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Preface

The main purpose of the present treatise is to give an account of some of the
topics in algebraic geometry, which, while having occupied the minds of many
mathematicians in previous generations, have fallen out of fashion in modern
times. Often in the history of mathematics, new ideas and techniques make the
work of previous generations of researchers obsolete. This mainly refers to the
foundations of the subject and the fundamental general theoretical facts used
heavily in research. Even the greatest achievements of the past generations,
which can be found, for example, in the work of F. Severi on algebraic cycles
or in the work of O. Zariski in the theory of algebraic surfaces, have been
greatly generalized and clarified so that they now remain only of historical
interest. In contrast, the fact that a nonsingular cubic surface has 27 lines or a
plane quartic has 28 bitangents cannot be improved and continues to fascinate
modern geometers. One of the goals of this present work is then to save from
oblivion the work of many mathematicians who discovered these classic tenets
and many other beautiful results.
In writing this book the greatest challenge the author has faced was distilling

the material down to what should be covered. The number of concrete facts,
examples of special varieties, and beautiful geometric constructions that have
accumulated during the classical period of the development of algebraic geom-
etry is enormous, and what the reader is going to find in the book is only the tip
of the iceberg; a work that is like a taste sampler of classical algebraic geometry.
It avoids most of the material found in other modern books on subject, such
as, for example, [10], where one can find many classical results on algebraic
curves. Instead, it tries to assemble or, in other words, to create a compendium
of material that either cannot be found, is too dispersed to be found easily, or
is not treated adequately by contemporary research papers. On the other hand,
while most of the material treated in the book exists in classical treatises in
algebraic geometry, their somewhat archaic terminology, and what is by now
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iv Preface

completely forgotten background knowledge makes these books useful to but a
handful of experts in classical literature. Lastly, onemust admit that the author’s
personal taste also has much sway in the choice of material.
The reader should be warned that the book is by no means an introduction

to algebraic geometry. Although some of the exposition can be followed with
only a minimum background in algebraic geometry, for example, based on
Shafarevich’s book [708] it often relies on current cohomological techniques,
such as those found in Hartshorne’s book [379]. The idea was to reconstruct a
result by usingmodern techniques but not necessarily its original proof. For one,
the ingenious geometric constructions in those proofs were often beyond the
author’s abilities to follow them completely. Understandably, the price of this
was often to replace a beautiful geometric argument with a dull cohomological
one. For those looking for a less demanding sample of some of the topics
covered in the book, the recent beautiful book [54] may be of great use.
No attempt has been made to give a complete bibliography. To give an idea

of such an enormous task, one could mention that the report on the status of
topics in algebraic geometry submitted to the National Research Council in
Washington in 1928 [715] contains more than 500 items of bibliography by
130 different authors only on the subject of planar Cremona transformations
(covered in one of the chapters of the present book.) Another example is the
bibliography on cubic surfaces compiled by J. E. Hill [394] in 1896 which alone
contains 205 titles. Meyer’s article [515] cites around 130 papers published
between 1896 and 1928. The title search in MathSciNet reveals more than 200
papers refereed since 1940, many of them published only in the past 20 years.
How sad it is when one considers the impossibility of saving from oblivion so
many names of researchers of the past who have contributed so much to our
subject.
A word about exercises: some of them are easy and follow from the defi-

nitions, and some are hard; they are included to provide additional facts not
covered in the main text. In this case, we sometimes indicate the sources for the
statements and solutions.
I am very grateful to many people for their comments and corrections to

many previous versions of the manuscript. I am especially thankful to Sergey
Tikhomirov, whose help in the mathematical editing of the book was essential
for getting rid of many mistakes in the previous versions. The author bears sole
responsibility for all the errors still found in the book.
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8
Del Pezzo Surfaces

8.1 First Properties

8.1.1 Surfaces of degree 3 in P3

Recall that a subvariety - ⊂ P= is called nondegenerate if it is not contained
in a proper linear subspace. All varieties we consider here are assumed to be
reduced. Let 3 = deg(-). We have the following well-known (i.e., can be found
in modern text-books, e.g. [360], [375]) result.

Theorem 8.1.1. Let - be an irreducible nondegenerate subvariety of P= of
dimension : and degree 3. Then, 3 ≥ = − : + 1, and the equality holds only in
one of the following cases:

(i) - is a quadric hypersurface;
(ii) - is a Veronese surface V4

2 in P
5;

(iii) - is a cone over a Veronese surface V4
2 in P

5;
(iv) - is a rational normal scroll.

Recall that a rational normal scroll is defined as follows. Choose : disjoint
linear subspaces !1, . . . , !: in P= that together span the space. Let 08 = dim !8 .
We have

∑:
8=1 08 = = − : + 1. Consider Veronese maps v08 : P1 → !8 and

define (01 ,...,0: ;= to be the union of linear subspaces spanned by the points
v01 (G), . . . , v0: (G), where G ∈ P1. It is clear that dim (01 ,...,0: ;= = : and
it is easy to see that deg (01 ,...,0: ;= = 01 + · · · + 0: . Here, we assume that
01 ≤ 02 ≤ . . . ≤ 0: .
Note that, in the special case when : = 1, the definition of a rational normal

scroll coincides with the definition of a Veronese curve of degree =. . For this
reason, a Veronese curve is often called a rational normal curve of degree =
(in classical terminology, rational norm curve).
A rational normal scroll (01 ,02 ,= of dimension 2 with 01 = 0, 02 = = − 1 − 0

1



2 Del Pezzo Surfaces

will be re-denoted by (0,=. Its degree is = − 1 and it lies in P=. For example,
(1,3 is a nonsingular quadric in P3 and (0,3 is an irreducible quadric cone.

Corollary 8.1.2. Let ( be an irreducible nondegenerate surface of degree 3 in
P=. Then, 3 ≥ = − 1 and the equality holds only in one of the following cases:

(i) - is a nonsingular quadric in P3;
(ii) - is a quadric cone in P3;
(iii) - is a Veronese surface {2 (P2) in P5;
(iv) - is a rational normal scroll (0,= ⊂ P=.

The del Pezzo surfaces come next. Let - be an irreducible nondegenerate
surface of degree 3 in P3 . A general hyperplane section� of - is an irreducible
curve of degree 3. Let ?0 = ℎ1 (-,O- ) denote its arithmetic genus. There are
two possibilities: ?0 = 0 or ?0 = 1. In fact, projecting to P3 from a general
set of 3 − 3 nonsingular points, we get an irreducible curve � ′ of degree 4 in
P3. Taking nine general points in � ′, we find an irreducible quadric surface &
containing� ′. If& is singular, then its singular point lies outside� ′.We assume
that & is nonsingular, the other case is considered similarly. Let f1 and f2 be
the divisor classes of the two rulings generating Pic(&). Then, � ′ ∈ |0f1 + 1f2 |
with 0, 1 ≥ 0 and 0 + 1 = deg� ′ = 4. This gives (0, 1) = (3, 1), (1, 3), or
(2, 2). In the first two cases, ?0 (� ′) = 0. In the third case, ?0 (� ′) = 1.

Proposition 8.1.3. An irreducible nondegenerate surface - of degree 3 in P3

with hyperplane sections of arithmetic genus equal to 0 is isomorphic to a
projection of a surface of degree 3 in P3+1.

Proof Obviously, - is a rational surface. Assume that - is embedded in P3
by a complete linear system; otherwise, it is a projection from a surface of the
same degree in P#+1. A birational map 5 : P2 d - is given by a linear system
|<ℎ − [ | for some bubble cycle [ =

∑
<8G8 . We have

3 = deg - = <2 −
#∑
8=1

<2
8 ,

A = dim |<ℎ − [ | ≥ 1
2 (<(< + 3) −

=∑
8=1

<8 (<8 + 1)).

Since hyperplane sections of - are curves of arithmetic genus 0, we get

(< − 1) (< − 2) =
#∑
8=1

<8 (<8 − 1).
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Combining all this together, we easily get

A ≥ 3 + 1.

Since - is nondegenerate, A = 3 + 1. Thus, - is a surface of degree 3 in P3+1
and we get a contradiction. �

Recall that an irreducible reduced curve of arithmetic genus ?0 = 0 is a
nonsingular rational curve. It follows from the proposition that every surface -
embedded in P= by a complete linear system with rational hyperplane sections
has degree = + 1. By Corollary 8.1.2, it must be either a scroll or a Veronese
surface. For example, if we take < = 4, # = 3, <1 = <2 = <3 = 2, we obtain
a surface of degree 4 in P5. It is a Veronese surface in disguise. Indeed, if
we compose the map with a quadratic transformation with fundamental points
at G1, G2, G3, we obtain that the image is given by the linear system of conics
in the plane, so the image is a Veronese surface. On the hand, if we take
< = 3, # = 1, <1 = 2, we get a surface - of degree 5 in P6. The family of lines
through the point G1 is mapped to a ruling of lines on - , so - is a scroll.

Proposition 8.1.4. Suppose - is a scroll of degree 3 in P3 , 3 > 3, that is not
a cone. Then, - is a projection of a scroll of degree 3 in P3+1.

Proof Projecting a scroll from a point on the surface, we get a surface of
degree 3 ′ in P3−1 satisfying

3 = :3 ′ + 1, (8.1)

where : is the degree of the rational map defined by the projection. Since the
image of the projection is a nondegenerate surface, we obtain 3 ′ ≥ 3 − 2, the
only solution is : = 1 and 3 ′ = 3−1. Continuing in this way, we arrive at a cubic
surface in P3. By Proposition 8.1.6, it is a cone, hence it is a rational surface.
We will see later, in Subsection 10.4.1 that a rational scroll is a projection of a
normal rational scroll (0,= of degree = − 1 in P=. �

The classical definition of a del Pezzo surface is the following:

Definition 8.1.5. A del Pezzo surface is a nondegenerate irreducible surface
of degree 3 in P3 that is not a cone and not isomorphic to a projection of a
surface of degree 3 in P3+1.

According to the classical definition (see [701], 4.5.2), a subvariety - is
called normal subvariety if it is not a projection of a subvariety of the same
degree.
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Recall that a closed nondegenerate subvariety - of degree 3 in P= is called
linearly normal if the restriction map

A : �0 (P=,O- (1)) → �0 (-,O- (1)) (8.2)

is bĳective.
The relation between the two definitions is the following one.

Proposition 8.1.6. Suppose - is a normal nondegenerate subvariety in P=.
Then, - is linearly normal. Conversely, if - is linearly normal and normal (i.e.
coincides with its normalization), then it is a normal subvariety.

Proof It is clear that - is nondegenerate if and only if A is injective. If it is not
surjective, linear system |O- (1) | embeds - in P< with < > = with the image
- ′ of the same degree, and - is a projection of - .
Conversely, suppose the restriction map A is surjective and - is a projection

of - ′ of the same degree. The center of the projection does not belong to - ′,
so the projection is a regular map ? : - ′ → - . We have ?∗O- (1) � O- ′ (1).
By the projection formula ?∗?∗O- ′ (1) � O- (1) ⊗ c∗O- ′ . Since - is normal,
?∗O- ′ � O- (see [379, Chapter III, §11]). Thus, the canonical homomorphism

�0 (-,O- (1)) → �0 (- ′,O- ′ (1)) � �0 (-, ?∗?∗O- (1)) (8.3)

is bĳective. Since A is bĳective,

dim�0 (-,O- (1)) = dim�0 (- ′,O- ′ (1)) = = + 1.

Since - ′ is nondegenerate, dim�0 (- ′,O- ′ (1)) ≥ = + 2. This contradiction
proves the assertion. �

Let (3 ⊂ P3 be a del Pezzo surface. Assume 3 ≥ 4. As in the proof of
Proposition 8.1.4, we project (3 from a general subset of 3 − 3 nonsingular
points to obtain a cubic surface (3 in P3. Suppose (3 is a cone over a cubic curve
with vertex G0. A general plane section of (3 is the union of three concurrent
lines. Its pre-image in (4 is the union of four lines passing through the pre-
image G ′0 of G0. This means that the point G ′0 is a singular point of multiplicity
4 equal to the degree of (4. Clearly, it must be a cone. Proceeding in this way
back to (3 , we obtain that (3 is a cone, a possibility that we have excluded.
Next, assume that (3 is not a normal surface. We will see later that it must be
a scroll. A general hyperplane section of (4 passing through the center of the
projection (4 d (3 is a curve of degree 4 and arithmetic genus 1. Its image
in (3 is a curve of degree 3 and arithmetic genus 1. So, it is not a line. The
pre-image of a general line on (3 must be a line on (4. Thus, (4 is a scroll.
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Going back to (3 , we obtain that (3 is a scroll. This has been also excluded.
Thus, we obtain that a general projection of (3 from a set of 3 − 3 nonsingular
points is a normal cubic surface.
Let us derive immediate corollaries of this.

Proposition 8.1.7. The degree 3 of a del Pezzo surface (3 is less than or equal
to 9.

Proof We follow the original argument of del Pezzo. Let (3 d (3−1 be the
projection from a general point ?1 ∈ (3 . It extends to a regular map (′

3
→ (3−1,

where (′
3
is the blow-up of ?1. The image of the exceptional curve �1 of the

blow-up is a line ℓ1 in (′
3
. Let (3−1 → (3−2 be the projection from a general

point in (3−1. We may assume that the projection map (3 d (3−1 is an
isomorphism over ?2 and that ?2 does not lie on ℓ1. Continuing in this way, we
arrive at a normal cubic surface (3, and the images of lines ℓ1, and so on, will
be a set of disjoint lines on (3. We will see later that a normal cubic surface
does not have more than six skew lines. This shows that 3 ≤ 9. �

Proposition 8.1.8. A del Pezzo surface (3 is a normal surface (i.e. coincides
with its normalization in the field of rational functions).

Proof We follow the same projection procedure as in the previous proof. The
assertion is true for 3 = 3. The map (′4 → (3 is birational map onto a normal
surface. Since we may assume that the center ? of the projection (4 d (3 does
not lie on a line, the map is finite and of degree 1. Since (3 is normal, it must
be an isomorphism. In fact, the local ring � of a point G ∈ (′4 is integral over
the local ring �′ of its image G ′ and both rings have the same fraction field
&. Thus, the integral closure of � in & is contained in the integral closure of
�′ equal to �′. This shows that � coincides with �′. Thus, we see that (4 is
a normal surface. Continuing in this way, we get that (5, . . . , (3 are normal
surfaces. �

8.1.2 Rational double points
Here, we recall without proof some facts about rational double points (RDP)
singularities which we will often use later. The proofs can be found in many
sources, for example, [24], [611], [586].
Recall that we say that a variety - has rational singularities if there exists a

resolution of singularities c : . → - such that '8c∗O. = 0, 8 > 0. One can
show that, if there exists one resolution with this property, any resolution of
singularities satisfies this property. Also, one can give a local definition of a
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rational singularity G ∈ - by requiring that the stalk ('8c∗O. )G vanishes for
8 > 0. Note that a nonsingular point is, by definition, a rational singularity.

We will be interested in rational singularities of normal algebraic surfaces.
Let c : . → - be a resolution of singularities. We can always choose it to
be minimal in the sense that it does not factor nontrivially through another
resolution of singularities. This is equivalent to the property that the fibers of c
do not contain (−1)-curves. A minimal resolution always exists and is unique,
up to isomorphism. A curve in the fiber c−1 (G) is called an exceptional curve.

Let / =
∑
=8�8 , where =8 ≥ 0 and �8 are irreducible components of c−1 (G),

called exceptional components.We say that / is a fundamental cycle if / ·�8 ≤ 0
for all �8 and / is minimal (in terms of order on the set of effective divisors)
with this property. A fundamental cycle always exists and is unique.

Proposition 8.1.9. The following properties are equivalent:

(i) G is a rational singularity;
(ii) the canonical maps c∗ : �8 (-,O- ) → �8 (.,O. ) are bĳective;
(iii) for every curve (not necessarily reduced) / supported in c−1 (G), one
has �1 (/,O/ ) = 0;
(iv) for every curve / supported in c−1 (G), ?0 (/) := 1+ 1

2/ · (/+ . ) ≤ 0.

Recall that the multiplicity of a point G on a variety - is the multiplicity of
the maximal ideal m-,G defined in any textbook in commutative algebra. If -
is a hypersurface, the multiplicity is equal to the degree of the first nonzero
homogeneous part in the Taylor expansion of the affine equation of - at the
point G.

If G is a rational surface singularity, then −/2 is equal to its multiplicity, and
−/2+1 is equal to the embedding dimension of G (the dimension ofm-,G/m2

-,G
)

[24, Corollary 6]. It follows that a rational double point is locally isomorphic
to a hypersurface singularity, and hence, it is a Gorenstein singularity. The
converse is also true, a rational Gorenstein surface singularity has multiplicity
2.
Suppose now that G is a rational double point of a normal surface - . Then,

each exceptional component � satisfies �1 (�,O� ) = 0. This implies that
� � P1. Since the resolution is minimal, E2 ≤ −2. By the adjunction formula,
�2 + � ·  . = −2 implies � ·  . ≥ 0. Let / =

∑
=8�8 be a fundamental cycle.

Then, by (iii) from above,

0 = 2 + /2 ≤ −/ ·  . = −
∑

=8 (�8 ·  . ).

This gives �8 ·  . = 0 for every �8 . By the adjunction formula, �2
8
= −2.

Let  - be a canonical divisor on - . This is a Weyl divisor, the closure of a
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canonical divisor on the open subset of nonsingular points. Let c∗ ( - ) be its
pre-image on . . We can write

 . = c
∗ ( - ) + Δ,

where Δ is a divisor supported in c−1 (G). Suppose G is a Gorenstein singularity.
This means that l- is locally free at G, i.e., one can choose a representative
of  - which is a Cartier divisor in an open neighborhood of G. Thus, we
can choose a representative of c∗ ( - ) which is disjoint from c−1 (G). For any
exceptional component �8 , we have

0 =  . · �8 = �8 · c∗ ( - ) + �8 · Δ = �8 · Δ.

It is known that the intersection matrix (�8 · � 9 ) of exceptional components is
negative definite [538]. This implies that Δ = 0.
To sum up, we have the following.

Proposition 8.1.10. Let c : . → - be a minimal resolution of a rational
double point G on a normal surface - . Then, each exceptional component of c
is a (−2)-curve and  . = c∗ ( - ).

8.1.3 A blow-up model of a del Pezzo surface
Let us show that a del Pezzo surface satisfies the following properties that we
will take for a more general definition of a del Pezzo surface.

Theorem 8.1.11. Let ( be a del Pezzo surface of degree 3 in P3 . Then, all its
singularities are rational double points and l−1

(
is an ample invertible sheaf.

Proof The assertion is true if 3 = 3. It follows from the proof of Proposition
8.1.8 that ( is isomorphic to the blow-up of a cubic surface at 3−3 nonsingular
points. Thus, the singularities of ( are isomorphic to singularities of a cubic
surface which are RDP. In particular, the canonical sheafl( of ( is an invertible
sheaf.
Let � be a general hyperplane section. It defines an exact sequence

0→ O( → O( (1) → O� (1) → 0.

Tensoring byl( , and applying the adjunction formula for�, we obtain an exact
sequence

0→ l( → l( (1) → l� → 0.

Applying Serre’s duality and Proposition 8.1.9, we obtain

�1 ((, l() � �1 ((,O() = 0.
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Since � is an elliptic curve, l� � O� . The exact sequence implies that
�0 ((, l( (1)) ≠ 0. Let � be an effective divisor defined by a nonzero section of
l( (1). By the adjunction formula, its restriction to a general hyperplane section
is zero. Thus, � is zero. This shows that l( (1) � O( , hence l( � O( (−1). In
particular, l−1

(
� O( (1) is ample (in fact, very ample). �

Definition 8.1.12. A normal algebraic surface ( is called a del Pezzo surface
if its canonical sheaf l( is invertible, l−1

(
is ample and all singularities are

rational double points.

By the previous Theorem and by Propositions 8.1.8, a del Pezzo surface of
degree 3 in P3 is a del Pezzo surface in this new definition. Note that one takes a
more general definition of a del Pezzo surface without assuming the normality
property (see [612]). However, we will not pursue this.

Let c : - → ( be aminimal resolution of singularities of a del Pezzo surface.
Our goal is to show that - is a rational surface isomorphic either to a minimal
rational surface F0, or F2, or is obtained from P2 by blowing up a bubble cycle
of length ≤ 8.

Lemma 8.1.13. Any irreducible reduced curve � on - with negative self-
intersection is either a (−1)-curve or (−2)-curve.

Proof By adjunction,

�2 + � ·  ( = degl� = 2 dim�1 (�,O� ) − 2 ≥ −2.

By Proposition 8.1.10, the assertion is true if � is an exceptional curve of
the resolution of singularities c : - → (. Suppose c(�) = � ′ is a curve.
Since − ( is ample, there exists some < > 0 such that | − < ( | defines an
isomorphism of ( onto a surface (′ in P=. Thus, | −< - | defines a morphism
- → (′ which is an isomorphism outside the exceptional divisor of c. Taking a
general section in P=, we obtain that −< - ·� > 0. By the adjunction formula,
the only possibility is �2 = −1, and �1 (�,O� ) = 0. �

Recall that a divisor class � on a nonsingular surface - is called nef if
� · � ≥ 0 for any curve � on - . It is called big if �2 > 0. It follows from the
proof of the previous Lemma that − - is nef and big.

Lemma 8.1.14. Let - be a minimal resolution of a del Pezzo surface (. Then

�8 (-,O- ) = 0, 8 ≠ 0.

Proof Since ( has rational double points, by Proposition 8.1.10, the sheaf l(
is an invertible ample sheaf and

l- � c∗ (l(). (8.4)
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Since, l( � O( (−�) for some ample divisor �, we have l- � O- (−�′),
where �′ = c∗ (�) is nef and big. We write 0 =  - +� and apply Ramanujam’s
Vanishing Theorem ([604], [479], vol. I, Theorem 4.3.1): for any nef and big
divisor � on a nonsingular projective variety -

�8 (-,O- ( - + �)) = 0, 8 > 0.

�

Theorem 8.1.15. Let - be a minimal resolution of a del Pezzo surface. Then,
either - � F0, or - � F2, or - is obtained from P2 by blowing up # ≤ 8
points in the bubble space.

Proof Let 5 : - → - ′ be a morphism onto a minimal model of - . Since
− - is nef and big,  - ′ = 5∗ ( - ) is not nef but big. It follows from the
classification of algebraic surfaces that - ′ is a minimal ruled surface. Assume
- ′ is not a rational surface. By Lemma 8.1.14, �1 (- ′,O- ′) = 0. If ? :
- ′ → � is a ruling of - ′, we must have � � P1 (use that the projection
? : - ′ → � satisfies ?∗O- ′ � O� and this defines a canonical injective map
�1 (�,O�) → �1 (- ′,O- ′)). Thus, - ′ = F= or P2. Assume - ′ = F=. If = > 2,
the proper transform in - of the exceptional section of - ′ has self-intersection
−A ≤ −= < −2. This contradicts Lemma 8.1.13. Thus, = ≤ 2. If = = 1,
then composing the map - ′ = F1 → P2, we obtain a birational morphism
- → - ′→ P2, so the assertion is verified.
Assume = = 2, and the birational morphism 5 : - → - ′ = F2 is not an

isomorphism. Then, it is an isomorphism over the exceptional section (other-
wise we get a curve on - with self-intersection < −2). Thus, it factors through
a birational morphism 5 : - → . → F2, where . is the blow-up of a point
H ∈ F2 not on the exceptional section. Let. → . ′ be the blow-down morphism
of the proper transform of a fiber of the ruling of F2 passing through the point H.
Then, . ′ is isomorphic to F1, and the composition - → - ′ → . → . ′ → P2

is a birational morphism to P2.
Assume = = 0 and 5 : - → F2 is not an isomorphism. Again, we factor 5

as the composition - → . → F0, where . → F0 is the blow-up of a point
H ∈ F0. Blowing down the proper transforms of the lines through H, we get a
morphism . → P2 and the composition - → . → P2.
The last assertion follows from the known behavior of the canonical class

under a blow-up. If c : ( → P2 is a birational morphismwhich is a composition
of # blow-ups, then

 2
- =  

2
P2 − # = 9 − #. (8.5)

Since  2
-
> 0, we obtain # < 9.
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�

Definition 8.1.16. The number 3 =  2
-
is called the degree of a del Pezzo

surface.

It is easy to see that it does not depend on a minimal resolution of (. Note that
this definition agrees with the definition of the degree of a del Pezzo surface
( ⊂ P3 in its classical definition. Indeed, let � be a hyperplane section of (,
the intersection theory of Cartier divisors show that

3 = �2 = c∗ (�)2 = ?∗ (− ()2 = (− - )2 =  2
- .

Suppose ( is a nonsingular del Pezzo surface. Since  F2 is not ample, we
obtain the following.

Corollary 8.1.17. Assume that ( is a nonsingular del Pezzo surface. Then,
( � F0 or is obtained by blowing-up of a bubble cycle in P2 of ≤ 8 points.

Definition 8.1.18. A weak del Pezzo surface is a nonsingular surface ( with
− ( nef and big.

So, we see that a minimal resolution of a singular del Pezzo surface is a weak
del Pezzo surface. The proof of Theorem 8.1.15 shows that a weak del Pezzo
surface is isomorphic to F0,F2 or to the blow-up of a bubble cycle on P2 that
consists of ≤ 8 points.
Remark 8.1.19. Recall that a Fano variety is a nonsingular projective variety -
with − - ample. A quasi-Fano variety is a nonsingular variety with − - big
and nef. Thus, a nonsingular del Pezzo surface is a Fano variety of dimension
2, and a weak del Pezzo surface is a quasi-Fano variety of dimension 2.

Definition 8.1.20. A blowing down structure on a weak del Pezzo surface ( is
a composition of birational morphisms

c : ( = (#
c#−→ (#−1

c#−1−→ . . .
c2−→ (1

c1−→ P2,

where each c : (8 → (8−1 is the blow-up a point G8 in the bubble space of P2.

A blowing-down structure of a weak del Pezzo surface defines a geometric
basis (40, 41, . . . , 4# ) in Pic(() (see Subsection 7.2.4). A choice of a geometric
basis defines an isomorphism of free abelian groups

q : Z#+1 → Pic(() such that q(:# ) =  ( ,

where :# = −3e0+e1+· · ·+e# . The class 40 is the full pre-image of the class ℎ
of a line in the plane, and the classes 48 are the divisor classes of the exceptional
configurations E8 . We call such an isomorphism a geometric marking.
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Definition 8.1.21. A pair ((, q), where ( is a weak del Pezzo surface and q is
a marking (resp. geometric marking) Z#+1 → Pic(() is called amarked (resp.
geometrically marked) weak del Pezzo surface.

The bubble cycle [ appearing in a blowing-up model of a weak del Pezzo
surface must satisfy some restrictive conditions. Let us find them.

Lemma8.1.22. Let - be a nonsingular projective surfacewith�1 (-,O- ) = 0.
Let � be an irreducible curve on - such that | − - −� | ≠ ∅ and � ∉ | − - |.
Then, � � P1.

Proof We have− - ∼ �+� for some nonzero effective divisor �, and hence
 - + � ∼ −� � 0. This shows that | - + � | = ∅. By Riemann-Roch,

0 = ℎ0 (O- ( - + �)) = 1
2 (( - + �)

2 − ( - + �) ·  - ) + 1

−ℎ1 (O- ) + ℎ2 (O- ) ≥ 1 + 1
2 (�

2 +  - · �) = ℎ1 (O� ).

Thus, �1 (�,O� ) = 0, and, as we noted earlier, this implies that � � P1. �

Proposition 8.1.23. Let ( be a weak del Pezzo surface.

(i) Let 5 : ( → (̄ be a blowing down of a (−1)-curve � . Then, (̄ is a weak
del Pezzo surface.

(ii) Let c : (′ → ( be the blowing-up with center at a point G not lying on
any (−2)-curve. Assume  2

(
> 1. Then, (′ is a weak del Pezzo surface.

Proof (i) We have  ( = 5 ∗ ( (̄) + � , and hence, for any curve � on (̄, we
have

 (̄ · � = 5 ∗ ( (̄) · 5 ∗ (�) = ( ( − �) · 5 ∗ (�) =  ( · 5 ∗ (�) ≤ 0.

Also,  2
(̄
=  2

(
+ 1 > 0. Thus, (̄ is a weak del Pezzo surface.

(ii) Since  2
(
> 1, we have  2

(′ =  
2
(
− 1 > 0. By Riemann-Roch,

dim | −  (′ | ≥ 1
2 ((− (′)

2 − (− (′ ·  (′)) =  2
(′ ≥ 0.

Thus, | −  (′ | ≠ ∅, and hence, any irreducible curve � with − (′ · � < 0
must be a proper component of some divisor from | −  (′ | (it cannot be
linearly equivalent to − (′ because (− (′)2 > 0). Let � = c−1 (G). We have
− (′ · � = 1 > 0. So, we may assume that � ≠ � . Let �̄ = 5 (�). We have

− (′ · � = c∗ (− () · � − � · � = − ( · �̄ −multG (�̄).

Since 5∗ ( (′) =  ( and � ≠ � , the curve �̄ is a proper irreducible component
of some divisor from | −  ( |. By Lemma 8.1.22, �̄ � P1. Thus, multG�̄ ≤ 1
and hence 0 > − (′ · � ≥ − ( · �̄ − 1. This gives − ( · �̄ = 0 and G ∈ �̄
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and hence �̄ is a (−2)-curve. Since G does not lie on any (−2)-curve we get a
contradiction. �

Corollary 8.1.24. Let [ =
∑A
8=1 G8 be a bubble cycle on P2 and ([ be its

blow-up. Then, ([ is a weak del Pezzo surface if and only if

(i) A ≤ 8;
(ii) the Enriques diagram of [ is the disjoint union of chains;
(iii) |OP2 (1) − [′ | = ∅ for any [′ ⊂ [ consisting of four points;
(iv) |OP2 (2) − [′ | = ∅ for any [′ ⊂ [ consisting of seven points.

Proof The necessity of condition (i) is clear. We know that ( does not contain
curves with self-intersection < −2. In particular, any exceptional cycle E8 of
the birational morphism c : ( → P2 contains only smooth rational curves �
with �2 = −1 or −2. This easily implies that the bubble points corresponding to
each exceptional configuration E8 represent a totally ordered chain. This checks
condition (ii).
Suppose (iii) does not hold. Let � be an effective divisor from the linear

system |OP2 (1) − [′ |. We can change the admissible order on [ to assume that
[′ = G1 + G2 + G3 + G4. Then, the divisor class of the proper transform of � in.[
is equal to 40 − 41 − 42 − 43 − 44 −

∑
8≥4 <848 . Its self-intersection is obviously

≤ −3.
Suppose (iv) does not hold. Let � ∈ |OP2 (2) −[′ |. Arguing as above, we find

that the divisor class of the proper transform of � is equal to 240 −
∑7
8=1 48 −∑

8≥7 <848 . Its self-intersection is again ≤ −3.
Let us prove the sufficiency. Let E# = c−1

#
(G# ) be the last exceptional

configuration of the blow-down .[ → P2. It is an irreducible (−1)-curve.
Obviously, [′ = [ − G# satisfies conditions (i)-(iv). By induction, we may
assume that (′ = ([′ is a weak del Pezzo surface. Applying Proposition 8.1.23,
we have to show that G# does not lie on any (−2)-curve on (′. Condition (ii)
implies that it does not lie on any irreducible component of the exceptional
configurations E8 , 8 ≠ # . We will show in the next section that any (−2)-curve
on a week del Pezzo surface (′ of degree ≤ 7 is either blown down to a point
under the canonical map ([′ → P2 or equal to the proper inverse transform of a
line through three points, or a conic through five points. If G# lies on the proper
inverse transform of such a line (resp. a conic), then condition (iii) (resp. (iv))
is not satisfied. This proves the assertion. �

A set of bubble points satisfying conditions (i)-(iv) above is called a set of
points in almost general position.
We say that the points are in general position if the following hold:
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(i) all points are proper points;
(ii) no three points are on a line;
(iii) no six points on a conic;
(iv) no cubic passes through the points with one of the point being a singular
point.

Proposition 8.1.25. The blow-up of # ≤ 8 points in P2 is a del Pezzo surface
if and only if the points are in general position.

8.2 The E# -lattice

8.2.1 Quadratic lattices
A (quadratic) lattice is a free abelian group " � ZA equipped with a sym-
metric bilinear form " × " → Z. A relevant example of a lattice is the
second cohomology group modulo torsion of a compact smooth 4-manifold
(e.g., a nonsingular projective surface) with respect to the cup-product. An-
other relevant example is the Picard group modulo numerical equivalence of a
nonsingular projective surface equipped with the intersection pairing.
The values of the symmetric bilinear form will be often denoted by (G, H)

or G · H. We write G2 = (G, G). The map G ↦→ G2 is an integer-valued quadratic
form on " . Conversely, such a quadratic form @ : " → Z defines a symmetric
bilinear formby the formula (G, H) = @(G+H)−@(G)−@(H). Note that G2 = 2@(G).

Let "∨ := Hom/ (",Z) and

]" : " → "∨, ]" (G) (H) = G · H.

We say that " is nondegenerate if the homomorphism ]" is injective. In this
case the group

Disc(") = "∨/]" (")

is a finite abelian group. It is called the discriminant group of " . If we choose
a basis to represent the symmetric bilinear form by a matrix �, then the order
of Disc(") is equal to | det(�) |. The number disc(") = det(�) is called the
discriminant of " . A different choice of a basis changes � to C��� for some
� ∈ GL(=,Z), so it does not change det(�). A lattice is called unimodular if
|disc(") | = 1.
Tensoring " with reals, we get a real symmetric bilinear form on "R � R

A .
We can identify " with an abelian subgroup of the inner product space RA
generated by a basis in RA . The Sylvester signature (C+, C−, C0) of the inner
product space "R is called the signature of " . We write (C+, C−) if C0 = 0. For
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example, the signature of �2 (-,Z)/Torsion � Z12 for a nonsingular projective
surface - is equal to (2?6 +1, 12−2?6−1), where ?6 = dim�0 (-,O- ( - )).
This follows from the Hodge Theory (see [38, Chapter IV, §2]). The signature
on the lattice of divisor classes modulo numerical equivalence Num(-) =
Pic(-)/≡ � Zd is equal to (1, d − 1) (this is called the Hodge Index Theorem,
see [379, Chapter V, Theorem 1.9]).
Let # ⊂ " be a subgroup of " . The restriction of the bilinear form to #

defines a structure of a lattice on # . We say that # together with this form is a
sublattice of " . We say that # is of finite index < if "/# is a finite group of
order <. Let

#⊥ = {G ∈ " : G · H = 0,∀H ∈ #}.

Note that # ⊂ (#⊥)⊥ and the equality takes place if and only if # is a primitive
sublattice (i.e. "/# is torsion-free).

We will need the following facts.

Lemma 8.2.1. Let" be a nondegenerate lattice and let # be its nondegenerate
sublattice of finite index <. Then,

|disc(#) | = <2 |disc(") |.

Proof Since # is of finite index in " , the restriction homomorphism "∨ →
#∨ is injective. We will identify "∨ with its image in #∨. We will also identify
" with its image ]" (") in "∨. Consider the chain of subgroups

# ⊂ " ⊂ "∨ ⊂ #∨.

Choose a basis in M, a basis in N, and the dual bases in "∨ and #∨. The
inclusion homomorphism # → " is given by a matrix � and the inclusion
#∨ → "∨ is given by its transpose C �. The order < of the quotient "/# is
equal to | det(�) |. The order of #∨/"∨ is equal to | det(C �) |. They are equal.
Now, the chain of lattices from above has the first and the last quotient of order
equal to <, and the middle quotient is of order |disc(") |. The total quotient
#∨/# is of order |disc(#) |. The assertion follows. �

Lemma 8.2.2. Let " be a unimodular lattice and # be its nondegenerate
primitive sublattice. Then,

|disc(#⊥) | = |disc(#) |.

Proof Consider the restriction homomorphism A : " → #∨, where we
identify " with "∨ by means of ]" . Its kernel is equal to #⊥. Composing A
with the projection #∨/]# (#) we obtain an injective homomorphism

"/(# + #⊥) → #∨/]# (#).
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Notice that #⊥ ∩ # = {0} because # is a nondegenerate sublattice. Thus,
#⊥ + # = #⊥ ⊕ # is of finite index 8 in " . Also, the sum is orthogonal, so that
the matrix representing the symmetric bilinear form on # ⊕ #⊥ can be chosen
to be a block matrix.
We denote the orthogonal direct sum of two lattices "1 and "2 by "1 ⊕"2.

This shows that disc(# ⊕ #⊥) = disc(#)disc(#⊥). Applying Lemma 8.2.1,
we get

#("/# ⊕ #⊥) =
√
|disc(#⊥) | |disc(#) | ≤ #(#∨/#) = |disc(#) |.

This gives |disc(#⊥) | ≤ |disc(#) |. Since # = (#⊥)⊥, exchanging the roles of
# and #⊥, we get the opposite inequality. �

Lemma 8.2.3. Let # be a nondegenerate sublattice of a unimodular lattice " .
Then,

]" (#⊥) = Ann(#) := Ker(A : "∨ → #∨) � ("/#)∨.

Proof Under the isomorphism ]" : " → "∨ the image of #⊥ is equal to
Ann(#). Since the functor HomZ (−,Z) is left exact, applying it to the exact
sequence

0→ # → " → "/# → 0,

we obtain an isomorphism Ann(#) � ("/#)∨. �

A morphism of lattices f : " → # is a homomorphism of abelian groups
preserving the bilinear forms. If " is a nondegenerate lattice, then f is nec-
essarily injective. We say in this case that f is an embedding of lattices. An
embedding is called primitive if its image is a primitive sublattice. An invertible
morphism of lattices is called an isometry. The group of isometries of a lattice
" to itself is denoted by O(") and is called the orthogonal group of " .
Let "Q := " ⊗ Q � Q= with the symmetric bilinear form of " extended to

a symmetric Q-valued bilinear form on "Q. The group "∨ can be identified
with the subgroup of "Q consisting of vectors { such that ({, <) ∈ Z for any
< ∈ " . Suppose that " is nondegenerate lattice. The finite group Disc(")
can be equipped with a quadratic form defined by

@(Ḡ) = (G, G) mod Z,

where Ḡ denotes a coset G + ]" ("). If " is an even lattice, i.e. <2 ∈ 2Z for
all < ∈ " , then we take values modulo 2Z. The group of automorphisms of
Disc(") leaving the quadratic form invariant is denoted by O(Disc(")).

The proof of the next lemma can be found in [550].
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Lemma 8.2.4. Let " ⊂ # be a sublattice of finite index. Then, the inclusion
" ⊂ # ⊂ #∨ ⊂ "∨ defines the subgroup #/" in Disc(") = "∨/" such
that the restriction of the quadratic form of Disc(") to it is equal to zero.
Conversely, any such subgroup defines a lattice # containing " as a sublattice
of finite index.

The group O(") acts naturally on the dual group "∨ preserving its bilinear
form and leaving the subgroup ]" (") invariant. This defines a homomorphism
of groups

U" : O(") → O(Disc(")).

Lemma 8.2.5. Let # be a primitive sublattice in a nondegenerate lattice " .
Then, an isometry f ∈ O(#) extends to an isometry of " acting identically on
#⊥ if and only if f ∈ Ker(U# ).

8.2.2 The E# -lattice
Let I1,# = Z#+1 equipped with the symmetric bilinear form defined by the
diagonal matrix diag(1,−1, . . . ,−1) with respect to the standard basis

e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . , e# = (0, . . . , 0, 1)

of Z#+1. Any basis defining the same matrix will be called an orthonormal
basis. The lattice I1,# is a unimodular lattice of signature (1, #).

Consider the special vector in I1,# defined by

k# = (−3, 1, . . . , 1) = −3e0 +
#∑
8=1

e8 . (8.6)

Definition 8.2.6. A E# -lattice is a quadrtatic lattice isomorphis to the sublat-
tice of I1,# given by

E# = (Zk# )⊥.

Since k2
#
= 9−# , it follows fromLemma 8.2.2, that E# is a negative definite

lattice for # ≤ 8. Its discriminant group is a cyclic group of order 9 − # . Its
quadratic form is given by the value on its generator equal to − 1

9−# mod Z (or
2Z if # is odd).

Lemma 8.2.7. Assume # ≥ 3. The following vectors form a basis of E#

"1 = e0 − e1 − e2 − e3, "8 = e8−1 − e8 , 8 = 2, . . . , #.



8.2 The E# -lattice 17

The matrix of the symmetric bilinear form of E# with respect to this basis is
equal to

�# =

©«

−2 0 0 1 0 0 0 0 . . . 0
0 −2 1 0 0 0 0 0 . . . 0
0 1 −2 1 0 0 0 0 . . . 0
1 0 1 −2 1 0 0 0 . . . 0
0 0 0 1 −2 1 0 0 . . . 0
0 0 0 0 1 −2 1 0 . . . 0
...

...
...

...
...

...
...

...
...

...

0 0 0 . . . . . . 0 0 0 −2 1

ª®®®®®®®®®®®®®¬
(8.7)

Proof By inspection, each "8 is orthogonal to k# . Suppose (00, 01, . . . , 0# )
is orthogonal to k# . Then,

300 + 01 + · · · + 0# = 0. (8.8)

We can write this vector as follows:

(00, 01, . . . , 0# ) = 00"1 + (00 + 01)"2 + (200 + 01 + 02)"3

+(300 + 01 + 02 + 03)"4 + · · · + (300 + 01 + · · · + 0#−1)"# .

We use here that (8.8) implies that the last coefficient is equal to −0# . We leave
the computation of the matrix to the reader. �

One can express the matrix �# by means of the incidence matrix �# of the
following graph with # vertices.

• • • • • •

•

· · · # ≥ 4

1

2 3 4 5 # − 1 #

Figure 8.1 Coxeter-Dynkin diagram of type �#

We have �# = −2�# + �# .

8.2.3 Roots
A vector U ∈ E# is called a root if U2 = −2. A vector (3, <1, . . . , <# ) ∈ I1,#

is a root if and only if

32 −
#∑
8=1

<2
8 = −2, 33 −

#∑
8=1

<8 = 0. (8.9)
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Using the inequality (∑#
8=1 <8)2 ≤ #

∑#
8=1 <

2
8
, it is easy to find all solutions.

Proposition 8.2.8. Let # ≤ 8 and

"8 9 = e8 − e 9 , 1 ≤ 8 < 9 ≤ #,
"8 9: = e0 − e8 − e 9 − e: , 1 ≤ 8 < 9 < : ≤ #.

Any root in E# is equal to ±U, where U is one of the following vectors:

N= 3 : "8 9 ,"123. Their number is 8.
N= 4 :"8 9 ,"8 9: . Their number is 20.
N= 5 : "8 9 ,"8 9: . Their number is 40.
N= 6 :"8 9 ,"8 9: , 2e0 − e1 − · · · − e6. Their number is 72.
N= 7 : "8 9 ,"8 9: , 2e0 − e1 − · · · − e7 − e8 . Their number is 126.
N= 8 :"8 9 ,"8 9: , 2e0 − e1 − · · · − e8 − e8 − e 9 , 3e0 − e1 − · · · − e8 − e8 . Their
number is 240.

For # ≥ 9, the number of roots is infinite. From now on, we assume

3 ≤ # ≤ 8.

An ordered set � of roots {V1, . . . , VA } is called a root basis if they are linearly
independent over Q and

V8 · V 9 ≥ 0.

A root basis is called irreducible if it is not equal to the union of non-empty
subsets �1 and �2 such that V8 · V 9 = 0 if V8 ∈ �1 and V 9 ∈ �2. The symmetric
A × C-matrix � = (08 9 ), where 08 9 = V8 · V 9 is called the Cartan matrix of the
root basis.

Definition 8.2.9. A Cartan matrix is a symmetric integer matrix (08 9 ) with
088 = −2 and 08 9 ≥ 0, or such a matrix multiplied by −1.

We will deal only with Cartan matrices � with 088 = −2. The matrix � + 2�,
where � is the identity matrix of the size equal to the size of �, can be taken as
the incidence matrix of a non-oriented graph Γ� with an ordered set of vertices
in which we put the number 08 9 − 2 at the edge corresponding to vertices 8 and
9 if this number is positive. The graph is called the Coxeter-Dynkin diagram of
�. The Cartan matrix �# for # = 6, 7, 8 has the corresponding graph pictured
in Figure 8.2.
Cartan matrix is called irreducible if the graph Γ� is connected.
If � is a negative definite irreducible Cartan matrix, then its Coxeter-Dynkin

diagram is one of the types indicated in Figure 8.2 (see [70]). A lattice with
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�= • • • •· · ·
1 2 = − 1 =

�= • • • • •

•

. . .

1

2 3 4 = − 1 =

�6 • • • • •

••1

2 3 4 5 6

�7 • • • • • •

••1

2 3 4 5 6 7

�8 • • • • • • •

••1

2 3 4 5 6 7 8

Figure 8.2 Coxeter-Dynkin diagrams of types A,D, E

quadratic form defined by a negative (positive) definite Cartan matrix is called
a root lattice. Thus, the lattice E# , # ≤ 8, is an example of a root lattice.
For 3 ≤ = ≤ 5, we will use E= to denote the Coxeter-Dynkin diagrams of

types �2 + �1 (# = 3), �4 (# = 4) and �5 (# = 5).

Example 8.2.10. We know that exceptional components �8 of a minimal reso-
lution of a RDP are (−2)-curves. We have already used the fact that the inter-
section matrix (�8 · � 9 ) is negative definite. This implies that the intersection
matrix is a Cartan matrix.

Proposition 8.2.11. The Cartan matrix � of an irreducible root basis in E# is
equal to an irreducible Cartan matrix of type �A , �A , �A with A ≤ # .

Definition 8.2.12. A canonical root basis in E# is a root basis with Cartan
matrix (8.7) and the Coxeter-Dynkin diagram from Figure 8.1. Its element is
called a simple root.

An example of a canonical root basis is the basis ("1, . . . ,"# ).

Theorem 8.2.13. Any canonical root basis is obtained from a unique orthonor-
mal basis ({0, {1, . . . , {=) in I1,# such that k# = −3{0 + {1 + · · · + {# by the
formula

V1 = {0 − {1 − {2 − {3, V8 = {8−1 − {8 , 8 = 2, . . . , #. (8.10)

Proof Given a canonical root basis (V1, . . . , V# ) we solve for {8 in the system
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of equations (8.10). We have

{8 = {# +
#∑
8=2

V8 , 8 = 1, . . . , # − 1,

{0 = V1 + {1 + {2 + {3 = V1 + 3{# + 3
#∑
8=4

V8 + 2V3 + V2,

− k# = 3{0 − {1 − · · · − {# = 9{# + 9
#∑
8=4

V8 + 6V3 + 3V2

− ({# +
#∑
8=2

V8) − ({# +
#∑
8=3

V8) − · · · − ({# + V# ) − {# .

(8.11)

This gives

{# = −
1

9 − # (k# + 3V1 + 2V2 + 4V3 +
#∑
8=3
(9 − 8)V8+1).

Taking the inner product of both sides with V8 , we find ({# , V8) = 0, 8 =
1, . . . , # − 1, and ({# , V# ) = 1. Thus, all {8 belong to (k# ⊥ E# )∨. The
discriminant group of this lattice is isomorphic to (Z/(9 − #)Z) and the only
isotropic subgroup of order 9 − # is the diagonal subgroup. This shows that
E∨
#
is the only sublattice of (k# ⊥ E# )∨ of index 9− # , hence {8 ∈ E∨

#
for all

8. It is immediately checked that ({0, {1, . . . , {# ) is an orthonormal basis and
k# = −3{0 + {1 + · · · + {# . �

Corollary 8.2.14. Let O(I1,# )k# be the stabilizer subgroup of k# . Then,
O(I1,# )k# acts simply transitively on the set of canonical root bases in E# .

Each canonical root basis V = (V1, . . . , V# ) defines a partition of the set of
roots R

R = R+
∐
R−,

where R+ is the set of non-negative linear combinations of V8 . The roots from
R+ (R−) are called positive (negative) roots with respect to the root basis V. It
is clear that R− = {−U : U ∈ R+}.

For any canonical root basis V, the subset

�V = {G ∈ I1,# ⊗ R : (G, V8) ≥ 0}

is called a Weyl chamber with respect to V. A subset of a Weyl chamber that
consists of vectors such that ({, V8) = 0 for some subset � ⊂ {1, . . . , #} is
called a face. A face corresponding to the empty set is equal to the interior of
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the Weyl chamber. The face corresponding to the subset {1, . . . , #} is spanned
by the vector k# .
For any root U, let

AU : I1,N → I1,N, v ↦→ v + (v, U)U.

It is immediately checked that AU ∈ O(I1,# )k# , AU (U) = −U and AU ({) = { if
({, U) = 0. The isometry AU is called the reflection in the root U. By linearity,
AU acts as an orthogonal transformation of the real inner product space R1,# :=
I1,# ⊗ R.
The following is a basic fact from the theory of finite reflection groups. We

refer for the proof to numerous textbooks on this subject (e.g. [70], [437]).

Theorem 8.2.15. Let � be a Weyl chamber defined by a canonical root basis
V. Let, (E# ) be the subgroup of O(E# ) generated by reflections AV8 . For any
G ∈ R1,# , there exists | ∈ , (E# ) such that |(G) ∈ �. If G, |(G) ∈ �, then
G = |(G) and G belongs to a face of �. The union of Weyl chambers is equal to
R1,# . Two Weyl chambers intersect only along a common face.

Corollary 8.2.16. The group, (E# ) acts simply transitively on canonical root
bases, and Weyl chambers. It coincides with the group O(I1,# )k# .

The first assertion follows from the Theorem. The second assertion follows
from Corollary 8.2.14 since, (E# ) is a subgroup of O(I1,# )k# .

Corollary 8.2.17.
O(E# ) = , (E# ) × 〈g〉,

where g is an isometry of E# , which is realized by a permutation of roots in a
canonical basis leaving invariant the Coxeter-Dynkin diagram. We have g = 1
for # = 7, 8 and g2 = 1 for # ≠ 7, 8.

Proof By Lemma 8.2.5, the image of the restriction homomorphism

O(I1,# )k# → O(E# )

is equal to the kernel of the homomorphism U : O(E# ) → O(Disc(E# )). It
is easy to compute O(Disc(E# )) and find that it is isomorphic to Z/gZ. Also,
it can be checked that U is surjective and the image of the symmetry of the
Coxeter-Dynkin diagram is the generator of O(Disc(E# )). It remains to apply
the previous corollary. �

The definition of the group , (E# ) does not depend on the choice of a
canonical basis and hence coincides with the definition of Weyl groups, (E# )
fromChapter 7.Note that Corollary 8.2.16 also implies that, (E# ) is generated
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by reflections AU for all roots U in E# . This is true for # ≤ 10 and is not true
for # ≥ 11.

Proposition 8.2.18. If # ≥ 4, the group, (E# ) acts transitively on the set of
roots.

Proof Let (V1, . . . , V# ) be a canonical basis from (8.10). Observe that the
subgroup of , (E# ) generated by the reflections with respect to the roots
V2, . . . , V# is isomorphic to the permutation group S# . It acts on the set
{e1, . . . , e# } by permuting its elements and leaves e0 invariant. This implies
that S# acts on the roots U8 9 , U8 9: , via its action on the set of subsets of
{1, . . . , #} of cardinality 2 and 3. Thus, it acts transitively on the set of roots
U8 9 and on the set of roots "8 9: . Similarly, we see that it acts transitively on the
set of roots 2e0 − e81 − · · · − e86 and −k8 − e8 if # = 8. Also, applying AU to U,
we get −U. Now, the assertion follows from the following computation

AV1 (−k8 − e8) = 2e0 − e1 − e4 − · · · − e8,

AV1 (2e0 − e1 − · · · − e6) = "456,

AV1 ("124) = "34.

�

A sublattice ' of E# isomorphic to a root lattice is called a root sublattice.
By definition, it has a root basis (V1, . . . , VA ) such that the matrix (V8 · V 9 ) is
a Cartan matrix. Each such sublattice is isomorphic to the orthogonal sum of
root lattices with irreducible Cartan matrices.
The types of root sublattices in the lattice E# can be classified in terms of

their root bases by the following procedure due to A. Borel and J. de Siebenthal
[66] and, independently by E. Dynkin [269].
Let � be the Coxeter-Dynkin diagram. Consider the extended diagram

by adding one more vertex which is connected to other edges as shown on
the following extended Coxeter-Dynkin diagrams. Consider the following set
of elementary operations over the diagrams � and their disconnected sums
�1 + · · · + �: . Extend one of the components �8 to get the extended diagram.
Consider its subdiagram obtained by deleting subset of vertices. Now, all pos-
sible root bases are obtained by applying recursively the elementary operations
to the initial Coxeter-Dynkin diagram of type E# and all its descendants.

8.2.4 Fundamental weights
Let V = (V1, V2, . . . , V# ) be a canonical root basis (8.10) in E# . Consider
its dual basis (V∗1, . . . , V

∗
#
) in E∨

#
⊗ Q. Its elements are called fundamental
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�̃= • • • •
F

· · ·

�̃= • • • • • •

• F

· · ·

�̃6 • • • • •

•

F

�̃7 • • • • • •

•

F

•

�̃8 • • • • • • •

•

F

•

Figure 8.3 Extended Coxeter-Dynkin diagrams of types �̃, �̃, �̃

weights. We use the expressions for V8 from Theorem 8.2.13. Let us identify
E∨
#

with (k⊥
#
)∨ = I1,# /Zk# . Then, we can take for representatives of V∗

9
the

following vectors from I1,# :

V∗1 = {0,

V∗2 = {0 − {1,
V∗3 = 2{0 − {1 − {2,
V∗8 = {8 + · · · + {# , 8 = 4, . . . , #.

Definition 8.2.19. A vector in I1,# is called an exceptional vector if it belongs
to the, (E# )-orbit of V∗# .

Proposition 8.2.20. A vector { ∈ I1,# is exceptional if and only if k# · { = −1
and {2 = −1. The set of exceptional vectors is the following

# = 3, 4 : e8 , e0 − e8 − e 9 ;
# = 5 : e8 , e0 − e8 − e 9 , 2e0 − e1 − · · · − e5;
# = 6 : e8 , e0 − e8 − e 9 , 2e0 − e1 − · · · − e6 + 48;
# = 7 : e8 , e0 − e8 − e 9 , 2e0 − e1 − · · · − e7 + e8 + e 9 ;−k7 − e8;
# = 8 : e8 , e0 − e8 − e 9 , 2e0 − e1 − · · · − e8 + e8 + e 9 + 4: ;−k8 + e8 − e 9 ;
−k8 + e0 − e8 − e 9 − e: ,−k8 + 240 − e81 − · · · − e86 ,−2k8 − 48 .

The number of exceptional vectors is given by Table 8.1.
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N 3 4 5 6 7 8

# 6 10 16 27 56 240

Table 8.1 Number of exceptional vectors

Proof Similarly to the case of roots, we solve the equations

32 −
#∑
8=1

<2
8 = −1, 33 −

#∑
8=1

<8 = 1.

First we immediately get the inequality (33 − 1)2 ≤ # (32 + 1) which gives
0 ≤ 3 ≤ 4. If 3 = 0, the condition

∑
<2
8
= 32 + 1 and :# · { = −1 gives the

vectors e8 . If 3 = 1, this gives the vectors e0−e8−e 9 , and so on. Now, we use the
idea of Noether’s inequality (see Lemma 7.2.27) to show that all these vectors
(3, <1, . . . , <# ) belong to the same orbit of , (E# ). We apply permutations
from S# to assume <1 ≥ <2 ≥ <3, then use the reflection AU123 to decrease
3. �

Corollary 8.2.21. The orders of the Weyl groups , (E# ) are given by Table
8.2.

N 3 4 5 6 7 8

#, (E# ) 12 5! 24 · 5! 23 · 32 · 6! 26 · 32 · 7! 27 · 33 · 5 · 8!

Table 8.2 Orders of the Weyl groups

Proof Observe that the orthogonal complement of e# in I1,# is isomorphic
to �#−1. Since e2

#
= −1, by Lemma 8.2.5, the stabilizer subgroup of e# in

O(I1,# ) is equal to O(I1,#−1). This implies that the stabilizer subgroup of e# in
, (E# ) is equal to, (E#−1). Obviously,, (E3) � S3 ×S2 and, (E4) � S5.
Thus,

#, (E5) = 16 · #, (E4) = 24 · 5!,
#, (E6) = 27 · #, (E5) = 23 · 32 · 6!,
#, (E7) = 56 · #, (E6) = 26 · 32 · 7!,
#, (E8) = 240 · #, (E7) = 27 · 33 · 5 · 8!.

�
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To describe automorphism groups of del Pezzo surfaces, we will use the
known classification of conjugacy classes of elements in the Weyl groups of
root systems of finite type given in Table 8.2.4. According to [91], they are
indexed by certain graphs. In many cases, they coincide with the Coxeter-
Dynkin diagrams of the orthogonal sum of root lattices.

Let ' be a root lattice of rank ; defined by a negative-definite Cartan matrix
�. We say that it is irreducible if � is not the direct sum of Caratn matrices.
Recall that any irreducible root basis is of type �=, �=, �6, �7, �8 with the
Coxeter-Dynkin diagram from Figure 8.3.

Assume that ' is of rank ; and let (U1, . . . , U;) be its root basis. The element
h' = AU1 · · · AU; is called a Coxeter element of, ('). Its conjugacy class does
not depend on the order of the reflections in the product nor on the choice of
a root basis. Its order is called the Coxeter number of ' and it has exactly ;
eigenvalues different from 1 in its action in the complex linear space '⊗C � C; .
If ' is the orthogonal sum of irreducible root lattices, then a Coxeter element
of ' is the product of Coxeter elements of the irreducible summands.

An element | ∈ , (') is said to be of Coxeter type if it is conjugate to the
product of Coxeter elements of a primitive sublattice of ' isomorphic to a root
lattice. We denote the conjugacy class of such an element by the type of the
Coxeter-Dynkin diagram of the sublattice. However, one has to be warned that
there could be different lattice embedding not conjugate with respect to, (').
To find root sublattices of a root lattice, one uses the following the Borel–de
Siebenthal–Dynkin algorithm that can be derived from [66] or [269].

Let ' be an irreducible root lattice with Dynkin diagram Γ. Extend it to the
affine Dynkin diagram Γ̃ by adding the maximal root Umax. Then, delete one
vertex { different from the new one. The remaining diagram Γ{ = Γ̃ \ {{} is
the Dynkin diagram of a root sublattice of " of the same rank, maybe equal to
'. We repeat the process until no new sublattices are created in this way. For
example, a subdiagram of type �= does not create new sublattices of the same
rank. All root sublattices of the same rank are obtained in this way.

In [91] R. Carter classifies the conjugacy classes of elements of the Weyl
group , (') of a root lattice '. It turns out that not all conjugacy classes
are of Coxeter type. They are described by certain graphs �= (08), �= (08) that
contain a cycle. Here, �=, �= means that the conjugacy class belongs to, (D=)
or, (E=) and the eigenvalues of its representative different form 1.

The following table gives the conjugacy classes of elements defined by
connected Carter graphs.
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Graph Order Characteristic polynomial Trace

�: : + 1 C: + C:−1 + · · · + 1 −1

�: 2: − 2 (C:−1 + 1) (C + 1) −1

�: (01) l.c.m(2: − 4, 4) (C:−2 + 1) (C2 + 1) 0

�: (02) l.c.m(2: − 6, 6) (C:−3 + 1) (C3 + 1) 0

.

.

.
.
.
.

.

.

.
.
.
.

�: (0 :
2 −1) even : (C

:
2 + 1)2 0

�6 12 (C4 − C2 + 1) (C2 + C + 1) −1

�6 (01) 9 C6 + C3 + 1 0

�6 (02) 6 (C2 − C + 1)2 (C2 + C + 1) 1

�7 18 (C6 − C3 + 1) (C + 1) −1

�7 (01) 14 C7 + 1 0

�7 (02) 12 (C4 − C2 + 1) (C3 + 1) 0

�7 (03) 30 (C5 + 1) (C2 − C + 1) 1

�7 (04) 6 (C2 − C + 1)2 (C3 + 1) 2

�8 30 C8 + C7 − C5 − C4 − C3 + C + 1 −1

�8 (01) 24 C8 − C4 + 1 0

�8 (02) 20 C8 − C6 + C4 − C2 + 1 0

�8 (03) 12 (C4 − C2 + 1)2 0

�8 (04) 18 (C6 − C3 + 1) (C2 − C + 1) 1

�8 (05) 15 C8 − C7 + C5 − C4 + C3 − C + 1 1

�8 (06) 10 (C4 − C3 + C2 − C + 1)2 2

�8 (07) 12 (C4 − C2 + 1) (C2 − C + 1)2 2

�8 (08) 6 (C2 − C + 1)4 4

Table 8.3 Carter graphs and characteristic polynomials

8.2.5 Gosset polytopes

Consider the real vector space R# ,1 = R#+1 with the inner product 〈, 〉 defined
by the quadratic form on I1,# multiplied by −1. All exceptional vectors lie in
the affine space +# = {G ∈ R# ,1 : (k# , G) = 1} and belong to the unit sphere
S# . Let Σ# be the convex hull of the exceptional vectors. For any two vectors
|, |′ ∈ S# , the vector | − |′ belongs to the even quadratic lattice E# , hence
2 ≤ 〈| − |′, | − |′〉 = 2 − 2〈|, |′〉. This shows that the minimal distance
〈|−|′, |−|′〉1/2 between two vertices is equal to

√
2 and occurs only when the
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vectors | and |′ are orthogonal. This implies that the edges of Σ# correspond
to pairs of orthogonal exceptional vectors. The difference of such vectors is a
root U = | − |′ such that 〈U, |〉 = 1. The reflections BU : G ↦→ G − 〈G, U〉U
sends | to |′. Thus, the reflection hyperplane �U = {G ∈ +# : 〈G, U〉 = 0}
intersects the edge at the midpoint. It permutes two adjacent vertices. TheWeyl
group, (E# ) acts on Σ# with the set of vertices forming one orbit. The edges
coming out of a fixed vertex correspond to exceptional vectors orthogonal to the
vertex. For example, if we take the vertex corresponding to the vector e# , then
the edges correspond to exceptional vectors for the root system E#−1. Thus, the
vertex figure at each vertex (i.e. the convex hull of midpoints of edges coming
from the vertex) is isomorphic to Σ#−1. A convex polytope with isomorphic
vertex figures is called a semi-regular polytope (a regular polytope satisfies the
additional property that all facets are isomorphic).
The polytopes Σ# are Gosset polytopes discovered by T. Gosset in 1900

[350]. Following Gosset, we denoted them by (# − 4)21. We refer to [175,
p. 202], for the following facts about their combinatorics. Each polytope Σ#
has two , (E# )-orbits on the set of facets. One of them is represented by the
convex hull of exceptional vectors e1, . . . , e# orthogonal to the vector 40. It
is a (# − 1)-simplex U#−1. The second one is represented by the convex hull
of exceptional vectors orthogonal to e0 − e1. It is a cross-polytope V#−1 (a
cross-polytope V8 is the bi-pyramide over V8−1 with V2 being a square). The
number of facets is equal to the index of the stabilizer group of e0 or e0 − e1 in
the Weyl group. The rest of faces are obtained by induction on # . The number
of :-faces in Σ# is given in Table 8.3 (see [175, 11.8]).

k/N 3 4 5 6 7 8

0 6 10 16 27 56 240

1 3U + 6U 30 80 216 756 6720

2 2U + 3V 10U + 20U 160 720 4032 60480

3 5U + 5V 40U + 80U 1080 10080 241920

4 16U + 10V 432U+ 12096 483840
216U

5 72U5+ 2016U+ 483840
27V 4032U

6 576U+ 69120U+
126V 138240U

7 17280U+
+2160V

Table 8.4 Gosset polytopes
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TheWeyl group, (E# ) acts transitively on the set of :-faceswhen : ≤ #−2.
Otherwise, there are two orbits; their cardinality can be found in the table. The
dual (reciprocal) polytopes are not semi-regular anymore since the group of
symmetries has two orbits on the set of vertices. One is represented by the
vector e0 and another by e0 − e1.

8.2.6 (−1)-curves on del Pezzo surfaces
Let q : I1,# → Pic(() be a geometric marking of a weak del Pezzo surface
(. The intersection form on Pic(() equips it with the structure of a quadratic
lattice. Since q sends an orthonormal basis of I1,# to an orthonormal basis of
Pic((), the isomorphism q is an isomorphism of lattices. By definition of a
geometric marking, q( - ) = k# . Thus, the isometry of lattices q restricts to
an isometry

q :  ⊥( → E# . (8.12)

We define the Weyl group, (() of ( as the subgroup of the orthogonal group
O(Pic(() that fixes  - . The isometry q defines an ismorphism

, (() → , (E# ), f ↦→ q ◦ f−1q. (8.13)

The image of an exceptional vector is the divisor class � such that �2 =

� ·  ( = −1. By Riemann-Roch, � is an effective divisor class. Write it as a
sum of irreducible components � = '1 + · · · + ': . Intersecting with  ( , we
obtain that there exists a unique component, say '1 such that '1 ·  ( = −1.
For all other components, we have '8 ·  ( = 0. It follows from the adjunction
formula that any such component is a (−2)-curve. So, if ( is a nonsingular del
Pezzo surface, the image of any exceptional divisor is a (−1)-curve on (, and we
have a bĳection between the set of exceptional vectors in E# and (−1)-curves
on (. If ( is a weak del Pezzo surface, we use the following.

Lemma 8.2.22. Let � be a divisor class with �2 = � ·  ( = −1. Then,
� = � + ', where ' is a non-negative sum of (−2)-curves, and � is either a
(−1)-curve or  2

(
= 1 and � ∈ | −  ( | and � · ' = 0, '2 = −2. Moreover � is

a (−1)-curve if and only if for each (−2)-curve '8 on ( we have � · '8 ≥ 0.

Proof Fix a geometric basis (40, 41, . . . , 4# ) in Pic((). We know that 42
0 =

1, 40 ·  ( = −3. Hence, ((� · 40) ( + 3�) · 40 = 0, and hence,(
(� · 40) ( + 3�

)2
= −6� · 40 − 9 + (� · 40)2 2

( < 0.

Thus, −6� · 40 − 9 < 0 and hence � · 40 > −9/6 > −2. This shows that
( (−�) ·40 = −3−� ·40 < 0, and since 40 is nef, we obtain that | (−� | = ∅.



8.2 The E# -lattice 29

Applying Riemann-Roch, we get dim |� | ≥ 0. Write an effective representative
of � as a sum of irreducible components and use that � · (− () = 1. Since
− ( is nef, there is only one component � entering with coefficient 1 and
satisfying � ·  ( = −1, all other components are (−2)-curves. If � ∼ � , then
�2 = �2 = −1 and � is a (−1)-curve. Let c : (′→ ( be a birational morphism
of a weak del Pezzo surface of degree 1 (obtained by blowing up 8 − : points
on ( in general position not lying on �). We identify � with its pre-image in
(′. Then, (� + (′) · (′ = −1+ 1 = 0, hence, by Hodge Index Theorem, either
(′ = ( and � ∈ | −  ( |, or

(� +  (′)2 = �2 + 2� ·  (′ +  2
(′ = �

2 − 1 < 0.

Since � ·  ( = −1, �2 is odd. Thus, the only possibility is �2 = −1. If
� ∈ |− ( |, we have � ·'8 = 0 for any (−2)-curve '8 , hence � ·' = 0, '2 = −2.
Assume ' ≠ 0. Since −1 = �2 + 2� · ' + '2 and �2 ≤ 1, '2 ≤ −2, we get

� · ' ≥ 0, where the equality take place only if �2 = 1. In both cases we get

−1 = (� + ')2 = (� + ') · ' + (� + ') · � ≥ (� + ') · '.

Thus, if � ≠ � , we get � · '8 < 0 for some irreducible component of '. This
proves the assertion. �

The number of (−1)-curves on a nonsingular del Pezzo surface is given in
Table 8.1. It is also can be found in Table 8.4. It is the number of vertices of
the Gosset polytope. Other faces give additional information about the combi-
natorics of the set of (−1)-curves. For example, the number of :-faces of type
U is equal to the number of sets of : + 1 non-intersecting (−1)-curves.
We can also see the geometric realization of the fundamental weights:

|1 = e0, |2 = e0 − e1, |3 = 2e0 − e1 − e2, |8 = e1 + · · · + e# , 8 = 4, . . . , #.

The image of |1 under a geometric marking represents the divisor class 40.
The image of |2 represents 40 − 41. The image of |3 is 240 − 41 − 42. Finally,
the images of the remaining fundamental weights represent the classes of the
sums of disjoint (−1)-curves.
Recall the usual attributes of the minimal model program. Let Eff (() be

the effective cone of a smooth projective surface (, i.e. the open subcone in
Pic(() ⊗ R spanned by effective divisor classes. Let Eff (() be its closure. The
Cone Theorem [462] states that

Eff (() = Eff (() ( ≥0 +
∑
8

R[�8],

where Eff (() ( ≥0 = {G ∈ Eff (() : G ·  ( ≥ 0} and [�8] are extremal rays
spanned by classes of smooth rational curves �8 such that −�8 ·  - ≤ 3.
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Recall that a subcone g of a cone  is extremal if there exists a linear function
q such that q( ) ≥ 0 and q−1 (0) ∩  = g. In the case when  is a polyhedral
cone, an extremal subcone is a face of  .

Theorem 8.2.23. Let ( be a nonsingular del Pezzo surface of degree 3. Then,

Eff (() =
:∑
8=1

R[�8],

where the set of curves �8 is equal to the set of (−1)-curves if 3 ≠ 8, 9. If 3 = 8
and ( is isomorphic to P1 ×P1, then : = 2, and the [�8]’s are the classes of the
two rulings on (. If 3 = 8 and ( � F1, then : = 2 and [�1] is the class of the
exceptional section, and [�2] is the class of a fiber. If 3 = 9, then : = 1 and
[�1] is the class of a line.

Proof Since ( is a del Pezzo surface, Eff (() ( ≥0 = {0}, so it suffices to find
the extremal rays. It is clear that � ·  ( = −1 implies that any (−1)-curve
generates an extremal ray. Choose a geometric marking on ( to identify Pic(()
with I1,# . Let � be a smooth rational curve such that 2 = −� ·  ( ≤ 3. By
the adjunction formula, �2 = −2 + 2. If 2 = 1, � is a (−1)-curve. If 2 = 2,
applying Lemma 7.2.27, we follow the proof of Proposition 8.2.20 to obtain
that all vectors with { ∈ I1,# satisfying { · k# = −2 and ({, {) = 0 belong to the
same orbit of, (E# ). Thus, if 3 < 8, we may assume that { = 40 − 41, but then
{ = (40−41−42)+42 is equal to the sumof t wo exceptional vectors, hence [�] is
not extremal. If 2 = 3, then�2 = 1, � · ( = −3. Again, we can apply Noether’s
inequality and the proof of Lemma 7.2.31 to obtain that all such vectors belong
to the same orbit. Take { = 40 and write 40 = (40 − 41 + 42) + 41 + 42 to obtain
that [�] is not extremal if 3 < 8. We leave the cases 3 = 8, 9 to the reader. �

Corollary 8.2.24. Assume 3 < 8. Let q : I1,# → Pic(() be a geometric
marking of a nonsingular del Pezzo surface. Then, q−1 (Eff (()) is equal to the
Gosset polytope.

Recall from [462] that any extremal face � of Eff (() defines a contraction
morphism q� : ( → / . The two types of extremal faces of a Gosset poly-
tope define two types of contraction morphisms: U: -type and V: -type. The
contraction of the U: -type blows down the set of disjoint (−1)-curves that are
the vertices of the set. The contraction of the V: -type defines a conic bundle
structure on (. It is a morphism onto P1 with general fiber isomorphic to P1 and
singular fibers equal to the union of two (−1)-curves intersecting transversally
at one point. Thus, the number of facets of type V of the Gosset polytope is
equal to the number of conic bundle structures on (.
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Another attribute of the minimal model program is the nef cone Nef (() in
Pic(() ⊗ R spanned by divisor classes � such that � · � ≥ 0 for any effective
divisor class �. The nef cone is the dual of Eff ((). Under a geometric marking
it becomes isomorphic to the dual of the Gosset polytope. It has two types of
vertices represented by the normal vectors to facets. One type is represented by
the Weyl group orbit of the vector 40 and another by the vector 40 − 41.

8.2.7 Effective roots
Let q : I1,# → Pic(() be a geometric marking of a weak del Pezzo surface
of degree 3 = 9 − # . The image of a root U ∈ E# is a divisor class � such
that �2 = −2 and � ·  ( = 0. We say that U is an effective root if q(U) is
an effective divisor class. An effective root representing a (−2)-curve will be
called a nodal root. Let

∑
8∈� =8'8 be its effective representative. Since − ( is

nef, we obtain that '8 ·  ( = 0. Since  2
(
> 0, we also get '2

8
< 0. Together

with the adjunction formula, this implies that each '8 is a (−2)-curve. Since a
(−2)-curve does not move, we will identify it with its divisor class.

Proposition 8.2.25. Let ( be a weak del Pezzo surface of degree 3 = 9 − # .
The number A of (−2)-curves on ( is less than or equal to # . The sublatticeN(
of Pic(() generated by (−2)-curves is a root lattice of rank A .

Proof Since each nodal curve is contained in  ⊥
(
and '8 · ' 9 ≥ 0 for 8 ≠ 9 ,

it suffices to prove that the set of (−2)-curves is linearly independent over Q.
Suppose that this is not true. Then, we can find two disjoint sets of curves
'8 , 8 ∈ �, and ' 9 , 9 ∈ �, such that∑

8∈�
=8'8 ∼

∑
9∈�

< 9' 9 ,

where =8 , < 9 are some non-negative rational numbers. Taking the intersection
of both sides with '8 , we obtain that

'8 ·
∑
8∈�

=8'8 = '8 ·
∑
9∈�

< 9' 9 ≥ 0.

This implies that

(
∑
8∈�

=8'8)2 =
∑
8∈�

=8'8 ·
(∑
8∈�

=8'8
)
≥ 0.

Since (Z ()⊥ is negative definite, this could happen only if
∑
8∈� =8'8 ∼ 0.

Since all coefficients are non-negative, this happens only if all =8 = 0. For the
same reason, each <8 is equal to 0. �
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Let [ = G1 + · · · + G# be the bubble cycle defined by the blowing down
structure ( = (# → (#−1 → . . . (1 → (0 = P2 defining the geometric
marking. It is clear that q(U8 9 ) = 48 − 4 9 is effective if and only if G8 �8− 9 G 9 .
It is a nodal root if and only if 8 = 9 + 1.

A rootU8 9: is effective if and only if there exists a linewhose proper transform
on the surfaces (8−1, ( 9−1, (:−1 pass through the points G8 , G 9 , G: . It is a nodal
root if and only if all roots U8′, 9′,:′ with G8′ � G8 , G 9′ � G 9 , G:′ � G: are not
effective.
The root 2e0 − e81 − · · · − e86 is nodal if and only if its image in Pic(() is the

divisor class of the proper transform of an irreducible conic passing through
the points G81 , . . . , G86 .

The root 3e0 − e1 − · · · − e8 − e8 is nodal if and only if its image in Pic(()
is the divisor class of the proper transform of an irreducible cubic with double
points at G8 and passing through the rest of the points.

Definition 8.2.26. A Dynkin curve is a reduced connected curve ' on a pro-
jective nonsingular surface - such that its irreducible components '8 are
−2-curves and the matrix ('8 · ' 9 ) is a Cartan matrix. The type of a Dynkin
curve is the type of the corresponding root system.

Under a geometric marking, a Dynkin curve on a weak del Pezzo surface (
corresponds to an irreducible root base in the lattice E# . We use the Borel-de
Siebenthal-Dynkin procedure to determine all possible root bases in E# .

Theorem 8.2.27. Let ' be a Dynkin curve on a projective nonsingular surface
- . There is a birational morphism 5 : - → . , where . is a normal surface
satisfying the following properties:

(i) 5 (') is a point;
(ii) the restriction of 5 to - \ ' is an isomorphism;
(iii) 5 ∗l. � l- .

Proof Let � be a very ample divisor on - . Since the intersection matrix of
components of ' =

∑=
8=1 '8 has nonzero determinant, we can find rational

numbers A8 such that

(
=∑
8=1

A8'8) · ' 9 = −� · ' 9 , 9 = 1, . . . , =.

It is known and that the entries of the inverse of a Cartanmatrix are non-positive.
Thus, all A8’s are non-negative numbers. Replacing � with some multiple <�,
we may assume that all A8 are non-negative integers. Let � =

∑
A8'8 . Since
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� + � is an effective divisor and (� + �) · '8 = 0 for each 8, we have
O- (� + �) ⊗ O'8 = O'8 . Consider the standard exact sequence

0→ O- (�) → O- (� + �) → O� → 0.

Replacing� with<�, wemay assume, by Serre’s Duality, that ℎ1 (O- (�)) = 0
and O- (�) is generated by global sections. Let B0, . . . , B#−1 be sections of
O- (�) which define an embedding of - in P#−1. Consider them as sections of
O- (� + �). Let B# be a section of O- (� + �) that maps to 1 ∈ �0 (-,O�).
Consider the map 5 ′ : - → P# defined by the sections (B0, . . . , B# ). Then,
5 ′(�) = [0, . . . , 0, 1] and 5 ′ |- ⊂ � is an embedding. So, we obtain a map
5 : - → P# satisfying properties (i) and (ii). Since - is normal, 5 ′ factors
through a map 5 : - → . , where . is normal. Let l. be the canonical sheaf
of. (it is defined to be equal to the sheaf 9∗l. \ 5 ′ (') , where 9 : . \ 5 ′(') → .

is the natural open embedding). We have

l- = 5 ∗l. ⊗ O- (�)

for some divisor �. Since  - · '8 = 0 for each 8, and 5 ∗l. ⊗ O'8 = O'8 we
get � · '8 = 0. Since the intersection matrix of ' is negative definite we obtain
� = 0. �

Applying the projection formula and property (iii), we obtain

l. � 5∗l- .

Since 5 is a resolution of singularities and . is a normal surface, and hence
Cohen-Macaulay, this property is equivalent to that . has rational singularities
[462, Lemma 5.12]. For any canonical root basis V1, . . . , V# in a root system
of type E# , # ≤ 8, there exists a positive root Vmax satisfying the property
Vmax · V8 ≤ 0, 8 = 1, . . . , # . For an irreducible root system, it is equal to the
following vector

�= : Vmax = V1 + · · · + V=;
�= : Vmax = V1 + V2 + 2V3 + · · · + 2V=−1 + V=;
�6 : Vmax = 2V1 + V2 + 2V3 + 3V4 + 2V5 + V6;
�7 : Vmax = 2V1 + 2V2 + 3V3 + 4V4 + 3V5 + 2V6 + V7;
�8 : Vmax = 3V1 + 2V2 + 4V3 + 6V4 + 5V5 + 4V6 + 3V7 + 2V8.

In the root sublattice defined by a Dynkin curve it represents the fundamental
cycle / . Since V2

max = −2, we see that there the singular point 5 (') admits
a fundamental cycle / with /2 = −2. Thus, 5 (') is a RDP. As we already
observed in Example 8.2.10 the exceptional components of a RDP form a
Dynkin curve.
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An example of a RDP is the singularity of the orbit of the origin of the
orbit space + = C2/ℓ, where ℓ is a finite subgroup of SL(2). The orbit space
is isomorphic to the affine spectrum of the algebra of invariant polynomials
� = C[-,. ]ℓ . It has been known since Felix Klein that the algebra � is
generated by three elements D, {, |with one single basic relation � (D, {, |) = 0.
The origin (0, 0, 0) of the surface+ (�) ⊂ C3 is a RDPwith the Dynkin diagram
of type �=, �=, �= dependent on ℓ in the following way. A nontrivial cyclic
group of order = + 1 corresponds to type �=, a binary dihedral group of order
4=, = ≥ 2, corresponds to type �=+2, a binary tetrahedral group of order 24
corresponds to type �6, a binary octahedron group of order 48 corresponds to
type �7, and binary icosahedral group of order 120 corresponds to type �8. It
is known that the local analytic isomorphism class of a RDP is determined by
the Dynkin diagram (see [585]). This gives the following.

Theorem 8.2.28. A RDP is locally analytically isomorphic to one of the fol-
lowing singularities

�= : I2 + G2 + H=+1 = 0, = ≥ 1, (8.14)
�= : I2 + H(G2 + H=−2) = 0, = ≥ 4,
�6 : I2 + G3 + H4 = 0,
�7 : I2 + G3 + GH3 = 0,
�8 : I2 + G3 + H5 = 0.

The corresponding Dynkin curve is of respective type �=, �=, �=.

Comparing this list with the list of simple singularities of plane curves from
Definition 4.2.16, we find that a surface singularity is a RDP if and only if it is
locally analytically isomorphic to a singularity at the origin of the double cover
of C2 branched along a curve � (G, H) with a simple singularity at the origin.
The types match.
Remark 8.2.29. A RDP is often named an ADE-singularity for the reason clear
from above. Also, it is often called a Du Val singularity in honor of P. Du Val
who was the first to characterize them by property (iii) from Theorem 8.2.2.
They are also called Klein singularities for the reason explained above.

8.2.8 Cremona isometries
Definition 8.2.30. Let ( be a weak del Pezzo surface. An orthogonal transfor-
mation f of Pic(() is called a Cremona isometry if f( () =  ( and f sends
any effective class to an effective class. The group of Cremona isometries will
be denoted by Cris(().



8.2 The E# -lattice 35

It is clear that Cris(() is a subgroup of, (() defined in (8.13).

Lemma 8.2.31. Let

�= = {� ∈ Pic(() : � · ' ≥ 0 for any (−2)-curve '}.

For any � ∈ Pic((), there exists | ∈ , (()= such that |(�) ∈ �=. If � ∈ �=
and |(�) ∈ �= for some | ∈ , (()=, then |(�) = �. In other words, �= is a
fundamental domain for the action of, (()= in Pic(().

Proof The set of (−2)-curves forms a root basis in the Picard lattice Pic(()
and, (()= is its Weyl group. The set�= is a chamber defined by the root basis.
Now, the assertion follows from the theory of finite reflection groups, which
we have already employed for a similar assertion in the case of a canonical root
basis in E# . �

Proposition 8.2.32. An isometry f of Pic(() is a Cremona isometry if and
only if it preserves the canonical class and sends a (−2)-curve to a (−2)-curve.

Proof Clearly, any Cremona isometry sends the class of an irreducible curve
to the class of an irreducible curve. Since it also preserves the intersection form,
it sends a (−2)-curve to a (−2)-curve.

Let us prove the converse. Let � be an effective class in Pic(() with �2 ≥ 0.
Then,− ( ·� > 0 and ( (−�) ·� < 0. This gives− ( ·f(�) > 0, f(�)2 ≥
0. Since ( (−f(�)) · (− () = − 2

(
+f(�) · ( < 0, we have | (−f(�) | = ∅.

By Riemann-Roch, |f(�) | ≠ ∅.
So, it remains to show that f sends any (−1)-curve � to an effective divisor

class. By the previous Lemma, for any (−2)-curve ', we have 0 < � · ' =

f(�) · f('). Since f(') is a (−2)-curve, and any (−2) curve is obtained in
this way, we see that f(�) ∈ �=. Hence, f(�) is a (−1)-curve. �

Corollary 8.2.33. Let R be the set of effective roots of a marked del Pezzo
surface ((, q). Then, the group of Cremona isometries Cris(() is isomorphic
to the subgroup of the Weyl group of E# that leaves the subset R invariant.

Let, (()= be the subgroup of, (() generated by reflections with respect to
(−2)-curves. It acts on a marking i : I1,# → Pic(() by composing on the left.
By Lemma 8.2.22, a divisor � with �2 = � ·  ( = −1 belongs to �= if and

only if it is a (−1)-curve. This and the previous lemma imply the following.

Proposition 8.2.34. Let q : , (() → , (E# ) be an isomorphism of groups
defined by a geometric marking on (. There is a natural bĳection

(−1)-curves on ( ←→ , (()=\q−1 (Exc# ),

where Exc# is the set of exceptional vectors in I1,# .
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Theorem 8.2.35. For any marked weak del Pezzo surface ((, i), there exists
| ∈ , (()= such that ((, |◦i) is geometrically marked weak del Pezzo surface.

Proof Weuse induction on # = 9− 2
(
. Let 48 = q(e8), 8 = 0, . . . , # . It follows

from the proof of Lemma 8.2.22, that each 48 is an effective class. Assume 4#
is the class of a (−1)-curve � . Let c# : ( → (#−1 be the blowing down of
� . Then, 40, 41, . . . , 4#−1 are equal to the pre-images of the divisor classes
4′0, 4

′
1, . . . , 4

′
#−1 on (#−1 which define a marking of (#−1. By induction, there

exists an element | ∈ , ((#−1)= such that |(4′0), |(4
′
1), . . . , |(4

′
#−1) defines

a geometric marking. Since c# (4# ) does not lie on any (−2)-curve (otherwise
( is not a weak del Pezzo surface), we see that for any (−2)-curve ' on
(#−1, c∗# (') is a (−2)-curve on (. Thus, under the canonical isomorphism
Pic(() � c∗

#
(Pic((#−1)) ⊥ Z4# , we can identify, ((#−1)= with a subgroup

of, (()=. Applying | to (40, . . . , 4#−1), we get a geometric marking of (.
If 4# is not a (−1)-curve, then we apply an element | ∈ , (()= such that

|(4# ) ∈ �=. By Lemma 8.2.22, |(4# ) is a (−1)-curve. Now, we have a basis
|(40), . . . , |(4# ) satisfying the previous assumption. �

Corollary 8.2.36. There is a bĳection from the set of geometric markings on (
and the set of left cosets, (()/, (()=.

Proof The group , (() acts simply transitively on the set of markings. By
Theorem 8.2.35, each orbit of, (()= contains a unique geometric marking. �

Corollary 8.2.37. The group Cris(() acts on the set of geometric markings of
(.

Proof Let (40, . . . , 4# ) defines a geometric marking, and f ∈ Cris((). Then,
there exists| ∈ , (()= such thatl(f(40)), . . . , l(f(4# )) defines a geometric
marking. By Proposition 8.2.32, f(4# ) is the divisor class of a (−1)-curve � ,
hence it belongs to �=. By Lemma 8.2.31, we get |(f(4# )) = f(41). This
shows that | ∈ ,= ((̄), where ( → (̄ is the blow-down f(�). Continuing in
this way, we see that | ∈ , (P2)= = {1}. Thus, | = 1 and we obtain that f
sends a geometric marking to a geometric marking. �

Let i : I1,# → Pic(() and i′ : I1,# → Pic(() be two geometric markings
corresponding to two blowing-down structures c = c1 ◦ . . . ◦ c# and c′ =
c′1 ◦ . . . ◦ c

′
#
. Then, ) = c′ ◦ c−1 is a Cremona transformation of P2 and

| = i ◦ i′−1 ∈ , (E# ) is its characteristic matrix. Conversely, if ) is a
Cremona transformation with fundamental points G1, . . . , G# such that their
blow-up is a weak del Pezzo surface (, a characteristic matrix of ) defines a
pair of geometric markings i, i′ of ( and an element | ∈ , (E# ) such that

i = i′ ◦ |.
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Example 8.2.38. Let ( be a nonsingular del Pezzo surface of degree 3 and let
c : ( → P2 be the blow-up of six points. Let (40, 41, . . . , 46) be the geometric
marking and U = 240 − 41 − · · · − 46. The reflection | = BU transforms the
geometric marking (40, 41, . . . , 46) to the geometric marking (4′0, 4

′
1, . . . , 4

′
6),

where 4′0 = 540−2(41+· · ·+46), 4′8 = 240−(41+· · ·+46) +48 , 8 = 1, . . . , 6. The
corresponding Cremona transformation is the symmetric involutorial transfor-
mation of degree 5 with characteristic matrix given in (7.45)

Let ( be a weak del Pezzo surface of degree 3 and Aut(() be its group of
biregular automorphisms. By functoriality, Aut(() acts on Pic(() leaving the
canonical class  ( invariant. Thus, Aut(() acts on the lattice  ⊥

-
= (Z ()⊥

preserving the intersection form. Let

d : Aut(() → O( ⊥- ), f ↦→ f∗,

be the corresponding homomorphism.

Proposition 8.2.39. The image of d is contained in the group Cris((). If ( is a
nonsingular del Pezzo surface, the kernel of d is trivial if 3 ≤ 5. If 3 ≥ 6, then
the kernel is a linear algebraic group of dimension 23 − 10.

Proof Clearly, any automorphism induces a Cremona isometry of Pic((). We
know that it is contained in the Weyl group. An element in the kernel does not
change any geometric basis of Pic((). Thus, it descends to an automorphism
of P2 which fixes an ordered set of : = 9 − 3 points in general linear position.
If : ≥ 4 it must be the identity transformation. Assume : ≤ 3. The assertion is
obvious when : = 0.
If : = 1, the surface ( is the blow-up of one point. Each automorphism leaves

the unique exceptional curve invariant and acts trivially on the Picard group.
The group Aut(() is the subgroup of Aut(P2) fixing a point. It is a connected
linear algebraic group of dimension six isomorphic to the semi-direct product
C2 o GL(2).
If : = 2, the surface ( is the blow-up of two distinct points ?1, ?2. Each

automorphism leaves the proper inverse transform of the line 〈?1, ?2〉 invariant.
It either leaves the exceptional curves �1 and �2 invariant or switches them.
The kernel of the Weyl representation consists of elements that do not switch
�1 and �2. It is isomorphic to the subgroup of Aut(P2) which fixes two points
in P2 and is isomorphic to the group � of invertible matrices of the form

©«
1 0 ∗
0 ∗ ∗
0 0 ∗

ª®®¬ .
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Its dimension is equal to 4. The image of the Weyl representation is a group of
order 2. So Aut(() = � o �2.

If : = 3, the surface ( is the blow-up of three, non-collinear points. The kernel
of the Weyl representation is isomorphic to the group of invertible diagonal
3×3 matrices modulo scalar matrices. It is isomorphic to the 2-dimension torus
(C∗)2. �

Corollary 8.2.40. Let ( be a del Pezzo surface of degree 3 ≤ 5, then Aut(()
is isomorphic to a subgroup of the Weyl group, (E9−3).

We will see later examples of automorphisms of weak del Pezzo surfaces of
degree 1 or 2 which act trivially on Pic(().

8.3 Anti-canonical Models

In this section, we will show that any weak del Pezzo surface of degree 3 ≥ 3
is isomorphic to a minimal resolution of a del Pezzo surface of degree 3 in P3 .
In particular, any nonsingular del Pezzo surface of degree 3 ≥ 3 is isomorphic
to a nonsingular surface of degree 3 in P3 .

8.3.1 Anti-canonical linear systems
Lemma 8.3.1. Let ( be a weak del Pezzo surface with  2

(
= 3. Then

dim�0 ((,O( (−A ()) = 1 + 1
2A (A + 1)3.

Proof By Ramanujam’s Vanishing Theorem, which we already used, for any
A ≥ 0 and 8 > 0,

�8 ((,O( (−A ()) = �8 ((,O( ( ( + (−A − 1) ()) = 0. (8.15)

The Riemann-Roch Theorem gives

dim�0 ((,O( (−A ()) = 1
2 (−A ( −  () · (−A () + 1 = 1 + 1

2A (A + 1)3.

�

Theorem 8.3.2. Let ( be a weak del Pezzo surface of degree 3 and R be the
union of (−2)-curves on (. Then, we have the following.

(i) | −  ( | has no fixed part.
(ii) If 3 > 1, then | −  ( | has no base points.
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(iii) If 3 > 2, |− ( | defines a regular map q to P3 which is an isomorphism
outside R. The image surface (̄ is a del Pezzo surface of degree 3 in P3 .
The image of each connected component of R is a RDP of q(().

(iv) If 3 = 2, | −  ( | defines a regular map q : ( → P2. It factors as a
birational morphism 5 : ( → (̄ onto a normal surface and a finite map
c : (̄ → P2 of degree 2 branched along a curve � of degree 4. The image
of each connected component of N is a RDP of (̄. The curve � is either
nonsingular or has only simple singularities.

(v) If 3 = 1, | − 2 ( | defines a regular map q : ( → P3. It factors as a
birational morphism 5 : ( → (̄ onto a normal surface and a finite map
c : (̄ → & ⊂ P3 of degree 2, where & is a quadric cone. The morphism c

is branched along a curve � of degree 6 cut out on & by a cubic surface.
The image of each connected component ofN under 5 is a RDP of (̄. The
curve � either nonsingular or has only simple singularities.

Proof The assertions are easily verified if ( = F0 or F2. So we assume that (
is obtained from P2 by blowing up : = 9 − 3 points C8 .
(i) Assume there is a fixed part � of | − ( |. Write | − ( | = � + |" |, where
|" | is the mobile part. If �2 > 0, by Riemann-Roch,

dim |� | ≥ 1
2 (�

2 − � ·  () ≥ 1
2 (�

2) > 0,

and hence � moves. Thus, �2 ≤ 0. If �2 = 0, we must also have � ·  ( = 0.
Thus, � =

∑
=8'8 , where '8 are (−2)-curves. Hence, [ 5 ] ∈ (Z ()⊥, and

hence, �2 ≤ −2 (the intersection form on (Z ()⊥ is negative definite and
even). Thus, �2 ≤ −2 and

"2 = (− ( − �)2 =  2
( + 2 ( · � + �2 ≤  2

( + �
2 ≤ 3 − 2,

− ( · " =  2
( +  ( · � ≤ 3.

Suppose |" | is irreducible. Since dim |" | = dim | − ( | = 3, the linear system
|" | defines a rational map to P3 whose image is a nondegenerate irreducible
surface of degree ≤ 3 − 3 (strictly less if |" | has base points). This contradicts
Theorem 8.1.1.
Now, assume that |" | is reducible, i.e., it defines a rational map to a nonde-

generate curve , ⊂ P3 of some degree C. By Theorem 8.1.1, we have C ≥ 3.
Since ( is rational,, is a rational curve and the pre-image of a general hyper-
plane section is equal to the disjoint sum of C linearly equivalent curves. Thus,
" ∼ C"1 and

3 ≥ − ( · " = −C ( · "1 ≥ 3 (− ( · "1).

Since − ( · " = 0 implies "2 < 0 and a curve with negative self-intersection
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does not move, this gives − ( · "1 = 1, 3 = C. But then "2 = 32"2
1 ≤ 3 − 2

gives a contradiction.
(ii) Assume 3 > 1. We have proved that | −  ( | is irreducible. A general

member of | −  ( | is an irreducible curve � with l� = O� (� +  () = O� .
If � is smooth, then it is an elliptic curve and the linear system |O� (�) | is of
degree 3 > 1 and has no base points. The same is true for a singular irreducible
curve of arithmetic genus 1. This is proved in the same way as in the case of a
smooth curve. Consider the exact sequence

0→ O( → O( (�) → O� (�) → 0.

Applying the exact sequence of cohomology, we see that the restriction of the
linear system |� | = | −  ( | to � is surjective. Thus, we have an exact sequence
of groups

0→ �0 ((,O() → �0 ((,O( (�)) → �0 ((,O� (�)) → 0.

Since |O� (�) | has no base points, we have a surjection

�0 ((,O� (�)) ⊗ O� → O� (�).

This easily implies that the homomorphism

�0 ((,O( (�)) ⊗ O� → O( (�)

is surjective. Hence, |� | = | −  ( | has no base points.
(iii) Assume 3 > 2. Let G, H ∈ ( be two points outside R. Let 5 : (′→ ( be

the blowing up of G and H with exceptional curves �G and �H . By Proposition
8.1.23, (′ is a weak del Pezzo surface of degree 3 − 2. We know that the linear
system | −  (′ | has no fixed components. Thus,

dim | −  ( − G − H | = dim | −  (′ − �G − �H | ≥ 1.

This shows that | −  ( | separates points. Also, the same is true if H �1 G and G
does not belong to any (−1)-curve � on ( or G ∈ � and H does not correspond
to the tangent direction defined by � . Since − ( · � = 1 and G ∈ � , the latter
case does not happen.
Since q : ( d (̄ is a birational map given by a complete linear system |− ( |,

its image is a nondegenerate surface of degree 3 = (− ()2. Since − ( · ' = 0
for any (−2)-curve, we see that q blows down ' to a point ?. If 3 = 3, then (̄ is a
cubic surface with isolated singularities (the images of connected components
ofN ). It is well known that a hypersurface with no singularities in codimension
1 is a normal variety. Thus, (̄ is a normal surface. If 3 = 4, then ( is obtained
by a blow-up one point on a weak del Pezzo surface (′ of degree 3. This point
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does not lie on a (−2)-curve. Thus, (̄′ is obtained from (̄ by a linear projection
from a nonsingular point. We have explained already in Proposition 8.1.8 that
this implies that (̄ is a normal surface.
The fact that singular points of (̄ are RDP is proven in the same way as we

have proved assertion (iii) of Theorem 8.2.27.
(iv) Assume 3 = 2. By (ii), the linear system | −  ( | defines a regular map

q : ( → P2. Since  2
(
= 2, the map is of degree 2. Using Stein’s factorization

[379, Chapter III, Corollary 11.5], it factors through a birational morphism
onto a normal surface 5 : ( → (̄ and a finite degree 2 map c : (̄ → P2. Also,
we know that 5∗O( = O(̄ . A standard Hurwitz-type formula gives

l(̄ � c
∗ (lP2 ⊗ L), (8.16)

where B ∈ �0 (P2,L⊗2) vanishes along the branch curve, of c. We have

O( ( () = l( = (c ◦ 5 )∗OP2 (−1) = 5 ∗ (c∗OP2 (−1)).

It follows from the proof of Theorem 8.2.27 (iii) that singular points of (̄ are
RDP. Thus, 5 ∗l(̄ = l( , and hence

5 ∗l(̄ � 5 ∗ (c∗OP2 (−1)).

Applying 5∗ and using the projection formula and the fact that 5∗O- = O. ,
we get l(̄ � c∗OP2 (−1). It follows from (8.16) that L � OP2 (2) and hence
deg, = 4.
Proof of (v). Let c : ( → P2 be the blow-up of 8 points G1, . . . , G8. Then,
| − ( | is the proper inverse transform of the pencil |3ℎ− G1 − · · · − G8 | of plane
cubics passing through the points G1, . . . , G8. Let G9 be the ninth intersection
point of two cubics generating the pencil. The point G ′9 = c

−1 (G9) is the base
point of | −  ( |. By Bertini’s Theorem, all fibers except finitely many, are
nonsingular curves (the assumption that the characteristic is zero is important
here). Let � be a nonsingular member from |− ( |. Consider the exact sequence

0→ O( (− () → O( (−2 () → O� (−2 () → 0. (8.17)

The linear system |O� (−2 () | on � is of degree 2. It has no base points. We
know from (8.15) that �1 ((,O( (− ()) = 0. Thus, the restriction map

�0 ((,O( (−2 ()) → �0 (�,O� (−2 ())

is surjective. By the same argument as we used in the proof of (ii), we obtain that
| −2 ( | has no base points. By Lemma 8.3.1, dim | −2 ( | = 3. Let q : ( → P3

be a regular map defined by | − 2 ( |. Its restriction to any nonsingular member
� of | −  ( | is given by the linear system of degree 2 and hence is of degree 2.
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Therefore, the map 5 is of degree C > 1. The image of q is a surface of some
degree : . Since (−2 ()2 = 4 = :C, we conclude that : = C = 2. Thus, the
image of q is a quadric surface & in P3 and the images of � ∈ | −  ( | is a line
;� on &. Since all lines ;� intersect at the point q(C ′9), & is a quadric cone with
the vertex q(C ′9).

Let ( c→ (′
q′

→ & be the Stein factorization. Note that a (−2)-curve ' does
not pass through the base point G ′9 of | −  ( | (because − ( · ' = 0). Thus,
c(G ′9) is a nonsingular point @

′ of (′. Its image in & is the vertex @ of &. Since
q′ is a finite map, the local ring O(′,@′ is a finite algebra over O&,@ of degree
2. After completion, we may assume that O(′,@′ � C[[D, {]]. If D ∈ O&,@ , then
{ satisfies a monic equation {2 + 0{ + 1 with coefficients in O&,@ , where, after
changing { to { + 1

20, we may assume that 0 = 0. Then, O&,@ is equal to the
ring of invariants in C[[D, {]] under the automorphism D ↦→ D, { ↦→ −{ which
as easy to see isomorphic to C[[D, {2]]. However, we know that @ is a singular
point so the ring O&,@ is not regular. Thus, we may assume that D2 = 0, {2 = 1

and then O&,@ is the ring of invariants for the action (D, {) ↦→ (−D,−{). This
action is free outside the maximal ideal (D, {). This shows that the finite map q′
is unramified in a neighborhood of @′ with @′ deleted. In particular, the branch
curve & of q′ does not pass through @. We leave it to the reader to repeat the
argument from the proof of (iv) to show that the branch curve, of q belongs
to the linear system |O& (3) |. �

Let - be a weak del Pezzo surface of degree 3 ≤ 3. The image of a (−1)-
curve on - under the antticanonical map is a line on the anti-canonical model
( of - in P3 . Conversely, any line ℓ on a del Pezzo surface ( of degree 3 in P3
is the image of a (−1)-curve � on its minimal resolution - . It passes through
a singular point if and only if � intersects a component of a Dynkin curve
blown down to this singular point. By Proposition 8.2.34, the set of lines on
( is in a bĳective correspondence with the set of orbits of exceptional vectors
in the lattice  ⊥

-
� E9−3 with respect to the Weyl group of the root sublattice

of generated by (−2)-curves. This justifies calling a (−1)-curve on a weak del
Pezzo surface a line.

8.3.2 Anti-canonical model
Let - be a normal projective algebraic variety and let � be a Cartier divisor
on - . It defines the graded algebra

'(-, �) =
∞⊕
A=0

�0 ((,O( (A�)),
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which depends only (up to isomorphism) on the divisor class of � in Pic(-).
Assume '(-, �) is finitely generated, then -� = Proj '(-, �) is a projec-
tive variety. If B0, . . . , B= are homogeneous generators of '(-, �) of degrees
@0, . . . , @= there is a canonical closed embedding into the weighted projective
space

-� ↩→ P(@0, . . . , @=).

Also, the evaluation homomorphism of sheaves of graded algebras

'(-, �) ⊗ O- → ((L) =
∞⊕
A=0
O( (A�)

defines a morphism

ican : - = Proj(((L)) → -� .

For every A > 0, the inclusion of subalgebras

((�0 (-,O- (A�))) → '(-, �)

defines a rational map

gA : -� d P(�0 (-,O- (A�))).

The rational map q |A� | : - d P(�0 (-,O- (A�))) is given by the complete
linear system |A� | factors through i

q |A3 | : -
i
d -�

gA
d P(�0 (-,O- (A�))).

A proof of the following proposition can be found in [205, 7.1].

Proposition 8.3.3. Suppose |A� | has no base points for some A > 0 and
�dim- > 0. Then,

(i) '(-, �) is a finitely generated algebra;
(ii) -� is a normal variety;
(iii) dim -� = maxA>0 dim q |A� | (-);
(iv) if dim -� = dim - , then i is a birational morphism.

We apply this to the case when - = ( is a weak del Pezzo surface and
� = − ( . Applying the previous proposition, we easily obtain that

-− ( � (̄,

where we use the notation of Theorem 8.3.2. The variety (̄ is called the anti-
canonical model of (. If ( is of degree 3 > 2, the map g1 : (̄ → P3 is a
closed embedding, hence '((,− () is generated by 3 + 1 elements of order 1.
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If 3 = 2, the map g1 is the double cover of P2. This shows that '((,− () is
generated by three elements B0, B1, B2 of degree 1 and one element B3 of degree
2 with a relation B2

3 + 04 (B0, B1, B2) = 0 for some homogeneous polynomial 04
of degree 2. This shows that (̄ is isomorphic to a hypersurface of degree 4 in
P(1, 1, 1, 2) given by an equation

C23 + 04 (C0, C1, C2) = 0. (8.18)

In the case 3 = 1, by Lemma 8.3.1 we obtain that

dim '((,− ()1 = 2, dim '((,− ()2 = 4, dim '((,− ()3 = 7.

Let B0, B1 be generators of degree 1, let B2 be an element of degree 2 that is not in
(2 ('((,− ()1) and let B3 be an element of degree 3 that is not in the subspace
generated by B3

0, B0B
2
1, B

2
0B1, B

3
1, B2B0, B2B1. The subring '((,− () ′ generated by

B0, B1, B2, B3 is isomorphic to C[C0, C1, C2, C3]/(� (C0, C1, C2, C3)), where

� = C23 + C
3
2 + 04 (C0, C1)C2 + 06 (C0, C1),

and 04 (C0, C1) and 06 (C0, C1) are binary forms of degrees 4 and 6. The projection
[C0, C1, C2, C3] ↦→ [C0, C1, C2] is a double cover of the quadratic cone& ⊂ P3 which
is isomorphic to the weighted projective plane P(1, 1, 2). Applying Theorem
8.3.2, one can show that the rational map (̄ d Proj '((,− () ′ is an isomor-
phism. This shows that the anti-canonical model (̄ of a weak del Pezzo surface
of degree one is isomorphic to a hypersurface+ (�) of degree 6 in P(1, 1, 2, 3).
Recall from Subsection 4.1.2 that a nondegenerate subvariety - of P= is

called projectively normal if - is normal and the natural restriction map

�0 (P=,OP= (<)) → �0 (-,O- (<))

is surjective for all < ≥ 0. This can be restated in terms of the vanishing of
cohomology

�1 (P=,I- (<)) = 0, < > 0 (resp. < = 1),

where I- is the ideal sheaf of - . If - is a normal surface, this is equivalent to
that the ideal sheaf I- is an aCM sheaf.

Theorem 8.3.4. Let ( be a weak del Pezzo surface, then the anti-canonical ring
'((,− () is a normal Cohen-Macaulay ring. In particular, if 3 ≥ 3, the anti-
canonical model - of ( of degree 3 in P3 is arithmetically Cohen-Macaulay
and projectively normal.

Proof For 3 ≤ 2, this follows from the explicit description of the ring. It is
quotient of a ring of polynomials by a principal ideal, and it has singularities in
codimension ≥ 2. By Serre’s criterion, it is a normal domain (see [281], 11.2).
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It follows from (8.15) that �1 (-,O- (:)) = 0, : ≥ 0, and by Serre’s duality,
�1 (-,O- (:)) � �1 (-,O- (1 − :)) = 0 for all : < 0. Using our discussion
of aCM sheaves in Subsection 4.1.2, we obtain that it remains to prove that a
del Pezzo surface of degree 3 in P3 is projectively normal.
Let � be a general hyperplane. Tensoring the exact sequence

0→ OP= (< − 1) → OP= (<) → O� (<) → 0

with I- we get an exact sequence

0→ I- (< − 1) → I- (<) → I�∩- (<) → 0. (8.19)

We know that a general hyperplane section � = ( ∩ � is an elliptic curve of
degree 3 in � which is a projectively normal curve in �. Thus,

�1 (�,I� (<)) = 0, < > 0.

We know that ( is linearly normal surface in P3 . This implies that

�1 (P3 ,I- (1)) = 0.

The exact sequence gives that �1 (P3 ,I- (2)) = 0. Continuing in this way, we
get that �1 (P3 ,I- (<)) = 0, < > 0.

�

Corollary 8.3.5. If 3 ≥ 4, the anti-canonical ring of a weak del Pezzo surface
is generated by 1

23 (3 − 3) elements of degree 2.

Proof Let ( ⊂ P3 be an anti-canonical model of a weak del Pezzo surface of
degree 3 ≥ 4. Since ( is projectively normal,

dim �( (2) = dim�0 (P3 , P3 (2)) − dim�0 ((,O( (−2 ()) (8.20)

=

(
3 + 2

2

)
− 33 − 1 = 1

23 (3 − 3).

Let � be a general hyperplane section of (. It is an elliptic curve of degree
3 embedded in P3−1 by a complete linear system. It is known to be a normal
embedding, and that � is a scheme-theoretical intersection of quadrics [415,
Theorem IV.1.3]. This implies that

dim �� (2) =
(
3 + 1

2

)
= 23 = 1

23 (3 − 3) = dim �( (2).

Let � (()2 be the ideal in ⊕=≥0�
0 (P3 ,OP3 (=) generated by �- (2).Then, ( ⊂

- = + (� (()2). For a general hyperplane �, the intersection - ∩ � contains
� = ( ∩ �, and they are generated by the same linear space of quadrics. Thus,
they coincide. Since � is general, - = (. �



46 Del Pezzo Surfaces

One can also derive a projective resolution of an anti-canonical model ( =
Proj('((,− ()) ⊂ P3 of a weak del Pezzo surface of degree 3 ≥ 4. We use
the following more general result [405, Theorem 1].

Theorem 8.3.6. Let - be a an arithmetically Cohen-Macaulay subvariety of
P= of dimension ≥ 1 and deg(-) = codim(-) + 2. Then, the minimal free
resolution of - is

0→ OP= (−? − 2) → OP= (−?)⊕U?−1 → OP= (−? + 1)⊕U?−2 → · · ·
· · · → OP= (−2)⊕U1 → OP= → O- → 0,

where ? is the projective dimension of the projective coordinate ring of - and
U8 = 8

(?+1
8+1

)
−

( ?
8−1

)
for 1 ≤ 8 ≤ ? − 2.

Since deg(() = 3 and codim(() = 3 − 2, Theorem 8.3.4 allows us to apply
this theorem.

Corollary 8.3.7. We get the following resolvents for an anti-canonical model
of a del Pezzo surface:

d = 4 :

0→ OP4 (−4) → OP4 (−2)⊕2 → OP4 → O- → 0.

d = 5 :

0→ OP5 (−5) → OP5 (−3)⊕5 → OP5 (−2)⊕5 → OP5 → O- → 0.

d = 6 :

0→ OP6 (−6) → OP6 (−4)⊕9 → OP6 (−3)⊕16 → OP6 (−2)⊕9 → OP6 → O- → 0.

d = 7 :

0→ OP7 (−7) → OP7 (−5)⊕14 → OP7 (−4)⊕35

→ OP7 (−3)⊕35 → OP7 (−2)⊕14 → OP7 → O- → 0.

d = 8 :

0→ OP8 (−8) → OP8 (−6)⊕20 → OP8 (−5)⊕64 → OP8 (−4)⊕90

→ OP8 (−3)⊕64 → OP8 (−2)⊕20 → OP8 → O- → 0.

d = 9 :

0→ OP9 (−9) → OP9 (−7)⊕27 → OP9 (−6)⊕105 → OP9 (−5)⊕189

→ OP9 (−4)⊕189 → OP9 (−3)⊕105 → OP9 (−2)⊕27 → OP9 → O- → 0.
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Remark 8.3.8. An irreducible subvariety - of P= is said to satisfy Property
(#?) if it admits a projective resolvent

· · · → ⊕ 9OP= (U2, 9 ) → ⊕ 9OP= (U1, 9 ) → OP= → O- → 0

with U8, 9 = 8+1 for 1 ≤ 8 ≤ ? and all 9 [479, I:1.8.D]. Inspecting the projective
resolvents of anti-canonical models of weak del Pezzo surfaces of degree 3 ≥ 4,
we find that they satisfy property (#3−3).

8.4 Del Pezzo surfaces of degree ≥ 6

8.4.1 Del Pezzo surfaces of degree 7, 8, 9

A weak del Pezzo surface of degree 9 is isomorphic to P2. Its anti-canonical
model is a Veronese surface V2

3. It does not contain lines.
A weak del Pezzo surface of degree 8 is isomorphic to either F0, or F1, or F2.

In the first two cases, it is a del Pezzo surface isomorphic to its anti-canonical
model in P8. If ( � F0, the anti-canonical model is a Veronese-Segre surface
embedded in P8 by the complete linear system of divisors of type (2, 2). It does
not contain lines.
If ( � F1, the anti-canonical model is a surface of degree 8 in P8 embedded

by the linear system |3f + 2e|, where f is the divisor class of a fiber and e is the
divisor class of the exceptional section 4. The image of 4 is the unique line ℓ on
the surface. The images of the fibers of the ruling of F1 are conics. They define
a structure of a smooth conic bundle on the surface with the section ℓ. If ( � F2,
the anti-canonical model is isomorphic to the quadratic cone & embedded in
P8 by the complete linear system |O& (2) |. It does not contain lines.
A weak del Pezzo surface of degree 7 is isomorphic to the blow-up of two

points G1, G2 in P2. If the points are proper, the anti-canonical model of ( is
a nonsingular surface that contains three lines representing the divisor classes
41, 42, 40 − 41 − 42. If only one point is proper, then it has one singular point
of type �1 and contains two intersecting lines representing the classes 41 and
40 − 41 − 42. In both cases, the surface is isomorphic to a projection of the
Veronese surface V2

3 from a secant line of the surface. In the second case, the
secant line is tangent to the Veronese surface.
The automorphism groups of a nonsingular del Pezzo surfaces of degree ≥ 7

were described in Subsection 8.2.8.
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8.4.2 Del Pezzo surfaces of degree 6
A weak del Pezzo surface ( of degree 6 is isomorphic to the blow-up of a
bubble cycle [ = G1 + G2 + G3. Up to a change of an admissible order, we have
the following possibilities:

(i,i’) G1, G2, G3 are three proper non-collinear (collinear) points;
(ii, ii’) G2 � G1, G3 are non-collinear (collinear) points;
(iii, iii’) G3 � G2 � G1 are non-collinear (collinear) points.

In cases (i), (ii) and (iii) the net of conics |OP2 (2) − [ | is homaloidal and the
surface ( is isomorphic to a minimal resolution of the graph of the Cremona
transformation) defined by this net. Since a quadratic Cremona transformation
is a special case of a bilinear Cremona transformation, its graph is a complete
intersection of two hypersurfaces of bidegree (1, 1) in P2×P2. Under the Segre
map, the graph embeds in P6 and the composition of the maps

Φ : ( → ℓ) ↩→ P2 × P2 B
↩→ P6,

is the map given by the anti-canonical linear system. Its image is a del Pezzo
surface of degree 6 embedded in P6. It is a nonsingular surface in case (i) and it
has one singular point of type �1 in case (ii) and type �2 in case (iii). The two
maps ( → P2 are defined by the linear systems |40 | and |240 − 41 − 42 − 43 |.
The set of (−1)-curves and (−2)-curves on a weak del Pezzo surface of types

(i) (resp. (ii), resp. (iii)) is pictured in Figure 7.1 (resp. Figure 7.2, resp. Figure
7.3).
In the cases where the points G1, G2, G3 are collinear, ( has a unique map to P2

defined by the linear system |40 | and it is not related toCremona transformations.
Surfaces of types (i), (ii), (ii’), (iii’) are examples of toric surfaces. They

contain an algebraic torus as its open Zariski set*, and the action of* on itself
by translations extends to a biregular action of* on (. The complement of* is
the union of orbits of dimension 0 and 1. It supports an anti-canonical divisor.
For example, in case (i), the complement of * is the union of six lines on the
surface.
The anti-canonical model of a weak toric del Pezzo surface is a toric del

Pezzo surface of degree six in P6. It is nonsingular only in case (i).
The types of singular points and the number of lines on a del Pezzo surface

of degree 6 are given in Table 8.5 below.
The secant variety of a nonsingular del Pezzo surface of degree 6 in P6 is

of expected dimension five. In fact, projecting from a general point, we obtain
a nonsingular surface of degree six in P5. It follows from the classification of
Severi-Zak varieties from Subsection 7.4.2 that a surface in P5 with the secant
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Bubble cycle (i) (ii) (iii) (i’) (ii’) (iii’)

Singular points ∅ �1 �2 �1 2�1 �1 + �2

Lines 6 4 2 3 2 1

Table 8.5 Lines and singular points on a del Pezzo surface of degree 6

variety of dimension four is a Veronese surface. More precisely, we have the
following description of the secant variety.

Theorem 8.4.1. Let ( be a nonsingular del Pezzo surface of degree 6 in
P6. Then, ( is projectively equivalent to the subvariety given by equations
expressing the rank condition

rank
©«
C0 C1 C2
C3 C0 C4
C5 C6 C0

ª®®¬ ≤ 1.

The secant variety Sec(-) is the cubic hypersurface defined by the determinant
of this matrix.

Proof We know that ( is isomorphic to the intersection of the Segre variety
S2,2 � P2 × P2 ↩→ P8 by a linear subspace ! of codimension 2. If we identify
P8 with the projectivization of the space of 3 × 3-matrices, then the Segre
variety S2,2 is the locus of matrices of rank 1, hence it is defined, even scheme-
theoretically, by the 2 × 2-matrices. A secant line of ( is contained in ! and is
a secant of S2,2. It represents a matrix equal to the sum of matrices of rank 1.
Hence, each secant is contained in the determinantal cubic hypersurface. Thus,
the secant variety of ( is the intersection of the cubic by the linear subspace !,
so it is a cubic hypersurface in P6.

Explicitly, we find the linear space ! as follows. The map ( → P2 × P2

is given by the map (c1, c2), where c8 : ( → P2 are given by the linear
systems |40 | and |240 − 41 − 42 − 43 |. Choose a basis I0, I1, I2 in |40 | and
a basis I1I2, I0I1, I0I1 in |240 − 41 − 42 − 43 | corresponding to the standard
quadratic transformation )st. Then, the graph of )st is equal to the intersection
of S2,2 ⊂ |Mat3,3 | with equal diagonal entries 011 = 022 = 033 corresponding
to the relations I0 (I1I2) = I1 (I0I2) = I2 (I0I1). This gives the equations from
the assertion of the theorem. �

Let us describe the group of automorphisms of a nonsingular del Pezzo sur-
face of degree six. The surface is obtained by blowing up three non-collinear
points G1, G2, G3.Wemay assume that their coordinates are [1, 0, 0], [0, 1, 0], [0, 0, 1].



50 Del Pezzo Surfaces

We know from Section 8.2.6 that the kernel of the linear representation d :
Aut(() → O(Pic(()) is a 2-dimensional torus. The root system is of type
�2 + �1, so the Weyl group is isomorphic to 2×S3 � �12, where �12 is the di-
hedral group of order 12. Let us show that the image of the Weyl representation
is the whole Weyl group.
We choose the standard generators B1, B2, B3 of , (() � , (E3) defined by

the reflections with respect to the roots 40 − 41 − 42, 41 − 42, 42 − 43. The
reflection B1 acts as the standard quadratic transformation )st, which is lifted to
an automorphism of (. It acts on the hexagon of lines on ( by switching the
opposite sides. The reflection B2 (resp. B3) acts as a projective transformation
that permutes the points G1, G2 and fixes G3 (resp. permutes G2 and G3 and fixes
G1). The subgroup 〈B2, B3〉 � �6 � S3 acts on the hexagon of lines by natural
embedding �6 ↩→ O(2).
We leave it to the reader to prove the following:

Theorem 8.4.2. Let ( be a del Pezzo surface of degree 6. Then,

Aut(() � (C∗)2 oS3 ×S2.

If we represent the torus as the quotient group of (C∗)3 by the diagonal subgroup
Δ � C∗, then the subgroup S3 acts by permutations of factors, and the cyclic
subgroup S2 acts by the inversion automorphism I ↦→ I−1.

Finally, we mention that the Gosset polytope Σ3 = −121 corresponding to
a nonsingular del Pezzo surface of degree 6 is an octahedron. This agrees
with the isomorphism , (E3) � �12. The surface has two blowing-down
morphisms ( → P2 corresponding to two U-facets and three conic bundle
structures corresponding to the pencils of lines through three points on the
plane.

8.5 Del Pezzo Surfaces of Degree 5

8.5.1 Lines and singularities
A weak del Pezzo surface ( of degree 5 is isomorphic to the blow-up of a
bubble cycle [ = G1 + G2 + G3 + G4. The only assumption on the cycle is that
|ℎ − [ | = ∅. Let 40, 41, 42, 43, 44 be a geometric basis defined by an admissible
order of [. There are the following five possibilities:

(i) G1, G2, G3, G4 are proper points;
(ii) G2 � G1, G3, G4;
(iii) G3 � G2 � G1, G4;
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(iv) G2 � G1, G4 � G3;

(v) G4 � G3 � G2 � G1.

There are the following root sublattices in a root lattice of type �4:

�1, �1 + �1, �2, �1 + �2, �3, �4.

In case (i), ( is a del Pezzo surface or has one Dynkin curve of type �1 if three
points are collinear.
In case (ii), we have three possibilities forDynkin curves: �1 if no three points

are collinear, �1 + �1 if G1, G2, G3 are collinear, �2 if G1, G3, G4 are collinear.
In case (iii), we have three possibilities: �2 if no three points are collinear,

�3 if G1, G2, G3 are collinear, �1 + �2 if G1, G2, G4 are collinear.
In case (iv), we have two possibilities: �1+�1 if no three points are collinear,

�2 + �1 if G2, G3, G4 or G1, G2, G3 are collinear,
In case (v), we have two possibilities: �3 if G1, G2, G3 are not collinear, �4

otherwise.
It can be checked that the cases with the same root bases are obtained from

each other by a Cremona isometry. So, they lead to isomorphic surfaces.
Table 8.6 below gives the possibilities of lines and singular points on the

anti-canonical model of a del Pezzo surface of degree 5 in P5.

Singular points ∅ �1 2�1 �2 �1 + �2 �3 �4

Lines 10 7 5 4 3 2 1

Table 8.6 Lines and singular points on a del Pezzo surface of degree 5

From now on, we will study nonsingular del Pezzo surfaces of degree 5.
Since any set of four points in general position is projectively equivalent to
the set of reference points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], we obtain that
all nonsingular del Pezzo surfaces of degree 5 are isomorphic. A nonsingular
del Pezzo surface of degree 5 has 10 lines. The union of them is a divisor in
| − 2 ( |.
The Gosset polytope Σ4 = 021 has five facets of type U corresponding to

contractions of five disjoint lines on ( and five pencils of conics corresponding
to the pencils of lines through a point in the plane and the pencil of conics
through the four points.
The incidence graph of the set of 10 lines is the famous Petersen graph. The

incidence graph of the set of 10 lines is the famous Petersen graph.
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Figure 8.4 Petersen graph

8.5.2 Equations
In this subsection, we use some elementary properties of Grassmann varieties
�: (P=) = � (: + 1, = + 1) of :-dimensional subspaces in P= (equivalently,
(: + 1)-dimensional linear subspaces of C=+1). We refer to Chapter 10 for the
proof of all properties we will use.

Proposition 8.5.1. Let ( be a nonsingular del Pezzo surface of degree five in
P5. Then, ( is isomorphic to a linear section of the Grassmann variety �1 (P4)
of lines in P4.

Proof It is known that the degree of � = �1 (P4) in the Plücker embedding is
equal to 5 and dim� = 6. It is also known that the canonical sheaf is equal to
O� (−5). By the adjunction formula, the intersection of � with a general linear
subspace of codimension 4 is a nonsingular surface - with l- � O- (−1).
This must be a del Pezzo surface of degree 5. Since all del Pezzo surfaces of
degree 5 are isomorphic, the assertion follows. �

Corollary 8.5.2. Let ( be a nonsingular del Pezzo surface of degree 5 in P5.
Then, its homogeneous ideal is generated by five linearly independent quadrics.

Proof Since ( is projectively normal, applying Lemma 8.3.1, we obtain that
the linear system of quadrics containing ( is of dimension 4. It is known that the
homogeneous ideal of the Grassmannian � (2, 5) is generated by five quadrics.
In fact, the Grassmannian is defined by five pfaffians of principal 4 × 4 minors
of a general skew-symmetric 5 × 5-matrix. So, restricting this linear system to
the linear section of the Grassmannian, we obtain that the quadrics containing
( define ( scheme-theoretically. �

Let P4 = |� | for some linear space � of dimension 5. For any line ℓ = |* |
in |� |, the dual subspace *⊥ in �∨ defines a plane |*⊥ | in P(�). This gives
a natural isomorphism between the Grassmannians �1 ( |� |) and �2 (P(�)).
Dually, we get an isomorphism �2 ( |� |) � �1 (P(�)).
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Fix an isomorphism
∧5 � � C, and consider the natural pairing

2∧
� ×

3∧
� →

5∧
� � C

defined by the wedge product. It allows one to identify (∧2 �)∨ = ∧2 �∨

with
∧3 � . The corresponding identification of the projective spaces does not

depend on the choice of an isomorphism
∧5 � � C. A point * ∈ � (2, �)

is orthogonal to a point + ∈ � (3, �) if and only if |* | ∩ |+ | ≠ ∅. We know
that a quintic del Pezzo surface ( is contained in the base locus of a web, of
hyperplanes in |∧2 � |. The web of hyperplanes, considered as a 3-dimensional
subspace of |∧2 �∨ | � |∧3 � | intersects�3 ( |� |) at 5 pointsΛ1, . . . ,Λ5. Thus,
any point in ( intersects Λ1, . . . ,Λ5.
Conversely, let Λ1, . . . ,Λ5 be the five planes in |� | such that, considered

as points in the space |∧3 � |, they span a general 3-dimensional subspace, .
Then,,∨ ∩�2 ( |� |) is a general 5-dimensional subspace in |∧2 � | which cuts
�2 ( |� |) along a quintic del Pezzo surface.

Let us record this.

Proposition 8.5.3. A nonsingular del Pezzo quintic is isomorphic to the variety
of lines in P4 that intersect five planes in P4 that span a general 3-dimensional
subspace in the Plücker space P9. Via duality, it is also isomorphic to the variety
of planes in P4 that intersect five lines in P4 that span a general 3-dimensional
subspace of the Plücker space.

Let ( be a del Pezzo surface of degree 5 in P5. The linear system of cubics
in P5 containing ( has dimension 24. Let us see that any nonsingular cubic
fourfold containing - is rational (the rationality or the irrationality of a general
cubic fourfold is unknown at the moment).

Lemma 8.5.4. Let ( be a nonsingular del Pezzo surface ( of degree 5 in P5.
For any point G outside ( there exists a unique secant line of ( containing G.

Proof It is known that Sec(-) = P5 since any nondegenerate nonsingular
surface in P5 with secant variety of dimension four is a Veronese surface. Let
0, 1 ∈ ( such that G ∈ ℓ = 〈0, 1〉. Consider the projection ?ℓ : - d P3 from the
line ℓ. Its image is a cubic surface (3 isomorphic to the anti-canonical model of
the blow-up of ( at 0, 1. If 0 = 1, the line ℓ is tangent to (, and one of the points
is infinitely near the other. In this case the cubic surface is singular. The map
?ℓ : ( \ ℓ is an isomorphism outside 0, 1. Suppose G belongs to another secant
ℓ′ = 〈2, 3〉. Then, the projection of the plane 〈ℓ, ℓ′〉 spanned by ℓ and ℓ′ is a
point on the cubic surface whose pre-image contains 2, 3. This shows that ?ℓ is
not an isomorphism outside ℓ ∩ (. This contradiction proves the assertion. �
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Theorem 8.5.5. Let � be an irreducible cubic fourfold containing a nonsin-
gular del Pezzo surface ( of degree 5 in P5. Then, � is a rational variety.

Proof Consider the linear system |I( (2) | of quadrics containing (. It defines
a regular map . → P4, where . is the blow-up of (. Its fibers are proper trans-
forms of secants of - . This shows that the subvariety of�1 (P5) parameterizing
secants of ( is isomorphic to P4. Let take a general point I in �. By the previous
Lemma, there exists a unique secant of - passing through I. By Bezout’s The-
orem, no other point outside ( lies on this secant. This gives a rational injective
map � d P4 defined outside (. Since a general secant intersects � at three
points, with two of them on (, we see that the map is birational. �

Remark 8.5.6. According to a result of A. Beauville [51, Proposition 8.2],
any smooth cubic fourfold containing ( is a pfaffian cubic hypersurface, i.e.,
is given by the determinant of a skew-symmetric matrix with linear forms as
its entries. Conversely, any pfaffian cubic fourfold contains a nondegenerate
surface of degree 5, i.e. an anti-canonical weak del Pezzo surface or a scroll.

8.5.3 Automorphism group
Let us study automorphisms of a nonsingular del Pezzo surface of degree 5.
Recall that the Weyl group , (E4) is isomorphic to the Weyl group , (�4) �
S5. By Proposition 8.2.39, we have a natural injective homomorphism

d : Aut(() � S5.

Theorem 8.5.7. Let ( be a nonsingular del Pezzo surface of degree 5. Then,

Aut(() � S5.

Proof We may assume that ( is isomorphic to the blow-up of the reference
points G1 = [1, 0, 0], G2 = [0, 1, 0], G3 = [0, 0, 1] and G4 = [1, 1, 1]. The group
S5 is generated by its subgroup isomorphic to S4 and an element of order
5. The subgroup S4 is realized by projective transformations permuting the
points G1, . . . , G4. The action is realized by the standard representation of S4
in the hyperplane I1 + · · · + I4 = 0 of C4 identified with C3 by the projection
to the first three coordinates. An element of order 5 is realized by a quadratic
transformation with fundamental points G1, G2, G3 defined by the formula

) : [C0, C1, C2] ↦→ [C0 (C2 − C1), C2 (C0 − C1), C0C2] . (8.21)

It maps the line + (C0) to the point G2, the line + (C1) to the point G4, the line
+ (G2) to the point G1, the point G4 to the point G3. �
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Note that the group of automorphisms acts on the Petersen graph of 10 lines
and defines an isomorphism with the group of symmetries of the graph.
Let ( be a del Pezzo surface of degree 5. The group Aut(() � S5 acts

linearly on the space+ = �0 ((,O( (− ()) � C6. Let us compute the character
of this representation. Choose the following basis in the space + :

(C20C1− C0C1C2, C
2
0C2− C0C1C2, C

2
1C0− C0C1C2, C

2
1C2− C0C1C2, C

2
2C0− C0C1C2, C

2
2C1− C0C1C2). (8.22)

Let B1 = (12), B2 = (23), B3 = (34), B4 = (45) be the generators of S5. It
follows from the proof of Theorem 8.5.7 that B1, B2, B3 generate the subgroup
of Aut(() which is realized by projective transformations permuting the points
G1, G2, G3, G4, represented by the matrices

B1 =
©«
0 1 0
1 0 0
0 0 1

ª®®¬ , B2 =
©«
1 0 0
0 0 1
0 1 0

ª®®¬ , B3 =
©«
1 0 −1
0 1 −1
0 0 −1

ª®®¬ .
The last generator B4 is realized by the standard quadratic transformation )st.
Choose the following representatives of the conjugacy classes in S5 different
from the conjugacy class of the identity element id:

61 = (12), 62 = (123) = B2B1, 63 = (1234) = B3B2B1,

64 = (12345) = B4B3B2B1, 65 = (12) (34) = B1B3, 66 = (123) (45) = B3B2B1B4.

The subgroup generated by B1, B2 acts by permuting the coordinates C0, C1, C2.
The generator B3 acts as the projective transformation

(H1, . . . , H6) ↦→ (H1 − H2 + H5,−H2 + H5 − H6, H3 − H4 + H6,−H4 − H5 + H6,−H6,−H5),

where (H1, . . . , H6) is the basis from (8.22). Finally, B4 acts by

(H1, H2, H3, H4, H5, H6) ↦→ (H6, H4, H5, H2, H3, H1).

Simple computation gives the character vector of the representation

j = (j(1), j(61), j(62), j(63), j(64), j(65), j(66)) = (6, 0, 0, 0, 1,−2, 0).

Using the character table ofS5, we find that j is the character of an irreducible
6-dimensional irreducible representation isomorphic to + =

∧2 'st, where
'st is the standard 4-dimensional irreducible linear representation of S5 with
character vector (4, 2, 1, 0,−1, 0,−1) (see [316, p. 28]). The linear system
| −  ( | embeds ( in P(+). Since + is isomorphic to its dual representation, we
can identify P(+) with |+ |.
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We will see later in Chapter 10 that �1 (P4), embedded in P9, is defined by
five pfaffians of principal minors of a skew-symmetric 5×5-matrix (?8 9 ), where
? 98 = −?8 9 , 8 < 9 , are the Plücker coordinates. The group S5 acts on P9 via
its natural representation on

∧2, , where, is an irreducible representation of
S5 with character (5, 1,−1,−1, 0, 1, 1). The representation ∧2, decomposes
into irreducible representation+ ⊕ '′st, where '′st is the standard 4-dimensional
representation of S5 tensored with the sign representation* ′.
Now, let us consider the linear representation ofS5 on the symmetric square

(2 (+ {44). Using the formula

j(2 (+ ) (6) = 1
2 (j(6)

2 + j(62)),

we get
j(2 (+ ) = (21, 3, 0,−1, 1, 5, 0).

Taking the inner product with the character of the trivial representation, we
get 1. This shows that the subspace of invariant vectors * = (2 (+)S5 is one-
dimensional. Similarly, we find that dim (2 (+) contains one copy of the one-
dimensional sign representation * ′ of S5. The equation of the union of ten
lines, considered as an element of (2 (+), is represented by the equation of the
union of six lines 〈G8 , G 9〉, where G1, . . . , G4 are the reference points. It is

� = C0C1C2 (C0 − C1) (C0 − C2) (C1 − C2) = 0.

It is easy to check that � transforms under S5 as the sign representation. It is
less trivial, but straightforward, to find a generator of the vector space (2 (+)S5 .
It is equal to

� = 2
∑

C48 C
2
9 − 2

∑
C48 C 9 C: − 2

∑
C38 C

3
9 −

∑
C38 C

2
9 C: + 6C20C

2
1C

2
2 . (8.23)

Its singular points are the reference points G1, . . . , G4. In another coordinate
system, the equation looks even better:

C60 + C
6
1 + C

6
2 + (C

2
0 + C

2
1 + C

2
2) (C

4
0 + C

4
1 + C

4
2) − 12C20C

2
1C

2
2 = 0.

(see [274]). The singular points here are the points

[1,−1,−1], [−1, 1,−1], [−1,−1, 1], [1, 1, 1] .

The equation� = 0 reveals obvious symmetry with respect to the group gener-
ated by the permutation of the coordinates corresponding to the generators B1
and B2. It is also obviously invariant with respect to the standard quadratic trans-
formation )st which we can write in the form [C0, C1, C2] ↦→ [1/C0, 1/C1, 1/C2].
Less obvious is the invariance with respect to the generator B3.

The S5-invariant plane sextic ,6 = + (�) is called the Wiman sextic. Its
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proper transform on ( is a smooth curve of genus six in | − 2 ( |. All curves
in the pencil of sextics spanned by + (_� + `�) (the Wiman pencil) are A5-
invariant. It contains two S5-invariant members + (�) and + (�).
Remark 8.5.8. It is known that a del Pezzo surface of degree 5 is isomorphic
to the GIT-quotient P5

1 of the space (P1)5 by the group SL(2) (see [234]).
The group S5 is realized naturally by the permutation of factors. The isomor-
phism is defined by assigning to any point G on the surface the five ordered
points (G1, . . . , G4, G5 = G), where ?1, . . . , ?4 are the tangent directions of the
conic in the plane passing through the points G1, G2, G3, G4, G. The isomorphism
from P5

1 onto a quintic surface in P5 is given by the linear system of bracket-
functions (01) (23) (4 5 ) (ℎ:) (;<), where 0, 1, 2, 3, 4, 5 , ℎ, :, ;, < belong to the
set {1, 2, 3, 4, 5} and each number from this set appears exactly 2 times.

Remark 8.5.9. Let ( be a weak del Pezzo surface and � be a smooth divisor in
| −2 ( |. The double cover - of ( branched over � is a K3 surface. If we take (
to be a nonsingular del Pezzo surface of degree 5 and � to be the proper trans-
form of the Wiman sextic, we obtain a K3 surface with automorphism group
containing the groupS5×2. The cyclic factor here acts on the cover as the deck
transformation. Consider the subgroup ofS5×2 isomorphic toS5 that consists
of elements (f, n (f)), where n : S5 → {±1} is the sign representation. This
subgroup acts on - symplectically, i.e. leaves a nonzero holomorphic 2-form
on - invariant. The list of maximal groups of automorphisms of K3 surfaces
which act symplectically was given by S. Mukai [533]. We find the group S5
in this list (although the example in the paper is different).
In Section 11.3 we will discuss a realization of a del Pezzo surface of degree

5 as a congruence of lines of order two and class three.

8.6 Quartic del Pezzo Surfaces

Here, we study in more detail del Pezzo surfaces of degree 4. Their minimal
resolutions of singularities are obtained by blowing up five points in P2 and
hence vary in a two-dimensional family.

8.6.1 Equations
Lemma 8.6.1. Let - be the complete intersection of two quadrics in P=. Then,
- is nonsingular if and only if it is isomorphic to the variety

=∑
8=0

C28 =

=∑
8=0

08C
2
8 = 0,
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where the coefficients 00, . . . , 0= are all distinct.

Proof The pencil of quadrics has the discriminant hypersurface Δ defined by
a binary form of degree = + 1. If all quadrics are singular, then, by Bertini’s
theorem they share a singular point. This implies that - is a cone, and hence
singular. Conversely, if - is a cone, then all quadrics in the pencil are singular.
SupposeΔ consists of less than =+1 points. The description of the tangent space
of the discriminant hypersurface of a linear system of quadrics (see Example
1.2.3) shows that a multiple point corresponds to either a quadric of corank
≥ 2 or to a quadric of corank 1 such that all quadrics in the pencil contain its
singular point. In both cases, - contains a singular point of one of the quadrics
in the pencil causing - to be singular. Conversely, if - has a singular point, all
quadrics in the pencil are tangent at this point. One of them must be singular at
this point causing Δ to have a multiple point.

So, we see that - is nonsingular if and only if the pencil contains exactly
=+1 quadrics of corank one. It is a standard fact from linear algebra that, in this
case, the quadrics can be simultaneously diagonalized (see, for example, [319]
or [404, Volume 2, Chapter XIII]). Thus, we see that, after a linear change of
coordinates, - can be given by equations from the assertion of the Lemma. If
two coefficients 08 are equal, then the pencil contains a quadrics of corank ≥ 2,
and hence Δ has a multiple point. �

Theorem 8.6.2. Let ( be a del Pezzo surface ( of degree 4. Then, ( is a
complete intersection of two quadrics in P4. Moreover, if ( is nonsingular, the
equations of the quadrics can be reduced, after a linear change of variables, to
the diagonal forms:

4∑
8=0

C28 =

4∑
8=0

08C
2
8 = 0,

where 08 ≠ 0 9 for 8 ≠ 9 .

Proof By Theorem 8.3.4, ( is projectively normal in P4. This gives the exact
sequence

0→ �0 (P4,I( (2)) → �0 (P4,OP4 ) → �0 ((,O( (2)) → 0.

By Lemma 8.3.1,

dim�0 ((,O( (2)) = dim�0 ((,O( (−2 ()) = 13.

This implies that ( is the base locus of a pencil of quadrics. Now, the assertion
follows from the previous Lemma. �
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Following the classical terminology, an anti-canonical model of a weak del
Pezzo surface of degree 4 in P4 is called a Segre quartic surface.
One can say more about equations of singular del Pezzo quartics. Let Q be a

pencil of quadrics in P=. We view it as a line in the space of symmetric matrices
of size =+1 spanned by twomatrices �, �. Assume thatQ contains a nonsingular
quadric, so that we can choose � to be a nonsingular matrix. Consider the _-
matrix � + _� and compute its elementary divisors. Let det(� + _�) = 0 have
A distinct roots U1, . . . , UA . For every root U8 we have elementary divisors of
the matrix � + _�

(_ − U8)4
(1)
8 , . . . , (_ − U8)4

(B8 )
8 , 4

(1)
8
≤ . . . ≤ 4 (B8)

8
.

The Segre symbol of the pencil Q is the collection

[(4 (1)1 . . . 4
(B1)
1 ) (4 (1)2 . . . 4

(B2)
2 ) . . . (4 (1)A . . . 4

(BA )
A )] .

It is a standard result in linear algebra (see, the references in the proof of
Lemma 8.6.1) that one can simultaneously reduce the pair of matrices (�, �)
to the form (�′, �′) (i.e. there exists an invertible matrix � such that ���C =
�′, ���C = �′) such that the corresponding quadratic forms & ′1, &

′
2 have the

following form

& ′1 =
A∑
8=1

B8∑
9=1

?(U8 , 4 ( 9)8 ), & ′2 =
A∑
8=1

B8∑
9=1
@(4 ( 9)

8
), (8.24)

where

?(U, 4) = U
4∑
8=1

C8C4+1−8 +
4−1∑
8=1

C8+1C4+1−8 ,

@(4) =
4∑
8=1

C8C4+1−8 .

It is understood here that each ?(U, 4) and @(4) are written in disjoint sets of
variables. This implies the following.

Theorem 8.6.3. Let - and - ′ be two complete intersections of quadrics and
P,P ′ be the corresponding pencils of quadrics. Assume thatP andP ′ contains
a nonsingular quadric. Let � and � ′ be the set of singular quadrics in P and
P ′ considered as sets marked with the corresponding part of the Segre symbol.
Then, - is projectively equivalent to - ′ if and only if the Segre symbols of P
and P ′ coincide and there exists a projective isomorphism q : P → P ′ such
that q(�) = � ′ and the marking is preserved.
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Applying this to our case = = 4, we obtain the following possible Segre
symbols:

A = 5 : [11111];
A = 4 : [(11)111], [2111];
A = 3 : [(11) (11)1], [(11)21], [311], [221], [(12)11];
A = 2 : [14], [(31)1], [3(11)], [32], [(12)2], [(12) (11)];
A = 1 : [5], [(14)] .

Here, A is the number of singular quadrics in the pencil. Note that the case
[(1, 1, 1, 1, 1)] leads to linearly dependent matrices �, �, so it is excluded for
our purpose. Also, in cases [(111)11], [(1111)1], [(112)1], [(22)1], there is
a reducible quadric in the pencil, so the base locus is a reducible. Finally,
the cases [(23)], [(113)], [(122)], and [(1112)] correspond to cones over a
quartic elliptic curve.

8.6.2 Cyclide quartics
Let ( be a del Pezzo surface of degree four in P4. Let us project ( to P3, first,
from a nonsingular point ? ∈ (. Assume that ? does not lie on a line contained
in (. Then, the image of the projection is a cubic surface +3 in P3. Its singular
points are the projections of the singular points of (, and they are of the same
type as singular points on (. If ? lies on a line, then the projection of the line is
a new singular point. It is an ordinary double point if the line does not contain
any singular points of (. Note that no three lines on ( are coplanar since the
pencil of hyperplanes through this line cuts out, residually, a pencil of lines on
(. So, no point is a common point of 3 lines.
If the center of the projection is a singular point of (, then the projection of

( is a quadric.
Now, let us assume that the center of the projection ? does not lie on (. Let

&? be the unique quadric from the pencil which contains ?.

Theorem 8.6.4. Assume that the quadric &? is nonsingular. Then, the projec-
tion - of ( from ? is a quartic surface in P3 which is singular along a nonsin-
gular conic. Any irreducible quartic surface & in P3 whose one-dimensional
part of Sing(&) consists of a nonsingular conic arises in this way from a
Segre quartic surface ( in P4. The surface ( is nonsingular if and only if - is
nonsingular outside the conic.

Proof First of all, let us see that - is indeed a quartic surface. If not, the
projection is a finite map of degree 2 onto a quadric. In this case, the pre-image
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of the quadric in P4 is a quadratic cone containing ( with the vertex at the center
of the projection. This is excluded by the assumption.
Let � be the tangent hyperplane of&? at ? and � = � ∩ (. The intersection

� ∩&? is an irreducible quadric in � with a singular point at ?. The curve �
lies on this quadric and is cut out by a quadric& ′∩� for some quadric& ′ ≠ &
from the pencil. Thus, the projection from ? defines a degree 2 map from � to
a nonsingular conic  equal to the projection of the cone � ∩&? . It spans the
plane in P3 equal to the projection of the hyperplane �. Since the projection
defines a birational isomorphism from ( to - that is not an isomorphism over
the conic  , we see that - is singular along  . It is also nonsingular outside  
(since we assume that ( is nonsingular).
Conversely, let & be a quartic surface such that the one-dimensional part of

Sing(&) is a nonsingular conic �. As we saw in Subsection 7.2.1, the linear
system |I� (2) | of quadrics through � maps P3 onto a quadric -1 in P4. The
pre-image of a quadric -2 ≠ -1 under this rational map is a quartic surface -
containing� as a double curve. The intersection ( = -1 ∩ -2 is a Segre quartic
surface. The image of the plane Π containing � is a point ? on -1. The inverse
map ( d - is the projection from ?. Since the rational map P3 d -1 is an
isomorphism outside Π, the quartic & is nonsingular outside � if and only if (
is nonsingular.
Note that, if Sing(&) contains a double line beside the double conic, & is a

ruled surface. The image of & is still a complete intersection -1 ∩ -2 of two
quadrics, but it contains a double line. So, the surface is not normal, and hence
it is not a del Pezzo surface.

�

In the classical literature, a quartic surface in P3 singular along a conic is
called a cyclide quartic surface.

If we choose the equation of the conic � in the form + (C21 + C
2
2 + C

2
3 , C0), then

formula (7.64) shows that the equation of the quartic cyclide can be written in
the form+ (∑ 08 9 I8I 9 ), where (I0, I1, I2, I3) = (C21+C

2
2+C

2
3 , C0C1, C0C2, C0C3). Since

the quartic is irreducible, we may assume that 000 ≠ 0, hence the equation of a
cyclide surface can be reduced to the form

(C21 + C
2
2 + C

2
3)

2 + C2062 (C0, C1, C2, C3) = 0. (8.25)

In particular, if 62 = C061, the conic becomes cuspidal double curve. Note that
this can be generalized to any dimension. We obtain a quartic hypersurface

(
=∑
8=1

C28 )2 + C2062 (C0, . . . , C=) = 0



62 Del Pezzo Surfaces

singular along the quadric + (C0) ∩ + (
∑=
8=1 C

2
8
). In dimension one, we obtain a

quartic curve with two double points (a cyclide curve).
We can draw immediate corollaries of Theorem 8.6.4:

Corollary 8.6.5. Assume that a cyclide quartic surface - is a general projection
of a nonsingular quartic del Pezzo surface. Then,

(i) - contains 16 lines (they are the the projections of 16 lines on the quartic
del Pezzo surface).

(ii) Sing(-) is a smooth conic �0 that contains four pinch points, the branch
points of the cover � ′0 → �0, where � ′0 is the pre-image of �0 under the
normalization map.

(iii) - is the image of P2 under a rational map defined by a general web of cubic
curves with 5 base points.

Next, we consider the projection of a nonsingular Segre surface from a
nonsingular point ? on a singular quadric & from the pencil containing (. The
tangent hyperplane � of & at ? intersects & along the union of two planes.
Thus, � intersects ( along the union of two conics intersecting at two points.
This is a degeneration of the previous case. The projection is a degenerate
cyclide surface. It is isomorphic to the pre-image of a quadric in P4 under a
map given by the linear system of quadrics in P3 containing the union of two
coplanar lines (a degeneration of the conic  from above). Its equation can be
reduced to the form

C21C
2
2 + C

2
062 (C0, C1, C2, C3) = 0.

Finally, let us assume that the center of the projection is the singular point
? of a cone & from the pencil. In this case, the projection defines a degree
2 map ( → &̄, where &̄ is a nonsingular quadric in P3, the projection of &.
The branch locus of this map is a nonsingular quartic elliptic curve of bidegree
(2, 2). If we choose the diagonal equations of ( as in Theorem 8.6.2, and take
the point ? = [1, 0, 0, 0, 0], then & is given by the equation

(02 − 01)C21 + (03 − 01)C22 + (03 − 01)C23 + (04 − 01)C24 = 0.

It is projected to the quadric with the same equations in coordinates [C1, . . . , C4]
in P3. The branch curve is cut out by the quadric with the equation

C21 + C
2
2 + C

2
3 + C

2
4 = 0.

A more general cyclide quartic surface is obtained by a projection of a
singular quartic surface in P3. Such surfaces were classified by C. Segre [685].
Let us finish this subsection with one more property of cyclide quartic
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surfaces which we will need in Section 11.4. For any other quadric&C from the
pencil, the projection defines a degree two map ramified over

Proposition 8.6.6. Let & be a cyclide quartic surface equal to the projection
of a quartic del Pezzo surface ( ⊂ P4 from a point ?. Then there is a quadratic
pencil of quadrics such that & coincides with its discriminant surface. All
members of the pencil are tangent to & along a quartic curve.

Proof Recall that we discussed quadratic pencils of quadrics in Subsection
4.1.4. Write the equation (8.25) in the form

(D@ + {C20)
2 + C20 (D

262 − 2D{@ − {2C20) = 0,

where @ = C21 + C
2
2 + C

2
3 . We see that the quadratic pencil + (D262 − 2D{@ + {2C20)

consists of quadrics that touch the surface along the intersection with the
quadric + (D@ + {C20). The discriminant surface of the quadratic pencil is equal
to + (@2 + 62C

2
0), and hence coincides with &. �

8.6.3 Lines and singularities
Let ( be a quartic del Pezzo surface and - be its minimal resolution of singu-
larities. The surface - is obtained by blowing up a bubble cycle [ = G1+· · ·+G5
of points in almost general position. Applying the procedure of Borel-De
Sibenthal-Dynkin, we obtain the following list of types of root bases in the
lattice  ⊥

-
� E5:

�5, �3 + 2�1, �4, �4, 4�1, �2 + 2�1, �3 + �1, �3, 3�1, �2 + �1, �2, 2�1, �1.

All of these types can be realized as the types of root bases defined by Dynkin
curves.
�5 : G5 � G4 � G3 � G2 � G1, and G1, G2, G3 are collinear;
�3 + 2�1 : G3 � G2 � G1, G5 � G4, G1, G4, G5 and G1, G2, G3 are collinear;
�4 : G4 � G3 � G2 � G1, and G1, G2, G5 are collinear;
�4 : G5 � G4 � G3 � G2 � G1;
4�1 : G2 � G1, G4 � G3, G1, G2, G5 and G3, G4, G5 are collinear;
2�1 + �2 : G3 � G2 � G1, G5 � G4 and G1, G2, G3 are collinear;
�1 + �3 : G3 � G2 � G1, G5 � G4, and G1, G4, G5 are collinear;
�3 : G4 � G3 � G2 � G1, or G3 � G2 � G1 and G1, G2, G4 are collinear;
�1 + �2 : G3 � G2 � G1, G5 � G4;
3�1 : G2 � G1, G4, � G3, and G1, G3, G5 are collinear;
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�2 : G3 � G2 � G1;

2�1 : G2 � G1, G4 � G3, or G1, G2, G3 and G1, G3, G4 are collinear;

�1 : G1, G2, G3 are collinear.
This can also be stated in terms of equations indicated in the next table. The

number of lines is also easy to find by looking at the blow-up model. We have
the following table (see [750]).

∅ �1 2�1 2�1 �2 3�1 �1 + �2 �3

[11111] [2111] [221] [(11)111] [311] [(11)21] [32] [41]

16 12 9 8 8 6 6 5

�3 �1 + �3 �2 + 2�1 4�1 �4 �4 2�1 + �3 �5

[(21)11] [(21)2] [3(11)] [(11)(11)1] [5] [(31)1] [(21)(11)] [(41)]

4 3 4 4 3 2 2 1

Table 8.7 Lines and singularities on a weak del Pezzo surface of degree 4

We refer to Segre’s table [690] (one can find it also in [430, Art. 53])
that contains the classification of quartic cyclide surfaces with singular points
outside the double conic.
The following is the figure of lines on a smooth Segre quartic surface:

•

•

••

••

•

••

•

•

•

•

•
•

•
•

• • ••

••

••

••

••

••••• ••

••

••

••

••

Figure 8.5 Lines on a nonsingular del Pezzo quartic surface

The Gosset polytope Σ5 = 121 has 16 facets of type U and ten facets of type
V. They correspond to contractions of 5 disjoint lines and pencils of conics
arising from the pencils of lines through one of the five points in the plane and
pencils of conics through four of the five points.

The list of singularities on a quartic del Pezzo surface gives the list of
possible singular points of a quartic cyclide surface outside the double conic.
Using this, we can compute the class of cyclide surfaces. Note that we cannot
apply directly the Plücker-Teissier formula (1.2.7) from Section 1.2 since we
have non-isolated singularities.We use a different proof that can also be applied
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to derive the Plücker-Teissier formula when all singular points of a surface are
double rational points.

Proposition 8.6.7. Let & be a cyclide quartic surface obtained by projection
of a quartic del Pezzo surface from a general point in P4 and let G1, . . . , G:
be rational double points on & with Milnor numbers `1, . . . , `: . Let -∗ be its
dual surface. Then,

3̌ := deg(-∗) = 12 − 4(-, G).

Here 4(-, G) = `(-, G8) + `(� (G) ∩ G8), where � (G) is a general hyperplane
passing through G8 .

Proof Choose a general line ℓ in P3 that intersects & transversally at four
points. Consider the pencil of plane sections of & by planes � through ℓ.
It defines a fibration 5 : - = Bl&∩ℓ (&) → P1 whose general fiber � is
isomorphic to a plane quartic curve with two nodes. The usual formula for the
Euler-Poincaré characteristic of a fibered variety (in fact, any �,-complex)
gives

4(-) = 4(P1)4(�) +
∑
C ∈P1

(4(�C ) − 4(�)) (8.26)

(see, for example, [360, p.509]). Let us find special fibers that with non-zero
4(�C ) − 4(�). A general fiber � is isomorphic to a 2-nodal plane quartic curve.
It is easy to see, by passing to the normalization of �, that 4(�) = −2. The
line ℓ intersects the plane Π = 〈�〉 at one point. The planes that cut out Π
along the line passing through the intersection point and tangent to � define
two special fibers isomorphic to a plane quartic curve with a node and a cusps.
We have � (�C ) = −1. Other special fibers are cut out by planes through the
singular point of& and there will be 3̌ planes tangent to&. They define special
fibers isomorphic to plane quartic with three ordinary double points. We have
4(�C ) = −1.
The projection ( → & defines an isomorphism ( \ � � & \ �, where � is

a quartric elliptic curve that is mapped to �. This gives 4(&) = 4(& \ �) =
4(( \ �) = 4((). This gives 4(-) = 4 + 4(&) = 4 + 4(() + 2 = 4(() + 6. So,
collecting everything together, we find

3̌ = 4(-) − (−4 + 2 + `(& ∩ � (G8), G8) = 6 −
:∑
8=1

`(&, G8)

Now, the surface ( has a minimal resolution of singularities isomorphic to a
weak del Pezzo surface (′ of degree 4. Each exceptional curve over a point G8
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contributes `((, G8) to the second Betti number of (′. This gives

4(() = 4((′) −
:∑
8=1

`(G8) = 12 −
:∑
8=1
(`((, G8) + `(� (G) ∩ -)).

The possible Milnor numbers can be derived from Table 8.7. We can compute
`(� (G) ∩-, G) in each case, and find `(� (G) ∩-, G) = 2 if G8 is of type �4, �5
and `(� (G) ∩ -, G) = 1 otherwise

�

Let us summarize our computation in the following Table 8.8.

∅ �1 2�1 2�1 �2 3�1 �1 + �2 �3
12 10 8 8 9 6 7 8

�3 �1 + �3 �2 + 2�1 4�1 �4 �4 2�1 + �3 �5
8 6 5 4 7 6 6 5

Table 8.8 The class of a general cyclide quartic with isolated rational double
points

Example 8.6.8. A quartic del Pezzo surface ( ⊂ P4 with singularities of type
4�1 or 2�1 + �3 has a remarkable property, it admits a double cover ramified
only at the singular points. We refer to [173] for more details about these
quartic surfaces. The projections of these surfaces to P3 are cubic symmetroid
surfaces which we will discuss in Subsection 9.3.3. The cover is the quadric
surface F0 in the first case and the quadric cone & in the second case. Assume
that ( has four ordinary nodes. The linear system |�( (2) | is spanned by two
quadrics of corank 2 and, in appropriate projective coordinates, the equation of
( is

G2
0 + G1G2 = G

2
0 + G3G4 = 0.

The plane section + (G0) is equal to the union of a quadrangle of lines with
vertices at the singular point. The projection of ( from a nonsingular point of
a quadric from |�( (2) | is a special quartic cyclide surface, classically known
as a Dupin quartic cyclide surface. We will continue to discuss Dupin quartic
cyclides later in Sections 11.3 and 12.1. Observe from Table 8.8 another re-
markable property of a Dupin cyclide surface: it is projectively self-dual. Two
concurrent sides of the quadrangle of lines on ( span a plane. The projections
of these planes in P3 define four planes + (;1), + (;2), + (<1), + (<2) such that
each line+ (;1, ;2) and+ (<1, <2) contains a pair of nodes. The projection of the
quadrangle of lines on ( with vertices at the nodes are the lines ℓ8 9 = + (;8 , < 9 ).
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Each line intersects the double conic at one point. The equation of the Dupin
cyclide can be written in the form

(C20 + ;1;2 − <1<2)2 − 2C20;1;2 = 0.

The double conic � is equal to + (C0, C20 + ;1;2 − <1<2). The quadratic pencil
can be given in terms of the Hesse determinant

det
©«

;1;2 C20 + ;1;2 − <1<2 D

C20 + ;1;2 − <1<2 C20 {

D { 0

ª®®¬ = 0.

The base points of the quadratic pencil satisfy C0 = ;1;2 = <1<2 = 0. These
are the intersection points of the lines ℓ8 9 with �. We can choose projective
coordinates to write the equation in the form

((0C0+1C1+2C2+3C3)2+C0C1−C2C3)2−4(0C0+1C1+2C2+3C3)2C0C1 = 0, 3 (01−23) ≠ 0.
(8.27)

The four nodes are the points [0, 0, U, 1], [1, V, 0, 0], where (2U + 3)2 − U =
0, (0 + V1)2 − V = 0. Later, in Subsection 11.4.3 we will give other represen-
tations of a Dupin cyclide quartic as the discriminant surface of a quadratic
pencil.

8.6.4 Automorphisms
Let ( be a del Pezzo surface of degree four. We know from Corollary 8.2.40
that the natural homomorphism

d : Aut(() → , (() � , (D5) (8.28)

is injective.

Proposition 8.6.9.
, (�5) � 24 oS5,

where 2: denotes the elementary abelian group (Z/2Z): .

Proof This is awell-known fact from the theory of reflection groups. However,
we give a geometric proof exhibiting the action of , (�5) on Pic((). Fix a
geometric basis (40, . . . , 45) corresponding to an isomorphism ( and the blow-
up of five points G1, . . . , G5 in general position. Consider five pairs of pencils
of conics defined by the linear systems

!8 = |40 − 48 |, ! ′8 = |240 −
5∑
9=1
4 9 + 48 |, 8 = 1, . . . , 5.
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Let U1, . . . , U5 be the canonical root basis defined by the geometric basis and
A8 = AU8 be the corresponding reflections. Then, A2, . . . , A5 generate S5 and
act by permuting !8’s and ! ′8 . Consider the product A1 ◦ A5. It is immediately
checked that it switches !4 with ! ′4 and !5 with ! ′5 leaving !8 , ! ′8 invariant
for 8 = 1, 2, 3. Similarly, a conjugate of A1 ◦ A5 in , (�5) does the same for
some other pair of the indices. The subgroup generated by the conjugates is
isomorphic to 24. Its elements switch the !8 with ! ′8 in an even number of
pairs of pencils. This defines a surjective homomorphism, (�5) → S5 with a
kernel containing 24. Comparing the orders of the groups we see that the kernel
is 24 and we have an isomorphism of groups asserted in the Proposition. �

We know that the pencil of quadrics containing ( has exactly five singular
members &8 of corank one. Each quadric &8 is a cone over a nonsingular
quadric in P3. It contains two rulings of planes containing the vertex of &8 .
Since ( = &8 ∩& for some nonsingular quadric &, we see that ( contains two
pencils of conics |�8 | and |� ′8 | such that �8 ∩ � ′8 = 2. In the blow-up model of
( these are the pencils of conics |!8 | and ! ′8 | which we used in the proof of
the previous Proposition. The group, (() acts on the set of pairs of pencils of
conics and on the set of five singular quadrics&8 . The subgroup 24 acts trivially
on the set of singular quadrics.

Theorem 8.6.10. Let ( be a nonsingular del Pezzo surface of degree four. The
image of the homomorphism

Aut(() → 24 oS5

contains the normal subgroup 24. The quotient group is isomorphic to either a
cyclic group �= of order = ∈ {1, 2, 4} or to the dihedral group �6 or �10.

Proof Consider the map

|!8 | × |! ′8 | → | −  ( |, (�, � ′) ↦→ � + � ′.

Its image generates a 3-dimensional linear system contained in | −  ( |. This
linear system defines the projection map k8 : ( → P3. Since �8 · � ′8 = 2 for
�8 ∈ !8 , � ′8 ∈ ! ′8 , the degree of the map is equal to 2. So the image of k is a
quadric in P3. This shows that the center of the projection is the vertex of one of
the five singular quadric cones in the pencil of quadrics containing (. The deck
transformation 68 , 8 = 1, . . . , 5, of the cover is an automorphism and these five
automorphisms generate a subgroup � of Aut(() isomorphic to 24. One can
come to the same conclusion by looking at the equations from Theorem 8.6.2
of (. The group of projective automorphisms generated by the transformations
which switch C8 to −C8 realizes the subgroup 24.
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Let � be the quotient of Aut(() by the subgroup 24. The group Aut(() acts
on the pencil |I( (2) | of quadrics containing ( leaving invariant the subset of
five singular quadrics. The singular quadrics in the pencil correspond to points
[08 ,−1], where we use the equations (8.6.1) of (. Let us change the coordinates
in P4 to assume that the singular quadrics correspond to points

[1, 0], [0, 1], [1,−1], [−0, 1], [1,−1] (8.29)

This changes the equations of ( to

C21 + C
2
2 + C

2
3 + 1C

2
4 = C

2
0 + C

2
2 + 0C

2
3 + C

2
4 = 0.

Let n= be primitive roots of unity of degree = = 3, 4, 5. Consider the following
matrices:

62 :=
(
0 1
1 0

)
, 63 :=

(
n3 0
0 n−1

3

)
, 64 :=

( 1+n4
2

1−n4
2

1−n4
2

1+n4
2

)
, 65 :=

(
−n5 −1
1 0

)
.

Each matrix 6= is well-defined and has order = in PGL2.
When 0 = 1, the matrix 62 leaves invariant the five points from (8.29). Thus

when 0 = 1, we have exhibited the group � = 〈62〉 � 2. If 0 = 1 = n3, then
S3 � 〈62, 63〉 ⊆ �. If 0 = 1 = 8, then 4 � 〈64〉 ⊆ �. If 0 = 1 = q, then
�10 � 〈62, 65〉 ⊆ �.
It remains to demonstrate that these are the only subgroups that occur. First,

observe that there is no non-trivial automorphism of P1 which fixes three or
more points. Thus, as a subgroup of S5, the group � cannot contain any
transpositions. Up to conjugacy, these are the only subgroups ofS5 containing
no transpositions:

1, 2, 3, 4, 22, 5, S3, �10, 5 o 4, A5. (8.30)

(Note there are other subgroups isomorphic to 2, 22 and S3 which do have
transpositions.)
This means that � contains elements only of orders 1, 2, 3, 4 and 5; and that

an element of order 2 must act as a double transposition in S5. Since cyclic
subgroups of fixed order are all conjugate in PGL2 (consider diagonalizations
or Jordan canonical forms), we conclude that every non-trivial cyclic subgroup
is generated by one of 62, 63, 64, 65 up to conjugacy.

Moreover, we claim that up to the choice of coordinates the five points can
be put into the form (8.29) with one of the matrices 62, 63, 64, 65 given above.
For order 2, there is only one fixed point which we may assume is −1; up to
scaling, we may assume one of the orbits is {0,∞} and so the other must be
{−0,−0−1} for some choice of 0. For the other orders, we only have to show
that the group and set of invariant points are unique up to conjugacy; that is,
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they can be put into form (8.29) then follows. For order 3, the group acts via
G ↦→ n3G, so the two fixed points are 0 and ∞; scaling G commutes with the
group action, so we may assume the non-trivial orbit contains 1 and so also
n3, n

2
3 . For order 4, the group acts via G ↦→ n4G fixing either 0 or ∞; scaling G

commutes with the group action, and so we may assume the non-trivial orbit
is {1,−1, n4,−n4}. The change of coordinates G → G−1 normalizes the group
action and leaves invariant the non-trivial orbit {1,−1, n4,−n4} and so we may
assume the fixed point is 0. For order 5, the group acts diagonally and we may
scale to ensure the orbit consists of the 5th fifth roots of unity.
Due to our choice of coordinates for the five points and 62, 63, 64, 65 above,

we see that the presence of an element of order 3 forces � to contain S3. It
only remains to exclude the following possibilities: 22 and A5, and 5 o 4. The
group 22 must act faithfully on the tangent space at the fixed point, which is
impossible. The group A5 contains a subgroup isomorphic to 22 and so it also
does not occur. Finally, the group 5 o 4 does not act on P1. �

It follows from the proof that a del Pezzo surface of degree four with group
of automorphisms larger than 24 is projectively isomorphic to a surface of one
the following types:
The following surfaces together realize possible groups � = Aut(()/24. We

choose different projective coordinates that exhibit obvious symmetry of the
surfaces.

�2 :C21 + C
2
2 + 0C

2
3 + C

2
4 = C

2
0 + C

2
2 + C

2
3 + 0C

2
4 = 0, 0 ≠ 0, 03, 04, 05 ≠ 1;

S3 : C20 + n3C
2
1 + n

2
3 C

2
2 + C

2
3 = C

2
0 + n

2
3 C

2
2 + n3C

2
3 + C

2
4 = 0,

�4 : C20 + C
2
1 + C

2
3 + C

2
4 = C

2
0 + n4C

2
2 − C

2
3 − n4C

2
4 = 0;

�10 :C20 + n5C
2
1 + n

2
5 C

2
2 + n

3
5 C

2
3 + n

4
5 C

2
4 = n

4
5 C

2
0 + n

3
5 C

2
1 + n

2
5 C

2
2 + n5C

2
3 + C

2
4 = 0.

All surfaces admit an automorphism of order 2 defined by

[C0, C1, C2, C3, C4] ↦→ [C2, C3, C0, C1, C4] .

The automorphism of order = = 3, 4, 5] is defined by a cyclic permutation of
coordinates

= = 3 : [G0, G1, G2, G3, G4] ↦→ (G1, G2, G0, n
2
3G3, n3G4),

= = 4 : [G0, G1, G2, G3, G4] ↦→ (G1, G2, G3, G0],
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Order Carter’s notation Trace Char. Poly Realizable

1 ∅ 5 Φ5
1 yes

2 2�1 1 Φ3
1Φ

2
2 yes

2 4�1 −3 Φ1Φ
4
2 yes

2 �1 3 Φ4
1Φ2

2 3�1 −1 Φ2
1Φ

3
2

2 2�1 1 Φ3
1Φ

2
2 yes

3 �2 2 Φ3
1Φ3 yes

4 �1 + �3 −1 Φ1Φ
2
2Φ4 yes

4 �3 1 Φ2
1Φ

1
2Φ4 yes

4 2�1 + �3 −3 Φ3
2Φ4

4 �4 (01) 1 Φ1Φ
2
4 yes

5 �4 0 Φ1Φ5 yes

6 �1 + �2 0 Φ2
1Φ2Φ3

6 2�1 + �2 −2 Φ1Φ
2
2Φ3 yes

6 �4 0 Φ1Φ
2
2Φ6 yes

8 �5 −1 Φ2Φ8 yes

12 �5 (01) 0 Φ2Φ4Φ6

Table 8.9 Conjugacy classes in, (D5).

= = 5 : [G0, G1, G2, G3, G4] ↦→ (G1, G2, G3, G4, G0],

Let us consider the action (8.28) of Aut(() on Pic((). We fix a geometric
basis to identify, (() with, (D5). We shall find the conjugacy classes of the
images of automorphisms of ( in, (D5).
We will use, here and later, the Lefschetz fixed-point-formula that states that

in our case

2 + Trace(f∗ |�2 ((,Q)) = 3 + Trace(f∗ | ⊥( ) = 4((
W), (8.31)

where 4((f) denotes the Euler-Poincaré characteristic of the locus (f of fixed
points of 6.

In Subsection 8.2.4 we discussed the classification of conjugacy classes of
elements of the Weyl group of a root basis. We use Table 8.2.4 and its notation
to list the conjugacy classes of elements of, (D5).

Here Φ= denotes the cyclotomic polynomial whose roots are primitive =th
roots of 1.
Let us check the last column. The subgroup 24 contains two conjugacy

classes of elements of order 2. They represented by an involution that changes
the signs at two or one coordinates. The first involution f1 fixes a hyperplane
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in the ambient space P4. Its fixed locus (f consists of a hyperplane section of
(, which is a quartic elliptic curve. Since 4((f) = 0, the table shows that the
conjugacy class is of type 2�1. The involution f2 of the second type acts in P4

fixing a plane and a line pointwise. It is immediate to see that (6 consists of
four isolated points. This shows that f belongs to the conjugacy class of type
2�1.
Note that there are two different lattice embeddings A⊕4

1 ↩→ D5. The con-
jugacy class of the involution f corresponds to the embedding conjugate to
the natural embedding of the sublattice spanned by simple roots "1 and "2
in the canonical basis Lemma 8.2.7. The sublattice spanned by simple roots
"3,"5 represents the other conjugacy class. The involution that realizes this
conjugacy class is the involution f3 of the surface with 0 = 1 that switches
the coordinates C3, C4 and C0, C1. Its set of fixed points in P4 is the union of the
plane + (C0 − C1, C3 − C4) and the line + (C2, C0 + C1, C3 + C4). They intersect ( along
the conic and two isolated points. We see that 4((6) = 4 as in the case of
the involution f2. It follows from Theorem 8.6.10 that any other involution is
conjugate to one of the involutions f1, f2, f3.

If f is of order 3, then it has 5 fixed points

[1, 1, 1, 0, 0], [1, n3, n
2
3 , 0,±

√
−3], [1, n2

3 , n3,±
√
−3, 0] .

So, the trace of f∗ is equal to 2. This confirms that f is of type �2.
If f is of order 4, then it is either given by an isomorphic lift of the au-

tomorphism of order 4 from �, or it is one of the two non-conjugate lifts of
an automorphism of order 2 from �. In the first case, it has four fixed points
[43, 42, 4, 1, 0], where 44 = 1. This implies that Trace(f∗) = 1, hence f is of
type �3 or �4 (01). The square of the conjugacy class is of type 2�1 and the
square of the second conjugacy class is of type 4�1. We know that it must be
of type 2�1 (the same set of fixed point). Hence, f is of type �3. If f2 ∈ 24,
then the conjugacy class of f2 is of type 4�1 or 2�1. In the first case, f is of
type �4 (01), and, in the second case, it is of type �1 + �3.
Finally, iff is of order5. Then 4((f) consists of 5 points [1, 4, 42, 43, 44]<45 =

1. This determines the trace of f∗ and the conjugacy class that must be of type
�4.
There are two conjugacy classes of order 6. They are represented by the

product of an element of order 3 from� and of of two non-conjugate of order 2
from the subgroup 24. Its cube must be a realizable conjugacy class of order 2.
This excludes the conjugacy class �1 + �2 whose cube is of type �1. The cube
of the conjugacy class of type �4 (resp. 2�1 + �2 is of type 4�1 (resp. 2�1).

There is only one conjugacy class of order 8. It is realized by a non-
isomorphic lift the cyclic subgroup of � generated by an element of order
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4. Since the quotient group � does not contain elements of order 6, an unique
possible conjugacy class of order 12 is not realizable.

Remark 8.6.11. In 1894 G. Humbert [412] discovered a plane sextic Γwith five
ordinary cusps that has the automorphism group isomorphic to 24. Its proper
transform on the blow-up of P2 at the five cusps is a nonsingular curve ℓ′ of
genus 5 on a del Pezzo quartic surface (. It is canonically embedded in P5.
The curve ℓ′ is cut out by a quadric + (∑ 02

8
C2
8
), where we consider ( given by

the equations from Theorem 8.6.2 (see [273]). The curve is tangent to all 16
lines on (. The double cover of ( branched along this curve is a K3 surface
isomorphic to a nonsingular model of a Kummer quartic surface. The following
equation of ℓ was found by W. Edge [276]

9C22 (C
2
2 − C

2
0) (C

2
2 − C

2
1) + (C

2
1 + 3C22 − 4C20) (C1 + 2C0)2 (C21 − C

2
0) = 0.

The curve has peculiar properties: the residual points of each line containing
two cusps coincide, and the two contact points are on a line passing through
a cusp; the residual points of the conic through the five cusps coincide and all
cuspidal tangents pass through the contact point (see loc.cit.). The five maps
( → P1 defined by the pencils of conics, restricted to Γ′, define five 61

4’s on Γ
′.

The quotient by the involution defined by the negation of one of the coordinates
C8 is an elliptic curve. This makes the 5-dimensional Jacobian variety of Γ′
isogenous to the product of five elliptic curves (this is how it was found by
Humbert). The quotient of Γ′ by the involution defined by the negation of two
coordinates C8 is a curve of genus 3. It is isomorphic to the quartic curve with
automorphism group isomorphic to 23.
By taking special del Pezzo surfaces with isomorphism groups 24 o �6 and

24 o �10 we obtain curves of genus 5 with automorphism groups of order 96
and 160 (see [273]).
Let ?1, . . . , ?6 be six points in P3 in general linear position. AHumbert curve

can be also defined as the locus of tangency points of lines passing through
?6 with rational normal cubics passing through ?1, . . . , ?5 (see [29, Vol. 6, p.
24]). It is also characterized by the property that it has ten effective even theta
characteristics (see [783]).
The double cover of ( ramified over Γ′ is a K3 surface isomorphic to a

nonsingular model of a Kummer quartic surface with 16 nodes. The pre-images
of the 16 lines on ( split into 32 curves, the images of a subset of 16 of them
on the Kummer surface are 16 nodes, and the images of the remaining 16
curves are the 16 conics cut by 16 tropes of the surface. The surface ( admits
a nonsingular model as a surface in the Grassmannian �1 (P3) of degree 2 and
class equal to 2. It is one of the irreducible components of the surface Bit(() of
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bitangents of a Kummer quartic surface. We will discuss all of this in Section
11.3.

8.7 Del Pezzo surfaces of degree 2

8.7.1 Singularities
Let ( be a weak del Pezzo surface of degree 2. Recall that the anti-canonical
linear system defines a birational morphism q′ : ( → - , where - is the
anti-canonical model of ( isomorphic to the double cover of P2 branched
along a plane quartic curve � with at most simple singularities (see Subsection
6.3.3). We have already discussed nonsingular del Pezzo surfaces of degree 2
in Chapter 6, in particular, the geometry associated with seven points in the
plane in general position. A nonsingular del Pezzo surface is isomorphic to the
double cover of the projective plane ramified over a nonsingular plane quartic.
It has 56 lines corresponding to 28 bitangents of the branch curve.

Let q : ( → P2 be the composition of q and the double cover map f : - →
P2. The restriction of q to a (−1)-curve � is a map of degree − ( · � = 1. Its
image in the plane is a line ℓ. The pre-image of ℓ is the union of � and a divisor
� ∈ | − ( − � |. Since − ( ·� = 1, the divisor � is equal to � ′ + ', where � ′
is a (−1)-curve and ' is the union of (−2)-curves. Also, we immediately find
that � · � = 2, �2 = −1. There are three possible cases:

(i) � ≠ � ′, � · � ′ = 2;
(ii) � ≠ � ′, � · � ′ = 1;
(iii) � ≠ � ′, � = � ′.

In the first case, the image of � is a line ℓ tangent to � at two nonsingular
points. The image of � − � ′ is a singular point of �. By Bezout’s Theorem, ℓ
cannot pass through the singular point. Hence, � = � ′ and ℓ is a bitangent of
�.

In the second case, � · (� − � ′) = 1. The line ℓ passes through the singular
point q(� − � ′) and it is tangent to � at a nonsingular point.

Finally, in the third case, ℓ is a component of �.
Of course, when ( is a del Pezzo surface, the quartic � is nonsingular, and

we have 56 lines paired into 28 pairs corresponding to 28 bitangents of �.
Let c : ( → P2 be the blow-up of seven points G1, . . . , G7 in general position.
Then, 28 pairs of lines are the proper inverse transforms of the isolated pairs of
curves:
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21 pairs: a line through G8 , G 9 and the conic through the complementary five
points;
7 pairs: a cubic with a double point at G8 and passing through other points

plus the exceptional curve c−1 (G8).
We use the procedure of Borel-de Siebenthal-Dynkin to compile the list

of root bases in E7. It is convenient first to compile the list of maximal (by
inclusions) root bases of type �, �, � (see [437, §12]).

Type rank = − 1 rank =

�= �: + �=−:−1

�= �=−1, �=−1 �: + �=−: , : ≥ 2

�6 �5 �1 + �5, �2 + �2 + �2

�7 �6 �1 + �6, �7, �2 + �5

�8 �8, �1 + �7, �8, �2 + �6, �4 + �4

Table 8.10 Maximal root bases

Here, �2 = �1 + �1 and �3 = �3.
From this we easily find the following table of root bases in E7. Note that

A Types

7 �7, �1 + �6, �7, 3�1 + �4, �1 + 2�3, �5 + �2, 7�1

6 �6, �5 + �1, �6, �6, �1 + �5, 3�2, 2�1 + �4, 2�3,
3�1 + �3, 6�1, �1 + �2 + �3, �2 + �4

5 �5, �5, �1 + �4, �1 + �4, �1 + 2�2, 2�1 + �3,
3�1 + �2, �2 + �3, 5�1

≤ 4 �4, �81 + · · · + �8: , 81 + · · · + 8: ≤ 4

Table 8.11 Root bases in the E7-lattice

there are two root bases of types �1 + �5, �2 + 2�1, 3�1, �1 + �3 and 4�1
which are not equivalent with respect to the Weyl group.
The simple singularities of plane quartics were classified by P. Du Val [267],

Part III.
�1: one node;
2�1: two nodes;
�2: one cusp;
3�1: irreducible quartic with three nodes;
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3�1: a cubic and a line;
�1 + �2: one node and one cusp;
�3: one tacnode (two infinitely near ordinary double points);
4�1: a nodal cubic and a line;
4�1: two conics intersecting at 4 points;
2�1 + �2: two nodes and one cusp;
�1 + �3: a node and a tacnode;
�1 + �3: cubic and a tangent line;
�4: one rhamphoid cusp (two infinitely near cusps);
2�2: two cusps;
�4: an ordinary triple point;
5�1: a conic and two lines;
3�1 + �2: a cuspidal cubic and a line;
2�1 + �3: two conics tangent at one point;
2�1 + �3: a nodal cubic and its tangent line;
�1 + �4: a rhamphoid cusp and a node;
�1 + 2�2: a cusp and two nodes;
�2 + �3: a cusp and a tacnode;
�5: one oscnode (two infinitely near cusps);
�5: a cubic and its inflection tangent;
�5: nodal cubic and a line tangent at one branch;
�1 + �4: a nodal cubic and line through the node;
�6: an irreducible quartic with one 46-singularity;
�6: triple point with one cuspidal branch;
�1 + �5: two conics intersecting at two points with multiplicities 3 and 1;
�1 + �5: a nodal cubic and its inflection tangent;
6�1: four lines in general position;
3�2: a three-cuspidal quartic;
2�1 + �4: two lines and conic through their intersection point;
�5 + �1: cuspidal cubic and a line through the cusp;
2�3: two conics intersecting at two points with multiplicities 2;
3�1 + �3: a conic plus its tangent line plus another line;
�1 + �2 + �3: cuspidal cubic and its tangent;
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�6: one oscular rhamphoid cusp (three infinitely near G1 � G2 � G1 cusps);
�2 + �4: one rhamphoid cusp and a cusp;
�7: cuspidal cubic and its cuspidal tangent;
�1 + �6: conic plus tangent line and another line through point of contact;
�4 + 3�1: four lines with three concurrent;
�7: two irreducible conics intersecting at one point;
�5 + �2: cuspidal cubic and an inflection tangent;
2�3 + �1: conic and two tangent lines.
Note that all possible root bases are realized except 7�1 (this can be realized

in characteristic 2). One can compute the number of lines but this is rather
tedious. For example, in the case �1, we have 44 lines and a one-nodal quartic
� has 22 proper bitangents (i.e. lines with two nonsingular points of tangency)
and six bitangents passing through the node.
The Gosset polytope Σ7 = 321 has 576 facets of type U and 126 facets of type

V. They correspond to contractions of seven disjoint (−1)-curves and pencils
of conics arising from seven pencils of lines through one of the seven points in
the plane, 35 pencils of conics through four points, 42 pencils of cubic curves
through six points with a node at one of these points, 35 pencils of 3-nodal
quartics through the seven points, and seven pencils of quintics through the
seven points with six double points.

8.7.2 Automorphisms of del Pezzo surfaces of degree 2
Let ( be a del Pezzo surface of degree 2. Choose a geometric basis ( that defines
an isomorphism , (() � , (E# ). We fix a geometric basis and identify the
two groups. By Corollary 8.2.40, the natural homomorphism

d : Aut(() → , (�7)

is injective.
We know that the Weyl group , (E7) contains the center generated by an

element |0 of order 2. It acts as the minus identity on the root lattice E7. We
will show that it belongs to the image of d.
Let ( be a weak del Pezzo surface and ?1, . . . , ?7 be the seven points in

P2 that define our fixed geometric basis. In Subsection 7.2.6 we defined the
planar Geiser Cremona involution with base points ?1, . . . , ?7. The involution
is regularized on ( → P2. The anti-canonical map q : ( → P2 factors through
a birational morphism a : ( → (′ that blows down all (−2)-curves on ( and a
finite degree two morphism q′ : (′→ P2. Let W′ be the deck transformation of
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the cover q′. It is a biregular automorphism of (′ that coincides with the lift of
the Geiser Cremona involution to (′ as a birational involution. In fact, it lifts to
a biregular automorphism of (. Since a is a minimal resolution of singularities
of (′, this follows from the existence of an equivariant minimal resolution of
singularities of surfaces [489] and the uniqueness of a minimal resolution of
singularities of surfaces. The involution W of ( obtained in this way is called the
Geiser involution of (. Note that we use the same notation W as for the Geiser
Cremona involution.

Proposition 8.7.1. Let ( be a del Pezzo surface of degree two. The image d(W)
of the Geiser involutuion W in, (E7) does not depend on a choice of a geometric
basis and coincides with the element |0 of, (E7).

Proof Since the lift of the Geiser Cremona involution to ( coincides with W,
we can use the characteristic matrix � from (7.46) for the matrix of W in the
same geometric basis. By inspection of the matrix, we see that 40 + � · 40 =

−3 ( , 48 + � · 48 = − - . This implies that { · � = 0 for any divisor class
{ = 0040 + 0141 + · · · + 0747 with 300 = 01 + · · · = 07, we get { + ·� · { = 0.
Thus, d(W) = −idE7 . Since |0 = −id�7 generates the center of the Weyl group,
this property does not depend on a choice of a geometric basis. �

Note that the element |0 acts on the Gosset polytope 321 as the reflection
with respect to the center defined by the vector 1

2 k7 = − 1
56

∑
{8 , where {8 are

the exceptional vectors. The 28 orbits on the set of vertices correspond to 28
bitangents of a nonsingular plane quartic.
The assertion of the proposition is not true anymore if ( is weak del Pezzo

surface. In fact, W sends any (−2)-curve on ( to a (−2)-curve, and cannot act
as the minus identity on  ⊥

(
.

For example, suppose that the branch curve has an ordinary triple point, i.e.,
it is a simple point of type 34. Then the double cover (′ → P2 has a double
rational point of type �4. The surface ( is a minimal resolution of the singular
point and the Geiser involution of ( acts identically on the central component
of the exceptional curve and on the proper transform of the branch curve which
is a smooth rational curve. We have 4((W) = 4 and Trace(W∗ | ⊥

(
) = 1.

In a similar manner, one can go through the classification of possible simple
singular points of a plane quartic and find the action of the Geiser involution on
the exceptional curve of the minimal resolution of (′. We leave it to the reader
to provek the following proposition.

Proposition 8.7.2. The Geiser involution W has no isolated fixed points. Its
locus of fixed points is the disjoint union of smooth curves,+'1+· · ·+': , where
'1, . . . , ': are among irreducible components of Dynkin curves. The curve,
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is the normalization of the branch curve of the double cover q : ( → P2. A
Dynkin curve of type �2: has no fixed components, a Dynkin curve of type
�2:+1 has one fixed component equal to the central component. A Dynkin curve
of type �4, �5, �6, �6, �7 have fixed components marked by squares in their
Coxeter-Dynkin diagrams given in Table 8.12 below.

�4 • •

•

�

�5 • ••

•

•�

�6 • ••

•

• •� �

�6 • • • • •

•�

�7 • • • • •

•

�� �

Table 8.12 Fixed locus of the Geiser involution

Let ( be a del Pezzo surface of degree 2 and W be its Geiser involution. The
the anti-canonicalmap q : ( → P2 factors through the quotientmap ( → (/(W)
and an isomorphism (/(W) → P2. This gives an injective homomorphism

d̄ : Aut(()/(W) → , (()/(W) → , (E7)/(|0).

It is known that

, (E7) = , (E7)+ × (|0),

where , (E7)+ is a simple group isomorphic to the group Sp(6, F2). This
isomorphism is obtained by considering the action of , (E7)+ on the root
lattice modulo 2. The group Aut(()/(W) acts naturally on the branch curve
defining an injective homomorphism

U : Aut(()/(W) → Aut(�).

Let � be a subgroup of, (�7)+. Denote by �+ a lift of � to an isomorphic
subgroup of ,+. Any other isomorphic lift of � is defined by a nontrivial
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homomorphism U : � → 〈|0〉 � Z/2Z. Elements of � are the products
ℎU(ℎ), ℎ ∈ �+. We denote such a lift by �U. Thus, all lifts are parametrized
by the group Hom(�, 〈|0〉) and �+ corresponds to the trivial homomorphism.
Note that |�U|−1 = (|′�|′−1)U, where |′ is the image of | ∈ , (E7) in
, (�7) ′. In particular, two lifts of the same group are never conjugated. A lift
is trivial if it contains |0. In this case �U = � × (|0).

Now we apply this to our geometric situation. The group Aut(() ⊂ , (()
is the trivial lift of the subgroup Aut(�) of, (()+ � , (E7)+. Since we know
the automorphism groups of plane quartic curves, we find the list of possible
automorphism groups of del Pezzo surfaces of degree two in Table 8.13 below.

Type Order Structure Equation

I 336 2 × !2 (7) C23 + C
3
0 C1 + C

3
1 C2 + C

3
2 C0

II 192 2 × (42 : S3) C23 + C
4
0 + C

4
1 + C

4
2

III 96 2 × 4A4 C23 + C
4
2 + C

4
0 + UC

2
0 C

2
1 + C

4
1

IV 48 2 ×S4 C23 + C
4
2 + C

4
1 + C

4
0 + 0 (C

2
0 C

2
1 + C

2
0 C

2
2 + C

2
1 C

2
2 )

V 32 2 × 4.22 C23 + C
4
2 + C

4
0 + 0C

2
0 C

2
1 + C

4
1

VI 18 18 C23 + C
4
0 + C0C

3
1 + C1C

3
2

VII 16 2 × �8 C23 + C
4
2 + C

4
0 + C

4
1 + 0C

2
0 C

2
1 + 1C

2
2 C0C1

VIII 12 2 × 6 C23 + C
3
2 C0 + C

4
0 + C

4
1 + 0C

2
0 C

2
1

IX 12 2 ×S3 C23 + C
4
2 + 0C

2
2 C0C1 + C2 (C

3
0 + C

3
1 ) + 1C

2
0 C

2
1

X 8 23 C23 + C
4
2 + C

4
1 + C

4
0 + 0C

2
2 C

2
0 + 1C

2
1 C

2
2 + 2C

2
0 C

2
1

XI 6 6 C23 + C
3
2 C0 + 04 (C0, C1)

XII 4 22 C23 + C
4
2 + C

2
2 52 (C0, C1) + 04 (C0, C1)

XIII 2 2 C23 + 04 (C0, C1, C2)

Table 8.13 Groups of automorphisms of del Pezzo surfaces of degree 2

Remark 8.7.3. As we explained in Subsection 7.7.1 the classification of con-
jugacy classes of finite subgroupsn of the Cremona group Cr(2) includes the
conjugacy classes of minimal finite groups � of the group Aut(() of automor-
phisms of a del Pezzo surface ( of degree 2. They are obtained as lifts of finite
subgroups of Aut(�) that satisfy the property that Pic(()� � Z. The trivial lift
is always minimal since it contains |0 that acts on  ⊥( as the minus identity. To
find the minimal non-trivial lifts of finite subgroups of Aut(�) is not an easy
task, accomplished in [252].
Remark 8.7.4. The isomorphism of groups, (E7) � Sp(6, F2) has a geometric
interpretation after we identify �1 (�, F2) with F6

2 and equip it with a nonde-
generate symplectic form b : �1 (�, F2) ×�1 (�, F2) → F2 defined by the cap-
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product. There is a natural isomorphism  ⊥
(
/2 ⊥

(
→ Jac(�) [2] � �1 (�, F2)

that defines an isomorphism of groups , (()/(W)C>Aut(�1 (�, F2, b) [234,
Chapter IX].
We leave it to a curious reader the task of classifying automorphism groups of

weak del Pezzo surfaces. Notice that in the action of Aut(() in the Picard group
they correspond to certain subgroups of the group Cris((). Also, the action
is not necessarily faithful; for example, the Geiser involution acts trivially on
Pic(() in the case of a weak del Pezzo surface that is defined by the branch
curve � with a simple singular point of type 47.

8.8 Del Pezzo Surfaces of Degree 1

8.8.1 Singularities
Let ( be a weak del Pezzo surface of degree one. It is isomorphic to the
blow-up of a bubble cycle of eight points in an almost general position. The
anti-canonical model - of ( is a finite cover of degree 2 of a quadratic cone
& ramified over a curve � in the linear system |O& (3) |. It is nonsingular or
has simple singularities. The list of types of possible Dynkin curves is easy to
compile. First, we observe that all diagrams listed for the case of the E7-lattice
are included in the list. They correspond to the natural inclusion of the set of
simple roots of the lattice E7 into the set of simple roots of the lattice E8. Also,
all the diagrams �1 +) , where ) is from the list of possible Dynkin curves on a
del Pezzo surface of degree 2 are also included. They correspond to the lattice
embedding E7 ⊕ A1 ↩→ E8. We give only the new types.

A Types

8 �8, �8, �8, 2�4, �1 + �2 + �5, �3 + �5, 2�4,
�2 + �6, �3 + �5, 4�2

7 �7, �2 + �5, �3 + �4, �3 + �4

6 �2 + �4

Table 8.14 Root bases in the E8-lattice

Note that there are two root bases for each of the types �7, 2�3, �1 + �5,
2�1 + �3, and 4�1, which are not equivalent with respect to the Weyl group.
The following result of P. Du Val [267] will be left without proof. Note that

Du Val uses the following notation:

�1 = [ ], �= = [3=−1], = ≥ 2, �= = [3=−3,1,1], = ≥ 4,
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�6 = [33,2,1], �7 = [34,2,1], �8 = [35,2,1] .

Theorem 8.8.1. All types of root bases in E8 can be realized by Dynkin curves
except the cases 7�1, 8�1, �4 + 4�1.

In fact, Du Val describes explicitly the singularities of the branch sextic
similarly to the case of weak del Pezzo surfaces of degree 2 (see also Table
8.10).
The number of lines on a del Pezzo surface of degree 1 is equal to 240. Note

the coincidence with the number of roots. The reason is simple, for any root
U ∈ E8, the sum −k8 +U is an exceptional vector. The image of a line under the
cover q : ( → & is a conic. The plane spanning the conic is a tritangent plane,
i.e. a plane touching the branch sextic, at three points. There are 120 tritangent
planes, each cut out a conic in& which splits under the cover in the union of two
lines intersecting at three points. Note that the effective divisor � of degree 3
on, such that 2� is cut out by a tritangent plane, is an odd theta characteristic
on, . This gives another explanation of the number 120 = 23 (24 − 1).
The Gosset polytope Σ8 = 421 has 17280 facets of type U corresponding

to contractions of sets of eight disjoint (−1)-curves, and 2160 facets of type
V corresponding to conic bundle structures arising from the pencils of conics
|340 − <141 − · · · − <8 | in the plane which we denote by (3;<1, . . . , <8):

• 8 of type (1; 1, 07),
• 70 of type (2; 14, 05),
• 168 of type (3; 2, 15, 02),
• 280 of type (4; 23, 14, 0),
• 8 of type (4; 3, 17),
• 56 of type (5; 26, 1, 0),
• 280 of type (5; 3, 23, 14),
• 420 of type (6; 32, 24, 12),
• 280 of type (7; 34, 23, 1),
• 56 of type (7; 4, 3, 26),
• 8 of type (8; 37, 1),
• 280 of type (8; 4, 34, 23),
• 168 of type (9; 42, 35, 2),
• 70 of type (10; 44, 34),
• 8 of type (11; 47, 3),

Observe the symmetry (3;<1, . . . , <8) ↦→ −4k8 − (3;<1, . . . , <8).

We know that the linear system | − ( | is an irreducible pencil with one base
point G0. Let g : � → ( be its blow-up. The proper inverse transform of | − ( |
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in � is a base-point-free pencil of curves of arithmetic genus 1. It defines an
elliptic fibration i : � → P1. The exceptional curve � = g−1 (G0) is a section
of the fibration. Conversely, let i : � → P1 be an elliptic fibration on a rational
surface � which admits a section � and is relative minimal in the sense that no
fiber contains a (−1)-curve. It follows from the theory of elliptic surfaces that
− � is the divisor class of a fiber and � is a (−1)-curve. Blowing down � , we
obtain a rational surface ( with  2

(
= 1. Since  � is obviously nef, we obtain

that  ( is nef, so ( is a weak del Pezzo surface of degree 1.
Let i : � → P1 be a rational elliptic surface with a section � . The section

� defines a rational point 4 on a generic fiber �[ , considered as a curve over
the functional field  of the base of the fibration. It is a smooth curve of genus
1, so it admits a group law with the zero equal to the point 4. It follows from
the theory of relative minimal models of surfaces that any automorphism of
�[ over  extends to a biregular automorphism of � over P1. In particular, the
negation automorphism G → −G extends to an automorphism of � fixing the
curve � . Its descent to the blowing down of � is the Bertini involution.
Let � be a Dynkin curve on (. The point G0 cannot lie on �. In fact,

otherwise the proper transform '′ of a component of � that contains C0 is a
(−3)-curve on �. However, − � is nef on �, hence  � · '′ ≤ 0 contradicting
the adjunction formula. This implies that the pre-image g∗ (�) of � on � is
a Dynkin curve contained in a fiber. The whole fiber is equal to the union of
g∗ (�) + ', where ' is a (−2)-curve intersecting the zero section � . Kodaira’s
classification of fibers of elliptic fibrations shows that the intersection graph
of the irreducible components of each reducible fiber is equal to one of the
extended Coxeter-Dynkin diagrams.
The classification of Dynkin curves on a weak del Pezzo surfaces of degree

1 gives the classification of all possible collections of reducible fibers on a
rational elliptic surface with a section. Conversely, the classification of possible
reducible fibers of a rational elliptic surfaces gives the classification of possible
Dynkin curves on a weak del Pezzo surface of degree one. The equation of the
anti-canonical model in P(1, 1, 2, 3)

C23 + C
3
2 + 04 (C0, C1)C2 + 06 (C0, C1) = 0. (8.32)

After the dehomogenization C = C1/C0, G = C2/C20 , H = C3/C30 , we obtain the
Weierstrass equation of the elliptic surface

H2 + G3 + 04 (C)G + 06 (C) = 0.

There is a classification of all possible singular fibers of rational elliptic surfaces
in terms of the order of vanishing at a point on the base of the coefficients
0(C), 1(C) and the discriminant Δ = 40(C)3 + 271(C)2 (see, for example, [673]).
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8.8.2 Automorphisms of del Pezzo surfaces of degree one

Let ( be a weak del Pezzo surface of degree ne. Consider the degree 2 regular
map q : ( → & defined by the linear system | − 2 ( |. Let ( → (′ → &

be its Stein factorization, where q′ : (′ → & is a finite morphism of degree
2. Similarly to the case of weak del Pezzo surfaces of degree two, we define
the Bertini involution V as the lift to Aut(() of the deck transformation of the
double cover q′.
The proof of the following proposition is almost a word-by-word repetition

of the proof of Proposition 8.7.1.

Proposition 8.8.2. Let ( be a del Pezzo surface of degree one. The image d(V)
of the Bertini involution V in, (E8) does not depend on a choice of a geometric
basis and coincides with the element |0 of , (E8) generating the center of
, (E8). It acts as the minus identity on the sublattice  ⊥

(
� E8.

Here we use that |0 acts as the minus identity on the lattice E8. It acts on the
Gosset polytope 421 as the reflection with respect to the center defined by the
vector k8 = − 1

240
∑
{8 , where {8 are the exceptional vectors. The 120 orbits on

the set of vertices correspond to 120 tritangent planes of the branch curve of
the Bertini involution.
As in the case of weak del Pezzo surfaces of degree two, the Bertinin

involution does not act as the minus identity on  ⊥
(
. Also, the difference

between the two cases. The Bertini has always an isolated fixed point equal to
the pre-image of the vertex of & under the map q.
The following proposition is the analog of Proposition 8.7.2.

Proposition 8.8.3. The one-dimensional part of the locus of fixed points (V of
the Bertini involution V is the disjoint union of smooth curves, +'1+ · · · +': ,
where '1, . . . , ': are among irreducible components of Dynkin curves. The
curve, is the normalization of the branch curve of the double cover q : ( → &.
A Dynkin curve of type �2: has no fixed components, a Dynkin curve of type
�2:+1 has one fixed component equal to the central component. A Dynkin curve
of types �4, �7, �8, �8 have fixed components marked by square on their
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Coxeter-Dynkin diagrams. The fixed components of Dynkin curves of the other
types are given in the diagrams from Proposition 8.7.2.

�7 • ••

•

• • •� �

�8 • ••

•

• • • •� � �

�8 • • • • • •

•

�� � �

(8.33)

Assume that ( is a del Pezzo surface. Then, the fixed locus of the Bertini
involution is a smooth irreducible curve, of genus 4 isomorphic to the branch
curve � of the cover and the base point of | − ( |. It belongs to the linear system
| − 3 ( | and hence its image in the plane is a curve of degree 9 with triple
points at G1, . . . , G8.
Suppose ( is a del Pezzo surface of degree one. Then, the trace of V in  ⊥

(
is

equal to−8. It follows from (8.31), where W is replaced with V, that 4((V) = −5.
This agrees with the fact that 4(�) = −6 and 4(point) = 1.

We can also consider the Bertini involution as a planar Cremona involution
of the plane. The characteristic matrix (7.47) coincides with the matrix of V∗
in its action on Pic(().

From now on, ( is a del Pezzo surface of degree one. Let c : - → ( be
the blow-up of the isolated fixed point o of the Bertini involution V. The group
Aut(() acts naturally on - and can be identified with the subgroup Aut(-)0
of Aut(-) that fixes the section �0 = c

−1 (o) invariant. The restriction of the
image of V to the generic fiver -[ of 5 is the negation involution of the elliptic
curve -[ with the zero element of the group law equal to the point of -[
corresponding to the section �0. The group Aut(-) in its action on Pic(()
leaves invariant − - | and hence preserves the elliptic fibration. Let

@ : Aut(-)0 → Aut(P1) = Aut( | −  ( |∗)

be the natural homomorphism of the base of the elliptic fibration. Its kernel is
isomorphic to the group of automorphisms of the elliptic curve -[ preserving
the group law. It contains V and the quotient group Aut(-)0/(V) is a cyclic
group of order 2 if the coefficient 04 in (8.32) vanishes and order 3 if 04
vanishes.
Let� be the image of Aut(-)0 in Aut(P1) � PGL(2). Recall the well-known

classification of finite subgroup Γ of PGL(2), called polyhedral groups. They
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are distinguished by the set of the special orbits, i.e., orbits of cardinality equal
to #Γ/48 , where 48 > 1 is the order of the stabilizer subgroup of a point in the
orbit.

(i) Γ = �=, a cyclic group of order =, (41, 42) = (=, =);
(ii) Γ = �2: , = = 2:, (41, 42, 43) = (2, 2, :);
(iii) Γ = A4, = = 12, (41, 42, 43) = (2, 3, 3);
(iv) Γ = S4, = = 24, (41, 42, 43) = (2, 3, 4);
(v) Γ = A5, = = 60, (41, 42, 43) = (2, 3, 5).

Our group � must be one of these subgroups. Observe, that in its action on
P1, the group � leaves invariant the zeroes of the binary forms 04 (C0, C1) and
06 (C0, C1).
Let Γ be a lift of Γ to a finite subgroup of SL(2). Since the kernel of the

homomor[hism SL(2) → PGL(2) is the group of order 2 generated by the
matrix −�2, The kernel of Γ → Γ is of order ≤ 2. It is easy to see that a non-
cyclic group Γ cannot be isomorphically lifted to a finite subgroup of SL(2),
and the same is true for cyclic groups of even order. The groups Γ are called
binary polyhedral groups, binary dihedral in case (ii), binary tetrahedral in case
(iii), binary octahedral in case (iv), and binary icosahedral in case (v). They are
usually denoted by D̄2=, T̄, Ō, Ī. They are of orders 4=, 24, 48, 120, respectively.

The group SL(2) acts linearly on the symmetric algebra (2 ((C2)∨) preserv-
ing the grading. The binary forms 04 and 06 are relative invariants of �̃. This
means that

6∗ (04, 06) = (j1 (6)04, j2 (06),

where j1, j2 ∈ Hom(Γ,C∗).
The set of relative invariants of Γ is a finitely generated graded algebra.

Let us give the set of natural generators of this algebra, classically called
Gründformen. We identify the group PGL(2) with the group of fractional-
linear transformations I ↦→ 0I+1

2I+3 . In the following, we give a representative of
the conjugacy class of Γ.

Case 1: Γ is a cyclic group of order =.
Γ is a cyclic group of order = generated by the matrix

6 =

(
n= 0
0 n−1

=

)
.

The group Γ is generated by the transformation 6̄ : I ↦→ n=I if = is odd and
6̄ : I ↦→ n2

= if = is even.
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The exceptional orbits are {0} and {∞}. The Grundformen are

Φ1 = C0, Φ2 = C1

with characters

j1 (6) = n=, j2 (6) = n−1
= .

Case 2: Γ = �2=.
The binary group Γ is generated by the matrices

61 =

(
n2= 0
0 n−1

2=

)
, 62 =

(
0 8

8 0

)
.

Any exceptional orbit is the orbit of a fixed point of some element 6 ∈ �
different from ±�2. The fixed points of 61 are 0,∞. Applying 62, we see that
they form one orbit of cardinality 2. The fixed points of 62 are ±1. Applying
powers of 61 we get two exceptional orbits. One is formed by =th roots of 1, the
other one is formed by =th roots of −1. The Grundformen are

Φ1 = C
=
0 + C

=
1 , Φ2 = C

=
0 − C

=
1 , Φ3 = C0C1. (8.34)

The generators 61 and 62 act on the Grunforms with characters

j1 (61) = −1, j1 (62) = 8=,
j2 (61) = −1, j2 (62) = −8=,
j3 (61) = 1, j3 (62) = −1.

Case 3: Γ = T.
The group Γ is generators by the matrices

61 =

(
n4 0
0 n−1

4

)
, 62 =

(
0 8

8 0

)
, 63 =

1
1 − 8

(
1 8

1 −8

)
The fixed points of 61 are 0,∞ permuted under 62. Their stabilizer is of order
2. Thus orbit $1 with 41 = 2 consists of 6 points. Applying powers of 63 to 0
and 1 we see that$1 consists of the points 0,∞, 1,−1, 8,−8. The fixed points of
63 are 1−8

2 (1±
√

3). Applying 61 and 62 to these points, we obtain two orbits of
cardinality 4

$2 = {±
1 − 8

2
(1+
√

3),±1 + 8
2
(1−
√

3)}, $3 = {±
1 − 8

2
(1−
√

3),±1 + 8
2
(1+
√

3)}.

The Grundformen are

Φ1 = C0C1 (C40 − C
4
1), Φ2 = C

4
0 + 2
√
−3C20C

2
1 + C

4
1 , Φ3 = C

4
0 − 2
√
−3C20C

2
1 + C

4
1 .
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The characters are

j1 (61) = j1 (62) = j1 (63) = 1,
j2 (61) = j2 (62) = j2 (63) = n3,

j3 (61) = j3 (62) = 1, j3 (63) = n2
3 .

Case 3: Γ = O.
The binary group O is generators by

61 =

(
n8 0
0 n−1

8

)
, 62 =

(
0 8

8 0

)
, 63 =

1
1 − 8

(
1 8

1 −8

)
.

The fixed points with stabilizers of order 4 are 0,∞, 1,−1, 8,−8. They form the
first orbit $1. The fixed points with stabilizers of order 3 form the second orbit
of order eight. It consists of the union of the orbits$2 and$3 from the previous
case.
The group Γ isomorphic to the permutation group S4. It has two conjugacy

classes of elements of order 2. One of them belongs to the conjugacy class of an
element of order 4, say of 61. Another one is a stabilizer of an exceptional orbit
$3 of cardinality 12. It corresponds to a transposition in (4. It can be realized
by the product 6162 : I ↦→ 8/I. Its fixed points are ±n8. The corresponding orbit
$3 consists of

n :8 ,
8n :8 + 8
n :8 − 1

,
8n :8 − 1
8n :8 + 1

, : = 1, 3, 5, 7.

Now, it is easy to list the Grundformen. They are

Φ1 = C0C1 (C40−C
4
1), Φ2 = C

8
0+14C40C

4
1+C

8
1 = (C

4
0+2
√
−3C20C

2
1+C

4
1) (C

4
0−2
√
−3C20C

2
1+C

4
1),

Φ3 = (C40 + C
4
1) ((C

4
0 + C

4
1)

2 − 36C40C
4
1).

The characters are

j1 (61) = −1, j1 (62) = j1 (63) = 1,
j2 (61) = j2 (62) = j2 (63) = 1,
j3 (61) = −1, j3 (62) = j(63) = 1.

Case 4: Γ = I. The smallest orbit of Γ is of cardinality 60/5 = 12. So, we see
that this group cannot occur in our case. Nevertheles, for completeness sake we
give the information about the Gründforms of . Γ. The group is generated by

61 =

(
n10 0
0 n−1

10

)
, 62 =

(
0 8

8 0

)
, 63 =

1
√

5

(
n5 − n4

5 n2
5 − n

3
5

n2
5 − n

3
5 −n5 + n4

5

)
.
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Note that we can replace 63 with a generator of order 3 equal to 616361. We
already used that the orbit $3 with stabilizer subgroups of �̄ of order 5 are
roots of the Grundform

Φ3 = C0C1 (C10
0 + 11C50C

5
1 − C

10
1 ).

Other Grundformen must be of degree 30 and 20. Recall that the Hessian
determinant of a function in two variables is the determinant of the Hessian
matrix of its partial derivatives of second order. The hessian of Φ3 must be
of degree 20. It is easy to see, using the chain rule, that the hessian of a
relative invariant is a relative invariant. Thus the hessian of Φ3 is a Grundform
corresponding to the orbit$2 with stabilizers of order 3. The direct computation
gives

Φ2 = −(C20
0 + C

20
1 ) + 228(C15

0 C
5
1 − C

5
0C

15
1 ) − 494C10

0 C
10
1 .

Next, we need a Grundform of degree 30. Recall that the jacobian of functions
5 , 6 in two variables is the determinant of the matrix whose first row are partial
derivatives of the first order of 5 and the second row is the same for 6. The
jacobian ofΦ2,Φ3 must be of degree 30, and it is easy to see that it is a relative
invariant. This gives us a Grundform of degree 30

Φ1 = C
30
0 + C

30
1 + 522(C25

0 C
5
1 − C

5
0C

25
1 ) − 10005(C20

0 C
10
1 + C

10
0 C

20
1 ).

Since �̄ � �5 is a simple group and all Grundformen are of even degree, we
see that the characters are trivial.

In the following, we use that amultiple root of 06 is not a root of 04 (otherwise
the surface - is singular). We denote by n: a primitive :-th root of unity.

Case 1: � = �=, Any monomial C80C
9

1 is a relative invariant with j(f) = n 8− 9=

if = is odd and j(f) = n 8− 92= if = is even. In Table 8.15 below we list relative
invariants which are not monomials.
Case 2: Γ = �2= is a dihedral group of order = = 2: . It is generated by two

matrices

f1 =

(
n2: 0
0 n−1

2=

)
, f2 =

(
0 8

8 0

)
.

Case 3: Γ = A4.
Up to the variable change C0 → 8C0, C1 → C1, we have only one case

04 = C
4
0 + 2
√
−3C20C

2
1 + C

4
1 , (j(f1), j(f2), j(f3) = (1, 1, n3), (8.35)

06 = C0C1 (C40 − C
4
1), (j(f1), j(f2), j(f3) = (1, 1, 1). (8.36)
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= 04 j(f) 06 j(f)

2 0C40 + 1C
2
0C

2
1 + 2C

4
1 1 0C60 + C

2
0C

2
1 (1C

2
0 + 2C

2
1) + 3C

6
1 -1

C0C1 (0C20 + 1C
2
1) -1 C0C1 (0C40 + 1C

2
0C

2
1 + 2C

4
1) 1

3 C0 (0C30 + 1C
3
1) n3 0C60 + 1C

3
0C

3
1 + 2C

6
1 1

C1 (0C30 + 1C
3
1) n2

3 C0C
2
1 (0C

3
0 + 1C

3
1) n2

3
C20C1 (0C

3
0 + 1C

3
1) n3

4 0C40 + 1C
4
1 -1 C20 (0C

4
0 + 1C

4
1) -i

C0C1 (0C40 + 1C
4
1) -1

C21 (0C
4
0 + 1C

4
1) i

5 C0 (0C50 + 1C
5
1) n5

C1 (0C50 + 1C
5
1) n4

5

6 0C60 + 1C
6
1 -1

Table 8.15 Relative invariants: Γ = �=

= 04 j(f1) j(f2) 06 j(f1) f2)

2 0(C40 + C
4
1) + 1C

2
0C

2
1 1 1 C0C1

(
0(C40 + C

4
1) + 1C

2
0C

2
1
)

1 -1
C0C1 (C20 − C

2
1) -1 -1 0(C60 + C

6
1) + 1C

2
0C

2
1 (C

2
0 + C

2
1) -1 -1

C40 − C
4
1 1 -1 0(C60 − C

6
1) + 1C

2
0C

2
1 (C

2
0 − C

2
1) -1 1

3 C20C
2
1 1 1 C60 + C

6
1 + 0C

3
0C

3
1 1 -1

C60 + C
6
1 + 0C

3
0C

3
1 1 -1

4 C40 ± C
4
1 -1 ±1 C0C1 (C40 ± C

4
1) -1 ∓1

6 C20C
2
1 1 1 C60 ± C

6
1 -1 ∓1

Table 8.16 Relative invariants:Γ = �2=

Case 4: Γ = S4. It is generated by matrices

f1 =

(
n8 0
0 n−1

8

)
, f2 =

(
0 8

8 0

)
, f3 =

1
√

2

(
n−1

8 n−1
8

n5
8 n8

)
.

There is only one, up to a change of variables, relative invariant of degree
≤ 6. It is

06 = C0C1 (C40 − C
4
1).

It is an invariant of �̄. In this case 04 = 0.
In the next theorem, we list all possible groups � ′ = Aut(()/〈V〉 and their

lifts � to subgroups of Aut((). We extend the action of �̄ on the coordinates
C0, C1 to an action on the coordinates C0, C1, C2. Note that not all combinations of
(04, 06) admit such an extension. For example, a common root of 04 and 06
must be a simple root of 06 since otherwise the surface ( is singular.

In the following list, the vector c = (20, 21, 22, 23) will denote the transfor-
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mation [C0, C1, C2, C3] ↦→ [20C0, 21C1, 22C2, 23C3]. The Bertini transformation V
corresponds to the vector (1, 1, 1,−1).

1. Cyclic groups � ′

(i) � ′ = 2, � = 〈(1,−1, 1, 1), V〉 � 22,

04 = 0C
4
0 + 1C

2
0C

2
1 + 2C

4
1 , 06 = 3C

6
0 + 4C

4
0C

2
1 + 5 C

2
0C

4
1 + 6C

6
1 .

(ii) � ′ = 2, � = 〈(1,−1,−1, 8)〉,

04 = 0C
4
0 + 1C

2
0C

2
1 + 2C

4
1 , 06 = C0C1 (3C40 + 4C

2
0C

2
1 + 5 C

4
1).

(iii) � ′ = 3, � = 〈(1, n3, 1,−1)〉 � 6,

04 = C0 (0C30 + 1C
3
1), 06 = 0C

6
0 + 1C

3
0C

3
1 + 2C

6
1 .

(iv) � ′ = 3, � = 〈(1, n3, n3,−1)〉,

04 = C
2
0C

2
1 , 0C60 + 1C

3
0C

3
1 + 2C

6
1 .

(v) � ′ = 3, � = 6, a = (1, 1, n3,−1),

04 = 0.

(vi) � ′ = 4, � = 〈(8, 1,−1, 8), V〉 � 4 × 2,

04 = 0C
4
0 + 1C

4
1 , 06 = C

2
0 (2C

4
0 + 3C

4
1).

(vii) � ′ = 4, � = 〈(8, 1,−8,−n8)〉 � 8,

04 = 0C
2
0C

2
1 , 06 = C0C1 (2C40 + 3C

4
1),

(viii) � ′ = 5, � = 〈(1, n5, 1,−1)〉 � 10,

04 = 0C
4
0 , 06 = C0 (1C50 + C

5
1).

(ix) � ′ = 6, � = 〈(1, n6, 1, 1), V〉 � 2 × 6.

04 = C
4
0 , 06 = 0C

6
0 + 1C

6
1 .

(x) � ′ = 6, � = 〈(n6, 1, n2
3 , 1), V〉 � 2 × 6,

04 = C
2
0C

2
1 , 06 = 0C

6
0 + 1C

6
1 .

(xi) � ′ = 6, � = 〈(−1, 1, n3, 1), V〉 � 2 × 6,

04 = 0, 06 = 3C
6
0 + 4C

4
0C

2
1 + 5 C

2
0C

4
1 + 6C

6
1 ,

(xii) � ′ = 10, � = 〈(1, n10,−1, 8)〉 � 20,

04 = 0C
4
0 , 06 = C0C

5
1 .
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(xiii) � ′ = 12, � = 〈(n12, 1, n2
3 ,−1), V〉 � 2 × 12,

04 = 0C
4
0 , 06 = C

6
1 .

(xiv) � ′ = 12, � = 〈(8, 1, n12, n8)〉 � 24,

04 = 0, 06 = C0C1 (C40 + 1C
4
1).

(xv) � ′ = 15, � = 〈(1, n5, n3, n30)〉 � 30,

04 = 0, 06 = C0 (C50 + C
5
1).

2. Dihedral groups

(i) � ′ = 22, � = �8,

04 = 0(C40 + C
4
1) + 1C

2
0C

2
1 , 06 = C0C1 [2(C40 + C

4
1) + 3C

2
0C

2
1], 0 ≠ 0, 3 ≠ 0

� ′ = 3 × 22, � = �8, 0 = 1 = 0, 2, 3 ≠ 0,

f1 : [C0, C1, C2, C3] ↦→ [C1,−C0, C2, 8C3],
f2 : [C0, C1, C2, C3] ↦→ [C1, C0, C2, C3],

f4
1 = f

2
2 = 1, f2

1 = V, f2f1f
−1
2 = f−1

2 .

(ii) � ′ = 22, � = 2.�4,

04 = 0(C40 + C
4
1) + 1C

2
0C

2
1 , 06 = C0C1 (C40 − C

4
1),

f1 : [C0, C1, C2, C3] ↦→ [C0,−C1,−C2, 8C3],
f2 : [C0, C1, C2, C3] ↦→ [C1, C0,−C2, 8C3],

f2
1 = f

2 = (f1f2)2 = V.

(iii) � ′ = �6, � = �12,

04 = 0C
2
0C

2
1 , 06 = C

6
0 + C

6
1 + 1C

3
0C

3
1 ,

f1 : [C0, C1, C2, C3] ↦→ [C0, n3C1, n3C2,−C3],
f2 : [C0, C1, C2, C3] ↦→ [C1, C0, C2, C3],

f3
1 = V, f

2
2 = 1, f2f3f

−1
2 = f−1

1 .
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(v) � ′ = �8, � = �16,

04 = 0C
2
0C

2
1 , 06 = C0C1 (C40 + C

4
1),

f1 : [C0, C1, C2, C3] ↦→ [n8C0, n
−1
8 C1,−C2, 8C3],

f2 : [C0, C1, C2, C3] ↦→ [C1, C0, C2, C3],

f4
1 = V, f

2
2 = 1, f2f1f

−1
2 = f−1

1 .

(vi) � ′ = �12, � = 2.�12,

04 = 0C
2
0C

2
1 , 06 = C

6
0 + C

6
1 ,

f1 : [C0, C1, C2, C3] ↦→ [C0, n6C1, n
2
3 C2, C3],

f2 : [C0, C1, C2, C3] ↦→ [C1, C0, C2, C3], f3 = V.

We have

f6
1 = f

2
2 = f

3
3 = 1, f2f1f

−1
2 = f−1

1 f3.

3. Other groups

(i) � ′ = A4, � = 2.A4,

04 = C
4
0 + 2
√
−3C20C

2
1 + C

4
2 , 06 = C0C1 (C40 − C

4
1),

f1 =
©«
8 0 0 0
0 −8 0 0
0 0 1 0
0 0 0 1

ª®¬ , f2 =
©«

0 8 0 0
8 0 0 0
0 0 1 0
0 0 0 1

ª®¬ , f3 =
1
√

2

©«
n −1

8 n −1
8 0 0

n 5
8 n8 0 0
0 0

√
2n3 0

0 0 0
√

2

ª®®¬.
(ii) � ′ = 3 × �4, � = 3 × �8,

04 = 0, 06 = C0C1 (C40 + 0C
2
0C

2
1 + C

4
1).

(iii) � ′ = 3 × �6, � = 6.�6 � 2 × 3.�6,

04 = 0, 06 = C
6
0 + 0C

3
0C

3
1 + C

6
1 .

It is generated by

f1 : [C0, C1, C2, C3] ↦→ [C0, C1, n3C2, C3],
f2 : [C0, C1, C2, C3] ↦→ [C0, n3C1, C2, C3],
f3 : [C0, C1, C2, C3] ↦→ [C1, C0, C2, C3] .

They satisfy f3 · f2 · f−1
3 = f−1

2 f4
1 .
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(iv) � ′ = 3 × �12, � = 6.�12,

04 = 0, 06 = C
6
0 + C

6
1 .

It is generated by

f1 : [C0, C1, C2, C3] ↦→ [C0, C1, n3C2, C3],
f2 : [C0, C1, C2, C3] ↦→ [C0, n6C1, C2, C3],
f3 : [C0, C1, C2, C3] ↦→ [C1, C0, C2, C3] .

We have f3 · f2 · f−1
3 = f−1

2 f1.

(v) � ′ = 3 ×S4, � = 3 × 2.S4,

04 = 0, 06 = C0C1 (C40 − C
4
1),

f1 =
©«
n8 0 0 0
0 n −1

8 0
0 0 −1 0
0 0 0 8

ª®¬ , f2 =
©«

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 8

ª®¬,

f3 =
1
√

2

©«
n −1

8 n −1
8 0 0

n 5
8 n8 0 0
0 0

√
2 0

0 0 0
√

2

ª®®¬, f4 =
©«

1 0 0 0
0 1 0 0
0 0 n3 0
0 0 0 1

ª®¬.

Table 8.17 below gives a list of the full automorphism groups of del Pezzo
surfaces of degree one.
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Type Order Structure 04 06

I 144 3 × () : 2) 0 C0C1 (C40 − C
4
1 )

II 72 3 × 2�12 0 C60 + C
6
1

III 36 6 × �6 0 C60 + 0C
3
0 C

3
1 + C

6
1

IV 30 30 0 C0 (C50 + C
5
1 )

V 24 ) 0 (C40 + 2
√
−3C20 C

2
1 + C

4
1 ) C0C1 (C40 − C

4
1 )

VI 24 2�12 0C20 C
2
1 C60 + C

6
1

VII 24 2 × 12 C40 C61

VIII 24 3 × �8 0 C0C1 (C40 + C
4
1 + 0C

2
0 C

2
1 )

IX 20 20 C40 C0C
5
1

X 16 �16 0C20 C
2
1 C0C1 (C40 + C

4
1 )

XI 12 �12 C20 C
2
1 C60 + 0C

3
0 C

3
1 + C

6
1

XII 12 2 × 6 0 63 (C20 , C
2
1 )

XIII 12 2 × 6 C40 0C60 + C
6
1

XIV 10 10 C40 C0 (0C50 + C
5
1 )

XV 8 &8 C40 + C
4
1 + 0C

2
0 C

2
1 1C0C1 (C40 − C

4
1 )

XVI 8 2 × 4 0C40 + C
4
1 C20 (1C

4
0 + 2C

4
1 )

XVII 8 �8 C40 + C
4
1 + 0C

2
0 C

2
1 C0C1 (1 (C40 + C

4
1 ) + 2C

2
0 C

2
1 )

XVIII 6 6 0 06 (C0, C1)

XIX 6 6 C0 (0C30 + 1C
3
1 ) 2C60 + 3C

3
0 C

3
1 + C

6
1

XX 4 4 62 (C20 , C
2
1 ) C0C1 52 (C20 , C

2
1 )

XXI 4 22 62 (C20 , C
2
1 ) 63 (C20 , C

2
1 )

XXII 2 2 04 (C0, C1) 06 (C0, C1)

Table 8.17 Groups of automorphisms of del Pezzo surfaces of degree 1

The parameters here satisfy some conditions in order for the different types
not to overlap.

Exercises
8.1 Show that a del Pezzo surface of degree 8 in P8 isomorphic to F0 is projectively

isomorphic to the image of P2 defined by the linear system of plane quartic curves
with two fixed double points.

8.2 Let ( be a weak del Pezzo surface of degree 6. Show that its anti-canonical model
is isomorphic to a hyperplane section of the Segre variety s1,1,1 (P1 × P1 × P1)
in P7.

8.3 Show that a general point in P6 is contained in three secants of a del Pezzo surface
of degree six.

8.4 Prove that a del Pezzo surface of degree six in P6 has the property that all hyper-
planes intersecting the surface along a curve with a singular point of multiplicity
≥ 3 have a common point in P6. According to [762] this distinguishes this surface
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among all other smooth projections of the Veronese surface V2
3 ⊂ P

9 to P6 (see
[781]).

8.5 Describe all weak del Pezzo surfaces which are toric varieties (i.e. contain an
open Zariski subset isomorphic to the torus (C∗)2 such that each translation of
the torus extends to an automorphism of the surface).

8.6 Show that a del Pezzo surface of degree 5 embeds into P1 × P2 as a hypersurface
of bidegree (1, 2).

8.7 Show that a canonical curve of genus 6 in P5 lies on a unique del Pezzo quintic
surface [41], [711].

8.8 Consider a nonsingular del Pezzo surface ( of degree 5 in P5 as the variety of
lines intersecting five planes spanning a 3-dimensional space in the Plücker space.
Prove that the pencil of hyperplanes through each of the planes cuts out on ( a
pencil of conics.

8.9 Show that the Petersen graph of ten lines on a del Pezzo quintic surface contains
12 pentagons and each pentagon represents five lines contained in a hyperplane.

8.10 Show that the union of tangent planes to a nonsingular del Pezzo surface ( of
degree 3 ≥ 5 in P3 not isomorphic to a quadric is a hypersurface of degree
4(3 − 3) which is singular along ( with multiplicity 4 [275],[29], vol. 6, p.275.

8.11 Show that the quotient of a nonsingular quadric by an involutionwith four isolated
fixed points is isomorphic to a quartic del Pezzo surface with four nodes.

8.12 Let ( be a quartic del Pezzo surface obtained by blowing up five points in the
plane. Show that there exists a projective isomorphism from the conic containing
the five points and the pencil of quadrics whose base locus is an anti-canonical
model of ( such that the points are sent to singular quadrics.

8.13 Show that the Wiman pencil of four-nodal plane sextic curves contains two 10-
nodal rational curves [274].

8.14 Show that the linear system of quadrics in P3 with 8 − 3 base points in general
position maps P3 onto a 3-fold in P3+1 of degree 3. Show that a del Pezzo surface
of degree 3 ≤ 8 in P3 is projectively equivalent to a hyperplane section of this
threefold.

8.15 Show that the projection of a del Pezzo surface of degree 3 in P3 from a general
point in the space is a surface of degree 3 in P3−1 with the double curve of degree
3 (3 − 3)/2.

8.16 Compute the number of (−1)-curves on a weak del Pezzo surfaces of degree one
or two.

8.17 Let - be a Bordiga surface obtained by the blow-up of ten general points in the
plane and embedded in P4 by the linear system of quartic curves passing through
the ten points. Show that - is a OADP surface.

8.18 Let - be a rational elliptic surface. Show that any pair of two disjoint sections
defines an involution on - whose fixed locus is a nonsingular curve of genus 3
and the quotient by the involution is isomorphic to the ruled surface F1.

Historical Notes

As the name suggests, P. del Pezzo was the first who laid the foundation of the
theory. In his paper of 1887 [215], he proves that a non-ruled nondegenerate
surface of degree 3 in P3 can be birationally projected to a cubic surface in P3
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from 3 −3 general points on it. del Pezzo showed that the images of the tangent
planes at the points are skew lines on the cubic surface and deduced from this
that 3 ≤ 9. He also gave a blow-upmodel of del Pezzo surfaces of degree 3 ≥ 3,
found the number of lines, and studied some singular surfaces. A realization of
a del Pezzo surface of degree 5 as the variety of planes in P4 intersecting five
planes is due to C. Segre [690]. He called the five planes the associated planes.
The quartic cyclide surfaces in P3 with a nodal conic were first studied in 1864
by G. Darboux [199] and M. Moutard [530] and a year later by E. Kummer
[472]. The detailed exposition of Darboux’s work can be found in [201], [202].
Some special types of these surfaces were considered much earlier by Ch.
Dupin [264]. Kummer was the first to observe the existence of five quadratic
cones whose tangent planes cut out two conics on the surface (the Kummer
cones). They correspond to the five singular quadrics in the pencil defining the
corresponding quartic surface in P4. A. Clebsch finds a plane representation
of a quartic cyclide by considering a web of cubics through five points in the
plane [145]. He also finds in this way the configuration of 16 lines previously
discovered by Darboux and proves that the Galois group of the equation for the
16 lines is isomorphic to 24oS5. An ‘epoch-makingmemoir’ (see [701], p. 141)
of C. Segre [685] finishes the classification of quartic cyclides by considering
them as projections of a quartic surface in P4. Jessop’s book [430] contains
a good exposition of the theory of singular quartic surfaces, including quartic
cyclide surfaces. At the same time, Segre classified the anti-canonical models
of singular del Pezzo surfaces of degree 4 in terms of the pencil of quadrics they
are defined by. The Segre symbol describing a pencil of quadratic forms was
introduced earlier by A. Weiler [802]. The theory of canonical forms of pencils
of quadrics was developed by K. Weierstrass [801] based an earlier work of J.
Sylvester [738]. J. Steiner was probably the first who related seven points in
the plane with curves of genus 3 by proving that the locus of singular points of
the net of cubic curves is a plane sextic with nodes at the seven points [724]. A.
Clebsch should be considered as a founder of the theory of del Pezzo surfaces of
degree 2. In his memoir [148] on rational double planes he considers a special
case of double planes branched along a plane quartic curve. He shows that the
pre-images of lines are cubic curves passing through a fixed set of seven points.
He identifies the branch curve with the Steiner sextic and relates the Aronhold
set of seven bitangents with the seven base points. Although C. Geiser was the
first to discover the involution defined by the double cover, he failed to see the
double plane construction.
E. Bertini, in [55], while describing his birational involution of the plane,

proves that the linear system of curves of degree 6 with eight double base
points has the property that any curve from the linear system passing through
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a general point G must also pass through a unique point G ′ (which are in the
Bertini involution). He mentions that the same result was proved independently
by L. Cremona. This can be interpreted by saying that the linear system defines
a rational map of degree 2 onto a quadric surface. Bertini also shows that the
set of fixed points of the involution is a curve of degree 9 with triple points at
the base points.
The classification of double singular points on algebraic surfaces in P3 started

from the work of G. Salmon [645] who introduced the following notation �2
for an ordinary node, �: for binode (the tangent cone is the union of two
different planes), which depend on how the intersection of the planes intersect
the surface, and unode *: with the tangent cone being a double plane. The
indices here indicate the difference : between the degree of the dual surface
and the dual of the nonsingular surface of the same degree. This nomenclature
can be applied to surfaces in spaces of arbitrary dimension if the singularity
is locally isomorphic to the singularities in above. For del Pezzo surfaces the
defect : cannot exceed 8 and all corresponding singularities must be rational
double points of types �1 = �2, �:−1 = �: , �:−2 = *: , : = 6, 7, �6 = *8.
Much later, P. Du Val [267] characterized these singularities as ones that do
not affect the conditions on adjunctions, the conditions that can be applied to
any normal surface. He showed that each RDP is locally isomorphic to either
a node �2, or binode �: , or unode *: , or other unodes *∗8 = �6,*

∗
9 = �7 and

*∗10 = �8 (he renamed *8 with *∗8). A modern treatment of RDP singularities
was given by M. Artin [24].
In the same series of papers, P. Du Val classifies all possible singularities

of anti-canonical models of weak del Pezzo surfaces of any degree and relates
them to Coxeter’s classification of finite reflection groups. The relationship of
this classification to the study of the singular fibers of a versal deformation of a
simple elliptic singularities was found by J. Mérindol [514], H. Pinkham [584],
[771], and E. Looĳenga (unpublished).
In a fundamental paper by G. Timms [750] one can find a detailed study of

the hierarchy of del Pezzo surfaces obtained by projections from a Veronese
surface of degree 9. In this way, he finds all possible configurations of lines
and singularities. Possible projections of a nonsingular del Pezzo surface from
a point outside the surface were studied by H. Baker [29, Vol. 6, p. 275].
The Weyl group , (E6) and , (E7) as the Galois group of 27 lines on a

nonsingular cubic surface and the group of 28 bitangents of a nonsingular
plane quartic were first studied by C. Jordan [432]. These groups are discussed
in many classical textbooks on algebra (e.g. [799, B. II], [80]). S. Kantor [438]
realized the Weyl groups, (E=) as groups of linear transformations preserving
a quadratic form of signature (1, =) and a linear form. This led him to describe
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the characteristic matrices of Cremona transformations with less than nine
fundamental points. A. Coble extended this to any number # of fundamental
points that gave the first occurrence of infinite Coxeter groups. In fact, Coble
showed that the groups are reflections groups generated by the symmetric
groupS# and one reflection corresponding to the standard quadratic Cremona
transformation [155, Part 2]. Earlier,W.Burnside described the same generation
of the finite Weyl groups, (�6) and, (�7) [79].

We refer to [70] for the history of Weyl groups, reflection groups and root
systems. These parallel directions of study ofWeyl groups have been reconciled
only recently.
The Gosset polytopes were discovered in 1900 by T. Gosset [350]. The

notation =21 belongs to him. They were later rediscovered by E. Elte and H. S.
M.Coxeter (see [178]) but onlyCoxeter realized that their groups of symmetries
are reflection groups. The relationship between the Gosset polytopes =21 and
curves on del Pezzo surfaces of degree 5 − = was found by Du Val [266]. In
the case of = = 2, it goes back to [662]. The fundamental paper of Du Val is
the origin of a modern approach to the study of del Pezzo surfaces by means of
root systems of finite-dimensional Lie algebras [217], [504].
We refer to modern texts on del Pezzo surfaces [701], [504], [217], [463].
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Cubic Surfaces

9.1 Lines on a Nonsingular Cubic Surface

9.1.1 The E6-lattice
Let us study the lattice I1,6 and its sublattice E6 in more detail.

Definition 9.1.1. A sixer in I1,6 is a set of six mutually orthogonal exceptional
vectors in I1,6.

An example of a sixer is the set {e1, . . . , e6}.

Lemma 9.1.2. Let {{1, . . . , {6} be a sixer. Then, there exists a unique root U
such that

({8 , U) = 1, 8 = 1, . . . , 6.

Moreover, (|1, . . . , |6) = (AU ({1), . . . , AU ({6)) is a sixer satisfying

({8 , | 9 ) = 1 − X8 9 .

The root associated to (|1, . . . , |6) is equal to −U.

Proof The uniqueness is obvious since {1, . . . , {6 are linearly independent, so
no vector is orthogonal to all of them. Let

{0 =
1
3
(−k6 + {1 + · · · + {6) ∈ R1,6.

Let us show that {0 ∈ I1,6. Since I1,6 is a unimodular lattice, it suffices to
show that ({0, {) is an integer for all { ∈ I1,6. Consider the sublattice # of I1,6

spanned by {1, . . . , {6, k6. We have ({0, {8) = 0, 8 > 0, and ({0, k6) = −3. Thus,
({0, I1,6) ⊂ 3Z. By computing the discriminant of # , we find that it is equal to
9. By Lemma 8.2.1 # is a sublattice of index 3 of I1,6. Hence, for any G ∈ I1,6

100
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we have 3G ∈ # . This shows that

({0, G) =
1
3
({0, 3G) ∈ Z.

Now, let us set
U = 2{0 − {1 − · · · − {6. (9.1)

We check that U is a root, and (U, {8) = 1, 8 = 1, . . . , 6.
Since AU preserves the symmetric bilinear form, {|1, . . . , |6} is a sixer. We

have

({8 , | 9 ) =
(
{8 , AU ({ 9 )

)
=

(
{8 , { 9 + ({ 9 , U)U

)
= ({8 , { 9 ) + ({8 , U) ({ 9 , U)

= ({8 , { 9 ) + 1 = 1 − X8 9 .

Finally, we check that

(AU ({8),−U) =
(
A2
U ({8),−AU (U)

)
= −({8 , U) = 1.

�

The two sixerswith opposite associated roots form a double-six of exceptional
vectors.
We recall the list of exceptional vectors in E6 in terms of the standard

orthonormal basis in I1,6.

a8 = e8 , 8 = 1, . . . , 6; (9.2)
b8 = 2e0 − e1 − · · · − E6 + e8 , 8 = 1, . . . , 6; (9.3)
c8 9 = e0 − e8 − e 9 , 1 ≤ 8 < 9 ≤ 6. (9.4)

Theorem 9.1.3. The following is the list of 36 double-sixes with corresponding
associated roots.
1 of type �

a1 a2 a3 a4 a5 a6 "max
b1 b2 b3 b4 b5 b6 −"max

,

15 of type �8 9

a8 b8 c 9: c 9; c 9< c 9= "8 9
a 9 b 9 c8: c8; c8< c8= −"8 9

,

20 of type �8 9:

a8 a 9 a: c;< c<= c;= "8 9:
c 9: c8: c8 9 b= b; b< −"8 9:

.

Here, "max is the maximal root of the root system "1, . . . ,"6 equal to 2e0 −
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e1 − · · · −E6. The reflection with respect to the associated root interchanges the
rows, preserving the order.

Proof We have constructed a map from the set of sixers (resp. double-sixes)
to the set of roots (resp. pairs of opposite roots). Let us show that no two sixers
{{1, . . . , {6} and {|1, . . . , |6} can define the same root. Since |1, . . . , |6, k6
span a sublattice of finite index in I1,6, we can write

{8 =

6∑
9=1
0 9| 9 + 00k6 (9.5)

with some 0 9 ∈ Q. Assume that {8 ≠ | 9 for all 9 . Taking the inner product of
both sides with U, we get

1 = 00 + · · · + 06. (9.6)

Taking the inner product with −k6, we get 1 = 01 + · · · + 06 − 300, hence
00 = 0. Taking the inner product with | 9 , we obtain −0 9 = ({8 , | 9 ). Applying
Proposition 10.34, we get 0 9 ≤ −1. This contradicts (9.6). Thus, each {8 is
equal to some | 9 .

The verification of the last assertion is straightforward.
�

Proposition 9.1.4. The group, (E6) acts transitively on the sets of sixers and
double-sixes. The stabilizer subgroup of a sixer (resp. double-six) is of order
6! (2 · 6!).

Proof We know that the Weyl group , (E# ) acts transitively on the set of
roots and the number of sixers is equal to the number of roots. This shows
that all sixers form one orbit. The stabilizer subgroup of the sixer (a1, . . . , a6)
(and hence of a root) is the group S6. The stabilizer of the double-six � is the
subgroup 〈S6, B"0〉 of order 2.6!. �

One can check that two different double-sixes can share either four or six
exceptional vectors. More precisely, we have

#� ∩ �8 9 = 4, #� ∩ �8 9: = 6,

#�8 9 ∩ �:; =
{

4 if #{8, 9} ∩ {:, ;} = 0,
6 otherwise;

#�8 9 ∩ �:;< =
{

4 if #{8, 9} ∩ {:, ;, <} = 0, 2,
6 otherwise;
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#�8 9: ∩ �;<= =
{

4 if #{8, 9} ∩ {:, ;} = 1,
6 otherwise.

A pair of double-sixes is called a syzygetic duad (resp. azygetic duad) if they
have four (resp. six) exceptional vectors in common.
The next Lemma is an easy computation.

Lemma 9.1.5. Two double-sixes with associated roots U, V form a syzygetic
duad if and only if (U, V) ∈ 2Z.

This can be interpreted as follows. Consider the vector space

+ = E6/2E6 � F
6
2 (9.7)

equipped with the quadratic form

@(G + 2E6) = 1
2 (G, G) mod 2.

SinceE6 is an even lattice, the definitionmakes sense. The associated symmetric
bilinear form is the symplectic form

(G + 2E6, H + 2E6) = (G, H) mod 2.

Each pair of opposite roots ±U defines a vector { in + with @({) = 1. It is
easy to see that the quadratic form @ has the Arf-invariant equal to 1 and hence
vanishes on 28 vectors. The remaining 36 vectors correspond to 36 pairs of
opposite roots or, equivalently, double-sixes.
Note that we have a natural homomorphism of groups

, (E6) � $ (6, F2)− (9.8)

obtained from the action of, (E6) on + . It is an isomorphism. This is checked
by verifying that the automorphism { ↦→ −{ of the lattice E6 does not belong
to the Weyl group, and then comparing the known orders of the groups.
It follows from above that a syzygetic pair of double-sixes corresponds to

orthogonal vectors {, |. Since @({ + |) = @({) + @(|) + ({, |) = 0, we see
that each nonzero vector in the isotropic plane s panned by {, | comes from a
double-six.
A triple of pairwise syzygetic double-sixes is called a syzygetic triad of

double-sixes. They span an isotropic plane. Similarly, we see that a pair of
azygetic double-sixes spans a non-isotropic plane in + with three nonzero
vectors corresponding to a triple of double-sixes which are pairwise azygetic.
It is called an azygetic triad of double-sixes.

We say that three azygetic triads form a Steiner complex of triads of double-
sixes if the corresponding planes in + are mutually orthogonal. It is easy to
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see that an azygetic triad contains 18 exceptional vectors and thus defines a
set of nine exceptional vectors (the omitted ones). The set of 27 exceptional
vectors omitted from three triads in a Steiner complex is equal to the set of 27
exceptional vectors in the lattice �1,6. There are 40 Steiner complexes of triads:

10 of type

ℓ8 9:,;<= = (�, �8 9: , �;<=), (�8 9 , �8: , � 9: ), (�;<, �;=, �<=),

30 of type

ℓ8 9 ,:;,<= = (�8 9 , �8:; , � 9:;), (�:; , �:<=, �;<=), (�<=, �<8 9 , �=8 9 ).

Theorem 9.1.6. The Weyl group, (E6) acts transitively on the set of triads of
azygetic double-sixes with stabilizer subgroup isomorphic to the group S3 ×
(S3 oS2) of order 432. It also acts transitively on Steiner complexes of triads of
double-sixes. A stabilizer subgroup is a maximal subgroup of , (E6) of order
1296 isomorphic to the wreath product S3 oS3.

Proof We know that a triad of azygetic double-sixes corresponds to a pair of
roots (up to replacing the root with its negative) U, V with (U, V) = ±1. This
pair spans a root sublattice & of E6 of type �2. Fix a root basis. Since the Weyl
group acts transitively on the set of roots, we find| ∈ , such that|(U) = "max.
Since (|(V),"max) = (V, U) = 1, we see that |(V) = ±"8 9: for some 8, 9 , : .
Applying elements from S6, we may assume that |(V) = −"123. Obviously,
the roots "12,"23,"45,"56 are orthogonal to |(U) and |(V). These roots span
a root sublattice of type 2�2. Thus, we obtain that the orthogonal complement
of & in E6 contains a sublattice of type 2�2 ⊥ �2. Since |disc(�2) | = 3, it
follows easily from Lemma 8.2.1 that &⊥ is a root lattice of type �2 + �2
(2�2, for short). Obviously, any automorphism Wthe two roots U, V invariant
leaves invariant the sublattice & and its orthogonal complement &⊥. Thus, the
stabilizer contains a subgroup isomorphic to , (�2) × , (�2) × , (�2) and
the permutation of order 2 which switches the two copies of �2 in &⊥. Since
, (�2) � S3 we obtain that a stabilizer subgroup contains a subgroup of order
2 · 63 = 432. Since its index is equal to 120, it must coincide with the stabilizer
group.
It follows from above that a Steiner complex corresponds to a root sublattice

of type 3�2 contained in E6. The group, (�2) oS3 of order 3 ·432 is contained
in the stabilizer. Since its index is equal to 40, it coincideswith the stabilizer. �

Remark 9.1.7. The notions of syzygetic (azygetic) pairs, triads and a Steiner
complex of triads of double-sixes is analogous to the notions of syzygetic
(azygetic) pairs, triads, and a Steiner complex of bitangents of a plane quartic
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(see Chapter 6). In both cases we deal with a 6-dimensional quadratic space
F6

2. However, they have different Arf invariants.

A triple {1, {2, {3 of exceptional vectors is called a tritangent trio if

{1 + {2 + {3 = −k6.

If we view exceptional vectors as cosets in �1,6/Zk6, this is equivalent to saying
that the cosets add up to zero.
It is easy to list all tritangent trios.

Lemma 9.1.8. There are 45 tritangent trios:
30 of type

a8 , b 9 , c8 9 , 8 ≠ 9 ,

15 of type

c8 9 , c:; , c<=, {8, 9} ∪ {:, ;} ∪ {<, =} = {1, 2, 3, 4, 5, 6}.

Theorem 9.1.9. The Weyl group acts transitively on the set of tritangent trios.

Proof We know that the permutation subgroupS6 of the Weyl group acts on
tritangent trios by permuting the indices. Thus, it acts transitively on the set of
tritangent trios of the same type. Now, consider the reflection | with respect to
the root "123. We have

A"123 (a1) = e1 + "123 = e0 − e3 − e4 = c34,

A"123 (b2) = (2e0 − e1 − e3 − e4 − e5 − E6) − "123 = e0 − e5 − E6 = c56,

A"123 (c12) = e0 − e1 − e2 = c12.

Thus, |(a1, b2, c12) = (c34, c56, c12). This proves the assertion. �

Remark 9.1.10. The stabilizer subgroup of a tritangent trio is a maximal sub-
group of , (E6) of index 45 isomorphic to the Weyl group of the root system
of type �4.

Let Π1 = {{1, {2, {3} and Π2 = {|1, |2, |3} be two tritangent trios with no
common elements. We have

({8 , |1 + |2 + |3) = −({8 , k6) = 1

and, by Proposition 10.34, ({8 , | 9 ) ≥ 0. This implies that there exists a unique
9 such that ({8 , | 9 ) = 1. After reordering, we may assume 9 = 8. Let D8 =
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−:6 − {8 − |8 . Since D2
8
= −1, (D8 , :6) = −1, the vector D8 is an exceptional

vector. Since

D1 + D2 + D3 =

3∑
8=1
(−:6 − {8 − |8) = −3:6 −

3∑
8=1

{8 −
3∑
8=1

|8 = −k6,

we get a new tritangent trioΠ3 = (D1, D2, D3). The unionΠ1∪Π2∪Π3 contains
nine lines {8 , |8 , D8 , 8 = 1, 2, 3. There is a unique triple of tritangent trios
that consists of the same nine lines. It is formed by tritangent trios Π′

8
=

({8 , |8 , D8), 8 = 1, 2, 3. Any pair of triples of tritangent trios that consists of the
same set of nine lines is obtained in this way. Such a pair of triples of tritangent
trios is called a pair of conjugate triads of tritangent trios.

We can list all conjugate pairs of triads of tritangent trios:

(�)
a8 b 9 c8 9
b: c 9: a 9
c8: a: b8

, (� �)
c8 9 c:; c<=
c;= c8< c 9:
c:< c 9= c8;

, (� � �)
a8 b 9 c8 9
b: a; c:;
c8: c 9; c<=

. (9.9)

Here, a triad is represented by the columns of the matrix and its conjugate triad
by the rows of the same matrix. Altogether we have 20+10+90 = 120 different
conjugate pairs of triads.
There is a bĳection from the set of pairs of conjugate triads to the set of

azygetic triads of double-sixes. The 18 exceptional vectors contained in the
union of the latter is the complementary set of the set of nine exceptional
vectors defined by a triad in the pair. Here, is the explicit bĳection.

a8 b 9 c8 9
b: c 9: a 9
c8: a: b8

↔ �8 9 , �8: , � 9: ;

c8 9 c:; c<=
c;= c8< c 9:
c:< c 9= c8;

↔ �, �8:=, � 9;<;

a8 b 9 c8 9
b: a; c:;
c8: c 9; c<=

↔ �<=, � 9:<, � 9:=.

Recall that the set of exceptional vectors omitted from each triad entering in a
Steiner complex of triads of azygetic double-sixes is the set of 27 exceptional
vectors. Thus, a Steiner complex defines three pairs of conjugate triads of
tritangent trios which contains all 27 exceptional vectors. We have 40 such
triples of conjugate pairs.

Theorem 9.1.11. The Weyl group acts transitively on the set of 120 conjugate
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pairs of triads of tritangent trios. A stabilizer subgroup � is contained in the
maximal subgroup of , (E6) of index 40 realized as a stabilizer of a Steiner
complex. The quotient group is a cyclic group of order 3.

Proof This follows from the established bĳection between pairs of conjugate
triads and triads of azygetic double-sixes and Theorem 9.1.6. In fact it is easy
to see directly the transitivity of the action. It is clear that the permutation
subgroupS6 acts transitively on the set of pairs of conjugate triads of the same
type. Since the Weyl group acts transitively on the set of tritangent trios, we
can send a tritangent trio (c8 9 , c:; , c<=) to a tritangent trio (a8 , b 9 , c8 9 ). By
inspection, this sends a conjugate pair of type III to a pair of conjugate triads
of type I. Also it sends a conjugate pair of type II to type I or III. Thus, all pairs
are,-equivalent. �

Remark 9.1.12. Note that each monomial entering into the expression of the
determinant of the matrix (9.9) expressing a conjugate pair of triads represents
three orthogonal exceptional vectors. If we take only monomials corresponding
to even (resp. odd) permutations we get a partition of the set of nine exceptional
vectors into the union of three triples of orthogonal exceptional vectors such
that each exceptional vector from one triple has a nonzero intersection with two
exceptional vectors from any other triple.

9.1.2 Lines and tritangent planes
Let ( be a nonsingular cubic surface in P3. Fix a geometric marking q : �1,6 →
Pic((). We can transfer all the notions and the statements from the previous
subsection to the Picard lattice Pic((). The image of an exceptional vector is
the divisor class of a line on (. So, we will identify exceptional vectors with
lines on (. There are 27 lines. A tritangent trio of exceptional vectors defines
a set of three coplanar lines. The plane containing them is called a tritangent
plane. There are 45 tritangent planes.
Thus, we have 72 sixers of lines, 36 double-sixes, and 40 Steiner complexes

of triads of double-sixes. If 40, 41, . . . , 46 define a geometric marking, then we
can identify the divisor classes 48 with the exceptional curves of the blow-up
( → P2 of six points G1, . . . , G6 in general position. They correspond to the
exceptional vectors a8 . We identify the proper transforms of the conic through
the six points excluding the G8 with the exceptional vectorb8 . Finally, we identify
the line through the points G8 and G 9 with the exceptional vector c8 9 . Under the
geometric marking, the Weyl group , (E6) becomes isomorphic to the index
two subgroup of the isometry group of Pic(() leaving the canonical class
invariant (see Corollary 8.2.17). It acts transitively on the set of lines, sixes,
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double-sixes, tritangent planes, and on the set of conjugate pairs of triples of
tritangent planes.
An elementary geometric proof of the fact that any nonsingular cubic surface

contains 27 lines can be found in [610]. The first proof of A. Cayley applies only
to general nonsingular cubic surfaces. For completeness sake, let us reproduce
the original proof of Cayley [104].

Theorem 9.1.13. A general nonsingular cubic surface contains 27 lines and
45 tritangent planes.

Proof First of all, let us show that any cubic surface contains a line. Consider
the incidence variety

- = {((, ℓ) ∈ |OP3 (3) | × � : ℓ ⊂ (}.

The assertion follows if we show that the first projection is surjective. It is
easy to see that the fibers of the second projections are linear subspaces of
codimension 4. Thus, dim - = 4 + 15 = 19 = dim |OP3 (3) |. To show the
surjectivity of the first projection, it is enough to find a cubic surface with only
finitely many lines on it. Let us consider the surface ( given by the equation

C1C2C3 − C30 = 0.

Suppose a line ℓ lies on (. Let [00, 01, 02, 03] ∈ ℓ. If 00 ≠ 0, then 08 ≠ 0, 8 ≠ 0.
On the other hand, every line hits the planes+ (C8). This shows that ℓ is contained
in the plane + (C0). However, there are only three lines on ( contained in this
plane: C8 = C0 = 0, 8 = 1, 2, 3. Therefore ( contains only three lines. This proves
the first assertion.
We already know that every cubic surface ( = + ( 5 ) has at least one line.

Pick up such a line ℓ0. Without loss of generality, we may assume that it is
given by the equation:

C2 = C3 = 0.

Thus
5 = C2@0 (C0, C1, C2, C3) + C3@1 (C0, C1, C2, C3) = 0, (9.10)

where @0 and @1 are quadratic forms. The pencil of planes Π_,` = + (_C2 − `C3)
through the line ℓ0 cuts out a pencil of conics on (. The equation of the conic
in the plane Π_,` is

�00 (_, `)C20 + �11 (_, `)C21 + �22 (_, `)C22+

2�01 (_, `)C0C1 + 2�12 (_, `)C1C2 + 2�02 (_, `)C0C2 = 0,

where �00, �11, �01 are binary forms of degree 1, �02, �12 are binary forms of
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degree 2 and �22 is a binary form of degree 3. The discriminant equation of
this conic is equal to ������

�00 �01 �02
�01 �11 �12
�02 �12 �22

������ = 0.

This is a homogeneous equation of degree five in variables _, `. Thus, we
expect five roots of this equation which gives us five reducible conics. This is
a tricky point because we do not know whether the equation has five distinct
roots. First, we can exhibit a nonsingular cubic surface and a line on it and check
that the equation indeed has five distinct roots. For example, let us consider the
cubic surface

2C0C1C2 + C3 (C20 + C
2
1 + C

2
2 + C

2
3) = 0.

The equation becomes _(_4 − `4) = 0. It has five distinct roots. This implies
that, for general nonsingular cubic surface, we have five reducible residual
conics. Note that no conic is a double line since otherwise, the cubic surface is
singular.
Thus, each solution of the quintic equation defines a tritangent plane Π8 of

( consisting of three lines, one of them is ℓ0. Thus, we found 11 lines on -:
the line ℓ0 and five pairs of lines ℓ8 , ℓ′8 lying in the plane Π8 . Pick up some
plane, say Π1. We have 3 lines ℓ0, ℓ1, ℓ2 in Π1. Replacing ℓ0 by ℓ1, and then by
ℓ2, and repeating the construction, we obtain four planes through ℓ1 and four
planes through ℓ2 not containing ℓ0 and each containing a pair of additional
lines. Altogether we found 3 + 8 + 8 + 8 = 27 lines on (. To see that all lines
are accounted for, we observe that any line intersecting either ℓ0, or ℓ1, or ℓ2
lies in one of the planes we have considered before. So, it has been accounted
for. Now, let ℓ be any line. We find a plane Π through ℓ that contains three lines
ℓ, ℓ′ and ℓ′′ on (. This plane intersects the plane containing ℓ,0 ℓ1, and ℓ′1 along
a line. This line intersects ( at some point on ℓ and on one of the lines ℓ0, ℓ1, ℓ

′
1.

Thus, ℓ intersects one of the lines ℓ0, ℓ1, ℓ
′
1 and has been accounted for.

It remains to count tritangent planes. Each line belongs to five tritangent
planes, and each tritangent plane contains three lines. This easily shows that
there are 45 tritangent planes. �

Remark 9.1.14. Reid’s extension of Cayley’s proof to any nonsingular surface
uses some explicit computations. Instead, we may use that the number of sin-
gular conics in the pencil of conics residual to a line determines the topological
Euler-Poincaré characteristic of the surface. Applying formula (8.26) for the
Euler-Poincaré characteristic 4(() of a fibered surface, we obtain 4(() = 4 + B,
where B is the number of singular conics. Since any two nonsingular surfaces
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are homeomorphic (they are parameterized by an open subset of a projective
space), we obtain that the number B is the same for all nonsingular surfaces.
We know that B = 5 for the example above, hence B = 5 for all nonsingular
surfaces. Also, we obtain j(() = 9, which, of course, agrees with the fact that
( is the blow-up of six points in the plane.
The closure of the effective cone Eff (() of a nonsingular cubic surface is

isomorphic to the Gosset polytope Σ6 = 221. It has 72 facets corresponding
to sixes and 27 faces corresponding to conic bundles on (. In a geometric
basis (40, 41, . . . , 46) they are expressed by the linear systems of types |40 −
41 |, |240 − 41 − 42 − 43 − 44 |, |340 − 241 − 42 − · · · − 46 |. The center of Eff (()
is equal to $ = − 1

3 ( = (41 + · · · + 427)/27, where 41, . . . , 427 are the divisor
classes of lines. A double-six represents two opposite facets whose centers lie
on a line passing through $. In fact, if we consider the double-six (48 , 4′8 =
240 − 41 − · · · − 46 + 48), 8 = 1, . . . , 6, then

1
12
(

6∑
8=1

48) +
1
12

6∑
8=1

4′8 = −
1
3
 ( = $.

The line joining the opposite face is perpendicular to the facets. It is spanned by
the root corresponding to the double-six. The three lines 48 , 4 9 , 4: in a tritangent
plane add up to − ( . This can be interpreted by saying that the center of the
triangle with vertices 48 , 4 9 , 4: is equal to the center$. This easily implies that
the three lines joining the center $ with 48 , 4 9 , 4: are coplanar.
Remark 9.1.15. Let 08 , 18 , 28 9 denote the set of 27 lines on a nonsingular
cubic surface. Consider them as 27 unknowns. Let � be the cubic form in 27
variables equal to the sum of 45 monomials 081 928 9 , 28 92:;2<= corresponding
to tritangent planes. It was shown by E. Cartan that the group of projective
automorphisms of the cubic hypersurface + (�) in P26 is isomorphic to the
simple complex Lie group of type �6. We refer to [498] for integer models of
this cubic.

9.1.3 Schur’s quadrics
There are 36 double-sixes of lines on a nonsingular cubic surface ( corre-
sponding to 36 double-sixes of exceptional vectors in the lattice �1,6. Let
((ℓ1, . . . , ℓ6), (ℓ′1, . . . , ℓ

′
6)) be one of them. Choose a geometric marking q :

�1,6 → Pic(() such that q(e8) = 48 = [ℓ8], 8 = 1, . . . , 6. The linear system |40 |
defines a birational map c1 : ( → 1P

2 = |40 |∨ which blows down the lines ℓ8
to points G1, . . . , G6. The class of the line ℓ′8 is equal to 240 − (41 + · · · + 46) + 48 .
Its image in the plane 1P

2 is the conic �8 passing through all ? 9 except ?8 .
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Let q′ : �1,6 → Pic(() be the geometric marking such that q′(e8) = ℓ′8 . It is
obtained from q by composing q with the reflection B = B"max ∈ $ (�1,6). We
have

4′0 = B(40) = 40 + 2(240 − 41 − · · · − 46) = 540 − 241 − · · · − 246.

The linear system |4′0 | defines a birational map c′ : ( → 2P
2 = |4′0 |

∨ which
blows down the lines ℓ′

8
to points G ′

8
in 2P

2. The Cremona transformation

) = c2 ◦ c−1
1 : 1P

1 d 2P
2

is the symmetric Cremona transformation of degree 5. It is given by the homa-
loidal linear system |I2

G1 ,...,G6
(5) |. The %-locus of ) consists of the union of the

conics �8 . Note that the ordered sets of points (G1, . . . , G6) and (G ′1, . . . , G
′
6) are

not projectively equivalent.
Consider the map

1P
2 × 2P

2 = |40 | × |4′0 | → |40 + 4′0 | = | − 2 ( | � |OP3 (2) | � P9. (9.11)

It is isomorphic to the Segre map s2,2 : P2 × P2 → P8, and its image is a
hyperplane � in the space of quadrics in P3. Let& be the unique quadric in the
dual space of quadrics which is apolar to �.
The following beautiful result belongs to F. Schur [672].

Theorem 9.1.16 (F. Schur). The quadric & is nonsingular. The polar of each
line ℓ8 with respect to the dual quadric &∨ is equal to ℓ′

8
. The quadric &∨ is

uniquely determined by this property.

Proof Let (ℓ1, . . . , ℓ6) and (ℓ′1, . . . , ℓ
′
6) form a double-six. We use the nota-

tions 08 , 1 9 , 28 9 (resp. (08 , 1′9 , 2′8 9 )) for lines defined by the geometric basis
(40, . . . , 46) (resp. (4′0, . . . , 4

′
6)). The divisor class of the sum of six lines

08 , 0 9 , 28 9 and 0′8 , 1
′
:
, 2′
8:

is equal to

48 + 4 9 + (40 − 48 − 4 9 ) + 240 − (41 + · · · + 46 − 4 9 ) + 240 − (41 + · · · + 46 − 4: )+

(40 − 4 9 − 4: ) = 640 − 2(41 + · · · + 46) = −2 ( .

The corresponding quadric &8 9: cuts out six lines distributed into two triples
of coplanar lines 08 , 0′9 , 2 9: and 0 9 , 0′: , 2

′
9:
. Thus, &8 9: consists of the union

of two planes �8 9 and � 9: (note that : here could be equal to 8). This implies
that, considered as points in the dual space, the polar plane (�8 9 )⊥& of �8 9
with respect to & contains � 9: . Let ?8 9 be the point in the original space P3

which corresponds to the hyperplane (�8 9 )⊥& in the dual projective space. Then,
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�8 9 ⊂ (?8 9 )⊥&∨ , or, ?8 9 ∈ (�8 9 )
⊥
&∨ . The inclusion �8 9 ∈ (� 9: )⊥& means that

?8 9 ∈ � 9: . Since �12 ∈ (�01)⊥& for any three indices 0, 1, 2, we get

?8 9 ∈ � 9: ∩ � 98 ∩ �:8 = {0 9 + 0′: + 2 9: } ∩ {0 9 + 0
′
8 + 2 98} ∩ {0: + 0′8 + 2:8}.

The point 0 9 ∩ 0′8 belongs to the intersection. Since no three tritangent planes
intersect along a line, we obtain that ?8 9 = 0 9 ∩0′8 , and, similarly, ? 98 = 08∩0′9 .
Now, we use that ? 98 ∈ (� 98)⊥&∨ and ?8 9 ∈ (�8 9 )

⊥
&∨ . Since 08 ∈ �8 9 , 0

′
8
⊂ � 98 ,

we obtain that the points ?8 9 and ? 98 are orthogonal with respect to &∨.
Similarly, we find that the pairs ?:8 , ?8: and ? 9: , ? 9: are orthogonal. Since 08
contains ? 98 , ?:8 , and 0′8 contains ?8: , ?8 9 , we see that the lines 08 and 0

′
8
are

orthogonal with respect to &∨.

0′
8

0′
9

0′
:

08 0 9 0:

28 9

2 9:

•

•

• •

? 98

?:8

?8 9 ?8:

?: 9

? 9:

•

•

Let us show that& is a nondegenerate quadric. Suppose& is degenerate, then
its set of singular points is a non-empty linear space !0. Thus, for any subspace
! of the dual space of P3, the polar subspace !⊥

&
contains !0. Therefore, all

the points ?8 9 lie in a proper subspace of P3. However, this is impossible since
some of these points lie on a pair of skew lines and span P3. Thus, the dual
quadric &∨ is nonsingular, and the lines ℓ8 , ℓ′8 are orthogonal with respect to
&∨.

Let us prove the uniqueness of &∨. Suppose we have two quadrics &1 and
&2 such that ℓ′

8
= (ℓ8)⊥&8 , 8 = 1, . . . , 6. Let & be a singular quadric in the

pencil spanned by &1 and &2. Let  be its space of singular points. Then,  
is orthogonal to each subspace of P3. Hence, it is contained in ℓ′

8
and ℓ8 . Since

these lines are skew, we get a contradiction.
�

Definition 9.1.17. Let (ℓ1, . . . , ℓ6), (ℓ′1, . . . , ℓ
′
6) be a double-six of lines on a

nonsingular cubic surface (. The unique quadric Q such that (ℓ8)⊥Q = ℓ′
8
is

called the Schur quadric with respect to the double-six.
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Consider the bilinear map corresponding to the pairing (9.11)

�0 ((,O( (40)) × �0 ((,O( (540 − 241 − · · · − 246))

→ �0 ((,O( (−2 ()) = �0 (P3,OP3 (2)).

A choice of an equation of the dual of the Schur quadric defines a linear map
�0 (P3,OP3 (2)) → C. Composing the pairing with this map, we obtain an
isomorphism

�0 ((,O( (540 − 241 − · · · − 246)) � �0 ((,O( (40))∨.

This shows that the Schur quadric allows us to identify the plane 1P
2 and 2P

2 as
the dual to each other. Under this identification, the linear system | − 2 ( − 40 |
defines an involutive Cremona transformation P2 d P2.

Fix six points G1, . . . , G6 ∈ P2 in general positions. The linear system |6ℎ −
2G1 − · · · − 2G6 | is equal to the pre-image of the linear system of quadrics
in P3 = |340 − G1 − · · · − G6 |∨ under the map P2 d P3 given by the linear
system |3ℎ − G1 − · · · − G6 |. The pre-image of the Schur quadric corresponding
to the double-six (41, . . . , 46), (4′1, . . . , 4

′
6) is a curve of degree 6 with double

points at G1, . . . , G6. It is called the Schur sextic associated with six points. Note
that it is defined uniquely by the choice of six points. The proper transform
of the Schur sextic under the blow-up of the points is a nonsingular curve of
arithmetic genus 4. In the anti-canonical embedding, it is the intersection of the
Schur quadric with the cubic surface.

Proposition 9.1.18. The six double points of the Schur sextic are biflexes, i.e.,
the tangent line to each branch is tangent to the branch with multiplicity ≥ 3.

Proof Let Q be the Schur quadric corresponding to the Schur sextic and ℓ8
be the lines on the cubic surface ( corresponding to the points G1, . . . , G6. Let
ℓ8 ∩ Q = {0, 1} and ℓ′8 ∩ Q = {0′, 1′}. We know that

%0 (Q) ∩ Q = {G ∈ & : 0 ∈ TG (Q)}.

Since ℓ′
8
= (ℓ8)⊥Q , we have

ℓ′8 ∩ Q = (%0 (Q) ∩ %1 (Q)) ∩ Q = {0′, 1′}.

This implies that 0′, 1′ ∈ T0 (Q) and hence the lines 〈0, 0′〉, 〈0, 1′〉 spanT0 (Q).
The tangent plane T0 (Q) contains the line ℓ′

8
and hence intersects the cubic

surface ( along ℓ′
8
and some conic  (0). We have

T0 ( (0)) = T0 (() ∩ T0 (Q) = T0 (Q ∩ ().

Thus, the conic  (0) and the curve � = Q ∩ ( are tangent at the point 0. Since
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the line ℓ′
8
is equal to the proper transform of the conic� ′ in P2 passing through

the points G 9 , 9 ≠ 8, the conic  (0) is the proper transform of some line ℓ in
the plane passing through G8 . The point 0 corresponds to the tangent direction
at G8 defined by a branch of the Schur sextic at G8 . The fact that  (0) is tangent
to � at 0 means that the line ℓ is tangent to the branch with multiplicity ≥ 3.
Since the same is true, when we replace 0 with 1, we obtain that G8 is a biflex
of the Schur sextic. �

Remark 9.1.19. Abiflex is locally given by an equation whose Taylor expansion
looks like GH + GH(0G + 1H) + 54 (G, H) + · · · . This shows that one has to impose
five conditions to get a biflex. To get six biflexes for a curve of degree 6 one
has to satisfy 30 linear equations. The space of homogeneous polynomials of
degree 6 in three variables has dimension 28. So, one does not expect that such
sextics exist.
Also observe that the set of quadrics & such that ℓ⊥

&
= ℓ′ for a fixed pair

of skew lines (ℓ, ℓ′) is a linear (projective) subspace of codimension 4 of the
9-dimensional space of quadrics. So, the existence of the Schur quadric is
unexpected!

I do not know whether, for a given set of six points on P2 defining a non-
singular cubic surface, there exists a unique sextic with biflexes at these points.
We refer to [238], where the Schur sextic is realized as the curve of jumping
lines of the second kind of a rank 2 vector bundle on P2.
Example 9.1.20. Let ( be the Clebsch diagonal surface given by two equations
in P4:

5∑
8=1

C8 =

5∑
8=1

C38 = 0. (9.12)

It exhibits an obvious symmetry defined by permutations of the coordinates.
Let 0 = 1

2 (1 +
√

5), 0′ = 1
2 (1−

√
5) be two roots of the equation G2 − G − 1 = 0.

One checks that the skew lines

ℓ : C1 + C3 + 0C2 = 0C3 + C2 + C4 = 0C2 + 0C3 − C5 = 0

and

ℓ′ : C1 + C2 + 0′C4 = C3 + 0′C1 + C4 = 0′C1 + 0′C4 − C5 = 0

lie on (. Applying to each line even permutations we obtain a double-six. The
Schur quadric is

∑
C2
8
=

∑
C8 = 0.

Let c1 : ( → 1P
2, c2 : ( → 2P

2 be two birational maps defined by blowing
down two sixes forming a double-six. We will see later in Subsection 9.3.2 that
there exists a 3×3-matrix � = (08 9 ) of linear forms such that ( = + (det �). The
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map c1 (resp. c2) is given by the left (resp. right) kernel of �. In coordinates,
it is given by a row (resp. column) of adj(�). The composition of the map
(c1, c2) : ( → 1P

2 × 2P
2 with the Segre map 1P

2 × 2P
2 → P8 is given by

G ↦→ [adj(�) (G)]. We immediately identify this map with the map (9.11).
Thus, the entries of adj(�) define the quadrics in the image of this map. They
are apolar to the dual of the Schur quadrics.
Let G = [I0, . . . , I3] be any point in P3. The polar quadric of ( with center

at G is given by the equation�������011 �012 �013
021 022 023
031 032 033

������ +
������ 011 012 013
�021 �022 �023
031 032 033

������ +
������ 011 012 013
021 022 023
�031 �032 �033

������ = 0,

where � is the linear differential operator
∑
I8

m
mC8

. It is clear that the left-hand
side this equation is a linear combination of the entries of adj(�). Thus, all
polar quadrics of ( are apolar to the duals of all 36 Schur quadrics. This proves
the following.

Proposition 9.1.21. The duals of the 36 Schur quadrics belong to the 5-
dimensional projective space of quadrics apolar to the 3-dimensional linear
system of polar quadrics of (.

This result was first mentioned by H. Baker in [28], its proof appears in his
book [29], Vol. 3, p. 187. In the notation of Theorem 9.1.3, let &U is the Schur
quadric corresponding to the double-six defined by the root U (see Theorem
9.1.3). Any three of type &Umax , &U123 , &U456 are linearly dependent. Among
&U8 9 ’s at most five are linearly independent ([631]).

Remark 9.1.22. We refer to [238] for the relationship between Schur quadrics
and rank 2 vector bundles on P2 with odd first Chern class. The case of cubic
surfaces corresponds to vector bundles with 21 = −1 and 22 = 4. For higher =
values the Schur quadrics define some polarity relation for a configuration of(=+1

2
)
lines and (=− 2)-dimensional subspaces in P= defined by aWhite surface

- , the blow-up of a set / of
(=+1

2
)
points in the plane which do not lie on a

curve of degree =−1 and no = points among them are collinear [805]. The case
= = 3 corresponds to cubic surfaces and the case = = 4 to Bordiga surfaces. The
linear system |I/ (=) | embeds - in P=. The images of the exceptional curves
are lines, and the images of the curves through all points in / except one (for
each point, there is a unique such curve) spans a subspace of dimension = − 3.
The configuration generalizes a double-six on a cubic surface. The difference
here is that, in the case = > 3, the polarity of the configuration exists only for a
non-general White surface.
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9.1.4 Eckardt points
A point of intersection of three lines in a tritangent plane is called an Eckardt
point. As we will see later, the locus of nonsingular cubic surfaces with an
Eckardt point is of codimension one in the moduli space of cubic surfaces.
Recall that the fixed locus of an automorphism g of order 2 of P= is equal

to the union of two subspaces of dimensions : and = − : − 1. The number :
determines the conjugacy class of g in the group Aut(P=) � PGL(= + 1). In
the terminology of classical projective geometry, a projective automorphism
with a hyperplane of fixed points is called a homology. A homology of order 2
was called a harmonic homology. The isolated fixed point is the center of the
homology.

Proposition 9.1.23. There is a bĳective correspondence between the set of
Eckardt points on a nonsingular cubic surface ( and the set of harmonic
homologies in P3 with center in (.

Proof Let G = ℓ1 ∩ ℓ2 ∩ ℓ3 ∈ ( be an Eckardt point. Choose coordinates such
that G = [1, 0, 0, 0] and the equation of the tritangent plane is C1 = 0. The
equation of ( is

C20C1 + 2C062 + 63 = 0, (9.13)

where 62, 63 are homogeneous forms in C1, C2, C3. The polar quadric %G (()
contains the three coplanar lines ℓ8 passing through one point. This implies
that %G (() is the union of two planes; one of them is + (C1). Since the equation
of %G (() is C0C1 + 62 = 0, we obtain that 62 = C161 (C1, C2, C3). Making one
more coordinate change C0 → C0 + 61, we reduce the equation to the form
C20C1 + 6

′
3 (C1, C2, C3). The intersection + (C0) ∩ ( is isomorphic to the cubic curve

+ (63). Now, we define the homology

g : [C0, C1, C2, C3] ↦→ [−C0, C1, C2, C3] . (9.14)

Obviously, it leaves ( invariant and has G as its isolated fixed point. The other
component of the fixed locus is the cubic curve + (C0) ∩+ (().
Conversely, assume ( admits a projective automorphism g of order 2 with

one isolated fixed point ? on (. Choose projective coordinates such that g is
given by formula (9.14). Then, ( can be given by Equation (9.13). The surface
is invariant with respect to g if and only if 62 = 0. The plane + (C0) is the
tritangent plane with Eckardt point [1, 0, 0, 0]. �

It is clear that the automorphism g is defined by the projection from the
Eckardt point G. It extends to a biregular automorphism of the blow-up c :
(′ → ( of the point G which fixes pointwisely the exceptional curve � of c.
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The surface (′ is a weak del Pezzo surface of degree 2. It has three disjoint
(−2)-curves '8 equal to the proper transforms of the lines ℓ8 containing G. The
projection map (′→ P2 is equal to the composition of the birational morphism
(′→ - which blows down the curves '8 and a finite map of degree 2 - → P2.
The surface - is an anti-canonical model of (′ with three singular points of
type �1. The branch curve of - → P2 is the union of a line and a nonsingular
cubic intersecting the line transversally. The line is the image of the exceptional
curve � .

Example 9.1.24. Consider a cyclic cubic surface ( given by equation

53 (C0, C1, C2) + C33 = 0,

where � = + ( 53) is a nonsingular plane cubic in the plane with coordinates
C0, C1, C2. Let ℓ be an inflection tangent of �. We can choose coordinates such
that ℓ = + (C1) and the tangency point is [1, 0, 0]. The equation of ( becomes

C20C1 + C0C161 (C1, C2) + C162 (C1, C2) + C32 + C
3
3 = 0.

The pre-image of the line ℓ under the projection map [C0, C1, C2, C3] ↦→ [C0, C1, C2]
splits into the union of three lines with equation C1 = C32 + C

3
3 = 0. The point

[1, 0, 0, 0] is an Eckardt point. The surface contains nine Eckardt points because
there are nine inflection points on a nonsingular plane cubic. Note that the
corresponding nine tritangent planes contain all 27 lines.

Example 9.1.25. Consider a cubic surface given by equations
4∑
8=0

08C
3
8 =

4∑
8=0

C8 = 0,

where 08 ≠ 0.Wewill see later that a general cubic surface is projectively equiv-
alent to such a surface. Assume 00 = 01. Then, the point ? = [1,−1, 0, 0, 0] is
an Eckardt point. In fact, the tangent plane at this point is C0+C1 = C2+C3+C4 = 0.
It cuts out the surface along the union of three lines intersecting at the point ?.
Similarly, we have an Eckardt point whenever 08 = 0 9 for some 8 ≠ 9 . Thus, we
may have 1, 2, 3, 4, 6, or 10 Eckardt points dependent on whether we have just
two equal coefficients, or two pairs of equal coefficients, or three equal coeffi-
cients, or a pair and a triple of equal coefficients, or four equal coefficients, or
five equal coefficients. The other possibilities for the number of Eckardt points
are nine, as in the previous example, or 18 when the surface is isomorphic to a
Fermat cubic surface. We will prove later that no other case occurs.

Let us prove the following proposition, which we will use later.

Proposition 9.1.26. Let G and H be two Eckardt points on ( such that the line
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ℓ = 〈G, H〉 is not contained in (. Then, ℓ intersects ( in a third Eckardt point.
Moreover, no three Eckardt points lie on a line contained in the surface.

Proof Let g be the harmonic homology involution of ( defined by the Eckardt
point G. Then, ℓ intersects ( at the point I = g(H). The points H and I are on the
line 〈G, H〉. If ℓ is not contained in (, then it is not contained in the polar quadric
%G ((), and hence does not intersect the 1-dimensional component � of the
fixed locus of g. This shows that H ≠ I. On the other hand, if ℓ is contained in (,
then it is one of the three lines in the tritangent plane containing G. Suppose that
we have twomore Eckardt points on ℓ. Then, the plane that cuts out � intersects
the corresponding tritangent planes of the two new Eckardt points. This implies
that ℓ contains three fixed points of the involution g, a contradiction. �

Proposition 9.1.27. Let G1, G2, G3 be three collinear Eckardt points. Then, the
involutions g8 corresponding to these points generate a subgroup of automor-
phisms isomorphic to S3. If two Eckardt points G1, G2 lie on a line ℓ ⊂ (, then
the involutions commute, and the product fixes the line and the other line which
contains the tangency points of three tritangent planes through ℓ.

Proof Suppose three Eckardt points lie on a line ℓ. Obviously, each g8 leaves
the line ℓ = 〈G1, G2〉 invariant. Thus, the subgroup � generated by the three
involutions leaves the line invariant and permutes the three Eckardt points. This
defines a homomorphism � → S3 which is obviously surjective. Let 6 be a
nontrivial element from the kernel. Then, it leaves three points fixed, and hence
leaves all points on the line fixed. Without loss of generality, we may assume
that 6 = g1g2 or 6 = g1g2g3. Since g1 and g2, and g1g2, g3 act differently on ℓ,
we get 6 = 1.
Now, suppose that two Eckardt points lie on a line ℓ contained in the surface.

Obviously, g8 fixes both points G1 and G2. Since a finite automorphism group
of P1 fixing two points is cyclic, the product g = g1g2 is of order 2; it fixes ℓ
pointwise, and also fixes the line ℓ′ equal to intersection of the planes of fixed
points of g1, g2. This line intersects each tritangent plane through ℓ at some
point. Hence, each such plane is invariant with respect to g, and the tangency
points of the remaining three tritangent planes lie on ℓ′. �

Let us project ( from a point G ∈ ( that is not an Eckardt point. Suppose
G does not lie on any line in (. Then, the blow-up (′ of ( at G is a del Pezzo
surface of degree 2. The projection map lifts to a finite double cover of P2

branched along a nonsingular quartic curve �. The 27 lines, together with the
exceptional curve � of the blow-up, map to the 28 bitangents of �. The image
of a sixer of lines and the curve � is an Aronhold set of seven bitangents. This
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relationship between 27 lines on a cubic surface and 28 bitangents of a plane
quartic was first discovered by C. Geiser [323] in 1860.
If G lies on one line, (′ is a weak del Pezzo surface of degree 2 with one
(−2)-curve '. The projection map lifts to a degree map (′→ P2 which factors
through the blowing down map ( → - of ' and a finite map of degree 2
- → P2 branched over a 1-nodal quartic curve. If G lies on two lines, then we
have a degree 2 map (′→ - → P2, where - has two �1-singularities, and the
branch curve of - → P2 is a 2-nodal quartic.

9.2 Singularities of Cubic Surfaces

9.2.1 Non-normal cubic surfaces
Let - be an irreducible cubic surface in P3. Assume that - is not normal and
is not a cone over a singular cubic curve. Then, its singular locus contains
a one-dimensional part � of some degree 3. Let < be the multiplicity of a
general point of �. By Bertini’s Theorem, a general plane section � of - is an
irreducible plane cubic that contains 3 singular points of multiplicity <. Since
an irreducible plane cubic curve has only one singular point of multiplicity 2,
we obtain that the singular locus of - is a line.
Let us choose coordinates in such a way that � is given by the equations

C0 = C1 = 0. Then, the equation of - must look like

;0C
2
0 + ;1C0C1 + ;2C

2
1 = 0,

where ;8 , 8 = 0, 1, 2, are linear forms in C0, C1, C2. This shows that the left-hand
side contains C2 and C3 only in degree 1. Thus, we can rewrite the equation in
the form

C2 5 + C36 + ℎ = 0, (9.15)

where 5 , 6, ℎ are binary forms in C0, C1, the first two of degree 2, and the third
one of degree 3.
Suppose 5 , 6 are proportional. Then, the equation can be rewritten in the form
(0C1 + 1C2) 5 + ℎ = 0, which shows that - is a cone. A pair of non-proportional
binary quadratic forms 5 , 6 can be reduced to the form C20 + C

2
1 , 0C

2
0 + 1C

2
1 , or

C0C1, 0C
2
0 + C0C1 (corresponding to the Segre symbol (2)). After making a linear

change of variables C2, C3, we arrive at two possible equations

C2C
2
0 + C3C

2
1 + (0C0 + 1C1)C

2
0 + (2C0 + 3C1)C1 = 0,

C2C0C1 + C3C20 + (0C0 + 1C1)C
2
0 + (2C0 + 3C1)C1 = 0.
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Replacing C2 with C ′2 = C2 + 0C0 + 1C1 and C3 with C ′3 = C3 + 2C0 + 3C1, we obtain
two canonical forms of non-normal cubic surfaces that are not cones.
The plane sections through the singular line of the surface define a structure

of a scroll on the surface.

Theorem 9.2.1. Let - be an irreducible non-normal cubic surface. Then,
either - is a cone over an irreducible singular plane cubic, or it is projectively
equivalent to one of the following cubic surfaces singular along a line:

(i) C20C2 + C
2
1C3 = 0;

(ii) C2C0C1 + C3C20 + C
3
1 = 0.

The two surfaces are not projectively isomorphic.

The last assertion follows fromconsidering the normalization -̄ of the surface
- . In both cases it is a nonsingular surface, however in (i), the pre-image of the
singular line is irreducible, but in the second case it is reducible.
We have already seen two cubic scrolls in P3 in Subsection 2.1.1. They are

obtained as projections of the cubic scroll (1,4 in P4 isomorphic to the rational
minimal ruled surface F1 (a del Pezzo surface of degree 8). There are two
possible centers of the projection: the center lies in the plane spanned by the
image of the exceptional (−1)-curve and a line from the ruling, or it lies outside
of this plane. Case (1) corresponds to the second possibility, and case (ii) to the
first one.

9.2.2 Lines and singularities

From now on, we assume that ( is a normal cubic surface that is not a cone.
Thus, its singularities are rational double points, and ( is a del Pezzo surface
of degree 3.
Let - be a minimal resolution of singularities of (. All possible Dynkin
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curves on - can be easily found from the list of root bases in E6.

(A = 6) �6, �6, �4 + �2,

B∑
:=1

�8: , 81 + · · · + 8B = 6,

(A = 5) �5, �4 + �1,

B∑
:=1

�8: , 81 + · · · + 8B = 5,

(A = 4) �4,

B∑
:=1

�8: , 81 + · · · + 8B = 4,

(A = 3) �3, �2 + �1, 3�1,

(A = 2) �2, �1 + �1,

(A = 1) �1.

The following Lemma is easily verified, and we omit its proof.

Lemma 9.2.2. Let G0 = (1, 0, 0, 0) be a singular point of ( = + ( 53). Write

53 = C062 (C1, C2, C3) + 63 (C1, C2, C3),

where 62, 63 are homogeneous polynomials of degrees 2 and 3, respectively.
Let G = [00, 01, 02, 03] ∈ (. If the line 〈G0, G〉 is contained in (, then the point
@ = [01, 02, 03] is a common point of the conic + (62) and the cubic + (63). If,
moreover, G is a singular point of (, then the conic and the cubic intersect at @
with multiplicity > 1.

Corollary 9.2.3. + ( 53) has at most four singular points. Moreover, if + ( 53)
has four singular points, then each point is of type �1.

Proof Let G0 be a singular point which we may assume to be the point
[1, 0, 0, 0] and apply Lemma 9.2.2. Suppose we have more than 4 singular
points. The conic and the cubic will intersect at least in four singular points with
multiplicity > 1. Since they do not share an irreducible component (otherwise
53 is reducible), this contradicts Bézout’s Theorem. Suppose we have four
singular points and G0 is not of type �1. Since G0 is not an ordinary double
point, the conic + (62) is reducible. Then, the cubic + (63) intersects it at three
points with multiplicity > 1 at each point. It is easy to see that this also
contradicts Bézout’s Theorem. �

Lemma 9.2.4. The cases, �81 + · · · + �8: , 81 + · · · + 8: = 6, except the cases
3�2, �5 + �1 do not occur.

Proof Assume " = �81 + · · · + �8: , 81 + · · · + 8: = 6. Then, the discriminant
3" of the lattice " is equal to (81 + 1) · · · (8: + 1). By Lemma 8.2.1, 3|3" ,
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one of the numbers, say 81 + 1, is equal either to 3 or 6. If 81 + 1 = 6, then
" = �5 + �1. If 81 + 1 = 3, then (82 + 1) . . . (8: + 1) must be a square, and
82 + · · · + 8: = 4. It is easy to see that the only possibilities are 82 = 83 = 2 and
82 = 83 = 84 = 85 = 1. The last possibility is excluded by applying Corollary
9.2.3. �

Lemma 9.2.5. The cases �4 + �1 and �4 + �2 do not occur.

Proof Let G0 be a singular point of ( of type �4. Again, we assume that G0 =

[1, 0, 0, 0] and apply Lemma 9.2.2. As we have already noted, the singularity of
type�4 is analytically (or formally) isomorphic to the singularity I2+GH(G+H) =
0. This shows that the conic+ (62) is a double line ℓ. The plane I = 0 cuts out a
germ of a curve with 3 different branches. Thus, there exists a plane section of
( = + ( 53) passing through G0 which is a plane cubic with 3 different branches
at G0. Obviously, it must be the union of 3 lines with a common point at G0.
Now, the cubic+ (63) intersects the line ℓ at 3 points corresponding to the lines
through G0. Thus, ( cannot have more singular points. �

Let us show that all remaining cases are realized. We will exhibit the corre-
sponding del Pezzo surface as the blow-up of six bubble points ?1, . . . , ?6 in
P2.
�1: 6 proper points in P2 on an irreducible conic;
�2: ?3 �1 ?1;
2�1: ?2 �1 ?1, ?4 �1 ?3;
�3: ?4 �1 ?3 �1 ?2 �1 ?1;
�2 + �1: ?3 �1 ?2 �1 ?1, ?5 �1 ?4;
�4: ?5 �1 ?4 �1 ?3 �1 ?2 �1 ?1;
3�1: ?2 �1 ?1, ?4 �1 ?3, ?6 �1 ?5;
2�2: ?3 �1 ?2 �1 ?1, ?6 �1 ?5 �1 ?4;
�3 + �1: ?4 �1 ?3 �1 ?2 �1 ?1, ?6 �1 ?5;
�5: ?6 �1 ?5 �1 ?4 �1 ?3 �1 ?2 �1 ?1;
�4: ?2 �1 ?1, ?4 �1 ?3, ?6 �1 ?5 and ?1, ?3, ?5 are collinear;
�2 + 2�1: ?3 �1 ?2 �1 ?1, ?5 �1 ?4, and |ℎ − ?1 − ?2 − ?3 | ≠ ∅;
�4 + �1: ?5 �1 ?4 �1 ?3 �1 ?2 �1 ?1 and |2ℎ − ?1 − · · · − ?6 | ≠ ∅;
�5: ?5 �1 ?4 �1 ?3 �1 ?2 �1 ?1 and |ℎ − ?1 − ?2 − ?6 | ≠ ∅;
4�1: ?1, . . . , ?6 are the intersection points of 4 lines in a general linear position;
2�2 + �1: ?3 �1 ?2 �1 ?1, ?6 �1 ?5 �1 ?4 and |ℎ − ?1 − ?2 − ?3 | ≠ ∅;
�3 + 2�1: ?4 �1 ?3 �1 ?2 �1 ?1, ?6 �1 ?5 and |ℎ − ?1 − ?2 − ?3 | ≠ ∅;
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�5 + �1: ?6 �1 ?5 �1 ?4 �1 ?3 �1 ?2 �1 ?1 and |2ℎ − ?1 − · · · − ?6 | ≠ ∅;
�6: ?6 �1 ?5 �1 ?4 �1 ?3 �1 ?2 �1 ?1 and |ℎ − ?1 − ?2 − ?3 | ≠ ∅;
3�2: ?3 �1 ?2 �1 ?1, ?6 �1 ?5 �1 ?4, |ℎ−?1−?2−?3 | ≠ ∅, |ℎ−?4−?5−?6 | ≠
∅;
Projecting from a singular point and applying Lemma 9.2.2 we see that each

singular cubic surface can be given by the following equations.
�1:+ (C062 (C1, C2, C3) + 63 (C1, C2, C3)), where+ (62) is a nonsingular conic which
intersects + (63) transversally;
�2: + (C0C1C2 + 63 (C1, C2, C3)),where + (C1C2) intersects + (63) transversally;
2�1:+ (C062 (C1, C2, C3)+63 (C1, C2, C3)), where+ (62) is a nonsingular conic which
is simply tangent to + (63) at one point;
�3:+ (C0C1C2+63 (C1, C2, C3)), where+ (C1C2) intersects+ (63) at the point [0, 0, 1]
and at other 4 distinct points;
�2 + �1: + (C0C1C2 + 63 (C1, C2, C3)), where + (63) is tangent to + (C2) at [1, 0, 0];
�4: + (C0C1C2 + 63 (C1, C2, C3)), where + (63) is tangent to + (C1) at [0, 0, 1];
3�1:+ (C062 (C1, C2, C3)+63 (C1, C2, C3)),where+ (62) is nonsingular and is tangent
to + (63) at 2 points;
2�2: + (C0C1C2 + 63 (C1, C2, C3)), where + (C1) intersects + (63) transversally and
+ (C2) is an inflection tangent to + (63) at [1, 0, 0];
�3 + �1: + (C0C1C2 + 63 (C1, C2, C3)), where + (63) passes through [0, 0, 1] and
+ (C1) is tangent to + (63) at the point [1, 0, 0];
�5: + (C0C1C2 + 63 (C1, C2, C3)), where + (C1) is an inflection tangent of + (63) at
the point [0, 0, 1];
�4: + (C0C21 + 63 (C1, C2, C3)), where + (C1) intersects transversally + (63);
�2 +2�1:+ (C0C1C2 +63 (C1, C2, C3)), where+ (63) is tangent+ (C1C2) at two points
not equal to [0, 0, 1];
�4 + �1: + (C0C1C2 + 63 (C1, C2, C3)), where + (63) is tangent to + (C1) at [0, 0, 1]
and is tangent to + (C2) at [1, 0, 0];
�5: + (C0C21 + 63 (C1, C2, C3)), where + (C1) is tangent to + (63) at [0, 0, 1];
4�1:+ (C062 (C1, C2, C3)+63 (C1, C2, C3)),where+ (62) is nonsingular and is tangent
to + (63) at 3 points;
2�2 + �1: + (C062 (C1, C2, C3) + 63 (C1, C2, C3)), where + (62) is tangent to + (63) at
2 points [1, 0, 0] with multiplicity 3;
�3 + 2�1: + (C0C1C2 + 63 (C1, C2, C3)), where + (63) passes through [0, 0, 1] and is
tangent to + (C1) and to + (C2) at one point not equal to [0, 0, 1];
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�5 + �1: + (C0C1C2 + 63 (C1, C2, C3)), where + (C1) is an inflection tangent of + (63)
at the point [0, 0, 1] and + (C2) is tangent to + (63);
�6: + (C0C21 + 63 (C1, C2, C3)), where + (C1) is an inflection tangent of + (63).
3�2:+ (C0C1C2+63 (C1, C2, C3)), where+ (C1), + (C2) are inflection tangents of+ (63)
at points different from [0, 0, 1].
Remark 9.2.6. Applying a linear change of variables, one can simplify the
equations. For example, in type --� (see Table 9.1), we may assume that
the inflection points are [1, 0, 0] and [0, 1, 0]. Then, 63 = C

3
3 + C1C2! (C1, C2, C3).

Replacing C0 with C ′0 = C0 + ! (C1, C2, C3), we reduce the equation to the form

C0C1C2 + C33 = 0. (9.16)

Another example is the �6-singularity (type XX). We may assume that the
inflection point is [0, 0, 1]. Then, 63 = C

3
2 + C162 (C1, C2, C3). The coefficient at C23

is not equal to zero, otherwise the equation is reducible. After a linear change
of variables we may assume that 62 = C

2
3 + 0C

2
1 + 1C1C2 + 2C

2
2 . Replacing C0 with

C0 + 0C1 + 1C2, we may assume that 0 = 1 = 0. After scaling the unknowns, we
get the equation of the surface

C0C
2
1 + C1C

2
2 + C1C

2
3 + C

3
2 = 0. (9.17)

Table 9.1 below gives the classification of possible singularities of a cubic
surface, the number of lines and the class of the surface.

Type Singularity Lines Class Type Singularity Lines Class

I ∅ 27 12 XII �4 6 6

II �1 21 10 XIII �2 + 2�1 8 5

III �2 15 9 XIV �4 + �1 4 5

IV 2�1 16 8 XV �5 3 5

V �3 10 8 XVI 4�1 9 4

VI �2 + �1 11 7 XVII 2�2 + �1 5 4

VII �4 6 7 XVIII �3 + 2�1 5 4

VIII 3�1 12 6 XIX �5 + �1 2 4

IX 2�2 7 6 XX �6 1 4

X �3 + �1 7 6 XXI 3�2 3 3

XI �5 3 6

Table 9.1 Singularities of cubic surfaces

Note that the number of lines can be checked directly by using the equations.
The map from P2 to ( is given by the linear system of cubics generated by
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+ (63), + (C162), + (C262), + (C362). The lines are images of lines or conics that
intersect a general member of the linear system with multiplicity 1 outside
base points. The class of the surface can be computed by applying the Plücker-
Teissier formula from Theorem 1.2.7. We use that the Milnor number of an
�=, �=, �= singularity is equal to =, and the Milnor number of the singularity
of a general plane section through the singular point is equal to 1 if type is �=
and 2 otherwise.

Example 9.2.7. The cubic surface with three singular points of type �2 given
by Equation (9.16) plays an important role in the Geometric Invariant Theory
of cubic surfaces. It represents the unique isomorphism class of a strictly
semistable point in the action of the group SL(4) in the space of cubic surfaces.
Table 9.1 shows that it is the only normal cubic surface whose dual surface is
also a cubic surface. By the Reciprocity Theorem - � (-∨)∨, the dual surface
cannot be a cone or a scroll. Thus, the surface of type XXI is the only self-dual
cubic surface.
Another interesting special case is the surface with four �1-singularities. In

notation above, let us choose coordinates such that the three tangency points
of the conic + (62) and the cubic + (63) are [1, 0, 0], [0, 1, 0], [0, 0, 1]. After
scaling the coordinates, we may assume that 62 = C1C2 + C1C3 + C2C3. An example
of a cubic tangent to the conic at the three points is the union of three tangent
lines

ℎ = (C1 + C2) (C1 + C3) (C2 + C3) = 62 (C1 + C2 + C3) − C1C2C3.

Any other cubic can be given by equation ;62 + ℎ = 0, where ; is a linear form.
Replacing C0 with C ′0 = −(C0 + ; + C1 + C2 + C3), we reduce the equation to the
form

C0 (C1C2 + C1C3 + C2C3) + C1C2C3 = C0C1C2C3
( 1
C0
+ 1
C1
+ 1
C2
+ 1
C3

)
= 0. (9.18)

A cubic surface with four nodes is called the Cayley cubic surface. As we see,
all Cayley cubics are projectively equivalent. They admit S4 as its group of
automorphisms.
Let us find the dual surface of a Cayley surface. Table 9.1 shows that it

must be a quartic surface. The equation of a tangent plane at a general point
[0, 1, 2, 3] is

C0

02 +
C1

12 +
C2

22 +
C3

32 = 0.

Thus, the dual surface is the image of ( under the map

[C0, C1, C2, C3] ↦→ [b0, b1, b2, b3] = [1/C20 , 1/C
2
1 , 1/C

2
2 , 1/C

2
3] .
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Write C8 = 1/
√
b8 and plug in Equation (9.18). We obtain the equation

(
√
b0b1b2b3)−2 (

√
b0 +

√
b1 +

√
b2 +

√
b3) = 0.

This shows that the equation of the dual quartic surface is obtained from the
equation √

b0 +
√
b1 +

√
b2 +

√
b3 = 0

by getting rid of the irrationalities. We get the equation

(
3∑
8=0

b2
8 − 2

∑
0≤8< 9≤3

b8b 9 )2 − 64b0b1b2b3 = 0.

The surface has three singular lines b8 + b: = b; + b< = 0. They meet at one
point [1, 1, 1, 1]. The only quartic surface with this property is a Steiner quartic
surface from Subsection 2.1.1. Thus, the dual of the Cayley cubic surface is a
Steiner quartic surface.

9.3 Determinantal Equations of Cubic Surfaces

9.3.1 Cayley-Salmon equation
Let (′ be a minimal resolution of singularities of a del Pezzo cubic surface (.
Choose a geometric marking q : �1,6 → Pic((′) and consider the image of one
of 120 conjugate pairs of triples of tritangent trios from (9.9). Write them as a
table:

411 412 413
421 422 423
431 432 433

. (9.19)

Suppose the divisor classes 48 9 are the classes of (−1)-curves on (′. Then, their
images in ( are lines ℓ8 9 . The lines defined by the 8-th row (the 9-th column) lie
in a plane Λ8 (Λ′9 ), a tritangent plane of (. The union of the planes Λ8 contains
all nine lines ℓ8 9 . The same is true for the planesΛ′

9
. The pencil of cubic surfaces

spanned by the cubics Λ1 + Λ2 + Λ3 and Λ′1 + Λ
′
2 + Λ

′
3 must contain the cubic

(. This shows that we can choose the equations ;8 = 0 of Λ8 and the equations
< 9 = 0 of Λ′

9
such that ( can be given by equation

;1;2;3 + <1<2<3 = det
©«
;1 <1 0
0 ;2 <2
−<3 0 ;3

ª®®¬ = 0. (9.20)
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The equation of a cubic surface of the form (9.20), where the nine lines defined
by the equations ;8 = < 9 = 0 are all different, is calledCayley-Salmon equation.
Note that the lines ℓ88 are skew (otherwise we have four lines in one plane). We
say that two Cayley-Salmon equations are equivalent if they define the same
unordered sets of three planes + (;8) and + (< 9 ).

Suppose a cubic surface can be given by a Cayley-Salmon equation. Each
plane + (;8) contains three different lines ℓ8 9 = + (;8) ∩ + (< 9 ), 9 = 1, 2, 3, and
hence, it is a tritangent plane. After reindexing, we may assume that the lines
ℓ88 are skew lines. Let 48 9 be the divisor classes of the pre-images of the lines
in (′. They form the image of a conjugate pair of tritangent trios under ome
geometric marking of (′.

Theorem9.3.1. Let ( be a normal cubic surface. The number of the equivalence
classes of Cayley-Salmon equations for ( is equal to 120 (type I), 10 (type II),
1 (type III, IV, VIII), and zero otherwise.

Proof We know that the number of conjugate pairs of triads of tritangent trios
of exceptional vectors is equal to 120. Thus, the number of conjugate triads of
triples of tritangent planes on a nonsingular cubic surface is equal to 120.
Suppose ( has one node. We take a blow-up model of (′ as the blow-up of

six proper points on an irreducible conic. We have ten tables of type II in (9.9)
which give us ten pairs of conjugate triples of tritangent planes.
Suppose ( has three nodes. We take the blow-up model corresponding to a

bubble cycle G1 + · · · + G6 with G4 � G1, G5 � G2, G6 � G3. The set of lines ℓ8 9
are represented by the divisor classes of

40 − 41 − 44, 40 − 42 − 45, 40 − 43 − 46, 4: , 240 − 41 − · · · − 46 + 4: , : = 4, 5, 6.

It is easy to see that this is the only possibility.
We leave it to the reader to check the assertion in the remaining cases. �

Suppose a normal cubic surface ( contains three skew lines ℓ1, ℓ2, ℓ3. Con-
sider the pencil of planes P8 through the line ℓ8 . For any general point G ∈ P3

one can choose a unique plane Π8 ∈ P8 containing the point G. This defines a
rational map

5 : P3 d P1 × P2 × P3. (9.21)

Suppose the intersection of the planes Π8 contains a line ℓ. Then, ℓ intersects
ℓ1, ℓ2, ℓ3, and hence either belongs to ( or does not intersect ( at a point outside
the three lines. This shows that the restriction of the map 5 to ( is a birational
map onto its image - .
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The composition of map (9.21) with the Segre map defines a rational map

5 : P3 d S ⊂ P7,

whereS is isomorphic to the Segre variety s(P1×P1×P1). Since the pencils P8
generate the complete linear system |+ | of cubic surfaces containing the lines
ℓ8 , the map 5 is given by |+ |. Since our cubic ( is a member of |+ |, it is equal to
the pre-image of a hyperplane section � of - . The Segre variety S is of degree
6, so � is isomorphic to a surface (6 of degree 6 in P6 and the restriction of
5 to ( is a birational map onto (6. The hyperplane section � is defined by a
divisor of tridegree (1, 1, 1) on the Segre variety. This gives the following.

Theorem 9.3.2 (F. August). Any cubic surface containing three skew lines
ℓ1, ℓ2, ℓ3 can be generated by three pencils P8 of planes with base locus ℓ8
in the following sense. There exists a correspondence ' of degree (1, 1, 1) on
P1 × P2 × P3 such that

( = {G ∈ P3 : G ∈ Π1 ∩ Π2 ∩ Π3 for some (Π1,Π2,Π3) ∈ '}.

Note that a del Pezzo surface (6 of degree 6 containing in the Segre variety
s(P1×P1×P1) has three different pencils of conics. So, it is either nonsingular,
or has one node. In the first case, it is a toric surface which can be given by the
equation

D0{0|0 + D1{1|1 = 0,

where (D0, D1), ({0, {1), (|0, |1) are projective coordinates in each factor of
(P1)3. The equation can be considered as a linear equations in the space P7 with
coordinates D8{ 9|: . If (6 is singular, it is not a toric surface. The corresponding
weak del Pezzo surface is the blow-up of three collinear points. It contains only
three lines.
Suppose (6 is a nonsingular surface. Then, we can identify the coordinates
(D0, D1) with the coordinates in the pencilP1 of planes through ℓ1 and, similarly,
for the other two pairs of coordinates. Thus, the cubic surface is equal to the
set of solutions of the system of linear equations

D0;1 (C0, C1, C2, C3) = D1<1 (C0, C1, C2, C3),
{0;2 (C0, C1, C2, C3) = {1<2 (C0, C1, C2, C3),
|0;3 (C0, C1, C2, C3) = |1<3 (C0, C1, C2, C3),

where ;8 , <8 are linear forms and D0{0|0 + D1{1|1 = 0. This immediately
gives Cayley-Salmon equation of (. Conversely, the choice of Cayley-Salmon
equation gives August’s projective generation of (.
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Remark 9.3.3. The rational map 5 : P3 d S ⊂ P7 is a birational map. To see
this, we take a general line ℓ4 in P3. The image of this line is a rational curve
of degree 3 in - . The composition of 5 and the projection P7 d P3 from the
subspace spanned by 5 (ℓ4) is a rational map ) : P3 d P3. It is given by the
linear system of cubics passing through the lines ℓ1, ℓ2, ℓ3, ℓ4. Since four skew
lines in P3 have two transversals (i.e. lines intersecting the four lines), the base
locus of the linear system also contains the two transversal lines. The union
of the six lines is a reducible projectively normal curve of arithmetic genus 3.
The transformation ) is a bilinear Cremona transformation. The P-locus of )
consists of the union of four quadrics &: , each containing the lines ℓ8 , 8 ≠ :

(since it must be of degree 8, there is nothing else). In particular, the map 5

blows down the quadric &4 to a curve parameterizing the ruling of &4 that
does not contain the lines ℓ1, ℓ2, ℓ3. If (6 is a nonsingular surface, we must blow
down exactly three lines on (, hence the lines ℓ1, ℓ2, ℓ3 have three transversals
contained in (. Also, if (6 is nonsingular, the singular points of ( must lie
on the lines ℓ1, ℓ2, ℓ3. This can be checked in all cases where Cayley-Salmon
equation applies.

Corollary 9.3.4. Let ( be a nonsingular cubic surface. Then, ( is projectively
equivalent to a surface

+ (C0C1C2 + C3 (C0 + C1 + C2 + C3); (C0, . . . , C3)).

A general ( can be written in this form in exactly 120 ways (up to projective
equivalence).

Proof We will prove later that a nonsingular cubic surface has at most 18
Eckardt points. Thus, we can choose the linear forms <1, <2, <2 such that
the lines ℓ1 9 , ℓ2 9 , ℓ3 9 , 9 = 1, 2, 3 do not intersect. This implies that the linear
forms ;1, ;2, ;3, < 9 are linearly independent. Similarly, we may assume that
the linear forms <1, <2, <3, ; 9 , 9 = 1, 2, 3 are linearly independent. Choose
coordinates such that ;1 = C0, ;2 = C1, ;3 = C2, <1 = C3. The equation of ( can be
written in the form C0C1C2 + C3<2<3 = 0. Let <2 =

∑
08C8 . It follows from the

previous assumption, that the coefficients 08 are all nonzero. After scaling the
coordinates, we may assume that <2 = C0 + C1 + C2 + C3 and we take ; = <3. �

9.3.2 Hilbert-Burch theorem
The Cayley-Salmon equation has a determinantal form and hence gives a de-
terminantal representation of a cubic surface. Unfortunately, it applies to only
a few of the 21 different types of cubics. By other methods, we will see that
a determinantal representation exists for any normal cubic surface of a type
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different from XX. We will use the following result from commutative algebra
(see [281]).

Theorem 9.3.5 (Hilbert-Burch). Let � be an ideal in a polynomial ring ' such
that depth(�) = codim� = 2 (thus '/� is a Cohen-Macaulay ring). Then, there
exists a projective resolution

0 −→ '=−1 q2−→ '=
q1−→ ' −→ '/� −→ 0.

The 8-th entry of the vector (01, . . . , 0=) defining q1 is equal to (−1)828 , where
28 is the complementary minor obtained from the matrix � defining q2 by
deleting its 8-th row.

We apply this theorem to the case when ' = C[C0, C1, C2] and � is the homoge-
neous ideal of a closed 0-dimensional subscheme / of P2 = Proj(') generated
by four linearly independent homogeneous polynomials of degree 3. Let I/ be
the ideal sheaf of / . Then, (�/ )< = �0 (P2,I/ (<)). By assumption,

�0 (P2,I/ (2)) = 0. (9.22)

Applying the Hilbert-Burch Theorem, we find a resolution of the graded ring
'/�

0 −→ '(−4)3
q2−→ '(−3)4

q1−→ ' −→ '/� → 0,

where q2 is given by a 3×4-matrix �whose entries are linear forms in C0, C1, C2.
Passing to the projective spectrum, we get an exact sequence of sheaves

0 −→ * ⊗ OP2 (−4)
q2−→ + ⊗ OP2 (−3)

q1−→ I/ −→ 0,

where*,+ are vector spaces of dimension 3 and 4. Twisting by OP2 (3), we get
the exact sequence

0 −→ * ⊗ OP2 (−1)
q̃2−→ + ⊗ OP2

q̃1−→ I/ (3) −→ 0. (9.23)

Taking global sections, we obtain

+ = �0 (P2,I/ (3)).

Twisting fact sequence (9.23) by OP2 (−2), and using the canonical trace iso-
morphism �2 (P2,OP2 (−3)) � C, we obtain that

* = �1 (P2,I/ (1)).

The exact sequence

0→ I/ (1) → OP2 (1) → O/ → 0
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shows that

* � Coker(�0 (P2,OP2 (1)) → �0 (O/ )) � Coker
(
C3 → Cℎ

0 (O/ ) ) .
Since dim* = 3, we obtain that ℎ0 (O/ ) = 6. Thus, / is a 0-cycle of length 6.
Now, we see that the homomorphism q̃2 of vector bundles is defined by a

linear map
q : � → Hom(*,+) = *∨ ⊗ +, (9.24)

where P2 = |� |. We can identify the linear map q with the tensor t ∈ �∨ ⊗
*∨ ⊗ + . Let us now view this tensor as a linear map

k : +∨ → Hom(�,*∨) = �∨ ⊗ *∨. (9.25)

The linear map (9.24) defines a rational map, the right kernel map,

5 : |� | → |+∨ | = |I/ (3) |∨, [{] ↦→ |q({) (*)⊥ |.

It is given by the linear system |I/ (3) |. In coordinates, it is given by maximal
minors of the matrix � defining q2. Thus, ( is contained in the locus of [U]
such that U belongs to the pre-image of the determinantal locus inHom(�,*∨).
It is a cubic hypersurface in the space Hom(�,*∨). Thus, the image of 5 is
contained in a determinantal cubic surface (. Since the intersection scheme of
two general members �1, �2 of the linear system |I/ (3) | is equal to the 0-cycle
/ of degree 6, the image of 5 is a cubic surface. This gives a determinantal
representation of (.

Theorem 9.3.6. Assume ( is a normal cubic surface. Then, ( admits : equiva-
lence classes of linear determinantal representations, where : depends on type
of (, and is given in Table 9.2 below.

I II III IV V VI VII VIII IX X XI

72 50 24 34 60 64 52 66 60 58 42

XII XIII XIV XV XVI XVII XVIII XIX XX XXI

48 62 50 32 64 58 56 40 0 54

Table 9.2 Number of determinantal representations

Proof Let (′ be a minimal resolution of singularities of (. It follows from the
previous construction that a blowing-down structure defined by a bubble cycle
of six points not containing in a conic, gives a determinantal representation of
(. Conversely, suppose ( ⊂ P(+), and we have a linear map (9.25) for some
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3-dimensional vector spaces � and * defining a determinantal representation
of (. Then,k defines amap of vector bundles*⊗OP2 (−4) → +⊗OP2 (−3), and
the cokernel of this map is the ideal sheaf of a 0-cycle of length 6. Its blow-up
is isomorphic to (. Since ( is normal, the ideal sheaf is integrally closed, and
hence corresponds to a bubble cycle [ whose blow-up is isomorphic to (′.
So, the number of equivalence classes of linear determinantal representations

is equal to the number of nef linear systems |40 | on (′ which define a birational
morphism (′ → P2 isomorphic to the blow-up of bubble cycle [ of six points
not lying on a conic. It follows from the proof of Lemma 9.1.1 that there
is a bĳection between the set of vectors { ∈ �1,6 with {2 = 1, { · k6 = −3
and the set of roots in E6. The corresponding root U can be written in the form
U = 24−{1−· · ·−{6, where ({1, . . . , {6) is a unique sixer of exceptional vectors.
If we choose a geometric marking q : �1,6 → Pic((′) defined by this sixer,
then q(U) is an effective root if and only if the bubble cycle corresponding to
this marking lies on a conic. Thus, the number of determinantal representations
is equal to the number of non-effective roots in  ⊥

(′ modulo the action of the
subgroup ,0 of , (�6) generated by the reflections in nodal roots. In other
words, this is the number of roots in E6 (equal to 72) minus the number of roots
in the root sublattice defining the types of singularities on (. Now, we use the
known number of roots in root lattices and get the result. Note the exceptional
case of a surface with a �6-singularity. Here, all roots are effective, so ( does
not admit a determinantal representation. �

Consider the left and right kernel maps for the linear map (9.25)

l : ( d |� |, r : ( d |* |.

The composition of these maps with the resolution of singularities (′ → (

is the blowing-down map l′ : (′ → |� | and r′ : (′ → |* |. When ( is
nonsingular, these are two maps defined by a double-six. The corresponding
Cremona transformation |� | d |* | is given by the homaloidal linear system
|I2
/
(5) | = |540−2(41−· · ·−46) |. To identify the space* with�0 ( |� |,I2

/
(5))∨,

we consider the linear map

(2 (k) : (2 (+∨) → (2 (�∨ ⊗ *∨) →
2∧
�∨ ⊗

2∧
*∨ � � ⊗ +,

where the last isomorphism depends on a choice of volume forms on �∨ and
*∨. Dualizing, we get a linear pairing

�∨ ⊗ *∨ → (2 (+).

If we identify �0 ((,O( (−2 ()) with (2+ , and �∨ with �0 ((,O( (40)), then
*∨ can be identified with �0 ((,O( (−2 ( − 40)). Note that we have also
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identified* with the cokernel of the map A : � → �0 (P2,O/ ). Let us choose a
basis in � � C3 and an order of points in / , hence a basis in �0 (P2,O/ ) � C6.
The map C6 → * = Coker(A) gives six vectors in *. The corresponding six
points in |* | is the bubble cycle defining the blowing-down structure r : ( →
|* |. This is a special case of the construction of associated sets of points (see
[234], [282], [755]).

Remark 9.3.7. We can also deduce Theorem 9.3.6 from the theory of determi-
nantal equations from Chapter 4. Applying this theory, we obtain that ( admits
a determinantal equation with entries linear forms if it contains a projectively
normal curve � such that

�0 ((,O( (�) (−1)) = �2 ((,O( (�) (−2)) = 0. (9.26)

Moreover, the set of non-equivalent determinantal representations is equal to
the set of divisor classes of such curves. Let c : (′→ ( be a minimal resolution
of singularities and � ′ = c∗ (�). Since c∗O( (−1) = O(′ ( (′), the conditions
(9.26) are equivalent to

�0 ((′,O(′ (� ′ +  (′)) = �2 ((′,O(′ (� ′ + 2 (′)) = 0. (9.27)

Since � ′ is nef, �1 ((′,O(′ (� ′ +  (′)) = 0. Also

�2 ((′,O(′ (� ′ +  -(′)) = �0 ((′,O(′ (−� ′)) = 0.

By Riemann-Roch,

0 = j(O(′ (� ′ +  (′)) = 1
2 ((�

′ +  (′)2 − (� ′ +  (′) ·  (′) + 1

= 1
2 (�

′2 + � ′ ·  (′) + 1.

Thus, � ′ is a smooth rational curve, hence � is a smooth rational curve.
It is known that a rational normal curve in P= must be of degree =. Thus,
− (′ · � ′ = 3, hence � ′2 = 1. The linear system |� ′ | defines a birational map
c : (′ d P2. Let 40 = [� ′], 41, . . . , 46 be the corresponding geometric basis
of Pic((′). The condition

0 = �2 (-,O(′ (� ′ + 2 (′)) = �0 ((′,O(′ (−� ′ −  (′)) = 0

is equivalent to

|240 − 41 − · · · − 46 | = ∅. (9.28)
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9.3.3 Cubic symmetroids
A cubic symmetroid is a hypersurface in P= admitting a representation as a
symmetric (3×3)-determinant whose entries are linear forms in =+1 variables.
Here, we will be interested in cubic symmetroid surfaces. An example of a
cubic symmetroid is the Cayley four-nodal cubic surface

C0C1C2 + C0C1C3 + C0C2C3 + C1C2C3 = det
©«
C0 + C3 C3 C3
C3 C1 + C3 C3
C3 C3 C2 + C3

ª®®¬ ,
which we have already encounter before. By choosing the singular points to
be the reference points [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], it is
easy to see that cubic surfaces with 4 singularities of type �1 are projectively
isomorphic. Since the determinantal cubic hypersurface in P5 is singular along a
surface, a nonsingular cubic surface does not admit a symmetric determinantal
representation.

Lemma 9.3.8. Let ! ⊂ |OP2 (2) | be a pencil of conics. Then, it is projectively
isomorphic to one of the following pencils:

(i) _(C0C1 − C0C2) + `(C1C2 − C0C2) = 0;
(ii) _(C0C1 + C0C2) + `C1C2 = 0;
(iii) _(C0C1 + C22) + `C0C2 = 0;
(iv) _C22 + `C0C1 = 0;
(v) _C20 + `(C0C2 + C

2
1) = 0;

(vi) _C20 + `C
2
1 = 0;

(vii) _C0C1 + `C0C2 = 0;
(viii) _C0C1 + `C20 = 0.

Proof Thefirst five cases correspond to the Segre symbols [1, 1, 1], [(2)1], [(3)],
[(11)1], [(12)], respectively. For the future use, we chose different bases. The
last three cases correspond to pencils of singular conics. �

Theorem 9.3.9. A cubic symmetroid is a del Pezzo surface if and only if it is
projectively isomorphic to one of the following determinantal surfaces:

(i) C3 = + (C0C1C2 + C0C1C3 + C0C2C3 + C1C2C3) with four RDP of type �1;
(ii) C′3 = + (C0C1C2 + C1C

2
3 − C2C

2
3) with two RDP of type �1 and one RDP of

type �3;
(iii) C′′3 = + (C0C1C2 − C23 (C0 + C2) − C1C

2
2) with one RDP of type �1 and one

RDP of type �5.
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Proof Let � = (;8 9 ) be a symmetric 3×3matrix with linear entries ;8 9 defining
the equation of (. It can be written in the form �(C) = C0�0 + C1�1 + C2�2 + C3�3,
where �8 , 8 = 1, 2, 3, 4, are symmetric 3× 3 matrices. Let, be a linear system
of conics spanned by the conics

�8 = [C0, C1, C2] · � ·
©«
C0
C1
C2

ª®®¬ = 0.

Each web of conics is apolar to a unique pencil of conics. Using the previ-
ous lemma, we find the following possibilities. We list convenient bases in
corresponding dual four-dimensional spaces of quadratic forms.

(i) b2
0 , b

2
1 , b

2
2 , 2(b0b1 + b1b2 + b0b2);

(ii) b2
0 , b

2
1 , b

2
2 , 2(b0b1 − b0b2);

(iii) b2
0 , b

2
1 , 2b0b1 − b2

2 , 2b1b2;
(iv) b2

0 , b
2
1 , 2b0b2, 2(b1b2 − b0b1);

(v) 2b0b2 − b2
1 , b

2
2 , 2b0b1, 2b1b2;

(vi) b2
2 , 2b0b1, 2b1b2, 2b0b2;

(vii) b2
0 , b

2
1 , b

2
2 , 2b0b1;

(viii) b2
1 , b

2
2 , 2b0b2, 2b1b2.

The corresponding determinantal varieties are the following.

(i)

det
©«
C0 C3 C3
C3 C1 C3
C3 C3 C2

ª®®¬ = C0C1C2 + C23 (−C0 − C2 − C1 + 2C3) = 0.

It has four singular points [1, 0, 0, 0], (0, 1, 0, 0], [0, 0, 1, 0], and [1, 1, 1, 1].
The surface is the Cayley four-nodal cubic.

(ii)

det
©«
C0 C3 −C3
C3 C1 0
−C3 0 C2

ª®®¬ = C0C1C2 − C1C23 − C2C23 = 0.

It has two ordinary nodes [0, 1, 0, 0], [0, 0, 1, 0] and a RDP [1, 0, 0, 0] of
type �3.

(iii)

det

(
C0 C2 0
C2 C1 C3
0 C3 −C2

)
= −C0C1C2 − C0C23 + C

3
2 = 0.
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The surface has an ordinary node at [1, 0, 0, 0] and a RDP of type �5 at
[0, 1, 0].

(iv)

det
©«
C0 −C3 C2
−C3 C1 C3
C2 C3 0

ª®®¬ = C23 (−C0 − 2C2) − C1C22 = 0.

It has a double line C3 = C2 = 0.
(v)

det
©«

0 C2 C0
C2 −C0 C3
C0 C3 C1

ª®®¬ = −C1C22 + 2C0C2C3 + C30 = 0.

The surface has a double line C0 = C2 = 0.
(vi)

det
©«

0 C1 C3
C1 0 C2
C3 C2 C0

ª®®¬ = −C0C21 + 2C1C2C3 = 0.

The surface is the union of a plane and a nonsingular quadric.
(vii)

det
©«
C0 0 0
0 C1 C3
0 C3 C2

ª®®¬ = C0 (C1C2 − C23) = 0.

The surface is the union of a plane and a quadratic cone.
(viii)

det
©«

0 0 C2
0 C0 C3
C2 C3 C1

ª®®¬ = C0C22 = 0.

The surface is reducible.

�

Remark 9.3.10. Let ( be a cone over a plane cubic curve�. We saw in Example
4.2.18 that any irreducible plane cubic curve admits a symmetric determinantal
representation. This gives a symmetric determinantal representation of the cone
over the cubic; however, it is not defined by a web of conics. In fact, we see
from the list in above that no irreducible cone is given by a web of conics. I
have not seen an a priori proof of this.
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If ( is irreducible non-normal surface, then ( admits a symmetric determi-
nantal representation. This corresponds to cases (iv) and (v) from the proof of
the previous Theorem. Case (iv) (resp. (v)) gives a surface isomorphic to the
surface from case (i) (resp. (ii)) of Theorem 9.3.9. We also see that a reducible
cubic surface that is not a cone admits a symmetric determinantal represen-
tation only if it is the union of an irreducible nonsingular (singular) quadric
and its tangent (non-tangent) plane. The plane is a tangent if the quadric is
nonsingular; it intersects the quadric transversally.

Remark 9.3.11. The three symmetroid del Pezzo cubic surfaces ( can be char-
acterized among all del Pezzo cubics by the property that they admit a double
cover c : (̄ → ( ramified only over the singular points. They can be obtained
by a projection of a quadric surface from Example 8.6.6.

9.4 Representation as a Sums of Cubes

9.4.1 Sylvester’s pentahedron
Counting constants, we see that it is possible that a general homogeneous cubic
form in four variables can be written as a sum of five cubes of linear forms in
finitely many ways. Since there are no cubic surfaces singular at five general
points, the theory of apolarity tells us that the count of constants gives a correct
answer. The following result of J. Sylvester gives more.

Theorem 9.4.1. A general homogeneous cubic form 5 in four variables can be
written as a sum:

5 = ;31 + ;
3
2 + ;

3
3 + ;

3
4 + ;

3
5 , (9.29)

where ;8 are linear forms in four variables, no two are proportional. The forms
are defined uniquely, up to scaling by a cubic root of unity.

Proof The variety of cubic forms 5 ∈ (3 (�∨) represented as a sum of five
cubes lies in the image of the dominant map of 20-dimensional spaces (�∨)5 →
(3 (�∨). The subvariety of (�∨)5 that consists of 5-tuples of linear forms
containing four linearly dependent forms is a hypersurface. Thus, we may
assume that in a representation of 5 as a sum of five cubes of linear forms, any
set of four linear forms are linearly independent.
Suppose

5 =

5∑
8=1

;38 =

5∑
8=1

<3
8 .
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Let G8 , H8 be the points in the dual space (P3)∨ corresponding to the hyperplanes
+ (;8), + (<8). The first five and the last five are distinct points. Consider the
linear system of quadrics in (P3)∨ which pass through the points G5, H1, . . . , H5.
Its dimension is larger than or equal 3. Choose a web |, | contained in this
linear system. Applying the corresponding differential operator to 5 we find
a linear relations between the linear forms ;1, ;2, ;3, ;4. Since we assumed that
they are linearly independent, we obtain that all quadrics in the web contain
G1, . . . , G4. Thus, all quadrics in the web pass through G8 , H 9 .
Suppose the union of the sets - = {G1, . . . , G5} and. = {H1, . . . , H5} contains

nine distinct points. Since three quadrics intersect at ≤ 8 points unless they
contain a common curve, the web |, | has a curve � in its base locus. Because
an irreducible nondegenerate curve of degree 3 is not contained in the base
locus of a web of quadrics, deg � ≤ 2. Suppose � contains a line ℓ0. Since
neither - nor. is contained in a line, we can find a point G8 outside ℓ0. Consider
a plane Π spanned by ℓ0 and G8 . The restriction of quadrics to Π is a pencil of
conics with fixed line ℓ0 and the base point G8 . This implies that |, | contains a
pencil of quadrics of the form Π ∪ Π′, where Π′ belongs to a pencil of planes
containing a line ℓ passing through G8 . Since - ∪ . is contained in the base
locus of any pencil in |, |, we see that - ∪ . ⊂ Π ∪ ℓ. Now, we change the
point G8 to some other point H 9 not in Π. We find that - ∪ . is contained in
Π′ ∪ ℓ′. Hence, the set is contained in (Π ∪ ℓ) ∩ (Π′ ∪ ℓ′). It is the union of
ℓ0 and a set / consisting of either the line 〈G8 , H 9〉 or a set of ≤ 3 points. This
implies that one of the sets - and . has four points on ℓ0. Then, - or . spans
a plane, a contradiction.
Suppose � is a conic. Then, we restrict |, | to the planeΠ it spans, and obtain

that |, | contains a net of quadrics of the form Π ∪ Π′, where Π′ is a net of
planes. This implies that - ∪. is contained in Π ∪ / , where / is either empty
or consists of one point. Again this leads to contradiction with the assumption
on linear independence of the points.
We may now assume that <5 = _5ℓ5, <4 = _4;4, for some nonzero constants

_4, _5, and get

3∑
8=1

;38 + (1 − _3
4);

3
4 + (1 − _

3
5);

3
5 =

3∑
8=1

<3
8 .

Take the linear differential operator of the second order corresponding to the
double plane containing the points H1, H2, H3. It gives a linear relation be-
tween ;1, . . . , ;5 which must be trivial. Since the points H1, H2, H3, H4 = G4 and
H1, H2, H3, H5 = G5 are not coplanar, we obtain that _3

4 = _
3
5 = 1. Taking the dif-

ferential operator of the first order corresponding to the plane through H1, H2, H3,
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we obtain a linear relation between the quadratic forms ;21 , ;
2
2 , ;

2
3 . Since no two

of ;1, ;2, ;3 are proportional, this is impossible. Thus, all the coefficients in the
linear relation are equal to zero, hence G1, G2, G3, H1, H2, H3 are coplanar.

The linear system of quadrics through H1, . . . , H5 is 4-dimensional. By an
argument from above, each quadric in the linear system contains G1, G2, G3 in
its base locus. Since G1, G2, G3, H1, H2, H3 lie in a plane Π, and no three points
G8’s or H 9 ’s are collinear, the restriction of the linear system to the plane is
a fixed conic containing the six points. This shows that the dimension of the
linear system is less than or equal to 3. This contradiction shows that the sets
{G1, G2, G3}, {H1, H2, H3} have two points in common. Thus, we can write

;31 + (1 − _
3
2);

3
2 + (1 − _

3
3);

3
3 = <

3
1.

The common point of the planes + (;1), + (;2), + (;3) lies on + (<1). After pro-
jecting from this point, we obtain that the equation of a triple line can be written
as a sum of cubes of three linearly independent linear forms. This is obviously
impossible. So, we get _3

2 = _
3
3 = 1, hence <1 = _1;1, where _3

1 = 1. So, all
cubes _3

8
are equal to 1.

�

Corollary 9.4.2. Ageneral cubic surface is projectively isomorphic to a surface
in P4 given by equations

4∑
8=0

08I
3
8 =

4∑
8=0

I8 = 0. (9.30)

The coefficients (00, . . . , 04) are determined uniquely up to permutation and a
common scaling.

Proof Let ( = + ( 5 ) be a cubic surface given by Equation (9.30). Let 10;1 +
· · · + 14;5 = 0 be a unique, up to proportionality, linear relation. Consider the
embedding of P3 into P4 given by the formula

[H0, . . . , H4] = [;1 (C0, . . . , C3), . . . , ;5 (C0, . . . , C3)] .

Then, the image of ( is equal to the intersection of the cubic hypersurface
+ (∑ H3

8
) with the hyperplane + (∑ 18H8). Now, make the change of coordinates

I8 = 18H8 , if 18 ≠ 0 and I8 = H8 otherwise. In the new coordinates, we get
Equation (9.30), where 08 = 13

8
. The Sylvester presentation is unique, up to

permutation of the linear functions ;8 , multiplication ;8 by third roots of 1, and
a common scaling. It is clear that the coefficients (00, . . . , 04) are determined
uniquely up to permutation and common scaling. �

We refer to equations (9.30) as Sylvester equations of a cubic surface.
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Recall from Subsection 6.3.5, that a cubic surface + ( 5 ) is called Sylvester
nondegenerate if it admits Equation (9.29), where any four linear forms are
linearly independent.
It is clear that in this case the coefficients 01, . . . , 05 are all nonzero.
If four of the linear forms in (9.29) are linearly dependent, after a linear

change of variables, we may assume that ;1 = C0, ;2 = C1, ;3 = C2, ;4 = C3, ;5 =
0C0 + 1C1 + 2C2. The equation becomes

5 = C33 + 6(C0, C1, C2), (9.31)

where 63 is a ternary cubic form. We called such surfaces + ( 5 ) cyclic.
Remark 9.4.3. Suppose a cubic surface+ ( 5 ) admits Sylvester equations. Then,
any net of polar quadrics admits a common polar pentahedron. The condition
that a net of quadrics admits a common polar pentahedron is given by the
vanishing of the Toeplitz invariant Λ from (1.68). Using this fact, Toeplitz gave
another proof of the existence of the Sylvester pentahedron for a general cubic
surface [749].

9.4.2 The Hessian surface
Suppose ( is given by the Sylvester equations (9.30). Let us find the equation of
its Hessian surface He(() of (. Recall that He(() is the locus of points whose
polar quadric is singular. For our surface ( lying in the hyperplane plane � =

+ (∑ I8) ⊂ P4, this means that this is the locus of points I = [U0, . . . , U4] ∈ �
with

∑
U8 = 0 such that the polar quadric is tangent to � at some point. The

equation of the polar quadric is
∑
U808I

2
8
= 0.

It is tangent to � if the point [1, . . . , 1] lies in the dual quadric∑ 1
U808

D2
8
= 0.

Here, we omit the term with 08 = 0. Thus, the equation of the Hessian surface
is

4∑
8=0

1
08I8

= 0,
∑

I8 = 0,

where we have to reduce to the common denominator to get an equation of a
quartic hypersurface. If all 08 ≠ 0, we get the equation

I0 · · · I5
( 4∑
8=0

�8

I8

)
=

4∑
8=0

I8 = 0, (9.32)

where �8 = (00 · · · 05)/08 . If some coefficients 08 are equal to zero, say 00 =

. . . = 0: = 0, the Hessian surface He(() becomes the union of planes + (I8) ∩
+ (∑ I8), 8 = 0, . . . , :, and a surface of degree 3 − : .
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Assume that ( = + ( 5 ) is Sylvester nondegenerate, so the Hessian surface
He(() is irreducible. The ten lines

ℓ8 9 = + (I8) ∩+ (I 9 ) ∩+ (
∑

I8)

are contained in He((). The ten points

?8 9: = + (I8) ∩+ (I 9 ) ∩+ (I 9 ) ∩+ (
∑

I8)

are singular points of He(().
The union of the planes + (I8) ∩+ (

∑
I8) is called the Sylvester pentahedron,

the lines ℓ8 9 are its edges, the points ?8 9: are its vertices.
Remark 9.4.4. Recall that the Hessian of any cubic hypersurface admits a
birational automorphism f which assigns to the polar quadric of corank 1 its
singular point. Let - be a minimal nonsingular model of He((). It is a K3
surface. The birational automorphism f extends to a biregular automorphism
of - . It exchanges the proper transforms of the edges with the exceptional
curves of the resolution. One can show that for a general (, the automorphism
of - has no fixed points, and hence the quotient is an Enriques surface.
We know that a cubic surface admitting a degenerate Sylvester equation must

be a cyclic surface. Its Hessian is the union of a plane and the cone over a cubic
curve. A cubic form may not admit a polar pentahedral, so its equation may not
be written as a sum of powers of linear forms. For example, consider a cubic
surface given by equation

C30 + C
3
1 + C

3
2 + C

3
3 + 3C23 (0C0 + 1C1 + 2C2) = 0.

For a general choice of the coefficients, the surface is nonsingular and non-
cyclic. Its Hessian surface has the equation

C0C1C2C3 + C0C1C2 (0C0 + 1C1 + 2C2) − C23 (0
2C1C2 + 12C0C2 + 22C0C1) = 0.

It is an irreducible surface with an ordinary node at [0, 0, 0, 1] and singular
points [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0] of type �3. So, we see that the surface
cannot be Sylvester nondegenerate. The surface does not admit a polar pen-
tahedral, it admits a generalized polar pentahedral in which two of the planes
coincide. We refer to [626] and [204] for more examples of cubic surfaces with
degenerate Hessian.

Proposition 9.4.5. A cubic surface given by a nondegenerate Sylvester equation
(9.30) is nonsingular if and only if, for all choices of signs,

4∑
8=0
± 1
√
08
≠ 0. (9.33)
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Proof The surface is singular at a point (I0, . . . , I4) if and only if

rank
(
00I

2
0 01I

2
1 02I

2
2 03I

2
3 04I

2
4

1 1 1 1 1

)
= 1.

This gives 08I2
8
= 2, 8 = 0, . . . , 3, for some 2 ≠ 0. Thus, I8 = ±2/

√
08 for some

choice of signs, and the equation
∑
I8 = 0 gives (9.33). Conversely, if (9.33)

holds for some choice of signs, then [± 1√
00
, . . . ,± 1√

04
] satisfies ∑

I8 = 0 and∑
08I

3
8
= 0. It also satisfies the equations 08C28 = 0 9 C

2
9
. Thus, it is a singular

point. �

9.5 The Segre Cubic Primal

9.5.1 Cremona’s hexahedral equations

The Sylvester theorem has the deficiency that it cannot be applied to any non-
singular cubic surface. The Cremona’s hexahedral equations that we consider
here work for any nonsingular cubic surface.

Theorem 9.5.1 (L. Cremona). Assume that a cubic surface ( is not a cone and
admits a Cayley-Salmon equation (e.g. ( is a nonsingular surface). Then, ( is
isomorphic to a cubic surface in P5 given by the equations

5∑
8=0

C38 =

5∑
8=0

C8 =

5∑
8=0

08C8 = 0. (9.34)

Proof Let ( = + (;1;2;3 + <1<2<3) be a Cayley-Salmon equation of (. Let
us try to find some constants such that the linear forms, after scaling, add up to
zero. Write

; ′8 = _8 ;8 , <′8 = `8<8 , 8 = 1, 2, 3.

Since ( is not a cone, four of the linear forms are linearly independent. After
reordering the linear forms, we may assume that the linear forms ;1, ;2, ;3, <1
are linearly independent. Let

<2 = 0;1 + 1;2 + 2;3 + 3<1, <3 = 0
′;1 + 1′;2 + 2′;3 + 3 ′;4.
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The constants _8 , `8 must satisfy the following system of equations

_1 + 0`2 + 0′`3 = 0,
_2 + 1`2 + 1′`3 = 0,
_3 + 2`2 + 2′`3 = 0,
`1 + 3`2 + 3 ′`3 = 0,
_1_2_3 + `1`2`3 = 0.

The first four linear equations allow us to express linearly all unknowns in
terms of `2, `3. Plugging in the last equation, we get a cubic equation in `2/`3.
Solving it, we get a solution. Now, set

I1 = ;
′
2 + ;

′
3 − ;

′
1, I2 = ;

′
3 + ;

′
1 − ;

′
2, I3 = ;

′
1 + ;

′
2 − ;

′
3,

I4 = `
′
2 + `

′
3 − `

′
1, I5 = `

′
3 + `

′
1 − `

′
2, I6 = `

′
1 + `

′
2 − `

′
3.

One checks that these six linear forms satisfy the equations from the assertion
of the Theorem. �

Equations (9.34) of a del Pezzo cubic surface are called Cremona’s hex-
ahedral equations. We will return to these equations in the next subsection,
where we will show that they apply to any cubic surface obtained from the
anti-canonical model of the blow-up a semi-stable set of points in P2.

Corollary 9.5.2 (T. Reye). A general homogeneous cubic form 5 in four vari-
ables can be written as a sum of six cubes in ∞4 different ways. In other
words,

dim VSP( 5 , 6)> = 4.

Proof This follows from the proof of the previous theorem. Consider the map

(C4)6 → C20, (;1, . . . , ;6) ↦→ ;31 + · · · + ;
3
6 .

It is enough to show that it is dominant. We show that the image contains the
open subset of nonsingular cubic surfaces. In fact, we can use a Cayley-Salmon
equation ;1;2;3 + <1<2<3 for ( = + ( 5 ) and apply the proof of the theorem to
obtain that, up to a constant factor,

5 = I3
1 + I

3
2 + I

3
3 + I

3
4 + I

3
5 + I

3
6.

�

Suppose a nonsingular cubic surface ( is given by equations (9.34). They



144 Cubic Surfaces

allow us to locate 15 lines on ( such that the remaining lines form a double-six.
The equations of these lines in P5 are

I8 + I 9 = 0, I: + I; = 0, I< + I= = 0,
6∑
8=1

08I8 = 0,

where {8, 9 , :, ;, <, =} = {1, 2, 3, 4, 5, 6}. Let us denote the line given the above
equations by ;8 9 ,:;,<=.
Let us identify a pair 0, 1 of distinct elements in {1, 2, 3, 4, 5, 6} with a

transposition (01) inS6.Wehave the product (8 9) (:;) (<=) of three commuting
transpositions corresponding to each line ;8 9 ,:;,<=. The group S6 admits a
unique (up to a composition with a conjugation) outer automorphism which
sends each transposition to the product of three commuting transpositions. In
this way, we can match lines ;8 9 ,:;,<= with exceptional vectors 201 of the E6-
lattice. To do it explicitly, one groups together five products of three commuting
transpositions in such a way that they do not contain a common transposition.
Such a set is called a total and the triples (8 9 , :;, <=) are called synthemes.
Here, is the set of six totals

)1 = (12) (36) (45) , (13) (24) (56) , (14) (26) (35) , (15) (23) (46) , (16) (25) (34) , (9.35)
)2 = (12) (36) (45) , (13) (25) (46) , (14) (23) (56) , (15) (26) (34) , (16) (24) (35) ,
)3 = (12) (35) (46) , (13) (24) (56) , (14) (25) (36) , (15) (26) (34) , (16) (23) (45) ,
)4 = (12) (34) (56) , (13) (25) (46) , (14) (26) (35) , (15) (24) (36) , (16) (23) (45) ,
)5 = (12) (34) (56) , (13) (26) (45) , (14) (25) (36) , (15) (23) (46) , (16) (24) (35) ,
)6 = (12) (35) (46) , (13) (26) (45) , (14) (23) (56) , (15) (24) (36) , (16) (25) (34) .

Two different totals )0, )1 contain one common product (8 9) (:;) (<=). The
correspondence (0, 1) ↦→ (8 9) (:;) (<=) defines the outer automorphism

U : S6 → S6. (9.36)

For example, U((12)) = (12) (36) (45) and U((23)) = (15) (26) (34).
After we matched the lines ;8 9 ,:;,<= with exceptional vectors 201 , we check

that this matching defines an isomorphism of the incidence subgraph of the
lines with the subgraph of the incidence graph of 27 lines on a cubic surface
whose vertices correspond to exceptional vectors 201 .

Theorem 9.5.3. Cremona’s hexahedral equations of a nonsingular cubic sur-
face ( defines an ordered double-six of lines. Conversely, a choice of an ordered
double-six defines uniquely Cremona hexahedral equations of (.

Proof We have seen already the first assertion of the theorem. If two surfaces
given by hexahedral equations define the same double-six, then they have in
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common 15 lines. Obviously, this is impossible. Thus, the number of different
hexahedral equations of ( is less than or equal to 36. Now, consider the identity

(I1 + · · · + I6)
(
(I1 + I2 + I3)2 + (I4 + I5 + I6)2 − (I1 + I2 + I3) (I4 + I5 + I6)

)
= (I1 + I2 + I3)3 + (I4 + I5 + I6)3 = I3

1 + · · · + I
3
6

+3(I2 + I3) (I1 + I3) (I1 + I2) + 3(I4 + I5) (I5 + I6) (I4 + I6).

It shows that Cremona hexahedral equations define a Cayley-Salmon equation

(I2 + I3) (I1 + I3) (I1 + I2) + (I4 + I5) (I5 + I6) (I4 + I6) = 0,

where we have to eliminate one unknown with help of the equation
∑
08I8 = 0.

Applying permutations of I1, . . . , I6, we get 10 Cayley-Salmon equations of (.
Each set of nine lines formed by the corresponding conjugate pair of triads of
tritangent planes are among the 15 lines determined by the hexahedral equation.
It follows from the classification of the conjugate pairs that we have 10 such
pairs of lines 28 9 ’s (type II). Thus, a choice of Cremona hexahedral equations
defines exactly 10Cayley-Salmon equations of (. Conversely, it follows from the
proof of Theorem 9.5.1 that each Cayley-Salmon equation gives three Cremona
hexahedral equations (unless the cubic equation has a multiple root). Since we
have 120 Cayley-Salmon equations for ( we get 36 = 360/10 hexahedral
equations for (. They match with 36 double-sixes. �

9.5.2 Invariants of six points in P1

Let ?1, . . . , ?< be a set of points in P=, where < > = + 1. For any ordered
subset (?81 , . . . , ?8=+1 ) of = + 1 points, we denote by (81 . . . 8=+1) the deter-
minant of the matrix whose rows are projective coordinates of the points
(?81 , . . . , ?8=+1 ) in this order. We consider (81 . . . 8=+1) as a section of the invert-
ible sheaf ⊗=+1

9=1 ?
∗
8 9
OP= (1) on (P=)<. It is called a bracket-function. Amonomial

in bracket-functions such that each index 8 ∈ {1, . . . , <} occurs exactly 3 times
defines a section of the invertible sheaf

L3 =
=⊗
8=1

?∗8OP= (3).

According to the Fundamental Theorem of Invariant Theory (see [242]) the
subspace ('<= ) (3) of �0 ((P=)<,L3) generated by such monomials is equal to
the space of invariants �0 ((P=)<,L3)SL(=+1, where the group SL(= + 1) acts
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linearly on the space of sections via its diagonal action on (P=)<. The graded
ring

'<= =

∞⊕
3=0
('<= ) (3) (9.37)

is a finitely generated algebra. Its projective spectrum is isomorphic to the
GIT-quotient

%<= := (P=)<//SL(= + 1)

of (P=)< by SL(= + 1). The complement *ss of the set of common zeros of
generators of the algebra '<= admits a regular map to %<= . The set*ss does not
depend on the choice of generators. Its points are called semi-stable. Let*s be
the largest open subset such that the fibers of the restriction map*s → %<= are
orbits. Its points are called stable.
It follows from the Hilbert-Mumford numerical stability criterion that an

ordered set of points (?1, . . . , ?<) in P1 is semi-stable (resp. stable) if and only
if at most 1

2< (resp. < 1
2<) points coincide. We have already seen the definition

of the bracket functions in the case < = 4. They define the cross ratio of four
points

[?1, ?2, ?3, ?4] =
(12) (34)
(13) (24) .

The cross ratio can be viewed as a rational map (P1)4 d P1. It is defined on
the open set *s of points where no more than two coincide and it is an orbit
space over the complement of three points 0, 1,∞.
In the case of points in P2 the condition of stability (semi-stability) is that at

most 1
3< (resp. < 1

3<) coincide and at most 2
3< (resp. < 2

3<) points are on a
line.

Proposition 9.5.4. Let P = (?1, · · · , ?6) be an ordered set of distinct points
in P1. The following conditions are equivalent.

(i) There exists an involution of P1 such that the pairs (?1, ?2), (?3, ?4),
(?5, ?6) are orbits of the involution.

(ii) The binary forms 68 , 8 = 1, 2, 3, with zeros (?1, ?2), (?3, ?4), (?5, ?6)
are linearly dependent.
(iii) Let G8 be the image of ?8 under a Veronese map P1 → P2. Then, the
lines 〈G1, G2〉, 〈G3, G4〉, 〈G5, G6〉 are concurrent.
(iv) The bracket-function (14) (36) (25) − (16) (23) (54) vanishes at P.

Proof (i) ⇔ (ii) Let 5 : P1 → P1 be the degree 2 map defined by the
involution. Let 5 be given by [C0, C1] ↦→ [61 (C0, C1), 62 (C0, C1)], where 61, 62 are
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binary forms of degree 2. By choosing coordinates in the target space, we may
assume that 5 (?1) = 5 (?2) = 0, 5 (?3) = 5 (?4) = 1, 5 (?5) = 5 (?6) = ∞,
i.e. 61 (?1) = 61 (?2) = 0, 62 (?3) = 62 (?4) = 0, (61 − 62) (?5) = (61 −
62) (?6) = 0. Obviously, the binary forms 61, 62, 63 = 61 − 62 are linearly
dependent. Conversely, suppose 61, 62, 63 are linearly dependent. By scaling,
we may assume that 63 = 61 − 62. We define the involution by [C0, C1] ↦→
[61 (C0, C1), 62 (C0, C1)].
(ii) ⇔ (iii) Without loss of generality, we may assume that ?8 = [1, 08]

and 61 = C
2
1 − (01 + 02)C0C1 + 0102C

2
0 , 62 = C

2
1 − (03 + 04)C0C1 + 0304C

2
0 , 63 =

C21 − (05 + 06)C0C1 + 0506C
2
0 . The condition that the binary forms are linearly

dependent is

� = det
©«
1 01 + 02 0102
1 03 + 04 0304
1 05 + 06 0506

ª®®¬ = 0. (9.38)

The image of ?8 under the Veronese map [C0, C1] ↦→ [C20 , C0C1, C
2
2] is the point

G8 = [1, 08 , 02
8
]. The line 〈G8 , G 9〉 has equation

det
©«
C0 C1 C2
1 08 02

8

1 0 9 02
9

ª®®¬ = (0 9 − 08) (080 9 C0 − (08 + 0 9 )C1 + C2) = 0.

Obviously, the three lines are concurrent if and only if (9.38) is satisfied.
(iii)⇔ (iv) We have

©«
1 01 + 02 0102
1 03 + 04 0304
1 05 + 06 0506

ª®®¬ ·
©«
02

1 02
3 02

5
−01 −03 −05

1 1 1

ª®®¬
=

©«
0 (03 − 01) (03 − 02) (05 − 01) (05 − 02)

(01 − 03) (01 − 04) 0 (05 − 03) (05 − 04)
(01 − 05) (01 − 06) (03 − 05) (03 − 06) 0

ª®®¬ .
Taking the determinant, we obtain

� (01 − 03) (01 − 05) (03 − 05) =

= det

( 0 (03 − 01) (03 − 02) (05 − 01) (05 − 02)
(01 − 03) (01 − 04) 0 (05 − 03) (05 − 04)
(01 − 05) (01 − 06) (03 − 05) (03 − 06) 0

)
=

= (03−05) (05−01) (01−03) [(01−04) (03−06) (05−02)+(06−01) (02−03) (04−05)] .
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Since the points are distinct, canceling by the product (03 − 05) (05 − 01) (01 −
03), we obtain

(01 − 04) (03 − 06) (05 − 02) + (06 − 01) (02 − 03) (04 − 05) =

= (14) (36) (25) − (16) (23) (54) = 0.

�

We let

[8 9 , :;, <=] := (8;) (:=) ( 9<) − ( 9 :) (;<) (=8). (9.39)

For example, [12, 34, 56] = (14) (36) (25) − (16) (23) (54). Note that determi-
nant (9.38) does not change if we permute (08 , 08+1), 8 = 1, 3, 5. It also does
not change if we apply an even permutation of the pairs, and changes the sign
if we apply an odd permutation.
Let us identify the set (1, 2, 3, 4, 5, 6) with points (∞, 0, 1, 2, 3, 4, 5) of the

projective line P1 (F5). The group PSL(2, F5) � A5 acts on P1 (F5) via Moebius
transformations I ↦→ 0I+1

2I+3 . Let D0 = [∞0, 14, 23] and let D8 , 8 = 1, . . . , 4, be
obtained from D0 via the action of the transformation I ↦→ I + 8. Let

*1 := D0 + D1 + D2 + D3 + D4

=
(
[∞0, 14, 23] + [∞1, 20, 34] + [∞2, 31, 40] + [∞3, 42, 01] + [∞4, 03, 12]

)
.

Obviously, *1 is invariant under the subgroup of order 5 generated by the
transformation I ↦→ I + 1. It is also invariant under the transformation g : I ↦→
−1/I. It is well known that A5 is generated by these two transformations. The
orbit of*∞ under the group A6 acting by permutations of∞, 0, . . . , 4 consists
of six functions *1,*2,*3,*4,*5,*6. We will rewrite them now returning to
our old notation of indices by the set (1, 2, 3, 4, 5, 6).

©«
*1
*2
*3
*4
*5
*6

ª®®®®¬
=

©«
0 [12, 36, 45] [13, 24, 56] [14, 35, 26] [15, 46, 23] [16, 25, 34]

0 [15, 26, 34] [13, 46, 25] [16, 35, 24] [14, 23, 56]
0 [16, 23, 45] [14, 25, 36] [12, 35, 46]

0 [12, 34, 56] [15, 36, 24]
0 [13, 45, 26]

0

ª®®®®¬
©«

1
1
1
1
1
1

ª®®®®¬
,

(9.40)
where the matrix is skew-symmetric. We immediately observe that

*1 +*2 +*3 +*4 +*5 +*6 = 0. (9.41)

Next observe that the triples of pairs [8 9 , :;, <=] in each row of the matrix
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constitute a total from (9.35). One easily computes the action of S6 on *8’s.
For example,

(12) : (*1,*2,*3,*4,*5,*6) ↦→ (−*2,−*1,−*6,−*5,−*4,−*3).

Its trace is equal to 1.
Recall that there are four isomorphism classes of irreducible 5-dimensional

linear representations of the permutation group S6. They differ by the trace of
a transposition (8 9).

If the trace is equal to 3, the representation is isomorphic to the standard
representation +st in the space

+ = {(I1, . . . , I6) ∈ C6 : I1 + · · · + I6 = 0}.

It coincides with the action of the Weyl group, (�6) on the root lattice �6. It
corresponds to the partition (5, 1) of 6.

If the trace is equal to −3, the representation is isomorphic to the tensor prod-
uct of the standard representation and the 1-dimensional sign representation. It
corresponds to the dual partition (2, 1, 1, 1, 1).
If the trace is equal to 1, the representation is isomorphic to the composition

of the outer automorphism U : S6 → S6 and the standard representation. It
corresponds to the partition (3, 3).

If the trace is equal to -1, the representation is isomorphic to the tensor product
of the previous representation and the sign representation. It corresponds to the
partition (2, 2, 2).

So, our representation on the linear space + = ('6
1) (1) associated with the

partition (3, 3).
One checks that the involution (12) (34) (56) acts as

(*1,*2,*3,*4,*5,*6) ↦→ (−*1,−*2,−*3,−*5,−*4,−*6). (9.42)

Its trace is equal to −3. A well-known formula from the theory of linear
representations

dim+� =
1

#�

∑
6∈�

Trace(6)

shows that the dimension of the invariant subspace for the element (12) (34) (56)
is equal to 1. It follows from (9.42) that the function *4 −*5 is invariant. On
the other hand, we also know that the function [12, 34, 56] is invariant too. This
gives*4 −*5 = 2[12, 36, 54] for some scalar 2. Evaluating these functions on
a point set (?1, . . . , ?6) with ?1 = ?2, ?3 = ?6, ?4 = ?5 we find that 2 = 6.
Now, applying permutations we obtain:
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*1 −*2 = 6[12, 36, 45], *1 −*3 = 6[13, 24, 56], *1 −*4 = 6[14, 35, 26], (9.43)
*1 −*5 = 6[15, 46, 23], *1 −*6 = 6[16, 25, 34], *2 −*3 = 6[15, 26, 34],
*2 −*4 = 6[13, 46, 25], *2 −*5 = 6[16, 35, 24], *2 −*6 = 6[14, 23, 56],
*3 −*4 = 6[16, 45, 23], *3 −*5 = 6[14, 25, 36], *3 −*6 = 6[12, 46, 35],
*4 −*5 = 6[12, 43, 56], *4 −*6 = 6[15, 36, 24], *5 −*6 = 6[13, 45, 26].

Similarly, we find that*1 +*2 is the only anti-invariant function under f and
hence coincides with 2(12) (36) (45). After evaluating the functions at a point
set (?1, . . . , ?6) with ?1 = ?3, ?2 = ?4, ?5 = ?6 we find that 2 = 4. In this way,
we get the relations:

*1 +*2 = 4(12) (36) (45) , *1 +*3 = 4(13) (42) (56) , *1 +*4 = 4(41) (53) (26) , (9.44)
*1 +*5 = 4(15) (46) (32) , *1 +*6 = 4(16) (25) (34) , *2 +*3 = 4(15) (26) (43) ,
*2 +*4 = 4(13) (46) (25) , *2 +*5 = 4(16) (35) (42) , *2 +*6 = 4(14) (23) (56) ,
*3 +*4 = 4(16) (54) (32) , *3 +*5 = 4(14) (25) (63) , *3 +*6 = 4(12) (46) (53) ,
*4 +*5 = 4(12) (34) (56) , *4 +*6 = 4(15) (36) (24) , *5 +*6 = 4(13) (45) (62) .

Applying (9.41), we obtain
*1 = (12) (36) (45) + (13) (42) (56) + (14) (35) (26) + (15) (46) (32) + (16) (25) (34) ,(9.45)
*2 = (12) (36) (45) + (13) (46) (25) + (14) (56) (23) + (15) (26) (43) + (16) (24) (53) ,
*3 = (12) (53) (46) + (13) (42) (56) + (14) (52) (36) + (15) (26) (43) + (16) (23) (45) ,
*4 = (12) (34) (56) + (13) (46) (25) + (14) (35) (26) + (15) (24) (36) + (16) (23) (45) ,
*5 = (12) (34) (56) + (13) (54) (26) + (14) (52) (36) + (15) (46) (32) + (16) (24) (53) ,
*6 = (12) (53) (46) + (13) (54) (26) + (14) (56) (23) + (15) (36) (24) + (16) (25) (34) .

We see that our functions are in bĳective correspondence with six totals from
above. The functions*1, . . . ,*6 are known as the Joubert functions.
It is easy to see that the functions *8 do not vanish simultaneously on semi-

stable point sets. Thus, they define a morphism

� : P6
1 → P5.

Theorem 9.5.5. The morphism � defined by the Joubert functions is an iso-
morphism onto the subvariety S3 of P5 given by the equations

5∑
8=0

I8 =

5∑
8=0

I3
8 = 0. (9.46)

Proof It is known that the graded ring '6
1 is generated by the following

bracket-functions (standard tableaux):

(12) (34) (56), (12) (35) (46), (13) (24) (56), (13) (25) (46), (14) (25) (36)

(see [234]). The subspace of '6
1 (1) generated by the Joubert functions is in-

variant with respect to S6. Since '6
1 (1) is an irreducible representation, this
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implies that the relation
∑
*8 = 0 spans the linear relations between the Joubert

functions. Consider the sum Σ =
∑
*3
8
. Obviously, it is invariant with respect

to A6. One immediately checks that an odd permutation inS6 transforms each
sum Σ to −Σ. This implies that Σ = 0 whenever two points ?8 and ? 9 coincide.
Hence, Σ must be divisible by the product of 15 functions (8 9). This product
is of degree 5 in coordinates of each point but Σ is of degree 3. This implies
that Σ = 0. Since the functions*8 generate the graded ring '6

1, by definition of
the space P6

1, we obtain an isomorphism from P6
1 to a closed subvariety of S3.

Since the latter is irreducible and of dimension equal to the dimension of P6
1,

we obtain the assertion of the theorem. �

9.5.3 Segre cubic primal and Cremona’s hexahedral equations
The cubic threefold S3 defined in Theorem 9.5.5 is called the Segre cubic
primal. 1 We will often consider it as a hypersurface in P4.

It follows immediately by differentiating that the cubic hypersurface S3 has
10 double points. They are the points ? = [1, 1, 1,−1,−1,−1] and others
obtained by permuting the coordinates. A point ? is given by the equations
I8 + I 9 = 0, 1 ≤ 8 ≤ 3, 4 ≤ 9 ≤ 6. By using (9.41) this implies that ? is the
image of a point set with ?1 = ?4 = ?6 or ?2 = ?3 = ?5. Thus, the singular
points of the Segre cubic primal are the images of semi-stable, but not stable,
point sets.
Also, S3 has 15 planes

Π8 9 ,:;,<= : I8 + I 9 = I: + I; = I; + I< = 0. (9.47)

Let us see that they are the images of point sets with two points that coincide.
Without loss of generality, we may assume that I1 + I2 = I3 + I4 = I5 +
I6 = 0. Again from (9.41), we obtain that (12) (36) (45), (16) (23) (45) and
(13) (26) (45) vanish. This happens if and only if ?4 = ?5.
We know that the locus of point sets (@1, . . . , @6) such that the pairs (@8 , @ 9 ),
(@: , @;), and (@<, @=) are orbits of an involution are defined by the equation
[8 9 , :;, <=] = 0. By (9.43), we obtain that they are mapped to a hyperplane sec-
tion of S3 defined by the equation I0 − I1 = 0, where U((01)) = (8 9) (:;) (<=).
It follows from Cremona’s hexahedral equations that a nonsingular cubic

surface is isomorphic to a hyperplane section of the Segre cubic. In a Theorem
below we will make it more precise. But first, we need some lemmas.

Lemma 9.5.6. Let G1, . . . , G6 be six points in P2. Let {1, . . . , 6} = {8, 9} ∪
1 According to classical terminology, a primal is a hypersurface in a projective space (see, for
example, [701, p. 10].
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{:, ;} ∪ {<, =}. The condition that the lines 〈G8 , G 9〉, 〈G: , G;〉, 〈G<, G=〉 are con-
current is

(8 9 , :;, <=) := (:;8) (<= 9) − (<=8) (:; 9) = 0. (9.48)

Proof The expression (:;8) (<=G) − (<=8) (:;G) can be considered as a linear
function defining a line in P2. Plugging in G = G8 we see that it passes through
the point G8 . Also if G is the intersection point of the lines 〈G: , G;〉 and 〈G<, G=〉,
then, writing the coordinates of G as a linear combination of the coordinates
of G:G; , and of G<G=, we see that the line passes through the point G. Now,
equation (9.48) expresses the condition that the point G 9 lies on the line passing
through G8 and the intersection point of the lines 〈G: , G;〉 and 〈G<, G=〉. This
proves the assertion. �

The functions (8 9 , :;, <=) change the sign after permuting two numbers in
one pair. They change the sign after permuting two pairs of numbers.

It is known (see [234]) that the space '6
2 (1) is generated by bracket-functions

(8 9 :) (;<=). Its dimension is equal to 5 and it has a basis corresponding to
standard tableaux

(123) (456), (124) (356), (125) (346), (134) (256), (135) (246).

The group S6 acts linearly on this space via permuting the numbers 1, . . . , 6.
Let

©«
*̄1
*̄2
*̄3
*̄4
*̄5
*̄6

ª®®®¬ =
©«

0 (12, 36, 45) (13, 24, 56) (14, 26, 35) (15, 46, 23) (16, 34, 25)
0 (15, 26, 34) (13, 25, 46) (16, 35, 24) (14, 56, 23)

0 (16, 45, 23) (14, 36, 25) (12, 46, 35)
0 (12, 56, 34) (15, 36, 24)

0 (13, 45, 26)
0

ª®®®¬
©«

1
1
1
1
1
1

ª®®®¬.
Equations (9.43) extend to the functions *̄8 .
Note that the transposition (12) acts on the functions *̄ as

(*̄1, *̄2, *̄3, *̄4, *̄5, *̄6) ↦→ (*̄2, *̄1, *̄6, *̄5, *̄4, *̄3).

The trace is equal to −1. This shows that the representation ('6
2) (1) is different

from the representation ('6
1) (1); it is associated to the partition (2, 2, 2). One

checks that the substitution (12) (34) (56) acts by

(*̄1, *̄2, *̄3, *̄4, *̄5, *̄6) ↦→ (*̄1, *̄2, *̄3, *̄5, *̄4, *̄6).

The trace is equal to 3. This implies that the sign representation enters the
representation of the cyclic group 〈(12) (34) (56)〉 on ('6

2) (1) with multiplicity
1. Thus, the space of anti-invariant elements is one-dimensional. It is spanned
by *̄4 − *̄5. Since the function (12) (34) (56) is anti-invariant, we obtain that
*̄4 − *̄5 = 2(12) (34) (56). Again, as above, we check that 2 = 6. In this way,
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the equations (9.43) extend to the functions *̄8 with [8 9 , :;.<=] replaced with
(8 9) (:;) (<=).

Lemma 9.5.7. We have the relation

*̄1 + *̄2 + *̄3 = −6(146) (253) (9.49)

and similar relations obtained from this one by permuting the set (1, . . . , 6).

Proof Adding up, we get

*̄1 + *̄2 + *̄3 =
((14, 26, 35) + (14, 56, 23) + (14, 25, 36)) + (

(16, 34, 25)

+(16, 35, 24) + (16, 45, 23)) + ((15, 46, 23) + (13, 25, 46) + (12, 46, 35)) .
Next we obtain

(14, 26, 35) + (14, 56, 23) + (14, 25, 36) = (142) (536) − (146) (532) + (146) (523)

−(143) (526) + (142) (563) − (143) (562) = −2(146) (253),

(16, 34, 25) + (16, 35, 24) + (16, 45, 23) = (163) (524) − (164) (523) + (165) (243)

−(163) (245) + (164) (325) − (165) (324) = −2(146) (253),

(15, 46, 23) + (13, 25, 46) + (12, 46, 35) = (465) (312) − (462) (315) + (463) (152)

−(461) (153) + (465) (123) − (463) (125) = 2
(
(465) (312) − (462) (315) + (463) (152)

)
.

Now, we use the Plücker relation (10.4)

(8 9 :) (;<=) − (8 9 ;) (:<=) + (8 9<) (:;=) − (8 9=) (:;<) = 0. (9.50)

It gives

(465) (312) − (462) (315) + (463) (152) = −(146) (253).

Collecting all of this together, we get the assertion. �

Let (?1, . . . , ?6) be a fixed ordered set of six points in P2. Consider the
following homogeneous cubic polynomials in coordinates G = (C0, C1, C2) of a
point in P2.

�1 = (12G) (36G) (45G) + (13G) (42G) (56G) + (14G) (26G) (35G) + (15G) (46G) (32G) + (16G) (34G) (25G) ,
�2 = (12G) (36G) (45G) + (13G) (25G) (46G) + (14G) (56G) (23G) + (15G) (26G) (43G) + (16G) (24G) (53G) ,
�3 = (12G) (35G) (46G) + (13G) (42G) (56G) + (14G) (52G) (36G) + (15G) (26G) (43G) + (16G) (45G) (23G) ,
�4 = (12G) (34G) (56G) + (13G) (46G) (25G) + (14G) (35G) (26G) + (15G) (36G) (24G) + (16G) (23G) (45G) ,
�5 = (12G) (34G) (56G) + (13G) (54G) (26G) + (14G) (52G) (36G) + (15G) (46G) (32G) + (16G) (24G) (53G) ,
�6 = (12G) (53G) (46G) + (13G) (54G) (26G) + (14G) (56G) (23G) + (15G) (36G) (24G) + (16G) (25G) (34G) .



154 Cubic Surfaces

The next theorem shows that hyperplane sections of the Segre cubic pri-
mal are cubics surfaces together with a choice of their Cremona’s hexahedral
equations.

Theorem 9.5.8. The rational map

Φ : P2 d P5, G ↦→ [(�1 (G), . . . , �6 (G)]

has the image given by the equations

I3
1 + I

3
2 + I

3
3 + I

3
4 + I

3
5 + I

3
6 = 0, (9.51)

I1 + I2 + I3 + I4 + I5 + I6 = 0,

01I1 + 02I2 + 03I3 + 04I4 + 05I5 + 06I6 = 0,

where (01, . . . , 06) are the values of (*̄1, . . . , *̄6) at the point set (?1, . . . , ?6).
They satisfy 01 + · · · + 06 = 0.

Proof Take G = (1, 0, 0), then each determinant (8 9G) is equal to the determi-
nant (8 9) for the projection of ?1, . . . , ?6 to P1. Since all the bracket-functions
are invariant with respect to SL(3) we see that any (8 9G) is the bracket-function
for the projection of the points to P1 with center at G. This shows that the rela-
tions for the functions*8 imply similar relations for the polynomials �8 . This is
an example of Clebsch’s transfer principle, which we discussed in Subsection
3.4.2. Let us find the additional relation of the form

∑5
8=0 08I8 = 0. Consider

the cubic curve

� = 01�1 (G) + · · · + 06�6 (G) = 0,

where 01, . . . , 06 are as in the assertion of the theorem. We have already noted
that (8 9 , :;, <=) are transformed by S6 in the same way as (8 9) (:;) (<=) up
to the sign representation. Thus, the expression

∑
8 08�8 (G) is transformed to

itself under an even permutation and is transformed to −∑
8 08�8 (G) under an

odd permutation. Thus, the equation of the cubic curve is invariant with respect
to the order of the points ?1, . . . , ?6. Obviously, � vanishes at the points ?8 .
Suppose we prove that � vanishes at the intersection point of the lines 〈?1, ?2〉
and 〈?3, ?4〉, then, by symmetry, it vanishes at the intersection points of all
possible pairs of lines, and hence contains five points on each line. Since � is
of degree 3 this implies that� vanishes on 15 lines; hence,� is identically zero
and we are done.
So, let us prove that the polynomial � vanishes at the point ? = 〈?1, ?2〉 ∩
〈?3, ?4〉. Recall from analytic geometry (or multi-linear algebra) that ? can be
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represented by the vector ({1×{2)×({3×{4) = ({1∧{2∧{3){4−({1∧{2∧{4){3 =
(123){4 − (124){3. Thus, the value of (8 9G) at ? is equal to

(8 9 ?) = (123) (8 94) − (124) (8 93) = (12) (8 9) (34). (9.52)

Applying Clebsch’s transfer principle to (9.44), we obtain

�1 (G) + �2 (G) = 4(12G) (36G) (45G), �4 (G) + �5 (G) = 4(12G) (34G) (56G),

�1 (G) + �6 (G) = 4(16G) (25G) (34G), �3 (G) + �6 (G) = 4(12G) (53G) (46G),

�2 (G) + �3 (G) = (15G) (26G) (43G).

This implies that �1 + �2, �4 + �5, �1 + �6, �3 + �6, �2 + �3 all vanish at ?.
Thus, the value of � at ? is equal to

(04 − 05)�4 (?) + (02 + 06 − 01 − 03)�6 (?)

= (04 − 05) (�4 (?) + �6 (?)) + (02 + 06 + 05 − 01 − 03 − 04)�6 (?)

= (04 − 05) (�4 (?) + �6 (?)) + (02 + 05 + 06) (�1 (?) + �3 (?)).

Here, we used that 01 + · · · + 06 = 0 and �1 (?) + �3 (?) + 2�6 (?) = 0. By
Lemma 9.5.7,

04−05 = (04 +01 +02) − (05 +01 +02) = 6(125) (436) −6(126) (435) = 6(12, 43, 56).

02 + 05 + 06 = 6(346) (125).

By using (9.44) and (9.52), we get

�4 (?) + �6 (?) = (51?) (42?) (36?) = (42?) (12, 34, 15) (12, 36, 34),

�1 (?) + �3 (?) = (13?) (42?) (56?) = (42?) (12, 56, 34) (12, 13, 34).

Collecting this together, we obtain that the value of 1
6� at ? is equal to

(12, 43, 56) (42?) [(12, 34, 15) (12, 36, 34) + (125) (436) (12, 13, 34)).

It remains to check that

(12, 34, 15) (12, 36, 34) + (125) (436) (12, 13, 34)

= (125) (314) (123) (364) + (125) (463) (123) (134) = 0.

�
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Recall that the Segre cubic contains 15 planes defined by equations (9.47)
Π8 9 ,:;,<=, where {8, 9} ∪ {:, ;} ∪ {<, =} = [1, 6]. The intersection of this plane
with the hyperplane � :

∑
08I8 = 0 is the union of three lines on the cubic

surface. In this way we see 15 lines. Each hyperplane �8 9 : I8 + I 9 = 0 cuts out
the Segre cubic S3 along the union of three planesΠ8 9 ,:;,<=,where the union of
{:, ;} and {<, =} is equal to [1, 6] \{8, 9}. The hyperplane � intersects �8 9∩S3
along the union of three lines. Thus, we see 15 tritangent planes and 15 lines
forming a configuration (153). This is a subconfiguration of the configuration
(275, 453) of 27 lines and 45 tritangent planes on a nonsingular cubic surface.
The Segre cubic is characterized by the property that it has 10 nodes.

Theorem 9.5.9. Let ( be a normal cubic hypersurface in P4 with 10 ordinary
double nodes. Then, ( is isomorphic to the Segre cubic primal.

Proof Choose projective coordinates such that one of the singular points is
the point [1, 0, 0, 0, 0]. The equation of ( can be written in the form

C0�(C1, . . . , C4) + �(C1, . . . , C4) = 0.

By taking the partials, we obtain that the degree 6 curve � = + (�, �) in P3

has nine singular points. Since [1, 0, 0, 0, 0] is an ordinary double point, the
quadratic form � is nondegenerate. Thus, the curve � is a curve of bidegree
(3, 3) on a nonsingular quadric + (�). It is a curve of arithmetic genus with
nine singular points. It is easy to see that this is possible only if � is the union
of six lines, two triples of lines from each of the two rulings. Since Aut(P1)
acts transitively on the set of ordered triple of points, we can fix the curve �.
Two cubics + (�) and + (�′) cut out the same curve � on + (�) if and only if
�′−� = �!, where ! is a linear form. Replacing C0 by C0 + !, we can fix �. �

It follows from the proof that no cubic hypersurface in P4 has more than
ten ordinary double points. Thus, the Segre cubic primal can be characterized,
up to projective equivalence, by the property that it has maximal number of
ordinary double points.

Proposition 9.5.10. Let ?1, . . . , ?5 be points in P3 in general linear position.
The linear system of quadrics through these points defines a rational map
P3 d P4 whose image is isomorphic to the Segre cubic primal.

Proof It is clear that the dimension of the linear system is equal to 4. To
compute the degree of the image, we have to compute the number of intersection
points of three general quadrics from the linear system and subtract the number
of base points. Three general quadrics intersect at eight points, subtracting
five, we get three. So, the image of the rational map is a cubic hypersurface
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( in P4. For each line ℓ8 9 = 〈?8 , ? 9〉, the general member of the linear system
intersects ℓ8 9 only at the points ?8 , ? 9 . This implies that the image of the line
in P4 is a point. It is easy to see that no other line in P4, except the ten lines
ℓ8 9 , is blown down to a point. This implies that the image of ℓ8 9 is an isolated
singular point of (. Let . → P3 be the blow-up of the points ?1, . . . , ?5.
The composition 5 : . → P3 d P4 defines a regular birational map from
. to (. It is a small resolution of ( in the sense that the pre-images of the
singular points are not divisors but curves. Let . ′ → . be the blow-up of the
proper transforms of the lines ℓ8 9 in . . The normal bundle of a line ℓ n P3 is
isomorphic to Oℓ (1) ⊕ Oℓ (1). It follows from some elementary facts of the
intersection theory (see [315], Appendix B.6) that the normal bundle of the
proper transform ℓ̄8 9 of ℓ8 9 is isomorphic to Oℓ̄8 9 (−1) ⊕ Oℓ̄8 9 (−1). This implies
that the pre-image of ℓ̄8 9 in . ′ is isomorphic to the product P1 × P1. Thus, the
composition . ′ → . → ( is a resolution of singularities with the exceptional
divisor over each singular point of ( isomorphic to P1 × P1. It is well known
that it implies that each singular point of ( is an ordinary double point of (.
Applying Theorem 9.5.9, we obtain that ( is isomorphic to the Segre cubic
primal. �

Remark 9.5.11. According to [302], the Segre cubic primal admits 1024 small
resolutions in the category of complex manifolds. By the action of S6 they
are divided into 13 isomorphism classes. Six of the classes give projective
resolutions.

9.5.4 Castenuovo-Richmond quartic threefold
The coefficients (01, . . . , 06) in Theorem 9.5.8 can be viewed as elements of
the 5-dimensional linear space + = ('6

2) (1). Since the functions *̄8 add up to
zero, 01 + · · · + 06 = 0. They map the moduli space P6

2 of ordered sets of six
points in P2 to the hyperplane + (∑ C8) in P5. We know that the action ofS6 on
P6

2 defines an irreducible representation of type (2, 2, 2) on+ and the functions
*̄8 are transformed according to the same representation. It is known that the
algebra '6

2 is generated by the space ('6
2) (1) and one element Υ from ('6

2) (2)
[159, §40], [234, Chapter I]. We have

Υ = (123) (145) (246) (356) − (124) (135) (236) (456). (9.53)

If we replace 6 with G and consider this as an equation of a conic in P2,
we observe that the expression vanishes when G = ?1, ?2, ?3, ?4, ?5. Thus, the
conic passes through the points ?1, ?2, ?3, ?4, ?5, G. So, the functionΥ vanishes
on the set of points (?1, . . . , ?6) lying on a conic. This is a hypersurface - in
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P6
2. One shows that Υ2 is a polynomial of degree 4 in generators of ('6

2) (1).
This implies that the image of - is a quartic hypersurface in P(+). Since
the map - → P(+) is S6-equivariant, the image of - can be given by a
S6-invariant polynomial in C8 . Since the representation + is self-dual, and is
obtained from the standard representation of S6 on + by composing with the
outer automorphism, the invariant functions are symmetric polynomials. So,
the equation of the image of - is equal to

B2
2 + _s4 = 0,

where B: =
∑5
8=0 C

:
8
. The coefficient _ can be found from the fact that the

hypersurface - is singular at the locus of strictly semi-stable points represented
by points sets ?8 = ? 9 and the remaining four points are collinear. The locus
consists of 15 lines. A simple computation shows that the only symmetric
quartic with this property is the quartic + (B2

2 − 4B4) (see [322], Theorem 4.1).
The quartic threefold CR4 in P5 given by the equations

5∑
8=0

C8 = 0, (
5∑
8=0

C28 )2 − 4
5∑
8=0

C48 = 0 (9.54)

will be called the Castelnuovo-Richmond quartic.

Corollary 9.5.12. The variety P6
2 is isomorphic to the double cover of P

4 ram-
ified over the Castelnuovo-Richmond quartic. It can be given by the equations

C25 + (
5∑
8=0

C28 )2 − 4
5∑
8=0

C48 = 0,
5∑
8=0

C8 = 0. (9.55)

in P(1, 1, 1, 1, 1, 2).

The involution (C0, . . . , C6) ↦→ (C0, . . . , C5,−C6) is the association involution.
Applying it to the projective equivalence class of a general point set (?1, . . . , ?6)
we obtain the projective equivalence class of a set (@1, . . . , @6) such that the
blow-ups of the two sets are isomorphic cubic surfaces, and the two geometric
markings are defined by a double-six. We refer for all of this to [234].
Consider the projective dual variety (S3)∨ of the Segre cubic primal. Since

S3 has ten ordinary nodes, the Plücker-Teissier formula shows that (S3)∨ is a
quartic hypersurface. The duals of the hyperplanes �8 9 define 15 points in the
dual P4. The duals of the planes Π8 9 ,:;,<= are 15 lines. They are singular lines
of CR4. The 15 lines and 15 points form a configuration (153) in the dual space.

Proposition 9.5.13. The dual variety of the Segre cubic primal is isomorphic
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to the Castelnuovo-Richmond quartic hypersurface:

CR4 � (S3)∨.

Proof Wemay assume that S3 is given by the equation
∑4
8=0 C

3
8
−(∑4

8=0 C8)3 = 0
in P4, and the group S6 acts by letting its subgroup S5 permute C0, . . . , C4 and
sending the transposition (56) to the transformation C8 ↦→ C8 , 8 ≤ 4, C4 ↦→ −!,
where ! = C0 + · · · + C4. The polar map is given by polynomials �8 = C28 − !2, 8 =

0, . . . , 4. After a linear change of the coordinates H8 in the target space

H′8 = H8 −
1
3
(H0 + H1 + H2 + H3 + H4), 8 = 0, . . . , 4,

we obtain that the linear representation ofS6 on the target space is isomorphic
to the representation on the C8’s. Thus, the dual hypersurface is isomorphic to a
quartic threefold in P5 given by the equations

5∑
8=0

H8 = 0, B2
2 + _B4 = 0,

where B: =
∑5
8=0 H

:
8
. Under the polar map, the 15 planes in S3 are mapped to

15 singular lines on the dual variety. A straightforward computation shows that
this implies that the parameter _ is equal to −4 (see [322], Theorem 4.1). �

9.6 Moduli Spaces of Cubic Surfaces

9.6.1 Projective invariants of cubic surfaces
The methods of the Geometric Invariant Theory (GIT) allow one to construct
the moduli space of nonsingular cubic surfacesMcub as an open subset of the
GIT-quotient

P((3 ((C4))//SL(4) = Proj
∞⊕
3=0

(3 ((3 ((C4)∨)∨)SL(4) . (9.56)

The analysis of stability shows that, except for one point, the points of this
variety represent the orbits of cubic surfaces with ordinary double points.
The exceptional point corresponds to the isomorphism class of a unique cubic
surface with three �2-singularities. It is isomorphic to the surface+ (GHI +|3).
So, the GIT-quotient is a natural compactification Mcub of the moduli space
Mcub. The computations from the classical invariant theory due to G. Salmon
[650], [654] and A. Clebsch [139] (see a modern exposition in [416]) show
that the graded ring of invariants is generated by elements �3 of degrees 3 =
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8, 16, 24, 32, 40 and 100 (a modern proof of completeness can be found in [52]).

The first four basic invariants are invariants with respect to the group � of
invertible matrices with the determinant equal to ±1. This explains why their
degrees are divisible by 8 (see [242]). The last invariant is what the classics
called a skew invariant, it is not an invariant of � but an invariant of SL(4).
There is one basic relation expressing �2

100 as a polynomial in the remaining
invariants. The graded subalgebra generated by elements of degree divisible by
8 is freely generated by the first five invariants. Since the projective spectrum of
this subalgebra is isomorphic to the projective spectrum of the whole algebra,
we obtain an isomorphism

Mcub � P(8, 16, 24, 32, 40) � P(1, 2, 3, 4, 5). (9.57)

This, of course, implies that the moduli space of cubic surfaces is a rational
variety.
The discriminant Δ of a homogeneous cubic form in four variables is ex-

pressed in terms of the basic invariants by the formula

Δ = (�2
8 − 64�16)2 − 214 (�32 + 2−3�8�24) (9.58)

(the exponent −3 is missing in Salmon’s formula, and also, the coefficient at
�32 was wrong, it is corrected in [204]).
We may restrict the invariants to the open Zariski subset of Sylvester non-

degenerate cubic surfaces, It allows one to identify the first four basic invari-
ants with symmetric functions of the coefficients of the Sylvester equations.
Salmon’s computations give

�8 = f
2
4 − 4f3f5, �16 = f1f

3
5 , �24 = f4f

4
5 , �32 = f2f

6
5 , �40 = f

8
5 ,

(9.59)
where f8 are elementary symmetric polynomials. Evaluating Δ from above, we
obtain a symmetric polynomial of degree 8 obtained from (9.33) by eliminating
the irrationality.
The invariant �40 restricts to (0001020304)8. It does not vanish on the set of

Sylvester nondegenerate cubic surfaces. Its locus of zeros is the closure of the
locus of Sylvester-degenerate nonsingular cubic surfaces.
The skew-invariant �100 is given by the equation

�100 = (0001020304)19 det

©«

00 01 02 03 04
0−1

0 0−1
1 0−1

2 0−1
3 0−1

4
02

0 02
1 02

2 02
3 02

4
03

0 03
1 03

2 03
3 03

4
1 1 1 1 1

ª®®®®®®¬
.
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It vanishes on the closure of the locus of nonsingular surfaces with an Eckardt
point. Observe that it vanishes if 08 = 0 9 and that agrees with Example 9.1.25.

Following [204] we can interpret (9.59) as a rational map

P(C4)/S5 � P(1, 2, 3, 4, 5) dMcub � P(1, 2, 3, 4, 5).

We have

f1 =
�16

f3
5
, f2 =

�32

f6
5
, f3 =

�2
24 − �8�40

f9
5

, f4 =
�24�40

f12
5

, f5 =
�2
40

f15
5
.

This gives the inverse rational map

Mcub d P(C4)/S5.

The map is not defined at the set of points where all the invariants �83 vanish
except �8. It is shown in [204], Theorem 6.1 that the set of such points is the
closure of the orbit of the Fermat cubic surface.
A cubic surface in P3 can be given as a hyperplane section of a cubic

threefold in P4 = |, |. In this way, the theory of projective invariants of cubic
surfaces becomes equivalent to the theory of projective invariants of PGL(5)
in the space (3 (,∨) × ,∨. The Cremona hexahedral equations of a cubic
surface represent a subvariety of this representation isomorphic toC6. Clebsch’s
transfer principle (for a modern explanation see [416]) allows one to express
projective invariants of GL(4) as polynomial functions on C6. The degree of an
invariant polynomial of degree < is equal to its weight 3</4. In particular, the
basic polynomials �8, . . . , �100 become polynomials �6, �12, �18, �24, �30, �75 in
(01, . . . , 06) of degrees indicated in the subscript. The first five polynomials
are symmetric polynomials in 01, . . . , 06, the last one is a skew-symmetric
polynomial. For example,

�6 = 24(4f3
2 − 3f2

3 − 16f2f4 + 12f6)

(see [155] Part III, p. 336, and [718]).
The skew-invariant �75 defining the locus of cubic surfaces with an Eckardt

points is reducible. It contains as a factor of degree 15 the discriminant∏
8< 9 (08 − 0 9 ) of the polynomial (- − 01) · · · (- − 06). The remaining factor

of degree 60 is equal to the product of 30 polynomials of the form

)1256;3 = (126) (356) (134) (253) − (136) (256) (123) (354), (9.60)

where we use Lemma 9.5.7 to express the product of two brackets as a function
08 + 0 9 + 0: . The vanishing of )1256;3 expresses the condition that the conic
through the points ?1, ?2, ?3, ?5, ?6 is touched at ?3 by the line 〈?3, ?4〉 (equiv-
alently, the tritangent plane defined by the lines 43, 240 −

∑
48 , 40 − 43 − 44 has
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an Eckardt point). Together with 15 polynomials *̄8 − *̄ 9 , this accounts for 45
hypersurfaces defining the locus of cubic surfaces with an Eckardt point. Note
that the formulas for *̄8 − *̄ 9 and )1256;3 allow one to compute the number
of Eckardt points on a surface given by Cremona’s hexahedral equations. For
example, if we have one pair of equal coefficients 08 , we have an Eckardt point
on the surface. However, it is not a necessary condition, because an Eckardt
point may arise from the vanishing of a function of type )1256;3. For example,
a cyclic cubic surface has nine Eckardt points, and they cannot be found only
from the equalities of the coefficients 08 .

We can also find the expression of the discriminant invariant Δ (9.58) in
terms of the coefficients 00, . . . , 05.

We know that the quartic symmetric polynomials f2
2 − 4f4 in 01, . . . , 06

equal to the squares of the function Υ from (9.53) representing points sets on a
conic. Thus, we see that the discriminant invariant in (00, . . . , 05), being of of
degree 24, must be a scalar multiple of the product of powers of (f2−4f4) and
powers of (08 + 0 9 + 0: ), 1 ≤ 8 < 9 < : ≤ 5 representing points sets with three
collinear points. The only way to make a symmetric polynomial of degree 24
in this way is to take all factors in the first power. We also use that f1 vanishes
on (01, . . . , 06). The computer computation gives the following expression in
terms of the elementary symmetric polynomials:

Δ = (f2
2 −4f4) (f4

3f
2
4 −2f2f

3
3f4f6+f2

2f
2
3f

2
5 +2f2

3f4f
2
5 −2f2f3f

4
5 +2f2f3f4f6−

8f2
3f

2
4f6−2f3

2f3f5f6+8f2f3f4f5f5f6+2f2
2f

2
5f6+f4

2f
2
6 −8f2

2f4f
2
6 +16f2

4f
2
6 ).

9.6.2 Moduli of cubic surfaces with some additional structure
One can also describe the moduli spaces of cubic surfaces equipped with some
additional structure. For example, we know that a choice of an ordered sixer
of lines on a cubic surface ( is equivalent to putting the equation of ( in
a Cremona’s hexahedral form. The moduli space of smooth cubic surfaces
together with an ordered sixer of lines is isomorphic to an open subspace of
the moduli space %6

2 which we discussed in subsection 9.5.1. It is equal to the
open subset of %6

2 equal to the image in the GIT-quotient of the open set of
sixtuples of points (?1, . . . , ?6) such that the their blow-up is a nonsingular
cubic surface. We denote this open subset byMgm

cub and call it the moduli space
of geometrically marked cubic surfaces. We already mentioned that the algebra
'6

2 of invariants on the space (P2)6 is generated by the symmetric algebra of



9.6 Moduli Spaces of Cubic Surfaces 163

the linear subspace ('6
2) (1) � C5 of invariants C0, . . . , C4 of degree and one

element of degree two Υ from (9.53). It is known that the square of Υ is a
polynomial �4 of degree four in C0, . . . , C4 with + (�4) projectively equivalent
to the Castelnuovo-Richmond quartic. More precisely, denotingΥ by C5, we get

H2
5 + �4 (C0, . . . , C4) = 0, (9.61)

where we rewrite equations (9.55) by eliminating H5 and replacing H8 with C8 .
The involution defined by changing the sign of C5 corresponds to the association
involution that switches the sixers in the double-sixer of lines. The equation
(9.61) gives a biregular model of the moduli space %6

2 as the double cover of P
4

ramified over the Castelnuovo-Richmond quartic. In modern terminology, it is
known as the Coble variety.
In fact, the explicit identity between bracket-functions gives the relation

between Υ and invariants from '6
2 in the form

Υ2−(−C2C3+C1C4+C0C1+C0C4−C0C2−C0C3−C20)
2−4C0C0C1C4 (−C0+C1−C2−C3+C4) = 0.

(9.62)
The change of variables

(G0, . . . , G5) = (C0, C1, C4,−C0 − C2,−C0 − C3)

leads to the equation of the Castelnuovo-Richmond quartic in the form

(G0G1 + G0G2 − G2G4)2 − 4G0G1G2 (G0 + G1 + G2 + G4) = 0.

This equation can be found in [423], where it is shown that the quartic hy-
persurface defined by this equation is isomorphic to a compactification of the
moduli space of principally polarized abelian surface with a 2-level structure.
For this reason, in modern literature, the Castelenuovo-Richmond quartic goes
under the name Igusa quartic.
The blow-up of a set of six points in general position is isomorphic to a cubic

surface (. Fixing an order defines a geometric basis of Pic((). The Weyl group
, (E6) acts transitively on geometric bases, and the birational quotient of P6

2
by the action of, (E6) is isomorphic toMcub. The forgetful map

P6
2 dMcub (9.63)

is of degree equal to #, (E6). The action of the subgroupS6 of the Weyl group
is easy to describe. It is a regular action on P6

2 via permuting the points. In
the model of P6

2 given by equation (9.55), the action is achieved by permuting
the coordinates C0, . . . , C5 according to the representation of type (2, 2, 2). The
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quotient is isomorphic to the double cover

(P6
2)/S6 → P4/S6 � P(2, 3, 4, 5, 6).

It is ramified over the image of the hypersurface + (Υ) ⊂ P6
2 parameterizing

points sets on a conic. The branch locus is the image of the Castelnuovo-
Richmond quartic CR4 in the quotient. It is isomorphic to P(2, 3, 5, 6). In the
cubic surface interpretation, the ramification locus is birationally isomorphic to
cubic surfaces with a node. This shows that the moduli space of singular cubic
surfaces is birationally isomorphic to P(2, 3, 5, 6), and hence, it is a rational
variety.
The quotient (P6

2)/S6 can be viewed as a birational model of the moduli
space of cubic surfaces together with a choice of a double-six. The previous
isomorphism shows that this moduli space is rational. In [44], by a beautiful
geometric construction, the authors deduce from this fact the rationality of
the moduli space of curves � of genus 2 equipped with a cyclic subgroup
of Jac(�) [3]. Note that the rationality of the moduli space of cubic surfaces
together with an unordered sixer of lines is unknown.
The functions *̄8 , taken as generators of the space ('6

2) (1), allow one to
identify some special loci in P6

2 with ones inMcub. For example, we know from
(9.43) that *̄1 − *̄2 = 0 represents the locus of points sets (?1, . . . , ?6) such
that the lines 〈?1, ?2〉, 〈?3, ?6〉, 〈?4, ?5〉 are collinear. This corresponds to a
cubic surface with an Eckardt point. Changing the order of points, this gives
15 hypersurfaces in P6

2 permuted by S6. Another example is a hypersurface
+ (*̄1 + *̄2 + *̄3). According to Lemma 9.5.7, it corresponds to the locus of
points set (?1, . . . , ?6), where the points ?1, ?4, ?6 or ?2, ?3, ?5 are collinear.
They are permuted by S6 and give 20 hypersurfaces in P6

2. The image of
these hypersurfaces under the map (9.63) is contained in the locus of singular
surfaces.
The Coble variety P6

2 is a singular variety on which the Weyl group , (E6)
acts only birationally. A smooth birational model of P6

2 on which , (E6) acts
regularly was constructed by I. Naruki [548]. It admits a birational morphism
to P6

2 which is a resolution of singularities of P6
2.

Another additional structure on a cubic surface is the fixing of a line on it.
Any geometrically marked subic surface ((, ℓ1, . . . , ℓ6) defined a cubic surface
marked with one line, namely ((, ℓ6). Since the stabilizer subgroup of, (E6) of
an exceptional vector is equal to, (D5), we can define the moduli spaceMline

cub
of one line marked cubic surfaces as the image ofMgm

cub under the quotient map

P6
2 → P6

2/, (D5).
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The quotientMline
cub = P6

2/, (D5) is a natural compactification ofMline
cub .

Fixing a line ℓ on a cubic surface, we obtain the pencil of residual conics.
Choose the projective coordinates G0, G1, G2, G3 such that ℓ = + (G0, G1). LetΠB,C
be a plane + (CG0 − BG1) containing the line. Write the equation � in the form

�3 (G0, G1) + �1 (G2, G3)G2
0 + 2�2 (G2, G3)G0G1

+�3 (G2, G3)G2
1 + �1 (G2, G3)G0 + �2 (G2, G3)G1 = 0.

The equation of the residual conic is

G2
1�3 (B, C) + (B2�1 (G2, G3) + 2BC�2 (G2, G3)

+C2�3 (G2, G3))G1 + B�1 (G2, G3) + C�2 (G2, G3) = 0.

One can rewrite the equation of the conic in the form

(G1, G2, G3) ·
©«
011 (B, C) 012 (B, C) 013 (B, C)
012 (B, C) 022 (B, C) 023 (B, C)
013 (B, C) 023 (B, C) 033 (B, C)

ª®®¬ ·
©«
G1
G2
G3

ª®®¬ , (9.64)

where 011 (B, C) is a binary form of degree 3, 012 (B, C) and 013 (B, C) are binary
forms of degree 2, and other entries are linear forms.We see that the determinant
�3 of the matrix is a polynomial of degree 5 and its zeros are correspond to
tritangent planes. The minor formed by the last two rows and two columns is
a polynomial �2 of degree two. It corresponds to conics tangent to the line ℓ.
This defines a map from the moduli space

Mline
cub →

(
P((5 (C2)) × P((2 (C2))

)
//SL(2),

where the GIT-quotient is taken with respect to the linearization defined by the
invertible sheaf ?∗1O(1) ⊗ ?

∗
2O(1). It is proven in [247, Theorem 3.6] that the

map is an isomorphism on the open subset parameterizing nodal cubic surfaces.

Let ℓ′ be another line on ( disjoint from ℓ. By acting with the groups, (D5),
we can fix it without changing ℓ. A smooth cubic surface with two disjoint lines
is isomorphic to (′ = BlΣ (F0), where Σ is a set of five points, with no two lying
on the same ruling and not all lying on a conic. The map ( → (′ is given by the
linear system | − 2 ( − ℓ − ℓ′ |. It maps the lines to rational normal cubics �1
and �2 intersecting at five points from Σ. We may assume that �1 is of bidegree
(2, 1) and �2 is of bidegree (1, 2). The divisor class � = �1 + �2 is divisible
by 3, and hence, there exists a cyclic cover - → (′ of degree 3 branched
along �. The usual Hurwitz-type formula gives l- � O- . The surface - ′ is
singular over the singular points of �, a minimal resolution of singularities - ′
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is a smooth K3 surface with five Dynkin curves of type �2 over the singular
points of - . In [247], the authors prove that the isomorphism class of the K3
surface - ′ does not depend on a choice of the lines ℓ and ℓ′. The assigning to
( the isomorphism class of the K3 surface and using the theory of periods of
K3 surfaces, one establishes an isomorphism and defines an isomorphism

Mcub � Γ\B4,

from a compactification of the moduli space of cubic surfaces to the quotient
of the four-dimensional complex ball by a certain discrete group of automor-
phisms. A similar uniformization theoremwas proved earlier in [8] by assigning
to ( = + (� (G0, G1, G2, G3)) the cubic hypersurface . = + (G3

4 + � (G0, G1, G2, G3)
and using the fact that the intermediate Jacobian variety Jac(. ). It is a princi-
pally polarized abelian variety of dimension five admitting complex multipli-
cation by Eisenstein integers. A compactification of the moduli space of such
abelian varieties is a complex ball quotient by the group Γ.
Another interesting additional structure on a cubic surface ( is a choice of

an anti-canonical divisor � that allows to view the pair ((, �) as a log-surface,
and applies the theory of stable pairs [6], [370], [461]. to construct the moduli
space of such pairs.
Remark 9.6.1. The story goes on. The group , (E6) acts birationally on the
space P6

2 by changing the markings and Coble describes in [155], Part III,
rational invariants of this action. He also defines a linear system of degree
10 of elements of degree three in '6

2 which gives a , (E6)-equivariant em-
bedding of a certain blow-up of P6

2 in P9 corresponding to some irreducible
10-dimensional linear representation of the Weyl group. For a modern treat-
ment of this construction we refer to [164] and [320]. Other, (E6)-equivariant
birational models of P6

2 were given in [548] and [370].

9.7 Automorphisms of Cubic Surfaces

In this section, we compute the groups of automorphisms of smooth cubic
surfaces.

9.7.1 Cyclic groups of automorphisms
Let, = , (E6) be the Weyl group of a simple root system of type E6. In sub-
section 8.2.4 we discussed the classification of conjugacy classes of elements in
the finite Weyl group, (E=). Table 8.2.4 contains the list of conjugacy classes
and their characterictic polynomials in Carter’s notation. Here, we specialize
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to the case, (E6). In this case, the classification can also be found in [165], or
[504]. We give the dictionary between the notations used in these sources.

Carter Atlas Manin order #Cent Trace Char

x ∅ 1A 21 1 51840 6 Φ6
1

x 4�1 2A 23 2 1152 -2 Φ4
2Φ

2
1

x 2�1 2B 22 2 192 2 Φ2
2Φ

4
1

�1 2C 216 2 1440 4 Φ2Φ
5
1

3�1 2D 217 2 96 0 Φ3
2Φ

3
1

x 3�2 3A 211 3 648 -3 Φ3
3

x �2 3C 26 3 216 3 Φ3Φ
4
1

x 2�2 3D 29 3 108 0 Φ2
3Φ

2
1

x �4 (01) 4A 24 4 96 2 Φ2
4Φ

2
1

x �1 + �3 4B 25 4 16 0 Φ2
2Φ4Φ

2
1

2�1 + �3 4C 219 4 96 -2 Φ3
2Φ4Φ1

�3 4D 218 4 32 2 Φ2Φ4Φ
3
1

x �4 5A 215 5 10 1 Φ5Φ
2
1

x �6 (02) 6A 212 6 72 1 Φ3Φ
2
6

x �4 6C 221 6 36 1 Φ2
2Φ6Φ

2
1

x �1 + �5 6E 210 6 36 -2 Φ2
2Φ6Φ3

x 2�1 + �2 6F 28 6 24 -1 Φ2
2Φ3Φ

2
1

�1 + �2 6G 27 6 36 1 Φ2Φ3Φ
3
1

�1 + 2�2 6H 222 6 36 -2 Φ2Φ
2
3Φ1

�5 6I 223 6 12 0 Φ2Φ3Φ6Φ1

x �5 8A 220 8 8 0 Φ2
2Φ8Φ1

x �6 (01) 9A 214 9 9 0 Φ9

�1 + �4 10A 225 10 10 -1 Φ2Φ5Φ1

x �6 12A 213 12 12 -1 Φ3Φ12

�5 (01) 12C 224 12 12 1 Φ2Φ6Φ4Φ1

Table 9.3 Conjugacy classes in, (E6)

Lemma 9.7.1. The conjugacy classes �1, 3�1, 2�1 + �2, �3, �1 + �2, �1 +
2�2, �5, �1 + �4, and �5 (01) are not realizable by an automorphism of a
nonsingular cubic surface.

Proof Each of the conjugacy classes �1, 3�1, 2�1 + �2, �3, �1 + �2, �1 +2�2
is conjugate to an element from the r subgroup, (E6)46 of, (E)6) isomorphic
to , (D5) that fixes the fundamental weight represented by the exceptional
vector 46. In the realization of this element as an automorphism f of (, we can
choose a geometric basis sich that f fixes the exceptional curve representing
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46. Blowing it down, we obtain an equivariant morphism to a del Pezzo surface
(′ of degree four. This shows that f is a lift of an automorphism of (′ realizing
one of these conjugacy classes. It follows from Table 8.9 that such conjugacy
classes are not realizable.
Looking at the characteristic polynomials, we check that the third power of

the conjugacy class of type �5 is of type 3�1, the fifth power of an element of
type �1 + �4 is of type �1, and the third power of an element of type �5 (01) is
of type 2�1 + �2. Since these powers are realizable, we see that the last three
conjugacy classes are not realizable too. �

The next theorem shows that all other conjugacy classes are realizable.

Theorem 9.7.2. Let ( be a nonsingular cubic surface admitting a non-trivial
automorphism f of order =. Then ( is equivariantly isomorphic to one of the
following surfaces + (�) with

f = [C0, C1, C2, C − 3] ↦→ [C0, n0= C1, n1= C2, n2= C3], n= = 4
2c8/=. (9.65)

order Type (0, 1, 2) equation fixed locus

2 4�1 (0, 0, 1) C23! (C0, C1, C2) + C
3
0 + C

3
1 + C

3
2 + UC0C1C2 cubic+1 pt

2 2�1 (0, 1, 1) C30 + C0 (C
2
1 + C

2
2 + C

2
3) + C1 (UC

2
2 + VC

2
3) line+3pts

3 3�2 (0, 0, 1) C30 + C
3
1 + C

3
2 + C

3
3 + UC0C1C2 C

3 �2 (0, 1, 1) C30 + C
3
1 + C

3
2 + C

3
3 6pts

3 2�2 (0, 1, 2) C30 + C
3
1 + C2C3 (C0 + UC1) + C

3
2 + C

3
3 3pts

4 �4 (01) (0, 2, 1) C2C
2
3 + C0C

2
2 + C1 (C1 + C0) (C1 + UC0) 5pts

4 �1 + �3 (2, 1, 3) C0C1C2 + C0 (C20 + C
2
1) + C1 (C

2
3 + C

2
2) 3pts

5 �4 (1, 2, 3) C0 (C0C2 + C21) + C3 (C
2
2 + C1C3) 4pts

6 �6 (02) (0, 3, 2) C30 + C
3
1 + C

3
3 + C

2
2 (UC0 + C1) 4pts

6 �4 (0, 2, 5) 53 (C0, C1) + C2C23 + C
3
2 4pts

6 �1 + �5 (4, 2, 1) C23C1 + C
3
0 + C

3
1 + C

3
2 + UC0C1C2 1pt

6 2�1 + �2 (4, 1, 3) C30 + UC0C
2
3 + C1C

2
2 + C

3
1 2pts

8 �5 (4, 3, 2) C30 + C0C
2
1 + C1C

2
3 + C

2
2C3 3pts

9 �6 (01) (4, 1, 7) C30 + C
2
3C1 + C

2
1C2 + C

2
2C3 3pts

12 �6 (4, 1, 10) C30 + C
3
1 + (C1C3 + C

2
2)C3 2pts

Table 9.4 Cyclic groups of automorphisms of a cubic surface

Proof Assume that = = 2. Then f extended to a projective automorphism
of P3. Its set � (f) of fixed points is a plane and a point or two skew lines.
In the first case, we may assume that f acts with (0, 1, 2) = (0, 0, 0, 1). The
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quation must be of the form C23 51 (C0, C1, C2, C3) + 53 (C0, C1, C2) = 0. The surface is
nonsingular if and only if the cubic curve + ( 53) is nonsingular. It remains to
reduce it to the Hesse form.
In the second case,f actswith (0, 1, 2) = (0, 1, 1).We know that (f contains

one of the lines in � (f). We may assume that this line is + (C0, C1). Thus, each
monomial entering in the equation of ( must contain C0 or C1 and C2, C3 enters
with exponent 2 or the monomial contains C2C3. This gives an equation of the
form

C0@1 (C2, C3) + C1@2 (C2, C3) + 63 (C0, C1) = 0

where @1, @2 are quadratic forms, and 63 is a binary form of degree 3. Since (
is nonsingular, 63 does not have multiple roots, so it can be reduced by a linear
change of variables to the form C30 + C0C

2
2 . The equation becomes of the form

C30 + C00(C1, C2, C3) + C11(C2, C3) = 0.

Since ( is nonsingular, + (C1, C2, C3) and + (1(C2, C3) are nonsingular. Thus, we
can reduce 02 to the form C21 + C

2
2 + C

2
3 . By a linear transformation of C2, C2 leaving

C22 + C − 32 unchanged, we can reduce 1(C2, C3) to the form UC2 (C3 + VC2). We see
that the new equation from the table

C30 + C0 (C
2
1 + C

2
2 + C

2
3) + C1 (UC

2
2 + VC

2
3) = 0

has 22-symmetry generated by involutions of type 2�1 and 4�1.

• f is of type 3�2.

In this case, 4((f) = 0, so (f is a plane section of (. We may assume that the
equation of the plane is G3 = 0, and f acts identically on the plane. Thus, the
equation must be

C33 + 63 (C0, C1, C2) = 0.

The surface is a cyclic cubic surface. Since + (63) must be nonsingular, we can
reduce it to a Hesse form to obtain the equation

C33 + C
3
0 + C

3
1 + C

3
2 + 0C0C1C2 = 0. (9.66)

• f is of type �2.

In this case, 4((f) = 6, so � (f) consists of two skew lines, and (f is the
intersection of the lines with (. We may assume that the lines are + (C0, C1) and
+ (C1, C2) and f acts identically on the first line and the action is with (0, 1, 2) =
(0, 0, 1, 1). The equation must be of the form 53 (C0, C1) + 63 (C1, C2) = 0. Since
( is nonsingular, the binary cubic forms have no multiple zeros, and we can
reduce the equation to the asserted form.
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• f is of type 2�2.

In this case, 4((f) = 3 and � (f) is again the union of a line and two points. It
follows that (f is the intersection of the line with (. We may assume that the
action is given by (0, 1, 2) = (0, 1, 2) and the isolated fixed points in � (f) are
[0, 0, 1, 0] and [0, 0, 0, 1]. Also, the line in � (f is + (C2, C3). This implies that
the monomials C32 and C33 enter in the equation. Other monomials containing C2
or C3 must contain C2C3. Thus, ( can be given by the equation

C32 + C
3
3 + C2C3! (C0, C1) + 63 (C0, C1) = 0.

To make it different from the previous case, we have to assume that ! ≠ 0. By
a further change of coordinates, we can reduce it to the equation

C32 + C
3
3 + C2C3 (C0 + 0C1) + C

3
0 + C

3
1 = 0. (9.67)

• f is of type �4 (01).

Note that f2 belongs to the conjugacy class 4�1. In this case, 4((f) = 5,
and (f consists of five points. Again, � (f) consists of a line and two points,
but the points lie on (. The square of the conjugacy class �4 (01) is of type
4�1. This implies that we may assume that f acts with (0, 1, 2) = (0, 2, 1). We
may assume that the line from � (f) is + (C2, C3) and the other fixed points are
[0, 0, 1, 0] and [0, 0, 0, 1]. Thus, any monomial containing C2 or C3 must be one
of the forms C2C23 , C

2
2C0, C

2
2C1. This leads to an equation

C2C
2
3 + C0C

2
2 + C1C

2
2 + 53 (C0, C1) = 0. (9.68)

Since ( is nonsingular, the coefficient of 53 at C31 is not zero. A linear change
C1 ↦→ 0C0 + 1C0 gives the equation from the table.

• f is of type �1 + �3.

In this case, 4((f) = 3, and f2 must be of type 2�1. Analyzing possible
actions of f on (f2 we find that (f consists of three points, two lie on the
line from � (f) and one is an isolated fixed point of f2. The linear action of f
has four distinct eigenvalues. So, we may assume that f acts with (0, 1, 2) =
(2, 1, 3) and the fixed point from � (f) not lying in ( is [1, 0, 0, 0]. Other fixed
points are [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1]. The monomial containing C0
must be C30 , C0C1C2, C0C

2
1 . After scaling the coordinates, we get the equation 2

_C0C2C3 + C1 (C22 + C
2
3) + C

3
0 + C0C

2
1 = 0. (9.69)

If we choose the new coordinates to transform C2C3 to C22 + C
2
3 , after rescaling, we

get the asserted equation.
2 This corrects the mistake in [252], where the equation defines a singular surface.
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• f is of type �4.

In this case, 4((f) = 4, so (f has four isolated points or consists of a line ℓ
and a point G0. In the latter case, a general line joining the pointG0 with a point
on the line must be tangent to ( at G0. Thus, the plane spanned by the line and
the point G0 is a tritangent plane. There are five tritangent planes containing ℓ,
and f has one fixed plane among them. Hence, f fixes all other planes. So, (f
consists of four points. Since f acts on an invariant line with two fixed points,
we obtain that no three points are collinear. Thus, we may assume that the fixed
points are [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] and the linear action of
f has four distinct eigenvalues. It follows that we may assume that f acts with
(0, 1, 2) = (1, 2, 3). In the linear action of f in The linear space (3 ((C4)∨)
of a homogeneous polynomial of degree 3 decomposes into the direct sum of
eigensubspaces of the linear action of f with eigenvalues n58. One checks that
the polynomials from the eigenspaces +_ with the eigenvalue n 85, 8 ≠ 2 define
singular surfaces. The invariant monomials from the subspace+n 2

5
are C20C2, C0C

2
1 ,

and C22C3, C1C
2
3 . After scaling the coordinates, we get the equation from the table.

• f is of type �6 (02).

Similarly to the previous case, we prove that (f) cannot contain a line and
hence consists of three points spanning P3. Note that f3 is of type 4�1 and
f2 is of type 3�2. So, we can choose coordinates to assume that f acts with
(0, 1, 2) = (0, 3, 2) and the equation is in the form (9.66)

C33 + 63 (C0, C1, C2) = 0.

The only way tomake it invariant is to assume that 63 = C
2
2 (0C0+1C1)+ℎ3 (C0, C1).

Reducing ℎ3 to the sum of cubics, and scaling C2, we get the equation from the
table.

• f is of type �4.

In this case, f3 is of type 4�1 and f2 is of type �2. We may assume that
f acts with (0, 1, 2) = (0, 2, 5). The equation contains invariant monomials of
degree 3 in C0, C1 and the monomials C2C23 , C

3
2 . This leads to the equation from

the table.

• f is of type �1 + �5.

In this case, 4((f) = 1, and hence, (f consists of one point. It follows that
� (f) consists of four points, hence the linear action of f has four distinct
eigenvalues. We check that f3 is of type 4�1 and f2 is of type 2�2. This
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implies that we may assume that f acts with (0, 1, 2) = (4, 2, 1). The invariant
monomials are C30 , C0C1C2, C1C

2
3 , C

3
1 , C

3
2 . This leads to the equation from the table.

• f is of type 2�1 + �2.

As in case �6 (02), we show that (f does not contain a line. Hence it consists
of two points. We check that f2 is of type �2 and f3 is of type 2�1. This shows
that we may assume that f acts with (0, 1, 2) = (4, 1, 3). So, again the linear
action has four distinct eigenvalues. The invariant monomials are C30 , C0C

2
3 , C1C

2
2

and C31 . After scaling, we get the equation from the table.

• f is of type �5.

The trace is equal to 0, so (f consists of three points. This is an element of
type �4 (01) of order 4 that acts with (0, 1, 2) = (0, 2, 1). It follows that the
three fixed points are not on a line, hence f acts linearly with four distinct
eigenvalues. We may assume that f acts with (0, 1, 2) = (4, 3, 2). Computing
invariant monomials, we find that, after scaling the coordinates, we get the
equation from the table.

• f is of type �6 (01).

The cube of f is an element of type 3�1. So, the surface ( is a cyclic surface
+ (C33 + 53 (C0, C1, C2)). To get an automorphism of order 9 we 53 to admit a linear
automorphism such that 5 is an eigenvector with eigenvalue n3. It is easy to see
that 53 can be reduced to the form C20C1 + C

2
1C2 + C

2
2C0, and we get the equation

from the table.

• f is of type �6.

The cube of f is an element of type �6 (02). It acts linearly with (0, 1, 2) =
(2, 1, 3), The square of f is an element of type �6 (02) that acts with (0, 1, 2) =
(0, 3, 2). This easily implies that we may assume that f acts with (0, 1, 2) =
(4, 1, 10). The invariant monomials are C30 , C

3
1 , C

2
2C3, C1C

2
3 , So, after scaling we get

the equation from the table.
�

9.7.2 Maximal subgroups of, (E6)
We will need some known information about the structure of the Weyl group
of type �6.

Theorem 9.7.3. Let � be a maximal subgroup of , (E6). Then, one of the
following cases occurs:
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(i) � � 24 : S5 of order 24 · 5! and index 27;
(ii) � � S6 × 2 of order 2 · 6! and index 36;
(iii) � � 31+2

+ : 2S4 of order 1296 and index 40;
(iv) � � S3 oS3 � 33 : (S4 × 2) of order 1296 and index 40;
(v) � �

(
2.(A4 × A4).2

)
.2 of order 1152 and index 45.

Here, we use the notations from theAtlas [165], whereZ/=Z = =, semi-direct
products: � n � = � : �, 31+2

+ denotes the group of order 33 of exponent ?,
and �.� denote a group with normal subgroup isomorphic to � and quotient
isomorphic to �.
Let us identify the group, (E6) with theWeyl group of the lattice ⊥

(
defined

by a nonsingular cubic surface (. We recognize a maximal subgroup from (i)
as the stabilizer subgroup of a line on (.
A maximal subgroup � of type (ii) is the stabilizer subgroup of a double-six.

Its subgroup isomorphic to S6 permutes lines in one of the sixes.
I do not know a geometric interpretation of a maximal subgroup of type (iii).
By Theorem 9.1.6, a maximal subgroup of type (iv) is isomorphic to the

stabilizer subgroup of a Steiner complex of triads of double-sixes. It also
coincides with a stabilizer subgroup of the root sublattice of type �2 + �2 + �2.
There is another interpretation of this subgroup in terms of a compactification
of the moduli space of cubic surfaces (see [548]).
A maximal subgroup of type (v) is the stabilizer subgroup of a tritangent

plane.

Proposition 9.7.4. , (E6) contains a unique normal subgroup, (E6) ′. It is a
simple group and its index is equal to 2.

Proof Choose a root basis (U1, . . . , U6) in the root lattice E6. Let B0, . . . , B5 be
the corresponding simple reflections. Each element | ∈ , (E6) can be written
as a product of the simple reflections. Let ℓ(|) be the minimal length of the
word needed to write | as such a product. For example, ℓ(1) = 0, ℓ(B8) = 1.
One shows that the function ℓ : , (E6) → Z/2Z, | ↦→ ℓ(|) mod 2 is
a homomorphism of groups. Its kernel , (E6) ′ is a subgroup of index 2. The
restriction of the function ℓ to the subgroup� � S6 generated by the reflections
B1, . . . , B5 is the sign function. Suppose  is a normal subgroup of , (E6) ′.
Then,  ∩ � is either trivial or equal to the alternating subgroup A6 of index
2. It remains to use the fact that � × (A) is a maximal subgroup of, (E6) and
B is a reflection that does not belong to, (E6) ′. �

Remark 9.7.5. Recall that we have an isomorphism (9.8) of groups

, (E6) � O(6, F2)−.
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The subgroup, (E6) ′ is isomorphic to the commutator subgroup of O(6, F2)−.
Let us mention other realizations of the Weyl group, (E6).

Proposition 9.7.6.
, (E6) ′ � SU4 (2),

where SU4 (2) is the group of linear transformations with determinant 1 of F4
4

preserving a nondegenerate Hermitian product with respect to the Frobenius
automorphism of F4.

Proof Let F : G ↦→ G2 be the Frobenius automorphism of F4. We view the
expression

3∑
8=0

C38 =

3∑
8=0

C8F(C8)

as a nondegenerate Hermitian form in F4
4. Thus, SU4 (2) is isomorphic to the

subgroup of the automorphism group of the cubic surface ( defined by the
equation

C30 + C
3
1 + C

3
2 + C

3
3 = 0

over the field F̄2. The Weyl representation (which is defined for nonsingular
cubic surfaces over fields of arbitrary characteristic) of Aut(() defines a homo-
morphism SU4 (2) → , (E6). The group SU4 (2) is known to be simple and of
order equal to 1

2 |, (E6) |. This defines an isomorphism SU4 (2) � , (E6) ′. �

Proposition 9.7.7.

, (E6) � SO(5, F3), , (E6) ′ � SO(5, F3)+,

where SO(5, F3)+ is the subgroup of elements of spinor norm 1.

Proof Let + = E6/3E6. Since the discriminant of the lattice E6 is equal to 3,
the symmetric bilinear form defined by

〈{ + 3E6, | + 3E6〉 = −({, |) mod 3

has non-trivial radical. It has a 1-dimensional radical spanned by the vector

{0 = 2"1 + "1 + 2"4 + "5 mod 3E6.

The quadratic form @({) = ({, {) mod 3 defines a nondegenerate quadratic
form on +̄ = +/F3{0 � F5

3. We have a natural injective homomorphism
, (E6) → O(5, F2). Comparing the orders, we find that the image is a sub-
group of index 2. It must coincide with SO(5, F3). Its unique normal subgroup
of index 2 is SO(5, F3)+. �
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Remark 9.7.8. Let � be a vector space of odd dimension 2: + 1 over a finite
field F@ equipped with a nondegenerate symmetric bilinear form. An element
{ ∈ � is called a plus vector (resp.minus vector) if ({, {) is a square in F∗@ (resp.
is not a square ∈ F∗@). The orthogonal group O(�) has three orbits in |� |: the set
of isotropic lines, the set of lines spanned by plus vectors, and the set of lines
spanned by minus vectors. The isotropic subgroup of a non-isotropic vector {
is isomorphic to the orthogonal group of the subspace {⊥. The restriction of
the quadratic form to {⊥ is of Witt index : if { is a plus vector and of Witt
index : − 1 if { is a minus vector. Thus, the stabilizer group is isomorphic to
O(2:, F@)±. In our case, when : = 2 and @ = 3, we obtain that the minus
vectors correspond to cosets of roots in + = E6/3E6, hence the stabilizer of
a minus vector is isomorphic to the stabilizer of a double-six, i.e. a maximal
subgroup of , (E6) of index 36. The stabilizer subgroup of a plus vector is a
group of index 45 and isomorphic to the stabilizer of a tritangent plane. The
stabilizer of an isotropic plane is a maximal subgroup of type (iii), and the
stabilizer subgroup of an isotropic line is a maximal subgroup of type (iv).

9.7.3 Groups of automorphisms
Now, we are ready to classify all possible subgroups of automorphisms of a
nonsingular cubic surface.
In Table9.5 below we use the notation H3 (3) for the Heisenberg group of

unipotent 3 × 3-matrices with entries in F3.

Theorem 9.7.9. The following is the list of all possible groups of automor-
phisms of nonsingular cubic surfaces.

Here, in the third row, U is a root of the equation 8G6 + 20G3 − 1 = 0, and, in
the next row, 0 ≠ U and also 0 ≠ 04, otherwise the surface is of Type II. Similar
restrictions must be made for other parameters. There are also conditions for
the surface to be nonsingular.

Proof Let ( be a nonsingular cubic surface.

• Suppose Aut(() contains an element from the conjugacy class �2.

Table 9.4 shows that ( is isomorphic to the Fermat cubic + (C30 + C
3
1 + C

3
2 + C

3
3).

Obviously, its automorphism group contains a subgroup � isomorphic to 33 :
S4. To see that it coincides with this group, we use that � is a subgroup of
index 2 of a maximal subgroup � of type (iv). As we noted before, the group �
is the stabilizer subgroup of a root lattice �2 + �2 + �2. It contains an element
represented by a reflection in one copy of the lattice and the identity on other
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Type Order Structure equation Eckardt

I 648 33 : S4 C30 + C
3
1 + C

3
2 + C

3
3 18

II 120 S5 C20 C1 + C
2
1 C2 + C

2
2 C3 + C

2
3 C0 10

III 108 H3 (3) : 4 C30 + C
3
1 + C

3
2 + C

3
3 + 60C1C2C3 9

IV 54 H3 (3) : 2 C30 + C
3
1 + C

3
2 + C

3
3 + 60C1C2C3 9

V 24 S4 C30 + C0 (C
2
1 + C

2
2 + C

2
3 ) + 0C1C2C3 6

VI 12 S3 × 2 C32 + C
3
3 + 0C2C3 (C0 + C1) + C

3
0 + C

3
1 4

VII 8 8 C23 C2 + C
2
2 C1 + C

3
0 + C0C

2
1 1

VIII 6 S3 C32 + C
3
3 + 0C2C3 (C0 + 1C1) + C

3
0 + C

3
1 3

IX 4 4 C23 C2 + C
2
2 C1 + C

3
0 + C0C

2
1 + 0C

3
1 1

X 4 22 C30 + C0 (C
2
1 + C

2
2 + C

2
3 ) + C1 (0C

2
2 + 1C

2
3 ) 2

XI 2 2 C20 (C1 + 1C2 + 0C3) + C
3
1 + C

3
2 + C

3
3 + 0C1C2C3 1

Table 9.5 Groups of automorphisms of cubic surfaces

copies. This element has a trace equal to 4, so belongs to the conjugacy class
�1. It is not realized by an automorphism of a nonsingular cubic surface. This
gives Type I from the table.

• Suppose Aut(() contains an element of order 5.

Table 9.4 shows that ( is isomorphic to the surface

C20C1 + C
2
1C2 + C

2
2C3 + C

2
3C0 = 0. (9.70)

Consider the embedding of ( in P4 given by the linear functions

I0 = C0 + C1 + C2 + C3, (9.71)
I1 = nC0 + n3C1 + n4C2 + n2C3,

I2 = n
2C0 + nC1 + n3C2 + n4C3,

I3 = n
3C0 + n4C1 + n2C2 + nC3,

I4 = n
4C0 + n2C1 + nC2 + n3C3,

where n5 = 1. One checks that
∑4
8=0 I8 = 0 and (9.70) implies that also

∑4
8=0 I

3
8
=

0. This shows that ( is isomorphic to the following surface in P4:

4∑
8=0

I3
8 =

4∑
8=0

I8 = 0. (9.72)
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These equations exhibit a subgroup � of automorphisms of ( isomorphic to
S5.

Assume that � is a proper subgroup of Aut((). Note that the only maximal
subgroup of, (E6) that contains a subgroup isomorphic toS5 is a subgroup �
of type (i) or (ii). If � is of type (i), then Aut(() contains one of the involutions
from the subgroup 24. The group� is isomorphic to theWeyl group, (D5). We
encountered it as the Weyl group of a del Pezzo surface of degree 4. It follows
from the proof of Proposition 8.6.9 that nontrivial elements of the subgroup 24

are conjugate to the composition of reflection BU1 ◦ BU5 . Its trace is equal to 1.
Thus, this element belongs to the conjugacy class 3�1 that is not realized by
an automorphism. If � is of type (ii), then � is contained in S6 or contains
an element that commutes with �. It is immediately seen that the surface does
not admit an involution that commutes with all elements in �. Since S5 is a
maximal subgroup of S6, in the first case, we obtain that Aut(() contains a
subgroup isomorphic to S6. However, a cyclic permutation 6 of order 6 acts
on E6 by cyclically permuting vectors e1, . . . , e6 and leaving e0 invariant. Its
trace is equal to 1. This shows that 6 belongs to the conjugacy class �1 + 2�1
and is not realized by an automorphism. This gives us type II from Table 9.5.

• Suppose Aut(() contains an element of type 3�2.

From Table 9.4, we infer that ( is a cyclic surface which is projectively
isomorphic to the surface go ( = + (C30 + C

3
1 + C

3
2 + C

3
3 + 0C1C2C3). Obviously, it

contains a group of automorphisms � isomorphic to 3.(32 : 2). The central
element of order 3 is realized by the matrix diag[1, 1, 1, n3]. The quotient
group is isomorphic to a group of projective automorphisms of the plane cubic
� = ( ∩ + (C3). In the group law, the group is generated by translations by
points of order 3 and the inversion automorphism. For special parameter 0 we
get more automorphisms corresponding to a harmonic or an equianharmonic
cubic. Let us see that there is nothing else in Aut((). An equianharmonic cubic
is projectively isomorphic to the Fermat cubic, so it will give Type I. The
remaining two cases will give us surfaces of types III and IV.
The subgroup 3.32 is isomorphic to the Heisenberg group H3 (3) of upper-

triangular 3×3matrices with entries in F3 with 1 at the diagonal. In the notation
of the Atlas, it is group 31+2

+ . We see that it is contained in the only maximal
subgroup which is of type (iii). The element generating the center of 31+2

+ is
a central element in the maximal subgroup. Thus, any extra automorphism
commutes with the central element, and hence descends to an automorphism
of the cubic curve �. This proves that � = Aut(().

• Suppose Aut(() contains an element of type �5.
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Consulting Table 9.4, we infer that ( is isomorphic to the surface of type VII.
The only maximal subgroup of, (E6), which contains an element of order 8,
is a subgroup � of order 1152. As we know it stabilizes a tritangent plane. In
our case, the tritangent plane is C2 = 0. It has the Eckardt point G = [0, 0, 0, 1].
Thus, � = Aut(() is a subgroup of the linear tangent space )G(. If any element
of � acts identically on the set of lines in the tritangent plane, then it acts
identically on the projectivized tangent space, and hence � is a cyclic group.
Obviously this implies that � is of order 8. Assume that there is an element
g which permutes cyclically the lines. Let � ′ be the subgroup generated by f
and g. Obviously, g3 = f: . Since � does not contain elements of order 24, we
may assume that : = 2 or 4. Obviously, g normalizes 〈f〉 since otherwise we
have two distinct cyclic groups of order 8 acting on a line with a common fixed
point. It is easy to see that this is impossible. Since Aut(Z/8Z)) � (Z/2Z)2 this
implies that f and g commute. Thus, fg is of order 24, which is impossible.
This shows that Aut(() � Z/8Z.

By taking powers of elements of order 9 and 12, we obtain surfaces with
automorphism groups which we have already classified. So, we may assume
that Aut(() does not contain elements of order 5, 8, 9, and 12. In a similar
manner, we may assume that any element of order 3 belongs to the conjugacy
class 2�2, and an element of order 6 belongs to the conjugacy class of type
�6 (01) or �1 + �5.

• Suppose Aut(() contains an element of type 2�2.

Assume Aut(() contains an element f from conjugacy class 3�. Then, the
surface is isomorphic to + (C32 + C

3
3 + C2C3 (C0 + 0C1) + C

3
0 + C

3
1). We assume that

0 ≠ 0. Otherwise, the surface is a cyclic surface and admits an automorphism
of type 3�2. This has been already taken care of. Let g be an involution which
exchanges the coordinates C2 and C3. The subgroup � generated by f and g is
isomorphic to S3. The involution g is of type 4�1, it is a harmonic homology.
Thus, the three involutions in � define three Eckardt points G1, G2, G3. They are
on the line ℓ = + (C0) ∩+ (C1). The group � acts faithfully on the set of the three
Eckardt points.
By Proposition 9.1.27, a triple of collinear Eckardt points defines a subgroup

ofAut(() isomorphic toS3. If the triples are disjoint, then the subgroups do not
have a common involution, hence they intersect only at the identity. Otherwise,
they have one common involution.
Suppose we have an automorphism 6 ∉ �. If 6�6−1 = �, then, replacing 6

with the product with some involution in �, we may assume that 6 commutes
with f. This shows that we can simultaneously diagonalize the matrices rep-
resenting 6 and f. It is immediately checked from the equation of the surface
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that this is possible only if 0 = 1 and 6 is the transformation that switches C0
and C1. So, if 6�6−1 ≠ �, we obtain that Aut(() is isomorphic toS3 or 2×S3.
This gives types VI and VIII.
Let us assume that � ′ = 6�6−1 ≠ �. Then, � ′ is the subgroup defined

by the three Eckardt points H8 on the line ℓ′ = 6(ℓ). Since each of the invo-
lutions corresponding to the points G8 commutes with at most one involution
corresponding to the points H8 , we obtain that one of the lines 〈G8 , H 9〉 contains
the third Eckardt point and defines a subgroup of Aut(() isomorphic to S3
which has one common involution with �. Replacing � ′ with this subgroup,
we may assume that the lines ℓ and ℓ′ intersect at G1 = H1 and, hence span a
plane Π. Each of the pairs of lines (〈G8 , H2〉, 〈G8 , H3〉), 8 = 2, 3, contains at most
one line contained in (. Applying Proposition 9.1.27, we either get a complete
quadrilateral in Π with six Eckardt points as its vertices and its three diagonals
lying on ( or there are more than nine Eckardt points on Π. Note that a plane
section of ( not containing a line on ( intersects the 27 lines at 27 points, an
Eckardt point is counted with multiplicity 3. This shows that an irreducible
plane section of ( contains ≤ 9 Eckardt points. If it contains a line with two
Eckardt points on it, then the number is, at most, seven. This eliminates the
second possibility. It follows from the structure of, (�6) that the first possibil-
ity gives that the four subgroups isomorphic to S3 defined by the sides of the
quadrilateral generate a subgroup � of Aut(() isomorphic to S4. The list of
maximal subgroups of, (�6) shows that either � = Aut((), or Aut(() � S5
and hence ( is the Clebsch diagonal surface given by equation (9.70).

• Suppose Aut(() contains an element of type 2�1.

We proved in Theorem 9.7.2 that the equation of the surface can be reduced
to the equation of a cubic surface of type XI from the table. Its automorphism
group contains the subgroup generated by involutions of different types. For
general parameters 0, 1, the automorphism group cannot be larger than 22. In
fact, the existence of an additional automorphism will reduce the number of
parameters.

• Suppose Aut(() contains an element of order 4.

If f belongs to the conjugacy class �1+�3, then Table 9.4 shows that Aut(()
contains an additional automorphism of type 2�2. This leads to a surface of
type V with Aut(() � S4. If f is of type �4 (01), then the equation of the
surface is (9.68). This is a cubic surface of type IX with a cyclic group of
automorphisms of order 4. Here, we have to assume that the surface is not
isomorphic to the surface of type VII. It follows from the proof of the next
Corollary that in all previous cases, except type VII, the automorphism group
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is generated by involutions of type 4�1. Thus, our surface cannot be reduced
to one of the previous cases.
Finally, it remains for us to consider the following case.

• Aut(() contains only involutions of type 4�1, i.e. harmonic homologies.

Suppose we have two such involutions. They define two Eckardt points G1
and G2. By Proposition 9.1.27, if the line 〈G1, G2〉 is contained in (, then the
involutions commute. If the line does not belong to (, then the two involutions
generate S3 that contains an element of order 3. Suppose we have a third
involution defining a third Eckardt point G3. Then, we have a tritangent plane
formed by the lines 〈G8 , G 9〉. Obviously, it coincides with each tritangent plane
corresponding to the Eckardt points G8 . This contradiction shows that we can
have at most two commuting involutions. This gives the last two cases of our
theorem. The condition that there is only one involution of type 2� is that the
line+ (C1 + C2 + 0C3) does not pass through an inflection point of the plane curve
+ (C0). �

The next corollary can be checked case by case, and its proof is left as an
exercise.

Corollary 9.7.10. Let Aut(()> be the subgroup of Aut(() generated by invo-
lutions of type 2�. Then, Aut(()> is a normal subgroup of Aut(() such that
the quotient group is either trivial or a cyclic group of order 2 or 4. The order
4 could occur only for the surface of type VII. The order 2 occurs only for
surfaces of type IX.

Finally, we explain the last column of Table 9.5. We already noticed that
the Fermat surface has 18 Eckardt points. A harmonic involution of a surface
of type II corresponds to a transposition in S5. Their number is equal to 10.
The surfaces of types III and IV are cyclic surfaces, we have already explained
that they have nine Eckardt points. This can be also confirmed by looking
at the structure of the group. A surface of type VI has four Eckardt points.
They correspond to four harmonic symmetries. Three of them come from the
subgroup S3 and the fourth one corresponds to the central involution. Of
course, we can see it in the equation. The fourth Eckardt point is [1,−1, 1,−1].
Surfaces of type VII and IX have one involution of type 2A. Surfaces of type
X have two and surfaces of type XI have only one.
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9.7.4 The Clebsch diagonal cubic
We have already defined the Clebsch diagonal surface in Example 9.1.20 as a
nonsingular cubic surface given by equations

C30 + · · · + C
3
3 − (C0 + C1 + C2 + C3)

3 = 0.

In the proof of Theorem 9.7.9 we found an explicit isomorphism to the surface
in P3 with equation

C20C1 + C
2
1C2 + C

2
2C3 + C

2
3C0 = 0.

The Sylvester pentahedron of the surface is+ (C0C1C2C3 (C0+ C1+ C2+ C3)). Its ten
vertices are the Eckardt points. Each edge is a line going through three Eckardt
points.
Each face of the pentahedron intersects the tetrahedron formed by the other

four faces along three diagonals, they are lines on ( (this explains the name of
the surface). In this way, we get 15 lines, the S5-orbit of the line

C0 = C1 + C2 = C3 + C4 = 0.

The remaining 12 lines form a double-six. Their equations are as follows.
Let [ be a primitive 5-th root of unity. Let f = (01, . . . , 04) be a permuta-
tion of {1, 2, 3, 4}. Each line ℓf spanned by the points [1, [01 , . . . , [04 ] and
[1, [−01 , . . . , [−04 ] belongs to the surface. This gives 12 = 4!/2 different lines.
Here, is one of the ordered double-sixes formed by the twelve lines

(ℓ1234, ℓ1243, ℓ1324, ℓ1342, ℓ1432, ℓ1423), (ℓ2413, ℓ2431, ℓ3412, ℓ3421, ℓ2312, ℓ2321).
(9.73)

The Schur quadric & corresponding to this double-six is the quadric

C20 + · · · + C
2
4 = 0, C0 + · · · + C4 = 0.

For example, the polar line of ℓ1234 is the line given by equations
4∑
8=0

[8C8 =

4∑
8=0

[−8C8 =
4∑
8=0

C8 = 0

and, as is easy to see, it coincides with the line ℓ2413. The Schur quadric
intersects ℓ8 9:; at two points [1, [8 , [ 9 , [: , [;] and [1, [−8 , [− 9 , [−: , [−;].

The groupS5 (as well as its subgroupS4) acts transitively on the double-six.
The group A5 stabilizes a sixer.

The intersection & ∩ ( is the Bring curve of genus 4 given by the equations

C30 + · · · + C
3
4 = C

2
0 + · · · + C

2
4 = C0 + · · · + C4 = 0.

Its automorphism group is isomorphic toS5. The image of this curve under the
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map c1 : ( → P2 which blows down the first half (ℓ1, . . . , ℓ6) of the double-six
(9.73) is the Schur sextic with nodes at the points ?8 = c(ℓ8).

Consider the stereographic projection from the 2-dimensional sphere S2 :
{(0, 1, 2) ∈ R3 : 02 + 12 + 22 = 1} to the Riemann sphere (0, 1, 2) ↦→ I = 0+81

1−2 .
A rotation around the axis R(0, 1, 2) about the angle 2q corresponds to the
Möbius transformation

I ↦→ (U + 8V)I − (W − X8)(W + X8)I + (U − V8) ,

where U = cos q, V = 0 sin q, W = 1 sin q, X = 2 sin q. The icosahedron group
A5 acting by rotation symmetries of an icosahedron inscribed in S2 defines an
embedding ofA5 in the group PGL(3). One can choose the latter embedding as
a subgroup generated by the following transformations (,*,) of orders 5, 2, 2
(with ( ◦ ) of order 3) (represented by the Möbius transformations

( : I ↦→ [2I, * : I ↦→ −I−1, ) : I ↦→ ([ − [
4)I + [2 − [3

([2 − [3)I + [4 − [
.

The orbit of the north pole of the sphere under the corresponding group of
rotations is an icosahedron. It is known that the icosahedron group has three
exceptional orbits in P1 with stabilizers of orders 5, 3, 2. They are the sets of
zeros of the homogeneous polynomials

Φ12 = I0I1 (I10
1 + 11I5

0I
5
1 − I

10
0 ),

Φ20 = −(I20
0 + I

20
1 ) + 228(I15

1 I
5
0 − I

5
1I

15
0 ) − 494I10

1 I
10
0 ,

Φ30 = I
30
0 + I

30
1 + 522(I25

1 I
5
0 − I

5
1I

25
0 ) − 10005(I20

1 I
10
0 + I

10
1 I

20
0 ).

The isomorphism SU(2)/±1→ SO(3) defines a 3-dimensional complex linear
representation ofA5 which embedsA5 in PGL(3). In an appropriate coordinate
system, it leaves the conic  = + (C20 + C1C2) invariant. The group A5 acts in the
plane in such a way that the Veronese map

[I0, I1] ↦→ [−I0I1, I
2
0,−I

2
1] (9.74)

is equivariant. The six lines

+ (C1), + (C2), + (C0 + [8C1 + [−8C2), 8 = 0, 1, 2, 3, 4, (9.75)

cut out on  the set

+ (Φ12) = {0,∞, [8 ([ + [−1), [8 ([2 + [−2)}, 8 = 0, . . . , 4.

The poles of the six lines with respect to the conic is the set of six points

[1, 0, 0], [1, 2[8 , 2[−8], 8 = 0, 1, 2, 3, 4.
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They are called the fundamental set of points.
The image of the rationalmapP2 d P4 defined by the five cubics (�0, �1, �2, �3, �4)

�8 = [
8 (4C20C2 − C1C

2
2) + [

28 (−2C0C22 + C
3
1) + [

38 (2C0C21 − C
3
2) + [

48 (−4C20C1 + C
2
1C2),

is the Clebsch diagonal cubic given by equations (9.12) (see [457], II, 1, §5).
The equation of the Schur sextic (also called the Klein sextic in this case) is

� = �2
0 + · · · + �

2
4 = 10(4C20C2 − C1C

2
2) (−4C20C1 + C

2
1C2) + 10(−2C0C22 + C

3
1) (2C0C

2
1 − C

3
2)

= −20(8C40C1C2 − 2C20C
2
1C

2
2 + C

3
1C

3
2 − C0C

5
1 − C0C

5
2) = 0.

The 12 intersection points of the sextic with the conic  are the images of the
12 roots of Φ12 under the Veronese map (9.74). The images of 30 roots of Φ30
are the intersection points of  with the union of 15 lines joining pairwise the
six fundamental points. Let � be the product of the linear forms defining these
lines

[aC1 − [−8C2, (1 +
√

5)C0 + [8C1 + [−8C2, (1 −
√

5)C0 + [−8C1 + [8C2.

The images of these lines under the map given by the polynomials �8’s are the
15 diagonals of the Clebsch cubic. The images of 20 roots of Φ20 are cut out
by an invariant curve of degree 10 given by equation

� = �2
0 + �1�2

where

�0 = −8C30C1C2 + 6C0C21C
2
2 − C

5
1 − C

5
2 ,

�1 = 16C30C
2
2 − 8C20C

3
1 − 4C0C1C32 + 2C41C2,

�2 = 16C20C
3
1 − 8C20C

3
2 − 4C0C31C2 + 2C1C42

are quintic polynomials which define the A5-equivariant symmetric Cremona
transformation of degree 5. The curve + (�) (with the source and the target
identified via the duality defined by the conic  ) is equal to the image of the
conic  . The curve + (�) is a rational curve which has each fundamental point
as its singular points of multiplicity 4 with two ordinary cuspidal branches.
The four polynomials of degrees 2, 6, 10 and 15

� = C20 + C1C2, �, �, �

generate the algebra C[C0, C1, C2]A5 of invariant polynomials. The relation be-
tween the fundamental invariants is

�2 = −1728�5 + �3 + 720���3 − 80�2�2� + 64�3 (5�2 − ��)2
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(see [457], II, 4, §3). The even part of the graded ring C[C0, C1, C2]A5 is freely
generated by polynomials �, �, � of degrees 2, 6, 10, so that

P2/A5 � Proj C[C0, C1, C2]A5 � P(1, 3, 5).

Remark 9.7.11. The Clebsch diagonal surface and the Bring curve of genus 4
play a role in the theory of modular forms. Thus, the Bring curve is isomorphic
to the modular curve H/ℓ, where ℓ = ℓ0 (2) ∩ ℓ(5). It is also realized as the
curve of fixed points of the Bertini involution on the del Pezzo surface of degree
1 obtained from the elliptic modular surface ((5) of level 5 by blowing down
the zero section [78], [546]. The blow-up of the Clebsch diagonal surface at its
10 Eckardt points is isomorphic to a minimal resolution of theHilbert modular
surfaceH ×H/Γ, where Γ is the 2-level principal congruence subgroup of the
Hilbert modular group associated to the real field Q(

√
5) [398]. The curve �

of degree 10 is isomorphic to the image of the diagonal in H × H under the
involution switching the factors [399].

Remark 9.7.12. The pencil of curves of degree 6 _�3 + `� = 0 has remarkable
properties, studied by R. Winger [809]. It has 12 base points, each point is
an inflection point for all members of the pencil. The curves share common
tangents at these points. They are the six lines (9.75). These lines count for 12
inflection tangents and 24 bitangents of each curve. The pencil contains three
singular fibers: the curve + (�), the union of the six lines, and a rational curve
, with ten nodes forming an orbit of A5 with stabilizer subgroup isomorphic
to S3. The union of the lines corresponds to the parameter [_, `] = [1,−1].
The rational sextic corresponds to the parameter [_, `] = [32, 27]. Other
remarkable members of the pencil correspond to the parameter [1 + U,−U],
where U = (−9 ± 3

√
−15)/20. These are the nonsingular Valentiner sextics

with automorphism group isomorphic to A6.

Let PSO(3) � SO(3) be the group of projective automorphisms leaving
invariant the conic  = + (C20 + C1C2). Via the Veronese map, it is isomorphic to
PSL(2). We have described explicitly the embedding ] : A5 ↩→ SO(3). There
are two non-isomorphic 3-dimensional irreducible representations of A5 dual
to each other. Note that the transformations ( and (−1 are not conjugate in A5,
so that the dual representations are not isomorphic. In our representation, the
trace of ( is equal to 1 + [ + [−1 = 1 + 2 cos 2c/5 = (1 +

√
5)/2 and, in the dual

representation, the trace of ( is equal to 1+[2+[−2 = 2 cos 4c/5 = (1−
√

5)/2.
The polar lines of the fundamental set of six points define the fundamental set
in the dual representation. Thus, each subgroup of SO(3) isomorphic to A5
defines two sets of fundamental points, one in each of the two dual planes. We
call them icosahedral sets of six points. The group SO(3) acts by conjugation
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on the set of subgroups isomorphic to A5, with two conjugacy classes. This
shows that the set of dual pairs of fundamental sets is parameterized by the
homogeneous space SO(3)/A5.

The six fundamental lines (9.75) form a polar hexagon of the double conic
+ (�2) as the following identity shows (see [535], p. 261):

30(C20 + C1C2)
2 = 25C40 +

∑
(C0 + [8C1 + [−8C2)4.

This shows that an icosahedral set in the dual plane is a polar hexagon of �2.
Hence,VSP(�2, 6) contains a subvariety isomorphic to the homogeneous space
SO(3)/A5. As we have explained in Subsection 1.4.4, this variety embeds into
the Grassmannian � (3,H3), where H3 is the 7-dimensional linear space of
cubic harmonic polynomial with respect to the quadratic form @ = C20 + C1C2.
Its closure is the subvariety of � (3,H3)f of � (3,H3) of subspaces isotropic
to the Mukai skew forms fl,�2 . It is a smooth irreducible Fano variety of
genus 12 (see [535]). A compactification of the homogeneous space SO(3)/A5
isomorphic to� (3,H3)f was constructed earlier by S.Mukai andH.Umemura
in [532]. It is isomorphic to the closure of the orbit of SL(2) acting on the
projective space of binary forms of degree 12.
Recall that the dual of the 4-dimensional space of cubic polynomials vanish-

ing at the polar hexagon is a 3-dimensional subspace ofH3 which is isotropic
with respect to Mukai’s skew forms. It follows from Theorem 6.3.33 that the
varietyVSP(�2, 6) is the closure of SO(3)/A5 and isomorphic to a Fano variety
of genus 12.
Observe that the cubic polynomials �a are harmonic with respect to the

Laplace operator corresponding to the dual quadratic form @∨ = − 1
4b

2
0 + b1b2.

Thus, each fundamental set in the plane defines a four-dimensional subspace of
the space ′H3 of harmonic cubic polynomials with respect to @∨. This space is
dual to the 3–dimensional subspace inH3 defined by the dual fundamental set
with respect to the polarity pairingH3 ×′H3 → C. Note that the intersection
of two four-dimensional subspaces in the 7-dimensional space ′H3 of cubic
polynomials is nonzero. Thus, for each of the two fundamental sets, there
is a harmonic polynomial vanishing at both sets. One can show that the set
of harmonic cubic curves vanishing at infinitely many fundamental sets is
parameterized by a surface in the dual projective space P3 which is isomorphic
to the Clebsch diagonal cubic surface under the map given by the Schur quadric
(see [402]).
We refer to [512] for more of the beautiful geometry associated to the Bring

curve and the Clebsch diagonal cubic surface.
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Exercises
9.1 Let )st be the standard Cremona transformation, considered as a biregular auto-

morphism f of a nonsingular del Pezzo surface ( of degree six. Show that the
orbit space (/〈f〉 is isomorphic to a Cayley four-nodal cubic surface.

9.2 Show that a cubic surface can be obtained as the blow-up of five points on P1×P1.
Find the conditions on the five points such that the blow-up is isomorphic to a
nonsingular cubic surface. Show that each pair of skew lines on a cubic surface
is intersected by five skew lines which can be blown down to 5 points on a
nonsingular quadric.

9.3 Compute the number of <-tuples of skew lines on a nonsingular surface for
< = 2, 3, 4, 5.

9.4 Suppose a quadric intersects a cubic surface along the union of three conics.
Show that the three planes defined by the conics pass through three lines in a
tritangent plane.

9.5 Let Γ and Γ′ be two rational normal cubics in P3 containing a common point ?.
For a general plane Π through ? let Π ∩ Γ = {?, ?1, ?2},Π ∩ Γ′ = {?, ?′1, ?

′
2}

and 5 (?) = 〈?1, ?1〉 ∩ 〈?′1, ?
′
2〉. Consider the set of planes through ? as a

hyperplane � in the dual space (P3)∨. Show that the image of the rational map
� d P3,Π ↦→ 5 (?) is a nonsingular cubic surface and every such cubic surface
can be obtained in this way.

9.6 Show that the linear system of quadrics in P3 spanned by quadrics which contain
a degree 3 rational curve on a nonsingular cubic surface ( can be spanned by the
quadrics defined by theminors of amatrix defining a determinantal representation
of (.

9.7 Show that a cubic surface with three nodes is isomorphic to a surface + (|3 +
|(GH + HI + GI) + _GHI). Show that the surface admits an Eckardt point if and
only if _ = ±

√
−2.

9.8 Let ℓ be a line on a del Pezzo cubic surface and � be its proper transform on
the corresponding weak del Pezzo surface - . Let N be the sublattice of Pic(-)
spanned by irreducible components of exceptional divisors of c : - → (. Define
the multiplicity of ℓ by

<(ℓ) = #{f ∈ O(Pic(-)) : f(�) − � ∈ N}
#{f ∈ O(Pic(-)) : f(�) = �} .

Show that the sum of the multiplicities is always equal to 27.
9.9 Show that the 24 points of intersection of a Schur quadric with the corresponding

double-six lie on the Hessian of the surface ([29], vol. 3, p. 211).
9.10 Consider a Cayley-Salmon equation ;1;2;3 − ; ′1;

′
2;
′
3 = 0 of a nonsingular cubic

surface.
(i) Show that the six linear polynomials ;8 , ; ′8 satisfy the following linear equa-

tions
3∑
9=1

08 9 ; 9 =

3∑
9=1

0′8 9 ;
′
9 = 0, 8 = 1, 2, 3,

where
3∑
8=1

08 9 = 0, 9 = 1, 2, 3, 081082083 = 0
′
810
′
820
′
83, 8 = 1, 2, 3.
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(ii) Show that for each 8 = 1, 2, 3 the nine planes

08 9 ;8 − 0′8 9 ;
′
9 = 0, 8, 9 = 1, 2, 3

contain 18 lines common to three planes. The 18 lines obtained in this way
form three double-sixes associated to the pair of conjugate triads defined by
the Cayley-Salmon equation.

(iii) Show that the Schur quadrics defined by the three double-sixes can be
defined by the equations

3∑
9=1

02 903 9 ;
2
9 −

3∑
9=1

02 903 9 ;
′
9
2 = 0,

3∑
9=1

01 903 9 ;
2
9 −

3∑
9=1

01 903 9 ;
′
9
2 = 0,

3∑
9=1

01 902 9 ;
2
9 −

3∑
9=1

01 902 9 ;
′
9
2 = 0

([229]).
9.11 Prove the following theorem of Schläfli: given five skew lines in P3 and a line

intersecting them all, there exists a unique cubic surface that contains a double-six
including the seven lines ([230]).

9.12 For each type of a cubic surface with nontrivial group of automorphisms, find its
Cremona hexahedral equations.

9.13 Show that the pull-back of a bracket-function (8 9 :) under the Veronese map is
equal to (8 9) ( 9 :) (8:).

9.14 Let ( be a weak del Pezzo surface and ' be a Dynkin curve on (. Show that (
admits a double cover ramified only over ' if and only if the sum of irreducible
components in ' is divisible by 2 in the Picard group. Using this, classify all del
Pezzo surfaces which admit a double cover ramified only over singular points.

9.15 Show that the Segre cubic primal is isomorphic to a tangent hyperplane section
of the cubic fourfold with nine lines given by the equation GHI − D{| = 0 (the
Perazzo primal [579], [30]).

9.16 Consider the following Cayley’s family of cubic surfaces in P3 with parameters
;, <, =, : .

|[G2 + H2 + I2 + |2 + (<= + 1
<=
)HI + (;= + 1

;=
)GI + (;< + 1

;<
)GH

+(; + 1
;
)G| + (< + 1

<
)H| + (= + 1

=
)I|] + :GHI = 0.

Find the equations of 45 tritangent planes whose equations depend rationally on
the parameters ;, <, =, : .

9.17 Show that the polar quadric of a nonsingular cubic surface with respect to an
Eckardt point is equal to the union of two planes.

9.18 Show that the equation of the dual of a nonsingular cubic surface can be written
in the form �3 + �2 = 0, where � and � are homogeneous forms of degree 4
and 6, respectively. Show that the dual surface has 27 double lines and a curve of
degree 24 of singularities of type �2.
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9.19 Show that any normal cubic surface can be given as the image of a plane under a
Cremona transformation of P3 of degree three.

9.20 Show that a general cubic surface can be projectively generated by three nets of
planes.

9.21 Show that the Eckardt points are singular points of the parabolic curve of a
nonsingular cubic surface.

9.22 Show that each line on a nonsingular cubic surface intersects the parabolic curve
with multiplicity two.

9.23 Find anA5-invariant determinantal representation of the Clebsch diagonal cubic.

9.24 Use the Hilbert-Burch Theorem to show that any White surface (see Remark
9.1.22) is isomorphic to a determinantal surface, in P= of degree

(=
2
)
.

9.25 Let P be a pencil of quadrics in P3 with the nonsingular locus. For a general
point G ∈ P3, consider the polar planes %G (&) of quadrics & ∈ P.
(i) Show that the union of conics %G (&) ∩& is a nonsingular cubic surface (.
(ii) Show that the line ℓ = ∩&∈P%G (&) is contained in (.
(iii) Let G ∈ &0 for a unique &0 ∈ P and &1, . . . , &4 be the four singular quadrics

in the pencil. Show that the five planes %G (&8), 8 = 0, . . . , 4, are the five
tritangent planes of ( that contain ℓ.

(iv) Show that any nonsingular cubic surfaces arises in this way.
(see [730, p. 16], where the cubic surface is called die Pampolare of the point G).

Historical Notes

Good sources for the historical references here are [384], [515], and [577].
According to [515], the study of cubic surfaces originates from the work of J.
Plücker [593] on the intersection of quadrics and cubics and L. Magnus [503]
on maps of a plane by a linear system of cubics.
However, it is customary to think that the theory of cubic surfaces starts

from Cayley’s and Salmon’s discovery of 27 lines on a nonsingular cubic
surface [104], [646] (see the history of discovery in [653], n. 529a, p. 183).
Salmon’s proof was based on his computation of the degree of the dual surface
[645] and Cayley’s proof uses the count of tritangent planes through a line,
the proof we gave here. It is reproduced in many modern discussions of cubic
surfaces (e.g. [610]). The number of tritangent planes was computed by [646]
and Cayley [104]. Cayley gives an explicit four-dimensional family of cubic
surfaces with a fixed tritangent plane (see Exercise 9.17). In 1851 J. Sylvester
claimed, without proof, that a general cubic surface can be written uniquely
as a sum of five cubes of linear forms [740]. This fact was proven ten years
later by A. Clebsch [141]. In 1854, L. Schläfli discovered 36 double-sixes on
a nonsingular cubic surface. This and other results about cubic surfaces were
published later in [658]. In 1855, H. Grassmann proved that three collinear nets
of planes generate a cubic surface [355]. The fact that a general cubic surface
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can be obtained in this way (this implies a linear determinantal representation
of the surface) has a long history. In 1862, F. August proved that a general cubic
surface can be generated by three pencils of planes [26]. L. Cremona deduces
from this that a general cubic surface admits Grassmann’s generation [186]. In
1904, R. Sturm pointed out that Cremona’s proof had a gap. The gap was fixed
by C. Segre in [694]. In the same paper, Segre proves that any normal cubic
surface that does not contain a singularity of type �6 has a linear determinantal
representation. In 1956, J. Steiner introduced the Steiner systems of lines [726].
This gives 120 essentially different Cayley-Salmon equations of a nonsingular
cubic surface. The existence of which was first shown by Cayley [104] and
Salmon [646].
Cubic surfaces with a double line were classified in 1862 by A. Cayley

[112] and, via a geometric approach, by Cremona [180]. In 1863, Schläfli [657]
classified singular cubic surfaces with isolated singularities, although most of
these surfaceswere already known toG. Salmon [646]. The old notations for �: -
singularities are �2 for �1 (conic-node), �:+1 (biplanar nodes) for �: , :, > 1
and *:+1 (uniplanar node) for �: . The subscript indicates the decrease of the
class of the surface. In [118] Cayley gives a combinatorial description of the sets
of lines and tritangent planes on singular surfaces. He also gives the equations
of the dual surfaces. Even before the discovery of 27 lines, in a paper of 1844
[102], Cayley studied a four-nodal cubic surface that we now call a Segre cubic
surface. He finds its equation and realizases the suarfe as the image of the plane
under the map given by the linear system of cubic curves passing through the
vertices of a complete quadrilateral. Schläfli and later F. Klein [454] and L.
Cremona [186] also studied the reality of singular points and lines. Benjamino
Segre’s book [683] on cubic surfaces treats real cubic surfaces with special
detail.
In 1866, A. Clebsch proved that a general cubic surface can be obtained as

the image of a birational map from the projective plane given by cubics through
six points [144]. Using this, he showed that Schläfli’s notation 08 , 18 , 28 9 for 27
lines correspond to the images of the exceptional curves, conics through five
points, and lines through two points. This important result was independently
proven by Cremona in his memoir [186] of 1868, which got him the prize
(shared with R. Sturm) offered by R. Steiner through the Royal Academy of
Sciences of Berlin in 1864 and awarded in 1866. Some of the results from
this memoir are discussed from a modern point of view in [246]. Many results
from Cremona’s memoir were independently proved by R. Sturm [730], and
many of them were announced by Steiner (who did not provide the proofs).
In particular, Cremona proved the result, anticipated in the work of Magnus,
that any cubic surface can be obtained as the image of a plane under the cubo-
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cubic birational transformation of P3. Both of the memoirs contain a lengthy
discussion of Steiner systems of tritangent planes. We refer to [246] for a
historical discussion of Cremona’s work on cubic surfaces.
Cremona’s hexahedral equations were introduced by L. Cremona in [194].

Although known to T. Reye [616] (in geometric form, no equations can be found
in his paper), Cremonawas the first to prove that the equations are determined by
a choice of a double-six. The Joubert functions were introduced by P. Joubert in
[434]. Richmond was the first to use these functions to give a parameterization
of the Segre cubic primal S3 (Theorem 9.5.5) [623]. It later appears in the
work of Coble [155], who proved the completeness of the system of Joubert
invariants of six ordered points on P1. The Segre cubic primal arose in the work
of C. Segre on cubic threefolds with singular points [686]. Its realization as
the GIT-quotient space of ordered sets of six points in P1 is due to Coble. The
dual quartic hypersurface was first studied by G. Castelnuovo [96] and later, in
greaat detail, by H. Richmond [623]. It was called the Castelnuovo quartic by
E. Ciani [134]. The relation of the Cremona-Richmond quartic hypersurface
Cr4 to the theory of invariant of 6 ordered points in P2 (Theorem 9.5.8) is
due to Coble [155]. The parameterization of S3 by quadrics in P3 through five
reference points (Proposition 9.5.10) is due to Richmond (see also [29, Vol.
IV, Chapter 5] and [30], where one can find many facts about the Segre cubic
and the Castelnuovo-Richmond quartic). We will return to the geometry of the
Segre cubic primal in the next chapter.
F. Eckardt gives a complete classification of cubic surfaces with Eckardt

points (called Ovalpoints in [654]) in terms of their Hessian surface [270]. He
also considers singular surfaces. A modern account of this work can be found
[204]. The Clebsch Diagonalfläche with 10 Eckardt points was first studied by
A. Clebsch in [149]. It has an important role in Klein’s investigation of the
Galois group of a quintic equation [457].
The classification of possible groups of automorphisms of nonsingular cubic

surfaces was initiated by S. Kantor [438]. Some of the mistakes in his classifi-
cation were later corrected by A. Wiman [808]. However, Wiman also made
a small mistake in his claim that, in case VII, the group is a dihedral group of
order 12. Segre’s book [683] contains several mistakes, for example, he missed
case VII. The first complete, purely algebraical, classification was given in 1997
by T. Hosoh [409]. Apparently he was not aware of Wiman’s paper.
In 1897, J. Hutchinson showed in [418] that the Hessian surface of a nonsin-

gular cubic surface could be isomorphic to the Kummer surface of the Jacobian
of a genus 2 curve. This happens if the invariant �8�24 + 8�32 vanishes [637].
The group of birational automorphisms of the Hessian of a cubic surface was
described only recently [241].
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The relationship of the Gosset polynomial 221 to 27 lines on a cubic surface
was first discovered in 1910 by P. Schoute [662] (see [757]). The Weyl group
, (E6) as the Galois group of 27 lines was first studied by C. Jordan [432].
Together with the group of 28 bitangents of a plane quartic isomorphic to

, (E7), it is discussed in many classical text-books in algebra (e.g. [799], B.
II). S. Kantor [438] realized the Weyl group , (E=), = ≤ 8, as a group of
linear transformations preserving a quadratic form of signature (1, =) and a
linear form. A. Coble [155], Part II, was the first who showed that the group is
generated by the permutations group and one additional involution. Apparently,
independently of Coble, this fact was rediscovered by P. Du Val [266]. We refer
to [70] for the history of Weyl groups, reflection groups, and root systems. Note
that the realization of the Weyl group as a reflection group in the theory of Lie
algebras was obtained by H. Weyl in 1928, ten years later after Coble’s work.
As we have already mentioned in the previous chapter, the Gosset polytopes

were discovered in 1900 by T. Gosset [350]. The notation =21 belongs to him.
They were rediscovered later by E. Elte and H. S. M. Coxeter (see [178]), but
only Coxeter realized that their groups of symmetries are reflection groups.
The relationship between the Gosset polytopes =21 and curves on del Pezzo
surfaces of degree 5 − = was found by Du Val [266]. This fundamental paper
is the origin of a modern approach to the study of del Pezzo surfaces by means
of root systems of finite-dimensional Lie algebras [217], [504].
Volume 3 of Baker’s book [29] contains a lot of information about the

geometry of cubic surfaces. Yu. Manin’s book [504] is a good source on cubic
surfaces with emphasis on the case of a non-algebraically closed base field. It
has been used as one of the main sources in the study of the arithmetic of del
Pezzo surfaces.



10
Line Geometry

10.1 Grassmannians of Lines

10.1.1 Generalities about Grassmannians
In subsection 2.4.1, we introduced the notion of a Grassmannian bundle
� (:, E), where E is a locally free sheaf of rank = + 1 on a scheme (. Here,
we specialize and assume that E is a linear space � of dimension = + 1 over C
(mots of what follows works over any field k). For brevity of the notation, we
denote � (:, �) by G. The canonical exact sequence (2.33) becomes

0→ SG → �∨G → QG → 0, (10.1)

where we returned to the standard notations for the universal subbundle SG
and the universal quotient bundle QG. The surjective map �∨

G
→ QG defines a

closed embedding P(QG) ↩→ P(�∨
G
) = G× |� |. Passing to the closed fibers, we

see that the fibers of the projective bundle P(QG) are subspaces of dimension
: in � , or dually, quotient spaces of �∨ of dimension = + 1− : . The dual exact
sequence

0→ Q∨G → �G → S∨G → 0, (10.2)

shows that P(S∨
G
) is a projective subbundle of P(�G) = P(�) × G. Its fibers

are projective subspaces of dimension : − 1 of P(�), or, linear :-dimensional
subspaces of �∨. If we choose a basis in � , the notations become � (<, = + 1)
or �<−1 (P=).

The surjection �∨
G
→ QG defines a surjection

∧< �∨
G
→ ∧: QG. Since the

latter sheaf is an invertible sheaf, we obtain the Plücker embedding

G ↩→ |
<∧
� |. (10.3)

.

192
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A choice of a basis in � and a choice of a basis ({1, . . . , {<) of ! ∈ � (<, �)
defines a matrix �! of size < × (= + 1) and rank < whose 8-th row consists
of coordinates of the vector {8 . Two such matrices � and � define the same
linear subspace if and only if there exists a matrix � ∈ GL(<) such that
�� = �. In this way, � (<, �) can be viewed as the orbit space of the action of
GL(<) on the open subset of Mat< (<, = + 1) of rank < matrices. By the First
Fundamental Theorem of Invariant Theory, the orbit space is isomorphic to the
projective spectrum of the subring of the polynomial ring in

(=+1
<

)
variables

-8 9 , 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ = + 1, generated by the maximal minors of the
matrix - = (-8 9 ). A choice of an order on the set of maximal minors (we
will always use the lexicographic order) defines an embedding of the orbit

space in P
(=+1
<

)
−1. It is isomorphic to the Plücker embedding. In coordinates

(C0, . . . , C=) ∈ (�∨)=+1, the maximal minors -81...8< can be identified with <-
vectors ?81...8< = C81∧. . .∧C8< ∈

∧< �∨ = (∧< �)∨. Considered as coordinates
in the vector space

∧< � , they are called the Plücker coordinates.
The maximal minors -81...8: satisfy the Plücker equations

<+1∑
:=1
(−1): ?81 ,...,8<−1 , 9: ? 91 ,..., 9:−1 , 9:+1 ,..., 9<+1 = 0, (10.4)

where (81, . . . , 8<−1) and ( 91, . . . , 9<+1) are two strictly increasing subsets of
[1, = + 1]. These relations are easily obtained by considering the left-hand-side
expression as an alternating (< + 1)-multilinear function on C<. It is known
that these equations define � (<, = + 1) scheme-theoretically in P(=+1< )−1 (see,
for example, [404], vol. 2).
The open subset � (?� ) ∩ � (<, = + 1) is isomorphic to the affine space

A<(=−<) . The isomorphism is defined by assigning to a matrix � defining !,
the point (I� ), where I� = |�� |/|�� | taken in some fixed order. This shows
that � (<, = + 1) is a smooth rational variety of dimension <(= + 1 − <).
Let

?G : /G := P(QG) → |� |, @G : /G = P(QG) → G (10.5)

denote the compositions of the closed embedding P(QG) ↩→ |� | × G with the
projections to |� | and G.
The fiber of the projection ?G over a point G = [{] ∈ |� | can be canonically

identified with � (< − 1, �/C{). Recall that the quotient spaces �/C{, { ∈ �,
are the fibers of the quotient sheaf � ⊗ O |� |/O |� | (−1) which is isomorphic to
the twisted tangent sheaf T|� | (−1) via the Euler exact sequence

0→ O |� | → O |� | (1) ⊗ � → T|� | → 0.
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The projection map ?G is the Grassmann bundle � (< − 1,T|� | (−1)). In par-
ticular, if < = 2,

/G = |T|� | (−1) | = P(Ω1
|� | (1)). (10.6)

Let us compute the canonical sheaf lG of G.

Lemma 10.1.1. Let TG be the tangent bundle of G. There is a natural isomor-
phism of sheaves

TG � SG ⊗ Q∨G,
lG � OG (−= − 1),

where OG (1) is taken with respect to the Plücker embedding.

Proof Let us trivializeQG over an open subset* to assume thatQ∨
G
= !⊗O* ,

where ! is a linear space of dimension : . Then,* is isomorphic to the quotient
of an open subset of Hom(!, �) by GL(!). The tangent bundle of* becomes
isomorphic to

Hom(!, �)/End(!, !) � !∨ ⊗ �/!∨ ⊗ ! � !∨ ⊗ (�/!).

These isomorphisms can be glued together to define a global isomorphism
TG � SG ⊗ Q∨G.
Since

∧: � → ∧: &G defines the Plücker embedding, we have

21 (QG) = 21 (OG (1)).

Now, the second isomorphism follows from a well-known formula for the first
Chern class of the tensor product of vector bundles (see [379, Appendix A]).

�

Since ZG is a projective bundle over G, we can apply formula (2.29) for the
canonical sheaf of a projective bundle to obtain

l/G/G � @
∗
G (

:∧
QG) ⊗ ?∗GO |� | (−:) � @

∗
GOG (1) ⊗ ?

∗
GO |� | (−<),

l/G � l/G/G ⊗ @∗G (lG) � @
∗
GOG (−=) ⊗ ?

∗
GO |� | (−:),

The general linear group GL(�) admits a natural linear representation on∧: � . It defines a natural action of the group PGL(�) on the Grassmannian
G = � (:, �). It follows from the computation of lG that G is a Fano variety.
In particular, any automorphism of G is defined by a projective automorphism
of |∧< � | after we use the Plücker embedding of G.

We refer for the proof of the following Theorem to [375, Theorem 10.19].
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Theorem 10.1.2. The homomorphism

PGL(�) → Aut(� (<, �))

is an isomorphism if dim � = = is even and an isomorphism onto a subgroup
of index 2 if = is odd.

10.1.2 Schubert varieties
Let us recall some facts about the cohomology ring �∗ (G,Z) of G = �A (P=)
(see [315], Chapter 14).
Fix a flag

�0 ⊂ �1 ⊂ . . . ⊂ �A ⊂ P=

of subspaces of dimension 0 ≤ 00 < 01 < · · · < 0A ≤ = − A, and define the
Schubert variety

Ω(�0, �1, . . . , �A ) = {Π ∈ G : dimΠ ∩ �8 ≥ 8, 8 = 0, . . . , A}.

This is a closed subvariety of G of dimension
∑A
8=0 (08 − 8). Its homology

class [Ω(�0, �1, . . . , �A )] in �∗ (G,Z) depends only on 00, . . . , 0A . It is called
a Schubert cycle and is denoted by (00, . . . , 0A ). Let 00 = = − A − 3, 08 =
= − A + 8, 8 = 1, . . . , A . The varieties

Ω(�0) := Ω(�0, . . . , �A ) = {Π ∈ G : Π ∩ �0 ≠ ∅}

are called the special Schubert varieties. Their codimension is equal to 3. Their
cohomology classes are denoted by f3 , 3 = dim �0.

Under the Poincaré duality �∗ (G,Z) → �∗ (G,Z), the cycles (00, . . . , 0A )
are mapped to Schubert classes f_0 ,...,_A defined in terms of the Chern classes

fB = 2B (S∨G) ∈ �
2B (G,Z), B = 1, . . . , = − A,

by the determinantal formula

f_0 ,...,_A = det(f_8+ 9−8)0≤8, 9≤A ,

where _8 = = − A + 8 − 08 , 8 = 0, . . . , A . The cohomology classes fB are
dual to the cohomology classes of special Schubert varieties Ω(�0), where
dim �0 = = − A − B.

The tautological exact sequence (10.1) shows that

1 = (
∑

2B (QG)) (
∑

2B (SG)).
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In particular,

f1 = 21 (S∨G) = 21 (QG) = 21 (OG (1)),
f2 = 22 (S∨G) = f

2
1 − 22 (QG).

Remark 10.1.3. Our notation is dual to the notation from [315] since our
definitions of the projective space P(�) are dual. Thus, our QG is Fultons’s (∨
and our SG is Fulton’s &∨. So, Fulton’s interpretation of 2B (&) as the classes
of special Schubert varieties from [315, 14.7] must be applied to the dual
Grassmannian � (:, �∨).
A proof of the following result can be found in [315, 14.7] or [404, Vol. 2].

Proposition 10.1.4. The cohomology ring�∗ (G,Z) is generated by the special
Schubert classes fB . The Schubert cycles (00, . . . , 0A ) with

∑A
8=0 (08 − 8) = 3

freely generate �23 (G,Z). The Schubert classes {_0, . . . , _A } with 3 =
∑A
8=0 _8

freely generate �23 (G,Z). In particular,

Pic(G) � �2 (G,Z) = Zf1.

It follows from the proposition above that�∗ (G,Z) is isomorphic to theChow
ring �∗ (G) of algebraic cycles on G. Under the Poincaré Duality W ↦→ UW , the
intersection form on cycles 〈W, `〉 is defined by

〈W, `〉 =
∫
`

UW =

∫
�

UW ∧ U` := UW · U` .

The intersection form on �∗ (G) is calculated by using the Pieri’s formulas

f_0 ,...,_A · fB =
∑

f`0 ,...,`A , (10.7)

where the sum is taken over all {`} such that

= − A ≥ `0 ≥ _0 ≥ `1 ≥ _1 ≥ . . . ≥ `A ≥ _A ≥ `A ≥ _A

and
∑
`8 = B +

∑
_8 .

Another useful formulas that can be found in [315, Examples 14.7.4 and
14.7.11] are the following:

(00, . . . , 0A ) · (10, . . . , 1A ) =
{

1 if 08 + 1A−8 = =, 0 ≤ 8 ≤ A,
0 otherwise,

(10.8)

where (00, . . . , 0A ) and (10, . . . , 1A ) are of complementary dimension.

(00, . . . , 0A ) · f:1 = :!
∑���( 1

(08 − 1 9 )!
)0≤8, 9≤A

���(10, . . . , 1A ), (10.9)
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where the sum is taken over all (10, . . . , 1A ) with
∑
18 −

∑
08 = : , and the

entry 1
(08−1 9 ) in the matrix is equal zero if 08 < 1 9 .

For example, taking : = (= − A) (A + 1) = dim�A (P=), we get the following
formula computing the degree of �A (P=)

deg�A (P=) =
1!2! . . . A! dim�!

(= − A)!(= − A + 1)! . . . =!
. (10.10)

Here, are some special cases. We set, for f_0 ,_A ≠ f0,...,0,

f_1 ,...,_: : = f_1 ,...,_: ,0,...,0,

f0 = f0,...,0.

Then

f2
1 = f2 + f1,1,

f1 · f2 = f3 + f2,1,

f1 · f1,1 = f2,1.

Example 10.1.5. Let us look at the Grassmannian �1 (P3) = � (2, 4) of lines
in P3. The Plücker equations are reduced to one quadratic relation

?12?34 − ?13?24 + ?14?23 = 0. (10.11)

This is a nonsingular quadric in P5, often called theKlein quadric. The Schubert
class of codimension 1 is represented by the special Schubert variety Ω(ℓ) of
lines intersecting a given line ℓ. We have two codimension 2 Schubert cycles
f2 and f1,1 represented by the Schubert varieties Ω(G) of lines containing a
given point G and Ω(Π) of lines containing in a given plane Π. Each of these
varieties is isomorphic to P2. In classical terminology, Ω(G) is an U-plane and
Ω(Π) is a V-plane. We have a 1-dimensional Schubert cycle f2,1 represented
by the Schubert variety Ω(G,Π) of lines in a plane Π containing a given point
G ∈ Π. It is isomorphic to P1. Thus

�∗ (� (2, 4)) = Z[�] ⊕ Zf1 ⊕ (Zf2 + Zf1,1) ⊕ Zf2,1 ⊕ Z[point] .

Tthe two Schubert classes of codimension two represent two different rulings
of the Klein quadric by planes.
We have

f2 · f1,1 = 0, f2
2 = 1, f2

1,1 = 1. (10.12)

Write f2
1 = 0f2 + 1f1,1. Intersecting both sides with f2 and f1,1, we obtain

0 = 1 = 1 confirming Pieri’s formula (10.7). Squaring f2
1 , we obtain deg� =

f4
1 = 2, confirming the fact that � (2, 4) is a quadric in P5.
Theorem 10.1.2 applied to �1 (P3) is easy to explain. The Klein quadric is
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a smooth quadric in P5, and hence admits two rulings by planes, U-planes and
V-planes. The group of automorphism of �1 (P3) has an index two subgroup
that preserves each ruling. Since any U-plane is of the form Ω(G), G ∈ P3, this
subgroup acts in P3 proving the surjectivity of the action of PGL(4) on �1 (P3)
on this subgroup. One can interpret the whole group Aut(�1 (P3) as the group
ΣPGL(4) of collineations and correlations of P3 discussed in Subsection 1.1.2

An irreducible surface ( in �1 (P3) is called a congruence of lines. Its
cohomology class [(] is equal to <f2 + =f1,1. The number < (resp. =) is
classically known as the order of ( (resp. class). It is equal to the number of
lines in ( passing through a general point in P3 (resp. contained in a general
plane). The sum < + = is equal to f1 · [(] and hence coincides with the degree
of ( in P5. We will study congruences of lines in P3 in great detail in Chapter
11.

Example 10.1.6. Let G = �2 (P4). We have the following Schubert varieties in
G = �2 (P4) = � (3, 5).

dim f_ (00, 01, 02) Schubert variety

6 f0 (2, 3, 4) �2 (P4)
5 f1 (1, 3, 4) {Π : Π ∩ ℓ0 ≠ ∅}
4 f2 (0, 3, 4) {Π : G0 ∈ Π}
4 f1,1 (1, 2, 4) {Π : dimΠ ∩ Π0 ≥ 1}
3 f1,1,1 (1, 2, 3) {Π : Π ⊂ �0}
3 f2,1 (0, 2, 4) {Π : G0 ∈ Π,Π ∩ Π0 ≠ ∅, G0 ∈ Π0}
2 f2,2 (0, 1, 4) {Π : ℓ0 ⊂ Π}
2 f2,1,1 (0, 2, 3) {Π : G0 ⊂ Π ⊂ �0}
1 f2,2,1 (0, 1, 3) {Π : ℓ0 ⊂ Π ⊂ �0}
0 f2,2,2 (0, 1, 2) Π : Π = Π0

Table 10.1 Schubert classes in �2 (P4)

We have

f2
1 = f2 + f1,1,

f3
1 = f3 + 2f2,1,

f4
1 = 2f2,2 + 3f2,1,1,

f5
1 = 5f2,2,1,

f6
1 = 5 = dim�2 (P4),
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One can also check that the basis (f2, f1,1) of �2 (G,Z) is dual to the basis
(f2,1,1, f2,2) of �4 (G,Z), and the basis (f3, f2,1) of �3 (G,Z) is orthogonal.

Of course, using the duality between lines an planes, we obtain the similar
computations for the Grassmannian of lines �1 (P4) in P4.

dim f_ (00, 01) Schubert variety dual cycle

6 f0 (3, 4) �1 (P4) f0
5 f1 (2, 4) {ℓ : ℓ ∩ Π0 ≠ ∅} f1
4 f2 (1, 4) {ℓ : ℓ ∩ ℓ0 ≠ ∅} f1,1
4 f1,1 (0, 3) {ℓ : ℓ ⊂ �0} f2
3 f2,1 (0, 3) {ℓ : ℓ ⊂ �0, ℓ ∩ ℓ0 ≠ ∅, ℓ0 ⊂ �0} f2,1
3 f3 (0, 4) {ℓ : G0 ∈ ℓ} f1,1,1
2 f2,2 (1, 2) {ℓ : ℓ ⊂ Π0} f2,2
2 f3,1 (0, 3) {ℓ : G0 ∈ ℓ ⊂ �0} f2,2,1
1 f3,2 (0, 2) {ℓ0 ⊂ Π0, G0 ⊂ ℓ} f2,2,1
0 f3,3 (0, 1) {ℓ} f2,2,2

Table 10.2 Schubert classes in �1 (P4)

Here, the dual cycle means the corresponding cycle in �∗ (�2 (P4),Z) under
the duality isomorphism q : �1 (P4) → �2 (P̌4).

Let ( be an irreducible surface in G = �2 (P4) and [(] be its cohomology
class. We have

[(] = <f2,2 + =f2,1,1.

Let ?( : /( → P4 be the restriction of the projection ?G : /G → P4 to
@−1
G
((). Since dim /( = 4, we expect that the map ?( is of finite degree.

The projection @(?−1
(
(G)) ⊂ ( over a general point G ∈ P4 consists of the

subvariety planes in ( passing through G. Its cohomology class is equal to
[(] · f2 = (<f2,2 + =f2,1,1) · f2 = <. Similarly the projection of ?−1

(
(Π) of a

general planeΠ in P4 is equal to the set of planes in ( intersectingΠ along a line.
Its cohomology class is equal to [(] = f4

1 = 2f2,2+3f2,1,1. So, (<, =) = (2, 3)
in this case, and the projection ?( : /( → P4 is a degree 2 map.

We refer to [130, Proposition 2.4.5], where it is proved that the branch divisor
of the cover coincides with the Castelnuovo-Richmond quartic hypersurface
CR4. If we consider the dual Grassmannian �1 (%̌4) and take (̌ to be the image
of (, then the similar projection /(̌ → P4 of the threefold @−1 ((̌) ⊂ /G∗ has
the image isomorphic to the Segre cubic primal S3. [441].
Example 10.1.7. The middle-dimensional part �=−1 (�1 (P=) is generated by
f=−1 and f=−2,1. The corresponding Schubert varieties are the set of lines
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passing through a fixed point or contained in a hyperplane, respectively. An
irreducible (= − 1)-dimensional subvariety ( of �1 (P=) is called a congruence
of lines . Its cohomology class [(] = <f=−1 + =f=−2,1. The number < (resp. =)
is called the order (resp. class) of the congruence. it is equal to the number of
lines passing through a fixed point in P= (resp. the number of lines contained
in a general hyperplane).
However, be aware that some authors define congruence as an irreducible

surface or a codimension two subvariety in �1 (P=) (see, for example, [701]).
Their cohomology class is also determined by two integers (<, =) such that
[(] = <f=−1,=−3 + =f=−2,=−2 in the case of surfaces and [(] = <f2 + =f1,1 in
the case of codimension two subvarieties. In the case of surfaces, the number
< (resp. =) is equal to the number of lines in ( that are contained in a 3-
dimensional subspace of P= and pass through a fixed point in this subspace
(resp. lines from ( contained in a fixed plane). In the case of codimension two
subvarieties, the number < is equal to the number of lines in ( intersecting a
fixed codimension 3 subspace (resp. contained in a fixed hyperplane). One can
also call < (resp. =) to be the order (resp. class) of (.

There are numerous applications of Schubert calculus to enumerative prob-
lems in algebraic geometry. Let us prove the following nice result, which can
be found in many classical textbooks (first proven by L. Cremona [181]).

Proposition 10.1.8. The number of common secant lines of two general rational
normal curves in P3 is equal to 10.

Proof Consider the congruence of lines formed by secants of a rational normal
cubic curve in P3. Through a general point in P3 passes one secant. In a general
plane lie three secants. Thus, the order of the congruence is equal to 1 and
the class is equal to 3. Applying (10.12), we obtain that the two congruences
intersect at 10 points. �

Remark 10.1.9. Let '1 and '2 be two general rational normal cubic curves
in P3 and let N8 be the net of quadrics through '8 . The linear systemW of
quadrics in the dual space that is apolar to the linear system N spanned by N1
and N2 is of dimension 3. The Steinerian quartic surface defined by this linear
system contains 10 lines, the singular lines of 10 reducible quadrics fromW.
The dual of these lines are the 10 common secants of '1 and '2 (see [618],
[516], [159]). Also observe that the 5-dimensional linear systemN maps '8 to
a curve�8 of degree 6 spanning the planeΠ8 inN∨ apolar to the planeN9 . The
10 pairs of intersection points of �8 with the ten common secants correspond
to the branches of the ten singular points of �8 .
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10.1.3 Secant varieties of Grassmannians of lines
From now on, we will restrict ourselves with the Grassmannian of lines in
P= = |� |. Via contraction, one can identify∧2 � with the space of linear maps
D : �∨ → � such that the transpose map CD is equal to −D. Explicitly,

{ ∧ |(;) = ; ({)| − ; (|){.

The rank of D is the rank of the map. Since CD = −D, the rank takes even values.
The Grassmann variety � (2, �) is the set of points [D], where D is a map of
rank 2.
After fixing a basis in � , we can identify

∧2 � with the space of skew-
symmetric matrices � = (?8 9 ) of size (= + 1) × (= + 1). The Grassmann variety
� (2, �) is the locus of rank 2 matrices, up to proportionality. The entries
?8 9 , 8 < 9 , are the Plücker coordinates. In particular, � (2, �) is the zero set of
the 4 × 4 pfaffians of �. In fact, each of the Plücker equations is given by the
4 × 4 pfaffian of the matrix (?8 9 )

?8 9 ?:; − ?8: ? 9; + ?8; ? 9: = Pf
©«

0 ?8 9 ?8: ?8;

−?8 9 0 ? 9: ? 9;

−?8: −? 9: 0 ?:;

−?8; −? 9; −?:; 0

ª®®®®¬
.

Another way to look at � (2, �) is to use the decomposition

� ⊗ � � (2 (�) ⊕
2∧
�.

It identifies � (2, �) with the projection of the Segre variety s2 ( |� | × |� |) ⊂
|� ⊗ � | to |∧2 � | from the subspace |(2 (�) |.
The formula (10.10) for the degree of the Grassmannian gives in our special

case

deg�1 (P=) =
(2= − 2)!
(= − 1)!=!

. (10.13)

One can also compute the degrees of Schubert varieties

degΩ(00, 01) =
(00 + 01 − 1)!

00!01!
(01 − 00). (10.14)

Lemma 10.1.10. The rank of D ∈ ∧2 � is equal to the smallest number : such
that l can be written as a sum D1 + · · · + D: of 2-vectors D8 of rank 2.

Proof It suffices to show that, for any D of rank 2: ≥ 4, there exists a 2-vector
D1 of rank 2 such that D − D1 is of rank ≤ 2: − 2. Let ' be the kernel of D and
;0 ∉ '. Choose {0 ∈ � such that, for any ; ∈ ', ; ({0) = 0 and ;0 ({0) = 1. By
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skew-symmetry of D, for any ;, < ∈ �∨, <(D(G)) = −; (D(<)). Consider the
difference D′ = D − {0 ∧ D(;0). For any ; ∈ ', we have

D′(;) = D(;) − ; ({0)D(;0) + ; (D(;0)){0 = ; (D(;0)){0 = −;0 (D(;)){0 = 0.

This shows that ' ⊂ Ker(D). Moreover, we have

D′(;0) = D(;0) + ;0 (D(;0)){0 − ;0 ({0)D(;0) = D(;0) − D(;0) = 0.

This implies that Ker(D′) is strictly larger than Ker(D). �

This gives the following.

Proposition 10.1.11. The variety

G: =: {[D] ∈ |
2∧
� | : D has rank ≤ 2: + 2}

is equal to the :-secant variety Sec: (G) of G.

Let C = [ =−3
2 ], then C is the maximal number : such that Sec: (G) ≠ |

∧2 � |.
So the Plücker space is stratified by the rank of its points and the strata are the
following:

|� | \ GC , GC \ GC−1, . . . ,G1 \ G, G. (10.15)

It follows from the previous remarks that G: \ G:−1 is the orbit of a matrix of
rank 2: + 2 and size (= + 1) × (= + 1) under the action of GL(= + 1). Therefore,

dimG: = dim GL(=)/�: ,

where �: is the stabilizer of a skew-symmetric matrix of rank 2: + 2. An easy
computation gives the following.

Proposition 10.1.12. Let 0 ≤ : ≤ C, then

3: = dimG: = (: + 1) (2= − 2: − 1) − 1. (10.16)

Let - ⊂ PA be a reduced and nondegenerate closed suvariety. The k-th defect
of - can be defined as

X: (-) = min
(
(: + 1) dim - + :, A

)
− dim Sec: (-),

which is the difference between the expected dimension of the :-secant variety
of - and the effective one. We say that - is :-defective if Sec: (-) is a proper
subvariety and X: (-) > 0.
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Example 10.1.13. Let = = 2C +3, thenGC ⊂ |
∧2 � | is the pfaffian hypersurface

of degree C + 2 in |∧2 � | parameterizing singular skew-symmetric matrices
(08 9 ) of size 2C +4. The expected dimension ofGC is equal to 4C2 +8C +5, that is
larger than dim |∧2 � | =

(2C+4
2

)
− 1. Thus, 3C (G) = dimGC + 1 and XC (G) = 1.

In the special case = = 5, the variety �1 (P5) is one of the four Severi-Zak
varieties.

Using Schubert varieties one can describe the projective tangent space ofG:
at a given point ? = [D] ∉ G:−1. Let  = Ker(D) ⊂ �∨. Since the rank of D is
equal to 2: + 2, the dual subspace  ⊥ ⊂ � defines a linear subspace

Λ? = | ⊥ |

of |� | of dimension 2: + 1. Let Ω(Λ?) be the corresponding special Schubert
variety and let 〈Ω(Λ?)〉 be its linear span in the Plücker space.

Proposition 10.1.14.
T? (G: ) = 〈Ω(Λ?)〉.

Proof Since G: \ G:−1 is a homogeneous space for GL(= + 1), we may
assume that the point ? is represented by a 2-vector D =

∑:
8=0 428+1 ∧ 428+2,

where (41, . . . , 4=) is a basis in � . The corresponding subspace  ⊥ is spanned
by 41, . . . , 42:+2. A line ℓ intersects Λ? if and only if it can be represented by
a bivector { ∧ |, where { ∈  ⊥. Thus, , = 〈Ω(Λ?)〉 is the span of points
[48 ∧ 4 9 ], where either 8 or 9 is less than or equal to 2: +2. In other words,, is
given by vanishing of

(=−2:−1
2

)
Plücker coordinates ?01 , where 0, 1 > 2: +2. It

is easy to see that this agrees with the formula for dim Sec: (G). So, it is enough
to show that , is contained in the tangent space. We know that the equations
of Sec: (G) are given by the pfaffians of size 4: + 4. Recall the formula for the
pfaffians from Exercise 2.1 in Chapter 2:

Pf (�) =
∑
(∈S
±

∏
(8 9) ∈(

08 9 ,

where ( is a set of pairs (81, 91), . . . , (82:+2, 92:+2) such that 1 ≤ 8B < 9B ≤
4: + 4, B = 1, . . . , 2: + 2, {81, . . . , 82:+2, 91, . . . , 92:+2} = {1, . . . , 4: + 4}.
Consider the Jacobian matrix of G: at the point ?. Each equation of G: is
obtained by a choice of a subset � of {1, . . . , =} of cardinality 4: + 4 and
writing the pfaffian of the submatrix of (?8 9 ) formed by the columns and rows
with indices in �. The corresponding row of the Jacobian matrix is obtained
by taking the partials of this equation with respect to all ?8 9 evaluated at the
point ?. If 0, 1 ≤ 2: + 2, then one of the factors in the product

∏
(8 9) ∈( ?8 9

corresponds to a pair (8, 9), where 8, 9 > 2: + 2. When we differentiate with
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respect to ?01 its value at ? is equal to zero. Therefore, the corresponding entry
in the Jacobian matrix is equal to zero. So, all nonzero entries in a row of the
Jacobian matrix correspond to the coordinates of vectors from, that are equal
to zero. Thus,, is contained in the space of solutions. �

Taking : = 0, we obtain the following.

Corollary 10.1.15. For any ℓ ∈ G,

Tℓ (G) = 〈Ω(ℓ)〉.

Let Λ be any subspace of P= of dimension 2: + 1 and

%Λ = {? ∈ |
2∧
� | : Λ = Λ?}.

This is the projectivization of the linear space of skew-symmetric matrices of
rank 2: +2 with the given nullspace of dimension 2: +2. An easy computation
using formula (10.16) shows that dim %Λ = (2: + 1) (: + 1) − 1.
Let

W: : G: \ G:−1 → � (3: + 1,
2∧
�), 3: = dimG: ,

be theGaussmapwhich assigns to a point its embedded tangent space.Applying
Proposition 10.1.14, we obtain the following:

Corollary 10.1.16.

W−1
: (〈Ω(Λ)〉) = %Λ.

In particular, any hyperplane in the Plücker space containing Ω(Λ) is tangent
to Sec: (G) along the subvariety %Λ of dimension (2: + 1) (: + 1) − 1.

Example 10.1.17. Let G = � (2, 6). We have already observed that the secant
variety G1 is a cubic hypersurface - in P14 defined by the pfaffian of the 6 × 6
skew-symmetric matrix whose entries are Plücker coordinates ?8 9 . The Gauss
map is the restriction to - of the polar map P14 d P̌14 given by the partials
of the cubic. The singular locus of - is equal to � (2, 6), it is defined by the
polars of - . The polar map is a Cremona transformation in P14. This is one of
the examples of Cremona transformations defined by Severi-Zak varieties (see
Subsection 7.4.2).

Let - be a subvariety ofG, and Z- be the pre-image of - under the projection
@ : ZG → G. The image of Z- in P= is the union of lines ℓ ∈ - . We will need
the description of its set of nonsingular points.
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Proposition 10.1.18. The projection ?- : Z- → P= is smooth at (G, ℓ) if and
only if

dimℓ Ω(G) ∩ Tℓ (-) = dim(G,ℓ) ?−1
- (G).

Proof Let (G, ℓ) ∈ Z- and let � be the fiber of ?- : Z- → P= passing
through the point (G, ℓ) identified with the subsetΩ(G) ∩- under the projection
@G : Z- → G. Then,

TG,ℓ (�) = Tℓ (Ω(G)) ∩ Tℓ (-) = Ω(G) ∩ Tℓ (-). (10.17)

This proves the assertion. �

Corollary 10.1.19. Let . = ?- (Z- ) ⊂ P= be the union of lines ℓ ∈ - . Assume
- is nonsingular and ?−1

-
(G) is a finite set. Suppose dimℓ Ω(G) ∩ Tℓ (-) = 0

for some ℓ ∈ - containing G. Then, G is a nonsingular point of . .

10.2 Linear Line Complexes

10.2.1 Linear line complexes and apolarity
An irreducible and reduced codimension one subvariety of ℭ ⊂ G = �1 (P=)
is called a line complex. Since we know that Pic(G) is generated by OG (1) we
see that ℭ ∈ |OG (3) | for some 3 ≥ 1. The number 3 is called the degree of the
line complex.
An example of a line complex ℭ of degree 3 in �1 (P=) is the Chow form

of a subvariety - ⊂ P= of codimension 2 (see [325]). It parameterizes lines
that have non-empty intersection with - . Its degree is equal to the degree of - .
When - is linear, this is of course the special Schubert variety Ω(-).
A linear line complex is a line complex of degree 1, that is a hyperplane

section ℭ = � ∩ G of G. If no confusion arises we will sometimes identify ℭ
with the corresponding hyperplane �. A linear line complex is called special if
it is equal to the special Schubert variety Ω(Π), where Π is a subspace of codi-
mension = − 2. The corresponding hyperplane is tangent to the Grassmannian
at any point ℓ such that ℓ ⊂ Π. In particular, when = = 3, the special linear line
complex is isomorphic to a quadric cone.
For any l ∈ (∧2 �)∨ = ∧2 �∨, let ℭl denote the linear line complex

defined by the hyperplane+ (l). In coordinates, ifl = ∑
08 9 ?8 9 , the linear line

complexℭl is given by adding to the Plücker equations the additional equation∑
0≤8< 9≤=

08 9 ?8 9 = 0.
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For example, the line complex + (?8 9 ) parameterizes the lines intersecting the
coordinate (= − 2)-plane C: = 0, : ≠ 8, 9 , in P=.
Remark 10.2.1. It follows from the Euler exact sequence that there is a natural
isomorphism

�0 ( |� |,Ω1
|� | (2)) � Ker

(
�∨ ⊗ �∨ → (2 (�∨)

)
�

2∧
�∨. (10.18)

Also we know from (10.6) that the incidence variety ZG is isomorphic to the
projective bundle P(Ω1

|� | (1)) � P(Ω
1
|� | (2)). Thus, a linear line complex can be

viewed as a divisor in the linear system |OZG (1) |, where ?∗OZG (1) � Ω1
|� | (2).

The fiber of ZG over a point G ∈ |� | is isomorphic to the projectivized tangent
space P(Ω1

|� | (G)) � |)G ( |� |) |.
Choose local coordinates I1, . . . , I= in |� | defining the basis ( mmI1

, . . . , m
mI=
)

in tangent spaces, then, for any nonzero l ∈ ∧2 �∨, the line complex ℭl ∈∧2 �∨ is locally given by an expression
=∑
8=1

�8 (I1, . . . , I=)3I8 = 0.

This equation is called the Pfaff partial differential equation. More generally,
any line complex of degree 3 can be considered as the zero set of a section of
OZG (3) and can be locally defined by theMonge’s partial differential equation

=∑
81+···+8==3

�81 ,...,8=3I
81
1 . . . 3I

8=
= = 0.

We refer to S. Lie’s book [487] for the connection between the theory of Monge
equations and line complexes.
The projective equivalence classes of linear line complexes coincide with

the orbits of GL(�) acting naturally on |∧2 �∨ |. The GL(�)-orbit of a linear
line complex ℭl is uniquely determined by the rank 2: of l. We will identify
l with the associated linear map � → �∨. Let

Sl = |Ker(l) |. (10.19)

It is called the center of a linear line complex ℭl . We have encountered it in
Chapter 2. This is a linear subspace of |� | of dimension = − 2: , where 2: is
the rank of l.

Proposition 10.2.2. Let ℭl be a linear line complex and Sl be its center.
Then, the Schubert variety Ω(Sl) is contained in ℭl and

�1 (Sl) = Sing(ℭl).
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Proof Since GL(�) acts transitively on the set of linear line complexes of
equal rank, we may assume that l =

∑:
8=1 4

∗
8
∧ 4∗

:+8 , where 4
∗
1, . . . , 4

∗
= is a

basis of �∨ dual to a basis 41, . . . , 4= of � . The linear space Ker(l) is spanned
by 48 , 8 > 2: . A line ℓ intersects Sl if and only if it can be represented by
a bivector { ∧ | ∈ ∧2 � , where [{] ∈ Sl . Therefore, the linear span of the
Schubert variety Ω(Sl) is generated by bivectors 48 ∧ 4 9 , where 8 < 2: . It is
obvious that it is contained in the hyperplane + (l) = 〈ℭl〉 ⊂ |

∧2 � |. This
checks the first assertion.
It follows from Corollary 10.1.15 that

ℓ ∈ Sing(ℭl) ⇐⇒ Tℓ (G) ⊂ + (l) ⇐⇒ Ω(ℓ) ⊂ ℭl .

Suppose Ω(ℓ) ⊂ ℭl but ℓ does not belong to Sl . We can find a point in ℓ
represented by a vector { =

∑
0848 , where 08 ≠ 0 for some 8 ≤ 2: . Then, the line

represented by a bivector {∧ 4:+8 intersects ℓ but does not belong to ℭl (since
l({ ∧ 4:+8) = 08 ≠ 0). Thus, Ω(ℓ) ⊂ ℭl implies ℓ ⊂ Sl . Conversely, this
inclusion implies Ω(ℓ) ⊂ Ω(Sl) ⊂ ℭl . This proves the second assertion. �

It follows from the proposition that any linear line complex is singular unless
its rank is equal to 2[ =+12 ], maximal possible. Thus, the set of hyperplanes in the
Plücker space that are tangent to G can be identified with the set of linear line
complexes of rank ≤ 2[ =−3

2 ]. Consider � (2, �
∨) in its Plücker embedding in

P(∧2 �). Exchanging the roles of � and �∨, we obtain the following beautiful
result.

Corollary 10.2.3. Let C = [ =−3
2 ], then SecC (G) is equal to the dual variety of

the Grassmannian � (2, �∨) in P(∧2 �).

When = = 4, 5 we obtain that � (2, �) is dual to � (2, �∨). When = = 6 we
obtain that the dual of � (2, �∨) is equal to Sec1 (� (2, �)). This agrees with
Example 10.1.17.
For any linear subspace ! of � , let

!l = l(!)⊥ = {| ∈ � : l({, |) = 0,∀{ ∈ !}.

For any subspace Λ = |! | ⊂ |� |, let

8l (Λ) = |!l |.

It is clear that [{ ∧ |] ∈ G belongs to ℭl if and only if l({, |) = 0. Thus,

ℭl = {ℓ ∈ G : ℓ ⊂ 8l (ℓ)}. (10.20)

Clearly 8l (Λ) contains the center Sl = |Ker(Ul) | of ℭl . Its dimension is
equal to = − dimΛ + dimΛ ∩ Sl .
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Since l is skew-symmetric, for any point G ∈ |� |,

G ∈ 8l (G).

When l is nonsingular, we obtain a bĳective correspondence between points
and hyperplanes classically known as a null-system.
In the special case when = = 3 and Sl = ∅, this gives the polar duality

between points and planes. The plane Π(G) corresponding to a point G is called
the null-plane of G. The point CΠ corresponding to a plane Π is called the null-
point of Π. Note that G ∈ Π(G) and GΠ ∈ Π. Also in this case the lines ℓ and
8l (ℓ) are called polar lines. We also have a correspondence between lines in
P3

8l : �1 (P3) → �1 (P3), ℓ ↦→ 8l (ℓ).

Note that the lines ℓ and 8l (ℓ) are always skew or coincide. The set of fixed
points of 8l on �1 (P3) is equal to ℭl . Since ℭl is nonsingular, the pole 2 of
+ (l) with respect to the Klein quadric G does not belong to G. It is easy to see
that 8l is the deck transformation of the projection of G in P5 from the point 2.
Thus,

G/(8l) � P4.

The hyperplane 〈ℭl〉 is the polar hyperplane %2 (G). The ramification divisor
of the projection G→ P4 is the linear complex ℭl = %2 (G) ∩ G. The branch
divisor is a quadric in P4.
If ℭl is singular, then it coincides with the Schuber variety Ω(ℓ), where

ℓ = Sl . For any ℓ ≠ Sl , we have 8l (ℓ) = Sl and 8l (Sl) = P3.

Proposition 10.2.4. Let ℭl be a nonsingular linear line complex in �1 (P=).
Let ℓ be a line in P=. Then, any line ℓ′ ∈ ℭl intersecting ℓ also intersects 8l (ℓ).
The intersection of ℭl with the special Schubert variety Ω(;) consists of lines
intersecting the line ℓ and the codimension 2 subspace 8l (ℓ).

Proof Let G = ℓ ∩ ℓ′. Since G ∈ ℓ′, we have ℓ′ ⊂ 8l (ℓ′) ⊂ 8l (G). Since
G ∈ ℓ, we have 8l (ℓ) ⊂ 8l (G). Thus, 8l (G) contains ℓ′ and 8l (ℓ). Since ℭl is
nonsingular, dim 8l (G) = = − 1, hence the line ℓ′ intersects the (= − 2)-plane
8l (ℓ).

Conversely, suppose ℓ′ intersects ℓ at a point G and intersects 8l (ℓ) at a point
G ′. Then, G, G ′ ∈ 8l (ℓ′) and hence ℓ′ = GG ′ ⊂ 8l (ℓ′). Thus, ℓ′ belongs to
ℭl . �

Definition 10.2.5. A linear line complex ℭl in |∧2 � | is called apolar to a
linear line complex ℭl∗ in |

∧2 �∨ | if l∗ (l) = 0.
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In the case = = 3, we can identify |∧2 � | with |∧2 �∨ | by using the polarity
defined by the Klein quadric. Thus, we can speak about apolar linear line
complexes in P3. In Plücker coordinates, this gives the relation

012134 + 034112 − 013124 − 024113 + 014123 + 023114 = 0. (10.21)

Lemma10.2.6. Letℭl andℭl′ be twononsingular linear line complexes inP3.
Then,ℭl andℭl′ are apolar to each other if and only if 6 = l−1◦l′ ∈ GL(�)
satisfies 62 = 1.

Proof Take two skew lines ℓ, ℓ′ in the intersection ℭl ∩ ℭl′ . Choose co-
ordinates in � such that ℓ and ℓ′ are two opposite edges of the coordinate
tetrahedron+ (C0C1C2C3), say ℓ : C0 = C2 = 0, and ℓ′ : C1 = C3 = 0. Then, the linear
line complexes have the following equations in Plücker coordinates

ℭl : 0?12 + 1?34 = 0; ℭl′ : 2?12 + 3?34 = 0.

The condition that ℭl and ℭl′ are apolar is 03 + 12 = 0. The linear maps
l, l′ : � → �∨ are give by the matrices

� =

©«
0 0 0 0
−0 0 0 0
0 0 0 1

0 0 −1 0

ª®®®®¬
, � =

©«
0 2 0 0
−2 0 0 0
0 0 0 3

0 0 −3 0

ª®®®®¬
.

This gives

�−1� =

©«
2/0 0 0 0
0 2/0 0 0
0 0 3/1 0
0 0 0 3/1

ª®®®®¬
=
0

2

©«
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

ª®®®®¬
.

This shows that (�−1�)2 defines the identical transformation of |� |. It is easy
to see that conversely, this implies that 03 + 12 = 0. �

In particular, a pair of nonsingular apolar linear line complexes defines
an involution of |� |. Any pair of linear line complexes defines a projective
transformation of |� | as follows. Take a point G, define its null-plane Π(G) with
respect to l, and then take its null-point H with respect to l′. For apolar line
complexes, we must get an involution. That is, the null-plane of H with respect
to l must coincide with the null-plane of G with respect to l′.

Since any set of nonsingular mutually apolar linear line complexes is linearly
independent, we see that the maximal number of mutually apolar linear line
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complexes is equal to 6. If we choose these line complexes as coordinates I8 in∧2 � , we will be able to write the equation of the Klein quadric in the form

& =

5∑
8=0

I2
8 .

Since each pair of apolar linear line complexes defines an involution in |∧2 � |,
we obtain 15 involutions. They generate an elementary abelian group (Z/2Z)4
of projective transformations in P3. The action of this group arises from a linear
representation in C4 of the non-abelian group H2 (a Heisenberg group) given
by a central extension

1→ `2 →H2 → (Z/2Z)4 → 1.

We denote the subgroup of PGL(3) generated by the 15 involutions defined by
six mutually apolar line complexes byH ′2.
An example of six mutually apolar linear line complexes is the set

(?12 + ?34, 8(?34 − ?12), ?13 − ?24,−8(?24 + ?13), ?14 + ?23, 8(?23 − ?14)),

where 8 =
√
−1. These coordinates in the Plücker space are called the Klein

coordinates.
A set of six mutually apolar linear line complexes defines a symmetric (166)-

configuration of points and planes. It is called the Kummer configuration. It
is formed by 16 points and 16 planes in P3 such that each point is a null-
point of six planes, each with respect to one of the six line complexes. Also
each plane is a null-plane of six points with respect to one of the six line
complexes. To construct such configuration one can start from any point ?1 =

[00, 01, 02, 03] ∈ P3 such that no coordinate is equal to zero. Assume that
our six apolar line complexes correspond to Klein coordinates. The first line
complex is ?12 + ?34 = 4

∗
1 ∧ 4

∗
2 + 4

∗
3 ∧ 4

∗
4. It transforms the point ?1 to the plane

−01C0 + 00C1 + 03C2 − 02C3 = 0. Taking other line complexes we get five more
null-planes:

01C0 − 00C1 + 03C2 − 02C3 = 0,
02C0 − 03C1 − 00C2 + 01C3 = 0,
02C0 + 03C1 − 00C2 − 01C3 = 0,
03C0 + 02C1 − 01C2 − 00C3 = 0,
−03C0 + 02C1 − 01C2 + 00C3 = 0.

Next we take the orbit of ?1 with respect to the Heisenberg groupH2. It consists
of 16 points. Computing the null-planes of each point, we find altogether 16
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[00, 01, 02, 03] [01, 00, 03, 02] [00,−01, 02,−03] [01,−00, 03,−02]
[02, 03, 00, 01] [03, 02, 01, 00] [02,−03, 00,−01] [03,−02, 01,−00]
[00, 01,−02,−03] [01, 00,−03,−02] [00,−01,−02, 03] [01,−00,−03, 02]
[02, 03,−00,−01] [03, 02,−01,−00] [02,−03,−00, 01] [03,−02,−01, 00]

Figure 10.1 Kummer configuration of 16 points in P3

planes forming with the 16 points a (166)-configurations. The following table
gives the coordinates of the 16 points.

A point (U, V, W, X) in this table is contained in six planes 0C0+1C1+2C2+3C3 =
0, where (0, 1, 2, 3) is one of the following:

(X,−W, V,−U), (X, W,−V,−U), (W, X,−U,−V),

(−W, X, U,−V), (−V, U, X,−W), (V,−U, X,−W).

Dually, a plane UC0 + VC1 + WC2 + XC3 = 0 contains six points [0, 1, 2, 3], where
(0, 1, 2, 3) is as above.
One checks directly that the six null-points of each of the 16 planes of the

configuration lie on a conic. So, this gives us a configuration of 16 conics in
P3, each containing six points of the configuration. Also, observe that any two
conics intersect at 2 points.
There is a nice symbolic way to exhibit the (166)-configuration. After we

fix an order on a set of six mutually apolar linear line complexes, we will be
able to identify the group H ′2 with the group �2 defined by 2-element subsets
of the set {1, 2, 3, 4, 5, 6} (see Subsection 5.2.2). A subset of two elements
{8, 9} corresponds to the involution defined by a pair of apolar line complexes.
We take the ordered set of apolar linear line complexes defined by the Klein
coordinates. First we match the orbit of the point [00, 01, 02, 03] from the table
from above with the left-hand side of the following table. To find the six planes
that contain a point from the (8 9)-th spot we look at the same spot in the right-
hand side of the following table. Take the involutions in the 8-th row and 9-th
column but not at the (8 9)-spot. These involutions are matched with the planes
containing the point. As always we identify a plane 00C0+01C1+02C2+03C3 with
the point [00, 01, 02, 03]. For example, the point ∅ is contained in six planes
(15), (13), (26), (46), (24), (35). Conversely, take a plane corresponding to the
(8 9)-th spot in the right-hand side of the table. The point contained in this plane
can be found in the same row and the same column in the left-hand side of the
table excluding the (8 9)-th spot. For example, the plane ∅ contains the points
(45), (34), (35), (16), (12), (26).
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∅ (45) (34) (35)
(16) (23) (25) (24)
(12) (36) (56) (46)
(26) (13) (15) (14)

(14) (15) (13) (26)
(46) (56) (36) (12)
(24) (25) (23) (16)
(35) (34) (45) ∅

.

Another way to remember the rule of the incidence is as follows. A point
corresponding to an involution (01) is contained in a plane corresponding to
an involution (23) if and only if

(01) + (23) + (24) ∈ {∅, (16), (26), (36), (46), (56)}.

Consider a regular map P3 → P4 defined by the polynomials

C40 + C
4
1 + C

4
2 + C

4
3 , C

2
0C

2
3 + C

2
1C

2
2 , C

2
1C

2
3 + C

2
0C

2
2 , C

2
2C

2
3 + C

2
0C

2
1 , C0C1C2C3.

Observe that this map is invariant with respect to the action of the Heisenberg
groupH2. So, it defines a regular map

Φ : P3/H ′2 → P4.

Proposition 10.2.7. The map Φ defines an isomorphism

P3/H2 � -,

where - is a quartic hypersurface in P4 given by the equation

I20I
2
4 − I0I1I2I3 + I

2
1I

2
2 + I

2
2I

2
3 + I

2
1I

2
3 − 4I24 (I

2
1 + I

2
2 + I

2
3) + I

4
4 = 0. (10.22)

Proof Since the map is given by five polynomials of degree 4, the degree of
the map times the degree of the image must be equal to 43. We know that its
degree must be a multiple of 16, this implies that either the image is P3 or a
quartic hypersurface. Since the polynomials are linearly independent the first
case is impossible. A direct computation gives the equation of the image. �

Note that the fixed-point set of each nontrivial element of the Heisenberg
groupH2 consists of two skew lines. For example, the involution

(12) : [00, 01, 02, 03] ↦→ [00, 01,−02,−03]

fixes pointwise the lines C0 = C1 = 0, and C2 = C3 = 0. Each line has a stabilizer
subgroup of index 2. Thus, the images of the 30 lines form the set of 15 double
lines on - . The stabilizer subgroup acts on the line as the dihedral group �4.
It has six points with a nontrivial stabilizer of order 2. Altogether we have
30 × 6 = 180 such points which form 15 orbits. These orbits and the double
lines form a (153)-configuration. The local equation of - at one of these orbits
is {2 + GHI = 0.
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We will prove later in Subsection 10.4.3 that the orbit space - = P3/H2 is
isomorphic to the Castelnuovo-Richmond quartic.

10.2.2 Six lines
We know that any five lines in P3, considered as points in the Plücker P5, are
contained in a linear line complex. In fact, in a unique linear line complex if
the lines are linearly independent. A set of six lines is contained in a linear line
complex only if they are linearly dependent. The 6 × 6-matrix of its Plücker
coordinates must have a nonzero determinant. An example of six dependent
lines is the set of lines intersecting a given line ℓ. They are contained in the
special line complex which coincides with the Schubert variety Ω(ℓ). We will
give a geometric characterization of a set of six linearly dependent lines that
contains a subset of five linearly independent lines.

Lemma 10.2.8. Let f : P1 → P1 be an involution. Then, the graph of f is an
irreducible curve ℓf ⊂ P1 × P1 of bidegree (1, 1) such that ](ℓf) = ℓf , where
] is the automorphism (G, H) ↦→ (H, G). Conversely, any curve on P1 × P1 with
these properties is equal to the graph of some involution.

Proof This is easy and left to the reader. �

Corollary 10.2.9. Let f, g be two different involutions of P1. Then, there exists
a unique common orbit {G, H} with respect to f and g.

We will need the following result of M. Chasles.

Theorem 10.2.10 (M. Chasles). Let & be a nondegenerate quadric in P3 and
let f be an automorphism of order 2 of & which is the identity on one of
the rulings. Then, the set of lines in P3, which are either contained in this
ruling or intersect an orbit of lines in the second ruling form a linear complex.
Conversely, any linear line complex is obtained in this way from some pair
(&, f).

Proof Consider the set - of lines defined as in the first assertion of the
Theorem. Take a general plane Π and a point G ∈ Π. Consider the Schubert
variety Ω(G,Π). It is a line in the Plücker space. The plane intersects & along
a conic �. Each line from Ω(G,Π) intersects � at two points. This defines an
involution on �. Each line from the second ruling intersects � at one point.
Hence, f defines another involution on�. By Corollary 10.2.9 there is a unique
common orbit. Thus, there is a unique line from Ω(G,Π) which belongs to - .
Thus, - is a linear line complex.
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Let ℓ1, ℓ2, ℓ3 be any three skew lines in a line complex - = ℭl . Let & be a
quadric containing these lines. It is obviously nonsingular. The lines belong to
some ruling of&. Take any line ℓ from the other ruling. Its polar line ℓ′ = 8l (ℓ)
intersects ℓ1, ℓ2, ℓ3 (because it is skew to ℓ or coincides with it). Hence, ℓ′ lies
on &. Now, we have an involution on the second ruling defined by the polarity
with respect to - . If < ∈ - is not contained in the first ruling, then < intersects
a line ℓ from the second ruling. By Proposition 10.2.4, it also intersects ℓ′. This
is the description of - from the assertion of the Theorem.

�

Remark 10.2.11. Let � be the curve in � (2, 4) parameterizing lines in a ruling
of a nonsingular quadric &. Take a general line ℓ in P3. Then, Ω(ℓ) contains
two lines from each ruling, the ones which pass through the points & ∩ ℓ. This
implies that � is a conic in the Plücker embedding. A linear line complex -
either intersects each conic at two points and contains two or one line from the
ruling, or contains � and hence contains all lines from the ruling.

Lemma 10.2.12. Let ℓ be a line intersecting a nonsingular quadric & in P3 at
two different points G, H. LetTG (&)∩& = ℓ1∪ℓ2 andTH (&)∩& = ℓ′1∪ℓ

′
2, where

ℓ1, ℓ
′
1 and ℓ2, ℓ

′
2 belong to the same ruling. Then, the polar line ℓ

⊥
&
intersects &

at the points G ′ = ℓ1 ∩ ℓ′2 and H
′ = ℓ2 ∩ ℓ′1.

Proof Each line on & is self-polar to itself. Thus, %G (&) is the tangent plane
TG (&) and, similarly, %H (&) = TH (&). This shows that ℓ⊥& = TG (&)∩TH (&) =
G ′H′. �

Lemma 10.2.13. let ℓ1, ℓ2, ℓ3, ℓ4 be four skew lines in P3. Suppose not all
of them are contained in a quadric. Then, there are exactly two lines which
intersect all of them. These lines may coincide.

Proof This is, of course, well known. It can be checked by using the Schubert
calculus since f4

1 = #∩4
8=1 Ω(ℓ8) = 2. A better geometric proof can be given as

follows. Let& be the quadric containing the first three lines. Then, ℓ4 intersects
& at two points ?, @ which may coincide. The lines through these points
belonging to the ruling not containing ℓ1, ℓ2, ℓ3 intersect ℓ1, . . . , ℓ4. Conversely,
any line intersecting ℓ1, . . . , ℓ4 is contained in this ruling (because it intersects
& at three points) and passes through the points ℓ4 ∩&.

�

Theorem 10.2.14. Let (ℓ1, . . . , ℓ6) be a set of six lines and let (ℓ′1, . . . , ℓ
′
6)

be the set of polar lines with respect to some nonsingular quadric &. Assume
that the first five lines are linearly independent in the Plücker space. Then,
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(ℓ1, . . . , ℓ6) belong to a nonsingular linear line complex if and only if there
exists a projective transformation ) such that ) (ℓ8) = ℓ′8 . This condition does
not depend on the choice of &.

Proof First let us check that this condition does not depend on a choice of &.
For each line ℓ let ℓ⊥

&
denote the polar line with respect to&. Suppose �(ℓ) = ℓ⊥

&

for some projective transformation �. Let & ′ be another nonsingular quadric.
We have to show that ℓ⊥

&′ = �(ℓ) for some other projective transformation �
depending only on � but not on ℓ. Let us identify � with C=+1 and a quadric &
with a nonsingular symmetric matrix. Then, �(ℓ) = ℓ⊥

&
means that G&�H = 0

for any vectors G, H in ℓ. We have to find a matrix � such that G& ′�H = 0. We
have

G&�H = G& ′(& ′−1&�)H = G& ′�H,

where � = & ′−1&�. This checks the claim.
Suppose the set (ℓ1, . . . , ℓ6) is projectively equivalent to (ℓ′1, . . . , ℓ

′
6), where

ℓ′
8
are polar lines with respect to some quadric &. Replacing & with a quadric

containing the first three lines ℓ1, ℓ2, ℓ3, we may assume that ℓ′
8
= ℓ8 , 8 = 1, 2, 3.

We identify & with P1 × P1. If ℓ 9 ∩& = (0 9 , 1 9 ), (0′9 , 1′9 ) for 9 = 4, 5, 6, then,
by Lemma 10.2.12, ℓ′

9
∩ & = (0 9 , 1′9 ), (0′9 , 1 9 ). Suppose ℓ′8 = �(ℓ8). Then, �

fixes three lines in the first ruling hence sending & to itself. It is also identical
on the first ruling. It acts on the second ruling by switching the coordinates
(18 , 1′9 ), 9 = 4, 5, 6. Thus, �2 has three fixed points on P1, hence �2 is the
identity. This shows that � = f as in Chasles’ Theorem 10.2.10. Hence, the
lines ℓ8 , ℓ′8 , 8 = 1, . . . , 6, belong to the linear complex.
Conversely, assume ℓ1, . . . , ℓ6 belong to a nonsingular linear line complex

- = ℭl . Applying Lemma 10.2.13, we find two lines ℓ, ℓ′ which intersect
ℓ1, ℓ2, ℓ3, ℓ4 (two transversals). By Proposition 10.2.4, the polar line 8l (ℓ)
intersects ℓ1, ℓ2, ℓ3, ℓ4. Hence, it must coincide with either ℓ or ℓ′. The first
case is impossible. In fact, if ℓ = ℓ′, then ℓ ∈ - . The pencil of lines through
ℓ ∩ ℓ1 in the plane 〈ℓ, ℓ1〉 spanned by ℓ, ℓ1 is contained in - . Similarly, the line
Ω(ℓ ∩ ℓ2, 〈ℓ, ℓ2〉) is contained in - . Let Π be the plane of lines spanned by
these two lines in G. It is contained in - . Thus, Π cuts out in G a pair of lines.
Thus, - is singular at the point of intersections of these two lines. This is a
contradiction.
Thus, we see that ℓ, ℓ′ is a pair of polar lines. Now, the pair of transversals

g, g′ = 8l (g) of ℓ1, ℓ2, ℓ3, ℓ5 is also a pair of polar lines. Consider the quadric
& spanned by ℓ1, ℓ2, ℓ3. The four transversals are the four lines from the second
ruling of &. We can always find an involution f on & which preserves the first
ruling and such that f(ℓ) = ℓ′, f(g) = g′. Consider the linear line complex
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- ′ defined by the pair (&, f). Since ℓ1, . . . , ℓ5 belong to - , and any line
complex is determined by five linearly independent lines, we have the equality
- = - ′. Thus, ℓ6 intersects & at a pair of lines in the second ruling, which is
in the involution f. But f is defined by the polarity with respect to - (since
ℓ1, ℓ2, ℓ3 ∈ � and the two involutions share two orbits corresponding to the
pairs (ℓ, ℓ′), (g, g′)). This implies (ℓ1, . . . , ℓ6) = f(ℓ′1, . . . , ℓ

′
6), where ℓ

′
8
= ℓ⊥

8
.
�

Corollary 10.2.15. Let ℓ1, . . . , ℓ6 be six skew lines on a nonsingular cubic
surface (. Then, they are linearly independent in the Plücker space.

Proof We first check that any five lines among the six lines are linearly
independent. Assume that ℓ1, . . . , ℓ5 are linearly dependent. Then, one of them,
say ℓ5, lies in the span of ℓ1, ℓ2, ℓ3, ℓ4. Let {ℓ′1, . . . , ℓ

′
6} be the set of six skew

lines which together with (ℓ1, . . . , ℓ6) form a double-six. Then, ℓ1, ℓ2, ℓ3, ℓ4 lie
in the linear line complex Ω(ℓ′5), and hence, ℓ5 lies in it too. However, this is
impossible because ℓ5 is skew to ℓ′5.
We know that there exists the unique quadric Q such that ℓ′

8
are polar to

Q with respect to Q (the Schur quadric). But (ℓ′1, . . . , ℓ
′
6) is not projectively

equivalent to (ℓ1, . . . , ℓ6). Otherwise, ( and its image (′ under the projective
transformation ) will have six common skew lines. It will also have common
transversals of each subset of four. Thus, the degree of the intersection curve
is larger than 9. This shows that the cubic surfaces ( and (′ coincide and ) is
an automorphism of (. Its action on Pic(() is a reflection with respect to the
root corresponding to the double-six. It follows from Section 9.5 that ( does
not admit such an automorphism. �

Remark 10.2.16. The group SL(4) acts diagonally on the Cartesian product
G6. Consider the sheaf L on G6 defined as the tensor product of the sheaves
?∗
8
OG (1), where ?8 : G6 → G is the 8-th projection. The group SL(4) acts

naturally in the space of global sections of L and its tensor powers. Let

' =

∞⊕
8=0

�0 (G6,L8)SL(4) .

This is a graded algebra of finite type and its projective spectrum Proj(')
is the GIT-quotient G6//SL(4). The variety G6 has an open invariant Zariski
subset * which is mapped to G6//SL(4) with fibers equal to SL(4)-orbits.
This implies thatG6//SL(4) is an irreducible variety of dimension 9. Given six
ordered general lines in P3, their Plücker coordinates make a 6 × 6-matrix. Its
determinant can be considered as a section from the first graded piece '1 of '.
The locus of zeros of this section is a closed subvariety of G6 whose general
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point is a six-tuple of lines contained in a linear line complex. The image of
this locus in G6//SL(4) is a hypersurface �. Now, the polar duality of lines by
means of a nondegenerate quadric defines an involution onG6. Since it does not
depend on the choice of a quadric up to projective equivalence, the involution
descends to an involution ofG6//SL(4). The set of fixed points of this involution
is the hypersurface �. One can show that the quotient by the duality involution
is an open subset of a certain explicitly described 9-dimensional toric variety
- (see [242, 11.3]).
Finally, observe that a nonsingular cubic surface together with a choice of

its geometric marking defines a double-six, which is an orbit of the duality
involution in G6//SL(4) and hence a unique point in - that does not belong
to the branch locus of the double cover G6//SL(4) → - . Thus, we see that
the four-dimensional moduli space of geometrically marked nonsingular cubic
surfaces embeds in the 9-dimensional toric variety - .

10.2.3 Linear systems of linear line complexes
Let, ⊂ ∧2 �∨ be a linear subspace of dimension A + 1. After projectivization
and restriction to � (2, �) � �1 (P=), it defines an A-dimensional linear system
|, | of linear line complexes. Let

ℭ, = ∩l∈,ℭl ⊂ � (2, �)

be the base scheme of |, |. It is a subvariety of� (2, �) of dimension 2=−3−A .
Its canonical class is given by the formula

lℭ, � Oℭ, (A − =). (10.23)

In particular, if smooth, it is a Fano variety if A < =, a Calabi-Yau variety if
A = =, and a variety of general type if A > =.

We also define the center variety S,

S, =
⋃
l∈,

Sl .

It is also called the singular variety of, .
For any G = [{] ∈ S, , there exists l ∈ , such that l({, {′) = 0 for

all {′ ∈ � , or, equivalently, the line ℓ = GH is contained in ℭl for all H. This
implies that the codimension ofΩ(G)∩ℭ, inΩ(G) is ≤ A , less than the expected
number A + 1. Conversely, since Ω(G) is irreducible, if the codimension of the
intersection ≤ A , then Ω(G) must be contained in some ℭl , and hence G ∈ Sl .
Thus, we have proved the following.
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Proposition 10.2.17.

S, = {G ∈ |� | : dimΩ(G) ∩ ℭ, ≥ = − A − 1}

= {G ∈ |� | : Ω(G) ⊂ ℭl for some l ∈ ,}.

For any linear subspace Λ in |� | we can define the polar subspace with
respect to |, | by

8, (Λ) =
⋂
l∈,

8l (Λ).

Since G ∈ 8l (G) for any linear line complex ℭl , we obtain that, for any G ∈ |� |,

G ∈ 8, (G).

It is easy to see that

dim 8, (G) = = − A + dim |{l ∈ , : G ∈ Sl}|. (10.24)

Now, we are ready to give examples.
Example 10.2.18. A pencil |, | of linear line complexes in P3 = |� | is defined
by a line in the Plücker space P5 = |∧2 �∨ | which intersects the Klein quadric
� (2, �∨) at two points or one point with multiplicity 2. The intersection points
correspond to special linear line complexes intersecting a given line. Thus,
the base locus of a general pencil of linear line complexes consists of lines
intersecting two skew lines. It is a nonsingular congruence of lines in �1 (P3)
of order and degree equal to 1. It is isomorphic to a nonsingular quadric in P3.
It may degenerate into the union of an U-plane and a V-plane if the two lines
are coplanar, or to a singular quadric if the two lines coincide.
Example 10.2.19. Assume A = 1, = = 2: and |, | does not intersect the set of
linear line complexes with corank > 1 (the variety of such linear line complexes
is of codimension 3 in |∧2 �∨ |). Then, we have a map |, | � P1 → P2: which
assigns to [l] ∈ |, | the center Sl of ℭl . The map is given by the pfaffians
of the principal minors of a skew-symmetric matrix of size (= + 1) × (= + 1),
so the center variety S, of |, | is a rational curve ': of degree : in P2: . By
Proposition 10.2.17 any secant line of ': is contained in ℭ, . For example,
taking = = 4, we obtain that the center variety is a conic in a plane contained in
ℭ, .

Now, assume that A = 2. We obtain that S, is a projection of the Veronese
surface V2

:
and the variety of trisecant lines of the surface is contained in ℭ, .

We have seen it already in the case : = 2 (see Subsection 2.1.3).
Example 10.2.20. Let A = 3 and = = 4 so we have a web |, | of linear line
complexes in P9 = |∧2 �∨ |. We assume that |, | is general enough so that it
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intersects the Grassmann variety G∗ = � (2, �∨) in a finite set of points. We
know that the degree of � (2, 5) is equal to five, thus, |, | intersects �∗ at five
points. Consider the rational map |, | = P3 d S, ⊂ P4 which assigns to
[l] ∈ |, | the center of ℭl . As in the previous examples, the map is given
by pfaffians of skew-symmetric matrices of size 4 × 4. They all vanish at the
set of five points ?1, . . . , ?5. The pre-image of a general line in P4 is equal to
the residual set of intersections of three quadrics and hence consists of three
points. Thus, the map is a birational map onto a cubic hypersurface. Any line
joining two of the five points is blown down to a singular point of the cubic
hypersurface. Thus, the cubic is isomorphic to the Segre cubic primal. Observe
now that ℭ, is a del Pezzo surface of degree 5 and the singular variety of |, |
is equal to the projection of the incidence variety {(G, ℓ) ∈ P4 ×ℭ, : G ∈ ℓ} to
P4. It coincides with the center variety S, .

One can see the center variety S, of |, | as the degeneracy locus of a map of
rank 3 vector bundles over |� |. First, we identify �0 ( |� |,Ω1

|� | (2)) with
∧2 �∨.

To do this, we use the dual Euler exact sequence twisted by O |� | (2)

0→ Ω1
|� | (2) → �∨ ⊗ O |� | (1) → O |� | (2) → 0. (10.25)

Passing to the global sections, we obtain an isomorphism

�0 ( |� |,Ω1
|� | (2)) � Ker(�∨ ⊗ �∨ → (2 (�)∨) �

2∧
�∨.

The composition of the inclusion map , → ∧2 �∨ and the evaluation map∧2 �∨ → Ω1
|� | (2) defines a morphism of vector bundles

f : , ⊗ O |� | → Ω1
|� | (2).

The degeneracy locus of this morphism consists of points G ∈ |� | such that the
composition of � ⊗ O |� | (−1) → T 1

|� | (−2) and the dual map f∨ : T 1
|� | (−2) →

,∨ ⊗ O |� | is not of full rank at G. For any G = [{] ∈ |� |, the map of fibers q(G)
sends a vector {′ to the linear function on , defined by l ↦→ l({, {′). This
linear function is equal to zero if and only if the line 〈[{], [{′]〉 intersects ℭ, .
Applying Proposition 10.2.17, we obtain that the degeneracy locus of point
G = [{] for which the rank of q(G) is smaller than A + 1 must be equal to S, .

If we choose coordinates and take a basis of , defined by A + 1 skew-
symmetric bilinear forms l: =

∑
0
(:)
8 9
3C8 ∧ 3C 9 , then the matrix is

©«
∑=
B=0 0

(1)
1,B CB . . .

∑=
B=0 0

(1)
=,BCB

...
...

...∑=
B=0 0

(A+1)
1,B CB . . .

∑=
B=0 0

(A+1)
=,B CB

ª®®®¬ ,
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where 0:
8 9
= −0:

98
.

The expected dimension of the degeneracy locus is equal to = − A . Assume
that this is the case. It follows from [315, Example 14.3.2] that

deg S, = deg 2=−A (Ω1
|� | (2)) =

=−A∑
8=0
(−1)8

(
= − 8
A

)
. (10.26)

Example 10.2.21. Assume =+1 = 2: . Ifl ∈ , is nondegenerate, then Sl = ∅.
Otherwise, dim Sl ≥ 1. Thus, the varieties S, are ruled by linear subspaces.
For a general , of dimension 1 < A < =, the dimensions of these subspaces
is equal to 1 and each point in S, is contained in a unique line Sl . In other
words, S, is a scroll with one-dimensional generators parameterized by the
subvariety � of |, | of degenerate l’s. Thus, � is equal to the intersection of
|, | with a pfaffian hypersurface of degree : in |Λ2�∨ |. The scrolls S, are
called Palatini scrolls. If = = 3, the only Palatini scroll is a quadric in P3 and �
is a conic. In P5 we get a 3-dimensional Palatini scroll of degree 7 defined by a
web |, | of linear line complexes. The family of generators � is a cubic surface
in |, |. We refer to [561] for the study of this scroll. There is also a Palatini ruled
surface of degree 6 defined by a net of linear line complexes. Its generators are
parameterized by a plane cubic curve. If we take, with dim, = 5, we get a
quartic hypersurface in P5.

10.3 Quadratic Line Complex

10.3.1 Generalities
Recall that a quadratic line complex ℭ is the intersection of the Grassman-
nian G = � (2, �) ⊂ |∧2 � | with a quadric hypersurface &. We assume that
this intersection is irreducible and reduced. Since lG � OG (−= − 1), by the
adjunction formula

lℭ � Oℭ (1 − =).

If ℭ is nonsingular, i.e., the intersection is transversal, we obtain that ℭ is a
Fano variety of index = − 1.

Consider the incidence variety Zℭ together with its natural projections ?ℭ :
Zℭ → P= and @ℭ : Zℭ →  . For each point G ∈ P=, the fiber of ?ℭ is
isomorphic to the intersection of the Schubert variety Ω(G) with &. We know
that Ω(G) is isomorphic to P=−1 embedded in |∧2 � | as a linear subspace.
Thus, the fiber is isomorphic to a quadric in P=−1. This shows that ℭ admits a
structure of a quadric bundle, i.e., a fibrationwith fibers isomorphic to a quadric
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hypersurface. The important invariant of a quadric bundle is its discriminant
locus. This is the set of points of the base of the fibration over which the fiber
is a singular quadric or the whole space. In our case, we have the following
classical definition.

Definition 10.3.1. The singular variety Δ of a quadratic line complex is the set
of points G ∈ P= such that Ω(G) ∩ & is a singular quadric in Ω(G) = P=−1 or
Ω(G) ⊂ &.

We will need the following fact from linear algebra.

Lemma 10.3.2. Let � = (08 9 ), � = (18 9 ) be two matrices of sizes : × < and
< × : with : ≤ <. Let |�� |, |�� |, � = (81, . . . , 8: ), 1 ≤ 81 < . . . < 8: ≤ <, be
maximal minors of � and �. For any < × <-matrix � = (68 9 ),

|� · � · � | =
∑
� ,�

6� � |�� | |�� |,

where 6� � = 681 91 · · · 68: 9: .

Proof Consider the product of the following block matrices(
� · � �

0<: �<

)
·
(
�: 0:<
−� �<

)
=

(
0:: �

−� �<

)
, (10.27)

where 001 is the zero matrix of size 0 × 1 and �0 is the identity matrix of size
0×0. The determinant of the first matrix is equal to |� ·� |, and the determinant
of the second matrix is equal to 1. Applying the Laplace formula, we find that
the determinant of the product is equal to

∑ |�� | |�� |. Now, we apply (10.27),
replacing � with � · �. Write a 9-th column of � · � as the sum

∑<
8=1 68 9�8 ,

where �8 are the columns of �. Then,

| (� · �) 91 ,..., 9: | =
∑

1≤81<...<8: ≤<
681 91682 92 · · · 68: 9: |�81 ,...,8: |.

This proves the assertion. �

Suppose we have a bilinear form 1 : � × � → K on a vector space � over a
field K. Let � =

(
1(48 , 4 9 )

)
be the matrix of the bilinear form with respect to

a basis 41, . . . , 4<. Let ! be a subspace of � with basis 51, . . . , 5: . Then, the
matrix�! =

(
1( 58 , 5 9 )

)
is equal to the product C �·� ·�, where the 5 9 =

∑
08 948 .

It follows from the previous lemma that |�! | =
∑
� ,� 6� � |�� | |�� |. If we extend

1 to
∧: � by the formula

1({1, . . . , {: ;|1, . . . , |: ) = det
(
1({8 , | 9 )

)
,

then the previous formula gives an explicit expression for 1( 51 ∧ . . . ∧ 5: , 51 ∧
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. . . ∧ 5: ). If � = R= and we take 1 to be the Euclidean inner-product, we get
the well-known formula for the area of the parallelogram spanned by vectors
51, . . . , 5: in terms of the sum of squares of maximal minors of the matrix
with columns equal to 5 9 . If < = 3 this is the formula for the length of the
cross-product of two vectors.

Proposition 10.3.3. Δ is a hypersurface of degree 2(= − 1).

Proof Consider the map

8 : |� | → � (=,
2∧
�), G ↦→ Ω(G). (10.28)

If G = [{0], the linear subspace of
∧2 � corresponding to Ω(G) is the image of

� in
∧2 � under the map { ↦→ { ∧ {0. This is an =-dimensional subspace Λ(G)

of
∧2 � . Hence, it defines a point in the Grassmann variety � (=,∧2 �). If we

write {0 =
∑=
8=0 0848 , where we assume that 0= ≠ 0, then Λ(G) is spanned by

the vectors 48 ∧ {0 =
∑
9≠8 0 948 ∧ 4 9 , 8 = 0, . . . , =. Thus, the rows of the matrix

of Plücker coordinates of the basis are linear functions in coordinates of {0. Its
maximal minors are polynomials of order = + 1. Observe now that each (8=)-th
column contains 0= in the 8-th row and has zero elsewhere. This easily implies
that all maximal minors are divisible by 0=. Thus, the Plücker coordinates of
Λ(G) are polynomials of degree = − 1 in coordinates of {0. We see now that the
map 8 is given by a linear system of divisors of degree =− 1. Fix a quadric& in
|∧2 � | that does not vanish on G. For any =− 1-dimensional linear subspace !
of |∧2 � |, the intersection of & with ! is either a quadric or the whole !. Let
us consider the locus � of !’s such that this intersection is a singular quadric.
We claim that this is a hypersurface of degree 2.
Let 1 : � × � be a nondegenerate symmetric bilinear form on a vector space

� of dimension = + 1. The restriction of 1 to a linear subspace ! ⊂ � with a
basis ( 51, . . . , 5: ) is a degenerate bilinear form if and only if the determinant
of the matrix

(
1( 58 , 5 9 )

)
is equal to zero. If we write 58 =

∑
08 94 9 in terms

of a basis in � , we see that this condition is polynomial of degree 2: in
coefficients 08 9 . By the previous lemma, this polynomial can be written as a
quadratic polynomial in maximal minors of the matrix (08 9 ). Applying this to
our situation, we interpret the maximal minors as the Plücker coordinates of !
and obtain that � is a quadric hypersurface.
It remains to use the fact that Δ = 8−1 (�), where 8 is given by polynomials

of degree = − 1. �

Let

Δ: = {G ∈ Δ : corank & ∩Ω(G) ≥ :}.
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These are closed subvarieties of Δ: .
Let

Δ̃ = {(G, ℓ) ∈ Zℭ : rank 3?ℭ (G, ℓ) < =}. (10.29)

In other words, Δ̃ is the locus of points in Zℭ where the projection ?ℭ : Zℭ → P=

is not smooth. This set admits a structure of a closed subscheme of /ℭ defined
locally by vanishing of the maximal minors of the Jacobian matrix of the map
?ℭ. Globally, we have the standard exact sequence of the sheaves of differentials

0→ ?∗
ℭ
Ω1
P=

X−→ ΩZℭ → Ω1
Zℭ/P= → 0, (10.30)

and the support of Δ̃ is equal to the set of points where Ω1
Zℭ/P= is not locally

free. Locally the map X is given by a matrix of size = × (2= − 2). Thus, Δ̃ is
given locally by = × = minors of this matrix and is of dimension =.
Tensoring (10.30) with the residue field ^(?) at a point ? = (G, ℓ) ∈ Zℭ,

we see that Δ̃ is equal to the degeneracy locus of points where the map X? :
(?∗
ℭ
Ω1
P= )? → (Ω1

Zℭ
)? is not injective. Using the Thom-Porteous formula (see

[315, 14.4]), we can express the class of Δ̃ in �∗ (/ℭ,Z).

Definition 10.3.4. Let ℭ be a line complex of degree 3 in�1 (P=). A line ℓ in ℭ
is called singular if ℓ is a singular point of the intersection Ω(G) ∩ ℭ for some
G ∈ P= or any point on Ω(G) if Ω(G) ⊂ ℭ. The locus ((ℭ) of singular lines is
called the singular variety of ℭ.

Proposition 10.3.5. Assume =+1 = 2: andℭ is nonsingular. Then, the singular
variety ((ℭ) of ℭ is equal to the intersection of ℭ with a hypersurface of degree
: (3 − 1).

Proof Let ℓ be a singular line of ℭ = G ∩ - , where - is a hypersurface of
degree 3. We haveΩ(G) ⊂ Tℓ (ℭ) = Tℓ (G) ∩Tℓ (-). Thus,Ω(G) ⊂ Tℓ (-) ∩G.
By Proposition 10.2.4, the linear line complex Tℓ (-) ∩ G consists of lines
intersecting a line and its polar (= − 2)-plane unless it is singular. Since Ω(G)
is not contained in the Schubert variety of lines intersecting a codimension
2 linear subspace, we obtain that Tℓ (-) ∩ G is singular. This shows that the
singular variety ((ℭ) of ℭ consists of lines in ℭ such that Tℓ (-) coincides with
a tangent hyperplane of G. In other words,

((ℭ) = W−1 (G∨), (10.31)

where W : ℭ → (P=)∨ is the restriction of the Gauss map - → (P=)∨ to ℭ.
Since ℭ is nonsingular, - is nonsingular at any point of - ∩G and, hence, W is
well-defined. It remains to use that W is given by polynomials of degree 3 − 1,
the partials of - . �
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Let = = 3 and let ℭ be a line complex defined by a hypersurface - = + (Φ)
of degree 3 in the Plücker space. The equation of the singular surface ((ℭ)
in Plücker coordinates is easy to find. Let Φ8 9 = mΦ

m?8 9
(;), where [;] = ℓ. The

tangent hyperplane to - at the point ℓ is given by the equation∑
1≤8< 9≤4

Φ8 9 (;)?8 9 = 0.

Since the dual quadric G∨ is given by the same equation as G, we obtain the
equation of ((ℭ) in ℭ:

Φ12Φ34 −Φ13Φ24 +Φ14Φ23 = 0.

10.3.2 Intersection of two quadrics
Let &1, &2 be two quadrics in P= and - = &1 ∩ &2. We assume that - is
nonsingular. It follows from the proof of Theorem 8.6.2 that this is equivalent
to the condition that the pencil P of quadrics spanned by &1, &2 has exactly
= + 1 singular quadrics of corank one. This set can be identified with a set of
= + 1 points ?1, . . . , ?=+1 in P1 � P.
If = = 26 + 1, we get the associated nonsingular hyperelliptic curve � of

genus 6, the double cover of P1 branched at ?1, . . . , ?26+2.
The variety - is of degree 4 in P=, = ≥ 3, of dimension = − 2. Its canonical

class is equal to −(= − 3)ℎ, where ℎ is the class of a hyperplane section. If
= = 4, it is a quartic del Pezzo surface.

Theorem 10.3.6 (A. Weil). Assume = = 26 + 1. Let � (-) be the variety of
6 − 1-dimensional linear subspaces contained in - . Then, � (-) is isomorphic
to the Jacobian variety of the curve � and also to the intermediate Jacobian of
- .

Proof We will restrict ourselves only to the case 6 = 2, leaving the general
case to the reader. For each ℓ ∈ � (-), consider the projection map ?ℓ : - ′ =
- \ ℓ → P3. For any point G ∈ - not on ℓ, the fiber over ?ℓ (G) is equal to the
intersection of the plane ℓG = 〈ℓ, G〉 with - ′. The intersection of this plane with
a quadric & from the pencil P is a conic containing ℓ and another line ℓ′. If we
take two nonsingular generators of P, we find that the fiber is the intersection
of two lines or the whole ℓ′ ∈ � (-) intersecting ℓ. In the latter case, all points
on ℓ′ \ ℓ belong to the same fiber. Since all quadrics from the pencil intersect
the plane 〈ℓ, ℓ′〉 along the same conic ℓ ∪ ℓ′, there exists a unique quadric &ℓ′
from the pencil which contains 〈ℓ, ℓ′〉. The plane belongs to one of the two
rulings of planes on &ℓ′ (or a unique family if the quadric is singular). Note
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that each quadric from the pencil contains at most one plane in each ruling
which contains ℓ (two members of the same ruling intersect along a subspace
of even codimension). Thus, we can identify the following sets:

• pairs (&, A), where & ∈ P, A is a ruling of planes in &,
• � = {ℓ′ ∈ � (-) : ℓ ∩ ℓ′ ≠ ∅}.

If we identify P3 with the set of planes in P5 containing ℓ, the latter set becomes
a subset of P3. Let � be the union of ℓ′’s from �. The projection map ?ℓ maps
� to � with fibers isomorphic to ℓ′ \ ℓ ∩ ℓ′.
Extending ?ℓ to a morphism 5 : -̄ → P3, where -̄ is the blow-up of - with

center at ℓ, we obtain that 5 is an isomorphism outside � and that the fibers over
points in � are isomorphic to P1. Observe that -̄ is contained in the blow-up
P̄5 of P5 along ℓ. The projection 5 is the restriction of the projection P̄5 → P3

which is a projective bundle of relative dimension 2. The crucial observation
now is that � is isomorphic to our hyperelliptic curve �. In fact, consider the
incidence variety

X = {(&, c) ∈ P × �2 (P5) : c ⊂ &}.

Its projection to P has fiber over & isomorphic to the rulings of planes in &.
It consists of two connected components outside of the set of singular quadrics
and one connected component over the set of singular quadrics. Taking the
Stein factorization, we get a double cover of P = P1 branched along six points.
It is isomorphic to �.
Now, the projection map ?ℓ maps each line ℓ′ intersecting ℓ to a point in

P3. We will identify the set of these points with the curve �. A general plane
in P3 intersects � at 3 = deg � points. The pre-image of the plane under the
projection ?ℓ : - d P3 is isomorphic to the complete intersection of two
quadrics in P4. It is a del Pezzo surface of degree four, hence it is obtained by
blowing up five points in P2. Thus, 3 = 5. An easy argument using Riemann-
Roch shows that � lies on a unique quadric Q ⊂ P3. Its pre-image under the
projection -̄ → P3 is the exceptional divisor � of the blow-up -̄ → - .We have
Nℓ/P4 � Oℓ (2) ⊕ Oℓ (2) and N-/P4 � O- (2) ⊕ O- (2). The exact sequence
of normal bundles (2.42) shows that the normal bundle of ℓ in - is trivial, so
� � P1 × P1, and hence, Q is a nonsingular quadric. Thus, (-, ℓ) defines a
biregular model � ⊂ P3 of � such that � is of degree five and lies on a unique
nonsingular quadric Q. One can show that the latter condition is equivalent to
the condition that the invertible sheaf O� (1) ⊗ l−2

�
is not effective. It is easy

to see that � is of bidegree (2, 3).
Let us construct an isomorphism between Jac(�) and � (-). Recall that

Jac(�) is birationally isomorphic to the symmetric square � (2) of the curve
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�. The canonical map � (2) → Pic2 (�) defined by G + H ↦→ [G + H] is an
isomorphism over the complement of one point represented by the canonical
class of �. Its fiber over  � is the linear system | � |. Also, note that Pic2 (�)
is canonically identified with Jac(�) by sending a divisor class b of degree 2
to the class b −  � .
Each line ℓ′ skew to ℓ is projected to a secant line of �. In fact, 〈ℓ, ℓ′〉 ∩- is a

quartic curve in the plane 〈ℓ, ℓ′〉 � P3 that contains two skew line components.
The residual part is the union of two skew lines <, <′ intersecting both ℓ and
ℓ′. Thus, ℓ′ is projected to the secant line joining two points on �, which are
the projections of the lines <, <′. If < = <′, then ℓ′ is projected to a tangent
line of �. Thus, the open subset of lines in - skew to ℓ is mapped bĳectively
to an open subset of � (2) represented by “honest” secants of �, i.e. secants
which are not 3-secants. Each line ℓ′ ∈ � (-) \ {ℓ} intersecting ℓ is projected
to a point 1 of �. The line 5 of the ruling of Q intersecting � with multiplicity
three and passing through a point 1 ∈ � defines a positive divisor � of degree
2 such that 5 ∩ � = 1 + �. The divisor class [�] ∈ Pic2 (�) is assigned to ℓ′.
So we see that each trisecant line of � (they are necessarily lie on Q) defines
three lines passing through the same point of ℓ. By taking a section of - by
a hyperplane tangent to - at a point G ∈ - , we see that G is contained in four
lines (taken with some multiplicity). Finally, the line ℓ itself corresponds to
 � . This establishes an isomorphism between Pic2 (�) and � (-).

�

Note that we have proved that - is a rational variety by constructing an
explicit rational map from - to P3. This map becomes a regular map after we
blow up a line ℓ on - . The image of the exceptional divisor is a quadric. This
map blows down the union of lines on - that intersect ℓ to a genus 2 curve� of
degree 5 lying on the quadric. The inverse map P3 d - ⊂ P5 is given by the
linear system of cubic hypersurfaces through the curve �. It becomes a regular
map after we blow up �. Since any trisecant line of � defined by one of the
rulings of the quadric blows down to a point, the image of the proper transform
of the quadric is the line ℓ on - . The exceptional divisor is mapped to the union
of lines on - intersecting ℓ.

10.3.3 Kummer surfaces
We consider the case = = 3. The quadratic line complex ℭ is the intersection
of two quadrics G ∩ &. We shall assume that ℭ is nonsingular. Let � be the
associated hyperelliptic curve of genus 2.
First, let us look at the singular surface Δ of ℭ. By Proposition 10.3.3, it
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is a quartic surface. For any point G ∈ Δ, the conic �G = ℭ ∩ Ω(G) is the
union of two lines. A line in G is always equal to a one-dimensional Schubert
variety. In fact, G is a nonsingular quadric of dimension 4, and hence contains
two 3-dimensional families of planes. These are the families realized by the
Schubert planes Ω(G) and Ω(Π). Hence, a line must be a pencil in one of these
planes, which shows that �G = Ω(G,Π1) ∪Ω(G,Π2) for some planes Π1,Π2 in
P3. Any line in ℭ is equal to some Ω(G, �) and hence is equal to an irreducible
component of the conic �G . Thus, we see that any line in ℭ is realized as an
irreducible component of a conic �G , G ∈ ℭ. It follows from Theorem 10.3.6
that the variety of lines � (ℭ) in ℭ is isomorphic to the Jacobian variety of �.

Proposition 10.3.7. The variety � (ℭ) of lines in ℭ is a double cover of the
quartic surface Δ. The cover ramifies over the set Δ1 of points such that the
conic �G = ?−1

ℭ
(G) is a double line.

Let G ∈ Δ and �G = Ω(G,Π1) ∪ Ω(G,Π2). A singular point of �G is called
a singular line of ℭ. If G ∉ Δ1, then �G has only one singular point equal to
Ω(G,Π1) ∩Ω(G,Π2). Otherwise, it has the whole line of them.
Let ( = ((ℭ) be the singular surface of ℭ. By Proposition 10.3.5, ( is a

complete intersection of three quadrics.
By the adjunction formula, we obtain l( � O( . The assertion that ( is

nonsingular follows from its explicit equations (10.32) given below. Thus, ( is
a K3 surface of degree 8.

Theorem 10.3.8. The set of pairs (G, ℓ), where ℓ is a singular line containing
G is isomorphic to the variety Δ̃ ⊂ /ℭ, the locus of points where the morphism
?ℭ : /ℭ → P3 is not smooth. It is a nonsingular surface with the trivial
canonical class. The projection ?ℭ : Δ̃ → Δ is a resolution of singularities.
The projection @ℭ : Δ̃→ ( is an isomorphism. The surface ( is equal to ℭ∩Q,
where Q is a quadric in P5.

Proof The first assertion is obvious since the fibers of ?ℭ : /ℭ → P3 are
isomorphic to the conics �G . To see that @ℭ is one-to-one we have to check that
a singular line ℓ cannot be a singular point of two different fibers �G and �H .
The planes Ω(G) and Ω(H) intersect at one point ℓ = GH and hence span P4. If
& is tangent to both planes at the same point ℓ, the two planes are contained
in Tℓ (&) ∩ Tℓ (�), hence ℭ = & ∩ � is singular at ℓ. This contradicts our
assumption on ℭ. Thus, the projection Δ̃→ ( is one-to-one. Since the fibers of
@ℭ : /ℭ → ℭ are projective lines, this easily implies that the restriction of @ℭ
to Δ̃ is an isomorphism onto (.

�
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Theorem 10.3.9. The setΔ1 consists of 16 points, and each point is an ordinary
double point of the singular surface Δ.

Proof Let � = � (ℭ) be the variety of lines in ℭ. We know that it is a double
cover of Δ ramified over the set Δ1. Since Δ is isomorphic to ( outside Δ1, we
see that � admits an involution with a finite set � of isolated fixed points such
that the quotient is birationally isomorphic to a K3 surface. The open set � \ �
is an unramified double cover of the complement of B = #� projective lines in
the K3 surface (. For any variety / we denote by 42 (/) the topological Euler-
Poincaré characteristic with compact support. By the additivity property of 42 ,
we get 42 (�− () = 4(�) − B = 2(4B (() − 2B) = 48− 4B. Thus, 4(�) = 48− 3B.
Since � � Jac(�), we have 4(�) = 0. This gives B = 16. Thus, Δ has 16
singular points. Each point is resolved by a (−2)-curve on (. This implies that
each singular point is a rational double point of type �1, i.e. an ordinary double
point. �

Definition 10.3.10. For any abelian variety � of dimension 6 the quotient of
� by the involution 0 ↦→ −0 is denoted by Kum(�) and is called the Kummer
variety of �.

Note that Kum(�) has 226 singular point locally isomorphic to the cone over
the Veronese variety V6−1

6 . In the case 6 = 2 we have 16 ordinary double points.
It is easy to see that any involution with this property must coincide with the
negation involution (look at its action in the tangent space, and use that � is a
complex torus). This gives the following.

Corollary 10.3.11. The singular surface Δ of ℭ is isomorphic to the Kummer
surface of the Jacobian variety of the hyperelliptic curve � of genus 2.

The Kummer variety of the Jacobian variety of a nonsingular curve is called
a jacobian Kummer variety.

Proposition 10.3.12. The surface ( contains two sets of 16 disjoint lines.

Proof The first set is formed by the lines @ℭ (?−1
ℭ
(I8)), where I1, . . . , I16 are

the singular points of the singular surface. The other set comes from the dual
picture. We can consider the dual incidence variety

Žℭ = {(Π, ℓ) ∈ (P3)∨ × ℭ : ℓ ⊂ Π}.

The fibers of the projection to (P3)∨ are conics. Again we define the singular
surface Δ̌ as the locus of planes such that the fiber is the union of lines. A line
in the fiber is a pencil of lines in the plane. These pencils form the set of lines
in ℭ. The lines are common to two pencils if lines are singular lines of ℭ. Thus,
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we see that the surface ( can be defined in two ways by using the incidence
/ℭ or /̌ℭ. As before, we prove that Δ̌ is the quotient of the abelian surface �
and is isomorphic to the Kummer surface of �. The lines in ( corresponding
to singular points of Δ̌ is the second set of 16 lines. �

Choosing six mutually apolar linear line complexes, we write the equation of
the Klein quadric as a sum of squares. The condition of nondegeneracy allows
one to reduce the quadric & to the diagonal form in these coordinates. Thus,
the equation of the quadratic line complex can be written in the form

5∑
8=0

C28 =

5∑
8=0

08C
2
8 = 0. (10.32)

Since ℭ is nonsingular, 08 ≠ 0 9 , 8 ≠ 9 . The parameters in the pencil
corresponding to six singular quadrics are (C0, C1) = (−00, 1), 8 = 0, . . . , 5.
Thus, the hyperelliptic curve � has the equation

C22 = (C1 + 00C0) · · · (C1 + 05C0),

which has to be considered as an equation of degree 6 in the weighted plane
P(1, 1, 3).
To find the equation of the singular surface ( of ℭ, we apply (10.31). The

dual of the quadric + (∑ 08C
2
8
) is the quadric + (∑ 0−1

8
D2
8
). Its pre-image under

the Gauss map defined by the quadric+ (∑ C2
8
) is the quadric+ (∑ 0−1

8
G2
8
). After

scaling C8 ↦→ 08C8 , we obtain that the surface (, a nonsingular model, of the
Kummer surface, is given by the equations

5∑
8=0

C28 =

5∑
8=0

08C
2
8 =

5∑
8=0

02
8 C

2
8 = 0. (10.33)

We know that the surface given by above equations contains 32 lines. Con-
sider six lines ℓ8 in P2 given by the equations

-0 + 08-1 + 02
8 -2 = 0, 8 = 0, . . . , 5. (10.34)

Since the points (1, 08 , 02
8
) lie on the conic -0-2 − -2

1 = 0, the lines ℓ8 are
tangent to the conic.

Lemma 10.3.13. Let - ⊂ P2:−1 be a variety given by complete intersection of
: quadrics

@8 =

2:−1∑
9=0

08 9 C
2
9 = 0, 8 = 1, . . . , : .
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Consider the group � of projective transformations of P2:−1 that consists of
transformations

[C0, . . . , C2:−1] ↦→ [n0C0, . . . , n2:−1C2:−1],

where n8 = ±1 and n0 · · · n2:−1 = 1. Then, -/� is isomorphic to the double
cover of P:−1 branched along the union of 2: hyperplanes with equations
explicitly given below in (10.35).

Proof Let ' = C[C0, . . . , C2:−1]/(@1, . . . , @: ) be the ring of projective coor-
dinates of - . Then, the subring of invariants '� is generated by the cosets of
C20 , . . . , C

2
2:−1 and C0 · · · C2:−1. Since (C0 · · · C2:−1)2 = C20 · · · C

2
2:−1, we obtain that

'� � C[C0, . . . , C2:−1, C]/�,

where � is generated by
2:−1∑
9=0

08 9 C 9 , 8 = 1, . . . , :, C2 − C0 · · · C2:−1.

Let � = (08 9 ) be the matrix of the coefficients 08 9 . Its rank is equal to : . Choose
new coordinates C ′

8
in C2: such that C ′

8+:−1 =
∑2:−1
9=0 08 9 C 9 , 8 = 1, . . . , : . Write

C8 =

:−1∑
9=0

18 9 C
′
9 mod (C ′: , . . . , C

′
2:−1), 8 = 0, . . . , 2: − 1.

Then,

-/� � Proj '� � Proj(C[C ′0, . . . , C
′
:−1, C])/

(
C2 −

2:−1∏
8=0

:−1∑
9=0

18 9 C
′
9 ]
)
.

Thus, -/� is isomorphic to the double cover of P:−1 branched along the
hyperplanes

:−1∑
9=0

18 9 I 9 = 0, 9 = 0, . . . , 2: − 1. (10.35)

�

Corollary 10.3.14. Suppose the set of 2: points

[000, . . . , 0:0], . . . , [00 2:−1, . . . , 0: 2:−1]

in P:−1 is projectively equivalent to an ordered set of points on a Veronese
curve of degree : − 1. Then, -/� is isomorphic to the double cover of P:−1

branched along the hyperplanes

00 9 I0 + · · · + 0:−1 9 I:−1 = 0, 8 = 0, . . . , 2: − 1.



10.3 Quadratic Line Complex 231

Proof Choose coordinates such that the matrix � = (08 9 ) has the form

� =

©«
1 1 . . . 1
U1 U2 . . . U2:
...

...
...
...

U:−1
1 U:−1

2 . . . U:−1
2:

ª®®®®®¬
.

Let

� 9 =
∏

1≤8< 9≤:
(U 9 − U8)

and

5 (G) = (G − U1) · · · (G − U: ) = 00 + 01G + · · · + 0:G: ,

5 9 (G) =
5 (G)

� 9 (G − U 9 )
= 00 9 + 01 9G + · · · + 0:−1 9G

:−1, 9 = 1, . . . , : .

We have

� =

©«
1 1 . . . 1
U1 U2 . . . U:
...

...
...
...

U:−1
1 U:−1

2 . . . U:−1
:

ª®®®®®¬

−1

=

©«
001 011 . . . 0:−11
002 012 . . . 0:−12
...

...
...

00: 01: . . . 0:−1:

ª®®®®®¬
.

Multiplying � by � on the left we obtain

� · � =

©«
1 0 0 . . . 0 51 (U:+1) . . . 51 (U2: )
0 1 0 . . . 0 52 (U:+1) . . . 52 (U2: )
...

...
...

...
...

...
...

...

0 0 0 . . . 1 5: (U:+1) . . . 5: (U2: )

ª®®®®®¬
=

©«
51 (U1) . . . 51 (U: ) 51 (U:+1) . . . 51 (U2: )
52 (U1) . . . 52 (U: ) 52 (U:+1) . . . 52 (U2: )
...

...
...

...
...

...

5: (U1) . . . 5: (U: ) 5: (U:+1) . . . 5: (U2: )

ª®®®®®¬
.

The polynomials 51 (G), . . . , 5: (G) form a basis in the space of polynomials of
degree ≤ : − 1. We see that the columns of the matrix � · � can be taken as the
projective coordinates of the images of points [1, U1], . . . , [1, U2: ] ∈ P1 under
a Veronese map. Under the projective transformation defined by the matrix �,
the ordered set of columns of matrix � is projectively equivalent to the set of
points defined by the column of the matrix � · �. Write the matrix � · � in the
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block-form [�: �]. Then, the null-space of this matrix is the columns space of
the matrix [−� �: ]. It defines the same set of points up to a permutation. �

The following lemma is due to A. Verra.

Lemma 10.3.15. Let - be the base locus of a linear system N of quadrics of
dimension : − 1 in P2:−1. Suppose that

• N contains a nonsingular quadric;
• - contains a linear subspace Λ of dimension : − 2;
• - is not covered by lines intersecting Λ.

Then, - is birationally isomorphic to the double cover ofN branched over the
discriminant hypersurface of N .

Proof Let Λ be a linear subspace of dimension : − 2 contained in - . Take
a general point G ∈ - and consider the span Π = 〈Λ, G〉. By our assumption,
G is not contained in any line. The restriction of the linear system N to Π is
a linear system of quadrics in Π � P:−1 containing Λ and G in its base locus.
The residual components of these quadrics are hyperplanes in Π containing G.
The base locus of this linear system of hyperplanes consists only of G, because
otherwise G will be contained in a line on - intersecting Λ. Our assumption
excludes this. Thus, the dimension of the restriction ofN toΠ is equal to : −2.
This implies that there exists a unique quadric inN containing Π. This defines
a rational map - d N . A general member of N is a nonsingular quadric in
P2:−1. It contains two rulings of (: −1)-planes. Our (: −1)-planeΠ belongs to
one of the rulings. The choice of a ruling to which Π belongs defines a rational
map to the double cover . → N branched along the discriminant variety ofN
parameterizing singular quadrics. The latter is constructed by considering the
second projection of the incidence variety

{(Π, &) ∈ �: (P2:−1) × N : Π ∈ N}

and applying the Stein factorization. Now, we construct the inverse rational
map. d - as follows. Take a nonsingular quadric& ∈ N and choose a ruling
of (: − 1)-planes in &. If & = + (@), then Π = |! |, where ! is an isotropic
:-dimensional linear subspace of the quadratic form @, hence it can be extended
to a unique maximal isotropic subspace of @ in any of the two families of such
subspaces. Thus, Λ is contained in a unique (: − 1)-plane Π from the chosen
ruling. The restriction of N to Π is a linear system of quadrics of dimension
: − 2 with Λ contained in the base locus. The free part of the linear system is a
linear system of hyperplanes through a fixed point G. This point belongs to all
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quadrics inN , hence belongs to - . So. this point is taken to be the value of our
map at the pair & plus a ruling. �

Applying this lemma to the case when the linear system of quadrics consists
of diagonal quadrics, we obtain that the discriminant hypersurface in N is the
union of hyperplanes

:∑
8=0

08 9 C8 = 0, 9 = 0, . . . , 2: + 1.

This shows that in the case when the hyperplanes, considered as points in the
dual space, lie on a Veronese curve, the base locus - of N is birationally
isomorphic to the quotient -/�.

This applies to our situation and gives the following.

Theorem 10.3.16. The surface ( given by (10.33) is birationally isomorphic
to the double cover of P2 branched along the six lines ℓ8 = + (I0 + 08I1 + 02

8
I2).

It is also birationally isomorphic to the quotient (/�, where � consists of
involutions [C0, . . . , C5] ↦→ [n0C0, . . . , n5C5] with n0 · · · n5 = 1.

Remark 10.3.17. In Chapter 12, we will study quartic surfaces with< ordinary
nodes and show that such a surface is obtained as the double cover of the
plane branched along a nodal curve of degree 6 admitting a contact conic. The
Kummer surface is the special case when < = 16. The branch curve must have
15 nodes, and this is possible only if it is the union of 6 lines intersecting by
pairs in 15 points.

Theorem 10.3.18. A Kummer surface is projectively isomorphic to a quartic
surface in P3 with equation

�(G4 + H4 + I4 + |4) + 2�(G2H2 + I2|2) (10.36)
+2� (G2I2 + H2|2) + 2� (G2|2 + I2H2) + 4�GHI| = 0,

where

�(�2 + �2 − �2 − �2 − �2) + 2��� = 0. (10.37)

The cubic hypersurface defined by the equation in above is isomorphic to the
Segre cubic primal.

Proof Choosing apolar linear line complexes, we transform the Klein quadric
to the form C21 + . . . + C

2
6 = 0. Consider the Heisenberg group with nonzero ele-

ments defined by involutions associated to a pair of apolar linear line complexes.
The Heisenber group is induced by transformations of P3 listed in Subsection
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10.2.1. In these coordinates, the equation of the Kummer surface must be in-
variant with respect to these transformations. It is immediately checked that
this implies that the equation must be as in (10.36). It remains to check the con-
ditions on the coefficients. We know that a Kummer surface contains singular
points. Taking the partials, we find

�G3 + G(�H2 + �I2 + �|2) + �HI| = 0,

�H3 + H(�G2 + �|2 + �I2) + �GI| = 0,

�I3 + I(�|2 + �G2 + �H2) + �GH| = 0,

�|3 + |(�I2 + �H2 + �G2) + �GHI = 0.

Multiplying the first equation by H and the second equation by G, and adding
up the two equations, we obtain

(� + �) (G2 + H2) + (� + �) (I2 + |2) = UG
2 + H2

G2H2 , (10.38)

where U = −�GHI|. Similarly, we get

(� + �) (G2 + H2) + (� + �) (I2 + |2) = U I
2 + |2

I2|2 . (10.39)

Dividing the first equation by G2 + H2, the second equation by I2 + |2, and
adding up the results, we obtain

2(� + �) + (� + �)
( I2 + |2

G2 + H2 +
I2 + |2

G2 + H2
)
= U

( 1
G2H2 +

1
I2|2

)
. (10.40)

Multiplying both sides of (10.38) and (10.39), and dividing both sides by
(G2 + H2) (I2 + |2), we obtain

(� + �)2 + (� + �)2 + (� + �) (� + �)
( I2 + |2

G2 + H2 +
I2 + |2

G2 + H2
)
= �2.

Now, we multiply Equation (10.39) by � + �, and, after subtracting (10.40)
from the result, we obtain

(� + �)2 − (� + �)2 + �2 = U(� + �) ( 1
G2H2 +

1
I2|2 ).

Similarly, we get

(� − �)2 − (� − �)2 + �2 = −U(� − �) ( 1
G2H2 +

1
I2|2 ),
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hence,
(� + �)2 − (� + �)2 + �2

(� − �)2 − (� − �)2 + �2 +
� + �
� − � = 0.

From this we easily derive (10.37).
Equation (10.37) defines a cubic hypersurface in P4 isomorphic to the Segre

cubic primal S3 given by Equation (9.46). After substitution

� = I0 + I3, (10.41)
� = I0 + 2I2 + 2I4 + I3,

� = I0 + 2I1 + 2I4 + I3,

� = −I0 − I1 − 2I2 − I3,

� = −2I0 + 2I3,

we obtain the equation

I3
0 + I

3
1 + I

3
2 + I

3
3 + I

3
4 − (I0 + I1 + I2 + I3 + I4)3 = 0.

Since Kummer surfaces depend on three parameters, and the Segre cubic is
irreducible, we obtain that a general point on the Segre cubic corresponds to a
Kummer surface. �

Let + = �0 (P3,OP3 (4))H2 � C5 with coordinates �, �, �, �, � . The linear
system |+ | ⊂ |OP3 (4) | defines a map Φ : P3 → |+ |∨ � P4 whose image is
isomorphic to the orbit space - = P3/H2 from (10.22). The pre-image of a
hyperplane in P4 is singular if and only if it does not intersect - transversally.
This implies that the dual of the hypersurface - is equal to the Segre primal
cubic S3, and, by Proposition 9.5.13, it is isomorphic to the Castelnuovo-
Richmond quartic.
A tangent hyperplane of CR4 at its nonsingular point is a quartic surface

with 16 nodes, 15 come from the 15 singular lines of the hypersurface and one
more point is the tangency point. It coincides with the surface corresponding
to the point on the dual hypersurface. In this way, we see a moduli-theoretical
interpretation of the set of nonsingular points of CR4. They correspond to
the Kummer surfaces of abelian surfaces equipped with some additional data.
Recall that that we have chosen Klein coordinates in the Plücker space that
allowed us to write the equation of a Kummer surface in H2-invariant form.
The double plane construction model of the Jacobian Kummer surface comes
with the order on the set of six lines defining the branch curve. This is the same
as the order on six Weierstrass points of the corresponding curve of genus 2.
As we saw in Section 5.2, the order on the Weierstrass point is equivalent to
a choice of a symplectic basis in the group of 2-torsion points of the Jacobian
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variety. In this way, we see that a Zariski open subset of CR4 can be identified
with the moduli space of Jacobian abelian surfaces with full level 2 structure
defined by a choice of a symplectic basis in the group of 2-torsion points. It
turns out that the whole hypersurface CR4 is isomorphic to a certain natural
compactification A2 (2) of the moduli space of abelian surface with full level
2 structure. This was proven by J. Igusa in [423], who gave an equation of the
quartic CR4 in different coordinates. The quartic hypersurface isomorphic to
CR4 is often referred to in modern literature as an Igusa quartic.

The 16 singular points of the Kummer surface . given by (10.36) form an
orbit of H2. As we know this orbit defines a (166)-configuration. A plane
containing a set of six points cuts out on. a plane quartic curve with 6 singular
points, no three of them lying on a line. This could happen only if the plane is
tangent to the surface along a conic. This conic, or the corresponding plane, is
called a trope-conic. Again, this confirms the fact that in any generalH2-orbit
a set of coplanar six points from the (166)-configuration lies on a conic.

On a nonsingular model of . isomorphic to the octavic surface ( in P5

the exceptional curves (the singular lines of the quadratic complex) of the
16 singular points and the proper transforms of 16 tropes form the (166)-
configuration of lines.
Consider the Gauss map from . to its projectively dual surface .∨ given by

cubic partials. Obviously, it should blow down each trope to a singular point of
.∨. Thus,.∨ has at least 16 singular points. It follows from the Plücker-Teissier
formulas (1.2.7) that each ordinary double point decreases the degree of the
dual surface by 2. Thus, the degree of the dual surface .∨ is expected to be
equal to 36 − 32 = 4. In fact we have the following beautiful fact.

Theorem 10.3.19. A Kummer surface is projectively isomorphic to its dual
surface.

Proof In the proof of Theorem 10.3.18 we had computed the partial cubics
of Equation (10.36). The linear system of the partial cubics is invariant with
respect to the action of the Heisenberg groupH2 and defines an isomorphism of
projective representations. If we choose a basis appropriately, we will be able to
identifyH2-equivariantly the dual of the linear system with the original space
P3. We know that the image of the surface is a quartic surface with 16 singular
points. Since the tropes of the original surfaces are mapped to singular points
of the dual surface, we see that the two surfaces share the same configurations
of nodes and tropes. Thus, they share 16 conics, and hence coincide (since the
degree of intersection of two different irreducible surfaces is equal to 16). �
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Remark 10.3.20. One can see the duality also from the duality of the quadratic
line complexes. If we identify the space � = C4 with its dual space by means of
the standard basis 41, 42, 43, 44 and its dual basis 4∗1, 4

∗
2, 4
∗
3, 4
∗
4, then the Plücker

coordinates ?8 9 = 4∗8 ∧4∗9 in
∧2 � can be identified with the Plücker coordinates

?∗
8 9
= 48 ∧ 4 9 in

∧2 �∨. The Klein quadrics could be also identified. Now, the
duality isomorphism � (2, �) → � (2, �∨), ℓ ↦→ ℓ⊥, becomes compatible with
the Plücker embeddings. The quadratic line complex given in Klein coordinates
by two diagonal quadrics (10.32) is mapped under the duality isomorphism to
the quadratic line complex given by two diagonal quadrics

∑
H2
8
= 0,

∑
0−1
8
H2
8
=

0, the dual quadrics. However, the intersection of these two pairs of quadrics
is projectively isomorphic under the scaling transformation H8 ↦→

√
08H8 . This

shows that, under the duality isomorphism, the singular surfaces of the quadratic
line complex and its dual are projectively isomorphic. It follows from the
definition of the duality that the tropes of the Kummer surface correspond to
V-planes that intersect the quadratic line complex along the union of two lines.
The Kummer surface admits an infinite group of birational automorphisms.

For a general one, the generators of this group have been determined in modern
works of J. Keum [446] and S. Kondō [464]. We give only examples of some
automorphisms.

• Projective automorphisms defined by theHeisenberg group. They correspond
to translations by 2-torsion points on the abelian surface cover.
• Involutions defined by projections from one of 16 nodes.
• Switches defined by choosing a duality automorphism and composing it with
elements of the Heisenberg group.
• Cubic transformations given in coordinates used in Equation (10.36) by

(G, H, I, |) ↦→ (HI|, GI|, GH|, GHI)

.
• Certain automorphisms introduced by Keum in [446] (they can be replaced
by another set of automorphisms introduced by Ohashi [558]).

10.3.4 Harmonic complex of lines
Consider a pair of irreducible quadrics &1 and &2 in P=. A harmonic line
complex or a Battaglini complex is the closure in �1 (P=) of the locus of lines,
which intersect &1 and &2 at two harmonically conjugate pairs. Let us see that
this is a quadratic line complex and find its equation.
Let � = (08 9 ), � = (18 9 ) be two symmetric matrices defining the quadrics.

Let ℓ = GH, where G = [{], H = [|] for some {, | ∈ C4. Let ℓ = [B{ + C|]
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be a parametric equation of ℓ. The restriction of &1 to ℓ is a binary form in
B, C defined by ({�{)B2 + 2({�|)BC + (|�|)C2 and the restriction of &2 to ℓ is
defined by the bilinear form ({�|)B2 + 2({�|)BC + (|�|)C2. By definition, the
two roots of the binary forms are harmonically conjugate if and only if

({�{) (|�|) + (|�|) ({�{) − 2({�|) ({�|) = 0.

Let [{|] be the matrix with two columns equal to the coordinate vectors of {
and |. We can rewrite the previous expression in the form

det
(
C [{|] [�{�|]

)
+ det

(
C [{, |] [�{�|]

)
= 0. (10.42)

The expression is obviously a quadratic form on
∧2 C=+1 and also a symmetric

bilinear form on the space of symmetric matrices. Take the standard basis
�8 9 + � 98 , �88 , 1 ≤ 8 ≤ 9 ≤ = + 1, of the space of symmetric matrices and
compute the coefficients of the symmetric bilinear forms in terms of coordinates
of { and |. We obtain

08 9;:; = 4(G8G 9 H: H; + G:G;H8H 9 ) − 2(G: H; + G;H: ) (G 9 H8 + G8H 9 )

= 2(?8: ? 9; + ?8; ? 9: ),

where ?01 = −?10 if 0 > 1. Thus, (10.42) is equal to∑
(08 91:; + 0:;18 9 ) (?8: ? 9; + ?8; ? 9: ) = 0. (10.43)

This is an equation of a quadratic complex. If we assume that 08 9 = 18 9 = 0 if
8 ≠ 9 , the equation simplifies∑

(0881 9 9 + 0 9 9188)?2
8 9 = 0. (10.44)

Consider the pencil P of quadrics _&1 + `&2. Let us assume, for simplicity,
that the equations of the quadrics can be simultaneously diagonalized. Then, a
line ℓ is tangent to a quadric from P if and only if∑

(_088 + `188) (_0 9 9 + `1 9 9 )?2
88

=
∑
(_20880 9 9 + _`(0881 9 9 + 0 9 9188) + `21881 9 9 )?2

8 9 = 0.

The restriction of the pencil to ℓ is a linear series 61
2 unless ℓ has a base point

in which case the line intersects the base locus of the pencil. The two quadrics
touching ℓ correspond to the points [_, `] ∈ P, which satisfy the equation
above. Denote by �, 2�,� the coefficients at _2, _`, `2. The map

�1 (P=) → P2, ℓ ↦→ [�, �, �]

is a rational map defined on the complement of codimension 3 subvariety of
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�1 (P=) given by the equations � = � = � = 0. Its general fiber is the loci
of lines that touch a fixed pair of quadrics in the pencil. It is given by the
intersection of two quadratic line complexes. In case = = 2, we recognize the
well-known fact that two conics have four common tangents. The pre-image of
a line �C0 +2�C1 +�C2 = 0 with ��−�2 = 0 is a line complex such that there is
only one quadric in the pencil that touches the line. Hence, it equals the Chow
form of the base locus, a hypersurface of degree 4 in � (2, =).
Let us consider the case = = 3. In this case, a harmonic line complex is a

special case of a quadratic line complex given by two quadrics

Q1 := ?12?34 − ?13?24 + ?14?23 = 0,
Q2 := 012?

2
12 + · · · + 034?

2
34 = 0.

We assume that Q2 is a nonsingular quadric, i.e., all 08 9 ≠ 0. It is easy to see
that the pencil _Q1 + `Q2 = 0 has six singular quadrics corresponding to the
parameters

[1,±√012034], [1,±
√
013024], [1,±

√
014023] .

Thus, we diagonalize both quadrics to reduce the equation of the quadratic line
complex to the form

C20 + · · · + C
2
5 = 0,

:1 (C20 − C
2
1) + :2 (C22 − C

2
3) + :3 (C24 − C

2
5) = 0.

The genus two curve corresponding to the intersection of the two quadrics is
a special one. Its branch points are [1,±:1], [1,±:2], [1,±:3]. The involution
of P1 defined by [C0, C1] ↦→ [C0,−C1] leaves the set of branch points invariant
and lifts to an involution of the genus 2 curve. It follows from the description
of binary forms invariant under a projective automorphism of finite order given
in Section 8.8.2 that there is only one conjugacy class of involutions of order
2 and each binary sextic whose set of zeros is invariant with respect to an
involution can be reduced to the form (C20 − C

2
1) (C

2
0 − UC

2
1) (C

2
0 − VC

2
1). Thus, we

see that the harmonic line complexes form a hypersurface in the moduli space
of smooth complete intersections of two quadrics in P5. It is isomorphic to
the hypersurface inM2 formed by isomorphism classes of genus two curves
admitting two commuting involutions.

Proposition 10.3.21. The singular surface of a harmonic line complex is
projectively isomorphic to a quartic surface given by equation (10.36) with
coefficient � equal to 0.
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Proof We use that, in Klein coordinates, our quadratic line complex has
additional symmetry defined by the transformation

(C0, C1, C2, C3, C4, C5) ↦→ (−8C1, 8C0,−8C3, 8C2,−8C5, 8C4).

Here, we may assume that C0 = 8(?14 − ?23), C1 = ?14 + ?23, etc. The trans-
formation of P3 that induces this transformation is defined by [G, H, I, |] ↦→
[−G, H, I, |]. Equation (10.36) shows that the Kummer surface is invariant with
respect to this transformation if and only if the coefficient � is zero. �

Note that under the isomorphism from the cubic (10.37) to the Segre cubic
primal given by formulas (10.41), the coefficient � is equal to −I0 + I3. This
agrees with a remark before Lemma 9.5.6.
Consider the Kummer surface ( given by Equation (10.36) with � = 0.

Intersecting the surface with the plane G = 0, we obtain the plane quartic with
equation &(G2, H2, I2) = 0, where & = �(B2 + D2 + {2) + 2�BD + 2�B{ + 2�D{.
Its discriminant is equal to �(�2 − �2 − �2 − �2) + 2���. Comparing it
with Equation (10.37), we find that the quadratic form is degenerate. Thus, the
plane section of the Kummer surface is the union of two conics with equations
(0G2 + 1H2 + 2I2) (0′G2 + 1′H2 + 2′I2) = 0. The four intersection points of
these conics are singular points of (. This easily follows from the equations
of the derivatives of the quartic polynomial defining (. Thus, we see that the
16 singular points of the Kummer surface lie by four in the coordinate planes
G, H, I, | = 0. Following A. Cayley [103], a Kummer surface with this property
is called a Tetrahedroid.

Note the obvious symmetry of the coordinate hyperplane sections. The co-
ordinates of 16 nodes can be put in the following symmetric matrix:

©«
0 ±012 ±013 ±014
±021 0 ±023 ±024
±031 ±032 0 ±034
±041 ±042 ±043 0

ª®®®®¬
.

The complete quadrangle formed by four nodes ?1, . . . , ?4 in each coordinate
plane has the property that the lines ?8 ? 9 and ?: ?; with {8, 9 , } ∩ {:, ;} = ∅
intersect at the vertices of the coordinate tetrahedron. One can also find the
16 tropes. Take a vertex of the coordinate tetrahedron. There will be two pairs
of nodes, not in the same coordinate plane, each pair lying on a line passing
through the vertex. For example,

[0, 012, 013, 014], [0, 012,−013, 014], [0, 021, 0, 023, 024], [0, 021, 0,−023, 024] .

The plane containing the two pairs contains the third pair. In our example,
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the third pair is [041,−042, 043, 0], [041,−042,−043, 0] . This is one of the 16
tropes. Its equation is 024G + 014H − 012| = 0. Similarly, we find the equations
of all 16 tropes

±034H ± 042I ± 023| = 0,
±034G ± 041I ± 013| = 0,
±024G ± 041H ± 012| = 0,
±023G ± 031H ± 012I = 0.

Remark 10.3.22. For experts on K3 surfaces, let us compute the Picard lattice
of a general Tetrahedroid. Let f : (̃ → ( be a minimal resolution of (. Denote
by ℎ the class of the pre-image of a plane section of ( and by 48 , 8 = 1, . . . , 16,
the classes of the exceptional curves. Let 21 and 22 be the classes of the proper
transforms of the conics �1, �2 cut out by one of the coordinate plane, say
G = 0. We have

21 + 22 = ℎ − 41 − 42 − 43 − 44.

Obviously, 21 · 22 = 0 and ℎ · 28 = 2 and 22
8
= −2. Consider another coordinate

plane and another pair of conics. We can write

23 + 24 = ℎ − 45 − 46 − 47 − 48.

This shows that the classes of the eight conics can be expressed as linear
combinations of classes ℎ, 48 and 2 = 21. It is known that the Picard group
of a general Kummer surface is generated by the classes 48 and the classes of
tropes C8 satisfying 2C8 = ℎ − 481 − · · · − 486 . The Picard group of a Tetrahedroid
acquires an additional class 2.
The Jacobian variety of a genus 2 curve � with two commuting involutions

contains an elliptic curve, the quotient of � by one of the involutions. In the
symmetric product � (2) it represents the graph of the involution. Thus, it is
isogenous to the product of two elliptic curves.
Note that the pencil of quadrics passing through the set of eight points
(�1 ∩ �2) ∪ (�3 ∩ �4) defines a pencil of elliptic curves on (̃ with the divisor
class

2ℎ − 41 − 42 − 43 − 44 − 45 − 46 − 47 − 48 = 21 + 22 + 23 + 24.

Since 21 · 22 = 23 · 24 = 0, Kodaira’s classification of fibers of elliptic fibrations
shows that 21, 22, 23, 24 are the classes of irreducible components of a fiber of
type �4. This implies that the four intersection points (�1 ∪�2) ∩ (�3 ∪�4) lie
on the edges of the coordinate tetrahedron.
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The parameters �, �, �, � used to parameterize Tetrahedroid surfaces can
be considered as points on the cubic surface

�(�2 − �2 − �2 − �2) + 2��� = 0.

One can write an explicit rational parameterization of this surface using the
formulas

� = 2012, � = 0(12 + 22), � = 1(02 + 22), � = 2(02 + 12).

The formulas describe a rational map P2 d P3 of degree 2 given by the linear
system of plane cubics with three base points ?1 = [1, 0, 0], ?2 = [0, 1, 0], ?3 =

[0, 0, 1]. It extends to a degree 2 map from a del Pezzo surface of degree 6
onto a 4-nodal cubic surface. In fact, if one considers the standard Cremona
involution [0, 1, 2] ↦→ [0−1, 1−1, 2−1], then we observe that the map factors
through the quotient by this involution. It has four singular points corresponding
to the fixed points

[0, 1, 2] = [1, 1, 1], [−1, 1, 1], [1,−1, 1], [1, 1,−1] .

of the Cremona involution. The corresponding singular points are the points
[1, 1, 1, 1], [1, 1,−1,−1], [1,−1, 1,−1], [1,−1,−1, 1] .
If we change the variables -2 = 12G2, .2 = 02H2, -2 = 01G2,, = |, the

equation

�(G4 + H4 + I4 + |4) + 2�(G2|2 + H2I2) + 2� (H2|2 + G2I2)

+2� (I2|2 + G2H2) = 0

is transformed to the equation

(-2 + .2 + /2) (02-2 + 12.2 + 22/2)−

[02 (12 + 22)-2,2 + 12 (22 + 02).2,2 + 22 (02 + 12)/2,2] + 021222,4 = 0,

or, equivalently,

02G2

G2 + H2 + I2 − 02|2 +
12H2

G2 + H2 + I2 − 12|2 +
22I2

G2 + H2 + I2 − 22|2 = 0. (10.45)

When 0, 1, 2 are real numbers, the real points (G, H, I, 1) ∈ P3 (R) on this surface
describe the propagation of light along the interface between two different
media. The real surfacewith Equation (10.45) is called aFresnel’s wave surface.
It has four real nodes (

±2
√
02 − 12

02 − 22 , 0,±0
√
12 − 22

02 − 22 , 1
)
,
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where we assume that 02 > 12 > 22. It has four real tropes given by planes
UG + VH + WI + | = 0, where

(U, V, W, 1) =
(
± 2
12

√
02 − 12

02 − 22 , 0,±
0

12

√
12 − 22

02 − 22 , 1
)
.

One of the two conics cut out on the surface by coordinate planes is a circle. On
the plane | = 0 at infinity one of the conics is the ideal conic G2 + H2 + I2 = 0.

10.3.5 The tangential complex of lines
In the construction of the harmonic line complex defined by two quadrics&1 and
&2 the quadrics are not necessarily different. In the case when &1 = &2 = &,
the definition of a harmonic self-conjugate pair implies that the two points in
the pair coincide, i.e., the line is tangent to the quadric. This is a special case
of the harmonic line complex, the locus of tangent lines to a quadric.

Equation (10.43) gives us the equation of the tangential line complex of a
quadric & defined by a symmetric matrix � = (08 9 ):∑

08 90:; (?8: ? 9; + ?8; ? 9: ) = 0. (10.46)

Proposition 10.3.23. The tangential quadratic line complex -& associated to
a nonsingular quadric & in P= is singular along the variety OG(2, &) of lines
contained in &.

Proof It is easy to see that a line P in G = �1 (P=) is a pencil of lines in some
planeΠ in P=. The planeΠ intersects& in a conic. If the line is general, then the
conic is nonsingular, and the pencil P contains two points represented by lines
inΠ that are tangent to the conic. This confirms that -& is a quadratic complex.
Now, assume that ℓ is contained in &. A general line P in G containing ℓ
contains only one point represented by a line in P= tangent to &, namely the
line ℓ. This shows that P is tangent to -& at the point ℓ. Since P is a general
line in G, it shows that the tangent space of -& at ℓ coincides with the tangent
space of G at ℓ. This implies that -& is singular at ℓ. Since -& is a quadratic
complex, ℓ is a double point of -&. �

Let T& be the tangent bundle of & and let f : |T& | → & be its projectiviza-
tion. The fiber of |T& | at a point G ∈ & consists of lines tangent to & at G. This
defines a natural birational morphism

c : P(T ∨& ) → -&

which is a resolution of singularities of the tangential line complex. It is easy



244 Line Geometry

to see that OG(2, &) is of codimension 2 in -&. Thus, the exceptional divisor
of c is isomorphic to a P1-bundle over OG(2, &).

Remark 10.3.24. One can identify
∧2 C=+1 with the Lie algebra so(= + 1) of

the special orthogonal group SO(= + 1) of the space C=+1 equipped with the
dot-product symmetric bilinear form and the associated quadratic form @. The
orthogonal group SO(=+1) acts naturally on its Lie algebra so(=+1) by means
of the adjoint representation. One can speak about adjoint orbits of SO(= + 1)
in |so(= + 1) |. The variety OG(2, &) of lines in & = + (@) is identified with the
variety of 2-dimensional isotropic linear subspaces in C=+1. It is known that
this variety is the unique closed orbit. It is called theminimal adjoint orbit. The
adjoint orbits are ordered with respect to the relation that one orbit is contained
in the closure of another orbit. The tangential line complex -& is a supminimal
adjoint orbit in the sense that the minimal orbit is the only orbit contained in
the boundary of its closure. Considered as linear operators, points in OG(2,Q)
are operators � of rank 2 satisfying �2 = 0, and points of -& are operators of
rank 2 satisfying �3 = 0 (see, for example, [45]). In particular, we see that the
variety OG(2, &) can be given by quadratic equations expressing the condition
that the square of the matrix (?8 9 ) is equal to 0.

Thus, both orbits are nilpotent orbits, i.e., they are contained in the subvariety
of nilpotent linear operators. We refer for the classification of nilpotent orbits
to [163]. For classical Lie algebras sl=+1, so=+1, so=+1, the nilpotent orbits are
classified by partition of = + 1 defining the Jordan form of the linear operator.
Thus, the minimal orbit OG(2, &) corresponds to the partition (2, 2, 1, . . . , 1)
and the supminimal orbit corresponds to the partition (3, 1, . . . , 1).
Replacing the Lie algebra so(= + 1) by any simple complex lie algebra g.

we obtain a generalization of the tangential line complex -& and its singular
locus OG(2,Q). The latter is the unique minimal adjoint orbit in |g|, the
former is the unique supminimal adjoint orbit. Both of these orbits are nilpotent
orbits, i.e. they are contained in the subvariety of nilpotent elements of the Lie
algebra. An algebraic variety isomorphic to a minimal adjoint orbit for some
simple Lie algebra g is called an adjoint variety. The adjoint varieties and, in
particular, the line complexes OG(2,Q) of lines in a nonsingular quadric, are
Fano contact varieties. Recall that a complex manifold " is called a contact
manifold if its tangent bundle )" contains a corank one subbundle � such that
the bilinear form �×� → )"/� defined by the Lie bracket is nondegenerate. It
is conjectured that any Fano contact variety is isomorphic to an adjoint variety
(see [49]).
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10.3.6 Tetrahedral complex of lines
Consider the union of four planes in P3 which defines a coordinate tetrahedron
in the space. Let @1, @2, @3, @4 be its vertices, ℓ8 9 = 〈@8 , @ 9〉 be its edges and
c8 = 〈@ 9 , @: , @;〉 be its faces. Let [�, �] ∈ P1 and ℭ be the closure of the set of
lines in P3 intersecting the four faces at four distinct points with the cross-ratio
equal to [�, �]. Here, we assume that the vertices of the tetrahedron are ordered
in some way. It is easy to see that ℭ is a line complex. It is called a tetrahedral
line complex or .

Proposition 10.3.25. A tetrahedral line complex ℭ is of degree 2. If ?8 9 are the
Plücker coordinates with respect to the coordinates defined by the tetrahedron,
then ℭ is equal to the intersection of the Grassmannian with the quadric

�?12?34 − �?13?24 = 0. (10.47)

Conversely, this equation defines a tetrahedral line complex.

Proof Let ℓ be a line spanned by the points [01, 02, 03, 04] and [11, 12, 13, 14].
It intersects the face c8 at the point corresponding to the coordinates on the line
[B, C] = [18 ,−08], 8 = 1, . . . , 4. We assume that ℓ does not pass through one of
the vertices. Then, ℓ intersects the faces at four points not necessarily distinct
with the cross-ratio equal to [?12?34, ?13?24], where ?8 9 are the Plücker coor-
dinates of the line. So, the equation of the tetrahedral line complex containing
the line is [?12?34, ?13?24] = [0, 1] for some [0, 1] ∈ P1. �

Note that any tetrahedral line complex ℭ contains the set of points in� (2, 4)
satisfying ?8B = ?8C = ?8: = 0 (the lines in the coordinate plane C8 = 0). Also,
any line containing a vertex satisfies ?8 9 = ? 9: = ?8: = 0 and hence also is
contained in ℭ. Thus, we obtain that ℭ contains four planes from one ruling
of the Klein quadric and four planes from another ruling. Each plane from one
ruling intersects three planes from another ruling along a line and does not
intersect the fourth plane.
Observe that the tetrahedral line complex is reducible if and only if the

corresponding cross-ratio is equal to 0, 1,∞. In this case it is equal to the union
of two hyperplanes representing lines intersecting one of the two opposite edges.
An irreducible tetrahedral line complex has six singular points corresponding
to the edges of the coordinate tetrahedron. Their Plücker coordinates are all
equal to zero except one.

Proposition 10.3.26. The singular surface of an irreducible tetrahedral line
complex ℭ is equal to the union of the faces of the coordinate tetrahedron.

Proof We know that the degree of the singular surface is equal to 4. So,
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it suffices to show that a general point in one of the planes of the tetrahedron
belongs to the singular surface. The lines in this plane belong to the complex. So,
a line in the plane passing through a fixed point ?0 is an irreducible component
of the conic Ω(?0) ∩ ℭ. This shows that ?0 belongs to the singular surface of
ℭ. �

From now on, we consider only irreducible tetrahedral line complexes. There
are different geometric ways to describe a tetrahedral complex.
First, we need the following fact, known as von Staudt’s Theorem (see [720].

Theorem 10.3.27. Let ℓ be a line belonging to a tetrahedral line complex ℭ
defined by the cross-ratio '. Assume that ℓ does not pass through the vertices
and consider the pencil of planes through ℓ. Then, the cross-ratio of the four
planes in the pencil passing through the vertices is equal to '.

Proof Let 41, 42, 43, 44 be a basis in � = C4 corresponding to the vertices of
the tetrahedron. Choose the volume form l = 41 ∧ 42 ∧ 43 ∧ 44 and consider
the star-duality in

∧2 � defined by (U, V) = (U ∧ V)/l. Under this duality
(48∧4 9 , 4:∧4;) = 1(−1) if (8, 9 , :, ;) is an even (odd) permutation of (1, 2, 3, 4)
and 0 otherwise. Let W =

∑
1≤8< 9≤4 ?8 948 ∧ 4 9 be the 2-form defining the line

ℓ and let W∗ =
∑
?′
8 9
48 ∧ 4 9 define the dual line ℓ∗, where 48 ∧ 4 9 is replaced

with (48 ∧ 4 9 , 4: ∧ 4;)4: ∧ 48 , where 8, 9 , :, ; are all distinct. The line ℓ (resp.
ℓ∗) intersects the coordinate planes at the points represented by the columns of
the matrix

� =
©«

0 ?12 ?13 ?14
−?12 0 ?23 ?24
−?13 −?23 0 ?34
−?14 −?24 −?34 0

ª®®¬ , resp. � =
©«

0 ?34 −?24 ?23
−?34 0 ?14 −?13
?24 −?14 0 ?12
−?23 ?13 −?12 0

ª®®¬ .
We have � ·� = � · � = 0. It follows from the proof of the previous proposition
that the cross-ratio of the four points on ℓ∗ is equal to (?′13?

′
24, ?

′
12?
′
34) =

(?24?13, ?24?13). Thus, ℓ and ℓ∗ belong to the same tetrahedral line complex.
Now, a plane containing ℓ can be identified with a point on ℓ∗ equal to the
intersection point. A plane containing 41 and ℓ is defined by the 3-form

41 ∧ W = ?2341 ∧ 42 ∧ 43 + ?2441 ∧ 42 ∧ 44 + ?3441 ∧ 43 ∧ 44

and we check that 41 ∧ W ∧ (−?3442 + ?2443 − ?2344) = 0 since � · � = 0. This
means that the plane containing 41 intersects ℓ∗ at the first point on ℓ∗ defined
by the first column. Thus, under the projective map from the pencil of planes
through ℓ to the line ℓ∗, the plane containing 41 is mapped to the intersection
point of ℓ∗ with the opposite face of the tetrahedron defined by C0 = 0. Similarly,
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we check that the planes containing other vertices correspond to intersection
points of ℓ∗ with the opposite faces. This proves the assertion. �

Proposition 10.3.28. A tetrahedral line complex is equal to the closure of the
set of secants of rational cubic curves in P3 passing through the vertices of the
coordinate tetrahedron.

Proof Let ' be one of those curves and G ∈ '. Projecting from G we get
a conic � in the plane with four points, the projections of the vertices. Let
ℓ = 〈G, H〉 be a secant of '. The projection H̄ of H is a point on the conic � and
the pencil of lines through H̄ is projectively equivalent to the pencil of planes
through the secant ℓ. Under this equivalence, the planes passing through the
vertices of the tetrahedron correspond to the lines connecting their projection
with H̄. Applying von Staudt’s Theorem, we conclude the proof. �

Consider the action of the torus ) = (C∗)4 on P3 by scaling the coordinates
in � = C4. Its action on

∧2 � is defined by

(C1, C2, C3, C4) : (?12, . . . , ?34) ↦→ (C1C2?12, . . . , C3C4?34).

It is clear that the Klein quadric is invariant with respect to this action. This
defines the action of ) on the Grassmannian of lines. It is also clear that the
equations of a tetrahedral line complex ℭ are also invariant with respect to
this action, so ) acts on a tetrahedral complex. If ℓ ∈ ℭ has nonzero Plücker
coordinates (a general line), then the stabilizer of ℓ is equal to the kernel of the
action of ) in P3, i.e. equal to the diagonal group of (I, I, I, I), I ∈ C∗. Hence,
the orbit of ℓ is 3-dimensional, and since ℭ is irreducible and 3-dimensional, it
is a dense Zariski subset of ℭ. Thus, we obtain that ℭ is equal to the closure of
a general line in � (2, 4) under the torus action. Since any general line belongs
to a tetrahedral line complex, we get an equivalent definition of a tetrahedral
line complex as the closure of a torus orbit of a line with nonzero Plücker
coordinates.
Here, is another description of a tetrahedral complex. Consider a projective

automorphism q : P3 → P3 with four distinct fixed points and let ℭ be the
closure of lines 〈G, q(G)〉, where G is not a fixed point of q. Let us see that
ℭ is an irreducible tetrahedral complex. Choose the coordinates in C4 such
that the matrix of q is a diagonal matrix with four distinct eigenvalues _8 .
Then, ℭ is the closure of lines defined by 2-vectors W = � · { ∧ {, { ∈ C4. A
straightforward computation shows that the Plücker coordinates of W are equal
to ?8 9 = C8C 9 (_8 − _ 9 ), where (C1, . . . , C4) are the coordinates of the vector {.
Thus, if we take { with nonzero coordinates, we obtain that ℭ contains the
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torus orbit of the vector with nonzero Plücker coordinates ?8 9 = _8 −_ 9 . As we
explained in above, ℭ is an irreducible tetrahedral complex.
It is easy to see that the map which assigns to a point G ∈ P3 the line 〈G, q(G)〉

defines a birational transformation Φ : P3 d ℭ with fundamental points at the
fixed points of q. It is given by quadrics. The linear system of quadrics through
four general points in P3 is of dimension five and defines a rational map from
P3 to P5. The pre-image of a general plane is equal to the intersection of three
general quadrics in the linear system. Since there are four base points, we obtain
that the residual intersection consists of four points. This implies that the linear
system defines a map of degree 2 onto a quadric in P5 or a degree 1 map onto a
threefold of degree 4. Since a tetrahedral line complex is obtained in this way
and any four general points in P3 are projectively equivalent, we see that the
image must be projectively isomorphic to a tetrahedral complex. Observe that
the six lines joining the pairs of fixed points of q are blown down to singular
points of the tetrahedral complex. Also, we see the appearance of eight planes;
four of these planes are the images of the exceptional divisors of the blow-up of
P3 at the fixed points, and the other four are the images of the planes spanned
by three fixed points. The blow-up of P3 is a small resolution of the tetrahedral
complex.
There is another version of the previous construction. Take a pencil Q of

quadrics with a nonsingular base curve. Consider a rational map P3 d �1 (P3)
which assigns to a point G ∈ P3 the intersection of the polar planes %G (&), & ∈
Q. This is a line in P3 unless G is a singular point of one of quadrics in Q.
Under our assumption on the pencil, there are exactly four such points which
we can take as the points [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]. Thus,
we see that the rational map is of the same type as in the previous construction
and its image is a tetrahedral complex.

10.4 Ruled Surfaces

10.4.1 Scrolls
A scroll or a ruled variety is an irreducible subvariety ( of P= such that there
exists an irreducible family -0 of linear subspaces of dimension A sweeping (
such that a general point of ( lies in unique subspace from this family. We will
also assume that each point is contained only in finitely many linear subspaces.
Following classical terminology, the linear subspaces are called generators.
Note that the condition that any point lies in finitely many generators excludes
cones.
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We identify -0 with its image in the Grassmann variety G = �A (P=). For
any G ∈ -0 let ΛG denote the generator defined by the point G. The universal
family

{(G, ?) ∈ -0 × P= : ? ∈ ΛG}

is isomorphic to the incidence variety Z-0 over -0. The projection /-0 → P=

is a finite morphism of degree 1 which sends the fibers of the projective bundle
Z-0 → -0 to generators. For any finite morphism a : - → -0 of degree
1, the pull-back E = a∗ (S∨

-0
) defines the projective bundle P(E) and a finite

morphism ã : P(E) → Z-0 such that the composition 5 : P(E) → Z-0 → (

is a finite morphism sending the fibers to generators. Recall that the projection
Z� → P= = |� | is defined by a surjection of the locally free sheave U :
�∨ ⊗ OG → S∨G. Thus, the morphism 5 : P(E) → ( ⊂ P# is defined by a
surjection

a∗ (U) : �∨ ⊗ O- → E .

In particular, the morphism 5 is given by a linear system |�∨ | ⊂ |OP(E) (1) |.
We see that any scroll is obtained as the image of a birational morphism

5 : P(E) → |� |

defined by a linear subsystem of |OP(E) (1) |. The linear system can be identified
with the image of �∨ → �0 (-, E) under the surjective map �∨ ⊗ O- → E.
This map also gives a finite map a : - → -0 ⊂ G. The base - of the projective
bundle c : P(E) → - can be always assumed to be a normal variety. Then,
a : - → -0 is the normalization map.
A scroll defined by the complete linear system |OP(E) (1) | is a linearly normal

subvariety of P=. It is called a normal scroll. Any scroll is a projection of a
normal scroll. Note that, in many textbooks, a normal scroll is assumed to
be a nonsingular variety. In Chapter 8, we classified smooth rational normal
two-dimensional scrolls.
A surjective map of locally free sheaves E → F defines a closed embedding

P(F ) ↩→ P(E). If rank F = A ′ + 1, the image of P(F ) under the map 5 :
P(E) → P= is an A ′-directrix of the scroll, a closed subvariety intersecting
each generator along an A ′-plane. If A ′ = 0, we get a section of P(E). Its image
is directrix of the scroll, a closed subvariety of the scroll that intersects each
generator at one point. Note that not every directrix comes from a section; for
example, a generator could be a directrix.
Suppose E → E1 and E → E2 are two surjective maps of locally free

sheaves on a smooth curve - . Let E → E1 ⊕ E2 be the direct sum of the maps
and let E ′ be the image of this map which is locally free since - is a smooth



250 Line Geometry

curve. Assume that the quotient sheaf (E1 ⊕ E2)/E ′ is a skyscraper sheaf. The
surjection E → E ′ corresponds to a closed embedding 9 : P(E ′) ↩→ P(E). We
call the projective bundle P(E ′) the join of P(E1) and P(E2). We will denote
it by 〈P(E1), P(E2)〉. The compositions E → E ′ → E8 are surjective maps,
hence the projections E ′ → E8 are surjective and, therefore, define closed
embedding P(E8) ↩→ 〈P(E1), P(E2)〉.

It follows from (2.31) that

lP(E)/- � c∗ (det E)(−A − 1). (10.48)

If - admits a canonical sheaf l- , we get

lP(E) � c
∗ (l- ) ⊗ c∗ det E)(−A − 1). (10.49)

Let [ = 21 (OP(E) (1)). Recall from Subsection 2.4.2 that the Chern classes
28 (E) can be defined by using the identity in �∗ (P(E),Z)

(−[)A+1 + c∗ (21 (E))(−[)A + · · · + c∗ (2A+1 (E)) = 0. (10.50)

Let 3 = dim - . Multiplying the previous identity by [3−1, we get

[3+A =
A+1∑
8=1
(−1)8c∗ (21 (E))[3+A−8 . (10.51)

Assume that 3 = dim - = 1. Then, 28 (E) = 0 for 8 > 1 and 21 (E) can be
identified with the degree of det E (the degree of E). Since [ intersects the
class of a general fiber with multiplicity 1, we obtain

[A+1 = deg E . (10.52)

Since |OP(E) (1) | gives a finite map of degree 1, the degree of the scroll ( =
5 (P(E)) is equal to [A+1. Also, E = a∗ (S∨

�
), hence

deg E = a∗ (21 (S∨�)) = a
∗ (f1) = deg a(-) = deg -0,

where the latter degree is taken in the Plücker embedding of �. This gives

deg ( = deg -0. (10.53)

The formula is not anymore true if 3 = dim - > 1. For example, if 3 = 2, we
get the formula

deg ( = bA+2 = c∗ (21 (E))[A+1 − c∗ (22 (E))[A

= c∗ (21 (E)2 − 22 (E))[A = 22
1 (E) − 22 (E) = a∗ (f2),

where f2 is the special Schubert class.
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Example 10.4.1. Exercise 19.13 from [375] asks us to show that the degree of
(- may not be equal to deg -0 if dim -0 > 1. An example is the scroll ( of
lines equal to the Segre variety s2,1 (P2×P1) ⊂ P5. Its degree is equal to 3. If we
identify the space P5 with the projective space of one-dimensional subspaces
of the space of matrices of size 2 × 3, the Segre variety is the subvariety of
matrices of rank 1. If we take homogeneous coordinates C0, C1, C2 in P2 and
homogeneous coordinates I0, I1 in P1, then ( is given by

rank
(
C0I0 C1I0 C2I0
C0I1 C1I1 C2I1

)
≤ 1.

When we fix (C0, C1, C2), the parametric equation of the corresponding line in
P5 is I0 [C0, C1, C2, 0, 0, 0] + I1 [0, 0, 0, C0, C1, C2]. The Plücker coordinates of the
line are equal to ?84+ 9 = C8C 9 , 0 ≤ 8 ≤ 9 ≤ 2, with other coordinates equal
to zero. Thus, we see that the variety - parameterizing the generators of (
spans a subspace of dimension 5 in P9 and is isomorphic to a Veronese surface
embedded in this subspace by the complete linear system of quadrics. This
shows that the degree of - is equal to 4.
From now onwe shall assume that - = � is a smooth curve� so that the map

a : � → �0 ⊂ �A (P=) is the normalizationmap of the curve�0 parameterizing
generators.
Let (1 and (2 be two scrolls in |� | corresponding to vector bundles E1 and
E2 of ranks A1 and A2 and surjections �∨ ⊗ O- → E1 and �∨ ⊗ O- → E2. Let
〈P(E1), P(E2)〉 be the join inP(�∨⊗O- ) = -×|� | and let ( be the projection of
the join to |� | = P(�∨). It is a scroll in |� | whose generators are the joins of the
corresponding generators of (1 and (2. Let {G1, . . . , G<} be the support of the
sheaf E1⊕E2/E ′ and let ℎ8 be the dimension of the quotient at the point G8 . Two
generators corresponding to a point G ∉ {G1, . . . , G<} span a linear subspace
of expected dimension A1 + A2 + 1. The generators corresponding to a point G 9
span a subspace of dimension A1 + A2 − ℎ1. The scroll ( is denoted by 〈(1, (2〉
and is called the join of scrolls (1 and (2. Since degE ′ = deg E1 + deg E2, we
obtain

deg〈(1, (2〉 = deg (1 + deg (2 −
<∑
8=1

ℎ8 . (10.54)

Let us consider some special examples.
Example 10.4.2. Let �∨

8
⊗O� → E8 define scrolls (8 in |�8 |, 8 = 1, 2. Consider

the surjection �∨ ⊗ O� = (�∨1 ⊕ �
∨
2 ) ⊗ O� → E1 ⊕ E2. It defines the scroll

equal to the join of the scroll (1 ⊂ |�1 | ⊂ |� | and the scroll (2 ⊂ |�2 | ⊂ |� |.
Its degree is equal to deg (1 + deg (2. For example, let E8 be an invertible
sheaf on � defining a closed embedding g8 : � ⊂ |�8 | so that (8 = g8 (�) are
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curves of degree 08 spanning �8 . Then, the join of (1 and (2 is a surface of
degree 01 + 02 with generators parameterized by �. Specializing further, we
take � = P1 and E8 = OP1 (08) with 01 ≤ 02. The scroll 〈(1, (2〉 is the rational
normal scroll (01 ,01+02−1. Iterating this construction we obtain rational normal
scrolls (01 ,...,0: ,= ⊂ P=, where = = 01 + · · · + 0: − : + 1.

Example 10.4.3. Suppose we have two scrolls (1 and (2 in P= = |� | defined by
surjections U8 : �∨ ⊗ O�8 → E8 , where rank E8 = A8 + 1. Let ℓ0 ⊂ �1 × �2 be
a correspondence of bidegree (U1, U2) and let ` : ℓ → ℓ0 be its normalization
map. Let ?8 : ℓ → �8 be the composition of ` and the projection maps
�1 × �2 → �8 . Consider the surjections ?∗

8
(U8) : �∨ ⊗ Oℓ → ?∗

8
E8 . Let

〈P(?∗1E1), P(?∗1E1)〉 be the corresponding join. Let ( be the image of the join
in |� |. We assume that it is a scroll whose generators are parameterized by an
irreducible curve �0 ⊂ �A1+A2−1 ( |� |) equal to the closure of the image of the
map q : ℓ → �A1+A2−1 ( |� |) defined by q(I) = 〈a1 (?1 (I)), a2 (?1 (I))〉. Let 0
be the degree of this map. Then,

deg ( =
1
0
(U1 deg (1 + U2 deg (2 − ℎ),

where

ℎ = ℎ0 (Coker(`∗ (�∨ ⊗ Oℓ → ?∗1E1 ⊕ ?∗2E2))).

Here, are some special examples. We can take for (1 and (2 two isomor-
phic curves in P= of degrees 31 and 32 intersecting transversally at < points
G1, . . . , G<. Let Γ be the graph of an isomorphism f : (1 → (2. Let ℎ be the
number of points G ∈ (1 such that f(G) = G. Obviously, these points must be
among the points G8’s. Assume that G1 and f(C1) do not lie on a common trise-
cant for a general point G1 ∈ (1. Then, ℎ0 = 1 and the scroll ( is a scroll of lines
of degree 31 + 32 − ℎ. We could also take (1 = (2 and f be an automorphism
of (1 with ℎ fixed points. Then, the degree of the scroll ( is equal to 23 − ℎ if
f2 is not equal to the identity and 1

2 (23 − ℎ) otherwise.

10.4.2 Cayley-Zeuthen formulas
From now on, until the end of this chapter, we will be dealing only with scrolls
with one-parameter family�0 of generators. A two-dimensional scroll is called
a ruled surface. This classical terminology disagrees with the modern one,
where a ruled surface means a P1-bundle P(E) over a smooth projective curve
(see [379]). Our ruled surfaces are their images under a degree 1 morphism
given by a linear system in |OP(E) (1) |.

Let a : � → �0 be the normalization map and E = a∗ (S∨
�0
). The projective
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bundle P(E) is isomorphic to the normalization of the ruled surface ( defined
by the curve �0 ⊂ �1 (P=).
Let us recall some known facts about projective 1-bundles - = P(E) over

smooth curves that can be found in [379, Chapter V, §2].
After tensoring E with an appropriate invertible sheaf we may assume that
E is normalized in the sense that �0 (�, E0) ≠ {0} but �0 (�, E0 ⊗ L) = {0}
for any invertible sheaf L of negative degree. In this case, the integer 4 =
− deg E ≥ 0 is an invariant of the surface and the tautological invertible sheaf
OP(E) (1) is isomorphic to O- (�0), where �2

0 = −4. If 4 < 0 the curve �0 is the
unique curve on - with negative self-intersection. It is called the exceptional
section.
Let f0 : � → - be the section of c : - → � with the image equal to

�0. Then, f∗0O- (�0) � O� (e). If we identify �0 and � by means of f0, then
O� (e) � O- (�0) ⊗ O�0 so that deg e = 4. A section f : � → - is equivalent
to a surjection of locally free sheaves E → L � f∗O- (f(�)). In particular,
degL = f(�)2. The canonical class of - is given by the formula

 - ∼ −2�0 + c∗ ( � + e), (10.55)

which is a special case of (10.48).
Let |� | be a complete linear system of dimension # > 2 on P(E) defined by

an ample section �. Since c∗ (O- (�)) = E ⊗ L for some invertible sheaf L,
we can write

� ∼ �0 + c∗ (a)

for some effective divisor class a on � of degree 0. Since � is irreducible,
intersecting both sides with �0 we find that 0 ≥ 4. Using the Moishezon-Nakai
criterion of ampleness it is easy to see that � is ample if and only if 0 > 4.
We shall assume that � is ample. Assume also that a is not special in the sense
that �1 (�,O� (a)) = 0 and |e + a| has no base points on �. Then, the exact
sequence

0→ O- (c∗ (a)) → O- (�) → O�0 (�) → 0

shows that the restriction of |� | to �0 is a complete linear system without base
points. It is clear that any possible base point of |� | must lie on �0; hence
under the assumptions from above, |� | has no base points. It defines a finite
map 5 : - → ( ⊂ P# . The surface ( is a linearly normal surface in P# swept
by lines, the images of fibers. The family of lines is defined by the image of �
in �1 (P# ). The next proposition shows that the map is of degree 1, hence, ( is
a ruled surface.

Proposition 10.4.4. Let � be an ample section on - = P(E) as above and |+ |
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be a linear system in |� | that defines a finite map 5 : P(E) → ( ⊂ P# . Then,
the degree of the map is equal to one.

Proof Suppose 5 (G) = 5 (H) for some general points G, H ∈ - . Let �G and �H
be the fibers containing G and H. Since |� | has no base points, its restriction
to any fiber is a linear system of degree one without base points. Suppose the
degree of the map is greater than 1. Take a general fiber �; then, for any general
point G ∈ �, there is another fiber �G such that 5 (�G) and 5 (�) are coplanar.
This implies that there exists a divisor � (G) ∈ |� − �G − � |. We can write
� (G) = �G + � + '(G) for some curve '(G) such that '(G) · �G = '(G) · � = 1.
When we move G along � we get a pencil of divisors � (G) contained in |�−� |.
The divisors of this pencil look like �G+'(G) and hence all have a singular point
at '(G) ∩�G . Since the fiber �G moves with G, we obtain that a general member
of the pencil has a singular point that is not a base point of the pencil. This
contradicts Bertini’s Theorem on singular points [379, Chapter III, Corollary
10.9]. �

Corollary 10.4.5. Let ( be an irreducible surface in P# containing a one-
dimensional irreducible family of lines. Suppose ( is not a cone. Then, ( is a
ruled surface equal to the image of projective bundle P(E) over a smooth curve
� under a birational morphism given by a linear subsystem in |OP(E) (1) |.

Proof Let �0 ⊂ �1 (P=) be the irreducible curve parameterizing the family
of lines and let a : � → �0 be its normalization. The pre-image of the
universal family /�0 → �0 is a projective bundle P(S∨

�0
) over �. Since ( is

not a cone, the map 5 : P(E) → ( is a finite morphism. The map is given
by a linear subsystem of |OP(E) (1) |. Since 5 is a finite morphism, the line
bundle OP(E) (1) = 5 ∗ (OP(S�0 )∨ (1)) is ample. It remains to apply the previous
Proposition. �

An example of a nonsingular quadric surface seems contradicts the previous
statement. However, the variety of lines on a nonsingular quadric surface is
not irreducible and consists of two projective lines embedded in �1 (P3) as the
union of two disjoint conics. So, the surface has two systems of rulings, and it
is a 2-way scroll.
It follows from (10.53) that the degree of the ruled surface ( = 5 (P(E))

is equal to the degree of � in the Plücker space. It is also equal to the self-
intersection �2 of the tautological line bundle on P(E). The latter is equal to
�2 = (�0 + 0�)2 = 20 − 4. The genus of � is called the genus of the ruled
surface.

Proposition 10.4.6. Let ( = 5 (P(E)) ⊂ P= be a projection of a minimal
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ruled surface P(E) embedded in projective space by a linear system |� |, where
� ∼ �0 + c∗ (a). Let D be a directrix on ( that is not contained in the singular
locus of (. Then,

deg D ≥ deg a − 4.

The equality takes place if and only if the pre-image of D on P(E) is in the same
cohomology class as �0.

Proof The assumption on D implies that deg D = � · � , where � is the
pre-image of D on P(E). Intersecting with � we get � · � = � · �0 + 0. If
� ≠ �0, then � · � ≥ 0, if [�] = [�0], then � · �0 = 0 − 4. The equality takes
place if and only if � · �0 = 0 and 4 = 0. Since � is a section, we can write
[�] = [�0] + < [�], and intersecting with �0, we get < = 0. �

Since 5 : P(E) → ( is of degree 1, the ruled surface is non-normal at every
point over which the map is not an isomorphism.
Recall the double-point formula from [315, 9.3]. Let 5 : - → . be a

morphism of nonsingular varieties of dimensions < and =, respectively. Let /
be the blow-up of the diagonal of -×- and let ' be the exceptional divisor. We
think about points in ' as points in - together with a tangent direction CG at G.
Let �̃ ( 5 ) be the proper transform in / of the fibered product - ×. - ⊂ - × - .
One can view points in �̃ ( 5 ) either as points G ∈ - such that there exists G ′ ≠ G
with 5 (G) = 5 (G ′), or as points (G, CG) such that 35G (CG) = 0. Let � ( 5 ) be the
image of �̃ ( 5 ) under one of the projections - ×. - → - . This is called the
double-point set of the morphism 5 . Define the double point class

D( 5 ) = 5 ∗ 5∗ [-] − (2( 5 ∗T. )2(T- )−1)=−< ∩ [-] ∈ �=−< (-,Q), (10.56)

where 2 denotes the total Chern class [-] + 21 + · · · + 2< of a vector bundle. In
case � ( 5 ) has the expected dimension equal to 2< − =, we have

D( 5 ) = [� ( 5 )] ∈ �=−< (-,Z).

Assume now that 5 : - → ( is the normalization map and ( is a surface in
P3. Since ( is a hypersurface, it does not have isolated non-normal points. This
implies that � ( 5 ) is either empty or it is of expected dimension 2< − = = 1.
The double-point class formula applies, and we obtain

[� ( 5 )] = 5 ∗ (() + 5 ∗ ( P3 ) −  - . (10.57)

In fact, it follows from the theory of adjoints (see [479]) that the linear equiva-
lence class of � ( 5 ) is expressed by the same formula.
We say that a non-normal surface ( in P= has ordinary singularities if its

singular locus is a double curve ℓ on (. This means that the completion of the
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local ring of ( at a general point of ℓ is isomorphic toC[[I1, I2, I3]]/(I1I2). The
curve ℓ may have also pinch point locally isomorphic to C[[I1, I2, I3]]/(I2

1 −
I2

2I3) and also triple points locally isomorphic to C[[I1, I2, I3]]/(I1I2I3). The
curve ℓ is nonsingular outside triple points, the curve � ( 5 ) is nonsingular
outside the pre-images of the triple points. It has three double points over each
triple point.
Under these assumptions, the map �̃ ( 5 ) → � ( 5 ) → ℓ is of degree 2. It is

ramified at pinch points only, and the pre-image of a triple point consists of six
points.
Assume that ( is a surface in P3 with ordinary singularities. Let 5 : - → (

be the normalization map, and ℓ be the double curve of (. The degree of any
curve on - , is the degree with respect to 5 ∗ (OP3 (1)). Let us introduce the
following numerical invariants in their classical notation:

• `0 = the degree of (;
• `1 = the rank of (, the class of a general plane section of (;
• `2 = the class of (;
• a2 = the number of pinch-points on (;
• C = the number of triple points on (;
• n0 = deg ℓ;
• n1 = the rank of ℓ, the number of tangents to ℓ intersecting a general line in
P3;
• d = the class of immersion of ℓ equal to the degree of the image of � ( 5 )
under the Gauss map � : - → (

W
→ (P3)∨, where W is the Gauss map.;

• 6(ℓ) = the genus of ℓ;
• 2 = the number of connected components of ℓ;
• ^ = the degree of the ramification divisor ? : - → P2, where ? is the
composition of 5 and the general projection of (.

The following theorem summarizes different relations between the listed
invariants of (. These relations are called the Cayley-Zeuthen formulas.

Theorem 10.4.7. The following relations hold:

(i) `1 = `0 (`0 − 1) − 2n0;
(ii) n0 (`0 − 2) = d + 3C;
(iii) `1 (`0 − 2) = ^ + d;
(iv) 26(ℓ) − 22 = n1 − 2n0;
(v) a2 = 2n0 (`0 − 2) − 6C − 2n1;
(vi) 2d − 2n1 = a2;
(vii) `2 = `0 (`0 − 1)2 + (4 − 3`0)n1 + 3C − 2a2;
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(viii) 2a2 + `2 = `1 + ^.

Proof (i) A general plane section of ( is a plane curve of degree `0 with n0
ordinary double points as singularities. Thus, (i) is just the Plücker formula.
Also, note that `1 is equal to the degree of the contact curve, the closure of
smooth points ? ∈ ( such that a general point @ ∈ P3 is contained in T? ((), or,
equivalently, the residual curve to ℓ of the intersection of ( and the first polar
%@ ((). Taking a general plane � and a general point @ ∈ �, we obtain that
degΔ is equal to the class of � ∩ (.
(ii) The number d is equal to the number of tangent planes to ( at points in

ℓ that pass through a general point @ in P3. Here, a tangent plane to a singular
point ? ∈ ℓ means the tangent plane to one of the two branches of ( at @,
or, equivalently, the image of a pre-image of ? on - under the Gauss map.
Consider the intersection of the second polar %@2 with the contact curve ℓ. It
follows from subsection 1.1.3 that %@2 (() ∩ ( is equal to the locus of points ?
such that the line ?@ intersects ( at ? with multiplicity ≥ 3. This means that
%@2 (() ∩ ℓ consists of C triple points and points such that @ belongs to a tangent
plane of ( at ?. The latter number is equal to d. As we observed in subsection
1.1.3, %@2 has a point of multiplicity 3 at ?; hence each triple point enters with
multiplicity 3 in the intersection of ?@ with ℓ. It remains to use that the degree
of the second polar is equal to `0 − 2.
(iii) Now, let us consider the intersection of the second polar %@2 (() with the

contact curve Δ. This intersection consists of the lines @? such that ? is either
one of ^ ramification points of the projection of the surface from @ or ? is one
of d points on ℓ ∩ Δ, where the tangent plane contains ?. In fact, these points
lie on the intersection of Δ and ℓ.
(iv) - (vi) Let c = ℎ1 (O� ( 5 ) ) be the arithmetic genus of the curve � ( 5 ) and

let B be the number of connected components of � ( 5 ). Applying (10.57), we
get

−2j(� ( 5 ),O� ( 5 ) ) = 2c − 22 = (� ( 5 ) +  - ) · � ( 5 )

= (`0 − 4) deg� ( 5 ) = 2n0 (`0 − 4).

The curve � ( 5 ) has 3C ordinary double points and the projection from the
normalization of � ( 5 ) to ℓ is a degree 2 cover ramified at a2 points. Applying
the Riemann-Hurwitz formula, we obtain 2c − 22 − 6C = 2(26(ℓ) − 22) + a2.
Projecting ℓ from a general line defines a degree n0 map from the normalization
of ℓ to P1. The number of ramification points is equal to n1. Applying the
Riemann-Hurwitz formula again, we get 26(ℓ) − 22 = −2n0 + n1. This gives
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(iv) and also gives

a2 = 2n0 (`0 − 4) − 6C − 2(26(ℓ) − 22) = 2n0 (`0 − 4) − 6C − 2n1 + 4n0

= 2n0 (`0 − 2) − 6C − 2n1.

This is equality (v). It remains to use (ii) to get (vi).
(vii) The formula for the class of a non-normal surface with ordinary singu-

larities has a modern proof in [315, Example 9.3.9]. In our notation, it gives
(vii).
(viii) We have

`2 = `0 (`0 − 1)2 + (4 − 3`0)n1 + 3C.

Using this and (i), we get

`2 + 2a2 = (`0 − 1) (`1 + 2n0) + 4n0 − 3`0n0

= `0`1 − `1 + 2n0 + d − n0`0 + 3C.

It remains to use (ii) and (iii). �

Corollary 10.4.8. Let ( be a surface in P3 with ordinary singularities and let
- be its normalization. Then

(i)  2
-
= `0 (`0 − 4)2 − (3`0 − 16)n0 + 3C − a2;

(ii) 22 (-) = `0 (`2
0 − 4`0 + 6) − (3`0 − 8)n0 + 3C − 2a2;

(iii) j(-,O- ) = 1 +
(`0−1

3
)
− 1

2 (`0 − 4)n0 + 1
2 C −

1
4 a2.

Proof (i) Applying (10.57), we get

 - = (`0 − 4)� − � ( 5 ), (10.58)

where � ∈ | 5 ∗ (OP3 (1)) |. The first polar of ( with respect to a general point
cuts out on ( the union of ℓ and Δ. Taking the pre-images on - , we get

(`0 − 1)� = � ( 5 ) + 5 ∗ (Δ).

It follows from the local computation that ℓ and Δ intersect simply at a2 pinch
points and d additional points (see the proof of (iii) in Theorem 10.4.7). This
gives

� ( 5 )2 = (`0 − 1)� · � ( 5 ) − d − a2 = 2n0 (`0 − 1) − d − a2

= 2n0 (`0 − 1) − n0 (`0 − 2) + 3C − a2 = n0 (`0 − 2) + 3C − a2.

Hence
 2
- = (`0 − 4)2`0 − 4(`0 − 4)n0 + � ( 5 )2
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= (`0 − 4)2`0 − (3`0 − 16)n0 + 3C − a2.

(ii) The pre-image of a pinch point on - is a point in - such that the rank of
the tangent map T- → 5 ∗ (TP3 ) drops by 2. According to the modern theory of
degeneracy loci (see [315]), this set is given by the relative second Chern class
22 ( 5 ∗ (TP3 )/T- ). Computing this Chern class, we find

a2 = 21 (-)2 − 22 (-) + 4 - · � + 6`0.

Applying (10.58), we get

a2 =  
2
- − 22 (-) + 4(`0 − 4)`0 − 8n0 + 6`0. (10.59)

Together with (i) we get (ii). Formula (iii) follows from the Noether formula

12j(-,O- ) =  2
- + 22 (-). (10.60)

�

We know that `0 is equal to the degree 3 of �0 in its Plücker embedding.
The next theorem shows that all the numerical invariants can be expressed in
terms of `0 and 6.

Theorem 10.4.9. Let ( be a ruled surface in P3 of degree `0 and genus 6.
Assume that ( has only ordinary singularities. Then

(i) n0 =
1
2 (`0 − 1) (`0 − 2) − 6;

(ii) a2 = 2(`0 + 26 − 2);
(iii) `1 = 2`0 − 2 + 26;
(iv) `2 = `0 = `0;
(v) ^ = 3(`0 + 26 − 2);
(vi) d = (`0 − 2) (2`0 − 5) + 26(`0 − 5);
(vii) C = 1

6 (`0 − 4) [(`0 − 2) (`0 − 3) − 66];
(viii) n1 = 2(`0 − 2) (`0 − 3) + 26(`0 − 6);
(ix) 26(ℓ) − 2B = (`0 − 5) (`0 + 26 − 2).

Proof A general plane section of ( is a plane curve of degree 3 with : = deg ℓ
ordinary singularities. This gives (i).
The canonical class formula gives

 P(E) = −2� + c∗ ( �̄ + d), (10.61)

where O�̄ (d) � a∗ (O�0 (1)) is of degree 3 = `0.
Comparing it with formula (10.72), we find that

� ∼ �0 + c∗ (f), (10.62)
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where 2f = d − e. In particular, 4 + 3 is always an even number.
Applying (10.61), we get  2

P(E) = 4`0 − 4(26− 2+ `0). Topologically, P(E)
is the product of P1 and �. This gives 22 (-) = 2(2 − 26). Applying (10.59),
we find

a2 = 4`0−4(26−2+`0)−2(2−26)+4(`0−4)`0−4(`0−1) (`0−2)−86+6`0

= 2(`0 + 26 − 2).

From (i) of Theorem 10.4.7, we get (iii).
To prove (iv) we have to show that the degree of ( is equal to the degree of

its dual surface. The image of a generator of ( under the Gauss map is equal
to the dual line in the dual P3, i.e. the set of hyperplanes containing the line.
Since ( has only finitely many torsor generators, the Gauss map is a birational
map, this shows that (∗ is a ruled surface. If ( is defined by the vector bundle
E = S∨

�
⊗ O�0 , then the dual ruled surface is defined by the vector bundle

Q� ⊗ O�0 , where O� is the universal quotient bundle. The exact sequence
(11.1) shows that detQ� ⊗ O�0 � detS∨

�
⊗ O�0 . In particular, the degrees of

their inverse images under a : � → �0 are equal. Thus, the degrees of ( and
(∗ are equal.
Now, (i) and (viii) of Theorem 10.4.7 and our formula (i) give (v). Using (iii)

and (ii) of the same theorem, we get (vi) and (vii). Finally, (vi) gives (viii) and
(ix). �

The double-point formula gives

OP(E) (� ( 5 )) ∼ OP(E) (`0 − 2) ⊗ c∗ (l� (1)).

A general point of ℓ is contained in two rulings and formula (10.57) implies
that a general ruling intersects `0 − 2 other rulings. Consider a symmetric
correspondence on � defined by

) = {(G, H) ∈ � × � : |� − ℓG − ℓH | ≠ ∅}.

A point (G, G) ∈ ) corresponds to a generator that is called a torsal generator.
The plane in P3 cutting out this generator with multiplicity ≥ 2 is tangent to
the ruled surface at any smooth point of the generator. For a general point G,
we have #) (G) = 3 − 2. Since all generators ℓH , H ∈ ) (G), intersect the same
line ℓG the points H ∈ ) (G) lie in the tangent hyperplane of �1 (P3) at the point
G. This implies that the divisor 2G + ) (G) belongs to the linear system |O� (1) |
and, in particular, ) has valence equal to 2. Applying the Cayley-Brill formula
from Corollary 5.5.2, we obtain the following.
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Proposition 10.4.10. The number of torsal generators of a ruled surface in P3

with ordinary singularities is equal to 2(`0 + 26 − 2).

Comparingwith Theorem 10.4.9, we find that the number of torsal generators
is equal to the number a2 of pinch points.
When = = 4, we expect that a ruled surface has only finitely many singular

non-normal points, and for = = 5, we expect that it is nonsingular.
In Example 7.6.5, we already encountered a ruled surface ( of degree 8 with

a triple curve � as its singular curve. A general plane section of this surface is
a plane curve of degree 8 of genus 3 with six triple points. Applying formula
(10.57) we see that the linear equivalence class of the curve � ( 5 ) is equal to
2� − c∗ ( � + d) for some divisor d of degree 3. However, the curve � ( 5 )
comes with multiplicity 2, so the curve � in ( is the image of a curve �̃ on
/� from the linear system |� − c∗ (f) |, where 2f ∼  � + d. So, each generator
intersects it at three points, as expected. One can show that d ∼  � + 2a,
therefore, f ∼  � + a. Note that the curve �̃ defines a (3, 3)-correspondence
on the curve � with the projections ?� and @� to �. Its genus is equal to 19
and each projection is a degree three cover ramified at 24 points. In the case
when the divisor a is an even theta characteristic, the curve �̃ is the Scorza
correspondence which we studied in Subsection 5.5.2.
The next example shows that the double curve of a ruled surface may be

disconnected.

Example 10.4.11. Consider three nonsingular nondegenerate curves -8 , 8 =
1, 2, 3, in P3 with no two having common points. Let ( be the set of lines
intersecting each curve. Let us show that these lines sweep a ruled surface of
degree 2313233, where 38 = deg�8 . Recall that the set of lines intersecting
a curve - of degree - is a divisor in �1 (P3) of degree 3. This is the Chow
form of � (see [325]). Thus, the set of lines intersecting three curves is a
complete intersection of three hypersurfaces in�1 (P3), hence a curve of degree
2313233. Assuming that the curves are general enough so that the intersection
is transversal, we obtain that the ruled surface must be of degree 2313233. The
set of lines intersecting two curves -1 and -2 is a surface , in �1 (P3) of
degree 23132. Its intersection with the Schubert variety Ω(Π), where Π is a
general plane, consists of 3132 lines. It follows from the intersection theory on
�1 (P3) that the intersection of , with the U-plane Ω(?) is of degree 3132.
Therefore, we expect that, in a general situation, the number of generators of
( passing through a general point on -3 is equal to 3132. This shows that a
general point of -3 is a singular point of multiplicity 3132. Similarly, we show
that -1 is a singular curve of multiplicity 3233 and -2 is a singular curve of
multiplicity 3133.
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Remark 10.4.12. According to [196], the double curve ℓ is always connected
if `0 ≥ 6 + 4. If it is disconnected, then it must be the union of two lines.

10.4.3 Developable ruled surfaces
A ruled surface is called developable if the tangent planes at nonsingular points
of any ruling coincide. In other words, any generator is a torsal generator. One
expects that the curve of singularities is a cuspidal curve. In this subsection, we
will give other characterizations of developable surfaces.
Recall the definition of the vector bundle of principal parts on a smooth

variety - . Let Δ be the diagonal in - ×- and let JΔ be its sheaf of ideals. Let ?
and @ be the first and the second projections to - from the closed subschemeΔ<
defined by the ideal sheaf J<+1

Δ
. For any invertible sheaf L on - , one defines

the sheaf of <-th principal parts P< (L) of L as the sheaf P<
-
(L) = ?∗@∗ (L)

on - . Recall that the <-th tensor power of the sheaf of 1-differentials Ω1
-
can

be defined as ?∗ (J<Δ /J
<+1
Δ
) (see [379]). The exact sequence

0→ J<Δ /J
<+1
Δ → O-×-/J<+1Δ → O-×-/J<Δ → 0

gives an exact sequence

0→ (Ω1
- )⊗< ⊗ L → P<- (L) → P<−1

- (L) → 0. (10.63)

We will be interested in the case when -0 = �0 is an irreducible curve of genus
6 and - = � is its normalization. By induction, the sheaf P<

�
(L) is a locally

free sheaf of rank < + 1, and

degP<� (L) = (< + 1) degL + <(< + 1) (6 − 1). (10.64)

For any subspace + ⊂ �0 (�,L), there is a canonical homomorphism

+ → �0 (Δ<, @∗L) = �0 (�, ?∗@∗L) = �0 (�,P<� (L))

which defines a morphism of locally free sheaves

U< : +� := O� ⊗ + → P<� (L). (10.65)

Note that the fiber of P<
�
(L) at a point G can be canonically identified with

L/m<+1
�,G
L and the map U< at a point G is given by assigning to a section B ∈ +

the element B mod m<+1
�,G
L. If < = 0, we get P<

�
(L) = L and the map is the

usual map given by evaluating a section at a point G.
Suppose that (+,L) defines a morphism 5 : � → P(+) such that the

induced morphism 5 : � → 5 (�) = �0 is the normalization map. We have
L = 5 ∗ (OP (1)). Let P< ⊂ P<� (L) be the image of U<. Since the composition
of U1 with the projection P1

�
→ L is generically surjective (because �0 spans
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P(+)), the map U1 is generically surjective. Similarly, by induction, we show
that U< is generically surjective for all <. Since � is a smooth curve, this
implies that the sheaves P< are locally free of rank < + 1. They are called the
osculating sheaves. Let

f< : � → � (< + 1, +∨)

be the morphisms defined by the surjection U< : +� → P<. The morphism
f< can be interpreted as assigning to each point G ∈ � the <-th osculating
plane of 5 (�) at the point 5 (G). Recall that it is a <-dimensional subspace of
P(+) such that it has the highest-order contact with the branch of�0 defined by
the point G ∈ �. One can always choose a system of projective coordinates in
P(+) � P= such that the branch of �0 corresponding to G can be parameterized
in the ring of formal power series by

C0 = 1, C8 = C8+B1+···+B8 + highest-order terms, 8 = 1, . . . , =, (10.66)

where B8 ≥ 0. Then, the osculating hyperplane is given by the equation C= = 0.
The codimension 2 osculating subspace is given by C=−1 = C= = 0 and so on. A
point G ∈ � (or the corresponding branch of 5 (�)) with B1 = . . . = B= = 0 is
called an ordinary point, other points are called hyperosculating or stationary
points . It is clear that a point G is ordinary if and only if the highest order of
tangency of a hyperplane at G is equal to =. For example, for a plane curve, a
point is ordinary if the corresponding branch is nonsingular and not an inflection
point.
The image f< (�) in �< (P=) is called the <-th associated curve. Locally,

the map f< is given by assigning to a point G ∈ � the linear subspace of C=+1
generated by 5̃ (G), 5̃ ′(G), . . . , 5̃ (<) (G), where 5̃ : � → C=+1 is a local lift of
the map 5 to a map to the affine space, and 5̃ (:) are its derivatives (see [360],
Chapter II, §4).
Let P(P<) → �×P(+) be themorphism corresponding to the surjectionU<.

The projection of the image to P(+) is called the m-th osculating developable
of (�,L, +) (or of �0). For < = 1 it is a ruled surface, called the developable
surface or tangential surface of �0.
Let A< be the degree ofP<.We have already observed that the composition of

the map f< with the Plücker embedding is given by the sheaf detP<. Thus, A<
is equal to the degree of the<-th associated curve of�0. Also, we know that the
degree of a curve in theGrassmannian� (<+1, +∨) is equal to the intersection of
this curve with the Schubert varietyΩ(�), where dim � = =−<−1. Thus, A< is
equal to them-rank of�0, the number of hyperosculating<-planes intersecting
a general (=−< − 1)-dimensional subspace of P(+). Finally, we know that the
1-rank A1 (called the rank of �0), divided by the number of tangents through
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a general point on the surface, is equal to the degree of the tangential surface.
More generally, A< is equal to the degree of the <-th osculating developable
(see [582]). The (= − 1)-rank A=−1 is called the class of �0. If we consider the
(=−1)-th associated curve in� (=, =+1) as a curve in the dual projective space
|+ |, then the class of �0 is its degree. The (= − 1)-th associated curve �∨ is
called the dual curve of �0. Note that the dual curve should not be confused
with the dual variety of �0. The latter coincides with the (= − 2)-th osculating
developable of the dual curve.

Proposition 10.4.13. Let A0 = degL = deg 5 (�). For any point G ∈ � let
B8 (G) = B8 , where the B8’s are defined in (10.66), and :8 =

∑
G∈� B8 (G). Then,

A< = (< + 1) (A0 + <(6 − 1)) −
<∑
8=1
(< − 8 + 1):8

and
=∑
8=1
(= − 8 + 1):8 = (= + 1) (A0 + =(6 − 1)).

In particular,
A1 = 2(A0 + 6 − 1) − :1.

Proof Formula (10.64) gives the degree of the sheaf of principal partsP<
�
(L).

We have an exact sequence

0→ P< → P<� (L) → F → 0,

where F is a skyscraper sheaf whose fiber at G ∈ � is equal to the cokernel
of the map U< (G) : + → L/m�,GL. It follows from formula (10.66) that
dimF (G) is equal to B1 + (B1 + B2) + · · · + (B1 + · · · + B<) =

∑<
8=1 (< − 8 + 1)B8 .

The standard properties of Chern classes give

degP< = degP<� (L) − ℎ
0 (F ) = (< + 1) (A0 + <(6 − 1)) −

<∑
8=1
(< − 8 + 1):8 .

The second formula follows from the first one by taking < = = in which case
A= = 0 (the surjection of bundles of the same rank +� → P= must be an
isomorphism). �

Adding up A<−1 and A<+1 and subtracting 2A<, we get the following.

Corollary 10.4.14.

A<−1 − 2A< + A<+1 = 26 − 2 − :<+1, < = 0, . . . , = − 1, (10.67)

where A−1 = A= = 0.
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The previous formulas can be viewed as the Plücker formulas for space
curves. Indeed, let = = 2 and � is a plane curve of degree 3 and class 3∨.
Assume that the dual curve �∨ has X∨ ordinary nodes and ^∨ ordinary cusps.
Applying Plücker’s formula, we have

3 = 3∨ (3∨−1)−2X∨−3^∨ = 23∨+(3∨ (3∨−3)−2X∨−2^∨)−^∨ = 23∨+26−2−^∨.

In this case 3∨ = A1, 3 = A0 and ^∨ = :1, so the formulas agree.

Example 10.4.15. A rational normal curve '= in P= has no hyperosculating
hyperplanes (since no hyperplane intersects it with multiplicity > =). So A< =
(< + 1) (= − <) = A=−<−1. Its dual curve is a rational normal curve in the
dual space. Its tangential surface is of degree A1 = 2(= − 1) and the (= − 1)-
th osculating developable is the discriminant hypersurface for binary forms of
degree =. For example, for = = 3, the tangential surface of '3 is a quartic surface
with equation &0&1 +&2

2 = 0, where &0, &1, &2 are some quadrics containing
'3. To see this, one considers a rational map P3 d N∨ � P2 defined by the
net N of quadrics containing '3. After we blow-up P3 along '3, we obtain a
regular map . → P2 which blows down the proper transform of the tangential
surface to a conic in P2. Its equation can be chosen in the form C0C1 + C22 = 0.
The pre-image of this conic is the quartic surface &0&1 + &2

2 = 0. It contains
'3 as its double curve. Also, it is isomorphic to the discriminant hypersurface
for binary forms of degree 3.
Conversely, assume that � has no hyperosculating hyperplanes. Then, all

:8 = 0, and we get

=−1∑
<=0
(= − <) (A<−1 − 2A< + A<+1) = −(= + 1)A0 (10.68)

=

=−1∑
<=0
(= − <) (26 − 2) = =(= + 1) (6 − 1).

This implies 6 = 0 and A0 = =.

The computation from the previous example (10.68) can be used to obtain
the formula for the number, of hyperosculating points of a curve� embedded
in P= by a linear series of degree 3 (see also [377, Lemma 5.21].

Proposition 10.4.16. The number of hyperosculating points, counting with
multiplicities, is equal to

, = (= + 1) (3 + =(6 − 1)). (10.69)
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Proof Applying (10.67), we obtain

, =
∑
G∈�

=∑
8=1
(B1 (G) + · · · + B8 (G)) =

=∑
8=0
(= − 8 + 1):8 =

=−1∑
8=0
(= − 8):8+1

=

=−1∑
8=0
(= − 8) (26 − 2) −

=−1∑
8=0
(= − 8) (A8−1 − 2A8 + A8+1)

= (= + 1)=(6 − 1) + (= + 1)3 = (= + 1) (3 + =(6 − 1)).

The number
∑=
8=1 (B1 (G) + · · · + B8 (G)) should be taken as the definition of

the multiplicity of a hyperosculating point G. A simple hyperosculating point
satisfies B8 (G) = . . . = B=−1 (G) = 0, B= (G) = 1. �

Example 10.4.17. Let � be an elliptic curve embedded in P= by a complete
linear system | (= + 1)G0 |, where G0 is a point on �. Then, the degree of � is
equal to = + 1 and formula (10.69) gives , = (= + 1)2. This is equal to the
number of (= + 1)-torsion points of � in the group law defined by the choice G0
as the zero point. Of course, each such point G satisfies (= + 1)G ∈ |(= + 1)G0 |,
and hence is a hyperosculating point. The formula shows that there are no other
hyperosculating points.
In particular, we see that :8 = 0 for 8 < =; hence the degree A1 of the

tangential surface is equal to 2(=+1). Also, if = > 2, the dual of � is a curve of
degree A2 = 3(= + 1). It has (= + 1)2 singular points corresponding to (= + 1)2
hyperosculating planes.
Example 10.4.18. Assume � is a canonical curve in P6−1. Recall that aWeier-
strass point of a smooth curve of genus 6 > 1 is a point G such that

6∑
8=1
(ℎ0 (G) + · · · + ℎ0 (8G) − 8) > 0.

Let 08 = ℎ0 (G) + · · · + ℎ0 (8G). We have 01 = 1 and 08 = 8 if and only if ℎ0 (G) =
. . . = ℎ0 (8G) = 1. By Riemann-Roch, this is equivalent to that ℎ0 ( � − 8G) =
6−8, i.e. the point G imposes the expected number of conditions for a hyperplane
to have a contact with � of order 8 at G. A point G is a Weierstrass point if and
only if there exists 8 ≤ 6 such that the number of such conditions is less than
expected by the amount equal to 08 − 8. With notation (10.66), this shows that

B1 + · · · + B8−1 = 08 − 8, 8 = 2, . . . , 6.

In particular, the point G is hyperosculating if and only if it is a Weierstrass
point. Applying formula (10.69), we obtain the number of Weierstrass points

, = 6(62 − 1). (10.70)
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Since ℎ0 (2G) = 1 for all points on � (because � is not hyperelliptic), we get
:1 = 0. Applying Proposition 10.4.13, we obtain that the rank A1 of � is equal
to 6(6 − 1).
Assume that� is general in the sense that all Weierstrass points G are simple,

i.e., (G) = 1. It follows from the proof of Proposition 10.4.16 that B8 (G) = 0, 8 <
6 − 1, and B6−1 (G) = 1. Thus, :< = 0, < < 6 − 1, and :6−1 = , = 6(62 − 1).
It follows from Proposition 10.4.13 that A< = (< + 2) (< + 1) (6 − 1) for
1 ≤ < < 6 − 2 and A6−2 = 6(6 − 1)2. The latter number coincides with the
class of �. For example, if 6 = 3, we get A1 = 12 and the 24 Weierstrass
points are flex points of �. If 6 = 4, we get A1 = 18 and A2 = 36. We have
60 hyperosculating planes at Weierstrass points. The linear system of cubics
through � defines a birational map from P3 to a cubic hypersurface in P4 with
an ordinary double point. The image of the tangential surface is the enveloping
cone at the node, the intersection of the cubic with its first polar with respect to
the node. Its degree is equal to 6, therefore, the tangential surface is the proper
inverse image of the cone under the rational map.
We refer for the proof of the following Proposition to [582].

Proposition 10.4.19. Let 5 ∨ : � → (P=)∨ be the normalization of the =− 1-th
associated curve of 5 : � → P=, the dual curve of 5 (�). Then,

(i) A< ( 5 ∨ (�)) = A=−<−1 ( 5 (�));
(ii) ( 5 ∨)∨ = 5 ;
(iii) :8 ( 5 ∨) = :8 ( 5 ).

Recall from Chapter 1 that the dual variety of �0 is the closure in (P=)∨ of
the set of tangent hyperplanes to smooth points of �0. If C0 = 5 (G) is a smooth
point, the set of tangent hyperplanes at G is a codimension 2 subspace of the
dual space equal to (= − 2)-th developable scroll of the dual curve. By the
duality, we obtain that the dual of the (= − 2)-th developable scroll of a curve
�0 is the dual curve of �0. In particular, if = = 3, we obtain that the dual of the
tangential surface to a nondegenerate curve �0 in P3 is the dual curve of �0,
and the dual of a nondegenerate curve �0 in P3 is the tangential surface of its
dual curve.

Proposition 10.4.20. Let ( be a ruled surface in P3. The following properties
are equivalent:

(i) ( is a developable surface;
(ii) ( is a tangential surface corresponding to some curve �0 lying on (;
(iii) the tangent lines of the curve �0 ⊂ �1 (P3) parameterizing the rulings
are contained in �1 (P3).
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Proof (i) ⇒ (ii). Consider the Gauss map W : ( → (P3)∨ which assigns to
a smooth point G ∈ ( the embedded tangent plane TG (�). Obviously, W blows
down generators of (; hence the image of ( is a curve �̌0 in the dual space.
This curve is the dual variety of (. Its dual variety is our surface (, and hence
coincides with the tangential surface of the dual curve �0 of �̌0.

(ii)⇒ (iii) Let @� : /� → � be the projection from the incidence variety
and � ∈ |O/� (1) |. The tangent plane at points of a ruling ℓG cuts out the ruling
with multiplicity 2. Thus, the linear system |� −2ℓG) | is non-empty (as always,
we identify a ruling with a fiber of @� ). The exact sequence

0→ O/� (� − 2ℓG) → O/� (� − ℓG) → OℓG (� − ℓG) → 0

shows that ℎ0 (O;G (� − ℓG)) = 1, i.e. |� − ℓG | has a base point H(G) on ℓG . This
means that all plane sections of ( containing ℓG have residual curves passing
through the same point H(G) on ℓG . Obviously, this implies that the point H(G)
is a singular point of ( and the differential of the projection ?� : /� → ( at
H(G) is not surjective. Applying Proposition 10.1.18, we obtain that the tangent
line TG (�) is contained in the U-plane Ω(H(G)) ⊂ �1 (P3).

(iii)⇒ (i) Applying Proposition 10.1.18, we obtain that each ℓG has a point
H(G) such that its image in ( is a singular point and the differential of ?� at
H(G) is not surjective. This implies that H(G) is a base point of the linear system
|� − ℓG | on ℓG . As above, this shows that |� −2ℓG | is not empty and hence there
exists a plane tangent to ( at all points of the ruling ℓG . �

The set of points H(G) ∈ ℓG , G ∈ � is a curve �0 on ( such that each ruling
ℓG is tangent to a smooth point on �0. So ( is the tangential surface of �0. The
curve �0 is called the cuspidal edge of the tangent surface. It is a curve on (
such that at its general point B the formal completion of O(,B is isomorphic to
C[[I1, I2, I3]]/(I2

1 + I
3
2).

10.4.4 Quartic ruled surfaces in P3

Here, we will discuss the classification of quartic ruled surfaces in P3 due
to A. Cayley and L. Cremona. We have already classified ruled surfaces of
degree 3 in Section 9.2. They are non-normal cubic surfaces and there are
two kinds of them. The double curve ℓ is a line and the map � ( 5 ) → ℓ is
an irreducible (reducible) degree 2 cover. The surface /� is isomorphic to
F1 = P(OP1 ⊕ OP1 (−1)). The linear system |ℎ| that gives the map 5 : F1 → P3

is equal to |2f + e|, where, as usual, e is the divisor class of the exceptional
section �0 and f is the class of a fiber. The curve � ( 5 ) ∈ |ℎ− f| = |f+ e|. In the
first case, the surface ( has ordinary singularities, and � ( 5 ) is an irreducible
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curve. In the second case, � ( 5 ) ∈ |ℎ| and consists of the exceptional section
and a fiber. Now, let us deal with quartic surfaces. We do not assume that the
surface has only ordinary singularities. We begin with the following.

Proposition 10.4.21. The genus of a ruled quartic surface is equal to 0 or 1.

Proof A general plane section � of ( is a plane quartic. Its geometric genus
6 is the genus of (. If 6 = 3, the curve � is nonsingular; hence ( is normal and
therefore nonsingular. Since  ( = 0, it is not ruled. If 6 = 2, the singular curve
of ( is a line. The plane sections through the line form a linear pencil of cubic
curves on (. Its pre-image on the normalization - of ( is a pencil of elliptic
curves. Since - is a P1-bundle over a curve of genus 2, a general member of
the pencil cannot map surjectively to the base. This contradiction proves the
assertion. �

So, we have two classes of quartic ruled surfaces: rational ruled surfaces
(6 = 0) and elliptic ruled surfaces (6 = 1). Each surface ( is defined by some
curve �0 of degree 4 in �1 (P3). We denote by - the minimal ruled surface
P(E) obtained from the universal family /�0 by the base change a : � → �0,
where a is the normalization map. We will denote by �0 an exceptional section
of - defined by choosing a normalized vector bundle E0 with P(E0) isomorphic
to - .
We begin with the classification of rational quartic ruled surfaces.

Proposition 10.4.22. A rational quartic ruled surface is a projection of a
rational normal scroll (2,5 or (1,5 of degree 4 in P5.

Proof Let |ℎ| be the linear system of hyperplane sections on the quartic
rational normal scroll (0,= � F4. We have |ℎ| = |:f + e|, where : > 4. Since
ℎ2 = 4, we get 2: + 4 = 4. This gives two solutions (4, :) = (0, 2), (2, 1). In
the first case, we get the scroll (2,5 � F0, in the second case, we get the scroll
(1,5 � F2. �

Let D( 5 ) be the double-point divisor class. We know that the singular curve
ℓ on ( is the image of a curve � ( 5 ) from D( 5 ) on - , where - = (2,5 or (1,5.
Applying (10.57), this gives

� ( 5 ) ∼ 2ℎ − 2f =

{
2f + 2e if - = (2,5,

4f + 2e if - � (1,5.

Since a general plane section of ( is a rational curve, � ( 5 ) and ℓ consist of, at



270 Line Geometry

most, three irreducible components. The linear system

|ℎ| =
{
|2f + e| if - = (2,5,

|3f + e| if - = (1,5,

maps a component �8 of � ( 5 ) to an irreducible component ℓ8 of ℓ of degree
38 =

1
<8
� · �8 , where <8 is the degree of the map �8 → ℓ8 . The number <8

is equal to the multiplicity of a general point on ℓ8 as a singular point of the
surface unless ℓ8 is a curve of cusps. In the latter case <8 = 1, but �8 enters
� with multiplicity 2. A fiber �G = c−1 (G) could be also a part of �. In this
case, ℓ has a singular point at a(G). If it is an ordinary double point, the fiber
component enters with multiplicity 1, if it is a cusp, it enters with multiplicity
2. Other cases will not occur. Finally, we use that dim |ℎ − �8 | > 0 if ℓ8 is
contained in a plane, i.e., a line or a conic.
This gives us the following cases, which make a “rough classification” ac-

cording to the possible singular locus of the surface.

1. - = (2,5 :
(i) � ( 5 ) = �1, 31 = 3;
(ii) � ( 5 ) = �1 + �2, �1 ∈ |e|, �2 ∈ |2f + e|, 31 = 1, 32 = 2;
(iii) � ( 5 ) = �1 + �2 + �1 + �2, �1, �2 ∈ |e|, 31 = 32 = 1;
(iv) � ( 5 ) = 2�1, �1 ∈ |f + e|, 31 = 1;
(iv)’ � ( 5 ) = 2�1, �1 ∈ |f + e|, 31 = 3;
(v) � ( 5 ) = 2�1 + 2�1, �1 ∈ |e|, 31 = 1;
(vi) � ( 5 ) = 2�1 + �1 + �2, �1 ∈ |e|, 31 = 2;
(vi)’ � ( 5 ) = 2�1 + 2�1, �1 ∈ |e|, 31 = 2.

2. - = (1,5 :
(i) � ( 5 ) = �1, 31 = 3;
(ii) � ( 5 ) = �0 + �1 + �, �1 ∈ |3f + e|, 31 = 1, 32 = 2;
(iii) � ( 5 ) = 2�0 + 2�1 + 2�2, 31 = 1;
(iv) � ( 5 ) = 2�1, �1 ∈ |2f + e|, 31 = 1.

Theorem 10.4.23. There are 12 different types of rational quartic ruled sur-
faces corresponding to 12 possible cases from above.

Proof It suffices to realize all possible cases from above. By Proposition
10.4.22, the different types must correspond to different choices of the center
of the projection in P5.
Let us introduce some special loci in P5 which will play a role in the choice

of the center of the projection.
We will identify curves on F0 with their images in (2,5. A conic directrix
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is a curve � ∈ |e|. Consider the union of planes spanning the �’s. It is a
scroll Σ1 of dimension 3 parameterized by |e| � P1. Let us compute its degree.
Fix two generators �1 and �2 of F0. Then, |ℎ − �1 − �2 | = |e0 |. If we fix
three pairs of generators � (8)1 , �

(8)
2 , 8 = 1, 2, 3, each spanning a P3, then we can

establish a correspondence ℓ of tri-degree (1, 1, 1) on |e| × |e| × |e| such that the
point (G, H, I) ∈ ℓ corresponds to three hyperplanes from each linear system
|ℎ − � (8)1 − �

(8)
2 | which cut out the same curve � ∈ |e|. The three hyperplanes

intersect along the plane spanning � . This shows that our scroll is the join of
three disjoint lines in the dual P5 which can be identified with the same P1.
Applying formula (10.54), we obtain that the degree of Σ1 is equal to 3.

The next scroll we consider is the union Σ2 of three-dimensional spaces
spanned by tangent planes of (2,5 at points on a fixed generator. This 3-
dimensional space is spanned by the tangent lines of two fixed conic directrices
at the points where they intersect the generator. Thus, our scroll is the join of
the tangential scroll of the two directrices with respect to the correspondence
between the directrices defined by the generators. The degree of this scroll is
given by the formula in Example 10.4.3. Since the tangent lines of a conic are
parameterized by the conic, and the two conics are disjoint, the degree of Σ2
is equal to 4. Obviously, Σ1 is a 2-directrix of Σ2. Since the tangent plane to
(2,5 at a point G is spanned by the generator passing through this point and the
tangent line of the conic directrix passing through this point, we obtain that Σ2
coincides with the tangential scroll of (2,5.
Onemore scroll is constructed as follows. Consider directrices of (2,5 defined

by the images of curves ℓ3 ∈ |f + e|. We identify them with the images. These
are directrices of degree 3. Let Σ3 be the union of tangent planes to (2,5 at the
points of ℓ3. These tangent planes can be obtained as joins of tangent lines of ℓ3
at points G ∈ ℓ3 and the points G ′ on a conic directrix � such that the points G, G ′
lie on the same generator. Thus, Σ3 is obtained by construction from Example
10.4.3 as the join of the tangential scroll of ℓ3 and the conic. The degree of the
tangential scroll has been computed there; it is equal to 4. Thus, the degree of
Σ3 is equal to 4 + 2 − 1 = 5, where we subtracted 1 because the conic and ℓ3
meet at one point dropping the dimension of the join by 1.
Let ?ℓ : (2,5 → ( be the projection map from a line ℓ. We will use the fact

that any two points G1, G2 in the double locus � ( 5 ) which are projected to the
same point must lie on a secant of � ( 5 ) that passes through these points and
intersects ℓ. The secant line becomes a tangent line if G1 = G2 is a critical point
of ?ℓ .

• Type 1 (i).

Take a line ℓ in P5 which intersects the quartic scroll Σ2 at four distinct points
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and is not contained in any three-dimensional space spanned by a cubic directrix
ℓ3 ∈ |f + e|. Let � be an irreducible component of � ( 5 ) and let G be a general
point of �. We know from the classification of all possible components of
� ( 5 ) that the degree of the projection map must be equal to two or three. If
the degree is equal to 3, then � ∈ |f + e| is a cubic directrix and its projection
is a line. This implies that ℓ belongs to the linear span of �. By assumption on
ℓ, this does not happen. So, the degree is equal to two. The map which assigns
to a point G ∈ � the intersection point of ℓ and the secant passing through G is
a degree two map � → ℓ. The intersection points of ℓ with Σ2 are the branch
points of this map. By Hurwitz’s formula, the normalization of � is a genus
one curve, hence the arithmetic genus is ≥ 1. The classification of possible �’s
shows that this could happen only if � is a nonsingular curve from |2f + 2e|.
This realizes type 1(i).
The quartic scroll ( can be described as follows. Consider a rational normal

cubic curve '3 in P3 and let ( be the set of its secants contained in a non-
special linear line complex. The set of secants of '3 is a surface in G = �1 (P3)
of degree 4 in its Plücker embedding. This can be seen by computing its
cohomology class in G. A general U-plane Ω(?) contains only one secant. A
general V-plane Ω(Π) contains three secants. This shows that the degree of the
surface of secants is equal to four. The surface must be a Veronese surface in
P5 because it does not contain lines. We will encounter this surface again in
Chapter 11 while classifying congruences of lines of order one.

The intersection of the surface with a general linear line complex is a curve
� of degree four. It defines a quartic ruled surface (� . Take a point ? ∈ '3 and
consider the set of secants ℓG , G ∈ �, such that ? ∈ ℓG . The intersection of the
Schubert plane Ω(?, P3) with the Veronese surface is a conic. Its intersection
with the linear line complex must consist of two lines. Thus, each point of '3
lies on two generators of the surface (� . The curve '3 is the double curve of (.

• Type 1 (ii).

In this case, we take ℓ intersecting Σ1 at some point G0 in the plane spanned
by some conic directrix � ∈ |e|. The projection of � is a line and the map
is 2:1. Note that in this case the point G0 is contained in two tangents to � so
two of the four intersection points of ℓ and Σ2 coincide. It also shows that Σ1
is contained in the singular locus of Σ2. The remaining two points in ℓ ∩ Σ2
are the branch points of the double cover � ′ → ℓ, where � ′ ∈ 2f + |e| is the
residual component of � ( 5 ). Arguing as above, we see that � ′ is a smooth
rational curve of degree 4. Its projection is a conic.

• Type 1 (iii).
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This time we take ℓ intersecting Σ1 at two points ?1, ?2. These points lie in
planesΠ1 andΠ2 spanned by directrix conics �1 and �2. The projection from ℓ

maps these conics to disjoint double lines of (. Let us now find two generators
�1 and �2, which are projected to the third double line. Consider the pencil
P8 of lines in the plane Π8 with base point ?8 . By intersecting the lines of the
pencil with the conic �8 , we define an involution on �8 and hence an involution
W8 on the pencil |f| � P1 (interchanging the generators intersecting �8 at two
points in the involution). Now, we have two involutions on |f| whose graphs
are curves of type (1, 1). They have two common pairs in the involution which
give us two generators on (2,5 intersecting �8 at two points on a line ℓ8 through
?8 . The three-dimensional subspace spanned by ℓ, ℓ1 and ℓ2 contains the two
generators. They are projected to a double line of (.

• Type 1 (iv), (iv)’.

The image of �1 on (2,5 is a rational normal cubic '3 spanning a 3-plane "
of P5. We project from a general line contained in " . The restriction of the
projection to �1 is a degree 3 map. So the projection of �1 is a triple line of (.
Another possibility here is to project from a line directrix ℓ of the tangential

scrollΣ3. Each point on ℓ lies in a tangent plane to a cubic directrix ℓ3 ∈ |�0+� |.
So the projection from ℓ maps ℓ3 to a rational curve '3 of degree 3 and maps
the tangent lines to ℓ3 to tangent lines to '3. Thus, the scroll ( is a developable
quartic surface considered in Example 10.4.15. Let us find a line directrix onΣ3.
We know that Σ3 is equal to the image of a projective bundle P(E), where E is
a vector bundle over P1 of rank 3 and degree 5. Thus, degE∨ (1) = −5+3 = −2,
and applying Riemann-Roch, we obtain ℎ0 (E∨ (1)) ≥ degE∨ (1) + 3 > 0.
This implies that there is a nontrivial map of sheaves E → OP1 (1). Let L
be the image of this map. It defines a section f : P1 → P(E) such that
f∗ (OP(E) (1)) � L. Thus, the restriction of OP(E) (1) to D = f(P1) is of
degree ≤ 1. Since Σ3 is a scroll in our definition, the sheaf OP(E) (1) is ample,
therefore, the degree must be equal to 1. So, the image of D in Σ3 is a line
directrix.

• Type 1 (v).

This is a degeneration of the previous case. The rational normal cubic degen-
erates into the union of a directrix conic and a generator. The projection is a
degree 2 map on the conic and degree 1 on the line. The double curve ℓ is a
triple line. It is a generator and a directrix at the same time. Through each point
on ℓ passes two generators other than itself. As in the previous case, a plane
containing ℓ contains only one of the other generators.
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• Type 1 (vi).

Consider a hyperplane section ! ∩ Σ1, where ! contains two generators �1
and �2 of (2,5. The quartic curve ! ∩ (2,5 consists of the two generators and
a directrix conic D from |e|. Thus, the cubic surface ! ∩ Σ1 contains a plane,
and the residual surface is a quadric & containing D. Take a line ℓ in the 3-
dimensional subspace " spanned by �1 and �2 that is tangent to the quadric
" ∩&. The projection from ℓ maps (2,5 to a quartic ruled surface with double
line equal to the image of the two generators �1 and �2 and the cuspidal conic
equal to the image of the directrix conic D.

• Type 1 (vi)’.

The same as the previous case, but we choose ! to be tangent along a generator
�1. The double locus is a reducible cuspidal cubic.

• Type 2 (i).

Type 2 corresponds to a projection of the rational normal quartic scroll (1,5 �

F2 embedded in P5 by the linear system |3f + e|. The exceptional section �0
is a line directrix on (1,5. The curves from the linear system | + 2f + e| are
cubic directrices. The analog of the tangential scroll Σ2 here is the join Σ′2 of
the tangential surface of a cubic directrix D with the line �0. It is the union
of 3-dimensional spaces spanned by a tangent line to D and �0. We know that
the tangential scroll of '3 is of degree 4. Thus, the degree of Σ′2 is equal to 4.
The rest of the argument is the same as in case 1 (i). We take ℓ intersecting
Σ′2 at four distinct points and not contained in a 3-space spanned by a cubic
directrix. The double curve is a smooth elliptic curve of degree 6 from |4f+2e|.
It is projected to the double curve '3 of (. All generators of ( intersect the
unique line directrix ℓ, which is the projection of the exceptional section of
(1,5. So, the surface is contained in a special linear line complex Ω(ℓ). This is
the difference between surfaces of Type 1 (ii) and Type II (i).

• Type 2 (ii).

This time we take ℓ intersecting the plane Π spanned by �0 and a generator �.
We also do not take it in any 3-plane spanned by a cubic directrix. Then, �0
and � will project to the same line on (, the double line. The residual part of
the double locus must be a curve � from |3f + e|. Since no cubic directrix is a
part of the double locus, we see that � is an irreducible quartic curve. Its image
is a double conic on (.

• Type 2 (iii).
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We choose a line ℓ intersecting two planes as in the previous case. Since the two
planes have a common line �0, they span a 3-dimensional subspace. It contains
three lines which are projected to the same line on (, a triple line of (.

• Type 2 (iv).

Take a cubic curve from |2f + e| and a line in the three-dimensional space
spanned by the cubic. The cubic is projected to a triple line.

�

Remark 10.4.24. We have seen that a developable quartic surface occurs in
case 1 (iv). Let us see that this is the only case when it may occur.
The vector bundle of principal parts P1

�
(L) must be given by an extension

0→ Ω1
� ⊗ L → P

1
� (L) → L → 0, (10.71)

where � is a rational cubic in P3 and L = O� (1) � OP1 (3). It is known that
the extension

0→ Ω1
� → P

1
� → O� → 0,

from which the previous extension is obtained by twisting with L, does not
split. Its extension class is defined by a nonzero element in Ext1 (O� ,Ω1

�
) �

�1 (�,Ω1
�
) � C (this is the first Chern class of the sheaf OP1 (1)). After

tensoring (10.71) with OP1 (−2) we get an extension

0→ OP1 (−1) → P1
P1 (L)(−2) → OP1 (1) → 0.

The locally free sheaf E = P1
�
(L)(−2) has 2-dimensional space of global sec-

tions. Tensoring with OP1 (−1) and using that the coboundary homomorphism

�0 (P1,OP1 ) → �1 (P1,OP1 (−2))

is nontrivial, we obtain that E(−1) has no nonzero sections, hence E is a
normalized vector bundle of degree 0 defining the ruled surface P(E). There
is only one such bundle over P1, the trivial bundle OP1 ⊕ OP1 . Untwisting
E, we obtain that the sheaf P1

'
(L) is isomorphic to OP1 (2) ⊕ OP1 (2), so

P(P1
'
(L)) � F0 and the complete linear system defined by the tautological

invertible sheaf corresponding toP1
'
(L) embedsF0 in P5 as the rational normal

scroll (2,5. The double locus class D( 5 ) must be divisible by 2, and the only
case when it happens is type 1 (iv)’.
We can also distinguish the previous cases by a possible embedding of

the quartic curve �0 parameterizing generators of ( in G = �1 (P3). Since
deg�0 = 4 in the Plücker embedding, the curve is always contained in a
hyperplane ! on P5. If, furthermore, �0 lies in a codimension 2 subspace, then
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this subspace is either contained in one tangent hyperplane of G or is equal to
the intersection of two tangent hyperplanes (because the dual variety of G is a
quadric). So we have the following possibilities:

I �0 is a rational normal quartic contained in a hyperplane ! that is not tangent
to G;

II �0 is a rational normal quartic contained in a hyperplane ! which is tangent
to G at a point $ not contained in �0;

III �0 is a rational normal quartic contained in a hyperplane ! which is tangent
to G at a point $ contained in �0;

IV �0 is a rational quartic curve contained in the intersection of two different
tangent hyperplanes of G;

V �0 is a rational quartic curve contained in a three-dimensional subspace
through which passes only one tangent hyperplane of G. The tangency point
is an ordinary node of �0.

A quartic surface of type 1 (i) or 1 (iv)’ from Theorem 10.4.23 belongs to
type I. Following W. Edge [271], we denote types 1 (i) and 1 (iv)’ with I.
In type 1 (ii), the line component of the double curve is a directrix, so all

generators belong to a special linear line complex tangent to�1 (P3) at the point
$ representing this directrix. This is Edge’s type II. Through any point ? on the
directrix passes two generators, the point $ belongs to a secant of �0 formed
by the line Ω(?,Π), where Π is the plane spanned by the two generators. It is
a nonsingular point of �0. We have Edge’s type II (C).
In type 1 (iii), we have two directrices which are not generators. This means

that � is contained in the intersection of two special linear line complexes
tangent to�1 (P3) at two points. This is type IV (B). The tangency points corre-
spond to the line directrices on (. The curve �0 is contained in the intersection
of two special linear line complexes that is a nonsingular quadric. The curve
�0 has an ordinary node at the point corresponding to two generators mapped
to a double line on �.

In type 1 (iv), the triple line is a directrix of (, so we are again in case II
but in this case, the point $ intersects the U-plane Ω(?) at three non-collinear
points and intersects the V-plane Ω(Π) at one point. This is Edge’s type II (A).

In case 1 (v), the double curve is a triple line. One of the generators � is
contained in � ( 5 ) with multiplicity two and is mapped to the triple line. Thus,
( is contained in a unique special line complex which is tangent to � at a cusp
of �0. Since �0 is singular, it is contained in a three-dimensional space. So,
� is contained in a quadric cone equal to the intersection of �1 (P3) with two
linear line complexes. The singular point of this cone is the singular point of
�0. This is Edge’s Type III (A).
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In type 1 (vi), two generators on (2,5 are projected to a double generator of
(. The curve �0 has an ordinary double point, hence it lies in two linear line
complexes. The double generator is the only line directrix on (. Thus, there is
only one special linear line complex containing ( and its tangency point is an
ordinary double point of �0. This is Edge’s type V (A). In case 1 (vi)’, we also
have type V (A), only this time the singular point of �0 is a cusp.
In type 2 (i), the line directrix ℓ corresponding to �0 defines a special line

complex containing �. Thus, we are in type II. The U-plane Ω(?), ? ∈ ℓ,
contains only one point, the V-plane Ω(c), ℓ ⊂ c, contains three points. This is
Edge’s type II (B). This case is a degeneration of case 1(i); instead of a general
line complex we take a special one.
In type 2 (ii), we have a line directrix which is at the same time a generator

6. This shows that we are in type III. The curve � has a cuspidal singularity at
the point $ corresponding to the generator 6. The curve � intersects any plane
Ω(?, P3), ? ∈ 6, in one point and every plane Ω(c, P3), 6 ⊂ c, at two points.
This is Edge’s type III (B).
In type 2 (iii), we have a triple line on ( formed by the projection of the line

directrix �0 of (2,5 and its two generators. We are in case V, where the singular
point of � is the singular point of the quadric cone. This is Edge’s type V (B).

In type 2 (iv), we have a triple line projected from a rational cubic curve. We
have two line directrices of (, one is a triple line. The curve � is nonsingular.
This is Edge’s type IV (A).

Next, we have to classify elliptic ruled quartic surfaces in P3. Let c : - → �

be a minimal ruled surface with a base �. We write - in the form - = P(E0),
where E0 is a normalized rank 2 locally free sheaf. Since  � = 0 in our case,
the canonical class formula (10.48) gives

 - = −2e + c∗ (a). (10.72)

By the adjunction formula, 0 = �2
0 + - · �0 = −�2

0 + deg a. Thus, 0 = deg a =
e2

0 ≤ 0.
Let |ℎ| be the linear system on - which defines the normalization map

5 : - → (. We can write ℎ ≡ <f + e, where f is the class of a fiber. Since
ℎ is ample, intersecting both sides with e, we get < + 0 > 0. We also have
ℎ2 = 2< + 0 = 4. This gives two possibilities 0 = 0, < = 2 and 0 = −2 and
< = 3. In the second case ℎ · e = 1, hence |ℎ| has a fixed point on �0. This case
is not realized (it leads to the case when ( is a cubic cone). The formula for the
double-point locus gives D( 5 ) ≡ 2ℎ − c∗ (d), where 3 = deg d = 4. Thus, we
obtain

� ≡ 2f + e, e2 = 0, � ( 5 ) ≡ 2e.
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By Riemann-Roch, dim |ℎ| = 3. Since dim |ℎ − e| = dim |2f| = 1, we obtain
that the image of �0 is a line. Since the restriction of |ℎ| to �0 is a linear series
of degree 2, the image of �0 is a double line. We have two possibilities: � ( 5 )
consists of two curves �0+� ′0, or � ( 5 ) is an irreducible curve � with ℎ ·� = 4.
Since |ℎ−� | = ∅, we obtain that the image of � is a space quartic, so it cannot
be the double locus. This leaves us with two possible cases: � ( 5 ) is the union
of two disjoint curves �0 + � ′0, or � ( 5 ) = 2�0.

In the first case � · �0 = � · � ′0 = 2 and dim |ℎ − �0 | = dim |ℎ − � ′0 | =
dim |2f| = 1. This shows that the images of �0 and � ′0 are two skew double
lines on (. The curve � is a nonsingular elliptic curve in �1 (P3). It spans a
three-dimensional subspace equal to the intersection of two special linear line
complexes.
Since - = P(E) has two disjoint sections with self-intersection 0, the sheaf
E splits into the direct sum L1 ⊕ L2 of invertible sheaves of degree 0. This
easily follows from [379, Chapter V, Proposition 2.9]. One of them must have
a nonzero section, i.e., must be isomorphic to O� . So we obtain

- � P(O� ⊕ O� (a)),

where deg a = 0. Note that - cannot be the direct product � × P1 because, in
this case, the image of any � × {G} must be a double line, in other words, in
this case, |� | defines a degree 2 map. So, we have a ∼ 0.
In the second case, two double lines come together forming the curve of

tacnodes. In this case, the curve � lies only in one special linear line complex.
The pencil of hyperplanes containing� intersects the dual Klein quadric at one
point.
Let f : E → O� (e) be the surjective map of sheaves corresponding to the

section �0. Since deg E = deg a = 0, we have deg Ker(f) = 0. Thus, E can be
given as an extension of invertible sheaves

0→ O� (b) → E → O� (a) → 0,

where deg b = 0. Suppose this extension splits, then - has two disjoint sections
with self-intersection zero. By above, we see that the map defined by the linear
system |ℎ| maps each section to a double line of (. This leads to the first case.
So, in our case, there are no disjoint sections, and hence the extension does
not split. This implies that Ext1 (O� (a),O� (b)) = �1 (�,O� (e − b)) ≠ {0}.
This is possible only if b ∼ a. Since E has a nonzero section, we also have
�0 (�,O� (a)) ≠ {0}, i.e. e ∼ 0. Thus, we obtain that E is given by a non-split
extension

0→ O� → E → O� → 0.
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In fact, it is known that any elliptic ruled surface with e2 = 0 which corresponds
to a non-split vector bundle, must be isomorphic to the ruled surface P(E),
where E is defined by the extension from above (see [379, Chapter V, Theorem
2.15]).
Let us summarize our classification in the following Table 10.3.

Type Double curve Edge Cremona Cayley Sturm

1 (i),(iv)’ '3 I 1 10 III

1 (ii) L+K II (C) 2 7 V

1 (iii) L+L’+G IV (B) 5 2 VII

1 (v) 3L II (A) 8 9 IX

1 (iv) 3L III (A) 3 - XI

1 (vi),(vi)’ 2L+G V (A) 6 5 VIII

2 (i) '3 II (B) 7 8 IV

2 (ii) L+K III (B) 4 - VI

2 (iii) 3L V (B) 10 6 XII

2 (iv) 3L IV (A) 9 3 X

6 = 1 L+L’ VI(A) 11 1 I

6 = 1 2L VI(B) 12 4 II

Table 10.3 Quartic ruled surfaces

Here, '3 denotes a curve of degree 3, ! denotes a line,  is a conic and �
is a generator.
A finer classification of quartic ruled surfaces requires the description of the

projective equivalence classes. We refer to [600] for a modern work on this.
Here, we explain, following [68], only the fine classification assuming that the
double curve is a Veronese cubic '3. First, by projective transformation, we
can fix '3 which will leave us only with the three-dimensional subgroup � of
PGL(4) leaving '3 invariant. It is isomorphic to PSL(2).

Let N be the net of quadrics in P3 that contains '3. It defines a rational
map U : P3 d N∨. The pre-image of a point B in N∨, i.e. a pencil in N , is
the base locus of the pencil. It consists of the curve '3 plus a line intersecting
'3 at two points. This makes the identification between points in N∨ � P2

and secants of '3. The pre-image of a conic  in N∨ is a quartic surface
which is the union of secants of '3. It is a quartic ruled surface. Conversely,
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every quartic ruled surface ( containing '3 as its double curve is obtained in
this way. In fact, we know that ( is the union of secants of '3 and hence the
linear system of quadrics containing '3 should blow down each secant to a
point in N∨. There are many direct geometric constructions of quartic ruled
surfaces. The first historical one uses Cayley’s construction of a ruled surface
as the union of lines intersecting three space curves (see Example 10.4.11).
For example, taking (31, 32, 33) = (2, 2, 1) and (012, 013, 023) = (2, 0, 1) gives
a quartic ruled surface with a double conic and a double line that intersect at
one point. Another construction is due to Cremona. It is a special case of the
construction from Example 10.4.3, where we take the curves �1 and �2 of
degree 2. If the two conics are disjoint, a correspondence of bidegree (1, 1)
gives a quartic ruled surface. In the next Subsection we will discuss a more
general construction due to B. Wong [810].
Finally, we reproduce equations of quartic ruled surfaces (see [271, p. 69],

p. 69).

� : &(GI − H2, G| − HI, H| − I2) = 0,
where & =

∑
1≤8, 9≤3

08 9 C8C 9 is a nondegenerate quadratic form;

� � (�) : IH2 (0H + 1G) + |G2 (2H + 3G) − 4G2H2 = 0;
� � (�) : same as in (I) with 02

22 + 2022013 − 4012023 + 011033 = 0;
� � (�) : (2HI + 1GI + 0GH + I| − |G)2 − GI(0G − 1H + 2I)2 = 0;
� � � (�) : 0G2H2 − (G + H) (G2| + H2I) = 0;
� � � (�) : (G| + HI + 0I|)2 − I|(G + H)2 = 0;
�+ (�) : G(0I + 1|)|2 − H(2I + 3|)I2 = 0;
�+ (�) : H2I2 + 0GHI| + |2 (1I + 2G)G = 0,

(HI − GH + 0|G)2 − GI(G − I + 1|)2 = 0;
+ (�) : : (HI − GH + 0G|)2 − GI(G − I)2 = 0;
+ (�) : (0I2 + 1I| + 2|2) (HI − G|) − I2|2 = 0;
+� (�) : 0G2|2 + GH(1I2 + 2I| + 3|2) + 4H2I2 = 0;
+� (�) : (G| − HI)2 + (0G2 + 1GH + 2H2) (G| − HI) +

(3G3 + 4G2H + 5 GH2 + 6H3)G = 0.
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10.4.5 Ruled surfaces in P3 and the tetrahedral line complex
Fix a pencil Q of quadrics in P3 with a nonsingular base curve. The pencil
contains exactly four singular quadrics of corank one. We can fix coordinate
systems to transform the equations of the quadrics to diagonal forms

3∑
8=0

08C
2
8 = 0,

3∑
8=0

18C
2
8 = 0.

The singular points of four singular quadrics in the pencil are the reference
points ?1 = [1, 0, 0, 0], ?2 = [0, 1, 0, 0], ?3 = [0, 0, 1, 0], ?4 = [0, 0, 0, 1].
For any point not equal to one of these points, the intersection of the polar
planes %G (&), & ∈ Q, is a line in P3. This defines a rational map 5 : P3 d

�1 (P3) ⊂ P5 whose image is a tetrahedral line complex  (see the end of
Subsection 10.3.6). The Plücker coordinates ?8 9 of the line 5 ( [C0, C1, C2, C3]) are

?8 9 = (081 9 − 0 918)C8C 9 .

For any space curve � of degree < not passing through the reference points,
its image under the map 5 is a curve � ′ = 5 (�) of degree 3 = 2< in the
tetrahedral complex. It defines a ruled surface (� in P3 of degree 23, the union
of lines 5 (G), G ∈ �. If we consider the graph � 5 ⊂ P3 × �1 (P3) of 5 , its
projection to �1 (P3) over � ′ is the universal family /�′ . Its projection to P3 is
our ruled surface.
Let Π be a plane in P3 not containing any of the points ?8 . The restriction of

5 to Π is given by the complete linear system of conics. Thus, its image 5 (Π)
is a Veronese surface embedded in �1 (P3) as a congruence of secant lines of
a rational normal cubic curve 'Π in P3. The curve 'Π is the image of the map

qΠ : Q � P1 → P3 (10.73)

which assigns to a quadric & ∈ Q the intersection of polars %G (&), G ∈ Π.
For any line ℓ in Π, the ruled surface (ℓ is a quadric containing 'Π. So, one
can identify the net of quadrics containing 'Π with the dual plane Π∨. More
generally, for any curve� inΠ of degree <, the ruled surface (� is a surface of
degree 2< containing 'Π. Consider a point G ∈ Π as the intersection point of
two lines ℓ1 and ℓ2 in Π. Then, the line 5 (G) is contained in the intersection of
the two quadrics (ℓ1 and (ℓ2 . Hence, it coincides with a secant of the curve 'Π.
Thus, we obtain that generators of (� are secants of 'Π. If < = 2, this gives
that 5 (�) is the intersection of a Veronese surface with a linear line complex,
a general choice of Π gives us quartic surfaces of type I (i).

Take a line ℓ inΠ. The quadric (ℓ comes with a ruling on the quadrics whose
generators are secants of 'Π. The set of lines in Π that parameterizes singular
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quadrics containing 'Π is a conic in Π∨. The dual conic ℭ in Π parameterizes
pencils of quadrics containing 'Π and its line tangent. The corresponding ruled
quartic surface is the developable quartic surface, a special case of type I (iii).
The points on the line are pencils of quadrics containing &ℓ . If ℓ is tangent to
ℭ, then the tangency point is a pencil of quadrics which all tangent to '3 (Π)
at one point. The point is the singular point of a unique singular quadric in the
pencil.

The lines 5 (G), G ∈ ℓ, are generators of the quadric (ℓ which intersect 'Π at
two points. If ℓ is tangent to ℭ, then (ℓ is a singular quadric and all the lines
5 (G), G ∈ ℓ, pass through its singular point. The curve 'Π also passes through
this point. In this case, the line ℓ intersects a curve � of degree < in Π at <
points different from ℭ, all the generators of (� corresponding to these points
must pass through one point on 'Π. The converse is also true, if the generators
5 (G), G ∈ �, all pass through the same point on 'Π, then these points lie on
a line tangent to ℭ. Thus, we obtain that 'Π is <-multiple curve on (� . This
agrees with type 1(8) of quartic ruled surfaces. Also, � intersects ℭ at 2<
points corresponding to generators tangent to 'Π. If < = 2, we get four torsal
generators.

Now, let us see what happens if we choose a special plane Π. For example,
let us take Π passing through one of the points ?1, . . . , ?4, say ?1. Then, the
map qΠ defined in (10.73) is not anymore of degree 3. In fact, it is not defined
at the quadric& which has ?1 as its singular point. The map extends to a map of
degree 2. Thus, the cubic 'Π degenerates to a conic. The lines in Π correspond
to quadrics containing the conic 'Π and some lines intersecting the conic. This
is a degeneration of the singular curve to the union of a conic and a line.

Finally, let us see how elliptic quartic surfaces arise. Take Π passing through
the points ?1 and ?2. Take a nonsingular cubic � in the plane which passes
through ?1 and ?2. The linear system of quadrics defining the rational map 5
has two of its base points on �. Thus, its image in �1 (P3) is a quartic elliptic
curve. We see that a ruled surface of degree 6, which corresponds to a general
cubic, degenerates in this case to the union of a quartic surface and two planes
(the images of the blow-ups of ?1 and ?2). The cubic 'Π degenerates to a line,
one of the two double lines of (. A quadric corresponding to a line through
?1 or ?2 degenerates to a plane with a choice of a pencil of lines in it. This
plane does not depend on the line, but the pencil of lines in the plane does. The
line passing through ?1 and ?2 is blown down under 5 to a point in �1 (P3)
defining the second double line of (� . This is the intersection line of the planes
corresponding to ?1 and ?2.
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Exercises
10.1 Let %= ⊂ C[C] be the space of polynomials of degree ≤ =. Let 50, . . . , 5< be a

basis of a subspace ! of %= of dimension < + 1. Consider the Wronskian of the
set ( 50, . . . , 5<)

, ( 50, . . . , 5<) = det

©«
50 51 . . . 5<

5 ′0 (C) 5 ′1 (C) . . . 5
′
< (C)

.

.

.
.
.
.

.

.

.
.
.
.

5
(<)

0 (C) 5
(<)

1 (C) . . . 5
(<)
< (C)

ª®®®®®¬
.

Show that the map

�< (P=) → P(<+1) (=−<) , ! ↦→ [, ( 50, . . . , 5<)],

is well defined and is a finite map of degree equal to the degree of the Grassman-
nian in its Plücker embedding.

10.2 Show that any
(=+1

2
)
−1 lines in�1 (P=), = ≥ 3, lie in a linear line complex. Using

this, prove that one can choose coordinates in P= so that any linear line complex
can be given by Plücker equations ?12 + _?34 = 0, where _ = 0 if and only if the
line complex is special.

10.3 Show that the tangent lines of any smooth curve of genus 6 and degree 3 in P= is
contained in a linear line complex if 2(3 + 6 − 1) <

(=+1
2

)
.

10.4 Show that any :-plane Λ of �< (P=) coincides with the locus of <-planes in P=
containing a fixed (< − 1)-plane and contained in a fixed (< + :)-plane or with
the locus of <-planes contained in a fixed (: + 1)-plane and containing a fixed
(: − <)-plane. Identify these loci with appropriate Schubert varieties.

10.5 Using the previous exercise, show that any automorphism of�A (P=) arises from a
unique projective automorphism of P= unless = = 2A+1, in which case PGL(=+1)
is isomorphic to a subgroup of index 2 of Aut(�A (P=)).

10.6 How many lines intersect a set of < general :-planes in P=?
10.7 Show that Sec: (�1 (P=)) is equal to the set of singular points of Sec:+1 (�1 (P=))

for all : = 0, . . . , [ =−3
2 ].

10.8 Using Schwarzenberger vector bundles, prove that the projective plane embedded
in �1 (P=) as the surface of secants of a normal rational curve of degree 3 in P3
is isomorphic to the Veronese surface V2

=−1.
10.9 Let &1and &2 be two nonsingular quadrics in P3 with a choice of a ruling of

lines on each of them. Any general line ℓ intersects &1 ∪ &2 at four lines, two
from each ruling. Together with ℓ, these lines span four planes in the pencil of
planes through ℓ. Show that the closure of the locus of lines ℓ such that the four
planes is projectively equivalent to the four intersection points of ℓ with &1 and
&2 form a Battaglini line complex. Also, show that any general Battaglini line
complex can be obtained in this way [697].

10.10 Show that the linear system of quadrics in P4 passing through a rational normal
quartic curve '4 defines a rationalmapΦ : P4 d P5 whose image is a nonsingular
quadric in P5 identified with the Klein quadric � (2, 4). Show that:
(i) the secant variety (1 ('4) is mapped to a Veronese surface;
(ii) the map Φ extends to a regular map of the blow-up of P4 along '4 that

maps the exceptional divisor to a ruled hypersurface of degree 6 which is
singular along the Veronese surface;



284 Line Geometry

(iii) the image of a hyperplane in P4 is a tetrahedral line complex;
(iv) the image of a plane in P4 not intersecting '4 is a Veronese surface;
(v) the image of a trisecant plane of '4 is a plane in � (2, 4). Show that planes

from another family of planes are the images of cubic ruled surfaces singular
along '4.

10.11 Show that four general lines in P4 determine the unique fifth one such that the
corresponding points in�1 (P4) ⊂ P9 lie in the same three-dimensional subspace.
Any plane which meets four lines meets the fifth line (called the associated line).

10.12 Show that two linear line complexes ℭl and -l′ in �1 (P3) are apolar to each
other if and only if 8l (-l′) = ℭl .

10.13 Show that a general web of linear line complexes in �1 (P4) contains five special
line complexes.

10.14 Show that the projection of the Segre cubic primal from its nonsingular point
defines a double cover with the branch locus isomorphic to a Kummer surface.

10.15 Using the Schubert calculus, show that the variety of lines contained in a cubic
hypersurface in P4 with isolated singularities is a surface of degree 45 in the
Plücker embedding of �1 (P4). Show that the variety of lines contained in the
Segre cubic primal S3 is a surface of degree 45 that consists of 15 planes and six
del Pezzo surfaces of degree 5.

10.16 Let N be a general two-dimensional linear system of quadrics in P3. Show that
the union of lines contained in quadrics & ∈ N is parameterized by a cubic line
complex (called a Montesano line complex) [524].

10.17 Let ?1, . . . , ?=3+1 be points in P= in general linear position. A monoidal line
complex consists of all codimension 2 linear subspaces Π of P= for which there
exists a monoidal hypersurface with singular locus containing to Π. Using the
isomorphism �=−2 (P=) � �1 (P=), we consider it as a line complex. Show that
the degree of a monoidal line complex is equal to 1

2 33 (3 − 1) and it coincides
with a Montesano line complex when = = 3 = 3 [237].

10.18 Consider a smooth curve� of degree 3 and genus 6 in P3 and choose two general
lines ℓ and ℓ′. Find the degree of the scroll of lines that intersect �, ℓ and ℓ′.

10.19 Let � be a surface of degree 6 in P3 which has the edges of the coordinate tetra-
hedron as its double lines. Find an equation of � and show that its normalization
is an Enriques surface.

10.20 Show that the Hessian surface of a developable quartic ruled surface is equal to
the surface itself taken with multiplicity two. The Steinerian in this case is the
whole space [789].

10.21 Consider the embedding of the Klein quartic curve of genus three in P3 given by
the linear system |3\ |, where \ is the unique even theta characteristic invariant
with respect to the group of automorphisms of the curve. Show that each hyper-
osculating point is of multiplicity two, and it is equal to the image of an inflection
point.

10.22 Show that a generator intersecting the double curve of a ruled surface at a pinch
point is a torsal generator.

10.23 Classify all ruled surfaces in P3 which have two line directrices.
10.24 For each type of a quartic ruled surface, find the type of its dual quartic ruled

surface.
10.25 Find projective equivalence classes of quartic ruled surfaces with a triple line.
10.26 Let ( be a quartic ruled surface with a twisted cubic as its double curve. Show

that it contains a line directrix if and only if it contains three coplanar generators.
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10.27 Let ( be a ruled surface with two line directrices of multiplicities = and <. Show
that the order of ( is equal to = + <.

Historical Notes

The primary sources for these notes are [487], [495], [696], [577], and [820].
Line Geometry originates from J. Plücker, the first to consider lines in P3

as elements of a new four-dimensional space. These ideas appeared first in
[594]. The details were published much later in [595]. The study of lines in
P3 was very much motivated by mechanics and optics. E. Kummer gave the
first differential geometrical treatment of line geometry in [470]. In 1859 A.
Cayley introduced the coordinates in their modern form as six determinants of
a 2 × 4-matrix and exhibited the quadric equation satisfied by the coordinates
[110]. In a subsequent paper, under the same title, he introduced what is now
called the Chow form of a space curve. The notions of linear line complex of
lines and congruence of lines (the intersection of two linear line complexes)
are due to Plücker and the first proofs of some of his results were given by G.
Battaglini [42]. Among other earlier contributors to the theory of general line
complexes, we cite M. Pash [578].
Plücker began the study of quadratic line complexes by introducing a singular

quartic surface with 16 nodes. Although, in a special case, many Plïcker’s re-
sults about quadratic line complexes were independently obtained byBattaglini.
In his dissertation, and later published paper [453], Klein introduced the co-
ordinate system determined by six mutually apolar linear line complexes and
showed that the singular surface can be identified with a Kummer surface. The
notion of the singular surface of a quadratic complex is due to Klein. We refer
to [413], [429], [256] for the history of Kummer surfaces and their relationship
with Line Geometry. We followed [429] in deriving the equation of a Kummer
surface in the Klein coordinates.
Plücker defined a linear complex as we understand it now, i.e., as a set of

lines whose coordinates satisfy a linear equation. The set of lines in a linear
complex passing through a point G lies in a plane Π(G); this defines a linear
correlation from the space to the dual space. The correlations arising in this
way satisfy the property G ∈ Π(G). They were first considered by G. Giorgini
[333] and A. Möbius [521] and were called Nullsystems by von Staudt ([720],
p. 191). The notions of a null-line and a null-plane belong to Möbius. Chasles’
Theorem 10.2.10 gives a purely geometric definition of a Nullsystem [126].
Linear systems of linear line complexes were extensively studied in Sturm’s
book [736].
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In 1868, in his Inaugural dissertation at Bonn published later in [453], [456],
F. Klein pointed out that Weierstrass’s theory of canonical forms for a pair of
quadratic forms can be successfully used for the classification of quadratic line
complexes. This was accomplished later by A. Weiler (see also [792], [687]).
The classification consists of 49 different types of line complexes correspond-
ing to different Segre symbols of the pencil of quadrics. As we have already
noticed earlier, A. Weiler was the first to introduce the Segre symbol [802], and
Segre acknowledges this himself in [687]. In each case, the singular surface
is described. For example, some of the ruled quartic surfaces can be obtained
as singular surfaces of a degenerate quadratic complex. A full account of the
classification, and the table can be found in Jessop’s book [429]. Many special
quadratic line complexes were introduced earlier by purely geometric means.
Among them are the tetrahedral line complexes and Battaglini’s harmonic line
complexes [43] considered in the present chapter. A complete historical ac-
count of tetrahedral line complexes can be found in Lie’s book [487]. Its
general theory is attributed to T. Reye [614], and they are often called Reye line
complexes. However, in different disguises, tetrahedral line complexes appear
in much earlier works, for example, as the locus of normals to two confocal
surfaces of degree 2 [58] (see a modern exposition in [702], p. 376), or as the
locus of lines spanned by an argument and the value of a projective transfor-
mation [127], or as the locus of secants of twisted cubics passing through the
vertices of a tetrahedron [537]. We refer to [639] and [382] for the role of
tetrahedral line complexes in Lie’s theory of differential equations and groups
of transformations. A paper of Rowe [640] gives a nice exposition of the history
of the quadratic line complex.

Modernmultilinear algebra originates in Grassmann’s work [352], [353].We
refer to [69] for the history of multilinear algebra. The editorial notes for the
English translation of [353] are very helpful for understanding Grassmann’s
work. As a part of Grassmann’s theory, a linear :-dimensional subspace of
a linear space of dimension = corresponds to a decomposable :-vector. Its
coordinates can be taken as the coordinates of the linear subspace and the
associated projective subspace of P=−1. In this way, Grassmann was the first
to give a higher-dimensional generalization of the Cayley-Plücker coordinates
of lines in P3. Equations (10.4) of Grassmann varieties could not be found in
his book. The fact that any relation between the Plücker coordinates follows
from these relations was first proven by G. Antonelli [12] and much later by
W. Young [812]. In [666] and [668] H. Schubert defines what we now call
Schubert varieties, and computes their dimensions and degrees in the Plücker
embedding. In particular, he finds the formula for the degree of a Grassmann
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variety. A modern account of Schubert’s theory can be found in Hodge-Pedoe’s
book [404], v. II and Fulton’s book [315].
The study of linear line complexes in arbitrary [=] (the classical notation
[=] for P= was introduced by Schubert in [666]) was initiated in the work of S.
Kantor [439], F. Palatini [567] and G. Castelnuovo [96] (in case = = 4). The
Palatini scroll was first studied in [568] and appeared often in modern literature
on vector bundles (see, for example, [562]). Quadratic line complexes in P4

were extensively studied by B. Segre [691].
Although ruled surfaces were studied earlier (more from the differential

geometry point of view), A. Cayley was the first to lay the foundations of the
algebraic theory of ruled surfaces [105], [112], [113]. The term scroll belongs
to Cayley. The study of non-normal surfaces in P3 and, in particular, ruled
surfaces, began with G. Salmon [648], [649]. Salmon’s work was extended by
A. Cayley [117]. The notion of a torsal generator is due to Cayley. The formulas
of Cayley and Salmon were revised in a long memoir of H. Zeuthen [817] and
later in his book [818]. A modern treatment was given by R. Piene [583]. The
fact that the class of a ruled surface is equal to its degree is due to Cayley. The
degree of a ruled surface defined by three directrices from Example 10.4.11
was first determined by G. Salmon [647].
The classification of ruled cubic surfaceswas done byA.Cayley in [113], Part

II, and, independently, by L. Cremona [180]. Different projective generations of
ruled cubic surfaces are given inWeyr’s monograph [804]. The classification of
quartic ruled surfaces was started by A. Cayley [113], Parts II and III. However,
he had missed two types. Salmon’s book [653, vol. II, Chapter XVI] contains a
nice exposition of Cayley’s classification. A complete classification was given
later by L. Cremona [187]. An earlier attempt for this classification was made
by M. Chasles [127]. The classification based on the theory of tetrahedral
line complexes was given by B. Wong [810]. Ruled surfaces of degree 5 were
classified by H. Schwarz [674]. Much later,W, Edge extended this classification
to surfaces of degree 6 [271]. Edge’s book and Sturm’s book [735, Theil 1]
give a detailed exposition of the theory of ruled surfaces. The third volume
of Sturm’s book contains an extensive account of the theory of quadratic line
complexes.



11
Congruences of Lines in P3

This chapter is a continuation of the previous chapter. We will study irreducible
congruences of lines in P3. Following Sturm and Fano, we will discuss different
attributes of congruences and give the complete classification of congruences
of order one and two with or without fundamental curves. We give a brief
discussion of congruences of higher order. The classification of smooth surfaces
in a nonsingular quadric in P5 can be viewed as an analog of the classification
of smooth surfaces in P3 or P4; Hence, it admits a cohomological treatment,
but such tools are not available when the assumption of smoothness is dropped.
We are left with a purely geometrical approach that also gives a beautiful
visualization of surfaces as two-dimensional familes of lines in P3s

11.1 Generalities on Congruence of Lines

11.1.1 The numerical invariants
Recall from the previous chapter that a congruence of lines in P3 is a reduced
surface ( in the Grassmann variety G = �1 (P3) of lines in P3 = |� |. The
line ℓB in P3 corresponding to a point B ∈ ( is a ray of the congruence.
The cohomology class of ( in �2 (G,Z) is determined by two special Schubert
classes f2 = [Ω(G)], f1,1 = [Ω(Π)], whereΩ(G) is an U-plane of lines through
a given point G ∈ P3, and Ω(Π) is a V-plane of lines contained in a given plane
Π ⊂ P3. We can write for the cohomology class [(] of (

[(] = <f2 + =f1,1, (11.1)

for some integers < and =. Intersecting with f1,1, and using the Schubert
calculus from Subsection 10.1.2, we obtain that < is equal to the number of
rays in ( through a general point in P3, it is called the order of the congruence.

288
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Intersecting with f2, we obtain that = is the number of rays in ( contained in a
general plane in P3. It is called the class of (. The pair (<, =) is the bidegree
of (.

It follows from the Schubert Calculus that f2 + f1,1 = f
2
1 , where f1 is the

class of a hyperplane section of G in its Plücker embedding in P5. Restricting
to (, we obtain that

deg(() = < + =, (11.2)

where deg(() is the degree of the surface ( in P5.

• Unless stated otherwise, we will assume that ( is an irreducible surface.

The universal family /( = P(QG) of lines parameterized by ( is a closed
subvariety of the universal family /G of lines, which was discussed in Section
10.1. It is equal to P(Q(), where Q( = 8∗(QG for the closed embedding 8( :
( ↩→ G. It comes with two projections

/(
?(

~~

@(

  
P3 (.

(11.3)

The projection @( is a projective bundle over ( isomorphic to P(Q(), where
Q( is the restriction of the universal quotient bundle QG over G. We have

ℎ := 21 (Q() = 21 (O( (1)), 22 (Q() = f1,1 ∩ [(] = =[point] . (11.4)

It is clear that the degree of the map ?( is equal to the order < of (. The
class of ( is the degree of the map ?(∗ , where (∗ is the dual congruence, the
image of ( under the map �1 ( |� |) → �1 ( |�∨ |). Obviously, the bidegree of
the dual congruence is equal to (=, <).

Proposition 11.1.1. A congruence of order < = 0 (resp. = = 0) coincides with
an V-plane (resp. U-plane).

Proof Assume < = 0. Since no ray passes through a general point in P3, the
image of /( in P3 is a surface �. Thus, the projection ?( : /( → � is of
relative dimension 1. This means that a general point G of � is the vertex of
a cone whose generators are rays in Ω(G). This implies that � is not reduced
unless it is a plane Π and ( coincides with the V-plane Ω(Π). Using the dual
arguments we prove the assertion about congruences with = = 0. �

• From now on, unless stated otherwise, we assume that <, = > 0.
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For any line ℓ in P3, we set

� (ℓ) := Tℓ (G) ∩ ( = Ω(ℓ) ∩ ( = {B ∈ ( : ℓB ∩ ℓ ≠ ∅}. (11.5)

If ℓ = ℓB is a ray of (, the hyperplane Tℓ (G) is tangent to ( at B, and hence
B ∈ Sing(� (ℓ)).
The arithmetic genus ?0 (� (ℓ)) does not depend on ℓ, it is the arithmetic

genus of a hyperplane section of (. It is denoted by ?0 and is called the
arithmetic sectional genus of ( (we deliberately avoid to denote it by ?0 (() to
avoid the confusion with the arithmetic genus of ().
Assume � (ℓ) is reduced and let � (ℓ)nrm be its normalization. The rational

map
5ℓ : � (ℓ) → ℓ, B ↦→ ℓB ∩ ℓ, (11.6)

extends to a regular map

5̃ℓ : � (ℓ)nrm → ℓ. (11.7)

We denote by<ℓ its degree. Obviously, if ℓ is a general line,<ℓ = <. However,
if ℓ = ℓB is a general ray of (, then <ℓ = < − 1. The map 5ℓB is not defined at
the singular point B of� (ℓB) but the map ˜5ℓB is defined at the pre-images of this
point in � (ℓ)nrm. For example, if < = 2, we obtain that � (ℓB)nrm � ℓB � P

1.
For any curve � ⊂ (, we denote by R(�) the image of @−1

(
(�) in P3. It is a

ruled surface with generators ℓB , B ∈ �, and the generatrix �. Its order is equal
to the degree of � ⊂ P5.

For any line ℓ in P3, we set

R(ℓ) := R(� (ℓ)).

This is a ruled surface of degree < + = whose generators are rays intersecting
ℓ. The line ℓ intersects each of its generator, hence it is contained in it. It is a
<ℓ-multiple directrix of R(ℓ). If ℓ = ℓB is a ray, then ℓ is a generator of the
ruled surface, it is a (<ℓ − 1)-multiple generator of the cone. A ray is called a
multiple ray if <ℓ < < − 1.
If ℓ is not a ray of (, its pre-image ?−1

(
(ℓ) is a directrix of the ruled surface

@−1
(
(� (ℓ)). The projection @( defines a birational map of ℓ onto � (ℓ). If ℓ = ℓB

is a ray,
@−1
( (ℓB) = (< − <ℓB )@

−1
( (B) + ! (B), (11.8)

where @( : ! (B) → � (ℓB) is a birational map (on each irreducible component).
For any point G ∈ P3, the fiber ?−1

(
(G) consists of rays ℓB passing through G.

The set of such rays is equal to the intersection Ω(G) ∩ ( and the projection

@( : ?−1
( (G) → Ω(G) ∩ ( (11.9)
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is an isomorphism with the inverse map B→ (G, B).

Definition 11.1.2. Apoint G ∈ P3 is called a fundamental point of ( if ?−1
(
(G)) =

Ω(G) ∩( contains infinitely many rays. The degree ℎ(G) of G is the degree of the
one-dimensional component ofΩ(G)∩( is the degree of G. For any fundamental
point G, we denote by  (G) the one-dimensional component of ?B (@−1

(
(Ω(G))).

It is a cone of degree ℎ(G) with vertex at G.

We denote by Fund(() the set of fundamental points of ( and let Fund(()1
(resp. Fund(()0) denote its one-dimensional part (resp. the set of isolated
fundamental points).
The dual notion is the notion of a fundamental plane. It is a plane in P3 that

contains infinitely many rays. Its degree is the class of the one-dimensional part
of the curve of rays.

Let A be the number of secant lines of ( in G passing through a general point
G ∈ G. Here, we assume that a secant line joins two nonsingular points of (
or tangent to ( at its nonsingular point. The number A is called the rank of (.
If ( is a degenerate surface in P5, then obviously, A = 0. Since G is a quadric
hypersurface in P5, a secant line of ( through a general point ℓ ∈ G is contained
in G. This gives the following geometric interpretation of the rank. A line in
G is a pencil of rays equal to the Schubert variety Ω(G,Π) = Ω(G) ∩ Ω(Π).
We fix a general line ℓ in P3 and consider the pencil ℓ⊥ of planes through ℓ. A
secant line corresponds to one of these planes that contain two of the rays from
( intersecting at a point in ℓ. The rank is equal to the number of such planes.

Lemma 11.1.3. The rank A is equal to zero if and only if ( is degenerate in the
Plücker embedding or non-degenerate and coincides with a Veronese surface
in P5, hence = + < = 4. In particular, A = 0 if all rays intersect a line in P3.

Proof If ( is degenerate, its secant variety is contained in a hyperplane, hence
a general point of G is not contained in a secant, hence A = 0. By a theorem
of Zak (see Subsection 7.4.2), the secant variety of a non-degenerate surface
in P5 is a proper subvariety only if the surface is a Veronese surface. So, if (
is not-degenerate and not a Veronese surface, its secant variety is the whole
P5. This implies that a general point in the quadric G is contained in a secant
variety. Since the secant passing through this point meets G at ≥ 3 points, it is
contained in G, hence A ≠ 0. �

A congruence ( may be a singular surface. We will call ray ℓB , where B is a
singular point of (, a singular ray (a double ray in the classical terminology).

Let a : (nrm → ( be the normalization map of (, and f : (̃ → ( be the
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minimal resolution of (nrm. We denote by

c : (̃ → (

the composition a ◦ f.
Abusing the notation, we set

O(̃ (1) := c∗O( (1).

It follows from the Bertini theorem (see [581, §4]) that a general member of
|O(̃ (1) | is a smooth curve. We denote its genus by 6 and call it the sectional
genus of (.

Let
@̃( : /̃( = /( ×( (̃ → (̃

be the pre-image of the P1-bundle @( : /( → ( to (̃, and let ?̃( be the
composition of the projections /̃( → /( and ?( : /( → P3. We have the
following commutative diagram expressing these maps:

/G

?G

~~
@G

��

/(?
_oo

@(

��

/̃(oo

@̃(
��

?̃(

tt
P3 G (?

_oo (̃.
coo

(11.10)

Let
Q(̃ := c∗ (QG |().

The projection @̃( : /̃( → (̃ is the projective bundle P(&(̃) → (̃. Its tautolog-
ical line bundle OP(&(̃ ) (1) is isomorphic to ?̃∗

(
OP3 (1).

Let
ℎ = 21 (Q(̃) = c∗ (21 (O( (1)).

The following proposition follows from the discussion in Subsection 2.4.2:

Proposition 11.1.4. Let � = 21 (OP(Q(̃ ) (1))) = ?̃
∗
(
(21 (OP3 (1)). Then,

�∗ (/̃( ,Z) � �∗ ((̃,Z) [�]/(�2 − � · @̃∗( (ℎ) + =f), (11.11)

where f is the cohomology class of a fiber of the projection @̃ : /̃( → (̃.

There is a simple geometrical interpretation of the basic relation

�2 = � · @̃∗( (ℎ) − =f.

To simplify the notation, we assume that (̃ = ( and identify the fibers @−1
(
(C)

with the rays ℓC . A general plane Π contains = rays ℓC and intersects all other
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rays with multiplicity 1. This means that its pre-image in /( is a birational
section of @( : /( → ( that contains = fibers ℓC . Fix a ray ℓB ⊂ Π. Since all
rays in Π intersect ℓB , all = fibers are contained in @−1

(
(� (B)) and

� · @∗( (ℎ) = [?
−1
( (Π) ∩ @

−1
( (� (B))] = [! (B) + 2ℓB +

∑
C≠B,ℓC ⊂Π

ℓC ],

where we use the notation of (11.8). On the other hand, �2 = [@−1
(
(ℓB)] =

[! (B) + ℓB]. Comparing these two equalities, we prove the assertion.

For any line ℓ in P3, let Blℓ (P3) be the blow-up of P3 along ℓ. The linear
system |OP3 (1) − ℓ | defines a rational map to ℓ⊥ � P1 that is resolved by the
following commutative diagram:

Blℓ (P3) � P
?

&&

f

zz
P3 // ℓ⊥ � P1.

(11.12)

The projection ? : Blℓ (P3) → P1 is a projective P2-bundle P → ℓ⊥. Its fiber
over Π ∈ ℓ⊥ is mapped by f to the plane Π. We have an isomorphism

P � P(O⊕2
P1 ⊕ OP1 (1)). (11.13)

The surjection E = O⊕2
P1 ⊕ OP1 (1) → O⊕2

P1 defines the embedding of the
exceptional divisor � � P1 × P1 as a projective P1-subbundle of P.
Let ?̌ : P∗ := P(E∨) → ℓ⊥ be the dual projective bundle. Its fibers over Π ∈

ℓ⊥ is the dual plane Π∗ of lines in Π. The fiber of the projection ?� : � → ℓ⊥

over Π ∈ ℓ⊥ has a distinguished line in Π, the line ℓ. This defines a section

s : ℓ⊥ → P∗

It corresponds to a surjection E∨ = O⊕2
P1 ⊕ OP1 (−1) → OP1 (−1).

Since points of P∗ are lines in P3 intersecting ℓ, there is a natural map

q1 : P∗ → Ω(ℓ) ⊂ P4.

It is given by the linear system |OP∗ (1) ⊗ ?̌∗Oℓ⊥ (1) | The map q1 is a small
resolution of the quadric Ω(ℓ) in P4 with singular point ℓ. It is isomorphic to
the blow-up of any V-plane in Ω(ℓ) that contains the point ℓ. Its exceptional
curve is the image s(ℓ⊥) of the section The pre-image of any V-plane Ω(Π) is
isomorphic to the blow-up of the point ℓ ∈ Ω(Π).

As is well-known a quadric of corank 1 in P4 has two non-isomorphic small
resolutions. The second small resolution is:

q2 : Blℓ⊥ (P̌3) → Ω(ℓ). (11.14)
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The composition of q1 (or q2) with the blow-up of the exceptional curve is
the big resolution of the quadric, the blow-up of its vertex.

Let ; is a general line in P3. Then, q8 : q−1
8
(� (;)) → � (;) is an isomorphism.

This gives us two projections ?̌ : � (;) → ; and ?̌∗ : � (;) → ;⊥. The pre-image
of a point G ∈ ; (resp. a plane Π ∈ ;⊥) consists of rays of ( that pass through G
(resp. contained in Π). This shows that the image - of the map

( ?̌, ?̌∗) : � (;) → ; × ;⊥ � P1 × P1

is a curve - of bidegree (=, <).
The pre-image of a point (G,Π) ∈ - under the map ( ?̌, ?̌∗) consists of rays ℓ

such that G ∈ ℓ ⊂ Π. It consists of the number of points in ( that lie on the line
Ω(G,Π) ⊂ G. Since a general secant of ( intersects ( at two points, we see that
- has only ordinary double points and their number is equal to the rank A > 0
of (. The arithmetical genus ?0 (-) is equal to (< − 1) (= − 1), this gives the
following fundamental relation between ?0, <, =, and A:

?0 + A = (< − 1) (= − 1). (11.15)

Remark 11.1.5. In the proof we assumed that a general point in G is not
contained in trisecant of (. I do not know examples where it happens. But, if it
happens, one has to modify the statement by replacing A with a larger number
A ′. In any case, we have always inequality

?0 ≤ (< − 1) (= − 1). (11.16)

11.1.2 Null-points and null-planes
Let Ω(G,Π) be a secant line of ( contained in G. The point G (resp. plane Π) is
called a null-point (resp. null-plane) of (. A general secant line intersects ( at
two nonsingular points B, B′, the rays ℓB and ℓB′ intersect at a null-point of the
null plane 〈ℓB , ℓB′〉.
Recall that a null-system l ∈ |∧2 �∨ | in P3 defines the graph

Γl = {(G, l(G)) ∈ |� | × P(�)

of l : � → �∨. It satifies G ⊂ l(G).
Following Sturm we give the following definition:

Definition 11.1.6. A null system is a correspondence of finite degrees

Γ ⊂ |� | × P(�)

such that G ∈ Π if (G,Π) ∈ Γ.
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If (G,Π) ∈ Γ, the point G is called the null-point of the null-plane Π.
We denote the degree of the projections ? : Γ → |� | and ?̌ : Γ → P(�)

by U and V. The third attribute of a higher null system is its rank W. It is the
number of points G on a general line ; such that (G,Π) ∈ / and ; ⊂ Π.
For any point % ∈ |� |, let (%) = ?( ?̌−1) (%⊥) denote the surface of points

G ∈ |� | such that one of its null planes contains %. Equivalently, it is the locus
of points G such that the line 〈G, %〉 is contained in a null-plane.

A general line passing through % contains U null-lines passing through %.
It also contains W other null-points. This shows that deg(%) = U + W. The dual
notion is the curve |; | = ?( ?̌−1) (;⊥). It is the locus of points G whose null-plane
contains %.
A general plane Π containing a general line ; contains V null-points on ; and

W null-points outside ;. This shows that deg |; | = V + W. Both equalities give the
following expression for the cohomology class of Γ in �∗ (P3 × P3: t

[Γ] = Uℎ3 + (U + W)ℎ2 ℎ̌ + (V + W)ℎℎ̌2 + Vℎ̌3.

Many examples of higher null systems is discussed in [732]. We will be
concerned only with the null systems associated with a congruence ( of lines
in P3 defined by

Γ = {(G,Π) ∈ |� | × P(�) : G = ℓB ∩ ℓC ,Π = 〈ℓB , ℓB′〉,where B, C ∈ (}.

Here, the definition of a null-point and a null-plane coincides with the one we
introduced earlier. The definition of the rank coincides with the definition of
the rank of (. We also have U = 1

2<(< − 1), V = 1
2=(= − 1).

We define the surface (%) and a curve |; | as above. The surface (%) is the
locus of null-points whose null-plane contains %. We have

deg(%) = 1
2<(< − 1) + A. (11.17)

The curve |; | is the locus of null-points in planes containing ;. We have

deg( |; |) = 1
2=(= − 1) + A. (11.18)

Remark 11.1.7. If ( has a fundamental curve, the curve |; | and the surface (%)
are reducible. Let �1, . . . , �: be the irreducible components of the fundamental
curve and ℎ8 be the degree ℎ(G) of a general point G on �8 . Let 38 = deg �8 . Then
a general plane containing ; intersects �8 at 38 points of degree ℎ8 . It contains
X8 =

1
238ℎ8 (ℎ8 − 1) null-points. So, each �8 is an irreducible component of |; |

of multiplicity X8 . After we delete these components, we obtain the curve |; |∗
of degree of degree 1

2 (= − X) (= − X − 1) + 1
2X + A , where X =

∑ 1
238ℎ8 (ℎ8 − 1).

The curve |; |∗ is introduced in [735, Theirl 2, p. 325], where it is called the
reduced |; |.
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Similarly, we define the surface (%)∗ by deleting from (%) the fundamantal
planes of (. We have deg(%)∗ = 1

2<(< − 1) − 1
2 X̌8 + A, where ˇ34;C0 is defined

as above replacing ( by the dual congruence.
One define the curve |; |∗ and the surface (%)∗ by considering the correspon-

dence Γ∗
(
defined as the closure of {(G,Π) ∈ * × + : G = ℓB ∩ ℓB′ , B, B′ ∈

Ω(Π) ∩ (}. where* = |� | \ Fund(() and + = P(�) \ Fund)(∗).

Proposition 11.1.8. Assume that ( has only isolated fundamental points, let G
be one of them, of degree ℎ(G). Then, for any general line ; and a general point
% and a general point G,

(i) multG ( |; |) = 1
2 ℎ(G) (ℎ(G) − 1),

(ii) mult% ((%)) = 1
2<(< − 1).

(iii) Any fundamental point G with ℎ(G) > 1 lies on (%)
(iv) every ray passing through % is contained in (%).
(v) multG (R(;)) = ℎ(G) for a general line ;.
(vi) If ℓ is a ray of (, then it enters into |ℓ |.

Proof (i)We choose ; general enough such thatΠ = 〈G, ;〉 is not a fundamental
plane. It contains only finitely many fundamental points of the dual congruence
(∗. The pencil ;⊥ of planes containing ; defines a linear series of degree
1
2=(= − 1) + A on |; |. Its divisors are the sets of null-points lying on ℓ (taken
with appropriate multiplicity). The plane Π defines a divisor from this linear
series that contains G with multiplicity 1

2 ℎ(G) (ℎ(G) − 1). Thus, Π intersects the
curve |; | at G with multiplicity 1

2 ℎ(G) (ℎ(G) − 1). By generality assumption on
;, this point must be a multiple point of multiplicity 1

2 ℎ(G) (ℎ(G) − 1).

(ii) A general line passing through % contains A null-points outside %. A
planeΠ containing ; contains 1

2<(<−1) and intersectsΩ(%) with multiplicity
1
2<(< − 1) + A. This implies that it intersects (%) at % with multipolicity
1
2<(< − 1).
(iii) If ℎ(G) = 1, then the plane  (G) does not contain a general point %. On

the other hand, if ℎ(G) > 1, the intersection of the plane spanned by % and a
ray ℓ through G contains another ray ℓ′ through G. Hence the null-plane 〈ℓ, ℓ′〉
contains G, and hence G ∈ (%).
(iv)We assume< > 1. Any ray ℓ containing % intersects<−1 rays ℓ8 passing

through %. Each plane 〈ℓ, ℓ8〉 is a null-plane containing %. Thus, ℓ ⊂ (%).
(v) A fundamental point G that lies on the ruled surface R(ℓ) is contained in

ℎ(G) generators of R(ℓ) lying in the plane 〈G, ℓ〉. This shows that

multG (R(ℓ)) = ℎ(G). (11.19)
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(vi) If ℓ is a ray of (, then a general point G in ℓ intersects < − 1 other rays,
hence there are < − 1 null-planes containing ℓ with G as its null-point. This
shows that ℓ ⊂ |; |.

�

The proposition omits the assertion similar to (i) concerning the surface (%).
We will deal with it in the next subsection.

Suppose the order < ≥ 3. A null-plane may contain more than two rays with
the same null-point. Following Schumacher [669, §8] one defines the Tripel
Fläche ) (() (a triadic surface in English translation from [364, §2]) to be the
closure of the set of such points. Equivalently, it is the closure of points G such
that the U-plane Ω(G) contains a trisecant line of (. The dual notion is triadic
surface ) ((∗) of the dual congruence, the locus of planes in P3 that contain a
point lying on three rays contained in the plane. In particular, we assume that (
is not contained in a hyperplane section of G because in this case, the rank of
( is equal to 0.
For example, for the congruence ( of secant lines of a quartic elliptic curve

� in P3, ) ((∗) = P̌3 andt ) (() = �. It is conjectured in [364] that this is the
only case when it can happen for a smooth congruence of lines.
The degree of ) (() was given without any detail in [669, p. 119] and the

details were provided by Fano [295, §22]: A modern proof for the case ( is
smooth can be found in [364].

Theorem 11.1.9. Suppose ( is normal, has no fundamental curves, and ) (()
is an irreducible surface of degree C( . Then

C( ≤ (<−2) [A+1
6
(<−1) (<−3=)] = (<−2) ((<−1) (=−1)−6+1

6
(<−1) (<−3=)

(11.20)

Proof Let ; be a general line in P3 and � (;) be the corresponding hyperplane
section G(;) of (. The pre-image � of ; under ?( is isomorphic to � (;) under
the projection @( . The cover � → ; = P1 defines a 61

< on �. The degree C(
of ) (() is equal to the number of members of the 61

< that contain a triple of
points spanning a line. The number was computed by C. Segre [689] and [695,
§17], Note that our curve lies on a quadric G ∩ 〈� (;)〉. A modern proof of
the formula can be found in [330]. Note that the formula is given in terms of
the degree of a certain algebraic cycle on the symmetric product � (<) , so the
number C( could be less if the cycle is not reduced. �

Corollary 11.1.10. Under the assumptions of the theorem,

6 ≤ (< − 2) [(< − 1) (= − 1) + 1
6
(< − 1) (< − 3=)] .
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Example 11.1.11. Assume < = 3. We can confirm the inequality for the
sectional genus by the following argument taken from [295, §21]. Let |ℎ| be
the linear system of hyperplane sections of � (;). Let � be a general divisor
from the 61

3. The assumption that a general member of the curve � (;) does
not span a line in P4 means that dim |ℎ − � | = 4 − 3 = 1. By Riemann-Roch,
1 ≤ dim |ℎ − � | = < + = − 3 − 6 = = − 6. This gives 6 ≤ = − 1.

11.1.3 The focal locus of a congruence of lines
Since (̃ is smooth, the threefold /̃( is also smooth, and the projection ?̃( is a
map of smooth 3-folds of finite degree equal to the order < of (.

Let
0→ ?̃∗(Ω

1
P3 → Ω1

/̃(
→ Ω1

/̃(/P3 → 0 (11.21)

be the standard exact sequence of the sheaves of Kähler differentials. The map
?̃( is not smooth at a point I ∈ /̃( if and only if I is contained in the support of
the sheaf Ω1

/̃(/P3 . The set of points where ?̃( is not smooth has a structure of
a closed subscheme, not necessarily reduced. Its ideal sheaf is the Fitting ideal
�0 (Ω1

/̃(/P3 ). It is locally given by the determinant of the matrix "I defining the
map ( ?̃∗

(
Ω1
P3 )I → (Ω1

/̃(
)I of free modules of rank 3. Globally, the Fitting Ideal

is equal to ?̃∗
(
Ω3
P3 ⊗ (Ω3

/̃(
)⊗−1 = ?̃∗

(
lP3 ⊗ l−1

/̃(
. It defines a positive divisor

'(() such that
O/̃( ('() � l/̃( ⊗ ?̃

∗
(l
−1
P3 . (11.22)

We get the familiar formula

 /̃( ∼ ?̃
∗
( ( P3 ) + '((), (11.23)

where we identify '(() with its linear equivalence class. Taking the dual of
exact sequence (11.21), we obtain an exact sequence of tangent sheaves

0→ Θ/̃(

3 ?̃(→ @̃∗(ΘP3 → EGC1 (Ω1
/̃(/(̃

,O/̃( ) → 0. (11.24)

For any point I ∈ /̃( , the map of fibers (Θ/̃( ) (I) → ( ?̃
∗
(
ΘP3 ) (I) at I coincides

with the map
(3 ?̃()I : )I /̃( → )BP

3. (11.25)

It is locally given by the transpose of the matrix "I and hence

�0 (EGC1 (Ω1
/̃(/(̃

,O/̃( )) = O/̃( (−'(()).

In particular, the support of '(() is equal to the set of points I ∈ /̃( where the
differential (3 ?̃()I is not surjective.
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Proposition 11.1.12. Let B be a nonsingular point of ( ⊂ P5 and TB (() be its
embedded tangent plane at B. For any I = (G, B) ∈ /( ,

rank(3?()I = 3 − dim(TB (() ∩Ω(G)). (11.26)

Proof Let ?G : /G → P3 and @ : /G → G be the projection maps for the
universal family of lines in P3. The fiber ?−1

(
(G) is contained in the fiber ?−1 (G)

that is mapped isomorphically under the projection @ to Ω(G) ⊂ G. The kernel
Ker((3?()I) of the map (11.25) embeds in the kernel of the differential of the
map ?G 3?I : )I (/G) → )G (P3). Under the differential 3@I : )I (/G) → )B (G)
of the map @G, it is mapped isomorphically onto a two-dimensional subspace of
)B (G) that coincides with )B (Ω(G)). Under the differential (3@()I : )I (/() →
)B ((), the linear subspaceKer((3?()I) of)IZ� is mapped isomorphically onto
a linear subspace of )B ((). Passing to the embedded tangent spaces, we obtain
TB (() ⊂ TB (Ω(G)) = Ω(G). Thus, dim Ker((3?()I) = dimTB (() ∩Ω(G). This
proves (11.26) �

Let

?̃( : /̃(
a→ /̃ ′(

?̃′
(→ P3 (11.27)

be the Stein factorization of ?̃( [379, Chapter III, Corollary 11.5]. Here, the
morphism a has connected fibers, and ?̃′

(
is a finite morphism of degree <.

Since dim /( = dimP3, a is of degree one, hence it is a birational morphism.
Since /̃( is smooth and, in particular, normal, wemay assume that /̃ ′

(
is normal.

The morphism a is the universal for the property a∗ (O/̃( ) � O/̃ ′( . This
implies that f factors through /̃( → /nrm

(
.

The image of '(() in P3 is denoted by Foc((), its points are focal points of
(. Obviously,

Fund(() ⊂ Foc(().

It follows from the Stein factorization (11.27) of @̃( that

Fund(() = Foc(() if < = 1

We will classify congruences of order one in the next section.
Assume < > 1. The (reduced) branch divisor

Φ(() ⊂ P3

of the finite morphism ?̃′
(

: /̃ ′
(
→ P3 is called the focal surface of (.

Proposition 11.1.13. Each isolated fundamental point is contained in the focal
surface.
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Proof Suppose G ∈ Fund(() but G ∉ Φ((), then /̃ ′
(
→ P3 is unramified over

G, and each point in the pre-image of G is a non-singular point of /̃ ′
(
. Since

G ∈ Foc((), the pre-image of one of its points under the birational morphism
/̃( → /( is one-dimensional or coincides with ?−1

(
(G). In the latter case, the

whole plane Ω(G) is contained in (, and hence < = 0. Since the exceptional
locus of a birational morphism to a smooth variety is a divisor, the point G
belongs to the fundamental curve of (.

�

We will see later that Fund(() is not necessary contained in Φ(().
Assume that (nrm is nonsingular at any point in the pre-image of a singular

point B ∈ (. A singular point B ∈ ( is called ordinary non-normal singular
point if the morphism c : (̃ → ( is unramified at each point in c−1 (B), i.e. the
differential of the map (̃ → ( → P5 at B̃ is injective. In this case, the tangent
cone of ( at B is equal to the union of the images of the tangent spaces of (̃ at all
points in the pre-mage of B [407]. For any ordinary non-normal singular point,
the ray ℓB is not focal. However, if B is not ordinary, the projection is ramified
at some point B̃ ∈ (̃, the fiber @̃−1

(
( B̃) is contained in '(()dm,ndm, and its image

in P3 is a focal ray.
In particular, assume that (nrm = (̃, and ( is not normal along an irreducible

curve �. If its general point is an ordinary singularity, then there will be
only finitely many singular focal rays. Otherwise, there will be an irreducible
component of Φ(() that consists of singular focal rays.

Assume now that a point B′ ∈ (nrm is singular. Let � be an irreducible
component of the exceptional curve of (̃ → (nrm over B′. Its pre-image @̃−1

(
(�)

in /̃( is a P1-bundle over � . Its image under the projection ?̃( is the singular
ray ℓB . It follows that @̃−1

(
(�) is an irreducible component of '(()nd,nd. It is

easy to see that irreducible components of '(()nd,nd are obtained in this way.
We will see later that, in general, Fund(() is not a subset of Φ(().

Proposition 11.1.14. Suppose B is a smooth point of (. Then, TB (() ∩ G is
either an U-plane Ω(G), or a V-plane Ω(Π), or a singular conic. If the first
case, G ∈ Fund(() and the fiber ?−1

(
(G) is singular at some point on @−1

(
(B),

and G is the only focal point on ℓB . In the second case, ℓB is a focal ray. In the
third case, ℓB intersects Φ(() at the number of points equal to the number one
or two of irreducible components of the singular conic.

Proof Since TB (() is contained in TB (G), its intersection with G is either the
whole plane, or a conic with a singular point at B. Any plane contained in G is
either an U-plane or a V-plane. This gives the three possibilities for TB (().
Assume that TB (() ∩G = Ω(G), hence TB (() = Ω(G), for some point G ∈ ℓB .



11.1 Generalities on Congruence of Lines 301

Since @( : ?−1
(
(G) → � (G) = Ω(G) ∩ ( is an isomorphism and B is a singular

point ofΩ(G) ∩ (, we obtain that I = (G, B) is a singular point of ?−1
(
(G). Since,

for any G, G ′ ∈ ℓB , Ω(G) ∩ Ω(G ′) = {B}, we see from (11.26) that G is the only
focal point on ℓB .
Assume that TB (() = Ω(Π) for some Π ∈ ℓ⊥B . Then, for any G ∈ ℓB , the

pencil Ω(Π) ∩ Ω(G) is contained in Ω(G). Thus, Proposition 11.1.14 gives
rank(3?() (G,B) = 2. This shows that any point on ℓB is focal.
Suppose TB (() ∩ G is the union of two lines (maybe equal) intersecting

at B. Each line in G is a pencil of rays Ω(G,Π), i.e. G ∈ ℓB ⊂ Π. Thus,
dimTB (() ∩Ω(G) = 1. So, each component of the singular conic determines a
focal point on the ray ℓB . �

Corollary 11.1.15. Let B be a smooth point of (. The following properties are
equivalent.

(i) TB (() is a V-plane Ω(Π);
(ii) The ray ℓB is a focal ray;

Any of these properties implies
(iii) each point G ∈ ℓB is a null-point with the same null plane Π containing ℓB .

Proof We have already proved that (i) → (ii). Suppose ℓB is a focal ray. By
(11.26), for any G ∈ ℓB , the intersection TB (() ∩ Ω(G) contains a line in G.
When we let G run ℓB , these lines will span the whole plane TB (() showing that
TB (() ⊂ G. It follows from the previous proposition that TB (() = Ω(Π). Also,
it implies that each line Ω(G) ∩ Π is tangent to ( at B, hence it is a secant line
of (. So, (ii) implies (i) and implies (iii). �

Let us compute the divisor class ['(()] of '(() in /̃( .

Proposition 11.1.16.

['(()] = 2� + @̃∗( (ℎ +  (̃),
l' (() � @̃

∗
(l(̃ (1)

⊗2 ⊗ O' (() .

Proof Let 8 : /̃( → /G be the composition of the maps /̃( → /( and the
closed embedding /( ↩→ /G. Using the formula for the sheaf l/G/G from
Subsection 10.1.1, we get

l/̃(/(̃ � 8
∗l/G/G = 8

∗ (?∗OP3 (−2) ⊗ @∗OG (1))

= ?̃∗(OP3 (−2) ⊗ @̃∗(O(̃ (1),

where O(̃ (1) := c∗O( (1). This gives

l/̃( � l/̃(/(̃ ⊗ l(̃ � ?̃∗(OP3 (−2) ⊗ @̃∗(l(̃ (1) (11.28)
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and, applying (11.22), we obtain

O/̃( ('(()) � ?̃∗(OP3 (−2)) ⊗ @̃∗(l(̃ (1) ⊗ ?̃
∗
(l
−1
P3

� ?̃∗(OP3 (2) ⊗ @̃∗(l(̃ (1) � O/̃( (2) ⊗ @̃
∗
(l(̃ (1).

Taking the first Chern classes, we get the first assertion.
To prove the second assertion, we apply the adjunction formula to get

l' (() � l/̃( ('(()) ⊗ O' (() � O/̃ (−2) ⊗ @̃∗(l(̃ (1) ⊗ O/̃ ('(()) ⊗ O' (() .

It remains to apply the formula for O/̃( ('(()). �

Let '(()8 be an irreducible component of '(() and [8 be its generic point.
then

codim(?( ([8), codim(@( ([8)) ∈ {(1, 0), (1, 1), (2, 0), (2, 1)}.

We denote by '(()0,1 the union of irreducible components of '(()8 with
(0, 1) = codim(?( ([8), codim(@( ([8)).

Corollary 11.1.17. One of the following cases occurs:

1. Fund(() is a finite set of points (maybe empty), and '(() = '(()1,0 is
reduced and irreducible. There are only finitely many focal rays, and any
non-focal ray is tangent to Φ(() at two points (which may coincide).

2. Fund(() is a finite set of points, and '(() = 2'(()1,0. There are only finitely
many focal rays, and any non-focal ray is tangent to Φ(() at one point

3. '(()1,0 ≠ ∅ and '(()2,0 ≠ ∅. In this case, the fundamental curve and the
focal surface are irreducible. Each ray intersects Fund(() and tangent to
Φ(() at one point.

4. '(()1,0 = ∅, '(()2,0 ≠ ∅. This happens only if < = 1. The fundamental
curve consists of one or two irreducible components and a general ray
intersects each irreducible component and has two focal points on it.
Moreover,

5. If '1,1 ≠ ∅, the focal surface has an irreducible component which consists
of focal rays.

6. If '2,1 ≠ ∅, (nrm is singular, and @̃( ('2,1) is the exceptional curve of
(̃ → (nrm.

In the first case, a general ray is tangent to the focal surface at two points
which may coincide. The closure of lines tangent to an irreducible surface -
of degree 3 in P3 is a surface Bit(�) in �1 (P3), called the bitangent surface of
- . It follows that our congruence ( is an irreducible component of Bit(Φ(()).
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The following fact from [653, Volume 2, p. 281]) is useful. We follow
Salmon’s proof (see also [18, Proposition 3.3]).

Proposition 11.1.18. Let Φ be an irreducible normal surface of degree 3 in
P3. The closure Bit(Φ) in G of the set of lines that are tangent to Φ has the
cohomology class in �4 (G,Z) equal

(3 + 2) (3 − 3)f1,1 + 1
23 (3 − 1) (3 − 2) (3 − 3)f2.

Proof Let @ be a general point in P3 and let ℓ = 〈@, @′〉 be the line containing @
and tangent to - at some point @′ = [G0, H0, I0, |0]. Without loss of generality,
we may assume that @ = [0, 0, 0, 1] and

� = |3 + �1|
3−1 + · · · + |�3−1 + �3 ,

where �: are homogeneous forms of degree : in G, H, I.
Plugging in the parametric equation [B, C] ↦→ [B{+C{′], where [{] = @, [{′] =

@′, we get

5 := � (B{ + C{′) = (B + C|0)3 +
3∑
8=1

C8�8 (G0, H0, I0) (B + C|0)3−8 .

By polarizing, we can rewrite it in the form

5 =
∑
:+<=3

B: C<%@: (@′),

where %{: ({′) = %{′< ({) is the value of :-th polar of � with pole at @ at
the vector {′ (or, equivalently, the value of the totally polarized symmetric
multilinear form defined by 5 at ({, . . . , {, {′, . . . , {′). Since @′ ∈ - , we get
%{0 ({′) = � ({′) = 0. Moreover, because ℓ is tangent to - at @′, we obtain
%{ ({′) = 0. Thus, we can rewrite

5 = B263−2 (B, C).

The line ℓ is tangent to - at some other point if and only if the binary form
63−2 of degree 3 − 2

63−2 (B, C) =
3−2∑
:=0

B: C3−2−:%@:+2 (@′)

has a multiple root.
Recall that the discriminant polynomial � (00, . . . , 03) of a binary form of

degree 3
∑3
8=0 08D

3−8{8 is a homogenous polynomial of degree 2(3 − 1). It
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is also a bi-homogeneous polynomial of bidegree (3 (3 − 1), 3 (3 − 1)) with
respect to the action of G2

< via

(00, . . . , 03) ↦→ (_300, _
3−1`01, . . . , _`

3−103−1, `
303).

Thus, we obtain that the locus of points @′ such that the line 〈@, @′〉 is tangent to
- at two points, including @′ is contained in the intersection of hypersurfaces
of degrees 3, 3 − 1, and (3 − 2) (3 − 3). This implies that the expected number
of bitangent lines passing through @ is equal to 1

23 (3 − 1) (3 − 2) (3 − 3).
The class = of Bit(-) is equal to the number of bitangent lines to a general

plane section � of - . Since - is normal, it is a smooth plane curve of degree
3. We know from Subsection 5.5.1 that their number is is is equal to 3 (3 −
2) (32 − 9).

�

Let 5 : - → . be a finite morphism of a normal variety - to a smooth vari-
ety . . For any point G ∈ - (not necessary closed), let 5 ∗ : O. , 5 (G) → O-,G be
the corresponding homomorphism of local rings. Passing to the formal com-
pletions, we obtain a homomorphism 5̂ ∗ : Ô. , 5 (G) → Ô-,G . By definition, the
index of ramification 4 5 (G) is the degree of the corresponding finite morphism
of local schemes Spec(Ô-,G) → Spec(Ô. , 5 (G) ). If G is a point of codimension
one, then O-,G and O. , 5 (G) are discrete valuation rings, and the index of rami-
fication 43 (G) coincides with the usual one, defined by 5 ∗ (m. , 5 (G) ) = m

4 5 (G)
-,G

.
Intuitively, 4 5 (G) is the number of sheets of the cover that come together at G.

For any point H ∈ . , we have

deg( 5 ) =
∑
5 (G)=H

[^(G) : ^(H)]4 5 (G), (11.29)

where [^(G) : ^(H)] is the degree of the extension of the residue fields at the
points G ∈ - and H ∈ . .
The function G → 4 5 (G) is upper-semicontinuous, i.e., 4 5 (G) ≤ 4 5 (G ′) if

G ′ is a specialization of G. Also, if G0 is a specialization of two different points
G, G ′, then 4 5 (G0) ≥ 4 5 (G) + 4 5 (G ′) [318, Lemma 1 and Lemma 2].
We apply this to our finite morphism ?̃′

(
: /̃ ′

(
→ P3. To shorten the notation,

we set 4 ?̃′
(
(I) := 4(I).

Localizing the exact sequence (11.21), for any codimension one point I ∈ /̃ ′
(
,

we get an exact sequence

0→ ( ?̃∗(Ω
1
P3 )I → (Ω1

/̃(
)I → (Ω1

/̃(/P3 )I → 0. (11.30)

Let C be a generator of the maximal ideal of a codimension one point G =
5 (I) ∈ P3 and ?∗

(
(C) = D4 (G) , where D is a generator of the maximal ideal of
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a codimension one point I ∈ /̃ ′
(
. We have ?∗

(
(3C) = 4(I)D4 (I)−13D that shows

that (Ω1
/̃(/P3 )I � O/̃ ′

(
,I/(D4 (I)−1).

Since any irreducible component of 'dm,dm enters with multiplicity one or
two and @( : '1,0 → ( is of degree one or two, we obtain the following:

Proposition 11.1.19. The index of the ramification of the finite map /̃ ′
(
→ P3

at the generic point of an irreducible component '(()8 of '(()1,0 is equal to
2 or 3. In the former case, '(()8 enters with multiplicity 1, and, in the latter
case, it enters with multiplicity 2.

Let Φ(() (1) denote the set of general points of irreducible components of
Φ((). It follows from (11.29) that, for any Z ∈ Φ(() (1) ,

< =
∑

@̃′
(
([8)=Z

[^([8) : ^(Z)]4([8).

We know that an irreducible component '(()8 with generic point [8 enters with
multiplicity 4([8) − 1. Let us assign to Z8 the multiplicity

`Z (Φ(()) := [^([8) : ^(Z)] (4([8) − 1)

and set
Φ(()sch =

∑
Z ∈Φ(() (1)

`Z (Φ(())Z

This puts a scheme-theoretical structure on the focal surface.
Let us compute the degree of Φ(()sch.

Proposition 11.1.20. Let ( be a congruence of order < > 1. Then

deg(Φ(()sch) = 2< + 26 − 2, (11.31)

where 6 is the sectional genus of (.

Proof Let ℓ be a general line in P3. Its pre-image ?̃−1
(
(ℓ) in /̃( intersects

only the parts '(()dm,dm and '(()dm,ndm of '((). If there are only finitely
many focal rays, the second part is empty. Since [ ?̃−1

(
(ℓ)] = �2, applying the

projection formula, we obtain:

deg(Φ(()sch) = �2 · ('(()dm,dm + '(()dm,ndm) = �2 · '(()
= �2 · (2� + @̃∗( (ℎ +  (̃)) = 2�3 + �2 · @̃∗( (ℎ +  (̃)
= 2< + (@̃()∗ (�2) · (ℎ +  (̃) = 2< + [c∗ (� (ℓ))] · (ℎ +  (̃)
= 2< + 2 + ℎ · (ℎ +  (̃) = 2< + 26 − 2.

(11.32)

�
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In the case when the sectional genus is equal to the sectional arithmetic
genus, i.e. ( is smooth or has only isolated singular points, formula (11.15)
gives

deg(Φ(()sch) = 2=(< − 1) − 2A. (11.33)

Corollary 11.1.21. The focal surface q((∗) of the dual congruence is the dual
surface ofΦ((). The class ofΦ(() is equal to to 2=+26−2 = deg(Φ(())+=−<.

Let

'(()
`
→ '(() ′

@̃′
(→ (̃ (11.34)

be the Stein factorization of the morphism @̃( . Assume that '(() is reduced.
The morphism @̃′

(
is a finite cover of degree 2. We have

(@̃′()∗O' (()′ � O(̃ ⊕ L,

where (@̃()∗O' (()′ = (@̃()∗O' (() and L is an invertible sheaf. The cover is
ramified over the scheme of zeros �(() of a section of L⊗−2.
The well-known formula for the canonical sheaf of a double cover gives

l' (()′ � @̃
′
(
∗ (l(̃ ⊗ L−1).

The fibers of the map ` : '(() → '(() ′ are closed subsets of P1. This
implies that ` is an isomorphism over a point I′ ∈ '(() ′ over B̃ ∈ (̃, or the
fiber coincides with the fiber @̃−1

(
( B̃). In the latter case, the ray ℓB is a focal ray.

It follows from Proposition 11.1.14 that this could happen only if TB (() is a
V-plane.

Proposition 11.1.22. Suppose ( has no focal rays. Then, ?̃( : '(() → (̃ is a
finite cover of degree two with the branch divisor

�(() ∈ |2 (̃ + 4ℎ|.

Its degree �(() · ℎ with respect to ℎ is equal to 2(26 − 2 + < + =).

Proof Applying Proposition 11.1.16, we obtain

l' (() = @̃
∗
( (l(̃ (1)

⊗2) = @̃∗( (l(̃ ⊗ L
−1).

This gives
L−1 � l(̃ ⊗ O(̃ (2),

hence
O(̃ (�(()) � L−2 � l⊗2

(̃
⊗ O(̃ (4).

Taking the first Chern classes, we obtain the first assertion. Intersecting it with
ℎ, we get its degree. �
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Corollary 11.1.23. Let Sing(�(()) be the locus of singular points of �(().
Then, Sing('(()) = @̃−1

(
(Sing(�(()). In particular, '(() is smooth if �(() is

smooth.

Proof It follows from local equations of a double cover of a nonsingular sur-
face, that Sing('(() ′) is equal to the pre-image of Sing(�(()). The birational
morphism g : '(() → '(() ′ is either a local isomorphism over a nonsingular
point or is a homeomorphism over the blow-up of this point. �

Let us consider again the Stein factorization (11.27). Let G be a fundamental
point of (. Then the fiber ?̃′

(
−1 (G) contains some points over which the fiber

of a : /̃( → /̃ ′
(
are one-dimensional. The pre-images in /̃( of the rest of the

points are projected to a finite set of points in (̃. Their images in ( are called
isolated rays. They come with multiplicities equal to ramification indices of ?̃′

(

at these points.
For any point B̃ ∈ �((), the fiber @̃−1

(
( B̃) intersects '(() at one point (G, B̃).

Thus, the two focal points on the ray ℓB collide and ℓB intersects the focal surface
at the point G with multiplicity 4. The rays ℓB sweep a ruled surface of degree
2(26 − 2 + < + =) equal to the degree of �(().

Suppose that deg( ?̃( : '(() → Foc(()) = 1 and Foc(() = Φ((). The ruled
surface R(�(()) touches Φ(() along a curve Foc(()0 with multiplicity 4. We
have

deg(Foc(()0) =
1
4
(2<+26−2) (2(26−2+<+=)) = (<+6−1) (<+=+26−2).

(11.35)

Proposition 11.1.24. Let G be a fundamental point of (. Then, G is a singular
point of the focal surface Φ(().

Proof Suppose G is a smooth point ofΦ((). For a sufficiently small connected
open neighborhood of * (G) of G in P3 and any point I in its pre-image in
/̃ ′
(
, there exists an open connected neighborhood + (H) of I such that the

map ?̃′
(
is a finite map + (I) → * (G) ramified over a smooth codimension

manifold � containing G with local equation D1 = 0, where D1, D2, D3 are
analytic coordinates in * (G). Shrinking * (G) further, we may assume that the
local fundamental group of * (G) \ � is isomorphic to Z. Thus, + (I) → * (G)
is a cyclic cover defined by D1 = {41 , D2 = {2, D3 = {3, and hence + (H) is a
complex manifold.
It follows from the Stein factorization (11.27) that the fiber of a : /̃( → /̃ ′

(

over some point in the pre-image of G in /̃ ′
(
is a (−1)-curve � contained in '(().

Using the formula for the canonical class of '(() from Proposition 11.1.16,
we find that  '( · � is even, contradicting the fact that � is a (−1)-curve.
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�

The next proposition gives the promised addition to Proposition 11.1.8.

Proposition 11.1.25. Let G be an isolated fundamental point of ( of degree ℎ.
For a general point % ∈ P3,

multG (%) = ℎ(< − 1) − 1
2 multGΦ(().

In particular, multGΦ(() is even.

Proof Let us first, following [295, §26], give another proof of the formula for
the degree of the surface (%). Take a general line ; in P3 and a general plane Π
containing %. The intersection of Π with the ruled surface R(;) is a directrix �
that intersects ; at a <-multiple point G0. We take % and ; general enough such
that G0 does not belong to the focal surface Φ(() of (. In this case, G0 is an
ordinary <-multiple point of �. We have a rational map � → ; that assigns to
a point G ∈ � the intersection point of the generator of R(�) passing through
G with ;. It defines a 61

< on the normalization � ′ of �. Its double points are the
intersection points of ; with Φ(().
Let P be the pencil of linesΩ(%,Π). We can identify it with ;. For any G ∈ ;,

the line 〈%, G〉 cuts out in � a divisor �(G) = G1 + · · · + G<+= on � from 61
<+=

contained in the complete linear system of hyperplne sections of the generatrix
of R(;). For any G8 , let �(G8) = � (G) − G8 , where � (G) is a member of the 61

<

that contains G. Consider the correspondence ) ⊂ ; × ; such that ) (G) is the
image in ; of the union of the divisors �(G) and �(G8), G8 ∈ �(G). This is a
symmetric correspondence of bidegree (<−1) (<+=). It has 2 = 2(<−1) (<+=)
coincidence points. Each coincidence point defines a point G in ; such that there
are two rays passing through this point that span a plane containing %. We have

2 = 2 deg((%)) + #; ∩Φ(() + <(< − 1).

Here, the second summand takes into account double points of the 61
< and the

third summand gives the contribution of the point G + 0. This gives

deg((%)) = (< − 1) (< + =) − 1
2 (2=(< − 1) + 2A) + 1

2<(< − 1) = 1
2<(< − 1) + A

in agreement with (11.17).
Now, we take ; to be a general line passing through a fundamental point G of

degree ℎ. We repeat the argument to compute the number of focal points G ′ ≠ G
on ; with the focal plane containing %. To do this we have to replace < + = with
< + = − ℎ and the degree =(< − 1) + 2A of Φ(() with (< − 1) + 2A − B, where
B = multGΦ((), and obtain the number is equal to

(< − 1) (< + = − ℎ) − 1
2 (2=(< − 1) + 2A − B) + 1

2<(< − 1).
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The difference between deg((%)) and this number is equal to multG (%). This
gives

multG (%) = ℎ(< − 1) − 1
2 B. (11.36)

�

Proposition 11.1.26. Let G ∈ Fund((), and let W(G) be the number of isolated
rays through G. Then

W(G) ≤ #?̃′(
−1 (G) − 1.

The equality holds if  (G) is irreducible and (nrm is smooth.

Proof Here we use notation from the Stein factorization (11.27) of ?̃( . We see
that W(G) is equal to the number of points I ∈ ?̃−1

(
(G) such that the differential

(3 ?̃()H is of rank > 1. For example, if G ∉ Φ((), the morphism /̃ ′
(
→ P3

is unramified, hence consists of < points. The morphism a : /̃( → /̃ ′
(
has

connected fibers, some of which are of positive dimension. Each irreducible
component of some fiber is mapped, under the projection @̃( , to an irreducible
component of the proper transform of the curve � (G) = Ω(G) ∩ ( to (̃. If the
normalization of ( is smooth, and  (G) is irreducible, then� (G) is irreducible,
and there is only one fiber of positive dimension, and it is irreducible. This
proves the assertion.

�

The following proposition is due to Sturm [735, Thiel 2, n. 295] (see also
[295, §6]).

Proposition 11.1.27. Let G be an isolated fundamental point of ( of degree
ℎ(G). Then the tangent cone of Φ(() at G is of class < − W(G).

Proof Let ; be a general line throigh the point G. The cone (G) is a component
of the ruled surafce R(;). The degree of the residual part R(;) ′ is equal to
< + = − ℎ(G). Since a general point of ; is contained in < rays, the ruled
surface R(;) ′ has ; as its <-multiple directrix. There are W(G) generators of
R(;) ′ corresponding to the isolated rays and < − W(G) generators 68 of  (G).
The pencil of rays in the plane 〈;, 68〉 passing through G is a line in Ω(G) that
is tangent to the generatrix � (G) of  (G) at the point 68 which is the common
generator of the parts  (G) and R(;) ′ of R(;). This shows that the class of� (;)
is equal to < − W(G). This is the assertion of the proposition. �

The following important theorem is also due to Sturm; we will follow his
beautiful proof.
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Theorem 11.1.28. Assume that the one-dimensional part � of Fund(() is
irreducible curve of degree 3. Let W = W(G) and ℎ = ℎ(G) for a general point
G ∈ �. Then

< = ℎ + W.

In particular, ℎ ≤ <.

Proof Let ; be a general line in P3. By (11.18), deg( |; |) = A + 1
2 (=(= − 1) −

3ℎ(ℎ − 1).
Now, assume that ; intersects � at its general point G. Each planeΠ containing

ℓ contains =−ℎ rays not passing through G. They contribute ’ 1
2 (=−ℎ) (=−ℎ−1)

intersection points to the curve |; |. Each of 3 − 1 other intersection points of
Π with � contribute further further 1

2 (3 − 1)ℎ(ℎ − 1) intersection points. Let
A be the rank of ( and A ′ ≤ A be the number of intersection points of rays not
passing through G lying on ℓ. When we move Π in the pencil ℓ⊥ we obtain a
component |ℓ |1 of |ℓ | of degree

1
2 (= − ℎ) (= − ℎ − 1) − 1

2 (3 − 1)ℎ(ℎ − 1) + A ′.

The ruled surface R(ℓ) contains  (G) with multiplicity ℎ and also contains W
isolated rays passing through G. A general point of ℓ contains < rays of (. The
residual part of R(ℓ) intersects  (G) at ℎ(=+<−ℎ) − (<−W) rays. They define
the residual part |ℓ |2 of |ℓ | of this degree.

Adding up the degrees of |ℓ |1 and |ℓ |2 ,

1
2 (3−1)ℎ(ℎ−1) = ( 1

2 (=−ℎ) (=−ℎ−1)− 1
2 (3−1)ℎ(ℎ−1)+A ′)+ℎ(=+<−ℎ)−(<−W).

Expanding the expressions, we find

A − A ′ = <(ℎ − 1) + W. (11.37)

Next, we choose a general line ; and consider a symmetric involution ) on �.
It is the closure in �nrm × �nrm of pairs of nonsingular points (G, G ′) on � such
that a generator of  (G) and a generator of  (G ′) intersect at a point on ;. It is
easy to see that the bidegree of ) is equal to (ℎ(< − 1), ℎ(< − 1). Let - be the
closure of the union of lines 〈G, G ′〉. The line ℓ = 〈G, G ′} connecting two points
(G, G ′) intersects ; at a point C if and only if C is the null-point of the rays 〈G, C〉
and 〈G ′, C〉 spanning their null-plane. This shows that the degree of - is equal
to the rank A of (.

Now, we specialize and take ; passing through a general point G ∈ �. Then,
we can still define the correspondence ) ′ and the surface - ′. However, it
contains the curve {(G, G ′), G ′ ∈ �} with multiplicity ℎ(< − 1). The degree of
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the residual surface is equal to A ′, where A ′ was defined above. This gives

A = A ′ + ℎ(< − 1). (11.38)

The equalities (11.37) and (11.38) imply the assertion.
�

Even when ( and '(() are smooth, the focal surface Φ(() may be singular
outside fundamental points. In fact, if< > 2, the surface Foc(() is a non-normal
surface and hence singular along a curve. The curve is the locus of points
G ∈ Foc(() such that the map '(() → Foc(() is not a local isomorphism.
These could be the images of points I ∈ '(() ′ with the ramification index
≥ 3. According to [318, Theorem 1], this locus is never empty and contains
one-dimensional components. These one-dimensional components form the
cuspidal curve of Foc((). Also, Foc(() may contain nodal curve, the locus of
points G ∈ Foc(() such that their pre-image in '(() ′ consists of more than one
point.
If = ≥ 3, the focal surface is non-normal. It contains a cuspidal curve, a

one-dimensional part of the closure of non-fundamental points H ∈ Φ(() such
that ?̃−1

(
(H) contains a point with the ramification index 4 ?̃( (G) ≥ 3. It is known

that the set of such points is non-empty and contains an irreducible component
of codimension 1 in Φ(() [318, Theorem 1]. If < ≥ 4, the locus also contains
isolated points and may contain the double curve, the locus of points H ∈ Φ(()
such that ?̃−1

(
(H) contains two points with the ramification degree 2.

The following formula for the degree of the cuspidal curve ', under the
assumption that ( is smooth, was given by Schumacher [669, p. 124]:

deg(') = 3(< + = − 2) (<=
2
− A) + C( − 2=), (11.39)

where C( is the degree of the triadic surface ) (().

11.2 Linear Congruences of Lines

11.2.1 Examples
A congruence of lines in P3 of order < = 1 is classically known as a linear
congruence. It follows from (11.15) that

?0 = 6 = A = 0. (11.40)

Obviously, Foc(() = Fund(().
Let us start with examples.
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Example 11.2.1. Let ℓ1 and ℓ2 be two skew lines in P3. For any point G ∉ ℓ1∪ℓ2,
there is a unique line ℓ that intersects ℓ1 and ℓ2. It is equal to the intersection of
the planes 〈ℓ1, G〉 and 〈ℓ2, G〉.
If G ∈ ℓ1∪ ℓ2, there is a pencil of such lines. We see that the lines intersecting

ℓ1 and ℓ2 are parametrized by a congruence ( of lines of order one and class
one. Of course, it also follows from the relation:

[Ω(ℓ1) ∩Ω(ℓ2)] = f2
1 = f2 + f1,1.

The congruence ( is isomorphic to a smooth quadric embedded into G as the
complete intersection Ω(ℓ1) ∩ Ω(ℓ2). The fundamental curve of ( consists of
the union of the lines ℓ1 and ℓ2.
The universal family /( is isomorphic to the blow-up Blℓ1∪ℓ2 (P3). The linear

system |OP3 (2)−ℓ1−ℓ2 | defines a rational map P3 d ( = P1×P1 ⊂ P3 that lifts
to the projection @( : /( = P(Q() → (. The universal quotient vector bundle
Q( is isomorphic to O( (f1) ⊕ O( (f2), where f8 are the divisor classes of the
rulings on (. The exceptional divisors �8 , 8 = 1, 2, correspond to the projections
maps O( (f1) ⊕ O( (f2) → O( (f8). They are sections of the projective bundle.

We have OP(Q( ) (1) = O/( (�), where � is a section of /( equal to the pre-
image of a plane in P3. It corresponds to the surjection Q( → O( (1) = ℎ with
the normal bundle O� (�) � O( (1). We have ℎ = f1+f2 and 22 (Q() = [point].
This checks formula (11.11)� · (�2−� ·@∗

(
(ℎ)+@∗

(
(22)) = �3−� · (@∗

(
(22)) =

= − 1 = 0. We also check the formula for ['(()] from Proposition 11.1.16:

['(()] = [�1] + [�2] = (� − @∗( (O( (f1)) + (� − @
∗
( (O( (f2))

= 2� − @∗( (ℎ) = 2� + @∗( (ℎ +  ()

Example 11.2.2. Let '3 be a twisted cubic in P3. Then, any point G ∉ '3
is contained in a unique secant line of '3. This shows that the closure in G
of the set of secant lines is a congruence of lines ( of order one. A general
plane intersects '3 at three points and hence contains three secant lines. This
shows that the class of ( is equal to 3. Thus, ( is a quartic surface in the
Plücker embedding. It is isomorphic to the symmetric square of '3 � P1, and
its image in P5 is a Veronese surface. The fundamental curve of ( is equal
to '3. The universal family /( is isomorphic to the blow-up Bl'3 (P3). The
surface '(() is its exceptional divisor. It is known that the normal bundleN'3

is isomorphic to OP1 (5)⊕2 (see, for example, [280, Theorem 4]). This implies
that '(() � P1 ×P1. The projection @( : '(() → ( is a finite map of degree 2.
Its branch divisor is the curve parameterizing tangent lines of '3. Its pre-image
under the Veronese map P2 → ( is a conic.
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Example 11.2.3. Fix a line ℓ in P3 and consider diagram 11.12 from Subsection
11.1.1.
Let q : P1 → � be the normalization map of a reduced rational curve � in

P3 of degree =, and
L = q∗O� (1) � OP1 (=).

Fix an invetible sheaf L on ℓ⊥ � P1 of degree = > 0. Let

s : P1 → P(E)

be the section of P = P(E) � Blℓ (P3) corresponding to a surjection E =

O⊕2
ℓ⊥ ⊕ Oℓ⊥ (1) → L. The image of s is a rational curve � ⊂ P. We have

s∗OP (1) � L.
If the surjection factors through O⊕2

ℓ⊥ → L, the curve � is a smooth rational
curve contained in the exceptional divisor � � P1 × P1 of P � Blℓ (P3) f→ P3

and the projection map f : � → ℓ⊥ is of degree =. The bidegree of � in � is
equal to (1, =).
Otherwise, � ′ = f(�) is a curve in P3 of degree = and the map

f ◦ s : ℓ⊥ → � ′ ⊂ P3

coincides with the normalization map of � ′. It is easy to see that the normal-
ization map is just the map Π ↦→ Π ∩� ′. The fact that it is of degree 1 implies
that

#� ′ ∩ ℓ = = − 1.

More precisely, the intersection number � · � ′ in P is equal to = − 1. In the
following, we assume, for the simplicity of exposition, that � ′ intersects � at
= − 1 distinct points ?′1, . . . , ?

′
=−1, hence its projection � is a smooth rational

curve in P3 intersecting ℓ at = − 1-distinct points ?1, . . . , ?=−1 and leave it to
the reader to consider the general case.
Let

Pic(P) = Z� ⊕ Z�,

where � = 21 (OP (1)) and � is the divisor class of a fiber of the protection
c : P→ ℓ⊥.

Let ((ℓ, �) be a congruence of lines equal to the closure in Ω(ℓ) ⊂ G of the
locus of lines ℓ′ ≠ ℓ whose proper transform in P intersects �.
Let G be a general point in P3, the proper transform of the plane in P intersects

� transversally at one point. This shows that there is a unique ray ℓB through G,
it intersects ℓ at one point ? and its proper transform in P intersects � ′ at one
point over ?. Thus, the order of the congruence ((ℓ, �) is equal to 1.
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Take a general plane Π in P3. It intersects ℓ at one point ? and its proper
transform in P intersects � ′ at = points. Thus, there are = rays in Π, hence the
class of ((ℓ, �) is equal to =.

If = = 1, and ((ℓ, �) is of type (I), then ℓ and � are skew lines, and the
congruence coincides with the congruence from Example 11.2.1. If ((ℓ, �) is
of type (II), then each ray in ((ℓ, �) is contained in the plane Π whose proper
transform in Blℓ (P3) intersects � along �. Thus, the congruence is a V-plane.
So, we will assume that = ≥ 2.

For any point G ∈ �, let 〈G, ℓ〉 be the unique plane in ℓ⊥ whose proper
transform in P contains the pre-image G ′ ∈ � ′ of G. Each line in the plane 〈G, ℓ〉
passing through G is a ray of ((ℓ, �). Thus, ((ℓ, �) is a ruled surface of degree
= + 1 in Ω(ℓ) ⊂ G.
The definition of 〈G, ℓ〉 makes sense even if � ⊄ � and G ∈ {?1, . . . , ?=−1}.

In this case, 〈G, ℓ〉 is spanned by ℓ and the tangent line of � at G. If = ≥ 3, the
line ℓ belongs to ((ℓ, �), hence ((ℓ, �) ⊂ Tℓ (G) ∩ G is singular at the point
B0 such that ℓ = ℓB0 .
For any point G ∈ ℓ, the proper transform of a plane Π ∈ ℓ⊥ in P intersects �

at one point ?. The line 〈G, ?〉 is a ray of the congruence. These rays define a
directrix of the ruled surface ((ℓ, �) of degree =.
If ( is of type (II), then '(() consists of two irreducible components

'(()2,0 and '(()2,1. Both are projected to ℓ under the map ?̃( . The image
of @̃( ('(()2,1) is the exceptional curve of (̃ → ( isomorphic to �.

11.2.2 Classification
We will show now that all examples from the previous subsection cover all
possible congruences of order one.

We will need the following classical fact:

Lemma 11.2.4. Let � be an irreducible nondegenerate curve in P3 of degree
3 and B be the number of secants of � passing through a general point in P3.
Then

B ≥ 3 − 2.

Proof We project� from a general point of P3. The image of the projection is
a plane curve - of degree 3. Let `(-, G) and <(G) be the Milnor number and
the multiplicity of a point G ∈ - . Applying the Plücker formula (1.52), we get

3∨ = 3 (3 − 1) − 2B −
∑
G∈-

`(-, G) −
∑
G∈�
(<(G) − 1).

Next, we project � from a general point 2 ∈ �, and apply the same formula to
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the image - ′ of the projection. We get

3∨ − 2 = (3 − 1) (3 − 2) − 2C −
∑
G∈-

`(-, G) −
∑
G∈�
(<(G) − 1), (11.41)

where C is the number of the 3-secants passing through 2. After subtracting the
two equalities, we get

B ≥ 3 − 2.

�

Theorem 11.2.5. A congruence ( of order 1 and class = ≥ 1 coincides with a
congruence from one of Examples 11.2.1, 11.2.2, and 11.2.3. We have

1. ( is a smooth surface.

(a) ( is of class 1 from Example 11.2.1;
(b) ( is of class 3 from Example 11.2.2;
(c) ( is of class 2 from Example 11.2.3 with ℓ ⊄ �;

2. ( is a singular surface.

(a) ( is of class = ≥ 3 from Example 11.2.3 with ℓ ⊄ � . It has an isolated
non-normal singular point;

(b) ( is of class = ≥ 1 from Example 11.2.3 with ℓ ⊂ � . It is is isomorphic to
a cone over a rational normal curve of degree = + 1.

Proof We already know that ?0 = A = 0 and Foc(() = Fund((). Since
?0 = 0, we have ?0 = 6 = 0 and ( is a rational surface with only isolated
singularities.
We apply Corollary 11.1.17. Assume '(() is reduced. Since< = 1, a general

ray intersects Fund(() at two points. Assume� := Fund(() is irreducible, This
means that the number B of secants of � passing through a general point G ∈ P3

is equal to 1. Obviously, � is not a plane curve, thus Lemma 11.2.4 implies
that 3 = 3. If � is singular, then the projection of � from G is a cubic curve
with two singular points, a contradiction. Therefore, � is a twisted cubic and (
is the congruence from Example 11.2.2.
Assume that '(() is reduced and consists of two irreducible components. In

this case, Fund(() is the union of two irreducible curves �1 and �2 of degrees
31 ≤ 32. A general plane Π intersects �8 at 38 distinct points. A general point
in Π is contained in 31 rays in Π intersecting �1. Since < = 1, this gives
31 = 1. Thus, we may assume that �1 = ℓ is a line. If 32 = 1, �2 is also a line,
obviously skew to �1. Thus, ( is congruence from Example 11.2.1. In this case
( is smooth.
So, we may assume that 32 > 1. A general planeΠ intersects �2 and contains
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= rays, no two of which intersect outside �1∪�2. SinceΠ intersects �2 at 32 > 1
points, = = 32 and all rays in Π pass through a unique point GΠ. We see that our
congruence is contained in the intersection of the Chow complexes of �1 and
�2. The intersection of the two complexes is a surface with the cohomology
class =f2 + =f1,1. Since [(] = f2 + =f1,1, the intersection consists of ( and the
union of = − 1 U-planes. They consist of lines passing through the intersection
points of ℓ with � := �2. Thus, ( is as in Example 11.2.3. As we saw in this
example, the line ℓ is a singular ray of (.

Assume Fund(() is irreducible but not reduced, i.e., '(() = 2('(()2,0).
In this case, the fundamental curve � is an irreducible curve of degree 3 and
a general ray intersects � at one points. Obviously, � is not a plane curve.
Take a general plane that intersects � at 3 points. It contains = rays, a pair
of them passing through different intersection points intersect outside �. This
contradicts the assumption that < = 1. Thus, � = ℓ is a line.

Let us consider the pencil ℓ⊥. The same argument shows that all rays con-
tained in Π ∈ ℓ⊥ form a pencil with the base point GΠ ∈ ℓ. This defines a map
5 : ℓ⊥ → ℓ,Π ↦→ GΠ, of some degree : . For any point G ∈ ℓ, there are : pencils
of rays passing through G. A general plane through a point G has : lines, one ray
from each of : pencils. Since ( is of class =, we obtain that : = =. Consider the
graph of the map 5 . It is a smooth curve � of bidegree (1, =) whose projection
to ℓ is of degree =. Considered as a section of P(O⊕2

P1 ), it defines a section of
P = P(E) corresponding to a surjection E → OP1 (=) that factors through a
surjection O⊕2

P1 → OP1 (=). It follows that ( = ((ℓ, �) is a congruence from
example 11.2.3
One of the rays is the line ℓB0 , which belongs to all pencils of rays. Let ℓ be

a general line that we could identify with ℓ⊥0 by taking the intersection point of
Π ∈ ℓ⊥0 with ℓ. Each point on ℓ intersects the unique ray that passes through
this point and lies in the corresponding plane Π ∈ ;⊥0 . This shows that ℓ is the
directrix of the ruled surface R(ℓ). Its degree is equal to = + 1. Since all rulings
in this cone contain ℓ0, we see that R(ℓ) is a cone of degree = + 1 with the
vertex B0. This shows that ( is a congruence from Example 11.2.3.

It remains to check the assertions about singularities of ((ℓ, �). We already
know that congruences from Examples 11.2.1 and 11.2.2 are smooth congru-
ences.
Let

q1 : P∗ → Ω(ℓ)

be one of the small resolutions of Ω(ℓ) from (11.14). Since all rays intersect
ℓ, ((ℓ, �) ⊂ Ω(ℓ). The pre-image of the singular point B0 of Ω(ℓ) is the
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exceptional curve � . If � ⊄ � , the proper transform of ((ℓ, �) contains = − 1
intersection points with � . Thus, ( is singular at B0 if = ≥ 3.
Assume � ⊂ � . A general point G ∈ ℓ has = pre-images 21, . . . , 2= ∈ �,

each of them defines a planeΠ8 ∈ ℓ⊥ whose proper transform in Blℓ (P3) passes
through 28 . Each plane Π8 contains a pencil of rays passing through G. These
lines intersect at the point B0 corresponding to ℓ. This shows that ((ℓ, �) is
always singular if = > 1. The surface ( is a cone of degree = + 1 with vertex at
B0. �

We know from Theorem 10.1.2 that Aut(P3) is isomorphic to the connected
component of the identity of Aut(G). It follows that congruences of order one
of type 1 (a) and 1 (b) are projectively isomorphic in G. The same is true for
congruences of type 1 (c), because they are cubic ruled surfaces in P4 and all
projectively equivalent in G.

Proposition 11.2.6. The number of moduli " of congruences of order one
from Case 2 is equal to

" =

{
max{0, 3= − 10} in Case 2 (a),
max{0, 2= − 10} in Case 2 (b).

Proof Fixing the line ℓ, we are left with the subgroup ofAut(P3) of dimension
11 that acts on the projectivization of the linear space

Hom(E,OP1 (=) | � �0 (P1,OP1 (= − 1)) ⊕ OP1 (=)⊕2).

of dimension 3=+1. If� ⊄ � , then ((ℓ, �) is determined uniquely by an element
of this space, and we obtain " = 3= − 10, unless = = 3, and " = 0. This can
be checked directly; we fix a twisted cubic with a 3-dimensional stabilizer
subgroup of Aut(P3). Then, fixing two points on '3 that determine the secant
line ℓ, we are left with a one-dimensional stabilizer subgroup isomorphic to
PO(2) � G o (Z/2Z).

If � ⊂ � , then ((ℓ, �) belongs to the subspace |Hom(O⊕2
P1 ,OP1 (=)) | of

dimension 2= + 1, and we obtain " = max{0, 2= − 10}. We can also argue
more geometrically. After we fix ℓ, we are left with a choice of a curve � in �
of bidegree (1, =). The curves depend on 2= + 1 parameters.

�

11.2.3 Monoidal surfaces in P3

Let Φ3 be a monoidal surface of degree 3 in P3 with singular line ℓ of multi-
plicity 3 − 1 (see Subsection 7.2.3). If we choose projective coordinates such
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that ℓ is given by equations G0 = G1 = 0, the equation ofΦ3 must be of the form

�3 (G0, G1) + �3−1 (G0, G1)G2 + �3−1 (G0, G1)G3 = 0, (11.42)

where �3 , �3−1, �3−1 are binary forms of degrees indicated by the subscripts.
Counting parameters, we easily obtain that monoidal surfaces depend on

" = max{33 − 11, 0}

moduli.
Any plane Π ∈ ℓ⊥ cuts out Φ3 along ℓ taken with multiplicity 3 − 1 and the

residual line (which may coincide with ℓ). This shows thatΦ3 has a structure of
a ruled surface with the ruling defined by the residual lines and the generatrix
equal to ℓ⊥.
Let ( = ((ℓ, �=) be a congruence of lines of bidegree (1, =) from Example

11.2.3. We assume that �= is a smooth rational curve in P3 that intersects ℓ
transversally at a set Σ of = − 1 points ?1, . . . , ?=−1. For any point G ∈ ℓ \ Σ,
the rays in a plane Π ∈ ℓ⊥ passing through G form a pencil. One of the rays in
this pencil is a residual line ofΦ3 . This shows that the ruled surfaceΦ3 defines
a directrix of degree 3 of the ruled surface ( ⊂ P4 = Tℓ (G). Conversely, any
directrix of ( of degree 3 defines a ruled surface in P3. It contains a unique
generator ℓ in a general planeΠ ∈ ℓ⊥ which is a ray of ( contained in ℓ. Since ℓ
intersects �= at one point, the curve �= is a directrix of the ruled surface. This
shows that the ruled surface contains ℓ with multiplicity 3 − 1, and hence it is
a monoidal surface Φ3 of degree 3. Since a general ray of ( intersects �= with
multiplicity 1, the curve �= is a directrix of Φ3 of multiplicity one.
The following proposition follows from our discussion.

Proposition 11.2.7. There is a bĳection between the set of directrices of degree
3 of the ruled surface ((ℓ, �=) ⊂ P4 and monoidal surfaces of degree 3
containing ℓwithmultiplicity 3−1 and containing the curve�= withmultiplicity
one.

Consider a monomial surface Φ3 of degree 3 containing ℓ as a line of
multiplicity 3 − 1. It intersects �= at =− 1 points with multiplicity 3 − 1. Thus,
if we let Φ3 contain 3= − (= − 1)) (3 − 1) + 1 = 3 + = generic points on �=,
we obtain that �= ⊂ Φ3 . Since monoidal surfaces Φ3 with fixed line ℓ form a
linear system |OP3 (3) − (3 − 1)ℓ | of dimension 33, we see that we can always
find a monoidal surface of degree 3 containing �= provided that 23 ≥ =.
Let |OP3 (3) − (3 − 1)ℓ − �= | be the linear system of monoidal surfaces Φ3

containing the curve �= as its directrix. We obtain

dim |OP3 (3) − (3 − 1)ℓ − �= | ≥ 23 − =. (11.43)
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We expect that a general congruence ((ℓ, �=) contains a unique directrix of
degree : if = = 2: and a pencil of such directrices if = = 2: − 1. Moreover,
there are no directrices of smaller degree.
Let B be the smallest degree of a directrix of ( = ((ℓ, �=). ApplyingCorollary

10.4.5, we obtain that the normalization of (nrm is isomorphic to some minimal
ruled surface F: , and ( is obtained by the projection of (nrm embedded in
P:+2B+1 by the complete linear system | (: + B)f + e|. Since deg(() = = + 1,
= + 1 = : + 2B, we see that B ≤ 1

2 (= + 1). In particular, if = = 2: − 1 is odd
(resp. = = 2: is even), and B = : , we obtain that (nrm � F0 if = is odd (resp. F1
if = is even).
Applying this to our case when - = ((ℓ, �=), we obtain the following:

Proposition 11.2.8. Let ( = ((ℓ, �=) be a general linear congruence of class
= not of type 1 (a). Then,

(̃ �


F0 if � ⊄ �, = is odd,
F1 if � ⊄ �, = is even,
F=+1 if � ⊂ �.

11.3 Quadratic Congruences Without Fundamental Curves

In classical terminology, a congruence of lines o forder 2 is called a quadratic
congruence. In this section, we present Kummer’s classification of quadratic
congruences of lines with isolated fundamental points.

11.3.1 Fundamental points
It follows from Proposition 11.1.16 that

l(̃ � O(̃ (−1). (11.44)

The surface (̃ is a del Pezzo surface of degree = + 2 which is projected to a
surface ( ⊂ P5 of degree = + 2. In particular,

= ≤ 7.

By Proposition 11.1.13

Foc(() = Φ(().

Since the index of ramification of every point of codimension 1 in /̃( is at most



320 Congruences of Lines in P3

two, we have Φ(() = Φ(()sch. Since the sectional genus of a del Pezzo surface
is equal to one, we obtain

6 = 1, A = = − 2, deg(Φ(()) = 4.

It follows from Proposition 11.1.16 that

['(()] = 2�, l' (() � O' (() , �(() ∈ | − 2 (̃ |. (11.45)

We leave it to the reader to deduce the following properties of ( from the
formulas obtained in Subsection 11.1.1.

1. deg( |; |) = 1
2=(= + 1) − 2.

2. multG |; | = 1
2 ℎ(G) (ℎ(G) − 1;

3. deg((%)) = = − 1.
4. multG (%) = ℎ(G) − 1;
5. mult% (%) = 1;
6. Each ray is tangent to Foc(() at two points which coincide at points on a

curve Foc(()0 of degree 2(= + 2).

Proposition 11.3.1. ( has no focal rays.

Proof The asserion is true if = = 2 since a Jacobian Kummer surface does
not contain lines. Assume = > 2. By Lemma 12.2.2 from the next chapter, a
line on the quartic surface Φ(() contains at most three nodes. Therefore, we
can always find a fundamental point G not lying on ℓB . Then, ℓB intersects  (G)
at a ray different from ℓB . Since ℓ is contained in the focal surface, we get a
contradiction. �

Let

Fund((): = {G ∈ Fund(() : ℎ(G) = :}.

I hope that this notation will not confuse the reader with the notation Fund(()0
and Fund(()1 of the one-dimensiuonal and zero-dimensional part of the locus
of fundamental points of (. In our case, Fund(() consists only of isolated
points.
Recall that, for any G ∈ Fund((): , the curve � (G) = Ω(G) ∩ ( is a plane

curve of degree : such that  (G) = R(� (G)). Since each generator of  (G) is
a ray tangent to Φ(() at some point, we have

 (G) ∩Φ(() = 2)G , (11.46)

where )G is a curve of degree 2: . Following the classical terminology, we call
this curve a trope of degree 2: (a trope-conic, a trope-quartic, etc.).
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Let �G be the exceptional curve of the birational map ?̃( : '(() → Φ((). It
consists of points I = (G, B̃) where ℓB is a generator of the cone  (G). We have

?̃−1
( ( (G)) = �G + )̄G , (11.47)

where )̄G is the proper transform of )G in '((). The curve )̄G consists of points
I = (G ′, B̃) ∈ '(() such that G ′ ∈ )G and ℓB is a generator of  (G) that intersects
Φ(() at G ′ with multiplicity two. In particular,

�G ∩ )̄G = {(G, B̃) : B̃ ∈ �((), G ∈ ℓB}.

The ray ℓB here is a tangent line to one of the branches of the trope ) (G) at G. In
particular, we expect that there are ℎ(G) branches and hence #�G ∩ )̄G = ℎ(G).

The projection @̃( maps �G and )̄G isomorphically to the curve �̃ (G) equal to
the pre-image of the generatrix of � (G) = Ω(G) ∩ ( of the cone  (G) in (̃. The
curve � (G) is a plane curve of degree ℎ(G). Since it is birationally isomorphic
to �G , and G is a double rational point, it is a rational curve. In particular, it
is singular if ℎ(G) ≥ 3. The curve �̃ (G) splits under the cover '(() → (̃ into
the union �G + )̄G . We expect that �̃ (G) is a smooth rational curve everywhere
tangent to �(().
Recall that the rays ℓB , B̃ ∈ �((), intersectΦ(() at one point with multiplicity

4, and the intersection points form the curveΦ(()0 of degree equal to 2(= + 2).
Since �(() ∈ |O(̃ (2) |, the curves �̃ (G) intersects �(G), hence �G contains a
point (G, B̃), B̃ ∈ �((). This implies that

Fund(() ⊂ Φ(()0. (11.48)

We know that = − 1 = deg((%)) ≥ multG (%) = ℎ(G) − 1, hence ℎ(G) ≤ =.
If ℎ(G) = =, the linear system of surfaces (%) consists of cones with a singular
point at G. Thus, all focal planes pass through G, obviously absurd. This gives

ℎ(G) ≤ = − 1

Theorem 11.3.2. The number U: of fundamental points of degree : on a
congruence of bidegree(2, =) without fundamental curve is given in Table 11.1
below.

Proof Let ℓ and ℓ′ be two general rays of (. The ruled surfacesR(ℓ) andR(ℓ′)
intersect at deg(() = =+2 rays. Thus, the two surfaces residually intersect along
a curve � of degree (= + 2)2 − (= + 2) = =2 + 3= + 2. If G ∈ � and it does
lie on any common ray, then G is the intersection point of two different rays,
and hence no other ray passes through it. This shows that three general ruled
surfaces R(ℓ),R(ℓ′) and R(ℓ′′) can intersect only at fundamental points of
Foc(() and at 3(=+2)2 points on the common rays (a ray common to two ruled
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(2, 2) (2, 3) (2, 4) (2, 5) (2, 6)� (2, 6)� � (2, 7)

U1 16 10 6 3 1 0 0
U2 5 6 6 4 8 0
U3 2 3 6 0 10
U4 1 0 4 0
U5 1
U6 1∑
U8 16 15 14 13 12 12 11

Table 11.1 Fundamental points of congruences of bidegree (2, =)

surfaces must meet the third). It follows from (11.19) that G is a point of R(ℓ)
of multiplicity ℎ(G). Thus, the intersection curve has multiplicity ℎ(G)2 at G.
Intersecting with the third ruled surface R(ℓ′′), we get

(= + 2)3 = 3(= + 2)2 +
∑

:3U: , (11.49)

where U: is the number of fundamental points G with ℎ(G) = : .
Let G ∈ Fund((): and let ℓ and ℓ′ be two general lines in P3. Then, the

hyperplane section Ω(ℓ′) intersects the plane curve � (G) at : points, hence G
is a point of multiplicity : on R(ℓ′). We also know from Proposition 11.1.8
that G is a point of multiplicity 1

2 : (: − 1) on the curve |ℓ |. Thus, R(ℓ′) and |ℓ |
intersect at G with multiplicity 1

2 :
2 (: − 1). If H ∉ Fund(() is an intersection

of point of R(ℓ′) and |ℓ |, then one of two rays passing through H must be a
common generator of R(ℓ′) and R(ℓ). Thus, all non-fundamental intersection
points of R(ℓ′) and |ℓ | lie on = + 2 rays intersecting ℓ and ℓ′. On each such ray,
the intersection point lies on the remaining = − 1 rays in the plane spanned this
ray and the line ℓ.
This gives us the second equality

#R(ℓ′) ∩ |ℓ | = (= + 2) ( 1
2=(=− 1) + =− 2) = (= + 2) (=− 1) + 1

2

∑
:

:2 (: − 1)U: .

(11.50)
Now, we can find all possible solutions of (11.49).
We know that ℎ(G) ≤ = − 1. If = = 2, this gives U1 = 16.
If = = 3, then (11.50) gives U2 = 5 and (11.49) gives U1 = 10.
If = = 4, then (11.50) gives 30 = 2U2 + 9U3 and (11.49) gives 108 =

U1 + 8U2 + 27U3. The first equality implies U3 = 2 and U1 = 6, hence U1 = 6.
If = = 5, then (11.50) gives 63 = 2U2 + 9U3 + 24U4, hence U3 ∈ {1, 3}. If

U3 = 1, then (U2, U4) = (15, 1) or (3, 2). The second equality gives 196 =

U1 + 8U2 + 27U3 + 64U4 and shows that the solution (15, 1) is impossible and
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U1 = 15. However, by Proposition 12.2.14, a normal quartic surface has at most
16 singular points. Hence, we may assume that U3 = 3. The first equality gives
18 = U2 + 12U4, hence U2 = 6, U4 = 1, and the second one gives U1 = 3.

If = = 6, (11.50) gives

112 = 2U2 + 9U3 + 24U4 + 50U5

and the first equality gives

320 = U1 + 8U2 + 27U3 + 64U4 + 125U5.

If U5 = 2, then
12 = 2U2 + 9U3 + 24U4

gives U4 = U3 = 0, U2 = 6. Equality (11.49) gives a contradiction. Thus, we
may assume that U5 ≤ 1.
If U5 = 1, we get 62 = 2U2 + 9U3 + 24U4 and 195 =. We check all solutions

for U4 ≠ 0 and find that the number of singular points is larger than 16. So,
U4 = 0, and, for the same reason, we get that 2 = 2U2 + 9U3 implies U3 = 6,
hence

U2U1 + 8U2 + 27U3 + 64U4 = 4, U1 = 1.

This corresponds to the column (2, 6)� from the Table.
If = = 6 and U5 = 0, we get

112 = 2U2 + 9U3 + 24U4,

and
320 = U1 + 8U2 + 27U3 + 64U4.

This givesU4 ≤ 4, andwefind that the only possible solution is (U1, U2, U3, U4) =
(0, 8, 0, 4). This gives column (2, 6)� � .
Finally, if = = 7, we get

180 = 2U2 + 9U3 + 24U4 + 50U5 + 90U6,

and
486 = U1 + 8U2 + 27U3 + 64U4 + 125U5 + 216U6.

The first equality implies that U6 ≤ 2, and if U6 = 2, we get U1 > 16. If U6 = 0,
we gain get too many singular points. So, U6 = 1, and we get

270 = U1 + 8U2 + 27U3 + 64U4 + 125U5,

and
90 = 2U2 + 9U3 + 24U4 + 50U5.
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If U5 = 1, then U4 = U3 = 0, U2 = 8, hence the first equality gives U1 > 16.
So, U5 = 0. By enumerating all possible cases, we find the only solution is
U1 = U2 = U4 = 0, U3 = 10. �

Proposition 11.3.3. Let G, G ′ be two fundamental points of ( with ℎ(G)+ℎ(G ′) =
=+0, where 0 > 0. Then, 0 ≤ 2, and there exists a ray of ( containing G and G ′.
If 0 = 2, then the ray is a singular ray corresponding to an ordinary singular
point of (. Conversely, if B ∈ Sing((), then it is an ordinary non-normal
singular point of multiplicity 2 and it contains two fundamental points G, G ′

with ℎ(G) + ℎ(G ′) = = + 2.

Proof Ageneral plane through G and G ′ contains = rays, among them are ℎ(G)+
ℎ(G ′) rays coming from generators of  (G) and  (G ′). So, if ℎ(G) + ℎ(G ′) > =,
the cones must share a ray ℓB . Since the degree of the curve� (ℓB) = Ω(ℓB)∩( is
equal to =+2 and there is only one ray connects G with G ′, we obtain that 0 ≤ 2.
If 0 = 2, then a general plane containing ℓB cuts out ℓB with multiplicity 2. By
Proposition 11.3.1. ℓB cannot be a focal ray. Thus, ℓB is a singular ray whose
pre-image in /̃( is not contained in '((). This shows that B is an ordinary
non-normal singularity of multiplicity two.

�

By inspection of Table 11.1, we get the following.

Corollary 11.3.4. Sing(() consists of 1
2 (= − 1) (= − 2) ordinary non-normal

singular points of multiplicity 2.

Corollary 11.3.5. For any G ∈ Fund((): with : ≤ 3, the cone  (G) is irre-
ducible, hence the curves �G , )G and � (G) are irreducible.

Proof If ℎ(G) = 1,  (G) is a plane, hence it is irreducible. If ℎ(G) ≤ 3, and
 (G) is reducible, then one of the irreducible components of  (G) is a plane,
hence � (G) contains a line as it irreducible components. But Table 11.1 shows
that #Fund(()1 is equal to the number of lines on (̃. �

Proposition 11.3.6. Φ(() is a normal quartic surface birationally isomorphic
to a K3 surface. A fundamental point of ( is a rational double point, and its
enveloping cone contains the cone  (G) of degree ℎ(G).

Proof Suppose Φ(() is irreducible and non-normal. Let Φ(()nrm be its nor-
malization. The pre-image of any fundamental point on Φ(()nrm is a singular
point. We know that the number of them is equal to 18 − =. As we will learn in
Section 12.1, a non-normal quartic surface does not contain so many isolated
singular points.
Let us assume that Φ(() is normal. Then, the projection ?̃( : '(() → Φ(()
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is a birational isomorphism. Since l' (() � O' (() , and @̃( : '(() → (̃ is a
double cover of a del Pezzo surface branched over �(() ∈ | − 2 (̃ |, we obtain
that '(() is birationally isomorphic to a K3 surface. Thus,Φ(() is birationally
isomorphic to a K3 surface. �

The surface '(() is smooth if and only if the branch cover �(() is smooth.
Since all its singular points are rational double points, the curve �(() has only
simple singularities (see Definition 4.2.16). A local equation of the singularity
is I2 + 5 (G, H) = 0, where 5 (G, H) = 0 is a local equation of a simple singularity
of �((). If the latter is of type 0=, 3=, 4=, then the singularity of the surface is
of type �=, �=, �=.

It follows that both Φ(() and '(() ate birationally isomorphic to a K3
surface. Let

c : '̃(-) → '(-) → Φ(()

be a minimal resolution of '(() and hence of Φ((). Of course, we expect that
for a general (, '(-) � '̃(-).
Recall that we also have the Stein factorization of the map @̃(:

'(() → '(() ′→ (̃.

Proposition 11.3.7. The following assertions are equivalent:

(i) �(() is smooth;
(ii) '(() ′ is smooth;
(iii) '(() is smooth.

Proof (i) ⇔ (ii) The double cover '(() ′ → (̃ is given locally by equation
H2 − q(G) = 0, where q(G) = 0 is a local equation of �((). It is smooth if and
only if �(() is smooth.
(ii) ⇔ (iii) If '(() ′ is smooth, then it is isomorphic to '̃((), and hence

'(() � '̃((). Conversely, if '(() is smooth, and '(() ′ is not, then one of the
fibers of '(() → '(() ′ is equal equal to @̃−1

(
(B). Its image in Φ(() is a focal

ray, contradicting Proposition 11.3.1.
�

Definition 11.3.8. We say that ( is a general congruence if the following
equivalent conditions are satisfied:

(i) �(() is nonsingular and the cones  (G), G ∈ Fund((), are irreducible;
(ii) All fundamental points are ordinary double points ofΦ(() andSing(Φ(()) =

Fund(().
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11.3.2 The conjugacy graphs

Following the classical terminology, we say that two fundamental points are
conjugate if they are contained in a ray of the congruence. For example, by
Proposition 11.3.3, two fundamental points G, G ′ with ℎ(G) + ℎ(G ′) ≥ = + 1 are
conjugate.
Let Γ(() be the conjugacy graph of (. Its vertices are fundamental points

and its edges are rays connecting two fundamental points. The singular ray is
a double edge. It comes with a natural labelling of vertices: we mark a vertex
with its degree. The full subgraph with vertices Fund((): will be denoted by
Γ((): .
Let us describe the conjugacy graphs of general congruences of bidegree(2, =)

without fundamental curves.

(2, 2):

For each fundamental point G ∈ Φ((), the cone  (G) is a plane that intersects
Φ(() along the trope-conic)G . A point G ′ conjugate to G lies on)G . This happens
if and only if the image of ?−1

(
()G) (that coincides with the image of ?−1

(
(�G)

in ( intersects the image of ?−1
(
()G′). The surface ( is a del Pezzo surface of

degree 4. It contains 16 lines with the incidence graph pictured in Figure 8.6.3.
This graph is isomorphic to Γ(()1.

(2, 3):

The surface ( is a del Pezzo surface of degree 5. It contains 10 lines and 5
pencils of conics. The subgraph Γ(()1 is the incidence graph of the set of 10
lines. We know from Section 8.5 that this graph is isomorphic to the Petersen
graph from Figure 8.5.1.
The focal surface Φ(() has 5 fundamental points G ∈ Φ(() with ℎ(G) = 2.

The concern  (G) is of degree 2 and it intersectsΦ(() along a trope-quartic )G
with a double point at G. All fundamental points G ′ conjugate to G lie on these
tropes. The image of ?−1

(
()G) on ( is a conic. We have 5 conics from different

pencils that split under the cover '(() → ( and define the trope-quartics. This
shows that the graph Γ(()2 is isomorphic to the complete graph  (5).
It is easy to see that each line on a quintic del Pezzo surface ( is realized as

a section of exactly two conic bundles. This shows that each vertex of Γ(()1 is
connected to two vertices of Γ(()2. Also, each conic bundle has four sections,
hence each vertex of Γ(()2 is connected to four vertices of Γ(()1. In other
words, the incidence graph of the sets of vertices of Γ(()1 and Γ(()2 is of type
(102, 54).

(2, 4):
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The surface ( is a projection of del Pezzo surface of degree 6 from a point
in P6. It contains one singular point B that corresponds to the singular ray ℓB
connecting two fundamental points H1, H2 of degree 3. Six fundamental points
G1, . . . , G6 of degree 2 are conjugate to each of these points. The images of
the exceptional curve �H8 is a plane cubics in Ω(H8) with double point at
B = Ω(H1) ∩Ω(H2). The proper transforms of these cubics in (̃ are two rational
cubic curves '1 ∈ |40 |, '2 ∈ |240 − 41 − 42 − 43 |. They intersect at two points
with the center of the projection contained in a line joining these two points.
The images of �G8 in ( are the projections of six conics on (̃, two from each

conic pencil on (̃. They form the graph Γ(()2 isomorphic to a tripartite graph.
The images of �G , ℎ(G) = 1 are the projections of six lines on (̃. They form the
graph Γ(()1 isomorphic to a hexagon.

1

1 1

1

11

3 32 2

2

22

2

Figure 11.1 Conjugacy graph of a congruence of order = = 4

Projecting from one of the fundamental points of degree 3, we obtain a
birational model of (̃ as the double cover of the plane with the branch curve
equal to the union of three lines and a nodal cubic.

(2, 5)
The congruence ( is a projection of a del Pezzo surface (̃ ⊂ P7 of degree

7 from a line. The surface (̃ has 3 lines representing the divisor classes 40 −
41 − 42, 41, 42, two pencils of conics representing 40 − 41 and 40 − 42, the net of
cubics representing 40, and a web of quartics representing 240 − 41 − 42. They
are the exceptional curves �G over three 3 fundamental points of degree 1, six
fundamental points of degree 2, three fundamental points of degree 3, and one
fundamental point of degree 4
There are three singular rays ℓB1 , ℓB2 , ℓB3 connecting the unique fundamental

point G0 of degree 4 with three fundamental points G1, G2, G3 of degree 3. The
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image of the curves �G8 , 8 = 1, 2, 3 is a plane cubic in the plane Ω(G8) with
singular point at B8 . The image of �G0 is a plane quartic in the plane Ω(G0) that
passes through the singular points B1, B2, B3.

The image of the quartic curve span a 4-dimensional subspace " in P7. The
images of cubics span 3-dimensional subspaces !1, !2, !3. Since the union of
the quartic and a cubic is a hyperplane section of (̃, the subspaces " and !8
intersect along a line. This the line that is projected to a singular point of (.
The center of the projection is a line in " that intersects the lines !8 ∩ " .

4

3 3 3

2

2

2

2

2

2

1

1 1
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.............................................................................................................................................................................

................................................................................................................................................................................................................

Figure 11.2 Conjugacy graph of a congruence of class = = 5

The projection from the fundamental point of degree 4 gives a birational
model of (̃ as a double cover of the plane branched along the union of a 3-nodal
quartic and two lines.

(2, 6)�
The congruence ( is the projection of a del Pezzo surface (̃ � Bl?1 (P2) of

degree 8 in P8 from a plane.
It has a unique fundamental point G0 of degree 5, the image of �G0 in ( is a

plane quintic inΩ(G0). It has six singular points B1, . . . , B6 corresponding to the
singular rays connecting G0 with six fundamental points H1, . . . , H6 of degree
3. The image of �H8 is a cubic in Ω(H8) with singular point at B8 . The image of
�G0 in P8 is a smooth rational quintic curve that spans a linear subspace " of
dimension 5. The images of �H8 is a smooth rational quintic curve that spans a
linear space !8 of dimension 3. The quintic curve is the image in the blow-up
of a conic passing through the point ?1. Together with a cubic represented by
a general line in the plane, they form an anti-canonical divisor. This shows that
" ∩ !8 is a line, the secant line of the cubic spanning !8 The center of the
projection is a plane in " that intersects the six secant lines.
The projection of Φ(() from a fundamental point of degree 5 defines a

birational model of Φ(() as a double cover of P2 branched over the union of
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a rational plane quintic and a line. They are the images of trope )G0 and the
unique trope-conic.

3 3

3

3 3

3

2 2

22

5

1

Figure 11.3 Conjugacy graph of a congruence (2, 6)�

(2, 6)� �
The congruence ( is the projection of a del Pezzo surface (̃ � F0 of degree

8 in P8 from a plane.
It has four fundamental points G1, G2, G3, G4 of degree 4. The rays ℓ8 9 = 〈G8 , G 9〉

are the six singular rays of (. The four trope-octics )G8 have double points at
G 9 , 9 ≠ 8, and pass through eight fundamental points of degree two. The images
of �G8 in ( are plane quartics with nodes at three singular rays ℓ 9: . Their proper
transforms in (̃ are quartics curves &(G8), the images of four conics under the
anti-bicanonical map from F0 → P8.
The eight trope-quartics )H8 pass through all fundamental points of degree

4. The images of �H8 in ( are conics. Their proper transforms in (̃ are conics
'(H8), the image of eight lines in F0 under the anti-bicanonical map, four from
each family of lines. This divides the set of fundamental points into two subsets
{H1, . . . , H4} and {H5, . . . , H8} such that each trope )8 , 8 ≤ 4, passes through the
points H 9 , 9 > 4, and each trope )8 , 8 > 4, passes through the points H 9 , 9 ≤ 4.
The conjugacy graph Γ(() is the join of Γ(()2 isomorphic to a complete

bipartite graph  4,4 and Γ(Φ)4 isomorphic to the complete graph  (4).
The quartic&(G8) (resp. conic '(H8)) spans a 4-dimensional linear subspace

"8 in P8. The six intersection lines "8 ∩ " 9 are in a special position such that
they intersects a plane in P8, the center of the projection P8 d P5.

(2, 7)
The congruence ( is the projection of the Veronese surface (̃ in P9. It has one

fundamental point G0 of degree 6 and 10 singular rays that connect this point
to ten fundamental points H8 of degree 3. The image of �G0 in ( is a 10-nodal
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plane sextic in Γ(G0). Its proper transform in (̃ is a smooth rational sextic, the
image of a conic in P2 under the Veronese map. The image of �H8 in ( is a plane
cubic with one node at one of the singular points of (. Its proper transform in
(̃ is a smooth rational cubic, the image of a line in P2 under the Veronese map.
The conjugacy graph Γ(() is the join of the complete graph Γ(()2 with

Γ(()6.
The surface ( is a projection of (̃ from a 3-dimensional subspace contained

in the linear span of the rational sextic.
The projection of Φ(() from the fundamental point of degree 6 defines

a birational model of Φ(() as the double cover of the plane branched over a
rational plane sextic, . The images of the trope-sextics)H8 are rational quartics
passing through nine nodes of, with a triple point at the remaining node of, .
They are split under the double cover. The sextic branch curve admits a contact
conic (see Section 12.2), this imposes one condition on the sextic.

11.3.3 Confocal congruences
We know that a del Pezzo surface (̃ of degree 2 + = has # (=) pencils of
conics {�C }C ∈P1 , where # (=) = 10, 5, 3, 2, 1, 2, 0 if = = 2, 3, 4, 5, 6� , 6� � , 7,
respectively. For any conic �C , the image R(�C ) of @̃−1

(
(�C ) in P3 is a ruled

surface of degree 2, a quadric surface. If it is smooth, it comes with a choice of
one of the ruling. The rays from this rules is an infinite set of disjoint lines in
P3, in classical terminology, it is a regulus.
Note that the one-dimensional algebraic system of quadrics {R(�C )}C ∈P1 is a

quadratic pencil (see 4.1.4). For any general point G ∈ P3, its pre-image ?̃−1
(
(G)

consists of two points (G1, B1), (G2, B2), and there will be two conics �C1 , �C2
passing through B1, B2 in the pencil, hence two quadrics R(�C1 ),R(�C1 ) passing
though G.
A general ray from a regulus R(�) is touching the focal service Φ(() at

two points. This implies that R(�) ∩ Φ(() is a curve of degree 4 taken with
multiplicity 2. It is a curve of bidegree (2, 2) on R(�), i.e. a curve of arithmetic
genus one. When � varies in a pencil, we obtain a pencil of elliptic curves on
Φ((), its pre-image on the K3 surface '̃(() defines an elliptic fibration.
In fact, the algebraic family R(�C )C ∈P1 is a family of contact quadrics to the

focal surface. We can write its member �C in the form

D2&1 + 2D{&2 + {2&3 = 0,

where [D, {] are homogenous coordinates of C ∈ P1. The equation

&2
2 −&1&3 = 0 (11.51)
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describes the closure of the locus of points G ∈ P3 such that @̃−1
(
(G) consists of

one point. It coincides with the focal surface Φ((). This gives the following.

Proposition 11.3.9. A choice of a pencil of conics in (̃ puts the equation of
Φ(() in the form (11.51)

We expect that &1 ∩ &2 ∩ &3 consists of 8 points, they are the base points
of the quadratic pencil of quadrics R(�C ). They all lie on the quartic curve
&1 ∩&3 along which any R(�C ) is tangent to Φ(().

Let G ∈ Fund((), the image of the exceptional curve ?̃−1
(
(G) on (̃ is either a

section or a line component of a pencil of conics {�C }C ∈P1 , viewed as a conic
bundle (̃ → P1. If it is a section, it defines a base point of the pencil of quadric
surfaces R(�C ).

Proposition 11.3.10. Let {�C }C ∈P1 be a pencil of conics on (̃. Then, the pencil of
quadric surfaces R(�C ) has exactly eight fundamental points as its base points.
If ( is not of type (2, 6)� � , there are two conjugate points G ∈ Fund(()=−1 and
G ′ ∈ Fund(()1 among these eight points. The remaining six fundamental points
are all points from Fund(()3 and points of degree ≤ 2 not conjugate to G ′ .

Proof We will check this case-by-case.
Suppose = = 2. Then, ( � Bl?1 ,..., ?5 (P2). In the corresponding geometric

basis of Pic((), the surface ( has 10 pencils of conics |40 − 48 | and |240 −∑5
8=1 48 + 4 9 |. Since they are all Cremona-equivalent, we may choose one of

them, say |40 − 41 |. The set Fund(()1 corresponds to 16 lines on (. There are
eight lines contained in reducible members of the pencil. They represent 48 , 8 ≠
1, 40− 41− 4 9 . The remaining 8 lines representing 41, 40− 48 − 4 9 , 240−

∑5
8=1 48

are sections of the conic bundle. We may choose G corresponding to ; (G) ∈ |41 |
and G ′ corresponding to ; (G ′) ∈ |240 −

∑5
8=1 48 |. Since ; (G ′) does not intersect

the six lines representing 40 − 48 − 4 9 , we see that the corresponding points
from Fund(()1 are not conjugate to G ′.
Suppose = = 3. Then, ( � Bl?1 ,..., ?4 (P2). In the corresponding geometric

basis of Pic((), the surface ( has 5 pencils of conics |40−48 | and |240−
∑4
8=1 48 |.

Without loss of generality, we may choose one of them, say |40 − 41 |. The set
Fund(()2 corresponds to 5 conics �1, . . . , �5 from different pencils of conics.
Four of them �1, �2, �3, �4 ∉ |40 − 41 | are sections of the conic bundle.
The set Fund(()1 corresponds to 10 lines ;1, . . . , ;10. Four lines ;1, ;2, ;3, ;4
representing 41, 40 − 48 − 4 9 , 8, 9 > 1, are line sections of the conic bundle.
All together we found 8 sections represented by fundamental points of (. We
choose G corresponding to �4 ∈ |240 −

∑4
8=1 48 | and G ′ corresponding to the

line ;4 ∈ |41 |. The three lines ;1, ;2, ;3 and the four conics �1, . . . , �3 do not
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intersect ;. So, we have found 8 fundamental points satisfying the assertion of
the proposition.

Suppose = = 4. Then, (̃ � Bl?1 ,..., ?3 (P2). In the corresponding geometric
basis of Pic((̃), the surface (̃ has three pencils of conics |40 − 48 |. Without
loss of generality, we may choose one of them, say |40 − 41 |. The set Fund(()3
corresponds to two rational cubic curves '1, '2 from |40 |. Both of them are
sections of the conic bundle. The set Fund(()2 corresponds to the set of six
conics �8 , � ′8 ∈ |40 − 48 |, 8 = 1, 2, 3. Four of them �2, �

′
2, �3, �

′
3 are sections

of |40 − 41 |. Other two sections of |40 − 41 | are defined by two lines ;1, ;2
representing 40 − 42 − 43, 41. Thus, we have altogether 8 sections defined by
'1, '2, �2, �

′
2, �3, �

′
3, ;1, ;2. Wemay choose G ∈ Fund(()3 corresponding to '1

and G ′ ∈ Fund(()1 corresponding to ;1. The line ;2 and the conics�2, �
′
2, �3, �

′
3

do not intersect, and hence define fundamental points of degree one or two that
are not conjugate to G ′. So, the assertion is checked.

Suppose = = 5. Then, (̃ � Bl?1 , ?2 (P2). There are two pencils of conics
|40 − 41 | and |40 − 42 |. We may assume that our pencil is |40 − 41 |. It has
8 sections defined by fundamental points represented by the line ; from |41 |,
conics �1, �2, �3 ∈ |40 − 42 |, cubics '1, '2, '3 from |40 |, and the rational
quartic & from |240 − 41 − 42 |. We choose G to be unique point from Fund(()4
corresponding to & and G ′ ∈ Fund(()1 to be the point corresponding to ;.

Using the conjugacy graph fromFigure 11.3we check the rest of the assertion.

Suppose = = 6 and the congruence is of type (2, 6)� . Then, (̃ � Bl?1 (P2).
There is only one pencil of conics |40 − 41 |. It has 8 sections defined by
fundamental points. They are defined by one line in (̃ representing 41, one
rational quintic from |240 − 41 | and all six rational cubics from |40 |. The choice
of G and G ′ is obvious, and we leave it to the reader to verify the remaining
assertion.

If = = 6 and (̃ � F0, we have two pencils of conics corresponding to two
rulings ofF0.We choose one of them as a pencil of conics. The four fundamental
points of degree 2 corresponding to the other pencil come from four sections
of the pencil. Other four sections are defined by the four quartics equal to the
images of four conics under the Veronese map F0 → (̃ ⊂ P8. They define four
fundamental base points of degree 4. Altogether we found eight fundamental
base points.

�

Remark 11.3.11. One can describe the quadratic pencil of contact quadrics as
follows. We know that among the eight base fundamental points, there are two
distinguished points G ∈ Fund(()=−1 and G ′ ∈ Fund(()1 uniquely characterized
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by the property that other six base fundamental points are not conjugate to G ′.
Let Ω(G,  (G ′)) be the pencil of lines in the plane  (G ′) with base point G and
ℓB = 〈G, G ′〉. For any lineΩ(G,  (G ′)), the special hyperplane section (∩TΓ (G)
is of degree = + 2, and it contains an irreducible component of degree = − 1
of rays passing through G and an irreducible component of degree 1 of rays
passing through G. The residual component is a conic. So, varying ℓ in the
pencil, we obtain a pencil of conics on (.

Corollary 11.3.12. A pencil of conics {�C }C ∈P1 on ( divides the set of 18 − =
fundamental points in three disjoint subsets: eight base points of the quadratic
pencil {&C }C ∈P1 , 2(6−=) points corresponding to line-components of reducible
conics in the pencil, and = − 2 vertices of singular irreducible quadrics R(�C ).

Proof A pencil of conics on a del Pezzo surface - of degree 3 has 8 − 3
reducible members. This can be verified in each case, or one can use that the
Euler-Poincaré characteristic 4(-) is equal to 4(P2) + 9 − 3 = 12 − 3, and
formula (8.26) for the Euler-Poincaré characteristic of a fibered surface gives
12 − 3 = 4 + # , where # is number of reducible conics. This implies that
# = 8− 3. Applying this to our case 3 = 2+=, we obtain that there are 2(6−=)
line components of reducible conics. They define 2(6 − =) fundamental points
of degree one different from the base fundamental points. The pencil of conics
has = − 2 smooth members which define fundamental points G1, . . . , G=−2 of
degree two corresponding to conics �1, . . . , �=−2 from the pencil that split
under the double cover '(() → (. The exceptional curves �G8 are contained
in @̃−1

(
(�8), and the image of @̃−1

(
(�8) is a quadric cone with vertex at @8 . �

Definition 11.3.13. Two congruences of lines with the same focal surface are
called confocal congruences.

Let {�C }C ∈P1 be a pencil of conics.We know that it defines a pencil of quadric
surfaceR(�C ) = {&C }C ∈P1 in P3 which comes with a choice of a regulus on each
smooth quadric. The other ruling of R(�C ) defines a complementary regulus.

Lemma 11.3.14. The closure of the set of complementary reguli of smooth
quadrics &C form a confocal congruence of the same bidegree.

Proof We know that a general generator 61 of the regulus of &C is a ray of (
that is tangent to Φ(() at two points. Through each point passes one generator
6′1 of the complementary regulus. The plane spanned by 61 and 6′1 is tangent to
Φ(() at the intersection point. This implies that 6′1 is also tangent to Φ(() at
this point. So, 6′1 is tangent to Φ(() at two points, and hence these rays form a
confocal congruence isomorphic to (.

Since through each point on a ray from the first regulus passes a unique ray
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from the complementary regulus, the orders of the two congruences are equal.
A similar argument shows that their classes are equal. �

Let G ∈ Fund(()=−1 and � (G) be the corresponding plane curve of degree
= − 1 equal to the image of the trope curve )G on (. We know that, if = ≥ 3,
it is a rational plane curve of degree = − 1 in Ω(G) with singular poinst at the
singular points of (. A hyperplane section of ( containing the planeΩ(G) has a
rational cubic curve as the residual curve. Thus, G defines a net N(G) of cubic
curves on (̃. It belongs to the net | −  (̃ − �̃ (G) |, where ˜� (G) is the proper
transform of � (G) on (̃. We can also see these cubics as the residual curves of
the intersection Ω(ℓ) ∩ (, where ℓ is a ray passing through G.
If (̃ � Bl?1 ,..., ?7−= (P2), and �̃ (G) ∈ |:40 −

∑7−=
8=1 :848 |, where 0 ≤ :8 ≤ 1

and 3: −∑7−=
8=1 :8 = = − 1, then the net of rational cubic curves is | (3 − :)40 −∑7−=

8=1 (1 − :8)48 |. For example, if = = 4, the net is |40 | and ( contains two
fundamental points of degree 3, one of them is G and another belongs to the
residual net of cubics.

Lemma 11.3.15. Let G ∈ Fund(()=−1 and suppose that the cubic � (G) is
contained in N(G). Let � ∈ | −  (̃ − �̃ (G) | be the residual rational cubic.
Then, the union of rays ℓB , B ∈ �, is a cubic ruled surface R(�) in P3 which
is tangent to the focal surface. The unique line directrix of R(�)) is tangent to
Φ(() and the closure of the union of these directrices for all residual cubics �
fis a congruence of lines of bidegree (2(= − 2), 1

2=(= − 1)).

Proof A generator of R(�) is a ray of (, hence it is tangent to ( at two points.
It also passes through the double point G of Φ((). Thus, it intersects ( at three
points with multiplicity 2. This implies that the ruled surface R(�) is tangent
to Φ(() along a curve of degree 6. We know that a cubic ruled surface has a
unique line directrix, the image of the exceptional section of F1.

Each directrix passing through the intersection point of R(�) with Φ(() is
tangent to Φ(() at this point. Hence, it is tangent to Φ(() at two points, and
hence, the set of the directrices is a congruence of lines.

�

Proposition 11.3.16. Assume that ( is not of type (2, 6)� . Then, ( is contained
in a tetrahedral quadratic line complex T.

Proof Let G1, G2, G3, G4 be four points in P3 in a general position meaning that
they can be realized as the vertices of a tetrahedral ) with vertices G1, . . . , G4.
We know from Subsection 10.4.5 that there exists a map 5 : P3 → G ⊂ P5

whose image is the tetrahedral line complex T. The map is defined by a linear
system of quadrics |OP3 (2) − G1 − · · · − G4 | and depends on a choice of a pencil
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of quadrics Q whose base locus is a smooth quartic curve. Let & be a smooth
quadric in P3 passing through a subset Σ of cardinality 1 ≤ : ≤ 4 of the set of
the vertices of ) . The restriction of 5 to & defines a map

5 : BlΣ (&) →  ⊂ G ⊂ P5.

Now, we use that a del Pezzo surface (̃ of degree = + 2 ≤ 8 different from the
blow-up of one point in P2 is isomorphic to the blow-up of 6− = points on& in
a general position. It is obvious for = = 6 since (̃ � & in this case. For = < 6,
we have (̃ � Bl?1 ,..., ?7−= (P2), so we can isolate two of the points, say ?1, ?2,
and then the linear system |OP2 (2) − ?3− · · · − ?7−= | will define a map P2 d &

that can be extended to an isomorphism (̃ � BlΣ (&), where Σ is the image of
the points ?3, . . . , ?7−= and the image of the line 〈?1, ?2〉.

In fact. we see that a choice of Σ shows that the congruence ( is contained
in

( 4
6−=

)
tetrahedral complexes. Also, observe, that in the case when = = 2, the

quadric & belongs to the linear system |OP3 (2) − G1 − · · · − G4 |, and hence the
image of & lies in a hyperplane of P5. �

Corollary 11.3.17. The number of moduli of congruences ( of class = ≤ 6 and
not of type (2, 6)� is equal to = + 1.

Proof This is well-known for = = 2 and can be seen in many ways. Congru-
ences of class 2 are quartic del Pezzo surfaces. They depend on two moduli
and one has also make a choice of a smooth quadric containing it in its anti-
canonical embedding. This gives 3 moduli. Another way to see it is to use that
Kummer quartic surfaces depend on 3 parameters, and each surface defines six
congruences of bidegree (2, 2).

Suppose ( is not of type (2, 6)� . Then, we can apply the previous Proposition
and see that the dimension of the space of quadrics passing through 6−= vertices
of ) is equal to 9− (6− =) = 3 + =. We also have a choice for a pencil Q which
we used to define the map 5 . It depends on one parameter, the cross-ratio of the
set of four singular quadrics inW. Finally, we use that the automorphism group
of P3 leaving invariant the tetrahedron ) is a 3-dimensional torus. We have to
subtract 3 from 4 + = to get = + 1. Thus, we have found a = + 1-dimensional
irreducible family subvariety of the moduli space. We will show in the next
section that the dimension of any irreducible component of the moduli space
of `-nodal quartic surfaces is equal to 19 − `. Since the focal surface of ( has
18 − = nodes. and each ( is an irreducible component of its bitangent surface,
we find that the number of moduli cannot exceed 19 − (18 − =) = = + 1. �

Remark 11.3.18. Assume now that = = 6 and (̃ � F1. We have to argue differ-
ently. We know from Corollary 8.3.7 that (̃ is contained in a 19-dimensional
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linear system of quadrics. By Theorem 2.4.19, the subvariety of quadrics whose
singular locus contains a plane is of codimension 6. Fixing a plane in P8, we
get 6 conditions for a quartc to have this plane contained in its singular locus.
This shows that there is a variety of planes in P8 of dimension 19 − 12 = 7
such that there exists a quadric with singular locus containing this plane. Pro-
jecting (̃ from a general such plane, we find that the image of the projection
is contained in a smooth quadric in P5. After identifying this quadric with the
Grassmannian G, we obtain that this surface is a congruence of type (2, 6)� .
So, we have ≤ 7 = = + 1 moduli.

If = = 7, a similar computation shows that the number of moduli ≤ 26−10−
10 = 6. We will return to this in the next section.

Theorem 11.3.19. The bitangent surface Bit(Φ(()) is always reducible.The
number of irreducible components and their bidegrees is given in Table 11.2
below.

= bidegree Number

2 (2, 2) 6
(0, 1) 16

3 (2, 3) 6
(0, 1) 10

4 (2, 4) 4
(0, 1) 6
(4, 6) 1

5 (2, 5) 4
(0, 1) 3
(6, 10) 1

6� (2, 6) 2
(0, 1) 1
(8, 15) 1

6� � (2, 6) 3
(6, 10) 1

7 (2, 7) 1
(10, 21) 1

Table 11.2 Irreducible components of Bit(Φ(())

Proof We do each case separately.

(2, 2)
TheKummer surfaceΦ(() has 10 pencils of conics. They are divided into two

complementary parts in a hyperplane section of (. If we choose an isomorphism
( � Bl?1 ,..., ?5 (P2), the pairs of pencils are |40− 48 | and |240− 41−· · ·− 45 + 48 |.
Two general members � and � ′ of the complementary pencils intersect at
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two points. It is immediate to see that base points G, G ′ of base points from
Proposition 11.3.10 are also the base points of the complementary pencils.
This implies that the set of fundamental base points of the quadratic pencils
corresponding to the complementary pencils of conics coincide. From this,
we can easily deduce that the quadratic pencils coincide. Hence, ten pencils of
conics on ( define only five confocal correspondences. Since 6(2, 2)+16(0, 1) =
(12, 28), we see that there are six irreducible components of Bit(Φ(()).
We can see the six congruences of bidegree (2, 2) associated to a quartic

Kummer surface in a different way. Let S3 be the Segre cubic primal and
? : S3 d P3 be the projection from one of its nonsingular point G. The branch
surface Φ of the projection map of degree 2 is a quartic surface with 16 nodes.
Ten of them are the projections of the nodes of S3, the remaining 6 nodes are
the projections of the lines passing through G. This identifiesΦwith a Kummer
surface (see Exercise 10.14). In fact, one can show that this is the Kummer
surface Kum(� (�)), where � is a genus two curve associated with 6 points
corresponding to G under an isomorphism from P6

1 → S3 (see Section 9.5
It is known that the Fano surface � (S3) of lines of S3 consists of 15 planes

and 6 surfaces �8 ⊂ �1 (P4) isomorphic to quintic del Pezzo surfaces [250]
(see Exercise 10.15). Under the map P3 d S3 given by quadrics through five
points ?1, . . . , ?5, they are the images of lines through ?8 and the twisted cubics
through ?1, . . . , ?5. The center of the projection G is contained in six lines ℓ8 ∈
�8 , 8 = 1, . . . , 6. The image of each �8 under the projection�1 (P4) d �1 (P3)
from the 3-dimensional linear Schubert subvariety Ω(ℓ8) of P9 is a congruence
of lines (8 of bidegree (2, 2). Each ray of (8 is equal to the projection in P3 of a
line in S3. This line is a bitangent line of Φ((). This gives another explanation
of the fact that Bit(Φ) has six irreducible components isomorphic to del Pezzo
surfaces of degree 4.

(2, 3)

In this case, ( has five pencils of conics, and the points G ∈ Fund(()2 and
G ′ ∈ Fund)()1 associated with each pencil cannot be interchanged. So, we have
five confocal congruencies of bidegree (2, 3), and since 6(2, 3) + 10(0, 1) =
(12, 28), all irreducible components of Bit(Φ(()) are accounted for. We refer
for mode detailed geometry of these components to [255].

(2, 4)

In this case, (̃ � Bl?1 , ?2 , ?3 (P2) has three pencils of conics. Together with
(, we obtain four confocal congruences of bidegree (2, 4). We also have two
fundamental points of degree 3, and each defines a confocal congruence of line
directrices of a cubic ruled surface associated to the net of rational cubics on
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(. By Lemma 11.3.15, the bidegree of this congruence is equal to (4, 6). Since
4(2, 4) + (4, 6) + 6(0, 1) = (12, 28), all irreducible components of Bit(Φ(())
are accounted for.

(2, 5)
In this case, (̃ � Bl?1 , ?2 (P2) has two pencils of conics and Fund(()3 consists

of three points. By Lemma 11.3.15, the congruence defined by the fundamental
point of degree 3 is of bidegree (6, 10), so we have 3(2, 5) + (0, 3) + (6, 10) =
(12, 28), so all irreducible components of Bit(Φ(()) are accounted for.

(2, 6)�
The surface (̃ is isomorphic to F1 � Bl?1 (P2). It has one pencil of conics and

six fundamental points of degree 3. The bidegree of the congruence defined by
any of these points is equal to (8, 15). So 2(2, 6) + (0, 1) + (8, 15) = (12, 28),
hence all irreducible components of Bit(Φ((()) have been found.

(2, 6)� �
In this case, (̃ � F0, hence it has two pencils of conics (in the Plücker space)

but no rational cubics. The bidegree of the residual part of Bit(Φ(()) is equal
to (12, 28) − 3(2, 6) = (6, 10). Since there are no lines on (̃, we have to prove
that the part of bidegree (6, 10) is irreducible.

We know from Proposition 11.3.16 that ( is contained in a tetrahedral line
complex T equal to the image of P3 by a linear system of quadrics passing
through its vertices defined by a choice of a pencil of quadrics. Let �8 be the
intersections of the faces of T with &. Their images are quartic curves with
three singular points equal to the images of the edges of T contained in the
face. The images of the faces are four U-planes of the Grassmannian G which
contain the quartics. So, we realize the vertices of ) as the four fundamental
points of ( of degree 4.

Let H1, . . . , H4 and H′4, . . . , H
′
4 be the set Fund(()2, where H8 , H

′
9
are conjugate

fundamental points. We know that the four quadric cones  (H8) pass through
eight fundamental points G1, . . . , G4 and H′1, . . . , H

′
4. This implies that the linear

system of quadrics spanned by these cones is a net N of quadrics with eight
base points. We know that the set of lines contained in some quadric from the
net form a cubic line complexℭ (theMontesano complex from Exercise 10.16).
Any line containing a base point of the net is contained in a quadric from the
net, hence it is a ray of the Montesano line complex. The intersection ( ∩ ℭ
contains the four quartic cones  (H8), and four quadric cones  (H′

8
) of total

degree equal deg(( ∩ ℭ = (2f1,1 + 6f2) · 3f1 = 24, we get ( ⊂ ℭ, as soon
as will find another ray contained in the intersection. Take a ray ℓ = 〈G8 , H′9〉.
Since Ω(ℓ) contains  (G8) and  (H′8), the residual curve is a conic � The ray
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ℓ is also contained in a pencil of quadrics from N , its base locus is the union
of ℓ and a rational cubic curve. This curve intersects R(�) and the generator
of R(�) coincides with the ray in ℭ passing through the intersection point.
Replacing H′1, . . . , H

′
4 with H1, . . . , H4, we obtain another net of quadrics and

another cubic line complex ℭ′ containing (. The intersection  ∩ ℭ =  ∩ ℭ′
is a congruence of bidegree (6, 6), it contains four U-planes Ω(G8) and the
residual part is our congruence (.

Now, after revealing such a beautiful geometry of a congruence of type
(2, 6)� � , we are ready to prove that the residual part of Bit(() is irreducible.
Let Π be a general plane in P3. It intersects the quadric & along a conic,

and its image 5 (Π ∩ &) is a quartic W ⊂ (. We know from Subsection 10.4.5
that the image 5 (Π) is the congruence of bidegree (1, 3) of secant lines of a
rational cubic curve 'Π. The ruled quartic surface R(W) has the curve 'Π as
its double curve. We know from the subsection 10.4.5 that there are two types
of such ruled surfaces, Types I and Types II(B) in Edge’s notations. Type II(B)
surfaces form a subfamily of codimension one of the family of surfaces of type
I, they are distinguished by the property that there exists a line directrix.
More explicitly, the equations at the very end of the subsection show that

quartics of Type I are the pre-images of the conics under the map given the net
of quadrics containing 'Π. One can find an explicit quadratic relation between
the coefficients of the conic such that its pre-image is a quartic ruled surface of
type II(B).
Thus, we have an irreducible variety of plane sections � of & such that

the ruled surface R(W) admits a line directrix. Since R(�) is touching Φ(()
everywhere, the line directrix is tangent to Φ(() at two points, and hence
belongs to Bit(Φ(()). The closure of such line directrices defines an irreducible
component of the bitangent surface. congruence of (.

It remains to compute its bidegree. In fact, it is enough to prove that its class
is equal to 10 since Bit(Φ(()) has no U-planes Ω(G) (otherwise, the projection
from G defines a finite map Φ(() → P2 everywhere ramified).
Let ℓ be a line directrix of some quartic ruled surfaceR(W). The ruled surface
R(ℓ) of degree 8 contains R(W) and another quartic ruled surface of the same
type II(B). A plane Π containing ℓ contains 6 = 3 + 3 generators of both ruled
surfaces. Each subset of three defines a planeΠ such thatΠ∩& defines a quartic
ruled surface with a line directrix. Thus, we have 1

2
(6
3
)
= 10 paired quartics

with the same directrix contained in Π. So, the class of the congruence of the
line directrices is equal to 6.

(2, 7)
In this case, (̃ is a Veronese surface in P9. It has one net of rational cubics,
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the images of lines in the plane under the Veronese map. The bidegree of the
corresponding confocal congruence is (10, 21). So (2, 7) + (10, 21) = (12, 28),
and we have only one irreducible component besides the confocal congruences.

�

Remark 11.3.20. In this remark wewill explain that the dual of the congruences
of bidegrees (2, 5), (2, 6)� and (2, 7) are special cases of a certain construction
of congruences of lines due to Caporali [83]. Let, be a web of plane curves of
degree 3withwith ordinary base points ?1, . . . , ?A ofmultiplicities<1, . . . , <A .
Let 5, : P2 d ,∗ be the rational map defined by , . We assume that it is
of degree 1, so its image is a surface Σ of degree # = =2 − ∑A

8=1 <
2
8
. Fix an

isomorphism,∗ � P3 and also fix an isomorphism 8 : P2 → Π0 to a plane in
,∗. We will identify P2 with Π0 and ,∗ with P3. Thus, , defines a rational
map 5, : Π0 → Σ and we define a congruence of lines (, equal to the closure
of the lines 〈G, 5, (G)〉, where G ∉ {G1, . . . , GA }.
Let us compute the bidegree of (, . LetΓ be the graph of the rationalmap 5, .

We can compute its mulidegree defined in Subsection 7.1.3. Since the image of
a general line inΠ0 is a curve of degree =, and the pre-image of a hyperplane Its
cohomology class in P2 × P3. In a basis (ℎ0

1ℎ
3
2, ℎ1ℎ

2
2, ℎ

2
1ℎ2) of �3 (P2 × P3,Z),

the cohomology class of Γ is equal to (1, 3, #). The 3-dimensional subvariety
- (?) of points (G1, G2) ∈ P2 × P3 such that the line 〈G1, G2〉 passes through a
fixed point G has the cohomology class (ℎ0

1ℎ
2
2 + ℎ1ℎ2 + ℎ2

1ℎ
0
2. Intersecting [Γ]

with [- (?)] we get < = 3 + # + 1.
Let Π be a general plane in P3. It intersects Π0 along a line ℓ. Consider the

subvariety of P2 × P3 of points (G1, G2) ∈ ℓ × Π. Its cohomology class is equal
to ℎ1ℎ2. Intersecting it with Γ we obtain that = = 3.
Let � = Π0 ∩ Σ and �0 be a curve in , that corresponds to Π0 under our

identification, with P̌3. Then, the rays 〈G, 5, (G)〉, G ∈ �0 lie in Π0. The form
a curve in Π̌0 of degree # + 3. To see this, we take a general pencil of lines
in Π0 with a base point G0. It cuts out in �0 a linear pencil 61

3
and cuts in � a

linear pencil 61
#
. They can be identified with linear pencils on their isomorphic

normalizations �nrm. The image of the map �nrm → P1 × P1 given by the
two pencils is a curve of bidegree (3, #), and its intersection number with the
diagonal is equal to # + 3. This is the number of lines ℓ through G0 such that
ℓ ∩ � and ℓ ∩ �0 contain a pair of points G and G ′ = 5, (G).

We will be interested in the dual congruences (∗
,
. Its bidegree is equal

to (3, #3 + 1) and, by above, they contain a fundamental point of degree
# + 3. Obviously, (, and (∗

,
are rational surfaces. The plane Π0 defines a

fundamental point on (∗
,

of degree # + 3.
Now, let us specialize.
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Assume 3 = 2 and consider the dual congruence (∗
,

of bidegree (2, # + 3).
Since # = 4 −∑3

8=1 <
2
8
, we get # = 1, 2, 3, 4, hence the class = of (∗

,
is equal

to 4, 5, 6, 7.
Assume # = 4, i.e., has no base points. The surfaceΣ is a Steiner quartic

surface, a projection of the Veronese surface to P3. We discussed these surfaces
in Subsection 2.1.1. Themap 5, : P2 → Σ can be identified with the projection
map. The double curve on P2 is the union of three concurrent lines. The
congruence (∗

,
has one fundamental point of degree 6. It corresponds to the

triple point of Σ. It has no fundamental curves. We know that a congruence of
bidegree (2, 7) without fundamental curves is isomorphic to a projection of the
third Veronese surface of P2 to G ⊂ P5. It has ten isolated singular points and
10 more fundamental points of degree 3. The ten fundamental points of degree
3 correspond to 10 fundamental planes in (, .

Let us see these fundamental planes in (, . They correspond to ten nets in,
with two base points. Such a net in, defines a net of planes in P3 whose base
point G lies on one of the three double lines Γ8 of the Steiner surface Σ. The
pre-image of this point is the pair of base points H, H′ of the net. The pencil of
planes containing Γ8 correspond to a pencil in, with the base line 〈H, H′〉 and
the residual lines are the pre-images of conics on Σ. A special net corresponds
to the case when the line 〈H, H′〉 is contained in the plane spanning the conic.
Such a plane is one of the fundamental planes of (, . We refer to [735, Tiele
2, Nr. 454] for showing that there are indeed 10 such planes.
If # = 3, i.e. , has one base point ?1, the congruence (, is of bidegree
(6, 2). Its normalization is isomorphic to Bl? (P2) � F1, and it contains one
fundamental plane of degree 5. Its dual congruence (∗

,
is isomorphic to the

congruence (2, 5)� without base curves.
If # = 2, i.e. , has two base points ?1, ?2, the congruence (, is of

bidegree (5, 2). Its normalization is isomorphic to Bl?1 , ?2 (P2), and it contains
one fundamental plane of degree 4. The dual congruence (∗

,
is a congruence

of bidegree (2, 5) without fundamental curves.

11.4 Quadratic Congruences With a Fundamental Curve

In this section, following Kummer [473] and [735, Theil 2], we will classify
quadratic congruences with a fundamental curve.
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11.4.1 Kummer’s examples
Let ( be a congruence of bidegree (<, =). If = = 0, this is a V-plane. If = = 1,
it is dual to a congruence of bidegree (1, 2). So, we may assume that = ≥ 2.
Let � = Fund(()1 be the fundamental curve of (. Applying Corollary

11.1.17, we have the following possible types of congruences:

(I) � is irreducible and a general ray intersects � at two points, the focal surface
Φ(() is ruled by focal rays of (.

(II) � consists of two irreducible components and a general ray intersects each
at one point, the focal surface Φ(() is ruled by focal rays of (.

(III) � is irreducible and a general ray intersects � at one point and is tangent to
the focal surface Φ(().

Let us give an example of a congruence of lines of each type (see [473]).

Example 11.4.1. 1 This is an example of a congruence of Type (I), where the
fundamental curve � is an elliptic quartic curve embedded in P3 by a complete
linear system of degree 4. Consider the congruence of secant lines of �. Since
the projection of � from a general point G is a plane quartic curve �4 of genus
one, G is contained in two secant lines that are projected to two double points
of �4. This shows that < = 2. Since a general plane intersects � at four points,
the class of ( is equal to

(4
2
)
= 6. The surface ( is a smooth surface of degree 8

in P5 isomorphic to the symmetric product � (2) . The map

c : ( → Pic2 (�) � �, {G, H} → [G + H],

defines a structure of an elliptic ruled surface on (. Let |�( (2) | be the pencil of
quadrics containing �, and � → |�( (2) | be its double cover obtained by fixing
a ruling on a quadric from |�� (2) |. Its branch divisor consists of four singular
quadrics &1, . . . , &4. Each secant line chooses a unique quadric from |�( (2) |
containing it and its ruling containing it as a generator. All secant lines from
the same ruling of the quadric are linearly equivalent divisors. This identifies
Pic2 (�) with the curve �.
Let �? be the curve on ( parametrizing secant lines passing through a

point ? ∈ � . It is a section of the projective bundle c : ( → �. Since
�? ∩ �@ = 〈?, @〉, we obtain [� (?)] · [� (@)] = 1. This is also true for ? = @.
It follows from [13, Chapter VII, §2] that

( = � (2) � P(E?),

with OP(E?) (1) � O( (�?). The formula (2.29) for the canonical class of a

1 Lehrsatz VII from [473].
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projective bundle gives

l( � c
∗ det(E?) ⊗ O( (−2�?).

By the adjunction formula,l(⊗O�? � O�? (−�?). Thus, det(E?) � 8∗?O�? (�?),
where 8? : � → ( is the section defined by �? . In particular, we obtain that
deg(det(E?)) = 1.
The section 8? describes the rank two bundle E? as an non-split extension

0→ O� → E? → 8∗?O�? (�?) → 0.

The locally free sheaf E? depends on ?, replacing ?with some other point @, we
see that the linear systems |c∗ det(E) ⊗ O( (2�?) | and |c∗ det(E@) ⊗ O( (2�@) |
coincide. Each defines an embedding

( ↩→ P5

whose image is a surface of degree < + = = 8. The fibers of the ruled surface
go to conics parametrizing the rulings of quadrics in the pencil |�� (2) |.
A hyperplane section � of ( satisfies �2 = 8, � ·  ( = −4. It follows that

?0 = 6 = 3, A = 2.

The focal surface Φ(() is the union of four cones &1, . . . , &4 in the pencil
|�� (2) |. In this case, '(() = '(()1,1, that is the focal surface is swept by focal
rays. The vertices of the cones are isolated fundamental points of ( of degree 2.
We have deg(Φ(()) = 8 = 2< + 2?0 − 2 that agrees with Proposition 11.1.20.
The correspondence

� = {(B, ?) ∈ ( × � : ℓB ∈ �?}

is a double cover of ( branched over the curve ) (�) of rays tangent to �. It
is a 4-section of the projective bundle. In the familiar picture of the surface
of secant lines of � considered as the symmetric product � (2) , the projection
� → ( corresponds to the projection �2 → � (2) .

Example 11.4.2. This is a degeneration of the previous example; we take �
to be an irreducible quartic of arithmetic genus one with one double point.
Kummer does not discuss this degenerate case. Instead of the four cones in the
pencil |�� (2) |, we have only three cones&1, &2, &3, one of them, say&1, has its
singular point at the singular point ?0 of �. The congruence ( is singular along
the conic  of generators of this cone. So, this is an example of a non-normal
congruence of lines.
The sections � (?), ? ≠ ?0, are now rational cubicswith a double point on the

conic �. The normalization (̃ � (nrm is a ruled surface over the double cover
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� of |�� (2) | � P1 ramified over the cones &2, &3. The curve � is isomorphic
to the normalization of the curve � (?).

The rank of ( is still equal to 2, the proof is the same as in the nonsingular
case. Hence, ?0 = 3 but the geometric sectional genus now is equal to one.
The sections � (?) now are plane cubics with singular point at the double
conic. They intersect at one nonsingular point. Their pre-images in (nrm = (̃

are sections � of a rational minimal ruled surface intersecting at one point.
Let us identify ℎ with its pre-image in (̃. As in the nonsingular case, we get
ℎ = f+2[�], where f is the divisor class of a generator. Since 8 = ℎ2 = 4+4�2,
we get �2 = 1. Writing [�] = 0f + e, where e is the class of the exceptional
section with e2 = −=, we get 1 = �2 = 0 + � · e. This gives 0 = 1, � · e = 0.
This could happen only if = = 1 and � ∈ |f + e|.

Note that the focal surface of ( is the union of the cones&1, &2, &3. However,
the cone &1 enters into Φsch with multiplicity 2. In particular, '(()0,1 is not
reduced. The singular points of &2, &2 are isolated fundamental points of
degree two.

Example 11.4.3. 2 This is again a degeneration of Example 11.4.1: we take
� to be the union of two smooth conics �1 and �2 intersecting at two points
?1, ?2. We assume that ?1 ≠ ?2 and let the reader modify the discussion in
the case the conics have a common tangent at the intersection point. Note that
another special case, where � is the union of a line and a twisted cubic, leads
to a congruence of order one.
Let Π1 and Π2 be the planes spanned by the conics. They intersect along the

line ℓ0 = 〈?1, ?2〉. It is clear that the join congruence � (�1, �2) is of order 4 and
class 4. It is reducible and contains U-planes Ω(?1) and Ω(?2). The residual
part is our congruence of bidegree (2, 4).
The pencil |��1+�2 (2) | of quadrics containing the union �1 + �2 contains two

singular quadrics &1 and &2 of corank 1 and one reducible quadric Π1 + Π2.
The fundamental curve is the union �1+�2. A general point on the fundamental
curve is of degree 2. However, the points ?1 and ?2 are of degree 3. The cone
of rays  (?8) consists of three planes Π1,Π2, and 〈T?8 (�1),T?8 (�2)〉. There
are two isolated fundamental points of degree 2, the vertices of the cones &1
and &2.

For any general point G ∈ P3, there is a unique quadric & ∈ |��1+�2 | con-
taining G. The two lines in & passing through G are rays of (. A general plane
intersects �1 at two points and intersects �2 at two points. It contains four rays
in the plane. This confirms that ( is a congruence of bidegree (2, 4).
A general line ℓ is tangent to two quadrics in the pencil. Each tangency point

2 Lehrsatz IX from [473].
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is equal to the intersection of two rays that lie in the tangent plane. The pencil
of lines in the tangent plane passing through the tangency points is a secant of
( contained in G. Conversely, every secant is obtained in this way. This shows
that A = 2. It follows from (11.15) that ?0 = 1. This agrees with the formula
for the degree of the focal surface, and we get

Φ(() = Φ(()sch = &1 +&2.

As in the previous case, Fund(() ⊂ Φ((). Note that '(() = '(()1,1 and Φ(()
is swept by focal rays.
The line ℓ = 〈?1, ?2〉 is a singular ray ℓB0 of (. The hyperplane spanned by

Ω(?1) and Ω(?2) cuts out ( along the union of 6 lines, three in each plane.
This shows that the tangent cone of ( at B0 is the union of two planes. The point
B0 is an ordinary non-normal singular point of multiplicity 2.
The degree of the union ( +Ω(?1) +Ω(?2) is equal to 8. It is a degeneration

of the previous example. The general hyperplane section is the union of an
elliptic sextic curve and two of its secant lines. Its arithmetic genus is equal to
3.

Example 11.4.4. 3 This is an example of congruences of Type (II) where one of
the irreducible components of Fund(() is a line. Let�3 be an irreducible curve
of degree 3 ≥ 2 that intersects transversally a line ℓ at 3−2 points ?1, . . . , ?3−2.
The restriction of the pencil ℓ⊥ to�3 is the linear series 61

2+?1+. . .+?3−2 on the
normalization �nrm

3
of �3 with base points ?1, . . . , ?3−2. In particular, �nrm

3
is

either rational, or elliptic or a hyperelliptic curve of genus 6 ≥ 2 equipped with
an involution ] : �nrm

3
→ �nrm

3
defined by the 61

2. We assume, for simplicity of
the exposition, that �3 is a nonsingular curve of genus 6.

The congruence ( = ((ℓ, �3) is defined to be the closure of the set of lines
that intersect ℓ and �3 at points different from the points in ℓ∩�3 . Since every
general ray spans a planeΠ ∈ ℓ⊥ that intersects�3 at two points, we see that the
order < is equal to 2. A general plane intersects �3 at 3 points and intersects ℓ
at one point. It contains 3 rays. So, the class = is equal to 3.
The surface ( is a ruled surface of degree 3 + 2. Its generators are pencils

Ω(G,Π), where G ∈ �3 and Π = 〈G, ℓ〉. So, the curve �3 is a generatrix of (.
The ray 〈G, ](G)〉 is a point on ( contained in two generators. This shows that
the ray is a singular point of (. The set of such rays is a singular directrix � of
( isomorphic to 61

2 � P
1.

Let us show that � is a conic if 3 ≥ 3 and a line if 3 = 2. Assume 3 ≥ 3.
Take a general line ! in P3. For any point G ∈ !, the plane 〈G, ℓ〉 intersects
�3 at 2 points 21, 22. The lines 〈G, 21〉 and 〈G, 22〉 intersect ℓ at two points. In

3 Lehrsatz X from [473]
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particular This defines a map ! → ℓ (2) � P2. Its image is a line in P2 identified
with the 61

2 on�3 . The image of the diagonal in ℓ2 in ℓ (2) is a conic. This shows
that there are two points G, G ′ on ! such that the points G, 21, 22 are collinear. It
follows that the hyperplane Ω(!) intersects the generatrix of the ruled surface
at two points, hence it is a conic.
If 3 = 2, then �2 is disjoint from ℓ. The secant lines 〈G, ](G)〉 lie in the plane

Π0 := 〈�2〉. A general line ; intersects Π0 at one point G0 and there is only one
ray passing through this point; the line 〈G0, ℓ ∩ Π0〉. So, � is a line.

Since A = 0, we get ?0 = 3 − 1. Since a general hyperplane section has two
ordinary nodes, the sectional genus is equal to 3 − 3, or 0 if 3 = 2. It follows
from Proposition 11.1.20 that deg(Φ(()) = 23 −2 if 3 ≥ 3 and deg(Φ(()) = 4
if 3 = 2.
Assume 3 ≥ 3. Define a map 9 : �3 → ℓ⊥ × ℓ that assigns to a point

G ∈ �3 the pair (Π, H), where Π = 〈G, ℓ〉 and H = 〈G, ](G)〉 ∩ ℓ. If G = ](G),
the line 〈G, ](G)〉 is the tangent line of �3 at G. If G ∈ �3 ∩ ℓ, we take Π to be
the plane spanned by ℓ and TG (�3). It is easy to see that the map 9 defines an
isomorphism from�3 to a curve of bidegree (2, 3−2). Thewell-known formula
for the genus of a curve on a quadric confirms that the genus of �3 is equal to
3 − 3. Thus, �3 contains 2(3 − 3) + 2 = 23 − 4 fixed points of the involution
]. This coincides with the degree of the focal surface. The explanation of this
coincidence is easy:Φ(() is equal to the union of 26+2 planes from ℓ⊥ that are
tangent to �3 . Each plane is swept by focal rays passing through the tangency
point. The focal surface is the image under ?̃( of the divisor '(()1,1 ⊂ '(().
Its projection to ( is the union of 26 + 2 generators.
The planes from ℓ⊥ are fundamental planes of ( of degree 2. In the dual

congruence they form the fundamental line whose cones  (G) are the unions
of two planes.
Finally, note that the line ℓ is an isolated singular ray of ( if 3 ≥ 4.

Example 11.4.5. 4 The fundamental curve in this example is irreducible, how-
ever, we treat it as a congruence of Type (II) because it has a hidden infinitely
near irreducible component.

In the previous example, Fund(() was the union of a line ℓ and a curve�3 in
P3 isomorphic to a curve of bidegree (2, 3 − 2) in ℓ⊥ × ℓ. Similarly to example
of a congruence of order 1 of type (II), we consider the case when the curve �
is infinitely near to ℓ; we let � to lie in the exceptional locus � � ℓ⊥ × ℓ of the
blow-up Blℓ (P3) → P3 as a smooth curve of bidegree (2, 3 − 2). We assume
that 3 ≥ 3.

4 Lehrsatz X, Lehhsatz XII and Lehrsatz XV from [473]
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We define ( to be the closure in Ω(ℓ) of the set of lines whose proper
transform in Blℓ (P3) intersects �.
The curve � ⊂ ℓ⊥ × ℓ is a correspondence between ℓ⊥ and ℓ. The proper

transform of a plane Π ∈ ℓ⊥ in Blℓ (P3) intersects � at two points which are
projected to two points on ℓ. The lines inΠ passing through these two points are
rays of (. For each point ? ∈ ℓ, there are 3−2 planesΠ1 (?), . . . ,Π3−2 (?) ∈ ℓ⊥,
and the lines in Π8 (?) passing through ? form a pencil of rays of (. Note that
ℓ is a member of all pencils, and here ℓ ∈ (. The congruence ( is a cone of
degree < + = = 3 in P4.
For a general point G ∈ P3, we find the plane 〈ℓ, G〉 ∈ ℓ⊥. There will be two

points ?1, ?2 on ℓ, and the lines 〈G, ?1〉 and 〈G, ?2〉 are the rays in ( passing
through G. This shows that the order of ( is equal to 2.
A general plane Π in P3 intersects ℓ at one point ?; there are 3 − 2 corre-

sponding planes Π1 (?), . . . ,Π3−2 (?) in ℓ⊥, and 3 − 2 lines Π ∩ Π8 (?) are the
3 − 2 rays contained in Π. So, the class of ( is equal to 3 − 2.
Since all rays intersect ℓ, we see that A = 0, and hence ?0 = 3 − 3. Since (

has an isolated singular point, 6 = ?0.
The cone ( has 26 + 2 generators corresponding to branch points of the

projection� → ℓ⊥. The pre-image of these generators under @( are irreducible
components of '(()1,1. They are projected to planes in P3. The union of these
planes is the focal surface Φ(().

The general fiber of the projection ?̃( : '(()2,1 → Fund(() = ℓ is equal to
the union of 3 − 2 lines. In the Stein factorization /̃( → /̃ ′

(
→ P3 of ?̃( , the

pre-image of ℓ in /̃ ′
(
is the curve of singularities of /̃(′ isomorphic to �. The

projection � → ℓ is of degree 3 − 2. The birational morphism /̃( → /̃ ′
(
is the

blow-up the singular line followed by the blow-up a curve on the exceptional
divisor isomorphic to�. The exceptional divisor of the second blow-up is equal
to '(()2,0. The proper transform of the exceptional divisor of the first blow-
up is the divisor '(()2,1. Both divisors are isomorphic to P1-bundle over �.
The divisor '(()1,1 is the proper transform of the focal surface. It consists of
26 + 2 irreducible components. Each component is isomorphic to the blow-up
one point in P2. It intersects '(()2,1 along the exceptional curve and intersects
'(()2,0 along a fiber of its ruling.
Example 11.4.6. 5 This is an example of a congruence of Type (III) with a line
as its fundamental curve.
Let Φ3 be a submonoidal surface in P3 (see Subsection 7.7.2). We assume

that Φ3 contains a line ℓ with multiplicity 3 − 2. Any plane Π ∈ ℓ⊥ intersects
Φ3 along the line ℓ with multiplicity 3 − 2 and a conic. We call it a residual

5 Lehrsatz XV of Kummer.
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conic. It may be reducible and may contain ℓ as its irreducible component.
Let us assume for simplicity that Φ3 is nonsingular outside ℓ. In this case, all
singular residual conics are line-pairs.
We define a submonoidal congruence ( to be the closure of lines intersecting

ℓ and tangent to Φ3 at some nonsingular point.
A general point G ∈ P3 is contained in two rays, the tangents to the section

of ( by the plane 〈ℓ, G〉. So, < = 2, and, since all rays intersect the line ℓ, the
rank A is equal to zero.

A general plane Π intersects Φ3 along an irreducible curve � of degree 3,
the point G0 = Π ∩ ℓ is of multiplicity 3 − 2 on �. I

Projecting from this point, we find that there are 23 − 2 ramification points,
hence 23 − 2 rays in Π. So, the class of ( is equal to 23 − 2. It follows from
(11.15) that ?0 = = − 1 = 23 − 3.
Obviously, Φ3 ⊂ Φ((). A general point in the plane spanned by a singular

residual conic is contained in a unique ray that it connects to the singular point
of the conic. One can show that there are 33 − 4 singular residual conics [258,
4.1]. This gives additional 33 − 4 irreducible components of Φ(() which are
planes. This agrees with formula (11.31) for the degree of the focal surface
deg(Φ(()) = 3 + (33 − 4) = 2= = 2(23 − 2). Note that the singular points of
residual conics are isolated fundamental points.
There are 2(3 − 2) residual conics that intersects ℓ at one point. Thus, if

3 ≥ 3, the line ℓ belongs to (. It is a non-normal ordinary singular point of (
of multiplicity 2(3 − 2).
Assume 3 = 2, i.e. ℓ does not lie in a quadric Φ2. 6 An irreducible quadric

Φ2 is a submonoidal surface with respect to any line ℓ ⊄ Φ2.
Suppose Φ2 is smooth. Then, the submonoidal congruence of lines defined

by (Φ2, ℓ) is of bidegree (2, 2). The surface ( is an anti-canonical quartic del
Pezzo surface. The tangential line complex of Φ2 has two disjoint conics as its
singular locus. They are the generatrices of the two rulings ofΦ2. If ℓ intersects
Φ2 transversally at two points G1, G2, then two pairs of generators ofΦ2 passing
through G1, G2 are four ordinary double points of (. If Γ is tangent to Φ2 at one
point, then ( has two rational double points of type �2.

Assume Φ2 is a quadric cone. In this case, the tangential line complex has
only one conic as its singular locus. If ℓ intersects it transversally, ( is an
anti-canonical quartic del Pezzo surface with two nodes. Otherwise, it has one
rational double point of type �2.

Remark 11.4.7. In the previous example, we assumed that Φ3 is nonsingular
outside ℓ. In general,Φ3 may acquire torsal lines corresponding to non-reduced

6 Kummer considers this example separately, Lehrsatz XII.
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residual conics. In this case, the plane spanned by ℓ and a torsal line is a tangent
plane to Φ3 and all lines in this plane belong to the congruence. In fact,
these planes enter with multiplicity 2. Since we assume that a congruence is
an irreducible surface in �1 (P3), we have to delete these planes (leaving the
torsal lines which are focal lines). The class = decreases by the number g of
torsal lines and becomes equal to 23 − 2 − 2g. This agrees with the formula
deg(Φ(()) = 43 − 4 − 2g = 2(23 − 2 − g) for the degree of the focal surface.

For example, there exists a quartic submonoidal surface with four torsal
generators, each containing two ordinary nodes. These quartic surfaces are
classically known as Plücker Complex surfaces (see [653, Article 455]). Let ℭ
be a quadratic line complex and ℓ be a general line in P3. A Plücker Complex
surface Φ4 of ℭ is defined to be the locus of points G ∈ P3 such that the pencil
of linesΩ(G, 〈G, ℓ〉) is tangent to the conicΩ(Π) ∩ℭ. The line ℓ is a double line
of the surface. The residual conic in a planeΠ ∈ ℓ⊥ is the dual conicΩ(Π) ∩ℭ.
There will be four planes such that Ω(Π) ∩ ℭ is a reducible conic (since the
degree of the singular surface of ℭ is equal to 4). The corresponding residual
conics are the double torsal lines.

Next,wewill give examples of congruences ( ofType (III)with an irreducible
fundamental curve �3 of degree 3 > 1.

Example 11.4.8. 7 We take for �3 an irreducible plane monoidal curve of
degree 3 with a fixed point 20 of multiplicity 3 − 1. The congruence ( consists
of the closure in G of the set of lines that intersect �3 and tangent to a fixed
irreducible quadric cone  with its vertex at 20. If 3 = 2, we assume that 20
lies in the same plane as �2.
Assume first that the plane containing�3 Π0 intersects  along two different

generators.
For any point G ∉  , the polar plane %G ( ) contains the vertex of  and

hence intersects  along two generators 61 (G) and 62 (G). It also intersects the
planeΠ0 along a line ℓ0 (G). The latter line intersects�3 at a unique point 2 ≠ 20
(or a branch of �3 at 20). A ray of ( passing through G also passes through the
point 2. It is contained in one of the plane 〈G, 61 (G)〉 or 〈G, 62 (G)〉 tangent to
 . This shows that the order of ( is equal to 2. A general plane intersects  
along a conic and intersects �3 at 3 points. From each point we can draw two
tangents to the conic, hence the class of ( is equal to 23.
The surface ( is contained in the intersection of the tangential quadratic line

complex of  and the Chow line complex of �3 of degree 3. It is a surface

7 Lehrsatz XIII from [473]
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of bidegree (23, 23). The residual part of ( is the plane Ω(20) taken with
multiplicity 23 − 2. It intersects ( along the line Ω(20,Π0).

The conic generatrix of  intersects ( at two points corresponding to the
generators in  ∩ Π0.
Let 2 ≠ 20 be a point in �3 , the two tangent planesΠ2 ,Π′2 of  spanned by 2

and the generators %2 ( ) ∩  intersect Π0 along the line 〈2, 20〉. It is a ray of
( equal to the intersection of two pencils of lines Ω(2,Π2) and Ω(2,Π′2). So,
we see that ( is a ruled surface and the pencil of rays Ω(20,Π0) is its double
directrix. A general hyperplane section of ( This implies that sectional genus
is equal to 0.
The proper transform of �3 under the minimal resolution F2 →  intersects

the exceptional curve at 3 − 1 points. These points correspond to the branches
of �3 at 20. The generators of  whose proper transform on F2 passes through
these points are rays of (. These are points on the double line Ω(20,Π0) of
(. This shows that we can identify the double line with the normalization
�nrm
3

� P1.
The generatrix of ( is a double cover of �nrm

3
ramified over the two points

2 ∈ �3 ∩  , 2 ≠ 20. Thus, ( is a rational minimal ruled surface of degree
2+23 with a double line, and (̃ = (nrm is a minimal rational ruled surface. This
implies that the sectional genus 6 of ( is equal to 0 and the arithmetic sectional
genus ?0 is equal to 1. Applying (11.15), we obtain that the rank is equal to
= − 2 = 23 − 2.
Since each ray is tangent to  , the focal surface Φ(() contains  as its

irreducible component. By Proposition 11.1.20, deg(Φ(()) = 2< − 2 = 2.
Thus, Φ(() =  . The generators of  corresponding to the branches of �3 at
20 are the focal rays of (. The point 20 and two points from �3 ∩ are isolated
fundamental points of (.

Let ℓ be a general line in P3. It intersects  at two points G1, G2. Suppose
G ≠ G1, G2 is a point in ℓ , which is the null-point with the null-plane Π ∈ ℓ⊥.
Then, each of the rays in Π passing through G intersects one of the generators
61, 62 of  contained in Π. Thus, the plane Π is tangent to  along two
generators, a contradiction. This shows that the null-point of a null-plane Π
in ℓ⊥ must be one of the two points G1, G2. One of the rays passing through
G8 must be the generator 68 and Π must be tangent to  along this generator.
Again we find a contradiction because ℓ is not tangent to  . We conclude that
A = 0, ?0 = 23 − 1.

Assume now that the planeΠ0 containing�3 is tangent to along a generator
6. Then, any line in Π0 intersects �3 and tangent to  . Since we are interested
in irreducible congruences, we consider ( to be the closure of lines intersecting
�3 and tangent to  but not lying in Π0. The order of ( is still equal to 2 but
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the class now is equal to 3 instead of 23. Indeed, a general plane Π intersects
Π0 along a line ℓ tangent to the conic  ∩Π. So, we can drop only one tangent
from a point from ℓ ∩ �3 . The surface ( is still a rational ruled surface with
a double line. So, ?0 = 1, 6 = 0. This gives A = 3 − 2 and deg(Φ(()) = 2.
Since �3 intersects  at one point different from 20, the number of isolated
fundamental points is equal to 2.
Note that the two rays along which  (G) intersect Π0 are singular rays.

Example 11.4.9. 8 Let  be as in the previous example with vertex at 20 and let
�3 be a submonoidal curve of degree 3 ≥ 2 with 20 as its point of multiplicity
3 − 2. If 3 = 2, we assume that 20 ∈ 〈�B〉.
We assume that �3 is tangent to  at two points G1, G2 outside 20. Let (′

be the closure of the set of lines that are tangent to  and intersect �3 at its
nonsingular point.
Take a general point G ∈ P3. The polar plane %G ( ) intersects  along two

generators 61, 62. Each plane 〈G, 61〉 and 〈G, 62〉 intersects �3 at two points.
The four lines joining G with these points are tangent to  at points on 61, 62.
This shows that < = 4. Taking a general plane Π that intersects �3 at 3 points,
we see that the two tangents to the conic Π ∩  dropped from these points
belong to (. Thus, = = 23. Let us see that the congruence splits into the union
of two congruences of bidegree (2, 3).
Let  1 be the quadric cone  ′ over the projection of �3 from the point 20

to a plane Π that does not contain 20. The intersection Π ∩  is a conic �. Its
tangent lines can be identified with the tangent planes to  . The intersection
Π ∩  1 is a conic �1, its points can be identified with points on �3 \ {20} and
its branches at 20.
We define a (2, 2)-correspondence:

ℭ := {(G, H) ∈  ×  1 : G1 ∈ )H (�)}.

Since  is tangent to  1 at two generators, the projection ℭ →  is ramified
at two points. An irreducible curve ℭ ramifies over four points if it is smooth
or it ramifies over three points if it is singular. So, we conclude that ℭ is the
union of two curves of bidegree (1, 1). This defines a bĳective correspondence
between points of�3 and tangent planes of  and shows that the congruence of
bidegree (4, 23) splits into the union of two congruences of bidegree (2, 3). If
3 = 2, one can show that each congruence is isomorphic to the minimal ruled
surface F2 embedded in P5 by the linear system |2f1 + f2 |. The conic �2 is its
directric of of degree 1.

8 Lehrsatz XIV from [473].
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Example 11.4.10. 9 Let  and�3 be as in the previous example but we assume
that �3 ⊂  . If 3 = 2, we assume that 20 does not lie in the plane 〈�2〉. The
proper transform of �3 on the minimal resolution F2 of  belongs to the linear
system |3f + e|.
We define a congruence ( to be the closure of the set of lines that are

tangent to  at a nonsingular point of �3 . The congruence is contained in the
intersection of the tangential quadratic line complex of  and the Chow line
complex Chow(�3). The intersection of these line complexes is a congruence
of bidegree (23, 23).
Let G be a general point in P3, there are two generators 61, 62 of  such

that the planes 〈G, 61〉 and 〈G, 62〉 are tangent to  . There are two rays passing
through G that join it with the points 61 ∩ �3 and 62 ∩ �3 . So, ( is of order
< = 2.
A general plane intersects  along a smooth conic and intersects �3 at 3

points lying on the conic. The tangent lines of the conic at the intersection
points are the rays of ( contained in the plane. This shows that the class of ( is
equal to 3.
The surface ( enters with some multiplicity :1 in the intersection of two line

complexes and the plane Ω(G0) enters with some multiplicity :2
Since (23, 23) = :1 (2, 3) + :2 (1, 0), the only possible solution is :1 =

2, :2 = 23 − 4. If 3 = 2, the congruence is isomorphic to F2 embedded in P5

by the complete linear system |3f + e|. The conic �2 is its directrix of degree 2.

11.4.2 New examples
The next three examples were absent in Kummer’s paper. Theywere discovered,
independently, by D. Montesano [522], [523] and R. Schumacher [669], and R.
Sturm [734], [735, Theil 2].

Example 11.4.11. 10 Let & be a Dupin cyclide quartic surface from Example
8.6.8. It is the projection of a 4-nodal quartic del Pezzo surface in P4. Let
?1, ?2, ?3, ?4 be the projections of the nodes on & and � ⊂ & be the double
conic.
The projection of & from a point ? on � exhibits & as a double cover of

the plane branched along the union of a line ℓ taken with multiplicity two
(the image of �) and the union of two conics intersecting at four points (the
projections of the nodes). The line ℓ intersects each conic at two points. They
are the projections of the pinch points of �. Thus, the tangent cone of & at

9 Lehrsatz XVI from [473].
10 [735, Theil II:Art. 503]
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? splits into the union of two quadric cones passing through ?1, . . . , ?4. Each
cone also contains two of the pinch points of�. The congruence of generators of
these cones is of bidegree (4, 8), and it splits into two congruences of bidegree
(2, 4). The splitting is defined by the choice of two base points among the four
pinch points.
Each cone in the congruence is uniquely determined by the conditions that

it passes through ?1, . . . , ?4, passes through a fixed pinch point ?5, and has a
double point at a fixed point on the conic. The cones  (G) form a quadratic
pencil of contact quadrics to the surface &. However, it is different from the
contact family of quadrics (generally nonsingular) we introduced in Example
8.6.8.
Let ) be the tetrahedron with vertices ?1, . . . , ?4. We may assume that the

lines 〈?1, ?2〉, 〈?2, ?3〉, 〈?3, ?4〉, 〈?1, ?4〉 are the projections of four lines on
the 4-nodal quartic del Pezzo surface - . The diagonals 〈?1, ?3〉 and 〈?2, ?4〉
are the projections of the double lines of two quadrics in the pencil |�- (2) | of
rank 3.
The surface& is the focal surface of the congruence. The nodes ?1, . . . , ?4 are

fundamental points of degree 2 of the congruence. The four planes 〈?8 , ? 9 , ?:〉
are the fundamental planes of degree two.
The unions of two planes intersecting at the diagonal are reducible quadrics

in the quadratic pencil of cones (G) of the congruence. lines are the irreducible
components of the two reducible cones on the quadratic pencil.

Example 11.4.12. 11 Let & be a quartic surface with a double rational normal
cubic '3. Since a general point on & lies on a unique secant line of '3 that
must be contained in&, we see that& is a ruled surface. There are two types of
such quartic ruled surfaces; type 1(i) and 2(i) from the classification of quartic
ruled surfaces in Subsection 10.4.4. Recall that the ruled surface is swept by
secant lines of '3 contained in a linear line complex (non-special or special). A
general point of '3 is contained in two generators. This defines a double cover
of � → '3 isomorphic to an elliptic curve. Its branch points ?1, . . . , ?4 are the
pinch points. The unique generator containing one of these points is a cuspidal
generator.
For a general point G ∈ '3, the polar %G (&) ∩ & is a curve of degree 6 that

contains the quadratic cone over the projection of '3 from '3 with multiplicity
2. The residual part is a quadratic cone  (G) with its vertex at G. In other terms,
the projection from G presents & as a double cover of P2 with the branch curve
equal to the union of a conic  0 taken with multiplicity 2 and a conic  , the
projection of  (G). The intersection  0 ∩  consists of four points. They are
11 [735, Theil II:Art. 509]
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the projections of the pinch points ?8 . The corresponding lines are generators
of  (G) that touch the cuspidal generators ℓ8 of & at ?8 .
We define a congruence ( as the closure of the set of generators of quadric

cones  (G), G ∈ '3. Since a general plane intersects '3 at three points, it
contains six rays. Thus, = = 6.
For any point G ∈ '3 which is not one of the pinch points, & contains two

generators passing through G. The cone  (G) must contain these generators.
Any other generator of  (G) is tangent to & at its intersection point with &.
Thus the algebraic family of cones  (G) is a family of contact cones of &. For
a general point G ∈ &, the embedded tangent plane TG (&) intersects '3 at three
points, two of which are the intersection points of a generator passing through
G. Thus, there is only one cone  (G) whose generator is tangent to & at G. This
shows that & is the discriminant surface of the family of cones  (G). Since &
is a quartic surface, the cones form quadric pencil, and hence, the order < of
the congruence is equal to two.
Note that the quadratic pencilK = { (G)}G∈'3 can also be defined as the set

of quadric cones with vertices on '3 that pass through ?1, . . . , ?4 and tangent
to the cuspidal generators at these points. This is Sturm’s definition of (.

Each line 〈?8 , ? 9〉 is a generator of two cones from K that contain a general
point on this line. The corresponding rays are singular points of (.

Example 11.4.13. 12 Let& be a 4-nodal cubic surface and�3 be its intersection
with a plane tangent to& at a nonsingular point @. So,�3 is a nodal plane cubic
curve. We consider the family of quadric cones  (G) with vertices on & that
pass through the four nodes ?1, . . . , ?4 of& and the point @. Counting constants,
we see that, for a general point G ∈ �3 there exists a unique such cone. So, the
cones form a pencil of some order A..
Let us see that A = 2. Let G be a general point in P3. Consider the web of

quadrics with base points ?1, . . . , ?4, @, G. The determinant surface of this web
is aWeddle surface - whose points are singular points of quadrics from theweb.
The cubic surface and the quartic surface - contain the lines ℓ8 9 =≤ ?8 , ? 9〉.
The curve �3 intersects - at the point @ with multiplicity 4 and also intersects
it at six points where the lines ℓ8 9 intersect the plane 〈�3〉. Thus, �3 intersects
- at 12− 10 = 2 addional points. This shows that there will be two points ?, ?′
on �3 such that the cones  (?) and  (?′) pass through G.

As before, we define a congruence ( to be the closure of generators of cones
 (G). Its order < = 2, and its class = = 6.
Projecting & from a general point ? ∈ �3, we find that the tangent cone at

? is equal to the union of two quadric cones intersecting along four common
12 [735, Theil II:Art. 507]
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generators, each containing one of the points ?1, . . . , ?4. They also contain
the line 〈?, @〉 because it is contained in the tangent plane at @. Our cones are
among these cones; they are the ones that contain the generator 〈?, @〉.

In particular, we see that each ray of the congruence ( is touching the cubic
surface. Again, we constructed a quadratic pencil of cones whose discriminant
surface contains the cubic surface &.

Finally, observe that the points ?1, . . . , ?4 are isolated fundamental points
of degree 3.

11.4.3 Classification
Recall that we divided all congruences of order 2 with fundamental curve
Fund(() into three different types (I), (II), and (III) according to the properties
of the fundamental curve.

Proposition 11.4.14. Let ( be a congruence of Type (I). Then, it coincides with
the congruence of secants of an irreducible quartic curve of arithmetic genus
one.

Proof Let � be the irreducible fundamental curve of (. Since < = 2, the
number of secants of � passing through a general point of P3 is equal to two.
By Proposition 11.2.4, � is a curve of degree 4 whose projection from G is
a plane quartic with two (or three) nodes. In the first case, � is smooth, and
in the second case, � is a nodal space quartic. Thus, ( is a congruence from
Examples 11.4.1 or 11.4.2 �

Proposition 11.4.15. Let ( be a congruence of Type (II). Then, it coincides
with a congruence from Example 11.4.2 or 11.4.3.

Proof Let �1 and �2 be two irreducible components of Fund((), and let 31 ≤
32 be their degrees. The congruence is contains in the intersection of the Chow
congruences Chow) (�1) ∩Chow) (�1). Its bidegree is equal to (3132, 3132). A
general plane intersects �8 at 38 points, hence it contains 3132 rays of (.This
shows that the residual part should consists of 3132 − 2 of U-planes Ω(G8),
where G8 ∈ �1 ∩ �2. If 3132 ≤ 2, then 31 = 1, 32 = 2, and the assertion is true.
Suppose that 31 > 1 and 3132 > 2. Projecting from a common point, we obtain
the plane curves of degree 31 −1 and 32 −1 with common 3132 −3 points. The
gives (31−1) (32−1)−3132+3 = 4−31−32 ≥ 0, hence 31 = 32 = 2. Thus, the
only possibilities are either �1 is a line, or �1 and �2 are two conics intersecting
at two points. These are our examples Example 11.4.2 and Example 11.4.3. �
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Proposition 11.4.16. Let ( be a congruence of Type (III). Suppose that Fund(()
is a line ℓ. Then, ( is a congruence from Example 11.4.5, or Example 11.4.6,
or Example 11.4.8 (3 = 1).

Proof Let 3 be the degree of a general point on ℓ. Let ℓ be a general ray of (,
it intersects ℓ at one point ?ℓ and spans with ℓ a plane Πℓ = 〈ℓ, ℓ〉. This defines
a rational map 5 : ( d ℓ × ℓ⊥. Let � = 5 ((). For any 2 = (?,Π) ∈ �, the
fiber 5 −1 (2) is the pencil of lines Ω(?,Π). This shows that � is an irreducible
curve and ( is a ruled surface. Let pr1 : � → ℓ and pr2 : � → ℓ⊥ be the two
projections.
The pre-image of a general point ? ∈ � under the map pr1 ◦ 5 : ( d ℓ

consist of 3 = deg(pr1) pencils of rays. This shows that 3 is the degree of a
general point of the fundamental curve ℓ. It is also equal to the number of rays
in a general plane passing through ?. Thus, 3 = = is the class of (.

The pre-image of a general planeΠ ∈ ℓ⊥ under pr2◦ 5 is the curveΩ(Π)∩( of
rays containing in Π. Since < = 2, a line in the dual planeΩ(Π) corresponding
to a general ray in Π intersects this curve at two points. Hence, Ω(Π) ∩ ( is a
conic, maybe reducible or a double line. Taking Π general enough, we obtain
that deg(pr2) = 2.
Now, we have three possibilities for a general Π ∈ ℓ⊥:

• Ω(Π) ∩ ( is a smooth conic;
• Ω(Π) ∩ ( is the union of two pencils of rays with base points on ℓ;
• Ω(Π) ∩ ( is the union of two pencils of rays with base points outside ℓ;

We leave it to the reader to check that the first case leads to a submonoidal
congruence from Example 11.4.6, the second case leads to a congruence from
Example 11.4.5, and the last case leads to a congruence from Example 11.4.8,
where 3 = 1.
If Ω(Π) ∩ ( is a double line, each ray in Π is a focal ray. So, there is only

finitely many such planes.
�

The idea of the proof of the next proposition is taken from [17].

Lemma 11.4.17. Let ( be a congruence of Type (III) with irreducible funda-
mental curve �. Suppose that a general point of � is of degree one. Then, the
planes  (G) of rays passing through a point G ∈ � form either a pencil of
planes or a smooth conic of planes. In the first case, � coincides with the base
line of the pencil of planes. In the second case, the planes are tangent planes
of a quadric cone  , and ( consists of lines tangent to  and intersecting �.
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Proof We have a rational map 5 : � d P̂3 which assigns to ? ∈ � the plane
 (?). Let G be a general point of P3, there are two rays passing through G
and intersecting � at two points ?1, ?2. This shows that the pre-image of a
hyperplane G⊥ in P̌3 consists of two points. In other words, either the degree of
the map 5 is equal to two and the image is a line in P̌3, i.e. a pencil of planes,
or the degree is equal to one, and the image is a conic P̌3.

Suppose the planes  (G) form a pencil of planes and let ℓ be its base line.
Since, by definition of a congruence of type (III), all rays intersect � and each
ray is contained in one of the planes Π ∈ ℓ⊥. This is possible only if � = ℓ.

Suppose the planes  (G) form a conic. A conic in P̌3 is contained in a plane
2⊥0 . The point 20 is contained in all planes  (G). Fixing a plane Π ⊂ P3 not
containing 20, we see that the intersection of the planes  (G) with Π are lines
passing through 20 which sweep a quadric cone  . The planes  (G) are tangent
to  along a generator. We see that all rays are tangent to  and also intersect
�.

�

Proposition 11.4.18. Under the assumptions of Lemma 11.4.17, ( is a con-
gruence from Example 11.4.5, or Example 11.4.8, or Example 11.4.9.

Proof Let us see that, under the assumption of Lemma 11.4.17, the congru-
ence ( with pencil of planes  (G) is a congruence from Example 11.4.5. We
define a correspondence on � ⊂ ℓ × ℓ⊥ by

� = {(?,Π) ∈ ℓ × ℓ⊥ :  (?) = Π}.

The projection pr2 : � → ℓ⊥ is of degree 2, and the projection pr1 : � → ℓ is
of degree equal to some 3 > 0. The congruence ( is a ruled surface of degree
3 + 2. Its rulings are the pencil of lines in P3 passing through a point ? ∈ ℓ
and contained in one of 3 planes Π ∈ pr2 (pr−1

1 (?)). This is a congruence from
Example 11.4.5.
Next, assume that, under the assumption of Lemma 11.4.17, the congruence

( with { (G), G ∈ �} forms a conic. It follows from the proof of the lemma
that � is birationally isomorphic to the conic, hence it is a rational curve of
planes tangent to a quadric cone  . The fundamental curve � is a curve �3 of
some degree 3 such that the closure of lines intersecting �3 and tangent to  
is a congruence of order 2.
There are two possibilities: �3 lies on  or does not lie on  .
In both cases, ( is contained in the intersection of the quadratic line complex

T of tangents to  and the Chow complex Chow(�3). Its bidegree is (23, 23).
A general plane intersects �3 at 3 points G1, . . . , G3 and intersects  along a
conic.
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Assume �3 ⊂  , then the points G1, . . . , G3 are contained in the conic. The
rays of ( contained in the plane are tangent lines of the conic at the points
G8 . This shows that the class of ( must be equal to 3. Let G be a general
point of P3. The polar plane %G ( ) intersects  along two rays. A ray passing
through G intersects one of the two generators 6 at one point lying on �3 .
Since < = 2, there must be only one point of �3 on 6 besides the vertex. Its
proper transform ℓ̄3 on the minimal resolution F2 of  belongs to |0f+e|. Since
deg(�3) = (0f + e) · (2f + e) = 3, we obtain that 0 = 3. Thus, ℓ̄3 intersects the
exceptional section with multiplicity 3 − 2. This means that 20 is a point on �3
of multiplicity 3 − 2. Conversely, this property guarantees that < = 2. So, the
bidegree of ( is equal to (2, 3). We have (23), 23) = 2(2, 3) + (23 − 4) (1, 0),
i.e T ∩ Chow(�3) contains ( with multiplicity 2 and contains Ω(20) with
multiplicity 23 − 4. The surface ( is one from Example 11.4.10.

Next, assume that �3 ⊄  . Suppose first that �3 is contained in a plane Π0.
Using the previous argument, we see that a general plane tangent to  intersects
Π0 along a line that interests�3 at one point outside 20. Thus,�3 is a monoidal
curve of degree 3. We get a congruence from Example 11.4.9.

Finally, assume that �3 does not lie on  and �3 is not a plane curve. Since
we expect that �3 ∩  intersects at 23 points, we have to require that 20 is a
multiple point of �3 of multiplicity 3 − 1, however in this case �3 is contained
in a plan (the pre-image of the projection of �3 from 20 which is a line). Since
we assume that �3 is not a monoidal curve. Assume that 20 is of multiplicity
3 − 1 − : , so < = 2 + : > 2. The projection form 20 is a plane curve of degree
: + 1. Since �3 is rational this implies that : = 1. A general plane Π intersects
 along a conic, and there are two rays in ( passing through one of 3 points in
Π ∩ �3 . They are tangents to the conic. This shows that the class = = 23. �

Suppose the fundamental curve � is irreducible of degree 3 > 1. It follows
from Theorem 11.1.28 that its general point is of degree ℎ = 2. Thus it defines
an algebraic family K = { (G)}G∈� of quadric cones.

The proof of the following lemma uses the theory of complete quadrics from
Section 2.4.
A general one-dimensional family of quadrics in P3 (and in any P=) contains

only quadrics of corank ≤ 1. On the other hand, a general one-dimensional
family of quadric cones in P3 lifted to CQ3 is contained in E3 and intersects E◦2
(resp. E◦1) at X points [ (resp. X points) corresponding to reducible cones (resp.
point-pairs).

Lemma 11.4.19. Let K be an irreducible algebraic family of quadric cones
whose proper transform in CQ3 has the cohomology class `0a1d2 , 0 + 1 = 2 =



11.4 Quadratic Congruences With a Fundamental Curve 359

8. Let U = `0+1a1d2 , V = `0a1+1d2 , W = `0a1d2+1 be the number of quadric
cones in the family passing through a general point, tangent to a general line,
and tangent to a general plane, respectively. Then

2V = W + 2U + [, 2d = V + X.

Proof We have
[ = 42`

0a1d2 , X = 43`
0a1d2 .

Applying Proposition 2.4.28 and using the computation of characteristic num-
bers for quadric cones, we find

[ = (2a − ` − 2d)`0a1d2 = 2`0a1+1d2+1 − `0+1a1a2 − 2`0a1d2+1

= 2a − U − 2W,
X = (2d − a)`0a1d2 = 2`0a1d2+1 − `0a1+1d2 = 2W − V.

(11.52)

This proves the lemma. �

Note that the number W is equal to the degree of C, the number of the cones
from the family passing through a general point in P3. Since the order < of (
is equal to 2, we obtain that the two equalities imply

6 − 2X = 2W + [. (11.53)

The number W is equal to the number of cones in the family whose vertex lies
in a fixed general plane, so this number equals 3 = deg(�).
This gives us the following possibilities:

X = 1, V = 3, 3 = 2, [ = 0, (11.54)
X = 0, V = 4, 3 = 2, [ = 2.
X = 0, V = 4, 3 = 3, [ = 0,

Here, we used that W = 3 > 1 since � is not a line.
In particular, deg(�) is equal to 2 or 3. If � is a plane cubic, then it must be a

singular curve. Indeed, the universal family of the curves � (G) = Ω(G) ∩ (, G ∈
�, is projected to P3 with a general fiber isomorphic to a conic, hence it is
rational. It is projected to �, hence � is rational.
Now, we are in business.
The familyK of cones  (G) is an example of a quadratic pencil of quadrics.

We discussed such pencils in Subsection 4.1.4. The fundamental curve � is a
rational curve, we fix its rational parameterization a : P1 → �, and consider
the quadratic pencil with parameters [D, {] ∈ P1.
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We can write our pencil in the form

 (D, {) =
∑

0≤8, 9≤3
08 9 (D, {)C8C 9 = 0,

where 08 9 (D, {) are quadratic forms in C0, C1, C2, C3. Since all quadrics  (D, {) are
singular, we get det(08 9 ) = 0. The set of singular points of the cones+ ( (D, {))
coincides with the fundamental curve � of (. The singular point G of  (D, {)
is defined by the null-space of the matrix " = (08 9 ). It is given by any column
(or a row) of the adjugate matrix adj(") of cofactors of " . Thus, the map

a : P1 → � ⊂ P3, C ↦→ Sing( (G))

of degree : ≤ 3. Since any point on � is contained in only one cone  (G), it is
contained in the surface + (�). Taking the partials, we see that

� ⊂ Sing(+ (�)).

We also explained that all cones  (G) are tangent to + (�), hence the focal
surface Φ(() is contained in the quartic surface + (�).

The possible degrees of � are confirmed by (11.54).

Case 1: � is a conic.
Suppose � is a conic. Recall from the proof of Theorem 11.1.28 that a general

line ℓ defines a correspondence of bidegree (2, 2) on � � P1. The united points
of this correspondence are the intersection points of ℓ with the focal surface.
Since a correspondence of bidegree (2, 2) has four united points, we see that
the focal surface must be a quartic surface and hence coincides with � (K).
The curve � is the singular locus of Φ((). So, Φ(() is a non-normal quartic
surface with a double conic, a cyclide quartic surface from Subsection 8.6.2.
We know that V = 3 or 4. The surface & = � (K) must be a cyclide quartic
surface. The number V coincides with the class of the surface. In Subsection
8.6.34 we computed the possible class of a cyclide quartic surface. It shows that
the case V = 3 is impossible, and the case V = 4 leads to the case of a Dupin
cyclide quartic surface from Example 8.6.8. It also agrees with the number
[ = 2 that shows the quadratic pencil contains two reducible cones. The quartic
surface & is the focal surface of (. A general plane intersects � at two points
and intersects the corresponding cones  (G) at two lines. Hence, the bidegree
of the congruence is equal to (2, 4). We see that the congruence coincides with
a Surm congruence from Example 11.4.11.

Case 2: deg � = 3c.

In this case, X = [ = 0, so the quadratic pencil consists of cones of corank
one. This means that the linear series defining the map a is of degree 3 without
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base points. If it is a complete linear system, the map a is a Veronese map and
� is a twisted cubic. The discriminant surface � (K) is a quartic surface with
the double curve '3. It coincides with the focal surface of (. The congruence
is a Sturm’s congruence from Example 11.4.12.
If the series is not complete, and its dimension is one, then � is a line,

contradicting our assumption on �. Thus, the dimension is equal to two, and
� is a plane nodal cubic. The discriminant surface � (K) is the union of a
cubic surface &3 and a plane intersecting along �. It coincides with the focal
surface of (. Since V = 4, the class of the cubic surface is equal to 4. A cone
 (G) ∈ K is a contact cone of &3. Hence, it is contained in the tangent cone of
&3 at G. This implies that the quartic branch curve of the projection of&3 from
G contains a conic as its irreducible component. The residual component is
another conic. The intersection point of the two conics must be singular points
of the cubic surface. Since all cones are of corank one, it is easy to see that the
conics intersect transversally at four points, so &3 is a 4-nodal cubic surface.
Thus ( is a Sturm’s congruence from Example 11.4.13.

This concludes the classification. If ( is of Type (I) or Type (II), then Propo-
sitions 11.4.14 and 11.4.15 show that all appear in Examples Examples 11.4.1,
11.4.2 and 11.4.3.
If ( is of type (III), and Fund(() is a line, we use Proposition 11.4.16 to see

all possible cases are covered in Examples 11.4.5–11.4.8. If Fund(() is not a
line, by Proposition 11.1.28, ℎ(G) ≤ 2 for a general point on the fundamental
curve. If ℎ(G) = 1, we use Proposition 11.4.18 to get Examples 11.4.5, 11.4.8,
and 11.4.9, if ℎ(G) = 2, we get new Sturm’s example.

The classification of quadratic congruences with fundamental curves is sum-
marized in Table 11.3.

11.5 Congruences of Lines of Higher Order

The classification of congruences of lines of any order < ≥ 3 is unknown.
In this section, we will give some classical examples and discuss the known
classification of smooth congruences of degree ≤ 10.

11.5.1 Reye congruences
We have already encountered Reye varieties of lines ( in Subsection 1.1.7.
In the special case of lines in P3 = |� |, it is defined as the variety of lines
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Type Fund.curve Fund.points = A ?0 6 Example

I1 elliptic �4 4 6 2 3 3 11.4.1
I2 nodal �4 2 6 2 3 1 11.4.2

II1 �2 + �2 0 4 2 1 1 11.4.3
II2 ℓ + �3 , 3 ≥ 2 0 3 0 3 − 1 3 − 3 11.4.4
II3 � � ℓ 0 3 0 3 − 1 3 − 3 11.4.5

III1 ℓ 3d-4 2d-2 0 2d-3 2d-3 11.4.6
III2 mon(�3 , 20) ⊂ P2 3 2d 2d-2 1 0 11.4.8
III′2 mon (�3 , 20) ⊂ P2 2 d d-2 1 0 11.4.8
III3 smon (�3 , 20) 2 d 3 − 1 0 0 11.4.9
III4 smon (�3 , 20) ⊂  1 d d-1 0 0 11.4.10
III5 �2 4 4 6 4 1 11.4.11
III6 '3 4 6 4 1 1 11.4.12
III7 �3 4 6 4 1 1 11.4.13

Table 11.3 Quadratic Congruences with fundamental curve

contained in a subpencil of a web, = |+ | of quadrics in P3. For general, it is
a smooth irreducible surface ( in�1 (P3). In fact, a weaker condition for this to
be true is that, is a regular web. In this case, ( is a smooth Enriques surface
of bidegree (7, 3) in �1) (P3). Its canonical cover is a K3 surface isomorphic
to the subvariety

PB(,) = {([{], [{′]) ∈ P3 × P3 : 1@ ({, {′) = 0, ∀{, {′ ∈ +}.

where 1@ is the polar symmetric bilinear forms associated with @ ∈ + . The rays
of ( are called Reye lines. The regularity assumption implies that |, | has no
base points. Any line through a base point is a Reye line. Since we assume that
the congruence is irreducible, we must delete the plane components containing
these lines.
We refer to [259, Chapter 7] for a detailed exposition on Reye congruences of

regularwebs of quadrics. TheReye congruence has no fundamental points if and
only if, is an excellent web. The focal surface of a smooth Reye congruence
is a surface of degree 24. Since deg ( = 10, and ( is an Enriques surface
embedded in P5 by a complete linear system. A general hyperplane section �
satisfies �2 = 10, hence the sectional genus ?0 = 6 = 6. The focal surface
Φ(Rey(,)) is of degree 14 + 10 = 24. The rank A = (< − 1) (= − 1) − 6 = 6.
Now, let us drop the condition that, has no base points. We will make the

following assumptions
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1. The base schemeof, is reduced and consists of : isolated points 11, . . . , 1: .
2. , contains ten reducible quadrics and no double planes.
3. The discriminant surface D(,) has no lines, or, equivalently, , does not

contain pencils of singular quadrics.

Note that the first assumption implies that a general member of, is a smooth
quadric, the second one implies that no three points are on a line, and (iii)
implies that no four base points are coplanar. Since dim, = 3, these properties
imply that : ≤ 6. By definition, a regular web is excellent if it satisfies the last
condition.
We say that a Reye line is general if |OP3 (2) − ℓ | is a pencil with the base

locus equal to the union of ℓ and a twisted cubic intersecting it at two points. We
define the Reye congruence Rey(,) to be the closure of the set of general Reye
lines in �1 (P3). All lines from Rey(,) are called Reye lines. For example, a
line passing through a point 18 is a Reye line if and only if it is a generator of
the tangent cone of St(,) at 18 .

As is in the case of regular webs we can define the Reye involution:

r, : St(,) d St(,), G ↦→ G ↦→ ∩&∈, %G (&).

By property (3), the involution is a regular involution and its set of fixed points
is equal to Bs(,).
Each line ℓ8 9 = 〈18 , 1 9〉 is invariant with respect to r, . Indeed, ℓ8 9 is con-

tained in a net N8 9 of quadrics from , . For a general point G ∈ ℓ8 9 , the
intersection ∩&∈#8 9%G (&) contains ℓ8 9 , hence r, (G) ∈ ℓ8 9 .
Also, in this case, the projection

? : PB(,) → St(,)

is an isomorphism. Under this isomorphism, the Reye involution is defined
by the switch of factors in the ambient P3 × P3. The linear system |O |� | (1) ⊗
r∗
,
O |� | (1) | on PB(,) is the restriction of the linear subsystem |OP3×P3 (1, 1) | =

|�∨ ⊗ �∨ | to PB(,). It can be identified with the linear system |∧2 �∨ ⊕+⊥ |,
where +⊥ ⊂ (2 (�) is of dimension 6. It defines two rational projections

A : PB(,) d |
2∧
� |, 2 : PB(,) d |+⊥ |.

They are the restrictions of the projection maps of the Segre subvariety s3 ( |� | ×
|� |) ⊂ |� ⊗ � |. The first projection is not defined at the intersection of the
diagonal with PB(,) that coincides with the set of its singular points. The
image of the first projection is the Reye congruence Rey(,). The second
projection is regular and its image is the Cayley model Cay(,) of Rey(,).
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Since the Segre variety is of degree
(6
3
)
= 20, and the both projections are of

degree 2, we obtain that

deg Rey(,) = 10 − :, deg Cay(,) = 10.

Let

c, : - → D(,), cst : - → St(,)

be the common minimal resolutions of singularities of the surfaces D(,) and
St(,). The involution r, lifts to a biregular involution r̃, of - . Its set of
fixed points is equal to the union of the exceptional curves over Bs(,). Both
projections lift to regular maps

Ã : - → |
2∧
� |, 2̃ : - → |+⊥ |.

Suppose : ≥ 2. Then each line ℓ8 9 = 〈?8 , ? 9〉 is invariant with respect to the
Reye involutions. Indeed, let G ∈ ℓ8 9 = 〈?8 , ? 9〉 different from ?8 , ? 9 . There is
a net of quadrics containing ℓ8 9 . A general member of this net # (G)contains
ℓ8 9 in the tangent space at G. This shows that ℓ8 9 ⊂ ∩&∈# (G)%G (&). Thus,
r, (G) = ∩&∈, %G (&) ∈ ℓ. The map Ã : - → Rey(,) blows down each
line ℓ8 9 to a nonsingular point B8 9 ∈ Rey((). The pre-image of ℓ8 9 in - is
a (−2)-curve '8 9 invariant with respect to the Reye involution. Its image in
. = -/(̃r, ) is a (−1)-curve. The Reye congruence is obtained from . by
blowing down the curves '8 9 .
It follows from the formula for the canonical class of a double cover of

smooth surfaces that | − . | = ∅ but | −2 . | consists of the union of : disjoint
smooth rational curves �8 with �2

8
= −4 (a (−4)-curve, for short). They are the

images of the exceptional curves of cst. The surface is an example of a Coble
surface with : boundaries (see [259, Chapter 9]). It satisfies

 2
. = −:.

So, if : ≥ 1, we obtain a description of the Reye congruence Rey(,) as
the blow-down of

(:
2
)
(−1)-curves on a Coble surface, each intersecting two

boundary components.
Let [st = c

∗
st21 (O |� | (1)) and [, = c∗

,
21 (O |, (1)). It is known that the

[st =
1
2 (3[, − �1 − · · · − �10), (11.55)

where �8 are the exceptional curves of c, over the reducible quadrics in, . Let
'1, . . . , ': be the exceptional curves over the base points of, . The pre-image
of 21 (ORey(, ) (1)) (where Rey(,) is embedded in the Plücker space) under
map A : - → Rey(,) is equal to [ + r̃∗ ([) − '1 − · · · − ': . It follows that the
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degree of the image of the exceptional curve � over a singular point of St(,)
is equal to 1

2 (3 + 1) = 2.
In the realization of Rey(,) as a congruence of lines in P3, the cone of rays

corresponding to points of �8 is the tangent cone of St(,) at a base point.
It follows from above that we can identify the Reye congruencewith the orbits

of r̃, , two orbits on the same line define the same point in '(,). Consider the
map

a, : Rey(,) d �1 (,), ℓ ↦→ |, − ℓ |. (11.56)

This map is not defined at the point corresponding to the lines ℓ01 . We know
that we can lift a, to a regular map

ã, : . → �1 (,). (11.57)

from the Coble surface . to �1 (P3). Each Reye line except the one corre-
sponding to ℓ01 has two quadrics with singular points on it. This shows that
its image is a bisecant of D(,) ⊂ , . Since . is irreducible, the image of
the map is one of the irreducible components Bit(D(,))8 of the bitangent
surface Bit(D(,)). A general net of quadrics in , contains 8 base points. It
contains

(8−:
2

)
Reye lines joining the pairs base points of the net different from

the base points of, . This shows that the image of the map l̃, is an irreducible
component of the bitangent surface of the class

(8−:
2

)
∈ {21, 15, 10, 6, 3, 1}.

The map ã, is the normalization map of Bit(D(,))8 .
Before we givemore details in each case : = 1, . . . , 6, we prove the following

lemma.

Lemma 11.5.1. Let G ∈ P3 \ Bs(,) and # (G) be the net of quadrics in ,
containing G. Then Bs(# (G)) is one of the followings sets:

(i) {G, ?1, . . . , ?: , H1, . . . , H7−: }, where some of the points may coincide.
(ii) ℓ ∪ {H1, H2, H3, H4}, where ℓ is a line.
(iii) a conic  (maybe reducible) and {H1, H2}, where H8 are lying on a conic

intersecting ℓ and ℓ′.
(iv) a line ℓ and an irreducible conic intersecting at one point.
(v) two skew lines.

Proof By assumption on , , it cannot contain a net of singular quadrics.
If Bs(# (G)) consists of isolated points, then we get the case (i). Suppose
Bs(# (G)) contains an irreducible curve�. Then, the residual curve is of degree
< 4 − deg(�). It follows that Bs(# (G) contains a line.and the residual curve '
of P is of degree ≤ 2.

Suppose ' does not contain irreducible components from Bs(# (G). Then '



366 Congruences of Lines in P3

intersect ℓ at two points, hence, # (G) has addionally four base points on '. The
number of base points different from base points of, is equal to 4 − B, where
B = #ℓ ∩ Bs(,). This gives case (ii).
Suppose ' is the union of a line ℓ′ and a conic  . If ℓ′ ⊂ Bs(# (G), we have

2 additional base points on  . This also gives case (iii).
If  is contained in Bs(# (G)), then we do not have any more base points.

This gives case (iv).
Suppose ' is the union of three lines ℓ1, ℓ2, ℓ3 which, together with ℓ form

a quadrangle of lines with opposite skew lines ℓ, ℓ1 and ℓ2, ℓ3. If none of ℓ8 is
contained in Bs(# (G)), then we have four base points, two on ℓ1, and one on
each ℓ2, ℓ3. If ℓ2 (or ℓ3) is contained in Bs(# (G)), then we have two new base
points, one on each ℓ1 and ℓ3 (or ℓ2). If ℓ1 ⊂ Bs(# (G)), we have no more base
points. This gives case (v).

�

Proposition 11.5.2. The bideger (<, =) of the Reye surface Rey(,) is equal
to (7 − :, 3).

Proof Let G be a general point in P3. If # (G) has a curve of base points, a
general quadric in , intersects at a point different from G and different from
its base points. This contradicts our assumptions on , . It follows from our
assumptions that G is not a singular point of a quadric from the web. Thus,
# (G) has 8 base points, the points ?1, . . . , ?: , G are among them. Any line
spanned by G and one of the base points is a Reye line. A line imposes three
conditions on quadrics to contain it. So, any Reye line must be one of them.
Since we excluded lines passing through ?1, . . . , ?: , we obtain that the order
of ( equals 7 − : .
Since we already know that deg Rey(,) = 10 − : , we get = = 3. However,

we can see it also as follows. Take a general plane Π. The restriction of, to Π
is a web of conics without base points. Its Reye variety consists of 3 points. In
fact, the variety of

PB(,) = {([{], [{′]) ∈ Π × Π : 1@ ({, {′) = 0, for any + (@) ∈ |, |}.

is equal to the intersection of four divisors of bidegree (1, 1). They intersect at
6 points, the Reye variety is the set of 3 pairs invariant under the involution of
Π × Π that switches the factors.

�

Proposition 11.5.3. A point G is a fundamental point of Rey(,) if and only if
Bs(# (G)) contains a line or a twisted cubic. In the former case, ℎ(G) = 1 and
in the latter case ℎ(G) = 2.
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Proof Suppose G is a fundamental point and let # (G) be the net of quadrics
in , containing G. Let ℓ be a Reye line containing G. Then, it is a Reye line
of the net # (G), and hence, # (G) has a curve of Reye lines containing G. The
restriction of # (G) to a Reye line ℓ of # (G) is a divisor G + Gℓ on ℓ. If G = Gℓ for
all Reye lines ℓ, then # (G) conntains a pencil of quadrics with singular point
G. This contradicts our assumption on, .
Otherwise, the residual points Gℓ form an irreducible curve � in Bs(# (G).

By Lemma 11.5.1 � is a line, smooth conic, or a twisted cubic. In the first case,
the cone  (G) of rays through G is a pencil of rays and ℎ(G) = 1. In the second
case, if G either lies on �, we get again a pencil of rays; otherwise, ℎ(G) = 2,
and we have a quadric cone  (G) of rays with vertex at G. In the last case, G
must lie on �, and we have ℎ(G) = 2. �

In the following examples, we use that a nodal quartic surface& with ` ≥ 10
nodes admits a symmetric determinantal representation if and only if it contains
a subset of 10 nodes such that (11.55) holds. In other words (see Section 12.2)
the set of 10 nodes is a weakly even set. We will find in Table 12.1 all quartic
surfaces admitting weak even sets of ten nodes. We will see that all surfaces are
realized as the focal surfaces of quadratic congruences without fundamental
curves. The conjugacy graph of fundamental points allows one to determine all
subsets of 10 weakly even nodes.
Example 11.5.4. Assume : = 1. The Reye congruence is of bidegree (6, 3)
and sectional genus 6 = 5. The Steinerian surface is a quartic with one node.
The discriminant surface D(,) is a 11-nodal quartic. It is the focal surface
of a quadratic congruence of class 7. It has only one weakly even set of nodes
formed of fundamental points of degree 3.
The image of the map a, is an irreducible component of Bit(D(,)) of

bidegree (10, 21) It is isomorphic to its normalization. The Reye congruence
Rey(,) is isomorphic to the Coble surface . with one boundary component
�1,

Rey(,) � . � Bl?1 ,..., ?10 (P2),

where the points ?1, . . . , ?10 are double points of an irreducible plane sextic,
the image of �1 in P2. The Plücker map Rey(,) → �1 (P3) is defined by the
linear system

|740 − 2(41 + · · · + 410) |,

where (40, 41, . . . , 410) is the geometric basis of Pic(Rey(,)) defined by the
blow-up. The linear system |1040 − 3(41 + · · · + 410) | defines the Cayley model
of Rey(,). The image of � is a singular point of the Cayley model. The degree
of the Cayley model is equal to 10.
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The congruence contains ten conics corresponding to the exceptional curves
of the blow-up. The span of each conic is a fundamental plane of the congruence
of degree 2. The plane spanned by the image of � in ( = Rey(,) ⊂ �1 (P3) is
the unique fundamental point of (. Its degree is equal to 2. The dual congruence
of bidegree (3, 6) has 10 fundamental points and one fundamental plane.

Example 11.5.5. Assume : = 2. The Reye congruence is of bidegree (5, 3) and
sectional genus 6 = 4. The Steinerian surface is a quartic with two nodes %1, %2.
The discriminant surface D(,) is a 12-nodal quartic. It is the focal surface of
a congruence ( of bidegree (2, 6). It has only one set of 10 weakly even nodes.
It consists of four fundamental points of degree 4 and six fundamental points
of degree three on (. The points %1 and %2 are the images of the remaining
fundamental points of degrees one and five.
Since Reye congruence Rey(,) is the normalization of an irreducible com-

ponent of Bit(D(,)) of bidegree (10, 15), the quadratic congruence ( must
be of type (2, 6)� .
The Reye congruence Rey(,) is isomorphic to the blow down of one (−1)-

curve on a Coble surface . with two boundary components. The surface . is
isomorphic to the blow-up of ten intersection points @1, . . . , @10 of two curves
�1, �2 of bidegree (1, 3) and (3, 1) on a quadric & � P1 × P1 [259, Chapter 9].
The curves �1 and �2 are the images of the boundary curves �1 and �2. In our
situation,

Rey(,) � Bl@1 ,...,@9 (&).

The linear system |O& (3) − @1 − . . . − @10 | maps . to P5. We can put the
image on a smooth quadric and realize . as a congruence of bidegree (4, 4)
and sectional genus 4.
TheCayleymodel of. is given by the linear system |O& (5)−2(@1+. . .+@10) |.

It maps . to a surface of degree 10 in P5 with two singular points equal to the
images of the boundary components.
We may assume that Rey(,) is obtained from . by blowing down the

exceptional curve over @10. Thus

Rey(,) � Bl@1 ,...,@9 (&).

It is embedded into P5 by the linear system

|O& (4) − (@1 + · · · + @4) − 2(@5 + . . . @9) |

of curves of degree eight and genus four. The image lies on a unique smooth
quadric which we can realize as the Grassmanian. The images of �1 and �2 in
Rey(,) are (−3) curves representing |f1 + 3f2 − @1 . . . ,−@9 | and |3f1 + f2 −
@1 . . . ,−@9 |. Their images in P5 are conics.
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Projecting from the point @9, we get another birational model of the Rey
congruence:

Rey(,) � Bl?1 ,..., ?10 (P2).

The linear system that embeds Rey(,) into P5 is now

|640 − (41 + · · · + 44) − 2(45 + · · · + 410) |.

The images of �1 and �2 are cubic curves with double points at ?9 and ?10. The
images of the exceptional curves �8 , 8 = 1, . . . , �4, in the congruence Rey(,)
are pencils of lines. Their base points are fundamental points of Rey(,). The
images of the curves �8 ∈ |340 − (41 + · · · + 410) + 48 |, 8 = 1, . . . , 4, are plain
cubics. They define six fundamental planes of degree 3. The images of the
exceptional curves �8 over ?5, . . . , ?10, are conics of rays. There are also 15
conics corresponding to the lines passing through two points ?8 , ? 9 , 8, 9 ≥ 5,
and 6 conics corresponding to conics through the points ?5, ?6. They define
27 fundamental planes of degree two. The dual congruence Rey(,)∗ is of
bidegree (3, 5). It has 6 fundamental points of degree 2 and 4 fundamental
points of degree 3. It has 4 fundamental planes of degree one.

Let \8 be ten lines in St(,), the images of the singular lines of 10 reducible
quadrics in , corresponding to a weakly even set of nodes of D(,). Let
\1, . . . , \4 correspond to fundamental points of degree two in D(,) and the
rest correspond to fundamental points of degree 3. The line ℓ12 is the image of
the unique trope-conic corresponding to the fundamental point of degree one.
The conjugacy graph Γ(() shows that ℓ12 intersects \1, . . . , \4.
The pencils of cubic curves cut out by planes through the lines \8 are repre-

sented in the plane blow- up model of Rey(,) by | 58 | = |640−2(41+ · · ·+410−
48) |. The pencils | 58 |, 8 = 1, . . . , 4 contain the reducible members represented
by �1 + �2 + �8 . Other six pencils | 58 | contain two members represented by
|340 − (41 + · · · + 410) + 48 |, 8 = 5, . . . , 10.
The net of quadrics containing ℓ12 has four addional base points H1, . . . , H4.

The planes Π8 = 〈H8 , ℓ12〉 intersect St(,) along ℓ12 + \8 +  8 , where  8 is a
conic containing the nodes %1, %2. The conics are invariant with respect to the
involution r, . Their images in Rey(,) are the curves �8 . The pencils of rays
in '(,) is Ω(H8 ,Π8). The points H8 are the fundamental points of '(,) of
degree 1. The plane Π8 is one of the two irreducible components of a reducible
quadric from, . The other plane component cuts out in St(,) the union of \8
and a plane cubic. Its image in Rey(,) is a cubic �8 .
Each of the plane components of the reducible quadric with the double line

\8 , 8 = 5, . . . , 10, contains one of the nodes of St(,). It cuts St(,) along the
union of \8 and a cubic with a node at %1 or %2. Its
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The elliptic fibrations defined by planes through \8 , 8 = 1, . . . , 10, are rep-
resented on Rey(,) by for base-point-free pencils |O& (4) − 2

∑9
8=1 +2@8 |, 8 =

1, . . . , 4 and six pencils |O& (4) − 2
∑9
8=1 @8 |, 8 = 5. They have the base point at

@10. The other six elliptic fibrations are base-point-free pencils |O& (2) − 48 −
4 9 − (45 + · · · + 49) |.
Example 11.5.6. Assume : = 3. The Reye congruence is of bidegree (4, 3)
and sectional genus 6 = 3. The Steinerian surface is a 3-nodal quartic. The
discriminant surface D(,) is a 13-nodal quartic &. It is the focal surface of a
congruence ( of bidegree (2, 5). There is only one structure of a discriminant
surface on D(,) defined by choosing the set of six fundamental points of
degree 2, three fundamental points of degree 3 on (, and one fundamental
point of order 1 that is conjugate the other fundamental points of order one.
The images of the remaining two fundamental points of degree 1 are singular

points %1, %2, and the image of the fundamental point of degree 4 is the point
%3.
The surface Rey(,) is the normalization of an irreducible component of

Bit(&) of bidegree (6, 10).
The line ℓ23 is the image of the trope-conic corresponding to the fundamental

point of degree one conjugate to other fundamental points of degree one. The
lines ℓ12 = 〈%1, %2〉 and ℓ13 = 〈%1, ?3〉 are the images of the other trope-conics.
There are ten reducible quadrics in , with the double lines equal to the

images of the exceptional curves of the minimal resolution of &. Let \1 be the
exceptional curve over the fundamental point of degree one, \2, \3, \4 are the
exceptional curve over the fundamental point of degree three, and \5, \6, \7 and
\8, \9, \10, are the exceptional curves over the fundamental points of degree
two. The points in each set of three are pairwise non-conjugate.
The line ℓ12 intersects the lines \1, \2, \3, \4. The line ℓ13 intersects \1, \5, \6, \7.

The line ℓ23 intersects \1, \8, \9, \10. It follows that the plane 〈%1, %2, %3〉 in-
tersects St(,) along the union of the lines ℓ8 9 and the line \1.
The Reye congruenceRey(,) is isomorphic to the blow-down of three (−1)-

curves on theCoble surface. with three boundary components�1, �2, �3. Each
(−1)-curve intersects two components. The surface . is the blow-up of P2 at
12 nodes ?1, . . . , ?12 of the union of three conics  1,  2, and  3 [259, Chapter
9]. The Reye congruence is obtained by blowing down �1, �2, and �3. We have
an isomorphism

Rey(,) � Bl?1 ,..., ?9 (P2).

The images of the boundary components are three conics �1, �2, �3. Each
conic passes through 2of the points ?10, ?11, ?12. Together with the points
?1, . . . , ?12 the conics form an abstract configuration (38, 122). The linear
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system that defines the Plücker embedding is equal to

|440 − 41 − · · · − 49 |.

The conics �1, �2, �3 are the images of �1, �2, �3 under the map given by this
linear system. There are 10 elliptic pencils | 58 | on '(,) corresponding to the
pencils of planes through \8 . The pencil | 51 | is equal to the image of the pencil
|640 − 2(41 + · · · + 49) |. One of its members is the union of three conics. It is a
Halphen pencil of index 2 (see Subsection 3.2.2). The image of the cubic from
|340 − 41 − · · · − 49 | spans a fundamental plane of degree 3.
The other fiber is the image of the cubic curve from |340 − (41 + · · · + 49) |

taken with multiplicity two. The other nine pencils are the images of the linear
systems |340 − (41 + · · · + 49) + 48 |. Their ninth base point is among the points
?10, ?11, ?12.
Each of the three nets of quadrics containing one of the lines ℓ8 9 has three

isolated base points @ (B)
8 9
, B = 1, 2, 3. The pencil of rays Ω(@ (B)

8 9
, ℓ8 9 ) through

@
(B)
8 9

correspond to the exceptional curves over the points ?1, . . . , ?9.
Thus, '(,) has nine fundamental points of degree one and nine fundamental

planes of degree one. It also has
(9
2
)
conics equal to the proper transforms of

the 〈?8 , ? 9〉, 1 ≤ 8 < 9 ≤ 9, and three conics �1, �2, �3. This gives 36 + 3 = 30
fundamental planes of degree 2.

Example 11.5.7. Assume : = 4. The congruence is of bidegree (3, 3). We
know that the sectional genus 6 = 2. This agrees with Example 11.1.11. The
Steinerian surface St(,) is a 4-nodal quartic surface, and the discriminant
surface D(,) is a 14-nodal quartic surface &. It is the focal surface of a
congruence ( of bidegree (2, 4) without fundamental curves. There are two
structures of a discriminant quartic surface on &. They correspond to a choice
of ten nodes, the first corresponds to the fundamental point |1 of degree 3, the
next three correspond to pairwise non-conjugate fundamental points |2, |3, |4
which are conjugate to |1. and the remaining six correspond to the fundamental
points of degree two.
The singular points %1, %2, %3, %4 of & are the images of the remaining four

fundamental points of (, three of order 1 and one of order three, respectively.
The images of six trope-conics are the lines ℓ8 9 = 〈%8 , % 9〉. The conjugacy

graph Fund(()1 is a hexagon, so two incident vertices of this graph correspond
to two incident lines ℓ8 9 .
Let \1, . . . , \10 be the double lines of reducible quadrics corresponding in this

order to the nodes @1, . . . , @10 of D(,). It follows from the known conjugacy
graph of ( that the lines \1, \2, \3, \4 lie in the faces of the tetrahedron ) with
vertices at %1, . . . , %4. The remaining lines \8 intersect by pairs two opposite
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edges of the tetrahedron. They are double lines of reducible quadrics with the
plane components 〈\8 , ℓ01〉 and 〈\8 , ℓ23〉, where \8 intersects the opposite edges
ℓ01 and ℓ23 .

The lines \1, . . . , \4 are the double lines of reducible quadrics equal to the
union of the face of ) containing the line and the plane Π8 containing the
opposite vertex of ) . The net #8 9 of quadrics from, that contain the line ℓ01
contains two base points G01 , G ′01 besides the base points H2 , H3 . The 12 points
?01 , ?

′
01

are fundamental points of degree one of Rey(,). The corresponding
pencils of Reye lines are lines in the plane 〈ℓ01 , ?01〉 (or 〈ℓ01 , ?′01〉) passing
through ?01 (or ?′01). The planes are fundamental planes of degree one.

The Coble surface . has four boundary components �1, �2, �3, �4. It is
isomorphic to the blow-up of 13 double points of a reducible sextic curve equal
to the union of two smooth conics and two lines. We have

Rey(,) � Bl?1 ,..., ?7 (P2),

i.e., the Reye congruence is isomorphic to a del Pezzo surface of degree two.
The images of the boundary components �8 in Rey(,) are the proper trans-
forms of two conics  1,  2 containing ?1, ?2, ?3, ?4, ?5 and ?1, ?2, ?3, ?6, ?7,
respectively, and two lines 〈?4, ?6〉 and ?5, ?7〉. The four curves intersect pair-
wise at one point outside the set {?1, . . . , ?7}. The additional blow-up of these
six points is the Coble surface . .

The linear system that maps Rey(,) to the Grassmannian is

|440 − 241 − 42 − · · · − 47 |. (11.58)

The 12 pencils of Reye lines from above are the pre-images of the six lines
〈?1, ?8〉. They intersect at the points corresponding to theReye lines 〈?01 , ?′01〉.
The Reye congruence Rey(,) has 10 pencils of elliptic curves of degree 6

in P5. They correspond to the pencils of planes through the lines \8 . Four of
them are the proper transforms of 4 pencils of 5-nodal quintics passing through
the points ?8 , with nodes at ?1, ?2, ?3, and two other nodes, one is from the set
{?4, ?5} and the other one from the set {?6, ?7}.with first four pencils | 58 | are
the pencils The remaining pencils are the proper transforms of 2-nodal quartics
passing through the points ?8 , with two nodes from the set {?4, ?5, ?6, ?7}.

Remark 11.5.8. The image of the embedding of a del Pezzo surface of degree
2 defined by the linear system (11.58) is known in the modern literature as
a Castelnuovo surface (probably due to his extensive work on surfaces with
sectional genus ≤ 3). The author has never encountered this terminology in the
classical literature.
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Example 11.5.9. Assume : = 5. The congruence coincides with the quadratic
congruence ( of class = = 3 with isolated fundamental points.
The isomorphismRey(,) � ( depends on a choice of the focal surfaceΦ(()

as the discriminant surface D(,). There are six such realizations correspond-
ing to the set of sixweakly even sets of 10 nodes. The explicit isomorphism from
Rey(,) to the corresponding irreducible component of Bit(Φ(()) is given by
(11.56). We refer to [255] for more details about the geometry of a 15-nodal
quartic surface D(,).
The Coble surface. has five boundary components �1, . . . , �5. It is obtained

as the blow-up of 14 nodes of a reducible plane sextic equal to the union of
four lines and a conic. The Reye surface is obtained from . by blowing down
ten (−1)-curves each intersecting two boundary components. We have

Rey(,) � Bl?1 , ?2 , ?3 , ?4 (P2).

This agrees with our description of ( as a quintic del Pezzo surface.

Example 11.5.10. Assume : = 6. The Reye congruence is of bidegree (1, 3).
The discriminant surface D(,) is a Kummer 16-nodal quartic surface. The
map a, maps Rey(,) � P2 to one of the fifteen irreducible components of
Bit(D(,)) isomorphic to a plane. The Reye involution coincides with the deck
involution of the familiar representation of a Jacobian Kummer surface as the
double cover of the plane branched along six lines ;1, . . . , ;6
The Coble surface . has 6 boundary components, it is isomorphic to the

blow-up of 15 double points of the union ;1 + . . . + ;6.

11.5.2 Projections of congruences of lines in P4

In this subsection, we discuss Castlenuovo’s constructions of congruences of
order 3 [94], [95].
Let Λ1,Λ2,Λ3 be three disjoint planes in P4 and P8 be three pencils of

hyperplanes with base locus Λ8 . We fix an isomorphisms U8 : P2 → P8 and
consider a family of lines in �1 (P4), the closure of the set of lines of the form

W(C) = U1 (C) ∩ U2 (C) ∩ U3 (C), C ∈ P2.

The image of the rational W : P2 d �1 (P4) is a congruence (a surface) Γ of
lines in P4 (see Example 10.1.6). Its cohomology class in �2 (�1 (P4),Z) is
equal to <f3,1 + =f2,2, where f3,1 (resp. f2,2) is the cohomology class of the
Schubert variety of lines contained in 3-dimensional subspace and containing
a fixed point in it (resp. contained in a plane). The number < (resp. =) is called
the order (resp. class) of the congruence. It is equal to the number of rays of the
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congruence that intersect a fixed general line (resp. contained in a fixed general
hyperplane). As in the case of congruences of lines in P3, the sum<+= is equal
to the degree of the congruence in the Plücker embedding �1 (P4) ↩→ P9.

In coordinates, the line W(C), C = [0, C1, C2] corresponds to the null space of a
system of linear equations

3∑
9=0
08 9 (C0, C1, C2)G 9 + · · · + 004 (C0, C1, C2)G4 = 0, 8 = 0, 1, 2,

where 08 9 are linear forms. We can rewrite these equations in the form

!80 (G0, . . . , G4)C0 + !81 (G0, . . . , G4)C1 + !82 (G0, . . . , G4)C2 = 0, 8 = 0, 1, 2,

where !8 9 are linear forms in G0, . . . , G4. It shows that the image of the map
W is a determinantal cubic hypersurface +3 in P4 expressed by the vanishing
of the determinant of the matrix (!8 9 ). It follows from Theorem 4.1.1 that
+3 has six singular points ?1, . . . , ?6 corresponding to the condition that the
corank of the matrix larger than 1. The points are in a special linear position:
each subset of five nodes spans a hyperplane. Nodal cubic hypersurfaces in
P4 were extensively discussed in Segre’s memoir [688]. We refer to a modern
treatment in [250] that is especially concerned with 6-nodal and 10-nodal cubic
threefolds.
The blow-up of +3 at one of the nodes is isomorphic to the blow-up of P3

along the union of two curves �1 and �2 of bidegrees (2, 1) and (1, 2) on a
smooth quadric &. It is equal to the image of the rational map P3 d P4 given
by the linear system of cubic surfaces containing the curve �1 +�2. The linear
subsystem that consists of the quadric & corresponds to the node of +3. It
is clear that the congruence ( defined above coincides with the Fano surface
of lines in +3. It is explained in loc. cit. that it consists of three irreducible
components �1, �2, and �3. The first two components are of bidegree (3, 6).
They arise from secants of �1 and �2 and isomorphic to the third Veronese
surface v3 (P2) embedded in P9. The third component �3 arises from lines
intersecting both �1 and �2. It is of bidegree (12, 15). The total bidegree is
2(3, 6) + (12, 15) = (18, 27). It is a reducible surface in P9 of degree 45. The
same degree as the Fano surface of lines of a general cubic threefold.
Fix a general hyperplane � in P4 and consider the map P4 d P4 given by

the linear system |OP4 (3) − 2?1 − · · · − 2?6 | of cubic hypersurfaces with nodes
at the points ?1, . . . , ?6. Our cubic+3 (4) is a member of this linear system, and
hence, it is equal to the pre-image of a hyperplane. Each rational cubic through
?1, . . . , ?6 intersects a general member only at the points ?8 , hence the image
of the map coincides with the Segre cubic primal S3 ⊂ P4. The lift of the map
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to the blow-up of the six points, the lines 〈?8 , ? 9〉, and the planes c8 , ? 9 , ?:〉 is
equal to the composition

"0,7 → "0,6 → S3,

where"0,= denote the moduli space of stable rational =-marked points on their
Kapranov’s realizations as the blow-up of P=−3, the first map is the projection
map that forgets the last point, and the second map is the lift of the familiar
map P3 → S3 given by the linear system |OP3 (2) − ?1 − . . . − ?5 |. It follows
that our cubic hypersurface is the pre-image of a hyperplane section � of S3. It
is proven in [250] that the cubic surface � is isomorphic to the blow-up of the
quadric & at five intersection points �1 ∩ �2 on the quadric. The hyperplane
� cuts out each cubic cone over �8 at a rational normal curve W8 . The lines on
the cubic surface � ∩ +3 are divided in two sets 6 lines intersecting W1 at two
points, 6 lines intersecting W2 at two points, and 15 lines intersecting both W1
and W2 [250, Lemma 3.3].
Let G0 be a point in P4 \ +3 (6). Consider the projection ?G0 : P4 d P3.

Each congruence of lines �1, �2, �3 is projected to a congruence (8 of lines in
P3. A general line ℓ containing G0 in P4 intersects the cubic +3 at three points.
Each of the three points lies in one of the rays from �1, �2. This shows that the
projection of ℓ is a point on three rays from (1, (2. Thus, the order of (8 is equal
to 3. A general hyperplane � containing G0 intersects +3 along a cubic surface.
By above, it contains six lines from (1, (2. hence it contains six rays of �1, �2.
They are projected to six rays of (1, (2. Thus, the class of (1, (2 is equal to six.
This gives us a construction of a congruence of lines in (3 of bidegree (3, 6).
Let us look at the projection of �3. The line ℓ intersects 12 rays from �3, four

passing through each intersection point of ℓwith+3. The hyperplane� contains
15 lines on the surface � ∩ �3. Thus the projection of �3 is a congruence of
bidegree (12, 15).
We denote by ( one of the congruences (1, (2. Since a general hyperplane

section of the Veronese surface v3 (P2) is equal to 1, we obtain that the sectional
gebys of (1 is equal to 1. Thus deg(Φ(()) = 6 and the rank A = 9. Note that
the congruence ( is different from the dual of a Reye congruence of bidegree
(6, 3). The focal surface of the latter congruence is of degree 2 · 6 + 8 = 20.
One can degenerate the construction of the congruence ( by allowing the

cubic +3 to acquire an additional number : ≤ 4 of nodes [95]. In terms of the
projective generation, this means that there will be : points C8 in P2 such that the
planes U8 (C8) intersect along a plane Π8 . This leads to congruences of bidegree
(3, 6 − :). The Fano surface of +3 acquires : planes that consist of lines in the
planes Π8 .
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11.5.3 Cremonian congruences
In this subsection, wewill discuss a construction of congruences usingCremona
transformation between two fixed planes in P3 [395], [397].

Fix two planes Π1 and Π2 and isomorphisms U8 : Π8 → P2. Let ) be a
Cremona transformation of P2 of algebraic degree 3 with finitely many fixed
points. By Corollary 7.2.14, the number of fixed points is equal to 3 + 2. It
defines a birational map q = U−1

2 ◦) ◦ U1 : Π1 d Π2. Define a congruence ()
of lines in P3 to be the closure of the set of lines 〈G, ) (G)〉, G ∈ Π1. Following
Hirst, we call () a Cremoniam congruence.

Proposition 11.5.11. The bidegree of a Cremonian congruence () of lines is
equal to (3+2, 3). The line ℓ0 = Π1∩Π2 is a singular point of () of multiplicity
3. The planes Π1,Π2 are fundamental planes of () of degree 3.

Proof Take a general line ℓ in Π1. The image of U1 (ℓ) under ) is a curve of
degree 3. Thus the image of ℓ under q is a curve� of degree 3 inΠ2. A general
plane Π intersects � at 3 points, so there will be 3 rays of ( contained in Π.
They connect the intersection points with their pre-images under q. Thus, the
order of ( is equal to 3.
Take a general point ? ∈ P3. Assume ? ∈ 〈G, q(G)〉 for some G ∈ Π1. Projec-

tion from ? to Π1 and Π2, we get a correspondence Γ ⊂ P2 × P2 isomorphic to
the graph Γ) . The order of () is equal to the intersection number of Γ) with
the diagonal. It is equal to the number 3 + 2 of fixed points.

Let G ∈ ℓ0 ∩ q(ℓ0), then H = q−1 (G) ∈ ℓ0 and hence 〈G, H〉 = ℓ0. So, ℓ0 is a
ray of the congruence. Since the curve � (ℓ0) ⊂ �1 (P3) of rays intersecting ℓ0
intersects 3 other rays, the ray is singular of multiplicity 3 (see Section 1.1).
The pre-image U−1 (ℓ0) is a curve in Π1 of degree 3. The fundamental curve
consists of rays 〈G, q(G)〉, G ∈ U−1 (ℓ0). Its degree is equal to 3.

�

Let ?1, . . . , ?: (resp. @1, . . . , @: ) be the fundamental points of ) (resp. )−1),
and G1, . . . , G: (resp. H1, . . . , H: ) be the corresponding points in Π1 (resp. Π2).
The points G8 (resp. H8) are fundamental points of () . The degree ℎ(G8) (resp.
ℎ(H8) is equal to the degree of the principal curve of )−1 (resp. )) over G8 (resp.
H8).
We omit the proof of the next proposition (see [395]).

Proposition 11.5.12.

deg(Φ(() )) = 43, deg(Φ((∗) ) = 4(= − 1).

Example 11.5.13. Assume) is a projective transformation. Then, q : Π1 → Π2
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is a projective isomorphism. Choose projective coordinates such that Π1 =

+ (C0),Π(C1). The we can extend the map q to a projective transformation q̃
given by the matrix

©«
0 01 11 21
1 0 0 0
0 02 12 22
0 03 13 23

ª®®®®¬
The matrix has 4 eigenvectors corresponding to 4 fixed points ?1, . . . , ?4 of q̃.
Two of them lie on the line ℓ0 = Π1∩Π2. Each fixed point on ℓ0 is a fundamental
point of () . The cone  (G) is the union of two planes Π1 + Π2.
Recall from Subsection 10.3.6 that the closure of the set of lines 〈G, q̃(G)〉 in

�1 (P3) is a tetrahedral line complex G. The blow-up Bl?1 ,..., ?4 (P3) is a small
resolution of G, the map is given by the linear system of quadrics with base
points ?1, . . . , ?4. The image under q̃ of any curve � in P3 not containing any
points ?8 is a curve of degree B, its image is a curve of degree 2B in G.

11.5.4 Smooth congruences of low degree
The assumption of smoothness allows us to use the classification of algebraic
surfaces, and, in particular surfaces embeddable as smooth surfaces of small
degree in P5. One of the main tools is the theory of liasons and the theory of
ample rank 2 vector bundlea that embedd surfaces into �1 (P3). This approach
was undertaken at the end of the last century by many geometers that led to the
classification of smooth congruences of degree < + = ≤ 10 [15], [14], [362],
[363], [364], [787].
In the case where ( is a smooth surface, the following proposition from [385,

p.129] relates the bidegree of (, sectional genus 6 and the standard invariants
of smooth surface as  2

(
and j((,O().

Proposition 11.5.14. Let ( be a smooth congruence of order (<, =) and let 6
be its sectional genus. Then,

<2 + =2 = 3(< + =) + 8(6 − 1) + 2 2
( − 12j(O(). (11.59)

Proof Using the intersection theory on G, we obtain [(]2 = <2 + =2. On the
other hand, this number is equal to the second Chern class of the normal sheaf
N(/G = (I(/I2

(
)∨ of ( in G. The standard exact sequence

0→ I(/I2
( → Ω1

G ⊗ O( → Ω1
( → 0, (11.60)
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after passing to the dual exact sequence and taking the Chern classes, gives

21 (N(/G) = − G · ( +  ( = −4 deg 21 (O( (1)) +  ( = 421 (O( (1)) +  ( ,
22 (N(/G) = 22 (G) · ( − 22 (() +  ( · 21 (N(/G).

The second Chern class of the quadric G in P5 is computed using th exact
sequence

0→ ΘG → ΘP5 ⊗ OG → OG (2) → 0.

It yields 22 (G) = 721 (OG (1))2. Next, we apply the Noether formula 22 (() +
 2
(
= 12j(O() and obtain

22 (N(/G) = 7(< + =) − (12j(O() −  2
() + 421 (O( (1)) ·  ( +  2

(

= 7(< + =) − 12j(O() + 2 2
( + 4(26 − 2) − 4(< + =)

= 3(< + =) − 12j(O() + 2 2
( + 8(6 − 1).

�

Remark 11.5.15. It follows from the proof and the Riemann-Roch theorem that

j((,N(/G) = 1
2 (21 (N(/G)2 −  ( · 21 (N(/G)2) − 22 (N(/G) + 2j(O()

= 1
2 ((4ℎ +  ()

2 − (4ℎ ·  () ·  () − (<2 + =2) + 2j(O()
= 8(< + =) + 2 ( · ℎ − (<2 + =2)) = 6(< + =) + 4(6 − 1) − (<2 + =2) + 2j(O().

(11.61)

Here, ℎ = 21 (O( (1)) and we used the adjunction formula ℎ ·  ( + ℎ2 = 26 − 2.
If we assume that ℎ8 (N(/G) = 0, 8 = 1, 2, i.e., the deformations of ( inside G
are unonstruced, the formula gives the dimension of the irreducible component
of the Hilbert scheme of G that contains (. Subtracting 15 = dim Aut(G) this
gives the expected number of moduli of the congruence (.
For example, if ( is a smooth quadratic congruencewith isolated fundamental

points of class = = 2, 3, we obtain j((,N(/G) = 18, 19, and subtracting 15,
we get 3, 4 moduli that agrees with the number of moduli of such congruences.
We come to the same number of moduli if we use the realization of these
congruences as the Reye congruences of a web of quadrics with : = 5, 6 base
points.

Smooth congruences of lines may have a fundamental curve. If Fund(()
contain a curve �of degree 3 > 1, then the corresponding component of
'(() does not contain fibers of @( : /( → (, hence @B : '(() → ( is an
isomorphism. In particular, � is smooth and ( admits a fibration ( → � with
the degree of a fiber equal to ℎ(G), where G is a point on �. Examples are
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linear congruences from Theorem 11.2.5 or quadratic correspondences from
Example 11.4.1.
The following theorem from [15] gives the classification of smooth congru-

ences of lines with a fundamental curve.

Theorem 11.5.16. Let ( be a smooth congruence of lines in P3 that admit a
fundamental curve �. Then, one of the following three cases may accir:

1. � is a line;
2. ( is the congruence of secants lines of a rational normal cubic or an elliptic

quartic curvee.
3. � is a smooth plane curve of degree 3 ≥ 2 with ℎ(G) = 4, for any point
G ∈ �, such that there exists an effective divisor � on � satisfying

3 (3 − 1) (4 − 1) + (1 + 24 − 243 deg(�) + deg(�)2 = 0. (11.62)

The bidegree of ( is equal to (43 − deg(�), 43).

Note that we considered many examples of quadratic congruences with plane
fundamental curve �3 . However, in most examples �3 was singular, and the
only example with a smooth �3 was considered in Example 11.4.9 with 3 = 2.
In fact, the formula (11.62) easily shows that the only solution if < = 2 is
� = 0, 4 = 1, 3 = 2, and = = 2.
The focal surface of a congruence of lines of order ≥ 3 is a non-normal

surface.
We refer to [18] for the proof of the following Proposition.

Proposition 11.5.17. Let ( be a smooth congruence. Assume that the one-
dimensional part of Foc(() is a nodal curve � and a cuspidal curve �. Then

deg(�) = 2<2 − 10< + 4= + 4<6 + 262 − 346 + 32 − 4 2
( + 12j(O(),

deg(�) − 3< − 3= + 186 − 18 + 3 2 − 12j(O().

One can compare the formula for the degree of� with Schumacher’s formula
(11.39) and use formula (11.59) to express the numerical invariants j(O() and
 2
(
in terms of <, <, 6.
For example, the focal surface of a Reye congruence of bidegree (3, 3) is an

octic surface with a cuspidal curve of degree 12 and no double curve. Recall
from Subsection 11.1.3 that the normalization of the focal surface is the surface
'(() isomorphic to the double cover of ( branched along a curve � from
the linear system |2 ( + 4ℎ|. For example, in the previous example, ( is a
del Pezzo surface of degree 2 and ℎ = 440 − 241 − 42 · · · − 47. This gives
 ' (() = @

∗
(
(2 ( + 2ℎ) = @∗

(
(240 − 241). Assuming � is smooth, we obtain

that '(() is a nonsingular model of Φ(() with  2
' (() = 0 and ?6 = 3.
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In Table 11.4 below we summarize the known classification of smooth con-
gruences of degree ≤ 10. We list only congruence with < ≤ =.

(<, =) g r deg(Φ(()) smooth model embedding fund.curve # fund.points credit

(1, 1) 0 0 ∅ F0 (1, 1) ℓ1 + ℓ2 0 [473]
(1, 2) 0 0 ∅ F1 (2, 1) ℓ +  0 [473]
(1, 3) 1 1 ∅ Veronese [2] '3 0 [473]

(2, 2) 1 0 4 �%4 | −  ( | ∅ (116) [473]
(2, 2) 0 1 2 F0 |2f1 + f2 | ∅ (21) [473]
(2, 2) 0 1 2 F1 |3f + e| ∅ (21) [473]
(2, 3) 1 1 4 �%5 | −  ( | ∅ (25, 110) [473]
(2, 3) 2 0 2 rational [4; 2, 17] ℓ + '3 0 [473]
(2, 6) 3 2 8 � (2) = P(E) |c∗ det(E)| E (24)4 [473]

(3, 3) 1 3 6 DP6 l−1
(

∅ (23, 16) [294],[295]
(3, 3) 1 3 6 ell.ruled |3f + e| ∅ (31, 19) [294],[295]
(3, 3) 2 2 8 DP2 [4; 2, 16] ∅ (112) [294],[295]
(3, 3) 4 0 12 +1,2,3 |L6 | ∅ ?
(3, 4) 3 3 10 rational [4; 19] ∅ (31, 19) [294],[295]
(3, 4) 6 0 16 elliptic(q=0,?6 = 2) ∅ ? [294],[295]
(3, 5) 4 4 12 rational [6; 26, 14] ∅ (34) [294],[295]
(3, 6) 5 5 14 rational [6; 210] ∅ (310) [295]
(3, 6) 4 6 12 rational [6; 26, 14] �3 ? [15]
(3, 7) 6 6 24 Enriques |L10 | ∅ (320) [614],[295]

(4, 4) 3 6 12 �%2 | − 2 ( | ∅ ? [294]
(4, 4) 4 5 14 rational [5; 2, 2, 19] ∅ ? [294]
(4, 4) 5 4 16 +2,2,2 |L8 | ∅ ? [294]
(4, 4) 9 0 24 +1,2,4 | ( | ∅ ? [294]
(4, 5) 5 7 16 rational [6, 25, 17] ∅ ? [787]
(4, 5) 6 6 18 Bl? ( 3) |L10 − ? | ∅ ? [787]
(4, 6) 6 9 18 rational [7, 29, 13] ∅ ? [363]
(4, 6) 7 8 20 Bl? ( 3) L10 ∅ ? [363]

(5, 5) 4 12 16 ell.ruled ∅ ? [363]
(5, 5) 5 11 18 ell.ruled ∅ ? [363]
(5, 5) 6 10 20 rational [7; 3, 26, 16] ∅ ? [363]
(5, 5) 6 10 20 ell.ruled ∅ ? [363]
(5, 5) 7 9 22 Bl?,@ ( 3) |L12 − ? − @ | ∅ ? [363]
(5, 5) 7 9 22 rational [6; 23, 114] ∅ ? [363]
(5, 5) 8 9 24 elliptic(@ = 0, ?6 = 2) ∅ ? [363]
(5, 5) 16 0 20 +1,2,5 | 12 ( | ∅ ?

Table 11.4 Classification of smooth line congruences of degree ≤ 10

Here, ℓ,  , '3, �, �3 stands for a line, a conic, a twisted cubic, an elliptic
curve, and a plane curve of degree 3, respectively. Also [3;<1, . . . , <: ] denotes
the linear system of curves of degree 3 passing through points ?1, . . . , ?: with
multiplicities ≥ <8 . We abbreviate <B if the same multiplicity repeats B times.
Similar notation is used for the configuration of fundamental points. We denote
by L= an ample invertible sheaf on a surface with (L=,L=) = =. Also (0, 1)
denotes the linear system 0f + 1e on F=.

Remark 11.5.18. It was conjectured by the author, and Igor Reider in [236],
based on Bogomolov’s instability criterion of vector bundles on algebraic sur-
faces, that for a smooth congruence ( not contained in a linear complex of lines,
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< ≤ 3=, and hence = ≤ 3<. It was checked for congruences of lines, which are
surfaces with Kodaira dimension ≤ 1 [362].

Exercises
11.1 An irreducible subvariety - of the Grassmannian �A (P=) is called a congruence

if dim - = = − A [691].
(i) Show that the number of A-planes from - passing through a general point

(resp. contained in a general hyperplane) is finite. It is called the order of - .
(ii) Show that the subvariety of A-planes from - contained in a general hyperplane

is an irreducible variety of degree = − 2A − 1. Its degree is called the class of
- .

(iii) Extend to - the notion of a fundamental point and the focal hypersurface, and
prove that, if A = 1 and - has only finitely many fundamental points, a general
ray from - is tangent to the focal hypersurface at = − 1 points.

(iv) Using (iii), show that, if = ≥ 4, the order of a congruence of lines in P= is not
equal to 2 [311].

11.2 Consider a subvariety - (#1, . . . , #=−1) of P= projectively generated by a general
set of nets #1, . . . , #=−1 of hyperplanes with a fixed isomorphism to #8 → P2’
(see Subsection 3.3.1).
(i) Show that the lines �1 (_) ∩ · · · ∩ �=−1 (_), _ ∈ P2, form of a surface
S(#1, . . . , #=−1; =) of order 1

2 (= − 1) (= − 2) and class 1
2=(= − 1) of lines

in P=.
(ii) Show that the surface Sec1 ('=) formed by secant lines of a rational normal

curve '= in P= is an example of a surface S(#1, . . . , #=−1; =). Show that
its Plücker embedding is projectively isomorphic to the Veronese surface
a=−1 (P2).

(iii) Show that rays of S(#1, . . . , #=−1; =) sweep a 3-dimensional variety �3 of
degree 3 = 1

2 (= − 1)) (= − 2).
(iv) Assume = = 4, show that, for a general S(#1, #2, #3; 3), the cubic �3 has

six singular points (in particular, a general S(#1, #2, #3; 3) does not coincide
with the congruence Sec1 ('4)).

(v) Show that the cubic scroll �3 has two rulings whose generators define two
congruence of lines in P4 of order 3 and class 6

11.3 (i) Show that the projection P4 d P3 from a point not in �3 maps the rays of
S(#1, #2, #3; 3) to rays a congruence of lines Γ3

6 in P3 of order = = 3, class
< = 6, and sectional genus 4.

(ii) Show that the projection P4 d P3 from a general point in �3 maps rays of
S(#1, #2, #3; 3) to rays of a congruence of lines without fundamental curve
of bidegree (2, 6)� � in P3.

(iii) Find the bidegree of the congruence of lines in P3 obtained by the projection
of S(#1, #2, #3; 3) from a point on a line ℓ8 .

(iv) Assume that the nets #1, #2, #3 contain : common planes Π8 : �1 (_8) ∩
�2 (_8) ∩ �3 (_8), 8 = 1, . . . , : . Show that the class of the degenerate con-
gruence S(#1, #2, #3; 3) is equal to 6 − : . Show that by projecting these
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congruences one obtain congruences of lines in P3 of bidegree (2, 6− :) [95].

11.4 Let �1, �2, �3, �4 be irreducible curves in P3 of degrees 31, 32, 33, 34 inter-
secting each other transversally at =8 9 points. Show that the number of lines
intersecting the four curves is finite and equal to

231323334 + 314323 + 313324 + 314323 −
∑

{8, 9 }∩{:,; }=∅
=8 93:; .

[735, Theil 1, Art. 9].
11.5 Show that the closure of the set of trisecant lines of a Bordiga sextic surface in

P4 is a congruence of order one and class three.
11.6 Let - be a del Pezzo surface of degree 5 and {!1, . . . , !10} be the set of lines

on - . Let E = Ω1
-
(log�) be the sheaf of logarithmic differential 1-forms on - ,

where � is the sum of the ten line on - .
(i) Let E = Ω1

-
(log�) be the sheaf of logarithmic differentials that fits in the

short exact sequence

0→ Ω1
- → Ω1

- (log�) res→
10⊕
8=1
O!8 → 0,

where res is the residue map. Show that dim�0 (-, E) = 5 and E is generated
by its global sections.

(ii) Show that the map G ↦→ Ker(�0 (-, E) ev→ E(G))⊥, where ev is the evaluation
map, defines a closed embedding 9 : - → � (2, �0 (-, E)∨) � G = �1 (P4)
such that E = 9∗Q�1 (P4) .

(iii) Show that the image ( of - is a congruence of lines in P4 of order 2 and class
3.

(iv) Show that the rays of ( sweep a three-dimensional hypersurface ?G (@−1
G
(())

in P4 isomorphic to the Segre cubic primal.
(v) Let (∗ ⊂ � (3, �0 ((, E)) � G∗ = �2 (P̌4) be the image of ( under the duality

map G → G∗. Show that ?G∗ : @−1
G∗ ((

∗)) → P̌4 is a degree 2 map whose
branch divisor is the Castelnuovo-Richmond quartic hypersurface CR4.

11.7 Let (1 and (2 be two congruences of lines in P3 of order 1 and class 2. Define a
Cremona transformation) : P3 d P3 as follows. A general point G ∈ P3 contains
in a unique ray ℓ1 of (1 and a unique ray ℓ2 of (2. Since the class is equal to 2,
the plane spanned by ℓ1 and ℓ2 contains a unique ray ℓ′1 of (1 and a unique ray ℓ′2
of (2 that intersect at a unique point ) (G) [603].
(i) Show that ) is a Cremona involution.
(ii) Find the �-locus and �-locus of ) .
(iii) Find the multidegree of ) .

11.8 Let ( be the congruence of order two of secant lines of an elliptic quartic curves
� in P3.
(i) Show that, for a general point % ∈ P3, the surface (%) of centers of the null-

planes containing % coincides with the cubic surface from Exercise 9.25. It
associated to the point % and the pencil of quadrics |�� (2) | containing the
curve �.
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(ii) Show that the curve |ℓ | of centers of null-planes containing ℓ is the union of
the curve � taken with multiplicity 3 and a curve ' of degree 5 taken with
multiplicity one.

(iii) Show that the curve ' passes through the tangency points of planes from ℓ⊥

and quadrics from the pencil |�� (2) |.
(iv) Find the genus of the curve '.

11.9 Show that congruences (∗ dual to singular congruences ( of bidegree (1, 3) and
(2, 4) are Cremonian congruences.

11.10 Let ( be a congruence of lines in P3 of order one and let Π,Π′ be two general
planes. Show that the rational map ) : Π d Π′ that assigns to a general point
G ∈ Π the intersection of the unique ray of ( passing through G with the plane Π′
is a birational transformation. Find its degree and fundamental points.

11.11 Let ( be a congruence of lines in P3 of bidegree (3, 3) without fundamental
curve.
(i) Show that its arithmetical sectional genus ?0 is less than or equal to 4 and

the equality holds only if ( is a complete intersection of a cubic and linear
complexes of lines.

(ii) Show that a smooth congruence ( with ?0 = 4 is a K3 surface.
(iii) Show that the focal surface of a general congruence ( with ?0 = 4 is a surface

of degree 12 isomorphic to its dual surface.
(iv) Show that a smooth ( with sectional genus one is equal to the projection of an

anti-canonical del Pezzo surface of degree six [294].
11.12 Let ( be a general congruence of lines in P3 of bidegree (3, 4) and arithmetic

sectional genus equal to 3.
(i) Show that ( is equal to the residual surface of the intersection of two quadratic

line complexes containing a common plane Λ.
(ii) Show that the intersection ( ∩ Λ is a curve � of degree 3.
(iii) Show that ( is a rational surface, the image of P2 under a map given by the

linear system of curves of degree four passing trough a general set of nine
points and the curve � is the image of the unique cubic curve through the nine
points [294].

11.13 Let ( be a general congruence of lines in P3 of bidegree (3, 5) and arithmetic
sectional genus equal to 4.
(i) Show that ( is contained in the intersection of a quadratic line complex and a

cubic quadratic complex with the residual surface of order 4.
(ii) Show that the residual surface of a smooth ( is a congruence of bidegree (2, 2)

isomorphic to a Veronese surface, and ( is a rational surface equal to the image
of P2 under a rational map given by a linear system of curves of degree 6 with
6 double base points and four simple base points [294].

11.14 Show that the intersection of two line complexes of degree 31 and 32 is a
congruence of bidegree (3132, 31, 32) and of rank 3132 (31 − 1) (32 − 1).

11.15 Let ( be a congruence of order two without fundamental curve and (′ be a con-
focal congruence. Find the intersection of the corresponding irreducible compo-
nents of the bitangent surface Bit(().

11.16 Let R3 be the set of stable Veronese curves of degree 3 passing through the five
reference points ?8 .

(i) Show that there are ten curves from R3 that intersect two general lines in P3.
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(ii) Show that the union of curves in R3 which are tangent to a general plane Π is
a surface �Π of degree 10.

(iii) Show that the reference points are 6-fold singular points of �Π and the lines
〈?8 , ? 9 〉 are double lines of �Π.

11.17 Let Π be a plane in P3 and, a web of plane curves of degree 3 with with simple
base points ?1, . . . , ?A of multiplicities <1, . . . , <A . Fix a basis in, to assume
that, defines a rational map 5 : Π→ P3.
(i) Show that the closure of the set of lines 〈G, 5 (G)〉, where G ∉ {G1, . . . , GA }, is

a congruence (, of bidegree (<, =) = (# + 3 + 1, 3).
(ii) Show that, for # = 2, 3, 4 and 3 = 2, the dual congruence (∗

,
coincides with

a quadratic congruence (2, 5), (2, 6)� � , (2, 7) without fundamental curves.
[83]

11.18 Let R3 be the family of stable rational normal curves of degree 3 with 5 marked
points with the universal family isomorphic to "0,6 → "0,5. We identify curves
fromR3 with stable rational curves of degree 3 inP3 passing through the reference
points ?1, . . . , ?5. The space "0,5 isomorphic to a smooth del Pezzo surface of
degree 5 is identified with one of the irreducible components of the Fano surface
of lines of the Segre cubic primal.
(i) Let Π be a general plane. Show that the set of tangency points of curves from
R3 with Π is a conic  (Π) in Π (the Reye conic [615]).

(ii) Let ℓ be a line in P3 which is not contained in any plane 〈?8 , ? 9 , ?: 〉. Show that
all curves R3 (ℓ) from R3 intersecting ℓ form a hyperplane section of "0,5 in
its Plücker embedding that coincides with its anticanonical embedding. Show
that there is a unique curve from R3 that intersects ℓ at two points and this
curve is the unique singular point of the curve R3 (ℓ).

(iii) Show that the closure of the set of tangent lines to smooth curves from R3 is
a complex of lines of degree 6.

(iv) Show that the set of tangent lines of curves from R3 at their intersection points
with a general plane Π is a congruence of lines of bidegree (7, 2) isomorphic
to the dual of the quadratic congruence (2, 7) without fixed curves.

(v) Show that, taking planes passing through : = 1, 2, 3 of the points ?1, . . . , ?5
we btain a congruence of bidegree (2, 7 − :) dual to congruences (2, 7 − :)
without fundamental points.

[735, Theil 2, Art. 459].
11.19 Show that the bidegree of the congruence of secant lines of a non-plane irre-

ducible smooth curve � of degree 3 and genus c is equal to ( 12 (3 − 1) (3 − 2) −
c, 1

2 3 (3 − 1)) and its sectional genus 6 is equal to 1
2 (3 − 2)) (3−) + 2c).

Historical Notes

The main sources for the theory of congruences of lines are [429], [735, Theil
II], [820, §§42–54]. From an analytical point of view, a ray in R3 is defined
by six numbers (G, H, I, b, [, Z , where (G, H, I) are the coordinates of a point on
it, and (b, [, Z) the cosines of the angles between the ray and the coordinate
axes. A congruence is a two-parametric family of rays in R. The analytical
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theory of rays played an important role in optics and differential geometry 13

of surfaces (e.g by consideration the congruence of normals of a surface), we
refer to Kummer’s work in 1860 [470] where he gives a historical account and
also gives an exposition and further development of this theory.
In a large memoir [473] , Kummer gave the first foundation of the algebraic

theory of congruences of lines in P3. Kummer used Strahlensysteme for a con-
gruences of line, they became later Strahlenkongruenzen. For exsmple,Kummer
was the first to introduce the notions of the order (Ordnung), class (Klass), fo-
cal surface (Brennfläche), singular point (singuläre Punkt)(=fundamental point)
and its degree, singular curve (singuläre Linien, or Leitkurven, or Brenncurve)
(=fundamental curve), and singular plane (singulr̈e Ebene) (=fundamental
plane). Further development of the general theory of line congruences was
given in a Münich dissertation of R. Schumacher in 1885 that appeared in
his paper [669] in 1890. He was the first to introduce the rank A , he called
it Art (changed to Rang by Sturm) and some other characteristics of a line
congruence. In the same memoir Schumacher introduced the Triple Fläche and
computed its degree (assuming, as always, not expicitly stated generality condi-
tion). Schumacher also computes the degree and the class of the focal surface,
the degree of the ruled surface whose generators are rays tangent to the focal
surface with multiplicity four. The sectional genus 6 of a line congruence was
introduced by Fano [294] in 1893. The three Parts of Sturm’s treatise [736]
is the most comprehensive treatise on the line geometry that uses a synthetic
approach (in words of Jessop: it is a storehouse of information). In particular,
volume 2 is entirely devoted to congruences of lines. Our exposition heavily
relies on Sturm’s treatise. Based on his earlier work on higher Nullsystem,
Sturm introduces the surface (%) and a curve (;) which plays an important role
in the theory of line congruences.
The classification of congruences of lines was started by Kummer [473]. He

claims that any congruence o order one is either the congruence of secant lines
of a twisted cubic or secant lines of the union of a line and a rational curve
�3 of order = intersecting it at = − 1-points. As we see from our classification
Theorem 11.2.5, the only missing is the cae where �3 is infinitely near to
the line. This gap was corrected by Sturm [736, II. Theil, p. 31] (although in
modern literature, it is attributed to Z. Ran [606]).
The extension of the notion of a congruence of lines in P3 to higher-

dimensional projective space was first suggested by C. Segre [691]. Castel-
nuovo in his papers on surfaces of lines in P4 [94], [95] continued to call them
congruences. The first attempt to classify congruences of lines in P4 is due to
13 In the spirit of differential geometry it was pursued by a Russian school of S. P. Finikov with

almost no connection to the algebraic geometry aspect of the theory (see [[301]).



386 Congruences of Lines in P3

G. Marletta [505], [506]. His work was continued in a series of papers by P.
de Poi (see [216] and the references there) and a paper by C. Peskine [581].
Some examples of congruences of lines in P4 of low degree can be found in
[17]. One cal also consider surfaces or codimension two subvarieties in�1 (P=)
as a generalization of congruences of lines in P3. Their cohomology class is
determined by two numbers: the order and the class. Surfaces of order 1 were
classified by Z. Ran [606].
The classification of congruences of lines in P3 of order two without a fun-

damental curve is essentially due to Kummer [473]. Kummer’s arguments are
based on the analysis of possible equations for the coordinates (G, H, I, b, [, Z)
in the form ! (b, [, Z) = &(b, [, Z) = 0, where ! is a linear form, and & is a
quadratic form whose coefficients are polynomials in G, H, I. Kummer gives a
rather detailed discussion of congruences of different classeses, in particular,
find a relation between congruences of class 2 and 16-nodal quartic surfaces,
the Kummer surfaces from his original paper [471] two years yearly. Table
11.1 that contains the classification in terms of possible fundamental points can
be found in [735, Teil II, p.51], and it is also reproduced in Jessop’s treatise
[429, p. 280]. However, it is essentially contained in Kummer’s paper. Sturm’s
treatise contains the first synthetic treatment of Kummer’s results and contains
a lot of beautiful geometry that one cannot find in Kummer’s paper.
Almost all known congruencies of order two with fundamental curve can be

found in Kummer’s paper. However, his missed three new type discovered by
Sturm.
The construction of congruences of lines defined by a birational transforma-

tion between two planes is due to Hirst [395], [397]. There are numerous other
ingenious geometric constructions can be found in references from [820].
Classification of congruences of lines of degree ≤ 8 and order ≥ 3 without a

fundamental curve is due to Fano [294]. In a later memoir [295] Fano extends
it to the classification of all congruences of order 3. In particular, he classified
smooth congruences among them. As always, some of his geometrical methods
do not satisfy the modern rigor. A modern proof of Fano classification based
on the known results about surfaces of small degree in P5 and using the coho-
mological methods was given E. Arrondo and I. Sols (< + = ≤ 8), by A. Verra
[?] for < + = = 9 and by M. Gross [363] (< + = = 10). In [364], gives a modern
treatment of Fano’s classification (adding the possibility of the existence of a
fundamental curve) of smooth congruences of order 3. It turns out that the class
of such congruences is less than or equal to 7.
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Quartic Surfaces

In the previous chapter, we found that the focal surface Φ(() of quadratic
congruences ( without a fundamental curve is always a quartic surface in
P3 with ` = 18 − = rational double points, which, generically, are expected
to be ordinary nodes. We also saw that, in many cases, the focal surface of
a quadratic congruence with a fundamantal curve is also a quartic surface
but, this time, with non-isolated singularities. We also encountered quartic
surfaces on several occasions in this book, for example, ruled quartic surfaces,
Cayley quartic symmetroids, quartic cyclide surfaces, Steiner quartic surfaces,
Kummer and Weddle quartic surfaces. In this chapter, we will find their place
in the classification of irreducible quartic surfaces& in P3. We will also assume
that & is not a cone.

12.1 Rational and Ruled Quartic Surfaces

A quartic surface that has singular points besides rational double points is
a ruled surface, rational or irrational. In this section, we will discuss their
classification.

12.1.1 Quartic surfaces with isolated non-rational singular points
Let & be a quartic surface, assumed here and in the sequel, to be irreducible,
reduced, and not a cone. Let @ be its singular point. Choose the projective
coordinates to assume that @ = [0, 0, 0, 1], then the equation of & can be
written in the form

C23�2 (C0, C1, C2) + C3�3 (C0, C1, C2) + �4 (C0, C1, C2) = 0, (12.1)

387
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where �: (C0, C1, C2) is a homogeneous form of degree : . If @ is a triple point,
then& is a monoidal surface. In this case, �2 = 0. Projecting from @, we obtain
a rational map pr@ : & d P2 that blows down the curve + (�3, �4) in P3 to the
0-dimensional subscheme / = + (�3, �4) in P2. The map pr@ regularizes on
the blow-up - = Bl@ (&). It maps the exceptional curve �@ to the cubic curve
�3 = + (�3). The singular point @ is an elliptic Gorenstein triple singular point
of degree 3. All such singularities have been classified [556, 7.2], [795].
The inverse rational map pr−1

@ : P2 → & ⊂ P3 is given by the linear system
|�/ (4) |. Any & as above can be obtained as the image of the rational map
given by such linear system. If / is reduced and consists of 12 distinct points,
the surface Bl@ (&) is nonsingular, and the exceptional curve is isomorphic to
+ (�3). For example, take + (�3) to be a nonsingular plane cubic curve, and
+ (�4) be a quartic curve intersecting it transversally at 12 points. We obtain
a quartic surface with a simple elliptic singularity of degree 3 [556, Example
7.2.18].
Now, assume that @ is an isolated double point different from a rational double

point. Let c : - → & be its minimal resolution. Recall that the genus ?6 (&, @)
is the dimension of the linear space �0 (&, '1c∗O- ). A rational double point
of a surface is characterized by the property that its genus is equal to zero.

Proposition 12.1.1. There are the following three possibilities:

1. If
∑
@∈Sing(&) ?6 (&, @) = 0, then Sing(&) consists of rational double points,

and - is a K3 surface.
2. If

∑
@∈Sing(&) ?6 (&, @) = 1, then - is a rational surface with an effective

anti-canonical divisor � ∈ | −  - |.
3. If

∑
@∈Sing(&) ?6 (&, @) = 6, then - is birationally equivalent to a minimal

ruled surface over a curve of genus 6 − 1.

Proof Weapply theLeray spectral sequence� 8, 92 = �8 (&, 'c 9∗ ) ⇒ �8+ 9-,O- )
to obtain an exact sequence

0→ �1 (&,O&) → �1 (-,O- ) → �0 (-, '1c∗O- ) → �2 (&,O- ) → �2 (-,O- ) → 0.

In case 1), we get �0 (-, '1c∗O- ) = {0}, hence �2 (-,O- ) � �2 (&,O&).
By Serre’s duality, �2 (&,O&) = �0 (&, l&) = �0 (&,Q ) � C. Also, we have
�1 (-,O- ) � �1 (&,O&) = 0. Since c is aminimal resolutionl- � O- (−�),
where � is supported on the exceptional curves [556, 6.3]. This implies that
� = 0, hence l- = O- , �1 (-,O- ) = 0, and - is a K3 surface.
In case 2), we get �0 (-, '1c∗O- ) � C. Since �1 (&,O&) = 0, we obtain

either �1 (-,O- ) � C and �2 (-,O- ) � �2 (&,O&) � C, or �1 (-,O- ) =
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{0}, �2 (-,O- ) = {0}. In the first case, �2 (-,O- ) = �0 (-, l- ) ≠ 0,
hence � = 0. This implies that all irreducible exceptional curves � satisfy
� ·  - = 0, �2 < 0, hence they are (−2)-curves and @ is a rational double
point. In the second case, we get ?6 (-) = 0, ℎ1 (-,O- ) = 0. Since  - < 0, -
must be a rational surface.
Finally, in case 3), by a similar argument, we get ?6 (-) = 0 and ℎ1 (-,O- ) =

6 − 1. By classification of algebraic surfaces, - is birationally isomorphic to a
ruled surface over a curve of genus 6 − 1. �

Suppose & is a rational quartic surface with isolated singularities. Then,
it has exactly one singular point with ?6 = 1 and all other singular points
are rational double points. A Gorenstein singular point with ?6 = 1 is called
minimal elliptic singularity. Since a quartic surface & is a deformation of a
smooth quartic surface with the second Betti number equal to 22, the Milnor
number of an isolated surface singularity on & is less than or equal to 21.
All possible singularities can be found among uni-modal and bi-modal surface
singularities in Arnol’d classifiation of critical points of analytic functions (see
[209]).
Consider again the projection from a non-rational double singular point @.

Thus, the map pr@ is of degree 2. We will study the projection with more detail
in the next subsection and will draw from this some conclusions about possible
non-rational double points. However, before we do it, let us give an example.
Example 12.1.2. Let�6 = + (�6 (G0, G1, G2)) be a plane curve of degree six with
a point % of multiplicity 4. For, example, we may take

�6 = (G2
0 + G1G2)G1G2 (G2

1 + G
2
2) + 53 (G1, G2)2.

Consider the double cover of P2 branched along �. It can be defined as a
hypersurface of degree 6

G2
3 + �6 (G0, G1, G2) = 0

in theweighted projective spaceP = P(1, 1, 1, 3). The linear systemOP (3)maps
% onto a cone in P10 over the Veronese surface v3 (P3) ⊂ P9. The projection to
the Veronese surface is our double cover. Taking the affine equation with affine
coordinates I = G3/G2

0, G = G1/G0, H = G2/G0, we obtain an affine equation

I2 + 56 (G, H) = 0.

This is the usual equation of a double plane. We can resolve the singular point
by first blowing up the point (0, 0) ∈ A2 and then take the double cover - of the
blow-up branched over the proper transform of the branch curve. We leave it to
the reader to do the computation to obtain the exceptional curve of the minimal



390 Quartic Surfaces

resolution of the singular point is a smooth elliptic curve with self-intersection
−2. This is a simple elliptic singularity of degree 2. It remains to show that
the surface - admits a birational model isomorphic to a quartic surface with a
simple elliptic singularity of degree 2. To do this, we consider the pre-image of
the conic + (G2

0 + G1G2) under the double cover. Obviously, it is tangent to �6 at
each intersection point. It follows that it splits in the cover into the union of two
curves�1+�2 intersecting at 6 points.We find 8 = 2�2 = (�1+�2)2 = 2�1+12,
hence �2

1 = �
2
2 = −2. Let ℎ be a general line in the plane, the linear system

|� | = |c∗ (ℎ) + �1 | satisfies �2 = 4 and � · �1 = 0. It defines a birational map
from - to a quartic surface& which is an isomorphisms outsider �1 and blows
down �1 to an ordinary double point. The surface has two singular double
points, one is elliptic and one is a rational double point.
Example 12.1.3. This example is due to Cremona [191]. The surface& is given
by the equation

G2|2 + 2|G 52 (G, H, I) + 54 (G, H, I) = 0.

The plane + (G) intersects & along the union of four lines intersecting at the
singular point % = [0, 0, 0, 1]. It is a simple elliptic singularity of degree 2
locally analytically isomorphic to the singular point C2 + q4 (D, {) =. Cremona
shows that the surface is isomorphic to the image of the plane under the
birational map given by the linear system of curves |6ℎ − 2(?1 + . . . + ?7) −
(@1 + @2 + @3 + @4) |. Here, the eleven points lie on a cubic curve �. The surface
is the projection of the del Pezzo surface + = Bl?1 ,..., ?7 (P2) embedded in P6

by | − 2 + | from the plane intersecting + at four points. It is spanned by the
image � ′ of the cubic curve �. The images of the exceptional curves over these
points are the four lines through %. The projection of � ′ is the singular point.

Similar examples were given by Noether [555]. He considered the linear
system |7ℎ − 2(?1 + · · · + ?9) + 3@ | or |9ℎ − 3(?1 + · · · + ?8) − 3@1 − 2@2 − @3 |.
Here, again the points lie on a cubic curve �. The singularities are simple
elliptic singularities of degree 1 and 2, respectively.

In Subsection 12.2.1 we will discuss the construction of a quartic surface as
a double cover of the plane branched along a curve of degree six that admits
a contact conic. Putting non-simple singularities on the branch curve, gives a
quartic surfaceswith non-rational double points.Wewill not pursue this further,
and refer to [772], [774] and [426] for modern work on the classification of
non-rational singularities of quartic surfaces.
Assume now that & is a non-normal quartic surface. We have already en-

countered many examples of such surfaces. Let � be the curve of singularities
of &. Obviously, there are the following possible cases:
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1. � is a double line;

2. � is a smooth conic;

3. � is the union of three concurrent lines .

4. � is a rational normal curve;

5. � is a triple line;

6. � is the union of two lines;

7. � is the union of a line and a conic;

By taking the pencil of planes through a double line, we see that all surfaces of
types 5)-7) are ruled surfaces. A surface of type 4) is also ruled since the secant
line of the double curve through a general point on the surface is contained in
the surface. We classified and discussed quartic ruled surfaces in Section 10.4.
Surfaces of type 1) are submonoidal surfaces. We refer to [258] for a modern

treatment of such surfaces. Note that the maximal number of isolated ordinary
nodes on such surfaces is equal to 8. It achieved for Kummer Complex quartic
surfaces which we encountered before.
Surfaces of type 2) are cyclide quartic surfaces. We proved in Theorem 8.6.4

that a cyclide quartic surface is a projection of a quartic del Pezzo surface in
P4 to P3.
A Steiner surface is an example of a surface of type 3). In fact, any surface of

type 1) must be a Steiner surface. Recall that in Example 7.4.4 we constructed
a quadratic Cremona transformation of bidegree (2, 4) defined by the linear
system of quadrics through 4 points and tangent to a fixed plane at one of
the points. The restriction of this homaloidal linear system to the plane is a
three-dimensional linear system of conics. It maps the plane to the projection
of the Veronese surface from a line. So, the image of a general plane is a Steiner
surface. The inverse map is given by Steiner quartic surfaces containing a fixed
cross of double lines. They are mapped to quartics from the linear system
|OP3 (4) − b|, where b is the normalization of the ideal of the (GH, HI, GI). The
proper transform of a quartic surface& containing+ (GH, HI, GI) in the blow-up
Bl+ (b) (P3) is the normalization of &. It maps it isomorphically to a plane in
P3. Thus, the normalization of & is isomorphic to P2 and this proves that & is
isomorphic to a Steiner surface.
Note that there is only one Steiner surface up to projective isomorphism,

and it is given by equation (2.3). Its rational birational parametrization is given
explicitly in (2.4).
A non-normal quartic surface may have isolated singular points. We refer to

their classification to [774].
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12.2 Nodal Quartic Surfaces

12.2.1 Plane sextics and quartic surfaces
Suppose & has a double point @. Projecting from @ to P2, we get a degree two
rational map

pr@ : & ′→ P2, (12.2)

where c′ : & ′→ & is the proper transform of & in the blow-up Bl@ (P3) → P3.
The map pr@ is a finite morphism if and only if & does not contain lines
containing @. Let l = {@1, . . . , @: } be the set of images of these lines, or the
empty set if & does not contain such lines. Let

5 ′ : & ′→ &̄ ′
pr′@→ P2

be the Stein factorization of the map pr@ . The map pr′@ is a finite morphism of
degree 2. Let � be its branch curve.

Let c′ : &̃ → & ′ be a minimal resolution of & ′. The composition

c = pr@ ◦ c′ : &̃ → &

is a minimal resolution of &
Let

5 = 5 ′ ◦ c′ : &̃ → P2. (12.3)

It is a map of degree 2.
The proper transform of a line through @ in &̃ is a smooth rational curve

with self-intersection −2. Since it is blown down under f′, its image in &̄ ′
is a singular point. Since all singularities of & ′ are rational double points, &̄ ′
has only rational double points. Hence, the points @8 are simple singularities,
as well as other possible singular points of �. The formula for the canonical
bundle of a double cover shows that � must be a curve of degree 6.
This can be, of course, deduced from the equation of &

C20�2 (C0, C1, C2) + C0�3 (C0, C1, C2) + �4 (C0, C1, C2) = 0,

where @ = [1, 0, 0, 0] and �2 ≠ 0.
The branch curve has the equation

�6 (C0, C1, C2) := �3 (C0, C1, C2)2 − �2 (C0, C1, C2)�4 (C0, C1, C2) = 0. (12.4)

We immediately see that l = + (�2, �3, �4).
The conic  = + (�2) is equal to the image of the exceptional curve of the

birational morphism & ′ → &. It is nonsingular if and only if @ is an ordinary
node. It follows from the local equations of rational double points that  is the
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union of two distinct lines, and then @ is a singular point of type �: , : > 1.
Otherwise, it is a singular point of some type �= or �: . Since &̃ is a K3 surface,
the surface & has a basket of rational double points with the sum ` of Milnor
numbers at most 19. Each singular point different from @ is a double rational
point of type �=, �=, �: and its projection to the plane is a simple singular
point of � of type 0=, 3=, 4: . We refer to [773] and [811] for the classification
of possible rational double points on a quartic surface.

• From now on, we assume that& contains only ordinary nodes G1, . . . , G` = @

as singularities. Let �1, . . . , �` be the exceptional curves over the nodes.

Lemma 12.2.1. The pre-image of the contact conic in &̃ splits into the sum of
two (−2)-curves �` +� ′` intersecting with multiplicity 6− : , where : = #l. The
linear system | 5 ∗OP2 (1) ⊗ O&̃ (�`) | coincides with |c∗O& (1) | and the linear
system | 5 ∗OP2 (1) ⊗ O&̃ (� ′`) | defines an involution g@ of &̃ induced by the deck
transformation of the double cover pr@ : & ′ → P2. It switches the curves �`
and � ′`.

Proof The double cover pr@ : & ′ → P2 induces a double cover  ′ →  

defined by an invertible sheaf L such that L⊗2 � OP2 (�) ⊗ O . This shows
that  splits in the double cover into two smooth rational curves  1 +  2. We
may assume that the proper transform of  1 in & ′ is the curve � . We have
pr∗@OP2 (1) � O&′ (� ′ − �`), where � ′ is the divisor class of the pre-image of
a plane section of & in & ′. Thus, � ′ = pr∗@ (;) + �`, where ; is a line in P2,
and g′∗ (� ′) = pr∗@ (;) + � ′`. The linear system |� ′ | defines the identity map of
& ′ and the linear system g′∗(� ′) defines the involution g′. The pre-images of
these linear systems on &̃ are the linear systems |� + �` | and |� + � ′` |, where
� is the preimage of � ′ and we identify the pre-images of � and � ′` with �`
and � ′`. The curves now intersect only at the pre-images of points in  ∩ �
outside l.
We have (� + �`) · � ′` = 2 = 2 = 0, as it should be, and (� + �`) · � ′` =

2 + 6 − :! = 8 − : .
�

Let

g@ : &̃ → &̃

be the biregual involution of &̃ induced by the deck transformation of the double
cover pr@ : & ′ → P2. Its locus of fixed points contains a curve. It is known
that the set - g of fixed points of a biregular involution of a K3 surface - is
either empty or consists of isolated fixed points, or is a smooth curve. In our
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case, &̃g@ certainly contains a curve, hence &̃g@ is a curve. Its image in & is
contained in the intersection of & with the first polar cubic surface %@ (&).

Let / = &̃/(g@) be the quotient by the involutions. It is a smooth rational
surface. Let f : / → P2 be the blowing down to P2, so that we have a
commutative diagram

&̃

c

��

5

��

p̃r@ // /

f

��
& ′

pr@ // P2

The birational morphism f : / → P2 is a log-resolution of the branch curve �.
Its proper transform �̄ in / is a smooth branch curve of the map p̃r@ . The map
f : �̄ → � is the normalization of the plane sextic curve �. Since we assume
that & has only ordinary nodes as singularities, all singular points of � outside
the set l are ordinary nodes.

Lemma 12.2.2. Let :8 be the number of nodes of& lying on a line ℓ8 containing
@. Then :8 ≤ 3.

Proof Taking the pencil of planes through the line ℓ8 we obtain the pencil of
residual cubics. A general cubic from the pencil intersects ℓ at three points.
These are the singular points of a plane quartic plane section of &. It has, at
most, two singular points outside the point @. It is clear that singular points on
& on ℓ8 are among them. �

Assume that l ≠ ∅. We denote by E8 the sum of the exceptional curves
over the nodes lying on the line ℓ8 . By the previous lemma, E8 is the sum of
2 ≤ :8 ≥ 0 exceptional curves.

Proposition 12.2.3. Let '1, . . . , ': be the proper transforms of the lines
ℓ1, . . . , ℓ: in & containing the point G` = @. Let E1, . . . , E: be the sum of
0 ≤ :8 ≤ 2 exceptional curves � 9 , 9 ≠ ` over nodes of & lying on ℓ8 . Then

� ′ := g@ (�) = 3� − 4� −
:∑
8=1

(
(:8 + 1)'8 + E8

)
,

� ′ = g@ (�) = 2� − 3� −
:∑
8=1

(
(:8 + 1)'8 + E8

)
,

(12.5)

where � is the inverse image in Pic(&̃) of 21 (O& (1)). Moreover, g@ ('8) = '8
if :8 = 0, 2, and g@ ('8) = E8 if :8 = 1.
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Proof Let  be the contact conic.
We have � = 5 ∗ (;) + � and 2 5 ∗ (;) = 5 ∗ ( ) = � + � ′ + ', where

' =

:∑
8=1

<8'8 + =8E8

and 5 (') = l. Since g@ (�) = � ′ and g∗@ ( 5 ∗ ( )) = 5 ∗ ( ), we obtain that
g@ (') = '. Also,

� ′ := g∗@ (�) = g∗@ ( 5 ∗ (;) + �) = 5 ∗ (;) + � ′ = 5 ∗ (;) + (2 5 ∗ (;) − � − ')
= 3 5 ∗ (;) − � − ' = 3(� − �) − � − ' = 3� − 4� − '.

(12.6)

Similarly, we get

� ′ = 2 5 ∗ (;) − � − ') = 2(� − �) − � − ' = 2� − 3� − '.

Obviously, each '8 is contained in ', andwe get 1 = � ·'8 = � ′·'8 = −1−'8 ·',
hence '8 · ' = −2. Suppose that :8 = 0. Then '8 · ('−'8) = −2+2 = 0. Hence
'8 enters in ' with the coefficient 1.
If :8 = 1, then E8 = �8 , the exceptional curve over one node of & lying on

ℓ8 . We have '8 · �8 = 1, and '8 · (' − '8 − �8) = −1. Thus '8 enters in ' − '8 ,
and we obtain '8 · (' − 2'8 − �8) = −2 + 4 − 1 = 1. So, '8 enters with the
multiplicity 2 and �8 enters with multiplicity 1.

If :8 = 2, we, similarly, get that '8 · (' − '8 − E8 = −2 + 2 − 2 = −1 and
'8 · ('−2'8 −E8) = 0. Both contradict the fact that ' must intersect positively
with ' −<8'8 . Thus, ' · (' − 3'8 − E8) = −2 + 6− 2 = 2, and ' = 3'+E8 . We
have '8 intersects each of the two components of E8 with multiplicity one.
This proves the first equality. Since � ′ = 3�−4� −' and � ′ = 2�−� −'′.

After subtracting, we get '′ = '.
Similarly, we have

∑:
8=1

(
(:8 +1)'8 +E8

)
= 3� −4� −� ′ and g∗@ (

∑:
8=1

(
(:8 +

1)'8 + E8
)
= 3� ′ − � − 4� ′. Since � ′ = � ′ = � − � , the sums coincide. The

sum could be invariant only if g∗@ ('8) is as in the assertion of the proposition.
�

Corollary 12.2.4. Let ℓ8 be a line on & passing through @ and :8 be the
number of nodes on ℓ8 , 8 ≠ ` lying on ℓ8 . The point @8 is an ordinary double
point if :8 = 0, a cusp if :8 = 1 (a simple singularity of type 02), or a tacnode
corresponding to an infinitely near ordinary double point @′

8
� @8 (a simple

singularity of type 03) if :8 = 2. The contact conic intersects � at @8 with
multiplicity 2 if :8 = 1 and multiplicity 4 if :8 = 2 passing through @8 and @′8 .

Corollary 12.2.5. Any intersection point G ∉ l of  with � is a nonsingular
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point of �. Moreover,  and � are tangent at this point with some even multi-
plicity 2=G . The sum

∑
G∉l =G = 6− =G and the total multiplicity of nonsingular

intersection points is equal to 6− #l if each line through @ contains at most two
nodes, and equal to 6− #l− B, where B is the number of lines that contain three
nodes.

Proof Suppose G is such an intersection point. Taking partials of �6 at this
point, we get that they all vanish if and only if �4 vanishes at this point. This
contradicts to the assumption that G ∉ l = + (�2, �3, �4). We know how  

intersects � at points from l. The multiplicity is always even since  splits in
the cover. �

The condition that a nodal plane sextic admits a contact conic is rather
implicit. The linear system of conics is of dimension 5, and the condition that a
conic is tangent to � at some point imposes one condition on the conic. Since
we need six tangency points, it imposes one condition on the plane sextic. In
particular, it imposes one condition on the position of its nodes.

We can reverse the construction. We leave the proof of the next proposition
to the reader.

Proposition 12.2.6. Let � be a plane curve of degree 6 with = ordinary nodes
as its singularities. Assume that there exists a smooth conic  passing through
: nodes ?1, . . . , ?: , and tangent to � at 6 − : nonsingular points. Let - → P2

be the double cover of P2 branched along � and -̃ be its minimal nonsingular
model. Then, there exists a birational morphism q : -̃ → &, where & is a
quartic surface that contains ` = = + 1 − : nodes. The curve � splits in the
cover -̃ → P2 into the union of two smooth rational curves intersecting at 6−=
points. The birational morphism q maps one of the curves to a node @ of &.
The images of the exceptional curves over the points ?8 are lines in & passing
through @. The images of other exceptional curves over = − : nodes of � are
nodes on &.

Example 12.2.7. Assume � = + (�6) has = ≥ 6 nodes and a conic � = + (�2)
passes through six nodes ?1, . . . , ?6 of �. If we take the double cover - of P2

branched along �, and take � as a contact conic, we obtain a quartic surface
with = + 1 − 6 lines passing through one of the nodes. It also contains a conic,
the image of one of the components of the pre-images of � in the cover.

Now, taking the partials of �6 and using equation (12.1), we find that + (�4)
passes through the six points. Let + (�3) be a cubic curve passing through
?1, . . . , ?6. Since the restriction of �6 to� is a divisor of the form 2(?1+· · ·+?6)
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�3 by some nonzero constant)

�6 = �
2
3 +2�2�4 = �

2
3 +2�2�4 (!1�3 +�2�2) = (�3 +�2!1)2 +�2

2 (2�2− !2
1).

This shows that  = + (2�2−!2
1) is a contact conic of � not passing through its

singular points. Now, we repeat the construction and obtain another birational
model of - that has = + 1 nodes.

The assumption is made only to simplify the exposition and the notation. If
needed, the reader can easily drop the assumption and modify the following
discussion accordingly.
The map f : / → P2 is the blowing up of ` − 1 ordinary nodes of the

branch curve �. Let (40, 41, . . . , 4`−1) be the corresponding geometric basis of
/ . Then, Let

[�8] = p̃r∗@ (48), 8 = 1, . . . , ` − 1.

Let
ℎ := p̃r∗@ (40).

Then, the branch curve of p̃r@ is equal to the proper trasnform of �, and

[�̄] = 640 − 2(41 + · · · + 4`−1).

The ramification curve ' of p̃r@ is its preimage in &̃, and

['] = 3ℎ − �1 − · · · − �`−1.

Let g be the biregular involution of &̃ defined by the deck transformation of
the double cover& ′→ P2. We know from Lemma 12.2.1 that it is given by the
linear system |ℎ + � ′` |, where � ′` = g@ (�). It follows from Proposition 12.2.3
that

� ′ = g∗@ (�) = 3� − 4�, � ′` = 2� − 3�,

g∗@ (�8) = �8 , 8 ≠ `, g∗ (ℎ) = ℎ.
(12.7)

We know that ' · �` = 6 and the images of the six points (some of them may
coincide) to P2 is the intersection points of the contact conic  with �.

Lemma 12.2.8. There exists an isomorphism 5 : , → & ′, where , is a
surface of degree 6 in the weighted projective space P(1, 1, 1, 3) given by
equation

I2 − �6 (C0, C1, C2) = I2 − �2
3 + �2�4 = 0.

Under this isomorphism, the image of the hyperplane section + (I) is equal
to the ramification curve '′ of the double cover & ′ → P2. The images of the
curves  1 = , ∩+ (I +�3) and  2 = , ∩+ (I +�3) are the curves �` and � ′`.
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Proof Consider a rational map ) : P(1, 1, 1, 3) d P3 given by

[C0, C1, C2, I] ↦→ [C0�2 (C0, C1, C2), C1�2 (C0, C1, C2), C2�2 (C0, C1, C2), I−�3 (C0, C1, C2)]

It is not defined along the curve  1 and blows down the curve  2 to a point
[0, 0, 0, 1]. Since

(I − �3)2 + 2(I − �3)�3 + �4�2 = I
2 − �2

3 + �4�2.

the image of , is equal to &. The rational map ) restricts to a birational
morphism 5 : , → & which blows down  1 to the singular point G` of &.
It may be undefined only at the intersection points of  1 with  2. However, it
follows from the non-degeneracy assumption that we may take �2 and �3 as
local parameters of the surface at any indeterminacy point of ) . It also implies
that the map ) restricts to a regular birational map on - . This shows that both
& ′ and - are isomorphic to a minimal resolution of the singular point @, and
hence, � & ′. �

We will identify & ′ with the surface , in P(1, 1, 1, 2). Local computation
show that all singular points @8 , 8 ≠ `, of& ′ � - are the pre-images of singular
points of � = + (�6). Moreover, the singular points of & ′ different from @` lie
over singular points of � and formally isomorphic to singularities |2+q(D, {) =
0, where the singular point of its image in � is formally isomorphic to the
singularity q(D, {) = 0. In particular, if a singular points ? of � is a simple
point of type 0=, 3=, 4=, then the singular point of& ′ over ? is a rational double
point of type �=, �=, �=, respectively.

Another birational model of & is a closed subvariety - ′ of the geometric
line bundle V(L−1), where L = OP2 (3). The subvariety - ′ is given by local
equations I2 − q(G, H) = 0, where q(G, H) = 0 are local equations of �. It is
isomorphic to the affine spectrum of the sheaf of quadratic algebras OP2 ⊕ L∨.
The projection of V(L−1) to the base restricts to a finite map 5 : - ′ → & of
degree 2. The formula for the canonical sheaf

l- � 5 ∗ (lP2 ⊗ L)

gives in our case l- � O- confirming that a minimal resolution of - is a K3
surface provided that all singular points of � are simple curve singularities.

12.2.2 Apparent nodes
Let � be an irreducible plane nodal curve that admits a contact conic  that
intersects it at nonsingular points of �. Let q : - � F0 → P2 be the double
cover of P2 branched over  . We say that a node of � is an apparent node if its
pre-image in the cover consists of two smooth points on c−1 (�).
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Lemma 12.2.9. Let� be a plane nodal curve of degree 3 that admits a contact
conic  intersecting it at nonsingular points. If � is rational, then it is equal to
a projection of a curve of degree 3 lying on a smooth quadric. If� is irrational,
then the same is true if one of the nodes of � is an apparent node.

Proof We identify - with a smooth quadric in P3. The double cover q : - →
P2 is the projection from a point G0 outside - , its ramification curve is the
intersection ! = -∩%G0 (-) of - with the polar plane. The covering involution
] switches the two rulings of - , and a generator of each ruling projects to a
tangent line of  .
Suppose � ′ = c−1 (�) does not split in the cover, i.e. ](�) = �. Then, � ′ ∈
|O- (3) | is an irreducible curve of arithmetic genus equal to ?0 (� ′) = (3−1)2.
Let X = X1 + X2 be the number of nodes of �, among which X1 is the number
of apparent nodes. The curve � ′ has 3 nodes at the intersection points with
! and 2X2 nodes outside. Let & ′ → & be the blow-up of the set of nodes of
� ′ and / → P2 be the blow-up of X2 nodes of �, and 3 intersection points
with �. Then, the proper transform of � in / is a smooth curve �̃ of genus
6 = ?0 (�) − X1 − X2 =

(3−1) (3−2)
2 − X1 − X2 and the proper transform �̃ ′ of � ′

on& ′ is a smooth curve of genus 6′ = ?0 (� ′) − 3 − 2X2 = (23 − 1)2 − 3 − 2X2.
The double cover & ′→ / restricts to an unramified cover �̃ ′→ �̃.
If � is a rational curve, then �̃ is a smooth rational curve isomorphic to the

normalization of�. Since it does not admit an irreducible unramified cover, we
get a contradiction. If � is not rational, then the Hurwitz formula 6′ = 26 − 1
gives the equality

(3 − 1)2 − 3 − 2X2 = 2( (3 − 1) (3 − 2)
2

− X1 − X2) − 1

that yields X1 = 0. This contradicts our assumption.
�

Suppose now that � splits in the cover q : - → P2. Then, its pre-image in
the cover is equal to the union �1 +�2, where �2 = ](�1). Let (0, 3 − 0) be the
bodegree of �1, hence (3 − 0, 0) is the bidegree of �2. The projection �8 → �

is a partial normalization, it is an isomorphism outside apparent nodes. There
are two nonsingular points in �1 ∩ �2 over each apparent node of �. We have

�1 · �2 = 0
2 + (3 − 0)2 = 3 + 2X1.

Using that the arithmetic genus of a curve of bidegree (0, 3−0) in - � P1×P1

is equal to 0(3 − 0) − 3 + 1, we get the following.

Corollary 12.2.10. Let � be an irreducible nodal plane curve that a admits a
contact conic intersecting it at nonsingular points. Assume� splits in the cover
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q : - → P2 ramified over  . Let X1 be the number of apparent nodes of �, and
X2 be the number of remaining nodes of �. Then,

X1 =
1
2 ((3 − 0)

2 + 02 − 3), 0 ≤ X2 ≤ (0 − 1) (3 − 0 − 1), (12.8)

where (0, 3 − 0) is the bidegree of one of its splitting component in &.

Proposition 12.2.11. Let � be an irreducible nodal curve of degree 3 = 2=.
Suppose it is a projection of a curve � ′ of bidegree (=, =) on a smooth quadric
- . Then, it has =(= − 1) apparent nodes, and they are intersection points of
curves of degree = and = − 1.

Proof The projection map defines a birational isomorphism � ′ → �. This
implies that� splits in the cover. Applying (12.8), we obtain that X1 = =(=−1).

The curve � ′ is a complete intersection of - and a surface � of degree
=. Let us choose projective coordinates (G, H, I, |) such that the center of the
projection G0 = [1, 0, 0, 0] and Π = %G0 (-) = + (G). We may assume that
G0 ∈ �, so we can write

� = + (G�=−1 (G, H, I, |) + �= (H, I, |)).

The cone over � with vertex at G0 intersects the cone + (�= (H, I, |)) at 2=2

rulings. There are 2= generators that pass through the intersection pointsΠ∩� ′,
the remaining 2X1 = 2=(= − 1) generators (counted with multiplicity 2 since
they are the pre-images of nodes of�). So the intersection of+ (�=−1) ∩+ (�=)
with - consists of two points on 2X1 generators. They are the pre-images of
apparent points of �. This shows that the set of =(= − 1) apparent nodes is a
complete intersection of curves of degrees = and =−1, the curve+ (�= (H, I, |))
and the projection of the curve + (�=−1) ∩ � to the plane. �

Example 12.2.12. Let � be an irreducible plane curve of degree 3 equal to the
projection of a curve � ′ of degree 3 on a smooth quadric - . We know from
Lemma 12.2.9 that � is either rational curve or has at least one apparent node.
Suppose 3 = 3. Then, � must have an apparent node, and � ′ is a curve of

bidegree (1, 2) or (2, 1). smooth rational curves of bidegree (1, 2) and (2, 1).
If 3 = 4, then we may choose � ′ of bidegree (1, 3) or (2, 2). In the former

case � is rational and hence has X = X1 = 3 apparent nodes. In the latter case
X1 = 2, and X2 = 0 if � ′ is smooth, and X2 = 1 if � ′ has a node. In particular, a
smooth or one-nodal quartic curve is not a projection of a quartic curve on - .
If 3 = 5, then � is of bidegree (1, 4) or (2, 3). In the first case, � ′ is smooth

and rational, hence X = X1 = 6. In the second case, X1 = 4. Since ?0 (�1) = 2,
we have X2 ∈ {0, 1, 2}. In particular, a nodal quintic can be a projection of a
curve of degree 5 on a quadric only if X ≥ 4.
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If 3 = 6, then �1 is of bidegree (3, 3), (2, 4), or (1, 5). In the classical
terminology, � is of the first, the second, or the third species.

Note that the number of parameters of such sextics is the same and equals
8. We get X1 = 6, 7, 10, respectively. The arithmetic genus of �1 is equal to
4, 3, 0, so the number X of possible nodes of � is greater than or equal to 6. In
particular, there are three kinds of 10-nodal sextics that admit a contact conic.

If� is of the first species, Proposition 12.2.11 implies that six apparent nodes
are on a conic.
Assume that � is of the second species. Adding to �1 two generators of -

intersecting �1 at four points, we obtain a reducible curve �̃ of degree 8 with
two line components ℓ1 and ℓ2, each intersecting � at six points. The curve �̃
has 7 apparent nodes ?1, . . . , ?7 on �, two apparent nodes @8 , @′8 on each line,
and one apparent node equal to the intersection of the two lines. The plane
cubic curve ' passing through the twelve apparent nodes passes through the
points ?1, . . . , ?7 and two points @8 , @′8 in ℓ8 ∩ �.

Let us take ℓ1 = ℓ2 passing through a node ?8 of � and tangent to the contact
conic  . Then, we obtain a cubic curve that passes through apparent nodes of
� and intersects � at one of the nodes ?8 with multiplicity 4. It intersect each
line at this point with multiplicity 2. This implies that ?8 is a double point of
the cubic. We saw the existence of such cubics when � is the projection of a
trope curve of degree 12 from the fundamental points of degree 6 on the focal
surface of a congruence lines of bidegree (2, 7).
Assume that � is of the third species. In this case, � ′ is a smooth rational

curve of bidegree (1, 5) on - . The curve � is a 10-nodal sextic, all its nodes
are apparent. We add to � ′ four generators intersecting it at 5 points to obtain a
nodal curve of bidegree (5, 5). Its projection �̄ is a reducible curve of degree 10
with four line components ℓ1, . . . , ℓ4 which are tangent to the contact conic. A
choice of four generators is equivalent to a choice of four points on the contact
cubic. The curve �̄ has 10 apparent nodes besides apparent nodes of �. They
are the intersection points of four lines and one point among the intersection of
the line with �.

Let us specialize the four lines to two double lines passing through a node
?8 of �. Similar to the previous case, we obtain a quartic curve that passes
through the nodes of � and intersects � at ?8 with multiplicity 6. The quartic
curve intersects each line with multiplicity 3 at ?8 . This implies that ?8 is a
triple point of the quartic.

Remark 12.2.13. We can extend the previous discussion to reducible nodal
curves admitting a contact conic. Let � = �1 + · · · + �: be a nodal curve of
degree 3, the union of irreducible curves � ′

8
of degrees 38 . Assume that each
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�8 splits in & → P2 into the union of curves of bidegree (08 , 38 − 08) such that∑:
8=1 08 =

∑:
8=1 (38 − 08), i.e. 2

∑:
8=1 08 = 3. The set of apparent nodes of � is

the union of the set of apparent nodes of each �8 and �8 ·� 9 −� ′8 ·�8 = 383 9 −
083 9 − 0 938 − 2080 9 points among the intersection points of the components
�8 . They are the intersection points of a curve of degree 3 and 3 − 1.

For example, assume 3 = 6 and � is the union of a line �1 and a 5-nodal
quintic �2 with four apparent nodes. Additionally, two apparent points among
the five intersection points. There must be a conic passing through the six
apparent points.

Another example, is when � is the union of two lines �1, �2 and a 3-nodal
quartic �3 with three apparent nodes ?1, ?2, ?3. We have additional three
apparent nodes ?4 = �1 ∩ �2, ?5 ∈ �1 ∩ �3, ?6 ∈ �2 ∩ �3. There is a conic
containing ?1, . . . , ?6.

12.2.3 The nodal lattice
The moduli space of `-nodal quartic surfaces may consist of different irre-
ducible components. Here, we introduce the important invariant of general
nodal quartic surfaces which distinguishes these components.

Proposition 12.2.14. Let & be a quartic surfaces with ` ordinary double
points. Then,

` ≤ 16.

Proof We apply the Plücker-Teissier formula 1.2.7. By taking a general hy-
perplane section passing through @8 , we find that � ∩ & is a an ordinary node
at @8 . This implies that the degree 3∨ of the dual surface &∨ satisfies

3∨ = 36 −
:∑
8=1
(`(&, @8) + 1) = 36 − 2:.

If : > 16, 3∨ ≤ 3, hence &∨ is a rational surface. However, & is birationally
isomorphic to &∨ but & is birationally isomorphic to a K3 surface. �

It follows from the previous discussion, that the projection from a node @ of
& defines a pair (�,  ), where � is a plane sextic with ` − 1 ordinary nodes
and  is a smooth contact conic of � not passing through singular points of �.
Conversely, given such a pair (�,  ), we define & ′ by equation from Lemma
12.2.8. Blowing down one of the splitting components of the pre-image of the
contact conic, we obtain &.

Let
N = Z� ⊕ Z[�1] ⊕ · · · ⊕ Z[�`] ⊂ Pic(&̃) (12.9)
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be the sublattice of Pic(&̃) spanned by the divisor classes [�1], . . . , [�`]
and �. Since |�8 | = {�8}, we will identify the divisor classes of �8 with
the curves �8 . The lattice N has (�, �1, . . . , �`) as an orthogonal basis with
�2 = 4, �2

8
= −2. As an abstract quadratic lattice,N is isomorphic to the lattice

N` = 〈4〉 ⊕ 〈−2〉⊕` .

Here, we use the standard notation 〈0〉 for a lattice of rank 1 generated by a
vector with norm-square equal to 0.

Note that the lattice embedding 9 : N< ↩→ Pic(&̃) may not be primitive
because its imageN may not be a primitive sublattice of Pic(&̃). LetN s be the
primitive saturation of N in Pic(&̃), the largest primitive sublattice of Pic(&̃)
containing N . It is known that an even lattice " ′ containing an even lattice
" of finite index [" ′ : "] corresponds to an isotropic subgroup � of the
discriminant group Disc(") equipped with a quadratic map

@ : Disc(") → Q/2Z, { ↦→ {2 mod 2Z

[550]. We already saw in Lemma 8.2.1 that disc(") = [" ′ : "]2disc(" ′).
The index [" ′ : "] here is the order of the group �⊥/�.

The discriminant group Disc(N`) is equal to the direct sum of the discrimi-
nant groups of its direct summands isomorphic to 〈4〉 or 〈−2〉. It is generated by
A = 1

4� mod N` and A8 = 1
2 [�8] mod N`, and it is isomorphic to the direct

sum

〈1
4
〉 ⊕ 〈− 1

2 〉
⊕`, (12.10)

We have a chain of inclusions

0 ⊂ N` ⊂ NB` ⊂ (NB`)∨ ⊂ N∨` (12.11)

The isotropic subgroup � corresponding to the overlattice Ns
` is the the 2-

elementary abelian group

NB`/N` ⊂ N∨`/N` = Disc(N`).

Let P be the set of nodes of &. Recall from Remark 4.3.7 that a subset
{G8 , 8 ∈ �} of nodes is called even (resp. weakly even) if 1

2
∑
8∈� �8 ∈ 2Pic(&̃)

(resp. � +∑
8∈� �8 ∈ 2Pic(&̃)). We define a homomorphism

NB`/N` → 2P � F`2
that assigns to

∑
8∈� A8 , #� = 4B, the even set of nodes |� = {G8 , 8 ∈ �} and

assigns to 2A +∑ 9∈� A 9 , #� = 4B + 2, the weakly even set of nodes |� = {G8 , 8 ∈
�}. It is immediate to see that the homomorphism is injective that allows us to
identify NB`/N` with a binary linear code in F`2 . The addition law here is of
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course the symmetric sum � + � = (� ∪ �) \ (� ∩ �). We will denote this
binary linear code by C`.

Recall from the theory of linear codes that elements of a binary linear code
+ ⊂ F=2 are called words, and the weight of a word | is the number || | of its
non-zero coordinates in the standard basis of F=2 . The minimal weight 3 of a
nonzero word coincides with the minimal distance of the code, the smallest
weight || + |′ |, where |, |′ ∈ + . We say that + is of of type [=, :, 3], where
: = dim+ and 3 is the minimal distance of + . In our case, = = `.
The linear space 2P is equipped with the standard symplectic bilinear form

1(�, �) = #(� ∩ �) mod 2 and the code C` is its isotropic subspace. In
terminology of the theory of linear codes, C` is a self-orthogonal code. The
dual linear code C⊥` contains C`, and we get

Disc(Ns
`) � �⊥/� � F

1+`−2:
2 � 〈1

4
〉 ⊥ C⊥` /C` (12.12)

with the quadratic form on C⊥` /C` inherited from the quadratic form on 2P .

Lemma 12.2.15. The cardinality of an even (resp. weakly even) set of nodes
belongs to the set {8, 16} (resp. {6, 10}).

Proof An isotropic element { of Disc(N`) is equal to 2A0 +
∑
8∈� A8 with

#� ≡ 2 mod 4 or
∑
8∈� A8 , #� ≡ 0 mod 4. It shows that 2N s ⊂ N always. So,

{ = 1
2 (� −

∑
8∈� �8) with #� ≡ 2 mod 4 or { =

∑
8∈� �8 , with #� ≡ mod 4.

Since Pic(&̃) is an even lattice, in the first case, {2 = 1
4 (4−2#�) = 1− 1

2 #� must
be equal to−2B, hence #� ∈ {6, 10, 14}. In the second case, {2 = − 1

2 (#�) = −2B,
hence #� ∈ {4, 8, 12, 16}.

Let us exclude the case #� = 4. Suppose such a set exists, then, after
reordering the set of nodes, we find a divisor class � with �2 = −2 and
2� ∼ �1 + �2 + �3 + �4. Since O&̃ (�1 + �2 + �3 + �4) � O&̃ (2�), there
exists a double cover q : - ′ → &̃ branched over �1 + �1 + �3 + �4. We
have  - ′ = q∗ ( &̃ + �) = c∗ (�). Since q∗ (�8) = 2�̃8 , where �̃2

8
= −1, we

get  2
- ′ = −4. After blowing down the four (−1)-curves �̄8 , we get a surface

- with  - = 0. On the other hand, the standard Hurwitz formula for the
double cover - ′ → &̃ allows us to compute the topological Euler-Poincaré
characteristic 4(- ′). We get 4(- ′) = 24({) − ∑4

8=1 4('8) = 40. This gives
4(-) = 4(- ′) − 4 = 36. It follows from the classification of algebraic sur-
faces - must be either a K3 surface or an abelian surface. In the former case,
4(-) = 24, and, in the latter case, 4(-) = 0. This contradiction proves the
assertion.
Let us exclude #� = 12. Arguing as in the previous case, we find a surface .

with 4(- ′) = 24 and  2
- ′ = −12 that contains 12 disjoint (−1)-curves. Blowing
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them down we get a surface - with  2
-
= 12 and  - = 0. The classification of

algebraic surfaces shows that such a surface does not exist.
We also can exclude the case #� = 14. We can refer to a general results about

the cardinality of the sets of even or weakly even nodes to [317], however, in
our special case, we can use the fact that each quartic surface with ` ≥ 14
nodes can be realized as the focal surface of a quadratic congruence of lines of
class 18 − `. Our description of the set of trope conics easily shows that there
are no weakly even sets of 14 nodes.

�

Lemma 12.2.16. Let [`, :, 3] be the type of the linear code C`. Then,

: ≥ ` − 10,

and, if : ≥ 2,

3 ∈ {6, 8}.

Proof We use that the composition of a primitive embedding

Ns
` ↩→ Pic(&̃) ↩→ �2 (&̃,Z)

is a primitive embedding Ns
` ↩→ �2 (&̃,Z). Here, �2 (&̃,Z) � Z22 is a uni-

modular lattice with respect to the cup-product.
We know from Subsection 8.2.1 that the discriminant groups of a primitive

sublattice " and its orthogonal complement #⊥ in a unimodular lattice are
isomorphic. Also, it is easy to see that @" = −@"⊥ .

It follows from (12.12) that ; (Disc(Ns
`) = ` − 2: . On the other hand,

; (Disc((Ns
`)⊥) ≤ 22 − (1 + `) = 21 − `. This gives 21 − ` ≤ ` − 2: , hence

: ≥ ` − 10.
If : ≥ 2, the subspace Cev

` contains a non-trivial word, and Lemma 12.2.15
implies that its weight is equal 10. �

The following Lemma follows immediately from the projection formula for
the divisor classes [315, Chapter 2].

Lemma12.2.17. Let q : - → ( be a finite map of degree 2 of smooth projective
surfaces. Let f be the involution of - defined by the deck transformation of
the cover. Then, the homomorphism q∗ : Pic(() → Pic(-) is injective, its
image is the subgroup Pic(-)f of f- invariant divisor classes, and cokernel
of q∗ : Pic(() → Pic(-)f is a 2-elementary abelian group generated by the
cosets of divisor classes of irreducible components of the ramification divisor
of q.
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Let {G8 , 8 ∈ �} be an even set of eight nodes. The divisor

� � =
1
2 (2� −

∑
8∈�

�8)

has �2 = 0 and � ·� = 4. By Riemann-Roch Theorem, dim |� | = 1, the pencil
of quadrics passing through the eight points is a pencil of contact quadrics.
Its members cut out & along a quartic curve of arithmetic genus 1 taken with
multiplicity 2.
Fix a node G8 and let g8 be the biregular involution of &̃ defined by the deck

transformation of the projection from G 9 . Formulas (12.7) show how it acts on
Pic({).
Suppose 9 ∉ � and #� = 8, then a contact quadric passing through G 9 defines

a g9 -invariant (−2)-curve � 9 ∼ � − � 9 ∼ 1
2 (2� − 2� 9 −

∑
8∈� �8). It is the

proper transform of a quartic curve on & passing through G8 ∈ � and having G 9
as its double point.
Since� 9 intersects 8 curves �8 , 8 ∈ �,with multiplicity one, and these curves

are gG 9 -invariant, we obtain 8 fixed points on it. Hence, � is fixed pointwise by
g9 . It is an irreducible component of the ramification curve ' of c : &̃ → / .
The projection of � 9 to the plane is a conic passing through 8 points of the
branch curve �. We encountered such curves on the focal surface Φ(() and
called them trope-quartics. We continue to call them trope-quartics.
Let {G8 , 8 ∈ �} be a weakly even set of 6 nodes. The divisor

� � =
1
2 (� −

∑
8∈�

�8)

satisfies �2
�
= −2 and � · � = 2. It defines a trope conic on & passing through

the six nodes. If 9 ∈ �, then � � is g9 -invariant, and, as above, we see that it
is fixed by g9 pointwise. The projection of � � to the plane from G 9 is a line
passing through 5 singular points of �.

Theorem 12.2.18. The sublattice N is a primitive sublattice of Pic(&̃) if and
only if the branch curve of the projection from each node is an irreducible plane
sextic.

Proof We apply the lemma to our case of the map c : &̃ → / whose branch
curve �̄ belongs to |640−2

∑
8≠` 48 |. We have 40 = ℎ

′ and c∗ (40) = ℎ = �−�`.
Thus,

' ∼ 3ℎ −
∑
8≠`

�8 ∼ 3� − 3�` −
∑
8≠`

�8 .

Suppose � is reducible, then one of the nodes ?: of � is the intersection
point of two irreducible components �1 and �2 of �. Thus, ' = '1 +'2, where
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c∗ (�8) = 2'8 . Since ' · �: = 2, we get '1 · �: = 1. However, �: · � is even
for any � ∈ N . This contradiction. shows that '1 defines a non-trivial element
of N s.
Conversely, suppose the linear code C` ⊂ F`2 is non-trivial but the branch

curve �B of the projection map prGB is irreducible. Since an irreducible plane
sextic has at most 10 nodes, ` ≤ 11. By Lemma 12.2.16, any non-trivial word
in C` has weight equal to 6, 8, or 10.

The Griesmer bound (12.13) from below gives dimC` = 1. Suppose ||� | =
6, then the trope-conic � � = 1

2 (� −
∑
8∈� �8) must be g9 -invariant for any

9 ∈ �. As we explained in above, its projection from ? 9 to the plane is a line
component of the branch curve � 9 .

Suppose ||� | = 8. Then, the argument is the same applied to the trope-quartic
� ∼ 1

2 (2� −
∑
8∈� �8) − 2� 9 ∈ |�8 − 2� 9 |, where 9 ∉ �.

Finally, if || | = 10, then ` = 11, and we may assume that � = {1, . . . , 10}.
Let � = 1

2 (3� − 3�10 −
∑9
8=1 �8). Then, �2 = 0, and |� | = 1 is a pencil. The

projection of � from ?1 is a pencil of cubic curves passing through 9 nodes of
the irreducible 10-nodal sextic �. We find a cubic passing through an additional
node and get a contradiction with the Bezout Theorem.

�

The curve �1 intersects � − �1 at 0(6 − 0) simple points. If 0 is even, this
set defines an even set of nodes of&. If 0 is odd, it defines a weakly even set of
nodes of cardinality 1 + 0(0 − 6) = 6 or 10.

Theorem 12.2.19. Let & be a quartic surface with ` nodes with non-primitive
sublattice N . The following Table 12.1 describes possible binary linear codes
C defined by even and weakly even sets of nodes.
Here, [|=1

1 , . . . , |
=:
:
] means that the code consists of =8 nonzero words of

weight =8 .

Proof First, it is easy to list all possible reducible sextics with a given number
of nodes. All the possibilities can be found in the last column of the Table.
Second,we use the proof of Lemma12.2.15 to identifywords|� = {G8 , 8 ∈ �}

in C` with effective divisor classes � � . It follows from (12.7) that � � is g: -
invariant if and only if the multiplicity at � is equal to the multiplicity at
�: .
Third, we will also use theGriesmer bound for a code [=, :, 3] of dimension

: in F=2 with minimal distance : [488, (5.2.6)]:

= ≥
:−1∑
8=0
[ 3
28
] . (12.13)



408 Quartic Surfaces

` Type dimC C` � (2, =)

` ≤ 5 {0} 0 {0} 6`−1 -

6 VI0 0 {0} 65 -
VI1 1 [61] 10 + 50 -

7 VII0 0 {0} 66 -
VII0 1 [61] 10 + 51 -

8 VIII0 0 {0} 67 -
VIII1 1 [61] 10 + 52 -

9 IX 0 {0} 68 -
IX0 1 [61] 10 + 53 -
IX1 1 [81] 20 + 40 -

10 X {0} {0} 69 -
X0 1 [101] 30 + 30 -
X1 1 [81] 20 + 41 -
X2 1 [61] 10 + 54 -
X3 2 [62, 81] 10 + 10 + 40 -

11 XI0 1 [101] 30 + 31 (2, 7)
XI1 1 [81] 20 + 42 -
XI2 1 [61] 10 + 55 -
XI3 2 [62, 81] 10 + 10 + 41 -

12 XII0 2 [61, 81, 101] 10 + 20 + 30, 31 + 31, 10 + 56 (2.6)�
XII1 2 [83] 20 + 43 (2, 6)� �
XII2 3 [64, 83] 10 + 10 + 42 -
XII3 2 [62, 8] 10 + 10 + 42 -

13 XIII0 3 [64, 83] 10 + 10 + 43, 20 + 20 + 20 -
XIII1 3 [63, 83, 101] 10 + 20 + 31, 3 10 + 30, 2 10 + 43 (2, 5)

14 XIV 4 [67, 87, 102] 10 + 10 + 20 + 20, 3 10 + 31 (2, 4)

15 XV 5 [610, 815, 106] 5 10 + (2, 0) (2, 3)

16 XVI 6 [616, 830, 1015, 161] 6 10 (2, 2)

Table 12.1 Linear codes of general quartic `-nodal surfaces

1 ≤ - ≤ 5 :
A plane sextic with less than five nodes is irreducible. So, the linear code is

trivial if ` ≤ 5.

6 ≤ - ≤ 8 :
Since 3 ≥ 6, the Griesner bound (12.13) gives : = 1. The linear code C` is

generated by a word of weight 6 or 8. Since ` ≤ 8, the reducible � could be
only of type 10 + 5`−6, hence there is a word of weight 6.
Let � � ∼ 1

2 (� −
∑
8∈� �8) be the proper transform of a trope-conic. It is

projected from any point G8 , 8 ∈ �, to a line component of the branch curve. So,
its type is 10 + 5`−6. Note that projecting from a point ? 9 , 9 ∉ �, we get a conic
passing through 6 nodes of the irreducible branch curve.

- = 9 :
If : = 2, then 3 = 6 and dimCev

` = 1, hence there is a word of weight 8 with
distance 6 from the word of weight 6. It is easy to see that this is impossible
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because ` is too small. So, : = 1 and we have a new possibility that 3 = 8. We
represent � � = 1

2 (2� −
∑
8∈� �8 − 2� 9 ) by a (−2)-curve. Its projection from

G 9 is a conic component of �. This leads to � of type 20 + 40.

- = 10, 11:
If : = 1, then 3 = 6, or 3 = 8. We use the same argument as before. This

gives the corresponding rows of the table with : = 1.
Suppose : > 1. TheGriesmer bound gives : = 2, and 3 = 6. Since dimCev

` =

: − 1 ≥ 1, there is an even set {G8 : 8 ∈ �} of 8 nodes. It must be the sum of
two words of weight 6. This gives � � ∼ 1

2 (2� −
∑
8∈� �8 − 2� 9 ), 9 ∉ �, is the

sum of two trope-conics 1
2 (� −

∑
8∈�1 �8 − � 9 ) +

1
2 (� −

∑
8∈�2 �8 − � 9 ), where

� = �1 + �2. The projection of � � from G 9 is the union of two line components
of �, the residual part is an irreducible quartic with ` − 10 nodes.

- = 12:

By (12.2.16), : ≥ 2. By Griesmer bound : ≤ 3.
Suppose : = 2 and 3 = 8. Then, all non-trivial words are of weight 8.

Let {G8 , 8 ∈ �} be a weakly even set of 8 nodes. The effective divisor � � ∼
1
2 (2� −

∑
8∈� �8 − 2� 9 ) is defined by a trope-quartic. Its projection from G 9

is a degree two irreducible component �1 of the branch curve �. The residual
component must also be defined by a weakly even set, and it is easy to see that
it must be a 3-nodal quartic �2.
Assume that : = 2 and 3 = 6. Then, dim�ev

` = 1, and there exists a
weakly even set of 8 nodes. We argue as above, and obtain that it defines a
reducible effective divisor � � , and its projection is the union of two lines. This
corresponds to the code of type [62, 8].
Assume that : = 3. The Griesmer bound implies that the minimal distance

3 = 6 and dimCev
` = 2. We may assume that the three even sets of nodes

correspond to subsets �, �,  as above. There will be a weakly even set of six
nodes. It has four common nodes with each even set of nodes. Without loss of
generality, we may assume that it corresponds to a subset ! = {1, 2, 5, 6, 9, 10}.
Projecting from G12, we find that the image of the trope-conic 1

2 (� −
∑
8∈! �8)

is a conic passing through four nodes of the projection �1 of � � . It also passes
through two nodes of the residual 3-nodal quartic �2.

- = 13:

Applying (12.2.16), we get : ≥ 3. By Griesmer bound, the minimal distance
3 = 6. If : ≥ 4, then dimCev

` = 3 and the minimal distance is 8, contradicting
the Griesmer bound. So, we obtain that : = 3 and dimCev

` = 2. As in the case
` = 12, : = 3, we may assume that � has a smooth conic as its irreducible
component. In this case, the residual part becomes the union of two smooth
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conics or a line and a nodal cubic. The second possibility implies that C` has
a word of weight 10. Since ` = 13, it is a unique word of weight 10 (since
otherwise they have to share 6 nonzero coordinates that implies that ` ≥ 15).
We have two more possible types of � : 10 + 10 + 10 + 30 and 10 + 10 + 43. They
correspond to a different choice of the center of the projection.

- = 14:

By (12.2.16) : ≥ 4. By Griesmer bound dimCev
` ≤ 3, hence : = 4 and

dimCev
` = 3. A plane sextic with 13 nodes must be of type 10 + 10 + 10 + 31 or

10 + 10 + 20 + 20. Assume that � is of the first type. The irreducible component
of the ramification curve ' defined by the nodal cubic component of � defines a
weakly even set of 10 nodes. It follows from the discussion of the previous case
that it is a unique weakly even set of 10 nodes. We must also have 7 = 23 − 1
even sets of 8 nodes. The rest is the set of 7 weakly even sets of 6 nodes. This
gives us the binary linear code of type [67, 87, 10].

Assume that � is of the second type. Then, deleting one conic component of
�, and taking the proper transform of the other three components, we will find
a weakly even set of 10 nodes. The rest of the argument is the same as before
and leads to the same before and leads to the same linear code C`.

- = 15:

We argue as in the previous case. We get : = 5, and Cev
` = 4. In this case, �

consists of four lines and a conic. We can identify & with the focal surface of a
congruence of lines of bidegree (2, 3). There are 10 trope-conics that give 10
words of weight 6. This gives that C` is of type [610, 815, 106].

- = 16:

This is, of course, a frequently discussed case of Kummer quartic surfaces.
We have : ≥ 6. In fact, since the orthogonal complement of N in �2 (&̃,Z) is
of rank 6, the proof of Proposition 12.2.16 show that : = 6.

We have 16 trope-conics )8 whose sum
∑16
8=1 )8 is equal to 8�−3

∑16
8=1 (since

each node is contained in six trope-conics). The sum
∑16
8=1 �8 represents the

unique word |16 of weight 16. This implies that C` contains 16 words of weight
6. The map |6 ↦→ |6 + |16 is a bĳection from the set of words of weight 6 to
the set of words of weight 10, and the map |8 ↦→ |8 + |16 is an involution on
the se if words of weight 8. Since dimCev

` = 5, this implies that the linear code
C` is of type [616, 830, 1016, 161]. �
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12.2.4 Moduli space of nodal quartic surfaces

Let & be a `-nodal quartic surface in P3 and &̃ be its minimal nonsingular
model, a K3 surface. The birational morphism &̃ → & ⊂ P3 defines a quasi-
polarization ℎ of &̃ of degree ℎ2 = 4. Recall that there are three type of
quasi-polarization of degree 4 on a K3 surface (i.e. a pseudo-ample divisor
class ℎ with ℎ2 = 4). They are distinguished by the equivalence classes of
embeddings of the lattice

] : 〈4〉 ↩→ Pic(&̃) ⊂ �2 (&̃,Z).

A general quasi-polarization of degree 4 has the property that |ℎ · 5 | ≥ 3 for any
isotropic vector { ∈ Pic(&̃). Other possibilities are that there exists an isotropic
vector 5 in Pic(&̃) such that ℎ · 5 = 2 (a hyperelliptic quasi-polarization) or 1
(a unigonal quasi-polarization). The polarization coming from a nodal quartic
surface is a general quasi-polarization of degree 4.
Two polarized K3 surfaces (&̃, ℎ) and (&̃ ′, ℎ′) are isomorphic if there exists

an isomorphism 5 : - → - ′ such that 5 ∗ (ℎ′) = ℎ. This corresponds to
projective equivalence of nodal quartic surfaces. So, we are interested in the
moduli space K34,` of degree 4 polarized K3 surfaces (&̃, ℎ) such that |ℎ|
defined a birational morphism onto a quartic surface with ` nodes. It is known
that a nodal quartic surface represents a stable point in the action of PGL(4)
in the space of quartic surfaces [709]. The moduli space K34,` is constructed
as the closure of the PGL(4)-orbits of `-nodal quartic surfaces in the GIT-
quotient |OP3 (4) |//PGL(4). As we already know,K34,` may consist of several
irreducible components.

Theorem 12.2.20. Let & be a general `-nodal quartic surface and &̃ be
the associated K3 surface with the quasi-polarization � of degree 4. The
isomorphism class Ns

` of the saturation N s of the sublattice N ⊂ Pic(&̃) of
rank `+1 generated by � and the exceptional curves �8 is uniquely determined
by the binary linear code C` of &̃. The primitive embedding Ns

` ↩→ �2 (&̃,Z)
is uniquely determined by the code too.

Proof We only sketch the proof since we do not intend to go into the techni-
calities of the theory of K3 surfaces.
We know from the discussion in Subsection 11.5.3 that the binary linear code
C` determine an isotropic subgroup � of the discriminant groupDisc(N) which
defines the lattice Ns

` with discriminant group �⊥/�. It follows from the theory
of quadratic lattices that two isotropic subgroup �1, �2 of define isomorphic
overlattices of N if and only if they are conjugate under an automorphism of
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Disc(N) from the image of the natural homomorphism

dN : O(N) → O(Disc(N)).

[550, Proposition 1.4.2]. It follows from [550, Theorem 1.14.2] that the dis-
criminant group (Disc("), @) together with its quadratic form determine the
isomorphism class of " provided that C+ + C− ≥ ; (Disc(")) + 2. Also,
the equivalence class of a primitive embedding of " into a unimodular
lattice ! of signature (;+ ≥ C+, ;− ≥ C−) is determined uniquely provided
(;+ + ;−) − (C+ + C−) ≥ ; (Disc(")) + 2.
In our case, C+ = 1, C− = ` and ; (Disc(Ns

`)) = 1+ `−2: , so the isomorphism
class of Ns

` is determined uniquely if : > 0. Also, we have # = �2 (&̃,Z)
with ;+ = 3, ;− = 19, so the equivalence class of a primitive embedding Ns

` ↩→
�2 (&̃,Z) is determined uniquely if 22 − (1 + `) ≥ (1 + ` − 2:) + 2, i.e.
` ≤ : + 9. In Proposition 12.2.16, we have proved a weaker inequality ` ≤
: + 10. Inspecting the Table, we see that, ` > : + 9 implies ` = : + 10 and
(22− (1 + `) = ; (Disc(Ns

B)) = 1 + ` − : . A finer result of Nikulin tells that the
uniqueness of a primitive embedding still holds provided thatN s

` contains two
vectors 51, 52 with the Gram matrix

( 0 2
2 0

)
or

( 0 2
2 −2

)
. If ` ≥ 2, this condition is

satisfied in our case if we take 51 = � − �1 − �2, 52 = �1.
The assertion is obvious if ` = 0, sinceK34,0 is the GIT-quotient of |OP3 (4) |.

If ` = 1, we use that the discriminant hypersurface of quartic surfaces is
irreducible, its Zariski open set parameterizes one-nodal quartic surfaces.

�

A lattice " polarization of a K3 surface &̃ is a primitive embedding of
lattices 9 : " ↩→ Pic(&̃) such that the image of � (") contains a nef and big
divisor class. A lattice " polarization is called ample if 9 (� (")) contains an
ample divisor. In this case, one may omit a choice of� (") by fixing it uniquely
in such a way that its image contain an ample divisor.
Two lattice " polarizations (&̃, 9) and (&̃ ′, 9 ′) are said to be isomorphic

if there exists an isomorphism of surfaces 5 : &̃ → &̃ ′ such that 5 ∗ ◦ 9 ′ :↩→
Pic(&̃) coincides with 9 . One constructs a course moduli space M 3," of
lattice " polarized K3 surfaces (&̃, 9) [239]. The moduli space M 3," is
a quasi-projective variety, each of its irreducible components is of dimension
19 − <. It is known that M 3," is irreducible if " contains as a primitive
sublattice of rank 2 generated by isotropic vectors {1, {2 with {1 · {2 ≤ 2 [239,
Proposition 5.6].
Applying this in our case when" = Ns

`, we see that the condition is satisfied
when ` ≤ 3 since we can take {1 = � − �1 − �2, {2 = � − �2 − �3. Using
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Proposition 12.2.20, we obtain that M 3,Ns
`
is an irreducible component of

K34,`. Thus, Table 12.1 describes irreducible components of K34,`.

Corollary 12.2.21. The number # of irreducible components of the moduli
space K34,` of `-nodal quartic surfaces is given in the following Table.

` 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 1 1 1 1 1 1 2 2 2 3 5 5 4 2 1 1 1

12.2.5 Equations of nodal quartics
Let us give some additional geometric information about general nodal quartic
surfaces from different irreducible components of the moduli space K34,` of
`-nodal quartic surfaces. Recall that each irreducible component of K34,`
coincides with the moduli spaceM 3,Ns

`
of lattice Ns

` polarized K3 surfaces.

1. If ` ≤ 5, K34,` is irreducible and the branch curve of any projection map
is a plane sextic with ` − 1 nodes that admit a contact conic. The blow-up
of its nodes identifies its proper transform with an anti-canonical divisor of
a del Pezzo surface of degree 3 = 10 − `.

2. If ` = 6, there are two families of quartic surfaces with 6 nodes dependent
on whether the nodes are coplanar or not. If they are non-coplanar, the linear
code is trivial.
Assume that the nodes are not coplanar. The linear system |! | = |OP3 (2)−

G1 − · · · − G6 | of quadrics containing the nodes is of dimension 3. It defines
a degree 2 rational map 5 : P3 d P3. The equation of & is of the form

�2 (@0, @1, @2, @3) + � (@0, @1, @2, @3) = 0, (12.14)

where (@0, @1, @2, @3) defines a basis of the linear system |! |, and � (@0, @1, @2, @3)
is their jacobian. In this way, we see the twelve moduli of such surfaces. The
surface, = + (� ( 50, . . . , 53)) is a Weddle quartic surface. We will discuss
it in Section 12.3
On the other hand, we know that quartics that contain a weakly even set of

six nodes, contain a trope-conic, in particular, the nodes are coplanar. The
linear system |! | is of dimension 4, it contains a codimension one subspace
of reducible quadrics. The linear system defines a rational map 5 : P3 d P4.
It blows down the planeΠ containing the nodes to a point % ∈ P4. The image
of P3 is a cone over a quadric in P3 isomorphic to the weighted projective
space P(1, 1, 1, 2). The equation of & can be put in the form

�2 (G, H, I)2 + G�3 (G, H, I, |) = 0, (12.15)
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where the nodes lie in the plane + (G) and the cubic + (�3) contains the
nodes.

3. If ` = 7, we have already discussed the family of asyzygetic 7-nodal quartics
given by equation (12.3.2). They describe quartics from the irreducible
componentM 3,N7 .
Another componentM 3,Ns

7
consists of isomorphism classes of 7-nodal

quartics with six of the nodes lying on a conic. The linear system of quadrics
through the nodes is of dimension 4. It defines a rational map 5 : P3 d P3

that blows down the plane spanned by the conic to a point %. The image of
the map is again a quadratic cone with vertex at at %. The equation of& can
be put in the form (12.15), where �3 contains six of the nodes lying on a
conic in + (G0) and tangent to the quadric + (�2) at the remaining node.
The branch curve � of a projection from a node is either of type 10 + 51

or irreducible but admits a conic passing through six nodes.
4. Assume ` = 8. If we fix a subset of 7 nodes, then we know from the

previous subsection that the linear system of quartics Q7 with the seven
nodes contains a subfamily of quartics with an additional node at the Cayley
dianode surface D. They are the pre-images of hyperplane sections of the
cone P(1, 1, 1, 2) ⊂ P6 which are tangent to the image of D under the
rational map P3 → P6 given by Q7.

So, we see that the locus of sets of 8 points realized as the set of nodes of
an irreducible quartic surface is of codimension one in the variety of sets of
eight points in P3. Its dimension (modulo projective equivalence) is equal
to 8, and the dimension of the linear space of quartics that contains a fixed
set of 8 points is equal to 3. This adds up to the correct number of moduli
of an irreducible component of 8-nodal quartic surfaces.
We can write a general quartic with a given set of 8 nodes by an equation

�2 (@0 (G, H, I, |), @1 (G, H, I, |)) + �4 (G, H, I, |) = 0, (12.16)

where + (@0), + (@1) are quadrics generating the pencil of quadrics passing
through 8 nodes, and �4 is any 8-nodal quartic surface not belonging to this
pencil.
We have another family of 8-nodal quartic surfaces of Type VIII0 that

contain one weakly even set of nodes. In this case six of the eight nodes
are lie on a conic. A general quartic surface from this family is given by
equation (12.15), where where + (�3 (G, H, I, |)) is tangent to + (�2) at two
points.
The branch curve � in this case is with irreducible with six nodes on a

conic, or reducible of type 10 + 52.
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5. Assume ` = 9. Surfaces of type IX with trivial linear code C` are quartics
in the family (12.16) of quartics with nodes at G1, . . . , G8 that acquire an
additional node G9. The locus of these nodes lie on the determinantal curve
� (G1, . . . , G8), the locus of points such that

rank J (@0, @1, �4) ≤ 3,

where J (@0, @1, �4) is the jacobian matrix of polynomials @0, @1, �4. The
curve � (G1, . . . , G8) is called the dianodal curve[430, p. 12]. If we fix seven
of the eight nodes G 9 , 9 ≤ 8, 8, we obtain that a 9-nodal quartic lies on the
Cayley dianodal surface D8 defined by the seven points. Thus,

� (G1, . . . , G8) =
8⋂
8=1
D8 .

In fact, we know thatD7∩D8 contains the lines ℓ8 9 = 〈G8 , G 9〉, 1 ≤ 8 < 9 ≤ 6
and the twisted cubic W8 9 through G1, . . . , G6. The residual curve is of degree
18. Changing a pair of points, we obtain that the residual curve of degree
18 coincides with the dianodal curve. SinceD7 ∩D8 have 6 common triple
points through which passes 6 lines ℓ8 9 and the twisted cubic W8 9 , we find
that � (G1, . . . , G8) has triple points at G1, . . . , G8. We refer for details to [430,
p.12] and [630, §8].
If + (�4) is one of a 9-nodal surface with the ninth node on the dianodal

curve, other surfaces can be written in the form

�2 (G, H, I, |)2 + �4 (G, H, I, |) = 0, (12.17)

where + (�2) is the unique quadric through the nine nodes.
Surfaces of Type IX0 admit one weakly even set of 6 nodes lying on

a conic. A general quartic surface from this family is given by equation
(12.15), where + (�3 (G, H, I, |)) is tangent to + (�2) at three points.
Surfaces of Type IX1 admit one even set of nodes. We know that they

contain a trope-quartic passing through ?1, . . . , ?8 and having ?9 as its
double point. The projection of this curve from G9 is a conic. A general
member of the family can be given by equation

�2 (G, H, I, |)2 + �2 (G, H, I)�2 (G, H, I, |) = 0, (12.18)

where G9 = [0, 0, 0, 1], + (�2) is the unique quadric containing G1, . . . , G9,
+ (�2) is the cone with vertex at ?9 passing through ?1, . . . , ?8, and + (�2)
is any quadric from the net of quadrics with baee points G1, . . . , G8.

6. Assume ` = 10. One of the families here is very important and occurs in
many constructions in algebraic geometry. This is the family of surfaces of
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Type X2 that admit a weakly even set of 10 nodes. The branch curve � of
the projection of this set from any node is the union of two cubic curves
intersecting at 9 points. According to a theorem of Cayley this property
characterizes 10-nodal quartic symmetroid surfaces. The surfaces are given
by the determinant of a symmetric matrix with linear forms as its enties. A
general matrix defines a quartic symmetroid.
Surfaces of Type X with trivial linear code C10 are contained in the

family of 9-nodal surfaces given by equation (12.17). We may fix first 8
nodes such that the ninth node lies on the dianodal curve � (G1, . . . , G8).
We find the tenth node at the intersection of this curve with the dianodal
surface D corresponding to seven points G1, . . . , G6, G9. The intersection of
the curve with the surface is of multiplicity 108, and it contains among
them the triple points G1, . . . , G6 of the curve and the surface. So, we have
to subtract 9 × 6 = 54 from 108. However, we have to subtract more. The
surface D contains 15 lines 〈G8 , G 9〉 joining two of the points G1, . . . , G6, G9.
The dianodal curve has two points on it. Also it has two points on the
twisted cubic through these seven points. If a quartic contains one of these
32 points, then it will contain a line or the twisted cubic and this put an extra
condition on the surface. A general 10-nodal quartic does not pass through
these points. This leaves us with 13 = 108 − 54 − 32 choices of the tenth
point. Note that Jessop shows that one of these choices leads to the Cayley
quartic symmetroid [430, p. 15].
Surfaces of Type X0 admit only one weakly even set of 6 nodes. A general

member of this family admits equation of the form (12.15) where + (�2) is
tangent to + (�3) at 4 points.

Surfaces of Type X1 admit an even set of 8 nodes G1, . . . , G8. Their ten
nodes lie on a quadric+ (�2). A general member of this family has equation
of the form

�2 (G, H, I, |)2 +  1 (G, H, I, |) 2 (G, H, I, |) = 0, (12.19)

where  1 and  2 are cones with vertices at G9, G10 over the conic component
of the branch curves of the projections prG9

, prG10
.

Surfaces of Type X3 have two-dimensional linear code C10. They admit
two weakly sets of 6 nodes with common two nodes. We may assume that
they lie in planes + (G) and + (H). The equation of a surface is of the form

�2 (G, H, I, |)2 + GH�2 (G, H, I, |) = 0. (12.20)

7. Assume ` = 11. Starting from ` = 11, the binary linear code C` is non-
trivial. We have four families corresponding to different reducible nodal
plane sextics. We also know that irreducible plane sextics that admit a
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contact conic intersecting it at nonsingular points are of three different
species dependent on 6, 7, or 10 apparent nodes. They appear as projections
from other nodes.
The surfaces of Type XI0 are familiar to us since they are realized as the

focal surfaces of congruences of lines of bidegree (2, 7). The projection from
its unique fundamental point of degree 6 has an irreducible 10-nodal plane
sextic. Also, for each its node there exists a plane quartic with triple point at it
and simple points at other 9 nodes. The latter conditions guarantees that the
sextic admits contact conic. Projecting from a fundamental point of degree
3, we obtain the branch curve of type 30 +31. We can consider surfaces from
this family as Cayley quartic symmetroids acquiring an additional node.
Surfaces of type XI1 has a unique even set of 8 nodes {G8 , 8 ∈ �}. The

projection from a node outside of this set has an irreducible branch sextic
that admits a curve of degree 4 which passes through eight nodes and has
a triple point at some other node. This is a plane sextic of the third species
with 10 apparent nodes.
Surfaces of type XI2 form a hypersurface in the family X2 of 10-nodal

surfaces which admit a unique trope-conic. We know that the projection
from a node not lying on the trope-conic is branched over an irreducible
plane sextic of the first species with 6 apparent nodes. The projection of the
trope conic is a conic containing 6 of the nodes.
The equation of the irreducible sextic is

53 (G, H, I)2 + 52 (G, H, I)62 (G, H, I) = 0,

where + ( 52) is the contact conic and + (62) is the conic through six nodes.
This leads to an equation of the quartic of Type XI0 general member of the
form

|2 52 (G, H, I) + 2 53 (G, H, I)| + 62 (G, H, I)2 = 0. (12.21)

A surface of Type XII3 has two subsets �, � of six nodes lying on a conic.
The subsets have two common nodes. The projection from the unique node
G8 not belonging to these sets has branch curve of type 10+10+41. The point
G8 is a double points of a quartic curve that passes through the even set of
nodes � + �. The pencil of quadrics through the even set of nodes contains
the union of two conics as its base points. Let + (�2) be the quadric in the
pencil that passes through G8 , then the equation of a 11-nodal quartics can
be put in the form

�2 (G, H, I, |)2 + _GH 2 (G, H, I, |) = 0, (12.22)

where + ( 2) is a quadratic cone with vertex at G8 .
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8. Assume ` = 12. Surfaces of type XII0 are specializations of the Cayley
quartic symmetroid. They acquire two additional nodes when each of the
cubic components of the branch curve acquires a node. The surfaces are
also realized as the focal surfaces of congruences of bidegree (2, 6)� . The
projection from the fundamental point of degree 5 has the branch divisor
equal to the union of a 5-nodal quintic, and the line equal to the projection
of a trope-conic.
A trope-octic contains an even set of 8 nodes: six fundamental points

of degree 3, one of degree 1 and one of degree 5. The projection from a
fundamental point of degree 2 is a conic. It is an irreducible component of a
branch curve of type 10 + 20 + 30. The projection from a fundamental point
of degree 3 is a nodal cubic. The projection of a trope-quintic from the same
point is another cubic component of the branch curve of type 31 + 31.
Surfaces of Type XII1 are realized as the focal surfaces of congruencies

of bidegree (2, 6)� � . The projection from a fundamental points of degree 4 is
a quartic curve with three nodes, the projections of other three fundamental
points of degree 4. It is an irreducible component of the branch curve of
type 20 + 43. The conic component is the projection of a trope-quartic.
Surfaces of Type XII2 have three sets of weakly even nodes intersecting

each other at two nodes. The union of these sets is the set of twelve nodes.
We may assume that the equations of the corresponding trope planes are
G = 0, H = 0, I = 0. Then, the equation of the surface can be put in the form

�2 (G, H, I, |)2 + GHI! (G, H, I, |) = 0, (12.23)

where + (�2) is the quadric containing all nodes, and + (!, �2) is a trope-
tonic with the set of nodes equal to the symmetric sum of the sets of 6
nodes on the planes G = 0, H = 0, I = 0. The surfaces are specializations of
surfaces of Type XI2 when the cone + (62) splits into two planes.
Surfaces of Type XII3 are obtained when a surface of Type XI3 acquires

an additional node.
9. Assume ` = 13. We have two families of 13-nodal quartic surfaces. Suppose

the branch curve of the projection from a node G is equal to the union �
of three conics with a common contact conic. One can consider � as a
degeneration of a 10-nodal sextic of the first species. It is the projection
of the union of three conics on a smooth quadric. A choice of a splitting
component of each conic defines six apparent nodes of � and hence a conic
through these nodes. In this way we find four conics passing through six
nodes, two on each irreducible component. each of these conic splits under
the projection prG , and one of the splitting component is a trope-conic This
leads to the binary linear code C` of type [64, 83] and implies that the
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surface is of Type XIII0. One can also project from the point common to
two trope-conics. The branch curve of this projection is of type 10 + 10 + 43.
The surfaces of Type XIII0 are specializations of surfaces of Type XII2 .

They are given by equation (12.23), where ! is is chosen in a such a way
that the surface acquires an additional node.
A general surface of Type XIII1 is the focal surface of a congruence

of lines of bidegree (2, 5). In fact, the trope-octic )G corresponding to a
fundamental points of degree 3, contains a weakly even set of 10 points
formed by the fundamental point of degree 4, two fundamental points of
degree 3, six fundamental points of degree 2, and one fundamental point of
degree 1. The existence of a weakly set of 10 nodes distinguishes the two
irreducible components of the moduli space of 13-nodal quartic surfaces.
The projection from G maps)G to a component of the branch curve of type

31. The singular point is the projection of the fundamental point of degree
4. The branch curve has two other irreducible components, the images of
the unique trope-conic corresponding to the fundamental point of degree
1 conjugate to G, and the image of a quartic conic that contains G and
six fundamental points of degree two (they are trope=conics of a confocal
congruence), This realizes the branch curve of type 10 + 20 + 31.
Projecting from the unique fundamental point of degree four has the

branch curve of type 10 + 10 + 43, same as for surfaces of Type XIII0. The
line components are the projections of trope-conics corresponding to non-
conjugate fundamental points of degree one. Projecting from a fundamental
point of degree two also gives the branch curve of type 10 + 20 + 31.
We know that one of the fundamental points of degree one is conjugate

to two non-conjugate fundamental points of degree one. This implies that
three weakly even sets |� of 6 nodes have a common node. We may assume
that the sets � are {1, 2, 3, 4, 5, 6}, {1, 2, 7, 8, 9, 10}, {1, 3, 7, 11, 12, 13}. The
symmetric sum of these sets is theweakly even set|� of 10 nodes, where � =
{1, 4, 5, 6, 8, 9, 10, 11, 12, 13}. The linear system | 12 (3�−3�1−

∑
9∈ 9 , 9≠1 �8 |

is a pencil of elliptic curves on &̃. It contains one nonsingular member which
is invariant under the involution gG1 . Projecting from G1, we obtain the branch
curve of type 10 + 10 + 10 + 30.

Assume that the three trope-conics lie in planes G = 0, H = 0, I = 0. Then,
the point [0, 0, 0, 1] is the common node of three trope-conics. The quadric
containing the first two trope-conics gas an equation |I+G;+ H< = 0, where
;, < are some linear forms in G, H, I, |. We can put the equation of & in the
form

(|I + G; + H<)2 + GH�2 (G, H, I, |) = 0.
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Substituting I = 0, we must get the square of a quadratic form. This allows
us to write �2 in the form −4;< + I= and get the equation of & in the form:

|2I2 + G2;2 + H2<2 − 2GH;< − 2I|G; − 2|IH< + 4GHI=

= det
©«
0 I H ;

I 0 G <

H G 0 |

; < | =

ª®®®®¬
= 0.

(12.24)

So, we see that surfaces of Type XIII1 are specialization of the Cayley
quartic symmetroid.

10. Assume ` = 14. The moduli space of 14-nodal quartics is irreducible. A
reducible branch curve is of type 10+10+20+20 or 10+10+10+31. A general
surface of Type XIV is isomorphic to the focal surface of a congruence of
lines of bidegree (2, 4). We know that it has two conjugate fundamental
points of degree 3, each conjugate to three fundamental points of degree
one. Projecting from one of these points, we get the branch curve of type
10 + 10 + 10 + 31.

We may choose a basis of the linear code C14 formed by four weakly even
sets |� of six nodes, where � is one of the sets

�1 = {1, 2, 3, 4, 5, 6}, �2 = {1, 2, 7, 8, 9, 10},

�3 = {3, 4, 7, 8, 11, G12}, �4 = {1, 3, 9, 11, 13, 14}.

The sum |�1 + |�2 is an even set of 8 nodes that has two common nodes
with |�4 . Similarly, |�3 + |�4 has two common nodes with |1. Projecting
from the common node G1 of |�1 and |�4 , we get the branch curve of type
10 + 10 + 20 + 20.

A surface of type XIV lies in the intersection of the families of surfaces
of Types XIII0 and XIII1 when they acquire an additional node. The branch
curve of type 20+20+20 (resp. 10+20+31) becomes of type 10+10+20+20
(resp. 10 + 10 + 10 + 31) when one of the conics becomes reducible.

Similar to the previous case, one can show that the equation of a surface
of Type XIV can be put in the form

det
©«

0 I G ′ ;

I 0 G H′

H G 0 I′

G ′ H′ I′ 0

ª®®®®¬
= 0. (12.25)

where G = 0, H = 0, I = 0, G ′ = 0, H′ = 0, I′ = 0 are equation of the six
tropes cutting out the six trope-conics. (see [430, p. 21].
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11. Assume that ` = 15. A general surface of Type XV is isomorphic to the
focal surface of a congruence ( of bidegree (2, 3). The branch curve of
any projection is of type 10 + 10 + 10 + 10 + 20. Recall that the conjugacy
graph ℓ(()1 is the Petersen graph. Each fundamental point is congruent to
three fundamental points of degree one. Projecting from one of them, we get
the four lines components of the branch curve. They are the images of the
four trope-conics. The conic component is the projection of a quartic with
double point at the center of the projection. It is one of five trope-quartics
of a confocal congruence.
The equation of a general 15-nodal quartic surface is obtained by adding

a linear equation to the equation of the Castelnuovo-Richmond quartic hy-
persurface CR4 [255, §6].

12. A quartic with ` = 16 is a jacobian Kummer surface. We cannot add here
anything that has not be already discussed about these surfaces.

Remark 12.2.22. 1. Let - ⊂ P3 be surface of degree 3 and Σ be an even of
weakly even set of nodes on - . Then, there exists a vector bundle E over
P3 and a section B ∈ �0 (P3, (2 (E(3 + n))) ⊂ Hom(E∨ (−3 − n), E) such
that the scheme / (B) of its zeros is equal to Σ [93]. Here, n = 0 if Σ is even,
and equal to 1 otherwise. It was shown earlier by Barth [33] that B always
defines a pair (-,Σ) as above. The surface - is equal to the support of the
cokernel of the map B : E∨ (−3 − n) → E and Σ is the locus where the rank
of the map drops by 2.
For example, if - is a quartic symmetroid with 10 nodes (Type X2 surface

from Table 12.1), we know from Example 4.3.8 that - is the determinant
of a symmetric matrix with linear forms as its entries. This corresponds
to a section of (2 (OP3 (1)⊕4). Since in this case 3 = 4, n = 1, we get
E = OP3 (−2)⊕4.
Another example is a jacobian Kummer quartic surface. We know from

(10.6) that the projection ? : /G → P3 is the projective bundle P =

P(Ω1
P3 (1)). The projection @ : /G → G is given by the complete linear

system |L| = |OP (1) ⊗ ?∗OP3 (1) |. The pre-image of a quadratic line com-
plex G ∩ - is the zero scheme of a section of L⊗2. It is a conic bundle over
P3 defined by a section of a vector bundle

?∗ (L⊗2) = ?∗ (OP (2)) ⊗ ?∗OP3 (2) = (2Ω1
P3 (1) (2) = ((2Ω1

P3 ) (4).

Since in this case 3 = 4, n = 1, we get E = Ω1
P3 (1).

2. Let Cl(-) be the class group of Weil divisors on & modulo linear equiva-
lence. Since all singularities of& are ordinary double points, the local class
group is isomorphic to the local class group of the vertex of an irreducible
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quadric cone. It is generate day the germ of a line and isomorphic to Z/2Z
[379, Chapter 2, §6]. There is a natural exact sequence

0→ Pic(&) → Cl(&) A→
⊕

G∈Sing(&)
Z/2Z. (12.26)

Since Cl(&) � Cl(*), where* = & \ Sing(&), and* is isomorphic to the
complement &̃ \⋃`

8=1 �G8 , we obtain

Cl(&) � Pic(&̃)/〈�G1 , . . . , �G` 〉.

Assume that Pic(&) is generated by the class of a plane section. In this
caseeCl(&) � N ,whereN is defined in (12.9). The natural homomorphism
c∗ : Cl(&) → Pic(&̃) has the covered equal to N s/N isomorphic to the
binary linear coneNs

`/N. It is isomorphic to the image of the homomorphism
A in exact sequence (12.26).

3. Let 5 : - → P3 be the double cover ramified over a `-nodal quartic & (a
quartic double solid). It has singularities locally isomorphic to the singular
point of the affine cone over a smooth 2-dimension quadric.We can view it as
a quartic hypersurface in P(1, 1, 1, 1, 2).We have the following commutative
diagram

-̃
c̃ //

f̃

��

P̃3

f

��

&̃?
_9̃oo

U

��
-

c // P3 &?
_9oo

where P̃3 := BirG1 ,...,G` (P3). The group Pic(P̃3) is freely generated by
f∗OP3 (1) and the classes of the exceptional divisors �̃G8 . Each �̃G8 is iso-
morphic to a smooth quadric containing the exceptional divisors �G8 as its
hyperplane sections. The group Pic( -̃) contains c̃∗ (Pic(P̃3)). It is a free
abelian group of rank 1 + ` + 3, where 3 is called the defect of the double
solid - . It is known that

3 = ` − 9 + dim |OP3 (2) − Sing(&) |. (12.27)

[151]. When ` ≤ 9, 3 is the number of extra linearly independent quadrics
vanishing on singular points of &. The defect is equal to zero if the nodes
of & impose independent conditions on quadrics passing through them. We
already saw that 3 > 0 if six of the nodes of & are coplanar. In fact the
converse is true, if 3 > 0 then six of the nodes are coplanar. The restriction
homomorphism 9̃∗ : Pic(P̃3) → Pic(&̃) defines a homomorphism

Pic(P̃3) (2) → Pic(&̃) (2) ,
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where, for any abelian group �, we denote by �(2) the cokernel of the
homomorphism [2] : 0 ↦→ 20. The cokernel of this homomorphism is our
binary linear code C` of the quartic &. One can also show that

C` � Coker(�3 (P̃3),Z) (2) → �2 ( -̃,Z) (2) ) � F32 ⊕ )2,

where

)2 = Tors(�3 ( -̃,Z))

[289]. The latter group is the 2-torsion group of the Brauer group of the
threefold -̃ which is an important birational invariant of a Fano variety -̃ .
Also it is known that

3 = rank(Cl(-)) − rank(Pic(-)) = V4 (-) − V2 (-)

[151], [436], so 3 = 0 if and only if the double solid - is factorial. In
particular, we see that - could be factorial only if ` ≤ 9. It is factorial if
C` is trivial, for example. if ` ≤ 5. It is proven in [289, Theorem 3.6] that
)2 = 0 in all cases except the case of the Cayley quartic symmetroid with 10
nodes. Its binary linear code is [101]. In tis case )2 � F2 as was computed
by Artin and Mumford who used - to construct a counter-example to the
Lüroth Problem on rationality of unirational threefolds [25].

Finally, let me state some questions to which I would like to know an answer.
Questions 12.2.23. 1. What is the bitangent surface Bit(&) of a general `-

nodal quartic surface.We know the answwr when& coincides with the focal
surface of a congruence of lines of order 2 without fundamantal curves. It
is known that it is irreducible and smooth if ` = 0 [751]. Its Albanese
variety is isomorphic to the Intermediate Jacobian variety � ( -̃), where -
is a quartic double solid. For a general quartic surface with defect zero
and ` ≤ 6, the Intermediate Jacobian iis a prinicipally polarized abelian
variety of dimensions equal to 10 − ` [151]. Clemens proves that Bit(&) is
irreducible for general quartic surfaces with ` ≤ 6 in the irreducible family
of quartics with trivial binary linear code C`.

2. Which irreducible components of the moduli space of nodal quartic surfaces
are rational varieties? As far as I know, the rationality is known only for
` = 15, 16.

3. What is the group of birational Bir(&) automorphisms of a general nodal
quartic surface. It contains a subgroup a subgroup generated by the deck
transformations of the projections from a node. Since no two nodes lie on a
line contained in a surface, this group is free with ` generators. The group
Bir(&) is known if ` = 15 [257] or ` = 16 [464]
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12.3 Special quartic surfaces

In this section, we will discuss some interesting special nodal quartic surfaces.
We have already discussed on several occasions the Kummer 16-nodal quartic
surfaces. This time we give more attention to other frequently encountered
nodal quartic surfaces, for example, Weddle 6-nodal surface and Cayley 10-
nodal quartic symmetroid surface.

12.3.1 Weddle surface

We already encountered aWeddle quartic surface in the discussion of quadratic
congruences of lines and in Example 7.7.17 of a Cremona involution. Here we
will give a more detailed discussion.

Let P = {?1, . . . , ?6} be a set of six points in P3, no four of which are
coplanar. Let ! = |+ | be the web of quadrics with the base points ?1, . . . , ?6.
We define the Weddle surface WP to be the Jacobian surface of ! |, the set of
singular points of quadrics from !.
Let f : - = BlP (P3) → P3 and 5 : . → !∗ be the morphism given by the

linear system |� | = |2�−� |, where� = f∗ (21 (OP3 (1) and � = �1+· · ·+�6 is
the exceptional divisor. Since�2 = (2�−�)3 = 8−6 = 2, themap 5 is of degree
2. Obviously, it blows down the proper transforms ℓ′

8
of 15 lines ℓ8 = 〈?8 , ? 9〉

to points @8 ∈ !∗. It also blows down to a point @ the proper transform '′ of the
unique rational normal curve '3 containing the set P. Moreover, 5 maps the
exceptional divisors �8 � P2 to planesΠ8 . Among quadrics from !, there are 10
reducible quadrics&8 9: = 〈?8 , ? 9 , ?:〉〉 ∪ 〈?: , ?; , ?<〉〉. They intersect along a
line ℓ8 9: = ℓ:,;.<, and the restriction of ! to such a line is defined by a complete
series of degree two. The images of these lines are 10 conics in the target
P3 which span 10 planes Π8 9; . Thus, we o btain a configuration of 16 points
and 16 planes in the target P3. It is immediate to see that this is a Kummer
configuration (166). Since  - = −2�, the ramification divisor is a quartic
surface in P3 and the branch divisor of 5 is a quartic surface K. It contains 16
singular points @8 , @, and hence, it realizes the Kummer configuration. Let K∗P
be the dual Kummer surface in !. A quadric & ∈ ! is singular if and only if
& is equal to the pre-image of a hyperplane in !∗ which is tangent to KP . Its
singular point is the tangency point of the hyperplane with  . This shows that
the Weddle surface WP coincides with the proper tranform of KP which is the
ramification divisor of 5 . The restriction of 5 to WP is a birational map, and its
lift to the proper transform W̃P is a minimal resolution of the Kummer surface
KP . We also see that K∗P can be identified with the discriminant surface of !.
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The exceptional curves of f : W̃P → WP are the trope-conics Π8 ∩ KP . This
implies that P is the set of ordinary nodes of WP .

Let us summarize our discussion.

Theorem 12.3.1. Let WP be the Jacobian surface of a web of quadrics with
the set of base points P.

1. WP is a quartic surface with the set of nodes P as it set of singular points.
2. WP contains 15 lines ℓ8 9 = 〈?8 , ? 9〉.
3. WP contains the unique rational normal curve '3 through the points ?8 .
4. WP contains 10 lines ℓ8 9: = 〈?8 , ? 9 , ?:〉 ∩ 〈?; , ?<, ?=〉.
5. WP is the ramification divisor of the degree two map 5 : P3 d !∗ given by

the web of quadrics !.
6. The branch divisor of 5 is a Kummer surface KP and 5 lifts to a minimal

resolution of singularities 5 ′ : W̃P = BlP (WP) → KP .
7. The discriminant surface of ! is the dual Kummer surface K∗P .

Corollary 12.3.2. The restriction of the map 5 : P3 → !∗ � P3 to the Weddle
surface defines a birational map WP to a Kummer surface  P ⊂ !∗. It blows
down 15 lines ℓ8 9 and the rational cubic curve '3 to 16 double points. It
maps the 10 lines ℓ8 9: and 6 exceptional curves �8 of BlP (P3) → P3 to 16
trope-conics in  .

Recall that the Kummer surface  P comes with a choice of six disjoint
conics 5 (�8) containing the node 5 ('3). The dual Kummer surface  ∗P comes
with a choice of six nodes on a fixed trope trope-conic. It follows that  P �

 ∗P � Kum(Jac(�)), where � is the hyperelliptic curve of genus 2 with the set
P of Weierstrass points.
Let us find a basis in !. Clearly, ! contains the net # of quadrics with '3 as

its base curve. We consider '3 as the image of the dual Veronese map

v∗3 : |* | � P1 → |(3 (*∨) |, [U, V] ↦→ [−V3, UV2,−U2V, U3]

from Example 1.3.15. The space (3 (*∨ is the spance of binary cubics, and the
image of a point [U, V] ∈ P1 is the point [(VD0 − UD1)3].

Lemma 12.3.3. Any 13 ∈ (3 (*∨) can be written in the form

13 = (UD0 + VD1)3 + (XD0 + WD1)3,

where

Hess(13) = 2(UD0 + V1) (XD0 + WD1), 2 ∈ C∗.
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Proof The assertion is obvious if 13 = (UD0 + V)3. In this case Hess(13) =
0. Also, we check the assertion in the case where 13 = D3

0 + D
3
1. We have

Hess(13) = 6D0D1. So, we may assume that [13] ∉ '3. There is a unique secant
line containing [13] with the end-points [(UD0 + VD1)3] and [(UD0 + VD1)3].
This shows that 13 can bewritten as in the assertion of the lemma. Since the end-
points are different, we canmake a linear transformation D0 ↦→ UD0+VD1, D1 ↦→
XD0 + WD1, to transform 13 to the form D0D1. It remains to use that the Hessian
is a covariant of binary forms, we are done. �

Remark 12.3.4. The lemma implies that the map Hess : (3 (*∨) → (2 (*∨)
defined by the Hessian covariant defines a rational map

P3 � |(3 (*∨) | d P1 � |(2 (*∨ |.

Its locus of points of indeterminacy coincides with '3. Its fibers are secant lines
if '3. So, we can identify this map with the rational map defined by the linear
system |�'3 (2) |.
We know from Subsection 1.5.1 that the Hessian covariant of a binary cubic

form is equal to

(0002 − 02
1)D

2
0 + (0003 − 0102)D0D1 + (0103 − 02

2)D
2
1. (12.28)

It can be considered as a quadratic pencil of quadrics in P3. The coefficients
form a basis of the net of quadrics containing '3. A quadric corresponding to
a root [D0, D1] of the Hessian contain a secant line whose end-points are the
vertices of singular quadrics in the net. Thus, (12.28) is a quadratic pencil of
quadric cones.
The net # of quadrics containing '3 is obviously contained in the web !.

Since it contains cones with vertices on '3, we obtain another proof that the
Weddle surface contains '3.

We encountered a quadratic pencil of cones with vertices on '3 in Example
11.4.12. The equation

(0003 − 0102)2 − 4(0002 − 02
1) (0103 − 02

2) = 0

is the equation of a quartic surface singular along '3. The points ?1, . . . , ?6
are the images of 6 points [U8 , V8] equal to the points [(D0V8 − D1U8)3] (see
Example 1.3.15). Let

%(D0, D1) =
6∏
8=1
(V8D0 − U8D1) =

6∑
:=0

08 (−1):D:0D
6−:
1 .

Consider the quadric

�(G) = 06C
2
0 − 05C0G1 + 04C

2
1 − 03C0G2 + C22 − 01C2C3 + 00C

2
3 = 0.
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Substituting (C0, C1, C2, C3) = (−U3, U2V,−UV2, V3) ∈ '3, we obtain �(U, V).
This shows that the quadric vanishes at a point of '3 if and only if this point is
one of the points ?8 .
So, we have found a basis in +

(C0C3 − C1C2, C21 − C0C2, C
2
2 − C1C3, �(C0, C1, C2, C3)).

The discriminant surface of the web is isomorphic to a Kummer surface with
equation

det
©«

206| −05| −03| − H G

−05| 204| + 2H −G −I
−03| − H −G 202| + 2I −01|

G −I −01| 200|

ª®®®®¬
= 0 (12.29)

Here (G, H, I, |) are coordinates in, corresponding to our choice of a basis.
We also can find the equation of the Weddle surface as the Jacobian surface

of the web that coincides with its Steinerian surface. If we write the matrix from
above in the form G�1 + H�2 + I�3 + |�4, then, the equation of the Jacobian
hypersurface is det(G�1 + H�2 + I�3 + |�4) = 0. This gives the following
equation of WP :

det
[
�0·

©«
C0
C1
C2
C3

ª®®®®¬
, �1·

©«
C0
C1
C2
C3

ª®®®®¬
, �2·

©«
C0
C1
C2
C3

ª®®®®¬
, �3·

©«
C0
C1
C2
C3

ª®®®®¬
]
= det

©«
C3 −C2 0 206C0 − 05C1 − 03C2
−C2 2C1 −C3 −05C0 + 204C1
−C1 −C0 2C2 −03C0 + 202C2 − 01C3
C0 0 −C2 −01C2 + 200C3

ª®®®®¬
= 0

(12.30)

There is another determinantal equation of WP discovered by Caspary [86].
(see also [418], [413, §97].Wemay choose the projective coordinates to assume
that

?1 = [1, 0, 0C, 0], ?2 = [0, 1, 0, 0], ?3 = [0, 0, 1, 0],
?4 = [0, 0, 0, 1], ?5 = [1, 1, 1, 1], ?6 = [0, 1, 2, 3],

(12.31)

where the point ?6 does not lie in any plane spanned by three of the points
?8 , 8 < 6. The parametrical equation of a rational normal curve '3 containing
the points ?8 is

[C0, C1] ↦→ [
01

C0 − 0C1
,

1

C0 − 11C1
,

2

C0 − 2C1
,

3

C0 − 3C1
] (12.32)

(see [375, Example 1.17]). Consider a surface given by the following equation:



428 Quartic Surfaces

det
©«
0HI| G 1 0

1GI| H 1 1

2GH| I 1 2

3GHI | 1 3

ª®®®®¬
= 0 (12.33)

[413, §97]. One immediately checks the surface contains the lines 〈?8 , ? 9〉, and
using our parametrization of the curve '3, we also check that it contains '3.
Thus it intersects the Weddle surface along a curve of degree 18 > 16, and
hence, must coincide with it.
Finally, we give another equation of a Weddle surface in terms of bracket

determinant 8 9 :G |, where 8, 9 , : ∈ {1, . . . , 6} correspond to the points ?8 and G
corresponds to a general point in P3;

det
(
|135G | |425G | |145G | |235G |
|426G | |136G | |145G | |236G |

)
= 0.

(see [159, p. 118]). It is clear that the equation describes a quartic surface
containing the points G ∈ P. If we choose the points ?8 as above, and use the
parameterization (12.32), we find that the curve '3 is also contained in this
quartic surface. Thus, it must coincide with the Weddle surface WP .
The following theorem relates a Weddle surface with the Segre cubic primal

S3. Recall that S3 is isomorphic to the image of P3 under the map q : P3 d P4

given by quadrics through teh first five points ?1, . . . , ?5.

Theorem 12.3.5. Let G ∈ S3 ⊂ P4 be a nonsingular point, and &G be the
polar quadric of S3 with pole at G. The pre-image - of &G under the map q
is isomorphic to the Weddle surface associated with 6 points (?1, . . . , ?5, ?6 =

q−1 (G)).

Proof Recall that the ten nodes of S3 are the images of the lines ℓ8 9 , 1 ≤ 8, 9 ≤
5. Since&G contains singular points ofS3, and themap q is defined by quadrics,
the pre-image of &G is quartic surface - that contains the lines ℓ8 9 . Since each
of these lines meets four other lines, the points ?1, . . . , ?5 are singular points
of - . Since&G is tangent to Σ3 at the point G, the quartic acquires an additional
double point at ?6 = q

−1 (G). It is known that the polar quadric&G intersects Σ3
at points H such that the tangent hyperplane of Σ3 at H contains G (see Theorem
1.1.5). This implies that the five lines q(ℓ8) are contained in &G , and hence the
lines ℓ8 are contained in, .

Let '3 be the unique twisted cubic through the six points ?1, . . . , ?6. Its
image in Σ3 is the sixth line in Σ3 passing through G. By above, it is also
contained in &G , hence , contains '3. Now, let , be the Weddle surface
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associated with the points ?1, . . . , ?6. Then - ∩, contains 15 lines and '3, a
curve of degree > 16. This shows that - = , .

�

Recall that the polar quadrics ofS3 define a birationalmaponto theCastelnuovo-
Richmond quartic threefold. CR4. It follows from the theorem that , is the
pre-image of a hyperplane section of CR4 tangent at the image of the point G.
This is, of course, isomorphic to the Kummer surface associated with, .

The following proposition gives another explicit relationship between the
Weddle and Kummer surfaces. Recall from Section 10.3.3 that a Kummer
surface admits a nonsingular model - as a complete intersection of three
quadrics in P3. It contains 32 lines forming the Kummer configuration (166).

Proposition 12.3.6. Let - ⊂ P5 ba an octic nonsingular model of a Kummer
surface. Then the projection of - to P3 from a line on - is a Weddle quartic
surface.

Proof Let ℎ be the divisor class of a hyperplane section of - and ℓ be a
line on - . The projection map is given by the linear system |ℎ − ℓ |. We have
(ℎ− ℓ)2 = 8− 2− 2 = 4, so the image of the projection map is a quartic surface
. . Since (ℎ − ℓ) · ℓ = 3, the image of ℓ is a rational normal cubic curve. The
line ℓ intersects six other lines ℓ1, . . . , ℓ6. Since (ℎ − ℓ) · ℓ8 = 0, they are blown
down to six nodes ?1, . . . , ?6 of . . There are 16 − 6 other skew lines that do
not intersect ℓ and any ℓ8 . They intersect ℎ − ℓ with multiplicity one, hence
are mapped to lines. Any other of the remaining 15 lines is projected to a line
containing two of the points ?8 . Let , be the Weddle surface associated with
the set of points ?1, . . . , ?6. We finish as in the proof of the previous theore, �

The Weddle surface is a peculiar quartic surface in the following sense. It
is known that, for any nonsingular quartic surface - , the image of the rational
map

q- : |O- (1) | dM3 (12.34)

is three-dimensional.
Recall that an asymptotic curve on a surface is an irreducible curve such that

the tangent plane to the surface at its general point is an osculating tangent
plane to the curve.

Lemma 12.3.7. The curve '3 is an asymptic curve of WP .

Proof Let Π be a tangent plane of WP at some point G ∈ '3. It intersects the
surface along a quartic curve � with a singular point at G. The tangent line ℓ



430 Quartic Surfaces

of '3 at G intersects the surface at two additional points 0, 1 not lying on '3.
They lie on Π∩WP , and hence, on �. If Π intersects '3 at a point G ′ ≠ G, then
� · '3 > 4, a contradiction. �

Theorem 12.3.8. If - is a general Kummer quartic surface, the map q- is of
finite degree on its image. However, if - is a general Weddle surface, the map
q- has one-dimensional fibers.

Proof A general plane section % of a Kummer quartic  is a plane curve of
genus 3. It also comes with an étale cover of degree 2 induced by the double
cover of Jac(�) →  ramified at the nodes. The isomorphism class of (%, \),
where \ ∈ Jac)�) [2] \ {0}. Let R3 → A2 be the Prym map in genus 3 (see
Remark 6.2.2. Let B be the point in A2 represented the isomorphism class of
the curve �. It is proved in [786] that the fibers of the Prym map are three-
dimensional and the image of the map q is mapped dominantly. In particular,
for a general quartic surface the map is also three-dimensional.
Assume now that - is aWeddle surface WP . We follow the proof from [527].

Let �4 = % ∩ WP , and % ∩ '3 = {?, @, A}. We choose coordinates in % to
assume that @1 = [1, 0, 0], @2 = [0, 1,−], @3 = [0, 0, 1]. The net # cuts out
in % a net of There will be a conic containing each coordinate line, hence the
coordinate triangle is self-polar.
By Lemma 12.3.7, the tangent planes Π8 of the surface at points in '3 are

osculating planes of '3. They form the dual Veronese curve '∗3 in the dual
projective space. The planes Π considered as points on '∗3 span a plane dual a
point G ∈ P3. Since three osculating planes Π1,Π2,Π3 at points @8 are cut out
by the plane %, hence the corresponding tangent planes intersect % at a common
points. This shows that the tangent lines to �4 at the points @8 are concurrent.
Thus, Salmon’s equation (6.39) of �4 is in the form

02G
3H + 03G

2I + 11GH
3 + 13H

3I + 21GI
3 + 22HI

3 + 3GHI(;G + <H + =I) = 0,

where 021221 + 031122 = 0. Using the explicit formula (6.40) for the invariant
�3 and the formula for the catalecticant invariant �6 from 1.4.1, we obtain

�3 = 12(−;<= + ;1121 + <2202 + =0313,

�6 = − det
©«
; 03 02
13 < 11
22 21 =

ª®®¬ .
This shows that the invariant �2

4 + 144�6 vanishes on �4. Varying P in a 3-
dimensional family and taking plane section we obtain that their images inM3
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belong to a hypersurface defined by the invariant �4+144�6. Thus, we expect that
the images of a plane section of a general Weddle surface is two-dimensional.
Morley and Conner go further and find another distinguished property of a

general plane section of a Weddle surface. The quartic plane curve contains a
configuration of 15 points (the intersection points with the lines ℓ8 9 10 pairs
of lines (the intersection the planes 〈?8 , ? 9 , ?:〉 with the intersection points
G8 9: = G;<= and each line meeting three of the 15 points. In fact, they show that
there are∞1 of such configurations on the curve. �

Finally, let us discuss birational automorphisms of a Weddle surface WP . In
Remark 7.7.17 we discussed a 2-elementary group 25 of Cremona transforma-
tions that leave the surface invariant. One of them, the transformation )7 from
Example 7.7.17 acts identically on the surface. Thus, Bir(WP) conatins a sub-
group isomorphic to 24. Under the birational isomorphismWP �  P , the group
corresponds to the group of birational automorphisms of the Kummer surfaces
induced by translations by 2-torsion points of teh corresponding abelian sur-
face. Another element of this group is a cubic Cremona transformation with
four of the points in P as its fundamental points.

If we use (12.33) as an equation of WP , then this transformation is given by

� : [G, H, I, |] ↦→
[ 0
G
,
1

H
,
2

I
,
3

|

]
.

It switches the points ?5, ?6.1 This birational automorphism of the Weddle
surface lifts to a biregular automorphism of its minimal nonsingular model
- . The quotient of - by this biregular involution is an Enriques surface. The
complex of lines G is the Reye congruence of lines.
Note that the group Bir( P), for a general set P of six points is known in

terms of its a finite set of geometrically defined generators. [464], [259, Chapter
8]. so, it gives a finite set of generators of Bir(WP).

12.3.2 Cayley octads and 7-nodal quartic surfaces
Here, we give some additional comments to Remark 6.3.15 which we will use
in the next Subsection. In this Remark we discussed the elliptic fibration

5 : - = BlG1 ,...,G7 ,G8 (P3) → !∗ � P2, (12.34)

where ! is the net of quadrics in P3 with base points G1, . . . , G8 forming a
Cayley octad. As we know, such a net defines the discriminant quartic curve
1 It is puzzling that Coble discussing this transformation does not mention the Hutchinson’s
paper [420] where this transformation was first introduced.
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Δ ⊂ ! together with an even theta characteristic o on it. We assume that
the Cayley octad {G1, . . . , G8} is general so that the curve Δ is nonsingular. A
singular quadric in the net L is a point @ ∈ Δ, and the fiber 5 −1 (@) is singular
if and only if, considered as a line in !, it is tangent to Δ. This shows that
the discriminant curve of 5 parameterizing singular fibers is equal to the dual
curve Δ∗ of the plane quartic Δ. It is a curve of degree 12 with 28 ordinary
nodes and 24 ordinary cusps. Recall that the closure of the set of nodes of
singular quadrics from ! is the Steinerian curve of !. It is a smooth curve ' of
degree 6, the image of Δ by a map given by the linear system |o(1) |. The pencil
corresponding to a node of Δ∗ is a bitangent of Δ. It has two singular quadrics
with nodes at '.

A general quadric from ! does not intersect the lines 〈G8 , G 9〉 outside the base
points. This shows that the proper transforms ;8 9 of these 28 lines are blown
down to points. These are the nodes of @8 9 ∈ Δ∗. The fiber 5 −1 (@8 9 ) is equal
to the union of ;8 9 and the proper transform A8 9 of the unique twisted cubic
through the remaining six base points of !. The two irreducible components
intersect at the pre-images of the two nodes of singular quadrics in the pencil
in ! defined by the corresponding bitangent of Δ.

The pre-image of a conic in !∗ is a quartic surface with nodes at G1, . . . , G8.
It is called a syzygetic 8-nodal quartic. It is given by equation

�2 (@0 (G, H, I, |), @1 (G, H, I, |), @2 (G, H, I, |)) = 0 (12.34)

where @0, @2, @2 define a basis of the net !, and �2 is a quadratic form. The di-
mension of the linear system of such quartics (with fixed seven nodes G1, . . . , G7)
is equal to 5. Since a node G8 imposes four conditions on quartic surfaces, the
dimension of the family of quartics with 7 nodes is equal to 6. This shows that
a quartic with nodes at G1, . . . , G7 can be given by equation

�2 (@0 (G, H, I, |), @1 (G, H, I, |), @2 (G, H, I, |)) + _�4 (G, H, I, |) = 0. (12.34)

A quartic with _ ≠ 0 is called an asyzygetic 7-nodal quartic.
Note that there are no irreducible quartic surfaceswith a fixed set of 8 nodes in

general position. In fact, counting constants, we find that such quartics depend
on two parameters and hence coincide with the reducible quartic + (@0, @1),
where + (@0) and + (@1) generate the pencil of quadrics through the eight
nodes.

The surfaceD := + (� (@0, @1, @2, �4)) is called theCayley dianode surface2 .
It is a surface of degree 6. By writing local equations of the surface at points
G1, . . . , G7, we find that these points are triple points.

2 It is Rohn’s Knotenflächen [630]
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The 6-dimensional linear system Q7 of quartics with nodes at G1, . . . , G7
defines a map of degree 2

q : BlG1 ,...,G7 → Q∗7 � P
6. (12.34)

The linear subsystem of syzygetic 8-nodal quartics defines a map 5 ′ : - =

BlG1 ,...,G7 (P3) → P5 whose image is the quartic Veronese surface V4. It shows
that the image of q is equal to the cone P(1, 1, 1, 2) over the Veronese surface
with vertex at the point q(G8). This is analogous to the anti-bicanonical map of
a del Pezzo surface Bl?1 ,..., ?8 (P2) of degree one to the quadratic cone P(1, 1, 2).
We have a commutative diagram

BlG1 ,...,G7 (P3)

c

��

5 ′

((

f // V6 (1, 1, 1, 2, 3)
prf (G8 )
��

q′ // P(1, 1, 1, 2)
prq (G8 )

��
P3 q! // P2 v2 // V4

The top morphisms are define by the Stein factorization of q, where f is a
birational morphism and q′ is a degree two finite morphism. The threefold
V6 (1, 1, 1, 2, 3) is a hypersurface of degree 6 in P(1, 1, 1, 2, 3) that can be given
by an equation

H2 + G3 + 04 (C0, C1, C2)G + 06 (C0, C1, C2) = 0, (12.34)

where 04 and 06 are homogeneous forms of degree 4 and 6 [159, p. 188]. The
image of G8 under the map f is the point [0, 0, 0, 1,−1]. Its image under q′ is
the vertex q(G8) of the cone P(1, 1, 1, 2). The map 5 ′ is the map given by the
linear system ! of quadrics with base points G1, . . . , G8. The rational maps in
the diagram are not defined at G8, f(G8) and q(G8).

The birational morphism f blows down proper transforms of 21 lines ℓ8 9 :=
〈G8 , G 9〉, 8, 9 ≤ 7, and the proper transforms of 7 twisted cubics '8 through the
point G: , : ≠ 8.
Equation (12.3.2) can be considered as theWeierstrass equation of the elliptic

fibration (12.3.2), where the zero section is the exceptional divisor over G8. It
is analogous to the equation of a del Pezzo surface of degree one and the
Weierstrass form of the elliptic fibration Bl?1 ,..., ?8 , ?9 (P2) → P1, where ?9 is
the ninth base point of the pencil of cubic curves through ?1, . . . , ?8.

The involution

V : V6 (1, 1, 1, 2, 3) → V6 (1, 1, 1, 2, 3). H ↦→ −H

is a 3-dimensional analog of the Bertini involution. Its restriction to the general
fiber of 5 is the negation involution of the elliptic curve. This shows that its locus
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of fixed points consists of the isolated point f(G8) and the closure ℜ = + (H)
of singular points of irreducible singular fibers of 5 .
The surface ℜ is the ramification divisor of the double cover q′. Its image

under the map q′ is equal to a surface + (G3 + 04G + 06) in P(1, 1, 1, 2) ⊂ P6. It
is cut out by a cubic hypersurface in P6. The pre-image of a hyperplane section
of P6 is a quartic from the linear system Q7. It acquires an additional node if it
is tangent to the branch divisor. This shows that ℜ is the image of the Cayley
dianode surface D under the rational map f ◦ c−1 : P3 d V6 (1, 1, 1, 2, 3). It
coincides with the image of the proper transform D̃ of D in - under the map
f.
The surface ℜ contains the images of the exceptional curves of f. Their

images under the map prf (G8) : V6 (1, 1, 1, 2, 3) → P2 are equal to 28 nodes of
Δ∗. This shows that D contains the 21 lines 〈G8 , G 9〉, 1 ≤ 8 < 9 ≤ 7 and the 7
twisted cubics through six points among G1, . . . , G7. The surface D̃ contains the
corresponding irreducible components of reducible fibers of 5 over the nodes
of Δ∗.
The map f : D̃→ ℜ is a minimal resolution of singularities of 28 nodes of

ℜ. By the adjunction formula for hypersurfaces in a weighted projective space,
lB � Oℜ (1) [233]. This shows that the map f is given by the canonical linear
system. Its nonsingular minimal birational model is a surface ℜ′ of general
type with  2

B′ = ?6 (B′) = 3. (see [234, p. 189, Remark 6]). It is shown by
Coble [159, §47-49] (see also [234, Chapter VII, §6]) that the surface ℜ is
isomorphic to the quotient of the symmetric theta divisor Θ of Jac(Δ) by the
negation involutions.
Note that D contains the Steinerian curve � of the net of quadrics !. The

proper transform of� in - is the closure of singular points of irreducible fibers.
Its image f(�) onB is the ramification curve of the triple coverB→ P2, and
the map f(�) → Δ∗ is the normalization map. Note that a sextic surface may
have up to ten isolated triple points [290].

12.3.3 Quartic surfaces containing lines
Let us first consider quartic surfaces & containing # skew lines ℓ1, . . . , ℓ# .
We assume that & has only ` ordinary nodes as possible singularities. Let
c : &̃ → & be aminimal resolution of singularities of&. The proper transforms
of the lines ℓ8 in &̃ are disjoint (−2)-curves.
We say that a set of lines in a nodal quartic surface is weakly skew if their

proper transform in &̃ is a set of disjoint (−2)-curves. The following proposition
is proved in [551, Application, Corollary 1].
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Theorem12.3.9. The number of weakly skew lines on a nodal quartic surface is
less than or equal to 16. A surface with 16 skew lines is birationally isomorphic
to a Kummer surface of some abelian surface (not necessarily principally
polarized).

Example 12.3.10. A quartic Kummer surface with 16 nodes does not contain
lines. However, there exists a smooth quartic surface with two sets of 16 disjoint
lines forming a symmetric abstract configuration (1610). These are classically
known as Traynard quartic surfaces. These surfaces were constructed by Tray-
nard [766] (also see [340], where the surfaces are named after Traynard). Not
being aware of Traynard’s work, W. Barth and I. Nieto rediscovered the Tray-
nard surfaces in [36]. The surfaces are embedded Kummer surfaces of simple
abelian surfaces � with polarization of type (1, 3). The negation involution
acts on the linear space �0 (�,O�(2Θ)), where Θ is a symmetric polarization
divisor. The eigensubspace + with eigenvalue equal to −1 is of dimension 4.
The linear system |+ | ⊂ |2Θ| has base points at all 2-torsion points of � and
defines a finite map of degree 2 of the blow-up of these points to P3 with image a
smooth quartic surface - . The images of the exceptional curves over the torsion
points form a set A of 16 lines on - . The unique symmetric theta divisor Θ is
a curve of genus 4, it passes through 10 torsion points, and the images of the
translates of Θ by 2-torsion points provides another set B of 16 disjoint lines
on - .

Since there are five conditions for a quartic surface to contain a line, a quartic
surface with more than 6 lines must be special. So, we assume that # ≥ 7.

Example 12.3.11. At the end of Subsection 2.3.1, we discussed desmic 12-
nodal quartic surface. Here, following [430, Chapter II], we give some more
detail. In particular, it turns out that a desmic quartic surface contains a weakly
even set of 16 skew lines.
Recall that a desmic surface is a member of a pencil of quartic surfaces that

contain three desmic tetrahedra. Its equation can be written in the form:

0(G2−H2) (I2−|2)+1(G2−I2) (H2−|2)+2(G2−|2) (H2−I2) = 0, 0+1+2 = 0.
(12.34)

The surfaces have an obvious group of symmetry isomorphic to the 2-elementary
group 25. It is defined by changing the signs of the coordinates and permutations
(12) (34), (24) (13), (14) (23) of the coordinates. It has 12 singular points form-
ing the orbits of [1, 0, 0, 0], [1, 1, 1,−1], [1, 1,−1,−1] and [1, 1, 1, 1]. They lie
by two on the edges of the desmic tetrahedra. The 16 lines are the intersections
of the faces on two different desmic tetrahedra. They are given by equations
G − H = 0, G + I = 0 and similar equations. The nodes and lines form an abstract
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configuration (124, 163). It is isomorphic to the Reye configuration of points
and lines in R3 and also Hesse-Salmon configuration of points and lines in the
plane (see [245]).
Every node of the surface is a degenerate node, i.e. the exceptional curve

� over the node is contained in the ramification divisor of the projection map
pr@ . For example, the equation of the branch curve � of the projection from the
point @ = [0, 0, 0, 1] is(
(0+1)G2+ (0−2)1H2+ (1+2)I2) ((1+2)G2H2+ (0−2)G2I2− (0+1)H2I2) = 0.

(12.34)
The cubic+ (01 (H2I + HI2) + 02 (G2I + GI2) + 03 (G2H + GH2)) is nonsingular and
it is tangent to  at the cusps. We see a peculiar example, where the contact
conic intersects the branch curve only at its singular points.

Theorem 12.3.12. The desmic quartic surface is isomorphic to the Kummer
surface Kum(� × �) of the self-product of an elliptic curve � .

Proof Choose two singular points ?1, ?2 on an edge of one of the tetrahedra.
Let �1, �2 be the exceptional curves over these points on a minimal resolution
- of the desmic quartic surface &. The eight lines that pass through ?1 or ?2
have one common line �0. Let �1, . . . , �6 be the remaining lines. Consider the
divisor

� = 2(�1 + �2) + �1 + · + �6 + 2�0.

Then we check that �2 = 4 and the linear system |� | defines a degree two map

Φ : - → F0 ⊂ P3.

Its branch divisor is the union of 8 lines, four from each ruling. On the other
hand, the linear system |2(� ×{pt}+ {pt}×�) | defines a double cover � ×� →
P1 × P1 branched along the union of 8 lines, from from each ruling. Since
Pic(F0) has no torsion, there is only one isomorphism class of such a cover.
This proves the assertion.

�

Example 12.3.13. This is an example of a nodal quartic surface with 12 weakly
skew lines. The lines are the edges of the cube with the faces G = 0, H = 0, I =
0, G − | = 0, H − | = 0, I − | − 0). The eight vertices are ordinary nodes of teh
surface. and its edges are the lines. The surfaces depend on two parameters and
are given by the equation

(01HI + 02GH + 03GI)|2 + (01 (H2I + HI2) + 02 (G2I + GI2)
+ 03 (G2H + GH2))| + 01H

2I2 + 02G
2H2 + 03G

2I2 = 0.
(12.34)
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The equation of of the branch curve of the projection from the point [0, 0, 0, 1]
is
(01 (H2I + HI2) + 02 (G2I + GI2) + 03 (G2H + GH2))2−
4(01H

2I2 + 02G
2H2 + 03G

2I2) (01H
2I2 + 02G

2H2 + 03G
2I2) = 0.

(12.34)

We check that it has three simple singular points of type 05 (a cusp and
infinitely near cusp) at [1, 0, 0], [0, 1, 0], [0, 0, 1], three ordinary cusps at the
points [1, 1, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1] and an ordinary node at [1, 1, 1]. The
contact conic  = + ((01H

2I2 + 02G
2H2 + 03G

2I2). It intersects � at the cusps
[0, 0, 1], [1, 0, 0], [0, 1, 0] with multiplicity four.
By Theorem 12.3.9, the minimal resolution &̃ of & is isomorphic to the

Kummer surface of some abelian surface. It turns out that the abelian surface
is the self-product � = � × � of an elliptic curve �. Let Θ8 be the proper
transforms of the 16 lines in &̃. The proof of Nikulin’s theorem shows that the
sum

∑
Θ8 ∼ 2� is divisible by 2 in Pic(&̃). Let �′ be the double cover of &̃

branched over
∑
Θ8 . The ramification divisor consists of sixteen (−1)-curves on

�′. The proper transform of exceptional curve �8 over the nodes intersects the
branch divisor at four points. Its pre-image sin �′ is an elliptic curve. Blowing
down the (−1)-curves, we obtain an abelian surface � with a set of 12 elliptic
curves on it, intersecting by three at each of the 2-torsion points of �. Since
we can find two of them, say �1, �2, intersecting at one point, we obtain that
� � �1 × �2. On the other hand, we can find another one �3 that intersects
�1 and �2 at one point. It defines a graph of an isomorphism �→�2. Thus,
� � � × �.
The isomorphism class of the elliptic curve � is determined by the cross-

ratio of the tangent directions of the four lines passing through the node on the
exceptional curve over the node identifiedwithP1. Thus, we obtain a remarkable
property that all the 12 cross-ratios coincide.
Note that, if we take the parameters (0, 1, 2) = (1, [3, [

2
3), where [

3
3 = 1, [ ≠

1, we obtain an automorphism of& defined by a cyclic permutation of G, H, I. In
this case, the elliptic curve � acquires a complex multiplication of order 3. The
desmic surface of this kind is discussed in detail by Hunt [416]. Similarly, we
take (0, 1, 2) = (1,−1, 0), we obtain an extra automorphism defined by a cyclic
permutation of (G, H, I, |). In this case, � acquires complex multiplication by√
−1.
Let '3 and '′3 be two disjoint twisted cubics in P

3.We know fromProposition
10.1.8 that they have 10 common secants lines. Taking '3 and '′3 general
enough we may assume that they are skew. Since containing an '3 imposes 13
conditions on quartics, quartics containing '3 and '′3 depend on 34 − 26 = 8
parameters. Since each secant line intersects '3 + '′3 at four points, there is one
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additional condition to contain a secant. Thus, we can find a quartic surface
containing 7 or 8 disjoint lines. We refer to [796] for an explicit condition for a
quartic containing 6 skew lines to contain another skew line.

An example of a nonsingular quartic surface with 10 skew lines is the
Steinerian surface of a general web of quadrics in P3. They are the singular
lines of ten reducible quadrics in the web.

A nonsingular quartic surface has at most 64 lines. This is a theorem of Beni-
amono Segre [682] (his proof corrected in [605]). An example of a nonsingular
surface with 64 lines was given much earlier by F. Schur [671]. It is given by
the equation

G(G3 − H3) − I(I3 − |3) = 0. (12.34)

The surface has a large linear automorphism group. It is generated by the
transformation (G, H, I, |) ↦→ (I, |, G, H) and the symmetry of the binary form
D(D3 − {3) isomorphic to A4. The set of lines is the orbit of the obvious lines:
line G − I = H − | = 0 and H − U8G = | − U 9 = 0, where U8 are roots of the
polynomial C (1 − C3).

In the same paper, Schur gave an example of a quartic surface with 52 lines.
An easy example is, of course, the Ferma quartic surface that contains 3×16 =

48 lines. We refer to [605] for other examples and the classification of quartic
surfaces with more than 52 lines.

Assume now that & is a `-nodal quartic surface. By Theorem 12.3.9, it
contains at most 16 skew lines. For, example, a Weddle surface contains 15
weakly skew lines, or the Hessian quartic surface contains 10 weakly skew
lines.
Let us construct a quartic surface with 12, 13, or 14 skew lines. Its set of

nodes will be the set of vertices of a cube whose edges are lines. We require
that a quartic surface contains the 8 vertices and three points on each of the 12
edges. This require 8 + 24 = 32 conditions. So, we can find a quartic surface.
Since the edge lines at the vertices are not coplanar, the vertices are singular
points. For a general choice of & they are ordinary nodes. We can also add
one or two diagonals of the cube and use 2 extra parameters to require that the
quartic contains them.

Exercises
12.1 An irreducible subvariety - of the Grassmannian �A (P=) is called a congruence

if dim - = = − A [691].
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(i) Show that the number of A-planes from - passing through a general point
(resp. contained in a general hyperplane) is finite. It is called the order of - .

(ii) Show that the subvariety of A-planes from - contained in a general hyperplane
is an irreducible variety of degree = − 2A − 1. Its degree is called the class of
- .

(iii) Extend to - the notion of a fundamental point and the focal hypersurface, and
prove that if A = 1 and - has only finitely many fundamental points) a general
ray from - is tangent to the focal hypersurface at = − 1 points.

(iv) Using (iii), show that, if = ≥ 4, the order of a congruence of lines in P= is not
equal to 2 [311].

12.2 Consider a subvariety - (#1, . . . , #=−1) of P= projectively generated by a general
set of nets #1, . . . , #=−1 of hyperplanes with a fixed isomorphism to #8 → P2’
(see Subsection 3.3.1).
(i) Show that the lines �1 (_) ∩ · · · ∩ �=−1 (_), _ ∈ P2, form of a surface
S(#1, . . . , #=−1; =) of order 1

2 (= − 1) (= − 2) and class 1
2=(= − 1) of lines

in P=.
(ii) Show that the surface Sec1 ('=) formed by secant lines of a rational normal

curve '= in P= is an example of a surface S(#1, . . . , #=−1; =). Show that
its Plücker embedding is projectively isomorphic to the Veronese surface
a=−1 (P2).

(iii) Show that rays ofS(#1, . . . , #=−1; =) sweep a3-dimensional variety�1
2 (=−1)) (=−2)

of degree 1
2 (= − 1)) (= − 2).

(iv) Assume = = 4, show that, for a general S(#1, #2, #3; 3), the cubic �3 has
six singular points (in particular, a general S(#1, #2, #3; 3) does not coincide
with the congruence Sec1 ('4).

(v) Show that the cubic scroll �3 has two rulings whose generators define two
congruence of lines in P4 of order 3 and class 6

12.3 (i) Show that the projection P4 d P3 from a point not in �3 maps the rays of
S(#1, #2, #3; 3) to rays a congruence of lines ℓ3

6 in P3 of order = = 3, class
< = 6, and sectional genus 4.

(ii) Show that the projection P4 d P3 from a general point in �3 maps rays of

S(#1, #2, #3; 3)

to rays of a congruence of lines without fundamental curve of bidegree (2, 6)� �
in P3.

(ii) Show that �3 contains the three base lines ℓ1, ℓ2, ℓ3 of the nets #1, #2, #3
are not rays of the congruence St4, each containing two of singular points of
�3.[94]

(iii) Find the bidegree of the congruence of lines in P3 obtained by the projection
of S(#1, #2, #3; 3) from a point on a line ℓ8 .

(iv) Assume that the nets #1, #2, #3 contain : common planes Π8 : �1 (_8) ∩
�2 (_8) ∩ �3 (_8), 8 = 1, . . . , : . Show that the class of the degenerate con-
gruence S(#1, #2, #3; 3) is equal to 6 − : . Show that by projecting these
congruences one obtains congruences of lines in P3 of bidegree (2, 6 − :)
[94].

12.4 Show that the closure of the set of trisecant lines of a Bordiga sextic surface in
P4 is a congruence of order one and class three.
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12.5 Let - be a del Pezzo surface of degree 5 and {!1, . . . , !10} be the set of lines
on - . Let E = Ω1

-
(log�) be the sheaf of logarithmic differential 1-forms on - ,

where � is the sum of the ten line on - .
(i) Let E = Ω1

-
(log�) be the sheaf of logarithmic differentials that fits in the

short exact sequence

0→ Ω1
- → Ω1

- (log�) res→
10⊕
8=1
O!8 → 0,

where res is the residue map. Show that dim�0 (-, E) = 5 and E is generated
by its global sections.

(ii) Show that the map G ↦→ Ker(�0 (-, E) ev→ E(G))⊥, where ev is the evaluation
map, defines a closed embedding 9 : - → � (2, �0 (-, E)∨) � G = �1 (P4)
such that E = 9∗Q�1 (P4) .

(iii) Show that the image ( of - is a congruence of lines in P4 of order 2 and class
3.

• Show that the rays of ( sweep a three-dimensional hypersurface ?G (@−1
G
(())

in P4 isomorphic to the Segre cubic primal.
(iv) Let (∗ ⊂ � (3, �0 ((, E)) � G∗ = �2 (P̌4) be the image of ( under the duality

map G → G∗. Show that ?G∗ : @−1
G∗ ((

∗)) → P̌4 is a degree 2 map whose
branch divisor is the Castelnuovo-Richmond quartic hypersurface CR4.

12.6 Let ( be a congruence of lines in P3. A plane Π in P3 is called a fundamental
plane of ( if it contains infinitely many rays..
(i) Show that a fundamental plane Π is a fundamental point ? = Π⊥ of the dual

congruence of lines.
(ii) Show that the degree of the fundamental ? is equal to the degree of the

one-dimensional part of Ω(Π) ∩ Π. By the definition, this is the degree of a
fundamental plane.

(iii) Find fundamental planes for congruences of order one or two discussed in this
chapter.

12.7 Let (1 and (2 be two congruences of lines in P3 of order 1 and class 2. Define a
Cremona transformation) : P3 d P3 as follows. A general point G ∈ P3 contains
in a unique ray ℓ1 of (1 and a unique ray ℓ2 of (2. Since the class is equal to 2,
the plane spanned by ℓ1 and ℓ2 contains a unique ray ℓ′1 of (1 and a unique ray ℓ′2
of (2 that intersect at a unique point ) (G) [603].
(i) Show that ) is a Cremona involution.
(ii) Find the �-locus and �-locus of ) .
(iii) Find the multidegree of ) .

12.8 Let ( be the congruence of order two of secant lines of an elliptic quartic curves
� in P3.
(i) Show that, for a general point % ∈ P3, the surface (%) of centers of the null-

planes containing % coincides with the cubic surface from Exercise 9.25. It
is associated to the point % and the pencil of quadrics |�� (2) | containing the
curve �.

(ii) Show that the curve |ℓ | of centers of null-planes containing ℓ is the union of
the curve � taken with multiplicity 3 and a curve ' of degree 5 taken with
multiplicity one.
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(iii) Show that the curve ' passes through the tangency points of planes from ℓ⊥

and quadrics from the pencil |�� (2) |.
(iv) Find the genus of the curve '.

12.9 Let |! | be a general web of quadrics in P3 and ( be the Reye congruence whose
rays are Reye lines of |! | (see Subsection 1.1.7).
(i) Using Exercise 10.16 show that ( is contained in the intersection of two cubic

line complexes which intersect along a congruence of bidegree (2, 6) with a
fundamental curve. Deduce from this that the bidegree of ( is equal to (7, 3).

(ii) Show that ( is smooth and its sectional genus ?0 equals 6.
(iii) Show that ( has no fundamental points but has 20 fundamental planes.
(iv) Show that the focal surface of ( is a smooth quartic surface but the focal

surface of the dual con
(v) Show that the map 5 : P3 → |!∨ | given by the linear system |! | is of degree

8, and its branch divisor Δis the dual surface of the Cayley quartic symmetroid
& in ! |.

(vi) Show that the focal surface of ( is a surface of degree 24 which is one of the
two irreducible components of 5 −1 (Δ).

(vii) Specialize |! | to a web of quadrics with : base points. Show that the Reye
congruence specializes to a congruence of bidegree (7 − :, 3).

12.10 Let ) : Π d Π′ be a birational transformation of degree = between two planes
in P3. The closure of lines 〈G, ) (G)〉 is a congruence ( in P3, called a Cremonian
correspondence [395], [397].
(i) Show that the class of ( is equal to =, i.e. the degree of the image of a general

line in Π.
(ii) Show that the line Π∩Π′ is a singular ray of ( of multiplicity = and the planes

Π and Π′ are its fundamental planes of (.
(iii) Show that a base point of multiplicity : of the homaloidal line system that

defines ) is a fundamental point of ( of degree : .
(iv) Show that congruences (∗ dual to singular congruence ( of bidegree (1, 3)

and (2, 4) are Cremonian correspondences.
12.11 Let ( be a congruence of lines in P3 of order one and let Π,Π′ be two general

planes. Show that the rational map ) : Π d Π′ that assigns to a general point
G ∈ Π the intersection of the unique ray of ( passing through G with the plane Π′
is a birational transformation. Find its degree and fundamental points.

12.12 Let ( be a congruence of lines in P3 of bidegree (3, 3).
(i) Show that its arithmetical sectional genus ?0 is less than equal than 4 and

the equality holds only if ( is a complete intersection of a cubic and linear
complexes of lines.

(ii) Show that a smooth congruence ( with ?0 = 4 is a K3 surface.
(iii) Show that the focal surface of a general congruence ( with ?0 = 4 is a surface

of degree 12 isomorphic to its dual surface.
(iv) Show that a smooth ( with sectional genus one is equal to the projection of an

anti-canonical del Pezzo surface of degree six.
12.13 Let ( be a general congruence of lines in P3 of bidegree (3, 4) and arithmetic

sectional genus equal to 3.
(i) Show that ( is equal to the residual surface of the intersection of two quadratic

line complexes containing a common plane Λ.
(ii) Show that the intersection ( ∩ Λ is a curve � of degree 3.
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(iii) Show that ( is a rational surface, the image of P2 under a map given by the
linear system of curves of degree four passing trough a general set of nine
points and the curve � is the image of the unique cubic curve through the nine
points [294].

12.14 Let ( be a general congruence of lines in P3 of bidegree (3, 5) and arithmetic
sectional genus equal to 4.
(i) Show that ( is contained in the intersection of a quadratic line complex and a

cubic quadratic complex with the residual surface of order 4.
(ii) Show that the residual surface of a smooth ( is a congruence of bidegree (2, 2)

isomorphic to a Veronese surface, and ( is a rational surface equal to the image
of P2 under a rational map given by a linear system of curves of degree 6 with
6 double base points and four simple base points [294].

12.15 Show that the intersection of two line complexes of degree 31 and 32 is a
congruence of bidegree (3132, 31, 32) and of rank 3132 (31 − 1) (32 − 1).

12.16 Let ( be a congruence of order two without fundamental curve and (′ be a con-
focal congruence. Find the intersection of the corresponding irreducible compo-
nents of the bitangent surface Bit(().

12.17 Show that the projection of a general hyperplane section of a nodal quartic from
one of the nodes is a plane quartic which is tangent to the branch curve � of the
projection at 12 nonsingular points. Prove that the points are lie on a cubic curve
that passes through the six points whether the contact conic intersects �.

12.18 Let � be a plane sextic with two nodes ?1, ?2 and @1, @2 are the residual in-
tersections of the line 〈?1, ?2〉 with �. Show that there exists a quartic curve �
that passes through ?1, ?2, @1, @2 and intersects � at the remaining 24 − 6 = 8
points such that there exists a sextic that �′ that is tangent to � at these points
and admits a contact conic that passes through ?1, ?2.

12.19 Let � be an irreducible plane sextic with 9 (resp. 10) nodes. Show that there
exists 4 (resp. 2) contact-cubics that touch � at 9 nonsingular points.

12.20 Prove that a Reye line of a general web |! | of quadrics is touching the the quartic
symmetroid & defined by |! |. Using this show that the bitangent surface Bit(&)
is irreducible.

12.21 Let D be a Cayley dianode surface with triple points G1, . . . , G7. Show that, for
any G8 there exists a unique quartic surface with a triple point at G8 and double
points at G 9 , 9 ≠ 8. Show that its proper transform on BlG1 ,...,G7 is a section of the
elliptic vibration defined by the net of quadrics through the seven points.

12.22 Let R3 be the set of stable Veronese curves of degree 3 passing through the five
reference points ?8 .
(i) Show that there are ten curves from R3 that intersect two general lines in P3.
(ii) Show that the union of curves in R3 which are tangent to a general plane Π is

a surface �Π of degree 10.
(iii) Show that the reference points are 6-fold singular points of �Π and the lines

〈?8 , ? 9 〉 are double lines of �Π.
12.23 Let � be an elliptic curve. Find the linear system on � = � × � that defines a

rational map � d P3 with the image equal to a desmic quartic surface.
12.24 Show that the projection of a general hyperplane section of a nodal quartic from

one of the nodes is a plane quartic which is tangent to the branch curve � of the
projection at 12 nonsingular points. Prove that the points lie on a cubic curve that
passes through the six points whether the contact conic intersects �.

12.25 Let � be a plane sextic with two nodes ?1, ?2 and @1, @2 are the residual in-
tersections of the line 〈?1, ?2〉 with �. Show that there exists a quartic curve �
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that passes through ?1, ?2, @1, @2 and intersects � at the remaining 24 − 6 = 8
points such that there exists a sextic that �′ that is tangent to � at these points
and admits a contact conic that passes through ?1, ?2.

12.26 Let � be an irreducible plane sextic with 9 (resp. 10) nodes. Show that there
exists 4 (resp. 2) contact-cubics that touch � at 9 nonsingular points.

12.27 Show that the linear system of quadrics in P3 containing a smooth conic and
tangent to a point on it to the plane spanned by the conic maps a cubic surface
containing the conic to a quartic surface with a double conic ([188]).

12.28 Let D be a Cayley dianode surface with triple points G1, . . . , G7. Show that, for
any G8 there exists a unique quartic surface with a triple point at G8 and double
points at G 9 , 9 ≠ 8. Show that its proper transform on BlG1 ,...,G7 is a section of the
elliptic vibration defined by the net of quadrics through the seven points.

12.29 Prove that a normal quartic surface containing a set of seven nodes in a general
linear position has at most ten nodes.

Historical Notes

An excellent source for the history of the theory of algebraic surfaces is Loria’s
book [495, Capiotolo 3]. We will discuss only the part concerning quartic
surfaces. We refer to the Historical Notes in Chapter 10 for the history of the
study of ruled quartic surfaces. Jessop’s book [430] gives a brief account of
nodal and non-normal quartic surfaces. on
The study of non-ruled quartic surfaces with a double line began with Kum-

mer’s paper [472]. Here, he introduced the Kummer Complex surface with
eight isolated nodes. In the same memoir, Kummer introduced quartic surfaces
with a double conic. In [120] Cayley constructed a quartic surface with a double
line obtained as a degeneration of Cayley’s quartic symmetroid.
The study of quartic surfaces with a double circle began with a paper by

M. Moutard [530]. He called such surfaces surfaces analagmatique. Later
Darboux gave them the name cyclide [201]. A long memoir by Humbert [410]
contains the history and a detailed study of cyclide from the view of differential
geometry.
Cremona [188] and Noether [553] constructed such surfaces as the images of

a birational map from a cubic surface or the projective plane. The first examples
of quartic surfaces with a cuspidal double conics were given by Cremona [193]
and Bela Tötössy [763]. As we already noticed the classification of quartic
surfaces with a double conic as the projections of a quartic del Pezzo surface
was given by C. Segre [685]. Classification of real quartic cyclide surfaces
was given by Loria [496]. Loria’s book [495] contains a vast bibliography on
cyclide quartic surfaces, including Dupin cyclides.
Rational quartic surfaces with an isolated double point were studied by

Cremona [191], [190] and Noether [555]. Modern classification of possible
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isolated singularities of ruled quartic surfaces can be foun in [209], [770],
[772], [774].

The first systematic study of nodal quartic surfaces started in Kummer’s work
on quadratic congruences of lines in P3. In his first memoir on quartic surfaces
[119], Cayley acknowledges the significant influence on his work of Kummer’s
work. As we saw in the previous chapter, Kummer discussed quartic surfaces
with 11-16 nodes realized as the focal surfaces. Cayley shows in his memoir that
these quartic surfaces arise by a degeneration of the 10-nodal Cayley quartic
symmetroid. He systematically investigated quartic surfaces with all possible
` ≤ 16 nodes. Introducing in the way, the dianodal sextiic surfaces and shows
that a quartic surface with seven nodes in a general linear position has at most
ten nodes. He also introduced the notion of a dianome quartic surface and the
dianodal sextic surfaces, the locus of nodes of quadrics from the linear system
of quadric with fixed seven base points. The systematic study of nodal quartic
surfaces via the projections from a node was done by K. Rohn [630], [629].
Rohn also gave a classification of triple points on quartic surfaces [630].

The Steiner quartic surface is also known as the Steiner Roman surface.
Steiner discovered it during his visit of Rome in 1844. Steiner himself had
never documented his discovery. It was rediscovered by Kummer [472], a short
note added by Weierstrass to his paper gives Steiner’s synthetic construction of
these surfaces (see more history in [641]).
The main topic of Cayley’s memoir is what we now call the Cayley sym-

metroid quartic surface. In fact, Cayley discusses general determinantal vari-
eties defined by unnecessary square matrices.
We already gave some bibliographical references toKummer quartic surfaces

in Chapter 10.Wemay add new recent references [256] and [641] on the history
of Kummer surfaces.
Although Cayley discusses general 6-nodal quartic surfaces, the special quar-

tic surface birationally isomorphic to the Kummer surface was introducedmuch
earlier in 1850 by T. Weddle [800]. We already gave some references to the his-
tory of desmic quartic surfaces in desmic quartic surfaces in Subsection 2.3.1.
Humbert was the first to establish a birational isomorphism between desmic
quartic surfaces and the Kummer surfaces of the self-product of an elliptic
curve. In his paper [411], he gives many other geometrical facts about the sur-
faces, and, in particular, introduces their relationship to an earlier Cremona’s
construction of some quartic surfaces related to a tritangent plane of a cubic
surface [186]. Jessop’s book contains a chapter on desmic surfaces.
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in P4, 374
isolated ray, 307
linear, 311
multiple ray, 290
of bidegree (3, 5) , 370
order, 198, 200, 289
quadratic, 319, 341
rank, 291
ray, 288
Reye, 441
sectional genus, 290, 292
singular ray, 291
submonoidal, 348
triadic surface, 297
trope, 320

conic bundle, 47
Conner, J., 430
contact

manifold, 244
correlation, 198
Cossec, F., 66
Coxeter, H., 27, 99, 191
Coxeter-Dynkin diagram, 18

extended, 22
Cremona

hexahedral equations, 143
Cremona transformation

defined by a congruence of lines, 383, 441
given by pfaffians, 204
of degree 5, 37, 111

Cremona, L., 98, 188, 200, 280, 287, 443
cross ratio, 146
cross-ratio, 245
cubic hypersurface, 151, 267

determinantal, 49
fourfold, 54
in P4, 381, 439
in P6, 49
pfaffian, 204
symmetroid, 66
variety of lines, 284

cubic scroll
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in P3, 120
in P4, 120, 381, 439

cubic surface
as a base of a Palatini scroll, 220
Cayley surface, 125
Cayley-Salmon equation, 127
Clebsch diagonal, 114
Cremona’s hexahedral equations, 144, 154
cyclic, 117, 140
dual surface, 187
Eckardt point, 116
four-nodal, 186, 242
lines on it, 107
moduli, 217

one line marked, 164
moduli space, 160
non-normal, 120
projective generation, 128
Sylvester nondegenerate, 140
symmetroid, 134
tritangent plane, 82
with two disjoint lines, 165

cubic surfaces
moduli space, 159

geometrically marked, 162
cubic symmetroid, 134
cuspidal edge, 268
cyclid

curve, 62
degenerate surface, 62

cyclide
Dupin quartic suracfe, 66
Dupin quartic surface, 352
quartic surface, 61

D’Almeida, J., 262
Darboux, G., 97, 443
Dardanelli, E., 141, 160, 161
de Siebenthal, J., 22
Debarre, O., 43
defect, 202
defective
:-defective, 202
variety, 202

degeneracy locus, 219, 220, 223, 259
del Pezzo surf

of degree 5, 199
del Pezzo surface, 3, 8, 97

blown-up of points in a quadric, 335
anti-canonical model, 42, 45

projective normality, 46
projective resolution, 46

Cremona isometries, 35
degree, 10
effective cone, 30
four-nodal quartic, 348
its secant variety, 49
lines on it, 42
marked, 11
nef cone, 31
of degree 6, 383, 441
of degree 1, 81, 83, 94, 184, 433
of degree 2, 74, 97, 117, 118, 372
of degree 4, 57, 62, 68, 96, 224, 225
of degree 5, 50, 52, 53, 57, 96, 219, 284, 382
of degree 6, 48, 49, 95, 128, 242
of degree 7, 47
of degree 8, 47, 95, 120

del Pezzo, P., 96
Demazure, M., 99
determinantal

formula, 195
developable surface, 275, 282, 284

of a space curve, 263
quartic, 282

dianodal curve, 415
Dickson, L., 191
divisor class

big, 8
nef, 8

Dixon, A., 187
Dolgachev, I., 57, 66, 81, 114, 115, 133, 145,

150, 158, 160, 165, 190, 217, 284, 348,
374

double solid
defect, 422
factorial, 423

double-point
class, 255
formula, 255
set, 255

double-six, 101
azygetic duad, 103
azygetic triad, 103
Steiner complex of triads, 103
syzygetic duad, 103
syzygetic triad, 103

Du Val singularity, 34
Du Val, P., 34, 75, 81, 98, 191
dual variety

of Grassmann variety, 207
of Segre cubic primal, 158

Dupin, Ch., 66, 97
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Dynkin curve, 32
Dynkin, E., 22

Eckardt point, 116, 161, 162, 164
defining an involution, 116

Eckardt, F., 190
Edge, W., 56, 73, 96, 276, 280, 287
effective cone, 29
Eisenbud, D., 44, 130, 133
elliptic singularity

minimal, 389
Elte, E., 99, 191
Endras, A., 423
Endrass, S., 434
Enriques surface, 141, 284, 431
Enriques, F., 141
exceptional

curve, 6
vector, 23

extremal ray, 29

Fano variety, 10, 185, 217, 220, 224
of genus 12, 185
quasi-Fano, 10

Fano, G., 297
Fermat hypersurface

cubic surface, 117, 161, 180
Fielder, W., 159, 190
Finkelnberg, H., 157
First Fundamental Theorem, 193
Fresnel’s wave surface, 242
Fresnel, A., 242
Fulton, W., 55, 157, 195–197, 220, 223, 255,

258, 259, 287
fundamental

cycle, 6
weight, 23

Gaffney, T, 304
Gallarati, D., iv
Gantmacher, F., 58
Gauss map, 204
Geiser, C., 97
Gelfand, I., 205, 261
general position, 12
genus 4 curve, 85, 113, 182, 267
geometric marking, 10
Ghione, F., 297
Giorgini, G., 285
GIT-quotient, 57, 146, 159, 190
Godeaux, L., 435
Gorenstein

singularity, 6

Gosset polytope, 26, 64
Gosset, T., 27, 99, 191
Grassmann bundle, 194
Grassmann variety, 192

automorphism group, 195
canonical sheaf, 194
cohomology ring, 195
degree, 197
its dimension, 193
of lines, 192
Plücker equations, 193
secant variety of, 201, 202
tangent sheaf, 194
tangent space, 204

Grassmann, H., 188, 285
Griffiths, Ph., 263
Gross, M., 377, 379
group

polhedral, 85

Hacking, P., 166
Halphen pencil, 371
harmonic

line complex, 237
Harris, J., 1, 55, 195, 251, 263, 265
Hartshorne, R., iv, 4, 14, 41, 194, 252, 254,

262, 278, 279
Hawkins, T., 286
Heisenberg group, 175, 177, 210, 234, 237
Henderson, A., 188
Hessian

of a cubic surface, 140
Hilbert modular surface, 184
Hilbert, D., 130
Hilbert-Burch Theorem, 130, 188
Hill, J. E., iv
Hirst, T., 376
Hirzebruch, F., 184
Hitchin, N., 185
Hodge Index Theorem, 14
Hodge, W., 58, 193, 196, 287
homology, 116

harmonic, 116
its center, 116

Hosoh, T., 190
Hudson, R.W., 285
Hulek, K., 14
Humbert curve of genus 5, 73
Humbert, G., 73
Hunt, B., 159
Hutchinson, J., 190
hyperelliptic curve
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and Kummer surface, 229
its Jacobian variety, 224

hyperosculating point, 263
multiplicity, 266
their number, 265

I. Nieto, 435
icosahedron

fundamental set, 183
icosahedral set, 184

Igusa quartic, 163
Igusa, J., 163
intersection matrix, 7
invariant

bracket-function, 145
Joubert, 150
of 6 lines in P3, 216
of cubic surface, 160

Iskovskikh, V., 80

Jacobian
variety

intermediate, 224
Jessop, C., 97, 285
join

of projective subbundles, 250
of scrolls, 251

Jordan, C., 98, 191
Joubert functions, 150
Joubert, P., 150, 190

K. Hulek, 45
K3 surface, 57, 73, 141, 227, 228, 241, 411

lattice polarization, 412
Kaloghiros, A.-S., 423
Kane, R., 21, 75
Kantor, S., 98, 190, 191, 287
Kapranov, M., 114, 115, 205, 261, 284
Kapustka, G., 199
Keel, S., 166
Keum, J., 190, 237
Klein

coordinates, 210
quadric, 197
quartic curve, 284
sextic, 183
singularities, 34

Klein, F., 34, 183, 184, 189, 197, 285
Kneebone, G., 286
Kodaira

fibers of elliptic fibration, 83, 241
Kodaira, K., 83, 241
Kollàr, J., 29, 30, 33, 99, 166

Kondō, S., 165, 237
Kummer cones, 97
Kummer surface, 226, 228
(166)-configuration, 210, 236
and 5-cuspidal sextic, 73
and Segre cubic, 284
apolar line complexes, 229
as the Hessian surface, 190
associate hyperelliptic curve, 226, 228
associated to a quadratic line complex, 228
automorphisms, 237
double plane model, 233
its bitangent surface, 337
octic model, 229
of an abelian surface, 228
quartic equation, 233
self-duality, 236
Tetrahedroid, 240
wave surface, 243

Kummer variety, 228
jacobian, 228

Kummer, E., 97, 285, 443
Kuznetsov, A., 199

Lüroth Problem, 423
Lüroth, J., 423
lattice, 13

E# , 16
I1,# , 16
discriminant, 13
discriminant group, 13
embedding, 15
even, 15
isometry, 15
nondegenerate, 13
orthogonal group, 15
primitive embedding, 15
signature, 13
sublattice, 14

finite index, 14
primitive, 14

unimodular, 13
Lazarsfeld, R., 9, 255, 304
Lie, S., 206, 286
line complex, 205

apolar, 208
cubic

Montesano, 284, 338
degree, 205
linear, 205

center, 206
special, 205, 293
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monoidal, 284
quadratic, 220

Battaglini, 237
harmonic, 237
Kummer surface, 229
lines on it, 227
tangential, 243
tetrahedral, 245, 281

rank, 206
Reye, 245
singular line, 223
singular variety, 223
tangential, 348

linear code
Griesmer bound, 407

lines
6 linearly dependent, 215
in a quadratic line complex, 227
on a cubic threefold, 284
on a weak del Pezzo surface, 42
two transversals to four, 214

Lipman, J., 78
Looĳenga, E., 98, 166
Loria, G., 285, 443
Lurie, J., 110

Möbius, A., 285
Müller, H., 286
Mérindol, J., 98
Magnus, L., 188
Manin, Yu., 99, 167, 191
marking, 11

geometric, 11
Melliez, F., 185
Meyer, W., iv, 188, 200
minimal degree varieties, 1
minus vector, 175
modular

surface, 184
moduli space

of 6 points in P2, 157, 163
of abelian surfaces, 236
of cubic surfaces, 116, 173, 217
of quadratic line complexes, 239

Monge’s differential equation, 206
Montesano D., 284
Mori, S., 29, 30, 33
Morley, F., 430
Morrison, I., 265
Moutard, M., 97, 443
Mukai, S., 57, 185
multiplicity

of a singular point, 6
Mumford, D., 7, 423

Naruki, I., 164, 166, 173, 184
net

of conics, 48
of quadrics, 138, 140, 200, 279

Nikulin, V., 15, 435
node

apparent, 398
on a surface

even set, 403
weakly even set, 403

Noether formula, 259
nondegenerate

subvariety, 1
normal

linearly, 4
projectively, 44
scroll, 249
subvariety, 3

null system
higher, 295

null-plane, 208
null-point, 208
null-system, 208

OADP subvariety, 96
Ohashi, H., 237
Okonek, C., 220
ordinary singularities, 255
ordinary singularity, 300
Ortland, D., 57, 81, 133, 150, 158
oscnode, 76
osculating

developable surface, 263
plane, 263
sheaf, 263

Ottaviani, G., 287

Palatini
ruled surface, 220
scroll, 220

Palatini, F., 220, 287
Pascal, E., 188, 285
Pash, M., 285
Pedoe, D., 58, 193, 196, 287
pencil

of conics, 51
of quadrics, 58, 59, 68, 96, 97, 224, 241,

248, 282
Perazzo primal, 187
Perazzo, U., 187
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Persson, U., 434
Peters, C., 14
Petersen graph, 51, 96, 326
Pfaff differential equation, 206
pfaffian, 201, 203, 218
pfaffian hypersurface, 203

and Palatini scroll, 220
cubic, 204
cubic fourfold, 54
cubic in P14, 204

Piene, R., 264, 267
Pieri’s formula, 196
pinch point, 256
Pinkham, H., 5, 34, 98
Plücker

coordinates, 193
formula

for space curves, 265
Plücker Complex surfaces, 349
Plücker equations, 193, 197
Plücker, J., 188, 285
Plücker-Teissier formula, 65
plane quartic curve

simple singularities, 75
plus vector, 175
polar

duality, 208
line, 208
subspace, 218

polarity pairing, 185
Polo-Blanco, I., 279
polytope

regular, 27
semi-regular, 27

Popescu, S., 133
principal parts, 262
projective generation

of a cubic surface, 128
Property (#?) , 47
quadratic pencil

of quadrics, 63
quadric bundle, 220

discriminant locus, 221
quartic double solid, 422
quartic hypersurface

Castelnuovo-Richmond, 158, 164, 213, 235
Igusa, 236

quartic plane curve
its dual curve, 432

quartic surface
asyzygetic, 432

cyclide, 61, 63
del Pezzo, 59
desmic, 435
developable, 275
dual of Cayley cubic, 125
four-nodal, 67
Kummer, 73
lines on it, 438
ruled, 268

classification, 270
equations, 280

Schur, 438
Segre, 59
Steiner, 126
Steiner surface, 341
symmetroid, 423, 441
syzygetic, 432
Traynard, 435
wave surface, 242
Weddle, 413

Ramanujam’s Vanishing Theorem, 9
Ramanujam, C., 9
Ranestad, K., 185
rank

of a curve, 263
rational elliptic surface, 83, 96
rational normal curve, see Veronese curve
reflection, 21
regulus, 330
Reid, M., 5, 8, 188
Reye

congruence, 441
congruence of lines, 431
line complex, 286

Reye configuration, 436
Reye congruence

Cayley model, 364
Reye involution, 363
Reye line complex, 245
Reye, T., 190, 200, 286, 436
Rodenberg, C., 141
Room, T., 115
root, 17

basis, 18
canonical, 19
irreducible, 18

effective, 31
lattice, 19
nodal, 31
positive, negative, 20
simple, 19
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sublattice, 22
Rosenberg, J., 190
Rowe, D., 286
ruled surface, 252

of degree 4, 280
contact curve, 257
directrix, 249
elliptic, 269
elliptic of degree 6, 220
ellptic, 342
exceptional section, 253
genus, 254
minimal, 253
normalized vector bundle, 253
of degree 3, 119, 269
Palatini, 220

ruled variety, 248

Sacchiero, G., 297
Salmon, G., 159, 188, 190, 287
Schläfli’s Theorem, 187
Schläfli, L., 188
Schoute, P., 191
Schubert

class, 195
cycle, 195
variety, 195

special, 195
Schubert, H., 286
Schumacher, R., 297, 311
Schur quadric, 112, 181, 216
Schur sextic, 113, 183
Schur, F., 111
Schwarz, H., 287
Schwarzenberger vector bundle, 283
Scorza

correspondence, 261
scroll, 3, 120, 220, 248, 271
A -directrix, 249
cubic in P3, 120
cubic in P4, 120
degree, 250
directrix, 249
generator, 248
join, 251
normal, 249
Palatini, 220
rational normal, 1

of dimension 2, 2, 269
tangential, 271, 273, 274

secant variety
of a del Pezzo surface, 49

of a rational normal curve, 283
of Grassmann variety, 201

see Castelnuovo-Richmomd quartic, 236
Segre

cubic primal, 151, 219, 233, 235, 240, 284,
382, 440

quartic surface, 59
symbol, 59, 97
variety, 95, 201, 251

Segre cubic primal, 199, 375, 384
and Kummer surface, 337

Segre, B., 189, 287
Segre, C., 62, 97, 189, 283, 285, 297, 374, 443
semi-stable points, 146
Semple, J., 286
Severi-Zak variety, 203
Shafarevich, I. R., iv
Shepherd-Barron, N., 166
Shramov, K., 199
singular line, 227
singular point

of Kummer variety, 228
singular variety

of a quadratic line complex of lines, 221
of line complexes of lines, 217

singularity
binode, 98
cusp

rhamphoid, 76
Du Val, 34
Gorenstein, 6
multiplicity, 6
rational, 5
rational double point, 5
rational Gorenstein, 6
simple, 325
small resolution, 157
tacnode, 76

sixer, 100
small resolution

of a quadric, 293
Sols, I., 377
Sousley, C., 161
space curve
<-rank, 264
associated, 264
dual, 264
ordinary point, 263
Plücker formulas, 265
stationary point, 263

SS:9.5.4, 157
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SS:9.7.3, 175
stable points, 146
standard tableaux, 150
star-duality, 246
Steiner

quartic surface
its dual, 126

Steiner complex
of triads of double-sixes, 103

Steiner, J., 97, 189, 190
Stevens, J., 434
Sturm, R., 189, 287
submonoidal surface, 347
Sylvester

equation of a cubic surface, 139
pentahedron, 141

Sylvester, J., 97, 188
symmetroid surface

quartic, 416
symmetroids

cubic surfaces, 134
syntheme, 144

Tötössy, B., 443
tangential variety

of a space curve, 263
of an elliptic normal curve, 266
of rational normal curve, 265

tetrahedral line complex, 281, 334
Tevelev, E., 166
Thom-Porteous formula, 223
Tihomirov, 423
Tikhomirov, S., iv
Timms, G., 64, 98
Todd, J., 191
Toeplitz invariant, 140
Toeplitz, E., 140
Togliatti, E., 95
Toledo, D., 166
Top, J., 279
toric variety

surface, 48
torsal generator, 260, 284, 287, 349
torsal lines, 348
total, 144
transversal lines, 129, 215
Traynard, T., 435
trisecant

plane, 284
trisecant line, 218, 226, 252
tritangent plane, 107

conjugate triads, 106

trope, 320
trope-conic, 236
Tyurin, A., 133

Umemura, H., 185
unode, 98
Urabe, T, 98

Valentiner sextic, 184
Valles, J., 96
Van de Ven, A., 14
van der Geer, G., 158
van der Put, M, 279
van der Vries, J., 284
van Geemen, B., 141, 160, 161, 165
Varley, R., 73
Veronese curve, 1, 233

of degree 4, 276, 284
of degree three, 383, 442
rational normal curve, 1
secants of, 200

Veronese surface, 283
as a congruence of lines, 312
projected, 218

Verra, A., 164, 199, 232, 377
von Staudt’s Theorem, 246
von Staudt, G., 246, 285
Voss, A., 286

Wakeford, E., 438
Weber, H., 191
Weddle surface, 413
Weddle, T., 444
Weierstrass

equation
of elliptic surface, 83

point, 266
Weierstrass, K., 97
weights

miniscule
tritangent trio, 105

Weil
Theorem, 224

Weil, A., 224
Weiler, A., 97, 286
Weyl chamber, 20

face, 20
Weyl group, 21

its order, 24
of E6 lattice

conjugacy classes, 167
maximal subgroups, 172

of E# lattice, 21
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orders, 25
of a weak del Pezzo surface, 28
of finite type

conjugacy classes, 25
Weyl, H., 191
White surface, 115, 188
White, F.S, 115
Wiman pencil, 57, 96
Wiman plane sextic, 56
Wiman, A., 190
Winger, R., 184
Wong, B., 280, 287
Wronskian, 283
Young, W., 286
Zelevinsky, A., 205, 261
Zeuthen, H., 287
Zindler, K., 285
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