whole set.

By (
arf3arf3
5.7), we have @({) = Arf (@+{)+Arf (@). If @ ∈ Σ({), then @+{ ∈ &(+)−,

hence Arf (@ + {) = Arf (@) = 1 and we get @({) = 0. Conversely, if @({) = 0
and @ ∈ Σ({), we get @ + { ∈ &(+)− and hence @ ∈ Σ({). This proves the last
assertion. �

5.4.6 Lemma 5.4.8. Let Σ({),Σ({′) be two Steiner complexes. Then,

#Σ({) ∩ Σ({′) =
{

26−1 (26−2 − 1) if l({, {′) = 0,
26−2 (26−1 − 1) if l({, {′) ≠ 0.

Proof Let @ ∈ Σ({) ∩ Σ({′). Then, we have @ + @′ = {, @ + @′′ = {′ for some
@′ ∈ Σ({), @′′ ∈ Σ({′). This implies that

@({) = @({′) = 0. (5.27) er

Conversely, if these equalities hold, then @ + {, @ + {′ ∈ &(+)−, @, @′ ∈ Σ({),
and @, @′′ ∈ Σ({′). Thus, we have reduced our problem to linear algebra. We
want to show that the number of elements in &(+)− that vanish at two nonzero
vectors {, {′ ∈ + is equal to 26−1 (26−2 − 1) or 26−2 (26−1 − 1) depending on
whether l({, {′) = 0 or 1. Let @ be one such quadratic form. Suppose we have
another @′ with this property. Write @′ = @ + {0 for some {0. We have @({0) = 0
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since @′ is odd and

l({0, {) = l({0, {′) = 0.

Let ! be the plane spanned by {, {′. Assume l({, {′) = 1, then, we can include
{, {′ in a standard symplectic basis. Computing theArf invariant, we find that the
restriction of @ to !⊥ is an odd quadratic form. Thus, it has 26−2 (26−1−1) zeros.
Each zero gives us a solution for {0. Assume l({, {′) = 0. Then, ! is a singular
plane for @ since @({) = @({′) = @({ + {′) = 0. Consider, = !⊥/! � F26−4

2 .
The form @ has 26−3 (26−2 − 1) zeros in, . Any representative {0 of these zeros
defines the quadratic form @ + {0 vanishing at {, {′. Any quadratic form we are
looking for is obtained in this way. The number of such representatives is equal
to 26−1 (26−2 − 1).

�

Definition 5.4.9. Two Steiner complexes Σ({) and Σ({′) are called syzygetic
(resp. azygetic) if l({, {′) = 0 (resp. l({, {′) = 1).

Theorem5.4.10. The union of threemutually syzygetic Steiner complexesΣ({),
Σ({′) and Σ({ + {′) is equal to &(+)−.

Proof Since

l({ + {′, {) = l({ + {′, {′) = 0,

we obtain that the Steiner complex Σ({ + {′) is syzygetic to Σ({) and Σ({′).
Suppose @ ∈ Σ({) ∩ Σ({′). Then, @({ + {′) = @({) + @({′) + l({, {′) = 0. This
implies that Σ({) ∩Σ({′) ⊂ Σ({ + {′) and hence Σ({),Σ({′),Σ({ + {′) share the
same set of 26−1 (26−2 − 1) elements. This gives

#Σ({) ∪ Σ({′) ∪ Σ({ + {′) = 6 · 26−2 (26−1 − 1) − 2 · 26−1 (26−2 − 1)

= 26−1 (26 − 1) = #&(+)−.

�

Definition 5.4.11. A set of three mutually syzygetic Steiner complexes is called
a syzygetic triad of Steiner complexes. A set of three Steiner complexes corre-
sponding to vectors forming a non-isotropic plane is called azygetic triad of
Steiner complexes.

Let Σ({8), 8 = 1, 2, 3 be an azygetic triad of Steiner complexes. Then,

#Σ({1) ∩ Σ({2) = 26−2 (26−1 − 1).

Each set Σ({1) \ (Σ({1) ∩ Σ({2)) and Σ({2) \ (Σ({1) ∩ Σ({2)) consists of
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26−2 (26−1 − 1) elements. The union of these sets forms the Steiner com-
plex Σ({3). The number of azygetic triads of Steiner complexes is equal to
1
3 226−2 (226 − 1) (= the number of non-isotropic planes). We leave the proofs
to the reader.
Let S4 (+) denote the set of syzygetic tetrads. By Corollary

5.4.45.4.4
5.4.5, each

) ∈ S4 (+) defines an isotropic plane %) in + . Let Iso: (+) denote the set of
:-dimensional isotropic subspaces in + .

P5.4.8 Proposition 5.4.12. Let S4 (+) be the set of syzygetic tetrads. For each tetrad
) , let %) , denote the corresponding isotropic plane. The map

S4 (+) → Iso2 (+), ) ↦→ %) ,

is surjective. The fiber over a plane) consists of 26−3 (26−2−1) tetrads forming
a partition of the intersection of the Steiner complexes Σ({), where { ∈ % \ {0}.

Proof The surjectivity of this map is proved along the same lines as we
proved Proposition

5.4.55.4.5
5.4.7. We use the fact that the symplectic group Sp(+, l)

acts transitively on the set of isotropic subspaces of the same dimension. Let
) = {@1, . . . , @4} ∈ S4 (+). By definition, %) \{0} = {@1+@2, @1+@3, @1+@4}.
Suppose we have another tetrad ) ′ = {@′1, . . . , @

′
4} with %) = %) ′ . Suppose

) ∩ ) ′ ≠ ∅. Without loss of generality, we may assume that @′1 = @1. Then,
after reindexing, we get @1 + @8 = @1 + @′8 , hence @8 = @′8 and ) = ) ′. Thus,
the tetrads ) with %) = % are disjoint. Obviously, any @ ∈ ) belongs to the
intersection of the Steiner complexes Σ({), { ∈ % \ {0}. It remains for us to
apply Lemma

5.4.65.4.6
5.4.8. �

A closer look at the proof of Lemma
5.4.65.4.6
5.4.8 shows that the fiber over % can be

identified with the set &(%⊥/%)−.
Combining Proposition

P5.4.8P5.4.8
5.4.12 with the computation of the number C6 of

syzygetic tetrads, we obtain the number of isotropic planes in + :

#Iso2 (+) =
1
3
(226 − 1) (226−2 − 1). (5.28)

Let Iso2 ({) be the set of isotropic planes containing a nonzero vector { ∈ + .
The set Iso2 ({) is naturally identified with nonzero elements in the symplectic
space ({⊥/{, l′), where l′ is defined by the restriction of l to {⊥. We can
transfer the symplectic form l′ to Iso2 ({). We obtain l′(%,&) = 0 if and only
if % +& is an isotropic 3-subspace.

Let us consider the set S4 (+, {) = U−1 (Iso2 ({)). It consists of syzygetic
tetrads that are invariant with respect to the translation by {. In particular, each
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tetrad from S4 (+, {) is contained in Σ({). We can identify the set S4 (+, {) with
the set of cardinality 2 subsets of Σ({)/〈{〉.

There is a natural pairing on S4 (+, {) defined by

〈),) ′〉 = 1
2 #) ∩ ) ′ mod 2. (5.29) pairing2

5.4.9 Proposition 5.4.13. For any ),) ′ ∈ S4 (+, {),

l′(%) , %) ′) = 〈),) ′〉.

Proof Let - = {{),) ′} ⊂ S4 (+) : U{ ()) ≠ U{ () ′)}, . = {{%, %′} ⊂
Iso2 ({)}. We have a natural map Ũ{ : - → . induced by U{ . The pairing l′
defines a function q : . → F2. The corresponding partition of . consists of
two orbits of the stabilizer group � = Sp(+, l){ on . . Suppose {)1, )2} and
{) ′1 , )

′
2} are mapped to the same subset {%, %′}. Without loss of generality, we

may assume that )1, )
′
1 are mapped to %. Thus

〈)1 + ) ′2 , )2 + ) ′1〉 = 〈)1, )2〉 + 〈) ′1 , )
′
2〉 + 〈)1, )

′
1〉 + 〈)2, )

′
2

= 〈)1, )2〉 + 〈) ′1 , )
′
2〉.

This shows that the function - → F2 defined by the pairing (
pairing2pairing2
5.29) is constant

on fibers of Ũ{ . Thus, it defines a map q′ : . → F2. Both functions are invariant
with respect to the group �. This immediately implies that their two level sets
either coincide or are switched. However, #Iso2 ({) = 226−2 − 1 and hence the
cardinality of . is equal to (226−2 − 1) (226−3 − 1). Since this number is odd,
the two orbits are of different cardinalities. Since the map Ũ{ is �-equivariant,
the level sets must coincide. �

5.4.3 Fundamental sets
SS:5.4.3

Suppose we have an ordered set ( of 26 + 1 vectors (D1, . . . , D26+1) satisfying
l(D8 , D 9 ) = 1 unless 8 = 9 . It defines a standard symplectic basis by setting

{8 = D1 + · · · + D28−2 + D28−1, {8+6 = D1 + · · · + D28−2 + D28 , 8 = 1, . . . , 6.

Conversely, we can solve the D8’s from the {8’s uniquely to reconstruct the set
( from a standard symplectic basis.

Definition 5.4.14. A set of 26 + 1 vectors (D1, . . . , D26+1) with l(D8 , D 9 ) = 1
unless 8 = 9 is called a normal system in (+, l).

We have established a bĳective correspondence between normal systems and
standard symplectic bases.
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Recall that a symplectic form l defines a nondegenerate null-system in + ,
i.e. a bĳective linear map 5 : + → +∨ such that 5 ({) ({) = 0 for all { ∈ + . Fix
a basis (41, . . . , 426) in + and the dual basis (C1, . . . , C26) in +∨ and consider
vectors D8 = 41 + · · · + 426 − 48 , 8 = 1, . . . , 26 and D26+1 = 41 + · · · + 426.
Then, there exists a unique null-system + → +∨ that sends D8 to C8 and D26+1
to C26+1 = C1 + · · · + C26. The vectors D1, . . . , D26+1 form a normal system in the
corresponding symplectic space.
Let (D1, . . . , D26+1) be a normal system. We will identify nonzero vectors

in + with points in the projective space |+ |. Denote the points corresponding
to the vectors D8 by n826+2. For any 8, 9 ≠ 26 + 2, consider the line spanned
by n826+2 and n 926+2. Let n8 9 be the third nonzero point in this line. Now, do
the same with points n8 9 and n:; with the disjoint sets of indices. Denote this
point by n8 9:; . Note that the residual point on the line spanned by n8 9 and n 9:
is equal to n8: . Continuing in this way, we will be able to index all points
in |+ | with subsets of even cardinality (up to complementary sets) of the set
�6 = {1, . . . , 26 + 2}. This notation will agree with the notation of 2-torsion
divisor classes for hyperelliptic curves of genus 6. For example, we have

l(?� , ?� ) = #� ∩ � mod 2.

It is easy to compute the number of normal systems. It is equal to the
number of standard symplectic bases in (+, l). The group Sp(+, l) acts simply
transitively on such bases, so their number is equal to

#Sp(26, F2) = 26
2 (226 − 1) (226−2 − 1) · · · (22 − 1). (5.30) order

Now, we introduce the analog of a normal system for quadratic forms in
&(+).

Definition 5.4.15. A fundamental set in &(+) is an ordered azygetic set of
26 + 2 elements in &(+).

The number 26+2 is the largest possible cardinality of a set inwhich any three
elements are azygetic. This follows from the following immediate corollary of
Lemma

5.4.15.4.1
5.4.2.

Lemma 5.4.16. Let � = (@1, . . . , @: ) be an azygetic set. Then, the set (@1 +
@2, . . . , @1 + @: ) is a normal system in the symplectic subspace of dimension
: − 2 spanned by these vectors.

The Lemma shows that any fundamental set in&(+) defines a normal system
in+ , and hence a standard symplectic basis. Conversely, starting from a normal
system (D1, . . . , D26+1) and any @ ∈ &(+) we can define a fundamental set
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(@1, . . . , @26+2) by

@1 = @, @2 = @ + D1, . . . , @26+2 = @ + D26+1.

Since the elements in a fundamental system add up to zero, the sam is true
for a fundamental set.

Proposition 5.4.17. There exists a fundamental set of 26 + 2 elements with :
odd quadratic forms such that

: =


0 if6 ≡ 0 mod 4,
1 if6 ≡ 1 mod 4,
26 + 2 if6 ≡ 2 mod 4,
26 + 1 C4GC8 5 6 ≡ 3 mod 4.

Proof Let (D1, . . . , D26+1) be a normal system and (C1, . . . , C26+1) be its image
under the map + → +∨ defined by l. Consider the quadratic form

@ =
∑

1≤8< 9≤26+1
C8C 9 .

It is immediately checked that

@(D: ) ≡
(26

2
)
= 6(26 − 1) ≡ 6 mod 4.

Passing to the associated symplectic basis, we can compute the Arf invariant
of @ to get

Arf (@) =
{

1 if 6 ≡ 1 mod 2
0 otherwise.

This implies that

Arf (@ + C2: ) = Arf (@) + @(D: ) =
{

0 if 6 ≡ 0, 3 mod 4,
1 otherwise.

Consider the fundamental set of quadrics @, @ + C2
:
, : = 1, . . . , 26 + 1. If 6 ≡ 0

mod 4, the set consists of all even quadratic forms. If 6 ≡ 1 mod 4, the
quadratic form @ is odd, all other quadratic forms are even. If 6 ≡ 2 mod 4,
all quadratic forms are odd. Finally, if 6 ≡ 3 mod 4, then @ is even, all other
quadratic forms are odd. �

Definition 5.4.18. A fundamental set with all or all but one quadratic forms
are even or odd is called a normal fundamental set.
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One can show (see
CobleTheta
[154], p. 271) that any normal fundamental set is obtained

as in the proof of the previous proposition.
Choose a normal fundamental set (@1, . . . , @26+2) such that the first 26 + 1

quadrics are of the same type. Any quadratic form @ ∈ &(+) can be written in
the form

@26+2 +
∑
8∈�

C28 = @ +
∑
8∈�

C28 ,

where � is a subset of [1, 26+1] := {1, . . . , 26+1}. We denote such a quadratic
form by @( , where ( = �∪{26+2} considered as a subset of [1, 26+2] modulo
the complementary set. We can and will always assume that

#( ≡ 6 + 1 mod 2.

The quadratic form @( can be characterized by the property that it vanishes on
points ?8 9 , where 8 ∈ ( and 9 ∈ {1, . . . , 26 + 2}.
The following properties can be checked.

tete Proposition 5.4.19. • @( + @) = n(+) ;
• @( + n� = @(+� ;
• @( (n) ) = 0 if and only if #( ∩ ) + 1

2 #( ≡ 0 mod 2;
• @( ∈ &(+)+ if and only if #( ≡ 6 + 1 mod 4.

Again, we see that a choice of a fundamental set defines the notation of
quadratic forms that agrees with the notation of theta characteristics for hyper-
elliptic curves.
Since fundamental sets are in a bĳective correspondence with normal sys-

tems, their number is given by (
orderorder
5.30).

5.5 Scorza Correspondence
S:5.5

5.5.1 Correspondences on an algebraic curve
SS:5.5.1

A correspondence of degree 3 between nonsingular curves �1 and �2 is a
non-constant morphism ) from �1 to the 3-th symmetric product � (3)2 of �2.

ℓ) = {(G, H) ∈ �1 × �2 : H ∈ ) (G)}.

We have
) (G) = ℓ) ∩ ({G} × �2), (5.31) mm

where the intersection is scheme-theoretical.
One can extend the map (

mmmm
5.31) to any divisors on �1 by setting ) (�) =
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?∗1 (�) ∩ℓ) . It is clear that a principal divisor goes to a principal divisor. Taking
divisors of degree 0, we obtain a homomorphism of the Jacobian varieties

q) : Jac(�1) → Jac(�2).

The projection ℓ) → �1 is a finite map of degree 3. Since ) is not constant,
the projection to �2 is a finite map of degree 3 ′. It defines a correspondence
�2 → �

(3′)
1 which is denoted by )−1 and is called the inverse correspondence.

Its graph is equal to the image of ) under the switch map �1 ×�2 → �2 ×�1.
We will be dealing mostly with correspondences ) : � → � (3) and will

identify ) with its graph ℓ) . If 3 is the degree of ) and 3 ′ is the degree of
)−1 we say that ) is the correspondence of type (3, 3 ′). A correspondence is
symmetric if ) = )−1.∗ We assume that ) does not contain the diagonal Δ of
� ×�. A united point of correspondence is a common point with the diagonal.
It comes with the multiplicity.
A correspondence) : � → � (3) has valence a if the divisor class of) (G)+aG

does not depend on G.

valence Proposition 5.5.1. The following properties are equivalent:

(i) ) has valence a;
(ii) the cohomology class [)] in �2 (� × �,Z) is equal to

[)] = (3 ′ + a) [{G} × �] + (3 + a) [� × {G}] − a[Δ],

where G is any point on �;
(iii) the homomorphism q) is equal to homomorphism [−a] : Jac(�) →

Jac(�) of the multiplication by −a.

Proof (i) ⇒ (ii). We know that there exists a divisor � on � such that the
restriction ) + aΔ − ?∗2 (�) to any fiber of ?1 is linearly equivalent to zero. By
the seesaw principle (

MumfordAb
[540] Chapter 2, Corollary 6), ) + aΔ− ?∗2 (�) ∼ ?

∗
1 (�

′)
for some divisor � ′ on�. This implies that [)] = deg� ′[{G}×�] +deg� [�×
{G}] − a[Δ]. Taking the intersections with a fiber of the projections, we find
that 3 ′ = deg� ′ − a and 3 = deg� − a.
(ii)⇒ (i) Let ?1, ?2 : � ×� → � be the projections. We use the well-known

fact that the natural homomorphism of the Picard varieties

?∗1 (Pic0 (�)) ⊕ ?∗2 (Pic0 (�)) → Pic0 (� × �)

is an isomorphism (see
Hartshorne
[379, Chapter III, Exercise 12.6]). Fix a point G0 ∈ �

∗In classical terminology, a symmetric correspondence is an involutory correspondence
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and consider the divisor ) + aΔ − (3 ′ + a) ({G0} ×�) − (3 + a) (� × {G0}). By
assumption, it is algebraically equivalent to zero. Thus,

) + aΔ ∼ ?∗1 (�1) + ?∗2 (�2)

for some divisors �1, �2 on �. Thus, the divisor class ) (G) + aG is equal to the
divisor class of the restriction of ?∗2 (�2) to {G} × �. Obviously, it is equal to
the divisor class of �2, hence is independent on G.

(i)⇔ (iii) This follows from the definition of the homomorphism q) .
�

Note that for a general curve � of genus 6 > 2

End(Jac(�)) � Z

(see
Koizumi
[460]), so any correspondence has valence. An example of a correspon-

dence without valence is the graph of an automorphism of order > 2 of �.
Observe that the proof of the Proposition shows that for a correspondence '

with valence a
) ∼ ?∗1 (�

′) + ?∗2 (�) − aΔ, (5.32) lineq

where� is the divisor class of) (G)+aG and� ′ is the divisor class of)−1 (G)+aG.
It follows from the Proposition that the correspondence )−1 has valence a.

The next result is known as the Cayley-Brill formula.

cayley-brill Corollary 5.5.2. Let ) be a correspondence of type (0, 1) on a nonsingular
projective curve � of genus 6. Assume that the valence of ) is equal to a. Then,
the number of united points of ) is equal to

3 + 3 ′ + 2a6.

This immediately follows from (
lineqlineq
5.32) and the formula Δ · Δ = 2 − 26.

Example 5.5.3. Let � be a nonsingular complete intersection of a nonsingular
quadric & and a cubic in P3. In other words, � is a canonical curve of genus
4 curve without vanishing even theta characteristic. For any point G ∈ �, the
tangent plane TG (&) cuts out the divisor 2G + �1 + �2, where |G + �1 | and
|G+�2 | are the two 61

3’s on� defined by the two rulings of the quadric. Consider
the correspondence) on�×� defined by) (G) = �1+�2. This is a symmetric
correspondence of type (4, 4) with valence 2. Its 24 united points correspond
to the ramification points of the two 61

3’s.
For any two correspondences )1 and )2 on �, one defines the composition of

correspondences by considering�×�×�with the projections ?8 9 : �×�×� →
� × � onto two factors and setting

)1 ◦ )2 = (?13)∗
(
?∗12 ()1) ∩ ?∗23 ()2)

)
.
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Set-theoretically,

)1 ◦ )2 = {(G, H) ∈ � × � : ∃I ∈ � : (G, I) ∈ )1, (I, H) ∈ )2}.

Also )1 ◦)2 (G) = )1 ()2 (G)). Note that, if )1 = )
−1
2 and )2 is of type (3, 3 ′). we

have )1 ()2 (G)) − 3G > 0. Thus, the graph of )1 ◦ )2 contains 3Δ. We modify
the definition of the composition by setting )1♦)2 = )1 ◦ )2 − BΔ, where B is
the largest positive multiple of the diagonal component of )1 ◦ )2.

Proposition 5.5.4. Let )1 ◦)2 = )1♦)2 + BΔ. Suppose that )8 is of type (38 , 3 ′8 )
and valence a8 . Then,)1♦)2 is of type (3132−B, 3 ′13

′
2−B) and valence−a1a2+B.

Proof Applying Proposition
valencevalence
5.5.1, we can write

[)1] = (3 ′1 + a1) [{G} × �] + (31 + a1) [� × {G}] − a1 [Δ],

[)2] = (3 ′2 + a2) [{G} × �] + (32 + a2) [� × {G}] − a2 [Δ] .

Easy computation with intersections gives

[)1♦)2] = (3 ′13
′
2 − a1a2) [{G} × �] + (3132 − a1a2) [� × {G}] + (a1a2 − B) [Δ]

= (3 ′13
′
2 − B + a) [{G} × �] + (3132 − B + a) [� × {G}] + a[Δ],

where a = −a1a2 + B. This proves the assertion. �

lateral Example 5.5.5. In Baker’s book
BakerBook
[29], vol. 6, p. 11, the symmetric correspon-

dence )♦)−1 is called the direct lateral correspondence. If (A, B) is the type of
) and W is its valence, then it is easy to see that ) ◦ ) = )♦)−1 + BΔ, and we
obtain that the type of )♦)−1 is equal to (B(A −1), B(A −1)) and valence B− W2.
This agrees with Baker’s formula.
Here is one application of direct lateral correspondence. Consider a corre-

spondence of valence 2 on a plane nonsingular curve � of degree 3 such that
) (G) = T2 (�) ∩�−2G. In other words,) (G) is equal to the set of the remaining
3 − 2 intersection points of the tangent at G with �. For any point H ∈ �, the
inverse correspondence assigns to H the divisor %H (�) − 2H, where %H (�) is
the first polar. A united point of )♦)−1 is one of the two points at which a
bitangent intersects the curve. We have B = 3 (3 − 1) − 2, A = 3 − 2, a = 2.
Applying the Cayley-Brill formula, we find that the number 1 of bitangents is
expressed by the following formula

21 = 2(3 (3 −1) −2) (3 −3) + (3 −1) (3 −2) (3 (3 −1) −6) = 3 (3 −2) (32 −9).
(5.33) bit

As in the case of bitangents to the plane quartic, there exists a plane curve of
degree (3 − 2) (32 − 9) (a bitangential curve which cuts out on � the set of
tangency points of bitangents (see

SalmonCurves
[652, pp. 342=357]).
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There aremany other applications of the Cayley-Brill formula to enumerative
geometry. Many of them go back to Cayley and can be found in Baker’s book.
Modern proofs of some of these formulas are available in the literature and we
omit them.
Recall that a :-secant line of an irreducible space curve � ⊂ P3 of degree

3 is a line ℓ such that a general plane containing ℓ intersects � at 3 − : points
outside ℓ. Equivalently, the projection from ℓ defines a finite map � → P1 of
degree 3 − : .
The proof of the following formula can be found in

GH
[360, Chapter 2, §5].

Proposition 5.5.6. Let � be a general space curve of genus 6 and degree 3.
Then, the number of 4-secant lines of � is given by the following formula:

@ =
1

12
(3 − 2) (3 − 3)2 (3 − 4) − 1

26(3
2 − 73 + 13 − 6). (5.34)

There is a precise meaning of generality of a curve. We refer to loc. cit. or
LeBarz
[482] for the explanation.
The set of trisecant lines is infinite and parameterized by a curve of degree

C = (3 − 2) (3 − 1) (3 − 3) − 36
3

. (5.35) trisecants

(see
LeBarz
[482]).

5.5.2 Scorza correspondence
SS:5.5.2

Let� be a nonsingular projective curve of genus 6 > 0 and o be a non-effective
theta-characteristic on �.
Let

31 : � × � → Jac(�), (G, H) ↦→ [G − H] (5.36) difference

be the difference map. Let Θ = ,0
6−1 − o be the symmetric theta divisor

corresponding to o. Define

'o = 3
−1
1 (Θ).

Set-theoretically,

('o)red = {(G, H) ∈ � × � : ℎ0 (G + o − H) > 0}.

Lemma 5.5.7. 'o is a symmetric correspondence of type (6, 6), with the
valence equal to −1 and without united points.

Proof Since Θ is a symmetric theta divisor, the divisor 3−1
1 (Θ) is invariant
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with respect to the switch of the factors of - × - . This shows that 'o is
symmetric.
Fix a point G0 and consider themap 8 : � → Jac(�) defined by 8(G) = [G−G0].

It is known (see
BL
[59, Chapter 11, Corollary (2.2)]) that

Θ · ]∗ (�) = (� × {C0}) · 3∗1 (Θ) = 6.

This shows that 'o is of type (6, 6). Also it shows that 'o (G0) −G0+o ∈ ,6−1.
For any point G ∈ �, we have ℎ0 (o + G) = 1 because o is non-effective. Thus,
'o (G) is the unique effective divisor linearly equivalent to G +o. By definition,
the valence of 'o is equal to −1. Applying the Cayley-Brill formula, we obtain
that 'o has no united points. �

Definition 5.5.8. The correspondence 'o is called the Scorza correspondence.

Example 5.5.9. Assume 6 = 1 and fix a point on � equipping � with a
structure of an elliptic curve. Then, o is a nontrivial 2-torsion point. The Scorza
correspondence 'o is the graph of the translation automorphism defined by o.
In general, 'o could be neither reduced nor irreducible correspondence.

However, for a general curve - of genus 6 everything is as expected.

Proposition 5.5.10. Assume � is general in the sense that End(Jac(�)) � Z.
Then, 'o is reduced and irreducible.†

Proof The assumption thatEnd(Jac(�)) � Z implies that any correspondence
on � × � has valence. This implies that the Scorza correspondence is an
irreducible curve and is reduced. In fact, it is easy to see that the valence of
the sum of two correspondences is equal to the sum of valences. Since 'o has
no united points, it follows from the Cayley-Brill formula that the valence of
each part must be negative. Since the valence of 'o is equal to −1, we get a
contradiction. �

It follows from (
lineqlineq
5.32) that the divisor class of 'o is equal to

'o ∼ ?∗1 (o) + ?
∗
2 (o) + Δ. (5.37) lineq2

Since  �×� = ?∗1 ( � ) + ?
∗
2 ( � ) and the restrictions of ?∗1 (o) and ?

∗
2 (o)

to 'o have the same degree, applying the adjunction formula and using that
Δ ∩ ' = ∅, we obtain

l'o ≡ 3?∗1l� . (5.38)

†In a recent paper
FarkasVerra
[297, Theorem 4.1] G. Farkas and A. Verra prove that, for a general pair

(�, o) , the curve 'o is smooth.
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In particular, the arithmetic genus of 'o is given by

?0 ('o) = 36(6 − 1) + 1. (5.39)

‡
Note that the curve 'o is very special, for example, it admits a fixed-point

free involution defined by the switching the factors of - × - .

scorza2 Proposition 5.5.11. Assume that � is not hyperelliptic. Let ' be a symmetric
correspondence on�×� of type (6, 6), without united points and some valence.
Then, there exists a unique non-effective theta characteristic o on � such that
' = 'o .

Proof It follows from the Cayley-Brill formula that the valence a of ' is
equal to −1. Thus, the divisor class of '(G) − G does not depend on G. Since
' has no united points, the divisor class � = '(G) − G is not effective, i.e.
ℎ0 ('(G) − G) = 0. Consider the difference map 31 : � ×� → Jac(�). For any
(G, H) ∈ ', the divisor '(G) − H ∼ � + G − H is effective and of degree 6 − 1.
Thus, 31 (') +� ⊂ ,0

6−1. Let f : - × - → - × - be the switch of the factors.
Then,

q(') = 31 (f(')) = [−1] (31 (')) ⊂ [−1] (,0
6−1 − �) ⊂ ,

0
6−1 + �

′,

where � ′ =  � − �. Since ' ∩ Δ = ∅ and � is not hyperelliptic, the equality
31 (G, H) = 31 (G ′, H′) implies (G, H) = (G ′, H′). Thus, the difference map 31 is
injective on '. This gives

' = 3−1
1 (,

0
6−1 − �) = 3

−1
1 (,

0
6−1 − �

′).

Restricting to {G}×� we see that the divisor classes � and � ′ are equal. Hence,
� is a theta characteristic o. By assumption, ℎ0 ('(G) − G) = ℎ0 (o) = 0, hence
o is non-effective. The uniqueness of o follows from formula (

lineq2lineq2
5.37). �

Let G, H ∈ 'o . Then, the sum of two positive divisors ('o (G)−H) + ('o (H)−
G) is linearly equivalent to G +o− H + H +o− G = 2o =  � . This defines a map

W : 'o → | � |, (G, H) ↦→ ('o (G) − H) + ('o (H) − G). (5.40)

Recall from
GH
[360, p. 360], that the theta divisor Θ defines the Gauss map

G : Θ0 → | � |,

‡It is possible that the restrictions of ?∗1 (o) and ?
∗
2 (o) to 'o are equal but we do not know

how to prove it. The equality was claimed in the first edition of the book; I thank Emre Sertoz who
spotted the gap.
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where Θ0 is the open subset of nonsingular points of Θ. It assigns to a point I
the tangent space )I (Θ) considered as a hyperplane in

)I (Jac(�)) � �1 (�,O� ) � �0 (�,O� ( � ))∨.

More geometrically, G assigns to � − o the linear span of the divisor � in the
canonical space | � |∨ (see

ACGH
[13, p. 246]). Since the intersection of hyperplane

W(G, H) with the canonical curve� contains the divisors '(G)−H (and '(H)−G),
and they do not move, we see that

W = G ◦ 31.

L5.4.5 Lemma 5.5.12.

W∗ (O | � | (1)) � O'o ('o) � ?∗1 ( � ).

Proof The Gauss map G is given by the normal line bundle OΘ (Θ). Thus, the
map W is given by the line bundle

3∗1 (OΘ (Θ)) = O'o (3
∗
1 (Θ)) � O'o ('o).

It remains for us to apply formula (
lineq2lineq2
5.37). �

The Gauss map is a finite map of degree
(26−2
6−1

)
. It factors through the

map Θ0 → Θ0/(]), where ] is the negation involution on Jac(�). The map
W also factors through the involution of - × - . Thus, the degree of the map
'o → W('o) is equal to 23 (o), where 3 (o) is some numerical invariant of
the theta characteristic o. We call it the Scorza invariant. Let

ℓ(o) := W('o).

We considered it as a curve embedded in | � |. Applying Lemma
L5.4.5L5.4.5
5.5.12, we

obtain the following.

Corollary 5.5.13.

deg ℓ(o) = 6(6 − 1)
3 (o) .

Remark 5.5.14. Let � be a canonical curve of genus 6 and 'o be a Scorza
correspondence on �. For any G, H ∈ �, consider the degree 26 divisor
� (G, H) = 'o (G)+'o (H) ∈ | �+G+H |. Since |2 �−( �+G+H) | = | �−G−H |,
we obtain that the linear system of quadrics through � (G, H) is of dimension
1
26(6 + 1) − 26 = dim |OP6−1 (2) | − 26 + 1. This shows that the set � (G, H)
imposes one less condition on quadrics passing through this set. For example,
if 6 = 3, we get that � (G, H) is on a conic. If 6 = 4 it is the base set of a net of
quadrics. We refer to

DolgachevOrtland
[234] and

EP
[282] for projective geometry of sets imposing

one less condition on quadrics (called self-associated sets).
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5.5.3 Scorza quartic hypersurfaces
SS:S:5.5.3

The following construction due to G. Scorza needs some generality assumption
on �.

Definition 5.5.15. A pair (�, o) is called Scorza general if the following
properties are satisfied

(i) 'o is a connected nonsingular curve;
(ii) 3 (o) = 1;
(iii) ℓ(o) is not contained in a quadric.

We will see in the next chapter that a general canonical curve of genus 3 is
Scorza general. For higher genus, this was proven in

TZ
[742].

We continue to assume that � is non-hyperelliptic. Consider the canonical
embedding � ↩→ | � |∨ � P6−1 and identify � with its image (the canonical
model of �). For any G ∈ �, the divisor 'o (G) consists of 6 points H8 . If
all of them are distinct, we have 6 hyperplanes W(G, H8) = 〈'o (G) − H8〉,
or, 6 points on the curve ℓ(o). More generally, we have a map � → � (6)

defined by the projection ?1 : 'o → �. The composition of this map with
the map W (6) : � (6) → ℓ(o) (6) is a regular map q : � → ℓ(o) (6) . Let
� ∩ � = G1 + · · · + G26−2 be a hyperplane section of �. Adding up the images
of the points G8 under the map q, we obtain 6(26 − 2) points on ℓ(o).

scorzag Proposition 5.5.16. Let � = G1 + · · · + G26−2 be a canonical divisor on �.
Assume (�, o) is Scorza general. Then, the divisors

q(�) =
26−2∑
8=1

q(G8), � ∈ | � |,

span a linear system of divisors on ℓ(o) which are cut out by quadrics.

Proof First note that the degree of the divisor is equal to 2 deg ℓ(o). Let
(G, H) ∈ 'o and �G,H = W(G, H) = ('o (G) − H) + ('o (H) − G) ∈ | � |. For any
G8 ∈ 'o (G)−H, the divisor W(G, G8) contains H. Similarly, for any G 9 ∈ 'o (H)−G,
the divisor W(H, G 9 ) contains G. Thismeans that q(�G,H) is cut out by the quadric
&G,H equal to the sum of two hyperplanes �̌G , �̌H corresponding to the points
G, H ∈ � ⊂ | � |∨ via the duality. The image of | � | in ℓ(o) (6 (26−2)) spans a
linear system ! (since any map of a rational variety to Jac(ℓ(o)) is constant).
Since ℓ(o) is not contained in a quadric, it generates | � |. This shows that
all divisors in ! are cut out by quadrics. The quadrics &G,H span the space
of quadrics in | � | since otherwise there exists a quadric in | � |∨ apolar
to all quadrics &G,H . This would imply that for a fixed G ∈ �, the divisor
'o (G) lies in a hyperplane, the polar hyperplane of the quadric with respect to
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the point G. However, because o is non-effective, 〈'o (G)〉 spans P6−1. Thus,
dim ! ≥ 6(6 + 1)/2, and, since no quadrics contains ℓ(o), ! coincides with
the linear system of divisors on ℓ(o) cut out by quadrics. �

Let � = �0 (�, l� )∨. We can identify the space of quadrics in |� | with
P((2 (�)). Using the previous proposition, we obtain a map |�∨ | → |(2 (�) |.
The restriction of this map to the curve ℓ(o) is given by the linear system
|Oℓ (o) (2) |. This shows that the map is given by quadratic polynomials, so
defines a linear map

U : (2 (�∨) → (2 (�).

The proof of the proposition implies that this map is bĳective.

T5.4.8 Theorem 5.5.17. Assume (�, o) is Scorza general. Then, there exists a unique
quartic hypersurface + ( 5 ) in |� | = P6−1 such that the inverse linear map U−1

is equal to the polarization map k ↦→ �k ( 5 ).

Proof Consider U−1 : (2 (�) → (2 (�∨) as a tensor* ∈ (2 (�∨) ⊗ (2 (�∨) ⊂
(�∨)⊗4 viewed as a 4-multilinear map �4 → C. It is enough to show that *
is totally symmetric. Then, U−1 is defined by the apolarity map associated to
a quartic hypersurface. Fix a reduced divisor 'o (G) = G1 + · · · + G6. Let �8
be the hyperplane in |� | spanned by 'o (G) − G8 . Choose a basis (C1, . . . , C6)
in �∨ such that �8 = + (C8). It follows from the proof of Proposition

scorzagscorzag
5.5.16

that the quadratic map P(�∨) → P((2 (�)) assigns to the hyperplane �8 the
quadric &G,G8 equal to the union of two hyperplanes associated to G and G8 via
the duality. The corresponding linear map U satisfies

U(C29 ) = b 9 (
6∑
8=1

18b8), 9 = 1, . . . , 6, (5.41) w*

where (b1, . . . , b6) is the dual basis to (C1, . . . , C6), and (11, . . . , 16) are the
coordinates of the point G. This implies that

* (b 9 ,
6∑
8=1

18b8 , b: , b<) =
{

1 if 9 = : = <,
0 otherwise

= * (b: ,
6∑
8=1

18b8 , b 9 , b<).

This shows that * is symmetric in the first and the third arguments when the
second argument belongs to the curve ℓ(o). Since the curve ℓ(o) spans P(�∨),
this is always true. It remains to use that * is symmetric in the first and the
second arguments, as well as in the third and the fourth arguments. �

Definition 5.5.18. Let (�, o) be Scorza general pair consisting of a canonical
curve of genus 6 and a non-effective theta characteristic o. Then, the quartic
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hypersurface + ( 5 ) is called the Scorza quartic hypersurface associated to
(�, o).

We will study the Scorza quartic plane curves in the case 6 = 3. Very little is
known about Scorza hypersurfaces for general canonical curves of genus > 3.
We do not even knowwhether they are nonsingular. However, it follows from the
construction that the hypersurface is given by a nondegenerate homogeneous
form.
The Scorza correspondence has been recently extended to pairs (�, \), where

� is a hyperelliptic curve of genus 3
Grushevsky
[366]. For arbitrary 6 ≥ 3, the degenerations

of the Scorza correspondences defined by (�, o) when the pair degenerates in
the compactification of the moduli spaceMev

6 was studied in
FarkasIzadi
[298],

5.5.4 Contact hyperplanes of canonical curves
SS:5.5.5

Let � be a nonsingular curve of genus 6 > 0. Fixing a point 20 on � allows one
to define an isomorphism of algebraic varieties Pic3 (�) → Jac(�), [�] ↦→
[� − 320] . Composing this map with the map D3 : � (3) → Pic3 (�) we obtain
a map

D3 (20) : � (3) → Jac(�). (5.42) ab

If no confusion arises, we drop 20 from this notation. For 3 = 1, this map
defines an embedding

D1 : � ↩→ Jac(�).

For the simplicity of the notation, we will identify � with its image. For any
2 ∈ �, the tangent space of � at a point 2 is a one-dimensional subspace of
the tangent space of Jac(�) at 2. Using a translation automorphism, we can
identify this space with the tangent space )0Jac(�) at the zero point. Under the
Abel-Jacobi map, the space of holomorphic one-forms on Jac(�) is identified
with the space of holomorphic forms on �. Thus, we can identify )0Jac(�)
with the space �0 (�,  � )∨. As a result, we obtain the canonical map of �

i : � → P(�0 (�,  � )∨) = | � |∨ � P6−1.

If � is not hyperelliptic, the canonical map is an embedding.
We continue to identify �0 (�,  � )∨ with )0Jac(�). A symmetric odd theta

divisor Θ = ,0
6−1 − o contains the origin of Jac(�). If ℎ0 (o) = 1, the origin is

a nonsingular point on Θ, and hence Θ defines a hyperplane in )0 (Jac(�)), the
tangent hyperplane )0Θ. Passing to the projectivization we have a hyperplane
in | � |∨.
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Proposition 5.5.19. The hyperplane in | � |∨ defined by Θ is a contact hyper-
plane to the image i(�) under the canonical map.

Proof Consider the difference map (
differencedifference
5.36) 31 : � × � → Jac(�). In the case

when Θ is an even divisor, we proved in (
lineq2lineq2
5.37) that

3∗1 (Θ) ∼ ?
∗
1 (\) + ?

∗
2 (\) + Δ. (5.43) tr

Since two theta divisors are algebraically equivalent the same is true for an odd
theta divisor. The only difference is that 3∗1 (Θ) contains the diagonal Δ as the
pre-image of 0. It follows from the definition of the map D1 (20) that

D1 (20) (�) ∩ Θ = 3−1
1 (Θ) ∩ ?

−1
1 (20) = 20 + �o ,

where �o is the unique effective divisor linearly equivalent to o. Let G : Θ →
P()0Jac(�)) be the Gauss map defined by translation of the tangent space at
a nonsingular point of Θ to the origin. It follows from the proof of Torelli
Theorem

ACGH
[13] that the Gauss map ramifies at any point where Θ meets D1 (�).

So, the image of the Gauss map intersects the canonical image with multiplicity
≥ 2 at each point. This proves the assertion. �

More explicitly, the equation of the contact hyperplane corresponding to
Θ is given by the linear term of the Taylor expansion of the theta function
\
[ &
(

]
corresponding to Θ. Note that the linear term is a linear function on

�0 (�,  � )∨, hence can be identified with a holomorphic differential

ℎΘ =

6∑
8=1

m\
[ &
(

]
(I, g)

mI8
(0)l8 ,

where (I1, . . . , I6) are coordinates in �0 (�,  � )∨ defined by a normalized
basis l1, . . . , l6 of �0 (�,  � ). A nonzero section of OJac(�) (Θ) can be
viewed as a holomorphic differential of order 1

2 . To make this more precise,
i.e. describe how to get a square root of a holomorphic one-form, we use the
following result (see

Fay
[299, Proposition 2.2]).

Proposition 5.5.20. LetΘ be a symmetric odd theta divisor defined by the theta
function \

[ &
(

]
. Then, for all G, H ∈ �,

\
[ &
(

]
(31 (G − H))2 = ℎΘ (i(G))ℎΘ (i(H))� (G, H)2,

where � (G, H) is a certain section of O�×� (Δ) (the prime-form).

An attentive reader should notice that the equality is not well-defined inmany
ways. First, the vector i(G) is defined only up to proportionality and the value
of a section of a line bundle is also defined only up to proportionality. To make
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sense of this equality we pass to the universal cover of Jac(�) identified with
�0 (�,  � )∨ and to the universal cover * of � × � and extend the difference
map and the map i to the map of universal covers. Then, the prime-form is
defined by a certain holomorphic function on * and everything makes sense.
As the equality of the corresponding line bundles, the assertion trivially follows
from (

trtr
5.43).

Let

r
[ &
(

]
(G, H) =

\
[ &
(

]
(31 (G − H))
� (G, H) .

Since � (G, H) = −� (H, G) and \
[ &
(

]
is an odd function, we have r

[ &
(

]
(G, H) =

r
[ &
(

]
(H, G) for any G, H ∈ � × � \ Δ. It satisfies

r
[ &
(

]
(G, H)2 = ℎΘ (i(G))ℎΘ (i(H)). (5.44) square

Note that � (G, H) satisfies � (G, H) = −� (H, G), since \
[ &
(

]
is an odd function,

we have r
[ &
(

]
(G, H) = r

[ &
(

]
(H, G) for any G, H ∈ � × � \ Δ.

Now, let us fix a point H = 20, so we can define the root function on �. It is
a rational function on the universal cover of � defined by r

[ &
(

]
(G, 20).

Thus, every contact hyperplane of the canonical curve defines a root function.
Suppose we have two odd theta functions \

[ &
(

]
, \

[
& ′
(′

]
. Then, the ratio of the

corresponding root functions is equal to \
[ &
(

]
(31 (G−20))/\

[
& ′
(′

]
(31 (G−20))

and its square is a rational function on�, defined uniquely up to a constant factor
depending on the choice of 20. Its divisor is equal to the difference 2o − 2o′.

Thus, we can view the ratio as a section of  
1
2
-
with divisor \ − \ ′. This section

is not defined on � but on the double cover of � corresponding to the 2-torsion
point o − o′. If we have two pairs o1, o

′, o2, o
′
2 of odd theta characteristics

satisfying o1 − o′ = o2 − o′2 = n , i.e. forming a syzygetic tetrad, the product of
the two ratios is a rational function on� with divisor o1+o′2−o

′
1−o2. Following

Riemann
RiemannBit
[625] and Weber

Weber
[798], we denote this function by (o1o

′
1/o2o

′
2)

1/2.
By Riemann-Roch, ℎ0 (o1 + o′2) = ℎ

0 ( � + n) = 6 − 1, and hence, any 6 pairs
(o1, o

′
1), . . . , (o6, o

′
6) of odd theta characteristics in a Steiner complex define

6 linearly independent functions (o1o
′
1/o6o

′
6)1/2, . . . , (o6−1o

′
6−1/o6o

′
6)1/2.

After scaling, and getting rid of squares by using (
squaresquare
5.44), we obtain a polynomial

in ℎΘ1 (i(G)), . . . , ℎΘ6 (i(G)) vanishing on the canonical image of �.

Example 5.5.21. Let 6 = 3. We take three pairs of odd theta functions and get
the equation √

o1o
′
1 +

√
o2o

′
2 +

√
o3o

′
3 = 0. (5.45) 5.44
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After getting rid of square roots, we obtain a quartic equation of �

(;< + ?@ − AB)2 − 4;<?@ = 0, (5.46)

where ;, <, ?, @, AB are the linear functions in I1, I2, I3 defining the linear terms
of the Taylor expansion at 0 of the odd theta functions corresponding to three
pairs in a Steiner complex. The number of possible ways to write the equation
of a plane quartic in this form is equal to 63 · 20 = 1260.

Remark 5.5.22. For any nonzero 2-torsion point, the linear system | � + n |
maps � to P6−2, the map is called the Prym canonical map. We have seen that
the root functions (o1o

′
1/o2o

′
2)

1/2 belong to �0 (�,  � + n) and can be used to
define the Prym canonical map. For 6 = 3, the map is a degree 4 cover of P1

and we express the quartic equation of � as a degree 4 cover of P1.

Exercises
E:5

5.1 Let � be an irreducible plane curve of degree 3 with a (3 − 2)-multiple point.
Show that its normalization is a hyperelliptic curve of genus 6 = 3−2. Conversely,
show that any hyperelliptic curve of genus 6 admits such a plane model.ex:5.1

5.2 Show that a nonsingular curve of genus 2 has a vanishing theta characteristic but
a nonsingular curve of genus 3 has a vanishing theta characteristic if and only if
it is a hyperelliptic curve.ex:5.2

5.3 Show that a nonsingular non-hyperelliptic curve of genus four has a vanishing
theta characteristic if and only if its canonical model lies on a quadratic cone.ex:5.3

5.4 Find the number of vanishing theta characteristics on a hyperelliptic curve of
genus 6.ex:5.4

5.5 Show that a canonical curve of genus 5 has 10 vanishing even theta character-
istics if and only if it is isomorphic to the intersection of three simultaneously
diagonalized quadrics in P4.ex:5.5

5.6 Compute the number of syzygetic tetrads contained in a Steiner complex.ex:5.6
5.7 Show that the composition of two correspondences (defined as the composition

of the multi-valued maps defined by the correspondences) with valences a and
a′ is a correspondence with valence −aa′.ex:5.7

5.8 Let 5 : - → P1 be a non-constant rational function on a nonsingular projective
curve - . Consider the fibered product - ×P1 - as a correspondence on - × - .
Show that it has valence and compute the valence. Show that the Cayley-Brill
formula is equivalent to the Riemann–Hurwitz formula.ex:5.8

5.9 Suppose that a nonsingular projective curve - admits a non-constant map to a
curve of genus > 0. Show that there is a correspondence on - without valence.ex:5.9

5.10 Show that any correspondence on a nonsingular plane cubic has valence unless
the cubic is harmonic or equianharmonic.ex:5.10

5.11 Describe all symmetric correspondences of type (4, 4) with valence 1 on a
canonical curve of genus 4.ex:5.11

5.12 Let 'o be the Scorza correspondence on a curve�. Prove that a point (G, H) ∈ 'o
is singular if and only if G and H are ramification points of the projections 'o → �.ex:5.12
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5.13 Show that the Scorza map gives a birational isomorphism between the moduli
space of canonical curves of genus 3 and the moduli space of its 36 : 1-cover
defined by a choice of an even theta characteristic. Give examples of a similar
birational isomorphism for curves of genus 6 = 1, 2. Are there any examples for
= 4?

Historical Notes

It is too large a task to discuss the history of theta functions. However, we
mention that the connection between odd theta functions with characteristics
and bitangents to a quartic curves goes back to Riemann

RiemannBit
[625],

Weber
[798]. There are

numerous expositions of the theory of theta functions and Jacobian varieties
(e.g.,

ACGH
[13],

Clemens
[152],

MumTheta
[541]). The theory of fundamental sets of theta characteristics

goes back to A. Göpel and J. Rosenhein. . A good exposition can be found in
Krazer’s book

Krazer
[468]. As an abstract symplectic geometry over the field of two

elements, it is discussed in
Coble
[159], citeCobleTheta (see also a modern exposition

in
Rivano
[644]).
The theory of correspondences on an algebraic curve originates fromCharles’

Principle of Correspondence
Chasles
[127]. It is a special case of the Cayley-Brill for-

mula in the case 6 = 0. However, the formula was known and used earlier by
E. de Jonquières

deJMelange
[212], and later, but before Chasles, by L. Cremona in

CremonaIntr
[182].

We refer to C. Segre
SegreChasles
[692] for the history of this discovery and the polemic

between Chasles and de Jonquières on the priority of this discovery.
We have already encountered the application of Chasles’ Principles to Pon-

celet polygons in Chapter 2. Cayley was the first who found this application
Cayley69
[115]. Cayley was also the first to extend Chasles’ Principle to a higher genus
Cayley69
[115], although with incomplete proof. The first proof of the Cayley-Brill for-
mula was given by A. Brill

Brill1
[73]. The notion of valence (die Werthigeit) was

introduced by Brill. Hurwitz was the first to point out that only a general
curve may admit a correspondence with valence

Hurwitz
[417]. Hurwitz also showed

the existence of correspondences without valence. Baker’s book
BakerBook
[29, Vol. 6]

is a good reference to many problems that can be solved by using the theory
of correspondences. We refer to

Topics
[715] for a fuller history of the theory of

correspondences.
The number of bitangents to a plane curve was first computed by J. Plücker

PluckerBit
[597],

PluckerBook
[598]. The equations of bitangential curves were given by A. Cayley

CayleyBitangents
[109], G. Salmon

SalmonCurves
[652] and O. Dersch

Dersch
[219].

The study of correspondences of type (6, 6) with valence −1 was initiated
by G. Scorza

Scorza2
[678],

Scorza3
[679]. In

Scorza4
[680] Scorza gave a construction of a quartic

hypersurface associated with a non-effective theta characteristic on a canonical
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curve of genus 6. A modern exposition of Scorza’s theory was first given in
DolgachevKanev
[235]. A survey of some new results about Scorza correspondences and the
associated quartic hypersurfaces can be found in

Zucconi
[821].



6
Plane Quartics

6.1 Bitangents
S:6.1

6.1.1 28 bitangents
S:6.1.1

A nonsingular plane quartic� is a non-hyperelliptic genus 3 curve embedded in
P2 by its canonical linear system | � |. It has no vanishing theta characteristics,
so the only effective theta characteristics are odd ones. The number of them
is 28 = 22 (23 − 1). Thus, � has exactly 28 contact lines, which, in this case,
coincide with bitangents. Each bitangent is tangent to � at two points that may
coincide. In the latter case, the bitangent is called a inflection bitangent.
We can apply the results from Section

S:5.4S:5.4
5.4 to the case 6 = 3. Let + =

Pic(�) [2] � F6
2 with the symplectic form l defined by the Weil pairing. The

elements of &(+)−, i.e., quadratic forms of odd type on + , will be identified
with bitangents.
The union of four bitangents forming a syzygetic tetrad cuts out in � an

effective divisor of degree 8. It is cut by some conic + (@). There are C3 = 315
syzygetic tetradswhich are in a bĳective correspondencewith the set of isotropic
planes in Pic(�) [2].
Since a syzygetic tetrad of bitangents and the conic + (@) cuts out in � the

same divisor, we obtain the following.

Proposition 6.1.1. A choice of a syzygetic tetrad of bitangents + (;8), 8 =
1, . . . , 4, puts the equation of � in the form

� = + (;1;2;3;4 + @2). (6.1) syzeg

Conversely, each such equation defines a syzygetic tetrad of bitangents. There
are 315 ways to write 5 in this form.

There are 63 Steiner complexes of bitangents. Each complex consists of six

298
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pairs of bitangents ℓ8 , ℓ′8 such that the divisor class of ℓ8 ∩� − ℓ′8 ∩� is a fixed
nonzero two-torsion divisor class.

P6.1.2 Proposition 6.1.2. Let (;, <), (?, @), (A, B) be three pairs of linear forms defin-
ing three pairs of bitangents from a Steiner complex. Then, after scaling the
forms, one can write the equation of � in the form

4;<?@ − (;< + ?@ − AB)2 = 0, (6.2) squareroots

which is equivalent to the equation
√
;< + √?@ +

√
AB = 0 (6.3) squareroots2

after getting rid of square roots. Conversely, an equation of this form is defined
by three pairs of bitangents from a Steiner complex. The number of ways in
which the equation can be written in this form is equal to 1260 =

(6
3
)
· 63.

Proof By (
syzegsyzeg
6.1), we can write

� = + (;<?@ − 02) = + (;<AB − 12)

for some quadratic forms 0, 1. After subtracting the equations, we get

;<(?@ − AB) = (0 + 1) (0 − 1).

If ; divides 0 + 1 and < divides 0 − 1, then the quadric + (0) passes through
the point ; ∩ <. But this is impossible since no two bitangents intersect at
a point on the quartic. Thus, we obtain that ;< divides either 0 + 1 or 0 −
1. Without loss of generality, we get ;< = 0 + 1, ?@ − AB = 0 − 1, and
hence 0 = 1

2 (;< + ?@ − AB). Therefore, we can define the quartic by the
equation 4;<?@ − (;< + ?@ − AB)2 = 0. Conversely, Equation (

squarerootssquareroots
6.2) defines a

syzygetic tetrad + (;), + (<), + (?), + (@). By the symmetry of (
squareroots2squareroots2
6.3), we obtain

two other syzygetic tetrads+ (;), + (<), + (A), + (B) and+ (?), + (@), + (A), + (B).
Obviously, the pairs (;, <), (?, @), (A, B) define the same 2-torsion divisor class,
so they belong to a Steiner hexad. �

In the previous chapter, we found this equation by using theta functions (see
(
5.445.44
5.45)).
Remark 6.1.3. Consider the 4-dimensional algebraic torus

) = {(I1, I2, I3, I4, I5, I6) ∈ (C∗)6 : I1I2 = I3I4 = I5I6} � (C∗)4.

It acts on 6-tuples of linear forms (;1, . . . , ;6) ∈ (C3)6 � C18 by scalar mul-
tiplication. The group � = F3

2 o S3 of order 48 acts on the same space by
permuting two forms in each pair (;8 , ;8+1), 8 = 1, 3, 5, and permuting the three
pairs. This action commutes with the action of ) and defines a linear action of



300 Plane Quartics

the group ) × � on P17 = C18 \ {0}/C∗. The GIT-quotient - = P17/() × �)
is a projective variety of dimension 14. A rational map - d |OP2 (4) | which
assigns to a general orbit of ) ×� the quartic curve + (

√
;;;2 +

√
;3;4 +

√
;5;6) is

a SL(3)-equivariant and of degree 48 · 1260. I do not know whether -/SL(3)
is a rational variety; the orbit space |OP2 (4) |/SL(3) is known to be a rational
variety

Katsylo
[444],

Bohning
[63].

We know that two Steiner complexes have either four or six common bitan-
gents, depending on whether they are syzygetic or not. Each isotropic plane in
Pic(�) [2] defines three Steiner complexes with common four bitangents. Two
azygetic Steiner complexes have 6 common bitangents. The number of azygetic
triads is equal to 336.
The projection from the intersection point of two bitangents defines a 61

4 with
two members of the form 2? + 2@. It is possible that more than two bitangents
are concurrent. However, we can prove the following.

arr Proposition 6.1.4. No three bitangents forming an azygetic triad can intersect
at one point.

Proof Let o1, o2, o3 be the corresponding odd theta characteristics. The 2-
torsion divisor classes n8 9 = o8 − o 9 form a non-isotropic plane. Let n be a
nonzero point in the orthogonal complement. Then, @[8 (n) +@[ 9 (n) + 〈[8 9 , n〉 =
0 implies that @[8 take the same value at n . We can always choose n such that
this value is equal to 0. Thus, the three bitangents belong to the same Steiner
complex Σ(n). Obviously, no two differ by n , hence we can form 3 pairs from
them. These pairs can be used to define the equation (

squarerootssquareroots
6.2) of �. It follows from

this equation that the intersection point of the three bitangents lies on �. But
this is impossible because � is nonsingular. �

Remark 6.1.5. A natural question is whether the set of bitangents determines
the quartic, i.e. whether two quartics with the same set of bitangents coin-
cide. Surprisingly, it has not been answered by the ancients. Only recently it
was proven that the answer is yes:

CS1
[88] (for a general curve),

Lehavi
[480] (for any

nonsingular curve).

6.1.2 Aronhold sets
6.1.2

We know that in the case 6 = 3 a normal fundamental set of eight theta charac-
teristics contains seven odd theta characteristics. The corresponding unordered
set of seven bitangents is called an Aronhold set. It follows from (

orderorder
5.30) that the

number of Aronhold sets is equal to #Sp(6, F2)/7! = 288.
A choice of an ordered Aronhold set defines a unique fundamental set that
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contains it. The eighth theta characteristic is equal to the sum of the charac-
teristics from the Aronhold set. Thus, an Aronhold set can be defined as an
azygetic set of seven bitangents.
A choice of an ordered Aronhold set allows one to index all 2-torsion divisor

classes (resp. odd theta characteristics) by subsets of even cardinality (resp.
of cardinality 2) of {1, . . . , 8}, up to complementary set. Thus, we have 63 2-
torsion classes n01 , n0123 and 28 bitangents ℓ8 9 corresponding to 28 odd theta
characteristics o8 9 . The bitangents from the Aronhold set correspond to the
subsets (18, 28, . . . , 78).

We also know that o� − o� = n�+�. This implies, for example, that four
bitangents ℓ�, ℓ�, ℓ� , ℓ� form a syzygetic tetrad if and only if �+�+�+� = 0.
Following Cayley, we denote a pair of numbers from the set {1, . . . , 8} by

a vertical line |. If two pairs have a common number we make them intersect.
For example, we have the following.

• Pairs of bitangents: 210 of type | | and 168 of type ∨.
• Triads of bitangents:

1. (syzygetic) 420 of type t, 840 azygetic of type | | |;
2. (azygetic) 56 of type 4, 1680 of type ∨ |, and 280 of type .

• Tetrads of bitangents:

1. (syzygetic) 105 azygetic of types | | | |, 210 of type �;
2. (asyzygetic) 560 of types | 4, 280 of type , 1680 of type , 2520 of

type ∨∨;
3. (non syzygetic but containing a syzygetic triad) 2520 of type | | ∨, 5040

of type | t, 3360 of type , 840 of type , 3360 of type .

There are two types of Aronhold sets: , 4. They are represented by
the sets (12, 13, 14, 15, 16, 17, 18) and (12, 13, 23, 45, 46, 47, 48). The number
of the former type is 8, the number of the latter type is 280. Note that the
different types correspond to orbits of the subgroup of Sp(6, F2) isomorphic to
the permutation groupS8. For example, we have two orbits ofS8 on the set of
Aronhold sets consisting of 8 and 280 elements.

L6.1.2 Lemma 6.1.6. Three odd theta characteristics o1, o2, o3 in a Steiner complex
Σ(n), no two of which differ by n , are azygetic.

Proof Let o′
8
= o8 + n, 8 = 1, 2, 3. Then, {o1, o

′
1, o2, o

′
2} and {o1, o

′
1, o3, o

′
3}

are syzygetic and have two common theta characteristics. By Proposition
5.4.95.4.9
5.4.13,

the corresponding isotropic planes do not span an isotropic 3-space. Thus,
〈o1 − o2, o3 − o1〉 = 1, hence o1, o2, o3 is an azygetic triad. �
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The previous Lemma suggests a way to construct an Aronhold set from a
Steiner set Σ(n). Choose another Steiner set Σ([) azygetic to the first one.
They intersect at six odd theta characteristics o1, . . . , o6, no two of which
differ by n . Consider the set {o1, . . . , o5, o6 + n, o6 + [}. We claim that this is
an Aronhold set. By the previous Lemma all triads o8 , o 9 , o: , 8, 9 , : ≤ 5 are
azygetic. Any triad o8 , o6 + n, o6 + [, 8 ≤ 5, is azygetic too. In fact, o8 ((o6 +
n) + (o6 + [)) = o8 (n + [) ≠ 0 since o8 ∉ Σ(n + [). So the assertion follows
from Lemma

5.4.15.4.1
5.4.2. We leave it to the reader to check that remaining triads

{o8 , o 9 , o6 + n}, {o8 , o 9 , o6 + [}, 8 ≤ 5, are azygetic.

P6.1.22 Proposition 6.1.7. Any six lines in an Aronhold set are contained in a unique
Steiner complex.

We use that the symplectic group Sp(6, F2) acts transitively on the set of
Aronhold sets. So it is enough to check the assertion for one Aronhold set. Let
it correspond to the index set (12, 13, 14, 15, 16, 17, 18). It is enough to check
that the first six are contained in a unique Steiner complex. By Proposition
5.4.55.4.5
5.4.7, it is enough to exhibit a 2-torsion divisor class n8 9 such that o1: (n8 9 ) = 0
for : = 2, 3, 4, 5, 6, 7, and show its uniqueness. By Proposition

tetetete
5.4.19, n18 does

the job.
Recall that a Steiner complex of theta characteristics on a genus 3 curve

consists of six pairs of theta characteristics and the union of these pairs consists
of 12 theta characteristics A subset of six of them will be called a hexad.

Corollary 6.1.8. Any Steiner complex contains 26 azygetic hexads. Half of
them are contained in another Steiner complex, necessarily azygetic to the first
one. Any other hexad can be extended to a unique Aronhold set.

Proof Let Σ(n) be a Steiner complex consisting of six pairs of odd theta
characteristics. Consider it as �-set, where � = (Z/2Z)6 whose elements,
identified with subsets � of [1, 6], act by switching elements in 8-th pairs,
8 ∈ � . It is clear that � acts simply transitively on the set of azygetic sextuples
in Σ(n). For any azygetic complex Σ([), the intersection Σ(n) ∩ Σ([) is an
azygetic hexad. Note that two syzygetic complexes have only four bitangents in
common. The number of such hexads is equal to 26 − 25 = 25. Thus, the set
of azygetic hexads contained in a unique Steiner complex is equal to 25 · 63.
But this number is equal to the number 7 · 288 of subsets of cardinality 6 of
Aronhold sets. By the previous Proposition, all such sets are contained in a
unique Steiner complex. �

Let (o18, . . . , o78) be an Aronhold set. By Proposition
P6.1.22P6.1.22
6.1.7, the hexad

o28, . . . , o78 is contained in a unique Steiner complex Σ(n). Let o′28 = o28 +
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n . By Proposition
tetetete
5.4.19, the only 2-torsion point n8 9 at which all quadrics

o28, . . . , o78 vanish is the point n18. Thus, o′28 = o28 + n18 = o12. This shows
that the bitangent defined by o′28 coincides with o12. Similarly, we see that the
bitangents corresponding to o88 + n, 8 = 3, . . . , 7, coincide with the bitangents
o18 .

6.1.3 Riemann’s equations for bitangents
SS:6.1.3

Here, we show how to write equations of all bitangents knowing the equations
of an Aronhold set of bitangents.
Let ℓ1 = + (;1), . . . , ℓ7 = + (;7) be an Aronhold set of bitangents of �. By

Proposition
arrarr
6.1.4, any three lines are not concurrent. We may assume that

ℓ1 = + (C0), ℓ2 = + (C1), ℓ3 = + (C2), ℓ4 = + (C0 + C1 + C2)

and the remaining ones are ℓ4+8 = + (008C0 + 018C1 + 028C2), 8 = 1, 2, 3.

riemann Theorem 6.1.9. There exist linear forms D0, D1, D2 such that, after rescaling
the linear forms,

� = + (
√
C0D0 +

√
C1D1 +

√
C2D2).

The forms D8 can be found from equations

D0 + D1 + D2 + C0 + C1 + C2 = 0,
D0
001
+ D1
011
+ D2
021
+ :1 (001C0 + 011C1 + 021C2) = 0,

D0
002
+ D1
012
+ D2
022
+ :2 (002C0 + 012C1 + 022C2) = 0,

D0
003
+ D1
013
+ D2
023
+ :3 (003C0 + 013C1 + 023C2) = 0,

where :1, :2, :3 can be found from solving first linear equations:

©«
1
001

1
002

1
003

1
011

1
012

1
013

1
021

1
022

1
023

ª®®¬ ·
©«
_0
_1
_2

ª®®¬ =
©«
−1
−1
−1

ª®®¬ ,
and then solving the equations

©«
_0001 _1011 _2021
_0002 _1012 _2022
_0003 _1013 _2023

ª®®¬ ·
©«
:1
:2
:3

ª®®¬ =
©«
−1
−1
−1

ª®®¬ .
The equations of the remaining 21 bitangents are:
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(1) D0 = 0, D1 = 0, D2 = 0,
(2) C0 + C1 + D2 = 0, C0 + C2 + D1 = 0, C1 + C2 + D0 = 0,
(3) D0

008
+ :8 (018C1 + 028C2) = 0, 8 = 1, 2, 3,

(4) D1
018
+ :8 (008C0 + 028C2) = 0, 8 = 1, 2, 3,

(5) D2
028
+ :8 (008C0 + 018C1) = 0, 8 = 1, 2, 3,

(6) C0
1−:8018028

+ C1
1−:8008028

+ C2
1−:8008018

= 0, 8 = 1, 2, 3,
(7) D0

008 (1−:8018028) +
D1

018 (1−:8008028) +
D2

028 (1−:8008018) = 0, 8 = 1, 2, 3.

Proof By Proposition
P6.1.22P6.1.22
6.1.7, six bitangents in our set of seven bitangents

ℓ1, . . . , ℓ7 are contained in a unique Steiner complex. Throwing away ℓ1, ℓ2, ℓ3,
we find three Steiner complexes partitioned in pairs

(ℓ2, b3), (ℓ3, b2), (ℓ4, b41), . . . , (ℓ7, b71), (6.4)
(ℓ3, b1), (ℓ1, b3), (ℓ4, b42), . . . , (ℓ7, b72),
(ℓ1, b2), (ℓ2, b1), (ℓ4, b43), . . . , (ℓ7, b73).

Since two Steiner complexes cannot contain more than six common bitangents,
the bitangents b8 = + (D8−1) and b8 9 = + (;8 9 ) are all different and differ from
ℓ1, . . . , ℓ7. We continue to identify bitangents with odd theta characteristics,
and the corresponding odd quadratic forms.
Now, we have

ℓ2 − b3 = ℓ3 − b2, ℓ3 − b1 = ℓ1 − b3, ℓ1 − b2 = ℓ2 − b1.

This implies that ℓ1 − b1 = ℓ2 − b2 = ℓ3 − b3, i.e. the pairs (ℓ1, b1), (ℓ2, b2), and
(ℓ3, b3) belong to the same Steiner complex Σ. One easily checks that

〈ℓ1 − b1, ℓ1 − b2〉 = 〈ℓ2 − b2, ℓ2 − b3〉 = 〈ℓ3 − b3, ℓ3 − b1〉 = 0,

and hence Σ is syzygetic to the three complexes (
33
6.4) and therefore it does not

contain ℓ8 , 8 ≥ 4.
By Proposition

P6.1.2P6.1.2
6.1.2 and its proof, we can write, after rescaling D0, D1, D2,

� = + (4C0C1D0D1 − @2
3) = + (4C0C2D0D2 − @2

2) = + (4C1C2D1D2 − @2
1), (6.5) 63

where

@1 = −C0D0 + C1D1 + C2D2, (6.6)
@2 = C0D0 − C1D1 + C2D2,

@3 = C0D0 + C1D1 − C2D2.

Next, we use the first Steiner complex from (
33
6.4) to do the same by using the

first three pairs. We obtain

� = + (4C1D2;4;41 − @2).
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As in the proof of Proposition (
P6.1.2P6.1.2
6.1.2), we find that

@1 − @ = 2_1C1D2, @1 + @ =
2(C2D2 − ;4;41)

_1
.

Hence

@1 = _1C1D2 +
C2D1 − ;4;41

_1
= −C0D0 + C1D1 + C2D3,

and we obtain

;4;41 = C2D1 − _1 (−C0D0 + C1D1 + C2D3) + _2
1C1D2, (6.7)

;4;42 = C1D0 − _2 (C0D0 − C1D1 + C2D3) + _2
2C2D0,

;4;43 = C0D2 − _3 (C0D0 + C1D1 − C2D3) + _2
3C0D1.

The last two equations give

;4
( ;42
_2
+ ;43
_3

)
= C0

(
−2D0 + _3D1 +

D2
_3

)
+ D0

(
_2C2 +

C1
_3

)
. (6.8) neweqq

The lines ℓ4, ℓ1, and b1 belong to the third Steiner complex (
33
6.4), and by Lemma

L6.1.2L6.1.2
6.1.6 form an azygetic triad. By Proposition

arrarr
6.1.4, they cannot be concurrent.

This implies that the line + (_2C2 + C1
_3
) passes through the intersection point of

the lines b1 and ℓ4. This gives a linear dependence between the linear functions
;4 = 00C0+01C1+02C2, ;1 = C0 and_2C2+ C1_3

(we can assume that 00 = 01 = 02 = 1
but will do it later). This can happen only if

_2 = 2102,
1
_3
= 2101,

for some constant 21. Now, _2C2 + 1
_3
C1 = 21 (02C2 + 01C1) = 21 (;4 − 00C0), and

we can rewrite (
neweqqneweqq
6.8) in the form

21;4
( ;42
_2
+ ;43
_3
− 21D0

)
= C0

(
−21 (2 + 0021)D0 +

D1
01
+ D2
02

)
.

This implies that
;42
_2
+ ;43
_3

= 21D0 +
:1
21
C0, (6.9) 64

:1;4 = −21 (2 + 2100)D0 +
D1
01
+ D2
02
, (6.10) 65

for some constant :1. Similarly, we get

:2;4 = −22 (2 + 2201)D1 +
D0
00
+ D2
02
,

:3;4 = −23 (2 + 2302)D2 +
D1
00
+ D2
01
.
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It is easy to see that this implies that

:1 = :2 = :3 = :, 21 = −00, 22 = −01, 23 = −02.

Equations (
6464
6.9) and (

6565
6.10) become

;42
_2
+ ;43
_3

= −00D0 −
:

00
C0, (6.11) 64’

:;4 =
D0
00
+ D1
01
+ D2
02
. (6.12) 65’

At this point, we can scale the coordinates to assume

01 = 02 = 02 = 1 = −: = 1,

and obtain our first equation

C0 + C1 + C2 + D0 + D1 + D2 = 0.

Replacing ;41 with ;51, ;61, ;71 and repeating the argument, we obtain the re-
maining three equations relating D0, D1, D2 with C0, C1, C2.

Let us find the constants :1, :2, :3 for ℓ5, ℓ6, ℓ7. We have found four linear
equations relating six linear functions C0, C1, C2, D0, D1, D2. Since three of them
form a basis in the space of linear functions, there must be one relation. We
may assume that the first equation is a linear combination of the last three with
some coefficients _1, _2, _3. This leads to the system of linear equations from
the statement of the Theorem.
Finally, we have to find the equations of the 21 bitangents. The equations

(
6363
6.5) show that the lines b1, b2, b3 are bitangents. Equation (

64’64’
6.11) and similar

equations
;43
_3
+ ;41
_1

= −D1 + C1,

;41
_1
+ ;42
_2

= −D2 + C2,

after adding up, give
;41
_1
+ ;42
_2
+ ;43
_3

= C0 + C1 + C2,

and then
;41
_1

= D0 + C1 + C2,

;42
_1

= D1 + C0 + C2,
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;43
_1

= D2 + C0 + C1.

This gives us three equations of type (2). Similarly, we get the expressions for
;58 , ;68 , ;78 which are the nine equations of types (3), (4), and (5).
Let us use the Aronhold set (ℓ1, . . . , ℓ7) to index bitangents by subsets (8 9)

of {1, . . . , 8}. As we explained at the end of the previous section, we have

b1 = o23, b2 = o13, b3 = o12,

b4: = o:4, b5: = o:5, b6: = o:6, b7: = o:7, : = 1, 2, 3.

The remaining bitangents are o56, o57, o67, o45, o46, o47. The first three look
like o23, o13, o12, they are of type 4. The second three look like o5: , o6: , o7: ,
they are of type . To find the equations of triples of bitangents of type 4,
we interchange the roles of the lines ℓ1, ℓ2, ℓ3 with the lines ℓ5, ℓ6, ℓ7. Our lines
will be the new lines analogous to the lines b1, b2, b3. Solving the system, we
find their equations. To find the equations of the triple of bitangents of type ,
we delete ℓ4 from the original Aronhold set, and consider the Steiner complex
containing the remaining lines as we did in (

33
6.4). The lines making the pairs

with ℓ5, ℓ6, ℓ7 will be our lines. We find their equations in the same manner as
we found the equations for b5: , b6: , b7: . �

Remark 6.1.10. The proof of the Theorem implies the following result, which
can be found in

Guardia
[367]. Let (ℓ1, b1), be three pairs of bitangents from the same

Steiner complex. Let (ℓ4, b4) be a fourth pair of bitangents from the Steiner
complex given by pairs (ℓ1, b2), (ℓ2, b1) as in (

33
6.4) (where b4 = b43). Choose

some linear forms ;8 , <8 representing ℓ8 , b8 . Then, the equation of � can be
given by(
(;4;2;3) (;4<2<3);1<1 + (;1;4;3) (<1;4<3);2<2 − (;1;2;4) (<1<2;4);3<3

)2

−4(;4;2;3) (;4<2<3) (;1;4;3) (<1;4<3);1<1;2<2 = 0,

where the brackets denote the determinants of the matrix formed by the coeffi-
cients of the linear forms. In fact, this is Equation (

6363
6.5), where the determinants

take care of scaling of the forms D0, D1, D2 (use that, + (;4) can be taken to be
+ (;1 + ;2 + ;3) and we must keep the relation ;1 + ;2 + ;3 + D1 + D2 + D3 = 0).

One can also find in loc.cit. paper of J. Guàrdia the expressions for ;8 , <8 in
terms of the period matrix of �.

Remark 6.1.11. We will see later in Subsection 6.3.3 that any seven lines in a
general linear position can be realized as an Aronhold set for a plane quartic
curve. Another way to see it can be found in

WeberAlgebra
[799, p. 447].
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6.2 Determinant Equations of a Plane Quartic
S:6.2

6.2.1 Quadratic determinantal representations
6.2.1

Recall fromSubsection
SS:4.1.1SS:4.1.1
4.1.1 that a determinantal representation of type ( |:, : |:−1, 2)2

of a nonsingular plane curve � ⊂ |� | of degree 3 = 2: is defined by two exact
sequences

0→ *∨|� | (−2)
q
→ +|� | → L → 0,

0→ +∨|� | (−2)
q
→ * |� | →M → 0,

(6.13) r1

where dim* = dim+ = : and L,M are invertible sheaves on � satisfying

L ⊗M � O� (3 − 2) � l� (−1). (6.14)

The following is an analog of Theorem
L3L3
4.2.1 whose proof we leave to the

reader.

L3new Theorem 6.2.1. Let 6 = 1
2 (3 − 1) (3 − 2) be the genus of the curve �. Then

(i) �0 (�,L) � *, �0 (�,M) � +;
(ii) �0 (�,L(−1)) = �0 (�,M(−1)) = {0};
(iii) �1 (�,L( 9)) = �1 (�,M( 9)) = {0}, 9 = −1, 0;
(iv) deg(L) = deg(M) = 2: (: − 1);
(v) deg(L(1 − :)) = deg(M(1 − :)) = 0.

The maps
l : � → P(*), r : � → P(+)

are given by the linear systems |L| and |M| of dimension : − 1 = 1
2 (3 − 2) and

degree 1
23 (3 − 2). If we write

L(1 − :) = O� (0)

for some divisor class of degree 0, then

|L| = | (: − 1)ℎ + 0, |M| = | (: − 1)ℎ − 0,

where ℎ is the divisor class of O� (1).
The map

(l, r) : � → P(*) × P(+) → P(* ⊗ +) = |*∨ ⊗ +∨ |

is given the linear system |L ⊗ M| = |2(: − 1)ℎ|. The restriction map to the
image ( of (l, r)

|OP(* )×P(+ ) (1) | = |* ⊗ + | → |L ⊗M| = |2(: − 1)ℎ|, (6.15) 6.18
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defines a map

` : | (: −1)ℎ+0 | × |(: −1)ℎ−0 | → |OP2 (2) |, (�1, �2) ↦→ 〈�1, �2〉 = &∩�,
(6.16) mapmu

where 〈�1, �2〉 is the unique curve of degree 2: − 2 that cuts out the divisor
�1 + �2 on �. Composed with the quadratic polarization linear map q :
|(2 (�) | → |* ⊗ + | we get a map

a : |(2 (�) | → |OP2 (2: − 2) | = |(2:−2 (�∨) |. (6.17) mapnu

A similar proof as used in the case of linear determinantal representations
shows that this map coincides with the apolarity map corresponding to �.
For any G ∈ �, consider the tensor l(G) ⊗ r(G) as a hyperplane in |* ⊗ + |.

It intersects |* | × |+ | at the subvariety of points whose image under the map
` vanishes at G. Choose a basis (B1, . . . , B: ) in * and a basis (B′1, . . . , B

′
:
) in

+ . The map q is given by q(G) = ∑
08 9 B8 ⊗ B 9 . It follows from above that the

matrix (a(B8 ⊗ B 9 )) and the matrix adj((08 9 )) coincide when restricted at � (up
to a multiplicative factor). Since its entries are polynomials of degree less than
deg�, we see that they coincide for all G. This shows that the map a can be
written by the formula

(
∑

D8B8 ,
∑

{ 9 B
′
9 ) ↦→ − det

©«
011 (C) . . . 01: (C) {1
...

...
...

...

0:1 (C) . . . 0:: (C) {:

D1 . . . D: 0

ª®®®®®¬
. (6.18) bd2

Under the composition of the map, the zero set of the bordered determinant
is a curve of degree 2: − 2. Consider the discriminant hypersurface D3−2 (2)
of plane curves of degree 3 − 2 = 2: − 2. The pre-image of D3−2 (2) under
the map (6.18) is a hypersurface - in P(*) × P(+) � P:−1 × P:−1 given by a
bihomogeneous equation of bidegree (3(3 − 3)2, 3(3 − 3)2). Here, we use that
deg D3 (2) = 3(3 − 1)2.
Now, it is time to specialize to the case 3 = 4. In this case, the map |a | is the

map

|a | : | � + 0 | × | � − 0 | → |OP2 (2) |.

In coordinates, the map a is given by

(D1B1 + D2B2, {1B
′
1 + {2B

′
2) ↦→ −D0{0011 + D0{1012 − D1{0021 − D1{1022. (6.19) bd3

The map q is given by

q(G) =
∑

08 9 (G)B∗8 ⊗ B′9∗,
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where (B∗1, B
∗
2), (B

′
1
∗, B′2

∗) are the dual bases in*∨ and+∨. One can also explicitly
see the maps l and r:

l(G) = [−021 (G), 011 (G)] = [−022 (G), 012 (G)], (6.20)
r(G) = [−012 (G), 011 (G)] = [−022 (G), 021 (G)] . (6.21)

The intersection of the conics + (021 (C)) ∩+ (021 (C)) lies on �, so l is given by
a pencil of conics with four base points G1, . . . , G4 on �. The map r is given by
another pencil of conics whose base points H1, . . . , H4, together with the base
points G1, . . . , G4, are cut out by a conic.
The hypersurface - ⊂ P(*) × P(+) � P1 × P1 is of bidegree (3, 3). It is

a curve of arithmetic genus 4. Its image under the Segre map is a canonical
curve equal to the intersection of a nonsingular quadric and a cubic surface.
The cubic surface is the pre-image of the determinantal cubic. It is a cubic
symmetroid surface. We will discuss such cubic surfaces in Subsection

CAG-2:SS:9.3.3CAG-2:SS:9.3.3
9.3.3.

As we explained in Subsection
SS:4.3.2SS:4.3.2
4.3.2, a cubic symmetroid surface admits a

unique double cover ramified along the nodes. The restriction of this cover to
- is an irreducible unramified cover A : -̃ → - . Let g be the nontrivial 2-
torsion divisor class on - corresponding to this cover (it is characterized by the
property that A∗ (g) = 0). The linear system | - + g | maps - to P2. The image
is a Wirtinger plane sextic with double points at the vertices of a complete
quadrilateral. Conversely, we will explain in Chapter 9 that a cubic symmetroid
surface with four nodes is isomorphic to the image of the plane under the linear
system of cubics passing through the six vertices of a complete quadrilateral.
This shows that any Wirtinger sextic is isomorphic to the intersection of a
quadric and a cubic symmetroid surface. In this way, we see that any general
curve of genus four is isomorphic to the curve - arising from a quadratic
determinantal representation of a nonsingular plane quartic. We refer for this
and for more of the geometry of Wirtinger sextics to

CataneseRat
[99].

The map (
mapnumapnu
6.17) is just the apolarity map ap2 : (2 (�) → (2 (�∨) defined

by the quartic �. It is bĳective if the quartic � is nondegenerate. Under the
composition |� | → |(2 (�) | → |(2 (�∨) |, the pre-image of the discriminant
cubic hypersurface is the Hessian sextic of �.
Consider the hypersurface , of type (1, 1, 2) in |* | × |+ | × |� | defined by

the section of OP(* ) (1) � OP(+ ) (1) � OP(�) (2) corresponding to the tensor
defining the linear map q : (2 (�) → * ⊗ + . It is immediate that

, = {(�1, �2, G) ∈ | � + 0 | × | � − 0 | × P2 : G ∈ 〈�1, �2〉}. (6.22) w

In coordinates, the equation of, is given by the bordered determinant (
bd2bd2
6.18).
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Consider the projections

pr1 : , → P1 × P1, pr2 : , → P1. (6.23) W

The fibers of pr1 are isomorphic (under pr2) to conics.The discriminant curve
is the curve - . The fiber of pr2 over a point G ∈ P2 is isomorphic, under
pr1, to a curve on P1 × P1 of degree (1, 1). In the Segre embedding, it is a
conic. The discriminant curve is the curve �. Thus, , has two structures of
a conic bundle. The two discriminant curves, - and �, come with the natural
double cover parameterizing irreducible components of fibers. In the first case,
it corresponds to the 2-torsion divisor class g and - is a nontrivial unramified
double cover. In the second case, the cover splits (since the factors of P1 × P1

come with an order).

prymmap Remark 6.2.2. Recall that, for any unramified double cover of nonsingular
curves c : (̃ → (, the Prym variety Prym((̃/() is defined to be the connected
component of the identity of Jac((̃)/ c∗Jac(().

Prym( -̃/-) � Jac(�).

This is a special case of the trigonal construction applied to trigonal curves
(like ours -) discovered by S. Recillas

Recillas1
[608] (see a survey of R. Donagi

Donagi
[260]

about this and more general constructions of this sort). Note that, in general,
the curve - could be singular even when � is not. However, the Prym variety
is still defined.
Let R6 be the coarse moduli space of isomorphism classes of pairs ((, (̃),

where ( is a nonsingular curve of genus 6 and (̃ → ( is its unramified double
cover. There is a Prym map

p6 : R6 → A6−1, ((, (̃) ↦→ Prym((̃/(),

whereA6−1 is the coarsemoduli space of principally polarized abelian varieties
of dimension 6−1. In our case 6 = 4, the quadratic determinantal constructions
allows us to describe the fiber over the Jacobian variety of a nonsingular
canonical curve of genus 3. It is isomorphic to the Kummer variety Kum(�) =
Jac(�)/(]), where ] is the negation involution 0 ↦→ −0.
The map p6 is known to be generically injective for 6 ≥ 7

Friedman
[310], a finite map

of degree 27 for 6 = 6
Donagi4
[263], and dominant for 6 ≤ 5 with fibers of dimension

36 − 3 − 1
26(6 − 1). We refer to

Donagi2
[261] for the description of fibers.

The varieties R6 are known to be rational (
DolgachevRat
[248] for 6 = 2,

DolgachevRat
[248],

Katsylo
[444] for

6 = 3,
CataneseRat
[99] for 6 = 4) and unirational for 6 = 5

Izadi
[427],

Verra2
[788], 6 = 6

Donagi3
[262],

Verra1
[785]

and 6 = 7
Verra2
[788]). It is known to be of general type for 6 > 13 and 6 ≠ 15

Farkas
[296].
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6.2.2 Symmetric quadratic determinants
SS:6.2.2

Assume that a quadratic determinantal representation of a nonsingular plane
curve � of degree 3 = 2: is symmetric. Then L(1 − :) � M(1 − :) and
L(1− :)⊗2 � O� . Also, by Theorem

L3newL3new
6.2.1, �0 (�,L(1− :)) = {0}. Thus, we

see that a quadratic determinantal representation of� correspond to non-trivial
elements of Jac(�) [2]. We also have

�0 (�,L(−1) = �1 (�,L(−1)) = 0.

Wewrite |L(1−:) | = |n |, where n ∈ Jac(�) [2]\{0}, hence |L| = | (:−1)ℎ+n |.
In coordinates,

� := det
©«
011 . . . 01:
...

...
...

0:1 . . . 0::

ª®®¬ = 0,

where 08 9 = 0 98 are homogeneous forms of degree 2. It comes with the maps,

q : |� | → |(2 (*∨) |, G ↦→ (08 9 (G)),

l : � → P(*) � P:−1, G ↦→ |# (�(G)) |.

It is given by the linear system | (: − 1)ℎ + n |. The map (
6.186.18
6.15) becomes the

restriction map of quadrics in P(*) to the image ( of � under the map l

a : (2 (*) → �0 (�,O� (2: − 2)) = �0 (P2,OP2 (2: − 2)).

The map (
mapmumapmu
6.16) is the composition of the map * ×* → |(2 (*) | given by the

complete linear system of quadrics in |* | and the map a. It factors through the
symmetric square of |* |, and defines a map

|* | (2) → |OP2 (2: − 2) |. (6.24) nus

Recall that |* | (2) is isomorphic to the secant variety of v2 ( |* |) in |(2 (*) |. The
pre-image - (n) of the determinantal hypersurfaceD2:−2 (2) of curves of degree
2:−2 in |(2 (*) | is a hypersurface of degree 3(3−3)2. Its intersectionwith |* |×
|* |, embedded by Segre, is a hypersurface of bidegree (3(3 − 3)2, 3(3 − 3)2).
It is invariant with respect to the switch involution of |* | × |* | and descends
to a hypersurface in the quotient. Its pre-image under the Veronese map is a
hypersurface �(n) of degree 6(3 − 3)2 in P(*).

In coordinates, the multiplication map is given by the bordered determinant
(
bd2bd2
6.18). Since � is symmetric, we have� (�; D, {) = � (�; {, D), and the bordered
determinantal identity (

hesbordhesbord
4.22) gives

� (�; D, {)2 − � (�; D, D)� (�; {, {) = |�|%(C; D, {),
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where %(C; D, {) is of degree 2: − 4 in (C0, C1, C2) and of bidegree (2, 2) in D, {.
The curves+ (� (�; D, D)) define a quadratic family of contact curves of degree
2: − 2. So, we have 226 − 1 of such families, where 6 is the genus of �.

Now, let us specialize to the case : = 2. The determinantal equation of �
corresponding to n must be given by a symmetric quadratic determinant����011 012

012 022

���� = 011022 − 02
12. (6.25) symdett3

Thus, we obtain the following.

thm:6.2.3 Theorem 6.2.3. An equation of a nonsingular plane quartic can be written in
the form ����01 02

02 03

���� = 0,

where 01, 02, 03 are homogeneous forms of degree 2. The set of equivalence
classes of such representations is in a bĳective correspondence with the set of
63 nontrivial 2-torsion divisor classes in Pic(�).

The bordered determinant

� (�; D, D) =

������
011 012 D0
021 022 D1
D0 D1 0

������ = −(022D
2
0 − 2012D0D1 + 011D

2
1)

defines a family of contact conics of �. Each conic from the family touches �
along a divisor from | � + n |.

Also identity (
bordsymbordsym
4.23) between the bordered determinants becomes in our case

det
(
� (�; D, D) � (�; D, {)
� (�; D, {) � (�; {, {)

)
= |�|%(D, {), (6.26) newid

where %(D, {) is a bihomogeneous polynomial in D, { of bidegree (2, 2). Note
that %(D, {) is symmetric in D, { and %(D, D) = 0. This shows that %(D, {) can
be written in the form

%(D, {) = (D0{1 − D1{0) (UD0{0 + V(D0{1 + D1{0) + WD1{1),

where U, V, W are some constants.
The variety - (n) in |* | × |* | � P1 × P1 is a curve of bidegree (3, 3). The

difference from the general case of quadratic determinantal representations
of � is that the curve - (n) is defined by a symmetric bihomogeneous form.
The symmetric product |* | (2) is isomorphic to |(2 (*) | � P2. The image of
- (n) in the plane is a curve � (n) of degree 3. In intersects the Veronese curve
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|� | ↩→ |(2 (*) | at 6 points. They are the images of the hypersurface �(n) ⊂ |* |
under the Veronese map |� | ↩→ |(2 (*) |. So, we see another special property
of - (n). If it is nonsingular, it is a canonical bielliptic curve of genus four.
One can easily compute the number of moduli of such curves. It is equal to sixcurve!of genus 4
instead of nine for a general curve of genus 4. This agrees with our construction
since we have six moduli for pairs (�, n).
It follows from the definition that the curve � (n) parameterizes unordered

pairs �1, �2 of divisors � ∈ | � + n | such that the conic 〈�1, �2〉 is equal to
the union of two lines.
Let Π(n) be the plane in |OP2 (2) | equal to the image of the map (

nusnus
6.24). It is

a net of conics in |� | = P2. It is spanned by the contact conics to �. We can
take for the basis of the net the conics

+ (011) = 〈2�1〉, + (012) = 〈�1, �2〉, + (022) = 〈2�2〉,

where �1, �2 span | � + n |. In particular, we see that Π(n) is base-point-free.
Its discriminant curve is equal to the curve � (n).

lemmma1 Proposition 6.2.4. The cubic curve � (n) is nonsingular if and only if the linear
system | � + n | does not contain a divisor of the form 20 + 21.

Proof Let D = D2 (2) ⊂ |OP2 (2) | be the discriminant cubic. The plane section
Π(n) ∩ D2 (2) is singular if and only if Π(n) contains a singular point of D
represented by a double line, or if it is tangent to D at a nonsingular point. We
proved in Example

ex:discrimex:discrim
1.2.3 that the tangent hypersurface of D at a nonsingular

point represented by a reducible conic& is equal to the space of conics passing
through the singular point @ of &. If ! is contained in the tangent hyperplane,
then all conics from Π(n) pass through @. But, as we saw earlier, the net of
conics Π(n) is base-point-free. This shows that Π(n) intersects D transversally
at each nonsingular point.
In particular, � (n) is singular if and only if Π(n) contains a double line.

Assume that this happens. Then, we get two divisors �1, �2 ∈ | � + n | such
that �1 + �2 = 2�, where � = 01 + 02 + 03 + 04 is cut out by a line ℓ. Let
�1 = ?1 + ?2 + ?3 + ?4, �2 = @1 + @2 + @3 + @4. Then, the equality of divisors
(not the divisor classes)

?1 + ?2 + ?3 + ?4 + @1 + @2 + @3 + @4 = 2(01 + 02 + 03 + 04)

implies that either�1 and�2 share a point G, or�1 = 2?1+2?2,�2 = 2@1+2@2.
The first case is impossible, since | � + n − G | is of dimension 0. The second
case happens if and only if | � + n | contains a divisor �1 = 20 + 21. The
converse is also true. For each such divisor the line 01 defines a residual pair
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of points 2, 3 such that �2 = 22 + 23 ∈ | � + n | and i(�1, �2) is a double
line. �

Remark 6.2.5. By analyzing possible covers of a plane cubic unramified outside
the singular locus, one can check that � (n) is either nonsingular or a nodal cubic,
maybe reducible.

From now on, we assume that � (n) is a nonsingular cubic. Since it pa-
rameterizes singular conics in the net Π(n), it comes with a natural nontrivial
two-torsion point n . Recall that the corresponding unramified double cover of
� (n) is naturally isomorphic to the Cayleyan curve in the dual plane Π(n)∨
which parameterizes irreducible components of singular conics in the net.

steiner2 Theorem 6.2.6. Let Σ(n) = {(ℓ1, ℓ
′
1), . . . , (ℓ6, ℓ

′
6)} be a Steiner complex of

twelve bitangents associated with the two-torsion divisor class n . Each pair,
considered as a divisor �8 = ℓ8 + ℓ′8 ∈ | � + n | = |* | is mapped under the
Veronese map |* | → |(2 (*) | to a point in � (n). It belongs to the set �(n)
of six ramification points of the cover - (n) → � (n). The twelve bitangents,
considered as points in the dual plane |(2 (*∨) |, lie on the cubic curve �̃ (n).

Proof Let (o8 , o′8 ) be a pair of odd theta characteristics corresponding to a pair
(ℓ8 , ℓ′8 ) of bitangents from Σ(n). They define a divisor � = o8 + o′8 ∈ | � + n |
such that � is the divisor of points of contact of a reducible contact conic,
i.e., the union of two bitangents. This shows that o8 , o′8 ∈ �̃ (n). The point
(�, �) ∈ | � + n | × | � + n | belongs to the diagonal in |* | × |* |. These are
the ramification points of the cover - (n) → � (n). They can be identified with
the branch points of the cover - (n) → � (n). �

So, we have a configuration of 63 cubic curves �̃ (n) in the plane |(2 (*∨) |
(beware that this plane is different from the plane |� | containing �). Each
contains twelve bitangents from a Steiner complex. Let (1, (2, (3 be a syzygetic
(resp. azygetic) triad of Steiner complexes. They define three cubic curves
�̃ (n), �̃ ([), �̃ ([ + n) with four (resp. six) common points.
Let us seewhat happens in the symmetric casewith the two-way conic bundle

, ⊂ P1 × P1 × P2 from (
ww
6.22) which we discussed in the previous subsection.

First, its intersection with the product of the diagonal Δ of P1 × P1 with P2

defines the universal family U(n) of the contact conics. It is isomorphic to a
surface in P1 × P2 of bidegree (2, 2). The projection to P2 is a double cover
branched along the quartic �. As we will see later, U(n) is isomorphic to a del
Pezzo surface of degree 2. Its isomorphism class does not depend on n . The
projection U(n) → P1 is a conic bundle. It has six singular fibers that lie over
six points at which the diagonal intersects the curve - (n), i.e. the ramification
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points of the cover - (n) → � (n). The six branch points lie on a conic, the
image of the diagonal Δ in P2. We will see later that a del Pezzo surface of
degree 2 has 126 conic bundle structures; they are divided into 63 pairs which
correspond to nonzero 2-torsion divisor classes on �.
The threefold , is invariant with respect to the involution of P1 × P1 × P2

which switches the first two factors. The quotient, B = ,/(]) is a hypersurface
of bidegree (2, 2) in (P1 × P1)/(]) × P2 � P2 × P2. The projection to the first
factor is a conic bundle with the discriminant curve �(n). The projection to the
second factor is no longer a conic bundle. It is isomorphic to the pull-back of
the universal family of lines - (n) → P2 under the map of the base P2 → P2

given by the net of conics Π(n).
Remark 6.2.7. One can easily describe the Prym map p3 : R3 → A2 restricted
to the open subset of canonical curves of genus three. A pair (�, [) defines an
elliptic curve � (n) and six branch points of the cover - (n) → � (n). The six
points lie on the Veronese conic |� | ↩→ |(2 (*) |. The cover �̃ → � defined by
n is a curve of genus 5. The Prym variety Prym(�̃/�) is a principally polarized
abelian variety of dimension two. One can show that Prym(�̃/�) � Jac(�),
where � is the hyperelliptic curve of genus 2 which is isomorphic to the
branch cover of the Veronese conic ramified over �(n) (see

Lehavi
[480],

Lehavi2
[481]).

Other description of the Prym map p3 can be found in
VerraPrym
[786].

6.3 Even Theta Characteristics
S:6.3

6.3.1 Contact cubics
SS:6.3.1

Recall that each even theta characteristic o on a nonsingular plane quartic curve
� defines a three-dimensional family of contact cubics. The universal family
of contact cubics is a hypersurface Wo ⊂ |� | × P(*) � P2 × P3 of bidegree
(2, 3). If we choose coordinates (C0, C1, C2) in |� | and coordinates D0, D1, D2, D3
in P(*), then the equation of the family of contact cubics becomes����������

011 012 013 014 D0
021 022 023 024 D1
031 032 033 034 D2
041 042 043 044 D3
D0 D1 D2 D3 0

���������� = 0, (6.27) borddet2

where (08 9 ) is the symmetric matrix defining the net No of quadrics defined by
o. The first projection Wo → |� | is a quadric bundle with discriminant curve
equal to �. Its fiber over a point G ∉ � is the dual of the quadric &G = q(G). Its
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fiber over a point G ∈ � is the double plane corresponding to the vertex of the
quadric cone q(G). Scheme-theoretically, the discriminant hypersurface of the
quadric bundle is the curve � taken with multiplicity 3.
The second projection Wo → P3 is a fibration with fibers equal to contact

cubics. Its discriminant surface Do is the pre-image of the discriminant hyper-
surface �3 (2) of plane cubic curves in |OP2 (3) | under the map P3 → |OP2 (3) |
given by quadrics. This implies that Do is of degree 24 and its equation is of
the form �3

8 +�
2
12 = 0, where �8 and�12 are homogeneous forms in D0, . . . , D3

of the degrees indicated by the subscript.

Proposition 6.3.1. The discriminant surface Do of the family of contact cubics
is reducible and non-reduced. It consists of the union of 8 planes and a surface
of degree 8 taken with multiplicity 2.

Proof Let #\ be the net of quadrics in P3 defined by o. We know that the
contact cubic + (� (�; b, b)) is isomorphic to the discriminant curve of the net
of quadrics obtained by restricting #o to the plane �b defined by the point b
in the dual space. The contact cubic is singular if and only if the restricted net
has either a base point or contains a conic of rank 1, i.e. a double line. The first
case occurs if and only if the plane contains one of the base points of the net
#o . There are eight of them (see the next subsection). This gives eight plane
components of Do . The second case occurs if and only if the plane is tangent
to a singular quadric in No along a line. It is easy to compute the degree of
the surface in (P3)∨ parameterizing such planes. Fix a general line ℓ in P3, the
quadrics in No which are tangent to ℓ are parameterized by a conic in No . The
conic intersects the discriminant curve � of No at eight points. Thus, there are
eight cones in No that are tangent to ℓ. Let ℓ′

8
be the line on the cone intersecting

ℓ. Then, the plane spanned by the lines ℓ and ℓ′ is tangent to the cone. Thus,
we see that the degree of the surface parameterizing planes tangent to some
cone in No is of degree 8. The assertion about the multiplicity of the surface
entering the discriminant is proved in

Gizatullin
[334], Theorem 7.2. �

Let �b be a contact nodal cubic represented by a general point b in one of
the eight plane components. It is tangent to � at six nonsingular points. On the
other hand, a general point �b on the other component of Do is a nodal cubic
with a node at �.
We can see other singular contact cubics too. For example, 56 planes through

three base points of the pencil No correspond to the union of three asyzygetic
bitangents. Another singular contact cubic is a biscribed triangle. It is the union
of three lines such that � is tangent to the sides and also passes through the
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three vertices of the triangle. It is proved in
Mukai3
[536] that the number of biscribed

triangles in each of 36 families of contact cubics is equal to 8.
Remark 6.3.2. Note that each cubic curve � in the family of contact cubics
comes with a distinguished 2-torsion point defined by the divisor class [ =
3 − 2ℎ, where � ∩ � = 23, and ℎ is the intersection of � with a line. One
can show that the 2-torsion point is nontrivial. The locus of zeros of the
invariant surface + (�12) of degree 12 parameterizes harmonic contact cubics
� together with a nontrivial 2-torsion divisor class [. The group `4 of complex
multiplications of Jac(�) acts on the set of 2-torsion divisor classes with two
fixed points. If n is invariant with respect to `4, then the Cayleyan curve of
the cubic is also harmonic. Thus, the surface + (�12) is reducible. One of
its irreducible component describes the locus of harmonic contact cubics with
harmonic Cayleyan. It is shown in

GundelfingerQuartic
[369](see a modern discussion of this surface

in
Gizatullin
[334]) that the degree of this component is equal to 4. Thus, each pair (�, o)

defines a quartic surface Θ in | � + o |. It can be also described as the locus of
planesΠ in | � +o |∨ such that the restriction of No toΠ is a net of conics with
harmonic discriminant curve and the Steinerian curve. The residual surface is
of degree 8. It belongs to the pencil of octavic surfaces generated by+ (�8) and
2Θ.

6.3.2 Cayley octads
SS:6.3.2

Let No be the net of quadrics defined by the pair (�, o) and &1, &2, &3 be its
basis. The base locus of No is the complete intersection of these quadrics. One
expects that it consists of eight distinct points. Let us see that this is indeed
true.

P6.3.1 Proposition 6.3.3. The set of base points of the net of quadrics No consists of
eight distinct points, no three of which are collinear, and no four are coplanar.

Proof If we have fewer than eight base points, then all nonsingular quadrics
share the same tangent line at a base point. This implies that No contains a
quadric& with a singular point at a base point. The computation of the tangent
space of the discriminant hypersurface given in (

tandiscrtandiscr
1.46) shows that& is a singular

point of the discriminant curve �, a contradiction.
Suppose three points are on a line ℓ. This includes the case when two points

coincide. This implies that ℓ is contained in all quadrics from N . Take a point
G ∈ ℓ. For any quadric & ∈ No , the tangent plane of & at G contains the line
ℓ. Thus, the tangent planes form a pencil of planes through ℓ. Since No is a
net, there must be a quadric which is singular at G. Thus, each point of ℓ is a
singular point of some quadric from No . However, the set of singular points of
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quadrics from No is equal to the nonsingular sextic (, the image of � under
the map given by the linear system |o(1) |. This shows that no three points are
collinear.
Suppose that four points lie in a plane Π. The restriction of No to Π defines

a linear system of conics through four points, no three of which are collinear.
It is of dimension one. Thus, there exists a quadric in No which contains Π.
However, since � is nonsingular, all quadrics in No are of corank ≤ 1. �

Definition 6.3.4. A set of eight distinct points in P3 which is a complete
intersection of three quadrics is called a Cayley octad.

From now on we assume that a Cayley octad satisfies the properties from
Proposition

P6.3.1P6.3.1
6.3.3.

Let ( be the sextic model of � defined by the linear system | � + o |.

T6.3.2 Theorem 6.3.5. Let @1, . . . , @8 be a Cayley octad. Each line @8@ 9 intersects
the sextic curve ( at two points i(?8), i(? 9 ). The line ?8 ? 9 is a bitangent of
�.

Proof The quadrics containing the line ℓ8 9 = @8@ 9 form a pencil P in No . Its
base locus consists of the line ℓ8 9 and a rational normal cubic curve ' which
intersects the line at two points (they could be equal). Note that the locus of
singular quadrics in the net of quadrics containing ' is a conic. Thus, the
pencil P contains two (or one) singular quadrics with singular points at the
intersection of ' and ℓ8 9 . In the net No this pencil intersects the discriminant
curve � at two points. Suppose one of these two points is an ordinary cusp. It
is easy to check that the multiplicity of a zero of the discriminant polynomial
of the pencil of quadrics is equal to the corank of the corresponding quadric.
Since our pencil does not contain reducible quadrics, we see that this case does
not occur. Hence, the pencil P in No is a bitangent.

�

We can also see all even theta characteristics.

Theorem 6.3.6. Let @1, . . . , @8 be the Cayley octad associated to an even
theta characteristic o. Let o8 9 be the odd theta characteristic corresponding
to the lines @8@ 9 . Then, any even theta characteristic different from o can be
represented by the divisor class

o8, 9:; = o8 9 + o8: + o8; −  �

for some distinct 8, 9 , :, ;.

Proof Suppose that o8, 9:; is an odd theta characteristic o<=. Consider the
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plane c which contains the points @8 , @ 9 , @: . It intersects ( at six points cor-
responding to the theta characteristics o8 9 , o8: , o 9: . ince the planes cut out
divisors from | � + o |, we obtain

o8 9 + o8: + o 9: ∼  � + o.

This implies that

o 9: + o8; + o<= ∼  � + o.

Hence, the lines @ 9@: and @8@; lie in a plane c′. The intersection point of the
lines @ 9@: and @8@; is a base point of two pencils in N and hence is a base
point ofN . However, it does not belong to the Cayley octad. This contradiction
proves the assertion. �

Remark 6.3.7. Note that

o8, 9:; = o 9 ,8:; = o:,8 9; = o;,8 9: .

Thus, o8, 9:; depends only on the choice of a subset of four elements in
{1, . . . , 8}. Also it is easy to check that the complementary set defines the
same theta characteristic. This gives 35 =

(8
4
)
/2 different even theta character-

istics. Together with o = o∅, we obtain 36 even theta characteristics. Observe
now that the notation o8 9 for odd thetas and o8, 9:; , o∅ agrees with the notation
we used for theta characteristics on curves of genus 3. For example, any set
o18, . . . , o78 defines an Aronhold set. Or, a syzygetic tetrad corresponds to four
chords forming a spatial quadrangle, for example, ?1?3, ?2?4, ?2?3, ?1?4.

Here, is another application of Cayley octads.

Proposition 6.3.8. There are 1008 azygetic hexads of bitangents of� such that
their 12 points of contact lie on a cubic.

Proof Let ℓ1, ℓ2, ℓ3 be an azygetic triad of bitangents. The corresponding odd
theta characteristics add up to  � + o, where o is an even theta characteristic.
Let O be the Cayley octad corresponding to the net of quadrics for which �
is the Hessian curve and let ( ⊂ P3 = | � + o |∨ be the corresponding sextic
model of �. We know that the restriction map

|OP3 (2) | → |O( (2) | = |O� (3 � ) | = |OP2 (3) |

is a bĳection. We also know that the double planes in |OP3 (2) | are mapped
to contact cubics corresponding to o. The cubic curve ℓ1 + ℓ2 + ℓ3 is one of
them. Using the interpretation of bitangents as chords of the Cayley octad given
in Theorem

T6.3.2T6.3.2
6.3.5, we see that the union of the three chords corresponding to

ℓ1, ℓ2, ℓ3 cut out on ( six coplanar points.This means that the three chords span
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a plane in P3. Obviously, the chords must be of the form @8@ 9 , @8@: , @ 9@: ,
where 1 ≤ 8 < 9 < : ≤ 8. The number of such triples is

(8
3
)
= 56. Fixing

such a triple of chords, we can find
(5
3
)
= 10 triples disjoint from the fixed one.

The sum of the six corresponding odd theta characteristics is equal to 3 , and
hence, the points of contact are on a cubic. We can also see it by using the
determinantal identity (

hesbordhesbord
4.22). Other types of azygetic hexads can be found by

using the previous Remark. �

Altogether we find (see
SalmonCurves
[652]) the following possible types of such hexads.

• 280 of type (12, 23, 31, 45, 56, 64);
• 168 of type (12, 34, 35, 36, 37, 38);
• 560 of type (12, 13, 14, 56, 57, 58).

Recall that the three types correspond to three orbits of the permutation group
S8 on the set of azygetic hexads whose points of contact are on a cubic. Note
that not every azygetic hexad has this property. For example, a subset of an
Aronhold set does not have this property.
For completeness sake, let us give the number of non-azygetic hexads whose

points of contact are on a cubic. The number of them is equal 5040. Here, is
the list.

• 840 of type (12, 23, 13, 14, 45, 15);
• 1680 of type (12, 23, 34, 45, 56, 16);
• 2520 of type (12, 34, 35, 36, 67, 68).

6.3.3 Seven points in the plane
SS:6.3.3

Let P = {?1, . . . , ?7} be a set of seven distinct points in P2. We assume that
the points satisfy the following conditions:star

(∗) No three points are collinear, and no six lies on a conic.

Consider the linear system ! of cubic curves through these points. The
conditions on the points imply that ! is of dimension 2 and each member of !
is an irreducible cubic. A subpencil in ! has two base points outside the base
locus of !. The line spanned by these points (or the common tangent if these
points coincide) is a point in the dual plane P(�). This allows us to identify the
net ! with the plane P2 = |� | where the seven points lie. Nets of curves with
this special property are Laguerre nets (see Theorem

thm:laguerrethm:laguerre
7.2.16).

post Proposition 6.3.9. The rational map 5 : |� | d P(�) given by the linear
system ! is of degree 2. It extends to a regular degree 2 finitemap c : - → P(�),
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where - is the blow-up of the set P. The branch curve of q is a nonsingular
plane quartic � in P(�). The ramification curve ' is the proper transform of
a curve � ⊂ |� | of degree 6 with double points at each ?8 . Conversely, given
a nonsingular plane quartic �, the double cover of P2 ramified over � is a
nonsingular surface isomorphic to the blow-up of 7 points ?1, . . . , ?7 in the
plane satisfying the condition above.

The following diagram illustrates this proposition:

-

f

{{
c

$$
|� | � P2 5 // P2 � P(�)

We postpone the proof of this Proposition until Section
CAG-2:S:8.7CAG-2:S:8.7
8.7. The surface -

is a del Pezzo surface of degree 2 .
Following our previous notation, we denote the plane !∨ by |� | for some

vector space � of dimension 3. Thus, ! can be identified with P(�). Let
f : - → P2 be the blowing-up map. The curves �8 = f−1 (?8) are exceptional
curves of the first kind, (−1)-curves for short. We will often identify ! with its
proper transform in ( equal to

| −  - | = |3ℎ − �1 − · · · − �7 |,

where ℎ = 21 (f∗OP2 (1)) is the divisor class of the pre-image of a line in P2.
The pre-image of a line ℓ ⊂ |� | in P(�) = ! is a nonsingular member of !

if and only if ℓ intersects transversally �. In this case, it is a double cover of ℓ
branched over ℓ ∩�. The pre-image of a tangent line is a singular member, the
singular points lie over the points of contact. Thus, the pre-image of a general
tangent line is an irreducible cubic curve with a singular point atf('). The pre-
image of a bitangent is a member of | − - | with two singular points (they may
coincide if the bitangent is an inflection bitangent). It is easy to see that its image
in the plane is either an irreducible cubic �8 with a double point at ?8 or the
union of a line ?8 ? 9 and the conic  8 9 passing through the point ?: , : ≠ 8, 9 . In
this waywe can account for all 28 = 7+21 bitangents. If we denote the bitangents
corresponding to �8 by ℓ88 and the bitangents corresponding to ?8 ? 9 +  8 9 by
ℓ8 9 , we can accommodate the notation of bitangents by subsets of cardinality 2
of [1, 8].
The next proposition states that this notation agrees with the previous nota-

tion.

Proposition 6.3.10. The images of the cubic curves �8 under the rational map
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5 : |� | d P(�) given by the linear system ! of cubics through the seven points
?1, . . . , ?7 is an Aronhold set of bitangents to the branch curve �.

Proof Let �8 +� ′8 be the full transform of �8 under the blowing-up morphism
f : - → |� |, where f(�8) = � ′8 and c(�8 + � ′8 ) is a bitangent ℓ8 of �. Let
�8 ∩ � ′8 = {08 , 18}and 0′8 , 1′8 ∈ P2 be their images under the map q. Since
c−1 (ℓ8) = �8 +� ′8 , the ramification curve ' of c passes through 08 , 18 . Suppose
the tangency points 0′

8
1′
8
lie on a conic  . Let 0, 1 be the residual pair of

points in the intersection  ∩ �. Then, 0 + 1 ∈ |2 � −
∑3
8=1 (0′8 + 1′8) | Since

2(0′
8
+1′

8
) ∈  � |, we obtain that 0+1 ∈ | � |, hence 0, 1 are the tangency points

of some bitangent ℓ of �. The pre-image of ℓ in - splits into two (−1)-curves
� + W(�). We have

2 = 2ℓ ·ℓ8 = (�+� ′) · (�8+� ′8 ) = �+W(�)) · (�8+W(�8)) = 2(� ·�8)+2(� ′ ·�8).

Replacing � with W(�), and reordering the set {�1, . . . , �7}, if needed, we
may assume that � · �8 = 1, 8 = 1, . . . , : and � · �8 = 0, 8 > : , where : ≤ 3.
But then � = 040 − 41 − · · · − 4: , and �2 = −1 = 02 − : . Since 0 < : ≤ 3, 02

cannot be a square. this contradiction proves the lemma. �

Let ℓ′ ∈ |ℎ|. Its image c(ℓ′) in |! |∨ = |� | is a plane cubic �. The pre-image
of� in - is the union of ℓ′ and a curve ℓ′′ in the linear system 3(3ℎ−∑ �8)−ℎ| =
|8ℎ − 3

∑
�8 |. The curves ℓ′ and ℓ′′ intersect at six points. Since the cubic �

splits in the cover c, it must touch the branch curve � at each intersection point
with it. Thus, it is a contact cubic and hence the divisor � = q(ℓ′∩ℓ′′) belongs
to | � + o | for some even theta characteristic o. This shows that ℓ′ cuts out
in ' the divisor from the linear system | ' + o |. In other words, the inverse
of the isomorphism c |' : ' → � is given by a 2-dimensional linear system
contained in | � + o |. The image � of ' in the plane |! | is a projection of a
sextic model of � in P3 defined by the linear system | � + o |.
Let us record what we have found so far.

Proposition 6.3.11. A choice of seven unordered points ?1, . . . , ?7 in the plane
! = |� | satisfying condition (*) from above defines a nonsingular plane quartic
� in the dual plane P(�), and an even theta characteristic o on �. The linear
system |! | of cubic curves through the seven points maps each its member with
a double point at ?8 to a bitangent o8 of�. The seven bitangents o1, . . . , o7 form
an Aronhold set of bitangents. The the map f : ' � � → � = f(') is given
by | � + o |, where o is an even theta characteristic. The set (o1, . . . , o7, o) is
a fundamental set of theta characteristics on �.

We skip the proof of the last assertion and leave it to the reader.



324 Plane Quartics

Let us now see the reverse construction of a set of seven points defined by a
pair (�, o) as above.
Let No be the linear system of quadrics in | � + o | � P3 defined by an even

theta characteristic o on �. Let - → P3 be the blow-up of the Cayley octad
O = {@1, . . . , @8} of its base points. The linear system No defines an elliptic
fibration 5 : - → N∨

o
. If we identify #o with |� | by using the determinantal

representation q : |� | → |OP3 (2) |, then No can be identified with P(�). The
images of fibers of 5 in P3 are quartic curves passing through O. The projection
map from P3 from @8 ∈ O is defined by a 2-dimensional linear subsystem � of
| � +o |. The projections of quartic curves are cubic curves passing through the
set P = {?1, . . . , ?7}, where ?8 is the projection of @8 . In this way we get a set
of seven points that define (�, o). The Aronhold set of bitangents o88 obtained
from the Cayley octad corresponds to the Aronhold set o1, . . . , o7 defined by
the cubic curves �8 . They are the projections of the rational cubic curve '8
which together with the line @ 9@8 form the base locus of a pencil of quadrics
contained in #o .

So, we have proved the converse.

prop:6.3.11 Proposition 6.3.12. A nonsingular plane quartic curve � ⊂ |� | together with
an even theta characteristic defines a unique Cayley octad O ⊂ | � + o | = P3

such that the linear system of quadrics throughO is the linear system of quadrics
associated to (�, o). The projection of O from one of its points to P2 plus a
choice of an isomorphism P2 � |�∨ | defines a net of cubics through seven
points ?1, . . . , ?7. The blow-up of the seven points is a del Pezzo surface and its
anti-canonical linear system defines a degree 2 finite map - → |� | branched
over �. The ramification curve ' of the map is the projection of the image of �
under the linear system | � + o |.

Note that in this way we account for all 288 = 8 × 36 Aronhold sets of
seven bitangents. They are defined by a choice of an even theta characteristic
and a choice of a point in the corresponding Cayley octad. We also obtain the
following.

Corollary 6.3.13. The moduli space *7
2 of projective equivalence classes of

unordered seven points in the plane is birationally isomorphic to the moduli
space Mar

3 of curves of genus 3 together with an Aronhold set of bitangents.
It is (birationally) a 8 : 1-cover of the moduli spaceMev

3 of curves of genus
3 together with an even theta characteristic. The latter space is birationally
isomorphic to the moduli space of projective equivalence classes of Cayley
octads.

Remark 6.3.14. Both of the moduli spaces Mar
3 and Mev

3 are known to be
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rational varieties. The rationality of *7
2 was proven by P. Katsylo in

Katsylo7
[443].

The rationality ofMev
3 P. Katsylo

KatsyloModuli
[445]. It is also known, and much easier to

prove, that the moduli spaceModd of curves of genus three with an odd theta
characteristic is rational

Bardelli
[31].

rmk:dianode Remark 6.3.15. The elliptic fibration 5 : - → P(�) defined by the linear
system No has 8 sections corresponding to the exceptional divisors over the
points @ 9 . Its discriminant locus consists of lines in |� | tangent to�, that is, the
dual curve �∨ of �. If we fix one section, say the exceptional divisor over @8,
then all nonsingular fibers acquire a group structure. The closure of the locus
of nontrivial 2-torsion points is a smooth surface , in - . Its image in P3 is a
surface of degree 6 with triple points at @1, . . . , @8, called the Cayley dianodal
surface

CayleyQuartic
[119, Art. 42]. It is a determinantal surface of degree six equal to the

Jacobian surface of the linear system of quartic surfaces with double points at
@1, . . . , @7. The linear system of quartics defines a map - → P6 whose image
is the cone over a Veronese surface in a hyperplane. The map is a double cover
onto the image. The exceptional divisor over @8 is mapped to the vertex of the
cone. The surface , is the ramification locus of this map. Its image in P6 is
the complete intersection of the cone and a cubic hypersurface. It is a surface
of degree 12 with 28 nodes, the images of the lines @8@ 9 . The surface , is a
minimal surface of general type with ?6 = 3 and  2

,
= 3. It is birationally

isomorphic to the quotient of a symmetric theta divisor in Jac(�) modulo the
involution G ↦→ −G. All of this is discussed in

Coble
[159] and

DolgachevOrtland
[234].

There is another similar elliptic fibration over P(�). Consider the universal
family of the net !:

U = {(G, �) ∈ |� | × ! : G ∈ �}.

The fiber of the first projection c1 : U→ - over a point G ∈ - can be identified,
via the second projection, with the linear subsystem ! (G) ⊂ ! of curves passing
through the point G. If G ∉ P, ! (G) is a pencil, otherwise, it is the whole !. The
second projection c2 : U → ! is an elliptic fibration, its fiber over the point
{�} is isomorphic to �. It has seven regular sections

B8 : ! → U, � ↦→ (?8 , �).

There is another natural rational section B8 : ! → U defined as follows. We
know from

SS:3.3.2SS:3.3.2
3.3.2 that any 61

2 on a nonsingular cubic curve � is obtained by
projection from the coresidual point ? ∈ � to a line. Take a curve � ∈ ! and
restrict ! to �. This defines a 61

2 on �, and hence defines the coresidual point
c� . The section B8 maps � to c8. Although the images (8 of the first sections are
disjoint in U, the image (8 of B8 intersects each ( 9 , 9 ≠ 8, at the point (? 9 , �9 )
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(in this case the 61
2 on �8 has a base point ?8 , which has to be considered as the

coresidual point of �9 ). The universal family U is singular because the net No
has base points. The singular points are the intersection points of the sections
( 9 and (8, 9 ≠ 8. The variety - is a small resolution of the singular points. The
exceptional curves are the proper transforms of lines @ 9@8.

6.3.4 The Clebsch covariant quartic
SS:6.3.4

Here, we shall specialize the Scorza construction in the case of plane quartic
curves. Consider the following symmetric correspondence on P2

' = {(G, H) ∈ P2 × P2 : rank%HG (�) = 1}.

We know that a cubic curve has a polar quadric of rank 1 if and only if it lies in
the closure of the projective equivalence class of the Fermat cubic. Equivalently,
a cubic curve � = + (6) has this property if and only if the Aronhold invariant
S vanishes on 6. In this case, we write S(�) = 0.

Consider the projection of ' to one of the factors. It is equal to

ℭ(�) := {G ∈ P2 : S(%G (�)) = 0}.

By symmetry of polars, if G ∈ ℭ(�), then '(G) ⊂ ℭ(�). Thus, ( = ℭ(�)
comes with a symmetric correspondence

'� := {(G, H) ∈ ( × ( : rank%GH (�) = 1}.

Since the Aronhold invariant S is of degree 4 in coefficients of a ternary
quartic, we obtain that ℭ(�) is a quartic curve or the whole P2. The case when
ℭ(�) = P2 happens, for example, when � is a Fermat quartic. For any point
G ∈ P2 and any vertex H of the polar triangle of the Fermat cubic %G (�), we
obtain %HG (�) = P2.
The assignment � → ℭ(�) lifts to a covariant

ℭ : (4 (�∨) → (4 (�∨)

which we call the Scorza covariant of quartics. We use the same notation for
the associated rational map

ℭ : |OP2 (4) | d |OP2 (4) |.

sc Example 6.3.16. Assume that the equation of � is given in the form

0C40 + 1C
4
1 + 2C

4
2 + 6 5 C21C

2
2 + 66C20C

2
2 + 6ℎC20C

2
1 = 0.

Then, the explicit formula for the Aronhold invariant S (see
SalmonCurves
[652], p. 270) gives

ℭ(�) := 0′C40 + 1
′C41 + 2

′C42 + 6 5 ′C21C
2
2 + 66′C20C

2
2 + 6ℎ′C20C

2
1 = 0,
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where

0′ = 642ℎ2, 1′ = 6ℎ2 5 2, 2′ = 6 5 262,

3 ′ = 126ℎ − 5 (162 + 2ℎ2) − 6ℎ 5 2,

4′ = 02 5 ℎ − 6(2ℎ2 + 0 5 2) − 5 ℎ62,

ℎ′ = 01 5 6 − ℎ(0 5 2 + 162) − 5 6ℎ2.

For a general 5 the formula for ℭ is too long.
Consider the pencil of quartics defined by the equation

C40 + C
4
1 + C

4
2 + 6U(C20C

2
1 + C

2
0C

2
2 + C

2
1C

2
2) = 0, U ≠ 0. (6.28) pencil

Then, ℭ(�) is given by the equation

C40 + C
4
1 + C

4
2 + 6V(C20C

2
1 + C

2
0C

2
2 + C

2
1C

2
2) = 0,

where

6VU2 = 1 − 2U − U2.

We find that ℭ(�) = � if and only if U satisfies the equation

6U3 + U2 + 2U − 1 = 0.

One of the solutions is U = 1/3; it gives a double conic. Two other solutions
are U = 1

4 (−1 ±
√
−7). They give two curves isomorphic to the Klein curve

+ (C30C1 + C
3
1C2 + C

3
2C0) with 168 automorphisms. We will discuss this curve later

in this chapter.

We will be interested in the open subset of |OP2 (4) | where the map ℭ is
defined and its values belong to the subset of nonsingular quartics.

P6.4.1 Proposition 6.3.17. Suppose ℭ(�) is a nonsingular quartic. Then, � is either
non-degenerate or has a unique irreducible apolar conic.

Proof Suppose � does not satisfy the assumption. Then, � admits either a
pencil of apolar conics or one reducible apolar conic. In any case, there is a
reducible apolar conic. Hence, there exist two points G, H such that %GH (�) = P2.
This implies that %G (�) is a cone with triple point H. It follows from the explicit
formula for the Aronhold invariant S that the curve %G (�) is a singular point
in the closure of the variety of Fermat cubics. Thus, the image of the polar
map G ↦→ %G (�) passes through the singular point. The pre-image of this point
under the polar map is a singular point of �. �

Theorem 6.3.18. Let � = + ( 5 ) be a general plane quartic. Then, ( = ℭ(�) is
a nonsingular curve and there exists an even theta characteristic o on ( such
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that '� coincides with the Scorza correspondence 'o on (. Every nonsingular
( together with an even theta characteristic is obtained in this way.

Proof To show that ℭ(�) is nonsingular for a general quartic, it suffices to
give one example when it happens. The Klein curve from Example

scsc
6.3.16 will

do.
Let ( be a nonsingular quartic and 'o be the Scorza correspondence on (

defined by a theta characteristic o. It defines the Scorza quartic �. It follows
immediately from (

w*w*
5.41) in the proof of Theorem

T5.4.8T5.4.8
5.5.17 that for any point

(G, H) ∈ 'o the second polar %G,H (�) is a double line (in notation in the proof
of the loc. cit. Theorem, (G, H) = (G, G8) and + (C28 ) is the double line). This
shows that %G (�) is a Fermat cubic, and hence ℭ(�) = (. Thus, we obtain that
the Clebsch covariant ℭ is a dominant map whose image contains nonsingular
quartics.Moreover, it inverts the Scorza rationalmapwhich assigns to ((, o) the
Scorza quartic. Thus, a general quartic curve� is realized as the Scorza quartic
for some ((, o), the correspondence '� coincides with 'o and ( = ℭ(�). �

Suppose � is plane quartic with nonsingular ( = ℭ(�). Suppose '� = '\
for some even theta characteristic on (. Let � ′ be the Scorza quartic assigned
to ((, o). Then, for any G ∈ (, %G (�) = %G (� ′). Since ( spans P2, this implies
that � = � ′. The generality condition in order that '� = 'o happens can be
made more precise.

Proposition 6.3.19. Suppose ( = ℭ(�) satisfies the following conditions

• ( is nonsingular;
• the Hessian of � is irreducible;
• ( does not admit nonconstant maps to curves of genus 1 or 2.

Then, '� = '\ for some even theta characteristic \ and� is the Scorza quartic
associated to ((, \).

Proof It suffices to show that '� is a Scorza correspondence on (. Obviously,
'� is symmetric. As we saw in the proof of Proposition

P6.4.1P6.4.1
6.3.17, the first

condition shows that no polar %G (�), G ∈ (, is the union of three concurrent
lines. The second condition implies that the Steinerian of � is irreducible and
hence does not contain (. This shows that, for any general point G ∈ (, the first
polar %G (�) is projectively equivalent to a Fermat cubic. This implies that '�
is of type (3, 3). Since � is nonsingular, %G2 (�) is never a double line or P2.
Thus, '� has no united points.
By Proposition

scorza2scorza2
5.5.11, it remains for us to show that '� has valence −1.

Take a general point G ∈ (. The divisor '� (G) consists of the three vertices of
its unique polar triangle. For any H ∈ '� (G), the side _ = + (;) opposite to H
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is defined by %H (%G (�)) = %G (%H (�)) = + (;2). It is a common side of the
polar triangles of %G (�) and %H (�). We have ℓ ∩ ( = H1 + H2 + G1 + G2, where
'� (G) = {H, H1, H2} and '� (H) = {G, G1, G2}. This gives

H1 + H2 + G1 + G2 = ('� (G) − G) + ('� (H) − H) ∈ | ( |.

Consider the map U : ( → Pic2 (() given by G → ['(G) − G]. Assume '� has
no valence, i.e., the map U is not constant. If we replace in the previous formula
H with H1 or H2, we obtain that U(H) = U(H1) = U(H2) =  ( − U(G). Thus,
U : ( → U(() = (′ is a map of degree ≥ 3. It defines a finite map of degree
≥ 3 from ( to the normalization (̃′ of (′. Since a rational curve does not admit
non-constant maps to an abelian variety, we obtain that (̃′ is of positive genus.
By assumption, this is impossible. Hence, '� has valence { = −1.

�

Let |OP2 (4) |snd be the open subset of plane quartics � such that ℭ(�) is a
nonsingular quartic and the correspondence '� is a Scorza correspondence
'o . The Clebsch covariant defines a regular map

ℭ̃ : |OP2 (4) |snd → TCev4 , � ↦→ (ℭ(�), '� ). (6.29) tildecleb

By Proposition
beauville2beauville2
5.1.2 the variety TCev4 is an irreducible cover of degree 36 of

the variety |OP2 (4) | of nonsingular quartics. By Proposition
beauville2beauville2
5.1.2 the variety

TCev4 is an irreducible cover of degree 36 of the variety |OP2 (4) | of nonsingular
quartics. The Scorza map defines a rational section of ℭ̃. Since both the source
and the target of the map are irreducible varieties of the same dimension, this
implies that (

tildeclebtildecleb
6.29) is a birational isomorphism.

Passing to the quotients by PGL(3), we obtain the following:

scorzatheorem Theorem 6.3.20. LetMev
3 be themoduli space of curves of genus three together

with an even theta characteristic. The birational map ( : |OP2 (4) | → TC4 has
the inverse defined by assigning to a pair (�, o) the Scorza quartic. It induces
a birational isomorphism

M3 �Mev
3 .

The composition of this map with the forgetting mapMev
3 →M3 is a rational

self-map ofM3 of degree 36.

Remark 6.3.21. The corollary generalizes to genus 3 the fact that the map
from the space of plane cubics |OP2 (3) | to itself defined by the Hessian is a
birational map to the cover |OP2 (3) |ev, formed by pairs (-, n), where n is a
nontrivial 2-torsion divisor class (an even characteristic in this case). Note that
the Hessian covariant is defined similarly to the Clebsch invariant. We compose



330 Plane Quartics

the polarization map + × (3 (�∨) → (2 (�∨) with the discriminant invariant
(2 (�∨) → C.

6.3.5 Clebsch and Lüroth quartics
SS:6.3.5

Since five general points in the dual plane lie on a singular quartic (a double
conic), a general quartic does not admit a polar pentagon, although the count
of constants suggests that this is possible. This remarkable fact was first dis-
covered by J. Lüroth in 1868. Suppose a quartic � admits a polar pentagon
{[;1], . . . , [;5]} (or the polar pentalateral + (;1), . . . , + (;5)). Let & = + (@) be
a conic in P(�) passing through the points [;1], . . . , [;5]. Then, @ ∈ AP2 ( 5 ).
The spaceAP2 ( 5 ) ≠ {0} if and only if det Cat2 ( 5 ) = 0. Thus, the set of quartics
admitting a polar pentagon is the locus of zeros of the catalecticant invariant
on the space P((4 (�∨)). It is a polynomial of degree 6 in the coefficients of a
ternary form of degree 4.

Definition 6.3.22. A plane quartic admitting a polar pentagon is called a
Clebsch quartic.

ndeg1 Lemma 6.3.23. Let � = + ( 5 ) be a Clebsch quartic. The following properties
are equivalent.

(i) � admits polar pentagon {[;1], . . . , [;5]} such that ;21 , . . . , ;
2
5 ∈ (

2 (�∨)
are linearly independent;
(ii) dim AP2 ( 5 ) = 1;
(iii) for any polar pentagon {[;1], . . . , [;5]} of �, ;21 , . . . , ;

2
5 are linearly

independent;
(iv) for any polar pentagon {[;1], . . . , [;5]} of �, no four of the points [;8]
are collinear.

Proof (i)⇒ (ii) For any k ∈ AP2 ( 5 ), we have

0 = �k ( 5 ) =
∑

�k (;28 );28 .

Since ;2
8
are linearly independent, this implies �k (;28 ) = 0, 8 = 1, . . . , 5. This

means that+ (k) is a conic passing through the points [;1], . . . , [;5]. Five points
in the plane determine unique conic unless four of the points are collinear. It is
easy to see that in this case the quadratic forms ;21 , . . . , ;

2
5 are linearly dependent.

Thus, dim AP2 ( 5 ) = 1.
(ii) ⇒ (ii) Suppose {[;1], . . . , [;5]} is a polar pentagon of � with linearly

dependent ;21 , . . . , ;
2
5 . Then, there exist two linearly independent functionsk1, k2

in (2 (�∨)∨ = (2 (�) vanishing at ;21 , . . . , ;
2
5 . They are apolar to 5 , contradicting

the assumption.
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(iii) ⇒ (iv) Suppose {[;1], . . . , [;4]} are collinear. Then, we can choose
coordinates to write ;1 = C0, ;1 = C1, ;3 = 0C0+1C1, ;4 = 2C0+3C1. Taking squares,
we see that the five ;2

8
are linear combinations of four forms C20 , C

2
1 , C0C1, ;5. This

contradicts the assumption.
(iv) ⇒ (i) Let {[;1], . . . , ;5]} be a polar pentagon with no four collinear

points. It is easy to see that it implies that we can choose four of the points such
that no three among them are collinear. Now, change coordinates to assume
that the corresponding quadratic forms are C20 , C

2
1 , C

2
2 , 0(C0 + C1 + C2)

2. Suppose
;21 , . . . , ;

2
5 are linearly dependent. Then, we can write

;25 = U1C
2
0 + U2C

2
1 + U3C

2
2 + U4 (C0 + C1 + C2)2.

If two of the coefficients U8 are not zero, then the quadratic form in the right-
hand side is of rank ≥ 2. The quadratic form in the left-hand side is of rank 1.
Thus, three of the coefficients are zero, but the two of the points [;8] coincide.
This contradiction proves the implication. �

Definition 6.3.24. A Clebsch quartic is called weakly nondegenerate if it
satisfies one of the equivalent conditions from the previous Lemma. It is called
nondegenerate if the unique polar conic is irreducible.

This terminology is somewhat confusing since a quartic was earlier called
nondegenerate if it does not admit an apolar conic. I hope the reader can live
with this.
It follows immediately from the definition that each polar pentalateral of a

nondegenerate Clebsch quartic consists of five sides, no three of which pass
through a point (a complete pentalateral). Considered as a polygon in the dual
plane, this means that no three vertices are collinear. On the other hand, the
polar pentalateral of a weakly nondegenerate Clebsch quartic may contain one
or two triple points.
Let � = + (∑ ;4

8
) be a Clebsch quartic. If G lies in the intersection of two

sides + (;8) and + (; 9 ) of the polar pentalateral, then

%G (�) = + (
∑
:≠8, 9

;: (G);3: ),

hence it lies in the closure of the locus of Fermat cubics. This means that the
point G belongs to the quarticℭ(�). When� is a general Clebsch quartic,ℭ(�)
passes through each of 10 vertices of the polar complete pentalateral. In other
words, ℭ(�) is a Darboux plane curve of degree 4 in sense of the definition
below.
Let ℓ1, . . . , ℓ# be a set of # distinct lines in the planes, the union of which

is called a #-lateral, or an arrangement of lines. A point of intersection G8 9
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of two of the lines ℓ8 and ℓ 9 is called a vertex of the #-lateral. The number of
lines intersecting at a vertex is called themultiplicity of the vertex. An #-lateral
with all vertices of multiplicity 2 is called a complete #-lateral (or a general
arrangement). Considered as a divisor in the plane, it is a normal crossing
divisor. The dual configuration of an #-lateral (the dual arrangement) consists
of a set of # points corresponding to the lines and a set of lines corresponding
to points. The number of points lying on a line is equal to the multiplicity of
the line considered as a vertex in the original #-lateral.
Let J be the ideal sheaf of functions vanishing at each vertex G8 9 with

multiplicity ≥ a8 9 − 1, where a8 9 is the multiplicity of G8 9 . A nonzero section
of J (:) defines a plane curve of degree : that has singularities at each G8 9 of
multiplicity ≥ a8 9 − 1.

barth Lemma 6.3.25. Let A = {ℓ1, . . . , ℓ# } be an #-lateral. Then

ℎ0 (P2,J (# − 1)) = #.

Proof Let ℓ be a general line in the plane. It defines an exact sequence

0→ J(# − 2) → J (# − 1) → J (# − 1) ⊗ Oℓ → 0.

Since the divisor of zeros of a section of J (# − 2) contains the divisor ℓ8 ∩
(∑ 9≠8 ℓ 9 ) of degree # − 1, it must be the whole ℓ8 . Thus, ℎ0 (J (# − 2)) = 0.
Since J (# − 1) ⊗ Oℓ � OP1 (# − 1), we have ℎ0 (J (# − 1) ⊗ Oℓ) = # .
This shows that ℎ0 (J (# − 1)) ≤ # . On the other hand, we can find # linear
independent sections by taking the products 5 9 of linear forms defining ℓ8 , 9 ≠ 8.
This proves the equality. �

Definition 6.3.26. A Darboux curve of degree # − 1 is a plane curve defined
by a nonzero section of the sheaf J (# − 1) for some #-lateral of lines in the
plane. A Darboux curve of degree 4 is called a Lüroth quartic curve.

Obviously, any conic (even a singular one) is a Darboux curve. The same is
true for cubic curves. The first case where a Darboux curve must be a special
curve is the case # = 5.
It follows from the proof of Lemma

barthbarth
6.3.25 that a Darboux curve can be given

by an equation
#∑
8=1

∏
9≠8

; 9 =

#∏
8=1

;8 (
#∑
8=1

1
;8
) = 0 (6.30) darboux

where ℓ8 = + (;8).
From now on, we will be dealing with the case # = 5, i.e with Lüroth
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quartics. The details for the next computation can be found in the original
paper by Lüroth

Luroth
[499], p. 46.

Lemma 6.3.27. Let � = + (∑ ;2
8
) be a Clebsch quartic in P2 = |� |. Choose a

volume form on � to identify ;8 ∧ ; 9 ∧ ;: with a number |;8 ; 9 ;: |. Then,

ℭ(�) = + (
5∑
B=1

:B

∏
8≠B

;8),

where

:B =
∏

8< 9<:,A∉{8, 9 ,: }
|;8 ; 9 ;: |.

Proof This follows from the known symbolic expression of the Aronhold
invariant

S = (012) (013) (023) (123).

If we polarize 4�0 ( 5 ) =
∑
;8 (0);38 , we obtain a tensor equal to the tensor∑

;8 (0);8 ⊗ ;8 ⊗ ;8 ∈ (�∨)⊗3. The value of S is equal to the sum of the determi-
nants ;8 (0); 9 (0);: (0) |;8 ; 9 ;: |. When [0] runs P2, we get the formula from the
assertion of the Lemma. �

Looking at the coefficients :1, . . . , :5, we observe that

• :1, . . . , :5 ≠ 0 if and only if � is nondegenerate;
• two of the coefficients :1, . . . , :5 are equal to zero if and only if � is weakly
degenerate and the polar pentalateral of � has one triple point;
• three of the coefficients :1, . . . , :5 are equal to zero if and only if� is weakly
nondegenerate and the polar pentalateral of � has two triple points;
• ℭ(�) = P2 if the polar pentalateral has a point of multiplicity 4.

It follows from this observation, that a Lüroth quartic of the form ℭ(�) is
always reducible if � admits a degenerate polar pentalateral. Since ℭ(�) does
not depend on a choice of a polar pentalateral, we also see that all polar penta-
laterals of a weakly nondegenerate Clebsch quartic are complete pentalaterals
(in the limit they become generalized polar 5-hedra).
Thus, we see that, for any Clebsch quartic �, the quartic ℭ(�) is a Lüroth

quartic. One can prove that any Lüroth quartic is obtained in this way from a
unique Clebsch quartic (see

DolgachevKanev
[235]).

Let � = + ( 5 ) be a nondegenerate Clebsch quartic. Consider the map

2 : VSP( 5 , 5)> → |OP2 (2) | (6.31) gonefive
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defined by assigning to {ℓ1, . . . , ℓ5} ∈ +(%( 5 , 5)> the unique conic passing
through these points in the dual plane. This conic is nonsingular and is apolar
to �. The fibers of this map are polar pentagons of 5 inscribed in the apolar
conic. We know that the closure of the set of Clebsch quartics is defined by
one polynomial in coefficients of quartic, the catalecticant invariant. Thus, the
varierty of Clebsch quartics is of dimension 13.
Let E5 be the variety of 5-tuples of distinct nonzero linear forms on � .

Consider the map E5 → |OP2 (4) | defined by (;1, . . . , ;5) ↦→ + (;41 + · · · + ;
4
5).

The image of this map is the hypersurface of Clebsch quartics. A general
fiber must be of dimension 15 − 13 = 2. However, scaling the ;8 by the same
factor, defines the same quartic. Thus, the dimension of the space of all polar
pentagons of a general Clebsch quartic is equal to 1. Over an open subset of
the hypersurface of Clebsch quartics, the fibers of 2 are irreducible curves.

old Proposition 6.3.28. Let � = + ( 5 ) be a nondegenerate Clebsch quartic and &
be its apolar conic. Consider any polar pentagon of � as a positive divisor of
degree 5 on &. Then, VSP( 5 , 5)> is an open non-empty subset of a 61

5 on &.

Proof Consider the correspondence

- = {(G, {ℓ1, . . . , ℓ5}) ∈ & × VSP( 5 , 5)> : G = [;8] for some 8 = 1, . . . , 5}.

Let us look at the fibers of the projection to &. Suppose we have two polar
pentagons of 5 with the same side [;]. We can write

5 − ;4 = ;41 + · · · + ;
4
4 ,

5 − _;4 = <4
1 + · · · + <

4
4.

For any k ∈ (2 (�) such that k(;8) = 0, 8 = 1, . . . , 4, we get �k ( 5 ) = 12k(;);2.
Similarly, for any k ′ ∈ (2 (�) such that k ′(<8) = 0, 8 = 1, . . . , 4, we get
�k′ ( 5 ) = 12_k ′(;);2. This implies that+ (k(;)k ′−k ′(;)k) is an apolar conic
to �. Since � is a general Clebsch quartic, there is only one apolar conic. The
set of+ (k)’s is a pencil with base points+ (;8), the set of+ (k ′) is a pencil with
base points + (;8). This gives a contradiction unless the two pencils coincide.
But then their base points coincide and the two pentagons are equal. This shows
that the projection to & is a one-to-one map. In particular, - is an irreducible
curve.
Now, it is easy to finish the proof. The set of degree 5 positive divisors on

& � P1 is the projective space |OP1 (5) |. The closure P of our curve of polar
pentagons lies in this space. All divisors containing one fixed point in their
support form a hyperplane. Thus, the polar pentagons containing one common
side [;] correspond to a hyperplane section of P. Since we know that there is
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only one such pentagon and we take [;] in an open Zariski subset of &, we
see that the curve is of degree 1, i.e. a line. So our curve is contained in a
1-dimensional linear system of divisors of degree 5. �

Remark 6.3.29. The previous Proposition shows why Lüroth quartics are spe-
cial among Darboux curves. By Lemma

barthbarth
6.3.25, the variety of pairs consisting

of an #-lateral and a curve of degree # − 1 circumscribing it is of dimension
3# − 1. This shows that the dimension of the variety of Darboux curves of
degree # − 1 is equal to 3# − 1− : , where : is the dimension of the variety of
#-laterals inscribed in a general Darboux curve. We can construct a Darboux
curve by considering an analog of a Clebsch curve, namely a curve� admitting
a polar #-gon. Counting constants shows that the expected dimension of the
locus of such curves is equal to 3# − 1 − <, where < is the dimension of the
variety of polar #-gons of �. Clearly every such � defines a Darboux curve as
the locus of G ∈ P2 such that %G (�) admits a polar (#−2)-gon. The equation of
a general Darboux curve shows that it is obtained in this way from a generalized
Clebsch curve. In the case # = 5, we have : = < = 1. However, already for
# = 6, the variety of Darboux quintics is known to be of dimension 17, i.e.
: = 0

Barth0
[32]. This shows that there are only finitely many #-laterals that a general

Darboux curve of degree 5 could circumscribe.
Suppose � is an irreducible Lüroth quartic. Then, it comes from a Clebsch

quartic � ′ if and only if it circumscribes a complete pentalateral and � ′ is a
nondegenerate Clebsch quartic. For example, an irreducible singular Lüroth
quartic circumscribing a pentalateral with a triple point does not belong to
the image of the Clebsch covariant. In any case, a Darboux curve of degree
# − 1 given by Equation (

darbouxdarboux
6.30), in particular, a Lüroth quartic, admits a natural

symmetric linear determinantal representation:∗

det

©«
;1 + ;2 ;1 ;1 . . . ;1
;1 ;1 + ;3 ;1 . . . ;1
...

...
...

...
...

;1 . . . . . . ;1 ;1 + ;#

ª®®®®®¬
= 0. (6.32) darboux2

It is clear that, if ;1 (G) = ;2 (G) = ;3 (G) = 0, the corank of the matrix at the point
G is greater than 1. Thus, if the #-lateral is not a complete #-lateral, the theta
characteristic defining the determinantal representation is not an invertible one.
However, everything goes well if we assume that the Lüroth quartic comes
from a nondegenerate Clebsch quartic. Before we state and prove the next
Theorem, we have to recall some facts about cubic surfaces which we will
∗This was communicated to me by B. van Geemen, but also can be found in Room’s bookRoomBook

[633], p. 178.
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prove and discuss later in Chapter 9. A cubic surface  always admits a polar
pentahedron, maybe a generalized one. Suppose that is general enough so that
it admits a polar pentahedron + (!1), . . . , + (!5) such that no four of the forms
!8 are linearly dependent. In this case  is called a Sylvester nondegenerate
cubic and the polar pentahedron is unique. If we write  = + (!3

1 + · · · + !
3
5),

then the Hessian surface of  can be written by the equation
5∑
8=1

∏
8≠ 9

!8 (I) = 0. (6.33) le’

Obviously, a general plane section of the Hessian surface is isomorphic to a
Lüroth quartic.

Theorem 6.3.30. Let N be a net of quadrics in P3. The following properties
are equivalent.

(i) There exists a basis (&1, &2, &3) of N such that the quadrics &8 can
be written in the form

& 9 = + (
5∑
8=1

08 9!
2
8 ), 9 = 1, 2, 3, (6.34) fram

where !8 are linear formswith any four of thembeing linearly independent.
(ii) There exists a Sylvester nondegenerate cubic surface  in P3 such that
N is equal to a net of polar quadrics of  .
(iii) The discriminant curve � of N is a Lüroth quartic circumscribing
a complete pentalateral {+ (;1), . . . , + (;5)} and N corresponds to the
symmetric determinantal representation (

darboux2darboux2
6.32) of �.

Proof (i)⇒ (ii) Consider the Sylvester nondegenerate cubic surface  given
by the Sylverster equation

 = + (!3
1 + · · · + !

3
5).

For any point G = [{] ∈ P3, the polar quadric %G ( ) is given by the equation
+ (∑ !8 ({)!2

8
). Let � = (08 9 ) be the 5 × 3 matrix defining the equations of the

three quadrics. Let

!8 =

3∑
9=0

18 9 I 9 , 8 = 1, . . . , 5,

and let � = (18 9 ) be the 5 × 4-matrix of the coefficients. By assumption,
rank� = 4. Thus, we can find a 4 × 3-matrix � = (28 9 ) such that � · � = �.
If we take the points G1, G2, G3 with coordinate vectors {1, {2, {3 equal to the
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columns of the matrix �, then we obtain that !8 ({ 9 ) = 08 9 . This shows that
&8 = %G8 ( ), 8 = 1, 2, 3.

(ii) ⇒ (i) Suppose we can find three non-collinear points G8 = [{8] and a
Sylvester nondegenerate cubic surface  such that &8 = %G8 ( ), 8 = 1, 2, 3.
Writing  as a sum of 5 cubes of linear forms !8 , we obtain (i).
(i)⇒ (iii) Consider the five linear forms ;8 = 081C0 + 082C1 + 083C2. Our net of

quadrics can be written in the form

&(C0, C1, C2) = + (
5∑
8=1

;8 (C0, C1, C2)!8 (I0, I1, I2, I3)2).

By scaling coordinates C8 and I 9 , we may assume that the forms ;8 and ! 9
satisfy

;1 + ;2 + ;3 + ;4 + ;5 = 0, (6.35)
!1 + !2 + !3 + !4 + !5 = 0.

The quadric &(0) is singular at a point G if and only if

rank
(
;1 (0)!1 (G) . . . ;5 (0)!5 (G)

1 . . . 1

)
= 1.

This is equivalent to that

;1 (0)!1 (G) = . . . = !5 (0);5 (G). (6.36) forget

Taking into account (
addupaddup
6.35), we obtain

5∑
8=1

1
;8 (0)

= 0,

or
5∑
8=1

∏
8≠ 9

;8 (0) = 0. (6.37) le

This shows that the discriminant curve is a Lüroth quartic given by the deter-
minantal Equation (

darboux2darboux2
6.32).

(iii)⇒ (ii) Computing the determinant, we find the equation of� in the form
(
lele
6.37). Then, we linearly embed C3 in C4 and find five linear forms !8 such that
restriction of !8 to the image is equal to ;8 . Since no four of the ;8 are linearly
dependent, no four of the !8 are linearly dependent. Thus,  = + (∑ !3

8
) is

a Sylvester nondegenerate cubic surface. This can be chosen in such a way
that

∑
!8 = 0 generates the space of linear relations between the forms. By

definition, the image of � in P3 given by the forms ;8 is the discriminant curve
of the net of polars of  . �
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Definition 6.3.31. The even theta characteristic on a Lüroth curve defined by
the determinantal representation (

scorza2scorza2
5.5.11) is called a pentalateral theta charac-

teristic.

By changing the pentalateral inscribed in a weakly nondegenerate Lüroth
quartic �, we map P1 to the variety of nets of quadrics in P3 with the same
discriminant curve�. Its image in the moduli space of nets of quadrics modulo
projective transformations of P3 is irreducible. Since there are only finitely
many projective equivalence classes of nets with the same discriminant curve,
we obtain that the pentalateral theta characteristic does not depend on the choice
of the pentalateral.
Suppose � is a nondegenerate Lüroth quartic equal to ℭ(� ′) for some Cleb-

sch quartic � ′. It is natural to guess that the determinantal representation of �
given by determinant (

darboux2darboux2
6.32) corresponds to the pentalateral theta characteristic

defined by the Scorza correspondence '�′ on �. The guess is correct. We refer
for the proof to

DolgachevKanev
[235], Theorem 7.4.1.

Remark 6.3.32. Since the locus of Clebsch quartics is a hypersurface (of degree
6) in the space of all quartics, the locus of Lüroth quartics is also a hypersurface.
Its degree is equal to 54 (

Morley
[528]). One can find modern proofs of this fact in

Le Potier
[483],

TyurinL
[756], and

OttavianiSernesi
[565]. We also refer to Basement’s paper

Bateman
[39] that discusses

many aspects of the theory of Lüroth quartics, some of this was revised in
OttavianiSernesi
[565]

and
OttavianiSernesi2
[566]. For example, in the second paper, G. Ottaviani and E. Sernesi study

the locus of singular Lüroth quartics and prove that it consists of two irreducible
components. One of them is contained in the image of the Clebsch covariant.
The other component is equal to the locus of Lüroth quartics circumscribing a
pentalateral with a double point.
Note that the degree of the locus of three quadrics (&1, &2, &3) with discrim-

inant curve isomorphic to a Lüroth quartic is equal to 4 · 54 = 216. It consists
of one component of degree 6, the zero set of the Toeplitz invariant, and the
other component of degree 210. The component of degree 6 corresponds to a
choice of a pentagonal theta characteristic, the other component corresponds
to other 35 theta characteristics, for which the monodromy is irreducible.

6.3.6 A Fano model of VSP( 5 , 6)SS:6.3.6

Recall that a nondegenerate ternary quartic 5 ∈ (4 (�∨) is one of the special
cases from Theorem

alexanderalexander
1.3.20 where Corollary

C1.4.9C1.4.9
1.4.13 applies. So, the variety

VSP( 5 , 6)> embeds in the Grassmann variety � (3,AP3 ( 5 )∨) � � (3, 7). The
image is contained in the subvariety � (3,AP3 ( 5 ))f of isotropic subspaces of
the skew-symmetric linear map f : Λ2� → ∧2 AP3 ( 5 ). Choosing a basis in
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� and identifying Λ2� with �∨, we can view this map as a skew-symmetric
7 × 7-matrix " whose entries are linear functions on � . Let ! ⊂ AP3 ( 5 )∨ be
an isotropic subspace of f. In appropriate coordinates (C0, C1, C2), we can write
" in the block-form

" =

(
� �

−C � 0

)
,

where � is a square skew-symmetric 4 × 4 matrix and � is a 4 × 3 matrix. The
maximal minors of the matrix � generate an ideal in C[C0, C1, C2] defining a
closed 0-dimensional subscheme / of length 6. This defines the map

� (3,AP3 ( 5 ))f → VSP( 5 , 6)

which is the inverse of the map VSP( 5 , 6)> → � (3,AP3 ( 5 ))f (see
RS
[607]).

The following Theorem is originally due to S. Mukai
Mukai2
[535] and was reproved

by a different method by K. Ranestad and F.-O. Schreyer
RS
[607],

Schreyer
[663].

mukaides Theorem 6.3.33. Let 5 ∈ (4 (�∨) be a nondegenerate quartic form in three
variables. Then, the map +(%( 5 , 6)> → � (3,AP3 ( 5 )∨)f extends to an iso-
morphism

` : VSP( 5 , 6) → � (3,AP3 ( 5 )∨)f .

If 5 is a general quartic, the variety � (3,AP3 ( 5 )∨)f is a smooth threefold. Its
canonical class is equal to −�, where � is a hyperplane section in the Plücker
embedding of the Grassmannian.

Recall that a Fano variety of dimension = is a projective variety - with ample
− - . If - is smooth, and Pic(-) � Z and − - = <�, where � is an ample
generator of the Picard group, then - is said to be of index <. The degree of
- is the self-intersection number �= . The number 6 = 1

2 
=
-
+ 1 is called the

genus.
In fact, in

MukaiProc
[534] S. Mukai announced a more precise result. The variety

VSP( 5 , 6) is a Gorenstein Fano variety if 5 is not a Lüroth quartic and it is
smooth, if + ( 5 ) is nondegenerate and does not admit a complete quadrangle
as its polar 6-side (a complete quadrangle is the union of six lines joining two
out of four general points in the plane).

Remark 6.3.34. A Fano variety +22 of degree 22 (genus 12) and index 1
was omitted in the original classification of Fano varieties with the Picard
number 1 due to Gino Fano. It was discovered by V. Iskovskikh. It has the
same Betti numbers as the P3. It was proven by S. Mukai that every such
variety is isomorphic to VSP( 5 , 6) for a unique quartic for � = + ( 5 ). He also
makes the relation between VSP( 5 , 6) and the corresponding+22 very explicit.
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The Clebsch quartic curve � = ℭ(�) of � can be reconstructed from +22
as the Hilbert scheme of lines on +22 (in the anti-canonical embedding). The
Scorza correspondence defining the corresponding even theta characteristic is
the incidence relation of lines. The quartic is embedded in the plane of conics
on+22. In this wayMukai gets another proof of Corollary

scorzatheoremscorzatheorem
6.3.20. Also he shows

that through each point on +22 passes 6 conics taken with multiplicities. In the
dual plane they correspond to a generalized polar hexagon of 5 (see

Mukai2
[535],

Mukai3
[536]).

By the same method, Ranestad and Schreyer extended the previous result to
all exceptional cases listed in Subsection

SS:1.4.3SS:1.4.3
1.4.3, where = = 2. We have

Theorem 6.3.35. Let 5 be a general ternary form of degree 2: . Then,

• : = 1: VSP( 5 , 3) � � (2, 5)f is isomorphic to a Fano variety of degree 5
and index 2;
• : = 2:VSP( 5 , 6) � � (3, 7)f is isomorphic to the Fano variety+22 of degree
22 and index 1;
• : = 3: VSP( 5 , 10) � � (4, 9)f is isomorphic to a K3 surface of degree 38
in P20;
• : = 4: VSP( 5 , 15) � � (5, 11)f is a set of 16 points.

In the two remaining cases (=, :) = (1, :) and (=, :) = (3, 2), the variety
VSP( 5 , : + 1) is isomorphic to P1 (see

binarybinary
1.60) in the first case and, in the second

case, At present, the birational type of VSP( 5 , 10) is unknown.

Let � = + ( 5 ) be a nonsingular plane quartic and \ is an even theta charac-
teristic on �. Let No be the corresponding net of quadrics in P(�0 (�, \ (1))).
Let N⊥

o
be the apolar linear system of quadrics in the dual projective space

P̌3. Its dimension is equal to 6. We say that a rational normal cubic ' in P̌3

is associated to No if the net of quadrics |J' (2) | vanishing on ' is contained
in N⊥

o
. In

Schreyer
[663] F.-O. Schreyer constructs a linear map U :

∧2 N⊥
o
→ No and

shows that the nets of quadrics defining the associated rational normal curves
is parameterized by the subvariety� (3,N⊥

o
)U of isotropic subspaces of U. This

reminds us of the construction of � (3,AP3 ( 5 )∨)f . In fact, consider the trans-
pose map CU : N∨

o
→ ∧2 (�⊥)∨ and pass to the third symmetric power to get a

linear map

(3 (N∨o) → (3
2∧
(N⊥o)

∨ →
6∧
(N⊥o)

∨ → N⊥o .

Its kernel can be identified with AP3 (6), where + (6) is the quartic, and + ( 5 )
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is its Scorza quartic. This gives another proof of the Scorza birational isomor-
phism betweenM3 andMev

3 . A similar construction was announced earlier by
S. Mukai

MukaiProc
[534].

6.4 Invariant Theory of Plane Quartics
S:6.4

Let I(3) denote the space of SL(3)-invariants of degree 3 in the linear action
of SL(3) on the space of quartic ternary forms. We have already encountered
an invariant �6 of degree 6, the catalecticant invariant (invariant � in Salmon’s
notation from

SalmonCurves
[652, Art 292]). It vanishes on the space of Clebsch quartics.

Another familiar invariant is the discriminant invariant �27 of degree 27. We
know some of the covariants of plane quartics. These are the Hessian invariant
He of degree 3 and order 6, and the Clebsch covariant ℭ4 of degree 3 and order
4. It vanishes on the set of Lüroth quartics. Recall that the latter assigns to a
general quartic the closure of the locus of points whose polar is equianharmonic
cubic. There is a similar covariant ℭ6 of degree 4 and order 6 that assigns to
a general quartic curve the closure of the locus of points whose polar cubics
are harmonic. The Steinerian covariant of degree 12 and order 12 is a linear
combination of ℭ3

4 and ℭ2
6. The dual analogs of the covariants ℭ4 and ℭ6 are

the equianharmonic contravariantΦ4 of class 4 and degree 2 and the harmonic
contravariant Φ6 of class 6 and degree 3.

Let us introduce the generating function

%()) =
∞∑
3=0

dimC I(3))3 .

It has been computed by T. Shioda
Shioda
[712], and the answer is

%()) = # ())∏6
8=1 (1 − )38) (1 − )27)

, (6.38) dixmier

where
# () ) = 1 +) 9 +) 12 +) 15 + 2) 18 + 3) 21 + 2) 24 + 3) 27 + 4) 30 + 3) 33 + 4) 36

+4) 39 + 3) 42 + 4) 45 + 3) 48 + 2) 51 + 3) 54 + 2) 57 +) 60 +) 63 +) 66 +) 75.

It was proven by J. Dixmier
Dixmier
[225] that the algebra of invariants is finite over the

free subalgebra generated by seven invariants of degrees 3, 6, 9, 12, 15, 18, 27.
Shioda conjectured that one needs sixmore invariants of degrees 9, 12, 15, 18, 21, 21
to generate the whole algebra of invariants. This was proved by T. Ohno (un-
published but see

Elsenhans
[287]).

It follows that the invariant �3 (the invariant � in Salmon’s notation) is of
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the lowest possible degree, and it is a unique (up to proportionality) invariant
of degree 3. The next lowest degree is 6 and the linear space of invariants of
degree 6 is spanned by �2

3 and �6. The invariant �3 has symbolic expression
(123)4. Its value on a quartic ternary form � (G, H, I) is equal to the value
of � (G, H, I) on the Clebsch covariant of G(�). So, it vanishes on the set of
plane quartics apolar to the equianharmonic covariant Φ4 (contravariant f in
Salmon’s notation).
If we employ Salmon’s notation for an equation for a ternary form of degree

four
0G4 + 1H4 + 2I4 + 6 5 H2I2 + 66G2I2 + 6ℎG2H2 + 12;G2HI12<H2GI

+ 12=I2GH + 402G
3H + 403G

2I + 411GH
3 + 413H

3I + 421GI
3 + 422HI

3,
(6.39) salmonnotation

then
�3 = 012 + 3(0 5 2 + 162 + 2ℎ2) − 4(01322 + 10321 + 20211) + 6 5 6ℎ
+ 12( 5 ;2 + 6<2 + ℎ=2) − 12;<= − 12(02= 5 + 03< 5 + 11=6 + 13;6

+ 21<= + 22;ℎ) + 12(;1121 + <0222 + =0313) + 4021321 + 031122).
(6.40) invariantI3

One can generate a new invariant by using the polarity pairing between covari-
ants and contravariants of the same order. The obtained invariant, if not zero,
is of degree equal to the sum of degrees of the covariant and the contravariant.
For example, (Φ4 (�),ℭ4 (�)) or (Φ6 (�),He(�)) give invariants of degree 6.
It follows from (

dixmierdixmier
6.38) that all invariants of degree 6 are linear combinations of

�2
3 and �6. However, (Φ6 (�),ℭ6 (�)) is a new invariant of degree 9. Taking

here the Hessian covariant instead of ℭ6 (�), one obtains an invariant of degree
6.
There is another contravariantΩ of class 4 but of degree 5. It vanishes on the

set of lines ℓ such that the unique anti-polar conic of ℓ contains ℓ (see
DolgachevKanev
[235],

p. 274). The contravariant �3Φ4 is of the same degree and order, but the two
contravariants are different.
We can also generate new covariants and contravariants by taking the polar

pairing at already known covariants and contravariants. For example, one gets
a covariant conic f of degree 5 by operating Φ4 (�) on He(�). Or we may
operate � on Φ6 (�) to get a contravariant conic of degree 4.

Applying known invariants to covariants or contravariants gets a new invari-
ant. However, they are of large degrees. For example, taking the discriminant
of the Hessian, we get an invariant of degree 215. However, it is reducible, and
contains a component of degree 48 representing an invariant that vanishes on
the set of quartics which admit a polar conic of rank 1

Thomsen
[748]. There are other

known geometrically meaningful invariants of large degree. For example, the
Lüroth invariant of degree 54 vanishing on the locus of Lüroth quartics and
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the Salmon invariant of degree 60 vanishing on the locus of quartics with an
inflection bitangent (see

Cohen
[162],

Popolitov
[602]). It is a special case of the undulation

invariant of plane curves of degree 3 that vanished on curves admitting a line
touching it at some point with multiplicity ≥ 4. Its degree was computed by
Cayley and Salmon in 1852, and it is equal to 6(3 − 3) (33 − 2).
.
The GIT-quotient of |OP2 (4) | by SL(3) and other compactifications of the

moduli space of plane quartic curves were studied recently from different
aspects. Unfortunately, it is too extensive a topic to discuss here. We refer to
ArtebaniModuli
[21],

ArtebaniModuli2
[23],

HassettModuli
[381],

KondoModuli
[465],

Looijenga2
[493],

Looijenga1
[494].

6.5 Automorphisms of Plane Quartic Curves
S:6.5

6.5.1 Automorphisms of finite order
SS:6.5.1

Since an automorphism of a nonsingular plane quartic curve � leaves the
canonical class  � invariant, it is defined by a projective transformation. We
first describe all possible cyclic groups of automorphisms of �.

finorder Lemma 6.5.1. Let f be an automorphism of order = > 1 of a nonsingular
plane quartic � = + ( 5 ). Then, one can choose coordinates in such a way that
a generator of the cyclic group (f) is represented by the diagonal matrix

diag[1, Z0= , Z1= ], 0 ≤ 0 < 1 < =,

where Z= is a primitive =-th root of unity, and 5 is given in the following list.

(i) (= = 2), (0, 1) = (0, 1),

C42 + C
2
262 (C0, C1) + 64 (C0, C1);

(ii) (= = 3), (0, 1) = (0, 1),

C3261 (C0, C1) + 64 (C0, C1);

(iii) (= = 3), (0, 1) = (1, 2),

C40 + UC
2
0C1C2 + C0C

3
1 + C0C

3
2 + VC

2
1C

2
2;

(iv) (= = 4), (0, 1) = (0, 1),

C42 + 64 (C0, C1);

(v) (= = 4), (0, 1) = (1, 2),

C40 + C
4
1 + C

4
2 + UC

2
0C

2
2 + VC0C

2
1C2;
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(vi) (= = 6), (0, 1) = (2, 3),

C40 + C
4
2 + UC

2
0C

2
2 + C0C

3
1;

(vii) (= = 7), (0, 1) = (1, 3),

C30C2 + C
3
2C1 + C0C

3
1;

(viii) (= = 8), (0, 1) = (3, 7),

C40 + C
3
1C2 + C1C

3
2;

(ix) (= = 9), (0, 1) = (2, 3),

C40 + C0C
3
2 + C

3
1C2;

(x) (= = 12), (0, 1) = (3, 4),

C40 + C
4
1 + C0C

3
2 .

Here, the subscripts in the polynomials 68 indicate their degree.

Proof Let us first choose coordinates such that f acts by the formula

f : [G0, G1, G2] ↦→ [G0, Z
0
= G1, Z

1
= G2],

where 0 ≤ 1 < =. If 0 = 1, we can scale the coordinates by Z−0, and then
permute the coordinates to reduce the action to the case, where 0 ≤ 0 < 1.

We will often use that 5 is of degree ≥ 3 in each variable. This follows from
the assumption that 5 is nonsingular. A form 5 is invariant with respect to the
action if all monomials entering 5 with nonzero coefficients are eigenvectors of
the action of f on the space of quartic ternary forms. We denote by ?1, ?2, ?3
the points [1, 0, 0], [0, 1, 0], [0, 0, 1].

Case 1: 0 = 0.
Write 5 in the form:

5 = UC42 + C
3
261 (C0, C1) + C2262 (C0, C1) + C263 (C0, C1) + 64 (C0, C1). (6.41) quar

Assume U ≠ 0. Since 64 ≠ 0, if U ≠ 0, we must have 41 ≡ 0 mod =. This
implies that = = 2 or 4. In the first case 61 = 63 = 0, and we get case (i). If
= = 4, we must have 61 = 62 = 63 = 0, and we get case (iv).
If U = 0, then 31 = 0 mod =. This implies that = = 3 and 62 = 63 = 0. This

gives case (ii).
Case 2: 0 ≠ 0.
The condition 0 < 1 < = implies that = > 2.

Case 2a: The points ?1, ?2, ?3 lie on �.
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This implies that no monomial C4
8
enters 5 . We can write 5 in the form

5 = C3001 (C1, C2) + C3111 (C0, C2) + C3221 (C0, C1)

+C2002 (C1, C2) + C2112 (C0, C2) + C2222 (C0, C1),

where 08 , 18 , 28 are homogeneous forms of degree 8. If one of them is zero,
then we are in Case 1 with U = 0. Assume that all of them are not zeros. Since
5 is invariant, it is clear that no C8 enters two different coefficients 01, 11, 21.
Without loss of generality, we may assume that

5 = C30C2 + C
3
2C1 + C

3
1C0 + C

2
002 (C2, C3) + C2112 (C0, C2) + C2222 (C0, C1).

Now, we have 1 ≡ 0+31 ≡ 30 mod =. This easily implies 70 ≡ 0 mod = and
71 ≡ 0 mod =. Since =|6.2.<(0, 1), this gives = = 7, and (0, 1) = (1, 3). By
checking the eigenvalues of othermonomials,we verify that no othermonomials
enter 5 . This is case (vii).

Case 2b: Two of the points ?1, ?2, ?3 lie on the curve.
After scaling and permuting the coordinates, we may assume that the point

?1 = [1, 0, 0] does not lie on �. Then, we can write

5 = C40 + C
2
062 (C1, C2) + C063 (C1, C2) + 64 (C1, C2),

where C41 , C
4
2 do not enter 64.

Without loss of generality, we may assume that C31C2 enters 64. This gives
30 + 1 ≡ 0 mod =. Suppose C1C32 enters 64. Then, 0 + 31 ≡ 0 mod =, and
80 ≡ =, 81 ≡ 0 mod =. As in the previous case, this easily implies that = = 8.
This gives case (viii). If C1C32 does not enter in 64, then C32 enters 63. This
gives 31 ≡ 0 mod =. Together with 30 + 1 ≡ 0 mod =, this gives = = 3 and
(0, 1) = (1, 2), or = = 9 and (0, 1) = (2, 3). These are cases (iii) and (ix).

Case 2c: Only one point ?8 lies on the curve.
Again we may assume that ?1, ?3 do not lie on the curve. Then, we can write

5 = C40 + C
4
1 + C

2
062 (C1, C2) + C063 (C1, C2) + 64 (C1, C2),

where C41 , C
4
2 do not enter 64. This immediately gives 40 ≡ 0 mod =. We know

that either C32 enters 63, or C1C32 enters 64. In the first case, 31 ≡ 0 mod = and
together with 40 ≡ 0 mod =, we get = = 12 and (0, 1) = (3, 4). Looking
at the eigenvalues of other monomials, this easily leads to case (x). If C32C1
enters 64, we get 31 + 0 ≡ 0 mod =. Together with 40 ≡ 0 mod =, this gives
121 ≡ 0 mod 12. Hence, = = 12 or = = 6. If = = 12, we get 0 = 1 = 3,
this has been considered before. If = = 6, we get 0 = 3, 1 = 1. This leads
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to the equation C40 + C
4
1 + UC

2
0C

2
1 + C1C

3
2 = 0. After permutation of coordinates

(C0, C1, C2) ↦→ (C2, C0, C1), we arrive at case (vi).

Case 2d: None of the reference points lies on the curve.
In this case we may assume that

5 = C40 + C
4
1 + C

4
2 + C

2
062 (C1, C2) + C063 (C1, C2) + C1C2 (UC21 + VC

2
2 + WC1C2).

Obviously, 40 = 41 = 0 mod =. If = = 2, we are in case (i). If = = 4, we
get (0, 1) = (1, 2), (1, 3), or (2, 3). Permuting (C0, C1, C2) ↦→ (C2, C0, C1), and
multiplying the coordinates by Z2

4 , we reduce the case (1, 2) to the case (2, 3).
The case (1, 3) is also reduced to the case (1, 2) bymultiplying coordinates by Z4
and then permuting them. Thus, we may assume that (0, 1) = (1, 2). Checking
the eigenvalues of the monomials entering 5 , we arrive at case (v). �

6.5.2 Automorphism groups
SS:6.5.2

We employ the notation from
ATLAS
[165]: a cyclic group of order = is denoted by

=, the semi-direct product � o � is denoted by � : �, a central extension of
a group � with kernel � is denoted by �.�. We denote by != (@) the group
PSL(=, F@).

Theorem 6.5.2. The following Table is the list of all possible groups of auto-
morphisms of a nonsingular plane quartic.

Before we prove the theorem, let us comment on the parameters of the
equations. First of all, their number is equal to the dimension of the moduli
space of curves with the given automorphism group. The equations containing
parameters may acquire additional symmetry for special values of parameters.
Thus, in Type IV, one has to assume that 0 ≠ 3

2 (−1±
√
−7), otherwise the curve

becomes isomorphic to the Klein curve (see
Fricke
[309], vol. 2, p. 209, or

RG
[627]). In

Type V, the special values are 0 = 0,±2
√
−3,±6. If 0 = 0, we get the Fermat

quartic, if 0 = ±6, we again get Type II (use the identity

G4 + H4 =
1
8
((G + H)4 + (G − H)4 + 6(G + H)2 (G − H)2).

If 0 = ±2
√
−3, we get Type III (the identity

G4 + H4 + 0G2H2 =
4−c8/3

4
((G + 8H)4 + (G − 8H)4 + 0(G + 8H)2 (G − 8H)2)

exhibits an additional automorphism of order 3). In Type VII, we have to
assume 1 ≠ 0, otherwise the curve is of Type V. In Type VIII, 0 ≠ 0, otherwise
the curve is of type III. In Type IX, 0 ≠ 0, otherwise the curve acquires an
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Type Order Structure Equation

I 168 !2 (7) C30C2 + C0C
3
1 + C1C

3
2

II 96 42 : S3 C40 + C
4
1 + C

4
2

III 48 4.A4 C40 + C
4
1 + 2
√
−3C21C

2
2 + C

4
2

IV 24 S4 C40 + C
4
1 + C

4
2 + 0(C

2
0C

2
1 + C

2
0C

2
2 + C

2
1C

2
2)

V 16 4.22 C40 + C
4
1 + 0C

2
1C

2
2 + C

4
2

VI 9 9 C40 + C0C
3
2 + C

3
1C2

VII 8 �8 C40 + C
4
1 + C

4
2 + 0C

2
0C

2
2 + 1C

2
1C0C2

VIII 6 6 C40 + C
4
2 + C0C

3
1 + 0C

2
0C

2
2

IX 6 S3 C40 + C0 (C
3
1 + C

3
2) + 0C

2
0C1C2 + 1C

2
1C

2
2

X 4 22 C40 + C
4
1 + C

4
2 + 0C

2
0C

2
2 + 1C

2
0C

2
1 + 2C

2
1C

2
2

XI 3 3 C32C1 + C0 (C
3
1 + 0C

2
1C0 + 1C1C

2
0 + 2C

3
0)

XII 2 2 C42 + C
2
262 (C0, C1) + C40 + 0C

2
0C

2
1 + C

4
1

Table 6.1 Automorphisms of plane quarticsautoquartic

automorphism of order 4. In Type X, all the coefficients 0, 1, 2 are different.
We leave the cases XI and XII to the reader.

Proof Suppose� contains an element of order = ≥ 6. Applying Lemma
finorderfinorder
6.5.1,

we obtain that � is isomorphic to a quartic of Type VIII (= = 6), I (= = 7),
II (= = 8), VI (= = 9), and III (= = 12). Here, we use that, in case = = 8
(resp. = = 12), the binary form C31C2 + C1C

3
2 (resp. C41 + C0C

3
2) can be reduced to the

binary forms C41 + C
4
2 (resp. C41 + 2

√
−3C21C + C

4
2) by a linear change of variables. It

corresponds to a harmonic (resp. equianharmonic) elliptic curve.
Assume = = 8. Then,� is a Fermat quartic. Obviously,� contains a subgroup

� ′ = 42 : S3 of order 96. If it is a proper subgroup, then the order of� is greater
than 168. By Hurwitz’s Theorem, the automorphism group of a nonsingular
curve of genus 6 is of order ≤ 84(6 − 1) (see

Hartshorne
[379, Chapter V, Exercise 2.5]).

This shows that � � 42 : S3, as in Type II.
Assume = = 7. Then, the curve is projectively isomorphic to the Klein

curve, which we will discuss in the next subsection. We will show that its
automorphism group is isomorphic to !2 (7). This deals with Type I.

Now, we see that � may contain only Sylow 2-subgroups or 3-subgroups.
Case 1: � contains a 2-group.
First of all, the order # = 2< of � is less than or equal to 16. Indeed, by

above, we may assume that � does not contain cyclic subgroups of order 20
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with 0 > 2. By Riemann-Hurwitz formula

4 = # (26′ − 2) + #
∑
(1 − 1

48
).

If # = 2<, < > 4, then the right-hand side is divisible by 8.
So # = 2<, < ≤ 4. As is well-known, and is easy to prove, the center / of

� is not trivial. Pick up an element f of order 2 in the center and consider the
quotient� → �/(f) = � ′. Since any projective automorphism of order 2 fixes
a line ℓ pointwise, 6 has a fixed point on �. By Riemann-Hurwitz formula, � ′
is a curve of genus one, and the cover is ramified at four points. By choosing
the coordinates such that f = diag[−1, 1, 1], the equation of � becomes

C42 + C
2
262 (C0, C1) + 64 (C0, C1) = 0. (6.42) ellcurve

If � = (f), we get Type XII. Suppose � = 22 and g is another generator. After
a linear change of variables C1, C2, we may assume that g acts as [C0, C1, C2] ↦→
[C0, C1,−C2]. This implies that 62 does not contain the monomial C1C2 and 64
does not contain the monomials C31C2, C1C

3
2 . This leads to Type X.

If � = (g) � Z/4Z, there are two cases to consider corresponding to
items (iv) and (v) in Lemma

finorderfinorder
6.5.1. In the first case, we may assume that

g : [C0, C1, C2] ↦→ [C0, C1, 8C2]. This forces 62 = 0. It is easy to see that any binary
quartic without multiple zeros can be reduced to the form C41 + 0C

2
1C

2
2 + C

4
2 . Now,

we see that the automorphism group of the curve

+ (C40 + C
4
1 + 0C

2
1C

2
2 + C

4
2), 0 ≠ 0,

contains a subgroup generated by the transformations

61 : [C0, C1, C2] ↦→ [8C0, C1, C2],
62 : [C0, C1, C2] ↦→ [C0, 8C1,−8C2],
63 : [C0, C1, C2] ↦→ [8C0, 8C2, 8C1] .

The element 61 generates the center, and the quotient is isomorphic to 22 :=
(Z/2Z)2. We denote this group by 4.22. It is one of nine non-isomorphic non-
abelian groups of order 16. Another way to represent this group is �8 : 2. The
dihedral subgroup �8 is generated by 62 and 6163. If 0 = 0, it is the Fermat
curve of Type II.
In the second case, we may assume that g : [C0, C1, C2] ↦→ [C0, 8C1,−C2]. In

this case, we can reduce the equation to the form (v) from Lemma
finorderfinorder
6.5.1. It

is easy to see that � contains the dihedral group �8. If there is nothing else,
we get Type VII. There are two isomorphism classes of group of order 16 that
contain �8. They are �8 × 2 or 4.22 from above. In the former case, the group
contains a subgroup isomorphic to 23 := (Z/2Z)3. This group does not embed
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in PGL(3). In the latter case, the center is of order four, hence commutes with
g but does not equal to (g). The equation shows that this is possible only if the
coefficient 1 = 0, this leads to Type + .

Case 2: � contains a Sylow 3-subgroup.
Let & be a Sylow 3-subgroup of �. Assume & contains a subgroup & ′

isomorphic to 32. By Riemann-Hurwitz formula, the quotient of � by a cyclic
group of order 3 is either an elliptic curve or a rational curve. In the former
case, the quotient map has two simple ramification points, in the latter case,
it has five simple ramification points. In any case, the second generator of & ′
fixes one of the ramification points. However, the stabilizer subgroup of any
point on a nonsingular curve is a cyclic group. This contradiction shows that &
must be cyclic of order 3 or 9.

Case 2a: & is of order 9.
If & = �, we are getting Type VI. Thus, we may assume that � contains

a Sylow 2-subgroup % of some order 2<, < ≤ 4. By Sylow’s Theorem, the
number B3 of Sylow 3-subgroups is equal to 1 + 3: and it divides 2<. T his
gives B3 = 1, 4, 16. If < = 1, the subgroup & is normal. The cover � → �/&
is ramified at five points with ramification indices (9, 9, 3). If & ≠ �, then %
contains a subgroup isomorphic to 9 : 2. It does not contain elements of order
6. An element of order 2 in this group must fix one of the five ramification
points. It generates a stabilizer subgroup of order 6 or 18. Both cases lead to a
contradiction.
Suppose & is not a normal subgroup. The number =3 of Sylow 3-subgroups

is equal to 4 if < = 2, 3, or 16 if < = 4. Consider the action of � on the set of
28 bitangents. It follows from the normal form of an automorphism of order 9
in Lemma

finorderfinorder
6.5.1 that & fixes a bitangent. Thus, the cardinality of each orbit of

� on the set of bitangents divides 2< and the number of orbits is equal to 4 or
16. It is easy to see that this is impossible.
Case 2a: & is of order 3.
If % contains an element of order 4 of type (v), then, by the analysis from

Case 1, we infer that� contains �8. If % � �8, by Sylow’s Theorem, the index
of the normalizer #� (%) is equal to the number B2 of Sylow 2-subgroups. This
shows that B2 = 1, and hence, % is a normal subgroup of �. An element of
order 4 in % must commute with an element of order 3. Thus, � contains an
element of order 12, hence the equation can be reduced to the Fermat equation
of Type II. Thus, % must be of order 16. This leads to Type III.
So, we may assume that % does not contain an element of order 4 of type

(v). If it does, then it must have the equation of Type V with 0 = 0. This leads
again to the Fermat curve.
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Finally, we arrive at the case when % has no elements of order 4. Then, %
is an abelian group (Z/2Z)<, where < ≤ 2 (the group 23 does not embed in
Aut(P2). If < = 0, we get Type XI; if < = 1, we get Type IX, if < = 2, we get
Type IV.

�

6.5.3 The Klein quartic
SS:6.5.3

Recall that a quartic curve admitting an automorphism of order 7 is projectively
equivalent to the quartic

� = + (C0C31 + C1C
3
2 + C

3
0C2). (6.43) klein1

The automorphism ( of order 7 acts by the formula

( : [C0, C1, C2] ↦→ [nC0, n2C1, n
4C2], n = 42c8/7,

where we scaled the action to represent the transformation by a matrix from
SL(3).
As promised, wewill show that the group of automorphisms of such a quartic

is isomorphic to the simple group !2 (7) of order 168. By Hurwitz’s Theorem,
the order of this group is the largest possible for curves of genus 3.
Observe that the equation (

klein1klein1
6.43) has a symmetry given by a cyclic permuta-

tion* of the coordinates. It is easy to check that

*(*−1 = (4, (6.44) rel1

so that the subgroup generated by (,* is a group of order 21 isomorphic to the
semi-direct product 7 : 3.
By a direct computation, one checks that the following unimodular matrix

defines an automorphism ) of � of order two:

8
√

7

©«
n − n6 n2 − n5 n4 − n3

n2 − n5 n4 − n3 n − n6

n4 − n3 n − n6 n2 − n5

ª®®¬ . (6.45) fricke

We have

)*)−1 = *2. (6.46) rel2

This shows that the subgroup generated by *,) is the dihedral group of order
6. One checks that the 49 products (0)(1 are all distinct. In particular, the
cyclic subgroup (() is not normal in the group � generated by (, ),*. Since
the order of� is divisible by 2 · 3 · 7 = 42, we see that #� = 42, 84, 126 or 168.
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It follows from Sylow’s Theorem that the subgroup (() must be normal in the
first three cases, and hence, #� = 168, and by Hurwitz’s Theorem

Aut(�) = � = 〈(,*,)〉.

One checks that+ = ()()−1 satisfies+3 = 1 and the group has the presentation

� = 〈(, ),+ : (7 = +3 = )2 = ()+ = 1〉.

Proposition 6.5.3. The group Aut(�) is a simple group �168 of order 168.

Proof Suppose � is a nontrivial normal subgroup of�. Assume that its order
is divisible by 7. Since its Sylow 7-subgroup cannot be normal in �, we see that
� contains all Sylow 7-subgroups of �. By Sylow’s Theorem, their number
is equal to 8. This shows that #� = 56 or 84. In the first case, � contains a
Sylow 2-subgroup of order 8. Since � is normal, all its conjugates are in �,
and, in particular, ) ∈ �. The quotient group�/� is of order 3. It follows from
(
rel2rel2
6.46) that the coset of * must be trivial. Since 3 does not divide 56, we get a
contradiction. In the second case, � contains (, ),* and hence coincides with
�. So, we have shown that � cannot contain an element of order 7. Suppose
it contains an element of order 3. Since all such elements are conjugate, �
contains *. It follows from (

rel1rel1
6.44) that the coset of ( in �/� is trivial, and

hence, ( ∈ �, contradicting the assumption. It remains to consider the case
when � is a 2-subgroup. Then, #�/� = 20 · 3 · 7, with 0 ≤ 2. It follows from
Sylow’s Theorem that the image of the Sylow 7-subgroup in �/� is normal.
Thus, its pre-image in � is normal. This contradiction finishes the proof that
� is simple.

�

Remark 6.5.4. One can show that

�168 � PSL(2, F7) � PSL(3, F2).

The first isomorphism has a natural construction via the theory of automorphic
functions. The Klein curve is isomorphic to a compactification of the modular
curve - (7), corresponding to the principal congruence subgroup of full level
7. The second isomorphism has a natural construction via considering a model
of the Klein curve over a finite field of two elements (see

Elkies
[284]). We can see

an explicit action of � on 28 bitangents via the geometry of the projective line
P1 (F7) (see

CoxeterGraph
[176],

JOS
[431]).

The groupAut(�) acts on the set of 36 even theta characteristicswith orbits of
cardinality 1, 7, 7, 21 (see

DolgachevKanev
[235]. The unique invariant even theta characteristic
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\ gives rise to a unique �-invariant in P3 = P(+), where + = �0 (�, \ (1)). Us-
ing the character table, one can decompose the linear representation (2 (+) into
the direct sum of the 3-dimensional representation � = �0 (�,O� (1))∨ and
a 7-dimensional irreducible linear representation. The linear map � → (2 (+)
defines the unique invariant net of quadrics. This gives another proof of the
uniqueness of an invariant theta characteristic. The corresponding representa-
tion of � as a symmetric determinant is due to F. Klein

KleinAuto
[455] (see also

EdgeKlein
[272]).

We have

det
©«
−C0 0 0 −C2
0 C2 0 −C2
0 0 C2 −C0
C2 −C2 −C0 0

ª®®®®¬
= C30C2 + C

3
2C0 + C

3
1C0. (6.47)

The group Aut(�) has 3 orbits on � with nontrivial stabilizers of orders
2, 3, 7. They are of cardinality 84, 56, and 24, respectively.

The orbit of cardinality 24 consists of inflection points of �. They are the
vertices of the eight triangles with inflection tangents as their sides. These are
eight contact cubics corresponding to the unique invariant theta characteristic.
The eight inflection triangles coincide with eight biscribed triangles. The group
acts on the eight triangles with stabilizer subgroup of order 21. In fact, the
coordinate triangle is one of the eight triangles. The subgroup generated by (
and* leaves it invariant. The element) of order 2 sends the coordinate triangle
to the triangle with sides whose coordinates are the rows of the matrix (

frickefricke
6.45).

In fact, this is how the element ) was found (see
KleinAuto
[455] or

Fricke
[309], vol. 2, p. 199).

We know that the inflection points are the intersection points of � and its
Hessian given by the equation

He( 5 ) = 5C20C
2
2C

2
2 − C0C

5
2 − C

5
0C1 − C1C

5
1 = 0.

So, the orbit of 24 points is cut out by the Hessian.
The orbit of cardinality 56 consists of the tangency points of 28 bitangents of

�. An example of an element of order 3 is a cyclic permutation of coordinates.
It has two fixed points [1, [3, [

2
3] and [1, [

2
3, [3] on�. They lie on the bitangent

with equation

4C0 + (3[2
3 + 1)C1 + (3[3 + 1)C2 = 0.
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Define a polynomial of degree 14 by

Ψ = det

©«

m2 5

mC20

m2 5
mC0C1

m2 5
mC0C2

m 5

mC0

m2 5
mC1C0

m2 5

mC21

m2 5
mC1C2

m 5

mC1
m2 5
mC2C0

m2 5
mC2C1

m2 5

mC22

m 5

mC2
m 5

mC0

m 5

mC1

m 5

mC2
0

ª®®®®®®®¬
.

One checks that it is invariant with respect to �168 and does not contain 5 as a
factor. Hence, it cuts out in + ( 5 ) a �-invariant positive divisor of degree 56. It
must consist of a �168-orbit of cardinality 56.
One can compute it explicitly (see

WeberAlgebra
[799], p. 524) to find that

Ψ = C14
0 + C

14
1 + C

14
2 − 34C0C1C2 (C10

0 C1 + · · · ) − 250C0C1C2 (C30C
8
2 + · · · )+

375C20C
2
1C

2
2 (C

6
0C

2
1 + · · · ) + 18(C70C

7
2 + · · · ) − 126C30C

3
2C

3
1 (C

3
0C

2
2 + · · · ).

Here, the dots mean monomials obtained from the first one by permutation of
variables.
The orbit of cardinality 84 is equal to the union of 21 sets, each consisting

of four intersection points of � with the line of fixed points of a transformation
of order two. An example of such a point is

[(n4 − n3) (n − n6)n4, (n2 − n5) (n − n6)n, (n4 − n3) (n2 − n5)n2] .

The product b of the equations defining the 21 lines defines a curve of degree
21 which coincides with the curve + (� ( 5 , �,Ψ)), where � ( 5 , �,Ψ) is the
Jacobian determinant of 5 , the Hesse polynomial, and Ψ. It is a �168-invariant
polynomial of degree 21. Its explicit expression was given by P. Gordan in
Gordan2
[347], p. 372:

Ξ = C21
0 + C

21
1 + C

21
2 − 7C0C1C2 (C17

0 C1 + · · · ) + 217C0C1C2 (C30C
15
2 + · · · )−

308C20C
2
1C

2
2 (C

13
0 C

2
1 + · · · ) − 57(C14

0 C
7
1 + · · · ) − 289(C70C

14
2 + · · · )+

4018C30C
3
1C

3
2 (C

2
0C

10
2 + · · · ) + 637C30C

3
2C

3
1 (C

9
0C

3
2 + · · · )+

1638C0C1C2 (C10
0 C

8
2 + · · · ) − 6279C20C

2
1C

2
2 (C

6
0C

9
2 + · · · )+

7007C50C
5
1C

5
2 (C0C

5
2 + · · · ) − 10010C40C

4
1C

4
2 (C

5
0C

4
2 + · · · ) + 3432C70C

7
1C

7
2 .

The group �168 admits a central extension 2.!2 (7) � SL(2, F7). It has a
linear representation in C3 where it acts as a complex reflection group. The
algebra of invariants is generated by the polynomial 5 defining the Klein curve,
the Hesse polynomial �, and the polynomials Ψ. The polynomial Ξ is a skew
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invariant, it is not invariant but its square is. We have (see
Gordan2
[347],

Fricke
[309, Vol. 2,

p. 208])

Ξ2 = Φ3 − 88 5 2�Ψ2 + 16(63 5 �4Ψ + 68 5 4�2Ψ − 16 5 7Ψ

+108�7 − 3752 5 3�5 + 1376 5 6�3 − 128 5 9�). (6.48)

(note that there is some discrepancy of signs in the formulas of Gordan and
Fricke).
We have already mentioned that the Scorza quartic of the Klein quartic �

coincides with �. The corresponding even theta characteristic is the unique
invariant even theta characteristic \. One can find all quartic curves - such that
its Scorza quartic is equal to � (see

Ciani2
[132],

DolgachevKanev
[235]).

The group � acts on the set of 63 Steiner complexes, or, equivalently, on the
set of nontrivial two-torsion divisor classes of the Jacobian of the curve. There
is one orbit of length 28, an orbit of length 21, and two orbits of length 7. Also,
the group �168 acts on Aronhold sets with orbits of length 8, 168, 56 and 56
JOS
[431]. In particular, there is no invariant set of seven points in the plane that
defines �.
The variety VSP(�, 6) is a Fano threefold +22 admitting �168 as its group of

automorphisms. It is studied in
MelliezRan
[513].

Exercises
E:6

6.1 Show that two syzygetic tetrads of bitangents cannot have two commonbitangents.
ex:6.1

6.2 Let�C = + (C 5 +@2) be a family of plane quartics overC depending on a parameter
C. Assume that + ( 5 ) is nonsingular and + ( 5 ) and + (@) intersect transversally
at eight points ?1, . . . , ?8. Show that �C is nonsingular for all C in some open
neighborhood of 0 in the usual topology and the limit of 28 bitangents when
C → 0 is equal to the set of 28 lines ?8 ? 9 .ex:6.1

6.3 Show that the locus of nonsingular quartics that admit an inflection bitangent is
a hypersurface in the space of all nonsingular quartics.ex:6.3

6.4 Consider the Fermat quartic + (C40 + C
4
1 + C

4
2). Find all bitangents and all Steiner

complexes. Show that it admits 12 inflection bitangents.ex:6.4
6.5 Show that a Fermat quartic has 12 inflection bitangents and this number is

maximal possible
Kuri
[475].ex:6.5

6.6 Let ( = {(ℓ1, ℓ′1), . . . , (ℓ6, ℓ
′
6)} be a Steiner complex of 12 bitangents. Prove that

the six intersection points ℓ8 ∩ ℓ′8 lie on a conic and all
(28

2
)
= 378 intersection

points of bitangents lie on 63 conics.ex:6.6
6.7 Show that the pencil of conics passing through the four points of contact of two

bitangents contains five members each passing through the points of contact of a
pair of bitangents.ex:6.7
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6.8 Show that a choice of n ∈ Jac(�) [2] \ {0} defines a conic & and a cubic � such
that � is equal to the locus of points G such that the polar %G (�) is touching &.ex:6.8

6.9 Let � = + (011022 − 02
12) be a representation of a nonsingular quartic � as a

symmetric quadratic determinant corresponding to a choice of a 2-torsion divisor
class n . Let �̃ be the unramified double cover of � corresponding to n . Show that
�̃ is isomorphic to a canonical curve of genus 5 given by the equations

011 (C0, C1, C2) − C23 = 012 (C0, C1, C2) − C3C4 = 022 (C0, C1, C2) − C24 = 0

in P4.ex:6.9
6.10 Show that the moduli space of bielliptic curves of genus 4 is birationally isomor-

phic to the moduli space of isomorphism classes of genus three curves together
with a nonzero 2-torsion divisor class.ex:6.10

6.11 A plane quartic � = + ( 5 ) is called a Caporali quartic if VSP( 5 , 4)> ≠ ∅.
(i) Show that the � admits a pencil of apolar conics.
(ii) Show that the Clebsch covariant quartic ℭ(�) is equal to the union of four

lines.
(iii) Show that any Caporali quartic is projectively isomorphic to the curve

0C0 (C31 − C
3
2) + 1C1 (C

3
2 − C

3
1) + 2C2 (C

3
0 − C

3
1) = 0

(
Caporali
[84]).ex:6.11

6.12 Let @ be a nondegenerate quadratic form in three variables. Show thatVSP(@2, 6)>
is a homogeneous space for the group PSL(2,C).ex:6.12

6.13 Show that the locus of lines ℓ = + (;) such that the anti-polar conic of ;2 with
respect to a quartic curve + ( 5 ) is reducible is a plane curve of degree 6 in the
dual plane.ex:6.13

6.14 Classify automorphism groups of irreducible singular plane quartics.ex:6.14
6.15 For each nonsingular plane quartic curve� with automorphism group� describe

the ramification scheme of the cover � → �/�.ex:6.15
6.16 Let � be the Klein quartic. For any subgroup � of Aut(�) determine the genus

of � and the ramification scheme of the cover � → �/�.ex:6.16
6.17 Show that a smooth plane quartic admits an automorphism of order 2 if and only

if among its 28 bitangents four form a syzygetic set of bitangents intersecting at
one point.ex:6.17

6.18 Show that the set of polar conics %G2 (�) of a plane quartic �, where G belongs
to a fixed line, form a family of contact conics of another plane quartic � ′.ex:6.18

6.19 Show that the description of bitangents via the Cayley octad can be stated in
the following way. Let � = det � be the symmetric determinantal representation
of � with the Cayley octad O. Let % be the 8 × 4-matrix with columns equal
to the coordinates of the points in O. The matrix " = C%�% is a symmetric
8 × 8-matrix, and its entries are the equations of the bitangents (the bitangent
matrix, see

Sturmfels
[592]).ex:6.19

6.20 Show that the bitangents participating in each principal 4× 4-minor of the bitan-
gent matrix from the previous exercise is a syzygetic tetrad, and the minor itself
defines the equation of the form (

syzegsyzeg
6.1).ex:6.20

6.21 Let � and  be a general conic and a general cubic. Show that the set of points
0 such that %0 (�) is tangent to %0 ( ) is a Lüroth quartic. Show that the set of
polar lines %0 (�) which coincide with polar lines %0 ( ) is equal to an Aronhold
set of seven bitangents of the Lüroth quartic (

Bateman
[39]).ex:6.21

6.22 Prove Sonya Kowalevskaya’s Theorem: a smooth quartic curve admits a bielliptic
involution if and only if four of its bitangents intersect at one point

Kowalewski
[466].
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6.23 Using the previous theorem, show that the set of 28 bitangents of the Klein
quartic contains 21 subsets of four concurrent bitangents and each bitangent has
3 concurrency points.ex:6.22

6.24 Let v3 : |� | → |(3 (�∨) | be the Veronese embedding corresponding to the
apolarity map ap1

5
: � → (3 (�∨) for a general plane quartic + ( 5 ) ⊂ |� |. Show

that the variety VSP( 5 , 6) is isomorphic to the variety of 6-secant planes of the
projection of the Veronese surface a3 ( |� |) to |(3 (�∨)/ap1

5
(�) | � P6 (

MelliezRan
[513]).

ex:6.23
6.25 Find a symmetric determinant expression for the Fermat quartic + (C40 + C

4
1 + C

4
2).ex:6.24

Historical Notes

The fact that a general plane quartic curve has 28 bitangents was first proved
in 1850 by C. Jacobi

JacobiBit
[428] although the number was apparently known to J.

Poncelet. The proof used Plücker formulas and did not apply to any nonsin-
gular curve. Using contact cubics, O. Hesse extended this result to arbitrary
nonsingular quartics

HesseBit
[390].

The first systematic study of the configuration of bitangents began by O.
Hesse

HesseBit
[390],

Hesse4
[391] and J. Steiner

SteinerBit
[725]. Steiner’s paper does not contain proofs.

They considered azygetic and syzygetic sets, and Steinercomplexes of bitan-
gents, although the terminology was introduced later by Frobenius

FrobeniusBit
[312].

Hesse’s approach used the relationship between bitangents and Cayley octads.
The notion of a Steiner group of bitangents was introduced by A. Cayley in
CayleyBit
[116]. Weber

Weber
[798] changed it to a Steiner complex in order not to be confused

with the terminology in group theory.
The fact that the equation of a nonsingular quartic could be brought to the

form (
syzegsyzeg
6.1) was first noticed by J. Plücker

PluckerBook
[598]. Equation (

squarerootssquareroots
6.2), arising from

a Steiner complex, appears first in Hesse’s paper
Hesse4
[391], §9. The determinantal

identity for bordered determinants (
borddet2borddet2
6.27) appears in

HesseBit
[390]. The number of

hexads of bitangents with points of contact on a cubic curve was first computed
by O. Hesse

HesseBit
[390] and by G. Salmon

SalmonCurves
[652].

The equation of a quartic as a quadratic determinant appeared first in Plücker
PluckerNeue
[595, p. 228], and in Hesse

Hesse4
[391], §10,

Hesse5
[392]. Both knew that it could be done

in 63 different ways. Hesse also proves that the 12 lines of a Steiner complex,
considered as points in the dual plane, lie on a cubic. More details appear in
Roth’s paper

Roth
[638] and later, in Coble’s book

Coble
[159].

S. Arinhold was the first to discover the relationship between bitangents of
a plane quartic and seven points in the dual projective plane

Aronhold
[20]. The fact

that Hesse’s construction and Aronhold’ construction are equivalent via the
projection from one point of a Cayley octad was first noticed by A. Dixon
DixonBit
[228].
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The relation of bitangents to theta functions with odd characteristics goes
back to B. Riemann

RiemannBit
[625] and H. Weber

Weber
[798] and was developed later by

A. Clebsch
ClebschBit
[143] and G. Frobenius

FrobeniusBit
[312],

Frobenius1
[314]. In particular, Frobenius had

found a relationship between the sets of seven points or Cayley octads with theta
functions of genus 3. Coble’s book

Coble
[159] has a nice exposition of Frobenius’s

work. The equations of bitangents presented in Theorem
riemannriemann
6.1.9 were first found

by Riemann, with more details explained by H. Weber. A modern treatment of
the theory of theta functions in genus three can be found in many papers. We
refer to

vGvdG
[321],

Glass2
[337], and the references therein.

The theory of covariants and contravariants of plane quartics was initiated by
A. Clebsch in his fundamental paper about plane quartic curves

Clebsch1
[140]. In this

paper, he introduces his covariant quartic ℭ(�) and the catalecticant invariant.
He showed that the catalecticant vanishes if and only if the curve admits an
apolar conic. Much later, G. Scorza

Scorza36
[677] proved that the rational map ( on the

space of quartics is of degree 36 and related this number with the number of
even theta characteristics. The interpretation of the apolar conic of a Clebsch
quartic as the parameter space of inscribed pentagons was given by G. Lüroth
Luroth
[499]. In this paper (the first issue of Mathematische Annalen), he introduced
the quartics that now bear his name. Darboux curves were first introduced by G.
Darboux in

DarbouxPrincipe
[203]. They got a modern incarnation in a paper of W. Barth

Barth0
[32],

where it was shown that the curve of jumping lines of a rank two vector bundle
with trivial determinant is a Darboux curve. The modern exposition of works
of F. Morley

Morley
[528] and H. Bateman

Bateman
[39] on the geometry of Lüroth quartics

can be found in papers of G. Ottaviani and E. Sernesi
Ottaviani1
[563],

OttavianiSernesi
[565],

OttavianiSernesi2
[566].

The groups of automorphisms of nonsingular plane quartic curves were
classified by S. Kantor

Kantor
[438] and A. Wiman

Wiman
[808]. The first two curves from

our table were studied earlier by F. Klein
KleinAuto
[455] and W. Dyck

Dyck
[268]. Of course,

the Klein curve is the most famous and often appears in modern literature (see,
for example,

eightfold
[714]).

The classical literature about plane quartics is enormous. We refer to Ciani’s
paper

Ciani
[133] for a survey of classical results, as well as to his contributions to

the study of plane quartics, which are assembled in
CianiWorks
[135]. Other surveys can

be found in
Pascal
[577] and

enzyk
[293].



7
Cremona Transformations

7.1 Homaloidal Linear Systems
S:7.1

7.1.1 Linear systems and their base schemes
SS:7.1.1

Recall that a rational map 5 : - d . of algebraic varieties over a field k is a
regular map defined on a dense open Zariski subset * ⊂ - . The largest such
set, which 5 can be extended to as a regular map, is denoted by dom( 5 ). A point
G ∉ dom( 5 ) is called an indeterminacy point. Two rational maps are considered
to be equivalent if their restrictions to an open dense subset coincide. A rational
map is called dominant if 5 : dom( 5 ) → . is a dominant regular map, i.e. the
image is dense in . . Algebraic varieties form a category with morphisms taken
to be equivalence classes of dominant rational maps.

From now on, we restrict ourselves to rational maps of irreducible varieties
overC. We use 5d to denote the restriction of 5 to dom( 5 ), or to any open subset
of dom( 5 ). A dominant map 5d : dom( 5 ) → . defines a homomorphism of
the fields of rational functions 5 ∗ : '(. ) → '(-). Conversely, any homo-
morphism '(. ) → '(-) arises from a unique equivalence class of dominant
rational maps - d . . If 5 ∗ makes '(-) a finite extension of '(. ), the degree
of the extension is the degree of 5 . A rational map of degree one is called a
birational map. It can also be defined as an invertible rational map.

We will further assume that - is a smooth projective variety. It follows that
the complement of dom( 5 ) is of codimension ≥ 2. Let |+ ′ | ⊂ |L ′ | be a linear
system of Cartier divisors on . , then the pre-image of any divisor � ′ ∈ |+ ′ |
under 53 is a Cartier divisor on dom( 5 ). It can be uniquely extended to a Cartier
divisor � on - . Also, 5 ∗

3
L ′ can be extended uniquely to an an invertible sheaf

L on - such that � ∈ |L|. The linear map 5 ∗ : + ′ → �0 (-,L) is injective
and its image is a linear subspace + ⊂ �0 (-,L). The linear system |+ | ⊂ |L

358
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obtained in this way is called the proper transform of |+ ′ | and denoted by
5 −1 ( |+ |).
Any rationalmap 5 : - d . is defined by a linear system.Namely, we embed

. in a projective space PA by a complete linear system |+ ′ | := |�0 (.,L ′) |. Its
divisors are hyperplane sections of . . Then, 5 is defined by 5 −1 ( |+ ′ |).
The rational map 5 is given in the usual way. Evaluating sections of + at a

point, we get a map dom( 5 ) → P(+) and„ by restriction, the map dom( 5 ) →
P(+ ′), which factors through the map. ↩→ P(+ ′). A choice of a basis (B0, . . . ,

BA ) in + and a basis in + ′ defines a rational map 5 : - d . ⊂ PA . It is given
by the formula

G ↦→ [B0 (G), . . . , BA (G)] .

Let L be a line bundle and + ⊂ �0 (-,L). Consider the natural evaluation
map of sheaves

ev : + ⊗ O- → L

defined by restricting global sections to stalks of L. Tensoring by L−1, we get
a map

ev : + ⊗ L−1 → O-
whose image is a sheaf of ideals in O- . This sheaf of ideals is denoted b( |+ |)
and is called the base ideal of the linear system |+ |. The closed subscheme
Bs( |+ |) of - defined by this ideal is called the base scheme of |+ |. The reduced
scheme is called the base locus. In classical terminology, the base locus is the
�-locus; its points are called fundamental points. We have

Bs( |+ |) = ∩�∈ |+ |� = �0 ∩ . . . ∩ �A (scheme-theoretically),

where �0, . . . , �A are the divisors of sections forming a basis of+ . The largest
positive divisor � contained in all divisors from |+ | (equivalently, in the divisors
�0, . . . , �A ) is called the fixed component of |+ |. The linear system without
fixed component is sometimes called irreducible. Each irreducible component
of its base scheme is of codimension ≥ 2.

If � = div(B0) for some B0 ∈ �0 (-,O- (�)), then the multiplication
by B0 defines an injective map L(−�) → L. The associated linear map
�0 (-,L(−�)) → �0 (-,L) defines an isomorphism from a subspace ,
of �0 (-,L(−�)) onto + . The linear system |, | ⊂ |L(−�) | is irreducible and
defines a rational map 5 ′ : - d P(,) � P(+).
A linear system is called base-point-free, or simply free if its base scheme

is empty, i.e., b( |+ |) � O- . The proper transform of such a system under a
rational map is an irreducible linear system. In particular, the linear system |+ |
defining a rational map - d . as described in above, is always irreducible.
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Here, are some simple properties of the base scheme of a linear system.

(i) |+ | ⊂ |L ⊗ b( |+ |) | := |�0 (-, b( |+ |) ⊗ L)|.
(ii) Let q : - ′ → - be a regular map, and + ′ = q∗ (+) ⊂ �0 (- ′, q∗L). Then,

q−1 (b( |+ |)) = b( 5 −1 ( |+ |)). Recall that, for any ideal sheaf a ⊂ O- , its
inverse image q−1 (a) is defined to be the image of q∗ (a) = a ⊗O- O- ′ in
O- ′ under the canonical multiplication map.

(iii) If b( |+ |) is an invertible ideal (i.e. isomorphic to O- (−�) for some effective
divisor �), then dom( 5 ) = - and 5 is defined by the linear system |L(−�) |.

(iv) If dom( 5 ) = - , then b( |+ |) is an invertible sheaf and Bs( |+ |) = ∅.

Definition 7.1.1. A resolution of indeterminacy of a rational map 5 : - d .

of projective varieties is a pair of regular projective morphisms c : - ′ → -

and f : - ′→ . such that 5 = f ◦ c−1 and c is an isomorphism over dom( 5 ):

- ′

f

~~

a

  
-

5 // . .

(7.1) hironaka

We say that a resolution is smooth (normal) if - ′ is smooth (normal).

We have encountered resolutions of indeterminacy in Section
S:2.4S:2.4
2.4. For exam-

ple, the space CQ of complete quadrics is a resolution of indeterminacy of the
adjugate birational map Adj.

We denote by

f : Bl/ (-) = Proj
∞⊕
:=0

a: → -

the blow-up of / (see Subsection
SS:2.4.1SS:2.4.1
2.4.1).

An ideal sheaf a ⊂ O- is called a contracted ideal for amorphism 5 : . → -

satisfying 5∗O. = O- if a = 5∗ (I) for some sheaf of ideals I on .
Lipman
[489,

II:Definition (6.1)] If - is normal, an ideal a is said to be complete if and only
if it is contracted for every proper birational morphism 5 : . → - . A local
definition is that an ideal � in a commutative a normal ring � is complete if is
integrally closed, i.e.,

� = �̄ := {G ∈ � : G= + 01G
=−1 + · · · + 0= = 0 for some 0: ∈ �: }.

It follows from the universality property of the blow-up that a is complete if
and only a is contracted for f+, where f+ : Bl+ (a) (-)+ → Bl+ (a) (-) → -

is the composition of f with the normalization map and �+ is its exceptional
divisor. In fact, for any Ideal a ⊂ O- , its integral closure ā coincides with
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(f+)+ (O+ (a) (−�+). If �+ =
∑
A8�8 , where �8 are irreducible Weil divisors,

then
5 ∈ ā⇐⇒ ord�8 ( 5 ) ≥ A8 for all 8. (7.2) valuecrit

We have Bl+ (a) (-)+ = Bl+ (a) (-) if and only a< is integrally closed for all
< ≥ 0. If - is nonsingular, and dim - = 2, then < = 1 suffices

ZS
[815, Appendix

5],
Lipman
[489, II, Theorem 7.1]

Example 7.1.2. Let a = (D2, {3) ⊂ k[D, {], then (D{2)2 + 0 · D{2 − D2{4 = 0,
since D2{4 ∈ a2, D{2 ∈ ā. The blow-up Bl+ (a) (A2) � + (D2C0 − {2C1). It is not
normal along the exceptional curve � = + (D, {). On the other hand, the ideal
(D, {=) is integrally closed for any =.

Let ā = a and a = q1 ∩ . . . ∩ q: as the intersection of primary sheaves of
ideals. We assume that there are no inclusions among q8’s. Then, each q8 is
integrally closed, and

q8 = f∗OBl/ (- )+ (−A8�8). (7.3) riEi

It follows that a is integrally closed if and only if its primary components are
integrally closed.

Remark 7.1.3. Let / = + (I/ ) be an irreducible reduced subvariety of a non-
singular quasi-projective variety - over C with a = I/ ⊂ O- . The <-symbolic
power of / is the closed subscheme / 〈<〉 = + (a〈<〉) of </ := + (I<

/
) such

that (/ 〈<〉)red = / . The sheaf of ideals a〈<〉 is called the <th symbolic power
of a, For example, take - = Spec(C[G, H, I]) and / = + (GH, HI, GI). Then,
+ (GHI)red = / but GHI ∉ (GH, GI, HI)2. According to the theorem of Zariski and
Nagata ,

a〈<〉 = { 5 ∈ O- : ordG ( 5 ) ≥ < for all G ∈ /}

(it is enough here to consider only the generic points of irreducible components
of /). It follows that

a〈<〉 = ∩G∈/m<G,/ .

Another characterization of a〈<〉 in an affine variety - is

a〈<〉 = { 5 ∈ O(-) : � 5 ∈ a for all differential operators � on - of order < <}.

It implies that a〈<〉 = a< if / is nonsingular, for example, / is a closed point.
According to

ELS
[279, Theorem A], for all < ≥ 0,

a〈4<〉 ⊂ a<,

where 4 is the codimension of / .
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For any irreducible component /8 = + (a8) of Bs( |+ |)red one defines the
multiplicity of |+ | (or Bs( |+ |), or b( |+ |)) to be the largest < such that

b( |+ |) ⊂ a〈<〉
8

Lazarsfeld
[479, I:Definition 9.3.6]. It coincides with the multiplicity mult+ (a8) (�) of a
general divisor � ∈ |+ | along + (a8), i.e., the multiplicity of � at the generic
point of+ (a8). We use the notationmult/8 ( |+ |) (multa8 (b( |+ |),mult/8 (b( |+ |)).

If b( |+ |) is integrally closed, and b( |+ |) = f∗ (O- (−
∑
A8�8)) as in (

riEiriEi
7.3),

then multa8 (b( |+ |)) ≤ A8 . In example
ex:infinitelynear1ex:infinitelynear1
7.1.22, the multiplicity is equal to one,

but A1 = 2.
Example 7.1.4. Let . be a closed reduced subscheme of a smooth scheme -
and a be its sheaf of ideals. Let <. denote the closed subscheme of - defined
by the ideal a<.

For any graded algebra � = ⊕∞
8=0 generated by elements of degree one, the

projective spectrum Proj(�) is isomorphic to the projective spectrum of the
grades subalgebra �(<) := ⊕8=0�

(<)
8

, where �(<)
8

= �48 . This shows that there
exists an isomorphism {< : Bl<. (-) � Bl. (-). Under this isomorphic, the
pre-image of the exceptional divisor of Bl<. (-) is equal to <� , where � is the
exceptional divisor of Bl. (-). t follows that

f∗OBl. (- ) (−<�) = a<.

It is clear that multa (a<) = <.

Proposition 7.1.5. Let 5 : - d . be a rational map of irreducible varieties
defined by a linear system |+ | with the base scheme / = + (b( |+ |)). Let f :
Bl/ (-) → - be the blow-up of / . Then, there exists a unique regular map
a : Bl/ (-) → . such that (f, a) is a resolution of indeterminacy of 5 . For
any resolution of indeterminacy (f′, a′) of 5 , there exists a unique morphism
U : - ′→ Bl/ (-) such that f′ = f ◦ U, a′ = a ◦ U,.

Proof By properties (ii) and (iii) from above, the linear system f−1 ( |+ |) =
|f∗ (L) ⊗ f−1 (b) | defines a regular map f : Bl/ (-) → . . It follows from
the definition of maps defined by linear systems that 5 = f ◦ a−1. For any
resolution, (- ′, f′, a′) of 5 , the base scheme of the inverse transform f−1 ( |+ |)
on - ′ is equal to f−1 (b). The morphism f′ is defined by the linear system
f′−1 ( |+ |) and hence its base sheaf is invertible. This implies that f′ factors
through the blow-up of / . �

Note that we also obtain that the exceptional divisor of f′ is equal to the
pre-image of the exceptional divisor of the blow-up of Bs( |+ |).
Any diagram (

hironakahironaka
7.1) defines the rational map 5 = a ◦ f−1. So, if b( |+ |) is
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not integrally closed, we replace - ′ = Bl+ (b( |+ |)) (-) with its normalization
- ′+ and replace 5 with 5 + as above. Obviously, 5 and 5 + coincide on dom( 5 ),
hence 5 = 5 + as rational maps. Now, we can change the linear system to assume
that its base ideal is integrally closed.

thm1 Theorem 7.1.6. Assume that 5 : - d . is a birational map of normal projec-
tive varieties and 5 is given by a linear system |+ | ⊂ |L| equal to the inverse
transform of a very ample complete linear system |L ′ | on . . Let (- ′, f, a) be
a resolution of indeterminacy of 5 and let � be the exceptional divisor of f.
Then, the canonical map

+ → �0 (- ′, f∗L(−�))

is an isomorphism.

Proof Set b = b( |+ |). We have natural maps

+ → �0 (-,L ⊗ b) → �0 (- ′, f∗L ⊗ f−1 (b)) �→ �0 (- ′, (f∗L)(−�))

�→ �0 (- ′, f∗L ′) �→ �0 (., f∗f∗L ′)
�→ �0 (.,L ′ ⊗ f∗O- ′)

�→ �0 (.,L ′).

Here, we used the Main Zariski Theorem that asserts that f∗O- ′ � O. because
f is a birational morphism and . is normal

Hartshorne
[379, Chapter III, Corollary 11.4].

By definition of the linear system defining 5 , the composition of all these maps
is a bĳection. Since each map here is injective, we obtain that all the maps are
bĳective. One of the compositions is our map + → �0 (- ′, f∗L(−�)), hence
it is bĳective. �

cor:7.1.4 Corollary 7.1.7. Assume, additionally, that the resolution of indeterminacy
(-, f, a) is normal. Then, the natural maps

+ → �0 (-,L ⊗ b( |+ |)) → �0 (- ′, f∗ (L)(−�)) → �0 (-,L ⊗ b( |+ |))

are bĳective.

We apply Theorem
thm1thm1
7.1.6 to the case when 5 : P= d P= is a birational map, a

Cremona transformation. In this case, L = OP= (3) for some 3 ≥ 1, called the
(algebraic) degree of the Cremona transformation 5 . We take |L ′ | = |OP= (1) |.
The linear system |+ | = |b( |+ |) (3) | defining aCremona transformation is called
a homaloidal linear system. In classical literature, members of a homaloidal
linear system are called homaloids. More generally, a :-homaloid is a proper
transform of a :-dimensional linear subspace in the target space.

P1.2.2 Proposition 7.1.8.
�1 (P=,L ⊗ b( |+ |)) = 0.
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Proof Let (-, f, a) be the resolution of indeterminacy of 5 defined by
the normalization of the blow-up of Bs( |+ |). Let � be the exceptional di-
visor of f : - → P=. We know that f∗ (f∗L(−�)) = L ⊗ b( |+ |) and
a∗L(−�) � a∗OP= (1). The low degree exact sequence defined by the Leray
spectral sequence, together with the projection formula, gives an exact sequence

0→ �1 (P=,OP= (1)) → �1 (-, a∗OP= (1)) → �0 (P=, '1a∗O- ′ ⊗ OP= (1)).
(7.4) exa1

Let c : - ′→ - be a resolution of singularities of - . Then, we have the spectral
sequence

�
?@

2 = '?f∗ ('@c∗O- ′) ⇒ '?+@ (f ◦ c)∗O- ′ .

It gives the exact sequence

0→ '1c∗ (c∗O- ′) → '1 (f ◦ c)∗O- ′ → c∗'
1c∗O- ′ .

Since - is normal, c∗O- ′ = O- . Since the composition f ◦ c : - ′ → P=
is a birational morphism of nonsingular varieties, '1 (f ◦ c)∗O- ′ = 0. This
shows that '1f∗ (c∗O- ′) = 0. Together with vanishing of �1 (P=,OP= (1)),
(
exa1exa1
7.4) implies that

�1 (-, f∗L(−�)) = 0.

It remains to use that the canonical map

�1 (P=,L ⊗ b( |+ |)) � �1 (P=, f∗ (c∗L(−�)) → �1 (-, f∗L(−�))

is injective (use the Čech cohomology, or the Leray spectral sequence). �

Using the exact sequence,

0→ b( |+ |) → OP= → OP=/b( |+ | → 0,

and tensoring it with OP= (3), we obtain the following result, classically known
as the Postulation formula.

postulation Corollary 7.1.9. Let |+ | be a homaloidal linear system. Then

ℎ0 (O
+ (b( |+ |)) (3)) =

(
= + 3
3

)
− = − 1.

Let

b( |+ |) =
∞⊕
:=0

b( |+ |): ,
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where b( |+ |): = �0 (P=, b( |+ |) (:)), be the grading of the base scheme ideal.
We have

b( |+ |)3 =� �0 (P=,OP= (1)) � C=+1. (7.5) post1

Also, we have

b( |+ |): = 0, : < 3. (7.6) post

Indeed, otherwise |b( |+ |) (3) | contains |OP= (3 − :) | + |b( |+ |) (:) | and its di-
mension is strictly larger than = + 1 if : < 3 − 1, or it has fixed component if
: = 3 − 1.
The base locus Bs( |+ |) could be very complicated, e.g., it could be non-

reduced, contain embedded components, and possess other bad properties. The
next proposition shows that not any closed subscheme of codimension ≥ 2 can
be realized as the base scheme of a homaloidal linear syste,

completeintersection Proposition 7.1.10. Bs( |+ |) is not a complete intersection.

Proof If Bs( |+ |) is a complete intersection, then Bs( |+ |) is equidimensional
of codimension 2 ≤ = and its homogeneous ideal b( |+ |) is generated by forms
�1 . . . �2 . By (

post1post1
7.5), we must have dim b( |+ |)3 = =+1. If�8 has degree 38 < 3

then

�8�
0 (P=,OP= (3 − 38)) ⊂ +.

Then, for dimension reasons, 3 − 38 = 1. But then + (�8) is a fixed component
of Bs( |+ |), a contradiction. Hence, 38 ≥ 3, 8 = 1, . . . , 2. Since 2 ≤ = it follows
that dim b( |+ |)3 ≤ 2 ≤ =, contradicting (

post1post1
7.5). �

Since - ′ = Bl+ (b( |+ |)) (-) is often singular, we will need to use the intersec-
tion theory on - ′ to compute the degree of the rational map, one often passes
to a resolution of singularities of - ′.

Definition 7.1.11. Let |+ | ⊂ |L| be a linear system on a nonsingular variety
- without fixed components. A log resolution of |+ | is a projective birational
morphism ` : . → - such that

• `−1 (b( |+ |)) :== b( |+ |) · O. = O. (−�) for some effective divisor �.
• Let � be a general member of |+ | and Exc(`) be the exceptional divisor of
`, then `∗ (�) + Exc(`) is a divisor with simple normal crossings.

Recall that a simple normal crossing divisor (sic-divisor, for short) is an
effective divisor whose reduced irreducible components �8 , 8 ∈ �, are smooth,
and, for any subset � ⊂ �, the intersection ∩ 9∈��8 is the disjoint union of
smooth subvarieties of codimension |� |.
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Note that the first condition says that ` is a log resolution of the Ideal b( |+ |
Lazarsfeld
[479, II:Definition 9.1.12]
Since we are working over C a theorem of Hironaka implies that a log

resolution always exists and can be obtained as a composition

. = .#
`#−→ .#−1

`#−1−→ . . .
`2−→ .1

`1−→ .0 = -, (7.7) logres

where each morphism `8 : .8 → .8−1 is the blowing up of a smooth closed
subscheme �8 of .8−1, which we can always assume to be of codimension ≥ 2.
For any # ≥ 0 > 1 ≥ 1, we set

`0,1 = `0 ◦ . . . ◦ `1+1 : .0 → .1 , `0,0 = `0,

and ` = `# ,0 : . → .0.
LetH = |+ | andH8 = `−1

81 (H) be the proper transform of the linear system
H in .8 . Then �8 is contained in Bs(H8)
Let �8 = a−1

8
(�8) be the exceptional divisor of a8 : .8+1 → .8 . It is isomorphic

to P(N∨
�8/-8 ). We denote by �8 its proper transform in . . The linear system

a−1 ( |+ |) coincides with |`∗ (L)(−�) |, where

� =
∑
8∈�

<8�8 ,

and
<8 = min

�∈H8
mult[8 (�).

The first property of a log resolution and the universality property of the blow-
up shows that there is a birational morphism

a : . → BlBs(H) (-)+.

It is a resolution of singularities of BlBs(H) (-)+, and also, a log resolution of
the exceptional divisor Exc(f) of BlBs(H) (-)+ → - .

Let Exc(`) = ∑
�8 , we denote by ((`) the simplicial complex on the

set of irreducible components of all possible non-empty intersections �� =
∩8∈��8 , � ⊂ �, with simplices equal to finite linearly ordered subsets of the set.
The extended simplicial complex is obtained from (̃(`) by adding a general
member of `−1 ( |+ |) and its intersections with all sets �� . By a theorem of V.
Danilov

Danilov
[198, Proposition 4], the topological realization of (̃(`) is connected

and simply-connected. Moreover, applying the main theorem from
Danilov
[198] and

Lazarsfeld
[479, Example 9.1.16], we obtain that the homotopy type of (̃(`) does not
depend on a log resolution.
The structure of a simplicial complex on ((`) defines a partial order on the

set of subvarieties �8 by writing �8 > � 9 if `8, 9 (�8) ⊂ � 9 .
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If, additionally, `8, 9 : .8 → . 9 maps �8 dominantly onto � 9 , we say that �8
is infinitely near to � 9 of order : = 8− 9 and write �8 �: � 9 or simply �8 � � 9
if we do not want to specify the order.

enriquediagram Example 7.1.12. Assume - is a surface. Then all �8 are closed points H8 ∈ .8 .
All �8’s are (−1)-curves. Let H81 �1 H82 �1 · · · �1 H8: be the longest sequence
of infinitely near points. Then `8: ,0 : .: → - is an isomorphism in an open
neighborhood of HH: , and we can identify it with a point in - . We say that H8:
is a proper base point of H . The curve �81 = `−1

# ,81
(�81 ). It is a (−1)-curve on

. . The simplicial complex ((`) is a tree, and its longest paths correspond to
(−1)-components of Exc(`). A log resolution is called minimal, if does not
factor non-trivially through another log resolution. This is equivalent to that
the morphism a : . → Bl+Bs( |+ |) (-) is a minimal resolution of the normal
surface Bl+Bs( |+ |) (-). It is known that a minimal resolution of a normal surface
is unique. This shows that a minimal resolution of |+ | is unique. Note that this
is not true in higher dimension.
The next theorem is known as the Noether-Fano inequality.

noetherformula1 Theorem 7.1.13. Let ` : . = .# → · · · → .0 = P
= be a log resolution

of a homaloidal linear system H , and `−1 (H) = |3� − ∑#
8=1 <8�8) |, where

`8 : .8 → .8−1 is the blow-up with center �8 of codimension X8 in .8−1 and �8
be the proper transform in 5 of the exceptional divisor �8 . Then there exists 8
such that

<8 >
3 (X8 − 1)
= + 1

.

Proof We know from Proposition
canblowupcanblowup
2.4.4 that  .8 = `∗

8
( .8−1 ) + X8 [�8]. By

induction, we get

 . = `
∗ ( P= ) +

∑
(X8 − 1)�8 = (−= − 1)� +

∑
(X8 − 1)�8 . (7.8)

Let a : . → P= be the second projection of the log resolution to the target
space P=. Since a∗ (`−1 (H)) = |OP= (1) |, and a∗ ( . ) =  P= , for any positive
rational number C > 1

=+1 ,

|`−1 (H) + C . | = ∅.

Here, by definition, `−1 (H) + C . = 1H + 0 . if C = 0/1. Now, we use that

`−1 (H) + C . = (3� −
#∑
8=1

<8�8) + C ((−= − 1)� +
#∑
8=1
(X8 − 1)�8)

= (3 − C (= + 1)� −
#∑
8=1
(<8 − C (X8 − 1))�8 .
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Taking 1
=+1 < C ≤ 3

=+1 , we obtain that there exists at least one 8 such that
<8 − C (X8 − 1) ≥ 0. Hence,

<8 ≥ CX8 >
3 (X8 − 1)
= + 1

,

as asserted. �

7.1.2 F-locus and P-locus
SS:7.1.2

We define the graph Γ 5 of a rational map 5 : - d . as the closure Γ 5 in
- × . of the graph Γ 5d of 5d : dom( 5 ) → . . Clearly, the graph, together with
its projections to - and . , defines a resolution of indeterminacy of the rational
map 5 .

Γ 5

f

~~

a

��
-

5 // .

By the universal property of the graph, for any resolution (- ′, f′, a′) of
5 , the map (f′, a′) : - ′ → - × . factors through the closed embedding
Γ 5 ↩→ - ×. . Thus, the first projection Γ 5 → - has the universal property for
morphisms which invert b( |+ |). Hence, it is isomorphic to the blow-up scheme
Bl- (b(( |+ |)).

Suppose that - = P=, . = P= and 5 is given by a linear system of hypersur-
faces of degree 3. In coordinates,

5 : (G0, . . . , G=) ↦→ (�0 (G0, . . . , G=), . . . , �= (G0, . . . , G=)).

Then, Γ 5 is defined by 2 × 2-minors of the matrix(
�0 (G) �1 (G) . . . �= (G)
H0 H1 . . . H=

)
, (7.9) graph

It is a subvariety of P= × P= given
(=
2
)
of equations of bidegree (3, 1).

The F-locus of a Cremona transformation 5 is the reduced base locus of
the linear system defining 5 . Its points are called the fundamental points or
indeterminacy points (F-points, in classical terminology).
The P-locus of 5 is the union of irreducible hypersurfaces that are blown

down to subvarieties of codimension ≥ 2. One can make this more precise and
also give it a scheme-theoretical structure.
Let (-, f′, a′) be a normal resolution of indeterminacy of a birational map

5 : P= d P=. We know that f and a) factors through the blow-ups �( 5 ) and
�( 5 −1) of the base ideals of 5 and 5 −1. We assume that they are integrally
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closed, and hence, �( 5 ) and �( 5 −1) are normal. We may find a log resolution
- ′ of the exceptional divisor of �( 5 ) → P= and a log resolution - ′′ of the
exceptional divisor of �( 5 −1). By

Lazarsfeld
[479, I:Example 9.1.6],we canfind a common

log resolution . → �( 5 ) and . → �( 5 −1) to get the following commutative
diagram:

.

||

f

		

##

a

��

�( 5 )

!!

��

// �( 5 −1)

||

��

Γ 5
?1

||

?2

##
P=

5 // P=

We assume that (., f, a) is a minimal resolution satisfying the properties
above. Let the base ideals of the homaloida systems defining 5 and 5 −1 be
equal to f∗O. (−

∑
8∈� A8�8) and a∗O. (−

∑
9∈� < 9�9 ). Let � ′ be the largest

subset of � such that the proper transform of �9 , 9 ∈ � ′, in . is not equal to
the proper transform of some �8 in - . The image of the divisor

∑
9∈� ′ �9 under

f is the %-locus of 5 . We can define the scheme-theoretical %-locus as the
image of

∑
9∈� ′ <:�9 . The image of any irreducible component of the %-locus

is blown down under 5 (after we restrict ourselves to dom( 5 )) to an irreducible
component of the base locus of 5 −1.
Let 5 be given by homogeneous polynomials (�0, . . . , �=) and let 5̃ :

C=+1 → C=+1 be the holomorphic map defined by the same polynomials.
Then, the %-locus is the image in P= of the locus of critical points of 5̃ . It is
equal to the set of zeros of the determinant of the Jacobian matrix of 5̃

� =

( m�8
mC 9

)
8, 9=0,...,=

.

So, we expect that the %-locus is a hypersurface of degree (= + 1) (3 − 1). The
component % 9 = f(�� ) enters with the multiplicity

mult%9 = < 9 (= − 1 − dim(a(�9 )) (7.10) hudsonformula

Hudson
[414]. This often allows one to compute the degree of the map defined in
geometric terms without an explicit formula.
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standard Example 7.1.14. Consider the standard quadratic transformation given by

)st : [C0, C1, C2] ↦→ [C1C2, C0C2, C0C1] . (7.11) st

It has three fundamental points ?1 = [1, 0, 0], ?2 = [0, 1, 0], ?3 = [0, 0, 1].
The %-locus is the union of three coordinate lines + (C8). The Jacobian matrix
is

� =
©«

0 C2 C1
C2 0 C0
C1 C0 0

ª®®¬ .
Its determinant is equal to 2C0C1C2. We may take - = BlP2 ({?1, ?2, ?3}) as a
smooth resolution of )st (see Figure

F7.1F7.1
7.1).

�1 !1

�2!3

!2 �3

Figure 7.1 A resolution of )st F7.1

Let �1, �2, �3 be the exceptional divisors over the fundamental points
?1, ?2, ?3, and let !8 , 8 = 1, 2, 3, be the proper transforms of the coordinate
lines + (C0), + (C1), + (C2), respectively. Then, the morphism f : - → P2 blows
down !1, !2, !3 to the points ?1, ?2, ?3, respectively. Note that )−1

st = )st,
so there is no surprise here. Recall that the blow-up of a closed subscheme
is defined uniquely only up to an isomorphism. The isomorphism g between
the blow-ups of the base scheme of )st and )−1

st that sends �8 to !8 is a lift
of the Cremona transformation )−1

st . The surface - is a del Pezzo surface of
degree 6, a toric Fano variety of dimension 2. We will study such surfaces
in Chapter 8. The complement of the open torus orbit is the hexagon of lines
�1, �2, �3, !1, !2, !3 intersecting each other as in the picture. We call them
lines because they become lines in the embedding - ↩→ P6 given by the anti-
canonical linear system. The automorphism g of the surface is the extension
of the inversion automorphism I → I−1 of the open torus orbit to the whole
surface. It defines the symmetry of the hexagon which exchanges its opposite
sides.
Now, let us consider the first degenerate standard quadratic transformation
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given by

) ′st : [C0, C1, C2] ↦→ [C22 , C0C1, C0C2] . (7.12) st’

It has two fundamental points ?1 = [0, 1, 0] and ?2 = [1, 0, 0]. Blowing up
the first point, we obtain a base point ?′1 � ?1. After blowing up ?′1 and ?2,
we obtain birational morphism c : - → P2 such that ) ′st lifts to a biregular
morphism - → P2. The following figure

F7.3F7.3
7.3 gives a picture of the exceptional

curves of c and the proper transforms ! ′1, !
′
2 of the lines !1 = + (C0) and

!2 = + (C2).

−2

�1
!′1

−1

�2
−1

−1
!′2

�3

−1

Figure 7.2 A resolution of ) ′st F7.2

Here, �1 is the exceptional curve of the first blow-up of ?1, and �2 (resp.
�3) is the exceptional curve over ?′1 (resp. ?2).
The %-locus consists of the line + (C0) blown down to the point ?1 and the

line + (C2) blown down to the point ?2.
The Jacobian matrix is

� =
©«

0 0 2C2
C1 C0 0
C2 0 C0

ª®®¬ .
Its determinant is equal to −2C0C22 . The line + (C2) enters with multiplicity 2. In
fact, the exceptional divisor of the second projection a : . → P2 is equal to
2! ′2 + �1.
The base scheme of ) ′st is smooth at ?2 and locally isomorphic to + (H2, G)

at the point ?1, where H = C2/C1, G = C0/C1. The blow-up of the base scheme
is singular over ?1 with the singular point ?′2 corresponding to the tangent
direction C0 = 0. The singular point is locally isomorphic to the singularity of
the surface + (D{ + |2) ⊂ C3 (a singularity of type �1, see Example

ex:1.2.8ex:1.2.8
1.2.8). It

is obtained by blowing down the curve �1 on - .
Finally, we can consider the second degenerate standard quadratic transfor-
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mation given by the formula

) ′′st : [C0, C1, C2] ↦→ [C22 − C0C1, C
2
1 , C1C2] . (7.13) st”

Its unique base point is ?1 = [1, 0, 0]. In affine coordinates G = C1/C0, H = C2/C0,
the base ideal is (G2, GH, H2 − G) = (GH, G − H2). The blow-up of this ideal is
isomorphic to+ ((G− H2)D+GH{) inA2×P1. It has a singular point (0, 0, [0, 1])
locally isomorphic to the surface singularity G(D + H) − H2D = 0. Replacing
(G, H) with (D2 − G, H − D), we obtain that the singularity is locally isomorphic
to the singularity GH + I3 = 0 of type �2 (see Example

ex:1.2.8ex:1.2.8
1.2.8).

A smooth resolution of the transformation is obtained by blowing up infinitely
near points ?3 � ?2 � ?1 corresponding to the direction C1 = 0, followed by
the direction of the proper transform of the conic + (C22 − C0C1). The exceptional
divisor of the morphism c : - → P2 consists of three curves �1, �2, �3, where
�1 (resp. �2) is the proper transform of the exceptional curve of the first (resp.
the second) blow-up, and �3 is the exceptional curve over ?3. Blowing down
�1 + �2, we obtain the blow-up of the base scheme of the transformation.

−2

�1

�3!′

�2
−1−1

−2

Figure 7.3 A resolution of ) ′′st F7.3

Here, ! ′ denotes the proper transform of the line ! = + (C1). The Jacobian
matrix of ) ′′st is equal to

©«
−C1 −C0 2C2
0 2C1 0
0 C2 C1

ª®®¬ .
Its determinant is equal to −2C31 . So, the P-locus consists of one line+ (C1) taken
with multiplicity 3. In fact, the exceptiona divisor of a : . → P2 is equal to
3! ′1 + 2�3 + �1.

Let us look at �-locus.

def:contact Definition 7.1.15. An isolated base point of a homaloidal linear system H is
called a point of B-contact if there exists an open non-empty subset * ⊂ H
such that, for all � ∈ *, a local equation at G of � in some affine coordinates
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I1, . . . , I= is of the form:

I1 + 52 (I1, . . . , I=) + · · · + 5B−1 (I1, . . . , I=) + higher terms,

where 5: are homogeneous forms of degree : . We say that a nonsingular base
point of a general � is a point of 0-contact.

It is easy to see that a point of B-contact imposes
B−1∑
:=1

(
= − 2 + :

:

)
=

(
= − 2 + B
= − 2

)
(7.14) contact

condition in the postulation formula.
For example, the base point ?1 of ) ′st (resp. ) ′′st ) is a point of 1-contact (resp.

2-contact).

7.1.3 The multi-degree of a Cremona transformation
SS:7.1.3

Let Γ 5 ⊂ P= × P= be the graph of a Cremona transformation 5 : P= d P=. In
the usual way, the graph Γ 5 defines the linear maps of cohomology

5 ∗: : �2: (P=,Z) → �2: (P=,Z), W ↦→ (pr1)∗ ( [Γ 5 ] ∩ (pr2)∗ (W)),

where pr8 : P= × P= → P= are the projection maps. Since �2: (P=,Z) � Z,
these maps are defined by some numbers 3: , the vector (30, . . . , 3=) is called
the multidegree of 5 . In more details, we write the cohomology class [Γ 5 ] in
�∗ (P= × P=,Z) as

[Γ 5 ] =
=∑
:=0

3:ℎ
:
1 ℎ
=−:
2 ,

where ℎ1 = pr∗121 (OP= (1)) and ℎ2 = pr∗221 (OP= (1)). Then,

5 ∗: (ℎ
: ) = (pr1)∗ ( [Γ 5 ]) · ℎ:2 = (pr1)∗ (3:ℎ:1 ) = 3:ℎ

: .

The map 5 is of finite degree if and only if all 38 are positive.
The number 30 = 1 since ℎ=1 · [Γ 5 ] = 1. The number 3= is equal to the

degree of the map. If 5 is birational, it is equal to one. The number 3: is equal
to the degree of the proper transform under 5 of a general linear subspace of
codimension : . In particular, 31 = 3 is the algebraic degree of 5 .

If 5 is birational, we can invert 5 and obtain

Γ 5 −1 = Γ̃ 5 ,

where Γ̃ 5 is the image of Γ 5 under the self-map of P= × P= that switches the
factors.
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In the case when 5 is a birational map, we have 30 = 3= = 1. We shorten
the definition by saying that the multi-degree of a Cremona transformation
is equal to (31, . . . , 3=−1). In particular, we see that (3=, 3A−1, . . . , 30) is the
multi-degree of 5 −1. In particular, we see that 3: = deg( 5 (!: ), where !: is a
general linear subspace of codimension : .
The next result, due to L. Cremona, gives some restrictions on the multi-

degree of a Cremona transformation.

Proposition 7.1.16 (Cremona’s inequalities). For any = ≥ 8, 9 ≥ 0,

1 ≤ 38+ 9 ≤ 383 9 , 3=−8− 9 ≤ 3=−83=− 9 .

Proof It is enough to prove the first inequality. The second one follows from
the first one by considering the inverse transformation. Write a general linear
subspace !8+ 9 of codimension 8 + 9 as the intersection of a general linear
subspace !8 of codimension 8 and a general linear subspace ! 9 of codimension
9 . Then, 5 −1 (!8+ 9 ) is an irreducible component of the intersection 5 −1 (!8) ∩
5 −1 (! 9 ). By Bezout’s Theorem,

38+ 9 = deg 5 −1 (!8+ 9 ) ≤ deg 5 −1 (!8) deg 5 −1 (! 9 ) = 383 9 .

�

Remark 7.1.17. There are more conditions on the multi-degree which follow
from the irreducibility of Γ 5 . For example, by using the Hodge type inequality
(see

Lazarsfeld
[479, Corollary 1.6.3]), we get the inequality

32
8 ≥ 38−138+1. (7.15) log

For example, if = = 3, the only nontrivial inequality following from the Cre-
mona inequalities is 3032 = 32 ≤ 32

1 , and this is the same as the Hodge-type
inequality. However, if = = 4, we get additional inequalities. For example,
(1, 2, 3, 5, 1) satisfies the Cremona inequalities but does not satisfy the Hodge-
type inequality.
The following are the natural questions related to the classification of possible

multi-degrees of Cremona transformations.

• Let (1, 31, . . . , 3=−1, 1) be a sequence of integers satisfying the Cremona
inequalities and the Hodge-type inequalities: Does there exist an irreducible
reduced close subvariety ℓ of P= × P= with [ℓ] = ∑

3:ℎ
:
1 ℎ
=−:
2 ?

• What are the components of the Hilbert scheme of this class containing an
integral scheme?
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Note that any irreducible reduced closed subvariety ofP=×P= withmulti-degree
(1, 31, . . . , 3=−1, 1) is realized as the graph of a Cremona transformation.

The multi-degree (31, . . . , 3=−1) of a Cremona transformation can be com-
puted using the theory of Segre classes B(/, -) which we already discussed
in Subsection

SS:2.4.2SS:2.4.2
2.4.2. There, we were mostly dealing with smooth varieties /

and - over a field k. Here, we will be using Segre classes where / is the base
scheme of a Cremona transformation. In general, it is not smooth and even not
necessarily reduced.
Let |+ | be a linear system of hypersurfaces of degree 3 in P= that defines a

rational map 5 : P= → P= of degree 3= > 0. We assume that b( |+ |) is normal,
and let / = + (b) be the closed subscheme of P= defined by b( |+ |). We denote
by I/ (3) the sheaf OP= (3) ⊗ b̄.
Let (Bl/ (P=), f, a) be the resolution of indeterminacy of 5 . We know that

- coincides with the graph Γ 5 of 5 , and, by Corollary
cor:7.1.4cor:7.1.4
7.1.7,

+ = �0 (P=,I3/ ) = �
0 (P=, f∗f∗OP= (3) (−�))

and

f∗OP= (3) (−�) = f∗OP= (1),

where � is the exceptional divisor of f. Since f is a birational morphism, the
degree < of 5 is equal to the degree of a. The latter is equal to the degree of
the pre-image of a general point in the target. This gives

3= = a
∗ (f∗ (ℎ=2 ) = a

∗ (f∗ (ℎ2))= = (3f∗ (ℎ1) − [�])=,

where ℎ1 (resp. ℎ2) is the class of a hyperplane in the source (resp. target) P=.
Abusing the notation, we identify ℎ1 and ℎ2 with their pull-backs in P= × P=.
To compute 3= we need to compute all self-intersections [�]8 . This is where

we use the Segre classes of B(/, P=).
Let 8 : / ↩→ P= and 8∗ : �(/) → �(P=). We write

8∗BA (/, P=) = B(/, P=)A ℎ=−A1 ,

and call B(/, P=)A the Ath Segre number of / .
We keep the assumption that b( |+ |) is normal.

muldegree Proposition 7.1.18. Let (30, 31, . . . , 3=) be the multi-degree of a rational map
of finite degree 3=. Then,

3: = 3
: −

:∑
8=2

3:−8
(:
8

)
B(/, P=)=−8 . (7.16) multdegree
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Proof Let � = f∗ (ℎ1). Then

3: = c∗ [3� − �]: · ℎ=−:1 =

:∑
8=0
(−1)83:−8

(:
8

)
c∗ ( [�]:−8 · [�]8)) · ℎ=−:1

=

:∑
8=0
(−1)83:−8

(:
8

)
ℎ:−81 · c∗ ( [�]8) · ℎ=−:1 =

:∑
8=0
(−1)83:−8

(:
8

)
· c∗ ( [�]8) · ℎ=−81

= 3: +
:∑
8=1
(−1)83:−8

(:
8

)
· c∗ ( [�]8) · ℎ=−81 = 3: −

:∑
8=1

3:−8
(:
8

)
B(/, P=)=−8 .

Finally, we use that the homaloidal linear system has no fixed components, thus
codim(Bs( |+ |, P=) ≥ 2, and hence B(/, P=)=−8 = 0 for 8 = 1. �

postulation2 Corollary 7.1.19. The linear system |+ | is homaloidal if and only if

1. 3= −∑=
8=2 3

=−8 (=
8

)
B(/, P=)=−8 = 1.

2. ℎ0 (O/ (3)) =
(=+3
3

)
− = − 1.

The second condition follows from Corollary
postulationpostulation
7.1.9.

cor:zerodimensional Corollary 7.1.20. Assume that the base schemes of Cremona transformations
5 and 5 −1 are 0-dimensional. Then = = 2.

Proof Since B(/, P=)8 = 0, 8 > 0, we have 3: = 3: , : ≠ 1, = and the multi-
degree of 5 is (3, . . . , 3=−1). The multi-degree of 5 −1 is (3=−1, . . . , 3). Clearly,
this is possible only if = = 2. �

steinequartics2 Example 7.1.21. Let ?1, . . . , ?4 be four general points in P3 and Π is a plane
containing ?4. Consider the linear system |+ | ⊂ |OP3 (2) | of quadrics that
contain the four points and tangent toΠ at ?4. It is easy to see that the dimension
of |+ | is equal to 3. Let 5 : P3 d P3 be the rational map defined by |+ | and
a basis (D0, D1, D2, D3) = C0 (C1 + C2 + C3), C1C2, C1C3, C2C3) in + . We compute its
Jacobian matrix and find that the %-locus of 5 is equal to the union of four
planes+ (C1), + (C2), + (C3), + (C1 + C2 + C3). The map 5 blows down the first three
planes to the cross of coordinate lines + (D1D2, D1D3, D2D3) in the target space,
and blows down the last plane to the intersection of the lines. Since the multi-
degree of 5 is equal to (2, 4), the multidegree of 5 −1 is equal to (4, 2). The
inverse transformation 5 −1 is given by Steiner quartics from Subsection

SS:2.1.1SS:2.1.1
2.1.1.

They are the images of planes under the map 5 . The �-locus of 5 −1 consists
of the cross of the coordinate lines. The base scheme of 5 −1 is equal to the
+ (C1C2, C1C3, C2C3, C1C2C3). It is the integral closure of the ideal (C1C2, C1C3, C2C3)
defining the �-locus.
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The Segre numbers are computed in terms of intersection theory on the
blow-up of the base scheme. However, it is often singular, and the computation
is very difficult. We can choose a log resolution f : - → P= of Bs( |+ |) and
use Proposition

pullbackintersectionpullbackintersection
2.4.5 to do the computations on a smooth variety. Recall that

|+ | = |f∗ (OP= (3) ⊗ O- (−
∑

<8�8) |, (7.17) loghomaloid

where all �8 are smooth divisors and they intersect transversally.

ex:infinitelynear1 Example 7.1.22. Let = = 2 and (C0, C1, C2) be projective coordinates. Let / =
+ (C21 , C2). Then - = Bl/ (P2) is the hypersurface in P2 × P1 given by equations
C21D0 − C2D1 = 0. Computing the partials, we find that the point ( [1, 0, 0], [1, 0])
is an ordinary double point of the surface - . The exceptional divisor � is equal
to+ (C21 , C0) = 2�1, where �1 = + (C1, C0). is a reduced divisor isomorphic to P1.
We know that

f(/, P2)0 = −(f� )∗ (2�2
1) = 4 (D2 ,{) ,

where we use the affine coordinates D = C1/C0, { = C2/C0 and denote by 4 (D2 ,{)
the multiplicity of the primary ideal � = (D2, {) in C[D, {]. Since (D2, {) is
generated by a regular sequence, 4 (D2 ,{) = ; (C[D, {]/�) = 2. Thus, �2 = −2.
The proper transform of � in - ′ is a (−1)-curve � ′1, and the exceptional divisor
of - ′ → - → P2 is the Cartier divisor 2� ′1 + �2. We immediately check that
(2�1 + �2) = −2. Thus, �2 = −2 agrees with the computation of the Segre
class. Note that � = 2�1 but � ′1 is not a Cartier divisor. So, we cannot say
that 42 = 4�2

1 . It is true if �
2
1 is computed by using the intersection theory of

&-Cartier divisors according to which �2
1 = −1/2.

Note that / is equal to the base scheme of the homaloidal linear system
of conics defining the standard Cremona transformation )st considered in the
previous subsection. The line + (C2) is a part of its �-locus.
In a similar fashion, we take / = + (C:1 , C2) to obtain that � = =�1 and

�2 = −=. The blow-up - = Bl/ (P2) has a singularity of type �=−1 (see
Example

ex:1.2.8ex:1.2.8
1.2.8). The pre-image of � in a minimal resolution - ′ → - is a

divisor � ′ = =� ′1+ (=−1)�2+ · · · +�=, where � ′1 is the proper transform of �1.
It is a (−1)-curve, all other curves �8 are (−2)-curves. We have �2 = � ′2 = −=.

7.2 Planar Cremona Transformations
S:7.2

In this section, wewill discuss Cremona transformations of the projective plane.
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7.2.1 Exceptional configurations
SS:7.2.1

Let
` : . = .#

`#−→ .#−1
`#−1−→ . . .

`2−→ .1
`1−→ .0 = - (7.18) decom

be a log resolution (
logreslogres
7.7) of a rational map 5 : - → - ′ of algebraic surfaces.

Every birationalmorphism. → - of smooth algebraic surfaces can be factored
in this way. Here, each map `: : .: → .:−1 is the blow-up of a closed point
G: ∈ .:−1 with the exceptional (−1)-curve �: . The effective divisor

E: = `−1
# ,0 (�: )

is called the exceptional configuration.
Let |+ | ⊂ |L| be a linear system without fixed components that defines a

rational map 5 : - → - ′. We know that its pre-image in the log resolution is
equal to the linear system

|`∗ (L) −
∑
8=1

<8E8 |,

Here, <8 = multG8 `−1
:,0 (�), where � is a general member of |+ | and `−1

:−1,1 (�)
its proper transform on -: . We have

`∗O. (−
=∑
8=1

<8E8) = b( |+ |).

The base ideal b( |+ |) is an integrally closed ideal and there is a birational
morphism . → BlBs( |+ |) (-) of normal surfaces.
Consider the categoryB- of birational morphisms c : - ′→ - of nonsingu-

lar projective surfaces. Recall that a morphism from (- ′ c
′
→ -) to (- ′′ c

′′
→ -)

in this category is a regular map q : - ′→ - ′′ such that c′′ ◦ q = c′.

bubblespace Definition 7.2.1. The bubble space -bb of a nonsingular surface - is the factor
set

-bb =
( ⋃
(- ′ c

′
→- ) ∈B-

- ′
)
/',

where ' is the following equivalence relation: G ′ ∈ - ′ is equivalent to G ′′ ∈ - ′′
if the rational map c′′−1 ◦ c′ : - ′ d - ′′ maps isomorphically an open
neighborhood of G ′ to an open neighborhood of G ′′.

It is clear that, for any c : - ′ → - from B- , we have an injective map
8- ′ : - ′→ -bb. Let us identify points of - ′ with their images. If q : - ′′→ - ′

is a morphism in B- which is isomorphic in B- ′ to the blow-up of a point
G ′ ∈ - ′, any point G ′′ ∈ q−1 (G ′) is called a point infinitely near G ′ of the first
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order. This is denoted by G ′′ �1 G
′. By induction, one defines an infinitely

near point of order : , denoted by G ′′ �: G ′. This puts a partial order on -bb,
where G > H if G is infinitely near to H. When we do not specify the order of an
infinitely near point we write G ′ � G.

A log resolution of a rational map 5 : - → - ′ is an object of the category
B- . The images of the base points G8 ∈ -8−1 of the blowing up `8 : -8 → -8−1
are points in the bubble space. The order on the set of points G8 defined for a
log resolution of any rational map in Subsection

SS:7.1.1SS:7.1.1
7.1.1 agrees with the previous

definition.
We say that a point G ∈ -bb is of height : , if G �: G0 for some G0 ∈ - . This

defines the height function on the bubble space

ht : -bb → N.

Clearly, - = ht−1 (0). Points of height zero are called proper points of the
bubble space. They will be identified with points in - . They are minimal points
with respect to the partial order on -bb.

Definition 7.2.2. A bubble cycle is an element [ =
∑
<(G)G of Z-bb satisfying

the following properties:

(i) <(G) ≥ 0 for any G ∈ -bb;
(ii)

∑
G′�G <G′ ≤ <G .

We denote the subgroup of bubble cycles byZ+ (-bb).

Recall that elements of Z-bb are integer valued functions on -bb with finite
support. They added up as functions with values in Z. We write elements of
Z-

bb as finite linear combinations
∑
<(G)G, where G ∈ -bb and <(G) ∈ Z

(similar to divisors on curves). Here, <(G) is the value of the corresponding
function at G.
Clearly, any bubble cycle [ can be written in a unique way as a sum of bubble

cycles /: such that the support of [: is contained in ht−1 (:).
Let [ =

∑
<GG be a bubble cycle. We order the points from the support of

[ such that G8 � G 9 implies 9 < 8. We refer to such an order as an admissible
order. We write [ =

∑#
8=1 <8G8 . Then, we represent G1 by a point on - and

define c1 : -1 → - to be the blow-up of - with center at G1. Then, G2 can be
represented by a point on -1 as either infinitely near of order one to G1 or as
a point equivalent to a point on - . We blow up G2. Continuing in this way, we
get a sequence of birational morphisms as in (

decomdecom
7.18) `[ : .[ → . . Clearly, the

bubble cycle [ is equal to the bubble cycle
∑#
8=1 <8G8 .

For any invertible sheaf L and a bubble cycle [ ∈ Z+ (-bb) we define the
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linear system

|L − [ | := |`∗L ⊗ O.[ (−
#∑
8=1
E8 |,

where E8 are exceptional configurations of teh rational map ` : .[ → - . We
have

`∗ (`∗L ⊗ O.[ (−
#∑
8=1
E8)) = L ⊗ b

where a = `∗ (O[ (−
∑#
8=1 E8) is the complete base ideal of the linear system

|L ⊗ a|.
The image of the partially ordered set of base points G1, . . . , G# of a log

resolution of a rational map 5 : - → - ′ defines a bubble cycle [ ∈ Z-bb . It
is called the fundamental bubble cycle of the rational map. The morphism ` :
.[ → - ′ from (

decomdecom
7.18) is given by the linear system |c∗L−∑#

8=1 <8E8 |, together
with the birational morphism ` : .[ → - is resolution of indeterminacy of 5 .
We can describe a bubble cycle by a weighted oriented graph, called the

Enriques diagram, by assigning to each point from its support a vertex, and
joining two vertices by an oriented edge if one of the points is infinitely near
another point of the first order. The arrow points to the vertex of lower height.
We weight each vertex by the corresponding multiplicity.

The Enriques diagram of the fundamental bubble cycle of a rational map
is equal to the simplicial complex of the log resolution (with weights deleted)
which we defined in a more general situation.
Example 7.2.3. Suppose [ =

∑
<8G8 , where all points G8 are proper. Then, the

integrally closed ideal corresponding to [ is equal to the product of the ideal
sheaves m<8G8 .

Let G8 be a proper point of [ and [8 ⊂ [ the maximal part of [ that is
supported in the of infinitely near points to G8 from [. Then, a8 = ` (O.[ (−[8)
is the mG8 ,- -primary component of a = `[ (O.[ − [). If all <8 = 1 in [8 , then
the ideal a8 = (D, {: ), where (D, {) are local parameters at G8 ∈ - .

From now on, we use the intersection theory on a smooth projective surface
and use the notation � ·� ′ for the intersection of the divisor classes [�] · [� ′].

L711 Lemma 7.2.4. Let c : . → - be a birational morphism of nonsingular
surfaces and let E8 , 8 = 1, . . . , #, be its exceptional configurations. Then

E8 · E 9 = −X8 9 ,

E8 ·  . = −1.
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Proof This follows from the standard properties of the intersection theory on
surfaces. For any morphism of nonsingular projective surfaces q : - ′ → -

and two divisors �, � ′ on - , we have

q∗ (�) · q∗ (� ′) = deg(q)� · � ′. (7.19) prop2

Also, if � is a curve such that q(�) is a point, we have

� · q∗ (�) = 0. (7.20) prop22

Applying (
prop2prop2
7.19), we have

E2
8 = �

2
8 = −1.

Assume 8 < 9 . Applying (
prop22prop22
7.20) by taking � = � 9 and � = �8 , we obtain

0 = � 9 · `∗9 ,8 (�8) = c∗# 9 (� 9 ) · c∗#8 (�8) = E 9 · E8 .

This proves the first assertion.
To prove the second assertion, we use Proposition

canblowupcanblowup
2.4.4. It gives

 . = `
∗ ( - ) +

∑
8=1
E8 ,

and hence,

 . · E 9 =
( #∑
8=1
E8

)
·� 9 = E2

9 = −1.

�

Let b =
∑#
8=1 <8G8 be the fundamental bubble cycle of a Cremona transfor-

mation 5 : P2 d P2 and

- = .[

f

||

a

""
P2 // P2

be its log resolution defined by [. The homaloidal linear system |+ | defining
5 is equal to |3ℎ − [ |. We identify [ with a divisor �[ =

∑#
8=1 <8E8 on -

and identify the linear system |3ℎ − [ | with the linear system |3� − �[ | on - ,
where � = `∗[ℎ.
The vector (3;<1, . . . , <# ) is called the characteristic vector of the homa-

loidal net, or, of a Cremona transformation defined by this net.
Obviously, |+ | is a homaloidal linear system if and only if

(3� − �[)2 = 32 −
∑
8=1

<2
8 = 1. (7.21) virt1
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Since

 2
. = (−3� + E1 + · · · + E# )2 = 9 − =, (7.22)

the birational map a : - → P2 admits a factorization defining a log resolution
of the inverse map 5 −1 with the same number of blow-ups.
Since a general member � of |3�−∑#

8=1 <8E8 | admits a birational morphism
onto a line in the target P2, it must be a smooth rational curve. By the adjunction
formula,

 - · �[ = −33 +
#∑
8=1

<8 = −�2
n = 2 = −3. (7.23) virt2

Subtracting (
virt2virt2
7.23) from (

virt1virt1
7.21), and applying Riemann-Roch and the Postu-

lation formula from Corollary
postulationpostulation
7.1.9, we find

ℎ0 (OP2/ ¯b( |+ |)) = 1
2

#∑
8=1

<8 (<8 + 1). (7.24) hoskin

The equalities (
virt1virt1
7.21), (

virt2virt2
7.23), (

hoskinhoskin
7.24) and Noether’s inequality (

noetherformula1noetherformula1
7.1.13)

max{<8} >
3

3
(7.25) noetherineq1

allows one to list the possible characteristic vectors of Cremona transformations
of low degree. We refer to

Hudson
[414, Table 1] for the list of characteristic numbers

(3, <1, . . . , <# ) with 3 ≤ 16.

poncelet Example 7.2.5. A Cremona transformation with 3 = 2 is called a quadratic
Cremona transformation. We will study quadratic transformation in any P=
later in the chapter. A planar quadratic Cremona transformation is given by
conics passing simply through three points including infinitely near points. We
discussed such transformations in Subsection

SS:7.1.2SS:7.1.2
7.1.2, where we chose a basis of

the linear system that defines the Cremona involution )st or its degenerations
corresponding to G2 � G1 or G3 � G2 � G1. It follows that any quadratic Cremona
transformation is obtained by a composition of one of three standard Cremona
involutions with a projective automorphism.
Following Poncelet, one gives the following geometric construction of a

planar quadratic transformation. Let�1 and�2 be two conics intersecting at four
distinct points. For each general point G in the plane let 5 (G) be the intersection
of the polar lines %G (�1) and %G (�2). Let us see that this defines an involutorial
quadratic transformation with fundamental points equal to the singular points
of three reducible conics in the pencil generated by �1 and �2. For any two
different members �,� ′ of the pencil, %G (�1) ∩ %G (�2) = %G (�) ∩ %G (� ′).
Taking � to be a reducible conic and G to be its singular point, we obtain that
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5 is not defined at G. Since the pencil contains three reducible members, we
obtain that 5 has three base points, hence 5 is given by a homaloidal net and
hence is a birational map. Obviously, G ∈ % 5 (G) (�1) ∩ % 5 (G) (�2), hence 5 is
an involution.
Of course, not every vector (3;<1, . . . , <# ) satisfying equalities (

virt1virt1
7.21)

and (
virt2virt2
7.23) is realized as the characteristic vector of a homaloidal net. There

are other necessary conditions for a vector to be realized as the characteristic
(3;<1, . . . , <# ) for a homaloidal net. For example, if <1, <2 correspond to
points of largest multiplicity, a line through the points should intersect a general
member of the net non-negatively. This gives the inequality

3 ≥ <1 + <2.

Next, we take a conic through five points with maximal multiplicities. We get

23 ≥ <1 + · · · + <5.

Then, we take cubics through nine points, quartics through 14 points, and so on.
The first case that can be ruled out in this way is (5; 3, 3, 1, 1, 1, 1, 1). It satisfies
the equalities (

virt1virt1
7.21) and (

virt2virt2
7.23) but does not satisfy the condition < ≥ <1 +<2.

7.2.2 de Jonquières transformations and hyperelliptic curves
SS:7.2.2

Let H = |3ℎ − ∑#
8=1 <8G8 | be a homaloidal linear system, where we may

assume that <1 ≥ <2 · · · ≥ <# . Obviously, G1 must be a proper base point.
SinceH has no fixed components 33 < <1 ≤ 3 −1. A Cremona transformation
�3 defined by a homaloidal linear system with <1 = 3 − 1 is called a de
Jonquières transformation. We will give later other characterizations of such
transformations and its extension to any space P=.

Lemma 7.2.6. The characteristic vector of a de Jonquièyes transformation is
(3, 3 − 1, 123−2) := (3, 3 − 1, 1, . . . , 1︸   ︷︷   ︸

23−2

).

Proof Using (
virt1virt1
7.21) and (

virt2virt2
7.23), we get 32 − (3 − 1)2 − ∑#

8=1 <
2
8
= 1 = 23 −

1−∑#
8=2 <

2
8
= 1 and 33 − (3 − 1) −∑#

8=2 <8 = 23 + 1
∑#
8=2 <8 = 3. Subtracting

the first equality from the second one, we obtain 2 +∑#
8=2 <8 (<8 − 1) = 2. This

could happen only if <2 = · · · = <# = 1. Substituting these numbers in the
first equality we get # = 23 − 2. �

It will be convenient to re-denote the base points:

(G1, . . . , G23−1) = (o, G1, . . . , G23−2).
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A general member of the homaloidal linear system with characteristic vector
(3; 3 − 1, 1 . . . , 1) is a monoidal curve, i.e., a reduced curve of some degree
= with a singular point of multiplicity = − 1. Choosing projective coordinates
such that the singular point o is [1, 0, 0] we write the equation of such a curve
� in the form

C013−1 (C1, C2) + 13 (C1, C2) = 0, (7.26)

where 1B (C1, C2) is a binary form of degree indicated by the subscript. The
number of conditions for passing simply through 23 − 2 points is equal to
23 − 2. Since the coefficients depend on 3 + 3 + 1 = 23 + 1 parameters, we see
that a de Jonquièyes transformation can be given by curves from above with
general 13−1 and 13 .
The lines + (C1) and + (C2) contain the point o. The restriction of the linear

system to each of this line defines a linear series of degree one. Since the
dimension of H is equal to two, there are members of H that contain these
lines. This show that we can find a basis ofH in the form

C ′0 = C013−1 (C1, C2) + 13 (C1, C2), (7.27)
C ′1 = C1 (C003−2 (C1, C2) + 03−1 (C1, C2)),
C ′2 = C2 (C003−2 (C1, C2) + 03−1 (C1, C2)).

Since H has no fixed components, the polynomials �3 = C013−1 + 13 and
&3−1 = C003−2 + 03−1 are coprime and 13−103−1 ≠ 1303−2.

In affine coordinates G = C1/C2, H = C0/C2, the transformation is given by

(G ′, H′) =
(
G,

H1′
3−1 (G) + 1

′
3
(G)

H0′
3−2 (G) + 0

′
3−1 (G)

)
. (7.28) afdej

Let us consider the closure of fixed points of �3 in dom(�3). It is given by the
affine equation

H1′3−1 (G) + 1
′
3 (G) = H(H0

′
3−2 (G) + 0

′
3−1 (G)).

Going back to our projective coordinates, the equation becomes

C2003−2 (C1, C2) + C0 (03−1 (C1, C2) − 13−1 (C1, C2)) − 13 (C1, C2) = 0. (7.29) hypp

This is a plane curve Γ of degree 3 with the point o = [1, 0, 0] of multiplicity
3−2. In Subsection

SS:5.2.1SS:5.2.1
5.2.1 we saw that any hyperelliptic curve of genus 6 = 3−2

admits such a birational model. The pencil of lines through o defines the unique
linear series 61

2 on the curve. So, if Γ has no other singularities, it must be a
rational curve if 3 = 2, an elliptic curve if 3 = 3, and a hyperelliptic curve of
genus 3 − 2 if 3 ≥ 4.

The pencil generated by + (C1�3−1) and + (C2�3−1) is a part of our linear
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system H . It shows that in an appropriate basis of the target P2, the Cremona
transformation �3 blows down Γ to the point o. Hence Γ is a part of the %-
locus. Other irreducible components of the %-locus are the lines 〈o, G8〉. The
total degree is equal to 33 − 3 equal to the degree of the Jacobian of three
polynomials of degree 3. So, there is nothing else in the %-locus.
Let us find simple base points ofH . Let G = [U, V, W] be a base point different

from o. Then, either V or W is not zero. Hence

U13−1 (V, W) + 13 (V, W) = U03−2 (V, W) + 03−1 (V, W) = 0.

If U ≠ 0 this happens if and only if

(13−103−1 − 1303−2) (V, W) = 0.

If U = 0, then the condition is 13 (V, W) = 03−1 (V, W) = 0, hence the point
still satisfies the previous equation. Under some generality condition, this gives
23 − 2 base points G1, . . . , G23−2. In general, some points come with multi-
plicities :8 which account for infinitely near points of level :8 . We see that
{o, G1, . . . , G23−2} = �3 ∩ Γ, where o is the intersection point of multiplicity
(3 − 1) (3 − 2).
Note that a general member � of the homaloidal linear system intersects the

line 〈o, G8〉 with multiplicity 3 − 1 at o and multiplicity one at G8 . This implies
that each line belongs to the %-locus of �3 . Also, � intersects the curve Γ at
o with multiplicity (3 − 1)2 and at the points G8 with multiplicity one. Since
� · ℓ = 3 (3 − 1) = (3 − 1)2 + 23 − 2, this implies that ℓ belongs to the P-locus
two. The degree of the Jacobian is equal to 3(3 −1) = 3 −1+23 −2, thus there
is nothing more in the P-locus.
Let us see when �3 is an involution. The affine equation shows that this

happens if and only if the trace of the matrix
(
1′
3−1 1′

3

0′
3−2 0′

3−1

)
is equal to 0. Thus,

the condition is
03−1 (C1, C2) + 13−1 (C1, C2) = 0. (7.30) dejinv

In this case the hyperelliptic curve has the equation

C2003−2 (C1, C2) + 2C003−1 (C1, C2) − 13 (C1, C2) = 0. (7.31) hypp2

The curve Γ coincides with the first polar %o (�3) of �3 . The fundamental
points G8 are the ramification points of the projection of �< from the point o.
It is clear that the curve �3 is nonsingular if and only if we have 23 − 2 distinct
simple fundamental points.
Example 7.2.7. Assume 3 = 2. Then a de Jonquières transformation is a
quadratic transformation with base points o, G1, G2. The involution �2 is one of
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the three standard quadratic involutions. The degenerate cases are G8 � o, G2 �
G1 � o, and G2 � G1. The curve �2 is a fixed conic passing through G1, G2 but
not through o. The curve Γ is the line of the conic that contains G1, G2. It is the
polar line of the conic if �2 is an involution.

If 3 = 3, then �3 is a cubic with a simple point at o, and Γ is a conic that
passes through G1, G2, G3, G4 and tangent to the cubic at o. If �3 is an involution,
the conic is the first polar of the cubic with pole at o.

Remark 7.2.8. Recall that a pair {0, 1} of distinct points in P1 defines an
involutions f0,1 uniquely determined by the property that f0,1 (0) = 0 and
f0,1 (1) = 1. It sends a point G to the unique point G ′ such that G + G ′, 20, 21
belong to the same linear series 61

2 of degree 2 of P1. In other words, the
pairs {0, 1} and {G, G ′} are harmonically conjugate (see Exercise

ex:2.5ex:2.5
2.5). Another

involution f0,1;? associated with the pair {0, 1} requires fixing one point ? on
P1. It is uniquely determined by the property that f0,1;? (0) = 1, f0,1 (1) =
0, f0,1 (?) = ?.
Any involution of P1 coincides with either f0,1 or f0,1;? for some 0, 1, ?.

It is easy to check that the involutions f0,1 and f0,1;? commute.
Using this simple observation, we see that �3 defines two Cremona �1 and �2

involutions of the plane. The involution �1 sends a general point G to the point
f0,1 (G), where {0, 1} are the residual intersection points of the line 〈o, G〉 with
�3 . We leave it to the reader to check that it coincides with the de Jonquières
involution �3 .

The second involution is the composition of �1 with the lift to P2 of the
hyperelliptic involution of �3 .

Obviously, a de Jonquières transformation leaves invariant the pencil of lines
through the point o. This property characterizes such transformations.

characterization Proposition 7.2.9. Let 5 be a planar Cremona transformation. Suppose there
exists a point o ∈ P2 such that the image of a general member of the pencil
of lines through o belongs to the same pencil. Then 5 is a de Jonquières
transformation.

Proof The homaloidal linear system of curves of degree 3 defining 5 restricts
to a general line of the pencil as the linear system of degree 3 − : , where : is
the number of the fundamental points of 5 on the line with total multiplicities
: . Since the image of the line is a line in the same pencil, we must get : = 3−1.
Since a general line in the pencil does not apps through the fundamental points
except o, we obtain that o is a fundamental point of multiplicity 3 − 1. This
shows that 5 is a de Jonquiéres transformation. �
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7.2.3 Nets of isologues and fixed points
SS:7.2.3

Let 5 : P= d P= be a Cremona transformation of degree 3. Let ? ∈ P=.
Consider the locus of points � 5 (?) such that G, 5 (G), ? are collinear. This
locus is called the isologue of ?, the point ? is called its center. In terms
of equations, if 5 is given by polynomials ( 50 (C), . . . , 5= (C)) of degree 3 and
? = [00, 01, 02], then � 5 (?) is given by equation

rank
©«
00 01 . . . 0=

C0 C1 . . . C=

50 (C) 51 (C) . . . 5= (C)

ª®®¬ ≤ 2. (7.32) isol1

It follows immediately that, for general ?, � 5 (?) is a curve of degree 3 + 1.
One more observation is that

�) (?) = � 5 −1 (?). (7.33)

Any G ∈ dom( 5 ) determines a line 〈G, 5 (G)〉, and hence, we get a rational
map

] 5 : P= d �1 (P=) (7.34) isologuemap

to the Grassmannian of lines in P=. The map is defined on the complement of
the �-locus of 5 and the set of fixed points of 5 in dom( 5 ). It is given by the
minors of the submarix (

isol1isol1
7.32) of the last two rows.

The image of this map is closed subvariety G( 5 ) of �1 (P=) of expected
dimension =. The dimension can drop to =− 1 if, for a general point G ∈ P3, the
image of a general point H ∈ 〈G, 5 (G)〉 is contained in contained in 〈G, 5 (G)〉.
We will call G( 5 ) the complex of lines associated with 5 . If = = 3, G( 5 ) is a
hypersurface in �1 (P3), in classical terminology, it is a line complex. For any
=, a line complex is a hypersurface in �1 (P=) (see Section

CAG-2:S:10.2CAG-2:S:10.2
10.2). So, for = > 3,

the terminology is somewhat confusing, but we urge the reader to live with this.
It is even more confusing when the dimensions G( 5 ) is equal to = − 1. In this
case, 5 is called an Arguesian transformation. It is clear that 5 is Arguesian
if and only if the linear system of ideologues is of dimension = − 1 instead of
expected dimension =.

Note that G( 5 ) = G( 5 −1), the maps ]) is equal to the composition ]) ◦ ) .

From now on, we assume that = = 2 and, for any point ?,� 5 (?) ≠ P2. Then,
� 5 (?) is a curve of degree 3 + 1. It passes through the fundamental points of
5 (because the last row in the determinant is identically zero for such point)
and it passes through the fixed points of 5 , i.e., points G ∈ dom( 5 ) such that
5 (G) = G (because the last two rows are proportional). Also, � 5 (?) contains
its center ? (because the first two rows are proportional).
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The next lemma is due to K. Doehleman
Karl
[231].

karl Lemma 7.2.10. The linear system of isologue curves � 5 (?) is a net, unless 5
is a de Jonquière transformation. In the latter case, the linear system contains
the fixed part of degree 3 and its mobile part is a pencil of lines.

Proof Suppose that the linear system of ideologues is a pencil. Let G be a
general point in P2. Then G belongs to the pencil of ideologues � 5 (?), where
? ∈ 〈G, 5 (G)〉. Since the whole linear system is a pencil, we see there is a point
? ∈ P2 such that the points G, 5 (G), ? are collinear for all G in an open Zariski
subset of P2. Equivalently, 5 leaves invariant a pencil of lines. By Proposition
characterizationcharacterization
7.2.9, 5 must be a de Jonquières transformation. Let 3 be the algebraic degree
of 5 . We know that a de Jonquière transformation has a curve of degree 3 of
fixed points. Thus, the moving part of the linear system of ideologues is a pencil
of lines. �

Obviously, a one-dimensional irreducible component of the set of fixed points
is a fixed component of the net of isologues (� 5 (?))?∈P2 .

projgen Remark 7.2.11. It follows from the definition that the isologue curve � 5 (?)
is projectively generated by the pencil of lines ℓ through ? and the pencil
of curves 5 −1 (ℓ). Recall that given two pencils P and P ′ of plane curves of
degree 31 and 32 and a projective isomorphism U : P → P ′, the union of
points & ∩ U(&), & ∈ P, is a plane curve �. Assuming that the pencils have
no common base points, � is a plane curve of degree 31 + 32. To see this, we
take a general line ℓ and restrict P and P ′ to it. We obtain two linear series
61
3
and 61

3′ on ℓ. The intersection � ∩ ℓ consists of points common to divisors
from 61

3
and 61

3′ . The number of such points is equal to the intersection of the
diagonal of P1 × P1 with a curve of bidegree (3, 3 ′), hence it is equal to 3 + 3 ′.
It follows from the definition that � contains the base points of both pencils.

so Proposition 7.2.12. Assume that 5 has no infinitely near fundamental points.
Then, the multiplicity of a general isologue curve at a fundamental point G of
multiplicity < is equal to <.

Proof Let D, { be local affine parameters at G. For each homogeneous polyno-
mial q(C0, C1, C2) vanishing at G with multiplicity ≥ <, let [q]: := [q]: (D, {) be
the degree : homogeneous term in the Taylor expansion at G. If + ( 5 ) is a gen-
eral member of the homaloidal net, then [ 5 ]: = 0 for : < < and [ 5<] ≠ 0. Let
�< be the linear space of binary forms of degree < in variables D, {. Consider
the linear map U : C3 → �< defined by

(0, 1, 2) ↦→ [(1C2 − 2C1) 50 (C) + (2C0 − 0C2) 51 (C) + (0C1 − 1C0) 52 (C)]<.
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The map is the composition of the linear map C3 → C3 defined by (0, 1, 2) ↦→
([1C2 − 2C1]0, [2C0 − 0C2]0, [0C1 − 1C0]0) and the linear map C3 → �< defined
by (0, 1, 2) ↦→ [0 50 + 1 51 + 2 52]<. The rank of the first map is equal to 2,
the kernel is generated by [C0]0, [C1]0, [C2]0). Since no infinitely near point is a
base point of the homaloidal net, the rank of the second map is greater than or
equal to 2. This implies that the map U is not the zero map. Hence, there exists
an isologue curve of multiplicity equal to <. �

cool Remark 7.2.13. Coolidge claims in
CoolidgeCurves
[169, p. 460] that the assertion is true

even in the case of infinitely near points. By a direct computation, one checks
that the multiplicity of isologue curves of the degenerate standard Cremona
transformation (

st”st”
7.13) at the unique base point is equal to 2.

numfixed Corollary 7.2.14. Assume that the homaloidal net has no infinitely near base
points and the net of isologues has no fixed component. Then, the number of
fixed points of 5 is equal to 3 + 2.

Proof Take two general points ?, @ in the plane. In particular, we may assume
that the line ℓ = 〈?, @〉 does not pass through the base points of the homaloidal
net and the fixed points. Also, ? ∉ � 5 (@) and @ ∉ � 5 (?). Consider a point G
in the intersection � 5 (?) ∩ �q (@). Assume that it is neither a base point nor
a fixed point. Then, ?, @ ∈ 〈G, 5 (G)〉, hence G, 5 (G), ?, @ lie on ℓ. Conversely,
if G ∈ ℓ ∩ � 5 (?) and G ≠ ?, then the points G, 5 (G), ? are collinear and, since
@ ∈ ℓ, we get that G, 5 (G), @ are collinear. This implies that G ∈ � 5 (@) and
shows that the set of base points of the pencil of isologue curves � 5 (?), ? ∈ ℓ,
consists of base points of the homaloidal net, fixed points, and 3 points on ℓ
(counted with multiplicities). The base points of the homaloidal net contribute∑#
8=1 <

2
8
to the intersection. Applying Proposition

soso
7.2.12, we obtain that fixed

points contribute 3 + 2 = (3 + 1)2 − 3 −∑#
8=1 <

2
8
to the intersection. �

Note that the transformation from Remark
coolcool
7.2.13 has no fixed points.

laguerre Remark 7.2.15. One can confirm the previous corollary by using the inter-
section theory on the graph Γ 5 of 5 . Since there are no infinitely near base
points, it is smooth and isomorphic to the blow-up of the base ideal. Its class
in �(P2 × P2) is equal to ℎ2

1 + 3ℎ1ℎ2 + ℎ2
2. Intersecting it with the class of the

diagonal [Δ] = ℎ2
1 + ℎ1ℎ2 + ℎ2

2, we obtain the number 3 + 2. In fact, one can
use the argument for another proof of the corollary if we assume (that follows
from the corollary) that no point in the intersection ℓ∩Δ lies on the exceptional
curves of the projections.

The net of isologue curves without fixed component is a special case of a
Laguerre net. It is defined by one of the following three equivalent properties.
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thm:laguerre Theorem 7.2.16. Let |+ | be an irreducible net of plane curves of degree 3. The
following properties are equivalent.

(i) There exists a basis 50, 51, 52 of + such that

C0 50 (C) + C1 51 (C) + C2 52 (C) = 0. (7.35) lag

(ii) For any basis 50, 51, 52 of + , there exist three linearly independent
linear forms ;1, ;2, ;3 such that

;0 50 + ;1 51 + ;2 52 = 0.

(iii) There exists a basis 50, 51, 52 of + such that

50 = C162 − C261, 51 = C260 − C062, 52 = C061 − C160,

where 60, 61, 62 are homogeneous forms of degree 3 − 1.
(iv) The base locus of a general pencil in |+ | is the union of the base locus
of |+ | and a set of 3 − 1 collinear points.

Proof The equivalence of the fist two properties is obvious. Obviously, (iii)
implies (i). Suppose (i) holds. The Koszul complex in the ring of polynomials
( = C[C0, C1, C2] is an exact sequence

0→ (
U→ (3 V

→ (3 W
→ ( → (/(C0, C1, C2) → 0,

where U is defined by 0 ↦→ 0(C0, C1, C2). The map V is defined by the matrix

©«
0 −C2 C1
C2 0 −C0
−C1 C0 0

ª®®¬ ,
and the map W is defined by (0, 1, 2) ↦→ 0C0 + 1C1 + 2C2 (see

Eisenbud
[281], 17.2).

Property (i) says that ( 50, 51, 52) belongs to the kernel of W. Thus, it belongs to
the image of V, and hence (iii) holds.
(i)⇒ (iv) Take two general curves �_ = + (_0 50 + _1 51 + _2 52) and �` =

+ (`0 50 + `1 51 + `2 52) from the net. They intersect with multiplicity ≥ 2 at a
point G if and only if G belongs to the Jacobian curve of the net. This shows
that the set of pencils which intersect non-transversally outside the base locus
is a proper closed subset of P(+). So, we may assume that � (`) and � (a)
intersect transversally outside the base locus of the net. Let ? = [0] belong to
�_∩�` but does not belong to the base locus of |+ |. Then, ( 50 (0), 51 (0), 52 (0))
is a nontrivial solution of the system of linear equations with the matrix of



7.2 Planar Cremona Transformations 391

coefficients equal to ©«
_0 _1 _2
`0 `1 `2
00 01 02

ª®®¬ .
This implies that the line spanned by the points _ = [_0, _1, _2] and ` =

[`0, `1, `2] contains the point ?. Thus, all base points of the pencil different
from the base points of the net are collinear. Conversely, suppose a non-base
point [0] ≠ _, ` lies on a line 〈_, `〉 and belongs to the curve �_. Then,
( 50 (0), 51 (0), 52 (0)) is a nontrivial solution of

_0C0 + _1C1 + _2C2 = 0, 00C0 + 01C1 + 02C2 = 0,

and hence satisfies the third equation `0C0 + `1C1 + `2C2 = 0. This shows that
0 ∈ �_ ∩ �`. Thus, we see that the intersection �_ ∩ �` consists of 3 − 1
non-base points.
(iv)⇒ (ii) We follow the proof from

CoolidgeCurves
[169, p. 423]. Let + ( 50), + ( 51) be two

general members intersecting at 3 − 1 points on a line+ (;) not passing through
the base points. Let ?8 be the residual point on + ( 58). Choose a general line
+ (;0) passing through ?2 and a general line + (;1) passing through ?1. Then,
+ (;0 50) and+ (;1 51) contain the same set of 3 +1 points on the line+ (;), hence
we can write

;0 50 + 2;1 51 = ; 52, (7.36) 11

for some polynomial 52 of degree 3 and some constant 2. For any base point
@ of the net, we have ;0 (@) 50 (@) + 2;1 (@) 51 (@) = ; (@) 52 (@). Since ; (@) ≠ 0
and 50 (@) = 51 (@) = 0, we obtain that 52 (@) = 0. Thus, the curve + ( 52) passes
through each base point and hence belongs to the net |+ |. This shows that 50, 51
and 52 define a basis of |+ | satisfying property (ii). �

Corollary 7.2.17. Let b be the base ideal of a Laguerre net of curves of degree
3. Then, ℎ0 (OP2/b) = 32 − 3 + 1.

Proof It is clear that, any base-point, b is generated by two general members
of the net. By Bezout’s Theorem ℎ0 (OP2/b) = 32 − (3 − 1). �

Example 7.2.18. Take an irreducible net of cubic curves with seven base points.
Then, it is a Laguerre net since two residual intersection points of any two
general members are on a line. Thus, it is generated by the minors of the matrix(

C0 C1 C2
60 61 62

)
,

where 60, 61, 62 are quadratic forms. Recall that the linear system of cubics
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with seven base points satisfying the condition (*) from Section
SS:6.3.3SS:6.3.3
6.3.3 defines a

nonsingular quartic curve. It is known that the quartic curve is a Lüroth quartic
if and only if there exists a cubic curve + ( 5 ) such that 68 = m 5

mC8
(see

Bateman
[39],

OttavianiSernesi
[565]).

7.2.4 Characteristic matrices
SS:7.2.4

Consider a log resolution (
hironakahironaka
7.1) of a Cremona transformation 5 of degree 3

-

c

��

f

  
P2 5 // P2.

Obviously, it gives a resolution of the inverse transformation 5 −1. The roles of
c and f are interchanged. Let

f : - = .#
f#−→ .#−1

f#−1−→ . . .
f2−→ -1

f1−→ -0 = P
2 (7.37)

Since  2
-
= 9 − # , the length of the sequence of blow-ups for f is the same as

one for c. Since the degree of 5 and 5 −1 coincide, the homaloidal net defining
5 −1 is |3ℎ−b |, where b is the fundamental bubble cycle of 5 −1. Let E ′1, . . . , E

′
#

be the corresponding exceptional configurations.
Note that it could happen that all exceptional configurations of c are irre-

ducible (i.e. no infinitely points are used to define c) but some of the exceptional
configurations of f are reducible (see Exercise

ex:7.starex:7.star
7.8).

A rational surface - admitting a birationa morphism 5 : - → P2 is called
a basic rational surface. An example of a rational surface which is not basic
is a minimal ruled surface F=, = ≠ 1. We refer to

DKEII
[259, Chapter 9] for the

description of non-basic rational surfaces. A choice of the blrational morphism
5 : - → P2 defines a basis (40, 41, . . . , 4# ) in Pic(-), where 40 = 5 ∗ (ℎ) is the
pull-back of the divisor class of a line in the plane, and 48 = [E8] are the divisor
classes of the exceptional configurations. We call such a basis a geometric basis
defined by the blowing down structure of - .
The divisor class of any irreducible curve � on - can be expressed in terms

of a geometric basis by

[�] = 340 − <141 − · · · − <# 4# .

The curve � is equal to the proper transform under 5 of an irreducible plane
curve of degree 3 passing through the points ?8 with multiplicity <8 . We
will often identify the linear system |340 − <141 − · · · − <# | on - with the
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linear system of plane curves of degree 3 passing through the points ?8 with
multiplicity ≥ <8 .

We will often employ the classical notation

�3 (<1, . . . , <# ) (7.38) classicalnotation

for a plane curve of degree 3 with <8-multiple points at ?1, . . . , ?# .

Definition 7.2.19. An ordered resolution of a Cremona transformation is the
diagram (

hironakahironaka
7.1) together with an order of a sequence of the exceptional curves

for f and c (equivalently, a choice of an admissible order on the bubble cycles
defining c and f).

Any ordered resolution of 5 defines two bases in Pic(-). The first basis is

4′ : 4′0 = f
∗ (ℎ), 4′1 = [E

′
1], . . . , 4

′
# = [E ′# ] .

The second basis is

4 : 40 = c
∗ (ℎ), 41 = [E1], . . . , 4# = [E# ] .

Here, as always, ℎ denotes the class of a line in the plane.
We will always assume that the resolution of f is minimal. This is equivalent

to the property that 4′
9
≠ 48 for any 8, 9 . If 4′

9
= 48 , then the exceptional

configurations E8 and E ′9 are equal. We can change the admissible orders on
the bubble cycles defining the maps c and f to assume that 8 = 9 = = − 1,
where 1 is the number of irreducible components in E8 , the exceptional divisor
of c#−8 : - → -8 is equal to E8 and the exceptional divisor of f#8 : - →
.8 is equal to E ′

8
. By the universal property of the blow-up, there exists an

isomorphism q : -8 → .8 such that q ◦ c#8 = f# 9 . Thus, we can replace -
with -8 and define a new resolution c80 : -8 → P2, f80 ◦ q : -8 → P2 of 5 .
The old resolution factors through the new one.
Write

4′0 = 340 −
#∑
8=1

<848 , 4′9 = 3 940 −
#∑
8=1

<8 948 , 9 > 0.

By the minimality property, wemay assume that 3, 31, . . . , 3# > 0. The matrix

� =

©«
3 31 . . . 3#

−<1 −<11 . . . −<1#
...

...
...

...

−<# −<# 1 . . . −<##

ª®®®®®¬
(7.39) charmat
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is called the characteristic matrix of 5 with respect to an ordered resolution. It
is the matrix of change of basis from 4 to 4′.

Here (3;<1, . . . , <# ) is the characteristic of 5 . In other columns, the vec-
tors (3 9 , <1 9 , . . . , <# 9 ) describe the divisor classes of the exceptional con-
figurations E ′

9
of f. The image of E ′

9
in P2 is a curve in the linear system

|3 9ℎ −
∑#
8=1 <8 9G8 |. Its degree is equal to 3 9 . It may not be irreducible or re-

duced. Let � be a unique (−1)-component of the exceptional configuration E ′
9
.

It corresponds to a minimal point in the bubble cycle [′ infinitely near G 9 of
order equal to the number of irreducible components of E ′

9
minus one. By the

minimality assumption, the image c(�) is an irreducible curve, and the image
c(E 9 ) contains c(�) with multiplicity equal to 1 9 .
The image of E 9 under the map c is called a total principal curve of 5 . Its

degree is equal to 3 9 . The reduced union of total principal curves is equal to
the P-locus of 5 .

The characteristic matrix defines a homomorphism of free abelian groups

q� : Z1+# → Z1+# .

We equip Z1+# with the standard hyperbolic inner product, where the norm-
square {2 of a vector { = (00, 01, . . . , 0# ) is defined by

{2 = 02
0 − 0

2
1 − · · · − 0

2
# . (7.40) lattice1

Recall that a quadratic lattice (or just lattice if no confusion arises with other
uses of this word) is a free abelian group equipped with an integral valued
quadratic form. The group Z1+# equipped with integral form (

lattice1lattice1
7.40) is an

example of an odd unimodular quadratic lattice. It is customarily denoted
by I1,# . We will discuss quadratic lattices in Chapter 8. Since both bases 4
and 4′ are orthonormal with respect to the inner product, we obtain that the
characteristicmatrix is orthogonal, i.e. belongs to the groupO(I1,# ) ⊂ O(1, #),
where $ (1, #) is the real orthogonal group of the hyperbolic space R1,# with
the hyperbolic norm-square defined by the quadratic form G2

0 − G
2
1 − · · · − G

2
=.

Recall that the orthogonal group O(1, #) consists of (# + 1) × (# + 1)
matrices " such that

"−1 = �#+1
C"�#+1, (7.41) orth

where �#+1 is the diagonal matrix diag[1,−1, . . . ,−1].
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In particular, the characteristic matrix �−1 of 5 −1 satisfies

�−1 = �C �� =

©«
3 <1 . . . <#

−31 −<11 . . . −<# 1
...

...
...

...

−3# −<1# . . . −<##

ª®®®®®¬
. (7.42) inv3

It follows that the vector (3; 31, . . . , 3# ) is equal to the characteristic vector
of 5 −1. Also, (

virt2virt2
7.23) implies that 31+· · ·+3# = 3−3. This shows that the sum of

the degrees of a total principal curve of 5 is equal to the degree of the Jacobian
� of the polynomials defining 5 . This explains the multiplicities of irreducible
components of + (�). They are larger than one when not all fundamental points
are proper.
Let 5 : - ′ → - be a rational map of irreducible varieties. For any closed

irreducible subvariety / of - ′ with - ′ ∩ dom( 5 ) ≠ ∅, we denote by 5 (/) the
closure of the image of / ∩ dom( 5 ) under 5 .

transform Proposition 7.2.20. Let 5 : P2 d P2 be a Cremona transformation with
fundamental points G1, . . . , G# and fundamental points H1, . . . , H# of 5 −1. Let
� be the characteristic matrix of 5 . Let � be an irreducible curve on P2 of
degree = which passes through the points H8 with multiplicities =8 . Let =′ be
the degree of 5 (�) and let =′

8
be the multiplicity of 5 (�) at G8 . Then the vector

{ = (=′,−=′1, . . . ,−=
′
#
) is equal to �−1 · {, where { = (=,−=1, . . . ,−=# ).

Proof Let (-, f, a) be a minimal resolution of 5 . The divisor class of the
proper inverse transform c−1 (�) in - is equal to { = =40 −

∑
=848 . If we

rewrite it in terms of the basis (4′0, 4
′
1, . . . , 4

′
#
) we obtain that it is equal to

{′ = =′40−
∑
=′
8
48 , where {′ = �{. Now, the image of c−1 (�) underf coincides

with q(�). By definition of the curves E8 , the curve q−1 (�) is a curve of degree
=′ passing through the fundamental points H8 of 5 −1 with multiplicities =′

8
. �

Let � be a total principal curve of 5 and 240 −
∑#
8=1 2848 be the class of

c−1 (�). Let { = (2,−21, . . . ,−2# ). Since 5 (�) is a point, � · { = −4′9 for some
9 .
Example 7.2.21. The following matrix is a characteristic matrix of the standard
quadratic transformation )st or its degenerations )st, )

′′
st .

� =

©«
2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

ª®®®®¬
. (7.43) standardmatrix

This follows from Example
standardstandard
7.1.14.
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The following is a characteristic matrix of a de Jonquières transformation

� =

©«

< < − 1 1 . . . 1
−< + 1 −< + 2 −1 . . . −1
−1 −1 −1 . . . 0
−1 −1 0 . . . 0
...

...
...

...
...

−1 −1 0 . . . 0
−1 −1 0 . . . −1

ª®®®®®®®®®®®¬
. (7.44)

Observe that the canonical class  - is an element of Pic(-) which can be
written in both bases as

 - = −340 +
#∑
8=1

48 = −34′0 +
=∑
8=1

4′8 .

This shows that the matrix � considered as an orthogonal transformation of
�1,# leaves the vector

k# = −3e0 + e1 + · · · + e# = (−3, 1, . . . , 1)

invariant. Here, e8 denotes the unit vector in Z1+# with (8 + 1)-th coordinate
equal to 1 and other coordinates equal to zero.
The matrix � defines an orthogonal transformation of the orthogonal com-

plement (Zk# )⊥.

Lemma 7.2.22. The following vectors form a basis of (Zk# )⊥.

# ≥ 3 : U1 = e0 − e1 − e2 − e3, U8 = e8−1 − e8 , 8 = 2, . . . , #,
# = 2 : U1 = e0 − 3e1, U2 = e1 − e2,

# = 1 : U1 = e0 − 3e1.

Proof Obviously, the vectors U8 are orthogonal to the vector k# . Suppose
a vector { = (00, 01, . . . , 0# ) ∈ (Zk# )⊥. Thus, 300 +

∑#
8=1 08 = 0, hence

−0# = 300 +
∑#−1
8=1 08 . Assume # ≥ 3. We can write

{ = 00 (e0 − e1 − e2 − e3) + (00 + 01) (e1 − e2) + (200 + 01 + 02) (e2 − e3)

+
#−1∑
8=3
(300 + 01 + · · · + 08) (e8 − e8+1).

If # = 2, we write { = 00 (e0 − 3e1) + (300 + 01) (e1 − e2). If # = 1, { =
00 (e0 − 3e1). �
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It is easy to compute the matrix &# = (08 9 ) of the restriction of the inner
product to (Zk# )⊥ with respect to the basis (U0, U#−1). We have

(−8), if # = 1,
(
−8 3
3 −2

)
, if # = 2.

If # ≥ 3, we have

08 9 =


−2 if 8 = 9 ,
1 if |8 − 9 | = 1 and 8, 9 ≥ 1,
1 if 8 = 0, 9 = 3,
0 otherwise.

For # ≥ 3, the matrix �+2�# is the incidence matrix of the graph from Figure
7.5 (the Coxeter-Dynkin diagram of type )2,3,#−3).

• • • • • •

•

· · ·
U2 U3 U4 U4 U#−2 U#

U1

Figure 7.4 Coxeter-Dynkin diagram of type )2,3,#−3 Coxdiag

For 3 ≤ # ≤ 8 this is the Coxeter-Dynkin diagram of the root system of the
semi-simple Lie algebra sl3 ⊕ sl2 of type �2 + �1 if # = 3, of sl5 of type A4 if
# = 4, of so10 of type �5 if # = 5 and of the exceptional simple Lie algebra
of type �# if # = 6, 7, 8.
We have

k2
# = 9 − #.

This shows that the matrix &# is negative definite if # < 9, semi-negative
definite with 1-dimensional null-space for # = 9, and of signature (1, # − 1)
for # ≥ 10. By a direct computation one checks that its determinant is equal
to # − 9.

Proposition 7.2.23. Assume # ≤ 8. There are only finitely many possible
characteristic matrices. In particular, there are only finitely many possible
characteristics of a homaloidal net with ≤ 8 base points.

Proof Let
� = {" ∈ GL(#) : C"&#" = &# }.

Since &# is negative definite for # ≤ 8, the group � is isomorphic to the
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orthogonal group O(#). The latter group is a compact Lie group. A character-
istic matrix belongs to the subgroup O(&# ) = � ∩ GL(#,Z). Since the latter
is discrete, it must be finite. �

There are further properties of characteristic matrices for which we refer to
Alberich
[2] for the modern proofs. The most important of these is the following Clebsch
Theorem.

Theorem 7.2.24. Let � be the characteristic matrix. There exists a bĳection
V : N→ N such that for any set � of columns with 38 = =, 8 ∈ �, there exists a
set of rows � with #� = #� such that ` 9 = V(0), 9 ∈ �.

Note that subtracting two columns (or rows) with the same first entry and
taking the inner product square, we easily get that they differ only at two entries
by±1. This implies a certain symmetry of thematrix if one reorders the columns
and rows according to Clebsch’s Theorem. We refer for the details to

Alberich
[2].

7.2.5 The Weyl groups
SS:7.2.5

Let E# = (Zk# )⊥ � Z# equipped with the quadratic form obtained by the
restriction of the inner product in I1,# . Assume # ≥ 3. For any vector U ∈ E#
with U2 = −2, we define the following element in O(�# ):

AU : { ↦→ { + ({, U)U.

It is called the reflection with respect to U. It acts identically on the orthogonal
complement to U, and maps U to −U.

Definition 7.2.25. The subgroup , (E# ) of O(E# ) generated by reflections
AU8 is called the Weyl group of E# .

The following proposition is stated without proof. It follows from the theory
of groups generated by reflections (see, for example,

DolgachevReflection
[251], 4.3).

weylgroup Proposition 7.2.26. The Weyl group, (E# ) is of infinite index in O(E# ) for
# > 10. For # ≤ 10,

O(E# ) = , (E# ) o (g),

where g2 = 1 and g = 1 if # = 7, 8, g = −1 if # = 9, 10 and g is induced by
the symmetry of the Coxeter-Dynkin diagram for # = 4, 5, 6.

Note that any reflection can be extended to an orthogonal transformation of
the lattice I1,# (use the same formula). The subgroup generated by reflections
AU8 , 8 ≠ 1, acts as the permutation group S# of the vectors e1, . . . , e# .
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Lemma 7.2.27. (Noether’s inequality) Let { = (3, <1, . . . , <# ). Assume 3 >noetherineq
0, <1 ≥ . . . ≥ <# > 0, and

(i)
∑=
8=1 <

2
8
= 32 + 0;

(ii)
∑#
8=1 <8 = 33 − 2 + 0,

where 0 ∈ {−1, 0, 1}. Then

<1 + <2 + <3 ≥ 3.

Proof We have

<2
1 + · · · + <

2
# = 3

2 − 1, <1 + · · · + <# = 33 − 3.

Multiplying equality (ii) by <3 and subtracting it from equality (i), we obtain

<1 (<1 − <3) + <2 (<2 − <3) −
∑
8≥4

<8 (<3 − <8) = 32 + 0 − 3<3 (3 − 2−0
3 ).

We can rewrite the previous equality in the form

(3 − 2−0
3 ) (<1 + <2 + <3 − 3 − 2−0

3 ) = (<1 − <3) (3 − 2−0
3 − <1)+

(<2 − <3) (3 − 2−0
3 − <2) +

∑
8≥4

<8 (<3 − <8) + 0 + ( 2−0
3 )

2.

Note that 2−0
3 < 1 ≤ 3 unless 0 = −1when 2−0

3 = 1. In any case, (i) and (ii) give
that 3 − 2−0

3 −<8 > 0. Thus, all summands on the right-hand side are positive.
In the left-hand side, the factor 3 − 2−0

3 is positive unless 3 = 1, 0 = −1. In the
latter case, all <8 = 0 contradicting our assumption that <# > 0. Therefore,
we obtain <1 + <2 + <3 > 3 + 2−0

3 . Since 2−0
3 = − 1

3 if it is not positive, this
implies <1 + <2 + <3 > 3. �

The following corollary agrees with the more general Noether-Fano inequal-
ity

noetherformula1noetherformula1
7.1.13.

fano2 Corollary 7.2.28.
<1 > 3/3.

We can apply Noether’s Lemma to the case when { = (3, <1, . . . , <# ) is
the characteristic vector of a homaloidal net or when 3e0 −

∑
<8e8 is the class

of an exceptional configuration.

Definition 7.2.29. Let { = 3e0 −
∑#
8=1 <8e8 ∈ I1,# . We say that { is of homa-

loidal type (resp.conic bundle type, exceptional type) if it satisfies conditions (i)
and (ii) from the above with 0 = −1 (resp. 0 = 0, resp. 0 = 1). We say that { is of
proper homaloidal (exceptional type) if there exists a Cremona transformation
whose characteristic matrix has { as the first (resp. second column).
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extype1 Lemma 7.2.30. Let { = 3e0 −
∑=
8=1 <8e8 belong to the , (E# )-orbit of e1.

Then 3 ≥ 0. Let [ =
∑#
8=1 G8 be a bubble cycle and U[ : I1,# → Pic(.[) be an

isomorphism of lattices defined by choosing some admissible order of [. Then
U[ ({) is an effective divisor.

Proof The assertion is true for { = e1. In fact, U[ ({) is the divisor class
of the first exceptional configuration E1. Let | = B: ◦ · · · ◦ B1 ∈ , (E# )
be written as the product of simple reflections with minimal possible : . One
can show that : is uniquely defined by |. It is called the length of |. Let
{ = |(e1) = (3 ′, <′1, . . . , <

′
#
). We prove the assertion by using induction on

the length of |. The assertion is obvious if : = 1 since {′ = e0 − e8 − e 9 or
differs from { by a permutation of the <8’s. Suppose the assertion is true for
all | of length ≤ : . Let | has length : + 1. Without loss of generality, we may
assume that B:+1 is the reflection with respect to some root e0−e1−e2−e3. Then
3 ′ = 23−<1−<2−<3 < 0 implies 432 < (<1+<2+<3)2 ≤ 3(<2

1+<
2
2+<

2
3),

hence 32 − <2
1 − <

2
2 − <

2
3 < −

32

3 . If 3 ≥ 2, this contradicts condition (i) of
the exceptional type. If 3 = 1, we check the assertion directly by listing all
exceptional types.
To prove the second assertion, we use the Riemann-Roch Theorem applied

to the divisor class U[ ({). We have U[ ({)2 = −1, U[ ({) ·  .[ = −1, hence
ℎ0 (U[ ({)) + ℎ0 ( .[ − U[ ({)) ≥ 1. Assume ℎ0 ( .[ − U[ ({)) > 0. Intersecting
 . − U[ ({) with 40 = U[ (e0), we obtain a negative number. However, the
divisor class 40 is nef on .[ . This shows that ℎ0 (U[ ({)) > 0 and we are
done. �

L7.4.10 Lemma 7.2.31. Let { be a proper homaloidal type. Then it belongs to the
, (E# )-orbit of the vector e0.

Proof Let { = 3e0 −
∑#
8=1 <8e8 be a proper homaloidal type and [ be the

corresponding homaloidal bubble cycle. Let | ∈ , (E# ) and v′ = |({) =
3 ′e0 −

∑#
8=1 <

′
8
e8 . We have <′

8
= e8 · {′ = |−1 (e8) · v. Since |−1 (e8) represents

an effective divisor on.[ and { is the characteristic vector of the corresponding
homaloidal net, we obtain |−1 (e8) · { ≥ 0, hence <8 ≥ 0.
Obviously, <8 ≥ 0. We may assume that { ≠ e0, i.e. the homaloidal net

has at least three base points. Applying Noether’s inequality (
noetherineqnoetherineq
7.2.27), we find

<8 , < 9 , <: such that <8 +< 9 +<: > 3. We choose the maximal possible such
<8 , < 9 , <: . After reordering, wemay assume that<1 ≥ <2 ≥ <3 ≥ . . . ≥ <# .
Note that this preserves the properness of the homaloidal type since the new
order on [ is still admissible. Applying the reflection Bwith respect to the vector
e0 − e1 − e2 − e3, we obtain a new homaloidal type {′ = 3 ′e0 −

∑#
8=1 <

′
8
e8 with

3 ′ = 23 − <1 − <2 − <3 < 3. As we saw above, each <8 ≥ 0. So, we can
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apply Noether’s inequality again until we get | ∈ , (E# ) such that the number
of nonzero coefficients <′

8
of v′ = |({) is at most 2 (i.e. we cannot apply

Noether’s inequality anymore). A straightforward computation shows that such
vector must be equal to e0. �

history Remark 7.2.32. Observe that the characteristic matrix of a quadratic transfor-
mation with fundamental points G1, G2, G3 is the matrix of the reflection BU1 with
respect to the vector U1 = e0 − e1 − e2 − e3. So, the previous proposition seems
to suggest that, by applying a sequence of quadratic transformation, we obtain
a Cremona transformation with characteristic vector (1, 0, . . . , 0). It must be a
projective transformation. In other words, any Cremona transformation is the
composition of quadratic and projective transformations. This is the content of
Noether’s Factorization Theorem, which we will prove later in this section. The
original proof by Noether was along these lines, where he wrongly presumed
that one can always perform a standard quadratic transformation with funda-
mental points equal to the highest multiplicities, say <1, <2, <3. The problem
here is that the three points G1, G2, G3 may not represent the fundamental points
of a standard Cremona transformation when one of the following cases happens
for the three fundamental points G1, G2, G3 of highest multiplicities:gaps

(i) G2 � G1, G3 � G1;
(ii) the base ideal in an affine neighborhood of G1 is equal to (D2, {3)
(cuspidal case).

charweyl Theorem 7.2.33. Let � be a characteristic matrix of a homaloidal net. Then
� belongs to the Weyl group, (E# ).

Proof Let �1 = (3,−<1, . . . ,−<# ) be the first column of �. Applying the
previous lemma, we obtain | ∈ , (E# ), identified with a (# + 1) × (# + 1)-
matrix, such that the | · �1 = e0. Thus, the matrix �′ = | · � has the first
column equal to the vector (1, 0, . . . , 0). Since �′ is an orthogonal matrix (with
respect to the hyperbolic inner product), it must be the direct sum of the unit
matrix �1 of size one and an orthogonal matrix O of size = − 1. Since O has
integer entries, it is equal to the product of a permutation matrix % and the
diagonal matrix with ±1 at the diagonal. Since � ·k# = k# and C| ·k# = k# ,
this easily implies that O is the identity matrix �# . Thus, | · � = �#+1 and
� ∈ , (E# ). �

homtype Proposition 7.2.34. Every vector { in the, (E# )-orbit of e0 is a proper homa-
loidal type.

Proof Let { = |(e0) for some | ∈ , (E# ). Write | as the composition of
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simple reflections B: ◦ · · · ◦ B1. Choose an open subset* of (P2)# such that an
ordered set of points (G1, . . . , G# ) ∈ * satisfies the following conditions:
(i) G8 ≠ G 9 for 8 ≠ 9 ;
(ii) if B1 = Be0−e8−e 9−e: , then G8 , G 9 , G: are not collinear;
(iii) let 5 be the involutive quadratic transformation with the fundamental

points G8 , G 9 , G: and let (H1, . . . , H# ) be the set of points with H8 = G8 , H 9 =
G 9 , H: = G: and Hℎ = 5 (Gℎ) for ℎ ≠ 8, 9 , : . Then, (H1, . . . , H# ) satisfies
conditions (i) and (ii) for B1 is replaced with B2. Next, do it again by taking B3
and so on.
It is easy to see that in this way* is a non-empty Zariski open subset of (P2)#

such that |(e0) represents the characteristic vector of a homaloidal net. �

excptype2 Corollary 7.2.35. Every vector { in the, (E# )-orbit of e1 can be realized as
a proper exceptional type.

Proof Let { = |(e1) for some | ∈ , (E# ). and [ be a bubble cycle realizing
the homaloidal type |(e0) and 5 be the corresponding Cremona transforma-
tion with characteristic matrix �. Then, { is its second column, and hence
corresponds to the first exceptional configuration E ′1 for q

−1. �

7.2.6 Symmetric Cremona transformations
SS:7.2.6

Assume that the characteristic vector (3;<1, . . . , <# ) is of the form (3;<, . . . , <).
In this case, the Cremona transformation is called symmetric. We have

32 − #<2 = 1, 33 − #< = 3.

Multiplying the second equality by < and subtracting from the first one, we
obtain 32 − 33< = 1 − 3<. This gives (3 − 1) (3 + 1) = 3<(3 − 1). The case
3 = 1 corresponds to a projective transformation. Assume 3 > 1. Then, we get
3 = 3< − 1, and hence, 3(3< − 1) − #< = 3. Finally, we obtain

(9 − #)< = 6, 3 = 3< − 1.

This gives us four possible cases:

(1) < = 1, # = 3, 3 = 2;
(2) < = 2, # = 6, 3 = 5;
(3) < = 3, # = 7, 3 = 8;
(4) < = 6, # = 8, 3 = 17.

The first case is obviously realized by a quadratic transformation with three
fundamental points.
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The second case is realized by the linear system of plane curves of degree 5
with six double points. Its characteristic matrix is the following:

©«

5 2 2 2 2 2 2
−2 0 −1 −1 −1 −1 −1
−2 −1 0 −1 −1 −1 −1
−2 −1 −1 0 −1 −1 −1
−2 −1 −1 −1 0 −1 −1
−2 −1 −1 −1 −1 0 −1
−2 −1 −1 −1 −1 −1 0

ª®®®®®®®®®®¬
. (7.45) ass5

We have to impose some conditions on the points G8 that guarantee that the
linear systemdoes not have fixed components. Since the linear system |5�−�[ |
is complete on a log resolution - , a fixed component belongs to a linear system
|3 ′� − �[′ |, where 3 ′ < 5 and ℎ0 (3 ′� − �[′) = 1. We leave it to the reader
to check that the conditions are

• |ℎ − G8 − G 9 − G: | = ∅, i.e., no three points are on a line;
• |2ℎ − G1 − · · · − G6 | = ∅, i.e., the six points are not on a conic;

Assume that all base points are proper points in the plane. Then, the %-locus
of the transformation consists of six conics, each passing through five of the six
base points. The same is true if there are points in the bubble cycle of height
≥ 3.
The third case of symmetric Cremona transformations is realized by aGeiser

involution. We consider an irreducible net N of cubic curves through seven
points G1, . . . , G7 in the plane. The existence of such a net puts some conditions
on the seven points. For example, no four points must be collinear, and no seven
points lie on a conic. We leave it to the reader to check that these conditions
are sufficient that such a net exists. Now, consider the transformation W that
assigns to a general point G in the plane the base point of the pencil of cubics
from the net which pass through G. If points G1, . . . , G7 satisfy condition (∗)
from Subsection

SS:6.3.3SS:6.3.3
6.3.3, then the net of cubics defines a rational map of degree

2 to the plane with a nonsingular quartic curve as the branch curve. The Geiser
involution � is the rational deck transformation of this cover. Under weaker
conditions on the seven points, the same is true. The only difference is that the
branch curve may acquire simple singularities.
Let us confirm that the degree of the transformation W is equal to 8. The

image of a general line ℓ under the map given by N is a cubic curve !. Its
pre-image is a curve of degree 9 passing through the points G8 with multiplicity
3. Thus, the union ℓ + ! is invariant under 5 , hence 5 (ℓ) = !. Since 5 = 5 −1,
this shows that the degree of 5 is equal to 8. It also shows that the homaloidal
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linear system consists of curves of degree 8 passing through the base points
with multiplicities ≥ 3. In other words, the homaloidal linear system is equal
to |8ℎ − 3[ |, where [ = G1 + · · · + G7. The %-locus of the Geiser involution
consists of cubic curves passing through the base points with a node at one of
the points. The total degree is equal to 7×3 = 21 that agrees with the degrees of
the jacobian. The following is the characteristic matrix of the transformation:

©«

8 3 3 . . . 3 3
−3 −2 −1 . . . −1 −1
−3 −1 −2 . . . −1 −1
...

...
...

...
...

−3 −1 −1 . . . −1 −2

ª®®®®®®®¬
(7.46) charmatGeiser

If one composes W with a projective transformation we obtain a transformation
with the same characteristic matrix but not necessarily involutorial. Also, the
bubble cycle [ may not consist of only proper points, as soon as we continue to
require that the linear system |3ℎ − [ | has no fixed components. All admissible
[’s will be classified in Section

CAG-2:S:8.7CAG-2:S:8.7
8.7 in Volume 2.

The last case is realized by a Bertini involution. We consider an irreducible
pencil of cubic curves through a general set of 8 points G1, . . . , G8. Let @ be
its ninth base point (it could be infinitely near one of the points G8). For any
general point G in the plane, let � (G) be the member of the pencil containing
G. Let @′ be the intersection point of the tangent line at @ with � (G) and V(G)
be the residual point in the intersection of � (G) with the line 〈G, @′〉. The
transformation G → V(G) is the Bertini involution. If we take @ as the origin in
the group law on a nonsingular cubic � (G), then V(G) = −G.

Consider thewebN of curves of degree 6 and genus 2whose generalmember
passes through each point G8 with multiplicity 2. The restriction of N to any
� (G) is a pencil with fixed part 2G1 + · · · +2G8 and a moving part 61

2. One of the
members of this 61

2 is the divisor 2@ cut out by 2� (G ′), G ≠ G ′. As we have seen
in Subsection

SS:6.3.3SS:6.3.3
6.3.3, the members of this pencil are cut out by lines through

the coresidual point on � (G). This point must coincide with the point @. Thus,
members of the 61

2 are divisors G + V(G). We will see in Section
CAG-2:S:8.8CAG-2:S:8.8
8.8 that the web

N defines a degree 2 rational map 5 : P2 d & ⊂ P3, where & is a singular
irreducible quadric in P3. The image of @ is the vertex of the cone. The images
of the curves � (G) are lines on &. Consider a general line ℓ in the plane. It is
mapped to a curve of degree 6 on & not passing through the vertex of &. A
curve on & not passing through the vertex is always cut out by a cubic surface.
In our case the curve 5 (ℓ) is cut out by a cubic surface. The pre-image of this
curve is a curve of degree 18 passing through the points G8 with multiplicities
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6. As in the case of the Geiser involution, this shows that V(ℓ) is a curve of
degree 17 with 6-tuple points G1, . . . , G8. Thus, the homaloidal linear system
defining the Bertini involution is equal to |17ℎ − 6[ |, where [ = G1 + · · · + G8.
The %-locus of the Bertini involution consists of plane sextics with a triple
point at one of the base points and double points at the remaining base points.
The characteristic matrix of the Bertini involution (or its composition with a.
projective transformation) is the following:

©«

17 6 6 . . . 6 6
−6 −3 −2 . . . −2 −2
−6 −2 −3 . . . −2 −2
...

...
...

...
...

−6 −2 −2 . . . −2 −3

ª®®®®®®®¬
(7.47) charmatBertini

Again, we may consider [ not necessarily consisting of proper points. All
admissible [’s will be classified in Section

CAG-2:S:8.7CAG-2:S:8.7
8.7.

7.3 Noether’s Factorization Theorem
7.3

7.3.1 Elementary transformations
S:7.3. 1

First, let us recall the definition of a minimal rational ruled surface F= (often
called, in modern literature, a Hirzebruch surface). If = = 0 this is the surface
P1 × P1. If = = 1 it is isomorphic to the blow-up of one point in P2 with the
ruling c : F1 → P1 defined by the pencil of lines through the point. If = > 1, we
consider the cone in P=+1 over a Veronese curve V1

= ⊂ P=, i.e. we identify P=−1

with a hyperplane in P= and consider the union of lines joining a fixed point
?0 not on the hyperplane with all points in V1

=. The surface F= is a minimal
resolution of the vertex ?0 of the cone. The exceptional curve of the resolution
is a smooth rational curve �= with �2

= = −=. The projection from the vertex of
the cone extends to a morphism

? : F= → P1,

which defines a ruling. The curve �= is its section called the exceptional section.
In the case = = 1, the exceptional curve �1 of the blow-up F1 → P2 is also a
section of the corresponding ruling ? : F1 → P1. It is also called the exceptional
section.
We will use the general facts about projective bundles discussed in

Hartshorne
[379,

Chapter V, §2] or recalled in Subsection
SS:2.4.1SS:2.4.1
2.4.1.
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prop Proposition 7.3.1. Let c : - → P1 be a morphism of a nonsingular surface
such that all fibers over a non-empty open subset of P1 are isomorphic to P1.
Then there exists a unique birational morphism 5 : - → F= such that c = ?◦ 5 .

Proof Let � be a smooth fiber. It follows from the assumption that � � P1.

By the adjunction formula,  - · � = −2 − �2 = −2. Thus, for any fiber �,
we get  - · � ′ = −2. Writing � as a sum of its irreducible components, we
find an irreducible component ' with  - · ' < 0. If � is irreducible, then
�2 = 0 and  - · � < 0 implies that � � P1, hence � is a smooth fiber. If � is
reducible, '2 < 0 and ' ·  - < 0 implies that '2 = ' ·  - = −1, hence ' is a
(−1)-curve. Let 5 ′ : - → - ′ be the birational morphism that blows down ' to
a nonsingular point of - ′. Replacing - with - ′ and repeating the argument, we
find a birational morphism 5 : - → ( over P1 such that all fibers c′ : ( → P1

are smooth. The generic fiber ([ is smooth projective curve of genus 6 = 0
over the field  of rational functions on P1 isomorphic to C(C).
By Tsen’s Theorem,

Shafarevich
[708, Chapter 1, 6.2, Corollary 4] ([ � P1

[ . The closure
of a rational point on ([ defines a section f : P1 → ( whose image is a smooth
rational curve� on ( such that ( ·� = 1. It is clear that Pic(() � Z2 and we can
choose a basis formed by the divisor class f of a fiber � and the divisor class
[�] of a section. Let < be the largest positive number such that � = � − <�
is effective. We have 4 = �2 = �2 − 2< and � · � = 1. Each irreducble
component of � ′ must contain a fiber. By maximality of <, � ′ is irreducible
curve isomorphic to P1. Write  ( = 0f + 1e, where e = [� ′]. Intersecting with
f and e, and applying the adjunction formula, we get 1 = −2 and 0 = 42 − 2. If
42 > 0, (� − �)2 = 42 − 2 > −2 and (� − �) ·  ( = 42. By Riemann-Roch,
ℎ0 (� − �) > 0, contradicting our choice of <. Thus 4 ≤ 0. Setting = = −4, we
get

 - = (−2 − =)f − 2e, e2 = −= ≤ 0. (7.48) canruled2

Consider the linear system |=f + e|. We have

(=f + e)2 = =, (=f + e) · ((−2 − =)f − 2e) = −2 − =.

By Riemann-Roch, dim |=f + e| ≥ = + 1. The linear system |=f + e| has no base
points because it contains the linear system |=f| with no base points. Thus it
defines a regular map P(E) → P=. Since (=f + e) · e = 0, it blows down the
section � to a point ?. Since(=f + e) · f = 0, it maps fibres to lines passing
through ?. The degree of the image is (=f + e)2 = =. Thus, the image of the
map is a surface of degree = equal to the union of lines through a point. It must
be a cone over the Veronese curve V1

= if = > 1 and P2 if = = 1. The map is its
minimal resolution of singularities. This proves the assertion in this case.
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Assume = = 0. We leave it to the reader to check that the linear system |f+ e|
maps - isomorphically to a quadric surface in P3. �

A surface - from the proposition is called a raional ruled surface. A surface
isomorphic to the surface F= is called a minimal rational ruled surface. The
section � with �2 = −= ≤ 0 is called the exceptional section. If = < 0, it
is a unique section with negative self-intersection. This immediately follows
from the formula (

canruled2canruled2
7.48) and the adjunction formula. In particular, we see that

it coincides with the exceptional section of F# defined in the first paragraph
of this subsection. If = = 0, F0 � P

1 × P1, and the section with minimal self-
intersections move in a base-point-free pencil defining one of the projections
to P1.

hirzebruchchar Proposition 7.3.2. Let - = F= be a minimal ruled surface not isomorphic to
P2. Then,

- � P(OP1 ⊕ OP1 (−=)).

Proof First, let us see that the projective bundle P(E), where E = OP1 ⊕
OP1 (−=) is indeed isomorphic F=. Let f be the divisor class of a fiber, and e be
the divisor class of the image � of the unique section B0 : P1 → P(E) defined
by a surjection E → OP1 (−=). By Proposition

sernesisernesi
2.4.2 (in this case, one can refer

to
Hartshorne
[379, Chapter V, §2, Proposition 2.6]), B∗0 (N�/- ) � OP1 (−=). This implies

that e2 = −=. Assume = > 0. Consider the linear system |=f + e|. We have

(=f + e)2 = =, (=f + e) · ((−2 − =)f − 2e) = −2 − =.

By Riemann-Roch, dim |=f + e| ≥ = + 1. The linear system |=f + e| has no base
points because it contains the linear system |=f| with no base points. Thus, it
defines a regular map P(E) → P=. Since (=f + e) · e = 0, it blows down the
section � to a point ?. Since(=f + e) · f = 0, it maps fibers to lines passing
through ?. The degree of the image is (=f + e)2 = =. Thus, the image of the
map is a surface of degree = equal to the union of lines through a point. It must
be a cone over the Veronese curve V1

= if = > 1 and P2 if = = 1. The map is its
minimal resolution of singularities. This proves the assertion in this case.
Assume = = 0. We leave it to the reader to check that the linear system |f+ e|

maps - isomorphically to a quadric surface in P3. �

Let c : F= → P1 be a ruling of F= (the unique one if = ≠ 0). Let G ∈ F= and
�G be the fiber of the ruling containing G. If we blow up G, the proper transform
�̄G of �G is an exceptional curve of the first kind. We can blow it down to obtain
a nonsingular surface - . The projection c induces a morphism c′ : - → P1

with any fiber isomorphic to P1. Let (0 be the exceptional section or any section
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with the self-intersection 0 if = = 0 (such a section is of course equal to a fiber
of the second ruling of F0). Assume that G ∉ (0. The proper transform (̄0 of
(0 on the blow-up has the self-intersection equal to −=, and its image in - has
the self-intersection equal to −=+1. Applying Proposition

propprop
7.3.1, we obtain that

- � F=−1. This defines a birational map

elmG : F= d F=−1.

�

(̄0

�̄G
�̄G �

−1 −1

−1 −1

−= −= − 1(̄0

Figure 7.5 Elementary transformation

Here, in Figure 7.4, on the left, we blow down �̄G to obtain F=−1, and, on the
right, we blow down �̄G to obtain F=+1.

Assume that G ∈ �=. Then, the proper inverse transform of (0 on the blow-up
has self-intersection −= − 1 and its image in - has the self-intersection equal
to −= − 1. Applying Proposition

hirzebruchcharhirzebruchchar
7.3.2, we obtain that - � F=+1. This defines a

birational map
elmG : F= d F=+1.

A birational map elmG is called an elementary transformation.
Remark 7.3.3. Let E be a locally free sheaf over a nonsingular curve �. As
we explained in Subsection

SS:2.4.1SS:2.4.1
2.4.1, a point G ∈ P(E) is defined by a surjection

E(G) → ^(G), where ^(G) is considered as the structure sheaf of the closed point
G. Composing this surjection with the natural surjection E → E(G), we get a
surjectivemorphismof sheaves qG : E → ^(G). Its kernelKer(qG) is a subsheaf
of E which has no torsion. Since the base is a regular 1-dimensional scheme,
the sheaf E ′ = Ker(qG) is locally free. Thus, we have defined an operation on
locally free sheaves. It is also called an elementary transformation.
Consider the special case when � = P1 and E = OP1 ⊕ OP1 (−=). We have an

exact sequence

0→ E ′→ OP1 ⊕ OP1 (−=)
qG−→ ^G → 0.

The point G belongs to the exceptional section (0 if and only if qG factors
through OP1 (−=) → ^G . Then, E ′ � OP1 ⊕ OP1 (−= − 1) and P(E ′) � F=+1.



7.3 Noether’s Factorization Theorem 409

The inclusion of sheaves E ′ ⊂ E gives rise to a rational map P(E) d P(E ′)
which coincides with elmG . If G ∉ (0, then qG factors through OP1 , and we
obtain E ′ � OP1 (−1) ⊕ OP1 (−=). In this case P(E ′) � P(OP1 ⊕OP1 (−=+1)) �
F=−1 and again, the inclusion E ′ ⊂ E defines a rational map P(E) d P(E ′)
which coincides with elmG . We refer for this sheaf-theoretical interpretation
of elementary transformation to

Hartshorne2
[378]. A more general definition applied to

projective bundles over any algebraic variety can be found in
BarthContact
[33],

Tjurin3
[754].

Let G, H ∈ F=. Assume that G ∈ (0, H ∉ (0 and c(G) ≠ c(H). Then, the
composition

4G,H = elmH ◦ elmG : F= d F=

is a birational automorphism of F=. Here, we identify the point H with its image
in elmG (F=). If = = 0, we have to fix one of the two structures of a projective
bundle on F0. Similarly, we get a birational automorphism 4H,G = elmH ◦ elmG

of F=. We can also extend this definition to the case when H �1 G, where H does
not correspond to the tangent direction defined by the fiber passing through G
or the exceptional section (or any section with self-intersection 0). We blow up
G, then H, and then blow down the proper transform of the fiber through G and
the proper inverse transform of the exceptional curve blown up from G.

7.3.2 Birational automorphisms of P1 × P1
SS:7.3.2

Let - be a rational variety and let q : - d P= be a birational isomorphism. It
defines a homomorphism of the groups of birational automorphisms

Bir(P=) → Bir(-), 5 ↦→ q−1 ◦ 5 ◦ q

with the inverse

Bir(-) → Bir(P=), 6 ↦→ q ◦ 6 ◦ q−1.

Here, we realize this simple observation by taking - = P1 × P1, identified with
a nonsingular quadric & in P3. We identify P2 with a plane in P3 and take
q : & d P2 to be the projection map ?G0 from a point G0. Let 0, 1 be the
images of the two lines on & containing the point G0. The inverse map q−1 is
given by the linear system |2ℎ − @1 − @2 | of conics through the points @1, @2,
and a choice of an appropriate basis in the linear system. Let

ΦG0 : Bir(&) → Bir(P2)

be the corresponding isomorphism of groups.
A birational automorphism of P1 × P1 is given by a linear system |<ℎ1 +

:ℎ2 − [ |, where ℎ1, ℎ2 are the divisor classes of fibers of the projection maps
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pr8 : P1 × P1 → P1, and [ is a bubble cycle on &. If we fix coordinates
(D0, D1), ({0, {1) on each factor of P1 × P1, then a birational automorphism
of the product is given by four bihomogeneous polynomials '0, '1, '

′
0, '

′
1 of

bidegree (<, :):

( [00, 01], [10, 11]) ↦→ (['1 (0, 1), '2 (0, 1], ['′0 (0, 1), '
′
1 (0, 1)]).

Explicitly, let us use an isomorphism

P1 × P1 → &, ( [00, 01], [10, 11]) ↦→ [0010, 0011, 0110, 0111],

where & = + (I0I3 − I1I2). Take G0 = [0, 0, 0, 1]. The projection map ?G0 is
given by [I0, I1, I2, I3] ↦→ [I0, I1, I2]. The inverse map ?−1

G0 can be given by
the formulas

[C0, C1, C2] ↦→ [C20 , C0C1, C0C2, C1C2] .

It is not defined at the points @1 = [0, 1, 0] and @2 = [0, 0, 1].
If 6 is given by '0, '1, '

′
0, '

′
1, then ΦG0 (6) is given by the formula

[I0, I1, I2] ↦→ ['0 (0, 1)'′0 (0, 1), '0 (0, 1)'′1 (0, 1), '1 (0, 1)'′0 (0, 1)],

where [I0, I1, I2] = [0010, 0011, 0110] for some [00, 10], [10, 11] ∈ P1.
If 5 : P2 d P2 is given by the polynomials %0, %1, %2, then Φ−1

G0 ( 5 ) is given
by the formula

[I0, I1, I2, I3] ↦→ [%0 (I′)2, %0 (I′)%1 (I′), %0 (I′)%2 (I′), %1 (I′)%2 (I′)],
(7.49) expl

where %8 (I′) = %8 (I0, I1, I2).
Let Aut(&) ⊂ Bir(&) be the subgroup of biregular automorphisms of &.

It contains a subgroup Aut(&)> of index 2 that leaves invariant each family
of lines on &. By acting on each factor of the product P1 × P1, it becomes
isomorphic to the product PGL(2) × PGL(2).

ll1 Lemma 7.3.4. Let f ∈ Aut(&)>. If f(G0) ≠ G0, then ΦG0 (f) is a quadratic
transformation with fundamental points 0, 1, ?G0 (f−1 (G0)). Iff(G0) = G0, then
ΦG0 (f) is a projective transformation.

Proof If G = f(G0) ≠ G0, then the F-locus of 5 = ΦG0 (f) consists of three
points @1, @2 and ?G0 (G). It follows from (

virt1virt1
7.21), that it must be a quadratic

transformation. If f(G0) = G0, then the map 5 is not defined only at @1 and @2.
The rational map q : P2 d & can be resolved by blowing up the two points
@1, @2 followed by blowing down the proper transform of the line 〈@1, @2〉.
It is clear that it does not have infinitely near fundamental points. Since any
non-projective planar Cremona transformation has at least three fundamental
points, we obtain that the map 5 extends to an automorphism of P2. �
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Remark 7.3.5. The imageΦG0 (Aut(&) consists of quadratic or projective trans-
formations which leave invariant the linear system of conics through two points
@1, @2. These are complex conics discussed in Subsection 2.2.3. Over reals,
when we deal with real conics through the ideal points in the line at infinity,
the group ΦG0 (Aut(&)) is known as the Inversive group in dimension 2 (see
MorleyBook
[529]).
The subgroup ΦG0 (Aut(&)) of Cr(2) = Bir(P2) is an example of a linear

algebraic subgroup of the Cremona group Cr(2). All such subgroups in Cr(2)
were classified by F. Enriques

Enriques
[291]. In particular, he showed that any linear

algebraic subgroup of rank 2 in Cr(2) is contained in a subgroup isomorphic
to Aut(F=) for some =. There is a generalization of this result to the group
Cr(=) = Bir(P=) (see

Demazure2
[218]). Instead of minimal ruled surfaces one considers

smooth toric varieties of dimension =.
Take two points G, H in& which do not lie on a line and consider the birational

transformation 4G,H := elmG ◦ elmH defined in the previous Subsection. Recall
that to define 4G,H , we have to fix one of the two structures of a projective
bundle on &. We do not exclude the case when there is only one proper point
among G and H, say H � G. It is easy to see that the linear system defining the
transformation 4G,H is equal to |2ℎ1 + ℎ2 − G − H |, where ℎ1 is the class of a
fiber of the projective bundle structure pr : & → P1.

ll2 Proposition 7.3.6. ΦG0 (4G,H) is a product of quadratic transformations. More-
over, if G0 ∈ {G, H}, then ΦG0 (CG,H) is a quadratic transformation. Otherwise,
ΦG0 (CG,H) is the product of two quadratic transformations.

Proof Let g : - → & be the blow-up of the bubble cycle G + H. It factors
into the composition of the blow-up g1 : &G → & of G and the blow-up
g2 : & ′ → &G of H. Suppose G0 ∈ {G, H}. Without loss of generality, we may
assume that G0 = G. The composition of rational maps c = ?G0 ◦ g : & ′ d P2 is
a regular map. Let U : - → & be the blowing-down of the proper transforms of
the fiber ℓG (resp. ℓH) of pr : & → P1 containing G (resp. H). The composition
f = ?G0 ◦ U : & ′→ & d P2 is also a regular map. The two morphisms f, c :
- → P2 define a resolution of the birational map ΦG0 (4G,H). It is immediate
that this resolution coincides with a resolution of a quadratic transformation
with fundamental points @1, @2, ?G0 (H). Note that, if H � G, then ?G0 (H) � @2,
where the line ℓH is blown down to @2 under the map & ′G → P2.
If G0 ≠ G, H, we compose 4G,H with an automorphism 6 of & such that

f(G0) = G. Then,

ΦG0 (4G,H ◦ 6) = ΦG0 (4G0 ,6−1 (H) ) = ΦG0 (4G,H) ◦ΦG0 (6).

By Lemma
ll1ll1
7.3.4, ΦG0 (6) is a quadratic transformation. By the previous case,
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ΦG0 (4G0 ,f−1 (H) ) is a quadratic transformation. Also, the inverse of a quadratic
transformation is a quadratic transformation. Thus, ΦG0 (4G,H) is a product of
two quadratic transformations.

�

Proposition 7.3.7. Let 5 : F= d F< be a birational map. Assume that 5
commutes with the projections of the minimal ruled surfaces to P1. Then, 5 is
a composition of biregular maps and elementary transformations.

Proof Let (-, f, c) be a resolution of indeterminacy of 5 . The morphism
c (resp. f) is the blowing up of an admissible ordered bubble cycle [ =

(G1, . . . , G# ) (resp. b = (H1, . . . , H# )). Let ?1 : F= → P1 and ?2 : F< → P1 be
the structure morphisms of the projective bundles. The two composition ?1 ◦ c
and ?2 ◦ f coincide and define a map

q : - → P1.

Let 01, . . . , 0: be points in P1 such that �8 = q−1 (08) = c∗ (?−1
1 (08)) is a

reducible curve. We have c∗ (�8) = ?−1
1 (08) and f∗ (�8) = ?

−1
2 (08). Let �8 be

the unique component of '8 which is mapped onto ?−1
1 (08) and �

′
8
be the unique

component of �8 which is mapped surjectively to ?−1
2 (08). The pre-images in

- of the maximal points in [ and b (with respect to the admissible order) are
(−1)-curves �1, . . . , �: and � ′1, . . . , �

′
:′ . Let � be a (−1)-curve component of

�8 that is different from �1, . . . , �: and � ′1, . . . , �
′
:′ .We can reorder the order of

the blow-ups to assume that c(�) = G# and f(�) = H# . Let c# : - → -#−1
be the blow-up of G# and f# : - → .#−1 be the blow-up of H# . Since c# and
f# blow down the same curve, there exists an isomorphism q : -#−1 � .#−1.
Thus, we can replace the resolution (-, f, c) with

(-#−1, c1 ◦ . . . ◦ c#−1, f1 ◦ . . . ◦ f#−1 ◦ q).

Continuing in this way, we may assume that G# and H# are the only maximal
points of c and f such that ?1 (G# ) = ?2 (H# ) = 08 . Let � = c−1 (G# ) and
� ′ = f−1 (H# ). Let ' ≠ � ′ be a component of q−1 (08) which intersects � .
Let G = c('). Since G# � G, and no other points is infinitely near G, we get
'2 = −2. Blowing down � , we get that the image of ' has self-intersection −1.
Continuing in this way, we get two possibilities:

(1)

�8 = �8 + � ′8 , �2
8 = �

′
8
2 = −1, �8 · � ′8 = 1,

(2)

�8 = �8 + '1 + · · · + ': + � ′8 , �2
8 = �

′
8
2 = −1,
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'2
8 = −1, �8 · '1 = . . . = '8 · '8+1 = ': · � ′8 = 1,

and all other intersections are equal to zero.
In the first case, 5 = elmG# . In the second case, let 6 : - → - ′ be the

blow-down of �8 , let G = c('1 ∩ �8). Then, 5 = 5 ′ ◦ elmG , where 5 ′ satisfies
the assumption of the proposition. Continuing in this way, we write 5 as the
composition of elementary transformations. �

Let � be a de Jonquières transformation of degree< with fundamental points
o, G1, . . . , G2<−2. We use the notation from Subsection 7.3.6. Let c : - → P2 be
the blow-up of the base points. We factor c as the composition of the blow-up
c1 : -1 → -0 = P

2 of the point o and the blow-ups c8 : -8+1 → -8 of the
points G8 . Let ? : -1 → P1 be the map given by the pencil of lines through the
point o. The composition q : - → -1 → P1 is a conic bundle. This means that
its general fiber is isomorphic to P1 and it has 2< − 2 singular fibers �8 over
the points 08 corresponding to the lines ℓ8 = oG8 . Each singular fiber is equal
to the union of two (−1)-curves � ′

8
+ � ′′

8
intersecting transversally at one point

G ′
8
. The curve � ′

8
is the proper transform of the line ℓ8 , and the curve � ′′

8
is the

proper transform of the exceptional curve �8 of the blow-up -8+1 → -8 , 8 ≥ 1.
The proper transform � of the exceptional curve of -1 → -0 is a section of
the conic bundle q : - → P1. It intersects the components � ′

8
. The proper

transform ℓ of the curve ℓ is another section. It intersects the components � ′′
8
.

Moreover, it intersects � at 2< − 2 points I1, . . . , I2<−2 corresponding to the
common branches of ℓ and the proper transform � ′< of the hyperelliptic curve
�< at the point o. The curve � ′< is a 2-section of the conic bundle (i.e. the
restriction of the map q to � ′< is of degree 2).

Recall that the curve ℓ and the lines ℓ8 form the P-locus of �. Let f : - → P2

be the blow-down of the curves � ′
8
, . . . , � ′2<−2 and ℓ. The morphisms f, c :

- → P2 define a resolution of the transformation �. We may assume that f
is the composition of the blow-downs - → .2<−3 → . . . → .1 → .0 = P

2,
where .1 → .0 is the blow-down of the image of ℓ under the composition
- → . . .→ .1, and .2 → .1 is the blow-down of the image of � ′1 in .2.
The surfaces -1 and .1 are isomorphic to F1. The morphisms - → -1 and

- → .1 define a resolution of the birational map ) ′ : F1 d F1 equal to the
composition of 2< − 2 elementary transformations

F1
elmG′2
d F0 d F1 d . . . d F0

elmG′2<−2
d F1.

If we take G0 to be the image of ℓ1 under elmG′2
, and use it to define the

isomorphism ΦG0 : Bir(F0) → Bir(P2), then we obtain that 5 = ΦG0 () ′),
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where ) ′ is the composition of transformations 4G′
8
,G′
8+1
∈ Bir(F0), where 8 =

3, 5, . . . , 2< − 3. Applying Proposition
ll2ll2
7.3.6, we obtain the following.

Theorem 7.3.8. A de Jonquières transformation is equal to a composition of
quadratic transformations.

7.3.3 Noether-Fano-Iskovskikh inequality
SS:7.3.3

First, we generalize Corollary
fano2fano2
7.2.28 to birational maps of any rational surfaces.

The same idea works even for higher-dimensional varieties. Let 5 : ( d (′ be
a birational map of surfaces. Let c : - → (, f : - → (′ be its resolution. Let
H ′ be a linear system on - ′ without base points. For any � ′ ∈ H ′, � ∈ H ,

f∗ (� ′) ∼ c∗ (�) −
∑
8

<8E8 ,

where E8 are the exceptional configurations of the map c. Since H ′ has no
base points, f∗ (H ′) has no base points. Thus, any divisor f∗ (� ′) intersects
non-negatively any curve on - . In particular,

f∗ (� ′) · E8 = −<8E2
8 = <8 ≥ 0. (7.50) pos

This can be interpreted by saying that 5 −1 (� ′) belongs to the linear system
|� − [ |, where [ = ∑

<8G8 is the bubble cycle on ( defined by c.

Theorem 7.3.9. (Noether-Fano-Iskovskikh inequality) Assume that there existsNF
some integer <0 ≥ 0 such that |� ′ + < (′ | = ∅ for < ≥ <0. For any < ≥ <0
such that |� + < ( | ≠ ∅, there exists 8 such that

<8 > <.

Moreover, we may assume that G8 is a proper point in (.

Proof We know that  - = c∗ ( () +
∑
8 E8 . Thus, we have the equality in

Pic(-)

f∗ (� ′) + < - = (c∗ (� + < ()) +
∑
(< − <8)E8 .

Applying f∗ to the left-hand side we get the divisor class � ′ + < (′ which,
by assumption, cannot be effective. Since |c∗ (� + < () | ≠ ∅, applying f∗ to
the right-hand side, we get the sum of an effective divisor and the image of the
divisor

∑
8 (< − <8)E8 . If all < − <8 are non-negative, it is also an effective

divisor, and we get a contradiction. Thus, there exists 8 such that < − <8 < 0.
The last assertion follows from the fact that <8 ≥ < 9 if G 9 � G8 . �



7.3 Noether’s Factorization Theorem 415

Example 7.3.10. Assume ( = (′ = P2, [�] = 3ℎ and [� ′] = ℎ. We have
|� +  (′ | = | − 2ℎ| = ∅. Thus, we can take <0 = 1. If 3 ≥ 3, we have for any
1 ≤ 0 ≤ 3/3, |� ′ + 0 ( | = | (3 − 30)ℎ | ≠ ∅. This gives <8 > 3/3 for some 8.
This is Corollary

fano2fano2
7.2.28.

nex Example 7.3.11. Let ( = F= and (′ = FA be theminimal rational ruled surfaces.
Let H ′ = |f′ |, where f′ is the divisor class of a fiber of the fixed projective
bundle structure on (′. The linear system |f′ | is a pencil without base points.
So, we can write f∗ (H ′) = |c∗ (0f + 1e) − [ | for some bubble cycle, where
f, e are the divisor classes of a fiber and the exceptional section on (. Here,
(-, c, f) is a resolution of 5 . Thus,H ⊂ |0f + 1e|.
By (

CAG-2:can3CAG-2:can3
10.49),

 ( = −(2 + =)f − 2e,  (′ = −(2 + A)f′ − 2e′. (7.51) canclassruled

Thus, |� ′ +  (′ | = | (−1 − =)f − 2e| = ∅. We take <0 = 1. We have

|0f + 1e + < ( | = | (0 − <(2 + =))f + (1 − 2<)e|.

Assume that

1 < 1 ≤ 20
2 + = .

If < = [1/2], then < ≥ <0 and both coefficients 0 − <(2 + =) and 1 − 2< are
non-negative. Thus, we can apply Theorem

NFNF
7.3.9 to find an index 8 such that

<8 > < ≥ 1/2.
In the special case, when = = 0, i.e. ( = P1×P1, the inequality 1 ≤ 0 implies

that there exists 8 such that <8 > 1/2.
A similar argument also can be applied to the case ( = P2, (′ = FA . In this

case, H = |0ℎ| and |ℎ + < ( | = | (0 − 3<)ℎ|. Thus, we can take < = [0/3]
and find 8 such that <8 > 0/3.

7.3.4 Noether’s Factorization Theorem
We shall prove the following.SS:7.3.4

birr Theorem 7.3.12. The group Bir(F0) is generated by biregular automorphisms
and a birational automorphism 4G,H for some pair of points G, H.

Applying Proposition
ll2ll2
7.3.6, we obtain the following Noether’s Factorization

Theorem.

Corollary 7.3.13. The groupBir(P2) is generated by projective automorphisms
and quadratic transformations.
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Let us prove Theorem
birrbirr
7.3.12. Let 5 : F= d F< be a birational map. Let

Pic(F=) = Zf + Ze, Pic(F<) = Zf′ + Ze′,

where we use the notation from the previous Subsection. We have two bases in
Pic(-)

4 : c∗ (f), c∗ (e), 48 = [E8], 8 = 1, . . . , #,

4′ : c∗ (f′), c∗ (e′), 4′8 = [E ′8 ], 8 = 1, . . . , #.

For simplicity of notation, let us identify f, e, f′, e′ with their inverse transforms
in Pic(-). Similar to the case of birational maps of projective plane, we can
use an ordered resolution (-, c, f) of 5 to define its characteristic matrix �.

deg1 Lemma 7.3.14. Let 5 be a quadratic transformation with two (resp. one)
proper base points. Then 5 is equal to the composition of two (resp. four
or less) quadratic transformations with proper base points.

Proof Composing the transformation 5 with a projective transformation, we
may assume that 5 is either) ′st or) = ) ′′st (see Example

standardstandard
7.1.14). In the first case,

we compose 5 with the quadratic transformation ) ′ with fundamental points
[1, 0, 0], [0, 1, 0], [1, 0, 1] given by the formula:

[C ′0, C
′
1, C
′
2] = [C1C2, C1 (C0 − C2), C2 (C0 − C2)] .

The composition ) ′ ◦ ) ′st is given by the formula

[C ′0, C
′
1, C
′
2] = [C

2
0C1C2, C0C

2
2 (C2 − C0), C0C1C2 (C2 − C0)] = [C0C1, C2 (C2 − C0), C1 (C2 − C0)] .

It is a quadratic transformationwith three fundamental points [0, 1, 0], [1, 0, 0],
and [1, 0, 1].

In the second case, we let ) ′ be the quadratic transformation

[C ′0, C
′
1, C
′
2] = [C0C1, C1C2, C

2
2]

with two proper fundamental points [1, 0, 0], [0, 1, 0] . The composition) ′◦) ′′st
is given by

[C ′0, C
′
1, C
′
2] = [C

2
1 (C

2
2 − C0C1), C

2
1C

2
2 , C

3
1C2] = [C

2
2 − C0C1, C1C2, C

2
2] .

It is a quadratic transformation with two proper base points. By the above,
) ′ and ) ′ ◦ ) are equal to the composition of two quadratic transformations
with three proper points. Thus, 5 is a composition of four, or less, quadratic
transformations with three proper base points. �
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lall Lemma 7.3.15. Let 5 : F0 d F0 be a birational automorphism equal to a
composition of elementary transformations. Then, 5 is equal to a composition
of biregular automorphisms of F0 and a transformation 4G,H for a fixed pair of
points G, H, where H is not infinitely near G.

Proof It follows from Proposition
ll2ll2
7.3.6 and the previous lemma that 4G,H ,

where H �1 G, can be written as a composition of two transformations of type
4G′,H′ with no infinitely near points. Now, notice that the transformations 4G,H
and 4G′,H′ for different pairs of points differ by an automorphism of F0 which
sends G to G ′ and H to H′. Suppose we have a composition 5 of elementary
transformations

F0
elmG1
d F1

elmG2
d . . .

elmG:−1
d F1

elmG:
d F0.

If no F0 occurs among the surfaces F= here, then 5 is a composition of even
number : of elementary transformations preserving the projections to P1. It
is clear that not all points G8 are images of points in F0 lying on the same
exceptional section as G1. Let G8 be such a point (maybe infinitely near G1).
Then, we compose 5 with 4G8 ,G1 to obtain a birational map ) ′ : F0 d F0 which
is a composition of : − 2 elementary transformations. Continuing in this way,
we write 5 as a composition of transformations 4G′,H′ .

If F1
elmG8−1
d F0

elmG8
d F1 occurs, then elmG8 may be defined with respect to an-

other projection toP1. Then,wewrite this as a composition of the automorphism
g of P1 ×P1 which switches the factors and the elementary transformation with
respect to the first projection. Then we repeat this if such (F0, elmG 9 ) occurs
again. �

Let 5 : F0 d F0 be a birational transformation. Assume the image of |f| is
equal to |0f + 1e −∑

<GG |. Applying the automorphism g, if needed, we may
assume that 1 ≤ 0. Thus, by using Example

nexnex
7.3.11, we can find a point G with

<G > 1/2. Composing 5 with elmG , we obtain that the image of |f| in F1 is the
linear system |0′f′ + 1e′ − <G′G ′ −

∑
H≠G′ <HH |, where <G′ = 1 − <G < <G .

Continuing in this way, we get a map ) ′ : F0 d F@ such that the image of |f|
is the linear system |0′f′ + 1e′ −∑

<GG |, where all <G ≤ 1/2. If 1 = 1, we get
all <8 = 0. Thus, ) ′ is everywhere defined and hence @ = 0. The assertion of
the Theorem is verified.
Assume 1 ≥ 2. Since all <8 ≤ 1/2, we must have, by Example

nexnex
7.3.11,

1 >
20′

2 + @ .
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Since the linear system |0′ 5 ′ + 1B′ | has no fixed components, we get

(0′f′ + 1e′) · e′ = 0′ − 1@ ≥ 0.

Thus, @ ≤ 0′/1 < (2 + @)/2, and hence @ ≤ 1. If @ = 0, and we get 1 > 0′.
Applying g, we will decrease 1 and will start our algorithm again until we
either arrive at the case 1 = 1, and we are done, or arrive at the case @ = 1, and
1 > 20′/3 and all <G′ ≤ 1/2.
Let c : F1 → P2 be the blowing down of the exceptional section to a point @.

Then, the image of a fiber |f| on F1 under c is equal to |ℎ− @ |. Hence the image
of our linear system in P2 is equal to |0′ℎ− (0′− 1)@−∑

?≠@ <
′
?? |. Obviously,

we may assume that 0′ ≥ 1; hence, the coefficient at @ is non-negative. Since
1 > 20′/3, we get 0′ − 1 < 0′/3. By Example

nexnex
7.3.11, there exists a point

? ≠ @ such that <′? > 0′/3. Let c(G) = ? and E1 be the exceptional curve
corresponding to G and B be the exceptional section in F1. If G ∈ (, the divisor
class e − 41 is effective and is represented by the proper inverse transform of B
in the blow-up of G. Then,

(0′f + 1e − <′G41 −
∑
8>1

<′848) · (e − 41) ≤ 0′ − 1 − <′G < 0.

This is impossible because the linear system |0′f+1e−<GG−
∑
H≠G H | on F1has

no fixed part. Thus, G does not lie on the exceptional section. If we apply elmG ,
we arrive at F0 andmay assume that the new coefficient at 5 ′ is equal to 0′−<′G .
Since <′G > 0′/3 and 0′ < 31/2, we see that 0′ − <′G < 1. Now, we apply the
switch automorphism g to decrease 1. Continuing in this way, we obtain that 5
is equal to a product of elementary transformations and automorphisms of F0.
We finish the proof of Theorem

birrbirr
7.3.12 by applying Lemma

lalllall
7.3.15.

Applying Lemma
ll1ll1
7.3.4, Proposition

ll2ll2
7.3.6, and Lemma

lalllall
7.3.15, we obtain the

following.

Corollary 7.3.16. The group Cr(2) of Cremona transformations of P2 is gen-
erated by projective automorphisms and the standard Cremona transformation
)st.

Remark 7.3.17. It is known that for = > 2, the Cremona groups Cr(=) :=
Bir(P=) cannot be generated by the subgroup of projective transformations and
a countable set of other transformations. For = = 3, this is a classical result of
Hilda Hudson

Hudson
[414]. A modern, and different, proof for = ≥ 3 can be found in

PanGen
[571].
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7.4 Smooth Homaloidal Linear Systems
S:7.4

7.4.1 Definition and examples
SS:7.4.1

Definition 7.4.1. A homaloidal linear systemH is called smooth if the reduced
base scheme /A43 is smooth, and, each a8-primary component b8 of b( |+ |)
coincides with some power b<8

8
.

In particular, any isolated point of multiplicity one is not a point of contact.
Remark 7.4.2. We know from Proposition

completeintersectioncompleteintersection
7.1.10 that the base scheme of a

Cremona transformation cannot be a complete intersection. Let - ⊂ P= be a
smooth irreducible non-degenerate subvariety of P=. Recall that Hartshorne’s
conjecture says that - is a complete intersection as soon as dim - > 2=

3 . So,
assuming that this conjecture is true, we obtain that

dim Bs( |+ |) ≤ 2=
3
,

for any smooth homaloidal linear system.
In many examples Bs( |+ |)red is smooth but Bs( |+ |) ≠ Bs( |+ |)red.
An additional quite strong condition is that Bs( |+ |)red is smooth, integral and

moreover, 5 admits a resolution (f, a), where c is the blow-up of Bs( |+ |)red.
Such a situation has been studied by B. Crauder and S.Katz

Crauder
[179]. In particular,

they show that, assuming Hartshorne’s conjecture,

Bs( |+ |) = Bs( |+ |)red.

They also show that, if Hartshorne’s conjecture holds and = ≥ 7, then 3 ≤ 4.
We denote a smooth homaloidal linear system by

H = |3ℎ −
∑

<8/8 | (7.52) smoothhomaloid

where /8 are irreducible components of the �-locus and <8 is the multiplicity
of Bs( |+ |) at /8 ,
It follows from the definition that the birational map defined by a smooth

homaloidal linear system admits a smooth resolution isomorphic to the blow-up
of the reduced base scheme. The exceptional divisor is equal to

∑
<8�8 , where

�8 is the exceptional divisor of the blow-up of /8 . This implies

3= = 1 = 3= + (−1)=
∑

<=8 �
=
8 = 3

= −
∑

<=8 B(/8 , P=)0,

3: = 3
: + (−1):

∑
<:8 �

:
8 )ℎ=−:1 = 3: −

∑
<:8 B(/8 , P=)=−: , : = 0, . . . , = − 1.

(7.53) smooth degree

To compute the dimension ofH , we use the exact sequence

0→ I<8−1
/8
/I<8
/8
→ O<8/8 → O(<8−1)/8 → 0
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It allows to compute j(O<8/8 ) by induction.WehaveI<8−1
/8
/I<8
/8

� (<8−1 (N∨
/8/P= ),

soweneed to twist byOP= (3) and compute theChern classes of (<8−1 (N∨
/8/P= ) (3)

by the standard formulas, and apply Riemann-Roch.
The following theorem is due to Margherita Beloch

Beloch
[53, Parte Terza].

thm:beloch Theorem 7.4.3. There are no smooth homaloidal linear systems in P3 with
non-empty 0-dimensional �-locus.

Proof Let |3ℎ − ∑#
8=1 <8 ?8 | be a smooth homaloidal linear system with �-

locus equal to a set of points ?1, . . . , ?# . We may assume that<1 ≥ · · · ≥ <# .
By Noether’s inequality,

<1 >
= − 1
= + 1

3.

So, we get <1 >
1
23.

Assume first that 3 = 2, 3. If 3 = 2, we get 8 =
∑
<3
8
+ 1, and hence, the only

solution # = 7, <8 = 1. But the dimension of this linear system is equal to one.
We leave it to the reader to analyze the case 3 = 3 in a similar manner.
Let - → P3 be a log resolution of the base scheme of |+ | and (′ be the

proper transform of a general member ( of |+ |.
Since 3 ≥ 4, we can find C such that 4C ≤ 3 < 4C + 4. Noether’s inequality

implies <1 > 2C. Assume 3 = 4C and <1 = 2C + 2B. Then, |(′ + (C − B) - | = ∅
implies <2 > 2(C − B). The line joining ?1 and ?2 intersects ( with multiplicity
> (2C + 2B) + (2C − B) = 4C = 3. This contradicts our assumption that |+ | has
no fundamental curves.
Assume 3 = 4C and <1 = 2C + 2B − 1. Then, |(′ + (C − B) - | = ∅ implies

<2 ≥ 2(C− B) +1, and hence,<2 = 2(C− B) +1. There is no contradiction in this
case, we only deduce that there exists a line intersecting (′ with multiplicity
3. Let A be the number of points of multiplicity equal to <2. The (C − B)-
adjoint surface (C−B ∈ |( + (C − B) P3 | is of degree 4B and has the point ?1 of
multiplicity 4B−1 and A simple points. Since it is empty, counting the dimension
of |(′ + (C − B) - |, we get

(
(
4B + 3

3

)
− 1) −

(
4B + 1

3

)
− A < 0.

This implies A ≥ (4B + 1)2. Now, we count dim |+ |, and get

4 = dim+ ≤
(
4C + 3

3

)
−

(
2C + 2B + 1

3

)
− (4B + 1)2 (

(
2C − 2B + 3

3

)
=

1
6
(−12803B2−6403B−38402B2+4803−4802B−2560B2+7202+160B+240),
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where 0 = C − B > 0, B > 0. It is immediate to see that the last sum is negative,
and we get a contradiction.
Other cases with 3 = 4C + 1, 4C + 2, 4C + 3 are treated in a similar manner, and

we leave it to the reader to finish the proof. �

E2.3.2 Example 7.4.4. It is possible that Bs( 5 ) is 0-dimensional but the homaloidal
linear system is not smooth. There are hidden one-dimensional infinitely near
components. For example, consider the linear system of quadrics in P3 passing
through four non-collinear points and tangent to a fixed plane containing one
of the points. Choosing coordinates, we may assume that the points are ?1 =

[1, 0, 0, 0], ?2 = [0, 1, 0, 0], ?3 = [0, 0, 1, 0], ?4 = [0, 0, 0, 1], and the tangent
plane at the point ?4 has equation C0+ C1+ C2 = 0. After we blow up the first three
points, we obtain that the inverse image of the linear system has the base locus
equal to a line in the exceptional divisor �4 over the point ?4. If we blow up
this line, we resolve the indeterminacy of the birational map. The exceptional
divisor consists of �1, �2, �3, �

′
4, �5, where � ′4 is the proper transform of �4

isomorphic to P2 and �5 is the exceptional divisor over the line isomorphic to
the minimal ruled surface F2. The divisors � ′4 and �5 intersect along a curve
� which is the exceptional section in �5 and a line in P2.

The base ideal in a neighborhood of the point ?4 is isomorphic to the ideal
(GH, HI, GI, G + H + I). After we make the change of variables G → G + H + I, it
becomes isomorphic to the ideal (G, H2, HI, I2). It is easy to see that the blow-up
scheme is isomorphic to the projective cone over the blow-up of the maximal
ideal (H, I). It has a singular point locally isomorphic to the cone over the
Veronese surface. Its exceptional divisor is isomorphic to the quadratic cone.
The birational morphism from the resolution above to the blow-up of the base
scheme is the contraction of the divisor � ′4 to the singular point of the blow-up.
So, the homaloidal linear system can be written in the form |2� − ?1 −

?2 − ?3 − /4 |, where ?4 = (/4)red, and /4 is locally given by a primary ideal
(G, H2, HI, I2).
Finally, note that the topological realization of the simplicial complex ((`)

of the log resolution of the rational map from the previous example is homeo-
morphic to the two-dimensional sphere

Danilov
[198, §4].

beloch2 Remark 7.4.5. All Cremona transformations in P3 with 0-dimensional �-locus
were classified by Beloch

Beloch
[53, p. 64]. Besides the transformation with four base

points from Example
E2.3.2E2.3.2
7.4.4, there are two more transformations. The first one is

given by the linear system of cubic surfaces with a double points at ?1, simple
points at ?2, ?3, ?4, and one of the points is a point of 4-contact (in sense of
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Definition
def:contactdef:contact
7.1.15).∗ The second one is given by the linear system of quartics

with an ordinary triple base point and a point of 6-contact.
Note that the two transformations with 3 = 2, 3 were known to Cremona.
In the following examples, we will use the following lemma that follows

immediately from the Euler exact sequence.

lem:7.4.6 Lemma 7.4.6. Let ( be a smooth irreducible A-dimensional subvariety of P=

and 2(Θ() be the total Chern class of (, Then,

B((, P=) = 2(Θ()
(1 + ℎ()=+1

= 2(Θ() (
=−A∑
8=0
(−1)8

(
= + 8
=

)
ℎ8(),

where ℎ( = 21 (O( (1)) = 8∗ℎ.

For any 0 ≤ C ≤ A,

BA−C ((, P=) =
C∑
8=0
(−1)C−828 (Θ()

(
= + C − 8

=

)
ℎC−8(

and, setting deg(28 (Θ()) = 28 (Θ() · ℎA−8 , we obtain

B((, P=)A−C =
C∑
U=0
(−1)C−8

(
= + C − 8

=

)
deg(28 (Θ()). (7.54) substitute1

This allows us to compute the multidegree of the rational map. We have

3: = 3: −
#∑
8=1

( :∑
9=X8

3:− 9
(:
9

)
<
9

8
B(/8 , P=)=− 9

)
, (7.55) multsmooth

where X8 = codim(/8 , P=).
Using (

substitute1substitute1
7.54), we obtain the following:

smoothmultidegree Proposition 7.4.7. Let 5 be a Cremona transformation given by a smooth
homaloidal linear system (

smoothhomaloidsmoothhomaloid
7.52). Let X8 = = − dim(/8). Then,

3: = 3
: −

#∑
8=1

[(:−X8∑
C=0

3:−X8−C
( :
X8+C

)
<
X8+C
8

) ( C∑
9=0
(−1)C− 9

(=+C− 9
=

)
2 9 (Θ/8

)]
.

(7.56)
In particular,

3= = 3
= −

#∑
8=1

[(=−X8∑
C=0

3=−X8−C
( =
X8+C

)
<
X8+C
8

) ( C∑
9=0
(−1)C− 9

(=+C− 9
=

)
2 9 (Θ/8

)]
.

(7.57)

∗In Beloch’s definition this is a point of contact of order 3.
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and

3: = 3
: , if : < max{X8}.

ex:quadrocubic Example 7.4.8. Assume that the�-locus consists of#1 smooth curves�1, . . . , �#1

of genus 68 and #2 isolated points G#1+1, . . . , G# . Then, we get

3= = 3
= +

#1∑
8=1
(<=8 (= + 1) − 3=<=−1

8 ) deg(�8) + <=8 (268 − 2) −
#∑

8=#1+1
<=8 = 1,

3=−1 = 3
=−1 −

#1∑
8=1

<=−1
8 deg(�8), 3: = 3

: , : ≥ 2.

Let us specialize.
Take = = 3. We have

1 = 33 +
#1∑
8=1
[(4<3

8 − 33<2
8 ) deg�8 + <3

8 (268 − 2)] −
#∑

8=#1+1
<3
8 . (7.58) F2.8

Take 3 = 2. We have

1 = 8 +
#1∑
8=1
[(4<3

8 − 6<2
8 ) deg�8 + <3

8 (268 − 2)] −
#∑

8=#1+1
<3
8 . (7.59) F2.9

Since each isolated base point imposes at least one condition on quadrics, their
number is at most 5, and we get

−2 ≥
#∑

8=#1+1
<3
8 − 7 =

#1∑
8=1
[(4<3

8 − 6<2
8 ) deg�8 + <3

8 (268 − 2)]

≥
#1∑
8=1

<2
8 [(2<8 − 3) (deg(�8) − 1) + <8 − 3).

The only possible cases here are: (a) #1 = 1, #2 = 3, <1 = . . . = <4 =

1, deg(�1) = 1 and (b) #1 = 1, #2 = 1, <1 = <2 = 1, deg(�1) = 2. In
the first case, 32 = 4 − 1 = 3, so the multidegree is (2, 3) and the inverse
is a transformation of bidegree (3, 2). This is an example of a quadro-cubic
Cremona transformation. The %-locus is equal to the union of four planes, three
are spanned by the line and one of the points, and the fourth is spanned by the
three points. They are all blown down to four lines, one enters with multiplicity
2, and other three intersect it.
In the second case, 32 = 2, we get a transformation of bidegree (2, 2). We

will study transformations of multidegree (2, . . . , 2) in the next section.
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Take 3 = 3. We leave it to the reader to verify that there is only one transfor-
mation whose �-locus consists of one double line and six isolated points. The
inverse transformation is of order 32 − 4 = 5.

7.4.2 Special Cremona transformations
SS:7.4.2

Following
Ein
[278] we call a Cremona transformation special if its base scheme /

is irreducible and smooth. Since a special transformation admits a log resolution
with Picard number 2, the %-locus is also irreducible and coincides with the
31-secant variety of the base scheme. Its degree is equal to 313=−1 − 1

Ein
[278,

Proposition 2.3]. However, it is not necessarily smooth (but always generically
reduced). It follows from Noether’s inequality that the codimension X of the
base locus satisfies the inequality:

31 <
= + 1
X − 1

(7.60) noethersmooth

Applying Proposition
smoothmultidegreesmoothmultidegree
7.4.7, we obtain

3: = 3
: −

[(:−X∑
C=0

3:−X−C
( :
X+C

) ) ( C∑
9=0
(−1)C− 9

(=+C− 9
=

)
2 9 (Θ/

)]
. (7.61)

We start with the case X = = − 1, that is, / = � is a smooth curve of genus 6
and some degree 2.

Proposition 7.4.9. There are two possible types of special Cremona transfor-
mations with one-dimensional base scheme �:

1. = = 3, 6 = 3, deg(�) = 6, 31 = 3;
2. = = 4, 6 = 1, deg(�) = 5, 31 = 2.

Proof Applying
noetherformula1noetherformula1
7.1.13, we get 31 <

=+1
=−2 . This gives 31 ≤ 3, and, if 31 = 3,

= ≥ 4. If 31 = 2, the 1-secant variety must be a hypersurface, hence = = 3. If
31 = 3, then the 2-secant variety must be a hypersurface, hence = = 4.
Assume 31 = 3, = = 3. It follows from Example

ex:quadrocubicex:quadrocubic
7.4.8 that 1 = 27−52+ (26−

2). By Postulation, 3 = dim |OP3 (3) |− (32+1−6). This gives, 52+2(1−6) = 26
and 32 + (1 − 6) = 16. The only solution 2 = deg(�) = 6 and 6 = 3. This
transformation is an example of a bilinear Cremona transformation. We will
study them later.
Assume 31 = 2, = = 4. As above, we get 1 = 16 − 32 + 2 − 26 and 4 =

dim |OP4 (2) | − (22+1−6). This gives 32+2(6−1) = 15 and 10 = 22+ (1−6),
and hence, 2 = 5, 6 = 1. Since a general plane does not intersect �, 32 = 4.
The restriction of the linear system to a general hyperplane � is given by the
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linear system of quadrics with 5 isolated base points. The image 5 (�) is a
cubic hypersurface. Thus, 33 = 3. We obtain an example of a quadro-cubic
transformation in P4 discussed in

SR
[701, Chapter VIII, §5.2]. �

The proposition is proven in
Crauder
[179, Theorem 2.2]. In the same paper, Theorem

3.3 gives the classification in the case dim / = 2.

crauderkatz Theorem 7.4.10. A Cremona transformation with 2-dimensional smooth con-
nected base scheme / is one of the following:

(i) = = 4, 3 = 3, / is an elliptic scroll of degree 5, the base scheme of the
inverse of the quadro-cubic transformation from above;

(ii) = = 4, 3 = 4, / is a determinantal variety of degree 10 given by 4 × 4-
minors of a 4 × 5-matrix of linear forms (a bilinear transformation, see
later);

(iii) = = 5, 3 = 2, / is a Veronese surface;
(iv) = = 6, 3 = 2, / is an elliptic scroll of degree 7;
(v) = = 6, 3 = 2, / is a surface of degree eight, the image of the projective
plane under a rational map given by the linear system of quartics through
eight points.

We already encountered the case of a Veronese surface in Section
S:2.4S:2.4
2.4. The

transformation is the adjugate involution Adj3 for the space of conics in P2.
Noether’s inequality gives 31 ≤ 2 if = ≥ 5. The 1-secant variety of a surface
is of dimension 5 unless / is a Veronese surface in P5. This gives case (iv) or
= = 6. If = = 4, we can get 31 = 3 or 4.
There is no classification for higher-dimensional / . However, we have the

following nice results of L. Ein and N. Shepherd-Barron
Ein
[278].

Recall that a Severi-Zak variety is a closed smooth subvariety / of P= of
dimension 1

3 (2=−4) such that the secant variety is a proper subvariety of P=+1.
All such varieties are classified by F. Zak (see

Laz
[478]). The list is as follows:

(i) / is a Veronese surface in P5;
(ii) / is the Grassmann variety �1 (P5) embedded in the Plücker space P14;
(iii) / is the Severi variety s2 (P2 × P2) ⊂ P8;
(iv) / is the �6-variety, a 16-dimensional homogeneous variety in P26.

In all these cases the secant variety of the Severi variety / is a cubic hyper-
surface - with the singular locus equal to / . A theorem of Ein and Shepherd-
Barron asserts that a simple Cremona transformation 5 : P= d P= with
31 = 3=−2 = 2 (a quadro-quadratic transformation) has the base scheme equal
to one of the four Severi-Zak varieties. Another result from the same paper
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gives a classification of special Cremona transformations with codimension
two �-locus. If = ≤ 4 such transformations are covered by Theorem

crauderkatzcrauderkatz
7.4.10. the

paper of Crauder and Katz. A new transformation could be only in P5 and it is a
transformation of degree 31 = 5 with the base scheme equal to a determinantal
variety of type ( |5, 6|5, 4)1. It is given by maximal minors of the (5× 6)-matrix
defining the determinantal variety.
Let � be a semi-simple complex algebraic group and d : � → GL(�)

be its linear representation. Assume that it is pre-homogenous, i.e., it acts
transitively outside an irreducible hypersurface (equivalently, the algebra of
invariants is generated by one invariant %). The classification of irreducible
pre-homogeneous representations is known

SatoKimura
[655],

Shpiz
[713]. Let - be the image

of this hypersurface in the projective space |� |.
Recall that a polynomial � (C0, . . . , C=) is called homaloidal if its partial

derivatives define a Cremona transformation. An example of a homaloidal
polynomial is the determinant of a square matrix with indeterminant entries,
orthogonal or general. It defines the adjugate involution � ↦→ adj(�).
The following theorem is proved in loc. cit. paper of Ein and Shepherd-

Barron.

einshepherdbarron Theorem 7.4.11. Assume that the Hessian of % is not identically zero. Then,
either

1. % is homaloidal and defines a Cremona involution.

2. = = 2: + 1, and the transformation defined by

( m%
mC:+1

, . . . ,
m%

mC2:+1
,− m%
mC0

, . . . ,− m%
mC:

)
is a Cremona involution.

An example of pre-homogenous transformation is given a Severi-Zak variety.
The unique invariant is of degree three and + (%) is equal to the secant variety
of the Severi-Zak variety. The group and the representations (�, �) are the
following:

1. (SL(3), (2 (C3);
2. (SL(6),∧2 (C6));
3. (SL(3) × SL(3),C3 ⊗ C3);
4. (�6,C

27).
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7.5 Quadratic Cremona Transformations
S:7.5

These are transformations of algebraic degree 31 = 2. The complete classifica-
tion of quadratic transformations in arbitrary P= is not known. However, there
are partial results which we will discuss in this section.

7.5.1 Elementary quadratic transformations and complex spheres
SS:7.5.1

These are transformation of multidegree (2, . . . , 2). In fact, it follows from the
Cremona inequalities, that aCremona transformation is an elementary quadratic
transformation if and only if 31 = 32.

Let us show that any vector (2, . . . , 2) is realized as the multi-degree of
a Cremona transformation. For = = 2, we can take the homaloidal linear
system of conics through three non-collinear points. We can view a pair of the
fundamental points as a 0-dimensional quadric in the line spanned by these
points. This admits an immediate generalization to higher-dimensional spaces.
Consider the linear system of quadrics in P= containing a fixed smooth

quadric &0 of dimension = − 2. It maps P= to a quadric & in P=+1. We may
choose coordinates such that

&0 = + (C0,
∑
8=1

C28 ),

so that the hyperplane � = + (I0) is the linear span of &0. Then, the linear
system is spanned by the quadrics + (∑ C2

8
), + (C0C8), 8 = 0, . . . , =. A general

quadric in the linear system has an equation

0=+1 (
=∑
8=1

C28 ) − 2
=∑
8=1

08C0C8 = 0. (7.62) complexsphere0

If 0=+1 ≠ 0, we may assume that 0=+1 = 1, and rewrite it in the form
=∑
8=1
(C8 − 08C0)2 − (00 +

=∑
8=0

02
8 )C20 = 0.

If 00 ≠ 0, we divide by 02
0 and get the equation

02
0 (

=∑
8=1

( C8
C0
− 08
00

)2
= 2000=+1 +

=∑
8=1

02
8 . (7.63) n-sphere

It can be viewed as the equation of a sphere in the affine space A= with center
at the point ( 01

00
, . . . ,

0=
00
) and radius-square '2 = 2000=+1 +

∑=
8=1 0

2
8
. Of course,

all the coefficients here are complex numbers, so the radius could be equal to
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zero. We say that the quadric given by equation (
n-spheren-sphere
7.63) is a complex sphere. . In

Subsection
SS:2.2.3SS:2.2.3
2.2.3 we discussed complex circles.

If we take (2C20 ,−2C0C1, . . . ,−2C0C=,
∑=
8=1 C

2
8
) as a basis of the linear system of

quadrics, we obtain that the image of the rational map

6 : P= d P=+1, (C0, . . . , C=) ↦→ (2C20 ,−2C0C1, . . . ,−2C0C=,
=∑
8=1

C28 ), (7.64) qqt

defined by the linear system is the quadric

& : 2G0G=+1 +
∑
8=1

G2
8 = 0.

Its polar hyperplane with pole at (00, . . . , 0=+1) is given by equation

00G=+1 + 0=+1G0 −
=∑
8=1

08G8 = 0

Its pre-image in P= is the quadric (
complexsphere0complexsphere0
7.62). We see that the complex spheres with

radius zero correspond to poles lying on the quadric & in P=+1.
This simple observation is the cornerstone of the spherical geometry. By pass-

ing to real points, it allows one to translate all assertions about =-dimensional
spheres in R= into equivalent assertions about points in P=+1 (R).
Over C, it gives an isomorphism between the projective orthogonal group

of the quadric & isomorphic to PO(= + 2) and the Inversion group Inv(= + 1)
of Cremona transformations of P= that transforms spheres to spheres, maybe
degenerate.

inversion Example 7.5.1. The first historical example of a Cremona transformation is the
inversion map. Recall the inversion transformation from the plane geometry.
Given a circle of radius ', a point G ∈ R2 with distance A from the center of
the circle is mapped to the point on the same ray at the distance '/A (as in the
picture below).

'A

'
A

•

•

Figure 7.6 Inversion transformation in the plane

In the affine plane C2, the transformation is given by the formula

(G, H) ↦→
( 'G

G2 + H2 ,
'H

G2 + H2

)
.
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In projective coordinates, the transformation is given by the formula

(C0, C1, C2) ↦→ (C21 + C
2
2 , 'C1C0, 'C2C0).

We see that this transformation corresponds to a projective transformation of
P3 given by a formula (in coordinates as above):

[G0, G1, G2, G3] ↦→ [G1,− 1
2G1,− 1

2G2, G0] .

Let 5 : P= d P= be the Cremona transformation of P= equal to the compo-
sition of the map 6 : P= d P=+1 from above and the projection map pr@from a
point @ ∈ &. It is the identity map only if @ = [0, . . . , 0, 1] ∈ &. The �-locus
of 5 is equal to the indeterminacy locus of the rational map 6 that coincides
with the quadric &0 = + (C0,

∑=
8=1 C

2
8
). The %-locus is equal to the hyperplane

+ (C0). It is blown down to the point @0 = [0, . . . , 0, 1].
The homaloidal linear system is smooth. The multi-degree of 5 is equal to
(2, . . . , 2). This can be seen geometrically as follows.
For a general linear subspace ! of codimension : > 0, its pre-image under

the projection map pr@ : & d P= is the intersection of & with the subspace
! ′ = 〈!, @〉 spanned by ! and @. It is a quadric in ! ′. Since we can assume that
the point @0 does not belong to ! ′, the projection of this quadric from the point
@ is a quadric in the projection of ! ′ from the same point. Thus, 3: = 2. This
shows that the multidegree of the transformation is equal to (2, . . . , 2). We can
confirm this by using Lemma

lem:7.4.6lem:7.4.6
7.4.6.We use the embedding 8 : &0 ↩→ � � P=−1

to get
2(Θ&0 ) = 2(8∗Θ� )2(N&0/� )−1 = (1 + ℎ0)= (1 + 2ℎ0)−1,

where ℎ0 = 8
∗ (21 (OP= (1). Now, we apply Lemma

lem:7.4.6lem:7.4.6
7.4.6 to get

B(&0, P
=) = (1 + 2ℎ0)−1 (1 + ℎ0)−1 =

=−1∑
C=0
(2C − 1) (−1)CℎC0.

Using (
multsmoothmultsmooth
7.55), we easily find

3: = 2: −2: (
∑
8=1
(−1)8

(
:

8

)
+2

:∑
8=1

2:−1 (−1)8
(
:

8

)
= 2: +2:2(1−2: ) = 2, : ≠ =.

If : = =, we have to subtract 1 because there is one isolated simple base point.
Note that in case = = 2, the quadric &0 is the set of two distinct points 0, 1

in a fixed line ℓ. If we choose the center @ of projection & d P2 such that
pr@ (@0) ∉ ℓ, we get a quadratic transformation of P2 with three fundamental
points. If pr@ (@0) ∈ ℓ but different from 0 or 1, we get the first degenerate
quadratic transformation with fundamental points G2 � G1, G3. Finally, if pr@0

∈
{0, 1} we get a quadratic transformation with fundamental points G3 � G2 � G1.
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Let us show that any Cremona transformation of multidegree (2, . . . , 2) is a
degeneration of the the transformation 5 : P= → & d P= as above.

Proposition 7.5.2. The �-locus of any Cremona transformation 5 of multide-
gree (2, 2, . . . , 2, 2) is a codimension two subvariety of P= of degree 2.

Proof The assertion is obvious if = = 2. Assume that = ≥ 3. The image of a
general plane Π in the source P= is of degree 2. It is equal to the projection of
the Veronese surface to P= and its degree is equal to 2. This is possible only if
Π contains two base points. Thus, the codimension 2 part of Bs( 5 ) is a quadric
&0. Let � be the hyperplane spanned by the quadric. The restriction of the
map to � is given by quadrics containing &0, and the image of � is a quadric
because 5 −1 is of multidegree (2, . . . , 2). Without loss of generality, we may
assume that � = + (C0). Let 5 be given by a formula

[C0, . . . , C=] ↦→ [ 50 (C0, . . . , C=), . . . , 5= (C0, . . . , C=)],

where 58 are quadratic forms. Obviously, � belongs to the %-locus. We may
assume that it is blown down to a point [0, . . . , 0, 1]. Substituting G0 = 0, we
obtain that 58 = C0;8 (C0, C1, . . . , C=), 8 = 0, . . . , = − 1, where ;8 are linear forms.
Another change of coordinates allows us to assume that ;0 = C1, . . . , ;=−1 = C=.
Since &0 belongs to the �-locus, its equation must be 5= (C1, . . . , C=) = 0. It
is immediate to see that our transformation is equal to the composition of the
rational map to a quadric 5= (G0, . . . , G=−1) −G0G=+1 = 0 and the projection from
a point on this quadric. This is a degeneration of our transformation, where the
quadric was nonsingular. �

There are different kinds of the transformations of multidegree (2, . . . , 2)
dependent on the degeneration of the quadric in the base locus and the position
of the isolated base point. In the case = = 3, all such degenerate transformations
were classified in

PanVust
[573].

7.5.2 Non-elementary quadratic transformations
SS:7.5.2

We start with non-elementary quadratic Cremona transformations in P3. Here,
we use Cremona’s classifying method for Cremona transformations in P3. Let
5 : P3 d P3 be a Cremona transformation. Let + be a general member of the
homaloidal linear systemH . Then, the restriction of 5 toΦ defines a birational
map 5 : + d � from + to a plane in the target space P3. The restriction of
H to + is a linear system H+ whose fixed components are one-dimensional
irreducible components of the �-locus. Since + is rational we find a rational
map f : P2 d + such that the pre-image ofH+ is a homoloidal linear system
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in P2 that defines Cremona transformation 5 ◦ f : P2 d + → � � P2. The
degree of the plane homoloidal linear system is less than or equal to 32.

We employ this method here, by taking = = 3 and (31, 32) = (2, 32). It
follows from Cremona’s inequalities that 32 ∈ {2, 3, 4}. Since we are interested
in non-elementary quadratic transformations, we exclude the case 32 = 2. The
transformation + : 5 −1 ◦ f is now a planar transformation of degree 32.

Assume 32 = 3. Then, + is a quadric surface. Assume that it is smooth and
choose f : P2 d + be the inverse of the projection from a point ?0 ∈ + .
The map f has two fundamental points 01, 02 and the line spanned by these
points is blown down to ?0. Since 32 = 3, we are looking for a homaloidal
linear system of curves of degree ≤ 3. If the degree is 3, then its characteristic
vector is (3; 2, 1, 1, 1, 1) with base points (20, 01, 02, 11, 12). The image of this
linear system in + consists of twisted cubics, the residual to the line ℓ in the
complete intersection of + with another member ofH . The line ℓ contains ?0
and it is blown down under f−1 to the point 01. Another line on + containing
?0 is blown down to 02. The isolated fundamental points of 5 are the points
02, f(11), f(12). We encountered this transformation in Example

ex:quadrocubicex:quadrocubic
7.4.8.

We have found a general transformation of bidegree (2, 3). There are 10
types of degenerate transformations (see

PanVust
[573]). one of the isolated fundamental

points may lie on the fundamental line ℓ. The quadrics from H are tangent to
ℓ at this point.

Assume 32 = 4. Then, we are looking for a homaloidal linear system in
the plane whose image in the quadric + is a curve of degree 4. In this case,
the Φ-locus consists of isolated points. Again, we encountered this kind of a
Cremona transformation in Example

E2.3.2E2.3.2
7.4.4. We refer to

PanVust
[573] for the description

of five possible degenerations of this transformation.

In the rest of the subsection, wewill study quadro-quadratic transformations,
i.e. transformations of multidegree (2, 32, . . . , 3=−2, 2).

We have seen already examples of non-elementary quadratic Cremona trans-
formation of multidegree (2, 31, . . . , 3=−2, 2). These were special transforma-
tions with the base scheme equal to one of the four Severi varieties. The
%-locus of these transformations are cubic hypersurfaces equal to the secant
varieties of the base scheme. Their equations are the determinants of a general
3 × 3-Hermitian matrix with entries in one of the four complexified Hurwitz’s
composition algebras  ⊗ C, where  = R,C,H,O. The vector space of such
Hermitian matrices admits a structure of a Jordan algebra of rank 3, a commu-
tative unitary finite-dimensional algebra J over a field k (which we take equal
to be C)) satisfying the Jordan relation G2 (GH) = G(G2H). The rank of a Jordan
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algebra is the dimension of the subalgebra generated by a general element G
and the unity 4.
We will be interested in Jordan algebras of rank 3. Elements of such an

algebra satisfy a cubic equation

G3 − )A (G)G2 + ((G)G − # (G)4 = 0, (7.65) jordan1

where Tr(G), ((G), and # (G) ∈ k.Writing G as a linear combination of a basis
of ', we find that the coefficients are linear, quadratic, and cubic polynomials
in coefficients. An element G is invertible if and only if # (G) ≠ 0, the inverse
is given by 1

# (G) G
∗, where G∗ = G2 − Tr(G)G + ((G)4. We have

(G∗)∗ = # (G).

The easiest example of a Jordan algebra J is obtained from any associative
finite-dimensional algebra with an involution G ↦→ G ′ by changing its multi-
plication rule G • H := 1

2 (GH
′ + G ′H). For example, we can take any algebra

of square matrices of size = with the transpose involution. The rank of the
associated Jordan algebra is equal to =

The left-hand side of (
jordan1jordan1
7.65) is the characteristic polynomial. The algebra of

Hermitian 3 × 3-matrices over octonions is not obtained in this way, it is an
example of an exceptional Jordan algebra.
The application of Jordan algebras to Cremona transformations is explained

by the fact that the transformation

5J : |J| d |J|, [G] ↦→ [G∗]

is a quadratic Cremona involution in |J| � P=, where =+1 = dimC J. Composing
it with any projective automorphism, we obtain examples of quadro-quadratic
Cremona transformations, not necessarily involutions.
For example, the Jordan algebras corresponding to Hurwitz’s composition

algebras give us the quadro-quadric Cremoma transformations with smooth
base scheme from Theorem

einshepherdbarroneinshepherdbarron
7.4.11.

Here is another example.

Example 7.5.3. A Jordan algebra of rank 1 is the field C, a Jordan algebra of
rank 2 is isomorphic to the algebras J(@) = C × + , where (+, @) is a quadratic
space with the quadratic form @ : + → C. The multiplication law is defined by

(_, v) • (_′, v′) = (__′ + 1@ (v, v′), _v′ + _′v),

where 1@ (G, H) = 1
2 (@(G + H) − @(G) − @(H)) is the polar symmetric bilinear

form of @. Its unit element is 4 = (1, 0)
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We check

G2 = (_, v)2 = (_2 + @(v), 2_v) = 2_(_, v) + (@(v) − _2)4 = 5 (G)G − ((G)4,

where 5 (G) = 2_, ((G) = _2 − @(v). In particular, G∗ = G − 5 (G)4 = (−_, v)
satisfies G • G∗ = −((G)4, and G−1 = − G∗

( (G) .
Now, consider the direct product of algebras J = C × J(@) with the unit

4̄ = (1, 4). Let - = (U, G), then

-−1 = (U−1, (_2 − @(v))−1 (−_, v)).

Let us fix coordinates in J such that - = (G0,−G1, G2, . . . , G=) and @ = −
∑A
8=2 G

2
8
.

Then,

-−1 = (G−1
0 , (

=∑
8=1

G2
8 )−1 (G1, G2, . . . , G=)),

Considered as a rational map P= d P=, it is given by quadratic polynomials

5 (G) = (
A∑
8=1

G2
8 , G0G1, . . . , G=).

When A = =, we recognize an elementary quadratic transformation. If A < =,
it is its degeneration. We check that the cubic polynomial # (G) in this case
is equal to G0 (G2

1 + · · · + G
2
A ). Not all degenerations of an elementary quadratic

transformation are obtained in this way. Other degenerations correspond to a
possible position of isolated base points (see

PanVust
[573] and

PirioRusso2
[589].

Let us see now that any quadro-quadratic transformation is defined by some
Jordan algebra of rank 3. This is a marvelous result that one has to take with a
grain of salt because the classification of Jordan algebras of arbitrary dimension
in unknown. On the other hand, as we will see, a geometric construction of
a quadro-quadratic transformation leads to the construction of a new Jordan
algebra.
Let 5 : P= d P= be a quadro-quadratic Cremona transformation given by

quadratic polynomials:

[C0, . . . , C=] ↦→ [ 50, . . . , C=), . . . , 5= (C0, . . . , C=)] .

Composing it with the of 6 = 5 −1

6 : [C0, . . . , C=] ↦→ [60 (C0, . . . , C=), . . . , 6= (C0, . . . , C=)],

we obtain 68 ( 50, . . . , 5=) = C8# (C0, . . . , C=)), where # is a cubic polynomial. It
is clear that + (#)red is equal to the %-locus of 5 .

Consider 5 and 6 as holomorphic maps 5 , 6 : C=+1 → C=+1 and # (G)
as a holomorphic map C=+1 → C=+1 given by the diagonal matrix # (C)�=+1.
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The composition 9 = #−1 ◦ 5 îs given by rational homogenous functions
18 (C) = 58 (C)/# (C) of degree −1. The jacobian matrix 39 5 (G) of this map is a
square matrix of size = + 1 with entries

�8 9 =
m18

mC 9
= #−1 m 58

mC 9
+ 58

m#−1

mC 9

which are rational homogenous functions of degree −2. The inverse 39−1
5

is
given by homogenous rational functions of degree 2. It defines a rational map

% 5 : C=+1 → Mat=+1 (C) = End(C=+1.

Let
� 5 (G, H) = % 5 (G + H) − %(G) − %(H) : C=+1 ×Mat=+1 (C)

be the associated symmetric rational bilinear form with values in End(�).In
fact, it extends to a polynomial bilinear form. Let 4 ∈ C=+1 be such that
# (G) ≠ 0 and 9 5 (G) is invertible. Replacing 5 by % 5 (4) ◦ 5 , if needed, we may
assume that % 5 (4) = id� . We define a multiplication law on � by setting:

G • H = 1
2% 5 (G, H) (4). (7.66)

It follows from
PirioRussoXJC
[591, Theorem 3.4] (the proof relies on

McCrimmon
[509, Theorem 4.4 and

Remark 4.5]) that this multiplication law makes � into a Jordan algebra. If
9 5 (G) is defined, one checks that 9 5 (G) = G−1, hence G∗ = 5 (G) that implies
that � is a Jordan algebra of rank 3.
Since, all quadro-quadratic transformation 5 in P=, = ≤ 3 are elementary or

their degenerations, wewill concentrate on the case = > 3. Themultidegree of 5
is equal to (2, 31, . . . , 3=−2, 2). The Cremona inequalities give 32

1 ≥ 232, 3
2
2 ≥

3133, . . . , 3
2
=−2 ≥ 23=−3

brunoverra Example 7.5.4. Assume = = 4. The only possible multidegrees are (2, 3, 2) or
(2, 4, 2). Assume 32 = 3. Then, the image of a general plane is a cubic surface
in P4. It must span P4, and hence it is a cubic ruled surface. We will see in
Subsection

CAG-2:SS:9.2.1CAG-2:SS:9.2.1
9.2.1 that it is equal to the image of the minimal ruled surface F1

by a map given by the linear system |2f + e|. This shows that 5 : P2 d P4 is
given by the linear system of conics through a fixed point, and hence, one of
the irreducible components of the �-locus must be a plane. Other irreducible
components must be of dimension ≤ 1.
Now, let � be a general hyperplane in the source P4. Then, 5 (�) = & is a

quadric in the target P4. Composing the map 5 with the projection from a point
on &, we get a birational map %3 � � d P3. Its multidegree is equal to (2, 3).
We know from Subsection

SS:7.4.1SS:7.4.1
7.4.1 that the transformation must be from Example

ex:quadrocubicex:quadrocubic
7.4.8. Its �-locus is the union of a line and three isolated points. We already
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saw the line, it is the intersection of � with the �-locus of 5 . Since one of the
base points of 5 : � → & comes from the projection & d P3, we need to
add only two lines to the �-locus. Let us count the dimensions. Since the plane
in the base locus imposes six conditions and a line three conditions, the lines
must be skew lines intersecting the plane.
Let us now check that, indeed, we have a homaloidal linear system. We take

a log resolution of 5 equal to the composition a of the blow-up a1 : .1 → P4

along the lines ℓ1, ℓ2 followed by the blow-up a2 : .2 → .1 of the proper
transform Π̄ of the plane Π. Let �1 + �2 be the exceptional divisor of a1. Since
Nℓ8/P4 � Oℓ8 (1)⊕3, �4

8
= −B(ℓ8 , P4)0 = 3. We have NΠ̄/.1 = OΠ̄ (ℓ)

⊕2, where
ℓ is the proper transform of the line joining the intersection points ℓ8 ∩ Π. Let
� be the exceptional divisor of a2, we get �4 = −B(Π̄, .1)0 = −3ℓ2 = 3. The
class of the proper transforms �̄8 of �8 in �(.2) is equal to the class a∗2�8 ,
hence, �̄4

8
= 3. We compute other intersections and find (2� −� − �̄1− �̄2)4 =

24 + 24�2�2 + �4 + �̄4
1 + �̄

4
2 = 16 − 24 + 9 = 1. Thus, our linear system is

homoloidal.
Assume 32 = 4. Similar arguments show that the restriction of the map to a

general plane is given by a linear system of conics and its image is a quartic
surface. This implies that the surface is a projection of a Veronese surface, and
the �-locus is of dimension ≤ 1. Take a general hyperplane, its image under
5 is a quadric with two base points, and composing with the projection to P3,
we get a birational map P3 d P3 with isolated base points. Now, we apply
Beloch’s classification of such transformations from Remark

beloch2beloch2
7.4.5. There is

only one quadratic transformation that was already discussed in Example
E2.3.2E2.3.2
7.4.4.

Its �-locus consists of 4 points and the quadrics are tangent to a fixed plane
at one of the points. It follows that the �-locus of 5 is a curve of degree 3.
We refer to

BrunoVerra
[76], where it is shown that the �-locus is equal to the union of a

conic � and a line ! intersecting at one point such that all quadrics from the
homaloidal linear system are tangent to a hyperplane � tangent to �.

fano Example 7.5.5. An easy example of a quadro-quadratic transformation in P5

is the adjugation involution Adj2 on space of conics which we considered in
Section

S:2.4S:2.4
2.4. Its base scheme is a Veronese surface. Since the image of a general

plane is a surface of degree 4, the multi-degree of the involution is equal to
(2, 4, 4, 2).
The next example of a quadro-quadratic transformation in P5 is more inter-

esting. Consider three planes pairwise intersecting at one point. We can choose
coordinates to assume that the planes are + (C1, C2, C3), + (C0, C2, C4), + (C0, C1, C5).
Consider the linear system |+ | ⊂ |OP3 (2) | of quadrics with the base locus equal
to the union of the planes. The dimension of this linear system is equal to 5 and
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one can find a basis formed by the monomials such that the transformation is
given by the formula:

5 : [C0, . . . , C5] ↦→ [−C1C2,−C0C2,−C0C1, C0C3, C1C4, C2C5] . (7.67) basisgiz

In this basis, the transformation 5 is a Cremona involution. One can find
a log resolution of the rational transformation 5 given by the linear system
as the composition of the blow-up a1 : .1 → P3 with center at the set of
three intersection points, followed by the blow-up a2 : .2 → .1 of the proper
transforms of the planes. The proper transform Π̄8 of each plane in the first
blow-up is isomorphic to the minimal ruled surface F1. It has the normal
sheaf isomorphic to OΠ̄8 (f8)

⊕3, where f8 is the divisor class of a ruling. We
have B(Π̄8 , .1) = (1 + f8)−3. The proper transform of |+ | in H1 is equal to
|2ℎ1 − �1 − �2 − �3 |, where ℎ1 is the divisor class of the pre-image of a
hyperplane in -1 and �1 + �2 + �3 is the exceptional divisor. Let / =

∑
Π̄, we

get B(/,.1)1 = −3
∑
f8 , B(/,.1)2 = / . This easily gives 35 = 25 − 3 + 30 = 1.

Thus, |+ | is homoloidal. Since 5 is an involution, the multidegree is equal
to (2, 0, 0, 2). Here 0 is equal to the degree of the image of a 3-dimensional
subspace of P5. The map is given by a web of quadrics through three points,
and hence, the degree is equal to 5.
It was observed by Gizatullin

Giz2
[336] that the Cremona involution of multi-

degree (2, 5, 5, 2) can be viewed as the action of the standard planar quadratic
Cremona transformation on the 5-dimenensional space of conics. Applying
Noether’s factorization theorem, we obtain that the subgroup of the group
Cr(5) of Cremona transformations of P5 generated by 5 and the group of
projective transformations is isomorphic to Cr(2).
Let us look at the corresponding Jordan algebra of dimension 6. Straightfor-

ward computation show that, we can take 4 = (1, 1, 1, 0, 0, 0) and obtain

G • 5 H = 1
2 (2G0H0, 2G1H1, 2G2H2,

G3 (H1 + H2) + H3 (G1 + G2), G4 (H0 + H2) + H4 (G0 + G2), G5 (H0 + H1) + H5 (G0 + G1).

We verify that

(C0, C1, C2, C3, C4, C5) • 5 5 (C0, C1, C2, C3, C4, C5) = −C0C1C2 · 4,

confirming that 5 (C) = C∗ with # = −C0C1C2.
The following generalization of the transformation 5 can be found in

PirioRusso2
[589,

2.2.1]. Let � = �1 ⊕ �2 ⊕ �3 be the direct sum of linear spaces of dimensions
=1, =2, =3. Define

)� : (C0, G1, G2, a1, a2, a3) ↦→ (C1C2, C0C2, C0C2, C0a1, C1a2, C2a3),
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where a8 ∈ �8 . Our transformation 5 is the special case with =1 = =2 = =3 = 1.
One check that the cubic # is equal to C0C1C2.

Remark 7.5.6. The analog of a twisted cubic for a Jordan algebra J of dimension
A is the map

|J| → |C ⊕ J ⊕ J ⊕ C, [G] ↦→ [1, G, G∗, # (G)] .

The image of this map is an irreducible subvariety of - ⊂ P2A+1. It satisfies the
property that any three general points lie on a twisted cubic

PirioRussoXJC
[591],

RussoBook
[643]. In is

proved in loc. cit. that any variety with this property arises from some Jordan
algebra of rank 3.
For example, taking J to be one of the Jordan algebras arising fromHurwitz’s

composition algebras, we get:

• R: - = LG3 (C6) ⊂ P13, 6-dimensional Lagrangian Grassmannian,

• C: - = � (3, 6) ⊂ P19, the 9-dimensional Grassmannian,

• H: - = $�6 (C12) ⊂ P31, 15-dimensional orthogonal Grassmannian,

• O: - is the �7-variety in P55 of dimension 27.

All these homogenous varieties are isomorphic to minimal closed orbits of a
simple algebraic group � acting in the projetivization of its irreducible linear
representation:

1. (Sp(6),C14),
2. (SL(6),∧3 C6),
3. (SO(6), the spin representation C25 ),
4. (�7,C

56).

The last variety is defined to be the minimal closed orbit of the excep-
tional simple group � of type �7 acting in the projectivization of its minus-
cule 56-dimensional irreducible linear representation. In all these examples,
- = Sing(�4), where �4 is a certain quartic hypersurface. In the last case, it is
the famous Cartan quartic whose equation is given by a generator of the alge-
bra of invariants of � in C56. This should be compared with the corresponding
classification of quadro-quadratic Cremona tranformations with smooth con-
nected base schemes given in Theorem

einshepherdbarroneinshepherdbarron
7.4.11. In this case, - coincide with the

singular locus of a certain cubic hypersurface. In the last case of the classifica-
tion, the cubic is the famous Cartan cubic hypersurface (see Remark

CAG-2:cartancubicCAG-2:cartancubic
9.1.15).
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A Holy Grail Problem is to find the family of 3-dimensional Calabi-Yau
manifolds . such that the cohomology �2 (.,C) � J realize the representation
(�,+) from Theorem

einshepherdbarroneinshepherdbarron
7.4.11 and the cohomology �3 (.<,C) � C ⊕ J ⊕ J ⊕ C

realizes the representation (�,+) from above. The direct sum decomposition
is the Hodge decomposition. The cubic form on J should correspond to the
Yukawa coupling in �2,1 (.<,C) = J and the cubic cup-product on �2 (.,C).

7.6 Bilinear Cremona Transformations
S:7.6

Here, we encounter again aCM sheaves that we used in Chapter 4.

Definition 7.6.1. A closed subscheme / of P= of pure dimension A is called
arithmetically Cohen-Macaulay (aCM for short) if its ideal sheaf J/ is an aCM
sheaf.

Assume that codim / = 2. Then, as in Chapter 4, we obtain a locally free
resolution

0→
<⊕
8=1
OP= (−08) →

<+1⊕
9=1
OP= (−1 9 ) → J/ → 0 (7.68) res1

for some sequences of integers (08) and (1 9 ).
The numbers (08) and (1 9 ) are determined from the Hilbert polynomials of

/ .
We will consider a special case of resolution of the form (

res33res33
4.16) which we

used in the theory of linear determinantal representations of hypersurfaces:

0→ *∨P= (−= − 1) → +P= (−=) → J/ → 0, (7.69) exseq1

where*,+ are linear spaces of dimensions = and =+1, respectively. By twisting
the exact sequence, and taking cohomology, we obtain natural isomorhisms

* � �=−1 (P=,J/ ), + � �0 (P=,J/ (=)).

The resolution of J/ allows one to compute the Hilbert polynomial of the
subscheme / . We get

j(O/ (:)) = j(OP= (:)) − j(J/ (:)) =
(=+:
=

)
−

(:
=

)
− =

(:−1
=−1

)
. (7.70) hilb1

It also defines an isomorphism between / and the determinantal variety given
by the linear map

q : � → * ⊗ +, (7.71) newphi
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where P= = |� |. In coordinates, it is given by = × (= + 1) matrix � with
linear functions on � as its entries. The maximal minors of � generate the
homogeneous ideal of / . Let

r : � → +∨

be the right kernel maps. It defines the rational maps of projective spaces

|r| : |� | d P(+).

hilb Remark 7.6.2. The Hilbert scheme of an aCM subscheme / of P= admitting
a resolution (

exseq1exseq1
7.69) is isomorphic to an open subset of the projective space of

(= + 1) × = matrices �(C) of linear forms such that the rank of �(C) is equal
to = for an open non-empty subset of P=. It is a connected smooth variety of
dimension =(=2 − 1) (see

Peskine
[581] or

Ellingsrud
[285]).

P3.4.2 Theorem 7.6.3. The map )q = |r| : |� | d P(+) is a birational map with base
scheme / . Its multi-degree is equal to (3: ) = (

(=
:

)
).

Proof In coordinates, the map |r| is defined by = × = minors of the matrix �.
The subscheme / is given scheme-theoretically by these minors. In particular,
we already see that the degree of the map is equal to =. Let us view the linear
map q as an element of the tensor product �∨ ⊗* ⊗ + . Consider it as a linear
map

k : � ⊗ +∨ → *. (7.72) psi

Itmay be considered as a collection of = bilinear forms on�⊗+∨. It is immediate
that {∗ = r(4) for some {∗ ∈ +∨ and 4 ∈ � if and only if k(4 ⊗ {∗) = 0. This
relation is symmetric, so {∗ = r(4) if and only if 4 = r′({∗), where r′ : +∨ → �

is the right kernel map for the linear map q′ : +∨ → * ⊗ �∨ defined by
applying to the tensor q the isomorphism �∨ ⊗ * ⊗ + → +∨ ⊗ * ⊗ �. Thus,
the map )q′ = r′ defines the inverse of )q .

In coordinates, if we choose a basis 40, . . . , 4= in � , a basis D1, . . . , D= in *
and a basis {0, . . . , {= in + , then the linear map q can be written as a tensor

q = 0:8 9 :=
=∑

0≤:, 9≤=;1≤8≤=
0:8 9 C: ⊗ D8 ⊗ { 9 .

The matrix � is equal to C0�0 + · · · + C=�=, where �: = (0:8 9 ). The bilinear map
k is given by = square matrices -8 = (0:8 9 ) of size = + 1, where : is the index
for the columns, and 9 is the index for the rows. The graph of the Cremona map
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|r| is given by = bilinear equations in |� | × P(+)
=∑

9 ,:=0
C:{ 90

:
8 9 = 0, 8 = 1, . . . , =. (7.73) gr1

These equations define the graph of the transformation )q . Also, note that the
matrix � defining the linear map q′ : +∨ → *⊗�∨ is equal to {0�0+· · ·+{=�=,
where � 9 = (0:8 9 ). Here, : is now the row index, and 8 is the column index.

It is easy to compute the cohomology class of the graph (
gr1gr1
7.73) of )q . It is

equal to

(ℎ1 + ℎ2)= =
=∑
:=0

(
=

:

)
ℎ81ℎ

=−8
2 .

�

We can also see another determinantal variety, this time defined by the
transpose of (

psipsi
7.72)

Ck : *∨ → �∨ ⊗ +. (7.74)

Let D: ⊂ P(*) be the pre-image of the determinantal variety of bilinear
forms on � ⊗+∨ (or linear maps �∨ → +) of rank ≤ : . We have regular kernel
maps

lk : D= \ D=−1 → |� |, rk : D= \ D=−1 → P(+).

By definition, the image of the first map is equal to the base scheme / of the
rational map |r| considered in the previous theorem. The image of the second
map is of course the base scheme of the inverse map. In particular, we see that
the base schemes of )q and )−1

q
are birationally isomorphic to the variety D=.

Note the special case where � = +∨ and the image of Ck is contained in the
space of symmetric bilinear maps � ×+∨ → C. In this case,

)q = )
−1
q .

The bilinear map is given by a (=−1)-dimensional linear system |! | ⊂ |OP= (2) |
of quadrics in P=. It assigns to a general point G ∈ P=, the intersection
∩&∈ |! |%G (&) of polars of quadrics with the pile at G. It is clear that the base
scheme of 5 coincides with the base scheme of |! | in this case. If = = 2, this is
a quadratic involution conjugate to the standard Cremona involution )st.

Example 7.6.4. Consider the standard Cremona transformation of degree = in
P= given by

)st : [C0, . . . , C=] ↦→ [
C0 · · · C=
C0

, . . . ,
C0 · · · C=
C=
] . (7.75) st3
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In affine coordinates, I8 = C8/C0, it is given by the formula

(I1, . . . , I=) ↦→ (I−1
1 , . . . , I

−1
= ).

The transformation )st is an analog of the standard quadratic transformation of
the plane in higher dimension.
The base ideal of )st is generated by C1 · · · C=, . . . , C0 · · · C=−1. It is equal to the

ideal generated by the maximal minors of the = × = matrix

�(C) =

©«

C0 0 · · · 0
0 C1 . . . 0
...

...
. . .

...

0 0 . . . C=−1
−C= −C= . . . −C=

ª®®®®®®®¬
.

The (= − 1)-dimensional linear system of quadrics is spanned by the quadrics
+ (C2

:
− C2=), : = 0, . . . , = − 1.

The base scheme of )st is equal to the union of the coordinate subspaces of
codimension 2.
It follows from the proof of Theorem

P3.4.2P3.4.2
7.6.3 that the graph of )st is isomorphic

to the closed subvariety - of P= × P= given by = bilinear equations

C8H8 − C=H= = 0, 8 = 0, . . . , = − 1.

It is isomorphic to the blow-up of the union of coordinate subspaces of codi-
mension 2. The action of the torus (C∗)=+1 on P= (by scaling the coordinates)
extends to a biregular action on - . In the case = = 2, the toric surface - is a del
Pezzo surface of degree 6 isomorphic to the blow-up of 3 points in the plane,
no three of which are collinear. In = > 2 the variety is singular.

octic Example 7.6.5. Let U : *∨ → �∨ ⊗+ be a linear determinantal representation
of a nonsingular plane quartic � ⊂ P(*) � P2 given by the linear system
| � + 0 |. The image / of � in |� | under the right kernel map r is a curve / of
degree 6 and genus 3. Let q : � → * ⊗ + be the linear map obtained from the
tensor q ∈ *⊗�∨⊗+ . Then, the bilinear Cremona transformation |� | → P(+)
defined by this map is given by cubic polynomials generating the ideal of / .
Note that / is an aCM subscheme of |� | � P3. Its Hilbert polynomial is 6C − 2
in agreement with (

hilb1hilb1
7.70). Conversely, any irreducible and reduced curve of

degree 6 and arithmetic genus 3 not lying on a quadric is arithmetically Cohen-
Macaulay and admits a resolution of type (

exseq1exseq1
7.69) (see

Ellingsrud
[285, p. 430]). Assume / is

arithmetically Cohen-Macaulay. The bilinear Cremona transformation defined
by such a curve is classically known as a cubo-cubic transformations (see
SR
[701]).
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In fact, an example of a standard Cremona transformation in P3 shows that
one can often drop the assumption that / is an integral curve. In this example,
/ is the union of 6 coordinate lines, and is a curve of degree 6 and of arithmetic
genus 3, and it does not lie on a quadric. Another example of this sort is when /
is the union of 4 skew lines and two lines intersecting them. There are examples
when / is not reduced, e.g. with the reduced scheme equal to a rational normal
curve. I do not know whether any closed subscheme / of degree 6 (in the sense
that [/] = 6[line]) with ℎ0 (O/ ) = 1, ℎ1 (O/ ) = 3, and not lying on a quadric
surface, admits a resolution of type (

exseq1exseq1
7.69).

Assume / is a smooth curve and let us describe the %-locus of the corre-
sponding Cremona transformation. Obviously, any line intersecting / at three
distinct points (a trisecant line) must be blown down to a point (otherwise a
general cubic in the linear system intersects the line at more than 3 points). Con-
sider the surface Tri(/) of / , the closure in P3 of the union of lines intersecting
/ at three points. Note that no line intersects / at > 3 points because the ideal of
/ is generated by cubic surfaces. Consider the linear system of cubics through
/ . If all of them are singular, by Bertini’s Theorem, there will be a common sin-
gular point at the base locus, i.e. at / . But this easily implies that / is singular,
contradicting our assumption. Choose a nonsingular cubic surface ( containing
/ . By the adjunction formula, we have /2 = − ( · / + deg / = 6 + 4 = 10.
Take another cubic (′ containing / . The intersection ( ∩ (′ is a curve of de-
gree 9, the residual curve � is of degree 3 and / + � ∼ −3 ( easily gives
/ · � = 18 − 10 = 8. Note that the curves � are the proper transforms of
lines under the Cremona transformation. They are rational curves of degree 3.
We know that the base scheme of the inverse transformation 5 −1 is a curve
of degree 6 isomorphic to / . Replacing 5 with 5 −1, we obtain that the image
of a general line ℓ under 5 is a rational curve of degree 3 intersecting / ′ at
eight points. These points are the images of eight trisecants intersecting ℓ. This
implies that the degree of the trisecant surface Tri(/) is equal to 8. Since the
degree of the determinant of the Jacobian matrix of a transformation of degree
3 is equal to 8, we see that there is nothing else in the %-locus.
The linear system of planes containing a trisecant line ℓ cuts out on / a

linear series of degree 6 with moving part of degree 3. It is easy to see, by
using Riemann-Roch, that any 61

3 on a curve of genus 3 must be of the form
| / − G | for a unique point G ∈ / . Conversely, for any point G ∈ / , the linear
system |O/ (1) −  / + G | is of dimension 0 and of degree 3 (here we use
that |O/ (1) | = | / + a|, where a is not effective divisor class of degree 2).
Thus, it defines a trisecant line (maybe a tangent line at some point). This
shows that the curve ' parameterizing trisecant lines is isomorphic to / . This
agrees with the fact that ' must be isomorphic to the base curve of the inverse
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transformation. The Cremona transformation can be resolved by blowing up
the curve / and then blowing down the proper transform of the surface Tri(/).
The exceptional divisor is isomorphic to the minimal ruled surface with the
base curve equal to / . It is the universal family of lines parameterized by / . Its
image in the target P3 is the surface Tri(/ ′), where / ′ is the base locus of the
inverse transformation (the same curve, only re-embedded by the linear system
| / + 0′ |, where 0′ ∈ | / − 0 |).

arguesiancubic Example 7.6.6. Here, we will discuss an example of a non-reduced ACM curve
of degree 6 and arithmetic genus 3.
Fix an isomorphism a : '3 → P1 and letL= = a∗ (OP1 (=)). Since ℎ0 (N'3/P3 ) =

12 (=the number of projective parameters for twisted cubics inP3) and 21 (N'3/P3 ) =
10, we easily find that

N'3/P3 � L⊕2
5 . (7.76) normaltwistedcubic

Choose a surjection D : L⊕2
−5 → L−4. Let D̄ : I'3 → I'3/I2

'3
→ L−4 be the

composition of D with the surjection I'3 → I'3/I2
'3
. It kernel defines a closed

subscheme / of P3 with /red = '3. By definition, we have an exact sequences

0→ I/ → I'3

D̄→ L−4 → 0,

and

0→ L−4 → O/ → O'3 → 0.

Tensoring byOP3 (:), and taking cohomology,we obtain j(O/ (:)) = j(O'3 (:))+
j(OP1 (3: − 4)) = 6: − 2. Thus, ?0 (/) = 3 and deg(/) = 6. We also find
that ℎ0 (O/ (:)) = 6: − 2, : ≥ 0, hence / is an aCM-subscheme. We have
ℎ0 (I/ (3)) = ℎ0 (OP3 (3) − ℎ0 (O/ (3)) = 20 − 16 = 4, and, as in the previous
example, we check that |I/ (3) | is a homaloidal linear system. One can find
a log resolution of the base scheme / by considering the composition of the
blow-up '3 followed by the blow-up of the section � of the exceptional di-
visor � = P(I'3/I2

'3
) defined by the surjection D. We may consider � as a

curve infinitely near to '3. We refer to
PanRusso
[574] for more examples of Cremona

transformation with the non-reduced base scheme obtained in a similar way.
Let f : - = Bl'3 (P3) → P3. The linear system |�'3 (2) | lifts to - and

defines a P1-bundle structure c : - → P2 on - . The pre-image of a point
in P2 = P(�0 ('3, �'3 (2))) is a secant line of '3, the residual to '3 in the
corresponding pencil of quadrics. The restriction of c to �1 is the second
ruling of � , the first one is defined by f�1 . The exceptional divisor �1 of - is
isomorphic to P1 × P1. Let f1 be the divisor class of the fiber of the projection
f� : � → '3 and f2 is the divisor class of the other ruling. If we write
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�1 = P(L⊕2
−5 ), then 21 (O(1)) = −5f1 + f2. The restriction of 2� − �1 to �1 is

linearly equivalent on �1 to 6f1 + (−5f1 + f2) = f1 + f2. This shows that the map
c restricted to �1 is a double cover c� : � → P2. The pre-image of a point
under c� are the two ends of the corresponding secant of '3.

Using Proposition
sernesisernesi
2.4.2, we find D∗N�/- � L2. Thus � is a section of

f�1 : �1 → '3 with self-intersection equal to 2. It implies that the divisor
class of � on � is equal to f1 + f2. So, a choice of the surjection D defining /
corresponds to a choice of a divisor of bidegree (1, 1) on �1. The image of �
under c� : � → P2 is isomorphic to the projection of a conic on a quadric
from a point outside of the quadric. It is a line ℓ� in the plane or the branch
conic. In the latter case, the conic is cut out by the polar of the quadric with
the pole equal to the center of the projection. The line ℓ� defines a quadric &/
from |I'3 (2) | contradicting the property of / to be an aCM-subscheme. Thus,
the image of � is a conic. Its pre-image in P3 is the developable quartic of '3
swept by tangent lines to '3 (see Subsection

CAG-2:SS:10.4.4CAG-2:SS:10.4.4
10.4.4 and Remark

CAG-2:rmk:10.4.24CAG-2:rmk:10.4.24
10.4.24). The

surface is the P-locus of the Cremona transformation 5 . It is a substitute of the
octic ruled surface in the case of a smooth aCM-curve / of genus 3 and degree
6. The lift of 5 to the log resolution Bl� (-) → P3 blows down the proper
transform of �1 to twisted cubic in the target P3 and maps �2 to its developable
quartic surface.
The cubic-cubic Cremona transformation, under an appropriate choices of

bases in the source and the target P3 coule be made into an ibvolution. It
assigns to a geenral point G in P3 the point 5 (G) such that the pair {G, 5 (G)} is
harmonically conjugate to the pair of the end-points of the unique secant of '3
containing G (see

Emch
[288]).

bordiga Remark 7.6.7. Let / be a closed aCM subscheme of codimension two in P5

defined by a resolution

0→ OP5 (−4)3 → OP5 (−3)4 → I/ → 0.

It is a determinantal variety in P5 with the right kernel map r : / → P2

isomorphic to a projective bundle P(E), where E is a rank 2 bundle on P2 with
21 (E) = 0 and 22 (E) = 6 (see

Okonek1
[560],

OttavianiScroll
[562]). Thus, / is a scroll in P5, called a

Bordiga scroll. A general hyperplane section of / is a surface ( of degree 6 in
P4 with ideal sheaf defined by a resolution

0→ OP4 (−4)3 → OP4 (−3)4 → I( → 0.

It is a determinantal surface in P4 with the right kernel map r : ( → P2

isomorphic to the blow-up of 10 points in P2. The embedding of ( in P4 is
given by the linear system of quartic curves passing through the ten points. The
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surface ( is of degree 6, classically known as a Bordiga surface
Bordiga
[65]. Finally,

a general hyperplane section of ( is a sextic of genus 3 in P3 discussed in
Example

octicoctic
7.6.5.

7.7 Involutions in the Cremona group
S:7.7

The Cremona group Crk (=) is the group of Cremona transformation of P=
k
.

Equivalently, it is the group of automorphisms of the field k(G1, . . . , G) of
rational functions with coefficients in k that leaves constants unchanged. In this
section, we will give only a brief discussion about the structure of the group
Cr(=) = CrC (=), the subject is too enormous to include in the present book.
We restrict ourselves only to discussion of elements of order 2 and give some
references to the literature at the end of the chapter.

7.7.1 Planary involutions
SS:7.7.1

We have already encountered examples of Cremona involutions in Subsections
SS:7.2.2SS:7.2.2
7.2.2 (de Jonquières involutions) and

SS:7.2.6SS:7.2.6
7.2.6 (Geiser and Betini involutions).

Before we show that any involution is conjugate to one of those, we have
to introduce some general approach to the classification of finite subgroups of
Cr(2). We refer for details and references to

DolIsk
[252].

Lemma 7.7.1. Let � be a finite subgroup of Cr(2). There exists a birational
map q : ( → P2 of smooth projective surfaces such that q−1 ◦� ◦ q ⊂ Aut(().

Proof Let * = ∩6∈�dom(6). It is an open subset of P2 on which � acts.
Let * ′ = */� be the orbit space. It is a normal algebraic surface. Choose any
normal projective completion - ′ of* ′. Let (′ be the normalization of - ′ in the
field of rational functions of *. This is a normal projective surface on which
� acts by biregular transformations. It remains to define ( to be a �-invariant
resolution of singularities (see

Lipman
[489]).

�

We say that � lifts biregularly to ( (or regularizes on ().
The lemma shows that one can classify the conjugacy classes of finite sub-

groups� of Cr(2) by classifying all possible finite groups of automorphisms of
smooth rational surfaces. Given such a surface ( and � ⊂ Aut((), we choose
a birational map q : ( → P2 and obtain a finite subgroup q ◦� ◦ q−1 of Cr(2).
Its conjugacy class does not depend on a choice of q. The lemma shows that
any finite subgroup of Cr(2) is obtained in this way.
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The next crucial step is to choose the pair ((, �) minimal in the category of
all �-equivariant birational morphisms 5 : ((, �) → ((′, �). The following
theorem, due to Yu. I. Manin, that clarifies the classical result of S. Kantor
Kantor
[438], describes all minimal �-surfaces. Its more modern proof is based on
Mori’s theory of minimal models.

minimal Theorem 7.7.2. Let ((, �) be a minimal �-surface. Then, Pic(()� � Z or
Z⊕2. In the first case, ( is a del Pezzo surface of degree 3 =  2

(
≠ 7, 8. In the

second case, ( is a conic bundle, i.e. there exists a morphism q : ( → P1 such
that its general fiber is isomorphic to P1 and any singular fiber is the union of
two (−1)-curves intersecting transversally at one point.

Let 5 ∈ Cr(2) with 5 2 = id. Assume we are in the first case. Let f be
a biregular lift of 5 to some f ∈ Aut((). If ( = P2, then f is conjugate to
the transformation (C0, C1, C2) ↦→ (−C0, C1, C2). In affine coordinates, it acts as
(G, H) ↦→ (−G,−H). Since the involutions G ↦→ −G and G ↦→ 1/G are conjugate
in Aut(P1) (by means of the map G ↦→ G−1

G+1 ), we see that )st is conjugate to a
projective involution. Since)st is an example of a de Jonquières transformation,
we may assume that the minimal surface ( ≠ P2.

we will show in the next chapter that 1 ≤ 3 =  2
(
≤ 9 and a del Pezzo surface

of degree 3 = 7 is isomorphic to the blow-up of two points in P2. A surface
of degree 8 is isomorphic to F0 or F1. Assume that ( is a del Pezzo surface
of degree 3 with Pic(()� � Z. If 3 = 9, then ( � P2. If 3 = 7 or ( � F1, (
contains an invariant curve with negative self-intersection, hence Pic(()� is of
rank ≥ 2. If ( � F0, Pic(()� � Z2.
Assume that ( is a del Pezzo surface of degree 3 ≤ 6 with Pic(() (f) =

Z. Since  ( ∈ Pic(() (f) , we obtain that f acts as −id on the orthogonal
complement  ⊥

(
of  ( . Since an element of the kernel of d : Aut(-) → , (()

(non-trivial only in the case 3 = 6) acts identically on Pic((), we may assume
that d(f) is an element of order 2 in , (() that acts as the minus identity on
 ⊥
(
� E9−3 . The only case where the Weyl group contains an element that acts

as −id on the root lattice is the case 3 = 2 (resp. 1). We explained in Subsection
SS:7.2.6SS:7.2.6
7.2.6 that the involution f in this case is conjugate to a Geiser (resp. Bertini)
involution.

Let us now assume now that Pic(()� � Z2, i.e., ( admits a structure of a
conic bundle q : ( → P1. Let

(

q

��

` // F=

a
~~

P1
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be the birational map of conic bundles onto its relative minimal model. We
assume that = is chosen here as minimal as possible.
Suppose ` is an isomorphism ( → F=. Obviously, = ≠ 1 since we can

blow down equivariantly the exceptional section to obtain P2. If = ≥ 2, then
f leaves invariant the exceptional section e. If f acts identically on e, then
it has one fixed point on each fiber not lying on e. Applying the elementary
transformation 4G at any of the se points, we obtain a f-equivariant birational
morphism ( d F=−1. By minimality of =, we obtain that = must be equal to
I4A>.
If ( = F0 � P

1 × P1, then f either belongs to the connected component of
Aut(() or it is conjugate to the involution that switches two factors of P1×P1. In
the first case, f is conjugate to either (G, H) ↦→ (1/G, H) or (G, H) ↦→ (1/G, 1/H).
In the first case, it is conjugate to the projective involution (G0, G1, G2) ↦→
(−G0, G1, G2). In the second case, it is conjugate to the standard Cremona )st.
so, the transformations are conjugate. If f is the switch, it is conjugate to the
standard to the projective involution (G0, G1, G2) ↦→ (G0, G2, G1).

Therefore, we may assume that ` : ( → F= is not an isomorphism. Hence,
the conic bundle has : > 0 singular fibers �8 = '+8 +'−8 . Let � be a section of q
with minimal self-intersection −<. We assume that � intersects '+

8
intersects

� . Then, we blow down the components '−
8
and get a minimal ruled surface

isomorphic to F<. By minimality assumption on =, we get < ≥ =. On the
other hand, the proper transform of the exceptional section e of F= has self-
intersection ≤ −=. This shows that < = =, and ( is obtained by blowing up :
points on F= not lying on e.

The image f('±
8
) of any irreducible component of a singular fiber, is an

irreducible component of some fiber �9 . If 9 ≠ 8, the pair '±8 + f('±8 ) can be
equivariantly blown down contradicting the minimality of ((, f). Obviously,
f('±

8
) ≠ '±

8
. The remaining possibilities is that f('+

8
) = '−

8
for all 8.

Let � ′ = f(�), we may assume that � intersects each '+
8
and � ′ intersects

each '−
8
. Since that are sections they do not pass through We can find a

basis of Pic(()Q in the form f,  ( , '+1 , . . . , '
+
:
, where f is the divisor class

of a fiber. Intersecting � ′ − � with each element of the basis, we easily find
[� ′] − [� ′] = 1

2 :f − ∑:
8=1 '

+
8
. This gives (� ′ − �)2 = −2= − 2� · � ′ = −: ,

hence that : = 2:0 and

� · � ′ = :0 − =. (7.77) intformula1

Lemma 7.7.3. An involution f of ( with Pic(() (f) = Z2 acts identically on
the base of the conic bundle.

Proof Suppose it does not act identically. Then f leaves invariant exactly two
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fibers of q and switches over fibers in pairs. As we saw above, the minimality
assumption on ((, f) implies that there are only two singular fibers, and they
are invariant with respect to f. The singular points of the two singular fibers
are the fixed points of f on (, Applying (

intformula1intformula1
7.77), we obtain that � · � ′ = 1 − =.

If = = 0, the point � ∩ � ′ is fixed by f, but it cannot be a singular point of a
fiber. Thus, = = 1, and we obtain two disjoint (−1)-curves on ( switched by f.
This contradicts the minimality of ((, f). �

Lemma 7.7.4. The locus ( (f) of fixed points of f is a smooth bisection � of
` with ramification points G1, . . . , G: . In particular, : = 26 + 2.

Proof Consider the action of f on the generic fiber �[ � P1
[ of q. The

involution f fixed two points on the geometric generic fiber �[̄ . This shows
that f fixed one divisor class on �[ of degree 2 such that its closure � in (
is fixed by f pointwise. Since the set of a fixed points ( (f) of f is smooth
(this is true for any automorphism of finite order since we are working over
C), � is either a smooth irreducible curve or the sum �1 + �2 of two disjoint
sections. Obviously, each �8 intersects one of the irreducible components of
a singular fiber, and since they are switched � cannot be invariant. Thus, �
is an irreducible curve of some genus 6. Since the irreducible components of
singular fibers are switched by f, the curve � intersects each singular fiber
�8 at the point G8 = '+

8
∩ '−

8
. It intersects each nonsingular fiber � at two

points or tangent at one point in �. Since no smooth f-invariant curve can be
tangent to � (its image in the quotient (/(f) locally splits in the cover at the
intersection point with the branch divisor), we obtain that ( (f) consists of :
points G1, . . . , G: . Therefore, : = 26 + 2. Note that it confirms the Lefschetz
fixed-point formula 4 − : = 2 + Trace(f : �2 ((,Q) → �2 ((,Q)) = 4((6).

�

It is now easy to finish the proof that f is conjugate to a de Jonquières
involution associated with hyperelliptic curve of genus 6. Since 26 + 2 ≥
2(= − 1), we can blow-down = − 1 components in reducible fibers intersecting
� and = − 1 components in other reducible fibers intersecting � ′ to obtain a
birational morphism ( → (′, where the image of � and � ′ are (−1)-curves �̄
and �̄ ′ intersecting at 6 +1−= points. Writing [�] = 0f + 1[�] +∑8 08'

+
8
with

rational coefficients, we easily get

[�] = (:0 + =)f + 2� −
∑
8

'+8 ,

where we used that � ·� = � · � ′ = :0 − =. This implies that�2 = : , hence the
image � ′ of � in (′ has self-intersection 2: . It intersect �̄ at :0 − = + = − 1 =
=:0 − 1 = 6 points. Finally, let c : (′ → P2 be the blowing down of � and
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: − 2(= − 1) images of '−2=−1, . . . , '
−
8
. The image of � ′ has self intersection

2: + 6 = 2(26 + 2) + 62 = (6 + 2)2. So, it is a plane curve of degree 6 + 2 with
a singular point (the image of �̄) of multiplicity 6.
It is equal to the proper transform of a plane hyperelliptic curve �6 of degree

6 + 2 under the blow-up of its singular point o and 26 + 2 Weierstrass points.
Our involution is conjugate to the de Jonquir̀es involution associated with �6,.
Remark 7.7.5. One can show that the three types of conjugacy classes of
involutions in Cr(2) are not conjugate to each other. In fact, it is easy to see
that two involutions that contain a non-isomorphic non-rational irreducible
components in their locus of fixed points are not conjugate.
One can use the minimal model theory and known automorphism groups of

del Pezzo surface (see Chapters 8 and 9) to classify all conjugacy classes of
finite subgroups of� (2). The difficult part of this classification is distinguishing
the conjugacy classes. We refer for this classification to

DolIsk
[252].

7.7.2 de Jonquiére involutions of P=
SS:7.7.2

In this subsection, we will extend the definition of a planar de Jonquières
involution to arbitrary P=.

Let - be a reduced irreducible hypersurface of degree < in P= that contains
a linear subspace of points of multiplicity < − 2. Such a hypersurface is called
submonoidal (a monoidal hypersurface is a hypersurface of degree < which
contains a linear subspace of points multiplicity < − 1). For example, every
smooth hypersurface of degree ≤ 3 is submonoidal.

Let - be a submonoidal hypersurface with a singular point o of multiplicity
< − 2. Let us choose the coordinates such that o = [1, 0, . . . , 0]. Then, - is
given by an equation

�< = C
2
00<−2 (C1, . . . , C=) + 2C003−1 (C1, . . . , C=) + 0< (C1, . . . , C=) = 0, (7.78) eqhyp

where the subscripts indicate the degrees of the homogeneous forms. For a
general point G ∈ - , let us consider the intersection of the line ℓG = oG with - .
It contains o with multiplicity < − 2 and the residual intersection is a set of two
points 0, 1 in ℓG . Define 5 (G) to be the point on ℓG such that the pairs {0, 1}
and {G, 5 (G)} are harmonically conjugate. We call it a de Jonquières involution
(observe that 5 = 5 −1).
Let us find an explicit formula for the de Jonquières involution, whichwe have

defined. Let G = [U0, . . . , U=] and let [D + {U0, {U1, . . . , {U=] be the parametric
equation of the line ℓG . Plugging in (

eqhypeqhyp
7.78), we find

(D + {U0)2{<−20<−2 (U1, . . . , U=) + 2(D + {U0){<−10<−1 (U1, . . . , U=)
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+{<0< (U1, . . . , U=) = 0.

Canceling {<−2, we see that the intersection points of the line ℓG with - are the
two points corresponding to the zeros of the binary form �D2 + 2�D{ + �{2,
where

(�, �, �) = (0<−2 (G), U00<−2 (G) + 0<−1 (G), �< (G)).

The points G and 5 (G) correspond to the parameters satisfying the quadratic
equation �′D2 + 2�′D{ + � ′{2 = 0, where ��′ + �� ′ − 2��′ = 0. Since G
corresponds to the parameters [0, 1], we have � ′ = 0. Thus 5 (G) corresponds
to the parameters [D, {] = [−�, �], and

5 (G) = [−� + �U0, �U1, . . . , �U=] .

Plugging in the expressions for � and �, we obtain the following formula for
the transformation 5

C ′0 = −C00<−1 (C1, . . . , C=) − 0< (C1, . . . , C=),
C ′8 = C8 (0<−2 (C1, . . . , C=)C0 + 0<−1 (C1, . . . , C=)), 8 = 1, . . . , =.

In affine coordinates I8+1 = C8/C=, 8 = 0, . . . , = − 1, the formulas are

I′1 = −
0<−1 (I2, . . . , I=) ′I1 + 0< (I2, . . . , I=) ′
0<−2 (I2, . . . , I=) ′I1 + 0<−1 (I2, . . . , I=) ′

,

I′8 = I8 , 8 = 2, . . . , =.

A de Jonquières involution is an example of a dilated Cremona transfor-
mation. Starting from a Cremona transformation 5 in P=−1 we seek to extend
it to a Cremona transformation in P=. More precisely, if ?o : P= d P=−1 is
a projection map from a point o, we want to find a Cremona transformation
) : P= d P=−1 such that ?o ◦ )̄ = ) ◦ ?o. Suppose that 5 is given by de-
gree 3 homogeneous polynomials (�1, . . . , �=). Composing with a projective
transformation in P=, we may assume that o = [1, 0, . . . , 0]. Thus, the transfor-
mation ) must be given by (�0, &�1, . . . , &�=), where & and �0 are coprime
polynomials of degrees A and 3 + A. The following result can be found in

PanGen
[571].

ipan Proposition 7.7.6. Let (�1, . . . , �=) be homogeneous polynomials of degree
3 in C1, . . . , C=. Let �0 = C0�1 + �2, & = C0�1 + �2, where �1, �2, �1, �2 are
homogeneous polynomials in C1, . . . , C= of degrees 3 + A − 1, 3 + A, A − 1, A,
respectively. Assume that �0 and & are coprime and �1�2 ≠ �2�1. Then, the
polynomials (�0, &�1, . . . , &�=) define a Cremona transformation of P= if
and only if (�1, . . . , �=) define a Cremona transformation of P=−1.
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Proof Let � ′(I1, . . . , I=) denote the dehomogenization of a homogeneous
polynomial � (C0, . . . , C=) in the variable C1. It is obvious that (�0, . . . , �=)
defines a Cremona transformation if and only if:

C(�1/�0, . . . , �=/�0) := C(� ′1/�
′
0, . . . , �

′
=/� ′0) = C(I1, . . . , I=).

Consider the ratio �0/&�1 =
C0�1+�2

C0��1+��2
. Dehomogenizing with respect to C1,

we can write the ratio in the form 0I1+1
2I1+3 , where 0, 1, 2, 3 ∈ C(I2, . . . , I=). By

our assumption, 03 − 12 ≠ 0. Then,

C(�1/�0, . . . , �=/�0) = C(�0/&�1, �2/�1, . . . , �=/�1)

= C(�2/�1, . . . , �=/�1) (�0/&�1) = C(�2/�1, . . . , �=/�1) (
0I1 + 1
2I1 + 3

).

This field coincides with C(I1, . . . , I=) if and only if C(�2/�1, . . . , �=/�1)
coincides with C(I2, . . . , I=).

�

Taking �8 = C8 , 8 = 1, . . . , =, and

�0 = −C00<−1 (C1, . . . , C=) − 0< (C1, . . . , C=),
& = 0<−2 (C1, . . . , C=)C0 + 0<−1 (C1, . . . , C=),

we see that a de Jonquières involution is dilated from the identity transforma-
tion of P=−1. If we replace �0 with C01<−1 (C1, . . . , C=) + 1< (C1, . . . , 1<), where
13−1, 1< are any polynomials of indicated degrees such that �0 and & still
satisfy the assumptions of Proposition

ipanipan
7.7.6, then we get a Cremona transfor-

mation, not necessarily involutive. In fact, one defines a general de Jonquières
transformation as follows.

defdejonq Definition 7.7.7. A Cremona transformation 5 : P= d P= is called a de Jon-
quières transformation if there exists a rational map 5 : P= d P: birationally
isomorphic to the projection map pr2 : P=−: × P: → P: and a Cremona
transformation ) ′ : P: d P: such that 5 ◦ ) = ) ′ ◦ 5 .

In algebraic language, this definition is equivalent to 5 defining an automor-
phism Φ of the field of rational functions in I1, . . . , I= of the form

(I1, . . . , I=) ↦→ ('1, . . . , ': , ':+1, . . . , '=),

where '1, . . . , ': are rational functions in variables I1, . . . , I: with coefficients
in C and ':+1, . . . , '= are rational functions in variables I:+1, . . . , I= with
coefficients in the field C(I1, . . . , I: ).
A de Jonquières transformation obtained by dilating the identity map of P=−1

is the special case when : = = − 1 and ) ′ is the identity. It is easy to compute



452 Cremona Transformations

its multidegree. Take a general linear :-codimensional subspace ! of P=. We
can write ! as the intersection of : − 1 hyperplanes �8 = + (;8 (C1, . . . , C=))
containing the point o and one hyperplane �: = + (;: (C0, . . . , C=)) which does
not contain o. The pre-image of the first : − 1 hyperplanes �8 are reducible
hypersurfaces �8 = + (C8&) of degree<. The pre-image of �: is a hypersurface
�: of degree<. The intersection of the hypersurface+ (&)with�: is contained
in the base scheme of 5 . Thus, the degree of the intersection �1 · · ·�: outside
the base locus is equal to <. This shows that the multi-degree of 5 is equal to
(<, . . . , <). Note that the case < = 2 corresponds to quadratic transformations
we studied in Subsection 7.2.1. In the notation from this Subsection, the point
o is the isolated base point, and the submonoidal hypersurface in this case is a
quadric hypersurface & such that the quadric component &0 of the base locus
is equal to the intersection & ∩ %o (&).

Remark 7.7.8. The following is Cremona’s original construction of a space
de Jonquièyes transformation

CremonaBir1
[185]. Consider a rational curve ' of bidegree

(1, < − 2) on a nonsingular quadric & in P3. Let ℓ be a line on & which
intersects ' at < − 2 distinct points. For each point G in the space, there exists
a unique line joining a point on ℓ and on '. In fact, the plane spanned by G and
ℓ intersects ' at a unique point A outside ' ∩ ℓ and the line 〈G, A〉 intersects ℓ at
a unique point B. Take two general planes Π and Π′ and consider the following
birational transformation 5 : Π d Π′. Take a general point ? ∈ Π, and find the
unique line passing through ? and intersecting ' at a point A and intersecting
ℓ. at a point B. The line intersects Π′ at the point 5 (?). For a general line ℓ in
Π, the union of lines 〈A, B〉, A ∈ ', B ∈ !, is a ruled surface of degree <. Its
intersection with Π′ is a curve of degree <. This shows that the transformation
5 is of degree <. It has 2< − 2 simple base points. They are < − 1 points in
Π′ ∩ ' and < − 1 points which are common to the line Π ∩ Π′ and the < − 1
lines joining the point ℓ ∩ Π with the points in the intersection Π ∩ '. Finally,
the point ℓ ∩ Π′ is a base point of multiplicity < − 1. Identifying Π and Π′ by
means of an isomorphism, we obtain a de Jonquières transformation.

7.7.3 Geiser type involutions
SS:7.7.3

The set of conjugacy classes of birational involutions f of P=, = ≥ 3, are
divided into two classes: rational or irrational, dependent on whether the
quotient P=/(f) is a rational variety or not. Obviously, any rational involution
is conjugate to the deck transformation of a rational map P= d P= of degree 2.
Of course, all planar involutions are rational.
An example of a unirational involution is provided by any non-rational but
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unirational =-dimensional variety - with the minimal degree of a dominant
rational map P= d - equal to two, for example, a cubic threefold - ⊂ P4 ClemensCubic

[146,
Appendix B].
Let 5 be a Cremona involution and G( 5 ) ⊂ �1 (P=) be the associated

complex of lines in P= (see Subsection
SS:7.2.3SS:7.2.3
7.2.3). Let

U 5 = {(G, ?) ∈ P= × P= : G ∈ � 5 (?)}

be the universal family of isologue curves of 5 . Then the fiber over a general
point G of the first projection is the line 〈G, 5 (G)〉 ∈ G( 5 ).We have the following
commutative diagram

U 5

pr1

��

]̃) // /G( 5 )

@G( 5 )

��

?G( 5 ) // P=

P=
]) // G( 5 )

(7.79) universalisologue

Here, the composition of the maps in the upper row coincides with the second
projection pr2 : U) → P=.
The rational map

] 5 : P= d G( 5 ), G ↦→ 〈G, 5 (G)〉

factors through the orbits space P=/( 5 ) (considered as any birational model of
the field of invariants C(I1, . . . , I=) ( 5 ) ) and defines a rational map

]̄ 5 : P=/( 5 ) d G( 5 ).

There are three possible scenarios.

1. ]̄ 5 is a birational map;
2. ]̄ 5 has one-dimensional fibers, i.e. 5 is an Arguesian involution.
3. ]̄ 5 is of finite degree > 1.

In the first case, G( 5 ) is a =-dimensional subvariety of the Grassmannian
�1 (P=). For example, if = = 3, G( 5 ) is a complex of lines in P3. Its important
invariant is the degree (see Section

CAG-2:S:10.2CAG-2:S:10.2
10.2). It is equal to the degree of the curve

of lines passing through a general point G ∈ P= under the Plücker embedding
of the Grassmannian.
In the second case, dimG( 5 ) = = − 1. If = = 3, it is a surface of lines in P3.

Its order is the number of lines passing through a general point of P3.
It is clear that the complex of lines G( 5 ) of 5 is a unirational variety. In the

first two cases,G( 5 ) is isomorphic to the quotient of the graph Γ 5 ⊂ P=×P= of
5 by the involution switching the factors. It is a rational involution if and only
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if G( 5 ) is a rational variety. In the second case, ]̄ defines a birational map to
the restriction /G( 5 ) of the universal line bundle /�1 (P=) → �1 (P=) to G( 5 ).
It sends G to the point (G, 〈G, 5 (G)) ∈ /�1 (P=) . Again, 5 is a rational involution
if and only ifG( 5 ) is a rational variety. I do not know what happens in the third
case, in fact, I do not know an example of Cremona involution in this case.

Let us give some examples of rational involutions of the first kind.

Example 7.7.9. Let 5 be a symmetric bilinear Cremona involution. Recall that
its graph Γ 5 is a complete intersection in P= × P= of = symmetric divisors of
bidegree (1, 1). The involution is defined by switching the factors. The Segre
map embeds Γ 5 onto a linear section of the Segre variety. The quotient embeds

into P
1
2 =(=+1) as a variety of degree 1

2
(2=
=

) DolgachevHoward
[249, §5]. In the case = = 2, this

is a cubic surface. For a general pencil of quadrics, it is isomorphic to the
Cayley cubic surface. For larger = and general linear system of quadrics, the
quotient has 2= singular points, the images of 2= base points of the linear
system. This generalization of the Cayley cubic surface can be also described
as the intersection of the determinant variety Q= (2) of quadrics of rank 2 with
the linear subspace defined by the condition that the diagonal elements of a
general symmetric matrix are equal. The map to the Grassmannian is the map
studied in Subsection

SS:2.4.4SS:2.4.4
2.4.4 that assigns to the matrix the dual of its null-space.

For = = 3,G( 5 ) is isomorphic to a 3-fold in P6 of degree 10 with 8 singular
points, locally isomorphic to the cone over a Veronese surface.

Example 7.7.10. We have already encountered the following example of a
rational involution of P3 in Remark

rmk:dianodermk:dianode
6.3.15. It can be considered as an analog

of the planar Bertini involution, although it is known by the name a Kantor
involution

CobleSym
[157].

The linear system |4ℎ − 2P| of quartic surfaces passing with multiplicity
two through a general set P = {?1, . . . , ?7} of seven points in P3 defines a
degree 2 map from P3 to the cone over the Veronese surface in P6. It lifts to
an anti-canonical map BlP (P3) → P(1, 1, 1, 2) of degree 2. The target of the
map is isomorphic to the cone over the Veronese surface. The locus of fixed
points of the involution is the Cayley dianode sextic surface with the set P
of triple points and one isolated point ?8. The Kantor involution is the deck
transformation of this map.
The net # of quadrics through ?1, . . . , ?7 has the eighth base point ?8. It

defines an elliptic fibration Bl?1 ,..., ?8 (P3) → #∗ with the section equal to the
exceptional divisor over ?8. The transformation 5 is the negation involution
on fibers of the fibration. The projection to P2 from ?8 defines a net of cubics
through the projections of P. For a general point G ∈ P3, let� (G) be the unique
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quartic elliptic curve passing through ?1, . . . , ?8, G. Then 5 (G) is equal to the
residual intersection point of � (G) with the plane containing the line 〈G, ?8〉
and tangent to� (G) at ?8. For a general point ? ∈ P3, the fiber of the projection
?G( 5 ) : /G( 5 ) → P3 is a plane curve isomorphic to the isologue curve �W (?′)
of the Geiser involution W with center at the projection of ? from the point
?8. So, the degree of G( 5 ) is equal to 8 + 1 = 9. This implies that G( 5 ) is a
complete intersection of �1 (P3) with a hypersurface of degree 9 in the Plücker
space P5. It is birationally isomorphic to the cone over the Veronese surface in
P6.
The image of a general plane Π under the map given by the linear system
|4ℎ − 2P| projected to the Veronese surface in P5 with degree 4. It is cut by a
quartic hypersurface in P6. Its pre-image in P3 is the union of Π and a surface
of degree 15 passing through ?1, . . . , ?7 with multiplicity 8. This shows that
the degree of the Cantor involution is equal to 15. Its �-locus consists of the
seven points and the inion of 21 chords 〈?8 , ? 9〉.

The next example is another generalization of a planar Geiser involution.

Example 7.7.11. The starting point is an observation that the ideal sheaf I/
of the set / of seven points in P2 = |� | in a general position is an aCM-sheaf
defined by a resolution

0→ OP2 (−5) ⊕ OP2 (−4) → OP2 (−3)3 → I/ → 0.

The resolution is defined by a matrix

� =

(
01 02 03
11 12 13

)
with polynomial entries 08 of degree 2 and 18 of degree 1. It defines a map
|� | → |�0 (P2,I/ (3))∨ | whose graph is a complete intersection of divisors of
bidegree (2, 1) and (1, 1). Computing the multidegree, we find that the map is
a rational of degree 2 and of algebraic degree 3. It coordinates, it is given by
the maximal minors of the matrix �. We recognize the map from Proposition
postpost
7.6. The deck transformation of this cover is a Geiser planar involution.
Now, we see how to extend this map to any P=. We consider a locally free

resolution

0→ OP= (−1)=−1 ⊕ OP= (−2) → O=+1P= → J/ (= + 1) → 0,

where / is a codimension 2 closed aCM-subscheme in P= with Hilbert poly-
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nomial

j(O/ (C)) = j(OP= (C)) − j(I/ (C)) = j(OP= (C)) − (= + 1)j(OP= (C − = − 1))
+ (= − 1)j(OP= (C − = − 2)) + j(OP= (C − = − 3))

=

(
C + =
=

)
− (= + 1)

(
C − 1
=

)
+ (= − 1)

(
C − 2
=

)
+

(
C − 3
=

)
.

(7.80)

Again, we see that the resolution is defined by a matrix of size = × (= + 1)
with the linear entries in the first = rows and quadratic entries in the last row.
The maximal minors of the matrix provide us with a rational map P= d P=
of algebraic degree = + 1. Its graph in P= × P= is a complete intersection
of = − 1 divisors of type (1, 1) and one divisor of type (2, 1). We compute
(ℎ1 + ℎ2)=−1 (2ℎ1 + ℎ2) to obtain that the multi-degree of this map is equal to
(1, 31, . . . , 3=−1, 2), where 3: = 2

(=−1
:−1

)
+

(=−1
:

)
. In particular, the degree of the

map is equal to 2.
Take = = 3. Computing the Hilbert polynomial, we find that the base scheme

/ is a smooth aCM curve of degree 11 and genus 14. For any smooth quartic
( containing / , the residual curve � ∈ |O( (4) − / | of quartics containing / is
a curve of genus 2 and degree 5.

We have |O( (2) − � | = {'}, where ' is a rational normal cubic on (. The
linear system |� | = |O( (2) −' | defines a double cover ( → P2 with the branch
curve of degree 6. Thus, the restriction of the double cover P3 d P3 defined
by |I/ (4) | to ( coincides with the double cover ( → P2 defined by the linear
system |� |.
Let q̃ : - = Bl/ (P3) d P3 be the rational lift of q to the blow-up of the

branch curve / . We have  - = −4� + �, where � is the pre-image of the
divisor class of a plane in P3, and � is the exceptional divisor of the blow-up.
We see that the proper transform of the linear system |IP3 (4)−/ | to - coincides
with the linear system | −  - |. The variety - is a weak Fano variety of degree
(− - )3 = 2. This means that − - is nef and big. It can be found in the list of
weak Fano varieties obtained by blowing up a smooth curve in P3 (see

BlancLamy
[61] and

Cutrone
[195]). Also, the map q̃ coincides with the anti-canonical map, in a complete
analogy with the planar Geiser involution.

The exceptional divisor � of the blow-up is a P1-bundle over / isomorphic
to P(N∨

//P3 ). Applying Lemma (
lem:7.4.6lem:7.4.6
7.4.6), we find that B(/, P3) = [/] − 70[?C]

and compute − - · �2 = −4� · / + �3 = −44 + 70 = 26.
It follows from the Cayley formula for the number of 4-secant lines of a curve
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of genus 6 and degree 3

C4 =
(3 − 2) (3 − 3)2 (3 − 4)

12
− (3

2 − 73 + 13 − 6)6
2

, (7.81) foursecant

that / has 35 4-lines
GH
[360, Chapter 2, §5]). They are blown down to ordinary

double points of �.
The ramification divisor Ram(q̃) belongs to | − 3 - |. Its image under the

blowing down morphism - → P3 belongs to |3(4� − /) |. It is a surface of
degree 12 that contains / with multiplicity 3. The branch divisor � of q̃ is a
surface of degree 6. So, - is a birational model of a double sextic solid. Note
that the double cover of P3 branched along a general surface of degree 6 is a
non-rational variety. In our case, it is a rational variety.
The image of a general planeΠ under the map q is given by the linear system
|! | = |OΠ (4) − / ∩ Π|. It is a rational surface +5 of degree 16 − 11 = 5, a
projection of a Bordiga sextic surface from a point on it. Since each 4-secant
of / intersects Π, the image of Π contains the thirty-five singular points of the
branch sextic surface.
We have q̃−1 (q(Π)) ∈ |5(4� − �) |, hence 5 (Π) ∈ |19ℎ − 5/ |. Thus, the

degree of 5 is equal to 19. The base locus of 5 is equal to the union of the curve
/ taken with multiplicity 5 and 35 4-secants.

Remark 7.7.12. Similar to the case (6, 3) = (3, 6), there are two irreducible
components in the Hilbert scheme of smooth curves of genus 14 and degree
11. The other component parameterizes non-aCM curves lying on a quadric as
curves of bidegree (3, 8)

BlancLamy
[61, Proposition 2.7].

Remark 7.7.13. There are other examples of a smooth curve / of genus 6 and
degree 3 such that - = Bl/ (P3) is a weak Fano 3-fold such that − 3

-
= 2, so

that the anti-canonical map is of degree 2. In each case, the deck transformation
gives an example of a Cremona involution. The values (3, 6) satisfying these
properties are (8, 2), (9, 6), (10, 10), and our case (11, 14). The anti-canonical
map is given by the linear system |OP3 (4) − / | of quartic surfaces passing
through / . For a general quartic . in this linear system |O. (4) − / | is a linear
system of genus 2 curves. It follows, as above, that the branch divisor of the
anti-canonical map is a surface of degree six. It follows from (

foursecantfoursecant
7.81) that it has,

respectively, 31, 30, 31 singular points. The homaloidal linear systems defining
the corresponding Cremona involutions are |OP3 (32) − 8/ − ! |, |OP3 (28) −
7/ − ! |, |OP3 (24) − 6/ − ! |, where ! denotes the union of 4-secants.

Remark 7.7.14. In the previous examples, we encountered quartic surfaces .
which contain a smooth curve � of genus 2 of degree 3 = 16 − deg(/), where
/ ∈ |O. (4) − � |. The birational involution defined by |� | is an example of a
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Gizatullin involution of a quartic surface, a birational involution of a smooth
quartic surface that can be lifted to a Cremona involution of P3. There are
examples of biregular involutions of smooth quartic surface which cannot be
lifted to a Cremona involution

Oguiso
[557].

Remark 7.7.15. Wehave the following commutative diagram of birationalmaps

-

f

��

q̃

  

j // -+

q̃+

~~
f+

��
P3

q

��

.

��

P3

q+

~~
P3

Here . → P3 is the double cover of P3 branched along a sextic surface with
35 ordinary double points. Each of the birational morphisms q̃ and q̃+ is a
small contraction that represent two small resolutions of 35 ordinary double
points on. . The birational morphisms q̃ and q̃+ are divisorial contractions. The
exceptional divisors are ruled surfaces isomorphic to the exceptional divisors
of f and f+.
The birational map j is an example of an flop. The birational morphism f+

is the blow-up of a curve / ′ ⊂ P3 projectively isomorphic to / . The birational
map f+ ◦ j ◦ f îs an example of a Sarkisov link. Since, j is an example of a
pseudo-isomorphism of algebraic varieties, a birational isomorphism which is
an isomorphism on the complement of a closed subset of codimension ≥ 2. It
pull-back homomorphism j∗ : Pic(-+) → Pic(-) is bĳective and sends  -+
to  - . The proper transform of the divisor �+ under j belongs to | −18 - −� |Cutrone
[195].
Example 7.7.16. One can apply the dilation operation from Subsection 7.7.2
to planar Cremona involutions. In this way, we obtain examples of rational de
Jonqui‘́eres involution and examples of dilated Geiser an Bertini involutions. It
was shown by Coble that the dilated Geiser (resp. Bertini) involution is given
by the linear system |15�−14?9−6(?1+· · ·+ ?8) | (resp. |33�−32?9−6(?1+
· · · + ?8) |, where (?1, . . . , ?8, ?9 (resp. (?1, . . . , ?8, ?9) is the dilated set of 7
(resp. 8 points) in P2 CobleSym

[157]. Both involutions leave invariant a Cayley quartic
symmetroid D(,) associated with a general web of quadrics in P3 with the
set of ten nodes containing the points ?8 . The Kantor involution together with
the dilated Geiser and Bertini involutions descend to biregular automorphisms
of the Reye congruence lines associated with , and generate its group of
automorphisms

DKEII
[259, 8.4, 8.5].
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7.7.4 Arguesian involutions
7.7.4

Recall that a Cremona transformation 5 of P= is called Arguesian if the complex
of lines G( 5 ) is of dimension = − 1. In this subsection, we will give some
classical examples of Arguesian involutions.

transfT7 Example 7.7.17. The following is another generalization of the planar Geiser
involution. Assume = = 3, and consider a rational map q : P3 d P3 defined by
the linear system H = |2� − ?1 − . . . − ?6 |, where ?1, . . . , ?6 are points in a
general linear position. Take a general point G ∈ P3, then the quadrics fromH
passing through G form a net. The base locus of the net consists of 8 points, we
have already seven base points ?1, . . . , ?6, G. By definition, 5 (G) is the eighth
base point.
The involution is the deck transformation )7 : P3 → P3 = H ∗ defined by

the web of quadricsH . We will see later, in Subsection
CAG-2:SS:12.3.1CAG-2:SS:12.3.1
12.3.1 that the branch

divisor of the map is a Kummer quartic surface, and the ramification divisor is
a Weddle surface. encountereed this example earlier A general plane is mapped
to a quartic surface, a projection of a Veronese surface. The pre-image of this
quartic surface consists of the plane and a surface of degree 7. This shows
that the degree of the involution is equal to 7. It is given by the linear system
|7� − 4P|. It is an example of a regular Cremona transformation (see

Coble
[159],

DolgachevOrtland
[234]). Its �-locus is determined by a finite set of indeterminacy points. In this
case, the lines ℓ8 9 = 〈?8 , ? 9〉 belong to the �-locus because a general member
of the homalidal linear system has points of multiplicity 4 at ?8 . Also the unique
twisted cubic '3 containing the points ?8 belongs to �-locus becaus 3 ·7 < 4 ·6.
It is similar to that we had for teh standard cubic transformation of P3 with the
edges of the tetrahedron as its set of �-points. . The lift of )7 to BlP (P3) blows
down the proper transform of ℓ8 9 (resp. '3) to the line ℓ8 9 (resp. '3) in the target
P3.
The P-locus consists the six quadrics from the linear system which have a

singular point at one of the points ? 9 . They are blown down to the points ?8 .
Let ℓ be the secant line containing a point G ∈ P3 (ot tangent to '3 if G ∈ '3).

It intersects the Weddle at two points G1, G2 on ℓ. The image ) (G) is the point
on ℓ such that the pairs {G, )7 (G)} and {G1, G2} are harmonically conjugate.
Indeed, there is a pencil in H that contains '3 + ℓ. The restriction of H to ℓ
contains the intersection of the cones with vertics at G1, G2 to ℓ. It defines a 61

2
on ℓ with the ramification points G1, G2. The net of quadrics in H that contain
G, contains ) (G) as another base point. Thus, {G, ) (G)} is a member of 61

2, and
hence, the pairs {G, )7 (G)} and {G1, G2} are harmonically conjugate.

Remark 7.7.18. One can show that the Cremona group Cr(3) contains a sub-
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group isomorphic to an elementary abelian 2-group 25 of rank 5 that leaves
the Weddle surface invariant. One of the non-trivial elements in this group is
our transformation 5

Coble
[159, Chapter III, §36]. This gives an example of a group

of birational automorphisms of a quartic surface of order 16 that consists of
Gizatullin involutions.
The Coble representation cr6 : , (�6) → Bir(%6

3) defined in
Coble
[159],

DolgachevOrtland
[234]

has the kernel that coincides with the normal subgroup 25 of the Weyl group
, (�6). Let

• • • • •

•

U1 U2 U3 U4 U5

U0

Figure 7.7 Coxeter-Dynkin diagram of type �6 Coxdiagd6

The kernel is the smallest normal subgroup containing the product of simple
reflections W = BU0 BU5 . The image of this involution is a cubic transformation
with fundamental point ?1, . . . , ?4. It switches the points ?5 and ?6. The
septic transformation)7 is equal to the composition W(f1Wf

−1
1 ) (f2Wf

−1
2 , where

f1 = (35) (56), f2 = (15) (26) belong to the subgroupS6 ⊂ , (�6) generated
by U1, . . . U5. (see

Coble
[159, p. 116].

transfT3 Example 7.7.19. Fix a rational normal cubic curve '3 in P3 and consider the in-
volution G ↦→ )3 (G) such that the pairs {G, )3 (G)} and {G1, G2} are harmonically
conjugate. This is similar to the previous example. However, in this case, )3 is
a cubo-cubic transformation. We encountered this transformation in Example
arguesiancubicarguesiancubic
7.6.6. Its �-locus is '3 and irs %-locus is the tangential quartic surface with
the double curve '3. The image of a general plane Π is a cubic surface with 3
double points in Π ∩ '3. So, the transformation is different from the standard
cubic transformation given in (

st3st3
7.75), where the images of planes were 4-nodal

cubic surfaces.
The image of a general line ℓ is a rational cubic curve '. Since ℓ intersects

the tangential quartic surface at four points, it meets four tangents of '3 which
are blown down to four intersection points of '3 and )3 ('3). Note that the line
complexes associated to)3 and)7 are the same; the planes ' (2)3 � P2 embedded
in P5 by the Plücker embedding. However, the maps of ]̄ are different.

The following two examples are taken from
GodeauxArguesian
[338].

godeaux1 Example 7.7.20. Let + (_@1 + `@2) be a pencil of quadrics in P=. Fix a point
? not belonging to the base locus � of the pencil, For a general point G ∈
P3, restrict the pencil to the line 〈G, ?〉 and consider the quadric from the
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pencil containing G. It contains another point 5 (G) on the same line. The
transformation G → 5 (G) is an Arguesian involution. Let us find the formula
for the transformation 5 .
Choose projective coordinates such that ? = [00, . . . , 0=]. A line 〈G, ?〉 is

given parametrically by [BG0 + C00, . . . , BG= + C0=]. The point G is contained in a
quadric _@1 (G) +`@2 (G), so that we may assume that [_, `] = [@2 (G),−@1 (G)].
The second intersection point on the line 〈G, ?〉 is given by the linear equation

@2 (G)@1 (BG0 + C00, . . . , BG= + C0=) − @1 (G)@2 (BG0 + C00, . . . , BG= + C0=)

= [@2 (G)11 (G, ?) − @1 (G)12 (G, ?)]B + [@2 (G)@1 (?) − @1 (G)@2 (?)]C = 0.

Denote the coefficients at B and C by �(G, ?) and �(G, ?), we obtain

5 (G) = [�(G, ?)G + �(G, ?)?]

The degree of 5 is equal to 3. Note that, if the line 〈G, ?〉 intersects the base
locus � of the pencil, then �(G, ?) and �(-, ?) are proportional, and hence, 5
blows contracts this line. The �-locus is equal to � ∪ {?} and the %-locus is
equal to the cone over � with vertex at ?. It is contracted to the curve �. The
complex of linesG( 5 ) is an U-plane of lines through ?, a congruence of order
one and class 0.

godeaux2 Example 7.7.21. This time, we take the congruence ( of lines intersecting
two skew lines ℓ and ℓ′. Fix a general pencil of quadrics P and consider the
following involution 5 of P3. Let& be the unique quadric from P that contains
a general point G ∈ P3 and let ℓG be the unique line ℓG ∈ ( passing through
G. Then, by definition, & ∩ ℓG = {G, 5 (G)}. Obviously, 5 (ℓG) = ℓG , so 5 is an
Arguesian involution,.
It is clear that the base curve � of P is a fundamental curve. For a general

point G ∈ ℓ there exists a unique & ∈ P containing G. It intersects the plane
〈G, ℓ′〉 along a conic. All lines in this plane passing through G belong to (,
hence the image of the ruling of the exceptional divisor of Blℓ (P3) over G is
mapped to a conic. This shows that the lines ℓ and ℓ′ enter in the base scheme
with multiplicity 2.
We will explain in Example

CAG-2:Type1CAG-2:Type1
11.4.1 in Volume II that the surface of secant

lines of � is a congruence of lines of degree 8. Since all lines intersecting ℓ8
is a hyperplane section of �1 (P3), we obtain that there are exactly eight secant
lines ℓ1, . . . , ℓ8 of � that intersect ℓ and ℓ′. Let &8 be the unique quadric in P
that contains ℓ8 . Any line on&8 intersecting ℓ8 is blown down to the point of its
intersection with ℓ8 . This shows that &8 belongs to the %-locus, and also shows
that ℓ8 enters with multiplicity one in the base scheme. Similarly, we see that �
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enters withmultiplicity one. Applying (
hudsonformulahudsonformula
7.10), we get 3 (3−1) = 2·4+4+8 = 20,

hence 3 = 5.
The %-locus consists of the eight quadrics&8 and the ruled surface of degree

4 of rays from ( that intersect �. The degrees add up to 20 = 4 · (3 − 1).
Let Π be a general plane, the map + = Π → 5 (Π) is given by the linear

system of curves of degree 5 with two two base points of multiplicity 2 and 12
simple base points. Since 5 is an involution + is also equal to the pre-image of
a general plane under 5 . It contains two double lines, the quartic curve �, and
eight secant lines ℓ8 . The curve � is the image of the unique plane quartic with
two double points Π ∩ ℓ,Π ∩ ℓ′, and eight simple points Π ∩ ℓ8 . The surface
has also eight conics, the images of the lines joining a double base point with
one of the points in Π ∩ �.

A closed subvariety -= of P2=+1 of dimension = is called a subvariety with
one apparent double point (OADP subvariety, for short) if a general point in
P= lies on a unique secant line of - . A twisted cubic is the simplest example
of an OADP variety. We will see in Section

CAG-2:S:8.5CAG-2:S:8.5
8.5 that a nonsingular del Pezzo

surface of degree 5 anti-canonically embedded in P5 is an OADP subvariety of
dimension 2.
An OADP subvariety - of P= defines a Cremona involution of P= in a way

similar to the definition of a de Jonquières involution. For a general point
G ∈ P= we find a unique secant line of - intersecting - at two points (0, 1),
and then we define the unique 5 (G) such that the pair {G, 5 (G)} is harmonically
conjugate to {0, 1}. A Cremona involution obtained in such a way is called
an OADP-involution. The complex of lines G( 5 ) of an OADP-involution is
birationally isomorphic to the symmetric product - (2) .

An infinite series of examples of OADP subvarietes was given byD. Babbage
Babbage
[27] and W. Edge

EdgeDP
[276]. They are now called the Edge varieties. The Edge

varieties are of two kinds. The first kind is a general divisor �=,2=+1 of bidegree
(1, 2) in P1 × P= embedded by Segre in P2=+1. Its degree is equal to 2= + 1. For
example, when = = 1, we obtain a twisted cubic in P3. If = = 2, we obtain a del
Pezzo surface in P5. The second type is a general divisor of bidegree (0, 2) in
P1 × P=.

For example, when = = 1, we get the union of two skew lines. When = = 2,
we get a quartic ruled surface (2,5 in P5 isomorphic to P1 × P1 embedded by
the linear system of divisors of bidegree (1, 2). A smooth OADP surface in P5

is either an Edge variety of dimension 2, or a scroll (1,5 of degree 4
Russo
[642].

We refer to
CMR
[137] and

AlzatiRusso
[11] for more information about OADP subvarieties.

An example of a reducible OADP curve is the curve Γ = ℓ + �=−1 from the
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description of congruences of lines of order one. We will give an example of
the OADP-involution in this case in Chapter 11.

Exercises
7.1 Let |! | be the linear system of quadrics through a rational normal curve of degree

= in P=. Show that its dimension is equal to 1
2 (= + 1(= − 2) and the image of the

rational map given by the linear system is of degree 2=−=2 +=−2. If = = 4, show
that the image is isomorphic to a smooth quadric in P5 that can be identified with
the Plücker embedding of the Grassmannian � (2, 4).

7.2 Let / = ℓ1∪ℓ2 is the union of two lines in P3 intersecting at a point ?0. Show that
8∗B(/, P=) = 2ℎ2 − 6ℎ3. Find the base scheme of the linear system of quadrics
containing / . Show that the linear system defines a birational map onto a quadric
of corank one in P4 and the inverse map is the projection of the quadric from a
nonsingular point.

7.3 Let / be the union of three non-coplanar linesin P3 intersecting at one point.
Show that 8∗B(/, P3) = 3ℎ2 − 10ℎ3. Describe the blow-up of / , and find its log
resolution.

7.4 A set of lines in P3 is called homaloidal if there exist some positive integers
3, <1, . . . , <= such that the linear system |3� −

∑=
8=1 U8ℓ8 | is homaloidal. Show

that the union of four skew lines in P3 and two lines intersecting them is a
homaloidal set. Find its %-locus, as well as the base scheme and the %-locus of
the inverse Cremona transformation.

7.5 Let G be an isolated base point of B-contact point of a homaloidal linear system.
Show that G contributes −B − 1 to the formula for the degree 3= of the Cremona
transformation.

7.6 Consider a rational map defined by

[C0, C1, C2] ↦→ [C1C2 (C0− C2) (C0−2C1), C0C2 (C1− C2) (C0−2C1), C0C1 (C1− C2) (C0− C2)] .

Show that it is a Cremona transformation and find the Enriques diagram of the
corresponding bubble cycle.ex:7.7

7.7 Let � be a plane curve of degree 3 with a singular point ?. Let c : - → P2 be
a sequence of blow-ups which resolves the singularity. Define the bubble cycle
[(�, ?) = ∑

<8G8 as follows: G1 = ? and <1 = mult?�, G2, . . . , G: are infinitely
near points to ? of order one such that the proper transform� ′ of� in the blow-up
Bl? (P2) contains these points, <8 = multG8� ′, 8 = 2, . . . , : , and so on.
(i) Show that the arithmetic genus of the proper transform of � in - is equal to

1
2 (3 − 1) (3 − 2) − 1

2
∑
8 <8 (<8 − 1).

(ii) Describe the Enriques diagram of [(�, ?), where � = + (C1−00 C01 + C
1
2 ), ? =

[1, 0, 0], and 0 ≤ 1 are positive integers.
ex:7.8

7.8 Give an example of a planar Cremona transformation with no infinitely near base
points such that the inverse transformation has infinitely near base points.ex:7.star

7.9 Show that two hyperelliptic plane curves �< and � ′< of degree < and genus
< − 2 are birationally isomorphic if and only if there exists a de Jonquières
transformation which transforms one curve to another.ex:7.9
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7.10 Consider a set of five points o, G1, G2, G3, G4 such that the last three points are
collinear. Consider a de Joinquières transformation of degree three with funda-
mental point o of multiplicity 2 and simple fundamental points at the points G8 .
Show that one of five total principal curves is reducible.ex:7.10

7.11 Let �6+2 be a hyperelliptic curve given by Equation (
hypphypp
7.29). Consider the lin-

ear system of hyperelliptic curves �@+2 = + (C226@ (C0, C1) + 2C26@+1 (C0, C1) +
6@+2 (C0, C1)) such that 566@+2 − 2 56+16@+1 + 56+26@ = 0. Show that
(i) the curves �@+2 exist if @ ≥ (6 − 2)/2;
(ii) the branch points of �6+2 belong to �@+2 and vice versa;
(iii) the curve �@+2 is invariant with respect to the de Jonquières involution ��6+2

defined by the curve �6+2 and the curve �6+2 is invariant with respect to the
de Jonquières involution ��@+2 defined by the curve �@+2;

(iv) the involutions ��6+2 and ��@+2 commute with each other;
(v) the fixed locus of the composition �6+2 ◦ �@+2 is given by the equation

56+@+3 = det ©«
56 56+1 56+2
6@ 6@+1 6@+2
1 −C2 C22

ª®¬ = 0;

(vi) the de Jonquières transformations that leave the curve �6+2 invariant form a
group. It contains an abelian subgroup of index 2 that consists of transforma-
tions which leave �6+2 fixed pointwise.

ex:7.11
7.12 Find the automorphism group of the surface F=.ex:7.13
7.13 Let � be an irreducible plane curve of degree 3 > 1 passing through some points

G1, . . . , G= with multiplicities <1 ≥ . . . ≥ <=. Assume that its proper inverse
transform under the blowing up the points G1, . . . , G= is a smooth rational curve
�̄ with �̄2 = −1. Show that <1 + <2 + <3 > 3.ex:7.15

7.14 Let (<, <1, . . . , <=) be the characteristic vector of a Cremona transformation.
Show that the number of fundamental points with <8 > </3 is less than 9.ex:7.16

7.15 Compute the characteristic matrix of the composition ) ◦ ) ′ of a de Jonquières
transformation 5 with fundamental points o, G1, G2, . . . , G23−2 and a quadratic
transformation ) ′ with fundamental points o, G1, G2.ex:7.17

7.16 Let f : A2 → A2 be an automorphism of the affine plane given by a formula
(G, H) → (G + %(H), H), where % is a polynomial of degree 3 in one variable.
Consider f as a Cremona transformation. Compute its characteristic matrix. In
the case 3 = 3 write as a composition of projective transformations and quadratic
transformations.ex:7.18

7.17 Show that every Cremona transformation is a composition of the following maps
(“links”):
(i) the switch involution g : F0 → F0;
(ii) the blow-up f : F1 → P2;
(iii) the inverse f−1 : P2 d F1;
(iv) an elementary transformation elmG : F@ d F@±1.

ex:7.19
Ex:7.22 7.18 Show that any planar Cremona transformation is a composition of de Jonquières

transformations and projective automorphisms.ex:7.20
7.19 Let P be a linear pencil of plane curves whose general member is a curve of

geometric genus 1 and 5 : P2 d P1 be a rational map it defines.

(i) Show that there exist birational morphisms c : - → P2, q : - → P1 with
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5 = q ◦ c−1 such that q : - → P1 is a relatively minimal rational elliptic
surface.

(ii) Use the formula for the canonical class of an elliptic surface to show that
the divisor class of a fiber is equal to −< - for some positive integer <.

(iii) Show that there exists a birational morphism f : - → P2 such that the
image of the elliptic fibration is an Halphen pencil of index <, i.e. a linear
pencil of curves of degree 3< with nine <-multiple base points (including
infinitely near).

(iv) Conclude by deducingBertini’s Theorem, which states that any linear pen-
cil of plane elliptic curves can be reduced by a plane Cremona transformation
to an Halphen pencil.

ex:7.22
7.20 Describe a log resolution of the Cremona transformations of degree 3 and 4 from

Remark
beloch2beloch2
7.4.5. Find its simplicial complex and describe the inverse transforma-

tions of degrees 9 and 16.
7.21 Consider the Arguesian involution 5 from Example

arguesiancubicarguesiancubic
7.6.6. Show that, for any

general point G ∈ P3, the pair {G, 5 (G)} is harmonically conjugate to the pair
{?1, ?2}, where ?1, ?2 are the point on '3 lying on the unique secant of '3
passing through G.

7.22 Let � be a smooth curve in P= of genus 6 and degree deg(�) and let I� →
I�/I2

/
→ L is the composition of surjections, whereL be an invertible sheaf on

� of degree 0. Show the linear system |I/ (3) | defined by the closed subscheme
/ with the ideal sheaf I/ = Ker(I� → L) is homaloidal if and only if

3= + (4 − 46 − 2(= + 1) deg(�) + 20) − 23= deg(�) = 1.

and ℎ0 (�/ (3)) = = + 1. The Arguesian involution from the previous example
corresponds to the case = = 3, 3 = 3, 6 = 0, deg(�) = 3, 0 = −4. Find new
examples of homaloidal linear systems ℎ0 (�/ (3)).

7.23 A Cremona transformation 5 is called monomial if its restriction to the open
subset * � (C∗)= complementary to the union of the coordinate hyperplanes
+ (C8) is given by (I1, . . . , I=) → (zm1 , . . . , zm= ), where zm8 = I<811 · · · I<8== are
monomials in affine coordinates I8 = C8/C0, 8 = 1, . . . , =.
(i) Let -Σ be a toric variety defined by a fan Σ containing * as its dense torus

orbit. Show that the matrix " = (<8 9 ) is invertible and defines a linear
automorphism 6" ∈ GL(=,R=). It also defines an isomorphism of toric
varieties 5" : -Σ → - ′

Σ
, where Σ′ = 6" (Σ). Show that its restriction to the

open subset* coincides with the birational map given by the binomials zm8 .
(ii) Let Π be a common subdivision of Σ and Σ′. Show that the projections

f : -Π → -Σ and a : -Π → -Σ′ define a resolution of the birational
transformation 5" = a ◦ f−1.

(iii) In the case when Σ is defined by the vectors e1, . . . , e=,−(e1+· · ·+e=), -Σ and
-Σ′ can be identified with P= and 5" defines a Cremona transformation. Show
that the degree 3: is equal to themixed volumeVol(%, . . . , %︸    ︷︷    ︸

:

, 6(%), . . . , 6(%)︸             ︷︷             ︸
=−:

).

Confirm that 3: =
(=
:

)
if " = −�= and 5" is the standard Cremona transfor-

mation in P=.
(iv) Use the known generators of the group GL(=,Z)

CoxeterGenerators
[177, 7.1] to show that the

monomial Cremona transformations form a group generated by projective and
quadratic transformations

GonzalezPan
[343].
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7.24 ACremona transformation 5 of P= is called regularizable if there exists a rational
variety - , a birational morphism q : - → P=, and an automorphism 6 of - such
that 5 = q◦6◦q−1. We showed that any 5 of finite order inCr(=) is regularizable.
Show that a general quadratic transformation in Cr(2) is not regularizable.ex:7.5

7.25 Describe the base schemes of the inverse of the transformations of bidegree
(2, 4), (3, 9) and (4, 16) from Remark

beloch2beloch2
7.4.5.

7.26 A Cremona transformation is called monoidal if its homaloidal linear systemH
consists of monoidal hypersurfaces (see Subsection

SS:7.7.2SS:7.7.2
7.7.2). Assume = = 3 andH

consists of surfaces of degree 3 with a line Γ of multiplicity 3 − 1.
(i) Suppose the base scheme ofH consists of skew lines ℓ1, . . . , ℓ0 intersecting Γ

and general simple points ?1, . . . , ?1 outside Γ. Show that 20 + 1 = 3(3 − 1).
(ii) Show that the inverse transformation 5 −1 is also monoidal with 3′ satisfying

0 + 21 = 3(3 ′ − 1).
(iii) Find the %-locus of the Cremona transformation defined byH .
(iv) Give examples of homaloidal linear systemsH .

7.27 Show that two planar Cremona transformations whose loci of fixed points are not
birationally equivalent cannot be conjugate in the Cremona group Cr(2). Using
this, give a finer description of conjugacy classes of planar Cremona involutions.
of the corresponding Geiser involution.

7.28 Consider the Cremona transformation 5 from Example
godeaux2godeaux2
7.7.21 defined by a pencil

of quadrics in P3 and two skew lines ℓ1 and ℓ2.
(i) Show that there are 8 secant lines of the base curve � of the pencil of quadrics

that intersect both ℓ1 and ℓ2.
(ii) Show that the base scheme of 5 consists of the lines ℓ1 and ℓ2 taken with

multiplicity 2, the curve � and the eight secants.
(iii) Show that degree of 5 is equal to 5.

Historical Notes

The monograph of Hilda Hudson
Hudson
[414] remains the only monograph devoted

exclusively to Cremona transformations of P2 and P3. Several books in alge-
braic geometry contain a chapter devoted to Cremona transformations. Thus,
Coolidge’s book gives a rather complete exposition of the theory of planar
Cremona transformation and a book by Semple and Roth

SR
[701] discusses many

Cremona transformations besides transformations of P2 and P3. Volume IV of
Sturm’s book

Sturm2
[736] gives many examples of Cremona transformations of P3.

There are also two small books by L. Godeaux
GodeauxSpace
[341],

GodeauxPlane
[342] that contain only

some basic facts with a few examples.
A recent book by J. Deserti

DesertiBook
[222] is devoted to the Cremona group and its

subgroup, the topic which we conscientiously omitted since it will lead us far
afield.

The main source of references to work on Cremona transformations prior to
1927-1932 is

Hudson
[414] and

Topics
[715].
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A comprehensive history of the theory of Cremona transformations can be
found in several sources

CoolidgeHistory
[168],

Hudson
[414], and

Topics
[715]. Here, we give only a brief

sketch.
Two memoirs of L. Cremona

CremonaBir
[183] and

CremonaBir1
[185] published in 1863 and 1864

initiated the general study of Cremona transformations. However, examples of
birational transformations have been known since antiquity, for instance, the
inversion transformation. The example of a quadratic transformation presented
in Example

ponceletponcelet
7.2.5 goes back to Poncelet

Poncelet
[601], although the first idea of a gen-

eral quadratic transformation must be credited to C. MacLaurin
MacLaurin
[501]. It was

generally believed that all birational transformations must be quadratic, and
much work was done in developing the general theory of quadratic transfor-
mations. The first transformation of arbitrary degree was constructed in 1859
by E. de Jonquières in

deJ2
[214], the de Jonquières transformations. His memoir

remained unpublished until 1885 although he published an abstract of his work
in 1864

deJ1
[213]. In his first memoir

CremonaBir
[183], Cremona constructs a general de

Jonquières transformation without reference to de Jonquières. We reproduced
his construction in Section

SS:7.2.3SS:7.2.3
7.2.3. Cremona gives credit to de Jonquières in

his second paper. R. Sturm
SturmBir
[731] first studies symmetric transformations of

order five. Symmetric transformations of order 8 were first studied by C. Geiser
Geiser
[324] and of order 17 by E. Bertini

Bertini
[55]. In his second memoir, Cremona lays

the foundation of the general theory of plane birational transformations. He
introduces the notion of fundamental points and principal curves establishes
the equalities (

virt1virt1
7.21) and (

virt2virt2
7.23), proves that the numbers of fundamental points

of the transformation and its inverse coincide, principal curves are rational,
and computes all possible characteristic vectors up to degree 10. The notion
of a homaloidal linear system was introduced by Cremona later, first for space
transformations in

CremonaBir2
[189] and then for plane transformations in

CremonaBir3
[190]. The word

“homaloid” means flat and was used by J. Sylvester to mean a linear subspace
of a projective space. More generally, it was applied by A. Cayley to rational
curves and surfaces. Cremona also introduced the net of isologues and proved
that the number of fixed points of a general transformation of degree 3 is equal
to 3 + 2. In the special case of de Jonquière transformations this was also done
by de Jonquière in

deJ2
[214]. The notion of isologue curves belongs to him as well

as the formula for the number of fixed points.
Hudson’s book

Hudson
[414] discusses many special Cremona transformations in

P3. In her words, the most interesting space transformation is the bilinear cubo-
cubic transformation with the base curve of genus three and degree six. It
was first constructed by L. Magnus in 1837

Magnus
[503]. In modern times, bilinear

transformations, under the name determinantal transformations, were studied
by I. Pan

PanDet
[572],

PanDet2
[575], and by G. Gonzales-Sprinberg

Gonzalez
[344].
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The first major result in the theory of plane Cremona transformations after
Cremona’s work was Noether’s Theorem. W. Clifford guessed the statement of
this theorem in 1869

Clifford
[153]. The original proof of M. Noether in

NoetherBir
[552] based on

Noether’s inequality contained a gap, which we explained in Remark
historyhistory
7.2.32.

Independently, J. Rosanes found the same proof and made the same mistake
Rosanes1
[634]. In

NoetherBir2
[554], Noether tried to correct his mistake, taking into account the

presence of infinitely near fundamental points of highest multiplicities where
one cannot apply a quadratic transformation. He took into account the case
of infinitely near points with different tangent directions but overlooked the
cuspidal case. The result was accepted for thirty years until in 1901 C. Segre
pointed out that the cuspidal case was overlooked

SegreBir
[684]. In the same year, G.

Castelnuovo
CastelnuovoBir
[97] gave a complete proof along the same lines as used in this

chapter. In 1916, J. Alexander
Alex
[5] raised objections to Castelnuovo’s proof and

gave a proof without using de Jonquières transformations
Alex
[5]. This seems to be

a still accepted proof. It is reproduced, for example, in
AlgSur
[3].

The characteristic matrices of Cremona transformation were used by S.
Kantor

Kantor
[438] and later by P. Du Val

DuVal
[266]. The latter clearly understood the

connection to reflection groups. The description of proper homaloidal and
exceptional types as orbits of the Weyl groups was essentially known to H.
Hudson. There are numerous modern treatments; these started fromM. Nagata
Nagata
[543] and culminated in the monograph of M. Alberich-Carramiñana

Alberich
[2]. A

modern account of Clebsch’s Theorem and its history can also be found there.
Theorem

charweylcharweyl
7.2.33 is usually attributed to Nagata, although it was known to S.

Kantor and A. Coble.
The original proof of Bertini’s Theorem on elliptic pencils discussed in

Exercise
ex:7.22ex:7.22
7.19 can be found in

Bertini
[55]. The Halphen pencils were studied by G.

Halphen in
HalphenPencil
[373]. A modern proof of Bertini’s Theorem can be found in

DolgachevHalphen
[232].

A survey of results about reducing other linear systems of plane curves by
planar Cremona transformation to linear systems of curves of lower degrees
can be found in

Topics
[715] and in

GodeauxPlane
[342]. The formalism of bubble spaces originated

from the classical notion of infinitely near points was first introduced by Yu.
Manin

Manin
[504].

The theory of decomposition of Cremona transformation via composition
of elementary birational isomorphisms between minimal ruled surfaces has a
vast generalization to higher dimensions under the name Sarkisov program (see
Corti
[171]).
We intentionally omitted the discussion of finite subgroups of the Cremona

group Cr(2); the modern account of this classification and its history can be
found in

DolIsk
[252].



Historical Notes 469

The term Arguesian involution is in honor of a projective geometer J.L.A.
Argues de Gratigny.
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Kondo [464] S. Kondō, The automorphism group of a generic Jacobian Kummer surface, J.
Alg. Geom. 7 (1998), 589–609.
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