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A linear algebraic group G over a field K is called a Cayley 
K-group if it admits a Cayley map, i.e., a G-equivariant 
K-birational isomorphism between the group variety G and 
its Lie algebra. We classify real reductive algebraic groups of 
absolute rank 1 and 2 that are Cayley R-groups.
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1. Introduction

Let G be a connected linear algebraic group defined over a field K, and let Lie(G)
denote its Lie algebra. The following definitions are due to Lemire, Popov and Reich-
stein [12]:
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Definitions 1.1. (See [12].) A Cayley map for G is a K-birational isomorphism G 
����

Lie(G) which is G-equivariant with respect to the action of G on itself by conjugation 
and the action of G on Lie(G) via the adjoint representation. A linear algebraic K-group 
is called a Cayley group if it admits a Cayley map. A linear algebraic K-group is called 
a stably Cayley group if G ×K (Gm,K)r is Cayley for some r ≥ 0, where Gm,K denotes 
the multiplicative group.

Lemire, Popov and Reichstein [12] classified Cayley and stably Cayley simple groups 
over an algebraically closed field k of characteristic 0. Borovoi, Kunyavskĭı, Lemire and 
Reichstein [2] classified stably Cayley simple K-groups, and later Borovoi and Kun-
yavskĭı [3] classified stably Cayley semisimple K-groups, over an arbitrary field K of 
characteristic 0. Clearly any Cayley K-group is stably Cayley. In the opposite direction, 
some of the stably Cayley K-groups are known to be Cayley, see [12, Examples 1.9, 
1.11 and 1.16]. For other stably Cayley K-groups, it is a difficult problem to determine 
whether they are Cayley or not. By [2, Lemma 5.4(c)] the answer to the question whether 
a K-group is Cayley depends only on the equivalence class of G up to inner twisting.

By [2, Corollary 7.1] all the reductive K-groups of rank ≤ 2 over a field K of charac-
teristic 0 are stably Cayley (by the rank we always mean the absolute rank). We would 
like to know, which of those stably Cayley K-groups of rank ≤ 2 are Cayley.

The case of a simple group of type G2 was settled in [12, §9.2] and Iskovskikh’s 
papers [9,10]. Namely, a simple group of type G2 over an algebraically closed field k of 
characteristic 0 is not Cayley. Hence no simple K-group of type G2 over a field K of 
characteristic 0 is Cayley.

Popov [15] proved in 1975 that, contrary to what was expected (cf. [13, Remarque, 
p. 14]), the group SL3 over an algebraically closed field k of characteristic 0 is Cayley; 
see [12, Appendix] for Popov’s original proof, and [12, §9.1] for an alternative proof.

Here we are interested in R-groups, where R denotes the field of real numbers. If G is 
an inner form of a split reductive R-group, and GC := G ×R C is stably Cayley over C, 
then by [2, Remark 1.8] G is stably Cayley over R. Similarly, since SL3,C is Cayley over C
by Popov’s theorem, one might expect that the split R-group SL3,R is Cayley over R. 
However, this turns out to be false, see Theorem 8.1 of Appendix A. On the other hand, 
the outer form SU3 of the split group SL3,R is Cayley, see Theorem 7.1 of Appendix A
and Corollary 4.4.

We recall the classification of reductive K-groups of rank ≤ 2. A reductive K-group 
of rank 1 is either a K-torus or a simple K-group of type A1. A reductive K-group of 
rank 2 is either not semisimple, or semisimple of type A1 × A1, or simple of one of the 
types A2, B2 = C2, or G2. If a reductive K-group of rank 2 is not semisimple, then 
either it is a K-torus or it is isogenous to the product of a one-dimensional K-torus and 
a simple K-group of type A1.

We recall the classification of real simple groups of type A2. Such an R-group is 
isomorphic to one of the groups SL3,R, PGL3,R, SU3, PGU3, SU(2, 1), or PGU(2, 1). 
Here, following the Book of Involutions [11, §23], we write PGUn rather than PSUn for 
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the corresponding adjoint group. We write SU(2, 1) and PGU(2, 1) for the (inner) forms 
of SU3 and PGU3, respectively, corresponding to the Hermitian form with diagonal 
matrix diag(1, 1, −1).

In this paper we classify real reductive algebraic groups of rank ≤ 2 that are Cayley. 
To be more precise, for each real reductive group of rank 1 or 2 (up to an isomorphism) 
we determine whether it is Cayley or not:

Theorem 1.2. Let G be a connected reductive algebraic R-group of absolute rank ≤ 2 over 
the field R of real numbers. If G is simple of type G2 or is isomorphic to SL3,R, or 
PGU3, or PGU(2, 1), then G is not Cayley. Otherwise G is Cayley.

Theorem 1.2 will be proved case by case. The cases when G is Cayley will be treated 
by the author in the main text of the paper. In the case when G is of type G2 it is known 
that G is not Cayley, see above. The other cases when G is not Cayley (and again the 
case of SU3 when G is Cayley) will be treated by Igor Dolgachev in Appendix A.

Note that by [2, Corollary 7.1] any K-group G of absolute rank ≤ 2 over a field K of 
characteristic 0 is stably Cayley, that is, there exists r ≥ 0 such that the group G ×KG

r
m,K

is Cayley, where Gm,K denotes the multiplicative group over K. The following theorem, 
which generalizes [12, Proposition 9.1], shows that one can always take r = 2.

Theorem 1.3. Let G be a connected reductive algebraic K-group of absolute rank ≤ 2
over a field K of characteristic 0. If G is of absolute rank 1, then G is Cayley. If G is 
of absolute rank 2, then G ×K G

2
m,K is Cayley.

The following question generalizes [12, Remark 9.13].

Question 1.4. Let G be a reductive K-group of absolute rank 2 that is not Cayley, for 
example SL3,R. Is G ×K Gm,K a Cayley group?

Question 1.5. Are the R-groups PGU2n+1 Cayley for n ≥ 2? (Note that these R-groups 
are stably Cayley, see [2, Thm. 1.4].)

The plan of the rest of the paper is as follows. In Section 2 we reproduce some 
examples of Cayley groups from [12], and state some known properties of Cayley groups. 
In Section 3 we prove Theorem 1.2 modulo results of Section 4 and of Appendix A. In 
Section 4 we treat the case SU3 of Theorem 1.2, using explicit calculations. In Section 5
we prove Theorem 1.3 (case by case). In Appendix A, Igor Dolgachev treats the difficult 
cases SL3,R and PGU3 of Theorem 1.2 (and again the case SU3), using the theory of 
elementary links due to Iskovskikh [8–10]. In Appendix B, contributed by the anonymous 
referee, the case of the group PGL1(A) for a central simple algebra A of degree n over 
a field K of positive characteristic p dividing n is considered.
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The author is very grateful to Igor Dolgachev for writing Appendix A. The author 
thanks the referee for writing Appendix B. The author thanks Zinovy Reichstein for 
most helpful comments.

2. Preliminary remarks

We reproduce some examples from [12]. Note that in [12] it is always assumed that 
the characteristic of K is zero, while we attempt to state these results assuming that K
is a field of arbitrary characteristic.

Example 2.1. (Cf. [12, Ex. 1.9].) Consider a finite-dimensional associative K-algebra A
with unit element 1, over a field K of arbitrary characteristic, and the K-group A× of 
invertible elements of A. Then clearly A× is Cayley. In particular, the K-group GLn,K

is Cayley.

Example 2.2. (Cf. [12, Ex. 1.11].) Let A be a central simple K-algebra of degree n, and 
assume that char(K) does not divide n. For any element a ∈ A denote by tr a the trace 
of the linear operator La of left multiplication by a in A. Then tr 1 = n2 �= 0 ∈ K. The 
argument in [12] shows that the quotient group PGL1(A) := A×/Gm,K is Cayley.

Now assume that char(K) divides n and that 4|n when char(K) = 2, then again 
PGL1(A) is Cayley, see Theorem B.1 in Appendix B below.

We see that if char(K) �= 2 or if n is odd, then the group PGLn,K is Cayley. In partic-
ular, in arbitrary characteristic the group PGL3,K is Cayley. Moreover, if char(K) �= 2, 
then PGL2,K is Cayley. On the contrary, if char(K) = 2, then PGL2,K is not Cayley, 
see Proposition B.3 in Appendix B below.

Example 2.3. (Cf. [12, Ex. 1.16], [18, p. 599].) Let A be a finite-dimensional associative 
K-algebra with unit element 1 over a field K of characteristic �= 2, and let ι be an 
involution (over K) of A. Set

G = {a ∈ A× | aι a = 1}0,

where S0 denotes the identity component of an algebraic group S. The Lie algebra of G
is the subspace of odd elements of A for ι,

Lie(G) = {a ∈ A | aι = −a}.

Since char(K) �= 2, the formula

a �→ (1 − a)(1 + a)−1

defines an equivariant rational map λ: G ��� Lie(G), and the formula
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b �→ (1 − b)(1 + b)−1

defines its inverse λ−1: Lie(G) ��� G. Thus λ is a Cayley map and G is a Cayley group 
over K.

We see that if L/K is a separable quadratic extension, then the group Un,L/K of n ×n

unitary matrices in Mn(L) is Cayley over K; that the group Sp2n,K is Cayley over K, 
in particular, SL2,K � Sp2,K is Cayley; that the group SO(m, n) is Cayley over K, 
in particular, the groups PGL2,K � SO(2, 1) and Sp4,K/μ2,K � SO(3, 2) are Cayley, 
where μ2,K = {±1} is the group of roots of unity of order dividing 2 in K. Here we 
write SO(m, n) for the special orthogonal group over K of the diagonal quadratic form 
x2

1 + · · · + x2
m − x2

m+1 − · · · − x2
m+n.

We state some known properties of Cayley groups.

Remark 2.4. If G1 and G2 are Cayley K-groups over an arbitrary field K, then evidently 
G1 ×K G2 is a Cayley K-group.

Remark 2.5. If L/K is a finite separable field extension and H is a Cayley L-group, then 
evidently the Weil restriction RL/KH is a Cayley K-group.

Remark 2.6. If G is a Cayley K-group over an arbitrary field K, and L/K is an arbitrary 
field extension, then G ×K L is evidently a Cayley L-group.

Proposition 2.7. (See [2, Lemma 5.4(c)].) If G is a Cayley K-group over an arbitrary 
field K, then all the inner forms of G are Cayley. In particular, if all the automorphisms 
of G are inner, then all the twisted forms of G are inner forms, hence they all are Cayley 
K-groups.

The following lemma is a version of [2, Lemma 5.4(a)] and can be proved similarly.

Lemma 2.8. Let G be a reductive K-group and M be a K-group, not necessarily connected, 
acting on G, over a field K of characteristic 0. Consider the induced action of M on 
Lie(G). Let L/K be a Galois extension, and c: Gal(L/K) → M(L) be a cocycle. Assume 

that there exists an M -equivariant birational isomorphism f : G 
���� Lie(G) over K. Then 

there exists a cM -equivariant birational isomorphism of the twisted varieties cf : cG 
����

Lie(cG), where cM is the twisted group.

Proposition 2.9. (See [2, Corollary 6.5].) Let G be a reductive K-group over a field K of 
characteristic 0, and let T ⊂ G be a maximal K-torus. Then G is Cayley if and only if 
there exists a W (G, T )-equivariant birational isomorphism T

���� Lie(T ) defined over K, 
where the Weyl group W (G, T ) is viewed as an algebraic K-group.
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Note that the proof of this (difficult) result uses [4], where it is assumed that 
char(K) = 0.

3. Proof of Theorem 1.2, easy cases

We start proving Theorem 1.2 case by case.

Proposition 3.1. Any connected reductive K-group G of (absolute) rank 1 over a field K
of characteristic �= 2, 3 is a Cayley group.

Proof. If G is a torus of rank 1, then G is K-rational, see e.g. [17, §4.9, Example 6], 
hence it is Cayley over K. If G is not a torus, then G is simple of rank 1, hence G is a 
twisted form of one of the groups SL2,K , PGL2,K . Both these groups are Cayley over K, 
see Example 2.3 and Example 2.2. Since all the automorphisms of SL2,K and PGL2,K
are inner, by Proposition 2.7 G is Cayley. �
Proposition 3.2. Any connected, reductive and not semisimple K-group G of absolute 
rank 2 over a field K of characteristic �= 2, 3 is a Cayley group.

Proof. If G is a torus of rank 2, then G is K-rational, see [17, §4.9, Example 7], hence 
it is Cayley over K. If G is not a torus, denote by R := Z(G)0 its radical and by 
Gder := [G, G] its commutator subgroup. Since G is not a torus and not semisimple, R is 
a one-dimensional torus and Gder is a simple group of absolute rank 1. Set μ = R∩Gder. 
The multiplication in G gives a canonical epimorphism π: R ×K Gder � G with kernel 
isomorphic to μ.

If this epimorphism is an isomorphism, then G is isomorphic to the product of two 
K-groups R and Gder of absolute rank 1. By Proposition 3.1, R and Gder are Cayley 
over K, hence by Remark 2.4 G is Cayley.

If the epimorphism π: R×K Gder � G is not an isomorphism, then μ �= {1}. It follows 
that the center Z(Gder) �= 1, hence the simple group Gder of absolute rank 1 is not adjoint, 
hence it is simply connected. We see that Gder

K
� SL2,K , and μK = Z(GK) = μ2,K =

{±1}, where K is an algebraic closure of K. Thus GK = (Gm,K ×K SL2,K)/μ2,K �
GL2,K (here μ2,K is embedded diagonally). This means that G is a K-form of GL2. By 
Lemma 3.3 below all the K-forms of GL2 are Cayley and hence, G is Cayley. �
Lemma 3.3. Any K-form of GL2 over a field K of characteristic �= 2, 3 is a Cayley 
group.

Proof. Write Out(G) := Aut(G)/ Inn(G) for “the group of outer automorphisms” of G. 
Write Gtor := G/Gder. The canonical homomorphism

Aut(G) → Aut(Gder) × Aut(Gtor)
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gives for G = GL2 a canonical isomorphism

Aut(GL2)
∼→ Aut(SL2) × Aut(Gm).

Since all the elements of Aut(SL2) are inner automorphisms, we obtain a canonical 
isomorphism

Out(GL2)
∼→ Aut(Gm)

taking the class of an automorphism of GL2 to the induced automorphism of (GL2)tor =
Gm. Thus we obtain a bijection of the set of K-forms of GL2,K up to inner twisting onto 
the set of K-forms of Gm,K up to an isomorphism. One can easily see that this bijection 
takes [GL2,K ] to [Gm,K ] and [U2,L/K ] to [U1,L/K ], where L runs over the separable 
quadratic extensions of K and we denote by [ ] the corresponding equivalence classes. 
Since the K-groups Gm,K and U1,L/K are all the K-forms of Gm up to an isomorphism, 
we see that GL2,K and U2,L/K are all the K-forms of GL2 up to inner twisting. Since all 
these K-groups, GL2,K and U2,L/K , are Cayley, see Examples 2.1 and 2.3, we conclude, 
using Proposition 2.7, that all the K-forms of GL2 are Cayley. �
Proposition 3.4. Any connected semisimple K-group G of absolute rank 2 of type A1×A1

over a field K of characteristic �= 2, 3 is a Cayley group.

Proof. In this case the group G decomposes into an almost direct product of two groups 
of type A1 defined either over K or over a separable quadratic extension L of K. If this 
almost direct product is direct, then G is either a direct product of two simple K-groups 
of type A1, and hence is Cayley by Proposition 3.1 and Remark 2.4, or G is of the form 
RL/KG′, where G′ is a simple L-group of type A1, and we conclude by Proposition 3.1
that G′ is Cayley over L, and conclude by Remark 2.5 that G is Cayley over K. If this 
almost direct product is not direct, then G is a twisted form of SO4, hence G is an 
inner form of a special orthogonal group of the form SO(K4, q) for some nondegenerate 
quadratic form q in 4 variables, and G is Cayley by Example 2.3 and Proposition 2.7. �
Proposition 3.5. Any connected simple K-group G of absolute rank 2 of type B2 = C2
over a field K of characteristic �= 2, 3 is a Cayley group.

Proof. In this case G is an (inner) twisted form of one of the K-groups Sp4,K and 
Sp4,K/μ2,K . Both these groups are Cayley by Example 2.3, and using Proposition 2.7, 
we conclude that G is Cayley. �
3.6. Proof of Theorem 1.2 modulo Theorem 4.3 and results of Appendix A.

The cases when G is not a simple group of type G2 or A2 were treated in Proposi-
tions 3.1, 3.2, 3.4, and 3.5.
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Any connected simple K-group of absolute rank 2 of type G2 over a field K of char-
acteristic 0 is not Cayley, see [12, §9.2] and Iskovskikh’s papers [9,10] (this was explained 
in our Introduction).

Let G be a connected simple R-group of rank 2 of type A2. We consider all the possible 
cases.

The group PGL3,R is Cayley by Example 2.2. The group SU3 is Cayley by Corol-
lary 4.4 of Theorem 4.3, see also Theorem 7.1 of Appendix A. Since the group SU(2, 1)
is an inner form of SU3, by Proposition 2.7 it is Cayley as well.

The group SL3,R is not Cayley by Theorem 8.1 of Appendix A. The group PGU3 is 
not Cayley by Theorem 7.2 of Appendix A. Since the group PGU(2, 1) is an inner form 
of PGU3, by Proposition 2.7 it is not Cayley either. �
4. The group SU3

4.1. Let W be a finite group. Let L/K be a finite Galois extension with Galois group 
Γ = Gal(L/K). We shall consider W -varieties defined over K and (W, Γ)-varieties defined 
over L. By a W -variety defined over K we mean a K-variety X with a W -action W →
Aut(X). By a semilinear action of Γ on an L-variety Y we mean a homomorphism 
ρ: Γ → SAutL/K(Y ) into the group SAutL/K(Y ) of L/K-semilinear automorphisms of Y , 
such that ρ(γ) is a γ-semilinear automorphism of Y for any γ ∈ Γ (see [1, §1.1] and [6, 
§1.2] for the definitions of semilinear automorphisms). By a (W, Γ)-variety defined over L
we mean an L-variety Y with two commuting actions: an L-action of W and a semilinear 
action of Γ. One defines morphisms and rational maps of (W, Γ)-varieties. We have a base 
change functor X �→ X ×K L from the category of W -varieties over K to the category 
of (W, Γ)-varieties over L, and it is well known that this functor is fully faithful, i.e., the 
natural map

HomW (X,X ′) → Hom(W,Γ)(X ×K L,X ′ ×K L)

is bijective for any two W -varieties X, X ′ defined over K. Similarly, W -varieties X and 
X ′ over K are W -equivariantly birationally isomorphic over K if and only if X×KL and 
X ′ ×K L are (W, Γ)-equivariantly birationally isomorphic over L. Note that, by Galois 
descent (see Serre [16, Ch. V.20, Cor. 2 of Prop. 12]), any quasi-projective (W, Γ)-variety 
over L comes from a W -variety over K; we shall not use this fact, however.

4.2. Let K be a field of characteristic 0. Assume that K does not contain non-trivial 
roots of unity of order 3. Set L = K(ζ), where ζ3 = 1, ζ �= 1. We can also write L =
K(

√
−3). (For example, one can take K = R, L = R(

√
−3) = C.) We set Γ = Gal(L/K), 

Γ = {id, γ}, and we write the action of γ on a ∈ L as a �→ γa.
Let G = SU(3, L/K, H) := SU(L3, H), the special unitary group of the L/K-Hermit-

ian form with matrix H, where H ∈ M3(L) is a nondegenerate 3 × 3 Hermitian matrix. 
Then G is a simple K-group, an outer L/K-form of the split K-group SL3,K . Note that 
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G = SU(3, L/K, H) is an inner form of the K-group SU3,L/K := SU(3, L/K, I3), where 
I3 = diag(1, 1, 1).

Theorem 4.3. Let a field K, the quadratic field extension L = K(ζ) of K, and a Hermitian 
matrix H ∈ M3(L) be as in § 4.2. Then the K-group G = SU(3, L/K, H) is Cayley.

Theorem 4.3 will be proved below.

Corollary 4.4. The R-groups SU3 and SU(2, 1) are Cayley. �
4.5. Let K, L be as in § 4.2. Consider the torus G3

m,K and write the standard action of 
the symmetric group S3 on it, given by:

σ(x1, x2, x3) := (xσ−1(1), xσ−1(2), xσ−1(3)) for σ ∈ S3. (4.1)

We consider the K-subtorus

T := {(x1, x2, x3) ∈ G
3
m,K | x1x2x3 = 1}

and we set t = Lie(T ).
We set TL = T ×K L, tL = Lie(TL) = t ⊗K L, then

tL = {(x1, x3, x3) ∈ L3 | x1 + x2 + x3 = 0}.

The group S3 acts on TL and tL by formula (4.1), and Γ acts by

γ(x1, x2, x3) = (γx1,
γx2,

γx3).

We consider also the Γ-twisted (S3, Γ)-varieties T ′
L and t′L: the same L-varieties TL

and tL with the same S3-actions, but with the twisted actions of γ:

(x1, x2, x3) �→ (γx−1
1 , γx−1

2 , γx−1
3 ) for T ′

L,

(x1, x2, x3) �→ (−γx1,−γx2,−γx3) for t′L.

These (S3, Γ)-varieties over L come from some S3-varieties T ′ and t′ defined over K

which are easy to describe, see below.

4.6. Let TSU3 denote the diagonal maximal torus of SU3,L/K , and let tSU3 denote its Lie 
algebra. Let NSU3 denote the normalizer of TSU3 in SU3,L/K , and set W = NSU3/TSU3 . 
The finite algebraic group W is canonically isomorphic to the symmetric group S3 with 
trivial Galois action. We see that TSU3 , and tSU3 are S3-varieties over K. Furthermore, 
it is well known that TSU3 ×K L is canonically isomorphic to T ′

L and that tSU3 ⊗K L is 
canonically isomorphic to t′L as (S3, Γ)-varieties. Therefore we set

T ′ := TSU3 , t′ := tSU3 .
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Proposition 4.7. Let K be a field of characteristic 0. We assume that K contains no 
nontrivial cube root of 1, and we set L = K(ζ), where ζ3 = 1, ζ �= 1. Then the 
(S3, Γ)-varieties T ′

L and t′L are (S3, Γ)-equivariantly birationally isomorphic over L.

4.8. Reduction of Theorem 4.3 to Proposition 4.7. Since our group SU(3, L/K, H)
is an inner form of SU3,L/K , by Proposition 2.7 in order to prove that the group 
SU(3, L/K, H) is Cayley, it suffices to prove that SU3,L/K is Cayley. By Proposition 2.9, 
the group SU3,L/K is Cayley if and only if the S3-varieties T ′ = TSU3 and t′ = tSU3 are 
S3-equivariantly birationally isomorphic over K. The discussion in § 4.1 shows that they 
are S3-equivariantly birationally isomorphic over K if and only if the (S3, Γ)-varieties T ′

L

and t′L are (S3, Γ)-equivariantly birationally isomorphic over L. Therefore, Theorem 4.3
follows from Proposition 4.7.

We give here a proof of Proposition 4.7 which is close to the proof of Proposition 9.1 
in [12]. For an alternative proof (in the case K = R) see Appendix A, Theorem 7.1.

4.9. We consider the variety (G3
m,L/Gm,L)(S3,Γ)-twisted, which is just G3

m,L/Gm,L (with 
Gm,L imbedded diagonally in G3

m,L) with the following (twisted) S3-action and twisted 
Γ-action:

σ([x]) = [σ(x)sign σ], γ [x] = [γx−1] for x ∈ G
3
m,L, σ ∈ S3.

Here we write [x] ∈ G
3
m,L/Gm,L for the class of x ∈ G

3
m,L. We have an (S3, Γ)-equivariant 

isomorphism

(G3
m,L/Gm,L)(S3,Γ)-twisted

∼→ T ′
L, [x1, x2, x3] �→ (x2/x3, x3/x1, x1/x2).

It remains to prove that (G3
m,L/Gm,L)(S3,Γ)-twisted is (S3, Γ)-equivariantly birationally 

isomorphic to t′L.

4.10. Consider the following (twisted) S3-action and twisted Γ-action on the set tL× tL:

σ(x, y) :=
{(

σ(x), σ(y)
)

if σ is even,(
σ(y), σ(x)

)
if σ is odd, where σ ∈ S3, x, y ∈ tL,

γ(x, y) := (γy, γx).

These actions of S3 and Γ on tL × tL induce actions on the surface P(tL) ×L P(tL), on 
the tensor product tL ⊗L tL and on the 3-dimensional projective space P(tL ⊗L tL), and 
we write

(P(tL) ×L P(tL))(S3,Γ)-twisted, (tL ⊗L tL)(S3,Γ)-twisted and P(tL ⊗L tL)(S3,Γ)-twisted

for the corresponding (S3, Γ)-varieties.
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4.11. We claim that the (S3, Γ)-varieties (G3
m,L/Gm,L)(S3,Γ)-twisted and (P(tL) ×L

P(tL))(S3,Γ)-twisted are (S3, Γ)-equivariantly birationally isomorphic. We write [t] ∈ P(tL)
for the class of t ∈ tL. Consider the rational map

ϕ : (G3
m,L/Gm,L)(S3,Γ)-twisted ��� (P(tL) ×L P(tL))(S3,Γ)-twisted

[x] �→
([
x− τ(x)13

]
,
[
x−1 − τ(x−1)13

])
,

where τ(x1, x2, x3) = (x1 + x2 + x3)/3 and 13 = (1, 1, 1) ∈ L3. It is immediately seen 
that ϕ is (S3, Γ)-equivariant. An inverse rational map to ϕ was constructed in [12, Proof 
of Prop. 9.1, Step 1]. Thus ϕ is an (S3, Γ)-equivariant birational isomorphism.

4.12. Consider the Segre embedding

(P(tL) ×L P(tL))(S3,Γ)-twisted ↪→ P(tL ⊗L tL)(S3,Γ)-twisted

given by ([x], [y]) �→ [x ⊗y], it is (S3, Γ)-equivariant. Its image is a quadric Q in P(tL⊗LtL)
described as follows. Choose a basis D1 := diag(1, ζ, ζ2), D2 := diag(1, ζ2, ζ) of tL, where 
ζ is our primitive cube root of unity. Set Dij = Di ⊗Dj . Then

Q = {(α11 : α12 : α21 : α22) | α11α22 = α12α21}, (4.2)

where (α11 : α12 : α21 : α22) is the point of P(tL ⊗L tL) corresponding to

α11D11 + α12D12 + α21D21 + α22D22 ∈ tL ⊗L tL.

4.13. We denote by V11,22 the 2-dimensional subspace in (tL⊗L tL)(S3,Γ)-twisted with the 
basis D11, D22, and we denote by V12 and V21 the one-dimensional subspaces generated 
by D12 and D21, respectively. An easy calculation shows that the subspace V11,22 is 
S3-invariant and Γ-invariant, and that the basis vectors D12 and D21 are S3-fixed and 
Γ-fixed.

Consider the stereographic projection Q ��� P(V11,22 ⊕ V12) from the (S3, Γ)-fixed 
L-point x21 := [D21] = (0 : 0 : 1 : 0) ∈ Q(L) to the (S3, Γ)-invariant plane P(V11,22 ⊕
V12). This stereographic projection is an (S3, Γ)-equivariant birational isomorphism. 
Furthermore, the embedding

V11,22 ↪→ P(V11,22 ⊕ V12), x �→ [x + D12]

is an (S3, Γ)-equivariant birational isomorphism. Thus the quadric Q is (S3, Γ)-equi-
variantly birationally isomorphic to the vector space V11,22. Since the 2-dimensional 
(S3, Γ)-vector spaces V11,22 and tL are isomorphic (the map of bases D11 �→ D2, 
D22 �→ D1 induces an (S3, Γ)-isomorphism V11,22

∼→ tL), and tL is isomorphic 
to t′L (an isomorphism is given by (xi) �→ (

√
−3 · xi)), we conclude that Q is 

(S3, Γ)-equivariantly birationally isomorphic to t′L.
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Thus T ′
L is (S3, Γ)-equivariantly birationally isomorphic to t′L. This completes the 

proofs of Proposition 4.7, Theorem 4.3, and Corollary 4.4. �
5. The groups G ×GGG

2
m

In this section we prove Theorem 1.3. Let K be a field of characteristic 0, and let K
be a fixed algebraic closure of K.

Let G2,K denote the split K-group of type G2. Since by [12, Proposition 9.10], the 
group G2,K is not Cayley over K, we see that G2,K is not Cayley.

Proposition 5.1. For any field K of characteristic 0, the split K-group G2,K ×K G
2
m,K

is Cayley.

Corollary 5.2. For any K-group G of type G2 over a field K of characteristic 0, the 
K-group G ×K G

2
m,K is Cayley.

Proof. Since G ×K G
2
m,K is an inner form of G2,K ×K G

2
m,K , by Proposition 2.7 the 

corollary follows from Proposition 5.1. �
5.3. Let K be a field of characteristic 0. We define a K-torus T by

T := {(x1, x2, x3) ∈ G
3
m,K | x1x2x3 = 1}.

We define a K-action of S3 on T by

σ(x1, x2, x3) := (xσ−1(1), xσ−1(2), xσ−1(3)) for σ ∈ S3.

We define a K-action of S2 on T by

ε(t) = t−1 for t ∈ T,

where ε is the nontrivial element of S2. We obtain a K-action of S3 × S2 on T . Set 
t = Lie(T ), then S3 ×S2 acts on t. We may regard T as a split maximal torus of G2,K , 
and S3 ×S2 as the corresponding Weyl group, then T ×K G

2
m,K is a maximal torus of 

G2,K ×K G
2
m,K .

Proposition 5.4. (See [12].) For an arbitrary field K of characteristic 0, the K-varieties 
T ×K G

2
m,K and t ×K A

2
K are S3 ×S2-equivariantly birationally isomorphic over K.

Proof. This is proved in [12] in the proof of Proposition 9.11. The authors assume that 
K is an algebraically closed field of characteristic 0, but the proof goes through for any 
field K of characteristic �= 2, 3. �
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Proof of Proposition 5.1. By Proposition 2.9, our proposition follows from Proposi-
tion 5.4. �
Corollary 5.5. The K-varieties T ×K G

2
m,K and t ×K A

2
K of Proposition 5.4 are 

S3-equivariantly birationally isomorphic over K (with respect to the standard embed-
ding S3 ↪→ S3 ×S2).

Proof. The S3 ×S2-equivariant birational isomorphism of Proposition 5.4 is, in partic-
ular, S3-equivariant. �
Proposition 5.6. For any field K of characteristic 0, the K-group SL3,K ×K G

2
m,K is 

Cayley.

Proof. We regard T as a split maximal torus of SL3,K and S3 as the corresponding Weyl 
group, then T ×K G

2
m,K is a maximal torus of SL3,K ×K G

2
m,K . Now by Proposition 2.9, 

our proposition follows from Corollary 5.5. �
5.7. Let T be the S3×S2-torus over K of Section 5.3. Let L/K be an arbitrary quadratic 
extension. Write Γ = Gal(L/K) = {1, γ}. Define a cocycle (homomorphism)

c: Γ → S3 ×S2

taking γ to the nontrivial element ε ∈ S2. We obtain a twisted torus cT . Let cTL denote 
the corresponding (S3 × S2, Γ)-variety over L, it is TL := T ×K L with the following 
actions:

σ(x1, x2, x3) := (xσ−1(1), xσ−1(2), xσ−1(3)) for σ ∈ S3, (5.1)

ε(x1, x2, x3) = (x−1
1 , x−1

2 , x−1
3 ), (5.2)

γ(x1, x2, x3) = (γx−1
1 , γx−1

2 , γx−1
3 ). (5.3)

Note that c(S3 ×S2) = S3 ×S2, because c(γ) = ε is central in S3 ×S2.

Proposition 5.8. There exists a birational (S3 ×S2, Γ)-isomorphism between the (S3 ×
S2, Γ)-varieties cTL ×L G

2
m,L and Lie(cTL) ×L A

2
L.

Proof. This follows from Proposition 5.4 and Lemma 2.8. �
5.9. We define two embeddings S3 ↪→ S3 ×S2, the standard one and the twisted one:

St(σ) = (σ, 1) for σ ∈ S3,

Tw(σ) = (σ, εsign(σ)) =
{

(σ, 1) if sign(σ) = 1,

(σ, ε) if sign(σ) = −1.



48 M. Borovoi / Journal of Algebra 436 (2015) 35–60
These two embeddings define two S3-actions on cTL. We denote the corresponding 
(S3, Γ)-varieties (with the twisted Γ-action (5.3)) by StT

′
L and TwT

′
L, respectively.

Corollary 5.10. There exist birational (S3, Γ)-isomorphisms

StT
′
L ×L G

2
m,L

���� Lie(StT
′
L) ×L A

2
L and TwT

′
L ×L G

2
m,L

���� Lie(TwT
′
L) ×L A

2
L.

Proof. The (S3 × S2, Γ)-equivariant birational isomorphism of Proposition 5.8 is, in 
particular, (S3, Γ)-equivariant with respect to each of the two embeddings St, Tw: S3 ↪→
S3 ×S2. �
5.11. Let L/K be an arbitrary quadratic extension of fields of characteristic 0. Let G =
SU(3, L/K, H) := SU(L3, H), the special unitary group of the L/K-Hermitian form 
with matrix H, where H ∈ M3(L) is a nondegenerate Hermitian matrix. Then G is 
a simple K-group, an outer L/K-form of the split K-group SL3,K . Note that G =
SU(3, L/K, H) is an inner form of the K-group SU3,L/K := SU(3, L/K, I3), where 
I3 = diag(1, 1, 1).

Proposition 5.12. Let a quadratic extension L/K and a Hermitian matrix H ∈ M3(L)
be as in § 5.11. Let G = SU(3, L/K, H), then G ×K G

2
m,K is Cayley.

Proof. Since G is an inner form of SU3 := SU(3, L/K, I3), by Proposition 2.7 it suffices 
to consider the case of SU3. Let TSU3 denote the diagonal maximal torus of SU3, we 
can identify it with the torus StT

′
L of Corollary 5.10. Now our proposition follows from 

Corollary 5.10 and Proposition 2.9. �
Proposition 5.13. Let a quadratic extension L/K and a Hermitian matrix H ∈ M3(L)
be as in § 5.11. Let G = PGU(3, L/K, H) be the adjoint K-group corresponding to the 
simply connected K-group SU(3, L/K, H). Then G ×K G

2
m,K is Cayley.

Proof. Since G is an inner form of PGU3 := PGU(3, L/K, I3), by Proposition 2.7 it 
suffices to consider the case of PGU3. Let TPGU3 ⊂ PGU3 denote the image of the 
diagonal maximal torus of SU3, we can identify the corresponding L-torus TPGU3 ×K L

with the torus (G3
m,L/Gm,L)Γ-twisted endowed with the following actions of S3 and Γ:

σ([x1, x2, x3]) := [xσ−1(1), xσ−1(2), xσ−1(3)] for σ ∈ S3,

γ [x1, x2, x3] = [γx−1
1 , γx−1

2 , γx−1
3 ].

We define a homomorphism G3
m,L/Gm,L → TL by

[x1, x2, x3] �→ (x2/x3, x3/x1, x1/x2).

One checks immediately that we obtain an (S3, Γ)-equivariant isomorphism
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(G3
m,L/Gm,L)Γ-twisted

∼→ TwT
′
L,

and its differential, which is also an (S3, Γ)-equivariant isomorphism,

Lie(G3
m,L/Gm,L)Γ-twisted

∼→ Lie TwT
′
L.

By Corollary 5.10 there exists an (S3, Γ)-equivariant birational isomorphism

TwT
′
L ×L G

2
m,L

���� Lie TwT
′
L ×L A

2
L.

Combining these birational isomorphisms, we obtain an (S3, Γ)-equivariant birational 
isomorphism

(G3
m,L/Gm,L)Γ-twisted ×L G

2
m,L

���� Lie(G3
m,L/Gm,L)Γ-twisted ×L A

2
L,

that is, an S3-equivariant birational isomorphism

TPGU3 ×K G
2
m,K

���� Lie(TPGU3) ×K A
2
K .

Now Proposition 5.13 follows from Proposition 2.9. �
Proof of Theorem 1.3. If G is of absolute rank 1, then by Proposition 3.1 the group G is 
Cayley (and hence, the group G ×K G

2
m,K is Cayley). Now assume that G is of absolute 

rank 2. If G is not semisimple, or is of type A1 × A1, or is of type B2 = C2, then by 
Propositions 3.2, 3.4, and 3.5 the group G is Cayley, hence the group G ×K G

2
m,K is 

Cayley. Otherwise G is of type G2 or A2, and by Example 2.2 and Propositions 5.1, 5.6, 
5.12, and 5.13 the group G ×K G

2
m,K is Cayley. �

Appendix A. Elementary links

Igor Dolgachev

Department of Mathematics, University of Michigan, 525 E. University Av., Ann Arbor, MI, 49109, 
USA
E-mail address: idolga@umich.edu.

In this appendix we will follow the ideas from Iskovskikh’s papers [8–10] to study the 
Cayley property of the groups SU3, PGU3 and SL3 over R.

6. Elementary links for G-surfaces

Let X be a smooth projective surface over a perfect field K and G be a finite group 
of K-automorphisms of X. We say that the pair (X, G) is a G-surface. Two G-surfaces 

mailto:idolga@umich.edu
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(X, G) and (X ′, G) are called birationally (biregularly) isomorphic if there exists a bira-
tional (biregular) G-equivariant map φ : X ��� X ′ defined over K. A G-surface (X, G)
is called minimal if any birational G-equivariant morphism X → X ′ is an isomorphism. 
Any birational G-map between two G-surfaces can be factored into a sequence of bi-
rational G-morphisms and their inverses. A birational G-morphism f : X → Y is 
isomorphic to the blow-up of a closed G-invariant 0-dimensional subscheme a of Y . 
For the future use let us remind that the degree of a is the number deg(a) = h0(Oa). 
If a is reduced and consists of closed points y1, . . . , yk with residue fields κ(yi), then 
deg(a) =

∑
deg(yi), where deg(yi) = [κ(xi) : K]. The G-invariance of a means that a is 

the union of G-orbits.
The birational classification of G-surfaces over K is equivalent to the classification of 

minimal G-surfaces up to birational isomorphisms.
From now on we assume that X is a rational surface, i.e. after a finite base change 

L/K, the surface is birationally isomorphic to P2
L. It is known (see [8]) that a minimal 

rational surface belongs to one of the following two classes:

(D) X is a del Pezzo surface with Pic(X)G ∼= Z;
(C) X is a conic bundle with Pic(X)G ∼= Z

2.

Recall that X is called a del Pezzo surface if the anti-canonical sheaf ω−1
X is ample. 

The self-intersection number (ωX , ωX) takes its value between 1 and 9 and is called 
the degree of a del Pezzo surface. Also X is a called a conic bundle if there exists a 
K-morphism f : X → C such that each fiber is reduced and is isomorphic to a conic 
over K (maybe reducible).

In the case when K is an algebraically closed field, the problem of birational classifi-
cation of minimal G-surfaces is equivalent to the problem of classification of conjugacy 
classes of finite subgroups of the Cremona group CrK(2) of birational automorphisms 
of P2

K . We refer to [5] for the results in this direction. When G = {1}, the problem 
of classification of rational K-surfaces has been addressed in fundamental works of 
V.A. Iskovskikh [7] and Yu.I. Manin [14]. In both cases a modern approach uses the 
theory of elementary links [8].

We will be dealing with minimal del Pezzo G-surfaces or minimal conic bundles 
G-surfaces. In the G-equivariant version of the Mori theory they are interpreted as ex-
tremal contractions φ : S → C, where C = pt is a point in the first case and C is a curve 
in the second case. They are also two-dimensional analogs of rational Mori G-fibrations.

A birational G-map between Mori fibrations is a diagram of G-equivariant rational 
K-maps

S

φ

f
S′

φ′

C C ′

(6.1)
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which in general do not commute with the fibrations. Such a map is decomposed into 
elementary links. These links are divided into the four following types.

• Links of type I:

They are commutative diagrams of the form

S

φ

Z = S′

φ′

σ

C = pt C ′ = P
1α

(6.2)

Here σ : Z → S is a blow-up of a closed G-invariant 0-dimensional subscheme G-orbit, 
S is a minimal del Pezzo surface, φ′ : S′ → P

1 is a minimal conic bundle, α is the 
constant map. For example, the blow-up of a G-fixed K-rational point on P2 defines a 
minimal conic G-bundle φ′ : F1 → P

1 with a G-invariant exceptional section. Here and 
in the sequel we denote by Fn a K-surface which becomes isomorphic over the algebraic 
closure of K to a minimal ruled surface P(OP1

K
⊕OP1

K
(−n)).

• Links of type II:

They are commutative diagrams of the form

S

φ

Z
σ τ

S′

φ′

C = C ′

(6.3)

Here σ : Z → S, τ : Z → S′ are the blow-ups of G-invariant closed 0-dimensional 
subschemes such that rank Pic(Z)G = rank Pic(S)G + 1 = rank Pic(S′)G + 1, C = C ′ is 
either a point or a curve. An example of a link of type II is the a link between P2 and 
F0 where one blows up a G-invariant closed subscheme a of P2

K of degree 2 and then 
blows down the proper transform of the line spanned by a. Another frequently used link 
of type II is an elementary transformation of minimal ruled surfaces and conic bundles.

• Links of type III:

These are the birational maps which are the inverses of links of type I.

• Links of type IV:

They exist when S has two different structures of G-equivariant conic bundles. The link 
is the exchange of the two conic bundle structures
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S

φ

= S′

φ′

C C ′

(6.4)

Theorem 6.1. Let f : S ��� S′ be a birational map of minimal G-surfaces. Then f is 
equal to a composition of G-equivariant elementary links.

The proof of this theorem is the same as in the arithmetic case considered in [9, 
Theorem 2.5].

To start an elementary link, one has to blow up a G-invariant subscheme of maximal 
multiplicity of a linear system defining the birational map.

The classification of possible elementary links can be found in [8]. It is stated in the 
case G = {1}, however it can be extended to the general case in a straightforward fashion. 
The case when G �= {1} but K is algebraically closed is considered in [5, 7.2].

Example 6.2. Assume X is a del Pezzo surface D6 of degree 6 and X ′ = P
2
K . We want to 

decompose a birational G-equivariant map X ��� X ′ into a composition of elementary 
links. From Propositions 7.12 and 7.13 in [5] we obtain that the only elementary link 
starting at (X, G) ends either at a del Pezzo surface Y of degree 6 or at F0. Since we 
do not want to stay on some (D6, G), we may assume that Y = F0. Now we need an 
elementary link starting at Y . The same propositions tell us that the end of the next 
elementary link is either a conic bundle Y ′ → C, or F0, or P2

K , or a del Pezzo surface 
of degree 5 or 6. Since we do not want to return back to X or F0 we may assume that 
the end of the link Y ′ is either a conic bundle or a del Pezzo surface of degree 5, or P2. 
If Y ′ = P

2, then Proposition 7.13, case 2, tells us that F0 must contain a G-invariant 
K-rational point. If Y ′ is a del Pezzo surface of degree 5, then the same proposition tells 
us that Z → Y ′ is the blow-up of a G-invariant subscheme of degree 5. Finally, if Y ′ is 
a conic bundle, we may continue to do elementary links staying in the class C and at 
some point we have to link a conic bundle with a del Pezzo surface Y ′′. Proposition 7.12 
tells us that Y ′′ is either a del Pezzo surface of degree 4 or F0. Since we do not want to 
return back to F0, we may assume that Y ′′ is a del Pezzo surface of degree 4. However, 
we find from Proposition 7.13, case 5, that we are stuck here since any elementary link 
relates Y ′′ only with itself.

Assume X is birationally G-isomorphic to P2
K . Then the previous analysis shows that 

X must have a G-invariant rational K-point allowing us to find an elementary link 
with F0. To continue, we need to find either a K-rational G-equivariant point on F0

to link the latter with P2
K , or to find a G-invariant 0-dimensional subscheme of length 

5 to link F0 with a del Pezzo surface D5 of degree 5. The only elementary link which 
ends not at a del Pezzo surface of degree 5 or F0 is a link connecting to P2

K . It follows 
from Proposition 7.13, case 4, that to perform this link we need a K-rational G-invariant 
point on D5.
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Here we exhibit possible elementary links relating a del Pezzo G-surface (D6, G) with 
(P2, G).

Z Z ′

D6 F0 P
2

This is possible only if F0 has a G-invariant K-rational point.

Z Z ′ Z ′′

D6 F0 D5 P
2
K

This is possible only if F0 has a G-invariant closed subscheme of degree 5, and also 
D5 has a K-rational G-invariant point.

7. Maximal tori in SU(3), PGU(3)

Let SL3 be the split simply connected simple group of type A2 over the field of real 
numbers. Let SU3 be its real form defined by the element of H1(Gal(C/R), SL3(C))
represented by the map A �→ Ā−1. Its group of real points SU3(R) is isomorphic to 
the group SU(3) of unitary 3 × 3 complex matrices. A maximal torus T in SU3 is 
a real form of the standard torus (C∗)2 = {(z1, z2, z3) ∈ (C∗)3 : z1z2z3 = 1}. It is 
defined by the map (z1, z2, z3) �→ (z̄−1

1 , ̄z−1
2 , ̄z−1

3 ) and it is isomorphic to (S1)2, where 
S

1 = SpecR[x, y]/(x2 + y2 − 1) with the natural structure of an algebraic group over R. 
The group of real points of S1 is the circle SU(1) = {z ∈ C : |z| = 1}. Its complex 
points are {(z1, z2) ∈ C

2 : z2
1 + z2

2 = 1}. The isomorphism S1(C) → C
∗ is given by 

(z1, z2) �→ z = z1 + iz2.
Let C = ProjR[t0, t1, t2]/(t21 + t22 − t20) be the standard compactification of S1. It is 

a plane nonsingular conic defined over R. Its real points satisfying t0 �= 0 are identified 
with SU(1) via the map a + bi �→ [a, b, 1]. Let

f : P1 → C, [u, v] �→ [u2 − v2, 2uv, u2 + v2]

be the rational parameterization of S1 defined over R. We have

[u, v] · [u′, v′] := [uu′ − vv′, uv′ + u′v]

is mapped to
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[(uu′ − vv′)2 − (uv′ + u′v)2, 2(uu′ − vv′)(uv′ + u′v), (uu′ − vv′)2 + (uv′ + u′v)2]

= [(u2 − v2)(u′ 2 − v′ 2) − 4uvu′v′, (u2 − v2)2u′v′ + (u′ 2 − v′ 2)2uv,

(u2 + v2)(u′ 2 + v′ 2)].

This shows that the restriction of the map f to the open subset D+(u2 + v2) is a 
homomorphism of groups.

Now let us consider the subvariety X of (P1)3 given by the condition that x · y · z =
(1, 0). It is given by the equation

uu′v′′ − vv′v′′ + uv′u′′ + u′vu′′ = 0.

This is a compactification of the maximal torus T in SU3. The equation is given by a 
trilinear function, hence X is a hypersurface in (P1

K)3 of type (1, 1, 1). By the adjunction 
formula,

KX = (K(P1)3 + X) ·X = −(h1 + h2 + h3).

This shows that X is a del Pezzo surface, anticanonically embedded in P7 by means of 
the Segre map (P1)3 ↪→ P

7. Here hi are the preimages of OP1(1) under the projections 
pi : X → P

1. The degree of the del Pezzo surface X is equal to (h1 + h2 + h3)3 =
6h1h2h3 = 6. Over C, a del Pezzo surface of degree 6 is isomorphic to the blow-up of 
three non-collinear points in P2.

The boundary X \T of the torus T consists of three irreducible (over R) components 
p−1
i (V (u2 +v2)). Over C, each such component splits into two disjoint curves isomorphic 

to P1. The boundary becomes a hexagon of lines in the anticanonical embedding. The 
opposite sides are the pairs of conjugate lines. The group of automorphisms of the root 
system of type A2 of the group SU3 is isomorphic to the dihedral group D6 of order 12 
(also isomorphic to the direct product S3 × Z/2Z). Its standard action on T extends 
to a faithful action on the compactification X. It acts on the hexagon via its obvious 
symmetries.

Note that the Picard group Pic(XC) is generated by the classes e0, e1, e2, e3, where 
e0 is the class of the preimage of a line under the blow-up XC = XC → P

2
C
, and ei are 

the classes of the exceptional curves. The hexagon of lines on X consists of the six lines 
with the divisor classes

e1, e2, e3, f1 = e0 − e2 − e3, f2 = e0 − e1 − e3, f3 = e0 − e1 − e2.

The pairs of opposite sides are {fi, ei}. The group S3 acts on Pic(X) by permuting 
e1, e2, e3, and the Galois group acts on Pic(X) by fi �→ ei. Note that −KX = 3e0 − e1 −
e2 − e3 and, since KX is Galois invariant, the conjugation isometry of Pic(XC) sends e0
to 2e0 − e1 − e2 − e3 = −KX − e0 and e0 − ei to −KX − e0 − (e0 − ej − ek) = e0 − ei. 
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This shows that the pencil of conics |e0 − ei| defines a map pi : X → P
1 over R. This 

defines our embedding

X ↪→ (P1)3 ↪→ P
7.

Also note that the invariant part Pic(X)S3×Gal(C/R) = ZKX , i.e. X is a minimal 
S3-surface over R.

Consider the real point e ∈ T(R), the unit element of the torus. The tangent plane 
to the Segre variety s(P1 × P

1 × P
1) in P7 at the point e is spanned by the images 

of e × P
1 × P

1, P1 × e × P
1 and P1 × P

1 × e. Its intersection with X is the point 
e. Consider the projection P7 ��� P

3 from the tangent plane of X at e. Its restric-
tion to X defines a rational map X ��� Q, where Q is a nonsingular quadric Q
in P3. In fact, the rational map is the composition τ ◦ π−1, where π : X ′ → X is 
the blow-up of the point e, and τ : X ′ → Q is the blow-down of the proper trans-
forms of three conics Ri, the images of (P1 × P

1 × {e}) ∩ X, ({e} × P
1 × P

1) ∩ X, 
and (P1 × {e} × P

1) ∩ X. Note that, R2
i = 0 on X, and R̄2

i = −1 on X ′. We 
have K2

X′ = K2
X − 1 = 6 − 1 = 5, and K2

Q = 5 + 3 = 8, so Q is a del Pezzo of 
degree 8, i.e. a quadric or F1. But the latter is not embedded in P3 as a normal sur-
face.

The surface X has three S3-invariant points e, η, η2 ∈ T(R) corresponding to the 
diagonal matrices in SU(3). The image of η is a S3-invariant real point in the real 
structure of Q defined by the map X → Q. Projecting from this point, we see that Q is 
birationally trivial over R as an S3-surface.

Applying Proposition 2.9, we obtain

Theorem 7.1. The group SU3 is a Cayley group.

Next we consider the group PGU(3). It is the quotient of SU3 by the cyclic group 
μ3 of order 3. Its group PGU3(R) of real points is isomorphic to the group PSU(3). 
A maximal torus of PGU3 is isomorphic to T/μ3, where T is a maximal torus of SU3. 
In the real picture from the previous section, the action of μ3 on T is the multiplication 
map σ : (u, v) �→ (u, v) · (1/2, 

√
3/2). The action of μ3 extends to the compactification 

X of the maximal torus T of SU3. Obviously, it leaves invariant the boundary, and 
has six isolated fixed points on the boundary; they are the vertices of the hexagon. 
The automorphism group of the del Pezzo surface X (over C) is (C∗)2 × D6, and σ
belongs to the connected part, and hence acts identically on Pic(X). In particular, it 
acts identically on the sides of the hexagon of lines. The quotient Y = X/μ3 is a singular 
compactification of a maximal torus of PGU3. It has six singular quotient singularities of 
type 1

3 (1, 1), a minimal resolution Y ′ → Y has six exceptional curves Ei with E2
i = −3. 

The proper transforms of the images of the sides of the hexagon are six disjoint (−1)
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curves.2 Together with Ei’s they form a 12-gon.3 All of this is defined over R, the Galois 
group switches opposite (−3)-sides and opposite (−1)-sides of the 12-gon. Now we can 
blow down the (−1)-sides to get a nonsingular surface Z with a hexagon of (−1)-curves 
formed by the images of the (−3)-sides. So, Z is a del Pezzo surface of degree six again! 
We have found a nonsingular S3 × Gal(C/R)-invariant minimal compactification of a 
maximal torus of PGU3 which is a del Pezzo surface of degree six.

Note that the group S3 × Gal(C/R) acts on Pic(Z) in the same way as it acts in 
the case of SU3. So, as before, we have an S3-invariant embedding Z ↪→ P

7 defined 
over R with a rational point equal to the orbit ē of the origin e ∈ X which consists of the 
diagonal matrices of SU(3). This time we have no any other S3-invariant rational points 
on X (they obviously do not lie on the boundary). By projection from the point ē, we 
obtain a quadric Q.

The projection defines an S3-equivariant isomorphism over R between the complement 
of the three conics on X and the complement of the image of the exceptional curve over ē
in Q. The latter curve is a conic section R′ of Q. The three conics are permuted under S3, 
so S3 acts on R′ without fixed points. Thus an S3-invariant real point on Q must be 
the projection of a real S3-invariant point on the del Pezzo surface X. There is none 
except the point which has been blown up. Thus the quadric Q has no S3-invariant real 
points. It follows from Example 6.2 that there is no birational S3-equivariant map from 
Z to P2

R
(we are stuck at the first elementary link!).

Using Proposition 2.9, we obtain

Theorem 7.2. The group PGU3 is not Cayley.

8. Maximal tori in SL3

The group SL3 is a simple algebraic group split over R. Its group of real points 
SL3(R) is the group of unimodular real 3 ×3-matrices. Its maximal torus is the standard 
torus T = SpecR[z1, z2, z3]/(z1z2z3 − 1). The group T(R) of its real points is naturally 
isomorphic to {(a, b, c) ∈ (R∗)3 : abc = 1} with the S3-action defined by permutation of 
the coordinates. Obviously, a real S3-invariant point on T must be equal to the identity 
point (1, 1, 1).

A natural T-equivariant compactification of T is the cubic surface Y = ProjR[t0, t1,
t2, t3]/(t1t2t3 − t30). It has three quotient singularities of type 1

3(1, 2), rational double 
points of type A2. They are defined over R. The exceptional curve over each singular 
point consists of two (−2)-curves Ei + E′

i intersecting transversally at one point. The 
intersection point Ei∩E′

i is a real point, hence the curves are isomorphic to P1 over R. The 
group S3 permutes the pairs (Ei, E′

i). After we minimally resolve Y over R, we obtain a 

2 An (−n)-curve is a smooth rational curve on a nonsingular projective surface with self-intersection equal 
to −n.
3 One can also arrive at this 12-gon by first blowing up the vertices of the hexagon, then extend the action 

of μ3 to the blow-up, and then taking the quotient.
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surface isomorphic to the blow-up of a del Pezzo surface of degree 6 at three vertices of the 
hexagon of lines. The boundary consists of a 9-gon with 9 consecutive sides R1, . . . , R9, 
where R1, R2, R4, R5, R7, R8 are (−2)-curves and the sides R3, R6, R9 are (−1)-curves. 
The latter curves are the proper transforms of the three lines on the cubic surface Y
that join the pairs of the singular points. After we blow down (S3-equivariantly) the 
(−1) curves, we obtain a del Pezzo surface X of degree 6 with a hexagon of lines at 
the boundary. The linear system that defines the rational map Y ��� X consists of 
quadric sections of Y passing through the singular point. Note that both X and Y are 
S3-equivariant compactifications of T.

Theorem 8.1. SL3 is not Cayley.

Proof. By Proposition 2.9 it suffices to prove that (X, S3) is not birationally isomorphic 
to a (P2

R
, S3). Suppose they are birationally isomorphic. It follows from Example 6.2 that 

the first link must end at F0 ∼= P
1
R
×P

1
R

which we identify with a split nonsingular quadric 
Q in P3

R
. The link consists of blowing up the unique S3-invariant real point on X, namely 

the point e, and then blowing down three (−1)-curves. They are the images of the conics 
on Y that, together with the three lines, are cut out by the quadrics titj − t20 = 0. The 
conics are left invariant under the conjugation but permuted by S3. The action of S3 on 
X shows easily that the induced action of S3 on Q permutes the two rulings (i.e. the two 
projections to P1). It is easy to see, using the description of automorphisms of P1

R
× P

1
R
, 

that the quadric Q has no real S3-invariant points, so the next elementary link relates Q
with a del Pezzo surface D5 of degree 5. For this we need an S3-invariant 0-dimensional 
subscheme a of degree 5. It must consist of an S3-invariant point of degree 2 and an 
S3-orbit of three real points. It is easy to see that the only S3-invariant point of degree 2
is the image of two conjugate scalar matrices in SL3(C). There are plenty of S3-orbits of 
three real points. Now we have to apply the elementary link Q ← Z → D5 with the target 
equal to a del Pezzo surface D5 of degree 5. Either we are stuck here and hence prove 
the assertion or we find a real S3-invariant point on D5 to make the final elementary 
link with (P2, S3). Since Q has no such points, a real S3-invariant point q on D5 lies on 
the image of an exceptional curve of Z → Q or on the image of an exceptional curve of 
Z → D5. The three exceptional curves on Z over real points in Q are permuted by S3, 
so q cannot lie on them. Also the exceptional curve on Z over the complex point in Q
consists of two disjoint conjugate curves. So, q is not on them either. It follows from the 
description of the linear system defining the link, that the exceptional curves of Z → D5

are the proper transforms R̄1 and R̄2 of the two rational curves R1 and R2 of degree 3
(of bidegrees (2, 1) and (1, 2)) on Q. Since S3 permutes the two rulings on Q, it cannot 
leave R1 or R2 invariant. Thus the images of the exceptional curves R̄1 and R̄2 are not 
fixed under S3. Thus the point q cannot be one of these points. This shows that the last 
elementary link D5 ��� P

2 is not possible. �
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Remark 8.2. The real split group PGL3 is known to be a Cayley group (see [12, Ex-
ample 1.11]). Using Proposition 2.9, this fact immediately follows from the existence 
of an S3-equivariant compactification of a maximal torus of PGL3 isomorphic to the 
projective plane. In fact, consider the cubic surface X from the proof of the previous 
theorem. The quotient of this surface by the cyclic group generated by the transforma-
tion [t0, t1, t2, t3] �→ [η3t0, t1, t2, t3] is isomorphic to P2

R
via the projection map from the 

point [1, 0, 0, 0] ∈ P
3 \X. Its maximal torus T is the standard torus in P2

R
.

Appendix B. Bad characteristics

This appendix was contributed by the anonymous referee. Since the referee’s original 
exposition has been changed, the responsibility for possible inaccuracies or mistakes lies 
on the author of the paper.

Theorem B.1. Let K be a field of characteristic p > 0. We write Gm for the multiplicative 
group Gm,K , and Ga for the additive group Ga,K . Let A be a central simple algebra of 
degree n over K. Assume that p|n and that 4|n if p = 2. Then the group G = PGL1(A) :=
A×/Gm is Cayley.

Proof. For two G-varieties X and Y over K, we write X ∼ Y and say that X is equivalent 
to Y if X is G-equivariantly birationally equivalent to Y .

We regard A also as a linear K-space, and we consider the projective space P(A). 
Clearly G ∼ P(A).

We denote by t: A → K the reduced trace. Set

V = {a ∈ A | t(a) = 1},

then V is a G-variety, and it is easy to see that P(A) ∼ V , hence G ∼ V . Since p|n, we 
have t(x) = 0 for any x ∈ K ⊂ A, hence the additive group Ga acts on V by translations:

x.a = x + a, x ∈ K, a ∈ V ⊂ A.

Since t(1) = 0, we can define the linear function t also on Lie(G) = A/〈1〉. Set

W = {b ∈ A/〈1〉 | t(b) = 1}.

Clearly W = V/Ga.
Note that the rational map

Lie(G) = A/〈1〉 → W ×K Gm, b �→ (b/t(b), t(b)) for b ∈ A/〈1〉

gives an equivalence Lie(G) ∼ W ×K Gm. On the other hand, by Lemma B.2 below we 
have V ∼ W ×K Ga. Thus
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G ∼ V ∼ W ×K Ga ∼ W ×K Gm ∼ Lie(G),

which proves the theorem. �
Lemma B.2. V ∼ W ×K Ga.

Proof. Consider the projection

V → V/Ga = W.

It is enough to show that q has an equivariant section. Denote by c2(a) the second coef-
ficient of the reduced characteristic polynomial of an element a ∈ A. In characteristic 0, 
c2 is of course quadratic. But here, with our assumptions on p and n, we have

c2(a + x) = n(n− 1)
2 x2 + (n− 1)t(a)x + c2(a) = −t(a)x + c2(a)

for a ∈ A and x ∈ K (check it in the split case for diagonal matrices, this is easy and 
implies the general formula). Hence the map s: V/Ga → V sending a class y = a +Ga ∈
V/Ga to the element s(y) := a + c2(a) ∈ y ⊂ V is well defined and is an equivariant 
section of q, as required. �
Proposition B.3. If p = 2, then G = PGL2,K is not Cayley.

Proof. Indeed, assume for the sake of contradiction that there exists a G-equivariant 
birational isomorphism

ϕ:V := {a ∈ M2(K) | t(a) = 1} ���� M2(K)/〈1〉.

Pick a generic invertible matrix b ∈ V . If a ∈ V commutes with b and ϕ(a) is defined, then 
ϕ(a) commutes with b, hence ϕ restricts to a Z/2Z-equivariant birational isomorphism

ψ: {a ∈ L | t(a) = 1} ���� L/〈1〉,

where L is the centralizer of b in M2(K), which is the maximal étale subalgebra of 
M2(K) generated by b, and Z/2Z is the Weyl group of G with respect to its maximal 
torus L×/Gm. We split the étale algebra L by a field extension K ′/K (quadratic or 
trivial), then the Weyl group Z/2Z acts on L ⊗K K ′ = K ′ ×K ′ by transposition of the 
factors, and we obtain a Z/2Z-equivariant birational isomorphism

ψ: {(a1, a2) ∈ (K ′)2 | a1 + a2 = 1} ���� (K ′)2/〈(1, 1)〉.

But this is absurd: the Weyl group Z/2Z acts faithfully on the left, but trivially on the 
right. �
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Remark B.4 (of the referee). If p = 2, 2|n, n ≡ 2 mod 4, and n ≥ 6, then PGL1(A) is 
Cayley. (If n ≡ 2 mod 8, then one may use c4 instead of c2 in the proof; otherwise one 
may cook something ‘linear’ out of c4 and powers of c2.)
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