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Preface

The book gives a contemporary account of the study of the class of projective
algebraic surfaces known as Enriques surfaces. These surfaces were discovered
more than 125 years ago in an attempt to extend the characterization of rational
algebraic curves via the absence of regular (or holomorphic) differential 1-forms to
the two-dimensional case.

The theory of differential forms on complex algebraic varieties of arbitrary dimen-
sion and their birational invariance was laid out in the works of Clebsch and Noether
between 1870 and 1880. Further developments of these ideas and clarification of their
geometric meaning were undertaken by the school of Italian algebraic geometers,
who were probably the first to define one of the main goals of algebraic geometry,
namely the classification of algebraic varieties up to birational equivalence. They
also understood the significance of vector spaces of regular differential forms. One
of the main achievements of their work was the classification of algebraic surfaces,
mainly due to Castelnuovo and Enriques. Central results of this classification are
achieved via the analysis of the canonical and pluri-canonical linear systems and the
Albanese map. The main numerical invariants are @, ?6, and %=, which are, by defi-
nition, the dimensions of the vector spaces of regular 1-forms, regular 2-forms, and
regular =-pluri-canonical forms, respectively. A rational variety, that is, an algebraic
variety birationally equivalent to projective space, has no nonzero regular forms,
and the converse is true for algebraic curves. In 1894, Castelnuovo proved that the
vanishing of @, ?6, and %2 is sufficient for the rationality of an algebraic surface. In
discussions with Enriques about whether the condition %2 = 0 can be eliminated,
each came up with an example that shows that it cannot be done. In the example
of Enriques, one has %2= = 1 and %2=+1 = 0 for all = ≥ 0, and in the example of
Castelnuovo, one has %= = [1 + =2 ], that is, linear growth as = tends to infinity. En-
riques mentions this example in a letter to Castelnuovo on July 22, 1894 [222, Letter
11], and he also mentions it in his 1896 paper [218, §39]. Castelnuovo’s example is
discussed in his 1896 paper [109]. In the later development of the classification of
algebraic surfaces, these two examples occupy different places: Enriques’ example
is of Kodaira dimension 0 and shares this class with abelian surfaces, K3 surfaces,
and hyperelliptic surfaces. On the other hand, Castelnuovo’s example is a surface
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of Kodaira dimension 1. The Enriques construction has a birational model that is a
non-normal surface of degree 6 in P3 that passes through the edges of the coordinate
tetrahedron with multiplicity 2. It was dubbed an Enriques sextic surface and the
notion of an Enriques surface as a smooth projective surface with @ = 0 and %2 = 1
occurs in Artin’s thesis from 1960 [18], in Shafarevich’s seminar in 1961–1963 [5],
as well as in Kodaira’s 1963 paper [401, part 3, p. 719].

In 1906, Enriques proved that every (general) surface with invariants ?6 = @ = 0
and %2 = 1 is birationally equivalent to an Enriques sextic. He also gave other
birational models of his surfaces, for example, as double planes branched along a
certain curve of degree 8, an Enriques octic. A special case of the double plane
construction was known to Enriques already in 1896 [222, Letter 302].

Still over the complex numbers, aminimal, smooth, and projective surface satisfies
?6 = @ = 0, %2 = 1 if and only if its fundamental group is of order two and its
universal cover is isomorphic to a K3 surface, which is characterized by being
a minimal, smooth, and projective projective surface with invariants @ = 0 and
?6 = %2 = 1. Enriques already understood this and proved that the pre-image of
his sextic surface under the double cover of P3 branched along the union of four
coordinate planes is birationally equivalent to a K3 surface [220]. This result leads
to the modern definition of an Enriques surface as the quotient of a K3 surface by a
fixed-point-free involution. This point of view suggests that the theory of Enriques
surface may be understood as a part of the theory of K3 surfaces, which is widely
discussed and used in the modern literature, see, for example, [43], [321], or [417].
However, most usage of K3 surfaces in the study of Enriques surfaces consists of
applying transcendental methods related to the theory of periods of K3 surfaces,
which has little to do with the fascinating intrinsic geometry of Enriques surfaces.

The classification of algebraic surfaces was extended to algebraically closed fields
of positive characteristic in the work of Bombieri and Mumford [539], [78] and [77].
In particular, they gave a characteristic-free definition of Enriques surfaces. It turns
out that Enriques surfaces in characteristic two live in a completely different and
beautiful world that has many features that have no analogs in characteristic ≠ 2. For
example, the canonical double cover still exists but is a torsor under one of the three
finite group schemes -2, Z/2Z, "2 of order 2. Accordingly, this divides Enriques
surfaces in characteristic two into three different classes, which are called classical,
-2-surfaces (or singular surfaces), and "2-surfaces (or supersingular surfaces). In
the case where the canonical cover is inseparable, it is never a smooth surface, and
in some cases, it is a rational surface, so it is not even birationally equivalent to
a K3 surface. There are many good modern expositions of the theory of algebraic
surfaces, and, in particular, Enriques surfaces over the complex numbers (see, for
example [43]). Our priority is to provide the first complete as possible treatment of
Enriques surfaces over fields of arbitrary characteristic. The price that we have to
pay for this goal is reflected in the size of our book and also in requiring many more
technical tools that we use. We collect all these needed tools in Chapter 0 and, in
fact, more than we need in the hope that this may serve as a helpful reference for the
study of algebraic surfaces over fields of arbitrary characteristic.
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The authors have to admit that the initial goal of providing a complete exposition
of the theory of Enriques surfaces over fields of arbitrary characteristic turned out
to be too ambitious. Among the important topics that had to be left out are vector
bundles on Enriques surfaces, derived categories of coherent sheaves on Enriques
surfaces, arithmetic properties such as the (non-)existence of rational points on
Enriques surfaces over number fields, as well as the theory of special subvarieties
of the moduli spaces of algebraic curves that represent curves lying on Enriques
surfaces.

Each chapter ends with a bibliographical note, where we tried our best to give
credit to the original research discussed in the chapter.
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Introduction to Volume One

The first of the two volumes is a significant revision of the book Enriques Surfaces
I published in 1989 by the two first-named authors [138]. Some of the material of
this book has been moved to Volume II, and some of it has been eliminated because
it became obsolete.

Many (too many!) typographical and mathematical errors of the first edition have
been corrected in the new edition. Furthermore, a new chapter about the moduli
spaces of Enriques surfaces and the Appendix written by S. Kondō has been added
to Volume I. The addition of new material and updating of old material is the main
reason for a substantial increase of the size of Volume I compared to the first edition.

We start with Chapter 0, collecting many technical tools we constantly use in the
book. Compared to the first edition, we have replaced the section on double covers
with three sections on finite group schemes, cyclic covers, inseparable morphisms,
and vector fields on surfaces over fields of positive characteristic. More precisely, we
first give an overview of the theory of group schemes and torsors under them, which
then leads to the explicit description and construction of cyclic covers – separable and
inseparable – in arbitrary characteristics. Then, we treat the correspondence between
purely inseparable field extensions, derivations, purely inseparable morphisms, and
?-closed vector fields. From there, we proceed to the arguably most important class
of normal surface singularities, namely rational double points, where the emphasis
is again on a characteristic-free approach. In the following three sections, we discuss
nondegenerate surfaces in projective space of minimal and next to minimal degree.
We then discuss (weak) del Pezzo surfaces of degrees 3 and 4 in detail, including a
discussion of symmetroid surfaces. The sections about symmetroid cubic surfaces
and symmetroid quartic del Pezzo surfaces have only changed slightly compared to
the first edition; however, we correct the results about their automorphism groups.
It follows a section on quadratic lattices, reflection groups, and root bases that
was included in Chapter 1 of the first edition. A discussion of Picard schemes and
Albanese varieties in arbitrary characteristic is followed by a lengthy new section,
where we collect all needed facts about different cohomology theories (de Rham,
ℓ-adic, crystalline) and some of their geometric implications used in the theory of
algebraic surfaces over fields of arbitrary characteristic.
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In Chapter 1, we introduce Enriques surfaces and discuss some of their more
elementary properties. We start with an exposition of the classification of algebraic
surfaces over fields of arbitrary characteristic, where we also define the main object
of this book, namely Enriques surfaces. We proceed with a discussion of the Picard
scheme and the Brauer group of an Enriques surface and then turn to its canonical
double cover, which is isomorphic to a K3 surface in characteristic ? ≠ 2. Here, we
pay special attention to characteristic 2, where the canonical cover no longer needs
to be a smooth K3 surface. Compared to the first edition, we added some material
about Brauer groups and new results about their K3-covers. We then compute all
sorts of cohomological invariants and differential invariants of an Enriques surface.
There follows a section on the Enriques lattice, that is, the Néron–Severi lattice of
an Enriques surface, which was in Chapter 2 of the first edition. We end the chapter
by discussing some classical examples and constructions of Enriques surfaces.

Most of Chapter 3 ‘The Geometry of the Enriques Lattice’ from the first edition,
has beenmoved to Chapter 6 of Volume II. Chapters 4 ‘ProjectiveModels’ of the first
edition, has been now spilt into two chapters, namely ‘Linear Systems on Enriques
Surfaces’ (Chapter 2 of Volume I) and ‘Projective models of Enriques surfaces’
(Chapter 3 of Volume I). These are organized as follows.

In Chapter 2, we first establish and discuss a vanishing theorem for Enriques
surfaces, which holds in an arbitrary characteristic and is central for studying lin-
ear systems. Then, we discuss nef divisors, various cones of divisors, fundamental
chambers, Weyl groups, and isotropic vectors. The latter leads to the analysis of in-
decomposable divisors of canonical type, genus one fibrations, and their degenerate
fibers. In the next section, we discuss Enriques’ Reducibility Lemma. It states that ev-
ery effective divisor on an Enriques surface is linearly equivalent to a sum of smooth
rational curves and genus one curves. Then, we introduce the Φ-function, which is
a sort of positivity measure for linear systems on Enriques surfaces. Moreover, it
is crucial for understanding the (rational) maps associated with linear systems. We
then discuss the (higher) numerical connectedness of a divisor and its relation to
the function Φ. Finally, we classify big and nef divisors with Φ ≤ 2, similar to the
discussion in the first edition, although we omit some details. Here, we systemat-
ically use the Reider theorem that is now valid for Enriques surfaces in arbitrary
characteristic.

In Chapter 3, we start with some general results about projective models of
Enriques surfaces and their K3-covers, which lay out the scene for projective models
of Enriques surfaces. Then, we discuss some cases of low degrees in greater detail.
We start with hyperelliptic maps from Enriques surfaces, which are rational maps
that are generically finite of degree two onto certain rational surfaces. The central part
of Chapter 3 is occupied with bielliptic maps (formerly called superelliptic maps),
which are degree two morphisms onto certain weak del Pezzo surfaces of degree 3 or
4, namely the symmetroid cubic surfaces or symmetroid quartic surfaces studied in
Chapter 0. These maps are one of the main tools to study Enriques surfaces and are
especially important in the analysis of their automorphism groups. This analysis also
leads to Enriques’s double plane construction and Horikawa’s models. Compared to
the first edition, we add a new section on linear systems of degree 4. It is used for
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the construction of Enriques surfaces as the quotient of a complete intersection of
three quadrics in P5 by a group scheme of order 2 in all characteristics. We end with
a section on birational models of Enriques surface of small degree, which includes
Enriques’ original model of degree 6 in P3, and which is substantially extended
compared to the first edition. For example, we give more information about the Fano
model of an Enriques surface as a surface of degree 10 in P5. Moreover, we discuss
a new model of degree 18 in P9, which is due to Mukai.

The contents of Chapter 4 ‘GenusOne Fibrations’ expands the contents of Chapter
5 of the first edition. The new material includes the computation of the torsion
invariant of a wild multiple fiber (due to Michele Raynaud), the Mordell–Weil
lattice, a new geometric approach to Lang’s (for elliptic vibrations) and Ito’s (for
quasi-elliptic fibrations) classification of extremal jacobian elliptic fibrations on
rational surfaces, and the ?-torsion part of the Tate–Shafarevich group of elliptic
and quasi-elliptic fibrations. Here, we treat the theory of torsors of a jacobian quasi-
elliptic fibrations separately, which reveals its close connection with the theory of
integral models and torsors of wound unipotent algebraic groups.

Finally, in Chapter 5 ‘Moduli Spaces’, the reader finds a discussion of moduli
spaces of Enriques surfaces, marked, polarized and unpolarized. First, we introduce
general moduli problems via stacks, and their coarse and fine moduli spaces. Next,
we recall the theory of lattice polarized K3 surfaces and extend it to fields of
arbitrary characteristic by introducing the corresponding stack of lattice polarized
K3 surfaces. Over the complex numbers, we then construct coarse moduli spaces
via the theory of periods of K3 surfaces and with analytic methods. After that,
we discuss various types of moduli spaces of Enriques surfaces over the complex
numbers. These are constructed via moduli spaces of their K3 covers equipped with
a lattice polarization defined by the Enriques lattice (with quadratic form multiplied
by 2). We also give applications to the structure of the automorphism groups of
complex Enriques surfaces, which we later extend to fields of arbitrary characteristic
in Volume II.

In Section 6we introduce the notion of theNikulin root invariant that describes the
set of smooth rational curves on an Enriques surface. This leads to the moduli spaces
for nodal Enriques surfaces with fixed Nikulin root invariant. In Sections 8 and 9, we
discuss the moduli spaces of polarized Enriques surfaces and compute the number of
non-isomorphic polarizations of small degree for general Enriques surfaces. After
that, we discuss the birational properties of moduli spaces of polarized Enriques
surface and include some previously unpublished results on the rationality of some
of these spaces.

In Sections 7 and 8, we discuss compactifications of moduli spaces and give an
interpretation of the boundaries via degenerations. In particular, we discussKulikov’s
results on degenerations of Enriques surfaces. In the final section, we discuss the
deformation theory of Enriques surfaces, their formal deformation spaces, and the
algebraic construction of moduli spaces over arbitrary base schemes.

Volume I ends with an appendix written by S. Kondō on Borcherds’ theory of
automorphic forms that allows one to describe explicit projective embeddings of
some of the moduli spaces.





Chapter 0
Preliminaries

In this chapter, we collect many results with a special view towards algebraic geome-
try over algebraically closed fields of positive characteristic. This includes construc-
tion techniques of algebraic varieties using group schemes, finite covers, and purely
inseparable morphisms. We discuss rational double point singularities, and after
that, we turn to del Pezzo surfaces and two special subclasses, namely symmetroid
surfaces. We discuss some general aspects of lattice theory and Picard schemes. We
finally discuss various cohomology theories and give interpretations of cohomol-
ogy groups of small degree. These results will be needed for the study of Enriques
surfaces. However, since many of these results are scattered over the literature and
sometimes hard to find, we also provide references and give more background than
needed later in the book.

0.1 Group Schemes

In this section, we discuss group schemes. In particular, we discuss Hopf algebras,
actions of group schemes and fixed loci, torsors, and quotients, give examples, and
discuss some structure results. We pay special attention to the group schemes -? ,
"? , Z/?Z, G<, and G0. On our way, we also discuss various Frobenius morphisms,
Witt vectors, and a little bit of Dieudonné theory. We end the section by briefly
treating formal group laws and perfect group schemes.

For simplicity, we will assume that all schemes in this section are separated and
locally noetherian. Moreover, by a variety over a field kwewill mean a geometrically
integral and separated scheme of finite type over k.

First, we introduce group schemes and refer to [245], [508], [541], or [733] for
details and proofs. By definition, an (-group scheme � is a scheme over some fixed
base scheme ( such that the Yoneda functor ℎ� : ) → � ()) from the category of (-
schemes to the category of sets takes values in the subcategory of groups. Moreover,
� is said to be commutative if it takes values in the subcategory of commutative
groups. Equivalently, one can define an (-group scheme � by requiring that there
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2 0 Preliminaries

are morphisms of (-schemes ` : � ×( � → � (multiplication), an automorphism
y : � → � (inverse), and a section 4 : ( → � (zero or unit section) that satisfy
the usual axioms of a group, which is expressed in the commutativity of some
diagrams. Moreover, an (-group scheme� is said to be affine (resp. finite, flat, étale,
proper, separated, smooth,...) if the structure morphism � → ( has this property.
Morphisms and isomorphisms of group schemes and group actions are defined in
the obvious way.

Given an abstract group �, we define the constant group scheme associated to �
to be the group scheme � → SpecZ that is represented by the functor ) → � c0 () )

for all ) → SpecZ. This is an étale group scheme over SpecZ and it is finite (resp.
commutative) if and only if � is finite (resp. commutative) as an abstract group.
Moreover, if � is finite, then the structure morphism � → SpecZ is a finite and
flat morphism of length equal to the order of �. Also, if � is finite, then � is an
example of an affine group scheme over SpecZ (finite morphisms are affine). Given
an abstract group � and a scheme (, we will also write by abuse of notation � → (

for the flat group scheme �
(

:= � ×SpecZ ( → (. The category of finite and étale
group schemes over an algebraically closed field is equivalent to the category of
finite groups:

Theorem 0.1.1 Let k be an algebraically closed field and let � be a finite and étale
group scheme over k. Then, � is isomorphic to a constant group scheme.

Let us note two special cases, where � is a group scheme over ( = Spec k,
where k is a field. If � is smooth, proper, and geometrically connected over k, then
the group scheme is automatically commutative (see [541], Chapter II.4) and in
this case, � is called an abelian variety over k. Moreover, one-dimensional abelian
varieties are called elliptic curves and two-dimensional abelian varieties are called
abelian surfaces. On the other hand, if � is affine and of finite type over k, then �
is isomorphic to a closed subgroup scheme of the general linear group scheme GL=
for some = (see Example 0.1.6 below for the special case G< = GL1). If � is affine
and smooth over k, then � is said to be a linear algebraic group.

Now, assume that � is an affine group scheme over some affine base scheme
( = Spec '. Then, � = Spec � for some '-algebra � and the property of being a
group scheme is equivalent to � carrying the structure of a commutativeHopf algebra
over '. This means that there exist '-algebra homomorphisms `† : � → � ⊗' �
(comultiplication), y† : � → � (coinverse or antipode), and 4† : � → ' (counit or
augmentation) subject to the following axioms:

• the compositions (`† ⊗ id�) ◦ `† : �→ �⊗' �→ �⊗' �⊗' � and (id� ⊗`†) ◦
`† : �→ � ⊗' �→ � ⊗' � ⊗' � coincide,

• the composition `† ◦ (y† ⊗ id�) : �→ � ⊗' �→ � is equal to the composition
? ◦ 4† : �→ ' → �, where ? : ' → � denotes the structure homomorphism of
the '-algebra �, and

• the composition (4† ⊗ id�) ◦ `† : � → � ⊗' � → ' ⊗' � is equal to the map
0 ↦→ 1 ⊗ 0.
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Moreover, the group scheme � is commutative if and only if the Hopf algebra is
cocommutative. For examples, we refer to Example 0.1.5 and the ones thereafter, as
well as to [733].

Before proceeding, let us briefly digress on Frobenius morphisms in positive
characteristic: let - be a scheme of characteristic ? > 0, that is, ? is a prime number
and ?O- = 0. This is equivalent to saying that the natural structure morphism - →
SpecZ factors over SpecF? → SpecZ. Then, the absolute Frobenius morphism is
defined to be the morphism F = Fabs : - → - of schemes that is the identity on the
underlying topological spaces and where F# : O- → F∗O- is defined to be B ↦→ B?

for all open subsets * ⊆ - and all sections B ∈ O- (*). Next, let 5 : - → ( be
a morphism of schemes of characteristic ? > 0 and let - (?) := - ×( (, where the
fiber product is taken with respect to 5 : - → ( and F : ( → (. Using the universal
property of fiber products, we obtain the following commutative diagram

-

5

��

F

++

F-/(
&&
- (?)

5 (?)

��

// -

5

��
(

F // (

The induced morphism F-/( : - → - (?) is called the relative Frobenius morphism
over ( or (-linear Frobenius morphism, which is a morphism of schemes over (.
If no confusion is likely to arise, we will drop the subscript -/( from the notation
F-/( in the sequel. Let us illustrate these two Frobenius morphisms in the case where
( = Spec k for some field k of positive characteristic ? and - = A=

k
= Spec ' with

' = k[G1, ..., G=]: then, on the level of rings, the absolute Frobenius map of - is the
ring homomorphism ' → ', A ↦→ A ? . On the other hand, the k-linear Frobenius
morphism corresponds to the ring homomorphism ' → ' that is the identity on k
and that sends G8 ↦→ G

?

8
for all 8. If - is a 3-dimensional variety over a perfect field k,

then F-/k : - → - (?) is a finite morphism of degree ?3 and the induced extension
of function fields is k(- (?) ) = k(-) ? ⊆ k(-) (if ! is a field of characteristic ?,
then we recall that the set ! ? := {G? , G ∈ !} is a subfield of !). We also note that if
k is the finite field F@ with @ = ?= elements, then sometimes, also the map G ↦→ G@

is called the Frobenius. In particular, the name Frobenius morphism may refer to
different morphisms and so, a little care is needed.

Coming back to group schemes, the relative Frobenius morphism gives rise to
a homomorphism of group schemes: let � be an (-group scheme where the base
scheme ( is of characteristic ? > 0. Then, we have the (-linear Frobenius morphism

F�/( : � → � (?)

and we note that some authors denote� (?) by� (1) . Now, also� (?) naturally carries
the structure of an (-group scheme and F( is a homomorphism of (-group schemes.
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If � is a group scheme over ( = SpecF? , then the (-linear Frobenius morphism
coincides with the absolute Frobenius morphism and then, � (?) is isomorphic to
� over ( (note, however, that F( need not be an isomorphism). More generally, if
� is a group scheme over F? and ( is an arbitrary scheme of characteristic ? > 0,
then � (?)

(
� �( and we obtain the (-linear Frobenius morphism �( → �( by base

change. For example, this applies to the group schemes G0,( , G<,( , "?,( , and -?,( ,
which we will discuss below in some detail. On the other hand, � (?) is usually not
isomorphic to � as the following example shows.

Remark 0.1.2 If � is an elliptic curve over a field k of characteristic ? > 0, then the k-
linear Frobenius morphism Fk : � → � (?) is a finite morphism of degree ? between
elliptic curves over k. Their 9-invariants satisfy 9 (� (?) ) = 9 (�) ? . In particular, if
9 (�) ∉ F? , then 9 (�) ≠ 9 (� (?) ), and then, � and � (?) are not isomorphic as elliptic
curves over k.

Next, let ( be an arbitrary base scheme, let - → ( be a morphism of schemes,
and let � be an (-group scheme. Then, an action of � on - over ( is a morphism of
schemes over (,

0 : � ×( - → -,

such that the morphisms 0 ◦ (`× id- ), 0 ◦ (id� ×0) : � ×( � ×( - → � ×( - → -

coincide, plus some axioms related to the inverse � → � and the identity section
( → �. Given a scheme ) over (, G ∈ - ()), and 6 ∈ � ()), we denote by 6 · G the
image of (6, G) under the map of sets � ()) × - ()) → (� ×( -) ())

0 () )
→ - ()).

The axioms of the action for 0 imply that this defines an action of the group � ())
on the set - ()) in the classical sense. If all schemes are affine, say ( = Spec ',
� = Spec �, and - = Spec �, then � is a Hopf algebra over ' and the action 0
induces a coaction 0† : � → � ⊗' � such that the '-algebra homomorphisms
(id� ⊗`†) ◦ 0†, (0† × id�) ◦ 0† : �→ � ⊗' �→ � ⊗' � ⊗' � coincide.

Given an action 0 : � ×( - → - of an (-group scheme � on a scheme - over
(, we say that a closed subscheme 9 : . ↩→ - of - is �-invariant with respect to
the action 0 if the image of the morphism 0 ◦ (id� × 9) : � ×( . ↩→ � ×( - → -

lies in . . In the case where all schemes are affine, say � = Spec �, - = Spec �,
and . = + (�) for some ideal � ⊆ �, then, being a �-invariant subscheme translates
into 0† (�) = � ⊗ �. Coming back to the general case, we say that . ⊆ - is scheme-
theoretically pointwise fixed if the induced action � ×( . → . is trivial. The largest
closed subscheme -� with this property is called the fixed locus of the �-action.
We note that this subscheme is not necessarily reduced. It represents the functor that
assigns to a (-scheme ) the set of �-equivariant morphisms ) → - , where � acts
as identity on ) . In the affine situation, it is defined to be the smallest ideal � ⊆ �,
such that 0† (8) = 8 ⊗ 1 for all 8 ∈ �. The action is called fixed-point-free if -� is
empty. The action is fixed-point-free if and only if the morphism

Φ = (0, pr- ) : � ×( - → - ×( - (0.1.1)
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is a closed embedding of (-schemes. For example, the multiplication ` : � ×( � →
�, considered as an action of � on itself, is fixed-point-free. We refer to [235] for
more about fixed–point schemes.

Turning back to the affine situation, let ( = Spec ' be an affine base scheme, let
� = Spec � be an affine (-group scheme that acts on an affine (-scheme - = Spec �
and assume that all morphisms are over (. Then, the subring

�� := {1 ∈ � : 0† (1) = 1 ⊗ 1}

is called the ring of invariants, which is an '-subalgebra of �. If � is finite and flat
over (, then we define -/� := Spec �� . This is a geometric quotient of - by � in
the sense of Mumford [542]. If - is not necessarily affine, but � is still assumed
to be finite and flat over (, and if we assume moreover that for every point G ∈ - ,
the set 0(Φ−1 (G)) is contained in an affine subset of - , then the geometric quotient
of - by � also exists (see [159], Chapitre III, Théorème 3.2), and it is obtained by
gluing together the affine quotients. For example, the quotient -/� exists if ' is a
field, � is finite and flat over ( = Spec ', and - is a quasi-projective over (. In this
case, many properties of - are inherited by the quotient . = -/�. For example, if
- is normal, then so is . .

From now on, we will assume that every (-group scheme � is flat and locally
of finite type over (. The existence of the unit section 4 : ( → � implies that
� is faithfully flat, that is, the structure morphism � → ( is surjective. Let us
recall that the flat topology (resp. étale topology) (fl (resp. (ét) on the category of
(-schemes is defined by covering families {*8}8∈� of flat (resp. étale) morphisms
that are locally finite type q8 : *8 → - such that - = ∪8∈� q8 (*8), see also Section
0.10. For a group scheme�, we denote by �̃ the associated sheaf in the flat topology
(or another Grothendieck topology if this is clear from the context) associated to
the Yoneda functor ℎ� . If � is commutative, then sheaf �̃ on (fl is abelian and
then, the cohomology groups �8 ((fl, �̃) are defined for all 8 ≥ 0 and we refer to
Section 0.10 or [508]. We denote these cohomology groups by �8fl ((, �), �

8
ét ((, �),

or �8Zar ((, �) depending on the Grothendieck topology chosen. We remark that if
� is not commutative, then �̌8 ((fl, �) is at least defined for 8 ∈ {0, 1} using limits
over all covers in (fl and Čech-cohomology.

If an (-group scheme� acts on a scheme - → (, then - is a torsor, or, a principal
homogeneous space, of � over (, or simply a �-torsor if one of the following two
equivalent conditions is satisfied (we refer to [508], Chapter IV, Proposition 4.1 for
details):

• the structure morphism - → ( is faithfully flat and the morphismΦ from (0.1.1)
is an isomorphism, or

• there exists a covering {*8 → (}8∈� of ( in the flat topology such that the base
changes �8 = � ×( *8 → *8 and -8 = - ×( *8 → *8 are isomorphic as
*8-schemes together with the induced �8-actions on �8 and -8 for all 8 ∈ �.

The second condition says that - is locally trivial in the flat topology. If we can find
such a trivializing cover {*8 → (}8∈� even in the étale or Zariski topoology of (,
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we say that the �-torsor - is a torsor in the étale or Zariski topology, respectively.
Finally, a �-torsor - is called (globally) trivial if there exists a trivialization, that is,
an isomorphism - → � of (-schemes that is compatible with the�-actions on both
sides. Such a trivialization exists if and only if - admits a section 4′ : ( → - , in
which case the required isomorphism is the compositionΦ ◦ (id� ×4′) = � ×( ( →
� ×( - → - ×( ( = - . The following result classifies torsors under commutative
group schemes in terms of flat cohomology.

Theorem 0.1.3 Let � be a commutative (-group scheme that is flat and locally of
finite type over a noetherian and separated base scheme (.

1. We denote by PHS( (�) the set of isomorphism classes of�-torsors over (. Then,
there exists a natural and injective map

2 : PHS( (�) → �1
fl ((, �).

In the following cases, this map is even bĳective:

a. � is affine over (, or
b. � is smooth and separated over ( and dim ( ≤ 1, or
c. � is smooth and proper over ( with geometrically connected fibers.

2. If � is smooth and quasi-projective over (, then the canonical maps

�8ét ((, �) → �8fl ((, �)

are isomorphisms for all 8 ≥ 0. In particular, every �-torsor is locally trivial in
the étale topology.

Proof We start with Claim (1). Here, we only explain the map 2 and refer to [508],
Chapter III.4 for a complete proof. Suppose that - is a�-torsor, and let {*8}8∈� be a
trivializing covering in the flat topology. Then, - (*8) ≠ ∅ andwe can choose sections
48 ∈ - (*8). Let 4 98 be the restriction of 48 to*8 ×- * 9 . Then, the surjectivity of the
mapΦ from (0.1.1) implies that there exist 68 9 ∈ � (*8×-* 9 ) such that 4 98 = 68 9 ·489 .
It is not difficult to see that (68 9 ) defines a 1-cocycle of the sheaf �̃ and that a different
choice of trivialization leads to a cohomologuous 1-cocycle. This shows that 2 exists
and that it is well-defined. To show the injectivity of 2, we note that this 1-cocycle is
trivial if and only if 68 9 = 6−1

8
·6 9 in*8 ∩* 9 for some collection of 68 ∈ � (*8), 8 ∈ �

(possibly after refining the original cover*8). Replacing 48 by 58 := 68 · 48 , we obtain
that 58 = 5 9 on *8 ∩* 9 , and thus, the sections 58 ∈ - (*8) glue together to a global
section 5 ∈ - ((), which trivializes the �-torsor - . Conversely, a 1-cocycle (68 9 )
defines an abelian sheaf F on (fl together with an action of the sheaf �̃. Under one
of the extra conditions of the theorem, this sheaf F is representable by an (-scheme
- , which then carries the structure of a �-torsor. (We remark that it is sometimes
easier to represent an abelian sheaf F in the category of algebraic spaces.) Thus, in
these latter cases, 2 is a bĳection. For claim (2), we refer to [508], Theorem III.3.9.�

Concerning torsors over regular schemes, we have the following useful extension
and purity results. For example, these apply to torsors over smooth varieties.
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Theorem 0.1.4 (Purity) Let ( be a regular, noetherian, and separated scheme and
let � be a finite and flat (-group scheme.

1. Let 5 : - → ( be a �-torsor. If 5 has a section over an open and dense subset,
then 5 has a section.

2. Let* ⊆ ( be an open and dense subset whose complement (\* is of codimension
≥ 2. Then, the restriction map

PHS( (�) → PHS* (� |* )

from �-torsors over ( to � |* -torsors over * is an equivalence of categories. In
particular, every � |* -torsor + → * extends uniquely to a �-torsor over (.

Proof To prove Claim (1), assume that we are given an open and dense subset
* ⊆ ( and a section B : * → . of 5 over *. Let Γ be the closure of the graph of
B inside ( × - . Then, the projection ?1 : Γ→ ( is a birational morphism that is an
isomorphism over* and thus, ?1 is an isomorphism by Zariski’s Main Theorem. In
particular, using ?1 we can extend the section from* to (.

We only sketch the proof of Claim (2) and refer the reader to [487], Theorem 3.1
for the details, as well as to [211], Proposition 1.4 and [224], Section 2 for different
approaches. First, we note that injectivity follows from Zariski’s Main Theorem as
in the proof of Claim (1). To prove surjectivity, let 9 : * → ( be the inclusion, let
c : � → ( be the structure morphism and set A := c∗O� . Given a � |* -torsor
6 : + → *, we set 5 : - := Spec 9∗6∗O+ → (. The � |* -action on + corresponds
to a coaction

6∗O+ → A|* ⊗O* 6∗O+ .

It is easy to see that we have an isomorphism 9∗ (A|* ⊗O* 6∗O+ ) � A ⊗O( O- ,
from which we obtain a morphism of O(-modules

5∗O- → A ⊗O( 5∗O- .

One can check that this is a coaction, that is, we obtain an action of� on - . Moreover,
one can also check that 5 : - → ( is a finite and flat morphism and that the�-action
on - turns 5 into a �-torsor. �

We now give a couple of examples of group schemes, which will be the most
important ones for the purposes of this book.

Example 0.1.5 The additive group scheme G0 is defined to be the affine scheme
SpecZ[D] over SpecZ with comultiplication defined by

`† : Z[D] → Z[D] ⊗Z Z[D], D ↦→ D ⊗ 1 + 1 ⊗ D,

with counit 4† : Z[D] → Z, D ↦→ 0, and inverse y† : Z[D] → Z[D], D ↦→ −D. For
an arbitrary scheme (, we define G0,( to be the (-scheme obtained from G0 by the
base change ( → SpecZ. If no confusion arises, we will drop ( from the notation
of this group scheme.
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The additive group schemeG0 has the following generalization: let E be a locally
free O(-Module on ( of rank A and let V(E) = Spec Sym• (E) → ( be the spectrum
of its symmetric O(-algebra (see also Section 0.3 for details, notation, and our sign
conventions). It defines a commutative group scheme over ( that represents the
functor (? : ) → () ↦→ O) (?∗E∨). It is a smooth commutative group scheme over
(. We will refer to it as a vector group scheme. In the special caseL � O( , this group
scheme coincides with the additive group schemeG0,( . In general,V(L) is a twisted
form of GA0 in the Zariski topology of (, that is, locally in the Zariski topology, it is
isomorphic to the group scheme GA0.

It is known that the cohomology groups �8 ((,V(E)) with respect to flat, étale,
and Zariski topology all coincide with the sheaf cohomology �8 ((, E∨) of the O(-
module E∨, see, for example, [508, Chapter III.3]. Thus, V(E)-torsors are classified
by the following cohomology groups

�1
fl ((,V(E)) � �1

ét ((,V(E)) � �1
Zar ((,V(E)) � �1 ((, E∨), (0.1.2)

all of which are mutually isomorphic as abelian groups.

Example 0.1.6 Themultiplicative group schemeG< is defined to be the affine scheme
SpecZ[D, D−1] over SpecZ with comultiplication defined by

`† : Z[D, D−1] → Z[D, D−1] ⊗Z Z[D, D−1], D ↦→ D ⊗ D,

with counit 4† : Z[D, D−1] → Z, D ↦→ 1, and inverse y† : Z[D, D−1] → Z[D, D−1], D ↦→
D−1. For an arbitrary scheme (, we define G<,( to be the (-scheme obtained from
G< by the base change ( → SpecZ. Again, if no confusion arises, we will drop
( from the notation of this group scheme. Here, the associated sheaf G̃<,( is O×

(
,

which is not a coherent O(-module. Nevertheless, G<,(-torsors are described by the
following mutually isomorphic cohomology groups

�1
fl ((,G<,() � �1

ét ((,G<,() � �1
Zar ((,O

×
( ) � Pic((),

where Pic(() denotes the group of isomorphism classes of invertible sheaves on (.
The first isomorphism follows from Theorem 0.1.3, and the second isomorphism
is Hilbert’s Theorem 90, see [508], Proposition III.4.9. The last isomorphism is
well-known and has the following interpretation in terms of torsors: for an invertible
sheaf L ∈ Pic((), we have the associated line bundle c : L := V(L∨) → (. Then,
theG<,(-action on the complement of the tautological section of c∗L∨ in L is fixed-
point free, and we obtain a G<,(-torsor. This construction gives rise to a bĳection
Pic(() → PHS(G<,(). We will discuss Picard groups and Picard schemes in detail
in Section 0.9.

Example 0.1.7 The group scheme G0,( has no nontrivial subgroup schemes, unless
( is a scheme of characteristic ? > 0. In this latter case, given a global section
0 ∈ �0 ((,O(), we define

"?,0 := SpecO( [D]/(D? − 0D)
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with comultiplication, coinverse, and counit inherited fromG0,( . In the special cases
0 = 0 and 0 = 1, we define

"? := "?,0 and find Z/?Z � "?,1,

that is, "?,1 is the constant group scheme associated to the finite group Z/?Z.
Since ( is of characteristic ? > 0, we have the (-linear Frobenius morphism F =

F( : G0,( → G0,( . Then, after identifying a commutative group scheme with the
associated abelian sheaf in the flat topology, we obtain the Artin–Schreier sequence

0 → "?,0 → G0,(
F−0−→ G0,( → 0, (0.1.3)

which is an exact sequence of sheaves in the flat topology. Passing to cohomology,
we obtain an exact sequence

0→ Coker
(
� 0 ((, O()

F−0−→ � 0 ((, O()
)
→ � 1

fl ((, "?,0) → Ker
(
� 1 ((, O()

F−0−→ � 1 ((, O()
)
→ 0.

(0.1.4)
This can be generalized as follows: let L be an invertible sheaf on ( and let
L := V(L∨) → ( be the associated line bundle, which we consider as a group
scheme over (. Then, we have an (-linear Frobenius morphism F : V(L⊗−1) →
V(L⊗−?), which is a morphism of group schemes over (. For every global section
0 ∈ �0 ((,L⊗(?−1) ), we obtain an exact sequence of abelian sheaves in the flat
topology

0 → "L,0 → L
F−0−→ L⊗? → 0,

where "L,0 is, by definition, the kernel of (F − 0). As before, we obtain an exact
sequence

0→ Coker
(
� 0 ((, L) F−0−→ � 0 ((, L⊗?)

)
→ � 1

fl ((, "L,0) → Ker
(
� 1 ((, L) F−0−→ � 1 ((, L⊗?)

)
→ 0.

(0.1.5)
The group scheme "L,0 is a finite flat group scheme of length ? over ( and a
subgroup scheme of L. The fiber of "L,0 over a point G ∈ ( is isomorphic to the
group scheme "?,0 (G) . In particular, using this notation, we have "O( ,0 � "? and
"O( ,1 � Z/?Z.

Example 0.1.8 Wenow proceed to subgroup schemes ofG<. For every integer = ≥ 1,
we define

-= := SpecZ[D]/(D= − 1) � SpecZ[Z], where Z= = 1,

and these subschemes inherit comultiplication, inverse, and counit from G<. The
group scheme -=,( → ( is finite and flat of length = over (. It is smooth over ( if and
only if it is étale over ( if and only if the characteristic of the residue field of every
point of ( is coprime to =. If ( is the spectrum of a field k containing = distinct =-th
roots of unity (in particular, (char(k), =) = 1), then -= is isomorphic to the constant
group scheme Z/=Z. In any case, we denote by [=] : G< → G< the homomorphism
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of group schemes defined by Z[D, D−1] D ↦→D
=

−→ Z[D, D−1], or, equivalently, by G ↦→ G=

for all G ∈ G< ()) and all schemes ) . Identifying commutative group schemes with
their associated abelian sheaves in the flat topology, we obtain the Kummer exact
sequence

0 → -=,( → G<,(
[=]
−→ G<,( → 0, (0.1.6)

which is an exact sequence of sheaves in the flat topology. The long exact sequence
of flat cohomology gives an exact sequence

0→ Coker
(
�0 ((,O×( )

[=]
→ �0 ((,O×( )

)
→ �1

fl ((, -=) → = Pic(() → 0, (0.1.7)

where = Pic(() denotes the subgroup of =-torsion elements.

Remark 0.1.9 Using these examples, we obtain a description and the classification
of "?-, Z/?Z, and -=-torsors over proper varieties over algebraically closed fields,
see Proposition 0.2.29.

We already saw that if a field k of characteristic ? ≥ 0 contains the =-th roots of
unity and ? - =, then every choice Z= of a primitive =-th root of unity gives rise to
an isomorphism of group schemes Z/=Z � -= over Spec k. On the other hand, if
= = ? > 0, then -? is a non-reduced scheme over Spec k, whereas Z/?Z is étale over
Spec k. In particular, they are not isomorphic, not even as schemes. Next, if k is a field
of characteristic ? > 0, then the schemes underlying -? and "? are both isomorphic
to Spec k[C]/(C ?), which is not reduced. However, they are not isomorphic as group
schemes. Put differently, the associated Hopf algebras are isomorphic as k-algebras
but have non-isomorphic coalgebra structures. The just-discussed group schemes
comprise all group schemes that are of prime length over an algebraically closed
field, which is a theorem of Tate and Oort. We refer to [584] or [733] for proofs or
details of this fundamental result.

Theorem 0.1.10 Let k be an algebraically closed field of characteristic ? ≥ 0, let ℓ
be a prime, and let � be a finite and flat group scheme of length ℓ over Spec k.

1. If ℓ ≠ ?, then � is isomorphic to Z/ℓZ, which is isomorphic to -ℓ .
2. If ℓ = ?, then � is isomorphic to either Z/?Z, or to -? , or to "? .

We refer to Example 1.6.6 for explicit equations if ℓ = 2.

Example 0.1.11 Let � be an elliptic curve over an algebraically closed field k of
characteristic ? > 0. Let Fk : � → � (?) be the k-linear Frobenius morphism, which
is a homomorphism of group schemes over Spec k. Then, � [F] := Ker(F), the kernel
of Frobenius, is a finite, flat, commutative, and non-reduced group scheme of length
? over k. If � [F] � -? , then � is called ordinary and, if � [F] � "? , then � is
called supersingular.

The group schemes -= and G< can be generalized as follows: if " is a finitely
generated abelian group, then the group algebra Z["] can be turned quite naturally
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into a Hopf algebra over Z (for example, the coalgebra structure is given by < ↦→
< ⊗ <), which turns D(") := SpecZ["] into an affine and flat group scheme
over SpecZ. Below, we will see that it is the Cartier dual of the constant group
scheme " . If ( is an arbitrary base scheme, then we obtain a relative group scheme
D(") ×SpecZ ( → ( by base change. Group schemes that arise this way are called
diagonalizable or of multiplicative type. For example, we have � (Z) � G< and
� (Z/=Z) � -=. The name comes from the fact that an affine group scheme � over
a field k is diagonalizable if and only if every representation � → GL(+), where +
is a finite–dimensional k-vector space, is diagonalizable. In the special case, where
� � � (Z=) � G=< for some =, the group scheme � is called a (split) torus. We note
that some authors define diagonalizable group schemes over a field k to be group
schemes that become diagonalizable in the sense above over an algebraic closure k.

We have seen that the group schemes -? and "? over fields of characteristic
? > 0 are non-reduced schemes. Moreover, in Section 0.9, we will discuss the
phenomenon that the Picard scheme of a smooth and projective variety may be
non-reduced. However, this phenomenon of non-reduced group schemes can only
occur in characteristic ? > 0 by a theorem of Cartier. More precisely, we have the
following structure results, see, for example, [392], Lemma 9.5.1 and [538], Lecture
25 for details and proofs.

Theorem 0.1.12 Let � be a group scheme that is locally of finite type over a field k
of characteristic ? ≥ 0. Then, � is separated over k. Moreover:

1. If ? = 0, then � is smooth over k.
2. If ? > 0, then � is smooth over k if and only if it is geometrically reduced.

If �◦ denotes the connected component containing 4 ∈ �, then �◦ is an open and
closed subgroup scheme of �, which is geometrically irreducible and of finite type
over k.

The subgroup scheme �◦ is called the connected component or the identity
component of �, and we refer to Section 0.9 for a discussion of the connected
component for group schemes over more general base schemes. Group schemes
with �◦ = � are called connected. We note that if �◦ is smooth over k, then the
Barsotti–Chevalley–Rosenlicht structure theorem states that �◦ is an extension of
an abelian variety over k by an affine group scheme over k, see, for example, [510,
Theorem 8.24].

Remark 0.1.13 By Cartier’s Theorem 0.1.12, group schemes over fields that are non-
reduced can only exist in positive characteristic. However, there are restrictions: for
example, if � is a finite and connected group scheme over an algebraically closed
field k of characteristic ? > 0, then there exists an isomorphism of schemes over k
(discarding the group structure)

� � k[C1, ..., CA ] / (C ?
=1

1 , ..., C
?=A

A )

for some integers A ≥ 0, =1 ≥ 1,...,=A ≥ 1, see [160], Exposé VIIB, 5.4.
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Next, let � be a finite group scheme over Spec k. Since k is a field, � is au-
tomatically flat over Spec k. Although not obvious, it is true that quotients by nor-
mal subgroup schemes exist for finite flat group schemes over fields [733]. We set
�ét := �/�◦ and obtain a short exact sequence

1 → �◦ → � → �ét → 1, (0.1.8)

of finite and flat group schemes over Spec k, the connected-étale exact sequence.
The group scheme �◦ is a local group scheme, that is, the spectrum of a local
k-algebra, and thus, a non-reduced group scheme over k. It has only one geometric
point, namely the neutral element. On the other hand, �ét is a smooth group scheme
over k, and since it is finite, it is étale over k. If k is perfect, then the reduction �red
(as a scheme) is a subgroup scheme of � and provides us with a canonical splitting
of the sequence (0.1.8). In this case, we obtain a canonical decomposition of � as a
semi-direct product � � �◦ o�ét. However, if k is not perfect, then a splitting may
not exist and �red may not be a subgroup scheme of �, see [733], Exercises 9 and
10 on page 53 for counter-examples.

Next, let � be a finite, flat, and commutative group scheme of length = over some
base scheme (, which we assume, as usual, to be noetherian and separated. Then,
the sheafH><(�,G<) of homomorphisms of group schemes from � to G< in the
flat topology (fl is representable by a finite, flat, and commutative group scheme
of length = over (, which is called the Cartier dual of � and which is denoted by
�∗ or �� . Moreover, there exists a canonical isomorphism (��)� � � of group
schemes over (, which justifies the name duality. We note that sections of �� over
( are morphisms of group schemes � → G< over (, that is, characters of the group
scheme �. In particular,

Hom( (�, G<) � �0 ((, H><(�,G<)) � �0 ((, ��)

is called the character group of �. If ( = Spec k for some field k, then the k-
algebra � := �0 (�,O�) carries the structure of a Hopf algebra over k. Next,
�∨ := Homk (�, k) carries a Hopf algebra structure, called the dual Hopf algebra:
the dual of the comultiplication of � is the multiplication of �∨, the dual of the
coinverse of � is the inverse of �∨, etc. In this case, Spec �∨ � �� , that is, Cartier
duality of finite, flat, and commutative group schemes over a field is given by the
dual Hopf algebra.

Example 0.1.14 For every integer = ≥ 1 and every base scheme (, we have Cartier
duals

-�=,( � (Z/=Z)( and (Z/=Z)�( � -=,( .

If ( is a scheme of characteristic ? > 0, then

"�?,( � "?,( .
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If ( = Spec k for some algebraically closed field k and � is a finite, flat, and
commutative group scheme of length prime to ? = char(k) over (, then � is étale
and there exists a non-canonical isomorphism �� � � of (-group schemes.

If � is a finite, flat, and commutative group scheme over ( = Spec k, where k is
a perfect field, then the connected-étale exact sequences (0.1.8) for � and �� are
both split and can be combined. It follows that every finite, flat, and commutative
group scheme � over k possesses a canonical decomposition

� � � loc,loc × � loc,ét × �ét,loc × �ét,ét,

such that � loc,loc is local with local Cartier dual, � loc,ét is local with étale Cartier
dual, etc. We refer to [733] for details and to [583] for the classification of finite, flat,
and commutative group schemes. For example, (ét, loc)-group schemes are étale
group schemes, whose lengths are ?-powers, (loc, ét)-group schemes are Cartier
dual group schemes of (ét, loc)-group schemes, and (ét, ét)-group schemes are étale
group schemes, whose lengths are prime to ?. We come back to the classification of
group schemes of (loc, loc)-type below.

An important class of finite group schemes, which are not necessarily commuta-
tive, is the following: a finite and flat group scheme� over a field k is called linearly
reductive if every finite–dimensional representation of � → GL=,k, is semi-simple.
If ? = char(k) = 0, then all finite group schemes over k are étale and linearly
reductive. However, if char(k) > 0 and k is perfect, then a theorem that is usually
attributed to Nagata [547] (but see also the discussion in [?, Section 2.2]) states
that a finite and flat group scheme � over k is linearly reductive if and only if it is
an extension of a finite and étale group scheme, whose length is prime to ?, by a
diagonalizable group scheme. Thus, if k is algebraically closed, then � is linearly
reductive if and only if there exists an isomorphism of group schemes over k

� = �◦ o �ét, where �◦ �
B∏
8=1

-?=8

for some integers B ≥ 0 and =8 ≥ 1, and where �ét is finite and étale of length
prime to ?. Quotients of schemes by actions by linearly reductive group schemes are
well-behaved, also in positive characteristic, and we will come back to them when
discussing rational double points as quotient singularities in Section 0.4 below.

Next, we briefly digress on Witt vectors, which are not only important for the
classification of (loc, loc)-group schemes, but also for the discussion of crystalline
cohomology in Section 0.10. We start by recalling the construction, and refer to
[660], Chapitre II.2.6 for details and to [462] for another survey. First, we define the
Witt polynomials (with respect to a fixed prime ?) to be the following polynomials
with integer coefficients:
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,0 (G0) := G0,
,1 (G0, G1) := G?0 + ?G1,

...

,= (G0, ..., G=) :=
∑=
8=0 ?

8G
?=−8

8
= G

?=

0 + ?G?
=−1

1 + ... + ?=G= .

Then, there exist unique polynomials (= and %= in (2= + 2) variables with integer
coefficients such that

,= (G0, ..., G=) + ,= (H0, ..., H=) = ,= ((0 (G0, H0), ..., (= (G0, . . . , G=, H0, . . . , H=)),
,= (G0, ..., G=) · ,= (H0, ..., H=) = ,= (%= (G0, H0), ..., %= (G0, . . . , G=, H0, . . . , H=))

for all =. For an arbitrary commutative ring ', we define the (truncated) Witt ring,
or (truncated) ring of Witt vectors,,= (') to be set '= together with operations

(G0, ..., G=−1) ⊕ (H0, ..., H=−1)
:= ((0 (G0, H0), ..., (=−1 (G0, ..., G=−1, H0, ..., H=−1)) ,

(G0, ..., G=−1) � (H0, ..., H=−1)
:= (%0 (G0, H0), ..., %=−1 (G0, ..., G=−1, H0, ..., H=−1)) .

These turn ,= (') into a commutative ring with zero 0 = (0, ..., 0) and one 1 =
(1, 0, ..., 0). Since we have (0 (G0, H0) = G0 + H0 and %0 (G0, H0) = G0 · H0, it follows
that ,1 (') is isomorphic to ' with its usual addition and multiplication. If ' is
characteristic ? > 0, that is ?' = 0, then we define two operators on,= (')

+ : (G0, ..., G=−1) ↦→ (0, G0, ..., G=−2),
f : (G0, ..., G=−1) ↦→ (G?0 , ..., G

?

=−1).

The map + is additive and is called Verschiebung (German for “shift”), whereas f
is a ring homomorphism, called Frobenius. (It is customary to call this map f rather
than � in order to avoid clashes of notations with other Frobenius maps.) The maps
f and + are related by the formula

f ◦+ = + ◦ f = ? · id.

The map ' → ,= (') that sends G ↦→ [G] := (G, 0, ..., 0) is multiplicative and is
called the Teichmüller lift. Next, projection onto the first (=−1) components induces
surjective ring homomorphisms,= (') → ,=−1 (') for all = ≥ 2. By definition, the
Witt ring, or ring of Witt vectors,, (') is the projective limit

, (') := lim←−−
=

,= ('),

where the limit is taken with respect to the projection homomorphisms. The maps+ ,
f, [−] extend to the limit and are compatible with all the projection homomorphisms
, (') → ,= (').

Example 0.1.15 In the case of fields, we collect the following examples, remarks and
properties.
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1. For the field F? with ? elements we obtain ,= (F?) � Z/?=Z and the ring of
Witt vectors, (F?) is isomorphic to the ring Z? of ?-adic integers. In this case,
f is the identity and + is multiplication by ?.

2. Let @ = ?< for some prime ? and some integer < ≥ 1. Then,, (F@) is the ring
of integers in the unique unramified extension Q? ⊆ Q@ that is of degree < over
Q? . Moreover,, (F?) is the ring of integers of Q̂nr

? , the ?-adic completion of the
maximal unramified extension Qnr

? of Q? .
3. If k is a perfect field, then, (k) is a discrete valuation ring of characteristic zero

with residue field k. The unique maximal ideal of, (k) is the principal ideal gen-
erated by ? and, (k) is complete with respect to the ?-adic topology. Moreover,
if ((,m) is an m-adically complete discrete valuation ring of characteristic zero
with residue field k, then it contains, (k) as a subring.

4. If k is a field of characteristic ? that is not perfect, that is, the map G ↦→ G? is not
surjective, then the kernel of , (k) → k still contains the ideal generated by ?,
but it is not equal to it. In this case, this kernel is not a finitely generated ideal and
the ring, (k) is not noetherian.
Coming back to group schemes, we now discuss Witt group schemes: these

are affine and commutative group schemes W= → SpecF? that are isomorphic to
SpecF? [G0, ..., G=−1] as schemes and whose coalgebra structure is defined via the
Witt polynomials. We refer to [583], Section II.9 for details. Then, we haveW1 � G0
andW= is a successive extension of G0’s. Passing to the projective limit, we obtain
a group scheme W, which is not of finite type over SpecF? . Moreover, Frobenius
and Verschiebung give rise to morphisms of group schemes F : W= → W= and
+ : W= → W=+1. We use Frobenius to define for integers <, = ≥ 1 the group
scheme

L=,< := Ker (F< : W= → W=) ,

which is finite, flat, commutative, and of length ?<= over SpecF? . Moreover, it is of
(loc, loc)-type and Cartier duality interchanges the indices: L�=,< � L<,=. We have
L1,1 � "? and each L=,< is a successive extension of "?’s.

Next, an affine group scheme � over a field k is called unipotent if every repre-
sentation � → GL(+), where + is a finite–dimensional k-vector space, possesses a
filtration 0 = +0 ⊆ +1 ⊆ ... ⊆ += = + into �-stable subspaces such that the induced
�-representation on +8/+8−1 is trivial for all 8. One can show that this is equivalent
to � ×Spec k Spec k having a composition series, in which all composition factors
are isomorphic to G0, "? , or Z/?Z. For example, L=,< and Z/?=Z are examples of
finite, commutative, and unipotent group schemes over SpecF? – the former are of
(loc, loc)-type and the latter is of (ét, loc)-type. To classify unipotent group schemes
over a perfect field k of characteristic ? > 0, we let , = , (k) be the ring of Witt
vectors over k, and define the Dieudonné ring � of k to be the non-commutative
polynomial ring, 〈�,+〉 over, with the relations �A = f(A)�, A+ = +f(A), and
�+ = +� = ? for all A ∈ , . Then, for a finite group scheme � over k, one defines
the (contravariant) Cartier–Dieudonné module of � to be

D(�) := lim−−→
=

Hom(�,W=),
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which carries the structure of a left �-module. For example, we have

D(L=,<) � �/(�<, +=).

Moreover, Cartier and Gabriel proved that D induces an anti-equivalence between
the category of finitely generated left �-modules that are annihilated by some power
of + and the category of unipotent algebraic group schemes over the perfect field
k. We note that there exist several variants of this theory: for example, there are
covariant rather than contravariant versions. Also, the functor D can be modified
so to induce an anti-equivalence between the category of left �-modules that are
finitely generated as ,-modules and the category of finite and commutative group
schemes over k, whose length is a ?-power. We refer to [583], Section II.(15.3) for
details, as well as the discussion of the Cartier ring of formal group laws and the
discussion of F-crystals in Section 0.10 for related topics. Putting all the previous
discussions together, we obtain a good overview over finite and commutative group
schemes.

Let � be a group scheme that is locally of finite type over some field k. Let
4 ∈ � (k) be its neutral element and let m ⊆ O�,4 be the local ring at 4. We define
the Lie algebra of � to be the Zariski tangent space of 4 ∈ �,

Lie(�) := (m/m2)∨ := Homk (m/m2, k).

This is a finite–dimensional k-vector space, which is naturally isomorphic to the
space of k-linear derivations from O�,4 to k. The latter is isomorphic to the space of
left invariant derivations on �. If [, b are two such derivations, then also [[, b] :=
[ ◦ b − b ◦ [ is one, and thus, Lie(�) carries the structure of a Lie algebra over k.
Moreover, if k is of characteristic ? > 0 and if [ is a left invariant derivation, then
so is [ [?] := [ ◦ ... ◦ [ (?-fold composition with itself). In this case, the ?-power
operation −[?] together with the Lie bracket [−,−] turn Lie(�) into a restricted
Lie algebra or ?-Lie algebra over k. We refer to [342], Chapter V.7 for the precise
definition of restricted Lie algebras, as well to Section 0.3 for the relation to purely
inseparable morphisms. We finally note that the Lie algebra of � only depends on
the connected component �◦ of the identity, that is, Lie(�◦) � Lie(�).

Example 0.1.16 If k is a field of characteristic ? > 0, then there exists an isomor-
phism of restricted Lie algebras

Lie(-?,k) � k · G,

where the Lie bracket on the right–hand side is zero and G [?] = G. If G is replaced by
G ′ := 2 · G for some 2 ∈ k×, then G ′[?] = 2?−1 · G ′. Next, there exists an isomorphism
of restricted Lie algebras

Lie("?,k) � k · H,

where the Lie bracket on the right–hand side is zero and H [?] = 0. A derivation b
with b [?] = b (resp. b [?] = 0) is called multiplicative (resp. additive) and we come
back to this in Section 0.3.
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Next, we recall the definition of a formal group law. Given a group scheme �
that is locally of finite type over some field k with neutral element 4 ∈ � (k), one
can also study the formal completion Ô�,4 of the local ring of � at 4, which usually
carries more information than the Zariski tangent space Lie(�). More precisely, the
multiplication ` : � ×Spec k� → � gives rise to a morphism of complete k-algebras

ˆ̀# : Ô�,4 → Ô�,4 ⊗̂k Ô�,4,

where ⊗̂ denotes the completed tensor product. Moreover, �̂ := Spf O�,4 is the
completion of � along the zero section 4 and ˆ̀# turns �̂ into a group object in the
category of formal schemes over Spf k. If � is smooth over k, then there exists an
isomorphism Ô�,4 � k[[C1, ..., C<]] of complete k-algebras. In this case, ˆ̀# becomes
a morphism of complete k-algebras

k : k[[C1, ..., C<]] → k[[D1, ..., D<, |1, ..., |<]],

which is completely determined by the < formal power series k(C8), 8 = 1, ..., <.
This is formalized in the notion of a formal group law, or formal Lie group, of
dimension < over k.
indexformal group By definition, this is a set of < formal power series F :=
(�1, ..., �<) with �8 = �8 (u,w) ∈ k[[u,w]], 8 = 1, ..., < and with u = (D1, ..., D<)
and w = (|1, ..., |<), such that:

1. �8 (u,w) is equal to D8 + |8 plus terms of degree ≥ 2 for all 8, and
2. �8 (F(u,w), y) = �8 (u,F(w, y)) for all 8.

The formal group law is said to be commutative if F(u,w) = F(w, u). We refer
to [300], Chapter II for details, as well as the notion of (iso-)morphisms between
formal group laws. We note that one-dimensional formal group laws over fields are
automatically commutative and refer to [300], Chapter I.6 for details and proof.

Example 0.1.17 If � is smooth group scheme of dimension < over a field k, then
Ô�,4 � k[[C1, ..., C<]] and ˆ̀# turns it into a formal group law �̂ of dimension <
over k.

1. If � = G0 is the additive group, then the formal additive group law Ĝ0 is given
by ˆ̀# : C1 ↦→ D1 + |1.
indexformal group!Ĝ0

2. If � = G< is the multiplicative group, then the formal multiplicative group law
Ĝ< is given by ˆ̀# : C1 ↦→ D1 + |1 + D1|1.

If the field k is of characteristic zero, then every <-dimensional commutative
formal group law over k is isomorphic to Ĝ<0 via the formal logarithm. On the other
hand, this is not true if k is of positive characteristic ? > 0: as in the case of group
schemes, we have the Frobenius morphism

F : �̂ → �̂ (?) ,
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which is a homomorphism of formal group laws over k. This can be used to obtain a
discrete invariant of commutative formal group laws, namely their height, which we
now explain in the one-dimensional case: if �̂ is a one-dimensional formal group law,
that is, �̂ � Spf k[[C1]], then multiplication by ? is a homomorphism [?] : �̂ → �̂

and one can compare it to the Frobenius morphism F. The height is the largest integer
ℎ such that there exists a factorization �̂ → �̂ (?

ℎ) → �̂ of [?]. In the case [?] = 0,
one defines ℎ := ∞.

Example 0.1.18 Let k be a field of characteristic ? > 0. Then,

ℎ(Ĝ<) = 1 and ℎ(Ĝ0) = ∞.

In particular, these two formal group laws are not isomorphic over k. If � is an
elliptic curve over k, then the formal completion �̂ of � at the neutral element is a
one-dimensional and commutative formal group law, whose height satisfies

ℎ(�̂) =
{

1 if � is ordinary
2 if � is supersingular,

see also Example 0.1.11.

If k is an algebraically closed field of characteristic ? > 0, then a theorem of
Lazard states that two one-dimensional formal group laws over k are isomorphic if
and only if they have the same height [300, Theorem 19.4.1]. Moreover, there exists
a formal group law for every given height ∈ {1, 2, . . . ,∞}. Again, we refer to [300]
for details and proofs, as well as for the definition of heights for higher–dimensional
commutative formal group laws. Unfortunately, the height does not suffice to classify
higher–dimensional formal group laws. As in the case of commutative group schemes
above, let k be a perfect field of characteristic ? > 0 and then, theCartier ringCart(k)
is defined to be the non-commutative ring , (k)〈〈+〉〉〈�〉 (formal power series in
+ , polynomials in �) with relations �+ = ?, +A� = + (A), �A = f(A)�, and
A+ = +f(A) for all A ∈ , (k). For every commutative formal group law �̂ over k,
there exists a left Cart(k)-module D(�̂), the Cartier–Dieudonné module of �̂. The
functorD induces an (anti-)equivalence between the category of commutative formal
group laws over k and a certain subcategory of the category of left Cart(k)-modules.
Again, we warn the reader that there exists a covariant and a contravariant version of
this theory, and that the rôles of � and + are exchanged in this theory, which easily
leads to confusion. Apart from [300], we refer to [462] for a more detailed survey
and further references.

Example 0.1.19 Let k be an algebraically closed field of characteristic ? > 0 and let
�̂ℎ be the unique one-dimensional formal group law of height ℎ over k. Then, the
(covariant) Cartier–Dieudonné module of �̂ℎ is

D(�̂ℎ) �
{

Cart(k)/(� −+ℎ−1) if ℎ < ∞,
k[[G]], � = 0, +G= = G=+1 if ℎ = ∞.
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In particular, if ℎ < ∞, then D(�̂ℎ) is a free, (k)-module of rank ℎ, which can be
interpreted as an F-crystal of slope 1 − 1

ℎ
, see Section 0.10.

Next, we recall the definition of the Weil restriction functor [86, 7.6]. Let 5 :
(′→ ( be a morphism of schemes. then, for any (′-scheme - ′, the functor

ℜ(′/( (- ′) : (Schemes/()◦ → (Sets), ) → Hom() ×( (′, - ′)

is equal to the Zariski sheaf 5∗ (ℎ- ′), where ℎ- ′ is the Yoneda sheaf in the Zariski
topology represented by - ′. If ℜ(′/( is representable by an (-scheme, then it (and
its representing scheme) is called theWeil restriction of - ′. By definition, there is a
canonical bĳection

Hom( (),ℜ(′/( (- ′))
∼−→ Hom(′ () ×( (′, - ′),

functorial in ) . A condition for representability of ℜ(′/( (- ′) is given in Theorem
4 from [86, 7.6]. For example, if - ′ → (′ is quasi-projective and (′ → ( is affine,
then ℜ(′/( (- ′) is representable. Also, if (′ → ( is finite and flat, and - ′ → (′ is
smooth, then ℜ(′/(” (- ′) is smooth [203, Lemma 2.2].

It follows from the definition of the adjoint functor 5 ∗ that there is a canonical
morphism of (-schemes

](′/( : - ′ → ℜ(′/( (- ′) ×( (′.

Many applications of Weil restriction arise in theory of group schemes, where -
is a (′-group scheme � ′ and where (′ → ( is a finite flat morphism. In this case,
� = ℜ(′/( (- ′) is an (-group scheme.

Example 0.1.20 The following is the most notorious example of Weil restriction: we
take ( = SpecR and (′ = SpecC with the natural morphism (′ → (. We take � ′ =
G<,C and then,� is an algebraic group overR isomorphic toSpecR[*,+]/(*2++2−
1) with � (') = (' ⊗R C)× for any R-algebra '. In particular, we have � (R) = C×
and � (C) = C× × C×. The group � is an anisotropic 2-dimensional torus. The
morphism ]C/R is the embedding

C× ↩→ C× × C×, I ↦→ (I, Ī).

This � is the Deligne torus and it plays an important role in Hodge theory because
it gives a very elegant way to define and deal with Hodge structures.

We end our discussion of group schemes with perfect group schemes, which we
will need to study the flat cohomology in Section 0.10. First, a perfect scheme of
characteristic ? > 0 is a scheme - of characteristic ? > 0, such that the absolute
Frobenius morphism F : - → - is an isomorphism. For example, if k is a perfect
field of characteristic ? > 0, then - = Spec k is a perfect scheme. Moreover, if - is
a scheme of characteristic ? > 0, then its perfection is defined to be

-pf := lim←−−
=

-,
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where the projective limit is taken over all integers = ≥ 0 with respect to the absolute
Frobenius morphism F : - → - . The perfection is a perfect scheme. Moreover, if -
is a perfect scheme, then -pf � - and if - = Spec k for some field k of characteristic
? > 0, then -pf = Spec k?−∞ , the spectrum of the perfect closure of k. Moreover, if -
is a possibly non-reduced scheme with reduction -red, then the canonical morphism
-red → - induces an isomorphism of perfections -pf

red � -pf .
Next, let ( be a scheme, let (ét be the category of (-schemes equipped with the

étale topology, and let (perf be the full subcategory of perfect (-schemes equipped
with the étale topology. Then, there exists a canonical morphism c : (ét → (pf that
associates to a sheaf F of abelian groups on (ét a sheaf F pf := c∗F of abelian
groups on (pf . For example, if F is represented by a commutative group scheme �
over (, then F pf is determined by its values on perfect schemes. In this case, one can
show that F pf is represented by the perfection �pf of the group scheme �, which
coincides with the perfection of �red.

A perfect group scheme G over ( is an object in the category (pf that is of the
form �pf for some object � of (ét that is represented by an affine group scheme �
that is of finite type over (. Perfect group schemes over ( form an abelian category
that is equivalent to the category of quasi-algebraic groups in the sense of Serre, see
[657, Proposition I.10]. This category admits projective limits, and, by definition, a
pro-algebraic group is a projective limit of quasi-algebraic groups. Note that there
is a more general definition of a pro-algebraic group, which we will not use.

Example 0.1.21 Let k be a perfect field of characteristic ? > 0 and ( := Spec k. As
in the case of formal group laws, the affine group schemes G0 and G< give rise to
perfect group schemes over (pf .

1. For G0 � Spec k[C] we have Gpf
0 � Spec k[C, . . . , C1/?= , . . .]. In particular, if � is

a k-algebra, then Gpf
0 (�) = �?

−∞ , whose group structure is given by addition.
2. For G< � Spec k[C, C−1] we have Gpf

< = Spec k[C, C−1, . . . , C1/?
=

, C−1/?= . . .].
Then, we haveGpf

< (�) = (�?
−∞ )× for every k-algebra � and the group structure is

given by multiplication. We note that multiplication by ? (rather exponentiation
by ?) [?] : G< → G< defines an automorphism of Gpf

< .

In both cases, the Frobenius morphism induces an automorphism of perfect group
schemes.

Concerning their structure: every commutative and perfect group scheme G over
an algebraically closed field k of characteristic ? > 0 possesses a composition series,
whose composition factors are Gpf

0 , G
pf
< , as well as perfections of abelian varieties

and finite groups, see [659, Section I.3]. Moreover, if G is killed by some power of
?, then it fits into an extension

0 → U → G → D → 0, (0.1.9)

where U = *pf is perfect group scheme that is obtained from a unipotent, smooth,
connected, and commutative group scheme*, and where D = �pf is a perfect group
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scheme that is obtained from a finite, étale, and commutative group scheme � that
can be identified with �pf . Moreover, the perfect group U admits a composition
series, whose composition factors are isomorphic to Gpf

0 . We call U the connected
component of the identity of G and denote it by G◦. Therefore, (0.1.9) is an analog
of the connected-étale exact sequence (0.1.8). Finally, we denote by P(?=) the
category of perfect (-group schemes that are killed by ?=. For example, for every
perfect ring ' of characteristic ? > 0, the ring ,= (') of Witt vectors of length
= has natural structure of a unipotent group killed by ?= and thus, defines an
object ,pf

= of P(?=). The functor G· ↦→ G·∨ := 'H><P(?=) (G·,Z/?=Z) defines
a duality in the derived category D1 (P(?=)). Next, we define P(?∞) to be the
union of all objects of P(?=) for all = and we define duality in this category by
setting G·∨ := lim−−→=

'H><P(?=) (G·,Z/?=Z). We note that the canonical morphism
G· → (G·∨)∨ is an isomorphism in the derived category, which justifies to call it a
duality. We refer to [657] for more about perfect and quasi-algebraic group schemes,
as well as to [507] and [509] for applications to flat cohomology.

The category of quasi-algebraic groups is abelian. In particular, one can use
derived functors to define the higher homotopy groups c8 as the derived functors of
the functor c0, which assigns to a group its largest étale quotient, which is a constant
group in our case. Furthermore, by passing to a projective systems of quasi-algebraic
groups, one obtains the category of pro-algebraic groups. The homotopy groups of
a pro-algebraic group are pro-finite commutative groups.

Example 0.1.22 Let � be a connected (that is, c0 (�) = 0) commutative group
scheme over a field k of characteristic ? ≥ 0, such that the homomorphism [ℓ] of
multiplication by a prime number ℓ is surjective. Assume that ℓ� = (Z/ℓZ)� for
some set �. Then, c1 (�) � (Z/ℓZ)� , see [657, p. 45].

1. If � = G<,k, then we get étale covers defined by the Kummer exact sequence
(0.1.6). Using this, one can show that

c1 (G<,k) (ℓ) � Zℓ if ℓ ≠ ? and c1 (G<,k) (?) = 0.

Here, �(ℓ) denotes the ℓ-primary component of a pro-finite abelian group.
2. If � = G0,k, then we get étale covers using the Artin–Schreier exact sequence

(0.1.3)
0 → Z/?Z → G0

F−0 id−→ G0 → 0,

where 0 ≠ 0. It is shown in [657, p. 53] that

c1 (G0,k) � Hom(k,Z/?Z)

and in particular,
c1 (G0,k) (ℓ) = {0} if ℓ ≠ ?.

3. If � is an elliptic curve � over k, then

c1 (�) (ℓ) � Z2
ℓ if ℓ ≠ ? and c1 (�) (?) = Z4? ,
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where 4 = 1 if � is ordinary and 4 = 0 if � is supersingular.
The previous examples dealt with quasi-algebraic groups arising from one-

dimensional commutative group schemes over a field k. Next, we consider pro-
algebraic groups defined by (�

8
), where � is a one-dimensional group scheme of

finite type over the ring of formal power series ' = k[[C]] over some field k of
characteristic ? ≥ 0. We denote by  = k((C)) the field of fractions of '.
Example 0.1.23 Let � = G<,' with ' = k[[C]] and for = ≥ 0, we define

*= := {G ∈ k[[C]] : G ≡ 1 mod m=}.

Then, we obtain a composition series

G< (') = *0
 ⊃ *

1
 ⊃ . . . ⊃ *= ⊃ . . .

with quotients

* /*= = G< ('/m=) and *= /*=+1 � G0 (k) for = ≥ 1.

Therefore, the group �
=

:= *0
 
/*=

 
is an extension of a unipotent commutative

group of dimension (= − 1) associated to the group *1
 
/*=

 
by G<,k = *0

 
/*1

 
.

The associated pro-algebraic group � defines a structure of a pro-algebraic group
on * = *0

 
= lim←−− * /*

=
 
. Next, for any finite Galois extension !/ , the kernel

of the norm homomorphism #!/ : *∗
!
→ *∗

 
is isomorphic to the abelianization

Gal(!/ )ab of the Galois group Gal(!/ ). Now, if c is a uniformizer of the integral
closure of ' in !, then we define a homomorphism Gal(!/ ) → Ker(#!/ ) via
f ↦→ f(c)/c. This gives rise to an exact sequence of pro-algebraic groups

0 → Gal(!/ )ab → *! → * → 0.

The homotopy exact sequence defines a homomorphism

\ : c1 (* ) → c0

(
Gal(!/ )ab

)
= Gal(!/ )ab.

Passing to the projective limit, we obtain an isomorphism of pro-algebraic groups

c1 (* ) → Gal( ab/ ) = lim←−− !/ Gal(!/ )ab,

where  ab/ denotes the maximal abelian Galois extension of  , see [658, §4,
Théorème 1]. Using the composition series for * and the computation of the
fundamental groups of G0,k and G<,k from Example 0.1.22, we conclude that

c1 (G<,') (ℓ) � Zℓ if ℓ ≠ ?,

and that c1 (G<,') (?) is a successive extension of the groups c1 (G0,k) � Hom(k,Z/?Z).
Finally, assume that char( ) = ? ≠ 0 and recall that a non-trivial element of

Hom(Gal( ab/ ),Z/?Z) defines a cyclic and separable extension !/ of degree
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?. This is an Artin–Schreier extension defined by some equation G? − G = 0 with
0 ∈  . This comes from passing to exact Galois cohomology sequence for the exact
sequence

0 → Z/?Z →  
℘
→  → 0,

where ℘ : G ↦→ G? − G. In this way, we obtain an isomorphism

Hom
(
c1 (G<,'

)
,Z/?Z) � G0 ( ). (0.1.10)

The previous discussion also applies to projective system of groups associated to a
group scheme� over a complete local Noetherian ring ' with maximal idealm. For
our applications later on, we will assume that ' is a k-algebra. Let '8 = '/m8 , 8 ≥ 1
and �8 = � ⊗' '8 be the base change with respect to the natural morphisms
@8 : Spec '8 → Spec '. This is a group scheme over the artinian k-algebra '8 . Let

G8 (�) := ℜ'8/k (�8)

be theWeil restriction of�8 to Spec kwith respect the structure of a k-algebra on '8 .
The functor � → G8 (�) preserves many good properties of �: for example, G8 (�)
is affine (resp. smooth) if � is affine (resp. smooth), see [57, §7]. It follows from the
definition of the Weil restriction that

G8 (�) (k) = � ('8).

The natural truncation homomorphisms '8+1 → '8 define, by functoriality, a ho-
momorphism of group schemes U8 : G8 (�) → G8−1 (�). The projective system
{G8 (�), U8}8≥1 in the category of commutative group schemes over k is called the
Greenberg realization of �.

Let G8 (�)pf be the perfection of the group scheme G8 (�). It defines a functor
from the category of group schemes over ' to the category of perfect group schemes
over k. The natural truncation homomorphisms '8+1 → '8 define, by functoriality,
a projective system G8 (�)pf in the abelian category of quasi-algebraic groups over
k. The pro-algebraic group

G(�) := lim←−−
8

G8 (�)

is called the perfect Greenberg realization of �.

Example 0.1.24 If � = G0,', then

G8 (�) = ℜ'8/k (G0,'8 ) � G80,k

and G8 (�) (k) = '8 . We have an isomorphism of the additive group of the ring '8
with k⊕8 � G8

0,k
(k). Since G8 (�)pf � (Gpf

0,k
)8 , we have

G(G0) = Spec k[(C8), (C1/?8 ), . . . , (C8)
1/?= )] .
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Its value on a perfect k-algebra � is equal to �[[C]].

0.2 Cyclic Covers

In this section, we discuss cyclic covers of a variety over an algebraically closed field
k, where we pay special attention to the case where the characteristic ? = char(k)
divides the degree of the cover.

To motivate our discussion, let us recall some well-known facts from field theory:
let !/ be a finite Galois extension of fields, whose Galois group� is cyclic of order
=. Then, if = is prime to ? = char( ) and if  contains the =-th roots of unity, then
!/ is a Kummer extension, that is, of the form ! =  (01/=) for some 0 ∈  . On
the other hand, if = = ? > 0, then !/ is an Artin–Schreier extension, that is, of the
form ! =  ([), where [ is a root of an equation of the form G? − G + 0 = 0. Finally,
if !/ is a finite and inseparable field extension of degree ? > 0, then ! =  (01/?)
for some 0 ∈  . There is no group acting in the latter case, but it turns out that there
acts an infinitesimal group scheme that plays the role of a Galois group. In order to
globalize these three types of extensions to finite morphisms between schemes, we
start by recalling a couple of facts about locally free and reflexive sheaves, which are
interesting in their own right.

Let F be a coherent O- -module on an integral, separated, and noetherian scheme
- . Then, the dual of F is defined to be the O- -module F ∨ := H><(F ,O- ) and we
let q : F → (F ∨)∨ be the natural morphism of O- -modules. Since - is an integral
scheme, the kernel and cokernel of q are torsion O- -modules. By definition, F ∨∨
is called the reflexive hull of F and F is called reflexive if q is an isomorphism.
In particular, a reflexive coherent O- -module is torsion-free. For example, locally
free O- -modules of finite rank are reflexive. Moreover, a coherent O- -module F is
reflexive if and only if there exists an open affine coverU = {*8}8 of - such that each
F |*8 is the kernel of some homomorphism of coherent O*8 -modules k : E8 → G8 ,
whereE8 is locally free andG8 is torsion-free, see [295, Proposition 1.1]. In particular,
if F is an arbitrary coherent O- -module, then F ∨ is a reflexive O- -module. For a
coherent O- -moduleM, we define its rank to be the rank of the O-,[-moduleM[ ,
where [ ∈ - denotes the generic point of - . The following extension result is an
important characterization of reflexive sheaves [295, Proposition 1.6].

Proposition 0.2.1 Let - be an integral, separated, and noetherian scheme, which
is also normal. Then, a coherent O- -module F is reflexive if and only if for every
open subset * ⊆ - and every closed subset / ⊆ * of codimension ≥ 2 the natural
restriction map

�0 (*, F |* ) → �0 (*\/, F |*\/ )

is an isomorphism.

Let us give a first application of this extension result: if a Cohen–Macaulay scheme
- is of finite type over a field, then it possesses a dualizing sheaf l◦

-
, which is a
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coherent O- -module, see [294, Section III.7]. Moreover, - is called Gorenstein if
l◦
-
is an invertible O- -module. For example, smooth varieties over fields and local

complete intersections in them are Gorenstein. For a scheme - of finite type over a
field k, we let Ω-/k be the coherent O- -module of Kähler differentials.

Proposition 0.2.2 Let - be a variety over a field k.

1. If - is smooth over k, then there exists an isomorphism of invertible O- -modules
l◦
-
� Λdim(- )Ω-/k.

2. If - is normal, then there exists an isomorphism of reflexive and coherent O- -
modules (l◦

-
)∨∨ � (Λdim(- )Ω-/k)∨∨.

Proof Assertion (1) is well-known, see, for example [294, Corollary III.7.12]. To
prove Assertion (2), let -sm ⊆ - be the smooth locus of - . Since - is normal,
the complement -\-sm is closed and of codimension ≥ 2 by Serre’s normality
criterion, see [497, Theorem 23.8], for example. By (1), we already have the desired
isomorphism over -sm. Passing to reflexive hulls, we obtain an isomorphism of
reflexive O- -modules over -sm that extends to - by reflexivity. �

For a normal variety - over a field k, the O- -module (Λdim(- )Ω-/k)∨∨ is some-
times called the canonical sheaf. Another result that can be proved using the extension
property of reflexive sheaves is the following, see [295, Corollary 1.7] for a proof.

Proposition 0.2.3 Let 5 : - → . be a dominant and proper morphism between nor-
mal, integral, and separated schemes, such that all fibers are of the same dimension.
If F is a reflexive and coherent O- -module, then 5∗F is a reflexive and coherent
O. -module.

Now, we link reflexive O- -modules of rank 1 to Weil divisors and the class
group: let - be an integral, separated, normal, and noetherian scheme. Then, a
prime divisor on - is an integral subscheme of codimension one, and aWeil divisor
is a finite formal sum � =

∑
8 08�8 with 08 ∈ Z and prime divisors �8 . The divisor

is called effective if 08 ≥ 0 for all 8. A Weil divisor that arises as the divisor
div( 5 ) of some rational function 5 on - is called a principal divisor. Two Weil
divisors are said to be linearly equivalent if their difference is a principal divisor.
The abelian group of Weil divisors modulo principal divisors, or, equivalently, the
abelian group of Weil divisors modulo linear linear equivalence, is called the Weil
divisor class group, and we refer to [294, Chapter II.6] for details. Associated to a
Weil divisor, there is an associated reflexive O- -module O- (�) of rank 1, whose
sections over some open set * ⊆ - are those rational functions 5 on - with
div( 5 ) |* +� |* ≥ 0. Then, we have O- (−�) � O- (�)∨ and if � is effective, then
O- (−�) is the ideal sheaf of �. Next, if �1, �2 are two Weil divisors on - , then
we have O- (�1 + �2) � (O- (�1) ⊗ O- (�2))∨∨.

The set Cl(-) of reflexive O- -modules of rank 1 on - is an abelian group with
productF ·G := (F ⊗G)∨∨ and inverseF ∨ is an abelian group, called the class group
of - . The association � ↦→ O- (�) induces an isomorphism of the Weil divisor
class group with the class group. Finally, a Cartier divisor is a Weil divisor � that is
locally principal, that is, there exists an open affine cover U = {*8}8 of - such that
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for all 8, the restriction � |*8 is of the form div( 58) for some rational function 58 on*8 .
The group of Cartier divisors modulo linear equivalence is called the Cartier divisor
class group and the reflexive O- -module O- (�) associated to a Cartier divisor is an
invertible O- -module. The set Pic(-) of invertible O- -modules with product ⊗O-
and inverse−∨ is the Picard group and here, the association � ↦→ O- (�) induces an
isomorphism of the Cartier divisor class group with the Picard group. Since every
invertible O- -module is reflexive, we obtain a homomorphism of abelian groups

Pic(-) → Cl(-),

which is injective, but not necessarily surjective, andwe refer to Proposition 0.4.19 for
examples. If - is locally factorial, that is, all local rings of - are unique factorization
domains, then this homomorphism is also surjective. This holds, for example, if -
is a regular scheme. Again, we refer to [294, Chapter II.6] for details and proofs.

Let - be an integral, separated, regular, and noetherian scheme and let F be a
coherent O- -module. By definition, the singular locus of F is the subset of -

Sing(F ) := {G ∈ - : FG is not a locally free O-,G-module},

which is closed set of codimension ≥ 1. In the following cases, the singular locus is
even smaller.

1. If F is a torsion-free O- -module, then codim Sing(F ) ≥ 2. In particular, if
dim(-) ≤ 1, then torsion-free and coherent O- -modules are locally free.

2. If F is a reflexive O- -module, then codim Sing(F ) ≥ 3. In particular, if
dim(-) ≤ 2, then reflexive and coherent O- -modules are locally free.

3. If F is a reflexiveO- -module of rank 1, then F is locally free, that is, an invertible
O- -module. Put differently, Weil and Cartier divisors coincide on - .

We refer to [240, Section 2], as well as to [295] for details, proofs, and further results.
We end our discussion of sheaves and their singularities with the following useful
flatness result, see, for example [497, Theorem 23.1], the corollary to [497, Theorem
23.3], or [204, Corollary 18.17].

Proposition 0.2.4 Let 5 : . → - be a finite morphism between noetherian schemes,
where - is regular. Then, 5 is flat if and only if . is Cohen–Macaulay.

Remark 0.2.5 If . is a normal scheme of dimension ≤ 2, then . is Cohen–Macaulay
by Serre’s criterion for normality (see [497, Theorem 23.8], for example). Thus, a
finite morphism from a normal curve (resp. surface) to a regular curve (resp. surface)
is automatically flat.

Now, we come to -=-covers of schemes. These generalize Kummer extensions
of fields to schemes and we refer to Proposition 0.2.29 for the more special case of
-=-torsors.

First, following [294] we recall the definition of a vector bundle and its transition
functions. Let E be a locally free O- -module of rank A on a separated and connected
scheme - , which is sometimes also called a rank A vector bundle over - . It defines
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an associated geometric vector bundle or the total space V(E) := Spec (• (E) → - ,
where (• (E) denotes the symmetric algebra of E. We refer to [294, Chapter II,
Exercise 5.18] for details and note that the sheaf of sections of V(E) is isomorphic
to the dual O- -Module E∨ := H><(E,O- ).

By abuse of terminology, we will often identify locally free sheaves with their
total spaces. LetU = {*U}U∈� be an open affine cover of - trivializing E, that is, for
every U ∈ �, there exists an isomorphism qU : E |*U → OA*U , where A is the rank of
E. By definition, the transition functions of E with respect to the trivializing cover
U are the isomorphisms 6UV = qU ◦ q−1

V
of OA

*U∩*V , where we denote the restriction
of qU to *U ∩*V again by qU. In the standard basis 4 = (41, . . . , 4A ) of OA*U∩*V ,
6UV is given by an A × A-matrix (08 9 ) with entries in O- (*U ∩ *V). The sheaf of
sections E∨ has the dual base (D1, . . . , DA ) with transition functions C6−1

UV
.

Let 4 (U) = (4 (U)1 , . . . , 4
(U)
A ) and 4 (V) = (4 (V)1 , . . . , 4

(V)
A ) be the images of the basis

4 under qU and qV . Then, we find

4
(V)
9

=

A∑
8=1

08 9 4
(U)
8
.

Thus, the matrix (08 9 ) can be viewed as the transition matrix from the basis 4 (U) to
the basis 4 (V) . In particular, the coordinate vectors (D (U)1 , . . . , D

(U)
A ), (D (V)1 , . . . , D

(V)
A )

of a vector in E∨|*U∩*V are transformed as follows

©«
D
(U)
1
...

D
(U)
A

ª®®®¬ = 6UV

©«
D
(V)
1
...

D
(V)
A

ª®®®¬ , (0.2.1)

where we identify 6UV with the matrix (08 9 ).
Let us now have a closer look at the case of rank 1: let L be an invertible sheaf,

that is, a locally free O- -module of rank 1. In this case, the associated vector bundle
L := V(L) is called a line bundle. The identification of O- with (0 (L) ⊆ (• (L)
turns O- into a subsheaf and a direct summand of (• (L). Passing to relative spectra,
we obtain a canonical morphism c : V(L) → - . We have

c∗OL =
⊕
8≥0
L⊗8 = (• (L) (0.2.2)

and then, for every integer : , the projection formula gives

c∗c
∗L⊗: = c∗OL ⊗ L⊗: =

⊕
8≥0
L⊗(:+8) .

Using the natural isomorphism �0 (-, c∗c∗L⊗: ) = �0 (L, c∗L⊗: ), we obtain, for
: ≥ 0, the section of the invertible sheaf c∗L⊗−: on L corresponding to the section 1
in the direct summand O- of (• (L). It is called the tautological section of c∗L⊗−: .
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We now discuss cyclic covers of schemes and start with the main example of
simple -=-covers associated to the data (L, B) and their singularities and after that
we discuss more general -=-covers. Here L is an invertible sheaf and, following the
customary convention, we will construct such covers as closed subschemes of the
geometric vector bundle L := V(L∨) associated to L∨.

Let - be an integral and separated scheme, let L be an invertible O- -module, let
= ≥ 1 be an integer, and let B be a nonzero section of L⊗=. Let C be the tautological
section of c∗L on the line bundle c : L = V(L∨) → - and let

. := {C= − c∗ (B) = 0} //

5
((

L

c

��
-

be the zero scheme of C=−c∗ (B). We denote by 8 : . ↩→ L the inclusion, set 5 := c◦8,
and call 5 : . → - the simple -=-cover associated to the data (L, B). Then, . is
an effective Cartier divisor in L and we have OL (. ) � c∗L⊗=, that is, its sheaf of
ideals is equal to OL (−. ) = c∗L⊗(−=) . Moreover, the inclusion c∗L⊗(−=) ⊂ OL
corresponds to the inclusion L⊗(−=) ⊂ (• (L−1) in the decomposition (0.2.2). In
particular, we obtain an isomorphism of O- -modules

5∗O. � A := O- ⊕ L−1 ⊕ ... ⊕ L⊗−(=−1) (0.2.3)

and thus, . � Spec 5∗O. , where the O- -algebra structure on (0.2.3) is determined
by themapL⊗(−=) → O- corresponding to the section B : O- → L⊗=. Locally over
an open affine subset* ⊆ - with L|* � O* , the simple -=-cover is isomorphic to

SpecO- (*) [)]/()= − B* ) → SpecO- (*) � *, (0.2.4)

where B* is a local equation of the section B over *. Moreover, if * and + are two
open affine subsets of - , then the local sections B* and B+ satisfy B* = 6=

*+
· B+

on the intersection * ∩ + , where 6*+ ∈ O- (* ∩ +)× is the transition function
of the invertible sheaf L with respect to {*,+}. If - = Spec for some field  ,
then every global section of an invertible O- -module L can be identified with an
element B ∈  . Then, the local description (0.2.4) shows that the simple -=-cover
of - associated to (L, B) is . = Spec ! → - = Spec , where ! =  ( =

√
B). Thus,

if = is coprime to ? = char( ), then !/ is a separable Kummer extension. Next,
we remind the reader of the finite, flat, and commutative group scheme -= of length
= introduced in Example 0.1.8. The following result justifies calling 5 : . → - a
-=-cover.

Proposition 0.2.6 Let - be an integral and separated scheme and let 5 : . → - be
the simple -=-cover associated to (L, B). Then, 5 is a finite and flat morphism of
degree = and there exists a -=-action on . such that 5 is the quotient by this action

.
5
→ - � ./-=.
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Moreover,

1. if - is regular, then . is Cohen–Macaulay.
2. If - is a smooth variety over an algebraically closed field k of characteristic ? ≥ 0,

if ? - =, and if the zero locus / (B) ⊆ - of the section B is an integral divisor, then
. is normal. In this case, we have an equality of singular (non-smooth) loci

Sing(. ) = 5 −1 (Sing(/ (B)))

(discarding scheme structures).

Proof By (0.2.3), 5∗O. is a locally free O- -module of rank =, and thus, 5 is a
finite and flat morphism of degree =. If - is regular, then . is Cohen–Macaulay
by Proposition 0.2.4. Moreover, if - is as in (2), then the local description (0.2.4)
and the Jacobian criterion for smoothness shows that the singular locus of . is of
codimension ≥ 2 and in fact equal to the pre-image of the singular locus of / (B)
via 5 . Being '1 and (2, it follows that . is normal by Serre’s criterion, see [497,
Theorem 23.8], for example.

In any case, the group scheme -= (see Example 0.1.8) acts on . via the coaction
that is locally defined by

O* [)]/()= − B* ) → O* [)]/()= − B* ) ⊗O* O* [Z], ) ↦→ ) ⊗ Z,

where * ⊆ - is an open and affine subset with L|* � O* and B* is as in (0.2.4).
It is easy to see that the ring of invariants O. ( 5 −1 (*))-= is equal to the subring
O- (*) of O. ( 5 −1 (*)), from which we conclude that 5 is the quotient morphism
with quotient - � ./-=. �

Let us mention a special case: assume that = = :< for some integers :, < ≥ 1
and let B ∈ �0 (-,L⊗=). Then, B is a global section of (L⊗<)⊗: = L⊗= and the pair
(L⊗<, B) defines a simple -: -cover 6 : / → - . We leave to the reader to check that
the simple -=-cover 5 : . → - defined by (L, B) factors through 6 and that this
corresponds to the quotients . → / = ./-< → - = //-: = ./-:<. In the case
of a Kummer extension  ⊆  ( =

√
B) of a field  , this factorization corresponds to

the inclusions  ⊆  ( :
√
B) ⊆  ( =

√
B).

We now turn to branch and ramification loci of a simple -=-cover 5 : . →
- associated to (L, B). Let us also assume that - is a smooth variety over an
algebraically closed field k of characteristic ? ≥ 0 and that . is a normal variety.
First, assume that (=, ?) = 1. In this case, 5 is separable, that is, generically étale.
There is a maximal closed and proper subset B( 5 ) ⊂ - , possibly empty, over which
5 is not étale. Before proceeding, let us recall Zariski’s theorem on the purity of the
branch locus from [739].

Theorem 0.2.7 Let 5 : . → - be a finite morphism from a normal variety to a
smooth variety. Assume that 5 is separable, that is, the induced extension of function
fields k(-) ⊂ k(. ) is separable. Let B( 5 ) ⊂ - be the set where 5 is not étale. Then,
B( 5 ) is empty or a divisor.
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For a simple -=-cover associated to (L, B) the branch divisor is the zero locus
/ (B) of the section B. The reduced inverse image of B( 5 ) is called the (reduced)
ramification divisor Rred ( 5 ) of 5 . For a simple -=-cover 5 : . → - with - smooth
and . normal, the branch divisor B( 5 ) is reduced and a local computation shows
that we have an equality of Cartier divisors on .

5 ∗ (B( 5 )) = = · Rred ( 5 ).

By Proposition 0.2.6, the singular locus of . is contained in the ramification divisor
of 5 .

Proposition 0.2.8 Let 5 : . → - be a simple -=-cover associated to the data
(L, B). Then, the sheaf of relative differentials Ω1

. /- admits the following projective
resolution:

0 → 5 ∗L⊗(−=) → 5 ∗L−1 → Ω1
. /- → 0. (0.2.5)

Proof We know that . is a closed subscheme of V(L−1) given by the ideal sheaf
OL (−. ) = c∗L⊗(−=) . It is easy to see that

Ω1
L/- � c∗L−1.

We apply the usual exact sequence from [294, Chapter II, Proposition 8.12]

0 → OL (−. )/OL (−2. ) 3→ Ω1
L/- ⊗ O. → Ω1

. /- → 0,

where we use that . ↩→ L is a regular embedding, which implies that the homomor-
phism 3 is injective. Since L⊗(−=)/L⊗(−2=) � L⊗(−=) ⊗ O. , the claim follows. �

Corollary 0.2.9 Under the assumptions from the previous proposition assume more-
over that (?, =) = 1. Then, the relative tangent sheaf has the following projective
resolution:

0 → 5 ∗L → 5 ∗L⊗= → Θ. /- → 0.

Proof The morphism 5 : . → - is finite and separable, which implies that the
sheaf Ω1

. /- is supported on a closed proper closed subset of . . Taking the dual of
the exact sequence

0 → 5 ∗Ω1
-/k → Ω1

. /k → Ω1
. /- → 0,

we obtain an exact sequence

0 → Θ. /k → 5 ∗Θ-/k → Θ. /- → 0, (0.2.6)

where
Θ. /- � EGC1 (Ω1

. /- ,O. )

is the relative tangent sheaf. This implies the claimed exact sequence. �
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Next, assume that ? |=. In this case, the cover 5 : . → - is inseparable. In
analogy to the above, we can still set B( 5 ) := / (B) and let Rred ( 5 ) be the reduced
inverse image of B( 5 ). Since 5 is inseparable, we do not have well-defined branch
and ramification loci, since there is no point over which 5 is étale, that is, the branch
locus (resp. ramification locus) of 5 is equal to - (resp. . ). On the other hand,
it follows from (0.2.10) below that the Cartier divisors Rred ( 5 ) and B( 5 ) are at
least well-defined invariants of 5 up to numerical equivalence. To illustrate that the
divisor B( 5 ) is not an invariant of 5 , we note that the data (L, B) and (L, B + D?)
with D ∈ �0 (-,L⊗=/?) define the same simple -=-cover.

Before coming to the singularities of -=-covers in the inseparable case, we make
a small detour on connections: let - be a scheme and let E be a O- -module. Then,
a connection on E is a map of sheaves of abelian groups

∇ : E → Ω1
-/k ⊗O- E,

such that for every open subset * ⊆ - and local sections 5 ∈ O- (*), b ∈ E(*),
Leibniz’s rule ∇( 5 · b) = 35 · b + 5 · ∇(b) holds true. For example, the classical
differential 3 : O- → Ω1

-/k is a connection, but in general, there is no canonical
choice of connection on a given O- -module E. However, if - is an integral and
separated scheme in characteristic ? > 0with absolute FrobeniusmorphismF : - →
- and if E is a coherent O- -module, then F∗E carries a distinguished connection,
the Cartier connection or canonical connection, which is denoted by ∇can. We refer
to [376, Section 5] for the general case and only discuss the case where E is an
invertible O- -module: let * ⊆ - be an open subset and let C ∈ E(*) be a section
such that C generates E over *. Then C ? generates F∗E over *. For 5 ∈ O- (*), we
define ∇can ( 5 · C ?) := 35 · C ? . A different choice of generator C ′ of E over* differs by
some invertible section B ∈ O- (*)× and thus, C ? = B? · C ′? . It follows from 3B = 0
that ∇can is well-defined, that is, does not depend on the choice of generator of E
over*. In particular, these affine local definitions glue to a well-defined connection
∇can on F∗E. Now, since E is an invertible O- -module, we have F∗E � E⊗? . In
particular, every invertible sheaf on - that is divisible by ? in the Picard group of -
carries a Cartier connection. After these preparations, we have the following result.

Proposition 0.2.10 Let - be smooth variety over an algebraically closed field k
of characteristic ? > 0 and let 5 : . → - be an inseparable and simple cyclic
-=-cover associated to (L, B). Let ∇can be the Cartier connection of L⊗=. Then, the
singular locus of . is equal to the pre-image of the zero set of

U 5 := ∇can (B) ∈ �0 (-, Ω1
-/k ⊗O- L

⊗=), (0.2.7)

If . is reduced, then the section U 5 is not identically zero.

Proof If * ⊆ - is an open affine subset and )* is a local section that generates
L over *, then . is given locally over * by )=

*
− B* , see the local description in

(0.2.4). Since 5 is inseparable, we have ? |=, that is, ∇can (B) is well-defined and equal
to 3 (B |* ) over *. Using ? |= and the Jacobian criterion of smoothness, the zeros of



32 0 Preliminaries

3 (B* ) lie under the singular locus of . . Moreover, if U 5 = 0, then 3 (B* ) = 0 for all
*, and hence, . is singular everywhere, that is, . it not reduced. �

Remark 0.2.11 Let - be a smooth variety over an algebraically closed field k of
characteristic ? ≥ 0 and let 5 : . → - be a simple -=-cover associated to data
(L, B). To describe the singularities of -=-covers in the generic case, assume that
that L⊗= is very ample and that B is a sufficiently general section.

1. If ? - =, that is, 5 is separable, then it follows from Bertini’s theorem that / (B)
is a smooth divisor, and thus, . is smooth by Proposition 0.2.6.

2. If ? | =, that is, 5 is inseparable, and dim(-) ≥ 2, then . is usually normal but
not smooth. For example, if ? = = and dim(-) = 2, then one expects that . has
at most rational double points of type �?−1.

We refer to [459, Section 2] for details and more results about generic inseparable
covers and Cartier’s connection with a view toward inseparable covers. We also refer
to Example 0.2.22 below for an example.

Let 5 : . → - be a simple -=-cover of some regular and separated scheme
- associated to (L, B). Then, . is a hypersurface inside the line bundle c : L =

V(L−1) → - , the latter of which is also regular. In particular, . is a complete
intersection in a regular scheme, which implies that . is Gorenstein, that is, the
dualizing sheaf l. is an invertible O. -module. The corresponding divisor class (the
equivalence is linear equivalence) is usually denoted by  . .

Proposition 0.2.12 Let - be a regular and separated scheme and let 5 : . → - be
a simple -=-cover associated to (L, B). Then . is Gorenstein and its dualizing sheaf
is given by

l. � 5 ∗ (l- ⊗ L⊗(=−1) ). (0.2.8)

Proof We denote by ] the embedding of . as a hypersurface into the line bundle
c : L → - and we have already seen that . is defined by an equation of the form
C= − c∗ (B). By Grothendieck’s duality theorem, the dualizing sheaf of . is given by
the adjunction formula

l. � EGC1 (O. , lL).

The determinant of the cotangent sequence together with the isomorphism lL/- �
c∗ (L−1) give

lL � c∗ (l- ) ⊗ lL/- � c∗ (l- ⊗ L−1).

ApplyingH><(−, lL) to the exact sequence 0→ OL (−. ) → OL → O. → 0, we
obtain a short exact sequence

0 → H><(OL, lL) → H><(OL (−. ), lL) → EGC1 (O. , lL) → 0,

from which we deduce isomorphisms

EGC1 (O. , lL) � ]∗ (lL ⊗OL (. )) � ]∗ (c∗ (l- ⊗L⊗(=−1) )) = 5 ∗ (l- ⊗L⊗(=−1) ),

which establishes the claim. �
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Remark 0.2.13 If 5 : . → - is a simple -=-cover of smooth varieties over a field k,
then formula (0.2.8) also follows immediately from Proposition 0.2.8 by taking first
Chern classes in the exact sequences (0.2.5) and

0 → 5 ∗Ω1
-/k → Ω1

. /k → Ω1
. /- → 0.

Namely, we compute

 . = 21 (Ω1
. /k) = 21 ( 5 ∗Ω1

-/k) + 21 (Ω1
. /- )

= 21 ( 5 ∗Ω1
-/k) + 21 ( 5 ∗L−1) − 21 ( 5 ∗L⊗−=) = 5 ∗ (l- ⊗ L⊗(=−1) ).

(0.2.9)

Thus, for a simple -=-cover 5 : . → - , where . is normal and - is a smooth
variety over an algebraically closed field k, we can rewrite the dualizing sheaf in
terms of the ramification divisor class as

 . ≡ 5 ∗ ( - ) +
(= − 1)
=

5 ∗ (B( 5 )) ≡ 5 ∗ ( - ) + (= − 1)Rred ( 5 ), (0.2.10)

where “≡” denotes equality of invertible sheaves (or, Cartier divisors) modulo nu-
merical equivalence. In particular, (0.2.10) shows that the numerical equivalence
class of 'red ( 5 ) can be recovered from 5 . Let us stress again that we only have
well-defined branch and ramification loci (rather than Cartier divisor classes mod-
ulo numerical equivalence) if the cover is separable. Thus, in order to describe the
dualizing sheaf of . , the safest thing is to use Proposition 0.2.12. Before turning to
more general -=-covers, let us give the following interesting application of the above
discussion, which we will use in the next chapters.

Proposition 0.2.14 Let 5 : . → - be a finite morphism of proper varieties over an
algebraically closed field k. Let L be an invertible O- -module that lies in the kernel
of the homomorphism

5 ∗ : Pic(-) → Pic(. ).

Then, there exists an integer = ≥ 1 and an isomorphism B : L⊗= � O- such that 5
factors through a -=-torsor, which is a simple -=-cover defined by (L, B).

Proof Let A := 5∗O. , which is a finite O- -algebra. Let L ∈ Pic(-) be such that
5 ∗L � O. . Using the projection formula, we findA � 5∗ 5 ∗L � A ⊗ L. Using the
inclusionO- → A, we obtain an inclusion q1 : L → A and by induction, inclusions
q8 : L⊗8 → A for all 8 ≥ 1. Using properness, we find Aut(O. ) = �0 (.,O. )× �
k×. Thus, we may assume that the q8’s satisfy q8+ 9 = q8 · q 9 with respect to the
product in A for all 8, 9 ≥ 1. Let q : (•L → A be the homomorphism of O- -
algebras constructed from these q8’s. If we denote byB ⊆ A the image of q, then this
is a finiteO- -algebra, and thus, there exists an 8 ≥ 1with an injective homomorphism
L⊗8 → O- . Replacing L by L∨ and running through the above discussion, we find
some 9 ≥ 1 and an injective homomorphism L⊗(− 9) → O- . Thus, there exists
some = ≥ 1 such that L⊗= and L⊗(−=) admit injective homomorphisms to O- . Let
= ≥ 1 be minimal integer with this property. Since - is integral and proper over
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k, this implies that we have an isomorphism B : O- → L⊗= and think of B as a
global section of L⊗=. From this, we deduce that A contains the O- -subalgebra
O- ⊕ L−1 ⊕ ... ⊕ L⊗−(=−1) , whose algebra structure is given by the homomorphism
B. By (0.2.3), this corresponds to a simple -=-cover associated to (L, B) and the
morphism 5 factors through this simple -=-cover. Since L⊗= � O- , it follows from
Example 0.1.8 that this simple -=-cover is in fact a -=-torsor, see also Proposition
0.2.29 below. �

Let us now discuss more general classes of -=-covers: let - be a regular and
separated scheme. We define a (general) -=-cover of - to be a finite morphism
5 : . → - of degree = together with a -=-action on . such that ./-= � - .
Since 5 is finite, A := 5∗O. is a coherent O- -module, which carries a -=-action.
For a character j : -= → G<, we denote by Aj the subsheaf of A, whose local
sections B satisfy f · B = j(f)B for all f in -= (if ? | =, then this has to be read
scheme-theoretically). From this, we obtain a direct sum decomposition

5∗O. = A �
⊕
j

Aj, (0.2.11)

where j runs through the character group Hom(-=,G<) � Z/=Z. If j0 denotes the
trivial character of -=, then we have Aj0 � O- .

Proposition 0.2.15 Let 5 : . → - be a -=-cover of a regular scheme. Assume that
. is Cohen–Macaulay or that . is normal or that 5 is flat. Then,

1. 5 is flat and . is Cohen–Macaulay, and
2. each Aj in (0.2.11) is an invertible O- -module.

Proof If 5 is flat or . is Cohen–Macaulay, then Claim (1) follows from Proposition
0.2.4. In this case, A is a coherent and flat O- -module, that is, locally free. If . is
normal, then A is a coherent and reflexive O- -module by Proposition 0.2.3. Thus,
in any case, A is a reflexive O- -module. Being direct summands of a reflexive and
coherent O- -module, each Aj is a reflexive and coherent O- -module. It is easy
to see that each Aj is of rank 1 and since - is a regular scheme, each Aj is an
invertibleO- -module. In particular,A is locally freeO- -module, which implies that
5 is flat in any case, and then, Proposition 0.2.4 implies that . is Cohen–Macaulay
in any case. �

Next, we come to the O- -algebra structure on A: it is uniquely determined by
multiplication mapsAj ⊗ Aj′ → Ajj′ for all characters j, j′ of -=. These maps
correspond to global sections ofAjj′ ⊗ (Aj ⊗Aj′)−1. The following result shows
that normal -=-covers of regular schemes are always simple -=-covers over some
open subset. However, it is not true that every -=-cover of a regular scheme is a
simple -=-cover, not even Zariski locally.

Proposition 0.2.16 Let - be a separated and regular scheme, let 5 : . → - be a
-=-cover, and assume that. is normal. Then, there exists a simple -=-cover / → -
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associated to some data (L, B), where / is integral and Cohen–Macaulay but not
necessarily normal, and such that 5 factors as

. → / → -

compatible with the -=-actions on. and / , and such that. → / is the normalization
morphism. In particular, there exists an open and dense subset * ⊆ - , such that
5 −1 (*) → * is the simple -=-cover associated to (L|* , B |* ).
Proof First, we choose a generator j1 of the cyclic group Hom(-=,G<) � Z/=Z
and set L := (Aj1 )∨. Next, we setA ′ := O- ⊕ L−1 ⊕ ... ⊕ L⊗(−=−1) and using the
O- -algebra structure onA, we find a sub-O- -algebraA ′ ⊆ A. More precisely, the
O- -algebra structure is given by a morphism L⊗(−=) → O- of O- -modules, that
is, a section B of L⊗=. Thus, / := SpecA ′ → - is a simple -=-cover associated
to (L, B), and we obtain a factorization . → / → - , compatible with the -=-
actions on . and / . By Proposition 0.2.4, / is Cohen–Macaulay. Since A ′ and A
are both locally free O- -modules of rank = and A ′ is contained in A, they are
isomorphic at the generic point of . . Thus, there exists an open and dense subset
* ⊆ - , such thatA ′ |* andA|* are isomorphic as O* -algebras. Thus,. → / is an
isomorphism over 5 −1 (*), which also implies that / is integral. In particular, their
normalizations are isomorphic and since . was assumed to be normal, . → / is in
fact the normalization morphism. �

Let - be a smooth variety over an algebraically closed field k of characteristic
? ≥ 0. For separable -=-covers 5 : . → - , that is ? - =, with . is normal, we
even have a structure result. To state it, we first decompose the branch locus B( 5 ),
which is a divisor in this case, as follows: let ' be an integral component of R( 5 ),
which is also a divisor. Then, the subgroup scheme � := {f ∈ -= |f(') = '} is a
cyclic subgroup scheme of -=, called the inertia subgroup scheme. The local ring
O-,' is a DVR and by [588, Lemma 1.2], there exists a uniformizer C ∈ O-,' and a
character k : � → G<, such that f(C) = k(f) · C for all f ∈ -= (in fact, k generates
the cyclic group Hom(�,G<)). The pair (�, k) is the same for every component
of 5 −1 5 ('), and thus, it is an invariant of the component 5 (') of B. From this, we
obtain a decomposition

B( 5 ) =
∑
(�,k)

��,k (0.2.12)

as a sum of divisors, where the sum runs over all cyclic subgroup schemes � of -=
and over all generators k of Hom(�,G<). Given a pair of characters j, j′ of -=,
a cyclic subgroup scheme � of -=, and a generator k of Hom(�, -=), there exist
integers yj and yj′ such that

j |� = ky� and j |� ′ = ky�′ with yj, yj′ ∈ {0, ..., = − 1}.

We use these integers to define

Y
�,k

j,j′ :=
{

0 if yj + yj′ < =,
1 else.
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Using this notation, we have the following classification of separable -=-covers.

Proposition 0.2.17 Let k be an algebraically closed field of characteristic ? ≥ 0
and let = ≥ 1 be an integer with ? - =. Let - be a smooth variety over k.

1. Let 5 : . → - be a -=-cover with . normal. Then,

Aj ⊗ Aj′ � Aj ·j′ ⊗ O-
©«

∑
(�,k)

Y
�,k

j,j′ · ��,k
ª®¬ , (0.2.13)

and these isomorphisms determine the multiplication mapsAj ⊗ Aj′ → Aj ·j′

of the O- -algebra 5∗O. �
⊕

jAj.
2. Conversely, given invertible O- -modules Aj for all j ∈ Hom(-=,G<) and

effective divisors ��,k on - that satisfy (0.2.13), then there exists a -=-cover

. := Spec
⊕
j

Aj → -

such that Aj = ( 5∗O. )j and such that the ��,k are as in the decomposition
(0.2.12) of the branch divisor B( 5 ).

Proof We refer to [588, Theorem 2.1], where everything is stated for k = C, but the
proof also works in characteristic ? > 0 if ? - =. �

In fact, one can simplify the linear equivalences (0.2.13): given a character j :
-= → G<, let 3j be its order in the character group and given (�, k) as above, let
A
j

�,k
∈ {0, ..., |� | − 1} such that j |� = k

A
j

�,k . Then, by [588, Proposition 2.1], we
have

(Aj)⊗3j � O-
©«

∑
(�,k)

3j · Aj�,k
|� | · ��,k

ª®¬ (0.2.14)

and note that each (3j · Aj�,k)/|� | is an integer. Moreover, if j1 is a character
that generates the cyclic group Hom(-=,G<), then there are isomorphisms of O- -
modules

A8 ·j1 � (Aj1 )⊗8 ⊗ O-
©«−

∑
(�,k)

[
8 · A 8 ·j1

�,k

|� |

]
��,k

ª®¬ ,
where [−] denotes the integral part of a real number. In particular, the invertible sheaf
Aj1 and the effective divisors ��,k determine the remaining invertible sheaves
Aj, up to isomorphism, and satisfy the isomorphisms (0.2.13). Thus, by Proposition
0.2.17, given an invertible sheafAj1 and effective divisors ��,k satisfying (0.2.14),
there exists an associated -=-cover of - . By [588, Corollary 3.1], the so-constructed
cover is normal if and only if every prime divisor of - occurs in

∑
(�,k) ��,k with

multiplicity at most 1. For a smoothness criterion of this cover, we refer to [588,
Proposition 3.1].
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Let us also link the case of general -=-covers back to the case of simple -=-covers:
If 5 : . → - is a normal -=-cover of a smooth variety - over an algebraically
closed fiel k, then Proposition 0.2.17 applies. Let j1 be a character that generates
the cyclic group Hom(-=,G<). Then, we may consider the simple -=-cover 5 ′ :
. ′ → - associated to (Aj1 , B), where B is the section of A= ·j1 corresponding to∑
(�,k)

= ·A j1
�,k

|� | · ��,k . A local computation (or looking at the generic point) shows
that we have a factorization . → . ′ → - , where the map . → . ′ is birational. In
particular, since . was assumed to be normal, . → . ′ is the normalization of . ′,
see also Proposition 0.2.16. Since simple -=-covers of smooth varieties are always
Gorenstein by Proposition 0.2.12, and since there exist normal but non-Gorenstein
-=-covers of smooth varieties, there do exist examples of -=-covers that are not
simple, and where the normalization map . → . ′ is non-trivial.

If k = C, then we refer to [588] for more details and proofs, as well as a description
of more general abelian covers and their singularities. In loc. cit., there is also an
algorithm that reduces the singularities of abelian covers of surfaces to cyclic quotient
singularities (Hirzebruch–Jung singularities), see also Proposition 0.4.20. For amore
detailed studies of these singularities, we refer to [113] or [455]. For another approach
to -=-covers, we refer the interested reader to [223, Section 3.5].

Having discussed -=-covers, which are analogs of Kummer extensions of fields,
we now discuss analogs of Artin–Schreier extensions of degree ?, as well as in-
separable extensions of degree ?. Let L be an invertible sheaf on a separated and
integral scheme - of characteristic ? > 0. Given a global section 0 of L⊗(?−1) , we
defined in Example 0.1.7 the finite and flat group scheme "L,0 of length ? over - .
By construction, it sits in a short exact sequence

0 → "L,0 → L
F−0−→ L⊗? → 0

of group schemes in the flat topology on - . Consider "L,0 as an abelian sheaf in the
flat topology on - . By Theorem 0.1.3, the cohomology group�1

fl (-,"L,0) classifies
isomorphism classes of "L,0-torsors in the flat topology and we will refer to such
torsors as "L,0-torsors. There are two cases (see also Example 0.1.7):

1. If 0 ≠ 0, we call such an "L,0-torsor an Artin–Schreier torsor of degree ?.
Moreover, in the specal case where L � O- and 0 = 1, we have "L � Z/?Z
and then, 5 is a Z/?Z-torsor. If 5 : . → - is a non-trivial "L,0-torsor of - ,
then 5 is generically étale (separable) and if - and . are varieties over a field k,
we will see below that the induced extension k(-) ⊂ k(. ) of function fields is a
separable Artin–Schreier extension of degree ?, whence the name.

2. If 0 = 0, we call such an "L,0-torsor an "L-torsor and drop the 0. Moreover, in
the specal case where L � O- and 0 = 0, we have "L � "? and then, 5 is an
"?-torsor. If 5 : . → - is a non-trivial "L-torsor of an integral scheme - , then
5 is not generically étale (inseparable) and if - and . are varieties over a field
k, we will see below that the induced extension k(-) ⊂ k(. ) of function fields is
purely inseparable of degree ?.
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For an explicit classification of "?- and Z/?Z-torsors of proper varieties, we refer
to Proposition 0.2.29 below.

Remark 0.2.18 Let - and . be varieties over a field k of characteristic ? > 0 and let
. → - be an "L- or "?-torsor. Then, the morphism . → - is purely inseparable
and it factors over the k-linear Frobenius morphism F : -1/? → . → - .

We now give a more explicit description of an "L,0-torsor 5 : . → - , where -
is an integral and separated scheme of characteristic ? > 0. First, let U = {*8}8 be
an open affine cover of - trivializing the invertible sheaf L, that is, L|*8 � O*8 for
all 8. Over each*8 , the scheme that represents the sheaf "L,0 is isomorphic to

"L,0 |*8 � SpecO- (*8) [C8]/(C ?8 − 08C8) → *8 ,

where 08 ∈ O- (*8) corresponds to the global section 0 via restriction to*8 and the
trivialization of L over*8 . On the intersection*8 ∩* 9 , we have C 9 = 68 9 · C8 , where
the 68 9 ∈ O- (*8 ∩* 9 )× are transition functions of the invertible sheaf L. Since 0 is
a global section of L⊗(?−1) , we find 08 = 6?−1

8 9
· 0 9 , that is, conversely, the 08 glue

together to the global section 0. From the short exact sequence (0.1.5), we infer that
an "L,0-torsor is locally over*8 given by

. | 5 −1 (*8) � SpecO- (*8) [B8]/(B?8 − 08B8 + 18) → *8 (0.2.15)

for some local sections 18 ∈ L⊗? (*8). More explicitly, we can solve the equation
18 = 2

?

8
− 0828 locally in the flat topology, so that (B8 + 28) ? − 08 (B8 + 28) = 0, which

gives an explicit trivialization of the "L,0-torsor in the flat topology. Next, we have
B8 = 68 9 B 9 + ℎ8 9 over*8 ∩* 9 for some ℎ8 9 ∈ O- (*8 ∩* 9 ) that satisfy

(B?
8
− 08B8 + 18) = 6

?

8 9
· (B?

9
− 0 9 B 9 + 1 9 ).

From this, we find

08 = 6
?−1
8 9

0 9 and 18 = 6
?

8 9
1 9 + 0 96?−1

8 9
ℎ8 9 − ℎ?8 9 . (0.2.16)

Moreover, the functions (ℎ8 9 ) form an L-valued 1-cocycle with respect to the
open affine cover U, whose image under F − B is equal to the trivial 1-cocycle
((6?

8 9
1 9 ) |*8∩* 9 − 18 |*8∩* 9 ). In terms of the exact sequence (0.1.5), the previous

computations give an explicit description of the map �1
fl (-,"L,0) → �1 (-,L).

Finally, the group scheme "L,0 acts on . via the coaction that is locally defined by

f : O*8 [B8]/(B
?

8
− 08B8 + 18) → O*8 [B8]/(B

?

8
− 08B8 + 18) ⊗O*8 O*8 [C8]/(C

?

8
− 08C8)

B8 ↦→ B8 ⊗ 1 + 1 ⊗ C8 ,

and we find - � ./"L,0. If - and . are varieties over some field k of characteristic
? > 0, then it follows from the local description above that the induced extension
of function fields k(-) ⊂ k(. ) is an Artin–Schreier extension if 0 ≠ 0 and that it is
purely inseparable of degree ? if 0 = 0.
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We say that an "L,0-torsor 5 : . → - splits if the image of the cohomology
class associated to the torsor maps to zero in the map �1 (-,"L,0) → �1 (-,L),
see also exact sequence (0.1.5). In this case, the 1-cocycle (ℎ8 9 ) is a 1-coboundary,
and we can find local sections 38 ∈ L(*8) such that ℎ8 9 = 38 |*8∩* 9 − 3 9 |*8∩* 9 . One
checks that the (3 ?

8
− 0838) form a global section of L⊗? , and after replacing 18 by

18 + 3 ?8 − 0838 , we may assume that ℎ8 9 = 0 and that the (18) glue to a global section
1 of L⊗? . Thus, we obtain global sections

0 = (08) ∈ �0 (-,L⊗(?−1) ), 1 = (18) ∈ �0 (-,L⊗?),

and note that the global section 1 is only well-defined up to replacing 1 by 1 + (3 ? −
03) for some global section 3 of L. In terms of the short exact sequence (0.1.5),
the previous computations give an explicit description of the map �0 (-,L⊗?) →
�1

fl (-,"L,0). We have the following explicit description of split "L,0-torsors: let -
be an integral and separated scheme of characteristic ? > 0, let L be an invertible
O- -module, let c : L := V(L−1) → - be the line bundle associated toL, and let C be
the tautological section of c∗L. Then, the split "L,0-torsor associated to the global
sections 0 ∈ �0 (-,L⊗(?−1) ) and 1 ∈ �0 (-,L⊗?) is given as a hypersurface
inside L

. := {C ? − c∗ (0) · C + c∗ (1) = 0} //

5

**

L = V(L−1)

c

��
-

Thus, split "L,0-torsors are similar to simple -=-covers. As in the latter case, we
denote by 8 : . ↩→ L the inclusion and set 5 := c ◦ 8.

Remark 0.2.19 From this explicit description, it also follows that a split "L-torsor
(that is, 0 = 0) is the same as a simple -?-cover associated to (L,−1). In this case,
5 : . → - is inseparable of degree ? and . admits both, a -?- and an "L-action
with quotient isomorphic to - .

Let us now return to arbitrary "L,0-torsors 5 : . → - , where - is an integral
and separated scheme of characteristic ? > 0. For simple -=-covers, we have seen
in (0.2.3) that 5∗O. is a direct sum of invertible sheaves. For "L,0-torsors, it follows
from the local description above that 5∗O. has a basis 1, G8 , . . . , G?−1

8
over *8 that

extends a global filtration of O- -modules

0 = F0 ⊂ O- = F1 ⊂ F2 ⊂ · · · ⊂ F? = 5∗O. (0.2.17)

with quotients F8+1/F8 isomorphic to L⊗(−8) . Moreover, the "L,0-torsor is split if
and only if the filtration splits, that is,

5∗O. =

?−1⊕
8=0
L⊗(−8) .
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For 0 = 0 we see again that a split "L-torsor is the same as a simple -?-cover.
However, if 0 ≠ 0, then the multiplication law of the O- -algebra 5∗O. is different
from the multiplication law of the O- -algebra of a -?-cover (one O- -algebra is
generically étale, whereas the other one is not). From the point of view of represen-
tation theory of group schemes, the reason for obtaining a direct sum decomposition
into invertible sheaves for -=-covers as in (0.2.3) is that -= is a linearly reductive and
commutative group scheme. On the other hand, "L,0 is a unipotent group scheme,
which explains the existence of a filtration with invertible subquotients as in (0.2.17)
for "L,0-torsors.

Using (0.2.16), we see that the (1, 08 , 18) glue to a section of a locally free
O- -module E of rank 3 on - , whose transition functions are given by

©«
1
08
18

ª®¬ =
©«

1 0 0
0 6

?−1
8 9

0
−ℎ?

8 9
ℎ8 96

?−1
8 9

6
?

8 9

ª®®¬
©«

1
0 9
1 9

ª®¬ . (0.2.18)

From this transition matrix we infer that E sits in a short exact sequence

0 → L⊗? → E → O- ⊕ L⊗(?−1) → 0. (0.2.19)

Then, the global section of E corresponding to (1, 08 , 18) maps to (1, 0) in O- ⊕
L⊗(?−1) , where 1 is the constant section ofO- and 0 is the global section ofL⊗(?−1)

corresponding to 08 . Moreover, if the "L,0-cover splits, then there exists a choice of
the 18 such that all ℎ8 9 are zero, and then, the 18 glue to a global section 1 ofL⊗? , the
short exact sequence (0.2.19) splits, and E is isomorphic to O- ⊕ L⊗(?−1) ⊕ L⊗? .

We now describe the branch and ramification loci of an "L,0-torsor 5 : . → - ,
where - is a smooth variety over an algebraically closed field k of characteristic
? > 0. First, let us assume that 0 ≠ 0, in which case 5 is separable, that is,
generically étale. Then, the zeros of the section 0 define a divisor B( 5 ) on - , the
branch divisor, and this is precisely the branch locus of 5 , that is, the locus over
which 5 is not étale. As in the case of -=-covers, we call the reduced pre-image
Rred ( 5 ) := 5 ∗ (B( 5 ))red the (reduced) ramification divisor. Note however, that 5 is
wildly ramified, and thus, the contribution of the ramification divisor to the canonical
sheaf of . is more complicated than the Riemann-Hurwitz formula in the tame case.
We refer to [660, Chapter IV.1] for details. We have seen above that for a separable
and simple -=-cover associated to (L, B), the branch divisor is a global section of
L⊗=. On the other hand, for a separable "L,0-torsor, the branch divisor is a global
section of L⊗(?−1) . Second, assume that 0 = 0, in which case 5 is inseparable. In
particular, 5 is everywhere ramified and as in the case of inseparable -=-covers, we
do not have a well-defined branch divisor. In any case, it follows from (0.2.15) that
Zariski locally, . is a hypersurface inside the line bundle c : L := V(L−1) → - . In
particular, . is Gorenstein and we have the following analog of Proposition 0.2.12,
whose proof we leave to the reader.

Proposition 0.2.20 Let - be a smooth variety over the algebraically closed field k
of characteristic ? > 0 and let 5 : . → - be an "L,0-torsor. Then, . is Gorenstein
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and its dualizing sheaf is given by

l. � 5 ∗ (l- ⊗ L⊗(?−1) ).

In particular, we find

 . ≡ 5 ∗ ( - ) + 5 ∗ (B( 5 ))

(where “≡” denotes numerical equivalence of Cartier divisor classes) for "L,0-
torsors, which is different from the analogous formula (0.2.10) for simple -=-covers.

Concerning the singular locus of "L,0-torsors of smooth varieties, we have the
following analog of Proposition 0.2.6 and Proposition 0.2.10.We refer to Proposition
0.4.16 for more about singularities of "L,0-torsors in characteristic ? = 2.

Proposition 0.2.21 Let - be a smooth variety over the algebraically closed field k
of characteristic ? > 0 and let 5 : . → - be an "L,0-torsor. Then, the singular
locus of . is contained in the pre-image of the scheme of zeros / (0) of the global
section 0 of L⊗(?−1) . More precisely and using the local description (0.2.15), the
differentials (B8308 − 318) restricted to / (0) glue to a global section

U 5 ∈ �0
(
/ (0), Ω1

-/k ⊗ L
⊗? ⊗ O/ (0)

)
.

The pre-image of the zero set of this section is equal to the singular locus of . .

Proof The proof is analogous to the proof of Proposition 0.2.10. By the Jacobian
criterion for smoothness, the singular locus of . over*8 is equal to the pre-image of
/ (08) ∩ / (B8308 − 318). Using (0.2.16), we compute

B8308 − 318 = (68 9 B 9 + ℎ8 9 ) 3 (6?−1
8 9

0 9 ) − 3
(
6
?

8 9
1 9 + 0 96?−1

8 9
ℎ8 9 − ℎ?8 9

)
= 6

?

8 9
(B 930 9 − 31 9 ) + 0 9 (68 9 B 936?−1

8 9
− 6?−1

8 9
3ℎ8 9 ).

Thus, after restricting to / (0) (we note that we have / (0) = - in the case 0 = 0),
we find (B8308 − 318) = 6?8 9 · (B 930 9 − 31 9 ). Thus, the differentials (B8308 − 318)
glue to a global section of Ω1

-/k ⊗ L
⊗? ⊗ O/ (0) . �

Example 0.2.22 Let - = P= = Proj k[C0, ..., C=] be projective =-space over an alge-
braically closed field k of characteristic ? > 0. Assume = ≥ 2, let : ≥ 1 be an
integer, and set L := OP= (:). Since �1 (P=,L) = 0, every "L-torsor over P= is au-
tomatically split. Thus, every "L-torsor 5 : . → P= is isomorphic to a hypersurface
in weighted projective space P(1=+1, :) given by an equation

C
?

=+1 + � (C0, . . . , C=) = 0,

where � = � (C0, ..., C=) is a global section of L⊗? � OP= (: ?). Note that this
"L-torsor is a simple -?-cover associated to (L, �). The singular locus of . lies
over the zero locus of the section U 5 from Proposition 0.2.10. For a generic global
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section � of L⊗(?:) , this singular locus consist of # ordinary double points, where
# = 2= (Ω1

P= (?:)). Using the formula for the Chern classes of tensor products (see
[242, Example 3.2.2], for example), we find

# (=, ?, :) =
=∑
8=0

(
= + 1
8

)
· (?:)=−8 . (0.2.20)

For example, we have

# (2, ?, :) = ?2:2 − 3?: + 3,
# (3, ?, :) = ?3:3 − 4?2:2 + 6?: − 4,

and in particular,

1. If ? = 2, = = 2, and : = 1, we obtain # (2, 2, 1) = 1 and then, the unique singular
point lies over the point in the plane equal to the intersection of all tangents to the
conic / (�), and . is isomorphic to a quadric cone in P3.

2. If ? = 2, = = 23 + 1, and : = 1, we obtain # (23 + 1, 2, 1) = 0 and then, .
is isomorphic to a smooth quadric hypersurface in P23+2. Moreover, Bloch and
Ekedahl proved that the only finite and inseparable morphisms. → P= of degree
?, such that . is smooth, are the "L-torsors with ? = 2, = = 23 + 1, and : = 1,
see [210, Proposition 2.5].

Having discussed "L,0-torsors, we now turn to more general covers than torsors,
at least in the case where L � O- and 0 ∈ {0, 1}. Let - be an integral and separated
scheme of characteristic ? > 0. We define a Z/?Z-cover (resp. "?-cover) to be a
finite morphism 5 : . → - of degree ? together with a Z/?Z-action on . such that
./(Z/?Z) � - (resp. with an "?-action on. such that./"? � -) via 5 . Since 5 is
a finite morphism,A := 5∗O. is a coherent O- -module and it carries a Z/?Z-action
(resp. an "?-action). In this situation, we have the following analog of Proposition
0.2.15 and Proposition 0.2.16.

Proposition 0.2.23 Let - be a regular and separated scheme of characteristic ? > 0.
Let 5 : . → - be a Z/?Z-cover or an "?-cover. Assume that . is normal. Then:

1. 5 is a flat morphism, . is Cohen–Macaulay, and there exists a global filtration of
O- -modules

0 = F0 ⊂ O- = F1 ⊂ F2 ⊂ ... ⊂ F? = O.

such that each F8 is a locally free O- -module of rank 8, and each quotient F8+1/F8
is an invertible O- -module.

2. There exists an invertible sheaf L on - , a global section 0 ∈ �0 (-,L⊗(?−1) ),
and an "L,0-torsor / → - , where / is integral and Cohen–Macaulay but not
necessarily normal, and such that 5 factors as

. → / → -,
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such that . → / is the normalization morphism. In particular, there exists an
open and dense subset* ⊆ - , such that 5 −1 (*) → * is an "L |* ,0 |* -torsor.

Proof Let � = Z/?Z or � = "? be the group scheme in question. We have an
induced �-action on A := 5∗O. . We set F? := A and it is easy to see that the
subsheaf F1 of �-invariants inside F? is isomorphic to O- . Having constructed
an O- -submodule F8 of F? with � (F8) ⊆ F8 inductively, we obtain an induced
�-action on F/F8 and let F8+1 be the pre-image of the �-invariant subsheaf of
this quotient. This gives the desired global filtration. By Proposition 0.2.3, A is a
reflexive O- -module. To show the remaining assertions of Claim (1), we replace -
and . by �-stable open affine subsets, say - = Spec � and . = Spec �. Thus, � is a
reflexive �-module and the �-action on . induces a coaction

X : � → � ⊗� k[C]/(C ? − YC) � �[C]/(C ? − YC)

with Y = 1 (resp. Y = 0) if � = Z/?Z (resp. � = "?). For every 1 ∈ �, we define
18 ∈ � for 8 = 0, ..., ? − 1 by requiring

X(1) = 10 + 11 · C + ... + 1?−1 · C ?−1 ∈ �[C]/(C ? − YC),

and then, we set X8 (1) := 18 . It follows from the axioms of an action that X0 = id�,
as well as 8!X8 = X81. In particular, we find

X(1) = 1 +
?−1∑
8=1

X81 (1)
8!
· C8 .

If �8 ⊆ � denotes the �-submodule corresponding to F8 ⊆ 5∗O. , then the previous
computation shows that �8 = Ker(X81). Moreover, �8 is the inverse image of � + �C +
...+ �C8 of �[C] under X, which shows that �8+1/�8 � �C8+1. In particular, �8 is a free
�-module of rank 8 and the quotient �8+1/�8 is a free �-module of rank 1. This also
shows that 5 is flat and that � is Cohen–Macaulay. This establishes the first claim
and we refer the interested reader to [698, Proposition 1.1] for further details.

Since F2/F1 is an invertible O- -module, also its dual L is an invertible O- -
module. In this notation, F2 is an extension of L∨ by O- . Using the multiplication
map, we obtain amorphism ofO- -modulesk : (• (F2) → A and denote byA ′ ⊆ A
the image of k, where, (• denotes the symmetric algebra. Then, (8 (F2) maps to F8+1
under k. From the surjection F2 → L∨ we obtain a surjection (8 (F2) → L⊗(−8) ,
from which we see that the O- -moduleA ′ is a successive extension of L⊗(−8) ’s for
8 = 0, ..., ? − 1. To describe A ′ better, we choose an open affine cover U = {*8}8
of - such that L|*8 � O*8 . Next, we choose B8 ∈ F2 (*8) such that its image in
L∨ generates the invertible sheaf over *8 . Then, we have X(B8) = B8 + 28C for some
28 ∈ O- (*8). Using the equality X(B?

8
) = B?

8
+ 28C ? = B?8 + Y2

?

8
C, we conclude that

B
?

8
∈ F2 (*8) and thus, there exists an equation of the form

B
?

8
+ 08B8 + 18 = 0 (0.2.21)
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for some 08 , 18 ∈ O- (*8). On the overlap*8 ∩* 9 , we have B8 = 68 9 B 9 + ℎ8 9 for some
68 9 ∈ O- (*8 ∩* 9 )× and ℎ8 9 ∈ O- (*8 ∩* 9 ). Comparing coefficients in

0 = B
?

8
+ 08B8 + 18 = 6

?

8 9
B
?

9
+ ℎ?

8 9
+ 0868 9 B 9 + 0868 9ℎ8 9 + 18

with 0 = 6?
8 9
(B?
9
+ 0 9 B 9 + 1 9 ), we find

08 = 6
?−1
8 9

0 9 and 18 = 6
?

8 9
1 9 − 0 96?8 9ℎ8 9 − ℎ

?

8 9
.

It follows that the 08 glue to a global section 0 ∈ �0 (-,L⊗(?−1) ). From (0.2.15)
and (0.2.16), we infer that / := SpecA ′→ - carries the structure of an "L,0-torsor
and we obtain a factorization . → / → - . From here, we argue as in the proof of
Proposition 0.2.16. We also refer to [698, Lemma 1.2 and Lemma 1.3] for further
details. �

Remark 0.2.24 The local sections (ℎ8 9 ) constructed in the proof give rise to a 1-
cocycle with values in L and thus, to a cohomology class in �1 (-,L). Using the
isomorphism �1 (-,L) � Ext1 (L∨,O- ), this cohomology class corresponds to the
extension class of 0 → O- → F2 → L∨ → 0. Moreover, if this class happens to
be zero, then the "L,0-torsor / → - is split. In this case, the 18 glue to a global
section 1 ∈ �0 (-,L⊗?) and the cover / → - is also globally of the form (0.2.21).

Corollary 0.2.25 Under the assumptions of the proposition assume moreover that
? = 2. Then, 5 : . → - carries the structure of an "L,0-torsor with respect to some
0 ∈ �0 (-,L).

Proof Let . = SpecA → / = SpecA ′ → - be as in the proof of Proposition
0.2.23. Since ? = 2, we have F2 = A and from the construction ofA ′ it follows that
we haveA ′ = A in this case. In particular, we may choose* = - and the statement
follows. �

Remark 0.2.26 If ? > 2 then it is not true in general that 5 : . → - is an "L,0-
torsor, that is, we cannot choose * = - in general. We refer to [698, Example 1.5]
for explicit counter-examples in dimension two.

As an application of and supplement to the above discussions, we have the
following result, which generalizes the fact that a finite and separable field extension
of degree 2 is automatically a Galois extension with group Z/2Z.

Proposition 0.2.27 Let - be a smooth variety over an algebraically closed field k of
characteristic ? ≥ 0. Let 5 : . → - be a finite morphism of degree 2 and assume
that 5 is flat or that . is Cohen–Macaulay.

1. If ? ≠ 2, then 5 is a simple -2-cover.
2. If ? = 2, then 5 is an "L,0-torsor for an invertible sheaf L and a global section
0 ∈ �0 (-,L).

3. If ? = 2 and 5 : . → - is a -2-cover, then 5 is a simple -2-cover.
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Proof By Proposition 0.2.4, 5 is flat in any case, and thus, A := 5∗O. is locally
free of rank 2 and contains O- as an O- -submodule.

First, assume that ? ≠ 2. Using the trace map tr : 5∗O. → O- , which is equal
to multiplication by 2 on O- inside 5∗O. , we obtain a direct sum decomposition of
5∗O. into O- andN := Ker(tr). It is easy to see thatN , being a direct summand of
a locally free O- -module of rank 2, is reflexive and of rank 1 and thus, an invertible
O- -module. We set L := N∨. The O- -algebra structure on 5∗O. � O- ⊕ L∨ is
given by a map of O- -modulesL∨⊗L∨ → O- , which we regard as a global section
B ∈ �0 (-,L⊗2). From this, it is easy to see that 5 : . → - is isomorphic to the
simple -2-cover defined by (L, B), which establishes Claim (1).

Now, assume that ? = 2 and assume that 5 is a -2-cover. Again, 5∗O- is
locally free of rank 2, and Proposition 0.2.15 yields a direct sum decomposition
5∗O- � O- ⊕ N into invertible sheaves as in (0.2.11). We set L := N∨ and argue
as in the ? ≠ 2-case, from which we obtain Claim (3).

Finally, assume that ? = 2. As before, we obtain a short exact sequence of locally
free O- -modules

y : 0 → O- → A → N → 0.

Since 5 is of degree ?, the trace map tr : A → O- is zero. Thus, it induces
a morphism N → O- , which we identify with a section 0 ∈ �0 (-,L), where
L := N∨. If C is a local section of A, then C2 − tr(C) lies in O- . Thus, the map
C ↦→ C2 − tr(C) gives a splitting of (F − id)∗ (y). From this, we obtain the structure of
an "L,0-torsor on 5 : . = SpecA → - , which establishes Claim (2). We refer to
[211, Proposition 1.11] for details. �

We refer to Proposition 0.4.16 for results about the singularities occurring on
such double covers . → - in the case where - is a smooth surface.

We now briefly discuss the restriction of covers and torsors to closed subsets:
let 5 : . → - be a -=-cover or an "L,0-torsor, where . is a normal and - is a
smooth variety over an algebraically closed field k of characteristic ? ≥ 0. Let � be
the group scheme acting on . . For an irreducible and closed subset / ⊆ - , we will
say that 5 −1 (/) → / is a trivial cover if there exists a �-equivariant isomorphism
5 −1 (/) → / × � over / .

1. First, assume that 5 is a simple -=-cover associated to (L, B), where L is an
invertible O- -module and B ∈ �0 (-,L⊗=) is a global section. Let L/ := L⊗O-
O/ be the restriction of L to / and let B/ be the image of B under the natural
homomorphism �0 (-,L) → �0 (/,L/ ), that is, the restriction of B to / . Then,
the restriction 5 −1 (/) → / is a simple -=-cover associated to (L/ , B/ ). The
section B corresponds to an injective homomorphismO- → L⊗= ofO- -modules,
whose cokernel is supported on an effective divisor � ⊆ - such that L⊗= �
O- (�). Let 9 : / → - be the canonical inclusion, set �/ := 9∗ (�), and identify
B/ with a rational function on / . Then, the -=-cover trivializes over / if and only
if B/ is the =-th power of some rational function on / . These equivalences hold,
for example, if / is disjoint from �.

2. Second, assume that 5 is an "L,0-torsor for some invertible sheaf L and a global
section 0 ∈ �0 (-,L⊗(?−1) ). Let V ∈ �1 (-,"L,0) be the associated cohomology
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class. We have a natural restriction map �1 (-,"L,0) → �1 (/,"L/ ,0/ ) and let
V/ be the image of V under this map. The cover 5 trivializes over / if and only if
V/ = 0. Next, assume that the "L,0-torsor is split, that is, it is globally given by
5 : . = SpecO- [B]/(B?+0B+1) → - for some global section 1 ∈ �0 (-,L⊗?).
If / is contained in the zero locus of 1, then 1/ = 0 and the cover trivializes over / .
Another example, where 5 trivializes over / , is if L/ � O/ and �0 (/,O/ ) = k.
For example, this condition is fulfilled if / is disjoint from the zero locus / (0)
of 0 and �0 (/,O/ ) = k.

Let us, moreover assume that / ⊂ - is an integral and effective Weil divisor, that is,
a prime divisor.

1. First, assume that 5 is a simple -=-cover. If ? - =, then 5 ∗ (/) = ?� for some
Weil divisor � on . if and only if / is contained in the branch locus B( 5 ) of 5 . If
= = ?, then 5 ∗ (/) = ?� for some Weil divisor � on . if and only if 5 trivializes
over / .

2. Second, assume that 5 is a split "L,0-torsor defined by some global section
1 ∈ �0 (-,L⊗?). Then, 5 ∗ (/) = ?� for some Weil divisor � on . if and only if
/ is contained in the intersection of the zero loci / (0) ∩ / (1). In particular, it is
somewhat confusing to call / (0) the branch locus of 5 since the restriction of 5
to an irreducible component / ⊆ / (0) could be a non-trivial inseparable cover
of degree ?.

For example, let 5 : . → - be a simple -=-cover, where - is a smooth surface
over an algebraically closed field k of characteristic ? ≥ 0.We assume that (?, =) = 1
and in particular, 5 is a separable morphism, that is, generically étale. (For the purely
inseparable case of degree ?, see Proposition 0.3.19.) Let (L, B) be data defining the
-=-cover.

Let � ⊂ - be an integral curve, which is not a component of the branch divisor
� = div(B). We now briefly address the question when � is split under this cover,
that is, whether 5 ∗ (�) is a reducible curve. We assume moreover that . is normal,
which implies that � is a reduced divisor. Assume that � is given by local equations
qU = 0 in some affine cover U = {*U}U∈� of - and assume that the restriction
+U := 5 −1 (*U) → *U of the cover is given locally by H=U + 0U = 0. A necessary
condition for the splitting of � ∩*U in the cover +U → *U is that the image of 08
in O(� ∩ *U) = O(*U)/(qU) is a :-th power of some element with (=, :) > 1.
Globalizing, we conclude that a necessary condition is that the restriction B� of B to
a section of L⊗= ⊗O� is equal to D⊗: , where D is a global section of some invertible
sheafM on � withM⊗: � L⊗= ⊗ O� .

Write = = 3=′, : = 3: ′, and let N := M⊗:′ ⊗ L⊗(−=′) , so that N ⊗3 � O� .
The curve � splits in the cover 5 if and only if N � O� . In particular, we see that
� always splits if Pic(�) has no torsion elements. For example, this is the case if
� � P1 or if � is a rational cuspidal curve.

Now, suppose that � does not split in the cover 5 . Then, 5 −1 (�) is an integral
curve on - and the composition of the normalization map �̃ → 5 −1 (�) with the
map 5� : 5 −1 (�) → � is an étale cover c : �̃ → � of degree 3 given by the
invertible sheaf N . We know that the ramification curve of the cover is given by a
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section C of 5 ∗ (L). Since c∗ (N) � O�̃ , we see that the restriction of C to 5 −1 (�)
defines a section of 5 ∗

�
(M).

Example 0.2.28 Let - = P2 and L = OP2 (1) in characteristic ? ≠ 2. Let � ⊂ -

be a smooth conic defined by a section B of L⊗2 and let 5 : . → - be the simple
-2-cover associated to the data (L, B). Then, . is isomorphic to P1 × P1. Let � ⊂ -
be an integral curve of degree <. Since the pre-image of a general line is a curve
of bidegree (1, 1), the pre-image 5 −1 (�) is a curve of bidegree (<, <) on . . The
covering involution f sends the divisor class of bidegree (0, 1) to the divisor class of
bidegree (1, 0). Next, let a : �̃ → � ⊂ P2 be the normalization. Then, a∗ (B) defines
a section of a∗ (L⊗2) equal to D2, where D is a section ofM withM⊗2 � a∗ (L⊗2).
We assume from now on, for simplicity, that � is smooth at the intersection points
with �.

Suppose that � splits in the cover, that is, 5 −1 (�) = �1 +�2. Then, f(�1) = �2,
so the curves �1 � �2 are both isomorphic to �. Let �1 (resp. �2) be of bidegree
(0, 1) (resp. (1, 0)) with 0 + 1 = <. The arithmetic genus of a curve of bidegree
(0, 1) is equal to (0 − 1) (1 − 1), whereas the arithmetic genus of � is equal to
1
2 ((0 + 1 − 1) (0 + 1 − 2). We see that these numbers are equal if and only if < = 1
or < = 2, that is, if and only if � is a line or a conic. In the former case, �1 and �2
are lines from different rulings and in the latter case, �1 and �2 are two conics in the
Segre embedding intersecting at two points.

In particular, a cuspidal cubic does not split although its Picard group does not
have torsion elements. This shows that no smooth conic is tangent to such curve at
three points.

We end our discussion of covers by classifying -=-torsors, "?-torsors, and Z/?Z-
torsors over proper varieties. We will also refer to torsors under -=, "? , and Z/?Z
as cyclic torsors or principal cyclic torsors.

Proposition 0.2.29 Let - be a proper variety over an algebraically closed field k
of characteristic ? ≥ 0. Then, there exist natural bĳections between isomorphism
classes of �-torsors and the following objects.

• � = -=:

1. -=-torsors 5 : . → - in the flat topology (in the étale topology if ? - =),
2. invertible sheaves L on - such that L⊗= � O- ,
3. simple -=-covers associated to data (L, B), where B is a section of L⊗= that

induces an isomorphism O- � L⊗=.

• ? > 0 and � = Z/?Z:

1. Z/?Z-torsors 5 : . → - in the flat (or étale) topology,
2. elements of the kernel of (� − id) : �1 (-,O- ) → �1 (-,O- ).

• ? > 0 and � = "?:

1. "?-torsors 5 : . → - in the flat topology,
2. elements of the kernel of � : �1 (-,O- ) → �1 (-,O- ).
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Proof By Theorem 0.1.3, -=-torsors over - are in bĳection with elements in
�1 (-, -=). Taking cohomology in the Kummer exact sequence (0.1.6) and us-
ing that �0 (-,G<) � k× as well as that k is an algebraically closed field, we find
that �1 (-, -=) is isomorphic to the =-torsion subgroup of �1 (-,G<) and thus, iso-
morphic to the =-torsion subgroup of Pic(-), see (0.1.7). Explicitly, the -=-torsor
associated to an =-torsion element L ∈ Pic(-) is a simple -=-cover associated to
(L, B) where B is a global section of L⊗= inducing an isomorphism with O- , see the
local descriptions (0.2.3) and (0.2.4). Finally, given a simple -=-cover associated to
(L, B), this cover is a -=-torsor outside the zero locus of the global section B. Thus,
if B induces an isomorphism O- � L⊗=, then it has no zeros, and the -=-cover
is a -=-torsor. This establishes the claimed bĳections for � = -=. We leave the
cases � = Z/?Z and � = "? , which follow from similar arguments applied to the
Artin–Schreier sequence (0.1.3), to the reader. �

Example 0.2.30 Let � be an elliptic curve over an algebraically closed field k of
characteristic ? > 0 and let F : � → � (?) be the k-linear Frobenius morphism. In
Example 0.1.11, we saw that F divides elliptic curves into two types: ordinary and
supersingular ones.

1. If � is ordinary, then F is a -?-torsor. In fact, F is a simple -?-torsor associated
to (L, 1), where L is a non-trivial invertible sheaf with L⊗? � O- .

2. If � is supersingular, then F is an "?-torsor. Note that F is not a split "?-torsor,
for otherwise, (0.2.17) would split, that is, we would have F∗O� � O⊕?

� (?)
, and

taking cohomology we would find ℎ1 (�,O� ) = ? · ℎ1 (� (?) ,O� (?) ) = ? ≥ 2, a
contradiction.

Remark 0.2.31 By Proposition 0.2.29, the set of -=-torsors over - is bĳective to
�1

ét (-, -=) � = Pic(-). If ? = =, then we have an alternative classification of -=-
torsors: namely, we have an exact sequence of abelian sheaves in the flat topology

0 → O×-
[?]
−→ O×-

dlog
−→ Ω-/k,

where dlog is the map 5 ↦→ dlog 5 = 5 −135 (we come back to this map in Section
0.10). By definition, the image of dlog is a subsheafΩ-/k,log ofΩ-/k, the sheaf of log
differentials. Passing to the exact sequence of cohomology, we find an isomorphism
of abelian groups

? Pic(-) � �0 (-,Ω-/k,log). (0.2.22)

Thus, the set of -?-torsors over - is also in bĳection with �0 (-,Ω-/k,log). Note
however, that this latter group of sections is not a vector space over k.

Remark 0.2.32 By Proposition 0.2.29, the set of "?-torsors over - is bĳective to
the kernel of F : �1 (-,O- ) → �1 (-,O- ). To give an alternative classification of
"?-torsors, we use the exact sequence

0 → O-
F−→ O-

3−→ Ω-/k
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of sheaves in the Zariski topology, where 3 denotes the differential. By definition,
the image of 3 is a subsheaf �Ω-/k of the sheaf Ω-/k of Kähler differentials, the
sheaf of exact differential 1-forms. Passing to the exact sequence of cohomology, we
find an isomorphism of abelian groups

�0 (-, �Ω-/k) � Ker
(
F : �1 (-,O- ) → �1 (-,O- )

)
. (0.2.23)

Thus, the set of "?-torsors over - is also bĳective to �0 (-, �Ω-/k).

As a consequence of these remarks, we obtain the following result, see also
Proposition 0.2.21.

Proposition 0.2.33 Let - be a smooth variety over an algebraically closed field k of
characteristic ? ≥ 0. Let 5 : . → - be a non-trivial -?- or "?-torsor. Then,

�0 (-,Ω-/k) ≠ 0

and . is reduced and irreducible, that is, a variety over k.

Proof By Theorem 0.1.4, the torsor 5 is also non-trivial at the generic point, that
is, induces a non-trivial extension of the function field k(-), which implies that .
is irreducible and generically reduced. By Proposition 0.2.4, . is Cohen–Macaulay
and thus, . is an integral scheme. If 5 is a -?-torsor (resp. "?-torsor), then we find
�0 (Ω-/k,log) ≠ 0 (resp. �0 (/Ω-/k) ≠ 0) by Remarks 0.2.31 and 0.2.32. In both
cases, this implies �0 (Ω-/k) ≠ 0. �

If - is a proper variety over an algebraically closed field k, then its Picard functor
is representable by a scheme, the Picard scheme Pic-/k of - , see Theorem 0.9.4
below. Anticipating this result, the first part of Proposition 0.2.29 can be rephrased
by saying that -=-torsors of - are in bĳection with homomorphisms of group
schemes (Z/=Z)k → Pic-/k. Next, �1 (-,O- ) is isomorphic to the Lie algebra of
Pic-/k, see Proposition 0.9.7. Then, the remaining parts of Proposition 0.2.29 can
be rephrased by saying that Z/?Z-torsors (resp. "?-torsors) of - are in bĳection
with homomorphisms of group schemes -?,k → Pic-/k (resp. "?,k → Pic-/k).
After these preparations, we have the following theorem of Raynaud, which is a
generalization of Proposition 0.2.29.

Theorem 0.2.34 Let - be proper variety over an algebraically closed field k and let
Pic-/k be the Picard scheme of - . Let � be a finite and commutative group scheme
over k with Cartier dual�� = H><(�,G<). Then, there exists a bĳection between

1. isomorphism classes of �-torsors over - , and
2. homomorphisms �� → Pic-/k of group schemes over k.

Proof This is a special case of [606, Proposition 6.2.1]. �

We end this section with a useful lemma of Cartan, which was originally stated
over the complex numbers, and its application to fixed loci and ramification loci.
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Lemma 0.2.35 Let � = k[[C1, . . . , C=]] and let f be a k-automorphism of � that is
of some finite order prime to ? := char(k). Then, there exists an k-automorphism g

of � such that f′ = g−1 ◦ f ◦ g acts via

f′(C8) = bDC8 , 8 = 1, . . . , =,

where b8 ∈ k∗ are roots of unity.

Proof Letm ⊂ � be the maximal ideal. Since the order off is prime to ? = char(k),
the action of f on the linear k-space) = m/m2 can be decomposed into a direct sum
of eigensubspaces with eigenvalues b1, . . . , b=. After a linear change of parameters,
we find a conjugate automorphism f′ that acts on ) by sending C̄8 = C8 +m2 to b8 C̄8 .
It acts on the parameters C8 by

C8 ↦→ b8C8 + 58 , 8 = 1, . . . , =,

where 58 ∈ m2. Composing it with the linear automorphism C8 ↦→ b−1
8
C8 , we may

assume that f acts as identity on m/m2.
Let = be the order of f. We define an automorphism

q =
1
=
(
=−1∑
:=0

f: )

and here, we use that = is coprime to ?. Since each f8 acts on ) as identity, q
acts on ) also as the identity. In particular, q is an automorphism of �. Since
f ◦ q = 1

=
(∑=−1

:=0 f
:+1 = q, we obtain that f is the identity. �

This automorphism g is called a linearization of the f-action. If linearizations
exist, then local properties of actions, their ramification loci, and their quotient
morphisms can be studied using methods from linear algebra. The previous lemma
shows that automorphisms of order prime to ? = char(k) admit such linearizations
around fixed points and after passing to completions. In fact, the action of a finite
group scheme � can be linearized around fixed points after passing to completions
if and only if � is linearly reductive, see [235, 236, 465].

Corollary 0.2.36 Let - be a smooth variety over k. Let f be an automorphism of -
that is of some finite order prime to ? = char(k). Then, the locus -f of fixed points
of f is smooth. Moreover, for any point G ∈ -f , the action of the cyclic group 〈f〉
on the tangent space )G (-) is faithful.

Proof Let G ∈ - be a fixed point of f, that is, let G ∈ -f . The local ring O-,G
is a subring of its formal completion Ô-,G , which is isomorphic to k[[C1, . . . , C=]],
where we may assume that the C8 are the images of a system D8 of local parameters
of O-,G . By the previous lemma, we may assume that f acts by D8 ↦→ b8D8 . The
local equations of -f at G are given by the vanishing of the subset of those local
parameters C 9 with b 9 = 1. In particular, -f is smooth at G.
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If some power f8 acts the identity on the tangent space )G (-), then it acts as
the identity on Ô-,G and thus, it acts as the identity on O-,G . The field of fractions
of O-,G coincides with the field of rational functions of - and then, f8 acts as
identity on this field and hence, on - . This implies that the action of 〈f〉 on )G (-)
is faithful. �

In fact, smoothness of fixed point schemes holds more generally to actions of
linearly reductive group schemes, see [235, 236].

This corollary shows in particular that the ramification locus of a -=-cover 5 :
. → - with - and . smooth and with ? - = is either a smooth divisor or empty, see
also Proposition 0.2.6 and the discussion after it.

0.3 Inseparable Morphisms and Vector Fields

In this section, we discuss the relationship between vector fields and purely insepa-
rable morphisms between normal varieties in positive characteristic. In this context,
we discuss the relationship between -?- (resp. "?-) actions and multiplicative (resp.
additive) vector fields, as well as the singularities of quotients of smooth varieties by
these vector fields. In our discussion, we put an emphasis on dimension two, the case
of surfaces. The proofs, when omitted, can be found in [210] and [626]. Moreover,
we refer to [458, Section 10] and [520, Lecture III] for two overviews.

Let ' be a commutative ring and let " be an '-module. Then, a derivation
m : ' → " is an additive map that satisfies Leibniz’s rule m ( 5 6) = 5 m (6) + 6m ( 5 )
for all 5 , 6 ∈ '. The set Der(', ") of all derivations from ' to " forms an
'-module, and we shall simply write Der(') for Der(', '). Moreover, if ' is a
(-algebra for some ring (, then a derivation m : ' → " is called (-linear if
m (B 5 ) = Bm ( 5 ) for all B ∈ ( and all 5 ∈ '. Since Leibniz’ rule implies m (1) = 0, it
follows that m (B) = 0 for all B ∈ ( if m is (-linear. We denote by Der( (', ") the set
of all (-linear derivations from ' to " . Moreover, there exists an '-module Ω'/( ,
the module of Kähler differentials, together with a universal (-linear derivation
3 : ' → Ω'/( , such that there exists a canonical and functorial isomorphism of '-
modules Der( (', ") � Hom' (Ω'/( , ") for every '-module " . In particular, we
have Θ'/( := Der( (') := Der( (', ') � Hom( (Ω'/( , '). For every m ∈ Der('),
the subset

'm := {A ∈ ' : m (A) = 0}

is, in fact, a subring of '. Moreover, assume that ' is an integral domain and let
&(') be its field of fractions. We note that the behavior of these subrings very much
depends on the characteristic of &('):
1. If &(') is of characteristic zero, then &(') is a purely transcendental extension

of the field of fractions&('m). This follows from the fact that every  -derivation
of a separable algebraic extension !/ is trivial, see [88, Chapter V].

2. If &(') is of characteristic ? > 0, then 'm contains F(') = '? as subring,
where F denotes the absolute Frobenius morphism A ↦→ A ? . In particular, every
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derivation m : ' → ' is automatically '?-linear. Thus, if ' is moreover a
finitely generated algebra over a perfect field k of characteristic ?, then every
derivation m : ' → ' is automatically k-linear (since k is perfect) and from the
inclusions '? ⊆ 'm ⊆ ', we see that both field extensions &('?) ⊆ &('m) and
&('m) ⊆ &(') are finite.

More generally, if g ⊆ Der(') is an arbitrary subset, we set

'g := {A ∈ ' |m (A) = 0 ∀m ∈ g},

which is a subring of '. If ' is of characteristic ? > 0, then it satisfies '? ⊆ 'g ⊆ '.
Let - be a variety over a perfect field k of characteristic ? > 0. A rational vector

field on - is a derivation m : k(-) → k(-), where k(-) denotes the field of rational
functions of - . By the above, m is k-linear and k(-)m contains k. For any open affine
subset * = Spec ' of - , we let 'm be as above, set *m := Spec 'm, and obtain a
morphism* → *m. Next, we choose an open affine cover U = {*8}8 of - and since
derivations extend uniquely to localizations, we can glue the {*m

8
}8 to a scheme -m,

which is again a variety over k. It is easy to see that -m does not depend on the
choice of cover U and it is called the quotient of - by the rational vector field m.
Moreover, it comes with a dominant and k-linear morphism

cm : - → -m.

More generally, if g is a subset of Der(k(-)) and * = Spec ' is an open affine
subset of - , we set 'g := {A ∈ ' |m (A) = 0 ∀m ∈ g} and *g := Spec 'g. As
before, these glue to a scheme -g and we obtain a dominant k-linear morphism
cg : - → -g. If - is normal, then it is easy to see that also -m and -g are normal.

Given a finite and purely inseparable field extension ! ⊆  , there exists an
integer = ≥ 1 such that  ?= ⊆ ! ⊆  . The minimal such = is called the height of
the field extension. We define the height of a finite and purely inseparable morphism
c : - → . of varieties over a perfect field k to be the height of the induced
field extension k(. ) ⊆ k(-). For example, the =-fold k-linear Frobenius morphism
F= : - → - (?

=) is a finite and purely inseparable morphism of degree ?= ·dim(- )

and height =.

Lemma 0.3.1 Let c : - → . be a finite morphism between normal varieties over
a perfect field k of characteristic ? > 0 and assume that the induced extension
k(. ) ⊆ k(-) of function fields is purely inseparable of height =. Then, there exists
a factorization

F= : - c−→ . → - (?
=) ,

where F denotes the k-linear Frobenius morphism.

Proof If * = Spec � ⊆ . is an open affine subset, then also + = c−1 (*) ⊆ - is
open and affine, say+ = Spec �. Also, k(-) and k(. ) are the fields of fractions of �
and �, respectively. Next, the ring extension � ⊆ k(. )∩� is finite as a �-module and
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since both rings are normal and have the same field of fractions, they are equal. Using
the equality �?= = k(-) ?= ∩ �, we obtain inclusions �?= ⊆ � ⊆ � and passing to
spectra, we obtain a factorization F= : + → * → + (?

=) of c |+ . Globalizing these
observations, the lemma follows. �

For example, if - is a normal variety over k, then the quotient morphisms cm and
cg, if non-trivial, are finite and purely inseparable morphisms of height 1 and degree
?8 for some 1 ≤ 8 ≤ dim - .

In order to classify finite morphisms of height 1 between normal varieties, we
need more structure. We recall that given a commutative ring ' and two derivations
X, [ : ' → ', their composition X ◦ [ is usually not a derivation. However, the Lie
bracket [X, [] := X ◦ [ − [ ◦ X is again a derivation, which turns Der(') into a Lie
algebra. Moreover, if ' is of characteristic ? > 0, then also the ?-fold composition
m ? := m◦· · ·◦m, sometimes also denoted by m [?] , is a derivation, which turnsDer(')
into a ?-Lie algebra or restricted Lie algebra. We encountered this structure already
in Section 0.1 and refer to [342, Chapter V.7] for details and precise definitions.

Lemma 0.3.2 If - be a 3-dimensional variety over a perfect field k of characteristic
? > 0, then Der(k(-)) is a 3-dimensional k(-)-vector space.

Proof If  = k(C1, ..., C3), then Der( ) is a 3-dimensional  -vector space generated
by the derivations m

mC8
, 8 = 1, ..., 3. Since - is 3-dimensional, there exists a finite and

separable field extension  ⊆ k(-). Using Ωk(- )/ = 0 and the relative cotangent
sequence, we find Ωk(- )/k � Ω /k ⊗ k(-), from which the assertion follows. �

Given a ?-Lie algebra g over a field  of characteristic ? > 0, a sub-?-Lie algebra
of g is a  -subvector space that is closed under Lie brackets and ?-powers. It is easy
to see that every derivation m ∈ g is contained in a unique smallest sub-?-Lie algebra
of g, namely the  -vector space generated by the m ?8 , 8 = 0, 1, 2, .... If this smallest
sub-?-Lie algebra is one-dimensional, then the derivation m is called ?-closed, which
is equivalent to saying that there exists a 5 ∈  such that m ? = 5 ·m. In the special case
where 5 = 1 (resp. 5 = 0), we say that the ?-closed vector field m is of multiplicative
type (resp. of additive type). The terminology will become clear from Example
0.3.6 below. Now, let us turn to the special case where g = Der( ) = Der ? ( ).
Then, associated to a subset + ⊆ g, we have the associated height 1 extension
 ? ⊆  + ⊆  . Conversely, given a height 1 extension  ? ⊆ ! ⊆  , then the set
{m |m (G) = 0 ∀G ∈ !} ⊆ g turns out to be a sub-?-Lie algebra of g. By Jacobson’s
theory of field extensions that are purely inseparable and of height 1 [343], which
is an analog of Galois theory for purely inseparable field extensions, this establishes
a bĳection between height 1 extensions of  ? ⊆ ! ⊆  and sub-?-Lie algebras of
g = Der( ). Let us note one major difference to Galois theory: given a finite and
separable field extension !/ , it follows from Galois theory that there is only a finite
number of intermediate fields  ⊆ � ⊆ !. This is not true for inseparable height
one extensions, as the following example shows.

Example 0.3.3 Let k be a perfect field of characteristic ? > 0 and let  := k(C1, C2),
which is the function field of A2 and P2 over k. Then,  ? = k(C ?1 , C

?

2 ) and the
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extension  ? ⊆  is finite and purely inseparable of degree ?2. For every _ ∈  ? ,
we set

m_ :=
3

3C1
− _ · 3

3C2
∈ g := Der( ),

which is an additive vector field, that is, m ? = 0. Thus, h_ := 〈m_〉 is a one-
dimensional sub-?-Lie algebra of the two-dimensional Lie algebra g, and !_ :=
 m_ �  ? (_C1 + C2). In particular, we find infinitely many distinct intermediate
fields between  ? and  that are parametrized by _ ∈  ? .

If - is a smooth variety over a perfect field k of characteristic ? > 0, then the previ-
ous discussion globalizes as follows: letΘ- := Θ-/k be the tangent sheaf of - . Then,
a ?-closed foliation or an integrable foliation, on - is a saturated O- -submodule
F of Θ- that is closed under Lie brackets and under the ?-power operation. We
recall that being saturated means that Θ-/F is a torsion-free O- -module. Arguing
as in the proof of Lemma 0.3.1, we obtain the following correspondence and refer
to [343], [210], and [626] for details.

Proposition 0.3.4 Let - be a normal variety over a perfect field k of characteristic
? > 0. Then, there exists a bĳection

{sub-?-Lie-algebras of Der(k(-)) } ↔
{
height 1 morphisms
of normal varieties

}
g ↦→ - → -g → - (?) .

Moreover, if - is smooth over k, then there exists a bĳection

{?-closed foliations on - } ↔, {sub-?-Lie algebras of Der(k(-))}.

Under this correspondence, the identity morphism of - corresponds to the zero
sub-?-Lie algebra of Der(k(-)) and to the zero subsheaf of Θ- if - is smooth.
On the other extreme, the k-linear Frobenius morphism F : - → - (?) corresponds
to Der(k(-)), considered as ?-Lie subalgebra of itself, and to Θ- , considered as a
?-closed foliation of itself, if - is smooth.We refer to [210] for a description of finite
and purely inseparable morphisms of height = in terms of higher order differential
operators.

In general, it is difficult to write down nonzero ?-closed rational vector fields
explicitly. We will do it in some examples later in Volume II, where we will construct
Enriques surfaces as quotients of K3 surfaces by rational vector fields.

If we identify global vector fields on a smooth variety - with their associated
derivations of k(-), then we have the following useful source of ?-closed rational
vector fields due to Rudakov and Shafarevich, see [626, Lemma 1].

Lemma 0.3.5 Let - be a smooth and proper variety over an algebraically closed
field k of characteristic ? > 0. If �0 (-,Θ-/k) ≠ 0, then there exists a 0 ≠ m ∈
�0 (-,Θ-/k) with m ? = 0 or with m ? = m. In particular, there exists a non-trivial
and ?-closed vector field.
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Proof Let g := 〈m ?8 , 8 = 0, 1, . . .〉 be the smallest sub-?-Lie algebra of �0 (-,Θ-/k)
containing m, which is a finite–dimensional k-vector space since the latter is. Then,
g is an abelian ?-Lie algebra and we set g0 := Ker(G ↦→ G?), which is a ?-Lie
subalgebra of g. If g0 ≠ {0}, then there exists a 0 ≠ [ ∈ g0 with [? = 0 and we
are done. Otherwise, the ?-power map on g is injective and thus, bĳective since k
is perfect. By [343, Chapter V, Theorem 13], there exists a basis [1, ..., [= of g such
that [?

8
= [8 for all 8. From this, the assertion follows. �

Let us recall that a vector field m with m ? = m (resp. m ? = 0) is said to be of
multiplicative type (resp. of additive type).Moreover, if ! ⊆  is a purely inseparable
field extension of degree ?, then there exists an G ∈  such that  = ! (G). It is easy
to see that every derivation m ∈ Der! ( ) is determined by m (G) ∈  . Moreover,
if m (G) = 0 ∈  ×, then m ′ := 0−1m ∈ Der! ( ) satisfies m ′(G) = 1, which implies
m ′? = 0. Thus, every non-zero ?-closed derivation of Der! ( ) generates a one-
dimensional sub-?-Lie algebra, which also contains a non-zero derivation of additive
type. However, note that if m ∈ �0 (-,Θ- ) is as in the above lemma, then the just-
constructed additive rational vector field m ′ of Der(k(-)) need not be regular, that
is, it need not lie in �0 (-,Θ- ). The following example is taken from [517] and
connects additive and multiplicative vector fields to actions of infinitesimal group
schemes.

Example 0.3.6 Let k be a perfect field of characteristic ? > 0 and let 2 ∈ {0, 1}.
Consider the non-reduced scheme of length ? over k

�2 := Spec k[Y]/(Y?) � Spec k[C]/(C ? − 2) via Y ↦→ C − 2,

which becomes a group scheme over k via the comultiplication C ↦→ C ⊗ C and
coinverse C ↦→ −C if 2 = 0 and C ↦→ C−1 if 2 = 1. In fact, we have isomorphisms
�0 � "? and �1 � -? of group schemes over k, see Example 0.1.7 and Example
0.1.8. Next, let ' be a k-algebra and set - := Spec '. To give an action�2 × - → -

is equivalent to giving a homomorphism of k-algebras

W : ' → ' ⊗k k[C]/(C ? − 2), A ↦→
?−1∑
8=0

W8 (A)Y8 ,

where the W8 : ' → ' are k-linear maps satisfying certain axioms that we will now
describe depending on 2.

1. First, suppose that 2 = 0, that is, �2 � "? . Then, the axioms of the action imply

?−1∑
8=0

?−1∑
9=0

m 9 (m8 (A))Y 9 ⊗ Y8 =
?−1∑
8=0

m8 (A) (Y8 ⊗ 1 + 1 ⊗ Y8)

and then, we obtain the conditions

m8 =
1
8!
m81, 8 = 0, . . . , ? − 1, and m

?

1 = 0.
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Conversely, a collection of k-linear functions m8 : ' → ' satisfying the previous
conditions defines an action "? × - → - . Note that the conditions imply that m1
determines all m8 with 8 ≥ 2.

2. Second, suppose that 2 = 1, that is, �2 � -? . In this case, the axioms of the
action imply

?−1∑
8=0

?−1∑
9=0

W 9 (W8 (A))Y 9 ⊗ C8 =
?−1∑
8=0

W8 (A)C8 ⊗ C8 ,

and then, comparing the coefficients at C 9 ⊗ C8 , we obtain that

W8 ◦ W8 = W8 , W8 ◦ W 9 = 0 if 8 ≠ 9 , and
?−1∑
8=0

m8 = id' .

Conversely, a collection of k-linear functions W8 : ' → ' satisfying the previous
conditions defines an action -? × - → - . If we want to compute the m8 , which
are functions in Y from the functions W8 , which are functions in C, then we need
to substitute Y = C − 1 and we find

m0 = id, m1 = W1 + 2W2 + ... + (? − 1)W?−1, ... , m?−1 = W?−1.

We refer to [338, page 113] for details, where one also finds the computation that
m1 satisfies m ?1 = m1, as well as the verification of the fact that m1 determines all
m8 with 8 ≥ 2.

Next, we compute

m (AB) = m (A)·m (B) =
(
?−1∑
8=0

m8 (A)Y8
)
·©«
?−1∑
9=0

m 9 (B)Y 9
ª®¬ = AB+(Am1 (B) + Bm1 (A)) Y+· · · ,

which implies that m1 is a k-linear map satisfying m1 (AB) = Am1 (B) + Bm1 (A). Thus,
m1 is a derivation of ' and we have seen above that m ?1 = 2 · m1. Thus, we obtain
bĳections

{ -?-actions on -} ↔ {derivations in Der(') of multiplicative type},
{"?-actions on -} ↔ {derivations in Der(') of additive type}.

This result also fits with the restricted Lie algebras of -? and "? , which we have
seen in Example 0.1.16. We refer to [517] and [710] for further details.

Globalizing this affine example, we obtain the following result, whose proof we
leave it the reader.

Proposition 0.3.7 Let - be a scheme over a perfect field k of characteristic ? > 0
and let � be the group scheme -? (resp. "?) over k.
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1. Given an action � × - → - , then the quotient 5 : - → . := -/� exists and
there exists a regular vector field m of multiplicative type (resp. additive type)
such that 5 coincides with the quotient cm of - by m.

2. Conversely, given a regular ?-closed vector field m of multiplicative type (resp.
additive type), on - , there exists a �-action � × - → - , such that the quotient
of - by this action coincides with the quotient cm of - by m.

Note that the usual assumption that any orbit of � must be contained in an open
affine subset is not needed in this case because �, being an infinitesimal group
scheme, leaves invariant any affine open subset.

Example 0.3.8 Let k be a perfect field of characteristic ? > 0.

1. If - = P1
k
, then Θ- � OP1 (2) and ℎ0 (-,Θ- ) = 3. If m is a regular vector field of

multiplicative type, then it can be written in appropriate coordinates as G 3
3G

and
it has two distinct zeros, namely, G = 0 and G = ∞. If m is of additive type, then it
can be written in approriate coordinates as 3

3G
and it has a double zero at G = ∞.

More precisely, we have an isomorphism of abelian restricted Lie algebras

�0 (-,Θ- ) � g0 ⊕ g1 with g0 :=
〈
3

3G
, G2 3

3G

〉
and g1 :=

〈
G
3

3G

〉
,

where the ?-power map on g0 is zero. Since - admits both multiplicative as well
as additive vector fields, the k-linear Frobenius morphism F : - → - (?) can be
written as a quotient by -?-actions, as well as by "?-actions.

2. If � is an elliptic curve over k, then Θ� � O� and ℎ0 (�,Θ� ) = 1. Thus, up to
scaling by k, there exists precisely one regular vector field, and it is automatically
?-closed. In particular, �0 (�,Θ� ) can be generated by a vector field m that is
either of multiplicative type or of additive type. In the first case, the k-linear
Frobenius morphism F : � → � (?) is the quotient by a -?-action and � is
ordinary, whereas F is the quotient by an "?-action and � is supersingular in the
second case. See also Example 0.1.11 and Example 0.2.30.

3. If - is a smooth and proper curve of genus 6 ≥ 2 over k, then �0 (-,Θ- ) = 0
and thus, there exist neither -?-actions nor "?-actions on - that are non-trivial.
On the other hand, a simple -?-cover 5 : . → - is given by an invertible sheafL
of some degree 3 and a section B ∈ �0 (-,L⊗?). By Proposition 0.2.12, we have
l. = 5 ∗ (l- ⊗ L⊗(?−1) ), which is an invertible sheaf of degree 2?0 (. ) − 2 =
?(26 − 2 + (? − 1)3) on . , where ?0 (. ) denotes the arithmetic genus of . . The
singular points of . lie over the zeros of B, and thus, for 3 � 0 and a generic
choice of B, one expects. to have (?3 +1−6) ordinary nodes. The normalization
a : .̃ → . is a smooth curve of genus 6(. ) = 6, since the composition 5 ◦ a
coincides with the k-linear Frobenius morphism F : .̃ → .̃ (?) = - . Thus, if
6 ≥ 2, then we obtain a -?-action on the non-normal curve . with quotient - ,
but this action does not extend to the normalization .̃ , since the latter has no
nonzero global vector fields.
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Next, we turn to singularities of vector fields and their quotients. Let m be a
rational vector field on a smooth and =-dimensional variety - over a perfect field k
of characteristic ? > 0. If G ∈ - is a closed point and C1, . . . , C= ∈ O-,G are local
coordinates at G, then m can be written locally around G in the form

m = kG ·
=∑
8=1

q8,G
3

3C8
with kG ∈ k(-) and q8,G ∈ O-,G for 8 = 1, ..., =,

(0.3.1)
such that (q1,G , ..., q=,G) ⊆ O-,G is an ideal of height ≥ 2. The functions kG are
local equations of a Cartier divisor � = div(m) of - , called the divisor of m. The
ideals (q1,G , . . . , q=,G) define a closed subscheme / of - of codimension ≥ 2, the
scheme of non-divisorial zeros of m. If dimG / = 0, we say that G is an isolated zero
of m and, if dim / = 0, then / is called the scheme of isolated zeros. For example,
if - is a surface, then / is empty or zero-dimensional. For an isolated zero G ∈ - of
m, the dimension

multG m := dimk O-,G/(q1,G , . . . , q=,G)

is called themultiplicity of the isolated zero. The following theorem relates the zeros
of m to the singularities of the quotient -m. It is due to Rudakov and Shafarevich and
we refer to [626, Theorem 1 and Theorem 2] for details and proof.
Theorem 0.3.9 Let - be a smooth variety over an algebraically closed field k of
characteristic ? > 0. Let 0 ≠ m ∈ �0 (-,Θ-/k) be a ?-closed vector field, let / ⊂ -
be its scheme of non-divisorial zeros, let cm : - → -m be the quotient map, and let
G ∈ - be a closed point.
1. If G ∉ / , then cm (G) ∈ -m is a smooth point on the quotient.
2. Let m be of multiplicative type. Then, / is a smooth subscheme of - . More

precisely, if G ∈ / , then there exist local parameters C1, ..., C= and a function k in
the completion Ô-,G , such that

m = k

(
=∑
8=1

U8 · C8
3

3C8

)
with U8 ∈ F? for all 8.

In particular, all isolated zeros of m are of multiplicity 1.
The following result slightly extends a result of Hirokado [304, Theorem 2.3] and

describes the singularities of quotients of smooth varieties by multiplicative vector
fields. These singularities are examples of cyclic quotient singularities, and we will
come back to them in Proposition 0.4.20.
Proposition 0.3.10 Let k be a perfect field of characteristic ? > 0 and consider the
multiplicative vector field m =

∑=
8=1 U8 ·C8 33C8 with U8 ∈ {1, ..., ?−1} on k[[C1, ..., C=]].

Then,

k[[C1, ..., C=]]m = k[[CV1
1 · · · C

V=
= | V1 ≥ 0, ..., V= ≥ 0,

=∑
8=1

U8V8 ≡ 0 mod ?]],
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which is a description in terms of toric geometry of the cyclic quotient singularity of
type 1

?
(U1, ..., U=).

Proof It is easy to see that the right-hand side is contained in the left-hand side.
Both sides are normal rings and their fields of fractions are of degree ? over the field
of fractions of k[[C1, ..., C=]]. From this, the assertion follows, see also the proof of
Proposition 0.4.20. �

Example 0.3.11 In dimension = = 2 the quotient of ' = k[[C1, C2]] by the multiplica-
tive vector field m := C1 3

3C1
− C2 3

3C2
is a singularity of type 1

?
(1, ? − 1), which is a

rational double point singularity of type �?−1, see Proposition 0.4.20.

Remark 0.3.12 The notion of a cyclic quotient singularity has to be taken with a
grain of salt in positive characteristic:

1. Quotients of smooth varieties by the cyclic group schemes Z/?Z or "? may
lead to very complicated singularities that are not of the above type, and that are
not even rational. The problem is that these two group schemes are not linearly
reductive, and we refer to [468] and Section 0.4 for details. We refer to [480] and
[481] for the study of wild actions of groups Z/?Z and, in particular, for some
information on a resolution of the quotient singularities.

2. Quotients of smooth varieties by multiplicative vector fields correspond to quo-
tients by -?-actions, see Example 0.3.6. Since -? is linearly reductive, the
quotients behave much better and Proposition 0.3.10 classifies the occurring sin-
gularities.

Example 0.3.13 Not much is known about singularities occurring on quotients by
vector fields of additive type, even for smooth surfaces. Let ' = k[[C1, C2]], where k
is algebraically closed of characteristic ? = 2, and let m = 5 (C1) 33C1 + 6(C2)

3
3C2

be a
?-closed vector field. Then, we know from [456] that the singularity of k[[C1, C2]]m
is:

1. a rational double point of type �1 if 5 , 6 both have a simple zero,
2. a rational double point of type �4 if 5 , 6 both have a zero of order 2,
3. a rational double point of type �8 if 5 has a zero of order 2 and 6 has a zero of

order 4,
4. an elliptic singularity if 5 , 6 both have a zero of order 4. In fact, this singularity

is of type (19)0 with respect to Wagreich’s classification [729], see also [456].

In particular, the quotient may not have rational singularities. On the other hand, if
k is algebraically closed of characteristic ≠ 2 and if � is a finite flat group scheme
of length 2 acting on ' = k[[C1, C2]], then � � -2,k � (Z/2Z)k, the �-action can
be linearized, and the quotient '� is is either smooth (if the fixed locus of � is not
isolated) or a rational double point of type �1 (if the fixed locus of� is isolated). We
refer to Section 0.4 for more about rational double points, especially Remark 0.4.33,
as well as to [11] and [10] for some general results on quotients by vector fields.
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Having studied ?-closed vector fields and some of their singularities locally, let
us now globalize our discussion. Let - be a smooth and =-dimensional variety over
a perfect field k of characteristic ? > 0 and let m be a global regular vector field on
- with divisor � = div(m). As above, we choose for every closed point G ∈ - local
coordinates C1, ..., C= ∈ O-,G and write m locally as kG ·

∑=
8=1 q8,G

3
3C8

as in (0.3.1).
We use this to define a homomorphism of O- -modules

m : O- (�) → Θ-

by locally defining it as 1 ↦→ ∑=
8=1 q8,G

3
3C8

. We set F := m (O- (�)). For every G ∈ - ,
the ideal (q1,G , ..., q=,G) ⊆ O-,G is of height ≥ 2, which implies that the quotient
Θ-/F has no torsion in codimension 1 and is of projective dimension ≤ 1. Therefore,
this quotient is torsion-free, that is, F ⊆ Θ- is a saturated subsheaf. Being of rank
1, it is automatically closed under the Lie bracket. Thus, if � is ?-closed, then F is
a ?-closed foliation of rank one.

Next, let 5 := cm : - → . := -m be the quotient by the rational vector
field �. We have seen above that . is a normal variety over k. It is easy to see
that the image of F := m (O- (�)) in 5 ∗ (Θ. ) is zero, that is, F is contained
in Θ-/. := Ker(Θ- → 5 ∗ (Θ. )). (If . is not smooth over k, then Θ. denotes
H><(Ω. /k,O. ), which may not be a locally free O. -module.) If m is ?-closed,
then we have just seen that F ⊆ Θ- is a ?-closed foliation of rank one. In this case,
the degree of 5 is equal to ? and Ω-/. and Θ-/. both are O- -modules of rank 1.
Moreover, since F is contained inΘ-/. , and both are saturated subsheaves ofΘ- of
rank 1, they are equal, and we conclude that there is an isomorphism of O- -modules

F = O- (�) � Θ-/. .

Since the k-linear Frobenius morphism F : - → - (?) factors over 5 , there exists a
morphism 6 : . → - (?) such that F = 6 ◦ 5 , see also Lemma 0.3.1. Moreover, the
inclusion F ⊆ Θ- extends to an exact sequence of O- -modules

0→ F → Θ-/k → 5 ∗Θ. /k → 5 ∗ (6∗ (Θ- (?) /k)) = F∗Θ- (?) /k.

In the case where the quotient . is also smooth over k, one can show that the image
of the last homomorphism is equal to F∗f∗F = O- (?�), where f : - (?) → - is
the canonical (non k-linear) isomorphism. In this case, we obtain an exact sequence

0→ O- (�) → Θ-/k → 5 ∗Θ. /k → O- (?�) → 0. (0.3.2)

We refer to [210, Corollary 3.4] for details. Taking determinants, we obtain the
following formula for the canonical sheaf from [626, Corollary 1].

Proposition 0.3.14 Let m be a rational and ?-closed vector field on a smooth variety
- over a perfect field k of characteristic ? > 0. Let 5 := cm : - → . := -m be the
quotient morphism and assume that . is smooth over k. Then, 5 is a finite morphism
of degree ? and

 - = 5 ∗ ( . ) + (? − 1)�,
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where � := div(m) denotes the divisor of zeros of m.

Remark 0.3.15 One should compare this formula with the formula for the canonical
sheaf of simple -?-covers and "L,0-torsors, see Proposition 0.2.12 and Proposition
0.2.20. It follows that O- (�) is isomorphic to 5 ∗ (L), where L is the invertible
sheaf discussed in connection with these covers. Moreover, one should also compare
this formula with the case of cyclic covers that are generically étale: then, the
invertible sheaf O- (�) looks like the class of some ramification divisor. However,
we stress that in the purely inseparable case there is no distinguished section, that
is, something like a well-defined ramification divisor - inseparable morphisms are
everywhere ramified. (See the discussion after Proposition 0.2.6).

Let us give an application of this formula, which we will need in the next chapter.
We refer to [626, §2, Corollary 3] for further details and to Section 1.1 for the
definition of the Kodaira dimension ^(-) of a smooth and proper variety.

Corollary 0.3.16 Let - be a smooth and proper variety over a perfect field k of
characteristic ? > 0 and let 0 ≠ m ∈ �0 (-,Θ- ). Let . := -m be the quotient of
- by m and assume that there exists a resolution of singularities 6 : .̃ → . (for
example, dim(. ) ≤ 2). Then, we have

ℎ0 (.̃ ,O
.̃
(= 

.̃
)) ≤ ℎ0 (-,O- (= - ))

for all = ≥ 0. In particular, we have ^(.̃ ) ≤ ^(-).

Proof Let / ⊂ - be the closed subscheme of non-divisorial schemes of m, which is
of codimension ≥ 2, and let * := -\/ ⊆ - . Then, + := *m ⊆ . is a smooth, open,
and dense subset. In particular, +̃ := 6−1 (+) → + is a birational morphism between
smooth varieties, from which we deduce inclusions and equalities for all = ≥ 0

�0 (.̃ ,O
.̃
(= 

.̃
)) ⊆ �0 (+̃ ,O

+̃
(= 

+̃
)) = �0 (+,O+ (= + )).

Applying the previous proposition, we find the inclusions and isomorphisms

(cm)∗ : �0 (+,O+ (= + ))) ↩→ �0 (*,O* (= * )) � �0 (-,O- (= - )),

where cm : - → . denotes the quotient projection and where we use the fact that -
is smooth and the complement of* in - is of codimension ≥ 2. �

Remark 0.3.17 The following examples show that the assumption that m is a regular
vector field in Corollary 0.3.16 is crucial: let k be an algebraically closed field of
characteristic ? > 0, let - := P2

k
, and let 5 be a generic global section ofL := O- (=)

for some = ≥ 1. Let . → - be the simple -?-cover of - associated to (L, 5 ), see
also Example 0.2.22. Then, k(-) ⊂ k(. ) is a purely inseparable field extension
of degree ? and k(. ) ⊂ k(-) (1/?) . These field extensions correspond to finite and
purely inseparable morphisms of degree ?

- (1/?) � P2 → . → - = P2,
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whose composition is the k-linear FrobeniusmorphismF : - (1/?) → - . The surface
. arising this way is called a Zariski surface. This class of surfaces was introduced by
Zariski in [740] in connection with Castelnuovo’s rationality criterion and in order to
construct unirational surfaces that are not rational. If = � 0 and since 5 is assumed
to be generic, then one can show that . is a normal surface and that the minimal
resolution of singularities of . is a surface of general type, see also [66], [68], and
[304]. In particular, we have the Kodaira dimension ^(-) = ^(- (1/?) ) = −∞ and
^(. ) = 2. On the other hand, by Proposition 0.3.4, there exists a rational vector field
m on - (1/?) such that the morphism - (1/?) → . is the quotient morphism by m. This
shows that Corollary 0.3.16 is wrong for rational vector fields that are not regular.
For example, we will meet Enriques surfaces that are Zariski surfaces in Proposition
1.2.9.

For the remainder of this section, let - be a smooth surface over a perfect
field k of characteristic ? > 0 and let m be a ?-closed rational vector field. Let
� := div(m) be its divisor of zeros and let F := O- (�) ⊂ Θ- be the associated
?-closed foliation. Since - is two-dimensional, the closed subscheme / of non-
divisorial zeros of m is zero-dimensional, that is, all these zeros are isolated. Next,
the quotient sheaf Q := Θ-/F is torsion-free and generically of rank one. Thus, its
dual Q∨ := H><(Q,O- ) is reflexive and generically of rank one. Since all local
rings of - are regular local rings, it follows thatQ∨ is in fact an invertible sheaf. Then,
alsoM := (Q∨)∨ is an invertible sheaf, and we have a canonical injective morphism
Q →M of O- -modules. In fact, a local computation reveals that Q ⊗M∨ ⊆ O- is
the ideal sheaf I/ of the scheme / of non-divisorial zeros of m. Thus, we find

Θ-/F = Q � I/ (M) = I/ ⊗O- M

and refer to [304] or [373] for details, computations, and different approaches.

Proposition 0.3.18 Let m be a rational vector field on a smooth and proper surface
- over a perfect field k of characteristic ? > 0, let � := div(m) be its divisor of zeros,
and let / be its scheme of isolated zeros. Then, there exists a short exact sequence

0 → O- (�)
m−→ Θ-/k → I/ (− - − �) → 0. (0.3.3)

Moreover,

lg(/) := dimk �
0 (-,O/ ) = 22 (-) + � ·  - + �2, (0.3.4)

where 22 (-) denotes the second Chern number, that is, the ℓ-adic Euler character-
istic of - .

Proof By the above discussion, we find a short exact sequence like (0.3.3), but with
quotient I/ (M). Taking determinants, we find an isomorphismM � I/ (− - −�)
of O- -modules. The formula for lg(/) follows from standard properties of Chern
classes of coherent sheaves and we refer to [373, Proposition 2.1] for details. �
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We keep the notations and assumptions from the previous proposition and assume
moreover that k is algebraically closed. If � is an integral curve on - , then � is said
to be an integral curve with respect to m if � is tangent to m at the generic point
of �. More explicitly: for a closed point G ∈ � ⊂ - we choose local coordinates
C1, C2 ∈ O-,G . Then, locally around G, we have

m = kG ·
(
q1,G

3

3C1
+ q2,G

3

3C2

)
and � = { 5 = 0},

where q1,G , q2,G , 5 ∈ O-,G , kG ∈ k(-), and where the ideal (q1,G , q2,G) ⊆ O-,G
is of height ≥ 2, see (0.3.1). We set m ′ := k−1

G · m = q1,G
3
3C1
+ q2,G

3
3C2

. Then, � is
integral with respect to m if and only if m ′( 5 ) is zero in O-,G/( 5 ). If we take an open
subset* containing smooth points of � if we choose 5 to be a local parameter in -
at G ∈ �, then, after dualizing the exact sequence

0→ I�/I2
�

3 5
→ Ω1

*/k ⊗ O� → Ω1
�/k → 0,

we see that � is an integral curve if and only the projection of m to the normal sheaf
N� = (I�/I2

�
)∨ is equal to zero.

After these preparations, we have the following result of Rudakov and Shafarevich
from [626, Proposition 1] that concerns intersection numbers, pull-backs, and push
forwards.
Proposition 0.3.19 Let m be a rational and ?-closed vector field on a smooth and
proper surface - over an algebraically closed field k of characteristic ? > 0. Let
5 := cm : - → . := -m be the quotient morphism, which is purely inseparable of
degree ?, and assume that . is smooth over k. Let � ⊂ - be an integral curve and
set � ′ := 5 (�). Then,

5 ∗ (� ′) = �, 5∗ (�) = ?� ′, �2 = ?� ′2 if � is integral with respect to m,
5 ∗ (� ′) = ?�, 5∗ (�) = � ′, ?�2 = � ′2 else.

Next, we study the effect of blow-ups on the isolated zeros of a ?-closed vector
field on a smooth surface - over an algebraically closed field k of characteristic
? > 0, and we refer to [304, Remarks 2.4] for further information. As before, let
� = div(m) be the divisor of zeros and / be the scheme of isolated zeros of m. We
fix a closed point G ∈ / , let 6 : -̃ → - be the blow-up in G, let � ⊂ -̃ be the
exceptional divisor of 6, and let m̃ be the rational vector field induced by m on -̃ .
Let /̃ be the scheme of isolated zeros of m̃ and since 6 is an isomorphism outside � ,
there exists some integer A ≥ 0 such that div(m̃) = 6∗�+A� . Dualizing the cotangent
sequence, we obtain an inclusion Θ

-̃
→ 6∗Θ- , whose cokernel is supported on � .

In particular, the sequence (0.3.3) for m̃ and the pull-back of the sequence (0.3.3) for
m via 6∗ agree outside � . From this, we obtain a short exact sequence

0 → O- (6∗ (�) + A�) → Θ
-̃
→ I

/̃
(− 

-̃
− 6∗ (�) − A�) → 0. (0.3.5)

Computing the Chern classes, and comparing with formula (0.3.4), we obtain
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lg(/̃) = lg(/) − (A2 + A − 1). (0.3.6)

Let us now study the situation locally: as seen above, we can write the vector field
m around G ∈ - as m = kG · m ′, where kG is a local equation for � and where
m ′ = q1,G

3
3C1
+ q2,G

3
3C2

, such that (q1,G , q2,G) ⊆ O-,G is a height 2 ideal, see (0.3.1).
By definition, we havemultG m = dimk O-,G/(q1,G , q2,G). Let m̃ ′ and m̃ be the rational
vector fields induced by m ′ and m on -̃ . One chart of the blow-up is given by C1 = D|
and C2 = |. In it, we compute

3

3C1
=

1
|

3

3D
,

3

3C2
= − D

|

3

3D
+ 3

3|

and find

m̃ ′ =
q1,G (D|, D) − D · q2,G (D|, |)

|

3

3D
+ q2,G (D|, |)

3

3|
.

Next, the integer A ≥ 0 from the above is the multiplicity of m̃ ′ along � , that is, the
maximal|-power dividing m̃ ′. If a� denotes the valuation of k(-) = k( -̃) associated
to � , then the local description of m̃ ′ shows that A ≥ min{a� (q1,G), a� (q2,G)} − 1.
Together with the other chart of the blow-up we conclude∑

G′∈�
multG′ m̃ = multG m − (A2 + A − 1), (0.3.7)

which is a local and explicit version of (0.3.6).

Example 0.3.20 Let G ∈ - be an isolated zero of a multiplicative vector field m on a
smooth surface. By Theorem 0.3.9, there exist local parameters C1, C2 ∈ Ô-,G , such
that m = U1C1

3
3C1
+U2C2

3
3C2

for some U1, U2 ∈ F?\{0}. Let 6 : -̃ → - be the blow-up
in G ∈ - with exceptional curve � . In the chart of the blow-up given by C1 = D| and
C2 = |, we find

m̃ = (U1 − U2)D
3

3D
+ U2|

3

3|
,

and similarly for the other chart. Thus, if ? = 2, then U1 = U2 = 1 and the induced
vector field m̃ on -̃ has no isolated zeros on � .

In general, if ? ≥ 3, one cannot resolve the isolated zeros of a ?-closed vector
field on a smooth surface by successively blowing up its isolated zeros. The situation
is different if ? = 2, where we have the following result of Hirkoado that shows the
existence of canonical resolutions of singularities of ?-closed foliations [304].

Proposition 0.3.21 Let - be a smooth surface over an algebraically closed field k
of characteristic ? = 2. Let m be a rational and ?-closed vector field on - . Then,
after repeatedly blowing up the isolated zeros of the induced vector fields on the
blow-ups, one obtains a birational morphism 6 : -̃ → - between smooth surfaces
and a commutative diagram
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-

cm

��

-̃
6oo

c m̃ ��

-m -̃ m̃
ℎoo

where m̃ denotes the rational ?-closed vector field induced by m on -̃ , where -̃ m̃ is
a smooth surface over k, and where cm and cm̃ denote the quotient morphisms by m
and m̃, respectively. Moreover, ℎ : -̃m → -m is a resolution of singularities (but not
necessarily the minimal one).

We refer the interested reader to Remark 0.4.33 for an example, and to [459] and
[710] for more about canonical resolutions of ?-closed foliations in characteristic
? = 2, as well as to [11], [10], and [710] for more about singularities of quotients by
vector fields.

0.4 Rational Double Point Singularities

In this section, we first discuss singularities of normal surfaces, their resolutions,
and then, turn to rational double points. They are classified according to their dual
resolution graphs, which turn out to be Dynkin diagrams of type �, �, and � .
In characteristic zero, these singularities coincide with quotient singularities by
finite subgroups of SL2, and in positive characteristic there is a close connection to
quotients by linearly reductive group schemes. Finally, we discuss rational double
points in positive characteristic and their local cohomology groups. The proofs, when
omitted, can be found in [19], [20], [28] or [597], and we refer to [38, Chapters 3
and 4] for another overview. Over the complex numbers, rational double points have
various different characterizations, and we refer to [199] for details.

If - is a scheme of finite type over a perfect field k, we will say that a closed
point G ∈ - is a singular point if the local ring O-,G is not a regular local ring.
Since k is a perfect field, this is equivalent to saying that - is not smooth over k at
G, see [497, Theorem 28.7] . We will not discuss the distinction between regularity
and smoothness in the case where the field k is not perfect, but defer this discussion
to Section 4.1 when discussing quasi-elliptic fibrations. Next, two singular points
on two schemes are said to be analytically isomorphic or formally isomorphic if the
formal completions of their local rings are isomorphic. By the structure theorems for
complete local rings (see [497, Chapter 29], for example), the formal isomorphism
class of a singular point can be represented by an ideal in a formal power series
ring k[[C1, . . . , C=]]. A resolution of a singular point G ∈ - is a proper birational
morphism c : . → - with . is non-singular. Often, we will also require c to be
an isomorphism over - \ {G}. We will say that a closed and positive-dimensional
subscheme of . is c-exceptional if it is contained in the fibers of c.

Now, let - be a normal surface over an algebraically closed field k of characteristic
? ≥ 0, that is, - is an integral, separated, and two-dimensional scheme of finite type
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over k such that O-,G is a normal ring for every G ∈ - . Since - is normal, it follows
from Serre’s criterion for normality (see [497, Theorem 23.8], for example) that the
singular locus of - is zero-dimensional, that is, all singularities of - are isolated
closed points. By the following classical theorem in theory of surfaces, there always
exists a resolution of singularities, and even a distinguished one.

Theorem 0.4.1 Let - be a normal surface over an algebraically closed field k. Then,
there exists a unique resolution of singularities c : . → - that is characterized by
either of the following properties:

1. every resolution of singularities . ′→ - can be factored as . ′→ .
c→ - ,

2.  . is c-nef, that is,  . · � ≥ 0 for every c-exceptional curve � ⊂ . .

Proof See [407, Theorem 2.16]. �

In particular, for normal surface singularities, there exists a unique resolution
that cannot be non-trivially factored through another resolution. By definition, it is
called the minimal resolution of singularities. Now, if G ∈ - is a normal surface
singularity and c : . → - is an arbitrary resolution of singularities, then there
exists an open affine neighborhood * ⊆ - of G such that c is an isomorphism over
* \ {G}. By Zariski’s Main Theorem (see, [294, Corollary III.11.4], for example),
the set-theoretical fiber � = c−1 (G)red is a connected curve on . . It is called the
exceptional curve of the resolution c. The following result on intersection numbers
is central to the resolution of singularities and contractions for surfaces.

Proposition 0.4.2 Let c : . → - be a birational morphism from a smooth surface
. to a normal surface - over an algebraically closed field k. For a singular point
G ∈ - , let '1, . . . , '= be some irreducible components of the exceptional curve
c−1 (G)red. Then, the intersection matrix ('8 · ' 9 )1≤8, 9≤= is negative definite.

Proof This is a direct consequence of (a suitable version of) the Hodge index
theorem, see [38, Corollary 2.7], or [407, Theorem 2.12]. �

This result allows us to give a numerical characterization of minimal resolutions:
if c : . → - is a resolution of a normal surface singularity that is not minimal,
then by Theorem 0.4.1, there exists an integral and c-exceptional curve � ⊂ . with
 . ·� < 0. By Proposition 0.4.2, we also have �2 < 0. From the adjunction formula
2?0 (�) − 2 = �2 +  . · � , we thus infer  2

.
= �2 = −1 and � � P1

k
. A curve �

with these properties is called an exceptional curve of the first kind or a (−1)-curve.
Thus, we obtain the following result.

Corollary 0.4.3 Let - be a normal surface over an algebraically closed field k and
let c : . → - be a resolution of singularities. Then, c is the minimal resolution if
and only if there is no (−1)-curve in the fibers of c.

Next, let G ∈ - be a normal surface singularity and let c : . → - be the
minimal resolution of singularities. Then, dimk ('1c∗O. )G is called the genus of the
singularity. Moreover, if c′ : . ′ → - is an arbitrary resolution of G ∈ - , then it
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factors as. ′→ . → - byTheorem0.4.1. Since 5 : . ′→ . is a birationalmorphism
between smooth surfaces, it is a sequence of blow-ups in closed and smooth points,
which implies '1 5∗O. ′ = 0 and then, a Grothendieck–Leray spectral sequence
argument implies an isomorphism ('1c′∗O. ′)G � ('1c∗O. )G . In particular, the
genus is equal to dimk ('1c′∗O. )G for any resolution c′. Moreover, if - is affine and
c′ is an isomorphism outside c′−1 (G), then the genus is equal to dimk �

1 (. ′,O. ′).
We refer to [38, Chapter 3] or [407, Chapter 2.2], for proofs and further details.

A normal surface singularity of genus zero (resp. one) is called a rational (resp.
elliptic) singularity. Some authors include nonsingular points into the class of
rational singularities. In any case, we will say that a normal surface has at worst
rational singularities if all its singular points have rational singularities.

Remark 0.4.4 Let - be a normal variety over an algebraically closed field k of any
dimension, let G ∈ - be a point, and let c : . → - be a resolution of singularities.
If char(k) = 0, then the Grauert–Riemenschneider vanishing theorem states that
'8c∗l. = 0 for all 8 ≥ 1. Moreover, we have '1c∗l. = 0 if - is a surface and
char(k) is arbitrary. In general, one says that G ∈ - is a rational singularity if it is
normal and satisfies '8c∗O. = 0 as well as '8c∗l. = 0 for all 8 ≥ 1 and every
resolution of singularities c : . → - . By the previous remarks, the second set of
conditions can be dropped if dim(-) ≤ 2 or char(k) = 0. In particular, the general
definition coincides with our definition in dimension two above. We refer to [407,
Chapter 2.2] for proofs in dimension two, as well as further references.

Before proceeding, let us mention the following useful base-change property of
rational surface singularities, see [255, Proposition 2.4] for details.

Proposition 0.4.5 Let 5 : . → - be a finite surjective morphism of normal surfaces
over an algebraically closed field k. Assume that - has at worst rational singularities
and let c : - ′ → - be a resolution of singularities. Let . ′ := (. ×- - ′)red, and let
c′ : . ′→ . and 5 ′ : . ′→ - ′ be the induced morphisms. Then,

1. 5 ′ is a finite and flat morphism, that is, 5 ′∗O. ′ is a locally free O- ′-module,
2. '1c′∗O. ′ = 0, c′∗O. ′ � O. , and . ′ has at worst rational singularities.

The next result gives various characterizations of rational surface singularities. To
state it, we need one more definition: let G ∈ - be a normal surface singularity and
let c : . → - be a resolution of singularities. Then, any effective divisor supported
on the exceptional curve of c is called an exceptional cycle. The following results
are due to Artin, see [19] and [20].

Proposition 0.4.6 Let G ∈ - be a normal surface singularity over an algebraically
closed field k and let c : . → - be a resolution of singularities. Then, the following
properties are equivalent:

1. G ∈ - is a rational singularity.
2. �1 (/,O/ ) = 0 for every exceptional cycle / .
3. ?0 (/) := 1 + 1

2 (/ · (/ +  . )) ≤ 0 for every exceptional cycle / .
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4. Let '8 ⊂ . , 8 = 1, . . . , = be the integral curves contained in � = c−1 (G)red.
Then, for every exceptional cycle / , whose support contains all the '8 , the ho-
momorphism Pic(/) = �1 (/,O∗

/
) → Z= that is defined by L → (. . . , deg(L ⊗

O'8 ), . . .) is an isomorphism.
5. The canonical maps �8 (-,O- ) → �8 (.,O. ) are isomorphisms.

Keeping the notations from the previous proposition, there is a minimal and
positive exceptional cycle for every resolution of a normal surface singularity G ∈ -:
first, we define a partial ordering on exceptional cycles by saying that we have
an inequality /1 ≤ /2 if / 9 =

∑=
8=1 <

( 9)
8
'8 , 9 = 1, 2 with < (1)

8
≤ <

(2)
8

for all
8 = 1, . . . , =. An exceptional cycle / =

∑=
8=1 <8'8 with <8 > 0 for all 8 = 1, . . . , = is

called a fundamental cycle if the following two conditions are satisfied:

1. / · '8 ≤ 0 for all 8 = 1, . . . , = and
2. / is minimal among all exceptional cycles satisfying (1).

Before proceeding, we define the multiplicity of G ∈ - to be the multiplicity of the
local ring O-,G . That is, if m ⊂ O-,G denotes the unique maximal ideal, then the
Hilbert–Samuel function = ↦→ dimk (m=/m=+1) becomes for = � 0 a polynomial
of degree (3 − 1) with leading coefficient 4/(3 − 1)!, where 3 is the dimension of
O-,G (3 = 2 in our case) and 4 is the multiplicity. We refer to [204, Chapter 12] or
[497, Section 14] for details. Moreover, the dimension of the Zariski tangent space
of G ∈ - , that is, the k-dimension of m/m2, is called the embedding dimension of
the singularity. The name comes from the fact that the embedding dimension is the
smallest integer 3 such that them-adic completion Ô-,G is isomorphic to a quotient
of k[[C1, ..., C3]]. The following results are due to Artin [20].

Proposition 0.4.7 Let G ∈ - be a normal surface singularity over an algebraically
closed field k, and let c : . → - be a resolution singularities. Then:

1. a fundamental cycle / exists, is unique, and satisfies ?0 (/) ≥ 0,
2. G ∈ - is a rational singularity if and only if ?0 (/) = 0.

Moreover, if G ∈ - is a rational singularity, then we have for all = ≥ 1

dimk (m=/m=+1) = −=/2 + 1 and =/ = . ×- Spec(O-,G/m=).

In this case, we also have:

3. the multiplicity of G ∈ - is equal to −/2,
4. the embedding dimension of G ∈ - is equal to −/2 + 1.

For a normal surface singularity, one can define further one-dimensional cycles
that are supported on the exceptional locus of a resolution of singularities: the
canonical cycle, the cohomological cycle, and the fiber cycle. We refer to [612] for
definitions, properties, and their relation to the fundamental cycle, which is called
the numerical cycle in loc. cit.

A normal surface singularity G ∈ - that is a rational singularity of multiplicity
two is called a rational double point. We proceed with a characterization of rational
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double points via the irreducible components of the exceptional curve of the minimal
resolution.

Proposition 0.4.8 Let G ∈ - be a normal surface singularity over an algebraically
closed field k, let c : . → - be the minimal resolution singularities, let � =

c−1 (G)red be its exceptional curve, and let '1, . . . , '= be the irreducible components
of � . Then, G ∈ - is a rational double point if and only if

'8 � P1
k and '2

8 = −2 for all 8 = 1, . . . , =.

Proof First, suppose that G ∈ - is a rational double point. Let / =
∑=
8=1 <8'8 be its

fundamental cycle. By Proposition 0.4.7, we have ?0 (/) = 0 and /2 = −2. From
the adjunction formula we infer

/ ·  . =

=∑
8=1

<8 ('8 ·  . ) = 2?0 (/) − 2 − /2 = 0. (0.4.1)

We have ?0 ('8) = 0 by Proposition 0.4.6, which implies '8 � P1
k
for all 8. Since c

is the minimal resolution, we have '8 ·  . ≥ 0 for all 8. Together with (0.4.1), we
conclude '8 ·  . = 0 for all 8. Together with ?0 ('8) = 0, the adjunction formula
implies '2

8
= −2 for all 8.

Conversely, if '8 � P1
k
and '2

8
= −2 for all 8, then the adjunction formula yields

'8 ·  . = 0 for all 8. This implies / ·  . = 0 for every exceptional cycle / .
Moreover, /2 < 0 by Proposition 0.4.2, and since /2 is even, we find /2 ≤ −2.
Thus, ?0 (/) = 1 + 1

2 (/ (/ +  . )) ≤ 0, and thus, G ∈ - is a rational singularity
by Proposition 0.4.6. In particular, if / is the fundamental cycle, then Proposition
0.4.7 gives ?0 (/) = 0 and then, / ·  . = 0 implies /2 = −2. But then, G ∈ - is of
multiplicity two by Proposition 0.4.7, whence a rational double point. �

Proposition 0.4.9 Let G ∈ - be a rational double point over an algebraically closed
field k, let c : . → - be the minimal resolution of singularities, let � = c−1 (G)red be
its exceptional curve, and let '1, . . . , '= be the irreducible components of � . Then,

'8 · ' 9 ≤ 1 if 8 ≠ 9 and '8 ∩ ' 9 ∩ ': = ∅ for pairwise distinct 8, 9 , : .

Let Γ to be the graph obtained by assigning a vertex to each '8 and joining two of
them by an edge if '8 · ' 9 = 1. Then, Γ is one of the graphs in Figure 0.1.

Proof By Proposition 0.4.2, the matrix ('8 · ' 9 )1≤8, 9≤= is negative definite and by
Proposition 0.4.8, all diagonal entries are equal to −2. Since � is connected, this
matrix is indecomposable, that is, it cannot be written as a non-trivial block-matrix.
Such matrices are classified in the theory of Lie algebras, more precisely, these are
the Coxeter matrices of simple Lie algebras of finite type. The corresponding graph
is the Coxeter–Dynkin diagram associated to the Coxeter matrix, see Section 0.8 or
[88]. �
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�= • • • •. . .

�= • • •
•

•
. . .

�6 • • • • •
•

�7 • • • • • •
••

�8 • • • • • • •
••

Fig. 0.1 Dual resolution graphs of rational double points

In view of this proposition, a rational double point is said to be a rational double
point of type �=, �=, �6, �7 or �8 if the associated graph Γ has this type. The graph
Γ itself is called the dual resolution graph of the minimal resolution of the surface
singularity. Sometimes, it can be useful to consider a nonsingular point on a surface
as a rational double point of type �0. A rational double point of type �1 is also called
an ordinary double point or an ordinary node). The exceptional curve of its minimal
resolution consists of a smooth rational curve ' with ' � P1

k
and '2 = −2. Such a

curve is called a (−2)-curve. Quite generally, a smooth rational curve on a smooth
surface with self-intersection number −= is called a (−=)-curve. Also, the effective
cycle � in Proposition 0.4.9 is called the nodal cycle and its dual graph is also of
type Γ. It follows from Corollary 0.4.12 below that the nodal cycle is equal to /red,
where / is the fundamental cycle of the rational double point.

Remark 0.4.10 If - is a geometrically normal surface over a field k that is not
necessarily algebraically closed and G ∈ - is a non-smooth point, then one can still
define minimal resolutions of singularities, rational singularities, and rational double
points, and we note that degrees of residue field extensions have to be taken into
account when defining intersection numbers. We refer to [469] for details. In this
case, the classification of dual resolution graphs is more complicated: for example,
it could happen that the exceptional curve � = c−1 (G)red of the minimal resolution
c : . → - is a union of two curves '1 and '2, such that '1 � P1 and '2

1 = −2,
whereas '2 is a smooth curve of genus zero with '2

2 = −6 and '1 · '2 = 3. In this
case, the curve '2 has no k-rational point and is not geometrically reducible: over
k, it splits into a disjoint union of three P1’s, each meeting '1 once. Thus, over k,
this is a singularity of type �4, whereas the dual resolution graph of c over k is a
Coxeter–Dynkin diagram of type�2. In this way, also the Coxeter–Dynkin diagrams
of the remaining, non–simply–laced, simple Lie algebras of finite type arise, see
[469, Section 24 and Remark 25.3].
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Already Proposition 0.4.9, its proof, and the previous remark show a close con-
nection between rational double points and the theory of Lie algebras. Keeping the
assumptions and notations of this proposition, let " ⊆ Pic(. ) be the subgroup gen-
erated by the classes U8 := ['8]. Next, the intersection form on Pic(. ) turns " into
a negative definite quadratic lattice and the U8 form a root basis of finite type inside
" , see Section 0.8 for definitions. This root basis defines a partial ordering on " by
declaring U ≥ 0 if and only if U =

∑=
8=1 <8U8 with <8 ≥ 0 for all 8. Then, there exists

a unique highest root Umax with respect to this root basis, that is, for every positive
root U ∈ " we have Umax ≥ U, see, for example, [88, Chapter VI.8]. Coming back
to rational double points, the highest root has the following interpretation, see [597,
Section 10].

Proposition 0.4.11 The class [/] of the fundamental cycle / in " is the highest
root with respect to the root basis {['8]}8=1,...,=.

Proof From /2 = −2 it follows that [/] is a root in " and since / is effective,
it follows that it is positive with respect to the root basis {['8]}8 . Let V ∈ " be a
root with V ≥ [/] and let W := V − [/]. Being roots, we have V2 = /2 = −2 and
since / is a fundamental cycle, we have [/]W ≤ 0. Plugging these (in)equalities into
V2 = ( [/] + W)2 = /2 + 2[/]W + W2, we find W2 ≥ 0. Thus, W = 0 by Proposition
0.4.2 and it follows that [/] is a highest root, that is, equal to Umax. We refer to [597,
Section 10] for details. �

Using this, Lie theory gives us the fundamental cycles of rational double points.

Corollary 0.4.12 Let G ∈ - be a rational double point over an algebraically closed
field k, let c : . → - be the minimal resolution singularities, let � = c−1 (G)red be
its exceptional curve, and let '1, . . . , '= be the irreducible components of � . Then,
the fundamental cycle / is as follows:

'1 + · · · + '= if Γ is of type �=,
'1 + 2'2 + · · · + 2'=−2 + '=−1 + '= if Γ is of type �=,
'1 + 2'2 + 2'3 + 3'4 + 2'5 + '6 if Γ is of type �6,
2'1 + 2'2 + 3'3 + 4'4 + 3'5 + 2'6 + '7 if Γ is of type �7,
2'1 + 3'2 + 4'3 + 6'4 + 5'5 + 4'6 + 3'7 + 2'8 if Γ is of type �8.

Here, our numbering of the vertices in Figure 0.1 is as in the plates in the appendix
of [88]: ifΓ = �=, thenwe number the vertices '8 from the left to the right. IfΓ = �=,
then we let '1, ..., '=−2 be the vertices from the left to the right and let '=−1 and '=
be the two right-most vertices. If Γ = �=, then we let '2 be the lower vertex, and we
number the upper row of vertices '1, . . . , '= from the left to right (omitting '2, of
course).

We now give explicit equations: let G ∈ - be a rational double point over an alge-
braically closed field k. Then, the embedding dimension is equal to 3 by Proposition
0.4.7, which implies that there exists an isomorphism after completion

Ô-,G � k[[G, H, I]]/( 5 )
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for some non-zero power series 5 ∈ k[[G, H, I]]. If m ⊂ Ô-,G denotes the maximal
ideal, then we have dimk (m/m2) = 3 and dimk (m2/m3) = 5 by Proposition 0.4.7,
which implies that 5 lies in (G, H, I)2\(G, H, I)3.More precisely,we have the following
explicit classification in arbitrary characteristic, which is due to Artin [28].

Theorem 0.4.13 Let G ∈ - be a rational double point over an algebraically closed
field k. Then, the completion Ô-,G is isomorphic to k[[G, H, I]]/( 5 ) with 5 as follows.

1. In characteristic ≠ 2, 3, 5, the classical forms:
�= I=+1 + GH = ≥ 1
�= I2 + G2H + H=−1 = ≥ 4
�6 I2 + G3 + H4

�7 I2 + G3 + GH3

�8 I2 + G3 + H5

2. In characteristic 2
�= classical forms
�0

2= I2 + G2H + GH= = ≥ 2
�A2= I2 + G2H + GH= + GH=−A I A = 1, . . . , = − 1
�0

2=+1 I2 + G2H + H=I = ≥ 2
�A2=+1 I2 + G2H + H=I + GH=−A I A = 1, . . . , = − 1
�0

6 I2 + G3 + H2I

�1
6 I2 + G3 + H2I + GHI
�0

7 I2 + G3 + GH3

�1
7 I2 + G3 + GH3 + G2HI
�2

7 I2 + G3 + GH3 + H3I
�3

7 I2 + G3 + GH3 + GHI
�0

8 I2 + G3 + H5

�1
8 I2 + G3 + H5 + GH3I

�2
8 I2 + G3 + H5 + GH2I

�3
8 I2 + G3 + H5 + H3I

�4
8 I2 + G3 + H5 + GHI

3. In characteristic 3
�=, �= classical forms
�0

6 I2 + G3 + H4

�1
6 I2 + G3 + H4 + G2H2

�0
7 I2 + G3 + GH3

�1
7 I2 + G3 + GH3 + G2H2

�0
8 I2 + G3 + H5

�1
8 I2 + G3 + H5 + G2H3

�2
8 I2 + G3 + H5 + G2H2

4. In characteristic 5
�=, �=, �6, �7 classical forms
�0

8 I2 + G3 + H5

�1
8 I2 + G3 + H5 + GH4

,
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Remark 0.4.14 Let G ∈ - be a normal surface singularity over an algebraically closed
field k.

1. By inspection the explicit classification,we see that the equation 5 = 0 of a rational
double point is semi-quasihomogeneous in the sense that 5 = 51 + 52, where
51 (G, H, I) is a quasi-homogeneous polynomial of degree 3 with weights @1, @2, @3
and 52 (G, H, I) has degree > 3 in the same weights. The quasi-homogeneous parts
with the weights (@1, @2, @3; 3) and the degrees in our case are

�= : (= + 1, = + 1, 2; 2= + 2), 51 = GH + I=+1,
�= : (= − 2, 2, = − 1; 2= − 2), 51 = I

2 + G2H + H=−1 or 51 = I2 + G2H,

�6 : (4, 3, 6; 12), 51 = I
2 + G3 + H4 or 51 = I2 + G3 + H2I,

�7 : (4, 6, 9; 18); 51 = I
2 + G3 + GH3,

�8 : (10, 6, 15; 30), 51 = I
2 + G3 + H5.

It is known that any isolated singularity defined by a semi-quasi-homogeneous
polynomial with the quasi-homogeneous part of type �=, �=, �= is formally
isomorphic to a rational double point [621, Corollary 3.3].

2. The singularity is said to be taut if its formal isomorphism class is determined by
the dual resolution graph Γ (together with the self-intersection numbers) of the
minimal resolution. It follows from the explicit classification that rational double
points in characteristic ≠ 2, 3, 5 are taut. The dual resolution graphs of normal
surface singularities over k = C that are taut were classified by Laufer [443,
Section 2.2] and Tyurina [709]. For more about the tautness of rational double
points in positive characteristic, we refer to [641].

3. By the explicit classification, non-taut rational double point singularities exist only
in characteristic ? ∈ {2, 3, 5}. We note that the index in a family of singularities
of type . A= with . ∈ {�, �} is upper semi-continuous, while the co-index A is
lower semi-continuous. We refer to [28] for details and the dimensions of the
deformation spaces of these singularities.

For an interpretation of the number of vertices ofΓ, which coincideswith the index
= for a singularity of type . A= , we recall theMilnor number of a hypersurface (singu-
larity): let 5 ∈ k[[C1, ..., C=]] be a formal power series and set 58 := m 5

mC8
. Then, the Ja-

cobian algebra of ' := k[[C1, ..., C=]]/( 5 ) is defined to be k[[C1, ..., C=]]/( 51, ..., 5=).
in the case where the Jacobian algebra of ' is a finite–dimensional k-vector space, its
dimension is called theMilnor number ` = `('). Now, if G ∈ - is a normal surface
singularity of embedding dimension 3, then Ô-,G is a hypersurface singularity, and
thus, the Jacobian algebra of Ô-,G is defined. If this is finite–dimensional as k-vector
space, then we have aMilnor number `G := `(Ô-,G) that only depends on the formal
isomorphism class of the singularity. For details and proofs in the case where k = C,
we refer to [162]. In particular, if G ∈ - is a rational double point singularity of type
Γ in characteristic zero, then it follows from the explicit classification in Theorem
0.4.13 that the Milnor number `G is defined and equal to the number = of vertices
of Γ. On the other hand, the Jacobian algebra of an �=-singularity in characteristic
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? with ? | (= + 1) is not finite–dimensional as k-vector space, that is, we do not have
a well-defined Milnor number.

Remark 0.4.15 It follows from the explicit classification that all rational double points
can be realized as singular points of double covers of smooth surfaces. This is obvious
from the equations except for the �=-singularities. However, these singularities are
formally isomorphic to

I2 + G2 + H=+1 = 0 if char(k) ≠ 2,
I2 + GI + H=+1 = 0 if char(k) = ? ≥ 0,

and then, it is also clear in these cases. Note that the equation in the char(k) = 2-case
is a double cover branched along a smooth curve.

In fact, there is a close connection between double covers of smooth surfaces
and rational double points, which we will now discuss in some detail: let 5 (G, H) ∈
k[[G, H]] with char(k) ≠ 2 and assume that 5 (G, H) = 0 represents the formal
isomorphism class of a one-dimensional singular point. We will call it a simple curve
singularity if I2 + 5 (G, H) = 0 is a rational double point. Moreover, this singularity
of 5 is said to be of type 0=, 3=, 4=, 4A= if the singularity I2 + 5 (G, H) = 0 is a rational
double point of type �=, �=, �=, �A=, respectively. Note that this equation can be
interpreted as defining a finite and flat double cover of Spec k[[G, H]] branched over
the curve { 5 = 0}. This said, we have the following.

Proposition 0.4.16 Let c : - → ( be a finite flat double cover, where ( is a smooth
surface over an algebraically closed field k of characteristic ? ≥ 0.

1. If c is generically étale, then - is smooth outside the ramification divisor.

a. Moreover, if ? ≠ 2 then G ∈ - is a rational double point singularity if and
only if c(G) is a simple curve singularity of the branch curve.

b. Moreover, if ? = 2 and c(G) is a smooth point of the branch curve, then G ∈ -
is a smooth point or a rational double point of type �=.

2. If c is purely inseparable, then ? = 2 and c carries the structure of an "L,0-
torsor. Let Uc be the global section of Ω1

(
⊗ L⊗2 from Proposition 0.2.21. If Uc

has only simple isolated zeros, then each singular point of - is a rational double
point of type �1.

Proof If ? ≠ 2, then this follows from the above discussion. If ? = 2 and c is
generically étale, then this follows from a formal local computation and Remark
0.4.15, but see also [698].

If ? = 2 and c is purely inseparable, then c carries the structure of an "L,0-
torsor by Proposition 0.2.27. The remaining assertions follows from a formal local
computation: we may assume that - is given by an equation I2 + 5 (G, H) = 0. Then,
it follows from the definition of Uc that a point G ∈ - is singular if and only if c(G)
is a zero of the differential form 35 = 5G3G + 5H3H. Adding a constant to I, we may
assume that c(G) = (0, 0). The zero of Uc at c(G) is simple if the ideal generated by
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5G and 5H is equal to the maximal ideal m(,c (G) . After a change of local parameters
at c(G), we may assume that 5G = H and 5H = G, which implies that 5 = GH + 6 for
some 6 ∈ m3

(,c (G) . This shows that the singularity G ∈ - is formally isomorphic to
the singularity I2 + GH = 0. �

We refer to [43, Chapter III.7] for more details about simple singularities of
curves, double covers, and rational double points in the case where k = C.

Let ( be a smooth surface over an algebraically closed field k of characteristic
? ≥ 0. If L is a sufficiently ample invertible O(-module and c : - → ( is a
generically finite flat double cover with L∨ � c∗O-/O( , then - will be smooth if
? ≠ 2, or it will have at worst ordinary double point singularities if ? = 2. This
follows from Bertini’s theorem if ? ≠ 2, and if ? = 2, then we refer to [459], Section
2 for details.

In order to relate properties of singularities of double covers and singularities of
branch curves in characteristic ≠ 2 further, we have to recall a couple of facts on
singularities of curves: let � be a reduced and connected curve over an algebraically
closed field k and let c : �̃ → � be its normalization. For a closed point G ∈ �,
we define XG to be the length of the O�,G-module Õ

�̃, c−1 (G)/O�,G . Then, XG = 0 if
and only if G ∈ � is a non-singular point, see [656], Chapter IV.1. Next, if � has ℎ
irreducible components and 61, ..., 6ℎ are the genera of the components of �̃, then
the arithmetic genus ?0 (�) = ℎ1 (O� ) = 1 − j(O� ) is given by

?0 (�) =
ℎ∑
8=1
(68 − 1) +

∑
G∈�

XG + 1. (0.4.2)

Moreover, if char(k) = 0, then the Milnor number `G of 5 satisfies the Jung–Milnor
formula

`G = 2XG − AG + 1,

where AG is the number of formal local branches through G, that is, the cardinality
of c−1 (G), see see [358] or [511], Chapter 10. For example, for simple curve
singularities in characteristic zero, we find

` A X

0: G2 + H:+1 : 1 :/2 if : is even
: 2 (: + 1)/2 if : is odd

3: G
2H + H:−1 : 3 (: + 2)/2 if : is even

: 2 (: + 1)/2 if : is odd
46 G3 + H4 6 1 3
47 G3 + GH3 7 2 4
48 G3 + H5 8 1 4

(0.4.3)

In positive characteristic, the entries for A, X are still true, whereas ` may not even
be defined.

We will now give yet another characterization of rational double points: let us
recall that every Cohen–Macaulay ring possesses a dualizing module (at least, if it is
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the quotient of a polynomial ring or power series rings over a field), and then, the ring
is said to be Gorenstein if its dualizing module is locally free of rank one. A singular
point G ∈ - is said to be Cohen–Macaulay (resp. Gorenstein) if its local ring O-,G
is Cohen–Macaulay (resp. Gorenstein), which is equivalent to its completion Ô-,G
being Cohen–Macaulay (resp. Gorenstein).We refer to [101] and [294], Chapter III.7
for background. By Serre’s normality criterion, a normal surface singularity G ∈ - is
automatically Cohen–Macaulay. Since complete intersection rings are Gorenstein, it
follows from Theorem 0.4.13 that rational double point singularities are Gorenstein.
Interestingly, also the converse is true, see [19], Theorem 2.7.

Proposition 0.4.17 Let G ∈ - be a normal surface singularity over an algebraically
closed field k and let c : . → - be its minimal resolution of singularities. Then,
G ∈ - is a rational Gorenstein singularity if and only if it is a rational double point
singularity. In this case, we have

c∗l. � l- and l. � c∗l- ,

where l- and l. denote the respective dualizing sheaves.

Another characterization of rational double point singularities comes from the
minimal model program: there, so-called terminal and canonical singularities play
an important role, and we refer to [408] for definitions as well as a proof of the
following result.

Proposition 0.4.18 Let - be a normal surface over an algebraically closed field k.
Then, a closed point G ∈ -:
1. has a terminal singularity if and only if it is non-singular,
2. has a canonical singularity if and only if it is non-singular or a rational double

point singularity.

Next, we introduce two important groups associated to a singularity: let G ∈ - be
a normal surface singularity over an algebraically closed field k, let ' := Ô-,G be the
completion (orHenselization) ofO-,G , set* := Spec '\{G}, and let 9 : * ↩→ Spec '
be the natural open embedding. Since - was assumed to be normal and of dimension
two, G ∈ - is an isolated singularity and* is a regular and connected scheme.

1. First, the local Picard group or class group of the singularity G ∈ - is defined
to be the Picard group Pic(*). We note that every invertible sheaf L on * has a
unique extension ( 9∗L)∨∨ to a reflexive sheaf of rank 1 on Spec ' and conversely,
every reflexive sheaf of rank 1 on Spec ' restricts to an invertible sheaf on *.
Thus, Pic(*) is isomorphic to the class group Cl(Spec ') of Spec ' as discussed
in Section 0.3.

2. Second, the local fundamental group of G ∈ - is defined to be the étale fun-
damental group cét1 (*). By construction, the local fundamental group classifies
(limits of) finite and étale covers of* and thus, torsors under (limits of) finite, flat,
and étale k-group schemes over*. Moreover, by theorems of Mumford [537] and
Flenner [234], a closed point on a normal surface overC is nonsingular if and only



0.4 Rational Double Point Singularities 77

if its local fundamental group is trivial, which shows that the local fundamental
group is an important invariant of a singularity.
In positive characteristic, one may also be interested in torsors under arbitrary
finite and flat k-group schemes over *, which is accomplished by the local Nori
fundamental group scheme, see [224]. Unfortunately, it is not well-behaved, even
for rational double points, see [466] for some interesting phenomena. What is still
true is that a closed point on a normal surface over an algebraically closed field
is nonsingular if and only if the local Nori fundamental group scheme is trivial,
see [224] and [466].

Coming back to rational double point singularities: their local Picard groups have
been determined by Lipman in [469], Section 24, see also Corollary 0.4.24 below
for an easy proof over the complex numbers.

Proposition 0.4.19 Let G ∈ - be a rational double point singularity over an alge-
braically closed field k. Then, the local Picard group depends on the type only:

�= �= �6 �7 �8
Pic(*) Z/(= + 1)Z (Z/2Z)2 if = is even Z/3Z Z/2Z {0}

Z/4Z if = is odd

This result also describes reflexive modules of rank one on these singularities,
and we refer to [33] for the classification of reflexive modules of arbitrary rank. The
computation of local fundamental groups of the rational double points in character-
istic zero follows easily from Proposition 0.4.21 below, see Corollary 0.4.24. From
this result, it follows that the local fundamental groups even detect the type of the ra-
tional double points. On the other hand, the local fundamental groups of the rational
double points in positive characteristic are more complicated: they depend not only
on the type, but also on the characteristic and the co-index, see [28]. For example, by
Proposition 0.4.20 below, the local fundamental group of a rational double point of
type �?=−1 with = ≥ 1 in characteristic ? > 0 is trivial, and thus, neither can rational
double points be distinguished by their local fundamental groups, nor is Mumford’s
theorem true in positive characteristic. On the other hand, Mumford’s theorem also
holds in characteristic ? ≥ 5 if instead of the local fundamental group, the local Nori
fundamental group scheme is considered, see [224] and [466].

Yet another characterization of rational double points is in terms of quotient
singularities, at least in characteristic ≠ 2, 3, 5: let + be a finite–dimensional vector
space over an algebraically closed field k of characteristic ? ≥ 0 and let � ⊂ GL(+)
be a finite subgroup, or, more generally, a finite k-subgroup scheme. The quotient
+/� � Spec((•+)� is normal and it is smooth outside the point lying under 0 ∈ + .
If ? = 0, then, by a theorem of Chevalley, Shephard, and Todd, +/� is smooth if
and only if � is generated by pseudo-reflections, and we refer to [98] and [635] for
extensions of this result to positive characteristic. Next, a singularity that is formally
isomorphic to a singularity of the form +/� is called a (finite) quotient singularity.
If � is moreover a linearly reductive group scheme, then the singularity is called a
linearly reductive quotient singularity. For example, the group scheme -= is linearly
reductive and the corresponding linearly reductive quotient singularities are called
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cyclic quotient singularities. We remind the reader that all finite group schemes in
characteristic zero are linearly reductive, but that Z/?Z and "? are examples of finite
group schemes in characteristic ? > 0 that are not linearly reductive. By a theorem
of Hochster [307], linearly reductive quotient singularities are rational. On the other
hand, we have already encountered quotient singularities in characteristic ? > 0 that
are not rational in Remark 0.3.12 and Example 0.3.13. (Note however, that unlike in
our definition of quotient singularity above, the actions by the group schemes there
are not linear.) Before returning to rational double point singularities, let us classify
cyclic quotient singularities in dimension two.

Proposition 0.4.20 Let k be an algebraically closed field of characteristic ? ≥ 0,
let i : -= → GL(+) be a homomorphism of group schemes with dimk+ = 2, and
assume that the quotient +/-= is singular. Then:

1. There exists an integer < ≥ 2 and an integer @ with 1 ≤ @ ≤ < − 1 and coprime
to <, such that the singularity+/-= is formally isomorphic to the quotient+/-<
with respect to the injective group homomorphism

k@ : -< → GL2,k

[ ↦→
(
Z< 0
0 Z

@
<

)
.

Here, [ is a generator of -< and Z< is a primitive <-th root of unity in k (to be
taken with a grain of salt if ? divides <). We denote this singularity by 1

<
(1, @).

2. The singularity 1
<
(1, @) is a rational singularity and a toric surface singularity.

Moreover, it is Gorenstein if and only if @ = < − 1, and then, 1
<
(1, < − 1) is

formally isomorphic to the rational double point �<−1.
3. The exceptional locus of the minimal resolution of singularities of 1

<
(1, @) is a

chain of P1’s. In particular, the dual resolution graph is the diagram

1
<
(1, @) • • • •. . .

The self-intersection numbers (−=1, ...,−=: ) of the P1’s can be computed via the
continued fractions expansion

<

@
= =1 −

1
=2 − 1

=3−...
.

4. The class group of 1
<
(1, @) is isomorphic to Z/<Z and the local fundamental

group is isomorphic to Z/<′Z, where < = ?= · <′ with ? - <′ and = ≥ 0.

Proof Over the complex numbers, all this is classical: for example, Claim 1 is
shown in [43, Proposition III.5.3] and Claim 3 is discussed in [43, Chapter III.5].
The description of these singularities in terms of toric geometry, as well as Claim
3, are discussed in [243, Chapters 2.2 and 2.6]. Since -= is a linearly reductive
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group scheme, the representation i splits into a direct sum of one-dimensional
representations in arbitrary characteristic. From this, the just mentioned results carry
over to algebraically closed fields of arbitrary characteristic, which we leave to the
reader. As already mentioned, linearly reductive quotient singularities are rational
in every characteristic. Using Claim 3, it is easy to see that 1

<
(1, < − 1) is a rational

double point singularity of type �<−1, which is Gorenstein. To show the converse,
let C1, C2 be the coordinates of A2

k
such that k@ ([) sends C1 ↦→ C1 and C2 ↦→ Z

@
<C2. We

set l := 3C1 ∧ 3C2 and compute k@ ([) (l) = Z@+1< ·l. If 1
<
(1, @) is Gorenstein, then

the pull-back of the dualizing sheaf toA2
k
is a k@ ([)-invariant two-form, which must

be of the form 5 · l for some 5 ∈ k[[C1, C2]] with 5 (0, 0) ≠ 0. From this, it is easy
to see that @ = < − 1, which establishes Claim 2.

To compute the local fundamental group of 1
<
(1, @), we let < = ?= · <′ with

? - <′ and note that we can factor the quotient as + → +/-?= → +/-<. The first
morphism is purely inseparable, which implies that the local fundamental group of
+/-?= is trivial, and since -<′ acts freely outside the image of the point (0, 0) in
+/-?= , it follows that the local fundamental group of+/-< is isomorphic to Z/<′Z.
As explained in [469, Section IV], the class group of 1

<
(1, @) is finite and can be

computed from the dual resolution graph of the minimal resolution of singularities.
From this, one could compute the class group – in any case, since the dual resolution
graph is independent of the characteristic, we may assume char(k) = 0. Next, we
set ' := Ô-,G and * := Spec '\{G}. Since ' is complete and its residue field is
algebraically closed of characteristic zero, Hensel’s Lemma implies that the map
' → ', A ↦→ A= is surjective. Using this and (0.1.7), we conclude that finite cyclic
subgroups of order = of the Picard group of* correspond to Z/=Z-torsors of*. The
latter set is bĳective to the set of quotients of the local fundamental group that are
cyclic of order =. From this, it is easy to deduce that the class group of 1

<
(1, @) is

cyclic of order <. �

We note that two-dimensional cyclic quotient singularities are also called
Hirzebruch–Jung singularities, that the dual resolution graphs in Part 3 are called
Hirzebruch–Jung strings, and that the continued fractions in Part 4 are called
Hirzebruch–Jung continued fractions. Moreover, since the cyclic quotient singu-
larities 1

?
(1, @) in characteristic ? > 0 are quotients by -?-actions, they can also be

described as quotients by multiplicative vector fields, which we already discussed in
Theorem 0.3.9 and Proposition 0.3.10.

Coming back to rational double points, let k be an algebraically closed field of
characteristic ? ≥ 0, let + be a two-dimensional k-vector space, and let � ⊂ SL(+)
be a finite k-subgroup scheme. Then,� automatically contains no pseudo-reflections
and the dualizing sheaf on + � Spec (•+ descends to +/�, which implies that
+/� is Gorenstein. If � is moreover linearly reductive, then the quotient +/� is
a normal, rational, and a Gorenstein surface singularity, whence a rational double
point singularity by Proposition 0.4.17. Thus, finite and linearly reductive subgroup
schemes of SL(+) are a source of rational double points. The classification of finite
subgroups of SL2 (C) and their quotients is classical, see, for example, [197], Section
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26, [199], or [427]. The classification of finite linearly reductive subgroup schemes
of SL2 in positive characteristic is due to Hashimoto [297], see also [468].

Theorem 0.4.21 Let k be an algebraically closed field of characteristic ? ≥ 0 and
let � ⊂ SL2,k be a finite and linearly reductive k-subgroup scheme. Then, up to
conjugation, � is one of the following:

�= (= ≥ 1) The group scheme -=+1 of length (= + 1) generated by(
Z=+1 0

0 Z−1
=+1

)
inside SL2,k, where Z=+1 denotes a primitive (= + 1)-th root of unity (to be taken
with a grain of salt if ? divides (= + 1)). This group scheme is étale if and only
if ? - (= + 1), in which case it is cyclic. In any case, the associated quotient
singularity is a rational double point of type �=.

�= (= ≥ 4 and ? ≠ 2) The group scheme of length 4(= − 2) generated by �2=−5 and(
0 Z4
Z4 0

)
inside SL2,k. This group scheme is étale if and only if ? - (= − 2), in which case
it is the binary dihedral group. In any case, the associated quotient singularity is
a rational double point of type �=.

�6 (? ≠ 2, 3) The binary tetrahedral group scheme generated by �4 and

1
√

2

(
Z7

8 Z
7
8

Z5
8 Z8

)
inside SL2,k. This group scheme is étale of length 24 over k. The associated
quotient singularity is a rational double point singularity of type �6.

�7 (? ≠ 2, 3) The binary octahedral group scheme generated by �6 and �7. This
group scheme is étale of length 48 over k. The associated quotient singularity is
a rational double point singularity of type �7.

�8 (? ≠ 2, 3, 5) The binary icosehedral group scheme generated by �9,(
0 1
−1 0

)
, and

1
Z2

5 − Z
3
5

(
Z5 + Z−1

5 1
1 −(Z5 + Z−1

5 )

)
,

inside SL2,k. This group scheme is étale of length 120 over k. The associated
quotient singularity is a rational double point singularity of type �8.

Remark 0.4.22 The class of quotient singularities by finite and linearly reductive
group schemes is particularly nice. Many results that are classically known for finite
quotient singularities over C carry over to this setting in positive characteristic. For
rational double point singularities, we will see this already below, but we refer to
[465] for details and a thorough treatment of these singularities.
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As an application, we obtain the following characterization of rational double
points as certain quotient singularities. Again, this is well-known over the complex
numbers, and the case of positive characteristic was independently established in
[297] and [468].

Corollary 0.4.23 Let k be an algebraically closed field of characteristic ? ∉

{2, 3, 5}. Then, the rational double point singularities over k coincide with the
quotient singularities by finite and linearly reductive subgroup schemes of SL2,k.

It is easy to compute class groups and local fundamental groups of quotient
singularities over algebraically closed fields of characteristic zero. Using the char-
acterization of rational double points from the previous corollary, we obtain the
following result.

Corollary 0.4.24 Let G ∈ - be a rational double point over an algebraically closed
field k of characteristic zero. If � ⊂ SL2 (k) is the finite subgroup such that G ∈ - is
formally isomorphic to the quotient singularity by �, then:

1. the local fundamental group of G ∈ - is isomorphic to �,
2. the local Picard group of G ∈ - is isomorphic to �ab, the abelianization of �.

Proof We set + := k2\{(0, 0)} and note that cét1 (+) � {1}, which follows, for
example, by using comparision theorems between étale and topological fundamental
groups. Since � acts freely on + , we find cét1 (+/�) � �, and since +/� is an open
neighborhood of the pointed singularity G ∈ - , it is not difficult to deduce the first
claim. The second claim can be shown along the lines of the computation of the
class group in the proof of Proposition 0.4.20, which we leave to the reader. �

Theorem 0.4.21 has the following application to torsors over the smooth locus of
some rational double point singularities: let G ∈ - be a normal surface singularity
over an algebraically closed field k of characteristic ? ≥ 0, let ' := Ô-,G (or
Henselization), and let 9 : * := Spec '\{G} ↩→ * := Spec ' be as above. Let
c : + → * be a finite morphism, where + is an integral and normal scheme, and
let + = Spec ( be the integral closure of Spec ' inside the field of fractions ! of
�0 (+,O+ ). Thus, ( is the integral closure of ' inside ! and it is a local and complete
(or Henselian) k-algebra. We will say that c : + → * is a local principal �-cover,
if � is a finite and flat k-group scheme acting on+ such that* � +/� and such that
the restriction c : + → * is a�-torsor. As explained in [224], Section 2.2, it suffices
to construct c : + → * and then, the extension to + → * is automatic. Moreover,
if G ∈ - is a non-singular point, then it follows from purity results for torsors over
regular schemes that also the extension + → * is a �-torsor, see Theorem 0.1.4.
After these preparations, Theorem 0.4.21 implies the existence of local principal
covers of rational double points of type �= and �=, see also [468], Proposition 4.2.

Corollary 0.4.25 Let G ∈ - be a rational double point over an algebraically closed
field k of characteristic ? ≥ 0. As before, we set ' := Ô-,G , * := Spec '\{G}, and
* := Spec '.
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1. Let G ∈ - be of type �=. Then, there exists a -=+1-torsor + → * that extends to
a local principal -=+1-cover + → *, where + is nonsingular.

2. Let G ∈ - be of type �= and assume ? ≠ 2. Let BD=−2 be the binary dihedral
group scheme of length 4(= − 2) over k from Theorem 0.4.21. Then, there exists
a BD=−2-torsor + → * that extends to a local principal BD=−2-cover + → *,
where + is nonsingular.

We end this section by briefly discussing rational double points in positive char-
acteristic, local cohomology groups, and the role of Frobenius in this context. Quite
generally, let ' be a noetherian integral domain of characteristic ? > 0. A famous
theorem of Kunz [423] states that ' is regular if and only if the Frobenius morphism
F : ' → ', G ↦→ G? is flat. Thus, F detects regularity. Next, for an ideal � ⊆ '

and a ?-power @ = ?4, we let � [@ ] be the ideal generated by all 0@ with 0 ∈ �, or,
equivalently, the ideal generated by F4 (�). Then, the tight closure �∗ of � is defined to
be the set of all elements G ∈ ' for which there exists an 0 ≠ 2 ∈ ' with 2G@ ∈ � [@ ]
for @ � 0. We always have � ⊆ �∗ and �∗∗ = �∗. Moreover, an ideal � ⊆ ' is said
to be tightly closed if � = �∗. We refer to [101, III.10] for details and different char-
acterizations. Using tight closure, we can define interesting classes of singularities
in positive characteristic: a noetherian integral domain ' of characteristic ? > 0 is
called weakly �-regular if all its ideals are tightly closed and it is called �-regular
if all its localizations are weakly �-regular. Moreover, ' is called �-rational if all
ideals of principal class, that is, all ideals � generated by height(�) elements, are
tightly closed. For example, regular rings are �-regular, �-regular rings are weakly
�-regular, weakly �-regular rings are �-rational, and �-rational rings are normal.
Again, we refer to [101], Chapter III.10 for details and proofs. This recalled, we
will say that a singularity G ∈ - in positive characteristic is (weakly) �-regular and
�-rational, etc. if Ô-,G has the respective property.

Using the classification of �-regular surface singularities by Hara [283] and the
classification results discussed above, we obtain the following equivalences.

Proposition 0.4.26 Let G ∈ - be a rational double point over an algebraically closed
field k of characteristic ? > 0. Then, the following are equivalent:

1. G ∈ - is an �-regular singularity,
2. G ∈ - is an �-rational singularity,
3. G ∈ - is a taut singularity,
4. G ∈ - is a linearly reductive quotient singularity.

Proof For Gorenstein rings, �-regularity and �-rationality coincide, see, for exam-
ple, [101, Proposition III.10.3.7], and thus, Proposition 0.4.17 gives (1) ⇔ (2). The
equivalence (1) ⇔ (3) follows from comparing Hara’s classification [283, Theorem
1.1], with the explicit classification list in Theorem 0.4.13. Moreover, comparing
this list with Corollary 0.4.23, we find (1) ⇒ (4). Finally, if ( = k[[D1, .., D=]] and
� is a linearly reductive group scheme over k acting linearly on (, then its ring of
invariants ' := (� is a direct summand of (. Thus, ' is �-regular, see [101], Chapter
III.10.1, which shows that linearly reductive quotient singularities are �-regular, and
we find (4) ⇒ (1). �
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Remark 0.4.27 It would be very interesting to have a proof of this result without
using explicit classification lists.

Next, let us recall that a noetherian integral domain ' of characteristic ? > 0 is
said to be �-finite if ', considered as a module over itself via Frobenius, is finite.
Moreover, ' is called �-split if the Frobenius map splits as a map of modules.
For reduced and �-finite rings, being �-split is equivalent to being �-pure, and we
refer to [101] for details. Finally, a local and noetherian integral domain (',m) of
characteristic ? > 0 is said to be �-injective if the map F : �8m (') → �8m (')
induced by Frobenius on local cohomology is injective for all 8 = 0, ..., dim('). If
' is Cohen–Macaulay, then �8m (') = 0 for 8 < dim(') and in this case, to decide
whether ' is �-injective, it suffices to check 8 = dim(') only. We will say that a
singularity G ∈ - in positive characteristic is �-split, �-injective, etc. if Ô-,G has
the respective property.

In some cases, there is a useful way to compute the kernel of Frobenius on the
local cohomology group �2

G (-,O- ), and, in particular, to decide �-injectivity, of
a normal two-dimensional singularity G ∈ - over an algebraically closed field k
of characteristic ? > 0: namely, assume that there exists a graded commutative
ring ' =

⊕
=≥0 '= of finite type over k with '0 = k and m =

⊕
=≥1 '=, such

that Ô-,G � '̂. By the Pinkham–Demazure construction, there exists an ample Q-
divisor � =

∑
8 08%8 on the smooth and projective curve � := Proj ' over k and an

isomorphism of graded rings

' �
⊕
=≥0

�0 (�,O� ( [=�])), (0.4.4)

where [−] denotes the integral part of a Q-divisor. (If � = ∑
8 18&8 is a Q-divisor on

�, that is, 18 ∈ Q and the &8 ∈ � are closed points, then [�] :=
∑
8 [18]&8 , where

[18] denotes the largest integer, which is less or equal to 18 .) Using this isomorphism,
one can compute the kernel of Frobenius on �2

m (') as

�2
m (') [F] �

⊕
=∈Z

Ker(F : �1 (�,O� ( [=�])) → �1 (�,O� ( [?=�]))), (0.4.5)

see [284, Section 2]. Let us assume moreover that G ∈ - is a rational double point,
in which case � is easy to compute. Namely, since the singularity is rational and the
dual resolution graph of the minimal resolution of singularities is star shaped, the
results of [284, Section 4.4] apply: namely, we have � = Proj ' � P1

k
in this case

and

� = − P1 −
A∑
8=1

48 − 1
48

%8 ,

for some A ≤ 3 and some pairwise distinct closed points %8 . Moreover, the indices
48 are given by the following table
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(41, . . . , 4A ) =



(4) type �4,
(2, 2, 4) type �4+2,
(2, 3, 3) type �6,

(2, 3, 4) type �7,

(2, 3, 5) type �8,

see [284, Section 4]. Since [=�] has non-negative degree for all = ≥ 0 and � � P1,
we find �1 (�,O� ( [=�])) = 0 for all = ≥ 0 and thus, only summands of negative
degree in (0.4.5) have to be taken into account. Applying the condition in [284],
Corollary 2.6, it follows that the singularity G ∈ - is �-injective if ? does not divide
any of the 48 .

Example 0.4.28 Let k be an algebraically closed field of characteristic ? > 0.

1. Let� = P1
k
and� = =+1

=
·(∞). In this case, (0.4.4) yields ' � k[G, H, I]/(GH+I=+1)

with deg(G) = deg(H) = = + 1 and deg(I) = 1, which has a rational double point
of type �= at the closed point G = H = I = 0 by Theorem 0.4.13. The criterion
just mentioned shows that the singularity is �-injective if ? - =. In fact, we will
see in Proposition 0.4.29 that �=-singularities are �-injective in every positive
characteristic.

2. Let � = P1
k
and � = 1

2%1 + 1
2%2 − (1 − 1

4
)%3 for three distinct points %1, %2, %3

on �. In this case, (0.4.4) yields a graded ring ', which is a rational double point
of type �= with = = 4 + 2. In characteristic ? = 2, it is of type �0

=. The criterion
just mentioned shows that the singularity is �-injective if ? ≥ 3 and ? - (= − 2).
In fact, we will see in Proposition 0.4.29 that �=-singularities are �-injective in
every positive characteristic ? ≥ 3. Moreover, using [284], Theorem 2.3, lengthy
computations show that the only possibly non-zero summands in (0.4.5) are in
degree (−1). From this, we deduce

dimk �
2
G (-,O- ) [F] ≤ 1,

if G ∈ - is a rational double point singularity of type �0
= in characteristic 2. By

Proposition 0.4.29, these singularities are not �-injective, which shows that we
have equality. On the other hand, rational double point singularities of type �1

4
and �1

5 in characteristic 2 are �-injective.

We refer to [465] for further details and results. Concerning the �-injectivity of
rational double point singularities, we have the following.

Proposition 0.4.29 Let G ∈ - be a rational double point singularity over an alge-
braically closed field k of characteristic ? > 0. Then, the following are equivalent:

1. G ∈ - is �-split,
2. G ∈ - is �-injective,
3. G ∈ - is a rational double point with ? ≥ 7 or
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? = 5 and of type different from �0
8 ,

? = 3 and of type different from �0
6 , �

0
7 , �

0
8 , �

1
8 ,

? = 2 and of type �=, �=−1
2= , �

=−1
2=+1, �

1
6 , �

3
7 , �

4
8 .

In particular, if G ∈ - is �-regular then it is �-split, but the converse need not hold.

Proof Being reduced and �-finite singularities, being �-split is equivalent to be-
ing �-pure. Next, �-pure singularities are �-injective, and �-injective Gorenstein
singularities are �-pure, see [231, Lemma 3.3]. This establishes (1) ⇔ (2).

In characteristic ? ≥ 7, rational double point singularities are �-regular by
Proposition 0.4.26, and thus, �-split, see for example [233]. To check �-splitting in
characteristic ? ≤ 5, we apply Fedder’s criterion: namely, a hypersurface singularity
k[[C1, ..., C=]]/( 5 ) is �-pure if and only if 5 ?−1 ∉ (C ?1 , ..., C

?
= ), see [231, Proposition

2.2]. Using the explicit equations of Theorem 0.4.13, the assertion follows, and we
leave the computations to the reader. �

Let G ∈ - be a normal and isolated singularity over an algebraically closed field k
in characteristic ? > 0, let ' := Ô-,G (orHenselization),* := Spec '\{G}, and let 9 :
* ↩→ Spec ' be as above.Next, let� be a finite and flat k-group scheme.ByTheorem
0.1.3, �-torsors over * are classified by the flat cohomology group �1

fl (*,�).
Moreover, if � is étale, then this group is isomorphic to �1

ét (*,�), and reduced
and irreducible �-torsors over * are in bĳection with surjective homomorphisms
from the local fundamental group of G ∈ - onto �. The local fundamental groups
of rational double points can be found in [28], which allows us to determine all �-
torsors over*, where � is an étale k-group scheme, and thus, we also classify local
principal �-covers of G ∈ - . Let us now turn to local principal "?- and -?-covers
of a normal surface singularity G ∈ - . These cannot be detected or classified by
the local fundamental group. From (0.1.4) and (0.1.7), and using Pic(') = 0 and
�1 (Spec ',OSpec') = 0, we obtain isomorphisms '×/'×? � �1

fl (Spec ', -?) and
'/'? � �1

fl (Spec ',"?). Then, applying (0.1.4) and (0.1.7) again, it follows that
-?- and "?-torsors over* modulo those torsors that extend to Spec ' are classified
by

? Pic(*) = Pic(*) [?] and �1 (*,O* ) [F],

the kernels of multiplication by ? and of Frobenius, respectively. From the long
exact sequence of local cohomology, we have �1 (*,O* ) � �2

m ('). In particular,
if G ∈ - is �-injective, then �1 (*,O* ) [F] = 0, and thus, does not admit local
principal "?-covers.

For the description and partial classification of torsors under finite group schemes
over the rational double points, we refer to [465]. For example, also the Frobenius-
action on the Witt vector valued local cohomology groups �2

G (-,,=O- ) for all = is
computed. This is related to the classification of local principal�-covers over G ∈ - ,
where � is a finite and commutative group scheme that is local with local Cartier
dual. Instead of giving the full classifcation, we only give a couple of examples: we
end this section by giving some rational double points in characteristic ? = 2 that
are not linearly reductive quotient singularities, but quotient singularities by "?- or
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Z/?Z-actions. We note that these group schemes are not linearly reductive and that
the actions are not linear or linearizable.

Proposition 0.4.30 Let k be an algebraically closed field of characteristic 2 and set
( := k[[D, |]].

1. For every even integer = ≥ 2, there exists an "2-action on Spec ( such that the
quotient is a rational double point of type �0

2=.
2. For every even integer = ≥ 2, there exist (Z/2Z)-actions on Spec ( such that the

quotients are rational double point of type �=/22= and �=/22=+1, respectively.
3. There exist an (Z/2Z)-action on Spec ( such that the quotient is a rational double

point of type �2
8 .

Proof If = is even, then the vector field D2 3
3D
+ |= 3

3|
on ( is additive with ring

of invariants equal to k[[D2, |2, D2| + D|=]]. Setting G := D2, H := |2, and I :=
D2| +D|=, we see that it is isomorphic to k[[G, H, I]]/(I2 + G2H + GH=). By Theorem
0.4.13, this is a rational double point singularity of type �0

2=. Moreover, the additive
vector field corresponds to an "2-action on Spec ( by Example 0.3.6, and establishes
Claim 1.

By Artin’s classification [27], a surface singularity in characteristic 2 is a quotient
singularity byZ/2Z if and only if it formally isomorphic to a hypersurface singularity
of the form k[[G, H, I]]/( 5 ) with

5 = I2 + 01I + 02H + 12G,

where 0, 1 ∈ k[[G, H]] are nonunits that are relatively prime. Using the explicit
equations from Theorem 0.4.13, the remaining assertions follow. �

For the application to symmetroid quartic surfaces in P4 in characteristic ? = 2
below, see Remark 0.6.23, let us note the following explicit descriptions of rational
double points of type �0

4, �
1
4, �

0
5, and �

1
5 as quotients by "2- and Z/2Z-actions. This

makes some of the results from the previous proposition a little bit more explicit.

Proposition 0.4.31 Let k be an algebraically closed field of characteristic 2. If
G ∈ - is a rational double point of type �0

4 (resp. �1
4) over k, then there exists a

local principal �-cover + → Spec Ô-,G with � = "2 (resp. � = Z/2Z) such that +
is nonsingular.

Proof For 0 ∈ {0, 1}, the scheme

"2,0 := Spec k[Y]/(Y2 − 0Y)

becomes a finite k-group scheme of length 2 with respect to the comultiplication
Y ↦→ Y⊗1+1⊗Y. More precisely, we have "2,0 � "2 and "2,1 � Z/2Z, see Example
0.1.7. We now define an "2,0-action on ( := k[[D, {]] via

X(D) = D + X1 (D)Y := D + D2

1 + 0D Y, X({) = { + X1 ({)Y := { + {2

1 + 0{ Y.
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Since X1 is a derivation (see also the computations in Example 0.3.6), we have

X(D{) = D{ + (DX1 ({) + {X(D))Y = D{ + D{(D + {)
(1 + 0D) (1 + 0{) Y.

It is easy to see that the formal power series

G :=
D2

1 + 0D , H :=
{2

1 + 0{ , I :=
D{(D + {)

(1 + 0D) (1 + 0{)

belong to the ring of "2,0-invariants ( and that they satisfy the relation

I2 + 0GHI + GH(G + H) = 0,

which is the local equation of a rational double point of type �04 by Theorem 0.4.13.
Moreover, since the completion of the k-subalgebra ' of ( generated by G, H, and I
is normal and since the extension of fields of fractions &(') ⊂ &(() is of degree
? = 2, it follows that ' is not only contained in, but also equal to ("2,0 . It remains
to show that the finite morphism c : + := Spec ( → Spec ' � Spec Ô-,G is a
local principal "2,0-cover, that is, the restriction to c : + → * := Spec ' \ {m} is
an "2,0-torsor. It is not difficult to see that the fixed locus of the "2,0-action on +
consists of the unique closed point only, which we leave to the reader.

Let us also give a cohomological approach, which is interesting in its own right:
we set*1 := * \ {G = 0},*2 := * \ {H = 0} and consider the 1-cocycle 2 = {212} =
{I/GH} with respect to the Zariski-open cover {*8}8 of*. We compute

22+02+G−1+H−1 =

(
I

GH

)2
+0

(
I

GH

)
+G−1+H−1 =

1
(GH)2

(
I2 + 0GHI + GH(G + H)

)
= 0,

which shows that 22 + 02 = −G−1 − H−1, that is, a 1-coboundary. Thus, 2 defines a
cohomology class in �1 (*,O* ) that lies in the kernel of F − 0 · id. In particular,
it shows the existence of an "?,0-torsor over * using (0.1.4). We set C1 = D−1 and
C2 = {

−1, and then, over *1, this torsor is given by the equation C21 + 0C1 + G
−1 = 0,

whereas over*2, it is given by the equation C22 + 0C2 + H
−1 = 0. We leave to the reader

to show that this recovers ( together with the "2,0-action defined above. �

We have a similar description of �5-singularities in characteristic ? = 2 as
quotients of �1-singularities by "2- and Z/2Z-actions.
Proposition 0.4.32 Let k be an algebraically closed field of characteristic 2. If
G ∈ - is a rational double point of type �0

5 (resp. �1
5) over k, then there exists a

local principal �-cover + → Spec Ô-,G with � = "2 (resp. � = Z/2Z) such that
, is a rational double point of type �1.
Proof Let ) := k[[D, {, |]]/(|2 + D{), which is a rational double point of type �1
by Theorem 0.4.13. First, we define an action of Z/2Z on ) via

D ↦→ D

1 + | + { , { ↦→ D + {
1 + | + { , and | ↦→ | + D

1 + | + { .
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It is easy to see that the fixed locus of this action is given by D = | + { = 0, that is,
the action is free outside the closed point of Spec) . Next, it is easy to see that

G :=
D + {| + D{
1 + | + { , H :=

{2 + |2

1 + | + { , and I :=
D({ + |)
1 + | + {

lie in the invariant subring ) (Z/2Z) and that these invariants satisfy

I2 + GHI + H2I + G2H = 0.

By Theorem 0.4.13, this is the equation of the rational double point of type �1
5.

Arguing as in the proof of Proposition 0.4.31,we find that the quotient of, := Spec)
by the Z/2Z-action is in fact equal to the complete k-subalgebra of ) generated by
G, H, and I, and that the quotient morphism is a local principal Z/2Z-cover.

Second, we define an action of "2 = Spec k[Y]/(Y2) on ) by

D ↦→ D + D{Y, { ↦→ { + {2Y, and | ↦→ | + (|{ + D)Y.

It is easy to see that

G ′ := D + {|, H′ := {2, and I′ := |2 = D{

lie in the invariant subring )"2 and that these invariants satisfy

I′2 + I′H′2 + G ′2H′ = 0.

By Theorem 0.4.13, this is an equation of the rational double point of type �0
5.

From here, we argue as above that the quotient of , := Spec) by the "2-action is
in fact equal to the complete k-subalgebra of ) generated by G, H, and I, and that
quotient morphism is a local principal "2-cover. Alternatively, we note that the pre-
image of the open subset* := � (G) ∪ � (H) ⊂ Spec)"2 is equal to the open subset
, := � (D) ∪ � ({) ⊆ , := Spec) . The base change, ×* , → , is isomorphic
to O, [G]/(G2) � , × "2, which shows that, → * is a nontrivial "2-torsor. �

Remark 0.4.33 By Example 0.3.6, actions by -? or "? correspond to ?-closed
rational vector fields of multiplicative or additive type. We classified quotients by
-?-actions of smooth varieties in Theorem 0.3.9 and Proposition 0.3.10, see also
Proposition 0.4.20. In particular, the quotient of a smooth surface by a -2-action in
characteristic ? = 2 is either smooth or a rational double point of type �1. The latter
corresponds to the quotient by the multiplicative vector field

m1 := D
3

3D
+ { 3

3{

on + := Spec k[[D, {]]. Using Example 0.3.6, it is not difficult to see that the "2-
action on+ from Proposition 0.4.31 with quotient a rational double point of type �0

4
corresponds to the additive vector field
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m2 := D2 3

3D
+ {2 3

3{
,

see also Example 0.3.13 and the proof of Proposition 0.4.30. Moreover, we leave to
the reader to check that the quotient of, := Spec k[[D, {, |]]/(|2 + D{), which has
a rational double point of type �1, by the additive vector field

m3 := D{
3

3D
+ {2 3

3{
+ (D + {|) 3

3|

acquires a rational double point singularity of type �0
5. Concerning the resolution

of singularities, let us recall that ?-closed foliations in characteristic ? = 2 admit
resolutions of singularities, see Proposition 0.3.21.

1. For m1, the singularity of the quotient +
m1 is a rational double point singularity of

type �1. The blow-up of the closed point of+
m1 resolves the singularity,Moreover,

the induced vector field m̃1 on the blow-up +̃ has no isolated zeros, see Example
0.3.20.

2. For m2, the singularity of the quotient +m2 is a rational double point of type �0
4.

The exceptional divisor of the blow-up of the closed point of +m2 is isomorphic
to P1 and contains three rational double points of type �1. Moreover, for the
induced vector field m̃2 on the blow-up +̃ , we get A = 1 in formula (0.3.6) and the
sum of the multiplicities of isolated zeros of m̃2 is equal to 4 − 1 = 3. Explicit
computations show that m̃2 has in fact three isolated zeros of multiplicity 1, and
thus, the quotient of +̃ by m̃2 has three rational double points of type �1:

+̃ //

c m̃2��

+

cm2
��

+̃
m̃2

// +
m2
.

The singularities of m̃2 and the quotient +̃
m̃2

can be resolved as explained in (1).
3. The blow-up ,̃ → , resolves that rational double point of type �1. The rational

vector field m̃ induced by m on the blow-up has an isolated zero like m2. From here,
we resolve the isolated zeros of m̃ as in (2), which yields an explicit resolution of
the singularity of the quotient,m3 , which is a rational double point of type �0

5.

0.5 Del Pezzo Surfaces and Surfaces of Small Degree

In this section, we discuss the classification of non-degenerate surfaces of degree
(=− 1) and = in P=. Since rational normal scrolls and anti-canonical models of weak
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del Pezzo surfaces play an important role in this classification, we will discuss them
as well. These results are important for explicit constructions of Enriques surfaces
later on, see, for example Proposition 3.1.1. We refer to [132], [160], [177, Chapter
8], [486, 7.2], and [47, Chapter IV] for more results on del Pezzo surfaces.

We will work over an algebraically closed field k of arbitrary characteristic ? ≥
0 in this section. We recall that a subvariety, that is, a reduced and irreducible
subscheme - ⊆ P= is said to be non-degenerate if it is not contained in a proper
linear subspace of P=. Then, we have the following classical result.

Proposition 0.5.1 Let - be a non-degenerate subvariety of P= over an algebraically
closed field k. Then, it satisfies the inequality

deg(-) ≥ codim(-) + 1.

Proof See, for example [205], [259, page 173], or [546]. �

If equality holds, then the subvariety is said to be of minimal degree. Surfaces of
minimal degree, that is, non-degenerate surfaces of degree (= − 1) in P=, have been
classified by del Pezzo, whereas minimal subvarieties of arbitrary dimension have
been classified by Bertini, and we refer to [205] for overview.

Before proceeding, let us recall that a rational normal scroll (0,= with 0 ≤ 1 and
0+1 = =−1, which is also denoted by (0,=−1−0;=, is a surface of degree (=−1) in P=
that is equal to the linear join of two Veronese curves of degrees 0 and 1 = =− 1− 0
lying in complementary linear subspaces of dimensions 0 and 1 of P=, respectively.
Recall that the linear join of two projective subvarieties +1 and +2 of a projective
space lying in complementary linear subspaces is the union of lines joining a point in
+1 with a point in +2. Then, (0,= = (0,=−1−0;= is a non-degenerate surface of degree
(= − 1) in P=. In particular, it is a surface of minimal degree. We do not exclude the
case 0 = 0, where one of the curves becomes a point and thus, (0,= = (0,=−1;= ⊂ P= is
the cone over a Veronese curve of degree (=−1). For example, (1,1;3 is a nonsingular
quadric and (0,2;3 is an irreducible quadric cone in P3. We refer to [177, 8.1] and
[289, Lecture 8] for more examples and details.

Next, for an integer = ≥ 0 we consider the P1-bundle

c : F= := P(OP1 ⊕ OP1 (−=)) → P1,

which is also known as a rational minimal ruled surface, or Hirzebruch surface, or
a Segre surface. Here and in the sequel we follow [294, Chapter V,§2]. Then,

Pic(F=) � Zf ⊕ Ze,

where f is the class of a fiber of c and e is the class of a section of c with e2 = −=.
Such a section always exists and if = > 0, then there is only one such section. The
canonical divisor class F= is linearly equivalent to−(=+2)f−2e and the intersection
form on Pic(F=) is determined by the intersection numbers

f2 = 0, e · 5 = 1, and e2 = −=.
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Next, the linear system |3f + e| is base-point free (resp. very ample) if 3 ≥ = (resp.
3 > =). Moreover, if 3 > =, then |3f + e| embeds F= as a rational normal scroll
(3−=,23−=+1 of degree (23 − =) into P23−=+1. We refer to [294, Chapter V, §2] and
[612, Chapter 2] for details and more results.

Theorem 0.5.2 Let - be a surface of minimal degree, that is, a non-degenerate
surface of degree (= − 1) in P= over an algebraically closed field k. Then, - is
isomorphic to one of the following:

1. P2,
2. a Veronese surface a2 (P2) in P5,
3. a rational normal scroll (0,=−1−0;= in P= for some 0 ≥ 0.

Proof See, for example [205], [259, p. 525], or [546]. �

We now proceed to the classification of non-degenerate surfaces of degree = in
P=, that is, to the next-to minimal degree case. We will achieve this goal in Theorem
0.5.5 below. To state it, we first recall weak del Pezzo surfaces, their classification,
and their anti-canonical models.

Theorem 0.5.3 Let - be a smooth and proper surface over an algebraically closed
field k. Then, the anti-canonical sheaf l−1

-
is big and nef if and only if one of the

following cases holds:

1. - is isomorphic to P1 × P1 or F2. In the first case, l−1
-

is ample, whereas l−1
-

is
big and nef but not ample in the second case.

2. There exists a birational morphism - → P2 that is the blow-up in a set Σ ⊂ P2

of (9 − 3) points (possibly infinitely near) with 3 =  2
-
, satisfying the following

conditions:

a. no more than 3 points lie on a line,
b. no more than 6 points lie on a conic.

Then, l−1
-

is ample if moreover:

c. no more than 2 points lie on a line,
d. no more than 5 points lie on a conic,
e. there is no cubic through Σ and has a double point at some point of Σ.

In any case, 3 satisfies 1 ≤ 3 ≤ 9.

In particular, these surfaces are rational and we will come back to blowing up
possibly infinitely near points in the next section. In the case where In the case
where− - is ample (resp. big and nef), the surface - is called a del Pezzo surface
(resp. weak del Pezzo surface) and 3 =  2

-
is called the degree of the weak del Pezzo

surface. We note that some authors exclude the surfaces from Case 1 of the theorem
from the list of (weak) del Pezzo surfaces. One can show that there is precisely one
del Pezzo surface, up to isomorphism, in each degree 3 ∈ {9, 7, 6, 5}. One can also
show that there are two del Pezzo surfaces of degree 8, up to isomorphism, namely
P1 × P1 and the blow-up of P2 in one point.
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We will discuss the blow-up - → P2 with applications to lines and pencils of
conics these surfaces at the end of this section. First, we discuss anti-canonical
models in greater detail. For a weak del Pezzo surface - , the graded algebra

A- :=
∞⊕
<=0

�0 (-,O- (−< - ))

is called the anti-canonical algebra of - . Since l−1
-

is big and nef, the natural and
a priori only rational map

qcan : - d -can := ProjA-

is a birational morphism. More precisely, qcan blows down all (−2)-curves on -
to rational double point singularities on -can and it is an isomorphism outside the
(−2)-curves. The surface -can is called the anti-canonical model of - . It is a surface
with at worst rational double point singularities and the anti-canonical sheaf l−1

-can
is ample. In terms of the minimal model program, -can is a Fano surface, which
is possibly of Picard number greater than one and which has at worst canonical
singularities. Moreover, - is a del Pezzo surface if and only if -can is smooth, that
is, has terminal surface singularities, in which case qcan is an isomorphism, see also
Proposition 0.4.18. Since the terminology Fano surface may be confused with some
other surfaces that bear Fano’s name, we will call the anti-canonical model of a weak
del Pezzo surface an anti-canonical del Pezzo surface.

Concerning the anti-canonical models and algebras, we have the following results.
The proofs can be found in [160] or, in characteristic ? ≠ 2, 3, in [406, Chapter III.3]
or [177, Section 8.3.1].

Proposition 0.5.4 Let - be a weak del Pezzo surface of degree 3 over an alge-
braically closed field k with anti-canonical model -can = ProjA- .

1. If - is from Case (1) of Theorem 0.5.3, then  - is uniquely divisible by 2 in
Pic(-) and | − 1

2 - | defines a morphism qhalf can to P3 that is birational onto its
image. If - � P1 × P1 (resp. - � F2), then this image is a rational normal scroll
(1,1;3 (resp. (0,2;3). The anti-canonical morphism | −  - | is equal to qhalf can
followed by the second Veronese morphism a2. Its image is a projectively normal
surface of degree 8 in P8.
In particular, the half-anti-canonical algebraB- :=

⊕
<≥0 �

0 (-,O- (−<2  - ))
is generated by 4 elements in degree 1 with one relation in degree 2. The algebra
A- is the second Veronese subalgebra of B- .

2. If - is from Case (2) of Theorem 0.5.3, then:

a. if 3 ≥ 3, then the algebra A- is generated by (3 + 1) elements of degree 1.
This gives rise to a closed embedding -can ↩→ P3 that is an isomorphism onto
a projectively normal surface of degree 3.

b. If 3 = 2, then the algebra A- is generated by elements C0, C1, C2 of degree
1 and an element C3 of degree 2. The kernel of the surjective homomorphism
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: [)0, )1, )2, )3] → A- , )8 ↦→ C8 is a principal ideal generated by a polynomial
of the form

� = )2
3 + �()0, )1, )2) if ? ≠ 2,

� = )2
3 + �()0, )1, )2) )3 + �()0, )1, )2) if ? = 2,

where � is a homogeneous polynomial of degree 2 and � is a homogeneous
polynomial of degree 4. This gives rise to a closed embedding -can into
weighted projective space P(1, 1, 1, 2) that is an isomorphism onto a degree 4
hypersurface with at worst rational double points as singularities.

c. If 3 = 1, then the algebra A- is generated by elements C0, C1 of degree 1,
an element C2 of degree 2, and an element C3 of degree 3. The kernel of the
surjective homomorphism : [)0, )1, )2, )3] → A- , )8 ↦→ C8 is a principal ideal
generated by a polynomial of the form

� = )2
3 + )

3
2 + �()0, )1) if ? ≠ 2, 3,

� = )2
3 + )

3
2 + �()0, )1))2

2 + � ()0, )1))2 + �()0, )1) if ? = 3,
� = )2

3 + � ()0, )1))2)3 + � ()0, )1))3 + )3
2 + �()0, )1) if ? = 2,

where �, �, �, �, � are homogeneous polynomials of degree 6, 2, 4, 1, and 3,
respectively. This gives rise to a closed embedding of -can into weighted pro-
jective space P(1, 1, 2, 3) that is an isomorphism onto a degree 6 hypersurface
with, at worst, rational double points as singularities.

Proof See [132, Section 8.5], [160], [177, Section 8.3.1], or [406, Chapter III.3].�

Let us give a couple of applications and corollaries of this proposition and refer
to [177], Chapter 8.3 for more details and proofs. For example,

1. If 3 ≥ 3, then A- is generated in degree 1, all q< with < ≥ 1 are birational
morphisms, and q1 (-) is equal to -can ⊂ P3 with l-can � OP3 (−1).

2. If 3 = 2, then A- is generated in degree 2 and all q< with < ≥ 2 are birational
morphisms. The projection onto the first three coordinates of -can ⊂ P(1, 1, 1, 2)
defines finite degree 2 morphism 5 : -can → P2 and q1 is the composition of 5
with the contraction morphism - → -can. It follows from Example 0.2.22 that
-can is always singular if ? = 2 and 5 is inseparable (that is, ? = 2 and � = 0
in Proposition 0.5.4). By [459, Theorem 2.4], a generic such -can has 7 rational
double points of type �1. In particular, if ? = 2 and - is a del Pezzo surface, then
5 is separable (that is, ? = 2 and � ≠ 0 in Proposition 0.5.4).

3. If 3 = 1, thenA- is generated in degree three and all q< with< ≥ 3 are birational
morphisms. The projection onto the first three coordinates of -can ⊂ P(1, 1, 2, 3)
defines a finite degree 2 morphism 5 : -can → P(1, 1, 2), which is a quadric cone
in P3, and q2 is the composition of 5 with the contraction morphism - → -can.
As in the 3 = 2-case, if ? = 2 and 5 is inseparable, then -can is always singular,
and a generic such -can has 8 rational double points of type �1. Finally, the
intersection of -can ⊂ P(1, 1, 2, 3) with+ (00)0 + 01)1) defines a pencil of curves
of arithmetic genus one, that is, a rational map 6 : -can d P1. The map q1 is the



94 0 Preliminaries

composition of 6 with the contraction - → -can, and since | −  - | has a unique
base point, the rational map q1 is not a morphism.

It follows from Proposition 0.5.4 that every weak del Pezzo surface of degree
3 ≥ 3 arises as the minimal resolution of a non-degenerate surface of degree 3 in
P3 with at most rational double point singularities. Conversely, every normal and
non-degenerate surface of degree 3 in P3 with at most rational double points as
singularities is isomorphic to the anti-canonical del Pezzo surface. The following
result classifies non-degenerate and normal surfaces of degree 3 in P3 .

Theorem 0.5.5 Let - be a non-degenerate and normal surface of degree = in P=
over an algebraically closed field k. Then, - is isomorphic to one of the following:

1. a projection of a surface - ′ ⊂ P=+1 of degree = with center outside - ′,
2. the cone over an elliptic normal curve that is contained in a hyperplane of P=,
3. the anti-canonical del Pezzo surface of degree =,

Proof See [546, Theorem 8 and Proposition 11] and [177, 8.1]. �

Remark 0.5.6 If the surfaces from Case 1 of Theorem 0.5.3 are excluded from the
list of weak del Pezzo surfaces, then one has to add their anti-canonical models by
hand to the previous list: namely, surfaces that are the second Veronese embedding
a2 (&) ⊂ P8 of an irreducible quadric surface & ⊂ P3 (see also the first case of
Proposition 0.5.4). We mention this in order to explain the discrepancy to other
classification lists of surfaces of degree = in P= that can be found in the literature.

We end the section by briefly discussing lines and pencils of conics on surfaces
of degree 3 ≥ 3 in P3 , at least if they are anti-canonical del Pezzo surfaces: to do so,
we first introduce some notations and definitions that we will use in the sequel and
refer to [177, Chapter 8] for further details.

Let c : - → ( be a birational morphism between smooth surfaces. Then, we can
factor it as

c : - =: -#
c#−→ -#−1

c#−1−→ . . .
c2−→ -1

c1−→ -0 := (, (0.5.1)

where each c8 : -8 → -8−1 is the blow-up in a closed point G8 ∈ -8−1. For
# ≥ : > 8 ≥ 0, we set

c:8 := c8+1 ◦ . . . ◦ c: : -: → -8 ,

as well as c:8 := id if : = 8. We say that - is obtained from ( by blowing up the
points G1, . . . , G# , and note that these points may lie on different surfaces. For all 8,
we define effective divisors

�8 := c−1
8 (G8) and E8 := c∗#8 (�8), (0.5.2)

on -8 and - = -# , respectively, and note that the E8 need be neither irreducible
nor reduced divisors. The divisors E8 are called the exceptional configuration of the



0.5 Del Pezzo Surfaces and Surfaces of Small Degree 95

birational morphism c : - → (. Moreover, if c:8 (G:+1) = G8 , then the point G:+1 is
said to be infinitely near to G8 of order B = : + 1− 8. In this case, we write G:+1 �B G8
and simply G:+1 � G8 if : = 8. Points that are not infinitely near to any other will be
identified with their images on (. Assume ( = P2. The divisor classes

40 = 21 (c∗OP2 (1)), 41 = [E1], . . . , 4# = [E# ] .

form a basis (40, 41, . . . , 4# ) in Pic(-). It is called a geometric basis of - . Of course,
it depends on the blowing-down morphism c : - → P2. It satisfies

42
0 = 1, 42

8 = −1, 8 = 1, . . . , #, 48 · 4 9 = 0, 8, 9 = 0, . . . , #. (0.5.3)

The known formula for the behavior of the canonical class under a blow-up gives:

 - = −340 + 41 + · · · + 4# . (0.5.4)

Let � be a non-zero and effective divisor on (. Then, we define the multiplicity
multG8 � in G8 ∈ -8−1 inductively as follows: we set multG1 � to be the usual
multiplicity of � at G1, that is, it is defined as the largest integer < such that the
local equation of � around G1 belongs to the <-th power of the maximal ideal of
the local ring O-,G1 . We now assume that the multiplicity multG8 � is defined. Then,
we take the proper inverse transform c−1

8
(�) of � in -8 and define multG8+1 (�) :=

multG8+1 c−1
8
(�). It follows from the definition that

c−1 (�) = c∗ (�) −
#∑
8=1

<8E8 , where <8 = multG8 �.

If G: � G8 , then it also follows from the definition that multG: � ≥ multG8 �. We will
say that a divisor � has G8 as a point of multiplicity multG8 or just passes through G8 if
the multiplicity is positive. For an invertible sheaf L on ( we denote by |L −∑

<8G8 |
the linear system of divisors � ∈ |L| on ( such that multG8 � ≥ <8 . The fixed part
of the full transform of |L −∑

<8G8 | on - contains the divisor
∑
<8E8 . The linear

system |c∗ (L)(−<1E1 − · · · − <#E# ) | is called the proper transform of the linear
system |c∗ (L) −∑

<8G8 |.
Now, let - be a weak del Pezzo surface of degree 3 = 9−# over an algebraically

closed field k that is not isomorphic to P1 × P1 or F2. By Theorem 0.5.3, there exists
a birational morphism f : - → P2 that is a composition

f : - = -#
f#−→ -#−1

f#−1−→ . . .
f2−→ -1

f1−→ -0 = P2, (0.5.5)

where f8 : -8 → -8−1 is the blow-up of a closed point G8 ∈ -8−1. Thus, - is obtained
by blowing up the ordered set (G1, . . . , G# ), which may include infinitely near points.
The geometric basis defined by a choice of the blowing-down morphism f is a basis
of Pic(-). The formula for the canonical class (0.5.4) gives

 2
- = 9 − #, (0.5.6)
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showing again that # ≤ 8. We will discuss the intersection pairing on Pic(-) in
connection with the Enriques lattice later in Section 1.5.

On - , there are many smooth rational curves. Those with  - · � = 0 satisfy
�2 = −2 by the adjunction formula – these are called (−2)-curves or nodal curves.
We note that (−2)-curves are precisely those curves that get contracted to rational
double point singularities on the anti-canonical model -can under the anti-canonical
map qcan. In particular, if − - is ample, that is, if - is a del Pezzo surface, then qcan
is an isomorphism onto its image and - contains no (−2)-curves. The (−2)-curves
contained in the exceptional locus of the birational morphism f : - → P2 are said
to be vertical. Vertical (−2)-curves are irreducible components of some reducible
divisor E8 . In particular, such curves exist if and only if some E8 is reducible,
which exist if and only if there are infinitely near points among the blown up points
{G1, ..., G# }. Using the formula for the canonical class (0.5.4) and the fact that − -
is always nef, it is not difficult to prove the following two propositions, and we refer
to [160] for details and proof.

Proposition 0.5.7 Let - be a weak del Pezzo surface of degree 3 ≥ 1 over an
algebraically closed field k and from the second case of Theorem 0.5.3. Let # = 9−3,
Σ := {G1, . . . , G# }, and f : - → P2 be as above. Then, the non-vertical (−2)-curves
on - are precisely the following:

1. the proper transform of a line in P2 that passes through at least 3 points of Σ,
2. the proper transform of an irreducible conic that passes through at least 6 points

of Σ,
3. the proper transform of an irreducible cubic that passes through at least 7 points

of Σ and that passes through one more point of Σ with multiplicity ≥ 2.

If 3 ≥ 3, then the anti-canonical linear system |l−1
-
| defines a birationalmorphism

qcan by Proposition 0.5.4. Next, we study lines and conics on the anti-canonicalmodel
-can.

Proposition 0.5.8 Let - be as in Proposition 0.5.7 and assume moreover 3 ≥ 3. Let
5 : - → -can ⊂ P3 be the anti-canonical birational morphism. Then, the lines on
-can are precisely the images under 5 of the proper transform under f of:

1. either a non-nodal component of a curve E8 ,
2. or a line that passes through exactly 2 points of Σ,
3. or a conic that passes through exactly 5 points of Σ.

The conics on -can are precisely the images under 5 of the proper transform under
f of:

1. either a line that passes through exactly 1 point of Σ,
2. or a conic that passes through exactly 4 points of Σ.

We note that every conic on -can moves in a pencil. For the anti-canonical model
del Pezzo surface of degree 3 ≥ 3 in P3 that is not isomorphic to P1 × P1, we have
the following classic and well-known list.
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Degree 3 4 5 6 7 8 9
Lines 27 16 10 6 3 1 0
Pencils of conics 21 10 5 3 2 1 0

For an anti-canonical del Pezzo surface - of degree 3 ≥ 3, the number of lines
and pencils of conics depends on the set of (−2)-curves on - and thus, on the
singularities of - . In degree 3 = 4, we will explore this phenomenon in Proposition
0.6.2 in the next section.

Fix a geometric basis (40, 41, . . . , 4# ) of a weak del Pezzo surface - . Let

U0 = 40 − 41 − 42 − 43, U1 = 41 − 42, . . . , U#−1 = 4#−1 − 4# .

We see that each U8 ∈ Pic(-) satisfies U2
8
= −2. For # ≥ 3, we can express the

intersection matrix (U8 · U 9 ) by the graphs in Figure 0.2.

# = 3 • • •
U1 U2 U0

# = 4 • • • •
U1 U2 U3 U0

# = 5 •

•

• • •

U0

U1 U2 U3 U4

# = 6

•

• • • • •

U0

U1 U2 U3 U4 U5

# = 7

•

• • • • • •

U0

U1 U2 U3 U4 U5 U6

# = 8

•

• • • • • • •

U0

U1 U2 U3 U4 U5 U6 U7

Fig. 0.2 Root diagrams of weak del Pezzo surfaces

The U8 form the vertices of these graphs. If 8 ≠ 9 , then there is an edge (resp. no
edge) from U8 to U 9 if and only if U8 · U 9 = 1 (resp. U8 · U 9 = 0). We call this graph
the root diagram of the weak del Pezzo surface.

We see that the diagrams coincide with the diagrams of the fundamental cycles
of rational double points of types �4 if # = 4, type �5 of # = 5, type �6 if # = 6,
type �7 if # = 7, and type �8 if # = 8.
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Since the discriminant  2
-
= 9−# of the sublattice Z - in the unimodular lattice

Pic(-) coincides with the discriminant of the root lattice generated by U0, . . . , U#−1,
we obtain that (U0, . . . , U#−1) is a basis of (Z - )⊥.

Proposition 0.5.9 Let - be an anti-canonical del Pezzo surface of degree 3 ≤ 6.
Let {G1, . . . , G: } be the rational double points of - . Let Γ(G8) be the dual resolution
graph of G8 ∈ - and let Umax be the fundamental cycle of G8 ∈ - . Let Γ∗# be the
graph obtained from the root diagram Γ# by adding one vertex that is incident to
the vertex U1 and U0 (resp. U2 if # = 4, resp. U0 if # = 6, resp. U1 if # = 7, resp. U7
if # = 8). Then, Γ(G1), . . . , Γ(G: ) are disjoint subdiagrams of Γ∗# .

Using this proposition, we can classify all possible types of exceptional curves in
the minimal resolution of singularities of an anti-canonical del Pezzo surface. We
omit the proof; but it will become clear after we have introduced more results on root
lattices, their Weyl groups, and if apply the Borel–de Siebenthal–Dynkin algorithm
for describing root sublattices of a root lattice (see Section 6.4 in Volume II).

0.6 Symmetroid Quartic Surfaces in P4

In this section, we give a more detailed classification of non-degenerate normal
quartic surfaces in P4 than the one already obtained in Theorem 0.5.5. We refer to
[177, Chapter 8.6], for background and more information. In particular, we classify
and describe anti-canonical del Pezzo surfaces of degree 4 that are symmetroid (in
the sense of Definition 0.6.4), which are quartic surfaces in P4 that admit torsors
under group schemes of length 2 over their smooth locus. Not surprisingly, the
classification is more complicated in characteristic ? = 2. We note that symmetroid
quartic surfaces will be important for the explicit construction of Enriques surfaces
later on.

As in the previous section, we will be working over an algebraically closed field
k of characteristic ? ≥ 0. If - ⊂ P4 is an non-degenerate and normal surface of
degree 4, then, by Theorem 0.5.2 and Theorem 0.5.5, - is one of the following:

1. an anti-canonical del Pezzo surface of degree 4,
2. a cone over a elliptic normal curve in P3,
3. a projection of a Veronese surface a2 (P2) in P5,
4. a projection of a scroll (0,4;5, (1,3;5, or (2,2;5 in P5.

The first case can be characterized in terms of linear systems of quadrics as follows:

Proposition 0.6.1 Let - ⊂ P4 be a non-degenerate and normal surface of degree
4 over an algebraically closed field k. Let Q be the linear system of quadrics in P4

containing - . Then, its projective dimension satisfies

dimk Ker
(
�0 (P4,OP4 (2)) A→ �0 (-,O- (2))

)
− 1 = dimQ ≤ 1.

Moreover, equality holds if and only if



0.6 Symmetroid Quartic Surfaces in P4 99

1. either - is an anti-canonical del Pezzo surface, in which case - has at worst
rational double point singularities and a genericmember ofQ is a smooth quadric,

2. or - is the cone over an elliptic normal curve, in which case - has a unique
elliptic Gorenstein singularity and no member of Q is smooth.

Proof Suppose dimQ ≥ 1. Then, - is contained in a quartic surface &1 ∩ &2,
where &1 and &2 are two linear independent quadrics from Q. Since deg(-) = 4,
it follows that we have, in fact, an equality - = &1 ∩ &2 and thus, Q is spanned
by &1 and &2. This proves the inequality. Moreover, if equality holds, then -

is a complete intersection of two quadrics in P4, and thus, a Gorenstein surface
with very ample anti-canonical sheaf l−1

-
. In this case, it is also easy to see that

ℎ1 (-,O- ) = ℎ2 (-,O- ) = 0. We assumed - to be normal and know it is Gorenstein.
Thus, if - has rational singularities, then the singularities are rational double point
singularities by Proposition 0.4.17 and then, - is an anti-canonical del Pezzo surface
in this case. If - does not have rational singularities, then its minimal resolution of
singularities is not a rational surface, and thus, it follows from the classification of
quartic surfaces in P4 (see Theorem 0.5.2 and Theorem 0.5.5) that - must be the
cone over an elliptic normal curve of degree 4 in P3.

Conversely, an elliptic normal curve of degree 4 in P3 is the complete intersection
of two quadrics, and thus, also the cone over it in P4 is a complete intersection
of two quadrics. From this description, one also sees that every member of Q is
singular. Finally, suppose that - is the anti-canonical model .can of a weak del
Pezzo surface . of degree 4. Let f : . → P2 be the blow-up of P2 at a set of
points Σ, some of which may be infinitely near to each other. Restriction gives a
map A : �0 (P4,OP4 (2)) → �0 (-,O- (2)), and thus, we have Q = |Ker(A) |. By
Proposition 0.5.4, - is projectively normal, and thus, the map A is surjective. We
know that |O- (2) | � | − 2 . | and the latter is equal (via f) to the linear system of
plane sextics in P2 passing through the points of Σ with multiplicities ≥ 2. Counting
constants (or applying Riemann–Roch), we see that it is of dimension 12. Since
dim |OP4 (2) | = 14, we find dimQ = 1. Moreover, since - is not a cone, it follows
from Bertini’s theorem that there is a smooth quadric in Q and thus, the generic
quadric in Q is smooth. �

We continue with our analysis of anti-canonical del Pezzo surfaces of degree 4
by classifying lines and pencils of conics on them. We already discussed lines and
pencils of conics on anti-canonical del Pezzo surfaces of degree 3 ≥ 3 in P3 at the
end of Section 0.5. For the anti-canonical model -can ⊂ P3 of an anti-canonical
Pezzo surface - of degree 3 ≥ 3, the number of lines and pencils of conics depends
on the singularities of -can and thus, on the (−2)-curves on the minimal resolution
of singularities, which is - . In degree 4, we have the following classification, which
is a corollary of Proposition 0.5.8.

Proposition 0.6.2 Let - be an anti-canonical del Pezzo surface of degree 4 over an
algebraically closed field k and let -can ⊂ P4 be its anti-canonical model. Then, the
number of lines, pencils of conics, depending on the type of the singularities on -can
is given by the following Table:
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Lines Pencils of conics Singularities of -can

16 10 ∅
12 8 �1
9 6 �1 + �1
8 7 �1 + �1
8 6 �2
6 5 �1 + �1 + �1
6 4 �2 + �1
5 4 �3
4 5 �3
4 4 �1 + �1 + �1 + �1
4 3 �1 + �1 + �2
3 3 �1 + �3
3 2 �4
2 3 �4
2 2 �1 + �1 + �3
1 1 �5

Table 0.1 Anti-canonical quartic del Pezzo surfaces

Next, we study anti-canonical quartic del Pezzo surfaces that admit non-trivial
torsors of length 2 over their smooth locus– this will be important for the analysis
of Enriques surfaces later on. First, let us recall a special case of Theorem 0.1.10:
let � be a finite k-group scheme of length 2 over an algebraically closed field k of
characteristic ? ≥ 0. If ? ≠ 2, then � � -2 � Z/2Z, which is étale. On the other
hand, by Theorem 0.1.10, there are three isomorphism classes if ? = 2, namely -2,
"2, and Z/2Z. Here, only the last one is étale, whereas the first two are nonreduced
and infinitesimal group schemes over k.

Lemma 0.6.3 Let - be a smooth and rational surface over an algebraically closed
field k and let � be a finite and flat k-group scheme of length 2. Then, there exist no
nontrivial �-torsors over - .

Proof Since - is a smooth and rational surface, the Picard group Pic(-) is torsion-
free, which implies that - does not admit nontrivial -2-torsors by Proposition 0.2.29.
Moreover, since - is a rational surface, it satisfies�1 (O- ) = 0. Thus, by Proposition
0.2.29, it also does not admit non-trivialZ/2Z-torsors nor"2-torsors in characteristic
? = 2. �

Thus, since del Pezzo surfaces are smooth rational surfaces, there are no such
torsors over them. This leads us to the following definition.

Definition 0.6.4 Let - be a normal and proper surface over an algebraically closed
field kwith at worst rational double point singularities and let� be a finite flat group
scheme of length 2 over k. Then, - is a symmetroid surface of type � if there exists
a non-trivial�-torsor. → -sm = - \Sing(-) that defines a local principal�-cover
over each singular point of - .

We refer to Corollary 0.4.25 for some examples of local principal covers over
rational double point singularities, which will become relevant below. In Proposition



0.6 Symmetroid Quartic Surfaces in P4 101

0.7.6, we will give a characterization of cubic surfaces in P3 that are symmetroid
in terms of determinantal equations. More generally, an example of a symmetroid
surface of degree (2= + 1) in P3 in characteristic ? ≠ 2 is given by the determinant
of a symmetric square matrix of size (2= + 1), all of whose entries are linear forms
(plus some regularity condition), see [177], Section 4.2.6. Another example, still
assuming ? ≠ 2, is a quartic surface in P3 that is the Kummer surface associated to an
abelian surface, and we refer to [177, Theorem 10.3.18], for explicit equations. Other
examples of symmetroid surfaces are discussed in [110]. Also higher–dimensional
examples are provided by EPW-sextics in P5 [208] and closures of some nilpotent
orbits.

In the remainder of the section, we will classify non-degenerate quartic surfaces
in P4 that are symmetroid. First, we establish the following connection to weak del
Pezzo surfaces.

Proposition 0.6.5 A non-degenerate symmetroid quartic surface - ⊂ P4 over an
algebraically closed field k of characteristic ? ≥ 0 is an anti-canonical quartic
del Pezzo surface. Depending on type and characteristic, there are the possible
singularities of -:

Type Singularities
? ≠ 2 -2 4�1 or 2�1 + �3
? = 2 -2 4�1 or 2�1 + �3

"2 �0
4 or �0

5
Z/2Z �1

4 or �1
5

Proof Let - ⊂ P4 be a normal and non-degenerate quartic surface with at worst
rational double points as singularities and let � be a general hyperplane section. Let
c : . → -sm be a non-trivial�-torsor as inDefinition 0.6.4. Seeking a contradiction,
assume that - is not an anti-canonical del Pezzo surface of degree 4. It follows from
the classification of non-degenerate quartic surfaces in P4 in Theorem 0.5.5 that �
is a smooth rational curve. Since smooth rational curves do not admit non-trivial �-
torsors, it follows that the pre-image of � on the non-trivial torsor c is disconnected
or non-reduced (the latter can only happen if ? = 2). But this implies that . is
disconnected or non-reduced, contradicting non-triviality of the torsor c.

Let 5 : -̃ → - be the minimal resolution of singularities, which is a weak del
Pezzo surface of degree 3 = 4. In particular, the Picard number of -̃ is equal to
9− 3 = 5 by Theorem 0.5.3. From Proposition 0.4.2 and Proposition 0.4.9 it follows
that the only singularities on - can only be rational double point singularities of
type �= with 2 ≤ = ≤ 5 or of type �< with 4 ≤ < ≤ 5.

First, assume that ? = 2 and that the torsor . → -sm is of type "2 or Z/2Z. As
explained at the end of Section 0.6, a rational double point of type �= does not admit
local principal covers of this type. By Proposition 0.4.31 and Proposition 0.4.32,
there do exist local principal Z/2Z-covers (resp. "2-covers) over rational double
points of type �1

4 and �1
5 (resp. �0

4 and �0
5). On the other hand, there are no local

principal Z/2Z-covers of �0
4 or �

0
5 by Artin’s computation of the local fundamental

groups of these singularities [28]. By Proposition 0.4.29, the singularities �1
4 and
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�1
5 are �-injective and thus, do not admit local principal "2-covers. From this and

Proposition 0.6.2, the assertions on symmetroid quartic surfaces of type "2 and
Z/2Z in characteristic 2 follow.

Next, assume that the torsor . → -sm is of type -2 in characteristic ? ≥ 0. Let
9 : -sm → - be the inclusion and let c : . := Spec 9∗c∗O. → - be the integral
closure of - , which is a -2-cover. Let � be the exceptional divisor of 5 and then,
5 induces an isomorphism of * := -̃\� with -sm. Pulling back to -̃ , we obtain a
-2-cover of -̃ that is a torsor over*. By Proposition 0.2.27, this is a simple -2-cover
associated to some invertible sheaf L̃ and a global section thereof. Next, we claim
that �0 (*,O×

*
) = k×: in fact, the divisor of any rational function q that is invertible

on* is a linear combination of irreducible components of � . Since the intersection
matrix of � is negative definite, this divisormust be equal to zero, hence q is constant.
Thus, the Kummer sequence (0.1.7) shows that �1

fl (*, -2) � 2 Pic(*). In fact, the
restriction L|* must be the 2-torsion element of Pic(*) defining the -2-torsor over
*. Since L|⊗2

*
� O* , we conclude that L � O

-̃
(�) for some effective divisor �

on -̃ such that 2� ∼ , for some divisor , on -̃ that is supported on -̃\* = � .
Let &8 be the root lattice associated to a connected component �8 of � and let
' be an irreducible component of �8 (see also Section 0.8 for definitions). From
, ·' = 2� ·', we see that this number is an even integer. Thus, 1

2 [,] belongs to the
dual lattice&8 . In particular, the discriminant group of&8 is of even order. Inspecting
Table 0.1 from Proposition 0.6.2, we see that the singularities of - must be rational
double points of type �1, �3, �4, or �5. Moreover, since � ·  

-̃
= , ·  

-̃
= 0, the

adjunction formula shows that �2 is even and hence, ,2 = 4�2 is divisible by 8.
Replacing, by, + 2� for some divisor � supported on � , we may assume that,
is a sum of irreducible components of � taken with multiplicity 1. In order for ,2

to be divisible by 8, - must have 4 singularities of type �1 or two singularities of
type �1 and one singularity of type �3. �

Remark 0.6.6 If - ⊂ P4 is a symmetroid quartic surface in characteristic ? ≠ 2, then
we have � = -2.

First, assume that - has four rational double points of type �1 and let -sm be the
smooth locus of - . Then, we have a homomorphism of the local fundamental groups
of the four singularities, that is, (Z/2Z)4 to c1 (-sm). The image of (1, 1, 1, 1) ∈
(Z/2Z)⊕4 gives a (possibly trivial) �-torsor over -sm, which then extends to a local
principal � torsor over - . In particular, this shows that there is at most one local
principal �-torsor over - . Second, a similar argument shows that there is at most
one such local �-torsor if - has one rational double point of type �1 and one of
type �3.

Using class groups instead of local fundamental groups, and the description of
-2-torsors in characteristic ? = 2, one can show, along the above lines, that if
� = -2, then there exists at most one local principal �-cover over a symmetroid
quartic surface - ⊂ P4 also in characteristic ? = 2.

In view of this proposition, we will now study anti-canonical quartic del Pezzo
surfaces admitting rational double points of type 4�1, 2�1 + �3, �4, or �5 in any
characteristic. We will see that there is only one isomorphism class for each type
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in characteristic ? ≠ 2. In characteristic ? = 2, there is still only one isomorphism
class for type 4�1 and for type 2�1 + �3. However, for such surfaces in characteristic
? = 2 with a singular point of type �4 or type �5, there are two isomorphism classes
that are distinguished by the type of the singularity �0

4 or �
1
4 (resp. �

0
5 or �

1
5). After

establishing this classification, we will explicitly construct local principal �-covers
over the smooth loci of these surfaces. These will be our quartic symmetroid anti-
canonical del Pezzo surfaces.

We will start with finding a possible set of points {G1, G2, G3, G4, G5} in P2, such
that their blow-up is the minimal resolution of a quartic anti-canonical del Pezzo
surface - of type 4�1, 2�1 + �3, �4, and �5, respectively.

Proposition 0.6.7 Let - be a quartic del Pezzo surface - that has singularities of
type 4�1 or 2�1 + �3 or �4 or �5 over an algebraically closed field k. Then, its
minimal resolution of singularities - ′ is isomorphic to the blow-up of one of the
following sets of of points {?1, ?2, ?3, ?4, ?5} in P2.

4�1 : ?3 � ?2, ?5 � ?4, ?1, ?2, ?3 and ?1, ?4, ?5 are on a line,
2�1 + �3 : ?3 � ?2 � ?1, ?5 � ?4, ?1, ?2, ?3 and ?1, ?4, ?5 are on a line,

�4 : ?4 � ?3 � ?2 � ?1, ?5, ?5, ?1, ?2 are on a line,
�5 : ?5 � ?4 � ?3 � ?2 � ?1, ?5, ?1, ?2, ?3 are on a line.

Proof We use Proposition 0.5.9, which implies that the divisor classes of the ir-
reducible components of the exceptional curve of the resolution of singularities
- ′→ - can be expressed in terms of a geometric basis of Pic(- ′) as follows.

If - has singularities of type 4�1, then the divisor classes are

Umax = 40 − 43 − 44 − 45, U0 = 40 − 41 − 42 − 43, U1 = 41 − 42, U3 = 44 − 45.

Using Proposition 0.5.7, we obtain that ?5 � ?4, ?2 � ?1 and that the points
?3, ?4, ?5 and ?1, ?2, ?3 are on a line. It remains to renumber them, to obtain the
assertion of the proposition.

If - has singularities of type 2�1 + �3, then the divisor classes are

Umax = 40−43−44−45, U0 = 40−41−42−43, U1 = 41−42, U3 = 43−44, U4 = 44−45.

Using Proposition 0.5.7 we obtain that ?5 � ?4 � ?3, ?2 � ?1 and that the points
?3, ?4, ?5 and ?1, ?2, ?3 are on a line.

If - has singularities of type �4, then the divisor classes are

U0 = 40 − 41 − 42 − 43, U2 = 42 − 43, U3 = 43 − 44, U4 = 44 − 45.

Using Proposition 0.5.7 we obtain that ?5 � ?4 � ?3 � ?2 and that the points
?1, ?2, ?3 are on line.

Finally, if - has singularities of type �5, then the divisor classes are

U0 = 40−41−42−43, U1 = 41 = 42, U2 = 42−43, U3 = 44−45, U4 = 44−45.
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Using Proposition 0.5.7 we obtain that ?5 � ?4 � ?3 � ?2 � ?1 and that the points
?1, ?2, ?3 are on line. �

Corollary 0.6.8 Let - be a quartic anti-canonical del Pezzo surface with singu-
larities of type 4�1, 2�1 + �3, �4, or �5 over an algebraically closed field k of
characteristic ? ≥ 0. Then, it is a complete intersection of two quadrics in P4 given
by the following equations

4�1 : G2
0 + G1G2 = G

2
0 + G3G4 = 0,

2�1 + �3 : G2
0 + G1G2 = G

2
4 + G0G3 = 0,

�0
4 : G2

0 + G1G2 = G1G3 + G4 (G4 + G2) = 0,
�1

4 : G2
0 + G1G2 = G1G3 + G4 (G4 + G2 + G0) = 0,

�0
5 : G2

0 + G1G2 = G1G3 + G0G2 + G2
4 = 0,

�1
5 : G2

0 + G1G2 = G1G3 + G0 (G4 + G2) + G2
4 = 0.

If ? ≠ 2, then the surfaces �0
4 and �1

4 (resp. �0
5 and �1

5) are isomorphic. If ? = 2,
then the surfaces have singularities of the indicated type and in particular, they are
not isomorphic.

Proof Suppose - is of type 4�1. We choose projective coordinates in the plane such
that

?1 = [0, 0, 1], ?2 = [0, 1, 0], ?4 = [1, 0, 0] .

The infinitely near point ?3 � ?2 (resp. ?5 � ?4) corresponds to the tangent direction
of the line G = 0 (resp. H = 0) at the point ?2 (resp. ?4). The plane cubics passing
through {?1, . . . , ?5} are given by equation

G2 (01H + 02I) + H2 (03G + 04I) + I2 (05G + 06H) + 07GHI = 0.

The condition that the cubics are tangent to the line + (G =) and ?2 and tangent to
the line + (H) at ?4 imply that 02 = 04 = 0. This shows that the linear system on of
cubics through ?1, . . . , ?5 is generated by monomials

G0 = GHI, G1 = −G2H, G2 = HI2, G3 = GH2, G4 = −GI2. (0.6.1)

The obvious quadratic relations between these monomials give us the asserted equa-
tion of the surface.

Suppose - is of type 2�1 + �3. Choose coordinates such that

?1 = [0, 0, 1], ?4 = [0, 1, 0] .

A plane cubic � passing through ?1, ?4 is given by an equation

G2 (01H + 02I) + H2 (03G + 04I) + I2 (05G + 06H) + 07GHI + 08G
3 = 0.

The condition that ?1, ?2, ?3 (resp. ?1, ?4, ?5) lie on a line implies that the line H = 0
is tangent to � at the point ?1 with multiplicity 3 and that the line G = 0 is tangent
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to � at ?4 with multiplicity 2. This gives 02 = 05 = 06 = 0. Thus, we can choose a
basis in the anti-canonical linear system represented by sections

−G2H, −G3, GH2, I2H, GHI. (0.6.2)

From this, it is clear that the equation of - in P4 is given by two quadratic forms:

G2
0 + G1G2 = G2

4 + G0G3 = 0. (0.6.3)

Suppose - is of type �4. Choose coordinates such that

?1 = [0, 0, 1], ?5 = [0, 1, 0] .

The point ?2 corresponds to the tangent direction of the line G = 0 at ?1. A plane
cubic � passing through {?1, ?2, ?5} is given by an equation

G2 (01H + 02I) + H2 (03G + 04I) + 05GI
2 + 06GHI + 07G

3 = 0. (0.6.4)

The coefficients 04, 05 are non-zero for a general member of the linear system
because otherwise it would be singular. We have a choice for ?3 and ?4. By blowing
up ?1 and then ?2, we see that the choice for ?4 is determined by the ratio 05/04.
By applying a projective transformation of the form

) : [G, H, I] ↦→ [G, �H + �G, �I + �G] (0.6.5)

that leaves invariant the linear system of cubics, we find that 04/05 changes to
�04/�04. Thus, we may fix ?4 to assume that 04 = 05. Next, we blow up ?4 and
obtain that the choice for ?5 is determined by 06. The transformation ) changes 06
to ��06 + 2���04. If ? ≠ 2, we may assume that it is equal to 0. If ? = 2, we may
assume that either 06 = 0 or else 06 = 04 = 05.

So, we see that if ? ≠ 2, there is only one projective equivalence class of linear
systems of cubics through the sets of points {?1, . . . , ?5}, which is represented by
the linear systems

G2 (01H + 02I) + H2 (03G + 04I) + 04GI
2 + 07G

3 = 0. (0.6.6)

If ? = 2, then we have two projective equivalence classes represented by a linear
system of cubics

G2 (01H + 02I) + H2 (03G + 04I) + 04GI
2 + 04GHI + 07G

3 = 0,
G2 (01H + 02I) + H2 (03G + 04I) + 04GI

2 + 07G
3 = 0.

(0.6.7)

To obtain the equations of the surfaces, we use the following bases

G0 = G2H, G1 = G3, G2 = −GH2, G3 = H2I+GI2+nGHI, G4 = G2I, n = 0, 1.
(0.6.8)

The relations
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(G2H)2 + (G3) (GH2) = 0, (H2I + GI2 + nGHI)G3 + (G2I + GH2 + nG2H)G2I = 0

give the following quadratic equations for -

G2
0 + G1G2 = G1G3 + G4 (G4 + G2 + nG0) = 0. (0.6.9)

The singular point of the surface is [0, 0, 0, 1, 0]. Setting G3 = 1 and eliminating G1
using the second equation, we find the equation of the singular point. Comparing
it with Artin’s equations of rational double point singularities, we find that n = 1
corresponds to the rational double point of type � (1)4 .

Suppose that - is of type �5. We may assume that ?1 = [0, 0, 1] and that the
line G = 0 passes through the points ?1, ?2, ?3. The linear system of cubics passing
through {?1, ?2, ?3} is given by an equation

01G
2H + 02G

2I + 03GH
2 + 04GI

2 + 05GHI + 06G
3 + 07H

3 = 0. (0.6.10)

We can transform the linear system using the projective transformations

) : [G, H, I] ↦→ [G, �H + �G, �I + �G + �H] . (0.6.11)

As in the previous case, we can choose ) to assume that 04 = 07 and 04 = 05 or
05 = 0. This gives a basis of the anti-canonical linear system

G0 = G2H, G1 = G3, G2 = GH2, G3 = GI2 + H3 + nGHI, G4 = G2I. (0.6.12)

As in the previous case, we may assume that n = 0 if ? ≠ 2. Then, we find that the
relations between the monomials give the asserted equations for - . If ? = 2, then
we check that n = 0 leads to a rational double point of type �0

5 on - and for n = 1
one obtains a rational double point of type �1

5 on - . �

Let Q be the pencil of quadrics in P4, whose base locus is equal to a quartic
anti-canonical del Pezzo surface with singularities as described by the equations
from the previous proposition. If - is of type 4�1 (resp. 2�1 + �3), then one can
check that Q contains two quadrics of corank 2 and one quadric of corank 1 (resp.
no more singular quadrics). The following proposition proves the converse.

Proposition 0.6.9 Let - be a quartic anti-canonical del Pezzo surface defined by a
pencil that contains two quadrics of corank 2 and one quadric of corank 1 (resp. no
more singular quadrics). Then, - is of type 4�1 (resp. 2�1 + �3).

Proof Applying a projective transformation, wemay assume that one of the quadrics
&1 of corank 2 is given by equation G2

0 + G1G2 = 0. Let

G3!1 (G0, G1, G2) + G4!2 (G0, G1, G2) + @(G0, G1, G2) + 0G2
3 + 1G3G4 + 2G2

4 = 0

be the equation of the second quadric &2 of corank 2. The singular line G0 = G1 =
G2 = 0 of &1 intersects &2 at the points [0, 0, 0, U, V], where 0U2 + 1UV4 + 2V2 = 0.
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Changing the coordinates G3, G4, we may assume that 0G2
3 + 1G3G4 + 2G2

4 = G3G4 or
G2

4.
In the first case, after replacing G3 with G3 + !2 (G0, G1, G2) and G4 with G4 +

!1 (G0, G1, G2), wemay assume that !1 = !2 = 0. The quadric+ (@(G0, G1, G2)+G3+G4)
is of corank 2 if and only if @(G0, G1, G2) = ; (G0, G1, G2)2 is of rank 1. The line + (;)
intersects the conic+ (G2

0+G1G2) at two points or it is tangent to it. After an orthogonal
transformation of the conic, we may assume that ; = G0 in the first case, giving us
the asserted equations, or ; = G1 in the second case. In the latter case, the pencil Q
does not contain quadrics of corank 1.

In the second case, the point [0, 0, 0, 1, 0] cannot be a singular point of &2 since
otherwise - is a cone. Thus, !1 ≠ 0, and, as above, we may assume that !1 = G0 or
!1 = G1.

If !1 = G0, then we replace G3 with G3 + 0G0 + 1G1 + 2G2 in order to assume that
@ does not depend on G0. This implies that the singular locus of &2 is contained in
the line G0 = G3 = G4 = 0. Since &2 is a corank 2 quadric, we see that the singular
locus coincides with this line and hence, taking the partial derivatives in G1, G2, we
conclude that @ = 0. This gives us the asserted equations. If !1 = G1, then by a
similar argument we obtain equations

G2
0 + G1G2 = G2

4 + G1G3 = 0.

It is immediate to see that the pencil Q contains a quadric of corank 1. �

Remark 0.6.10 If - is of type �4 (in any characteristic), then the pencil of quadrics
Q contains one quadric of corank 2 and one quadric of corank 1. However, this is
not enough to characterize these surfaces. Indeed, the surface

G2
0 + G1G2 = G0G3 + G2G4 = 0

satisfies these conditions, but it has 2 singular points [0, 0, 0, 1, 0] and [0, 1, 0, 0, 0]
that are rational double points of type �1 and �3, respectively. Similarly, surfaces of
type �5 are not characterized by their singularities alone.

Our goal is to establish Corollary 0.6.14 and to describe the local principal covers
over the symmetroid quartic surfaces explicitly. This will we done achieved in a case-
by-case analysis and anticipating this result, we will denote the resulting surfaces
D1, D′1, D2, D′2, D3, D′3, see also Definition 0.6.15 below.

Proposition 0.6.11 Let k be a field of characteristic ? ≥ 0 and let the k-group
scheme -2 = Spec k[Y]/(Y2 − 1) act on P3 via

[C0, C1, C2, C3] → [C0 ⊗ Y, C1 ⊗ Y, C2, C3]

and consider the two quadrics in P3 defined by

& : C0C1 + C2C3 = 0 and & ′ : C0C1 + C22 = 0.
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Then, & is non-singular, whereas & ′ is singular, and both are -2-invariant. Next,
D := &/-2 is isomorphic to the surface D1 and D′ := & ′/-2 is isomorphic to
the surface D′1. Moreover, the restriction of the quotient maps to D \ Sing(D1) and
D′ \ Sing(D′1) are principal -2-covers. In particular, D1 and D′1 are symmetroid
surfaces.

Proof It is easy to see that & is non-singular, & ′ is singular with unique singular
point [0, 0, 0, 1], and that both are -2-invariant. Let us first consider the non-singular
quadric&. The following quadratic forms in C0, . . . , C4 belong to the ring of invariants
k[&]-2 :

(@0, @1, @2, @3, @4) = (C0C1,−C20 , C
2
1 , C

2
2 ,−C

2
3) (0.6.13)

and it is easy to see that they define a base-point-free linear subsystem of dimension
4 in |O& (2) |. Thus, the map c defined by this linear system is a morphism and it
factors through&/-2. We immediately check that G8 = @8 , restricted to& satisfy the
relations G2

0 + G1G2 = 0 and G2
0 + G3G4 = 0 (here, we have to take into account the

equation of &). By Proposition 0.6.16, the surface - defined by these equations is
the surface D1. From this, it is easy to see that c is the quotient map by the -2-action.
Moreover, the -2-action on & is free outside the four points [1, 0, 0, 0], [0, 1, 0, 0],
[0, 0, 1, 0], [0, 0, 0, 1], and c maps these to the four nodes of - , which proves that
the restriction of c over - \ Sing(-) is a -2-torsor.

Next, consider the singular quadric& ′. Here, we use the invariant quadratic forms

(@0, @1, @2, @3, @4) = (C22 ,−C
2
0 , C

2
1 ,−C

2
3 , C2C3).

This time the relations satisfied by the G8 = @8 are G1G2 + G2
0 = 0 and G0G3 + G2

4 = 0,
which defines the surface D′1. From here, we conclude as in the previous case. �

Proposition 0.6.12 Let k be a field of characteristic ? = 2 and let the k-group
schemes (Z/2Z) and "2 = Spec k[Y]/(Y2) act on P3 via

Z/2Z : [C0, C1, C2, C3] ↦→ [C1, C0, C3, C2]
"2 : C0 ↦→ C0 ⊗ 1 + (C2 + C3) ⊗ n,

C1 ↦→ C1 ⊗ 1 + (C2 + C3) ⊗ n,
C2 ↦→ C2 ⊗ 1 + (C0 + C1) ⊗ n,
C3 ↦→ C3 ⊗ 1 + (C0 + C1) ⊗ n,

and consider the nonsingular quadric in P3 defined by

& : C0C1 + C2C3 = 0 .

Then, & is invariant under both actions and the quotient &/(Z/2Z) (resp. &/"2)
is isomorphic to the surface D2 (resp. D3). Moreover, the restriction of the quotient
maps to the non-singular locus of the quotient is a principal (Z/2Z)-cover (resp.
"2-cover). In particular, D2 and D3 are symmetroid surfaces.

Proof First, we treat the case � = Z/2Z. Then, we consider the linear system of
invariant quadrics on & generated by the quadrics + (@8), where



0.6 Symmetroid Quartic Surfaces in P4 109

(@0, @1, @2, @3, @4) = (C0C1, C20 + C
2
1 , C

2
2 + C

2
3 , C0C2 + C1C3, C0C3 + C1C2).

We argue as in the proof of Proposition 0.6.11 and check that the G8 = @8 satisfy the
relations G1G2 + (G3 + G4)2 = 0 and G3G4 + G0 (G1 + G2) = 0. After a linear change
of coordinates (G0, G1, G2, G3, G4) = (H3, H1 + H2, H2, H0 + H2 + H4, H4), we obtain the
equation of the surface D2.

Next, we treat the case � = "2. Here, we consider the linear system of invariant
quadrics on & generated by the quadrics + (@8), where

(@0, @1, @2, @3, @4) =
(
(C0 + C1) (C2 + C3), (C0 + C1)2, (C2 + C3)2, C21 , C

2
3

)
.

We argue as in the proof of Proposition 0.6.11 and check that the G8 = @8 satisfy
the relations (G1 + G3)G3 + (G2 + G4)G4 = 0 and G1G2 + G2

0 = 0. After a linear change
of coordinates (G0, G1, G2, G3, G4) = (H0 + H1, H1 + H2, H2, H3, H3 + H4), we obtain the
equation of the surface D3.

The remaining assertions are shown as in the proof of Proposition 0.6.11. �

Proposition 0.6.13 Let k be a field of characteristic ? = 2 and let the k-group
schemes Z/2Z and "2 = Spec k[Y]/(Y2) act on P3 via

Z/2Z : [C0, C1, C2, C3] ↦→ [C0, C0 + C1, C0 + C2, C3 + C1 + C2]
"2 : [C0, C1, C2, C3] ↦→ [C0 ⊗ 1, C1 ⊗ 1, C2 ⊗ 1 + C0 ⊗ n, C3 ⊗ 1 + C2 ⊗ n]

and consider the singular quadric in P3 defined by

& ′ : C0C1 + C22 = 0 .

Then, & ′ is invariant under both actions and the quotient & ′/(Z/2Z) (resp. & ′/"2)
is isomorphic to the surface D′2 (resp. D′3). Moreover, the restriction of the quotient
maps to the non-singular locus of the quotient is a principal Z/2Z-cover (resp.
"2-cover). In particular, D′2 and D′3 are symmetroid surfaces.

Proof First, we treat the case � = Z/2Z. We consider the linear system of invariant
quadrics on & ′ generated by the quadrics + (@8), where

(@0, @1, @2, @3, @4) =
(
C0 (C1 + C2), C21 + C

2
2 , C

2
0 , C3 (C1 + C2 + C3), C0C3 + C1C2 + C0C1

)
.

We argue as in the proof of Proposition 0.6.11 and check that the G8 = @8 satisfy the
relations G1G2 + G2

0 = 0 and G1G3 + G0 (G2 + G4) + G2
4 = 0, which is the equation of the

surface D′2.
Next, we treat the case � = "2. Here, we consider the linear system of invariant

quadrics on & ′ generated by the quadrics + (@8), where

(@0, @1, @2, @3, @4) = (C22 , C
2
0 , C

2
1 , C

2
3 , C1C2 + C0C3).
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We argue as in the proof of Proposition 0.6.11 and check that the G8 = @8 satisfy the
relations G1G2 + G2

0 = 0 and G1G3 + G0G2 + G2
4 = 0, which is the equation of the surface

D′3.
The remaining assertions are shown as in the proof of Proposition 0.6.11. �

Corollary 0.6.14 Let - ⊂ P4 be a non-degenerate quartic surface over an alge-
braically closed field k of characteristic ? ≥ 0 that is symmetroid. Then, all possi-
bilities of Proposition 0.6.5 do exist and the surfaces are isomorphic to the surfaces
given by the following equations:

equations singularities characteristic
D1 G

2
0 + G1G2 = G

2
0 + G3G4 = 0 4�1 all

D′1 G
2
0 + G1G2 = G3G0 + G2

4 = 0 2�1 + �3 all
D2 G

2
0 + G1G2 = G3G1 + G4 (G0 + G2 + G4) = 0 �1

4 ? = 2
D3 G

2
0 + G1G2 = G3G1 + G4 (G2 + G4) = 0 �0

4 ? = 2
D′2 G

2
0 + G1G2 = G3G1 + G0 (G2 + G4) + G2

4 = 0 �1
5 ? = 2

D′3 G
2
0 + G1G2 = G3G1 + G0G2 + G2

4 = 0 �0
5 ? = 2

Definition 0.6.15 We will use D8 and D′
8
with 8 = 1, 2, 3 to denote an anti-canonical

del Pezzo surface of degree 4 isomorphic to a surface given in the corresponding row
of the previous table. A surface isomorphic to the surfaces D1 (resp. D′1) is called a
four-nodal quartic del Pezzo surface (resp. degenerate four-nodal quartic del Pezzo
surface).

To summarize what we have found in this section, let us state the following
propositions.

Proposition 0.6.16 Let - be a non-degenerate irreducible quartic surface in P4 over
an algebraically closed field k of characteristic ? ≥ 0 and let . → - be its minimal
resolution of singularities. Let Q be the linear system of quadrics containing - .
Then, the following are equivalent:

1. - is the anti-canonical quartic del Pezzo surface with 4 singular points of type
�1,

2. Q is a pencil spanned by two quadrics of rank 3 and contains a quadric of rank
4,

3. - contains exactly 4 lines and 4 pencils of conics,
4. - is a weak del Pezzo surface of degree 4 obtained from P2 by blowing up 5 points
?1, ?3 � ?2, ?5 � ?4 such that the points ?1, ?2, ?3 and ?1, ?4, ?5 are collinear,

5. - is isomorphic to P1 × P1 blown up at four points that are the vertices of a
quadrangle of lines formed by the rulings,

6. - is isomorphic to the surface D1.

Proposition 0.6.17 Let - be a non-degenerate irreducible quartic surface in P4 over
an algebraically closed field k of characteristic ? ≥ 0 and let . → - be its minimal
resolution of singularities. Let Q be the linear system of quadrics containing - .
Then, the following are equivalent:
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1. - is the anti-canonical quartic del Pezzo surface with 2 singular points of type
�1 and one singular point of type �3,

2. Q is a pencil spanned by two quadrics of rank 3 that does not contain any quadric
of rank 4,

3. - contains exactly 2 lines and 2 pencils of conics,
4. - is a weak del Pezzo surface of degree 4 obtained from P2 by blowing up 5

points ?3 � ?2 � ?1, ?5 � ?4 such that the points ?1, ?2, ?3 and ?1, ?4, ?5 are
collinear,

5. . is isomorphic to P1×P1 blown up at four points @1, @2, @3 � @1, @4 � @2, where
@1, @2 lie on the same ruling, and @3, @4 correspond to the tangent directions
defined by the lines from the different rulings passing through @1 and @2,

6. - is isomorphic to the surface D′1.

Remark 0.6.18 Using the explicit equations in Corollary 0.6.14, it is easy to study
the geometry of these surfaces in detail:

1. Let - = D1 be the four-nodal quartic del Pezzo surface. First, the singular points
are the points [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], and [0, 0, 0, 0, 1]. In terms
of Proposition 0.6.16, three lines come from the blow-up of the points ?1, ?3,
and ?5 and the fourth is the line joining ?2 and ?4. In terms of the equation in
Corollary 0.6.14, these lie in the hyperplane G0 = 0 and are cut out by hyperplanes
as follows:

G0 = G1 = G3 = 0, G0 = G1 = G4 = 0,
G0 = G2 = G3 = 0, G0 = G2 = G4 = 0.

Three of the pencils of conics come from the pencils of lines in P2 passing through
the points ?1, ?2 and ?4, respectively. The fourth pencil comes from the pencil
of conics that passes through the points ?2, ?3, ?4, and ?5.
In particular, the union of its four lines is a quadrangle with vertices at the nodes.
Wewill refer to this quadrangle of lines as the quadrangle ofD1 and to the vertices
as the vertices of D1. One also easily checks the following simple properties:

a. Each of the diagonals of the quadrangle of D1 is the singular line of one of the
two quadrics of rank 3 containing D1.

b. A pair of intersecting sides of the quadrangle and the opposite pair of sides
are members of the same pencil of conics. The two pencils obtained in this
way are cut out by the pencils of planes (with respect to the equation from
Corollary 0.6.14)

_G0 − `G2 = 0, _G1 + `G0 = 0,
_G0 − `G3 = 0, _G4 + `G0 = 0.

c. Each side of the quadrangle, taken with multiplicity 2, belongs to a pencil
of conics on D1. The same pencil contains the opposite side, taken with
multiplicity 2. The two pencils obtained in this way are cut out by the pencils
of planes (with respect to the equation from Corollary 0.6.14)
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_G2 + `G3 = _G4 + `G1 = 0,
_G2 + `G4 = _G3 + `G1 = 0.

2. Let D′1 be the degenerate four-nodal quartic del Pezzo surface. First, the two
singularities of type �1 are the points [0, 1, 0, 0, 0] and [0, 0, 1, 0, 0] and the �3-
singularity is [0, 0, 0, 1, 0]. In terms of Proposition 0.6.17, the two lines come
from the blow-up of the points ?1 and ?2 (the last blown-up component). In terms
of the equation from Corollary 0.6.14, the lines lie in the plane G0 = G4 = 0 and
are cut out by an additional equation G2 = 0 and G1 = 0.
The two pencils of conics come from the pencils of lines in P2 passing through
the points ?1 and ?2.
In analogy to the previous case, the union of these two lines the degenerate
quadrangle of D′1. The point of intersection of the two lines is the singular point
of type �3, and we will call it the �3-vertex. Each line also passes through one
node, and we will call these nodes the simple vertices of D′1.
As before, one also easily checks the following simple properties:

a. The line joining the two simple vertices of the degenerate quadrangle is the
double line of one of the two quadrics of rank 3 containing D′1. The double
line of the other quadric of rank 3 is tangent to the first one at the �3-vertex.

b. The planes passing through the simple vertices of D′1 cut out a pencil of conics
on D′1. Its equation is (with respect to the equation from Corollary 0.6.14)

_G0 = 0, _G3 + `G4 = 0.

c. Each line of the degenerate quadrangle, taken with multiplicity 2, belongs to
a pencil of conics on D′1. The same pencil contains the other line taken with
multiplicity 2. Its equation is (with respect to the equation from Corollary
0.6.14)

_G2 + `G0 = 0, _G0 − `G1 = 0.

Proposition 0.6.19 Let - be a non-degenerate irreducible quartic surface in P4 over
an algebraically closed field k of characteristic ? = 2 and let . → - be its minimal
resolution of singularities. Let Q be the linear system of quadrics containing - .
Then, the following are equivalent:

1. - is the anti-canonical quartic del Pezzo surface with a singular point of type �1
4

(resp. �0
4),

2. - has exactly 2 lines and 3 pencils of conics,
3. . is a weak del Pezzo surface of degree 4 obtained from P2 by blowing up 5 points
?4 � ?3 � ?2 � ?1, ?5 such that the points ?1, ?2, ?5 are collinear,

4. - is isomorphic to the surface D2 (resp. D3).

Remark 0.6.20 One can show that Aut(P2) acts on the sets of points (?1, . . . , ?5) as
in (4) with two orbits. One orbit is represented by a surface that admits a G<-action
of projective transformations, and the other orbit is represented by a surface that does
not admit such an action. However, if ? ≠ 2, then there exists a quadratic Cremona
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transformation defined by the linear system of conics passing through the points
?2, ?3, ?4 that maps the first projective orbit to the second one. If ? = 2, then the
transformation does not change the isomorphism class of the surfaces.

Finally, we characterize the quartic symmetroid surfaces D′2 and D′3.

Proposition 0.6.21 Let - be a non-degenerate irreducible quartic surface in P4 over
an algebraically closed field k of characteristic ? = 2 and let . → - be its minimal
resolution of singularities. Let Q be the linear system of quadrics containing - .
Then, the following are equivalent:

1. - is an anti-canonical quartic del Pezzo surface with a singular point of type �1
5

(resp. �0
5),

2. - has exactly one line and one pencil of conics,
3. . is a weak del Pezzo surface of degree 4 obtained from P2 by blowing up 5 points
?5 � ?4 � ?3 � ?2 � ?1, such that the points ?1, ?2, ?3 are collinear,

4. - is isomorphic to the surface D′2 (resp. D′3).

Remark 0.6.22 Remark 0.6.20 also applies to anti-canonical quartic del Pezzo sur-
faces with one singularity of type �0

5 or �
1
5.

Remark 0.6.23 It is easy to check that the induced local action at the point
[1, 1, 1, 1] ∈ & (resp. [0, 0, 0, 1] ∈ & ′) in Proposition 0.6.12 (resp. Proposition
0.6.13) is isomorphic to the action fromProposition 0.4.31 (resp. Proposition 0.4.32).

Remark 0.6.24 Let D be the anti-canonical quartic del Pezzo surface - of type �4
or �5 in characteristic ? = 2. In Proposition 0.6.12 and Proposition 0.6.13 we
established the existence of a principal �-cover c : + → Dsm := D \Sing(D), where
� isomorphic to Z/2Z or "2. This �-action on c extends to c : + → D and finally,
+ is isomorphic to an irreducible quadric surface in P3.

In fact, the principal �-covers over the smooth locus of D are unique up to
isomorphism: let c : + → D be such a cover. Then, the formula for the canonical
class (0.2.10) shows that l+ � c∗ (lDsm ), which implies that c∗ (lD) � l+ . Since
c is a finite morphisms and l−1

D � OD (1) is ample, it follows that l−1
+

is ample.
Let f : +̃ → + be the minimal resolution of singularities and thus, +̃ is a weak
del Pezzo surface with anti-canonical model + . Then, (c ◦ f)∗ (lD) � l

+̃
, hence

 
+̃
= 2 2

D = 8, where we have used the intersection theory of Cartier divisors.

1. Assume that + is nonsingular, that is, D has a singularity of type �4, see Propo-
sition 0.4.31 and Proposition 0.4.32. This implies that + is a quadric or the
Hirzebruch surface F1 (the blow-up of P2 in one point) in P3. Seeking a contra-
diction, assume that + is isomorphic to F1. Then, the group scheme � acts on +
and leaves invariant the unique (−1)-curve � of F1. Since − + ·� = 1, the curve
� is mapped one-to-one onto a line on D, hence the quotient map is ramified on
� , a contradiction. Thus, + is a nonsingular quadric in P3. It is easy to see that
the �-action on + with one fixed point is isomorphic to the action defined in
Proposition 0.6.12.
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2. Now, assume that + is singular, that is, D has a singularity of type �5, see
Proposition 0.4.31 and Proposition 0.4.32. Since  2

+̃
= 8 and +̃ contains a (−2)-

curve, we conclude that +̃ is a minimal ruled surface of type F2 and that + is a
singular irreducible quadric in P3. Again, we check that the �-action on + with
one fixed point is isomorphic to the action defined in Proposition 0.6.13.

Finally, let us show that the principal �-cover c : + → Dsm is unique:

3. If the singularity ofD is of type �0
4 or �

0
5, then uniqueness of the "2-cover follows

from Example 0.4.28, which shows that dim�1
fl (D

sm,"2) = 1. The computation
in loc. cit. also shows that the Frobenius map � : �2

m (�) → �2
m (�) cannot be

the identity map. Thus, singularities of type �0
4 or �

0
5 do not admit local principal

Z/2Z-covers, which also follows from Artin’s computation of local fundamental
groups of these singularities in characteristic 2 from [28].

4. If the singularity of D is of type �1
4 or �

1
5, then c is a finite morphism of degree 2

of complete surfaces. By [28], the local fundamental group of a singularity of type
�1

4 or �1
5 is of order 2. Thus, a local principal Z/2Z-cover of the singular point

G0 of the surface D is isomorphic to the cover that we constructed in Propositions
0.4.31 and 0.4.32.

In particular, + is nonsingular at the point H0 = c
−1 (G0) if G0 is of type �4 and +

has a singular point of type �1 if G0 is of type �5.

Finally, we turn to the automorphism groups of symmetroid quartic del Pezzo
surfaces. First, we note that an anti-canonical del Pezzo surface has a finite automor-
phism group isomorphic to a subgroup of (Z/2Z)4oS5, whereS5 denotes the sym-
metric group on 5 elements, see [177, 8.6.4] and [184] (for arbitrary characteristic).
On the other hand, automorphism groups of symmetroid quartic del Pezzo surfaces
are rather large, which also gives a partial explanation for the name symmetroid in
Definition 0.6.4, see also Proposition 0.7.6 below. More precisely, concerning the
automorphism group schemes of these surfaces, we have the following.

Theorem 0.6.25 Let - be a quartic symmetroid surface D8 or D′
8
with 8 = 1, 2, 3.

Then, the automorphism group of - is given by the following table:

Name Aut(-)◦ � Name Aut(-)◦ �

D1 G2
< �8 D′1 (G0 o G<) o G< Z/2Z

D2 G2
0 Z/2Z D′2 G2

0 o G0 {1}
D3 G2

0 o G< Z/2Z D′3 (G2
0 o G0) o G< {1}

Here, �8 denotes the dihedral group of order 8. As usual, Aut(-)◦ denotes the
connected component of the automorphism group scheme Aut(-) and we set � :=
Aut(-)/Aut(-)◦.

Proof Let - be an anti-canonical del Pezzo surface and let Aut(-) be its auto-
morphism group scheme. Since | −  - | is ample, Aut(-) is a closed subgroup of
the algebraic group of projective automorphisms of - . It is also isomorphic to the
group of automorphisms of its minimal resolution -̄ of - . Its connected component
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of identity Aut(-)◦ acts trivially on Pic( -̄) and hence, fixes any geometric basis
(40, 41, . . . , 4=) of Pic( -̄). In particular, it fixes the linear systet |40 | that defines an
isomorphism from -̄ to the blow-up of P2 at a set of points ?1, . . . , ?=. This implies
that Aut(-)◦ is isomorphic to the subgroup of Aut(P2) that fixes this set of points.

It is known that the natural homomorphism Aut(-) → O(Pic(-)) is injective
for all weak del Pezzo surfaces of degree ≤ 5 [177, Proposition 8.2.39]. It is easy to
see that in our cases, this implies that an automorphism that acts trivially on the set
of lines on - belongs to Aut(-)◦.

After these general remarks, we now compute Aut(-).
First, let - = D1. Then, Aut(-)◦ is a subgroup of Aut(P2) that preserves the

coordinate triangle. It consists of scaling transformations [G, H, I] ↦→ [_G, `H, WI]. It
is isomorphic to the torus G2

<. In projective coordinates given in (0.6.1), the action
is given by

[G0, G1, G2, G3, G4] ↦→ [G0, _G1, _
−1G2, `G3, `

−1G4], (0.6.14)

The group of connected components � = Aut(-)/Aut(-)◦ acts on - by leaving
invariant the quadrangle of lines given by equations from Remark 0.6.18. It is
immediate to see that it is generated by permutations of the coordinates

f1234 : G8 ↦→ Gf (8) , f = (1324) ∈ S5,

f12 : G8 ↦→ Gf (8) , f = (12) ∈ S5.

The group is isomorphic to the dihedral group �8 of order 8. In the plane coordinates
[G, H, I], the group is generated by the following birational transformations of the
plane:

f1234 : [G, H, I] ↦→ [GH,−I2, GI],
f12 : [G, H, I] ↦→ [−I2, GH, GI] .

Second, let - = D′1. In this case, Aut(-)◦ consists of projective transformations
that fix the points [0, 0, 1] and [0, 1, 0] and also fixes the line H = 0. The group is
isomorphic to the group (G0 o G0) × G< of transformations

[G, H, I] ↦→ [G, 0H, 1I + 2G] .

In projective coordinates [G0, G1, G2, G3, G4] given in (0.6.2), the action is given by
the formula

[G0, G1, G2, G3, G4] ↦→ [0G0, G1, 0
2G2,−022G0 + 012G3 + 2012G4,−02G0 + 01G4] .

(0.6.15)
The group of connected components Aut(-)/Aut(-)◦ is of order 2 and acts by
switching the two lines on - . In plane coordinates, it is defined by the birational
transformation

[G, H, I] ↦→ [GH, G2,−HI] .
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In the coordinates [G0, . . . , G4] it acts by switching G1 with G2.
Third, let - have a singular point of type�1

4. It follows from the proof of Corollary
0.6.8 that Aut(-)◦ � G2

0. In the plane coordinates, the transformations are given by
formula (0.6.5).

[G, H, I] → [G, H + 0G, I + 1G] .

In projective coordinates in P4 given by (0.6.8) with n = 1, this gives transformations

[G0, G1, G2, G3, G4] ↦→ [G0+0G1, G1, 1G0+1(02+0+1)G1+1G2+G3+0(0+1)G4, 0G1+G4] .

Assume - has a singular point of type �0
4. Then, the group Aut(-)◦ is larger and

isomorphic to G2
0 o G<. More precisely, it is isomorphic to the group of projective

transformations of P2 given by formula

[G, H, I] C> [G, 2H + 0G, 22I + 1G] .

In the projective coordinates in P4 given by (0.6.8) with n = 1, this gives transfor-
mations

[G0, G1, G2, G3, G4 ] ↦→ [2G0+0G1, G1, 0
2G1+22G2, 1 (02+1)G1+122G2+24G3+02G4, 1G1+22G4 ].

In both cases, the surface has two lines and the group of connected components
� = Aut(-)/Aut(-)◦ is of order 2 that switches the lines. In coordinates [G0, . . . , G4]
it acts in both cases by

[G0, G1, G2, G3, G4] ↦→ [G0, G1, G2, G3, G1 + G4] .

In the plane coordinates, it is given by a projective involution

[G, H, I] ↦→ [G, H, I + G] .

Thus, we find Aut(-) � Aut(-)◦ o (Z/2Z).
Assume that - has a singular point of type �1

5. Since - contains only one line,
we conclude Aut(-) = Aut(-)◦. It follows from the proof of Corollary 0.6.8 that
Aut(-)◦ is isomorphic to the group of projective transformations of P2

[G, H, I] ↦→ [G, H + 0G, I + 1H + 2G] .

This shows that Aut(-)◦ � G2
0 oG0, as asserted. In coordinates (G0, . . . , G4), it acts

as follows:

[G0, . . . , G4] ↦→ [G0 + 0G1, G1, 0
2G1 + G2,

(02 + 01 + 2)G0 + (22 + 03 + 02)G1 + (0 + 1 + 12)G2 + G3 + 0G4, 1G0 + 2G1 + G4]
(0.6.16)

Finally, if - has a singular point of type �1
5, we have again Aut(-) = Aut(-)◦

and this group is isomorphic to projective transformations of the plane



0.7 Symmetroid Cubic Surfaces in P3 117

[G, H, I] ↦→ [G, 0H + 1G, 02I + 2H + 3] .

The group is isomorphic to (G2
0 o G0) o G<, as asserted. It acts in P4 by formula

[G0, . . . , G4] ↦→ [0G0 + 1G1, G1, 1
2G1 + 04G2,

(0212 + 01 + 2)G0 + (32 + 13)G1 + (041 + 22)G2 + G3 + 06G4, 2G0 + 3G1 + 03G4] .
(0.6.17)

0.7 Symmetroid Cubic Surfaces in P3

In this section, we continue our analysis of symmetroid surfaces that began in
the previous section. We will classify and describe cubic surfaces in P3 that are
symmetroid in the sense of Definition 0.6.4. As with symmetroid quartic surfaces in
P4, the classification in characteristic ? = 2 is more subtle and more difficult.

By Theorem 0.5.5, a normal cubic surface in P3 is either the cone over a smooth
plane cubic curve or an anti-canonical del Pezzo surface of degree 3, see also the
discussion in [177, Section 9.2.2]. In particular, if not a cone, a normal cubic surface
has at worst rational double point singularities. For the classification of non-normal
cubic surfaces, we refer to [177, Theorem 9.2.1]. The next proposition is the key to
classifying symmetroid cubic surfaces using the classification of symmetroid quartic
surfaces from the previous section.

Proposition 0.7.1 Let - be a normal cubic surface inP3 with atworst rational double
point singularities over an algebraically closed field k of characteristic ? ≥ 0. Then,
- is a symmetroid surface if and only if it is the projection of a symmetroid quartic
del Pezzo surface in P4 from its nonsingular point.

Proof First of all, we claim that every cubic surface in P3 is the projection of an anti-
canonical model of an anti-canonical quartic del Pezzo surface from its nonsingular
point: Indeed, let. → - be theminimal resolution of singularities of - . By Theorem
0.5.3, . is the blow-up of P2 in 6 points, and we let f : . = .6 → . . . → .0 = P

2

be the composition of blow-ups as in (0.5.5). Since . is a weak del Pezzo surface
of degree 3, it follows that .5 is a weak del Pezzo surface of degree 4. Let .5,can be
the anti-canonical model of .5, which is a quartic surface in P4 via its anti-canonical
map | −  .5 |. Let G ∈ .5,can be the image of the point G5 ∈ .5. It is easy to see
that the projection of .5,can from G is projectively isomorphic to the surface - . We
refer to [586, Section 2.3], for explicit equations. Conversely, the projection of an
anti-canonical quartic del Pezzo surface from a nonsingular point is a cubic surface.

Now, if - is a symmetroid del Pezzo surface, then the pull-back of the principal
�-cover over - \ Sing(-) as in Definition 0.6.4 gives rise to a principal �-cover
over the smooth locus of -5,can. Conversely, a principal �-cover over the smooth
locus of -5,can descends to the smooth locus of - . �
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As in the case of symmetroid quartic surfaces in P4, there are different types of
symmetroid cubic surfaces in P3 depending on the group scheme of the principal
cover. More precisely, by Definition 0.6.4 and Theorem 0.1.10, there is one type in
characteristic ? ≠ 2, namely -2 � Z/2Z, whereas there are 3 types in characteristic
? = 2, namely -2, "2, and Z/2Z. We start with the classification type -2 in every
characteristic.

As always we use the notation from the previous section that applies to anti-
canonical symmetroid quartic del Pezzo surfaces.

Proposition 0.7.2 Let - be a symmetroid cubic surface of type -2 over an alge-
braically closed field k of characteristic ? ≥ 0. Let . → - be its minimal resolution
of singularities. Then,

1. - is isomorphic to one of the following surfaces:

(C1) G0G1G2 + G0G1G3 + G0G2G3 + G0G2G3 = 0,
(C′1) G0G1G2 + G1G

2
3 + G2G

2
3 = 0,

(C′′1 ) G0G1G2 + G0G
2
3 + G

3
2 = 0.

2. (C1) C1 is the projection of D1 from a point not lying on any line.
(C′1) C′1 is the projection of D1 from a nonsingular point lying on any line or the

projection of D′1 from a nonsingular point not lying on a line.
(C′′1 ) C′′1 is the projection of D′1 from a nonsingular point lying on a line.

3. - has only rational double singularities, and more precisely:

(C1) has four singular points of type �1,
(C′1) has two singular points of type �1 and one singular point of type �3,
(C′′1 ) has one singular point of type �1 and one singular point of type �5.

4. . is a weak del Pezzo surface obtained by blowing up 6 points {?1, . . . , ?6} in
P2 that are in special position:

(C1) ?1, . . . , ?5 are as in Proposition 0.6.16, and ?6 is a point lying outside of
the triangle of lines ℓ1 = 〈?1, ?2〉, ℓ2 = 〈?1, ?3〉 and ℓ3 = 〈?2, ?4〉.

(C′1) ?1, . . . , ?5 are as in Proposition 0.6.16, and ?6 is a point that lies on the
line ℓ3 or infinitely near to ?1, or ?3, or ?5.

(C′′1 ) ?1, . . . , ?5 are as in Proposition 0.6.17, and ?6 is a point that is infinitely
near to ?3 or ?5.

5. (C1) C1 is isomorphic to the quotient of a del Pezzo surface Q of degree 6 by the
group scheme -2 (Q is isomorphic to the blow-up of a nonsingular quadric at
two points, infinitely near if ? = 2)),

(C′1) C′1 is isomorphic to the quotient of an anti-canonical del Pezzo surface Q′
of degree 6 with one singular point of type �1 by the group scheme -2 (Q′ is
isomorphic to the blow-up 2 points on a singular quadric).

(C′′1 ) C′′1 is isomorphic to the quotient of an anti-canonical weak del Pezzo surface
Q′′ of degree 6 with one singular point of type �2 by the group scheme -2.

Proof See [138, Proposition 0.5.2] and [177, Section 9.3.3]. �
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We leave the proofs to the reader, who may consult [138, Chapter 0.5]. We note
that symmetroid cubic surfaces are cubic symmetroid hypersurfaces in the sense that
they are projectively isomorphic to a hypersurface of the form det(�) = 0 in P=,
where � is a symmetric (3× 3)-matrix, whose entries are linear forms in the (= + 1)
coordinates, see [177, Section 9.3.3], and Proposition 0.7.6 below.

Proposition 0.7.3 Let - be a symmetroid cubic surface of type Z/2Z over an alge-
braically closed field k of characteristic ? = 2. Let . → - be its minimal resolution
of singularities. Then,

1. - is isomorphic to one of the following surfaces:

(C2) G1G2G3 + G0G
2
3 + G

2
1G2 + G1G

2
2 = 0,

(C′2) G1G2G3 + G0G
2
3 + G

2
1G2 + G2

2G3 = 0,
(C′′2 ) G1G2G3 + G0G

2
3 + G0G

2
2 + G

3
1 = 0.

(C2) C1 is the projection of D2 from a point not lying on any line.
(C′2) C′1 is the projection of D2 from a nonsingular point lying on any line or the

projection of D′1 from a nonsingular point not lying on a line.
(C′′2 ) C′′1 is the projection of D′2 from a nonsingular point lying on a line.

2. - has one rational double point of the following type:

(C2) one point of type �1
4,

(C′2) one point of type �
1
5,

(C′′2 ) one point of type �
1
6 .

3. . is a weak del Pezzo surface obtained by blowing up 6 points {?1, . . . , ?6} in P2

that are in special position:

(C2) ?1, . . . , ?5 as in Proposition 0.6.19 and ?6 is disjoint from the points
?1, . . . , ?5,

(C′2) ?1, . . . , ?5 as in Proposition 0.6.21 and ?6 is disjoint from the points
?1, . . . , ?5,

(C′′2 ) ?1, . . . , ?5 as in Proposition 0.6.21 and ?6 is infinitely near to ?5.

4. (C2) C2 is isomorphic to the quotient of a del Pezzo surfaceQ of degree 6 by Z/2Z
(Q is isomorphic to the blow-up of a nonsingular quadric at two points),

(C′2) C′2 is isomorphic to the quotient of an anti-canonical weak del Pezzo surface
Q′ of degree 6 with one singular point of type �1 by Z/2Z (Q′ is isomorphic
to the blow-up 2 points on a singular quadric).

(C′′2 ) C′′2 is isomorphic to the quotient of an anti-canonical weak del Pezzo surface
Q′′ of degree 6 with one singular point of type �2 by Z/2Z.

Proposition 0.7.4 Let - be a symmetroid cubic surface of type "2 over an alge-
braically closed field k of characteristic ? = 2. Let . → - be its minimal resolution
of singularities. Then,

1. - is isomorphic to one of the following surfaces:
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(C3) G0G
2
3 + G

2
1G2 + G1G

2
2 = 0,

(C′3) G0G
2
3 + G

2
1G2 + G3G

2
2 = 0,

(C′′3 ) G0G
2
3 + G

3
1 + G0G

2
2 = 0.

(C3) C1 is the projection of D3 from a point not lying on any line.
(C′3) C′1 is the projection of D3 from a nonsingular point lying on any line or the

projection of D′1 from a nonsingular point not lying on a line.
(C′′3 ) C′′1 is the projection of D′3 from a nonsingular point lying on a line.

2. - has one rational double point of the following types:

(C3) one point of type �0
4,

(C′3) one point of type �
0
5,

(C′′3 ) one point of type �
0
6 .

3. . is a weak del Pezzo surface obtained by blowing up 6 points {?1, . . . , ?6} in P2

that are in special position:

(C3) ?1, . . . , ?5 as in Proposition 0.6.19 and ?6 is disjoint from the points
?1, . . . , ?5,

(C′3) ?1, . . . , ?5 as in Proposition 0.6.21 and ?6 is disjoint from the points
?1, . . . , ?5,

(C′′3 ) ?1, . . . , ?5 as in Proposition 0.6.21 and ?6 is infinitely near to ?5.

4. (C3) C3 is isomorphic to the quotient of a del Pezzo surface Q of degree 6 by the
constant group scheme "2 (Q is isomorphic to the blow-up of a nonsingular
quadric at two points),

(C′3) C′3 is isomorphic to the quotient of the anti-canonical weak del Pezzo surface
Q′ of degree 6 with one singular point of type �1 by the group scheme "2 (Q′
is isomorphic to the blow-up of two points on a singular quadric).

(C′′3 ) C′′3 is isomorphic to the quotient of an anti-canonical weak del Pezzo surface
Q′′ of degree 6 with one singular point of type �2 by the group scheme "2.

Remark 0.7.5 The surface C1 is the famous Cayley cubic surface. It is obtained as
the projectivization of the affine surface:

1
G
+ 1
H
+ 1
I
= 1.

It can also be characterized as the unique normal cubic surface with the maximal
possible number of nodes, which is unique up to projective automorphism of the
ambient P3. The minimal resolution C̃1 of the singularities of C1 is isomorphic
to the blow-up of six points ?1, . . . , ?6 in P2 that are the vertices of a complete
quadrilateral.

If ? ≠ 2, then the surface C1 is isomorphic to the quotient of P2 by the standard
Cremona involution with fundamental points ?1 = [1, 0, 0], ?2 = [0, 1, 0], ?3 =
[0, 0, 1]. Its fixed points [1, 1, 1], [1,−1, 1], [1, 1,−1], [1,−1,−1] are mapped to the
singular points of the cubic. The del Pezzo surface & of degree 6 from Part 4 of
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Proposition 0.7.2 is isomorphic to the blow-up of the fundamental points and so, we
also obtain the surface as the quotient of a biregular involution of a del Pezzo surface
of degree 6.

If ? = 2, then the Cremona involution has only one fixed point [1, 1, 1] and the
quotient surface becomes isomorphic to the cubic surface C2.

The other surfaces C′1, C′′1 (resp. C′2, C′′2 ) are obtained when we degenerate
the standard Cremona involution by allowing infinitely near fundamental points
?2 � ?1, ?3 of ?3 � ?2 � ?1, see [177, Example 7.1.9].

Next, we give another explanation for the name symmetroid cubic surface.

Proposition 0.7.6 Let - be a normal cubic surface in P3 with at worst rational
double point singularities over an algebraically closed field k of characteristic
? ≠ 2. Then, - is a symmetroid surface if and only if its equation can be written
as the determinant of a symmetric 3 × 3-matrix, whose entries are linear forms in
homogeneous coordinates. In other terms, - is the discriminant hypersurface of a
web of conics.

Proof Using Proposition 0.7.2, we verify directly that each surface C1,C′1,C
′′
1 is

isomorphic to a hypersurface in P3 that is given by the determinant of the following
3 × 3 symmetric matrices:

C1 : ©«
G0 + G3 G3 G3
G3 G1 + G3 G3
G3 G3 G2 + G3

ª®¬ , C′1 : ©«
G0 G3 −G3
G3 −G1 0
−G3 0 −G2

ª®¬ , C′′1 : ©«
−G0 G2 0
G2 G1 G3
0 G3 −G2

ª®¬ .
Conversely, if C is given by a determinantal equation, then there exists a 3-
dimensional linear system (a web), � P3 of conics in P2 such that

- � {& ∈ , : rank(&) < 3}.

Webs of conics can be classified, see Chapter 6. In fact, they correspond bĳectively to
pencils of conics and the latter are classified by analyzing all possible configurations
of their base points. Doing this, we easily find that there are only three projective
classes of webs that give rise to a normal surface. Each of them is isomorphic to one
of the above surfaces. �

Remark 0.7.7 In Section 7.3 in Volume II, we will introduce the notion of the half-
discriminant of a quadratic form in odd number = of variables over a field of
characteristic ? = 2. For example, if = = 3, then the half-discriminant of a quadratic
form @ =

∑
1≤8≤ 9≤3 08 9G8G 9 is equal to �3 = 0110

2
23 + 0220

2
13 + 0330

2
12 + 012013023.

The equation � = 0 defines a cubic hypersurface in P5, whose subscheme of non-
smooth points equal to + (02

12, 0
2
23, 0

2
13). A web of conics, defines a linear section

, ∩+ (�3) isomorphic to a symmetroid cubic surface C2, C′2, or C′′2 . The equations
of the surfaces C2, C′2, C′′2 show that C2 (resp. C′2, resp. C′3 ) is obtained as the
intersection of + (�3) with the linear subspace 013 − 033 = 012 − 022 = 0 (resp.
033 − 013 = 022 − 013 = 0, resp. 012 − 033 = 011 − 022 = 0).
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0.8 Quadratic Lattices and Root Bases

In this section, we briefly survey the theory of quadratic lattices, which plays an
important role in the study of Enriques surfaces and K3 surfaces. We start with def-
initions, invariants, and some general results. Then, we turn to root bases, reflection
groups, and Coxeter–Dynkin diagrams, and use these to study root bases of finite
type, of affine type, of crystallographic type, as well as those of hyperbolic type.
The important tools are an action of orthogonal groups and reflection subgroups, as
well as their polyhedral fundamental chambers. We end this section by discussing
:-reflective lattices. We refer to [661] for an introduction and to [169] and [556] for
more advanced results, proofs, background, and further references.

A quadratic lattice or simply, a lattice, is a free abelian group " of finite rank
rank" together with a symmetric bilinear form 1 : " × " → Z. To simplify
notation, we set G · H := 1(G, H) and G2 := G · G = 1(G, G) for all G, H ∈ " . The
function @ : G ↦→ G2 is a quadratic form @ : " → Z satisfying

@(G + H) − @(G) − @(H) = 2 · 1(G, H) = 2(G · H).

A lattice " is called even if the quadratic form @ is even, that is, it takes values
in 2Z. It is called odd otherwise. Quite generally, we recall that for a commutative
ring ' and an '-module " , which is not necessarily free, a map @ : " → ' is
called a quadratic form if @(A<) = A2@(<) for all A ∈ ' and all < ∈ " and if the
map (G, H) ↦→ @(G + H) − @(G) − @(H) is bilinear, see [394, Section I.2] or [661,
Chapter IV]. In this case, the pair (", @) is called a quadratic module. We note
that there is a natural bĳection between even lattices and integral quadratic forms on
free Z-modules: given a lattice (", 1), it becomes a quadratic Z-module by setting
@(G) := 1(G, G) for all G ∈ " . Conversely, given a quadratic and free Z-module
(", @), it becomes a lattice by setting 1(G, H) := 1

2 (@(G + H) − @(G) − @(H)) for all
G, H ∈ " .

A lattice (", 1) induces a symmetric bilinear form on the real vector space
"R := " ⊗Z R, whose dimension over R is equal to rank" . By definition, the
signature sign(") of " is defined to be the Sylvester signature (C+, C−, C0) of the real
quadratic form @"R : G ↦→ G2 on "R. Thus, we can speak about (positive, negative)
definite, semi-definite, and indefinite lattices. A lattice is called non-degenerate if
C0 = 0, in which case we shall drop the last component C0 from its signature. A lattice
" of rank rank" ≥ 2 and signature (1, rank" − 1) is called hyperbolic.

A homomorphism of lattices 5 : " → " ′ is a homomorphism of abelian
groups that respects the bilinear forms on both sides, that is, 5 (G) · 5 (H) = G · H for
all G, H ∈ " . An injective (resp. bĳective) homomorphism of lattices is called an
embedding (resp. isometry). Two lattices are called isomorphic or isometric if there
exists an isometry from one to the other. The set of all isometries f : " → " is a
group with respect to composition of maps. It is called the orthogonal group of "
and is denoted by O(").

A sublattice of a lattice " is an abelian subgroup # ⊆ " equipped with the
induced bilinear form. A sublattice # ⊆ " is said to be primitive (resp. of finite
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index <) if the quotient group "/# is a free abelian group (resp. a finite group of
order <). An element G ∈ " is called primitive if the sublattice Z · G spanned by G
inside " is primitive. An embedding of lattices is called primitive embedding if its
image is a primitive sublattice.

Given two sublattices "1 and "2 of some lattice " , the sum "1 + "2 is defined
to be the minimal sublattice of " containing both "1 and "2. Moreover, if G · H = 0
for all G ∈ "1 and H ∈ "2, then this sum is said to be an orthogonal sum and it
is denoted by "1 ⊥ "2 or, sometimes, "1 ⊕ "2. Next, the orthogonal sum of two
lattices "1 and "2 is the abelian group "1 ⊕ "2 together with the bilinear form
(G1, G2) · (H1, H2) := G1 · H1 + G2 · H2. Similarly, one defines the orthogonal sum of any
finite number of lattices. The orthogonal complement of a sublattice # of a lattice
" is the sublattice of " that is defined to be

#⊥ := {G ∈ " : G · H = 0 for all H ∈ #} ⊆ ".

Next, if 4 = {41, . . . , 4A } is a basis of" asZ-module, then thematrix� (4) := (48 ·4 9 )
is called the Gram matrix of " with respect to the basis 4. Any symmetric matrix
with integer entries is the Gram matrix of some lattice and determines the lattice
structure uniquely. We note that the determinant of the Gram matrix det(� (4)) does
not depend on the choice of a basis. It is called the discriminant of the lattice and it is
denoted by discr("). If it is not zero, then its sign is equal to (−1)C− , where (C+, C−, C0)
is the signature of" . Set"∨ := HomZ (",Z), which, when" is nondegenerate, is a
free abelian group of the same rank as " . Let 8" : " → "∨ be the homomorphism
of abelian groups that assigns to G ∈ " the linear function H ↦→ G · H. If we choose
a basis 4 of " and let 4∨ be the dual basis of "∨, then the homomorphism 8" is
given by the Gram matrix � (4) of " .

The lattice " is called unimodular if the homomorphism 8" is an isomorphism.
This is equivalent to the Gram matrix having determinant ±1. In general, the kernel
of 8" is denoted by Rad(") and it is called the radical of " . Note that the lattice
" is non-degenerate if and only if Rad(") = {0}, which is equivalent to the Gram
matrix being invertible over Q. Thus, " is non-degenerate (resp. unimodular) if and
only if discr(") ≠ 0 (resp. discr(") = ±1). Next, the cokernel

� (") := "∨/8" (")

is called the discriminant group of the lattice" . If" is non-degenerate, then � (")
is a finite abelian group and its order is equal to the absolute value of the discriminant
of " . Moreover, " is unimodular if and only if � (") is trivial. If � (") is a finite
abelian and ?-elementary group for some prime ?, then " is called a ?-elementary
lattice. Quite generally, if " is non-degenerate, then "∨ can be identified with the
abelian group {G ∈ " ⊗Z Q : G · H ∈ Z for all H ∈ "}, which equips "∨ with a
rational–valued quadratic form inherited from the rational quadratic form on"⊗ZQ.
By abuse of terminology, "∨ is called the dual lattice of " .

Let (", 1) be a non-degenerate lattice and let "∨ be its dual lattice, both con-
sidered as Z-submodules of " ⊗Z Q. Then, we have an induced symmetric bilinear
form on the discriminant group of "



124 0 Preliminaries

1� (" ) : � (") × � (") → Q/Z, (G + ", H + ") ↦→ 1(G, H) mod Z,

for all G, H ∈ "∨. Let us assume moreover that " is an even lattice with associated
quadratic form @. Then, we define the discriminant quadratic form on � (") by
setting

@� (" ) : � (") → Q/2Z, G + " ↦→ G2 mod 2Z,

for all G ∈ "∨. More explicitly, let A be a positive integer such that A"∨ ⊆ " –
for example, we could choose A to be largest elementary divisor of the Gram matrix
of " with respect to some choice of basis. Then, the just-defined quadratic form
on � (") can also be computed as @� (" ) (AG) = 1

A2 @" (AG) for all G ∈ "∨, where
we note that AG ∈ " for all G ∈ "∨. We note that the function @� (" ) on � (")
is a quadratic form, not in the sense of the above definition, but in the sense that
@� (" ) (=G) = =2@� (" ) (G) and @(G + H) − @(G) − @(H) = 21� (" ) (G, H) mod 2Z
for all G, H ∈ � (") and all = ∈ Z. We denote by O(� (")) the group of those
automorphisms of the abelian group � (") that preserve the values of the quadratic
form @� (" ) . If "1, "2 are two lattices, then we have

@� ("1⊥"2) = @� ("1) + @� ("2) and 1� ("1⊥"2) = 1� ("1) + 1� ("2) .

Finally, if we have two non-degenerate lattices "1 and "2, then there exists an
isomorphism � ("1) � � ("2) of discriminant groups together with bilinear forms
if and only if there exist unimodular lattices !1 and !2 and an isomorphism of lattices
"1 ⊥ !1 � "2 ⊥ !2. Moreover, if we have two non-degenerate and even lattices
"1 and "2, then there exists an isomorphism � ("1) � � ("2) of discriminant
groups together with quadratic forms if and only if there exist even and unimodular
lattices !1 and !2 and an isomorphism of lattices "1 ⊥ !1 � "2 ⊥ !2. We refer to
[556] for details and further results.

Two lattices ("1, 11) and ("2, 12) are said to belong to the same genus if they
have the same signature, and if for every prime ?, there exists an isomorphism of
Z?-modules "1 ⊗Z Z? � "2 ⊗Z Z? that is compatible with the bilinear forms
18 ⊗ Z? , 8 = 1, 2. Here, Z? denotes the ?-adic numbers. We recall that "1 and "2
have the same signature if and only if there exists an isomorphism ofR-vector spaces
"1 ⊗Z R � "2 ⊗Z R that is compatible with the bilinear forms on both sides. It
is known that there exist only finitely many isomorphism classes of lattices in each
genus and that the genus of a lattice determines the isomorphism class of " ⊗Z Q.
Moreover, if " is an even lattice, then the signature and the discriminant � (")
together with its quadratic form determine the genus of " .

We will also need the classification of finite discriminant forms. Let ? be an odd
prime, : a positive integer, and n ∈ {±}. We define wn

?,:
to be the abelian group

Z/?:Z together with the quadratic form, whose value on the generator 1 is equal
to 0?−: mod 2Z. Here, 0 is the smallest positive odd number that is a quadratic
residue (resp. not a quadratic residue) if n = 1 (resp. n = −1). We also define wn2,:
to be the abelian group Z/2:Z together with the quadratic form, whose value on the
generator 1 is equal to n

2 if : = 1 and n = ±1 and which is it is equal to n

2: if : > 1
and n = ±1,±5.
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On the abelian group (Z/2:Z)⊕2, we define quadratic forms u: and v: via the
matrices

u: =
(

0 2−:
2−: 0

)
, v: =

(
2−:+1 2−:
2−: 2−:+1

)
.

The following theorem of Nikulin classifies discriminant quadratic forms and we
refer to [556] for proof.

Theorem 0.8.1 The discriminant quadratic form on a non-degenerate quadratic
lattice is isomorphic to the orthogonal sum of the quadratic forms

wn?,: , wn2,: , u: , v: .

Next, if " is a sublattice of finite index < of a non-degenerate lattice " ′, then
we have inclusions of lattices

" ⊆ " ′ ⊆ " ′∨ ⊆ "∨, (0.8.1)

from which it is easy to deduce that

discr(") = <2 · discr(" ′). (0.8.2)

Now, assume that " is an even lattice. Then, the restriction of the quadratic form
@� (" ) to the subgroup " ′/" of "∨/" is identically zero. We say that it is an
isotropic subgroup.

The next proposition [556, Propositions 1.4.1 and 1.4.2] follows immediately
from the tower of lattices (0.8.1).

Proposition 0.8.2 The assignment " ′ ↦→ �" ′ establishes a bĳective correspon-
dence between

1. the set of isotropic subgroups of order < of the discriminant group � (") and
2. the set even lattices " ′ containing " as a sublattice of index <.

Moreover, the orthogonal complement �⊥
" ′ of �" ′ in � (") coincides with " ′∨/"

and the restriction of @� (" ) to �⊥" ′ defines a quadratic form on �⊥
" ′/�" ′ that co-

incides with @" ′ . Two such over-lattices" ′ and" ′′ are isomorphic if and only if the
subgroups �" ′ ⊂ � (" ′) and �" ′′ ⊂ � (" ′′) are conjugate by an automorphism
of " .

For example, let " → " ′ be a primitive embedding of even and non-degenerate
lattices and  := " ′⊥ be the orthogonal complement of " ′ in " . Then, " ⊕  
embeds into " ′ as a sublattice of finite index. Applying the previous proposition,
we obtain the following.

Corollary 0.8.3 A primitive embedding of even and non-degenerate lattices " →
" ′ with orthogonal complement isomorphic to a fixed lattice  is determined by the
subgroup � of � (") and an injective homomorphisms W : � → � ( ) satisfying
@ ◦ W = −@" |� and whose graph ΓW ⊂ � × � ( ) satisfies (Γ⊥W/ΓW , @" ⊕ @ ) �
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(� (" ′), @" ′). Two such pairs (�, W) and (� ′, W′) define isomorphic embeddings if
and only if � = � ′ and W′ = W ◦ q̄ for some q ∈ O( ).

As a corollary of this, we obtain a classification of primitive sublattices of uni-
modular lattices:

Corollary 0.8.4 Let " ′ be an unimodular lattice. Then, primitive embeddings of
" → " ′ with orthogonal complement isomorphic to a fixed lattice  are in
bĳection with isomorphisms W : � (") → � ( ), such that

@� (" ) (G) = −@� ( ) (W(G)). (0.8.3)

For a lattice " , let
d" : O(") → O(� (")) (0.8.4)

be the natural homomorphism of orthogonal groups. We will often denote the image
d" (f) by f̄.

Suppose we have q ∈ O(") and k ∈ O( ) such that q̄ = W(k̄), where W is as in
(0.8.3). Then, Corollary 0.8.3 implies that the pair (q, k) extends to an isometry of
" ′. In particular, taking k = id , we obtain that any isometry from

O(")♯ := Ker(d" )

extends to an isometry of " ′, which is the identity on  .
The following, a little more general proposition, will be used often in our discus-

sion of moduli spaces and automorphism groups of Enriques surfaces.

Proposition 0.8.5 Let "1, "2 be two primitive sublattices of " ′ and let  8 := "⊥
8

be their orthogonal complements. Then an isometry q : "1 → "2 extends to
an isometry of " ′ if and only if there exists an isometry of k :  1 →  2 with
W1 ◦ q̄ = k̄ ◦ W2.

The previous discussion about the discriminant group � (") and its quadratic
form @� (" ) plays a prominent role in Nikulin’s work on primitive embeddings of
lattices [556].

For a finite abelian group �, we denote by ; (�) the minimal number of generators
of �. We now come to the following useful result that characterizes many indefinite
lattices and their embeddings into unimodular lattices.

Theorem 0.8.6 Let " be an even indefinite nondegenerate quadratic lattice of sig-
nature (C+, C−).

1. Suppose that " satisfies the following conditions

• For every prime ? ≠ 2, we have rank(") ≥ ; (� (" ⊗ Z?)) + 2,
• if rank(") ≠ ; (� ("⊗Z2)), then (� ("), @� (" ) ) � u2⊕@′ or (� ("), @� (" ) ) �

v2 ⊕ @′.
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Then the signature, the rank and the discriminant quadratic form determine
uniquely the isomorphism class of" and the homomorphism (0.8.4) is surjective,
see [556, Theorem 1.14.2].

2. Let ! be an unimodular lattice of signature (;+, ;−) and " be a lattice as in 1
satisfying both conditions. Suppose

• 0+ := ;+ > C+ and 0− := ;− − C− > 0,
• for every prime ? ≠ 2, we have rank ! − rank " ≥ ; (� (" ⊗ Z?)) + 2,
• if rank !−rank " = ; (� ("⊗Z2)), then the discriminant group of" satisfies

the second of condition 1.

Then " admits a primitive embedding into ! and all such embeddings differ by
an automorphism of O(!), see [556, Corollary 1.12.4 and Theorem 1.14.4].

We now discuss some lattices that will be important later on explicitly. For an
integer = ∈ Z and a lattice (", 1), we define the following lattices and subsets:

• 〈=〉: a lattice of rank one generated by an element 4 with 42 = =.
• " (=): the lattice with underlying abelian group " and bilinear form (G, H) ↦→
= · 1(G, H).

• "= = {G ∈ " : G2 = =}. Elements of "0 are called isotropic vectors.
• " ′=: the subset of primitive vectors of "=.
• " ⊕=: the lattice of rank = · rank" that is the orthogonal sum of = copies of " .

Example 0.8.7 We will be dealing with the following series of lattices in the sequel.

1. For integers <, = ≥ 0,
I<,= := 〈1〉< ⊥ 〈−1〉=

is an unimodular lattice of rank (< + =), but this lattice is not even.
2. For integers 1 ≤ ? ≤ @ ≤ A , we define the graph )?,@,A as in Figure 0.3.

• • • • • • •

•

•

•

. . .. . .

.

.

.

U0

U?−2

U?−1 U?+@−2 U?+@+A−3

Fig. 0.3 The graph )?,@,A

Associated to )?,@,A , we define a lattice of rank (? + @ + A − 2) by setting

E?,@,A := ZU0 ⊕ . . . ⊕ ZU?+@+A−3

with U2
8
= −2 and with U8 · U 9 = 1 or 0 for 8 ≠ 9 depending on whether or not

U8 is joined to U 9 in the graph )?,@,A . We note that the E?,@,A are even lattices,
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whose discriminants satisfy

discr(E?,@,A ) = |?@A − ?@ − @A − ?A |. (0.8.5)

3.

sign(E?,@,A ) =


(1, ? + @ + A − 3) if 1

?
+ 1
@
+ 1
A
< 1,

(0, ? + @ + A − 2) if 1
?
+ 1
@
+ 1
A
> 1,

(0, ? + @ + A − 3, 1) otherwise.

4. The non-hyperbolic latticesE?,@,A are as follows, and they have their own notation:

A= := E1,1,=, D= := E2,2,=−2 (= ≥ 4), E6 := E2,3,3, E7 := E2,3,4, E8 := E2,3,5,

Ẽ6 := E3,3,3, Ẽ7 := E2,4,4, Ẽ8 := E2,3,6.

The lattices Ẽ6, Ẽ7, Ẽ8 are negative semi-definite and their radicals are of rank 1.
The lattices A=,D=,E6,E7,E8 are even negative definite.

not A=,D=,E6,E7,E8
5. For an integer = ≥ 2, we define the lattice

U[=] := Z 51 ⊕ · · · ⊕ Z 5=

with 58 · 5 9 = 1−X8 9 , where X8 9 is theKronecker symbol.We note that these lattices
are even. When = = 2, this lattice is called the standard hyperbolic plane and it is
also denoted by U or H. We note that the lattices U[=] are all hyperbolic and that
they contain a negative definite sublattice spanned by the vectors 58 − 58+1, which
is isomorphic to the lattice A=−1, and whose orthogonal complement is spanned
by { := 51 + · · · + 5= and satisfies {2 = =(= − 1).

The discriminant quadratic forms on the lattice A=,D=,E= are given in Table 0.2
below.

Here, we denote by 〈0〉= the quadratic form on Z/=Z defined by @(1) = 0

mod 2Z.
We refer to [95] and [514] for the computation of the discriminant quadratic forms

of the hyperbolic lattices E?,@,A .
The next theorem is usually referred to as theMilnor Theorem. indexlattice!Milnor

Theorem

Theorem 0.8.8 Let " be a unimodular and indefinite lattice of signature (0, 1) with
0 ≤ 1. Then, there exists an isometry

" �

{
U0 ⊥ E1−08 if " is an even lattice, and
〈1〉0 ⊥ 〈−1〉1 otherwise.

Proof See [661], Chapter 5, Theorem 5. �

Let " be a lattice. Then, a primitive vector U ∈ " with U2 ≠ 0 is called a root
vector or just a root if
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Lattice Discriminant group Discriminant form
A= Z/(= + 1)Z 〈−=〉=+1
D8: (Z/2Z)⊕2 u1

D8:+1 Z/4Z w−1
2,2

D8:+2 (Z/2Z)⊕2 (w−1
2,1)
⊕2

D8:+3 Z/4Z w−3
2,2

D8:+4 (Z/2Z)⊕2 v1
D8:+5 Z/4Z w−5

2,2
D8:+6 (Z/2Z)⊕2 (w1

2,1)
⊕2

D8:+7 Z/4Z w1
2,2

E6 Z/3Z w−1
3,1

E7 Z/2Z w1
1,1

E8 0 0
Table 0.2 Discriminant quadratic forms of lattices A= , D= , E=

2U · G
U2 ∈ Z. (0.8.6)

for every G ∈ " . A root vector defines an isometry of " via

AU : G ↦→ G − 2G · U
U2 U, (0.8.7)

which is called the reflection in the root vector U. It follows from (0.8.6) that

Ǔ :=
2
U2U ∈ "

∨.

Since Ǔ2 = 4
U2 , we conclude that Ǔ ∈ " if and only if |U2 | ∈ {1, 2, 4}. We note that

|U2 | = 1 cannot occur if " is an even lattice. Moreover, if Ǔ ∈ " , then 1
2U

2 must
divide the discriminant of " . This implies, for example, that in a unimodular lattice,
all root vectors satisfy |U2 | ∈ {1, 2}.

Assume that " is either a negative definite lattice, or a negative semi-definite
lattice whose radical of rank 1, or a hyperbolic lattice of rank = + 1. Let

+ := "R = " ⊗Z R.

If" is definite, then the orthogonal group O(+) of+ is isomorphic to the orthogonal
groupO(=+1) of the standard inner-product spaceR=+1. In this case,O(+) is realized
as the group of isometries or motions of the =-dimensional sphere S= ⊂ R=+1,
considered as a Riemannian manifold of constant positive curvature. In the semi-
definite case, O(+) is equal to the semi-direct product (+⊥0 /+0)∨oO(+⊥0 /+0), where
+0 denotes the radical of+ . More precisely, the subgroup (+⊥0 /+0)∨ of O(+) is equal
to the image of the homomorphism y : (+⊥0 /+0)∨ → O(+) that is defined by the
formula
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; ↦→ y(;) : { ↦→ { + ; ({̄) · 5 , (0.8.8)

for { ∈ + and ; ∈ (+⊥0 /+0)∨, where +0 := R 5 and where {̄ denotes image of { under
the projection of+⊥0 → (+

⊥
0 /+0). In particular, this group is isomorphic to the affine

orthogonal group AO(= − 1) = R=−1 o O(= − 1) of the Euclidean space E=−1. It is
isomorphic to the group of motions of E=−1, considered as a Riemannian manifold
of constant zero curvature.

Let us finally assume that " is hyperbolic. Then, the orthogonal group O(+)
contains a natural subgroup O(+) ′ of index 2 that consists of those isometries that
leave invariant one of the two connected components of the positive cone

++ := {{ ∈ + : {2 > 0}.

More precisely, let (40, 41, . . . , 4=) be an orthonormal basis of+ so that the quadratic
form of + is given by G2

0 − G
2
1 − · · · − G

2
= with respect to this basis. Next, let ++0 be

the connected component of ++ that is determined by G0 > 0. Then, a reflection
A{ ∈ O(+) belongs to O(+) ′ if and only if {2 < 0. We note that the orthogonal group
O(+) of any non-degenerate quadratic vector space is generated by reflections in
vectors { ∈ + , see, for example, [279].

Let +\{0} → P(+) be the natural projection onto the real projective space P(+)
of lines in + , and let H(+) be the image of ++ in P(+), that is,

H(+) :=
{
{ ∈ + : {2 > 0

}
/R∗ ⊂ P(+).

Thus, we can represent points ofH(+) by vectors { ∈ + such that {2 = 1 and such that
{ belongs to the fixed connected component ++0 of ++. The hyperbolic inner product
in + induces a structure of a Riemannian manifold of constant negative curvature on
H(+). Equipped with this Riemannian metric, H(+) is called hyperbolic space or
Lobachevsky space. After fixing an orthonormal basis in+ as above, we may identify
H(+) with the space

H= :=

{
G = (G0, G1, . . . , G=) ∈ R=+1 : G2

0 −
=∑
8=1

G2
8 = 1, G0 > 0

}
⊆ R=+1.

The hyperbolic distance 3 (G, H) is given by the formula

cosh 3 (G, H) = G · H. (0.8.9)

Another model of H= is given by passing to affine coordinates H8 = G8/G0 in P= (R).
Then, we find

H= :=
{
H = (H1, . . . , H=) ∈ R= : H2

1 + · · · + H
2
= < 1

}
⊆ R=.

The hyperbolic distance in thismodel is different, namely 3 (H, H′) = log |'(0, G, H, 1) |,
where '(0, G, H, 1) denotes the cross-ratio of four points on the line joining the points
H, H′, where 0, 1 are the points where the line intersects the absolute
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mH= :=
{
H = (H1, . . . , H=) ∈ R= : H2

1 + · · · + H
2
= = 1

}
= S=−1 ⊆ R=.

The group of isometries of the hyperbolic spaceH= is isomorphic to O(+) ′. It is also
isomorphic to the group PO(+) of projective transformations of P(+) that preserve
the quadric @+ = 0. We note that this group is a Lie group that is not connected. Its
connected component of the identity is a subgroup O(+) ′0 of O(+) ′ of index 2 that
consists of orientation–preserving isometries of H=. It consists of those orthogonal
transformations of+ that can be written as the product of an even number of rotations
in vectors { with {2 < 0. For these basic facts about hyperbolic spaces, we refer to
[4].

Let " a quadratic lattice of signature (C+, C−, C0) as above and set + := "R =

" ⊗Z R. If " is hyperbolic, then we set

O(") ′ := O(") ∩ O(+) ′,

and otherwise, we set O(") ′ := O("). Then, after a suitable choice of orthonormal
basis, the subgroup O(") ′ of O(+) is isomorphic to a discrete group of motions of
- = S=,E=−1,H=, that is, each orbit of the group is a discrete subset of - and each
stabilizer subgroup is finite. Quite generally, let Γ be a discrete subgroup of motions
of - that is generated by a set � (not necessary finite) of reflections A{8 , 8 ∈ �, in
vectors {8 with {2

8
< 0. Let �8 be the hyperplane in + of vectors that are orthogonal

to {8 . Since {2
8
< 0, the intersection of �8 with any of the Riemannian manifolds

- = S=,E=−1,H= is non-empty. By abuse of terminology, we call them hyperplanes
in - and keep the notation. The set of hyperplanes �{8 , 8 ∈ �, is locally finite
and invariant with respect to Γ. The closure of a connected component % of the
complement of the union of the hyperplanes �{8 is called a chamber of Γ. For every
chamber % there exists a smallest subset � (%) ⊆ � (in particular, no vector in � (%)
is a positive linear combination of other vectors in � (%)) such that

% =
⋂
8∈� (%)

�+{8 , (0.8.10)

where �+{8 = {G ∈ + : G · {8 ≥ 0} ∩ - . The group Γ permutes the chambers and
the interior of each chamber is a (closed) fundamental domain for the action of Γ
on - . It is clear that Γ is generated by the reflections B8 := A{8 with 8 ∈ � (%). For
8 ∈ � (%), we let 48 = 1√

−{2
8

{8 be the normalized vectors of norm −1. It follows from
the discreteness of Γ that we have either 48 · 4 9 > 1 or

48 · 4 9 = cos
c

<8 9
, (0.8.11)

where <8 9 ∈ Z>0 ∪ {∞}. If 48 · 4 9 ≥ 1, then we set <8 9 := ∞, see [724]. The group
Γ is generated by reflections B8 , 8 ∈ � (%) and these satisfy the relation (B8B 9 )<8 9 = 1,
that is, Γ is isomorphic to a Coxeter group.

Let us briefly recall this definition: an abstract Coxeter group is a pair (�, ()
that consists of a group � and its set of generators ( subject to defining relations
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(BB′)<B,B′ = 1 for all B, B′ ∈ (. Here, we have <B,B′ ∈ Z>0 ∪ {∞}, such that <B,B = 1
and <B,B′ = <B′,B for all B, B′ ∈ (, and finally, <B,B′ = ∞ means that there is no
relation between B and B′. Note that <B,B = 1 implies B2 = 1 for all B ∈ (. We
refer to [88] for details and proofs. Associated to (�, (), we have its Coxeter–Dynkin
diagram, which is defined to be the unoriented graph, whose vertices are given by the
set (. Two vertices B, B′ are joined by an edge labeled by (<B,B′ − 2) if <(B, B′) > 2
and it is customary to omit the label if <(B, B′) = 3. If <B,B′ ∈ {4, 5}, then one
doubles or triples the edges instead of labeling them. Conversely, a Coxeter–Dynkin
diagram uniquely determines the data (�, () of a Coxeter group.

Note that for any discrete group Γ of motions of - , we have

Γ = ΓA (R) o Sym(%), (0.8.12)

where ΓA (R) is the subgroup of Γ generated by a set R of reflections from Γ, which
is invariant with respect to inner automorphisms of Γ, and where Sym(%) is the
group of motions in Γ that leaves invariant a chamber % of ΓA (R), see [721], 1.5.

Now, let + = "R = " ⊗Z R and let Γ be a subgroup of O(") ′ that is generated
by reflections AU8 , where the U8 belong to a set � of root vectors in " . Since O(") ′
is a discrete group of motions of - , it follows that Γ is a discrete reflection group
of motions. Let % be a chamber defined by the subset � (%) ⊆ � of root vectors. It
follows from (0.8.11) that

U · V
√
−U2

√
−V2

= cos
c

<U,V
, (0.8.13)

for every U, V ∈ � (%) for some <U,V ∈ Z>0 ∪ {∞}. In particular, let Ref (") be the
subgroup of O(") ′ generated by reflections in all root vectors in" and let Ref: (")
be its normal subgroup generated by reflections in root vectors U ∈ " with U2 = −: .
We call Ref (") (resp. Ref: (")) the reflection group (resp. :-reflection group) of
the lattice " . We have

cos
c

<U,V
∈ 1
:
Z

for every AU, AV ∈ Ref: ("). This gives strong restrictions on the Coxeter group. For
example, if : = 2, then we have 2 cos c

<U,V
∈ Z, which implies that <U,V is one of

the following

<U,V =


1 if U = V,
2 if U · V = 0,
3 if U · V = 1,
∞ if U · V = 2.

In particular, the only possible label occurring in its Coxeter–Dynkin graph is ∞.
We call the reflection group Ref2 (") the Weyl group of the lattice " and denote it
by, (").

Let % be a chamber of a reflection group Γ of " . We denote the set of vectors
defining the reflections from � (%) by B% or just B, if no confusion arises, and call
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it a root basis of " . Note that we do not assume that the set B spans the R-vector
space "R. For two distinct roots U, V ∈ B that span a negative definite sublattice of
" , we have

Ǔ(V) = 2 ·
√
V2

U2 · cos
c

<U,V
∈ Z>0,

and no vector in B is a positive linear combination of other vectors in B. In particular,
if U, V ∈ "−2, then this implies U · V ∈ {0, 1, 2} or |U · V | > 2. Moreover, the
reflections AU, U ∈ B give rise to a root basis of the reflection group ΓB. Its chamber
%(B) in - is the image of the subset

� (B) = {G ∈ "R : G · U ≥ 0, U ∈ B} ⊆ "R = + (0.8.14)

in - . We call the subset � (B) the fundamental chamber of the root basis B in "R.

Example 0.8.9 For the lattice " = E?,@,A , the reflection group generated by the
reflections AU8 , 8 = 0, . . . , # = ? + @ + A − 3, is a Weyl group, which is denoted by
,?,@,A , and we can take the set {U0, . . . , U# } as a root basis. Its Coxeter–Dynkin
diagram is the graph )?,@,A . A root basis in E?,@,A with Coxeter–Dynkin diagram of
form )?,@,A is called a canonical root basis of E?,@,A . It is known that ,?,@,A is a
proper subgroup of the Weyl group , (E?,@,A ) if E?,@,A is a hyperbolic lattice and
(?, @, A) ≠ (2, 3, 7), (2, 4, 6), (3, 3, 4), see also below.

Next, the Coxeter–Dynkin diagram of a reflection group Γ in O(+) ′ is not con-
nected if and only if for a chamber %, the set � (%) is equal to the union of two subsets
�1 and �2 such that 48 · 4 9 = 0 if 8 ∈ �1, 9 ∈ �2. In this case, we have Γ = Γ1 × Γ2,
where Γ8 is the reflection group generated by reflections A4 9 with 9 ∈ �8 .

Given a Coxeter group (�, () and a non-empty subset (′ ⊆ (, the subgroup
� ′ = � ((′) of � generated by (′ is again a Coxeter group and, in fact, equal to
(� ′, (′), see [88, Chapter IV, §1, Theorem 2]. If ( is the disjoint union of the two
subsets (1 and (2 and we have [B1, B2] = (B1B2)2 = 1 for all B1 ∈ (1 and all B2 ∈ (2,
then� = � ((1)×� ((2). Moreover, such a disjoint decomposition ( = (1∪(2 exists
if and only if the Coxeter–Dynkin diagram of (�, () is not connected. A Coxeter
group is called irreducible if its Coxeter–Dynkin diagram is connected. In the sequel,
we will also need the following generalization of this observation.

Proposition 0.8.10 Let (�, () be a Coxeter group and assume that there exists a
non-trivial disjoint decomposition ( = (1 ∪ (2 such that <(B1, B2) is even or infinite
for all B1 ∈ (1 and all B2 ∈ (2. Then,

� = # o �1,

where �1 is the subgroup generated by (1 and where # is the smallest normal
subgroup of � containing (2.

Proof See [721, Proposition, p. 2]. �

Let Γ be a reflection group of " and let R(Γ) be the set of root vectors U ∈ "
with AU ∈ Γ. Elements of R(Γ) are called root vectors of Γ. If B is a root basis of
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Γ, then every root vector U ∈ R(Γ) belongs to the orbit of a root vector from B. In
particular, if B is a finite set, then there are only finitely many orbits of Γ in R(Γ).

Corollary 0.8.11 Let,B be the Weyl group of a root basis B ⊆ "−2 and let G(B) be
the associated Coxeter–Dynkin diagram. If G(B) ′ denotes the subgraph of G(B) that
is obtained by removing all labelled edges from G(B), then there exists a bĳection

{ orbits of,B on the set R(,B),G(B), Γ(B)} ↔ { connected components of G(B) ′}.

Proof As we observed before, every root vector U ∈ R(,B) is equal to |(U8) for
some | ∈ ,B and some U8 ∈ B. Thus, the reflection AU in U is conjugate to the
reflection AU8 . Conversely, the conjugate | ◦ BU8 ◦ |−1 of a reflection in U8 ∈ B
is the simple reflection AU in the root U = |(U8). Thus, the set of ,B-orbits of
roots is bĳective to the set of conjugacy classes of generators of the Coxeter group
(,B, {AU, U ∈ B}). Now, let Γ(B) ′> be a connected component of Γ(B) ′ and set
(2 := {AU : U ∈ Γ(B) ′>} as well as (1 = ( \ (2. It follows from the proposition that
none of the roots in Γ(B) ′> is,B-conjugate to a root in Γ(B) \ Γ(B) ′>. On the other
hand, if U, V ∈ B with U · V = 1, then AV ◦ AU (V) = AV (V + U) = U. From this, it
follows that the vertices of every connected component of Γ(B) ′ are,B-conjugate.
This proves the corollary. �

Let (�, () be a Coxeter group. Let ! := R |( | be the R-vector space with basis
{4B}B∈( and let 1! be the symmetric bilinear form on ! defined by

1! (4B , 4B′) = cos
c

<B,B′
.

The geometric representation or Tits representation is the homomorphism d : � →
O(!) defined on the basis {4B}B∈( by

d(B) ({) = { + 2 1! ({, 4B) · 4B ,

for B ∈ ( ⊆ � and { ∈ !, see [88, Chapter V, §4]. (Here, we intentially multiplied
the bilinear form by −1 compared to the original definition.) This representation
is faithful and hence, realizes � as a reflection group in !. We say that (�, () is
spherical, Euclidean, or hyperbolic if the symmetric bilinear form (G, H) in ! is
positive definite, positive semi-definite with one-dimensional radical, or of signa-
ture (=, 1) with = ≥ 1. In these cases, we can consider � as a discrete reflection
group of isometries of - = S=, E=−1, or H=. Its chambers are simplicial convex
polyhedra. One of the chambers is given by inequalities 1! (G, 4B) ≥ 0 for all B ∈ (.
Conversely, given a discrete reflection group of isometries of - with simplicial
chambers, its representation in the corresponding linear space is isomorphic to the
Tits representation.

Example 0.8.12 The Weyl groups,?,@,A from Example 0.8.9 together with genera-
tors defined by reflections in a canonical root basis acting in the space (E?,@,A )R is
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an example of a Tits representation. It is spherical, Euclidean, hyperbolic depending
on whether 1

?
+ 1
@
+ 1
A
> 1, 0, < 1, respectively.

Given a Coxeter group (�, (), one defines the length function ; : � → Z≥0
of � with respect to ( as follows: given 6 ∈ �, we define ; (6) to be the smallest
non-negative number A such that 6 can be written as the product of A elements from
(. By definition, we have ; (1) = 0 and we have ; (6) = 1 if and only if 6 ∈ (.

Proposition 0.8.13 Let Γ be a discrete reflection group of isometries of - = S=,
E=−1, or H=. Let % be a chamber and � (%) be the set of vectors 48 of norm −1 such
that % = ∩�+48 as in (0.8.10). We consider Γ as a Coxeter group with generators the
reflection B8 = A48 in vectors 48 . Then, the following property holds:

(T) For every W ∈ Γ and 8 ∈ �, either W(%) ⊆ �+
8
or W(%) ⊆ B8 (�+8 ) holds true.

Moreover, we have; (B8W) = ; (W) − 1 in the second case.

Proof If % is simplicial, then Γ acts via a Tits representation and then, property
(T) is proven in [88, Chapter V, §4.8]. The proof is based on a lemma that says
that it is enough to check property (T) for a subgroup generated by two reflections
(this is referred to as Tits’ Lemma in [148, 4.8]). In our situation, let 〈48 , 4 9〉 be the
subspace spanned by two vectors 48 , 4 9 and (B8B 9 )<8 9 = 1 is a Coxeter relation. After
normalizing, we may assume that 48 · 4 9 = −1. Then, the Gram matrix of the basis
(48 , 4 9 ) is equal to (

−1 cos c
<8 9

cos c
<8 9

−1

)
.

The action of Γ in this space is a Tits representation of dimension 2 and for this,
property (T) holds. �

Corollary 0.8.14 Let Γ be a reflection group of a lattice " that is negative definite,
semi-negative definite, or hyperbolic. Let B be a root basis of Γ and let � (B) be its
fundamental chamber. For every G ∈ "R, there exists a W ∈ Γ such that

W(G) ∈ � (B) and G = W(G) +
∑
U∈B

<U U with <U ∈ Z≥0 .

Proof Let W ∈ Γ be such that W(G) ∈ � (B). Let : := ; (W) and note that the case
: = 0 is trivial. If : ≥ 1, then there exist U1, ..., U: ∈ B such that W = AU1 ◦ . . . ◦ AU: .
Since ; (AU: ◦ W−1) = ; (W−1) − 1, the previous proposition implies

AU: (G) = AU:

(
W−1 (W(G))

)
∈ AU:

(
AU: (�+U: )

)
= �+U: ,

where
�+U: = {G ∈ "R : G · U: ≥ 0}. (0.8.15)

Thus, AU: (G) ·U: > 0 and hence, G ·U: < 0 and AU: (G) = G−<:U: for some<: ≥ 0.
The statement now follows from induction on : . �
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Given a reflection group Γ of a lattice " with root basis B and fundamental
chamber � (B), we will say that a root U ∈ R(Γ) is positive with respect to B if
U · G ≥ 0 for all G ∈ � (B). Using the notation from (0.8.15), a root U is positive if
and only if � (B) ⊆ �+U. It is clear that AU (�+U) = �+−U = �−U. It then follows from
Proposition 0.8.13 applied to W = B8 = AU that either U or −U is a positive root. Thus,
denoting by R(Γ)+ the set of positive roots, we obtain a disjoint union of the roots

R(Γ) = R(Γ)+
∐
R(Γ)−,

where R(Γ)− := {−U : U ∈ R(B)+} are the negative roots. In the special case, where
B = {U1, . . . , UA } is a basis of the R-vector space "R, we denote by {U∗1, . . . , U

∗
A } the

dual basis of ("R)∗. Using the isomorphism "R � "∗R that is given by { ↦→ 〈−, {〉,
we find

� (B) = R≥0 U
∗
1 + · · · + R≥0 U

∗
A ,

In particular, we find

R(Γ)+ = R(Γ) ∩ (Z≥0U1 + · · · + Z≥0UA ) .

Let " be a lattice and let B ⊆ " be a root basis of its reflection group Γ. We
denote by "B the sublattice of " spanned by the subset B. A root basis B is said
to be of finite type (resp. affine type) if the sublattice "B is negative definite (resp.
negative semi-definite). The following two results give a complete classification of
root bases of finite type and of affine type, respectively.

Proposition 0.8.15 Let Γ be an irreducible reflection group of an even lattice " and
let B be a root basis of Γ. Then, the following statements are equivalent:

1. B is of finite type.
2. Γ is finite and coincides with the reflection group of "B.
3. "B � E?,@,A (:) for some : ≥ 1, where 1

?
+ 1
@
+ 1
A
> 1.

4. As a set, B is finite, and its Gram matrix (U · V)U,V∈B is negative definite.
5. The Coxeter–Dynkin diagram G(B) is equal to A= or D= for some =, E6, E7, or

E8.

Proof Let B be of finite type and set + := ("B)R. Then, the orthogonal group O(+)
is a compact Lie group. A discrete subgroup of such a group must be a finite group.
Now, assertion (2) follows from the classification of finite reflection groups in a real
inner product vector space + , see [88, Chapter VI, §4], [317, Chapter 1] or [724,
Chapter V, §1]. Each such group is a reflection group of isometries of the unit sphere
S= and for this reason, it is called a spherical reflection group. Its Coxeter–Dynkin
diagram is either of type )?,@,A with 1

?
+ 1
@
+ 1
A
> 1 or it is a spherical group of

type B=, C=, F4, I2 (<), H3, or H4. In the latter cases, the group does not preserve
any sublattice " of + . It follows that a chamber of Γ is bounded by hyperplanes
�8 in + orthogonal to vectors 48 ∈ + with 42

8
= −1 and 48 · 4 9 = cos c

<8 9
, where

<8 9 = 1 (if 8 = 9), 2, or 3. The Z-sublattice spanned by the vectors U8 :=
√

248 has
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the Gram matrix of the lattice E?,@,A . From this, it is easy to deduce the remaining
implications. �

A lattice " isomorphic to the orthogonal sum of lattices A=,D=,E6,E7,E8 is
called a root lattice.

Proposition 0.8.16 Let B be an irreducible root basis of an even lattice " . Then,
the following statements are equivalent:

1. The root basis B is of affine type.
2. There exists a unique nonzero vector f =

∑
8 <8U8 with <8 ∈ Z≥0, such that

the radical satisfies Rad("B) = Zf, and then, the bilinear form on " defines a
non-degenerate bilinear form on " = (Zf)⊥/Zf equipping it with a structure of
a negative definite even lattice.

3. The Cartan matrix of B is not invertible and every proper and connected subdia-
gram of the Coxeter–Dynkin diagram Γ(B) is of finite type.

4. The Coxeter–Dynkin diagram of Γ is of type Ã= or D̃= for some = or Ẽ6, Ẽ7 or Ẽ8:

Ã= • • •
•

•. . .

D̃=
•

•
• •

•

•
. . .

Ẽ6 • • • • •
•
•

Ẽ7 • • • • • • •
••

Ẽ8 • • • • • • •
•

•
•

Fig. 0.4 Affine Dynkin diagrams

Note that = is equal to the number of vertices minus 1.

Proof Let B be of affine type, in which case the lattice N = "B is semi-definite
with radical #0 of rank one. Hence, Γ is isomorphic to a discrete reflection group of
the Euclidean space (#⊥0 /#0)R. The classification of such groups, called Euclidean
reflection groups is well-known, see see [88, Chapter VI, §4, Theorem 4], [317,
Chapter 5], or [724, Chapter V, §1]. It follows from this classification that Γ is
the Weyl group of # with Dynkin diagram as in (4) and that #⊥0 /#0 is a lattice
isomorphic to A=, D=, E6, E7, or E8. All Euclidean reflection groups are realized as
affine Weyl groups of the simple Lie algebras of types A=, D=, E6, E7, E8 and B=, C=,
F4, G2. In the latter cases, the group does not preserve any lattice " with "R = + .
Properties (2) and (3) follow from the classification. It is also clear that (2) implies
(1), and it is easy to see that (3) is equivalent to (4). �
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Remark 0.8.17 Let " be an even and negative definite or negative semi-definite
lattice.

1. Let B be a root basis of the :-reflection group Ref: (") and let ΓB be its reflection
group. Applying (0.8.12), we obtain

O(") ′ = Ref: (") o �(B), (0.8.16)

where �(B) is the subgroup of O(") ′ that leaves the root basis B invariant.
For example, if B is of finite type, then the symmetry group Sym(G(B)) of the
Coxeter–Dynkin diagram G(B) is trivial if B is of type E7 or E8. In these cases,
we obtain

O(E=) � ,2,3,=, = = 4, 5.

On the other hand, the groups of symmetries of the Coxeter–Dynkin diagram of
types D= and A= for = ≥ 2 are of order 2. It is easy to see that the non-trivial
symmetry defines an isometry of " and we find that the Weyl group of " is a
subgroup of index 2 in all other cases. We have (see [88, Tables])

, (A=) � S=+1 O(A=) = , (A=) × {± idA= } if = ≥ 2,
, (D4) � (Z/2Z)3 oS4 O(D4) = , (D4) ×S3,
, (D=) � (Z/2Z)=−1 oS= O(D=) = , (D=) × Z/2Z if = ≥ 5.

The quotient of the lattice E8 by 2E8 is isomorphic to the vector space F8
2 equipped

with a non-degenerate quadratic form of even type. This defines an isomorphism

O(E8) � ,2,3,5 � O+ (8, F2).

This is a finite group of order 214 · 35 · 52 · 7 and it contains a simple subgroup
of index 2. Similarly, we have, (E7) = , (E7) ′ × {± idE7 } and the quotient of E7
by 2E7 defines an isomorphism

, (E7) ′ � Sp(6, F2),

where Sp(6, F2) is the group of automorphisms of F6
2 that preserve a non-

degenerate symplectic form. The order of , (E7) is equal to 210 · 314 · 5 · 7
and the group Sp(6, F2) is simple. Finally, the group , (E6) contains a simple
subgroup, (E6) ′ of index 2 such that the reduction of E6 by 3E6 gives rise to an
isomorphism

, (E6) ′ � Sp(4, F3).

The order of, (E6) is equal to 72 · 6!.
2. Assume now that B is of affine type. Then the symmetry group Sym(G(B)) of

the Coxeter–Dynkin diagram G(B) is trivial only in the case where B is of type
�̃8.
On the other hand,
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Sym(G(B)) �



�2=+2 if B is of type Ã=,
�8 if B is of type D̃=, = ≠ 4,
S4 if B is of type D̃4,

S3 if B is of type Ẽ6,

Z/2Z if B is of type Ẽ7.

Here, �2= denotes the dihedral group (Z/=Z) o (Z/2Z) of order 2=.
We also have

O(") ′ � "̄∨ o O("̄) ′, (0.8.17)

where the radical of " is generated by f and "̄ = (Zf)⊥/Zf and the inclusion of
"̄∨ into O(") ′ is given by formula (0.8.8). In particular, we have

O(Ẽ8) ′ � ,2,3,6 � E8 o,2,3,5.

Next, we turn to hyperbolic lattices. A root basis B in a lattice " is said to be
of hyperbolic type if the sublattice "B of " is a hyperbolic lattice. We assume that
"B = " . Let� (B) be the fundamental chamber ofB. IfB is a finite set, then it follows
from (0.8.12) that ,B is of finite index in O("). We say that a discrete reflection
subgroup Γ of O(+) ′ with a chamber % is of finite covolume if % is the convex hull
of a finite set of points [{] ∈ P(+) lying in H(+) in its boundary. The reason for
this name is that this happens if and only if the volume of % in the hyperbolic metric
is finite. We say that Γ is cocompact or uniform if none of these points lies in the
boundary. It follows from this definition that the set of bounding hyperplanes of %
is a finite set. Of course, the converse is not true.

A root basis B (or the Weyl group,B) in a hyperbolic lattice " with " = "B is
said to be crystallographic if the reflection group ΓB is of finite covolume.

Proposition 0.8.18 Let B be a root basis of a hyperbolic lattice " . Then, B is
crystallographic if and only if ΓB is a subgroup of finite index in O(") ′.

Proof Suppose that ΓB is of finite index in O(") ′. Then, O(") ′ acts in H(+) with
a fundamental domain of finite volume, see [681]. Since � (B) is a fundamental
domain for ΓB, its volume must be also finite. The converse statement follows from
(0.8.12), because B is finite and thus, �(� (B)) is a finite group. �

An even and hyperbolic lattice " is called a :-reflective lattice (resp. reflective
lattice) if Ref: (") (resp. Ref (")) is of finite index in O(") ′. This is equivalent
to ": containing a finite crystallographic basis. The classification of 2-reflective
lattices can be found in [557] and [722] (for lattices of rank 4), see also the survey
[169]. By the previous remarks, if,B is crystallographic for some root basis B in " ,
then " is a 2-reflective lattice. In this case, it follows from the proof of Proposition
0.8.20 that B = B(") and,B = , (").

Example 0.8.19 The lattice E?,@,A is 2-reflective if and only if (?, @, A) is one of the
following 9 triples
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(2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10), (2, 4, 5), (2, 4, 6), (3, 3, 4), (3, 3, 5), (3, 3, 6).

Only three of them, namelyE2,3,7,E2,4,5, andE3,3,4, have a crystallographic canonical
root basis.

Proposition 0.8.20 Let B be a hyperbolic root basis in some lattice. Suppose that B′
is crystallographic for some subset B′ ⊆ B. Then, B is crystallographic and B′ = B.

Proof Clearly, ,B′ ⊆ ,B. By Proposition 0.8.18, ,B′ is of finite index in O(")
and thus, ,B is of finite index, too. Thus, also B is crystallographic. If U ∈ B \ B′,
then U · V ≥ 0 for all V ∈ B′. This implies that U belongs to � (B′) and since B′ is
crystallographic, we find � (B′) ⊆ ++. Hence, U2 ≥ 0, a contradiction. �

A discrete reflection subgroup of finite covolume (resp. uniform) of O(+) ′ with
simplicial chambers is called a quasi-Lanner group (resp. Lanner group), see [724].
The Coxeter–Dynkin diagrams of quasi-Lanner and Lanner groups have been classi-
fied, see [724] or [317, Section 6.9]. Irreducible Lanner (resp. quasi-Lanner) group
exists only in H= with = ≤ 4 (resp. = ≤ 9). The classification list can be found in loc.
cit. or [724]. A Lanner (resp. quasi-Lanner) group is characterized by the property
that each proper subdiagram of its Coxeter–Dynkin diagram is the Coxeter–Dynkin
diagram of a finite (resp. finite or Euclidean) reflection group.

Proposition 0.8.21 Let Γ be a crystallographic reflection group of a hyperbolic
lattice " . Then, possible labels in its Coxeter–Dynkin diagram of Γ are equal to 2
or 4. If Γ is a Weyl group, then the Coxeter–Dynkin diagram is simply-laced.

Proof Let B be a root basis of a Γ. It follows from (0.8.13) that if U, V ∈ B, then
cos c

<U,V
belongs to Q or to a quadratic extension  /Q. Quite generally, if < is

a positive integer, then cos c
<

generates the real subfield of the cyclotomic field
Q(Z2<), which is an extension of Q of degree 1

2q(2<), where q denotes Euler’s
q-function. Thus, we find q(2<) ∈ {2, 4}. If we write 2< = 20?01

1 · · · ?
0:
:

for
distinct and odd primes ?1, ..., ?: , then we have q(2<) = 20−1?01−1

1 · · · ?0:−1
:
(?1 −

1) · · · (?: − 1). From this, we deduce < ∈ {1, 2, 3, 4, 6}. Thus, the possible labels
in the Coxeter–Dynkin diagram of a crystallographic group are 2 or 4. In particular,
if the crystallographic group is a Weyl group, then the associated Coxeter–Dynkin
diagram is simply-laced, that is, there are no labels. �

The following corollary follows from the list of Coxeter–Dynkin diagrams of
Lanner type.

Corollary 0.8.22 A Weyl group of a lattice is never a Lanner group.

We note that there are hyperbolic lattices with reflection group of Lanner type in
all possible ranks. There also exist hyperbolic lattices with Weyl groups of quasi-
Lanner type in all ranks A = 4, . . . , 10. We will see those of rank 10 later in Chapter
5.

Next, we want to determine whether a root basis inside a hyperbolic lattice is
crystallographic. Quite generally, let B be a root basis inside some lattice " with
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" = "B and let G(B) be the Coxeter–Dynkin diagram of B. Obviously, there is a
natural bĳection between the following sets:

1. Non-empty subsets of B.
2. Full subgraphs of G(B).
3. Principal submatrices of the Gram matrix of B (sometimes also called the Cartan

matrix).

We will say that a subgraph of the graph G(B) is of finite type (resp. parabolic or
affine type) if the corresponding subset of B is a root basis of finite (resp. affine)
type. Its rank is defined to be the rank of the corresponding Cartan matrix or, more
geometrically, the number of vertices minus the number of connected components.
Finally, faces (vertices) of %(B) correspond to principal negative definite submatrices
of rank =. ’s The next theorem is known as the Vinberg criterion.

Theorem 0.8.23 Let B be a root basis inside a hyperbolic lattice " of rank = + 1
with " = "B.

1. If (U · V)2 > U2 · V2 for some U, V ∈ B, then B is not crystallographic.
2. Assume that U · V ≤ 2 for all U, V ∈ B. Then, B is crystallographic if and only

if every connected subgraph of affine type of Γ(B) is contained in a subgraph of
affine type of maximal rank (= = − 1).

Proof A proof can be found in [719, Theorem 2.6 bis]. However, in view of the
importance of this result for our applications to automorphisms of Enriques surfaces,
we include the proof.

The chamber % = %(B) is of finite volume if and only if its closure %̄ in P(+) lies
in H̄(+). Suppose there exists a point G0 = [{0] ∈ %̄ \ % for some {0 ∈ + = "R. Let
� ⊆ B be the subset of those U ∈ B such that {0 · U = 0. Since the linear subspace +B
is indefinite, � ≠ B and +� is not negative definite, but for any proper subset � ⊂ �,
the subspace +� is negative definite. Suppose +� is indefinite. Then B contains a
root subbase B′ such that ΓB′ is of Lanner group. However, as we observed before,
none of them occurs as a reflection group of a lattice. Thus, we may assume that the
Coxeter–Dynkin diagram does not contain subdiagrams of Lanner type. In particular,
no two vectors in B span a hyperbolic lattice (it will define a Lanner subdiagram
with two vertices). Obviously, %̄ is compact if and only if it is contained inH(+) and
this happens if and only if its Coxeter–Dynkin diagram does not contain parabolic
subdiagrams. So the assertion is true in this case.

Assume that % is not compact and then, G0 = [{0] ∈ mH(+). A neighborhood
* (G0) of G0 ∈ H̄(+) of the form (R{0)⊥/R× is called an orisphere with center G0.
It intersects H(+) in an open subset isomorphic (as a Riemannian manifold) to the
Euclidean space E=−1. In order for %(B) to be of finite volume, it is necessary and
sufficient that %(B) intersects each such orisphere * (G0) along a bounded subset of
the Euclidean space. This happens if and only if G0 is a vertex of the closure of %(B)
in H̄(+), hence � is contained in a subset � such that the rank of the corresponding
principal submatrix is equal to (= − 1). This proves the assertion. �
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0.9 Picard Schemes and Albanese Varieties

In this section, we discuss the Picard group, Picard functors, and the Picard scheme
of a given scheme. We also discuss Picard lattices, Néron–Severi groups, algebraic,
linear and numerical equivalence of divisors, as well as infinitesimal properties
of Picard schemes. Many of these results are classical, but were established by
Grothendieck [266] in the generality presented here. We refer the reader to [86,
Chapter 8] and [392] for surveys and more details than those presented here. We end
this section by discussing the Albanese variety of a normal variety.

For a scheme - , we denote by Pic(-) its Picard group, that is, the set of iso-
morphism classes of invertible sheaves on - , which becomes an abelian group with
composition given by ⊗, with neutral element O- , and inverse given by taking duals.
If - is an integral scheme, then the Picard group is naturally isomorphic to the
group of Cartier divisors modulo linear equivalence, see [294, Proposition II.6.15].
One can also interpret elements of Pic(-) as torsors under the multiplicative group
scheme G< over - with respect to different Grothendieck topologies (Zariski, étale,
flat)

Pic(-) � �1 (-,O×- ) � �1
Zar (-,G<) � �1

ét (-,G<) � �1
fl (-,G<). (0.9.1)

We already explained the first two isomorphisms in Example 0.1.6. The latter two
isomorphisms are deeper and rely on Grothendieck’s generalization of Hilbert’s
Theorem 90, see, for example, [508, Proposition III.4.9], For the last isomorphism,
we also refer to Theorem 0.1.3.

Let 5 : - → ( be a separated morphism of finite type between locally noetherian
schemes. Then, the relative Picard functor of - over ( is the functor Pic-/( that
associates to every morphism of schemes (′ → ( the abelian group Pic(- ×(
(′)/Pic((′). Then,we have associated sheaves in theZariski, étale, andflat topologies

Pic(-/() (Zar) , Pic(-/() (ét) , and Pic(-/() (fl) .

Using (0.9.1), it is not difficult to see that for every morphism (′ → ( of schemes
there is an isomorphism

Pic(-/() (−) ((
′) � �0 ((′, '1

− 5(′∗G<),

where 5(′ denotes the base-change 5 ×( (′ : - ×( (′ → (′. Here, − denotes the
Zariski, étale, or flat topology, and '1

− 5(′∗ denotes the higher direct image with re-
spect to this topology. In general, these sheaves depend on the choice of Grothendieck
topology. However, Grothendieck established the following comparison theorem, see
[266] or [392, Theorem 9.2.5].

Proposition 0.9.1 Let 5 : - → ( be a separated morphism of finite type between
locally noetherian schemes. Assume that the natural map O( → 5∗O- is a universal
isomorphism, that is, remains an isomorphism after every base-change (′ → (.
Then, the natural homomorphisms of abelian groups
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Pic-/( ((′) → Pic(-/() (Zar) ((
′) → Pic(-/() (ét) ((

′) → Pic(-/() (fl) ((
′)

are injective. If 5 has a section, then all maps are isomorphisms. If 5 has a section
locally in the Zariski topology, then the latter two maps are isomorphisms. If 5 has
a section locally in the étale topology, then the last map is an isomorphism.

There is a Grothendieck–Leray spectral sequence

�
8, 9

2 = �8 ((′, ' 9− 5(′∗G<) ⇒ �
8+ 9
(−) (-(′ ,G<),

where − denotes the étale or flat topology. From the exact sequence in low degrees
and the previous proposition, we obtain the following result.

Proposition 0.9.2 Let 5 : - → ( be a separated morphism of finite type between
locally noetherian schemes. Assume that O( → 5∗O- is a universal isomorphism.
Let (′ → ( be a morphism of schemes and let 5 ′ := 5(′ : -(′ := - ×( (′ → (′ be
the base-change. Then, there exists an exact sequence

0 → Pic(-(′)/Pic((′) U→ Pic(-/() (ét) ((
′) X→ �2

ét ((
′,G<).

The homomorphism U is bĳective if 5 ′ has a section or if �2
ét ((

′,G<) = 0.

For a scheme / , the group �2
ét (/,G<) is called the cohomological Brauer group

of / and it is denoted by Brct (/). We refer to [249], [271], and [508] for background
and the theory of these groups. If / = Spec , where  is a field, then this group
coincides with the usual Brauer groupBr( ) of the field that is defined as the set of
central simple  -algebras modulo Brauer or Morita equivalence, which becomes an
abelian groupwith composition given by⊗, with neutral element , and inverse given
by the opposite algebra [89, §15]. Moreover, if the field  is finite, or algebraically
closed, or the field of rational functions of an algebraic curve over an algebraically
closed field, then Br( ) = 0, and we refer to [249] for details and proofs. We will
discuss the Brauer groups in greater detail in the next chapter.

Example 0.9.3 Let 5 : - → ( be a proper and geometrically integral scheme over
( = Spec k, where k is a field, that is, - is a proper variety over k. Then, 5 has
sections locally in the étale topology (see, for example, [249, Appendix A]) and
thus, Pic(-/k) (ét) = Pic(-/k) (fl) by Proposition 0.9.1. Moreover, if ksep denotes the
separable closure of k and if �k := Gal(ksep/k) denotes its absolute Galois group,
then we set - := - ×k ksep and obtain isomorphisms of abelian groups

Pic(-)�k � Pic(-/k) (ét) (k
sep) � Pic(-/k) (fl) (k

sep),

where −�k denotes Galois-invariants. Then, the exact sequence of Proposition 0.9.2
becomes

0 → Pic(-) → Pic(-)�k
X→ Br(k).
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We note that X is zero if - has a k-rational point or if Br(k) = 0. We refer to [463]
for details and how to deal with the case where X is non-zero and a connection to
Brauer–Severi varieties over k.

The next theorem,which combines results of Grothendieck,Mumford,Murre, and
Oort, gives sufficient conditions for the relative Picard functor to be representable
by a group scheme.

Theorem 0.9.4 Let 5 : - → ( be a proper and flat morphism of finite type between
noetherian schemes. If 5 is projective with geometrically integral fibers or if ( is
the spectrum of a field, then Pic(-/() (fl) is representable by a group scheme Pic-/( ,
which is separated and locally of finite type over (.

Proof The first case is due to Grothendieck [266], and the second case is due to
Murre [545] and Oort [582]. �

We refer to [21] and [86], Chapter 8.3, for representability results by algebraic
spaces. In any case, Theorem 0.9.4 is sufficient for our applications later on and we
refer to [86, Chapter 8] and [392] for details, proofs, (counter-)examples, and further
results. The group scheme Pic-/( is called the Picard scheme of - over (.

Remark 0.9.5 This representability theorem is rather sharp: Mumford gave an exam-
ple of a flat and projective morphism 5 : - → ( = SpecR[[C]], whose fibers are
curves that are geometrically reduced, but whose special fiber is not geometrically
irreducible, and where Pic(-/() (fl) is not representable by a group scheme over (.
We refer to [86, Chapter 8.2] for details.

Let 5 : - → ( be a morphism of schemes such that the Picard functor is
representable by a group scheme Pic-/( over (. Since the Picard scheme represents
the Picard functor, there exists an invertible sheafP on -×(Pic-/( with the following
universal property: for every morphism of schemes) → ( and every invertible sheaf
L on - ×( ) , there exists a unique morphism of schemes k : ) → Pic-/( over (
and an invertible sheaf N on ) such that

L � (id- × k)∗P ⊗ 5 ∗)N .

This universal invertible sheaf is called the Poincaré sheaf.
Let � be a commutative group scheme that is separated and locally of finite

type over a field k. Let �◦ be its identity component defined in Section 0.1. It is a
commutative group scheme that is separated and locally of finite type over k, and
the quotient �/�◦ exists and is a group scheme, which is étale and locally of finite
type over k. If k is algebraically closed, then �/�◦ is a constant group scheme over
k. Next, we consider the inverse image of the torsion of �/�◦ in �, that is,

�g :=
⋃
=>0

=−1 (�◦),

where = : � → � denotes multiplication by =. From this, we obtain morphisms
�◦ ⊆ �g ⊆ � of group schemes over k, and each one is an open subscheme of the
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next one. Next, let ( be an arbitrary scheme and let � be a group scheme that is
separated and locally of finite type over (. For a point B ∈ (, let ^(B) be its residue
field and set �B := � ×( Spec ^(B), which is a group scheme that is locally of finite
type and separated over ^(B). Then, we define subfunctors �◦ (resp. �g) as follows:
for every morphism (′→ (, we define �◦ ((′) (resp. �g ((′)) to be the subgroup of
� ((′) of elements that induce an element of �◦B (B′) (resp. �gB (B′)) for every point
B′ ∈ (′ lying over a point B ∈ (. For example, if � is smooth over ( along the unit
section, then �◦ is representable by an open subscheme of �, and we refer to [86],
Chapter 8.4 for details and further representability results for �◦ and �g . The group
scheme �◦ is called the identity component of �.

If - is a scheme that is proper over a field k, then, by Theorem 0.9.4, the functor
Pic(-/k) (fl) is representable by a group scheme Pic-/k, which is separated and locally
of finite type over k. Applying the previous notions to this group scheme, we have
the following result.

Theorem 0.9.6 Let - be a scheme that is proper over a field k.

1. Pic◦
-/k and Picg

-/k are group schemes, which are separated and of finite type over
k.

2. Picg
-/k/Pic◦

-/k is a group scheme, which is finite over k.
3. (Pic-/k/Pic◦

-/k) (k) is a finitely generated abelian group.

Proof See [266] or [392, Section 9.5]. �

Next, we turn to the infinitesimal study of Picard schemes. Quite generally, for a
group–valued functor � on the category of schemes over (, one can define the Lie
algebra functor Lie(�/() that associates to every morphism (′ → ( the abelian
group Ker(� ((′[Y]) → � ((′)), where (′[Y] denotes the scheme of dual numbers
over (′, that is, (′[Y] � (′ ×SpecZ SpecZ[Y]/(Y2). The restriction of Lie(�/() to
the Zariski open subsets of ( yields a quasi-coherent sheaf L84(�/() on (.

Proposition 0.9.7 Let 5 : - → ( be a proper and flat morphism of finite type
between noetherian schemes. Then, there exists a canonical isomorphism

L84(Pic(-/() (fl)/() � '1 5∗O- .

Proof See [86, Chapter 8.4] or [266]. �

Assume now that ( = Spec k for some field k and that - is a proper variety over
k. By Theorem 0.9.4, the Picard scheme Pic◦

-/k exists as a scheme and by Theorem
0.9.6, the group scheme Pic◦

-/k is separated and of finite type over k. Moreover,
the Zariski tangent space of Pic◦

-/k at the origin is isomorphic to �1 (-,O- ) by
Proposition 0.9.7. Since Pic◦

-/k may not be a reduced scheme, we let (Pic◦
-/k)red

be its reduction. If k is algebraically closed, then (Pic◦
-/k)red is a group scheme

that is separated and smooth over k, see also the discussion in connection with
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the connected-étale sequence (0.1.8) and its splitting. As already noted there, the
reduction of a group scheme need not be a group scheme, see [733, Chapter 6,
Exercises 9 and 10], and the discussion in [392, Remark 9.5.2].

Proposition 0.9.8 Let - be a normal and projective variety over an algebraically
closed field k. Then, Pic◦

-/k and Picg
-/k are group schemes that are projective over

k. Moreover:

1. (Pic◦
-/k)red is an abelian variety of dimension at most ℎ1 (O- ) over k.

2. If char(k) = 0 or if ℎ2 (O- ) = 0, then Pic◦
-/k = (Pic◦

-/k)red and it is an abelian
variety of dimension ℎ1 (O- ) over k.

Proof For the first statement, see [266], and see [538, Lecture 27], for the second
statement, as well as [392, Section 9.6], for overview and background. �

Remark 0.9.9 The second statement can bemademore precise. By Proposition 0.9.7,
the Zariski tangent space of Pic◦

-/k at the origin is isomorphic to �1 (-,O- ). If
char(k) = ? > 0, then, by [538, Lecture 27], the Zariski tangent space of (Pic◦

-/k)red
at the origin is isomorphic to the subspace

�1
0 (-,O- ) :=

⋂
A ≥1

Ker(VA ) ⊆ �1 (-,O- ),

where VA+1 : Ker(VA ) → �2 (-,O- )/Im(VA ) with Ker(VA ) ⊆ �1 (-,O- ) are
certain Bockstein operators. In particular, if ℎ2 (O- ) = 0, then �1

0 (-,O- ) =
�1 (-,O- ), which implies that Pic◦

-/k is reduced, and thus, an abelian variety
of dimension ℎ1 (O- ) over k.

Now, if - is proper variety over an algebraically closed field k, then Pic◦
-/k is a

commutative group scheme that is connected, separated, and of finite type over k by
Theorem 0.9.6. Moreover, � := (Pic◦

-/k)red is even reduced, and thus, smooth over
k. Thus, by the structure theorem of Chevalley and Rosenlicht, � is an extension of
an abelian variety � over k by a group scheme that is smooth and affine over k. The
latter group scheme is an extension of a unipotent group scheme* by a torus ) , and
we refer to the discussion in Section 0.3, to [86, Chapter 9.2], or to [656] for details.
For an integer = ≥ 1 and an abelian group �, we denote by =� := {ℎ ∈ � : =ℎ = 0}
the =-torsion subgroup of �. If = is coprime to char(k), then

=�(k) � (Z/=Z)26, where 6 = dim �,

=) (k) � (Z/=Z)C , where C = dim),

=* (k) = {0}.

We still assume - to be a proper variety over an algebraically closed field k. Then,
taking étale cohomology in the Kummer exact sequence (0.1.6) in the étale topology,
still assuming = to be coprime to the characteristic of k,

0 → -= → G<
×=→ G< → 0
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and using (0.9.1), we conclude

=Picg-/k (k) � �1
ét (-, -=), (0.9.2)

see also (0.1.7). From Theorem 0.9.6 and the previous discussion, it follows that if
= is only divisible by sufficiently large primes, then �1

ét (-, -=) is a free (Z/=Z)-
module of rank (26 + C). If - is moreover geometrically normal, then C = 0 by
Proposition 0.9.8. In any case, this rank is denoted by 11 (-) and is called the first
Betti number of - . We come back to this in the next section. We summarize the
previous discussion as follows.

Proposition 0.9.10 Let - be a normal and projective variety over an algebraically
closed field k. Then:

1. (Pic◦
-/k)red is an abelian variety of dimension 1

211 (-) and
2. the Zariski tangent space of Pic◦

-/k is isomorphic to �
1 (-,O- ).

In particular,
Δ(-) := 2ℎ1 (O- ) − 11 (-)

is an even integer that satisfies 0 ≤ Δ(-) ≤ 2ℎ2 (O- ). Moreover, Δ(-) = 0 if and
only if Pic◦

-/k is reduced. If char(k) = 0, then Δ(-) = 0.

We refer to Remark 0.9.23 for an analytic construction of the Picard scheme and
the Picard variety for smooth and projective varieties over the complex numbers.

Remark 0.9.11 Since a smooth and projective curve - over an algebraically closed
field k satisfies �2 (-,O- ) = 0, its Picard scheme Pic◦

-/k is reduced by Remark
0.9.9. The first examples of smooth and projective varieties over algebraically closed
fields of positive characteristic with non-reduced Picard schemes are due to Igusa
[325] and we refer to [457] for an analysis of non-reduced Picard schemes for smooth
and projective surfaces. In the next chapter, we will encounter Enriques surfaces with
non-reduced Picard schemes in characteristic 2 and refer to [458, Section 3.3] and
Section 0.10 for further information.

Example 0.9.12 Let � be an abelian variety over an algebraically closed field k.
Then, �∨ := Pic◦

�/k is reduced, that is, �
∨ is an abelian variety, which is called the

dual abelian variety of �. It is an abelian variety of the same dimension as � and the
name is justified by the fact that there exists a canonical isomorphism � � (�∨)∨ of
abelian varieties over k. We refer to [541, Section 13] for details and proofs.

Next, let - be a smooth and proper over an algebraically closed field k. Let L8 ,
8 = 1, 2 be two invertible sheaves on - . Then, L1 and L2 are said to be linearly
equivalent if L1 � L2. They are said to be algebraically equivalent if there exists a
connected scheme ) of finite type over k, an invertible sheafM on - × ) , and two
closed points C8 ∈ ) , 8 = 1, 2 such thatL8 �M|-×{C8 } for 8 = 1, 2. Finally,L1 andL2
are said to be numerically equivalent if degL1 |� = degL2 |� for every integral curve
� on - . (For an invertible sheafN on a proper curve � over k, the degree is defined
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to be degN := j(N) − j(O� ). If � is smooth, then this coincides with the usual
definition of degree.) Two linearly equivalent invertible sheaves are algebraically
equivalent, and two algebraically invertible sheaves are numerically equivalent. An
invertible sheaf is said to be linearly (resp. algebraically, numerically) equivalent
to zero if it is linearly (resp. algebraically, numerically) equivalent to O- . We will
also use the same terminology for (Cartier) divisors. We refer to [242] or [392] for
definitions and details.

Proposition 0.9.13 Let - be a smooth and projective variety over an algebraically
closed field k.

1. Pic◦
-/k (k) is the group of divisor classes that are algebraically equivalent to zero,

and
2. Picg

-/k (k) is the group of divisor classes that are numerically equivalent to zero.

Proof See [266] or [392]. �

If - is smooth and projective over an algebraically closed field k, then (Pic◦
-/k)red

is called the Picard variety of - , which is an abelian variety over k, see Proposition
0.9.13. Let

NS(-) := Pic-/k (k)/Pic◦-/k (k),
Num(-) := Pic-/k (k)/Picg-/k (k)

be the quotient groups of divisor classes on - modulo algebraic and numerical)
equivalence, respectively. The group NS(-) is called the Néron–Severi group of - .

In the case where - is a smooth projective surface over k, then we have an
intersection form on Pic(-), which can be defined as

Pic(-)×Pic(-) → Z, (L1,L2) ↦→ j(O- )−j(L−1
1 )−j(L

⊗−1
2 )+j(L−⊗1

1 ⊗L⊗−1
2 ).

If L1 = O- (�1) and L2 = O- (�2) for some Cartier divisors �1 and �2, then we
denote the value of the intersection form on (L1,L2) by L1 · L2 (resp. �1 · �2).
We set L2 := L · L (resp. �2 := � · �). We refer to [538, Lecture 12] and [294,
Chapter 5] for the above definition, as well as for different expressions of the value
of the intersection form in terms of the intersection theory of Cartier divisors. The
intersection form on Pic(-) is trivial on Picg

-/k, and thus, intersection forms

NS(-) × NS(-) → Z Num(-) ⊗ Num(-) → Z. (0.9.3)

Since k is a field, we have Pic-/k (k) = (Pic-/k)red (k) and similarly for Pic◦
-/k

and Picg
-/k. It follows from Theorem 0.9.6 that the torsion subgroup Tors of NS(-)

is finitely generated and that there exists an isomorphism

Num(-) � NS(-)/Tors .

It is a deep theorem that the abelian group Num(-) is finitely generated, see [86,
Chapter 8] or [392] for details and further references. Its rank is denoted by d(-)
and it is called the Picard number of - .
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For surfaces, the intersection form (0.9.3) defines a structure of a quadratic lattice
on Num(-)

Num(-) × Num(-) → Z. (0.9.4)

It is called the Picard lattice of - .
In connection with this discussion, we also have the following result concerning

Picard ranks in families, which is due to Ekedahl, Hyland, and Shepherd-Barron, see
[214, Proposition 4.2].

Proposition 0.9.14 Let 5 : X → ( be a smooth and projective morphism such that
( is Noetherian, 5∗OX � O( , and such that

1
2
11 (XB̄) = ℎ1 (OXB̄ ) − ℎ2 (OXB̄ )

for every geometric point B̄ → (. Then, the Picard number of XB̄ in this family is
locally constant.

Example 0.9.15 Let - be a proper curve over an algebraically closed field k. Then,
Pic-/k exists as a reduced group scheme that is locally of finite type over k and
� (-) := Pic◦

-/k is called the (generalized) Jacobian variety of - , see also Remark
0.9.20. Let - = -1∪ . . .∪-A be the decomposition of - into irreducible components.
Let<8 be the multiplicity of -8 , which is defined to be the length of the local artinian
ring O-,[8 where [8 denotes the generic point of -8 . Then, NS(-) is a free abelian
group of rank A . More precisely, the homomorphism

NS(-) → ZA

L ↦→
(
degL|-1 , . . . , degL|-A

)
is injective and has finite cokernel. Let -red be the largest reduced subscheme of -
and let -̃ be the normalization of -red, which is the product of the normalizations
-̃8 of the -8 . Moreover, let - ′→ -red be the largest curve between -̃ and - , which
is homeomorphic to - . Then, there are canonical surjective homomorphisms

Pic◦
-/k

U→ Pic◦
-red/k

V
→ Pic◦

- ′/k
W
→ Pic◦

-̃/k,

where:

1. Ker(U) is a smooth, connected, and unipotent group scheme, which is a successive
extension of additive group schemes of type G0,

2. Ker(V) is a connected and unipotent group scheme, which is trivial if and only if
the canonical morphism - ′→ -red is an isomorphism,

3. Ker(W) is a torus, which is trivial if and only if every morphism -̃8 → -8 is a
homeomorphism and if the configuration of the components of - is tree-like.

In particular, this relates the Chevalley–Rosenlicht decomposition of the group
scheme Pic◦

-/k to the geometry of - . We refer to [86, Chapter 9.2], for details,
proofs, and further results.
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As an application of the results of this section, we briefly discuss Albanese
varieties: given a variety - over an algebraically closed field k, one can ask whether
there exists a morphism 5 : - → � to a commutative group variety over k that is
universal with respect to morphisms to commutative group varieties. More precisely,
let C be a category of commutative group varieties over k such that:

1. if �1, �2 are in C, then so is �1 ×Spec k �2,
2. if 5 : �→ � is morphism of commutative group schemes over k with � ∈ C and

Ker( 5 ) is a finite group scheme over k, then � ∈ C.

For example,C could be the category of abelian varieties over k, which is the classical
setup, but one could also consider the category of tori over k or the category of semi-
abelian varieties over k, whose objects are extensions of abelian varieties by tori.
Next, we fix a base point G0 ∈ - . Then, an Albanese variety of (-, G0) with respect
to C is a morphism 5 : - → � with � ∈ C and 5 (G0) = 0�, where 0� denotes the
neutral element of �, such that whenever 6 : - → � is a morphism with � ∈ C and
6(G0) = 0�, then there exists a unique morphism k : �→ � of group schemes over
k such that 6 = k ◦ 5 . Being characterized by a universal property, it is clear that if
an Albanese variety of (-, G0) with respect to C exists, then it is unique up to unique
isomorphism. In the following cases, Serre [654] established the existence.

Theorem 0.9.16 Let - be a variety over an algebraically closed field k with base
point G0 ∈ - .

1. There exists an Albanese variety of (-, G0) with respect to the category C of
abelian varieties.

2. Let C be a category as above such that the additive group G0 is not an object of
C. Then, there exists an Albanese variety of (-, G0) with respect to C.

3. Let C be a category as above and let - be proper over k. Then, there exists an
Albanese variety of (-, G0) with respect to C.

We note that if - is a proper variety over k, then anymorphism to an affine scheme
over k is constant. Thus, when discussing Albanese varieties for proper varieties over
k, it usually suffices to restrict to the category C of abelian varieties over k. If - is
moreover normal, then we can be very specific about its Albanese variety.

Theorem 0.9.17 Let - be a normal and projective variety over an algebraically
closed field k with base point G0 ∈ - . Then, the Albanese variety of (-, G0) with
respect to the category C of abelian varieties over k exists and it is isomorphic to
the dual of the Picard variety. In particular, it is of dimension 1

211 (-).

Proof Existence follows from Theorem 0.9.16, but it also follows directly from
the construction that we now give: the Picard variety %(-) := (Pic◦

-/k)red is an
abelian variety over k by Proposition 0.9.10 and let Alb(-) := %(-)∨ be the
dual abelian variety as defined in Example 0.9.12. Let P be the Poincaré sheaf on
-×Spec kPic◦-/k, let Pred be its restriction to -×Spec k%(-), and let F be the Poincaré
sheaf on %(-) ×Spec k Alb(-). Next, let f : %(-) ×Spec k - → - ×Spec k %(-) be
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the isomorphism that is defined by (0, 1) ↦→ (1, 0). By the universal property of the
dual abelian variety %(-)∨, there exists a unique and canonical morphism

alb- : - → Alb(-),

such that f∗ (Pred) = (id% (- ) × alb- )∗F and alb- (G0) = 0Alb(- ) .
To show that this is the Albanese variety with respect to the category C of

abelian varieties, let 6 : - → � be a morphism to an abelian variety over k
with 6(G0) = 0�. Then, the pull-back of invertible sheaves induces a morphism
of group schemes from �∨ = Pic◦

�/k to Pic◦
-/k. Passing to the reduction %(-) of

Pic◦
-/k and then, to dual abelian varieties, we obtain a morphism of abelian varieties

k : Alb(-) = %(-)∨ → (�∨)∨ � �. It is easy to see that 6 = k ◦ alb- . Using
various universal properties, we leave to the reader to check that (Alb(-), alb- ) is
the Albanese variety of (-, G0) with respect to C, see also the discussion in [38,
Chapter 5]. The statement about the dimension of Alb(-) follows from Proposition
0.9.10. �

Under the assumptions of the previous theorem, the pair (Alb(-), alb- ) is simply
called the Albanese variety of the pair (-, G0), the map alb- is called the Albanese
morphism, and we will drop the category C in the future and oftentimes, even the
base point G0 ∈ - .

Let us mention another interesting feature of the Albanese map concerning the
pull-back of global differential 1-forms from the Albanese variety, which is due to
Igusa [324]. What makes it interesting is that it is even true if the ground field k is
of positive characteristic, where the Albanese morphism could be inseparable.

Proposition 0.9.18 Let - be a smooth and projective variety over an algebraically
closed field k with Albanese morphism alb- : - → Alb(-). Then, the natural map

alb∗- : �0
(
Alb(-), Ω1

Alb(- )/k

)
→ �0

(
-, Ω1

-/k

)
is injective.

If k is of characteristic zero, then this map is even an isomorphism (see below),
whereas this need not be the case if k is of positive characteristic, see Remark 0.9.22.
The following two classes of varieties behave well in any characteristic.

Theorem 0.9.19 Let - be a smooth and projective variety over an algebraically
closed field k. Assume that:

1. - is a curve of genus 6(-) := ℎ1,0 (-) = ℎ0 (-, l- ) or that
2. - is an abelian variety of dimension 6(-).
Then, the Picard scheme Pic◦

-/k is an abelian variety of dimension 6(-), we have
the equalities

6(-) = 1
2
11 (-) = ℎ0,1 (-) = ℎ1,0 (-),

and the map alb∗- from Proposition 0.9.18 is an isomorphism.
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Proof First, assume that - is a curve. Since �2 (-,O- ) = 0, it follows that Pic◦
-/k

is reduced by Proposition 0.9.10 and thus, we find 1
211 (-) = ℎ0,1 (-). Since -

is a curve, Serre duality gives an isomorphism �0 (l- ) � �1 (O- )∨ and thus,
implies ℎ1,0 (-) = ℎ0,1 (-). By Proposition 0.9.18, the map alb∗- is injective, we
have ℎ1,0 (-) = 6(-) and since ℎ0 (Ω1

Alb(- )/k) ≥ dim Alb(-) = 1
211 (-) = 6(-), it

follows that alb∗- is an isomorphism.
Second, assume that - is an abelian variety. Then, Pic◦

-/k is reduced, that is, an
abelian variety, see [541, Section 13]. By loc.cit., we have

ℎ8 (-,O- ) =
(
6(-)
8

)
, (0.9.5)

which, together with Serre duality, gives the assertion on ℎ0,1 (-) = ℎ1,0 (-) = 6(-).
By Proposition 0.9.18, the map alb∗- is injective, and since both both vector spaces
are of dimension 6(-), this map is an isomorphism. �

We refer to Example 0.10.15 below or [541] for more on the cohomology of
abelian varieties.

Remark 0.9.20 Let - be a smooth and projective curve over an algebraically closed
field k. Then, the Picard variety Pic◦

-/k comes with a natural principal polarization,
and thus, it is naturally isomorphic to the Albanese variety of - . In this case, these
two abelian varieties are called the Jacobian variety of - . For higher–dimensional
varieties, the Picard variety and the Albanese variety are in general not isomorphic.

Combining these results with Proposition 0.9.10 and Proposition 0.9.18, we con-
clude the following.

Corollary 0.9.21 Let - be a smooth and projective variety over an algebraically
closed field k. Then, the inequalities

1
211 (-) ≤ ℎ0,1 (-) = dimk �

1 (-,O- ) and
1
211 (-) ≤ ℎ1,0 (-) = dimk �

0 (-,Ω1
-/k)

hold true.

Remark 0.9.22 If k is of characteristic zero, then both inequalities are equalities
and we obtain the Hodge symmetry ℎ0,1 (-) = ℎ1,0 (-). In fact, we established
the equality ℎ0,1 (-) = 1

211 (-) in characteristic zero in Proposition 0.9.10 and
mentioned in Remark 0.9.11 that it may fail in positive characteristic. The first
examples of smooth and projective varieties with 1

211 (-) ≠ ℎ1,0 (-) are due to
Igusa [325] and Mumford [536] constructed Enriques surfaces in characteristic 2
with this property. We refer to [456] for examples of smooth and projective surfaces
in characteristic 2, where the differences (ℎ0,1− 1

211) and (ℎ1,0− 1
211) get arbitrarily

large. We refer to [458], Sections 3.3 and 3.4 and Section 0.10 for further discussion.

By the Lefschetz principle, the just–mentioned Hodge symmetry in characteristic
zero follows from the following remark or the results of the next section.
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Remark 0.9.23 Let - be a smooth and projective variety over C, which we may also
consider as a complex manifold. Then,

1. the Picard scheme Pic◦
-/C is reduced, that is, an abelian variety by Proposition

0.9.10. Using analytic methods, one can show that there exists an isomorphism
of abelian groups

Pic◦
-/C � �1 (-,O- )/�1 (-,Z),

and that the right–hand side carries the structure of an abelian variety. Here, the
map �1 (-,Z) → �1 (-,O- ) comes from taking cohomology in the exponential
sequence, see (0.10.9) below.

2. Similarly, the Albanese variety can be constructed analytically as

Alb(-) � �0 (-,Ω1
-/C)

∨/�1 (-,Z).

Next, after choosing a base point G0 ∈ - and aC-basisl1, ..., l6 of�0 (-,Ω1
-/C),

there is a well-defined and analytic map

alb- : - → Alb(-)
G ↦→

(∫ G
G0
l1, ...,

∫ G
G0
l6

)
,

which gives an analytic construction of the Albanese morphism.

By Hodge theory (see Section 0.10), we have equalities

ℎ1 (-,O- ) = ℎ0 (-,Ω1
-/C) =

1
2
11 (-),

Rahm–Witt which shows Hodge symmetry ℎ0,1 (-) = ℎ1,0 (-) and gives an analytic
proof of the fact that dimPic◦

-/C = dim Alb(-) = 1
211 (-), see Proposition 0.9.10

and Theorem 0.9.17. In this case, the map alb∗- from Proposition 0.9.18 is an
isomorphism. We refer to [259, Chapter 2.6] for details and proofs.

0.10 Cohomology of Algebraic Surfaces

In this section, wewill briefly recall several cohomology theories (singular, de Rham,
ℓ-adic, crystalline, de Rham–Witt, and flat) for smooth and projective varieties and
discuss their interplay. We have chosen the material with a view toward algebraic
surfaces and we have included some discussion of cohomology groups of small
degree.

First, we consider varieties over the complex numbers from the topological point
of view: let - be a smooth and projective variety of dimension 3 over the complex
numbers. We can view - as a topological manifold (with respect to the classical
topology) of real dimension 23 and we may study singular simplices that is, con-
tinuous maps f : Δ8 → - , where Δ8 denotes the standard 8-simplex. We denote
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by �8 (-) the free abelian group generated by these singular simplices, and taking
boundaries m (with the correct sign convention) gives rise to a complex �• (-), the
singular chain complex. Dually, we have singular cochains Hom(�8 (-),Z) and a
dual chain complex �• (-) := Hom(�•,Z). For an abelian group �, we define the
8-th (singular) homology group of - with values in �, denoted by �8 (-, �), to be the
8-th homology group of the chain complex �• (-) ⊗Z �. Similarly, we define the 8-th
(singular) cohomology of - with values in � to be the cohomology of the cochain
complex �• (-) ⊗Z �. Since - is of real dimension 23, we have �8 (-, �) = 0 and
�8 (-, �) = 0 for all abelian groups � if 8 < 0 or if 8 > 23. The relation between
homology and cohomology, as well as the relation of homology with coefficients in
Z and �, is given by the following universal coefficient formulas:

0→ Ext1 (�8−1 (-,Z), �) → �8 (-, �) → Hom (�8 (-,Z), �) → 0,
0→ �8 (-,Z) ⊗ � → �8 (-, �) → Tor1 (�8−1 (-,Z), �) → 0. (0.10.1)

In particular, if the torsion subgroup �8−1 (-,Z) is zero, then we find �8 (-,Z) �
Hom(�8 (-,Z),Z). Concerning the torsion subgroups, we also have the following
notable shift:

Tors �8 (-,Z) � Hom (Tors �8−1 (-,Z),Q/Z) ,
Tors �8 (-,Z) � Hom

(
Tors �8+1 (-,Z),Q/Z

)
.

Next, there is the cap-product ∩ : �: (-) × �< (-) → �:−< (-), : ≥ <, which
is defined via

f ∩ q := q (f | [C0, . . . , C<]) f | [C<, . . . , C: ], f ∈ �: (-), q ∈ �< (-).

For all 8, the cap-product induces an isomorphism

�8 (-,Z) � �23−8 (-,Z), (0.10.2)

called Poincaré duality. Combining Poincaré duality with the homomorphism
�8 (-,Z) → Hom(�8 (-,Z),Z) from (0.10.1), we obtain the cup-product pairing

�8 (-,Z) × �23−8 (-,Z) → Z (0.10.3)

Let �8 (-,Z) ′ := �8 (-,Z)/Tors. The cup-product pairing defines a perfect pairing

�8 (-,Z) ′ × �23−8 (-,Z) ′ → Z. (0.10.4)

Concerning torsion subgroups, we find isomorphisms

Tors �8 (-,Z) � Tors �23−8 (-,Z) � Hom
(
Tors �23−8+1 (-,Z),Q/Z

)
.

(0.10.5)
Since - is a compact manifold, all singular (co-)homology groups �8 (-, �) and
�8 (-, �) are finitely generated �-modules. The rank of �8 (-,Z), which coincides
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with the ranks of �8 (-,Z), �23−8 (-,Z), and �23−8 (-,Z) by (0.10.2) and (0.10.4),
is called the 8-th Betti number of - and denoted by 18 (-). Moreover, the alternating
sum

4(-) :=
23∑
8=0
(−1)8 18 (-)

is called the Euler–Poincaré characteristic of - . All of this can be found in any good
textbook on algebraic topology, see, for example, [299] or [544].

Second, we still assume - to be a smooth and complex projective variety of
dimension 3, but now, we consider it as a differentiable manifold of real dimension
23. Then, we have the de Rham complex

0 → A0
-

3→ A1
-

3→ · · · 3→ A23
- → 0,

where A8
-
denotes the sheaf (with respect to the classical topology) of real-valued

smooth differential 8-forms. We let �8 (-) := �0 (-,A8
-
) be the real vector space of

global smooth differential 8-forms on - . Then, de Rham’s Theorem states that, for
every 8, there exists a natural isomorphism

�8 (-,R) � Ker(�8 (-) 3→ �8+1 (-))/Im(�8−1 (-) 3→ �8 (-)), (0.10.6)

that is, de Rham cohomology is isomorphic to singular cohomology with coefficients
inR. Moreover, under this isomorphism the isomorphism �8 (-,R)×�=−8 (-,R) →
R coming from Poincaré duality (0.10.4) coincides with the one coming from the
pairing arising from integrating differential forms over -:

〈[l], [g]〉 =
∫
-

l ∧ g.

Again, this is classic and can be found, for example, in [732].
Third, let us consider - as a complex manifold. Then there are three differentials:

3 (real differentiation), as well as m and m (holomorphic and anti-holomorphic
differentiation, respectively). Also, we obtain a decomposition of the complexified
space of global differential 8-forms

�8C (-) := �8 (-) ⊗R C �
⊕
?+@=8

�
?,@

C
(-)

into (?, @)-forms, that is, differential forms that are locally (in the classical topology)
sums of the form 5 · 3I81 ∧ ...∧3I8? ∧3I 91 ∧ ...∧3I 9@ for some complex-valued C∞-
function 5 and in some holomorphic coordinates I1, ..., I3 on - . We also assumed
that - is projective, that is, it admits a holomorphic embedding into P#

C
for some

# . Since a projective space is a Kähler manifold, for example, via the Fubini-Study
metric, we can restrict a Kähler metric from P#

C
to - , which implies that - is

also a Kähler manifold. With respect to the choice of a Kähler metric on - , there
exists a unique Hodge star operator ∗, which allows us to construct adjoint operators



156 0 Preliminaries

3∗ = −∗ 3∗, and similarly m∗ and m
∗
. This gives rise to three Laplace operators on - ,

namely Δ3 := 33∗ + 3∗3, and similarly Δm and Δm. By definition, forms l ∈ �8 (-)
with Δ3 (l) = 0 are called harmonic and by a fundamental theorem in Hodge theory,
there exist isomorphisms

KerΔ3 |�8
C
(- ) � Ker(�8C (-)

3→ �8+1C (-))/Im(�
8−1
C (-)

3→ �8C (-)),

that is, every cohomology class in de Rham cohomology has a unique harmonic
representative. By (0.10.6), this cohomology group is isomorphic to the singular
cohomology group �8 (-,C). Next, we have sheaves (with respect to the classical
topology) Ω8

-
of holomorphic differential forms and we define the Hodge cohomol-

ogy groups to be
� ?,@ (-) := �@ (-,Ω?

-
).

Since - is a compact complex manifold, these are finite–dimensional complex
vector spaces and we define ℎ?,@ (-) to be the dimension of � ?,@ (-). Since - is
projective, it follows from Serre’s GAGA theorems [652] that these cohomology
groups coincide with the cohomology groups of the same name (this is a deliberate
abuse of notation) if - is considered as an algebraic variety, if Ω?

-
is considered as

a sheaf (with respect to the Zariski topology) that is a coherent O- -module, and if
�@ is meant in the sense of cohomology of coherent sheaves. Similar to the above,
Hodge theory provides us with isomorphisms

KerΔ
m
|�?,@

C
(- ) � � ?,@ (-).

It follows from the fact that the metric used to define the Hodge star operator ∗
is Kähler, and that the three Laplacians are related by the formula Δ3 = 2Δm =
2Δ

m
, which is the key to relating de Rham cohomology to Hodge cohomology.

More precisely, the Hodge decomposition theorem for Kähler manifolds states an
isomorphism

�8 (-,C) �
⊕
?+@=8

� ?,@ (-). (0.10.7)

Moreover, complex conjugation induces the Hodge symmetry isomorphisms

� ?,@ (-) � �@,? (-).

As a direct consequence, this implies that ℎ?,@ (-) = ℎ@,? (-) for all ?, @ ≥ 0 and
that the Betti number 18 (-) is even if 8 is odd. Let us also note that Poincaré duality,
Serre duality, Hodge symmetry, and the Hodge decomposition imply the following
equalities for a Kähler manifold of complex dimension 3

18 =
∑
?+@=8 ℎ

?,@ ,

123−8 = 18 ,
ℎ23−@,23−? = ℎ?,@ = ℎ@,? = ℎ23−?,23−@ .
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Again, all this is classical and we refer to [259], [320], or [725] for details, proofs, and
further background. For 8 = 3, Poincaré duality defines a non-degenerate bilinear
form on �3 (-,R), which is symmetric if 3 is even and skew-symmetric if 3 is odd.
Assume that 3 is even. Then, the Sylvester signature (C+, C−) gives rise to the signature
of - , which is defined to be � (-) := C+ − C−. Using the Lefschetz decomposition,
one can show that

� (-) =
∑

?≡@ mod 2
(−1) ? ℎ?,@ and thus, C± =

1
2
(13 (-) ± � (-)), (0.10.8)

see [259, Chapter 0.7]. By Hirzebruch’s signature theorem, the signature coincides
with the !-genus of the underlying differentiable manifold. For example, if - is a
complex projective surface, this becomes

� (-) = 1
3
?1 (-) =

1
3
(21 (-)2 − 222 (-)),

where the ?8 denote the Pontryagin classes and the 28 denote the Chern classes
of the tangent bundle of - . We refer to [306] or [446] for details, background, and
proofs.

Before continuing, we will introduce some notations for abelian groups, which
we will use often in the sequel. Let ℓ be a prime number. For any abelian group �,
we denote by [=] : � → � multiplication by = ∈ Z (or raising to the =-th power in
the case where the group is written multiplicatively). Then, we set

=� := Ker( [=] : �→ �),
�(=) := Coker( [=]) = �/=� � � ⊗Z (Z/=Z),
ℓ∞� := lim−−→ = Ker( [;=] : �→ �),
)ℓ (�) := lim←−− = Ker( [ℓ=] : �→ �),

and)ℓ (�) is called the ℓ-adic Tatemodule of �. For example,we have)ℓ (Q/Z) � Zℓ .
Let us also recall that an abelian group � is called divisible (resp. uniquely divisible)
if the equation = · G = 0 can be solved (resp. uniquely solved) in � for every = ∈ Z
and every 0 ∈ �. For example, the additive group of a linear space is a divisible
group (uniquely divisible if the characteristic is zero), and, since every quotient
of a divisible group is divisible, Q/Z and Qℓ/Zℓ are divisible groups. A divisible
group is an injective object in the category of abelian groups. In particular, every
divisible abelian group inside some abelian group is automatically a direct summand.
Therefore, every abelian group is the direct sum of a divisible group and an abelian
group that does not contain any non-trivial divisible subgroups. The main result in
the theory of divisible groups asserts that every divisible group is isomorphic to a
direct sum of groups isomorphic toQ and to groups isomorphic toQℓ/Zℓ for various
primes ℓ, see [361]. Let us also recall the following result from loc.cit., Theorem 10.

Proposition 0.10.1 Let ℓ be a prime, let � be an abelian ℓ-group, that is, � = ℓ∞�,
and assume that ℓ� is a finite group. Then
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� � (Qℓ/Zℓ)= ⊕ �,

where � is a finite abelian ℓ-group and = ≤ dimFℓ ℓ�. In particular, we have

)ℓ (�) � Z=ℓ .

We continue with various Chern class maps for invertible sheaves. First, assume
that - is a complex projective variety. Then, there exists a Chern class homomor-
phism

21 : Pic(-) → �2 (-,Z),

which is induced from the natural map from the group of divisors that assigns
to a divisor � =

∑
=8�8 , where the �8 are prime divisors, its fundamental class

[�] :=
∑
=8 [�8]. Alternatively, one can start from the exponential sequence

0 → Z → O-
exp
−→ O×- → 0, (0.10.9)

where - is equipped with the classical topology in order for this sequence to be
exact. After identifying Pic(-) with �1 (-,O×

-
) as in (0.9.1), it follows from the

long exact sequence in cohomology that there is an exact sequence

�1 (-,O- ) → Pic(-) X−→ �2 (-,Z).

Then, one can identify X with 21 and the tangent space of Pic◦ (-) at zero with
�1 (-,O- ) (see Proposition 0.9.7), which eventually shows that the kernel of X is
equal to Pic◦ (-). Thus, we obtain an injective homomorphism

2NS
1 : NS(-) → �2 (-,Z),

which induces an isomorphism of torsion subgroups and which is compatible with
the intersection form (0.9.3) on NS(-) and the cup-product pairing (0.10.3) on the
cohomology groups.

Another approach to the first Chern class is via the map dlog : O×
-
→ Ω1

-/C that
is locally defined by 5 ↦→ 3 5

5
. Taking cohomology and identifying again Pic(-)

with �1 (-,O×
-
), we obtain a homomorphism

dlog : Pic(-) → �1 (-,Ω1
-/C).

By our discussions above, we have inclusions of �2 (-,Z)/Tors and �1,1 =

�1 (-,Ω1
-/C) into �

2 (-,C) and by definition, the intersection �1,1 ∩ �2 (-,Z)
of the two inside �2 (-,C) is called the space of integral (1, 1)-classes. By the
Lefschetz theorem on (1, 1)-classes, the image of 21 inside �2 (-,C) is equal to the
space of integral (1, 1)-classes. In particular, if d denotes the Picard number of - ,
that is, the rank of the Néron–Severi group NS(-) as an abelian group, then we
obtain inequalities

d(-) ≤ ℎ1,1 (-) ≤ 12 (-)



0.10 Cohomology of Algebraic Surfaces 159

for complex projective varieties.We refer to [259, Chapter 1.2] for details and proofs.
Next, by the Hodge decomposition and Hodge symmetries, we have 12 = ℎ

1,1+2ℎ2,0

and we find

t(-) := 12 (-) − d(-) ≥ 12 (-) − ℎ1,1 (-) = 2ℎ2,0 (-). (0.10.10)

Now, assume that - is a surface, still over the complex numbers. Then, the Poincaré
duality pairing turns �2 (-,Z)/Tors into an unimodular lattice and the induced map

2Num
1 : Num(-) → �2 (-,Z)/Tors

is an embedding of lattices. Concerning signatures, we have

lattice rank signature
�2 (-,Z)/Tors 12 (2ℎ2,0 + 1, ℎ1,1 − 1)
Num(-) d (1, d − 1)

where the signature of the second lattice is as stated by theHodge index theorem, see,
for example, [294, Theorem V.1.9]. We define the transcendental lattice ) (-) :=
21 (Num(-))⊥, which is a sublattice of �2 (-,Z). Since the restriction of the pairing
on �2 (-,Z)/Tors to 21 (Num(-)) is non-degenerate, it follows that 21 (Num(-)) ∩
) (-) = {0} and thus, the projection

) (-) = Num(-)⊥ →
(
�2 (-,Z)/Tors

)
/Num(-)

induces an injective homomorphism of free abelian groups of rank t(-). Since
the pairing on �2 (-,Z) ′ = �2 (-,Z)/Tors is unimodular, we can also identify the
transcendental lattice ) (-) with the dual of the lattice �2 (-,Z) ′/Num(-). Using
the Lefschetz theorem on (1, 1)-classes, and the fact that 2NS

1 identifies the torsion
subgroups of NS(-) and �2 (-,Z), we obtain a short exact sequence

0 → NS(-)
2NS

1−→ �2 (-,Z) → )∨- → 0. (0.10.11)

To determine the parity of the lattice �2 (-,Z)/Tors, we consider the composition

�2 (-,Z) → �2 (-,Z) ⊗Z F2 → �2 (-, F2).

Poincaré duality induces a pairing �2 (-, F2) ×�2 (-, F2) → F2 of F2-vector spaces
and we have (0, 1) mod 2 = (0, 1). Next, we define |2 (-) := 21 (-), where
21 (-) := 21 ()-) denotes the first Chern class of the tangent bundle. We note that
21 (-) = −21 ( - ), where  - denotes the canonical line bundle of - . Then, Wu’s
formula states

(|2, 2) = (2, 2), (0.10.12)

for all 2 ∈ �2 (-,Z), see [512, page 132]. In particular, the lattice �2 (-,Z)/Tors is
even if and only if |2 = 0. To understand torsion in cohomology better and to link
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the transcendental lattice to the cohomological Brauer group, we consider for every
integer = ≥ 1 the short exact sequence (with respect to the classical topology)

0 → Z/=Z → O×-
G ↦→G=−→ O×- → 0. (0.10.13)

Using the identification Pic(-) � �1 (-,O×
-
) and taking cohomology again, we

obtain

0 → Pic(-) (=) → �2 (-,Z/=Z) → =�
2 (-,O×- ) → 0. (0.10.14)

In particular, using the short exact sequence (0.10.11), we find

()∨- ) (=) � =�
2 (-,O×- ) . (0.10.15)

Moreover, multiplication by = gives rise to a short exact sequence 0 → Z → Z →
Z/=Z→ 0 and taking cohomology, we obtain a short exact sequence

0 → �2 (-,Z) (=) → �2 (-,Z/=Z) → =�
3 (-,Z) → 0 , (0.10.16)

which can also be deduced from the universal coefficient formulas of singular ho-
mology or cohomology (0.10.1). Comparing the short exact sequences (0.10.14) and
(0.10.16) and using the isomorphism (0.10.15), we obtain a short exact sequence

0 → Hom()- ,Z/=Z) → =�
2 (-,O×- ) → =�

3 (-,Z) → 0. (0.10.17)

We note that the torsion subgroup of �2 (-,O×
-
) of a scheme - is called the coho-

mological Brauer group Br(-) of - , see also the discussion below. If - is a complex
manifold or more generally, a complex space, then �2 (-,O×

-
) (where this group is

defined in the analytic category) is called the analytic Brauer group and it need not
be a torsion group.

Next, we discuss an algebraic analog of singular cohomology, namely ℓ-adic
cohomology. This cohomology theory was envisioned by Grothendieck with a view
toward proving the Weil conjectures, and we refer to [294, Appendix C] for history
and overview. Let - be a smooth and proper variety over a field k of characteristic
? ≥ 0. Since the Zariski topology is too coarse to give a good cohomology the-
ory for locally constant sheaves, one equips - with its étale topology -ét. In this
Grothendieck topology, the objects are étale morphisms of finite type+ → * over - .
Then, a covering of* → - consists of a collection of finite étale morphism of finite
type {+8 → *}8 such that the union of the images (all of which are Zariski-open
subsets of*) is equal to*. For example, if � is a finite and étale group scheme over
- – for example, � = -= with ? - = – or if F is a finite local system that is locally
constant for the étale topology – for example � = Z/=Z – then the cohomology
groups �8ét (-, �) := �8 (-ét, �) are defined and satisfy the usual properties, such as
long exact sequences in cohomology, etc. We refer to [154] and [508] for the precise
definition and details. For a prime ℓ, we define ℓ-adic cohomology to be
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�8ét (-,Zℓ) := lim←−−= �
8
ét (-,Z/ℓ

=Z),
�8ét (-,Qℓ) := �8ét (-,Zℓ) ⊗Zℓ Qℓ .

(The technical reason for this definition is that étale cohomology works best for
local systems that are finite. If one wants to work directly with infinite local systems
that are pro-finite, one can use the pro-étale site of Bhatt and Scholze [64].) Next,
for a prime number ℓ ≠ ?, we define the ℓ-adic Tate module to be

Zℓ (1) := lim←−−
=

-ℓ= (k),

together with the action of the absolute Galois group Gal(k/k). Taking duals and
tensor products with itself, we obtain Zℓ (:) for arbitrary : ∈ Z. This leads us to
define ℓ-adic cohomology with a Tate-twist via

�8ét (-,Zℓ (:)) := lim←−−= �
8
ét (-, -

⊗:
ℓ=
)

�8ét (-,Qℓ (:)) := �8ét (-,Zℓ (:)) ⊗Zℓ Qℓ

Since - is proper over k, all these cohomology groups are finitely generated modules
over Zℓ and Qℓ , respectively. Moreover, they are zero if 8 < 0 or 8 > 2 dim(-). If k
is a field of characteristic ? > 0 and ℓ ≠ ?, then the Qℓ-dimension of �8ét (-,Qℓ (:))
is independent of ℓ and : , and we define the 8-th (ℓ-adic) Betti number of - to be

18 (-) := dimQℓ �
8
ét (-,Qℓ).

We refer to Example 0.10.15 below to get an impression of what happens if ℓ = ?. On
the other hand, if k = C and one chooses an embedding Qℓ ⊂ C (such embeddings
exist by the axiom of choice, but they are neither unique, nor natural), there exist
comparison isomorphisms

�8ét (-,Qℓ) ⊗Qℓ C � �8 (-,C),

where the right–hand side denotes singular cohomology of the topological manifold
- with coefficients in C as discussed above. Moreover, there is an analog of Poincaré
duality that is obtained from a perfect duality of (Z/ℓ=Z)-modules

�8ét (-, -
⊗ 9
ℓ=
) × �23−8

ét (-, -⊗(3− 9)
ℓ=

) → �23
ét (-, -

⊗3
ℓ=
) � Z/ℓ=Z, (0.10.18)

where the tensor product is taken in the category of locally constant sheaves of
(Z/ℓ=Z)-modules, see [508, Chapter 6.11]. Passing to the projective limit, we obtain
a perfect duality of Zℓ-modules modulo torsion subgroups

�8ét (-,Zℓ ( 9)) × �
23−8
ét (-,Zℓ (23 − 9)) → Zℓ . (0.10.19)

In particular, we find
18 (-) = 123−8 (-).

As in topology, we define the ℓ-adic Euler–Poincaré characteristic of - to be
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4(-) :=
23∑
8=0
(−1)8 18 (-).

We will be using a more general Poincaré duality that applies to any constructible
sheaf of Z/ℓ=Z-modules [508, Chapter VI, Theorem 11.1]. It asserts that there is a
nondegenerate pairing

�8 (-, F ) × Ext23−8 (F , -⊗3
ℓ=
) → �23 (-, -⊗3

ℓ=
) � Z/ℓ= (0.10.20)

from which (0.10.18) follows by taking � = -⊗ 9
ℓ=
. Moreover, for every coherent

sheaf of O- -modules E on - , there exist Chern classes 28 (E) ∈ �8 (-) in the Chow
groups of - , see [242]. Using the degree map deg : �3 (-) → Z, we have

4(-) = 23 (-) := deg
(
23 (Θ-/k)

)
, (0.10.21)

where Θ-/k = Ω∨-/k denotes the tangent sheaf of - . By the comparison theorem
with singular cohomology, the Betti numbers and the Euler–Poincaré characteristic
defined in terms of ℓ-adic cohomology and singular cohomology coincide if k = C.
Finally, if - is a smooth and proper surface over a field, we have Noether’s formula

12 j(-,O- ) =  2
- + 22 (-). (0.10.22)

In fact, in [508, Chapter 5, Theorem 3.12], Noether’s formula is used to prove
(0.10.21) for surfaces. For later use, we also mention the Riemann-Roch theorem for
an invertible sheaf L on a surface -

j(-,L) :=
2∑
8=0
(−1)8 ℎ8 (-,L) = j(-,O- ) +

1
2
L · (L ⊗ l−1

- ), (0.10.23)

see, for example, [294, Theorem V.1.6] or the discussion in [38, Chapter 5].
Recall that for any field �, the natural exact sequence of algebraic groups

1 → G<,� → GL=+1,� → PGL=,� → 1

induces a bĳection of the Galois cohomology pointed sets �1 (�, PGL=,� ) →
�2 (�,G<,� ), see [89, VIII, §10, Prop. 7]. The set �1 (�, PGL=,� ) is equal to the
set of isomorphism classes of �-forms of the matrix algebra "= (�), that is, central
simple algebras over � that become isomorphic to the matrix algebra "= (� ′) after
some finite and separable extension � ′ of �. The group �2 (�,G<,� ) is denoted by
Br(�) and it is called the Brauer group of the field �. The group law corresponds to
the tensor product on the set of central simple algebras modulo Morita equivalence,
see [89, §15]. Grothendieck extended this definition to any quasi-compact scheme
- by introducing the notion of an Azumaya algebra over - as a form in the étale
topology of the endomorphism algebra of a free sheaf of some rank over - [264,
I]. Then, he defined a commutative group law on such O- -algebras modulo an ana-
logue of Morita equivalence. The resulting commutative group is denoted by Br(-)
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and it comes with a natural injective homomorphism X : Br(-) → �2 (-,G<). In
contrast to the case of fields, this homomorphism need not be surjective. In fact, the
group Br(-) is always a torsion group since an Azumaya algebra can be trivialized
after a finite cover of - . On the other hand, the group �2 (-,G<) is not always a
torsion group. However, in the case of curves and regular surfaces over k, the group
�2 (-,G<) is a torsion group and X is an isomorphism, see [271, II,Théoréme 2.1].
The torsion subgroup of �2 (-,G<) is called the cohomological Brauer group and
this definition agrees with our previous definition in the complex analytical case.

We now extend the computation of the cohomological Brauer group given by
(0.10.17) by computing the ℓ-torsion ℓ∞�2 (-,G<) for any smooth projective surface
- over k of characteristic ? ≠ ℓ. We have already seen that this group coincides with
the ;-torsion part of the Brauer group Br(-). To deal with the ?-torsion part, we will
need more techniques which we will discuss later in this section.

The analog of the exact sequence (0.10.13) in the étale topology is the Kummer
exact sequence (0.1.6)

0 → -= → G<
×=−→ G< → 0, (0.10.24)

which is exact if (=, ?) = 1. (To obtain an exact sequence if ? divides =, one has
to work in the flat topology.) Taking cohomology, we obtain the following algebraic
analog of (0.10.14):

0 → Pic(-) (=) → �2
ét (-, -=) → =�

2
ét (-,G<) → 0 (0.10.25)

and passing to powers of a prime ℓ, we find

0 → Pic(-) ⊗ (Qℓ/Zℓ) → �2
ét (-, -ℓ∞ ) → ℓ∞�

2
ét (-,G<) → 0.

Now, since Pic◦
-/k (k) is =-divisible for all =, we find Pic(-) (=) = NS(-) (=) . Thus,

applying this to ℓ= for all = and passing to the projective limit, we obtain an exact
sequence

0 → NS(-) ⊗ Zℓ → �2
ét (-,Zℓ (1)) → )ℓ (Br(-)) → 0. (0.10.26)

Note that the map NS(-) ⊗ Zℓ → �2
ét (-,Zℓ (1)) is the ℓ-adic analog of the first

Chern class map in exact sequence (0.10.11). As in the case of complex surfaces it
is the map factored from the map

21 : Pic(-) → �2
ét (-,Zℓ). (0.10.27)

Since the cohomology groups �8ét (-, -=) are finite abelian groups, it follows that
= Br(-) is finite for all =. Thus, by Proposition 0.10.1, there exists a finite abelian
group � and isomorphisms

ℓ∞ Br(-) � (Qℓ/Zℓ)tℓ ⊕ � and )ℓ (Br(-)) � Ztℓ
ℓ
. (0.10.28)
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Together with the short exact sequence (0.10.26), we obtain the following analog of
(0.10.10)

tℓ = 12 (-) − d(-) (0.10.29)

, for all ℓ ≠ ?. In particular, we obtain Igusa’s inequality [326]

d(-) ≤ 12 (-),

which holds regardless of the characteristic of k.
Multiplication by ℓ< inG< defines an embedding of -ℓ: into -ℓ:+< with quotient

-ℓ< . This gives an exact sequence

0 → -ℓ: → -ℓ:+< → -ℓ< → 0 (0.10.30)

that leads to exact sequences

0 → �8ét (-,Zℓ (1))
ℓ< → �8ét (-, -ℓ< ) → ℓ<�

8+1
ét (-,Zℓ (1)) → 0, (0.10.31)

see [508, Chapter V, Lemma 1.11]. It is an analogue of (0.10.16). The composition

�2
ét (-,Zℓ (1))

(ℓ<) → �8ét (-, -ℓ< ) → ℓ< Br(-)

defined by the exact sequence (0.10.25) has kernel Pic(-) (ℓ<) and hence, we obtain
an exact sequence

0 → (Z/ℓ<Z)tℓ → ℓ< Br(-) → ℓ<�
3
ét (-,Zℓ (1)) → 0 (0.10.32)

which is the ℓ-adic analog of (0.10.17) and (0.10.16). Passing inductive limits, we
get an exact sequence

0 → (Qℓ/Zℓ)tℓ → ℓ∞ Br(-) → ℓ∞�
3
ét (-,Zℓ (1)) → 0 (0.10.33)

Using the universal coefficient formula and the fact that a maximal ℓ-divisible
subgroup must be a direct factor, we get:

Theorem 0.10.2 For any prime ℓ ≠ ?, there exists an isomorphism

ℓ∞ Br(-) � (Qℓ/Zℓ)tℓ ⊕ Hom(ℓ∞ NS(-),Qℓ/Zℓ).

Next, we will briefly discuss algebraic de Rham cohomology: let - → ( be
a smooth and proper morphism of schemes of relative dimension 3 over some
noetherian base scheme (.Wewill mostly be dealing with the case where ( = Spec k,
where k is an algebraically closed field or where ( is the spectrum of a discrete
valuation ring with an algebraically closed residue field k. Then, the relative Kähler
differentials Ω-/( and the exterior differential 3 = 3-/( give rise to the relative
de Rham complex (Ω•

-/( , 3), where Ω
8
-/( :=

∧8 Ω-/( . These sheaves usually have
non-trivial higher cohomology groups (unlike the case of C∞-differential forms,
where it follows from the Poincaré lemma that the sheaves A8 that are sheaves with



0.10 Cohomology of Algebraic Surfaces 165

respect to the classical topology have no higher cohomology, we are dealing with
sheaves in the Zariski topology), which is why algebraic de Rham cohomology is
defined to be the hypercohomology of the de Rham complex

�∗DR (-/() := H∗ (Ω•
-/().

Since - is proper over (, these cohomology groups are coherent O(-modules. If
( = Spec k is a field, then this says that they are finite–dimensional k-vector spaces
and we define the de Rham Betti numbers to be

1DR
8 (-) := dimk �

8
DR (-/k). (0.10.34)

It is a non-trivial result of Grothendieck [270] that if - is a smooth and proper
variety overC, then �∗DR (-/C) is isomorphic to the de Rham cohomology �∗ (-,C)
discussed above. Since algebraic de Rham cohomology arises as hypercohomology
of a complex of sheaves, it comes with a spectral sequence

�
?,@

1 := � ?,@ (-) = �@ (-,Ω?
-/() =⇒ �

?+@
DR (-/(), (0.10.35)

the Hodge versus de Rham spectral sequence or Frölicher spectral sequence. This
gives rise to a filtration F • on �∗DR (-/(), the Hodge filtration. If this spectral
sequence degenerates at �1, then we have � ?,@1 = F ?/F ?+1. If - is a complex
projective variety, then the Hodge decomposition (0.10.7) implies that the Hodge
versus de Rham spectral sequence degenerates at �1. Using the Lefschetz principle,
we even obtain the following.

Theorem 0.10.3 Let - be a smooth projective variety over a field k of characteristic
zero. Then, the Hodge versus de Rham spectral sequence degenerates at �1 and gives

1DR
8 (-) =

∑
?+@=8

ℎ?,@ (-), (0.10.36)

where ℎ?,@ (-) = dimk �
@ (-,Ω?

-/k).

Remark 0.10.4 The first proof of this theorem uses the Hodge theory of Kähler
manifolds as sketched above. The first algebraic proof was given by Faltings [229]
using ?-adic Hodge theory. Mumford [536] gave explicit examples of smooth and
projective surfaces - in positive characteristic, where the exterior differential 3 :
�0 (Ω1

-
) → �0 (Ω2

-
) is non-zero - in particular, the Hodge versus de Rham spectral

sequences of these surfaces do not degenerate at �1. By a fundamental result of
Deligne and Illusie [156] (see also [331] or [568]), the Hodge versus de Rham
spectral sequence of a smooth and projective variety - over a perfect field k of
characteristic ? > 0 degenerates at �1 if dim(-) ≤ ? and - lifts to the truncated
Witt ring,2 (k). In contrast to the case of characteristic zero, the Hodge symmetry
ℎ?,@ (-) = ℎ@,? (-) may not hold in positive characteristic, even if the Hodge versus
deRham spectral sequence of - degenerates at �1.We discussed the relation between
ℎ1,0, ℎ0,1, and 11 (-) in the previous section.
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In the case where - is a complex projective variety, complex conjugation and the
Hodge symmetry give rise to a second filtration F • in de Rham cohomology, the
complex conjugate Hodge filtration, which satisfies

� ?,=−? (-) � F ? ∩ F =−? ⊆ �=DR (-/C) and F ? ⊕ F =−?+1 = �=DR (-/C) .
(0.10.37)

Let us put this into a larger, more general, and algebraic perspective: let - → (

be a morphism of schemes. Then, we have the complex (Ω•
-/( , 3 = 3-/() and the

associated abelian subsheaves of Ω8
-/(

�Ω8
-/( := 3Ω8−1

-/( and /Ω8
-/( := Ker

(
Ω8
-/(

3−→ Ω8+1
-/(

)
,

the boundaries and cycles, respectively. Since 3 ◦ 3 = 0, we have �Ω8
-/( ⊆ /Ω

8
-/(

and set
H 8 (Ω•

-/() := /Ω8
-/(/�Ω

8
-/( .

Then, there exists a second spectral sequence of hypercohomology

�
?,@

2 := � ? (-,H@ (Ω•
-/()) =⇒ �

?+@
DR (-/(), (0.10.38)

that gives rise to a filtration on the right–hand side. If - is a smooth and projective
variety over C and we equip it with the classical topology, then the Poincaré Lemma
implies that the cohomology sheaves H 8 (A•

-
) are zero for 8 ≥ 1. Similarly, the

cohomology sheaves H 8 (Ω•
-/C) are zero for 8 ≥ 1 if Ω•

-
denotes the complex

of sheaves of locally holomorphic differential forms with respect to the classical
topology. In these two cases, the filtration in de Rham cohomology arising from
(0.10.38) is trivial. On the other hand, the cohomology sheaves H 8 (Ω•

-
) may be

non-zero for 8 ≥ 1 if Ω•
-
is considered as a complex of O- -modules with respect

to the Zariski topology. In characteristic zero, the filtration in de Rham cohomology
arising from (0.10.38) is the coniveau filtration, see [71]. Now, let us study this second
filtration in positive characteristic: assume that - and ( are schemes of characteristic
? > 0 and let F = F-/( : - → - (?) be the (-linear Frobenius morphism. Then,
the abelian sheaves F∗ (�Ω8-/() and F∗ (/Ω8-/() are O- (?) -modules. Moreover, if
- is smooth over (, then there exists a unique family of additive maps, the Cartier
operators

�-/( : F∗ (/Ω8-/() → Ω8
- (?) /(

that satisfy the following properties:

1. � (1) = 1,
2. � ( 5 ?l) = 5 · � (l) for local sections 5 ∈ O- and l ∈ /Ω8

-/( ,
3. � (l ∧ l′) = � (l) ∧ � (l′) for local sections l ∈ /Ω8

-/( and l
′ ∈ /Ω8′

-/( ,
4. � (l) = 0 if and only if l ∈ �Ω8

-/( ,
5. � ( 5 ?−135 ) = 35 .
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Property (2) shows that the Cartier operator is not a homomorphism of O- -modules,
but that it can be considered as a homomorphism of O- (?) -modules. Next, property
(4) and a theorem of Cartier show that �-/( induces an exact sequence of O- (?) -
modules

0 → F∗ (�Ω8-/() → F∗ (/Ω8-/()
�-/(−→ Ω8

- (?) /( → 0

and thus, an isomorphism

�-/( : H 8 (F∗Ω•-/() → Ω8
- (?) /( , (0.10.39)

the Cartier isomorphism. If 8 = 0, then its inverse �−1
-/( is the natural isomorphism

O- (?) → F∗O- . If 8 = 1, then �−1
-/( is defined locally by sending 1 ⊗ 3B to the

class of B?−13B in H1 (F∗Ω•-/(). We refer to [331, Section 3], [329, Section 0.2],
and [376, Theorem 7.2] for proofs and further details. The following illustrates the
Cartier operator and Cartier isomorphism with an example.

Example 0.10.5 Let k be a perfect field of characteristic ? > 0 and let - = A1
k
=

Spec k[C]]. We can identify - (?) with - via the isomorphism of rings 08C8 ↦→ 0
?

8
C8

and consider the relative Frobenius map F-/k : - → - (?) = -, C ↦→ C ? . We have
� (C ?:+83C) = C ?:� (C83C). If 8 ≠ ?−1, then C83C = 3C8+1

8+1 and hence� (C ?:+83C) = 0. If
8 = ? − 1, then we have � (C ?:+83C) = C ?:3C. This shows that � (Ω1

k[C ]/k) = k[C
?]3C,

and hence,
�-/k : /1Ω-/k/�1Ω-/k = Ω

1
-/k/3Ω

1
-/k → Ω1

-/k

is an isomorphism of O- (?) -modules.
We can also globalize this by replacingA1

k
with - = P1

k
. Set 5 = F-/k : - → - (?)

and let �1 = �1Ω1
-/k considered as an O- (?) -Module. We have two exact sequences

of locally free sheaves on - (?) ,

0 → O- (?) → 5∗O- → �1 → 0,

and
0 → �1 → 5∗Ω

1
-/k → Ω1

- (?) /k → 0.

The sheaf 5∗Ω-/k is of rank ? with j( 5∗Ω1
-/k) = j(Ω1

-/k) = −1. It follows that
j(�1) = 0 and using �1 (- (?) ,O- (?) ) = 0 and dim�0 (- (?) , 5∗O- ) = 1, we find
that �0 (- (?), �1) = 0. Since any locally free sheaf on P1 splits into a direct sum
of invertible sheaves and an invertible sheaf L of negative degree with j(L) = 0 is
isomorphic to OP1 (−1), we see that �1 � O⊕?−1

P1 . The second exact sequence gives
us an isomorphism

5∗Ω
1
-/k � OP1 (−1)⊕?−1 ⊕ OP1 (−2).

If - is a smooth and proper variety over a field k of characteristic ? > 0, then
combining the second spectral sequence (0.10.38) and the Cartier isomorphism
(0.10.39) gives
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�
?,@

2 := � ? (-,Ω@
-/k) =⇒ �

?+@
DR (-/k), (0.10.40)

the conjugate spectral sequence. This name is merely chosen in analogy to the two
filtrations in de Rham cohomology that one has in complex geometry (0.10.37) -
however, there is no complex conjugation in positive characteristic. (Some people
view Frobenius as an analog of complex conjugation, which justifies this terminology
a little bit.) Next, the data of the k-vector space � ?+@

DR (-/k) together with the
two filtrations coming from the Hodge versus de Rham and the conjugate spectral
sequence is captured in the notion of an �-zip. Moreover, the two filtrations F •
and F • in the complex case are “as disjoint as possible” in a sense made precise
by (0.10.37). On the other hand, the relative position of these two filtrations in
positive characteristic is a very interesting discrete invariant of smooth and projective
varieties in positive characteristic, which is related to ordinarity and supersingularity
of varieties. We refer to [462] or [735] for details and further information.

The “correct” cohomology with ?-adic coefficients in characteristic ? is crys-
talline cohomology. For example, we will see in Example 0.10.15 below that
�∗ét (-,Q?) does not give the “right” answer. Crystalline cohomology takes val-
ues in Witt vectors, which we introduced and discussed in Section 0.3. As a first
approximation to crystalline cohomology, let us introduce Witt vector cohomology:
if (-,O- ) is a scheme, then the assignment * ↦→ ,= (O- (*)) for every Zariski-
open subset * ⊆ - defines a sheaf of rings ,= (O- ) on - for all = ≥ 1. If - is a
proper scheme of finite type over a perfect field k of characteristic ? > 0, then the
cohomology groups �8 (-,,= (O- )) are finitely generated ,= (k)-modules for all
= and 8. Clearly, they are zero for 8 < 0 or 8 > dim(-). These cohomology groups
are called Serre’s Witt vector cohomology groups and were first studied by Serre in
[653]. Clearly, the maps f and + and the projection maps ,= (O- ) → ,< (O- )
for < ≤ = induce maps on Witt vector cohomology groups. Finally, one can also
consider the cohomology groups

�8 (-,, (O- )) := lim←−−
=

�8 (-,,= (O- )),

which are, (k)-modules, but may fail to be finitely generated.
Before turning to the construction of crystalline cohomology, let us briefly digress

on divided power structures or PD-structures (because of the French puissances
divisées): for a commutative ring ' and an ideal � ⊆ ', a PD-structure consists of
maps W= : � → ' for = ≥ 0 satisfying the following axioms:

1. W0 (G) = 1 and W1 (G) = G for all G ∈ �,
2. W= (�) ⊆ � for all = ≥ 1,
3. W= (G + H) =

∑
8+ 9== W8 (G)W 9 (G),

4. W= (AG) = A=W= (G) for all G ∈ � and A ∈ ',
5. W= (G)W< (G) =

(<+=
=

)
W<+= (G) for all G ∈ ' and all <, = ∈ Z≥0,

6. W< (W= (G)) = (<=)!<!=! W<= (G) for all G ∈ � and all <, = ∈ Z≥0.

If ' is a Q-algebra, then it easily follows from the axioms that every ideal � ⊆ '
possesses a unique PD-structure, which is given by W= (G) := G=/=!. In fact, PD-
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structures were introduced in order to have an analog of the operators G ↦→ G=/=! in
rings where =! may not be invertible. Such operators are needed in order to define
analogs of exponential functions. Next, since the a priori rational number ?=/=! is
in fact a ?-adic integer divisible by ? for all integers = ≥ 1, it follows that for every
ring ' of characteristic ? > 0, the principal ideal (?) of the Witt ring, (') carries
a PD-structure. Similarly, one can define a PD-structure on the ideal (?) ⊆ ,= (')
for all = ≥ 1. In the case where ' is a ring of characteristic ? > 0 with PD-structure
on the ideal � ⊆ ', it follows from the axioms that G? = 0 for every G ∈ � and thus,
the ideal � is nilpotent. In particular, non-zero ideals in integral domains of positive
characteristic do not possess PD-structures.

Example 0.10.6 Let ' be a commutative ring. Then, we have the following divided
power version of a polynomial ring in A variables over ': we define '〈G1, ..., GA 〉 to
be the commutative and graded '-algebra, whose degree 3 part is the free '-module
generated by the symbols G [:1 ]

1 · · · G [:A ]A with :8 ∈ Z≥0 satisfying :1 + · · · + :A = 3.
The algebra structure is defined by the relations G [0]

8
· G [1]
8

=
(0+1
0

)
G
[0+1]
8

. The ideal
� ⊆ '〈G1, ..., GA 〉 that is generated by all elements of positive degree carries a unique
PD-structure via W= (G8) := G [=]

8
.

Now, let - be a scheme of finite type over a perfect field k of characteristic ? > 0.
Then, there exists a Grothendieck topology (-/,=)crys on - , whose objects are
commutative diagrams

*
8 //

��

+

��
Spec k // Spec,= (k),

where * ⊆ - is a Zariski open subset and 8 : * → + is a closed embedding of
schemes over ,= (k) such that the ideal sheaf I* ⊆ O+ is equipped with a PD-
structure W that is compatible with the PD-structure on the ideal (?) ⊆ ,= (k). A
morphism (*,+, W) → (* ′, + ′, W′) in (-/,=)crys is a commutative diagram given
by an open embedding * → * ′ and a morphism + → + ′ that is compatible with
the PD-structures. Finally, one defines a covering {(*8 , +8 , W8)}8 of (*,+, W) to be a
collection of morphisms (*8 , +8 , W8) → (*,+, W) as before such that the morphisms
+8 → + are open embeddings with + =

⋃
8 +8 .

Next, an abelian sheaf F on (-/,=)crys consists of a collection of O+ -modules
F+ on every + and every object (*,+, W) of (-/,=)crys. These F+ must be com-
patible with respect to morphisms 6 : (*,+, W) → (* ′, + ′, W′) in the sense that
6∗ (F+ ′) is isomorphic to F+ if+ → + ′ is an open embedding plus some transitivity
condition. The main example of an abelian sheaf on (-/,=)crys is the sheaf O-/,=
that is defined by assigning to each (*,+, W) in (-/,=)crys the structure sheaf O+ .

After these preparations, we define crystalline cohomology for a smooth and
proper variety - of dimension 3 over a perfect field k by setting
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�8 (-/,=) := �8 ((-/,=)crys,O-/,= ),
�8 (-/,) := lim←−− =�

8 ((-/,=)crys,O-/,= ).

Since - is proper over k, the cohomology groups �8 (-/,=) and �8 (-/,) are
finitely generated,= (k)-modules and, (k)-modules, respectively. As in the case of
ℓ-adic cohomology, they are zero if 8 < 0 or 8 > 2 dim(-). We will denote by  the
field of fractions of, (k) and set�8 (-/,) := �8 (-/,) ⊗,  . Then,�8 (-/,) 
comes with properties and structures expected from singular cohomology: it is a
contravariant functor, there is a Poincaré duality pairing

〈−,−〉 : �8 (-/,) × �23−8 (-/,) → �23 (-/,) Tr−→ , (k), (0.10.41)

that is perfect modulo torsion, there exist cycle class maps, there exists a Lefschetz
fixed–point formula for endomorphisms,... One of the main properties of crystalline
cohomology is given by the following theorem of Berthelot and Grothendieck [60].

Theorem 0.10.7 Let - be a smooth and proper scheme over a perfect field k of
positive characteristic ?. Suppose - lifts to, (k), that is, there exists a proper and
flat scheme X → Spec, (k) such that X ×Spec, (k) Spec k � - . Then,

�8 (-/,) � �8DR (X/Spec, (k)),

where the right–hand side denotes algebraic de Rham cohomology.

In fact, it was Grothendieck’s insight that the algebraic de Rham cohomology of
a lift of - does not depend on the choice of lift, provided that a lift exists. Even
more: this cohomology is so canonical that actually no lift is required – the above
construction and the previous theorem make this precise.

Remark 0.10.8 If one drops the divided power structures in the definition of the
crystalline site, then the same result holds in characteristic zero, but not in positive
characteristic. The reason is that the Poincaré lemma fails in characteristic ? > 0
even for such a simple ring as k[C]. In fact, C ?−13C ∈ Ω1

k[C ]/k lies in the kernel of 3,
but C ?−13C ∉ 3 (k[C]). (We note that this is closely related to the Cartier isomorphism
(0.10.39).) However, the Poincaré lemma is true for the ring k〈C〉 fromRemark 0.10.6
in any characteristic since we have 3 (∑ 0: C

[: ]) = (∑ 0: C
[:−1])3C. This observation

is an essential ingredient in the proof of the previous theorem and gives a hint of
why PD-structures are important.

We refer to [60], [62], or [329] for details, definitions, and background on crys-
talline cohomology. For surveys, we refer to [327] or [116]. Finally, crystalline
cohomology works best for smooth and proper varieties over k. For smooth and
affine schemes over k, Monsky and Washnitzer constructed a cohomology theory
that is well suited for computations. Berthelot generalized crystalline and Monsky–
Washnitzer cohomology to rigid cohomology, and we refer to [448] for details.
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We now come back to the problem of defining the “correct” Betti numbers for
?-adic cohomology theories in characteristic ?, see also Example 0.10.15 below. By
a result of Katz and Messing [378], we have

rank, �8 (-/,) = 18 (-). (0.10.42)

In particular, crystalline cohomology yields the expected Betti numbers. An impor-
tant feature of crystalline cohomology is that the ,-modules �8 (-/,) may have
torsion, which sometimes provides striking insights into “pathologies” (to quote from
the title of [536]) in characteristic ?. In view of Theorem 0.10.7, it is not surprising
that crystalline and de Rham cohomology of a smooth and proper variety - over k
are related by a universal coefficient formula

0 → �8 (-/,) ⊗, (k) k → �8DR (-/k) → Tor, (k)1

(
�8+1 (-/,), k

)
→ 0 .
(0.10.43)

As an application of our discussion, we obtain the following identities and (in-
)equalities, which are analogous to the case of Kähler manifolds discussed above.

Proposition 0.10.9 Let - be a smooth and proper variety over a perfect field k of
characteristic ? > 0.

1. For all 8, there are inequalities∑
?+@=8

ℎ?,@ (-) ≥ 1DR
8 (-/k) .

Equality for all 8 is equivalent to the degeneration of the Hodge versus de Rham
spectral sequence at �1.

2. For all 8, there are inqualities

18 (-) ≥ 1DR
8 (-/k) .

Equality for all 8 is equivalent to all crystalline cohomology groups �8 (-/,)
being,-torsion free.

Proof The first statement is a general fact about spectral sequences. The second
statement follows immediately from (0.10.43). �

As before, let k be a perfect field of characteristic ? > 0, let , := , (k) be the
ring of Witt vectors, let f : , → , be the Frobenius morphism, and let  be the
field of fractions of, . Then, a map of,-modules (or  -vector spaces) i : " → #

is called f-semilinear if it is additive and if it satisfies i(A<) = f(A)i(<) for all
< ∈ " and all A ∈ , (resp. all A ∈  ). Next, an F-crystal (resp. F-isocrystal) is
a finitely generated and free ,-module (resp. finite–dimensional  vector space)
" together with an injective and f-semilinear map i : " → " . A morphism of
F-crystals 5 : (", i) → (#, k) (resp. F-isocrystals) is a morphism of ,-modules
(resp.  -vector spaces) such that 5 ◦i = k ◦ 5 . A morphism 5 of F-crystals is called
an isogeny if 5 ⊗  is an isomorphism of F-isocrystals.
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Example 0.10.10 Here are two important sources of examples of F-crystals: the first
one arises from geometry and the second one is purely algebraic.

1. Let - be a smooth and proper variety of dimension 3 over k. Then, the absolute
Frobenius map F : - → - induces, for any 8, a self-map i8 := F∗ of �8 (-/,).
Since F is not a morphism over Spec k (unless k = F?), the maps i8 are f-linear.
Next, set " 8 := �8 (-/,)/Tors. The Poincaré duality pairing (0.10.41) satisfies
the following compatibility with Frobenius:

〈i8 (G) , i23−8 (H)〉 = ?3 · f (〈G, H〉) for all G ∈ " 8 , H ∈ "23−8 .

Since f is injective on , = , (k), it follows that all i8’s are injective. In
particular, (" 8 , i8) is an F-crystal. Moreover, the finite–dimensional  -vector
space "8 ⊗,  together with i8 ⊗  defines an �-isocrystal.

2. Let ,f 〈)〉 be the non-commutative polynomial ring in the variable ) over
, = , (k) subject to the relations ) · G = f(G) · ) for all G ∈ , . Next, let
U = A/B ∈ Q, where A, B are coprime integers with B ≥ 1. Then,

"U := ,f 〈)〉/() B − ?A )

together with i : < ↦→ ) · < defines an F-crystal ("U, i), which is of rank B as
a,-module. The rational number U is called the slope of ("U, i). If A ≥ 0, that
is, if U ≥ 0, then the F-crystal ("U, i) is called effective.

The importance of the F-crystals ("U, i) lies in the following fundamental result
due to Dieudonné and Manin [484].

Theorem 0.10.11 Let k be an algebraically closed field of characteristic ? > 0.
Then, the category of F-isocrystals over k is semi-simple and its simple objects are
isomorphic to the F-crystals ("U, i) from Example 0.10.10.

Thus, every F-crystal (", i) is isogenous to a F-crystal of the form

" ∼
⊕
U∈Q≥0

" ⊕=UU ,

where ∼ denotes isogeny of F-crystals. The numbers U that occur in this direct
sum are called the slopes of " and the integers _U := =U · rank"U is called the
multiplicity of the slope U. If all slopes of " are non-negative, the F-crystal is called
effective.

We note that allF-crystals arising as�8 (-/,)/Tors fromgeometry as in Example
0.10.10 are effective, which is why we will only discuss effective F-crystals in the
sequel.

The slopes and multiplicities of an effective F-crystal are encoded in the Newton
polygon: letU1 ≤ . . . ≤ UA be the slopes of" and let_1, . . . , _B be the corresponding
multiplicities. Then, we have A := rank, " = _1 + · · · + _B . We define a piecewise
linear function Nw" : [0, A] → R via
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Nw" (C) =
{

0 0 ≤ C ≤ _1,

U: (C −
∑:
8=1 _8) +

∑:−1
8=1 U8_8+1

∑:−1
8=1 _8 ≤ C ≤

∑:
8=1 _8 .

Its graph is called the Newton polygon. It is a convex graph of a function on the
interval [0, 1= (-)] starting in (0, 0) that is of slope U1 in the interval [0, _1], of
slope U2 in the interval [_1, _1 + _2], etc. By definition, the Newton polygon of an
F-crystal depends only on its isogeny class.

Associated to an effective F-crystal (", i), there is a second convex polygon, the
Hodge polygon, which is not invariant under isogenies: here, the collection (U8 , _8)
is replaced with the collection (8, ℎ8), where

"/i(") �
⊕
8≥1

(
,/?8,

)ℎ8
and ℎ0 := rank, " − ∑

8≥1 ℎ8 . As in the case of the Newton polygon, we use this
collection to define a piecewise linear function Hdg" : [0, A] → R on the interval
[0, 1= (-)], whose graph is a convex polygon, the Hodge polygon. Then,

Nw" (C) ≥ Hdg" (C), C ∈ [0, rank, "],

that is, the Newton polygon lies on or above the Hodge polygon.
Note that one can define the first Chern classwith values in crystalline cohomology

21 : Pic(-) → �2 (-/,). (0.10.44)

As in the cases of classical and étale cohomology, this map factors through a map

2NS
1 : NS(-) → �2 (-/,),

which is injective modulo torsion. The absolute Frobenius F : - → - acts like
L ↦→ L⊗? on NS(-). Thus, the image 21 (NS(-)) lies in the Tate module

)� := {G ∈ �2 (-/,) : i(G) = ?G} ⊆ �2 (-/,),

where i denotes the Frobenius on �2 (-/,). We note that )� is a Z?-module
(rather than a ,-module) and that )� ⊗Z? , is a sub-F-crystal of slope 1 inside
�2 (-/,).

The connection to geometry is as follows: let - be a smooth and proper variety
over a perfect field k of characteristic ?, and let (�= (-/,)/Tors, i) be the F-crystal
associated to the =-th crystalline cohomology group as explained in Example 0.10.10.
Now, we have three convex polygons: the Newton polygon, the Hodge polygon, and
the geometric Hodge polygon. The latter is graph associated to the piecewise linear
function H̃dg defined on the interval [0, 1= (-)] with slope 0 over the interval [0, ℎ′0]
and slope 8 on the interval [ℎ′0 + · · · + ℎ

′
8
, ℎ′0 + · · · + ℎ

′
8+1], where

ℎ′8 := ℎ8,=−8 (-) = dimk �
=−8 (-,Ω8

-/k), for 8 = 0, ..., =.
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Thus, the geometric Hodge polygons encodes the Hodge numbers of - in a convex
polygon. After these preparations, we have the following fundamental result ofMazur
[501], Nygaard [564], and Ogus [62], which links these three polygons.

Theorem 0.10.12 Let - be a smooth and proper variety over a perfect field k of
characteristic ? > 0. Let (", i) be the F-crystal associated to �= (-/,)/Tors.
Then,

Nw" (C) ≥ H̃dg" (C), C ∈ [0, rank, "] .

Moreover, if �= (-/,) is a torsion-free,-module and if the Hodge versus de Rham
spectral sequence of - degenerates at �1, then

Hdg" (C) = H̃dg" (C), C ∈ [0, rank, "],

that is, the F-crystal " computes the Hodge numbers ℎ8,=−8 .

Remark 0.10.13 Wenote thatF-crystals arising fromgeometry as inExample 0.10.10
satisfy further constraints: if - is smooth and proper of dimension 3 over k, then
the slopes of the F-crystal associated to �= (-/,)/Tors lie in the interval [0, 3]
by Poincaré duality. Moreover, if - is projective over k, then the Hard Lefschetz
theorem together with Poincaré duality imply that the slopes of �= (-/,)/Tors lie
in the interval [0, =] if 0 ≤ = ≤ 3 and in the interval [= − 3, 3] if 3 ≤ = ≤ 23.

Example 0.10.14 Let - be a K3 surface over an algebraically closed field k of
characteristic ? > 0. The geometric Hodge polygon associated to �2 (-/,) is
determined by ℎ0,2 = ℎ2,0 = 1 and ℎ1,1 = 20, see also Section 1.4. The Hodge versus
de Rham spectral sequence of - degenerates at �1 and all crystalline cohomology
groups are torsion free (again, see Section 1.4) and thus, Theorem 0.10.12 implies
that the Hodge polygon is equal to the geometric polygon.

There is an integer ℎ, called the height of - such that the slopes of �2 (-/,) are
equal to 1 − 1

ℎ
, 1 and 1 + 1

ℎ
.

This implies that (geometric) Hodge polygon and the possible Newton polygons
associated to �2 (-/,) are given in Figure 0.5.

• • •

•

•

•

• •

•

•

1 21 22ℎ 22 − ℎ

ℎ−1
ℎ

1

ℎ+1
ℎ

2

Fig. 0.5 Newton and Hodge polygons of a K3 surface



0.10 Cohomology of Algebraic Surfaces 175

If ℎ = 1, then the K3 surface is said to be ordinary, which is equivalent to saying
that the Hodge polygon is equal to the Newton polygon. The other extreme is ℎ = ∞,
in which case the Newton polygon coincides with the graph of the identity function
and then, the K3 surface is said to be supersingular. This lattter case happens if and
only if we have �2 (-/,) = )� ⊗Z?, . We refer to [329, Section II.7.2] or [462] for
details and proofs. We will encounter supersingular K3 surfaces often in Volume II.
For K3 surfaces, there are other notions of being supersingular, see also Proposition
below.

Example 0.10.15 Let us compute the different cohomology groups discussed so far
for an abelian variety � of dimension 6 over an algebraically closed field k.

1. If k = C, then, as a differentiable manifold, � is diffeomorphic to (S1)26, where
S1 denotes the one-sphere. From this, it is easy to see

�8 (�,Z) � Λ8�1 (�,Z) and �1 (�,Z) � Z26,

and similarly for cohomology with coefficients R and C. Moreover, one has

�1 (�,C) � �0,1 ⊕ �0,1 with �0,1 � C6 � �1,0.

2. If k is a perfect field of characteristic ? > 0, then

�8DR (�/k) � Λ
8�1

DR (�/k) with �1
DR (�/k) � k26

�8 (�/,) � Λ8�1 (�/,) with �1 (�/,) � , (k)26

In particular, all crystalline cohomology groups are torsion-free , (k)-modules.
Moreover, the Hodge versus de Rham spectral sequence degenerates at �1. To
describe the ℓ-adic cohomology groups, let =� be the kernel of multiplication by
= on �. Then, =� is a finite flat group scheme of length =26 over k, and for every
prime ℓ, its k-rational points satisfy

ℓ�(k) �
{
(Z/ℓZ)26 if ℓ ≠ ?, and
(Z/?Z)A for some 0 ≤ A ≤ 6 if ℓ = ?.

The integer A is called the ?-rank of the abelian variety �. Moreover, there exists
an isomorphism

�1
ét (�,Zℓ)

∨ � lim←−−
=

ℓ=�(k),

and one obtains

dimQℓ �
1
ét (�,Qℓ) =

{
26 if ℓ ≠ ?, and
A where A is the ?-rank of �.

Thus, 11 (�) = 26 can be computed from ℓ-adic cohomology for all ℓ ≠ ?, but
not if ℓ = ?. One can also show

�1
ét (�,Q?) ⊗Q?  �

(
�1 (�/,) ⊗,  

)
[0]
⊆ �1 (�/,) ⊗,  ,
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where the subscript [0] denotes the sub-F-isocrystal of slope 0. Thus, the crys-
talline cohomology group �1 (�/,) has the expected rank 26 and the rank of
�1

ét (�,Q?) can be explained using slopes.

We refer to [329, Section II.7.1].

As seen above, there exists a spectral sequence (0.10.35) fromHodge cohomology
to de Rham cohomology. Also, we have seen above that crystalline cohomology is
closely related to de Rham cohomology, see Theorem 0.10.7, for example. This mo-
tivated the construction of the de Rham–Witt complex, introduced by Illusie [329]: let
- be a proper and smooth scheme over a perfect field k of characteristic ? > 0. Then,
the de Rham–Witt complex,Ω•

-k
is the limit of a projective system (,=Ω•-/k)=≥1

of complexes of abelian sheaves on the étale topology of - . For = = 1 it specializes
to the usual de Rham complex of regular differential forms, that is,,1Ω

8
-/k = Ω

8
-/k.

Moreover, in degree 0 it specializes as,Ω0
-/k = ,O- and,=Ω0

-/k = ,=O- , dis-
cussed above in connection with Serre’s Witt vector cohomology. The construction
of the de Rham–Witt complex is rather involved and we note that,=Ω•-/k does not
coincide withΩ•

,=-/k, where,=- denotes the topological space - together with the
sheaf of rings,=O- . Then, the de Rham–Witt cohomology groups �8 (-,,Ω 9

-/k)
are, = , (k)-modules that are finitely generated modulo torsion. However, the tor-
sion subgroups may not be finitely generated,-modules. If the cohomology groups
�8 (-,,Ω 9

-/k) are finitely generated for all 8 and 9 , then - is said to beHodge–Witt.
In any case, there exists a spectral sequence

�
8, 9

1 := � 9 (-,,Ω8
-/k) =⇒ �8+ 9 (-/,) (0.10.45)

from de Rham–Witt to crystalline cohomology, the slope spectral sequence. The
canonical filtration on �= (-/,) arising from this spectral sequence is denoted by
%8�= (-/,), see [329, Definition II.(3.1.2)]. The following degeneracy result is due
to Illusie [329] and in it,  denotes the field of fractions of, = , (k).

Theorem 0.10.16 Let - be a smooth and proper variety over a perfect field k of
characteristic ? > 0. Then:

1. the slope spectral sequence degenerates modulo torsion at �1. In particular, there
exists a decomposition

�= (-/,) ⊗,  �
⊕
8+ 9==

� 9 (-,,Ω8
-/k) ⊗,  ,

which is compatible with the slope decomposition of the F-isocrystal �= (-/,).
2. The slope spectral sequence degenerates at �1 if and only if �8 (-,,Ω 9

-/k) is a
finitely generated,-module for all 8 and 9 , that is, if and only if - is Hodge–Witt.

Degeneration modulo torsion is closely related to Theorem 0.10.11: namely, the
groups � ?,@1 /Tors carry natural structures of F-crystals, and then, the differentials
on the �2-page of the slope spectral sequence are morphisms between F-crystals
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of different slopes, and thus, must be zero. On the other hand, the slope spectral
sequence may not degenerate at �1 even for some K3 surfaces and some abelian
varieties, see [329, Section II.7].

In any case, one can show that the Hodge–Witt cohomology groups

�0 (-, ,Ω8
-/k), �1 (-, ,O- ), and �8 (-,Ωdim-

-/k ) (0.10.46)

are finitely generated ,-modules for all 8 that are even free in the first two cases,
see [329, Corollaire II.2.17, Corollaire II.2.18, and Proposition II.2.19]. From this,
it follows that one always has a short exact sequence

0 → �0 (-, ,Ω1
-/k) → �1 (-/,) → �1 (-, ,O- ) → 0 (0.10.47)

of free ,-modules, see [329, Proposition II.3.11], which is a partial degeneration
result.

Remark 0.10.17 Let us mention two useful results in connection with degeneration
of the slope spectral sequence of a smooth and proper variety - over k.
1. If - is curve, then the slope spectral sequence degenerates at �1. This follows

from the discussion above and in particular, (0.10.46) and (0.10.47).
2. If - is a surface, then it follows from the discussion above, in particular from

(0.10.46) and (0.10.47) that the only differential that could be non-zero is

31 : �2 (-, ,O- ) → �2 (-, ,Ω1
-/k).

From this, one can deduce that the slope spectral sequence of a surface degener-
ates at �1 if and only if �2 (,O- ) is a finitely generated ,-module, see [329,
Corollary II.3.14] or [563] for details. Moreover, if the slope spectral sequence of
a surface degenerates at �1, then 31 is zero and since �2 (,O- ) → �2 (O- ) is
surjective, it follows that in this case also the differentials

�2 (-, O- ) → �2 (-, Ω1
-/k) and �0 (-, Ω1

-/k) → �2 (-, Ω1
-/k)

in the Frölicher spectral sequence (0.10.35) are zero (the second assertion follows
from Serre duality). In particular, all global 1-forms on - are 3-closed. We refer
to [329, Remarks II.5.17.(2)].

Let us briefly digress on the sub-F-isocrystals of �= (-/,) ⊗  of slope < 1 and
their relation to Serre’s Witt vector cohomology group �= (-,,O- ), as well as to
the Artin–Mazur functors Φ=

-/k introduced in [29]: given a variety - that is proper
over a field k, Artin and Mazur [29] studied the functor

Φ=
-/k :

(
artinian k-algebras
with residue field k

)
→ (abelian groups)

( ↦→ Ker(�=ét (- ×k (,G<) → �=ét (-,G<)).

This functor possesses a deformation-obstruction theory with obstruction space
�=+1 (-,O- ) and tangent space �= (-,O- ). Moreover, if �=−1 (-,O- ) = 0 or
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= = 1, then Φ=
-/k is pro-representable, that is, there exists a local and complete

k-algebra ' such that Φ=
-/k is isomorphic to Hom(−, Spf '). In this case, Spf ' is

a group object in the category of formal schemes, that is, there exists a morphism
` : Spf ' × Spf ' → Spf ' and 4 : Spf k→ Spf ' satisfying the axioms of a group.
If moreover �=+1 (-,O- ) = 0 holds true, then the functor Φ=

-/k is formally smooth
over k, which implies ' � k[[C1, ..., C<]], where < = ℎ= (O- ). In this latter case,
Φ=
-/k is a commutative formal group law of dimension < as discussed in Section

0.3.

Example 0.10.18 For = ≤ 2, we have the following description on Φ=
-/k.

1. If = = 1, then �1
ét (-,G<) classifies G<-torsors over - , that is, invertible sheaves

and we have �1
ét (-,G<) � Pic(-), see Example 0.1.6 and (0.9.1). From this, we

deduce that Φ1
-/k (() is the set of invertible sheaves on - ×k Spec ( that restrict

to O- in the special fiber - × Spec k, that is, Φ1
-/k describes the infinitesimal

neighborhoods of Pic◦
-/k at [O- ]. Thus, Φ1

-/k is the formal completion of the
Picard scheme Pic-/k along its zero-section, which is why it is called the formal
Picard group and denoted P̂ic-/k. We refer to Section 0.3 for such formal
completions and especially, Example 0.1.17 and Example 0.1.18. If�2 (-,O- ) =
0, then Pic◦

-/k is smooth, that is, an abelian variety, and P̂ic-/k is a formal group
law.

2. Recall from Section 0.9 that �2
ét (-,G<) is the cohomological Brauer group of - ,

which is why Φ2
-/k is called the formal Brauer group and denoted by B̂r-/k. We

note that, in general, there exists no Brauer group scheme of - such that B̂r-/k is
the formal completion of this group scheme along its zero-section.

Now, assume that - is a smooth and proper variety over a perfect field k of
characteristic ? > 0 and assume that Φ=

-/k is pro-representable by a formal group
law. Then, there exist isomorphisms of F-(iso-)crystals

D(Φ=
-/k) � �= (-,,O- ) and �= (-,,O- ) ⊗  � (�= (-/,) ⊗,  )<1 ,

where D(−) denotes the Cartier–Dieudonné module of a formal group law and
where the subscript < 1 denotes the sum of all sub-F-isocrystals of slope < 1
in (�= (-/,) ⊗  ). For example, if Φ=

-/k � Ĝ0, then D(Φ=-/k) is not a finitely
generated ,-module by Example 0.1.19, which also explains why �= (-,,O- )
may fail to be finitely generated. We refer to [462] for a more detailed survey, as well
as further references.

Let us now discuss various cohomology groups in low degree: let - be a smooth
and proper variety over a perfect field of characteristic ? ≥ 0. Let alb- : - →
Alb(-) be the Albanese morphism, that is, every morphism from - to an abelian
variety factors through alb- , see Section 0.9. There, we showed that there exists an
isomorphism Alb(-) � (Pic◦

-/k,red)
∨, where red denotes the reduction of Pic◦

-/k,
which is an abelian variety, and ∨ denotes the dual abelian variety. Then, theAlbanese
morphism induces isomorphisms
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�1
ét (-,Zℓ) � �

1
ét (Alb(-), Zℓ),

�1 (-/,) � �1 (Alb(-)/,) if ? > 0,

which can be computed using Example 0.10.15. Moreover, setting 6 := 11 (-)/2,
we find

�0 (-,,Ω1
-/k) � �

0 (Alb(-),,Ω1
Alb(- )/k) � ,6,

�1 (-,,O- ) � �0 (Alb(-),,OAlb(- ) ) � ,6,

�1 (-/,) � �0 (-,,Ω1
-/k) ⊕ �

1 (-,,O- ) � ,26 .

In particular, these ,-modules are torsion-free. It remains to treat the algebraic de
Rham cohomology group �1

DR (-/k), whose k-dimension may be strictly larger that
that of �1

DR (Alb(-)/k), which is equal to 26. By the universal coefficient formula
(0.10.43) this happens if and only if �2 (-/,) has non-trivial ,-torsion. In order
to understand the source of this torsion, the following two results are crucial: first,
by a theorem of Igusa [324], see Proposition 0.9.18, the pull-back of global 1-forms
induces an injective k-linear map

alb∗- : �0 (Alb(-),Ω1
Alb(- )/k) → �0 (-,Ω1

-/k),

whose image is 6-dimensional and all global regular 1-forms in the image are
closed under the exterior differential 3. Thus, the image of alb∗- lies in the subspace
�0 (/Ω1

-/k) of �
0 (Ω1

-/k), where /Ω
1
-/k = Ker(3 : Ω1

-/k → Ω2
-/k) is the sheaf of

cycles. Second, we have seen in Section 0.9 that the Picard scheme Pic◦
-/k may not

be reduced, which is the case if and only if 6 is strictly smaller than ℎ1 (O- ). The
following result is due to Illusie [329, Proposition II.5.6] and explains the,- torsion
of �2 (-/,).

Proposition 0.10.19 Let - be a smooth and proper variety over a perfect field k
of characteristic ? > 0 with Albanese morphism alb- : - → Alb(-). Then, the
following are equivalent:

1. �2 (-/,) is,-torsion free, and
2. Pic◦

-/k is reduced and alb∗-
(
�0 (Alb(-),Ω1

Alb(- )/k)
)
= �0 (-, /Ω1

-/k).

Concerning torsion in �2 (-/,), we have injective homomorphisms

NS(-) ⊗Z Z? → �2
fl (-,Z? (1)) → �2 (-,,Ω≥1

-/k) =: %1�2 (-/,),

where %1�2 (-/,) denotes the indicated filtration,-submodule coming from the
slope spectral sequence, see [329, Proposition II.6.8]. This induces an isomorphism
of torsion groups of,-modules

Tors(NS(-) ⊗Z,) � Tors(%1�2 (-/,)). (0.10.48)

However, unlike the singular cohomology in the complex case or the case of ℓ-adic
cohomology, the torsion in �2 (-/,) can be more complicated than the torsion



180 0 Preliminaries

coming from NS(-). (However, we note that the torsion of �2
fl (-,Z? (1)) coincides

with the torsion of NS(-) ⊗ Z? , see (0.10.63) below.) To get a grip on the torsion of
�2 (-/,), Illusie defined in [329, Section II.6.7] the divisorial torsion �2 (-/,)3 .
We refer to loc. cit. for the definition and note that it sits in a short exact sequence

0 → (NS(-) ⊗Z,)?−Tors → �2 (-/,)3 → �2 (-,,O- )+−Tors → 0 .
(0.10.49)

Using the identification of �2 (,O- ) with the Cartier–Dieudonné module of the
formal Brauer group, also the +-torsion can be reasonably explained. By definition,
the quotient of the torsion submodule of�2 (-/,) by�2 (-/,)3 is called the exotic
torsion. If - is an Enriques surface, then we compute the torsion of �2 (-/,) in
Theorem 1.4.13 and Corollary 1.4.14. Finally, we refer the interested reader to [329,
Proposition II. 6.9] for the connection of torsion in �2 (-/,) and Oda’s subspace
of �1

DR (-/k) from [567].

Example 0.10.20 Let - be a smooth and proper curve of genus 6 over an algebraically
closed field k of characteristic ? > 0. Let Jac(-) be the Jacobian of - . Then, the
Hodge versus de Rham spectral sequence of - degenerates at �1 and the crystalline
cohomology groups �= (-/,) are torsion-free. Moreover, the Albanese morphism
alb- : - → Jac(-) induces isomorphisms of ℓ-adic and crystalline cohomology

�1
ét (-,Zℓ) � �1 (Jac(-),Zℓ) and �1 (-/,) � �1 (Jac(-)/,),

as well as isomorphisms

�1
DR (-/k) � �1

DR (Jac(-)/k)

of algebraic de Rham cohomology.

Concerning torsion of �2 (,O- ), the slopes of �2 (-/,) ⊗,  , and its relation
to the Picard scheme Pic-/k, we also have the following result, see also Proposition
0.9.14. It is a straightforward generalization of a result of Illusie [329, Proposition
II.7.3.2], see also [464, Proposition 2.2].

Proposition 0.10.21 Let - be a smooth and projective variety over an algebraically
closed field k of positive characteristic that satisfies

1
2
11 (-) = ℎ1 (-, O- ) − ℎ2 (-, O- ).

Then, the �-isocrystal �2 (-/,) ⊗,  is of slope one and

�2 (-,,O- ) = Tors
(
�2 (-,,O- )

)
� D(Pic◦

-/k/Pic◦
-/k,red),

where Tors denotes torsion as,-module.

Proof By [329, Remarque II.6.4], the+-torsion �2
+−tors of �

2 (,O- ) is isomorphic
to the Cartier–DieudonnémoduleD(Pic◦

-/k/Pic
◦
-/k,red). Thus, by Dieudonné theory,
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the k-dimension of�2
+−tors/+�2

+−tors is equal to the dimension of the Zariski tangent
space of Pic◦

-/k/Pic
◦
-/k,red, which is equal to ℎ1 (O- ) − 1

211 (-). Thus, in the exact
sequence

... → �1 (O- ) → �2 (,O- )
+−→ �2 (,O- )

U−→ �2 (O- ) → ...,

the restriction U |� 2
+−tors

: �2
+−tors → �2 (O- ) is surjective by our assumptions. Next,

we set ! := �2 (,O- )/�2
+−tors and denote the map induced by + on ! again by

+ . Using the snake lemma, we conclude !/+! = 0. As explained in the proof of
[329, Proposition II.7.3.2], ! is +-adically separated, which implies ! = 0. Thus,
�2 (,O- ) = �2

+−tors and this,-module is torsion.
Since the slope spectral sequence of - degenerates up to torsion by Theorem

0.10.16, we conclude

0 = �2 (,O- ) ⊗,  = (�2 (-/,) ⊗,  ) [0,1[ .

Since - is projective over k, the Hard Lefschetz Theorem implies that also the part
of slope ]1, 2] is zero. Thus, �2 (-/,) ⊗,  is of slope one. �

Definition 0.10.22 A smooth and proper variety over k is called ordinary in degree =
(in the sense of Bloch, Kato, Illusie, and Raynaud) if any of the following equivalent
properties is satisfied.

1. � 9 (-, �Ω8
-/k) = 0, for any 8, 9 with 8 + 9 = =.

2. F : � 9 (-,,Ω8
-/k) → � 9 (-,,Ω8

-/k) is bĳective for all 8, 9 with 8 + 9 = =.
3. The Hodge versus de Rham spectral sequence, as well as its conjugate spectral

sequence degenerate on the �1-page and the two induced filtrations on �=DR (-)
are as disjoint as possible.

4. - is Hodge–Witt in degree = (that is, for all 8, 9 ≥ 0 with 8 + 9 = =, the,-module
�8 (-,,Ω 9

-/k) is finitely generated) and �
8 (-, �,Ω=+1−8

-/k ) = 0 for all 8 ≥ 0.

If �= (-/,) has no torsion, then these properties are equivalent to the property

5. the Newton and the Hodge polygon of �= (-/,) coincide.

If � 9 (-,,Ω8
-/k) has no torsion for all 8, 9 with 8 + 9 = =, then these properties are

equivalent to

6. the slopes of the Frobenius on �= (-/,) are integers.

The variety - is ordinary if it is ordinary in all degrees.

We refer to [70], [332] and [116] for details and the proof of the equivalences. One
usually expects that varieties that are ordinary and that have torsion-free crystalline
cohomology groups should behave as nicely as varieties over the complex numbers.
Here are some properties of ordinary varieties.

1. The slope spectral sequence degenerates modulo torsion at �1. This follows from
Theorem 0.10.16.
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2. If - ′ is the blow-up of an ordinary variety - with smooth center then - ′ is ordinary
[330, Proposition 1.6]. In particular, if - ′ is an ordinary surface birationally
isomorphic to a surface - , then - ′ is ordinary.

3. A projective bundle over an ordinary variety is ordinary, see Proposition 1.4 from
loc. cit..

4. The product - × . is ordinary if and only if - and . are ordinary, see [332, IV,
Corollaire 4.14].

5. If 5 : - → � is over a local � = Spec ' with ordinary closed fiber, then the
geometric generic fiber is ordinary, see Proposition 1.9 from loc.cit.. The converse
is usually not true.

6. If �8 (-/,) and �dim-−8 (-/,) are both torsion-free, then - is ordinary in
degree 8 if and only if it is ordinary in degree dim - − 8. This follows from
Property (4).

Before discussing these notions for curves, we need a lemma on ?-linear maps,
see [653, pp. 38–39], or [3], or [278, Expose XII, Corollaire 1.1.10], or [508, III, §4,
Lemma 4.13].

Lemma 0.10.23 Let + be a finite–dimensional linear space over an algebraically
closed field k of characteristic ? > 0. Let q : + → + be a ?: -linear map, that is,
q(_G) = _?:q(G) for any _ ∈ k. Then, there exists a canonical decomposition of
k-vector spaces

+ = +ss ⊕ +nil,

such that q is bĳective on+ss and q is nilpotent on+nil. Moreover, q− id is surjective
on + and the kernel of q − id is a vector space over the finite field F?: of dimension
equal to dim+ss.

Note that the dimension of +ss from the lemma can be computed as follows:
choose a k-basis 4 of + and let q(4) = �4 for some matrix �, sometimes called the
Hasse–Witt matrix. Then

dimk+ss = rank(� · �(?) · · · · · �(?=−1) ), (0.10.50)

where = = dimk+ , and where �(?: ) denotes the matrix obtained from � by raising
the entries of the matrix � to the ?: -th power. The rank of the matrix (� · �(?) ·
· · · · �(?=−1) ) is called the stable rank of �. For more details on computations with
Hasse-Witt matrices and some subtleties, we refer to [3].

Example 0.10.24 Let - be a smooth and projective curve of genus 6 > 0 over an
algebraically closed field k of characteristic ? > 0. Let Jac(-) = Pic◦

-/k be its
Jacobian variety of - . Then we have an exact sequence

0 → O-
G ↦→G?−→ O-

3→ �Ω1
-/k → 0 (0.10.51)

that gives an exact sequence

0 → �0 (-, �Ω1
-/k) → �1 (-,O- )

F→ �1 (-,O- ) → �1 (-, �Ω1
-/k) → 0.
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This shows that - is ordinary if and only if the F-action on �1 (-,O- ) is bĳective.
We note that the Frobenius map F on �1 (-,O- ) is ?-linear and we now apply
Lemma 0.10.23.

1. If F is injective on �1 (-,O- ) = �1 (-,O- )ss, then Ker(id−F) = (Z/?Z)6. It
follows from the Artin–Schreier exact sequence that this happens if and only if

�1 (-, (Z/?Z)- ) = Ker
(
id−F : �1 (-,O- → �1 (-,O- )

)
= (Z/?Z)6 .

Applying Theorem (0.2.34), we obtain that Hom(-? , Jac(-)) � (Z/?Z)6. This
implies that -6? is a closed subscheme of ? Jac(-) and applying Cartier duality,
we obtain

(Z/?Z)6 ⊆ ? Jac(-) (k) = ? Pic(-).

Thus, - is ordinary if and only if the ?-rank of Jac(-) (see Example 0.10.15) is
maximal, that is, equal to 6 = dim Jac(-).

2. On the other extreme, - is called supersingular if its ?-rank is equal to 0. The
part �1 (-/,)F=id is of dimension 6 and its dual part with respect to the Poincaré
duality is equal to �1 (-/,)F=? id.

The same argument shows that, if - is an ordinary variety of arbitrary dimension,
then the ?-ranks of its Albanese variety and its Picard variety are maximal possible,
that is, equal to their dimension.

Example 0.10.25 Let � be an abelian variety of dimension 6 > 0 over an alge-
braically closed field k of characteristic ? > 0. We know from Example 0.10.15
that �= (�/,) � Λ8�1 (�/,) and that �1 (�/,) � ,26 has no torsion. Thus, we
can apply Property (4) to deduce that � is ordinary in all degrees if and only if it is
ordinary in degree 1.

Example 0.10.26 Let - be a smooth and projective surface over an algebraically
closed field k of characteristic ? > 0.

If - is ordinary in degree 2, then Property (2) implies that F is bĳec-
tive on �2 (-,,O- ), on �1 (-,,Ω1

-/k), and on �0 (-,,Ω2
-/k). We know that

�2 (-,,O- ) is isomorphic to the Cartier–Dieudonné module D(Φ2
-/k). Since it

is finitely generated over , when - is ordinary, we conclude that the formal
Brauer group B̂r(-) is of finite height. Moreover, since �2 (-,,O- ), ⊗  =

(�2 (-/,) ⊗,  O- ))<1, the Newton and Hodge polygons coincide if and only
if the height ℎ(-) of B̂r(-) is equal to ℎ0,2 = ?6 (-). The Igusa–Artin–Mazur
inequality now becomes

12 (-) − d(-) ≥ 2?6 (-),

as familiar from complex algebraic geometry.
Also, if 1DR

1 = 0, for example, if �1 (-,O- ) = 0 and 31 : �0 (-,Ω1
-/k) →

�2 (-,O- ) is injective, then �2 (-/,) is torsion free, as follows from the universal
coefficient formula (0.10.43). Moreover, we have �1 (-/,) = 0 in this case, which
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shows that - is automatically ordinary in degree 1. Thus, the equality ℎ(-) = ?6 (-)
implies that - is ordinary in this case.

Finally, we use the definition and exact sequence (0.10.51) to get an exact sequence

�1 (-, �Ω1
-/k) → Ker

(
F : �2 (-,O- ) → �2 (-,O- )

)
→ �2 (-, �Ω1

-/k) → 0

to show that, if - is ordinary in degree 2, then the F-action on �2 (-,O- ) is a
bĳection.

In particular, let - be a surface with ?6 (-) = 0: It is ordinary in degree 1
if and only if its Albanese variety is ordinary. By Proposition 0.9.8, the Picard
scheme is reduced. It follows from Proposition 0.10.21 that �2 (-,,O- ) = 0. Since
�1 (-,,O- ) and �0 (-,Ω1

k
) have no torsion, the slope spectral sequence shows

that �2 (-/,) is torsion-free. We know that - is ordinary in degree 2 if and only if
the Newton and Hodge polygons of �2 (-/,) coincide. But the latter polygon is the
graph of the identity function on the interval [0, 12] and since the Newton polygon
lies above it, it must coincide with it. Thus, - is automatically ordinary in degree 2.

Wenow turn to the casewhere ℓ = ? and note already here that the flat cohomology
groups �2

fl (-, -?= ) are more difficult to handle – we will come back to these groups
below. First, we note that the absolute Frobenius morphism F : - → - acts like
L ↦→ F∗L � L⊗? on NS(-). We set

ℎ(-) = dim 

(
�2 (-,,O- ) ⊗,  

)
(0.10.52)

= dim 

(
�2 (-/,) ⊗,  

)
[0,1)

= dim 

(
�2 (-/,) ⊗,  

)
(1,2]

,

where the last equality comes from the slope spectral sequence (0.10.45) and Theo-
rem 0.10.16. If - is projective, then the Hard Lefschetz theorem implies that ℎ(-) is
equal to the  -dimension of the slope > 1 part of the F-isocrystal �2 (-/,) ⊗ and
using the slope decomposition of �2 (-/,) ⊗  , we find the Igusa–Artin–Mazur
inequality

d(-) ≤ 12 (-) − 2ℎ(-). (0.10.53)

For example, we see that in the case of a K3 surface, the number ℎ(-) coincides
with the number ℎ in the picture of the Newton diagram in Example 0.10.14.

Remark 0.10.27 Since �2 (-,,O- ) is the Cartier–Dieudonné module of the formal
Brauer group B̂r-/k of - , it follows that ℎ(-) is equal to the height of B̂r-/k - if
the latter is finite. A surface - is called supersingular if the height of its formal
Brauer group is infinite. In this case, the formal Brauer group is isomorphic to
the formal group associated to a unipotent algebraic group of dimension equal to
?6 (-) = dim�2 (-,O- ), where �2 (-,O- ) is naturally isomorphic to the tangent
space of the formal group. In this context, the crystalline version of theTate conjecture
asks whether the inclusion 21 (NS(-)) ⊗ Z? ⊆ )� is in fact an equality, or at least,
equal up to torsion or finite index. If true, this would be a characteristic ? analog
of the Lefschetz theorem on (1, 1)-classes. For example, it would also imply that
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the F-isocrystal �2 (-/,) ⊗  is of slope 1 (the F-crystal is supersingular) if and
only if d = 12 (the variety is supersingular in the sense of Shioda). It follows from
(0.10.53) that a surface with ?6 (-) > 0 that is supersingular in the sense of Shioda
is supersingular. Since the Tate conjecture holds for K3 surfaces over finite fields
by [500], [483] and [390], Proposition 0.10.28 implies that K3 surfaces that are
supersingular are supersingular in the sense of Shioda.

There is also an ℓ-adic version of the Tate conjecture for smooth and proper
varieties - over fields k that are finitely generated over their prime field that conjec-
turally describes the image 21 (NS(-)) inside �2

ét (-k,Zℓ (1)) in terms of the action
of the absolute Galois group Gal(k/k). So far, this conjecture has been established
for curves, products of curves, K3 surfaces, Enriques surfaces, and a couple of more
classes of varieties, see [700], [704], and [55] for survey.

The following result is well-known to the experts and follows from some usual
spreading out and specialization techniques, but somehow hard to find stated explic-
itly in the literature.

Proposition 0.10.28 Let - be a supersingular (in the sense of Remark 0.10.27) K3
surface over an algebraically closed field k of characteristic ? > 0. Assume that the
Tate conjecture holds for K3 surfaces over finite fields of characterstic ?. Then, - is
supersingular in the sense of Shioda.

Proof First, assume that k is not an algebraic closure of F? . Then, there exists a field
 that is finitely generated over F? and contained in k, such that - can be defined over
 . Replacing  by a finite field extension,  is still finitely generated over F? and
we may assume that the Néron–Severi group of - is isomorphic to the Néron–Severi
group over k. Now, there exists an integral scheme of finite type ) over F? with the
residue field at the generic point equal to  . After possibly replacing ) by an open
and dense subset, we may assume that there exists a smooth and proper morphism
X → ) over SpecF? , whose generic fiber is - (this is called spreading out). If C ∈ )
is a closed point of ) , then the fiber XC is a K3 surface over the residue field ^(C),
which is a finite field of characteristic ?. Moreover, since - is supersingular, so isXC
by [25], Corollary (1.3). But then, [25, Theorem (1.1)] implies that the ranks of the
Néron–Severi groups of - andXC coincide. Thus, it suffices to prove the proposition
for XC .

This reduces to the case where k is an algebraic closure of F? , which we will now
assume. If - is a supersingular K3 surface over k, then it can be defined over some
finite field F@ and by replacing the latter by a finite extension, we may assume that
the Néron–Severi group of - is isomorphic to the Néron–Severi group of -k. Since
- is supersingular, the F-isocrystal �2 (-k/,) ⊗Z Q is of slope 1. After possibly
replacing F@ by another finite extension, we may assume that �2 (-/,) ⊗Z Q is a
direct sum of one-dimensional F-isocrystals of slope 1. In particular, the F-invariants
of �2 (-/,) (1) ⊗ Z form a Q?-vector space of rank equal to 12 (-) = 22. Since we
assumed the Tate conjecture for K3 surfaces over finite fields, this implies that the
image ofNS(-)⊗Q? inside�2 (-/,) (1)⊗Q, which actually lies in theF-invariants
of the latter, is a Q?-vector space of dimension 12 (-). Thus, d(-) = 12 (-), that is,
- is supersingular in the sense of Shioda. �
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For a survey on the Tate conjecture for K3 surfaces we refer to [706].
In order to refine the Igusa–Artin–Mazur inequality, we use theKummer sequence

(0.1.6) and (0.10.25).

0→ -?= → G<
G ↦→G?=−→ G< → 0. (0.10.54)

In analogy to the ℓ-adic case, we set

�8fl (-,Z?) := lim←−−
=

�8fl (-,Z/?
=Z), (0.10.55)

�8fl (-,Z? (1)) := lim←−−
=

�8fl (-, -?= ). (0.10.56)

Note, however, that if k is of characteristic ? > 0, then the finite group schemes
(Z/?=Z) are étale and the finite group schemes -?= are not étale. In particular, the
cohomology groups �8fl (-,Z?) and �

8
fl (-,Z? (1)) need not be isomorphic, not even

non-canonically as Z?-modules. In fact, the former is related to the slope zero part
of �8 (-/,), whereas the latter is related to the slope one part.

Let us now study the groups �8fl (-,Z? (1)). Since the -?= are flat but not étale,
étale cohomology is not suited to computation of these cohomology groups, which
makes the discussion of these cohomology groups technically more demanding.
It was shown by Artin in [25] that the group �8 (-, -?= ), considered as a sheaf
' 5 8∗ -?= ,- , where 5 : - → Spec k is the k-scheme structure morphism, admits a
structure of a quasi-algebraic group, possibly of positive dimension. For example, if
- is a supersingular K3 surface, then its formal Brauer group is isomorphic to Ĝ0 (k)
and the Kummer exact sequence shows that �2 (-, -?) � ? Br(-) � k, which is not
a finite group. We will come back to this later in this section. The Kummer sequence
in the flat topology gives

0→ �8−1 (-,G<) (?
=) → �8 (-, -?= ) → ?=�

8 (-,G<) → 0 (0.10.57)

that, after taking the limits, gives us an exact sequence

0 → lim←−− =�
8−1
fl (-,G<)

(?=) → �8fl (-,Z? (1)) → )?�
8
fl (-,G<) → 0.

(0.10.58)
Since G< is a smooth group scheme, it follows that �8fl (-,G<) � �

8
ét (-,G<), that

is, flat and étale cohomology coincide in this case, see Theorem 0.1.3. For example,
if 8 ≤ 1, we obtain isomorphisms

�0
fl (-,Z? (1)) = 0, (0.10.59)

�1
fl (-,Z? (1)) � )? Pic(-), (0.10.60)

see also Example 0.10.15 in the case where - is an abelian variety. For 8 = 2, we
obtain a short exact sequence

0 → NS(-) ⊗Z Z? → �2
fl (-,Z? (1)) → )?�

2 (-,G<) → 0. (0.10.61)
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By [329, Proposition II.5.9] (we will give a proof of this important fact later), all
terms in this sequence are finitely generated Z?-modules. Moreover, )?�2 (-,G<)
is even a free Z?-module, and we denote its rank by t? . We thus find

)? (Br(-)) � Z
t?
? (0.10.62)

and

Tors�2
fl (-,Z? (1)) = Tors

(
NS(-) ⊗ Z?

)
= ?∞ NS(-) . (0.10.63)

As an application of (0.10.61), we conclude

rankZ? �
2
fl (-,Z? (1)) = d(-) + t? .

However, the group ? Br(-) may not be a finite group and so we cannot apply
Proposition 0.10.1 to deduce (0.10.28), where ℓ is replaced with ?. In fact, the exact
sequence (0.10.57) shows that ?�2

fl (-,G<) is the image of the group �2
fl (-, -?). As

we have remarked earlier and will explain later in this section, the group �2
fl (-, -?)

admits a structure of a commutative quasi-algebraic group, whose connected com-
ponent of identity, if not trivial, is a connected quasi-algebraic unipotent group of
positive dimension whose ?-torsion group is infinite.

The Z?-rank of �8fl (-,Z? (1)) is equal to the Q?-dimension of �8fl (-,Q? (1))
and the latter is connected to crystalline cohomology as follows: by [329, Theorem
II.5.5], there exist short exact sequences for all 8

0 → �8fl
(
-,Q? (1)

)
→ �8 (-/,) ⊗  

?−F
−→ �8 (-/,) ⊗  → 0, (0.10.64)

from which it follows that �8fl (-,Q? (1)) ⊗  is equal to the sub-F-isocrystal of
slope 1 inside �8 (-/,) ⊗  . In particular, �8fl (-,Z? (1)) modulo torsion (resp.
�8fl (-,Q? (1))) is a Z?-module of finite rank (resp. Q?-vector space of finite di-
mension) for all 8. Using the slope-decomposition of �2 (-/,) ⊗  into the sub-F-
isocrystals of slopes < 1, = 1, and > 1, as well as the Hard Lefschetz theorem (here,
projectivity of - is needed), we find the following improvement of the Igusa–Artin–
Mazur inequality (0.10.53) to an equality

d(-) = 12 (-) − 2ℎ(-) − t? . (0.10.65)

We refer to [329, Proposition II.5.12] for details. Finally, let us mention the following
long exact sequences:

. . .→ �=+1fl (-, Z? (1)) → �= (-, ,Ω1
-/k)

1−F−→ �= (-, ,Ω1
-/k) → . . . (0.10.66)

. . .→ �=fl (-, Z? (1)) → �= (-, ,Ω≥1
-/k)

1−F−→ �= (-, ,Ω≥1
-/k) → . . . (0.10.67)

that relate the cohomology of Z? (1) to the cohomology of the de Rham–Witt
complex, see [329, Theorem II.5.5]. Tensoring with Q, and using that the slope
spectral sequence degenerates modulo torsion, we obtain (0.10.64).
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In order to generalize the relation between d and ℎ1,1 in the complex case from
(0.10.10), we note that there is an algebraic dlog map O×

-
→ Ω1

-/k via 5 ↦→
3 5

5
.

This gives rise to a homomorphism of abelian groups

dlog : Pic(-) → �1 (-,Ω1
-/k), (0.10.68)

which is an algebraic analog of homomorphism (0.10.68). Via the Hodge versus de
Rham spectral sequence (0.10.35), �1 (-,Ω1

-
) contributes to �2

DR (-/k). However,
if ? > 0, then this spectral sequence may not degenerate at �1 and thus, the former
may not be a subquotient of the latter. Moreover, the k-vector spaces �1 (-,Ω1

-
)

and �2
DR (-/k) are ?-torsion when considered as abelian groups, which implies

that ? Pic(-) lies in the kernel of 21 and dlog. We note that even the induced map
NS(-) ⊗Z k → �1 (-,Ω1

-
) may fail to be injective. In particular, the inequality

d ≤ ℎ1,1, which holds if k is of characteristic zero, may fail if k is of positive
characteristic – for example, supersingular K3 surfaces satisfy d = 12 = 22 and
ℎ1,1 = 20. To further extend the relation between the Picard group, �1 (-,Ω1

-
), and

�2
DR (-/k) via Chern class and dlog-maps to the ?-adic setting, we use de Rham–

Witt cohomology �1 (-,,Ω1
-
) and crystalline cohomology �2 (-/,), rather than

étale cohomology with Z?-coefficients.
Let

n : -fl → -ét

be the natural morphism from the flat site to the étale site of - . Then, applying the
functor '1n∗ to the Kummer exact sequence (0.10.54) on -fl yields an exact sequence
on -ét

0 → G<
×?=
−→ G< → '1n∗-?= → 0. (0.10.69)

Here, we used that '@n∗ is zero for all @ > 0 and any abelian sheaf that is represented
by a smooth group scheme. Thus, if we define

a= (1) := '1c∗-?= ,

then we obtain a sheaf on the étale site of - . Applying the Leray spectral sequence for
c and comparing the cohomology of (0.10.54) and (0.10.69), we find isomorphisms
for all 8

�8fl (-, -?= ) � �8−1
ét (-, a= (1)). (0.10.70)

In particular, this allows us to compute the flat cohomology of -?= via the étale
cohomology of a= (1).

For any scheme (, let (pf be the category of perfect (-schemes equipped with the
étale topology, let (ét be the category of (-schemes equipped with the étale topology,
and let (ét → (fl be the perfection functor - ↦→ -pf introduced in Section 0.1. We
have a natural morphism

n : (pf → (ét.

For any abelian sheaf A, we denote by �pf the restriction of A to (fl. If A is
representable by a commutative group scheme �, then Apf is representable by its
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perfection �pf . This defines the functor

n(,∗ : (̃ét → (̃fl

from the category of abelian sheaves on (ét to the category of abelian sheaves (̃fl on
(fl. It admits a left adjoint functor n∗

(
: (̃fl → (̃ét. For example, ifA is represented by

a commutative group (-scheme �, then Apf is represented by its perfection group
scheme �pf . In particular, for every purely inseparable homomorphism q of group
(-schemes, the morphism (n(,∗ is an isomorphism.

We take ( = Spec k and denote n( by n . For any commutative algebraic group
scheme � over k, we have n∗� = �pf and '8n∗� = 0 for all 8 > 0. If � is smooth,
then this follows from vanishing of étale cohomology of abelian sheaves represented
by smooth group schemes. If � is not smooth, then it admits a composition series of
sheaves that are either smooth or isomorphic to -?,k or "?,k for which the assertion
is proved using the Kummer or Artin–Schreier exact sequences in the étale topology,
see [61, Lemma 2.3].

For any perfect affine commutative group scheme G annihilated by ?= for some
=, there exists a maximal connected subgroup* with quotient an étale group D. The
group U is a unipotent quasi-algebraic group and as such admits a composition series
whose subquotients are isomorphic Gpf

0 .
The category of commutative algebraic groups over a field of positive characteris-

tic is not abelian because of the existence of inseparable isogenies. Thus, in order to
use homological algebra and in particular, the have the higher derived functors '8n∗,
we pass to the category of perfect schemes and consider quasi-algebraic groups. For
example, to justify the use of a Leray spectral sequence to obtain the isomorphism
(0.10.70), we have to consider the �8fl (-, -?< ) as quasi-algebraic groups, which we
denote by �8fl (-, -?< ). Of course, �

8
fl (-, -?< ) (k) = �

8
fl (-, -?< ).

We note that the kernel of dlog in the étale topology is equal toO×?
-

, which implies
that there is an injective map of abelian sheaves on -ét from a= (1) into /Ω1

-
. In

order to explain the relation between the latter and the dlog-map, we recall that we
introduced the sheaves �Ω8

-/k of boundaries and the sheaves /Ω8
-/k of cycles, as

well as the Cartier operators � = �-/k : F∗ (/Ω8-/k) → Ω8
- (?) /k. Using Properties

(2) and (5) of Cartier operators, we find

� (dlog 5 ) = �

(
35

5

)
= 5 −1 · �

(
5 ? · 35

5

)
= 5 −1 · � ( 5 ?−135 ) = 35

5
.

In particular, the image of dlog is contained in the kernel of (1−�). More precisely,
one can even show that this generalizes to exact sequences in the étale topology of
-

0 → a1 (8) → F∗ (/Ω8-/k)
1−�−→ Ω8

- (?) /k → 0, (0.10.71)

see, for example, [507]. In the case 8 = 1, this identifies the kernel of (1 − �) with
dlog(a1 (1)). In the case 8 = 0, this exact sequence coincides with the Artin–Schreier
sequence (0.1.3) and identifies a1 (0) with the locally constant sheaf Z/?Z on - .
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Finally, by a theorem of Bloch, the sheaf a1 (8) is the abelian subsheaf of /Ω8-/k that
is generated (locally in the étale topology) by differentials dlog 51 ∧ · · · ∧ dlog 58 ,
where the 5 9 ∈ O×- are local sections, see [329, Section 0.2.4]. Next, let �−1 :
Ω8
- (?) /k → H

8 (Ω•
-/k) = /Ω

8
-/k/�Ω

8
-/k be the inverse of the Cartier operator. We

have the following commutative diagram with exact rows

0

��

0

��
�Ω8

-/k

��

�Ω8
- (?) /k

��
0 // a1 (8) // /Ω8

-/k
1−� //

��

Ω8
- (?) /k

//

��

0

0 // a1 (8) // /Ω8
-/k/�Ω

8
-/k

1−� //

��

Ω8
- (?) /k/�Ω

8

- (?) /k
//

��

0.

0 0

Applying the Cartier operator (0.10.71) to the bottom row, we deduce the exact
sequences

0 → a1 (8) → Ω8
- (?) /k → Ω8

- (?) /k/�Ω
8

- (?) /k → 0. (0.10.72)

This exact sequence can be generalized using the de Rham–Witt complex as fol-
lows, see [329]: for all 8 and : , there exist Frobenius morphism F : ,:+1Ω8-/k →
,:Ω

8
-/k (note the difference in the lower indices), which gives rise to morphisms

F : ,:Ω
8
-
→ ,:Ω

8
-
/3+ :−1Ω8−1

-
, and this latter coincides with �−1 if : = 1, see

[329, Proposition I.3.3]. Then, (0.10.72) is just the beginning of a series of short
exact sequences

0 → a: (8) → ,:Ω
8
-/k

F−1−→ ,:Ω
8
-/k/3,:Ω

8−1
-/k → 0. (0.10.73)

Let us briefly discuss the 8 = 1-case, which is important for our discussion of Picard
groups and Chern class maps: the kernel of F − 1 : ,:+1Ω1

-
→ ,:Ω

1
-
is contained

in dlog(O×
-
) + + (,:Ω

1
-
) + 3+ (,:Ω

1
-
) by [329, Proposition I.3.24]. Moreover, as

: tends to infinity, it follows from [329, Corollaire I.3.27] that there exists a short
exact sequence

0 → O×-/O
×?
-

dlog
−→ ,Ω1

-/k
F−1−→ ,Ω1

-/k → 0 (0.10.74)
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of abelian sheaves in the étale toplogy. Let us now come back to the Chern class
and dlog-maps and assume that - is a smooth and projective surface over k. Using
(0.10.56) and (0.10.70), we find a short exact sequence

0 → �2
fl (-,Z? (1)) → �1 (-,,Ω1

-/k)
F−1−→ �1 (-,,Ω1

-/k) → 0,

see also (0.10.67). Next, there is a commutative diagram with exact rows (see [329,
Section II.5.22])

0

��

0

��
�0 (-,,Ω2

-/k)
1−?F //

��

�0 (-,,Ω2
-/k)

��
0 // �2

fl (-,Z? (1)) // �2 (-,,Ω≥1
-/k)

1−F //

��

�2 (-,,Ω≥1
-/k) //

��

0

0 // �2
fl (-,Z? (1)) // �1 (-,,Ω1

-/k) //

��

�1 (-,,Ω1
-/k) //

��

0

0 0 ,

see also (0.10.67). Then, the first Chern class map factorizes as follows:

21 : NS(-) ⊗ Z? → �2
fl (-,Z? (1)) → �2 (-,,Ω≥1

-/k) → �2 (-/,),
(0.10.75)

where allmaps are injective, see [329,Remarque II.5.21.4]. The firstmap is (0.10.61),
and the composite of the first two maps NS(-) ⊗ Z? → �2 (-,,Ω≥1

-
) is a de

Rham–Witt version of the dlog-map via the previous diagram. Finally, the map
�2 (-,,Ω≥1

-
) → �2 (-/,) comes from the slope spectral sequence (0.10.45).

Now, let - be a scheme that is smooth and proper over a perfect scheme ( with
geometrically connected fibers of dimension 3. Let (-/()pf be the category whose
objects are pairs (.,)), where ) is a perfect scheme over ( and where . is an étale
scheme over - ×) with the obvious morphisms. We equip it with the étale topology
and let c : (-/()pf → (pf , (.,)) ↦→ ) be the natural morphism of the categories.
For an abelian sheafA on (-/()pf that is killed by ?= the sheaves '8c∗A are objects
of the categoryP(?=). Moreover, it follows from (0.10.69) that the étale cohomology
of the sheaves a= (1) carries the structure of a commutative group scheme that is
killed by ?=. Using (0.10.70), we equip the flat cohomology of the sheaves -?= with
the same structure. Thus, the sheaf '8c∗a= (1) is the perfect group scheme associated
to the flat cohomology group �8+1fl (-, -?= ) and we shall denote it by �

8+1
fl (-, -?= ).

For example, if ( = Spec k for some algebraically closed field k, then the group of
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k-rational points of the perfect group scheme �8+1fl (-, -?= ) is equal to the abelian
group �8+1fl (-, -?= ) (functorially in -). By the structure result (0.1.9) of perfect
group schemes, we obtain short exact sequence of perfect group schemes for all 8

0 → U8 (-, -?= ) → �8fl (-, -?= ) → D8 (-, -?= ) → 0,

whose kernel U8 is smooth, connected, and unipotent, and whose cokernel D8 is
finite and étale. For example, using (0.10.54), we find the following equalities and
isomorphisms in small degrees

�0
fl (-, -?= ) = 0,

�1
fl (-, -?= ) � D1 (-, -?= ) � ?= Pic(-) and U1 (-, -?= ) = 0.

Passing to the limit over =, we find �0
fl (-,Z? (1)) = 0 and �1

fl (-,Z? (1)) =
)? Pic(-), which we already established in (0.10.59) and (0.10.60).

Passing to the formal groups in the Kummer exact sequences

0→ �8−1 (-,G<) (?
=) → �8fl (-, -?= ) → ?=�

8 (-,G<) → 0 (0.10.76)

and taking tangent spaces gives a bound for the dimension of �8fl (-, -?= )

dim�8fl (-, -?= ) ≤ ℎ
8−1 (O- ) + ℎ8 (O- ), (0.10.77)

see [25, p. 554].
Next, we consider exact sequence (0.10.30) where ℓ is replaced with ?. It follows

from U1 (-, -?= ) = 0 that U2 (-, -?= ) embeds into U2 (-, -?=+1 and since the
dimensions of these groups are bounded, this embedding is a bĳection for = � 0.
Therefore, the pro-object U2 (-, -?= ) is essentially zero and we obtain after passing
to the projective limit an isomorphism:

�2
fl (-,Z? (1)) � lim←−−

=

D2 (-, -?= ). (0.10.78)

Themorphism of the projective systems {-?=−1 } → {-?= } defines themultiplication
by ? homomorphism in �2

fl (-,Z? (1)), whose cokernel is isomorphic to a subgroup
of a étale finite group. Since any complete ?-adic abelian group � (this is the dual
to the notion of a ?-divisible group) is finitely generated if �/?� is finite (dual to
the assertion of Proposition 0.10.1), we obtain that )?�2

fl (-,Z? (1)) is free of rank
t? and via the Kummer exact sequence )?�2 (-,G<) � Z

C?
? (as promised earlier).

Now, we are ready to extend Theorem 0.10.2 to the ?-torsion subgroup Br(-).
We have that Br(-) � �2 (-,G<) is a torsion group if - is a smooth and projec-
tive surface over k (see [271, II,Théoréme 2.1]), which allows us to complete the
computation of the Brauer group in this case.

Theorem 0.10.29 Let - be a smooth projective algebraic surface over an alge-
braically closed field k of characteristic ? > 0. If - is not supersingular, then
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?∞ Br(-) � (Q?/Z?)C? ⊕ ?∞ NS(-),

whereas if - is supersingular, we have

?∞ Br(-) � k?6 (- ) ⊕ (Q?/Z?)C? ⊕ ?∞ NS(-).

Proof The proof follows the proof of Theorem 0.10.2, where we replace ℓ by ? and
use the exact sequences (0.10.31), (0.10.32) and (0.10.33). We also use the universal
coefficient formula from [506] that gives an isomorphism

?∞�
3
fl (-,Z? (1)) � ?∞ NS(-). (0.10.79)

The inductive limit lim−−→�
2
fl (-, -?= ) is equal to the direct sum of D2 (-, -?∞ ) =

lim−−→D2
fl (-, -?= ) and U2 (-, -?∞ ) = lim−−→U2 (-, -?= ). It follows from the previous

discussion that U2 (-, -?∞ ) � U2 (-, -?= ) for some sufficiently large =. This group
has the structure of a connected unipotent quasi-algebraic group and its formal
completion at the origin is isomorphic to the formal Brauer group Φ2 (-) = B̂r(-),
which must be isomorphic to ĜA0. Its tangent space is �2 (-,O- ), which implies
A = ?6 (-). By definition, it is trivial only if - is not supersingular or ?6 (-) = 0. �

After these preparations, we now discuss the duality theorem for flat cohomology
of the sheaves -?= on a smooth and projective surface - over a perfect field k of
characteristic ? > 0, which is due to Milne [507] for = = 1 and to Berthelot [61] for
arbitrary =. To state it, we first consider the pairing of étale sheaves on a smooth and
projective variety c : - → Spec k of dimension 3

(G</[?=]G<) × (G</[?=]G<) = a= (1) × a= (1) → a= (2)

of sheaves on -ét that is defined by ( 5 , 6) ↦→ dlog 5 ∧ dlog 6 ∈ ,=Ω2
-/k at the level

of local sections. Next, there exists a trace isomorphism '3c∗,=Ω3-/k → ,= (k),
as well as surjective morphisms '3c∗,=Ω3-/3,=Ω

3−1
-
→ ,= (k) for all = ≥ 1, see

[61, Corollary 1.7]. Moreover, for all n, there exist surjective morphisms

[= : '3c∗a= (3) → Z/?=Z, (0.10.80)

such that the following diagrams commute for all =:

0 // '3c∗a= (3) //

[=

��

'3c∗,=Ω3-/k
F−1 //

�

��

'3c∗

(
,=Ω

3
-/k

3 (,=Ω3−1
-/k)

)
����

0 // Z/?=Z // ,= (k)
f−1 // ,= (k),

where f : ,= (k) → ,= (k) denotes the Frobenius map. Then, we have the following
duality theorem.



194 0 Preliminaries

Theorem 0.10.30 Let - be a smooth and proper variety of dimension 3 over a
perfect field k of characteristic ? > 0. Then, the pairings a= (A) × a= (3−A) → a= (3)
together with the maps [= give rise to isomorphisms

'c∗a= (A) → 'H><P(?=) ('c∗a= (3 − A), Z/?=Z[−3]) (0.10.81)

in the derived category D1 (P(?=)).

In view of (0.10.70), to derive the duality for flat cohomology �8 (-, -?= ) we
must take A = 1 in the theorem, where we use the trace isomorphism (0.10.80) and
hence, may assume that 3 = 2. So, we assume now that - is a smooth and proper
surface over a perfect field k of characteristic ? > 0.

LetUk be the category of commutative unipotent algebraic groups over k and let
QUk be the abelian category of quasi-algebraic unipotent groups, see Section 0.1.
There is a duality functor

�• → (�•)∨ := 'Hom
(
�•,Q?/Z?

)
on the category of complexes in QUk. For example,

(Z/?Z)∨ = H><(Z/?Z,Q/Z) = H><(Z/?Z,Q?/Z?) = Z/?Z,

and
(Gpf

0 )∨ = EGC1 (Gpf
0 ,Q/Z) = EGC1 (Gpf

0 ,Q?/Z?) = G
pf
0 .

Here, the final Gpf
0 is considered as a complex shifted by one. To prove this isomor-

phism, we use that the Artin–Schreier exact sequence defines a quasi-isomorphism
of complexes

(0→ Z/?Z) → (G0,k
F−id−→ G0,k).

The sheaves '8c∗a= (A) are representable by a perfect unipotent group schemeG8= (A).
Let U8= be its connected part and let D8= (A) = �8= (A)/*8= be its étale quotient. Then,
there is an isomorphism of perfect group scheme

U8= (A)∨ � *3+1−8= (A)∨, D8= (A) � D3−8= (A)∨.

As explained in [61, Corollaire 3.8], Theorem 0.10.30 implies isomorphisms for
all 8:

U8 (-, -?= ) �
(
U5−8 (-, -?= )

)∨
, (0.10.82)

D8 (-, -?= ) �
(
D4−8 (-, -?= )

)∨
= H><(D4−8 (-, -?= ),Q?/Z?).

In particular, if k is algebraically closed, then the k-valued points of D8 (-, -?= ) and
D4−8 (-, -?= ) are finite and dual groups. Since G∨0 � G0 and since every smooth,
connected, commutative, and unipotent algebraic group has a composition series
with factors isomorphic to G0, we also find
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dim U8 (-, -?= ) = dim U5−8 (-, -?= ).

Using H><(U8 (-, -?= ),Q?/Z?) = 0, Theorem 0.10.30 implies the existence of a
pairing in the category of perfect group schemes for all =

�8fl (-, -?= ) × �
4−8
fl (-, -?= ) → Z/?=Z. (0.10.83)

Note however, that in general, this pairing is not perfect: its left kernel is isomorphic
to U8 (-, -?= ). On the other hand, we have already seen above that U8 (-, -?= ) is
zero for 8 ≤ 1 and that the pro-object U2 (-, -?= ) is essentially zero. Therefore,
when passing to the limit, we obtain a pairing

�8fl (-,Z? (1)) × �
4−8
fl (-,Z? (1)) → Z? (0.10.84)

that is non-degenerate modulo torsion groups. This is a ?-adic analog of Poincaré
duality in the classical topplogy. Note however, that we do not claim that this pairing
is perfect: Remark 0.10.31 gives counter-examples. The case 8 = 2 is particularly
interesting for surfaces: from the construction that the duality pairing (0.10.84), it
follows that it is compatible with the pairing on NS(-) ⊗ Z? induced by (0.10.61).
Therefore, we obtain the following commutative diagram:

0

��(
NS(-) ⊗ Z?

)
×

(
NS(-) ⊗ Z?

)
21×21

��

// Z?

�2
fl (-,Z? (1)) × �

2
fl (-,Z? (1)) //

��

Z?

)? Br(-) × )? Br(-) //

��

Z?

0 .

In particular, the Z?-module )? Br(-) plays the role of the dual of the trancendental
lattice.

Remark 0.10.31 Suppose that - is a smooth and proper surface over an algebraically
closed field k and assume furthermore that 12 (-) = d(-), that is, - is supersingular
in the sense of Shioda. By (0.10.26), (0.10.61), and Proposition 0.10.1, there exists
an isomorphism NS(-) ⊗ Zℓ � �2

ét (-,Zℓ (1)) that is compatible with intersection
pairings on both sides for all primes ℓ (including ℓ = ?). It follows from Poincaré
duality in ℓ-adic cohomology that the induced pairing on Num(-) ⊗Zℓ is perfect for
all ℓ ≠ ?. From this, it follows that the discriminant of the lattice Num(-) is power
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of ?. One can also prove with much more effort that the discriminant group is a ?-
group, see Theorem 10.1.6 in Volume II. For example, if - is a Shioda-supersingular
K3 surface, that is, we have d(-) = 12 (-) = 22, then

discr(Num(-)) = −?2f0 and � (Num(-)) � (Z/?Z)2f0

for an integer f0 = f0 (-) that satisfies 1 ≤ f0 ≤ 10. This integer is called the Artin
invariant of - and we refer to [25] or [462] for details, proofs, and further references.
Since f0 ≠ 0, the pairings on �2

fl (-,Z? (1)) and Num(-) are not unimodular.

We already mentioned above that the torsion of �3
fl (-,Z? (1)) may be not finitely

generated as a Z?-module, see [329], Section II.5.D. More precisely, and still as-
suming - to be a surface, it follows from [329, Section II.(5.22.5)], that there exists
a short exact sequence

0 → �3
fl (-,Z? (1)) → �2 (-,,Ω1

-/k)
F−id−→ �2 (-,,Ω1

-/k) → 0 , (0.10.85)

which is a special case of [329], Theorem II.5.5. Finally, still assuming - to be a
surface, it follows from Poincaré duality that we also have for all < ≥ 1

�4
fl (-, -?< ) = 0 and thus, �4

fl (-,Z? (1)) = 0.

Putting all these results together, we obtain a fairly good grip on the flat cohomology
groups of -?< and Z? (1), at least for smooth and proper surfaces.

Remark 0.10.32 One could also study flat cohomology of the locally constant sheaves
Z/?=Z on - . But then, the Artin–Schreier exact sequence

0 → Z/?=Z → ,=O-
F−1−→ ,=O- → 0

implies that �8ét (-,Z/?
=Z) = 0 for all 8 > dim - +1. In particular, there is no perfect

Poincaré duality type pairing for these cohomology groups.
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Chapter 1
Enriques surfaces: generalities

In this chapter, we introduce Enriques surfaces. We briefly recall the Kodaira–
Enriques classification of algebraic surfaces and place Enriques surfaces in this
classification. We determine the basic invariants of Enriques surfaces, and introduce
the K3-cover, which is more involved in characteristic ? = 2. We finally give explicit
examples and equations of Enriques surfaces.

1.1 Classification of Algebraic Surfaces

Let k be an algebraically closed field of arbitrary characteristic ? ≥ 0. In this section,
we recall the fundamental results of the classification of smooth projective surfaces
over k. For characteristic zero, we refer to the textbooks [43], [47], [259], [612] and
the references given there. For positive characteristic, we refer to the original articles
[539], [78], [77], to the textbooks [38] and [424], as well as to the survey [458].

For any invertible sheaf L or a divisor �, we denote by |L| or |� | the complete
linear system of effective divisors � with O- (�) � L or linearly equivalent to �. It
is clear that |� | depends only on the linear equivalence class of �.

First, we define the Kodaira–Iitaka dimension ^(-,L) of an invertible sheaf L
on a normal and projective variety - to be −∞ if ℎ0 (-,L⊗<) = 0 for all < ≥ 1.
Otherwise, we define it by the following equivalent properties:

1. The function < ↦→ ℎ0 (-,L⊗<) grows like <^ (-,L) as < tends to infinity.
2. The maximal dimension of the image of the rational map defined by |L⊗< | with
�0 (-,L⊗<) ≠ {0} is equal to ^(-,L).

3. The section ring of L, that is, the graded k-algebra

'(-,L) :=
⊕
<≥0

�0 (-,L⊗<)

is an integral domain and its field of homogeneous fractions is of transcendence
degree ^(-,L) over k.

199
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In particular, it follows from the second characterization that ^(-,L) is either equal
to −∞ or it is an integer lying in between 0 and dim(-). By definition, an invertible
sheaf L is called big if ^(-,L) = dim(-). For example, if L is ample, then it is
big, but the converse need not be true if dim(-) ≥ 2. We refer to [447, Definition
2.1.3] and [447, Corollary 2.1.38] for details and proofs in arbitrary dimensions, as
well as to [38, Section 14] for these results if - is of dimension at most two. Let
us also note that even if - is a surface, then the section ring '(-,L) need not be
a finitely generated k-algebra and that Zariski [741] (see also [38, Theorem 14.19])
settled when finite generation holds and when it fails.

If - is a smooth and projective variety with canonical invertible sheaf l- , then
^(-) := ^(-, l- ) is called the Kodaira dimension or canonical dimension of - .
This is the main invariant in higher-dimensional algebraic geometry. The Kodaira
dimension is a birational invariant of smooth and proper varieties. Moreover, the
canonical section ring '(-) := '(-, l- ) is called the canonical algebra. It is
expected that '(-) is always a finitely generated k-algebra, but at the moment this
is only known to be true if dim(-) ≤ 2 or if char(k) = 0 – we refer the interested
reader to [38, Section 14.31] for a proof in dimension two and to [380] for a survey
of the higher-dimensional case.

Example 1.1.1 If - is a smooth and proper curve over k, then its genus 6 = 6(-)
controls the Kodaira dimension as follows:

6 0 1 ≥ 2
^ −∞ 0 1

Next, we turn to dimension two: first, a note on the category we are working in,
which is classical in dimension one and due to Zariski and Goodman in dimension
two. The extension to algebraic spaces can be found, for example, in [399, Theorem
V.4.9 and Section V. 4.10].

Theorem 1.1.2 Let - be an algebraic space that is smooth, proper, and of dimension
at most two over an algebraically closed field k. Then, - is a scheme that is projective
over k.

In particular, when talking about curves and surfaces that are smooth and proper
over k, there is no difference between working with algebraic spaces (as one has
to do when constructing moduli spaces) or with projective varieties (as one usually
does in classical algebraic geometry).

Let - be a smooth and proper surface over k. Then, - is called minimal if
every birational morphism 5 : - → - ′ onto a smooth and proper surface - ′ is
an isomorphism. Equivalently, this means that - does not contain (−1)-curves.
Moreover, if ^(-) ≥ 0, then - is minimal if and only if  - is a nef divisor class, that
is, - ·� ≥ 0 for every effective curve�. (Wewill come back to nef invertible sheaves
in Section 2.1.) Let us denote by ≡ (resp. ∼) the numerical (resp. linear) equivalence
of divisors. Then, we have the following fundamental result about minimal models
and the Kodaira dimension of surfaces.
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Theorem 1.1.3 Let - be a smooth and proper surface over an algebraically closed
field k. Then, there exists a birational morphism 5 : - → - ′ onto a minimal surface
- ′ that satisfies precisely one of the following properties:

1. ^(- ′) = 2,  2
- ′ > 0,

2. ^(- ′) = 1,  2
- ′ = 0,  - ′ . 0,

3. ^(- ′) = 0,  2
- ′ = 0,  - ′ ≡ 0,

4. ^(- ′) = −∞, - ′ � P2 or - ′ is a minimal ruled surface, that is, there exists a
smooth morphism 5 : - ′ → � onto a smooth projective curve � such that all
geometric fibers are isomorphic to P1.

Remark 1.1.4 To complete the picture, let usmention the following additional results.

1. If ^(-) ≥ 0, then the surface - ′ from Theorem 1.1.3 is unique, that is, - has
a unique minimal model, called the minimal model of - , which is unique up to
isomorphism.

2. If ^(-) = −∞, then minimal models are not unique. For example, P2 and P1 × P1

are minimal and birationally equivalent surfaces that are not isomorphic. By a
theorem of Tsen (see [47, Theorem III.4] or [38, Theorem 11.3]), a minimal ruled
surface 5 : - → �, that is, a smooth a smooth fibration 5 , where� is a curve and
where all geometric fibers are isomorphic to P1 has a section, which implies that
- → � is a P1-bundle, and thus, isomorphic to P(E) → �, where E is a locally
free sheaf of rank 2 on �. In particular, - is birationally equivalent to � × P1.

3. A surface - with ^(-) = −∞ and @ = 0 is birationally isomorphic to P2, and
hence, it is a rational surface. Castelnuovo’s Rationality Criterion characterizes
rational surfaces as those surfaces whose numerical invariants @, ?6, and %2 :=
dim�0 (-,O- (2 - )) vanish (see [740] or [38, Chapter 13] for a characteristic
free proof).

4. If ^(-) = 2, then - is called a surface of general type. By fundamental results of
Bombieri [76] and Ekedahl [211], we have that if < ≥ 5, then |< - | defines a
morphism to projective space, and - is birational onto its image.

5. In Chapter 4, we will study surfaces admitting genus one fibrations, that is,
fibrations, whose generic fiber is an integral curve of arithmetic genus one. In
the case where the generic fiber is smooth, such a fibration is called elliptic, and
quasi-elliptic otherwise. The latter type exists in characteristic ? = 2, 3 only (see
Theorem 4.1.3). A (quasi-)elliptic surface - satisfies ^(-) ≤ 1. If ^(-) = 1, then
- carries a unique genus one fibration, and in fact, this fibration arises from the
morphism associated to |< - | for < ≥ 14 [375] (< ≥ 5 if ? = 3 [365]). We
will see later that all Enriques surfaces admit genus one fibrations, but that these
fibrations are not unique.

Since Enriques surfaces, the objective of this book, have Kodaira dimension zero,
let us have a closer look at this class of surfaces. First, let us recall the fundamental
numerical invariants of surfaces: we denote by 18 (-) the Betti numbers computed
with respect to the classical or étale topology as explained in Section 0.10. We
denote by 4(-) = ∑

8 (−1)818 (-) the Euler–Poincaré characteristic. We also have
j(O- ) =

∑
8 (−1)8ℎ8 (O- ) and the Hodge numbers ℎ8, 9 (-) = ℎ 9 (Ω8

-
). Let us recall



202 1 Enriques surfaces: generalities

from Section 0.10 that 11(X) is twice the dimension of the Picard scheme Pic◦
-/k

and that the Zariski tangent space of Pic◦
-/k at O- is isomorphic to �1 (O- ). In

Proposition 0.9.10, we defined

Δ(-) = 2ℎ1 (O- ) − 11 (-)

and showed that this is a non-negative and even integer, which is zero if and only
if Pic0

-/k is reduced, that is, an abelian variety. Moreover, if ? = char(k) = 0, then
Δ(-) = 0, whereas if ? > 0, then we have the bound 0 ≤ Δ(-) ≤ 2ℎ2 (O- ). Finally,
we denote by ?6 (-) = ℎ0 ( - ) the geometric genus of - , and if - is a surface,
then Serre duality gives ℎ0,2 (-) = ℎ2 (O- ) = ℎ0 ( - ) = ?6 (-). The next result
determines the possible values of these invariants for minimal surfaces of Kodaira
dimension zero, that is, the third case of Theorem 1.1.3.

Proposition 1.1.5 Let - be a smooth and proper surface over an algebraically closed
field k that is a minimal surface of Kodaira dimension zero. Then,  2

-
= 0, and we

have the following possible invariants:

12 11 4 j ℎ0,1 ?6 Δ

22 0 24 2 0 1 0
14 2 12 1 1 1 0
10 0 12 1 0 0 0

1 1 2
6 4 0 0 2 1 0
2 2 0 0 1 0 0

2 1 2︸              ︷︷              ︸ ︸                                      ︷︷                                      ︸
invariants under invariants, which are in general
deformation only upper-semicontinuous under

deformation
Table 1.1 Possible invariants for minimal surfaces of Kodaira dimension zero

We will see in Proposition 1.1.9 that the case 12 (-) = 14 does not occur.

Proof From the third case of Theorem 1.1.3, we obtain  2
-
= 0, as well as ?6 (-) ≤

1. In particular, Δ(-) = 0 or Δ(-) = 2 and by Proposition 0.9.10, the latter is
possible only if ?6 (-) = 1. By Serre duality, we have ℎ2 (O- ) = ?6 (-) and deduce
j(O- ) ≤ 2 from this. Next, Noether’s formula (0.10.22) becomes 12j(O- ) =
4(-) = 2 − 211 (-) + 12 (-), which we expand and arrange as follows:

10 + 12?6 (-) = 8ℎ1 (O- ) + 2Δ(-) + 12 (-).

Then, each term and both sides of this formula are non-negative. Using ?6 (-) ≤ 1
and the other just-established inequalities, we obtain the stated list. �

Now, we define the main object of this book.
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Definition 1.1.6 An Enriques surface is a smooth and proper surface over an alge-
braically closed field k that is of Kodaira dimension zero and satisfies 12 (-) = 10.

Note that it follows from Table ?? that an Enriques surface additionally satisfies
the following properties:

11 (-) = 0, j(O- ) = 1. (1.1.1)

From now on, we denote Enriques surfaces by ( to distinguish them from other
surfaces, which we will usually denote by - . By Table ??, we have ℎ0,1 (() =
?6 (() ≤ 1 and this inequality is an equality if and only if Δ(() = 2, which can
only happen in positive characteristic. In particular, if ℎ0,1 (() ≠ 0, then the absolute
Frobenius morphism of ( induces a semi-linear map of one-dimensional k-vector
spaces

F : �1 ((,O() → �1 ((,O(). (1.1.2)

Here, semi-linear means that we have F(_ · B) = _? · F(B) for all _ ∈ k and all
B ∈ �1 ((,O(). Since k is algebraically closed, whence perfect, this map is either
zero or bĳective. Following the traditional terminology from [77], we make the
following definition.

Definition 1.1.7 An Enriques surface is called:

1. classical if ℎ0,1 (() = ?6 (() = 0,
2. ordinary (or, singular) if ℎ0,1 (() = ?6 (() = 1 and F is bĳective on �1 (O(), and
3. supersingular if ℎ0,1 (() = ?6 (() = 1 and F is zero on �1 (O().

For reasons that will become clear in Theorem 1.2.1 below, ordinary Enriques
surface are also called -2-surfaces and supersingular Enriques surfaces are also
called "2-surfaces – see also Definition 1.2.6 As already mentioned, non-classical
Enriques surfaces can only exist in positive characteristic. The following result shows
that even there, they can only exist in characteristic 2.

Theorem 1.1.8 An Enriques surface ( in characteristic ? ≠ 2 is classical.

Proof If ? = 0, then Δ(() = 0, and thus, ( is classical.
Suppose that ( is not classical. Then, ? > 0 and from ℎ2 (O() = ℎ0 ( () = 1,

we deduce  ( = 0. Since ℎ1 (O() = 1, any 0 ≠ 4 ∈ �1 (O() is a basis. Then, the
absolute Frobenius F induces a semi-linear action on �1 ((,O(), say with 4 ↦→ _4

for some _ ∈ k. Let "_ be the kernel of the map (F − _) : O( → O( , where we
consider O( as the group scheme G0 over ( in the flat topology. Then, � � Z/?Z if
_ ≠ 0 and � � "? if _ = 0, see also Example 0.1.7. Taking the flat cohomology in
the exact sequence

0 → "_ → G0,(
F−_−→ G0,( → 0,

we see that �1 ((,"_) is non-zero, and thus, there exists a non-trivial "_-torsor c :
- → (. Then, c is a finite and flat morphism of degree ?, which is a principal Artin–
Schreier cover if _ ≠ 0 and purely inseparable if _ = 0. It follows from Proposition
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0.2.20 that - is an integral Gorenstein surface with l- � c∗ (l() � c∗ (O() � O-
and hence j(O- ) ≤ 2. On the other hand, c∗O. has a composition series of length
?, all of whose simple factors are isomorphic to O( , see (0.2.17). Since c is a finite
morphism, we obtain

2 ≥ j(O- ) = j(c∗O- ) = ? · j(O() = ?,

which proves the theorem. �

For the sake of completeness, we end this section by briefly discussing the re-
maining surfaces from Table 1.1. We start with the following two cases.

Proposition 1.1.9 Let - be a smooth, proper, and minimal surface of Kodaira di-
mension zero over an algebraically closed field k.

1. Surfaces with 12 (-) = 14 do not exist.
2. If 12 (-) = 22, then:

a.  - = 0,
b. there exists an integer 1 ≤ d ≤ 22 and d ≠ 21 with

Pic-/k � NS(-)k � Num(-)k � (Zd)k,

c. - is algebraically simply connected, that is, - does not admit any non-trivial
finite étale covers.

Proof By Table 1.1, a hypothetical surface with 12 = 14 satisfies 11 = 2 and
j(O- ) = 1, and thus, (Pic0

-/k)red is of dimension 1. Thus, there exists a numerically
trivial invertible sheaf L � O- . Since ?6 > 0 and  - ≡ 0, we have  - = 0. Thus,
using Riemann–Roch and Serre duality, we find

ℎ0 (L) + ℎ0 (L−1) = ℎ0 (L) + ℎ0 (l- ⊗ L−1) ≥ j(O- ) = 1,

which implies that ℎ0 (L) ≥ 1 or ℎ0 (L−1) ≥ 1. But since L and L−1 are both non-
trivial and numerically trivial, neither of them can be represented by an effective
divisor. This contradiction excludes the possibility of surfaces with 12 = 14.

Let us now assume that 12 = 22. As before, ?6 > 0 and  - ≡ 0 imply  - = 0.
Next, by Table 1.1, we have �1 (O- ) = 0, which implies that the tangent space
of Pic-/k at the origin is trivial, and thus, Pic0

-/k = 0. Let L ∈ Picg
-/k (k). As

in the previous discussion,  - = 0, Riemann–Roch, and the Serre duality imply
ℎ0 (L) + ℎ0 (L∨) ≥ 2. This shows that L or L∨ has a non-trivial section and thus,
L � O- . Thus, NS(-) has no non-trivial torsion. Since ( is a projective surface, we
have d ≥ 1, and using the Igusa–Artin-Mazur inequality (0.10.53), we deduce d ≤
12 = 22 and d ≠ 21. It remains to prove the assertion on the algebraic fundamental
group: let 5 : . → - be a finite, connected, and étale cover of degree = ≥ 2. Then
5 ∗ (l- ) � l. and thus,  . = 0. Since j(.,O. ) = 2 − @(. ) ≤ 2 = j(-,O- ) and
4(. ) > 4(-), we get a contradiction with Noether’s formula. �
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In Section 1.3, wewill see that surfaceswith 12 = 22 as in the previous proposition
are closely linked to Enriques surfaces. Let us give the classical definition of this
type of surfaces.

Definition 1.1.10 A K3 surface is a smooth and proper surface - over a field satis-
fying  - = 0 and ℎ1 (O- ) = 0.

From the point of view of Enriques surfaces, the following examples of K3
surfaces will play an important role later on. Moreover, we refer to Example 1.6.10
for another construction of K3 surfaces that uses abelian surfaces.

Lemma 1.1.11 Let - be an integral surface over an algebraically closed field k that
is:

1. a hypersurface of degree 4 in P3, or
2. a complete intersection of a quadric and a cubic in P4, or
3. a complete intersection of three quadrics in P5.

Then, - is an integral Gorenstein surface with l- � O- and �1 (-,O- ) = 0. If -
is smooth, then it is a K3 surface.

Proof In all cases, we have l- � O- by the adjunction formula. Quite gener-
ally, a complete intersection / of dimension 3 in some projective space satisfies
�8 (/,O/ (:)) = 0 for all 1 ≤ 8 ≤ 3 − 1 and all : ∈ Z, see, for example, [294,
Exercise III.5.5]. Finally, if - is smooth, then  - = 0 and ℎ0,1 = 0, which identifies
- as a K3 surface. �

It remains to deal with the remaining cases of Table 1.1. In both cases, we have
11 ≠ 0, and thus, the Albanese morphism alb- : - → Alb(-) is non-trivial. This is
the key to their classification.

Proposition 1.1.12 Let - be a smooth, proper, and minimal surface of Kodaira
dimension zero over an algebraically closed field k.

1. If 11 (-) = 2, then the Albanese morphism gives rise to a fibration - → � onto
an elliptic curve � , all of whose fibers are integral curves of arithmetic genus
one.

2. If 11 (-) = 4, then the Albanese morphism of - is an isomorphism. In particular,
- is an abelian surface, that is, an abelian variety of dimension two.

Proof If 11 = 2, then the Stein factorization of the Albanese morphism is a fibration
- → � , where � is an elliptic curve. If � is a fiber, then �2 = 0 (being a fiber) and
 - ·� = 0 (since  - ≡ 0), imply that � is of arithmetic genus one. Moreover, by the
Shioda-Tate formula (4.3.2), the Picard number of - is equal to d = 2+∑G (<G −1),
where <G denotes the number of irreducible components of the fiber over G ∈ � .
Since d ≤ 12 = 2, we find d = 2, and thus, every fiber of - → � is irreducible.

If 11 = 4, then the image of alb- is an abelian variety of dimension 2. We refer
to [78, Section 5] or [38, Theorem 10.19] for a proof that alb- is an isomorphism in
this case. �
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Using the previous result, one can actually classify surfaces with 11 = 2 in
characteristic ? ≥ 0 very explicitly. Let us sketch the idea and refer to [78] and
[77] for details: if ? ≠ 2, 3, then the geometric fibers of - → � are all smooth
genus one curves, that is, elliptic curves. Therefore, the fibration is isotrivial, and all
geometric fibers are isomorphic to one elliptic curve �. Then, there exists a finite
and étale Galois-cover, such that this isotrivial fibration becomes a trivial product
family. This eventually exhibits - as the quotient of the product of two elliptic curves
by a fixed-point-free action of some finite group  . In characteristic ? = 2, 3 there
is the additional possibility that all fibers - → � are isomorphic to one curve �,
that is a rational curve with an ordinary cusp. In this case, the smooth locus of �
carries a group scheme structure that is isomorphic to G0. This is an example of
a quasi-elliptic fibration, see Section 4.1. In all cases, there exists an elliptic curve
� ′ over k, a finite subgroup scheme  ⊂ Aut(� ′), an injective homomorphism
U :  → Aut(�), and an isomorphism

- � (� ′ × �)/ ,

where : ∈  acts via (4, 2) ↦→ (4 + :, U(:) (2)) on � ′ × �. Then, the Albanese
morphism coincides with the projection onto the first factor and � � � ′/ . More-
over, the projection onto the second factor induces an elliptic fibration - → P1.
Since these surfaces come with two genus one fibrations, one makes the following
definition.

Definition 1.1.13 Let - be a smooth, proper, and minimal surface of Kodaira di-
mension zero with 11 = 2. Let - → � be the Albanese fibration. In the case where
the generic fiber is smooth, - is called a bielliptic surface or hyperelliptic surface.
Otherwise, - is called a quasi-bielliptic surface or a quasi-hyperelliptic surface.

One can explicitly classify all possible  ,  ⊂ � ′ and U :  → Aut(�): in
characteristic zero, this leads to the classical list of Bagnera and de Franchis, see [47,
List VI.20]. In positive characteristic, a similar list has been worked out by Bombieri
and Mumford for bielliptic surfaces in [78] and for quasi-bielliptic surfaces in [77].
As already mentioned, quasi-bielliptic surfaces exist in characteristic ? = 2, 3 only.

Let us mention the following application of these classification lists: we have
 - = 0 if - is an abelian surface or a K3 surface and we will establish 2 - = 0 for
Enriques surfaces in Corollary 1.2.3 below. When combining these results with the
lists of Bagnera-de Franchis and Bombieri–Mumford just mentioned, we obtain the
following.

Theorem 1.1.14 A smooth, proper, and minimal surface - of Kodaira dimension
zero satisfies 12 - = 0.
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1.2 The Picard Scheme and the Brauer Group

In this section, we will compute the Picard number, the connected component of the
Picard scheme and its torsion, and the Brauer group of an Enriques surface. This
leads to another characterization of the three types of Enriques surfaces introduced
in Definition 1.1.7 via their Picard schemes. The most difficult result of this section
is that all Enriques surfaces have Picard number d = 12 = 10. Whereas this result is
easy to prove in characteristic zero, it requires more effort in positive characteristic.

We start with the connected component of the Picard scheme and its torsion,
which we introduced and discussed in Section 0.9.

Theorem 1.2.1 Let ( be an Enriques surface over an algebraically closed field k of
characteristic ? ≥ 0. Then,

(Pic0
(/k)red = 0,

and Picg
(/k is a finite and flat group scheme of length 2 over k. More precisely,

Picg
(/k �


(Z/2Z)k if ( is classical,
-2,k if ( is ordinary,
"2,k if ( is supersingular.

In particular, if ? ≠ 2, then ( is classical and Picg
(/k is étale.

Remark 1.2.2 If ( is a supersingular or a classical Enriques surface in characteristic
2, then the group scheme Picg

(/k is unipotent. For this reason, these two classes of
surfaces are also called unipotent Enriques surfaces. We will see in Section 1.2 and
Section 1.3 that they are the classes of Enriques surfaces that are the most difficult to
handle. In Theorem 1.4.13, we will see that the class of unipotent Enriques surfaces
coincides with the class of algebraically simply connected Enriques surfaces.

Proof By Table 1.1, we have 11 (() = 0. Therefore, (Pic0
(
)red is an abelian variety

of dimension zero and thus, trivial.
First, assume that ( is classical. Then �1 (O() = 0, which implies that Pic( is a

discrete and reduced group scheme. In particular, we have Picg( = (Tors(Pic(()))k
in this case. Let L ∈ Tors(Pic(()). By Riemann–Roch and Serre duality, we find
ℎ0 (L) + ℎ2 (L) ≥ 1, which implies that L � O( or L � l( . Since ( is classical,
we have ℎ0 (O() = 1 and ℎ0 (l() = 0 and thus, O( � l( . Hence, Picg( � (Z/2Z)k
and this group is generated by l( .

Now, assume that ( is non-classical. Then, we have ? = 2 by Theorem
1.1.8. Arguing as before, we find (Picg()red = 0 and thus, � := Picg( consists
of one point with a one-dimensional Zariski tangent space. As a scheme, a fi-
nite flat group scheme � over k with � (k) = {1} is the spectrum of a ring
of the form k[C1, ..., CA ]/(C ?

=8

1 , ..., C
?=A

A ), see [160, Exposé VIIB, 5.4] and Remark
0.1.13. In our case, the Zariski-tangent space of � is one-dimensional and thus,
� � Spec k[C]/(C ?= ) for some = ≥ 1. Seeking a contradiction, assume that = ≥ 2.
Then, the morphism Spec k[C]/(C2) → Pic( defined by a nonzero tangent vector can
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be extended to a morphism Spec k[C]/(C3) → � ↩→ Pic( . By [538, Lecture 27], this
implies that the first Bockstein operation V1 : �1 (O() → �2 (O() is not bĳective
(see also Remark 0.9.9). However, this is impossible: indeed, in characteristic 2, the
map V1 is equal to the composition of the map

�1 ((,O() → �1 ((,O() ⊗ �1 ((,O(), G ↦→ G ⊗ G

followed by the cup-product

�1 ((,O() ⊗ �1 ((,O() → �2 ((,O().

Since ( is non-classical, we have  ( = 0 and then, the cup-product map coincides
with the map

�1 ((,O() ⊗ �1 ((,Ω2
() → �2 ((,Ω2

(),

which is an isomorphism by Serre duality. In particular, V1 is bĳective.
Thus, still assuming that ( is non-classical, we know that Picg( is a non-reduced

group scheme of length ? = 2, and thus, isomorphic as a scheme to Spec k[C]/(C2).
Thus, by Theorem 0.1.10, this group scheme is isomorphic to -2 or to "2. By
Example 0.1.16, the Frobenius map on Zariski tangent spaces is bĳective in the first
case and it is zero in the second case. �

Corollary 1.2.3 Let ( be an Enriques surface. Then, we have

2 ( = 0.

Moreover, we have  ( = 0 if and only if ( is non-classical.

Proof By Theorem 1.1.3, we have  ( ≡ 0, where ≡ denotes numerical equivalence.
If ( is non-classical, then ℎ0 ( () = 1 and we conclude  ( = 0. If ( is classical, then
ℎ0 ( () = 0, which implies  ( ≠ 0. But since  ( is an element of Picg( (k), which is
of length 2, we find 2 ( = 0. �

Remark 1.2.4 Another way of proving 2 ( = 0 goes as follows: Enriques surfaces
satisfy 11 (() = 0 and, being of Kodaira dimension zero, they are not rational.
Thus, we must have ℎ0 (2 () ≠ 0 for otherwise we would obtain a contradiction to
Castelnuovo’s Rationality Criterion. Since  ( ≡ 0, we conclude 2 ( = 0.

Corollary 1.2.5 Let ( be an Enriques surface over an algebraically closed field k of
characteristic ? > 0. Then, �1 (,O() = 0,

�2 (,O() �


0 if ( is classical,
k · G with FG = G? and +G = 0 if ( is ordinary,
k · G with FG = +G = 0 if ( is supersingular,

and the F-isocrystal �2 ((/,) ⊗,  is of slope one.

Proof Since Pic◦( is zero-dimensional and �1 (,O() is always without ?-torsion,
we conclude that �1 (,O() = 0, see also Section 0.10.
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Next, it follows from Proposition 0.10.21 that �2 (,O- ) � D(Pic◦(/Pic
◦
(,red) and

that the slope of �2 ((/,) ⊗,  is equal to one. From this, the assertion follows,
see also the computation of Dieudonné modules in Section 0.3. �

In view of Theorem 1.2.1, we will also use the following terminology.

Definition 1.2.6 An ordinary (resp. supersingular) Enriques surface is also called a
-2-surface (resp. an "2-surface).

Having determined the torsion and infinitesimal structure Picg
(/k of an Enriques

surface, let us now determine the Picard number d((), which is the main result of
this section.

Theorem 1.2.7 Let ( be an Enriques surface over an algebraically closed field k.
Then, its Picard number satisfies

d(() = 12 (() = 10.

The proof will require some work. In characteristic zero, it is actually not so
difficult.

Lemma 1.2.8 Theorem 1.2.7 is true if k is of characteristic zero.

Proof By the Lefschetz principle, we may assume k = C. Then, taking cohomology
in the exponential sequence (0.10.9)

0 → Z → O-
exp
−→ O×- → 0, (1.2.1)

and using ℎ1 (O() = ℎ2 (O() = 0, we find Pic(() = �1 ((,O×
(
) � �2 ((,Z), which

implies d(() = 12 (() = 10. �

Since Theorem 1.2.7 is a fundamental result for Enriques surfaces, let us note
that there are currently three proofs available in positive characteristic:

1. The first proof is due to Bombieri and Mumford [77]: first, they show that every
Enriques surface carries a genus one fibration. The associated Jacobian fibration
is a rational surface, which is easily seen to satisfy d = 12 = 10, from which it
follows that Enriques surfaces also satisfy this equality. We will come back to this
in Section 4.1.

2. In the case where an Enriques surface in positive characteristic lifts to character-
istic zero, one obtains Theorem 1.2.7 from Lemma 1.2.8 using Corollary 1.2.12.
But although lifting of Enriques surfaces to characteristic zero is true by [458]
(see also Remark 1.4.11 and Volume II), the proof there requires Theorem 1.2.7
at some point.

3. The second proof is due to Lang [433]: it uses a mixture of the previous lifting
argument and unirationality results In the case where the lifting of the surface in
question is not so obvious. We will present it below.

4. The third proof is due to Liedtke [464]: first, it reduces to the case of Enriques
surfaces over F? and then, it uses the Tate conjecture. We will present it below.
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We start with Lang’s proof of Theorem 1.2.7 from [433], which also contains
some results that are interesting in their own right: we start with the easy case of
unirational Enriques surfaces. Recall that a variety - over an algebraically closed
field k is said to be unirational if there exists a dominant rational map 5 : P= d - .
By restricting 5 to a generic linear subspace of dimension dim(-), there is no loss
in generality in assuming = = dim(-) in this definition. An example of a unirational
surface of non-negative Kodaira dimension is a Zariski surface (see Example 0.3.17).
We will come back to the unirationality of Enriques surfaces in Theorem 1.3.11 and
to classical Enriques surfaces with nontrivial global vector fields in Corollary 1.4.9
below.

Proposition 1.2.9 Let ( be an Enriques surface over an algebraically closed field k
of characteristic ? > 0.

1. If ( is unirational, then it satisfies d(() = 12 (() = 10.
2. If ( is classical and �0 ((,Θ() ≠ 0, then ( is a Zariski surface. (These surfaces

are very rare, see Theorem 1.4.10.)

Proof Smooth rational surfaces satisfy d = 12, since this holds for P2 and since
this equality is preserved under blow-ups and blow-downs. Moreover, the property
d = 12 also holds for images of dominant and generically finite morphisms by a
theorem of Shioda [675]. In particular, it holds for unirational surfaces, andwe obtain
the first assertion.

To prove the second assertion, we choose a non-zero vector field m ∈ �0 ((,Θ(),
which we may assume to be ?-closed by Lemma 0.3.5. Let c = cm : ( → (m be
the corresponding quotient map, see Section 0.3. Let f : . → (m be a resolution
of singularities and c′ : (′ → . ×(m ( be a resolution of singularities of the base
change. Thus, (′→ ( is a birational morphism of smooth surfaces, and we obtain a
commutative diagram

(′
c′ //

g

��

.

f

��
(

c // (m.

Then, ℎ0 (= () ≥ ℎ0 (= . ) for all = ≥ 1 and 0 = ^(() ≥ ^(. ) by Corollary
0.3.16. If the Albanese morphism of . were non-trivial, then so would be that of (′,
which contradicts 11 ((′) = 11 (() = 0. This contradiction shows that 11 (. ) = 0. In
particular, if ^(. ) = −∞, then . is a rational surface. Thus, (′ is a rational surface
and the map (′ → ( is an inseparable cover of (, whence ( is a Zariski surface and
we are done.

Thus, we may assume now that ^(. ) = 0, and we want to show that this case does
not occur. From 11 (. ) = 0 and Table ?? it follows that . is birational to an Enriques
surface or to a K3 surface. Since we assumed ( to be a classical Enriques surface, it
follows from 0 = ℎ0 ( () ≥ ℎ0 ( . ) that . cannot be a K3 surface.

Thus, . is birational to an Enriques surface and we let 5 : . → . ′ be a birational
morphism to the unique minimal model . ′ of . . Since every (−1)-curve contributes
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positively to the canonical class of . and  ( is numerically trivial, it follows that
the exceptional locus of 5 is contained in the exceptional locus of f. In particular,
if f is the minimal resolution of singularities, then there are no (−1)-curves in the
exceptional locus of f and 5 is an isomorphism, that is, we may assume that . is a
minimal surface. Thus, we assume that . is an Enriques surface.

Since c is a finite and purely inseparable morphism, it is a homeomorphism in the
étale topology, from which we conclude 12 ((m) = 12 (() = 10. Being an Enriques
surface, we have 12 (. ) = 10. Since every exceptional divisor of . → (m would
contribute positively to the difference 12 (. ) − 12 ((m), which is zero, it follows that
. → (m is an isomorphism. Thus, the quotient of ( by m is . , which is a smooth
surface and thus, the vector field m has no isolated zeros, see Theorem 0.3.9. On the
other hand, we have  ( = c∗ . + (? − 1)' by Proposition 0.3.14, where ' denotes
the divisor of m. This implies that ' = 0, which shows that m has no singular points
at all. However, in view of equality (0.3.4), this contradicts 22 (() = 12 ≠ 0. �

Next, we want to show that Enriques surfaces that lift to characteristic zero satisfy
d = 12 = 10. To do so, we start with the following result of Katsura and Ueno
[375], which is interesting in its own right. It shows that some of the most important
invariants of surfaces do not change in smooth families. Note that for families in
positive or mixed characteristic, the Hodge numbers ℎ8, 9 only satisfy semi-continuity
and may jump - in fact, families of Enriques surfaces provide examples (see also
Table ??).

Theorem 1.2.10 Let 5 : X → Spec ' be a smooth morphism of relative dimension
2 over a Dedekind domain '. Let X[̄ be the geometric generic fiber and let X0̄ be a
geometric special fiber. Then,

18 (X[̄) = 18 (X0̄), 4(X[̄) = 4(X0̄),
j(OX[̄ ) = j(OX0̄ ),  

2
X[̄ =  2

X0̄
,

^(X[̄) = ^(X0̄), d(X[̄) ≤ d(X0̄).

If X[̄ is a minimal surface, then also X0̄ is minimal. If X0̄ is a minimal surface and
^(X0̄) ≥ 0, then also X[̄ is minimal.

Proof After localizing at the maximal ideal corresponding to the special point 0̄,
and passing to unramified extensions and completions, we may assume that ' is a
local and complete DVR with algebraically closed residue field.

We start with the assertion on Picard numbers. Let 9 : X[ → X and 8 : X0 → X
be the inclusion morphisms, which give rise to homomorphisms of Picard groups 8∗ :
Pic(X) → Pic(X0) and 9∗ : Pic(X) → Pic(X[). Replacing ' by a finite extension
if necessary, we may assume Pic(X[) = Pic(X[̄) from now on. By projectivity
of X[ , every Cartier divisor on X[ can be written as a difference of two effective
Cartier divisors. The closure of these two divisors in X are Weil divisors, which are,
moreover, Cartier divisors, since X is regular. This defines a section of 9∗, and since
9∗ is injective, it follows that 9∗ is an isomorphism of Picard groups. Thus, we obtain
a specialization homomorphism
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sp : Pic(X[̄) → Pic(X0̄) (1.2.2)

and refer to [274, Section 7.8] for further details. By loc. cit, this homomorphism is
compatible with the intersection forms on both sides and thus, it induces an injective
homomorphism

Num(X[̄) → Num(X0̄).

From this, we obtain d(X[̄) ≤ d(X0̄).
The equality of Betti numbers follows from the base change theorem in étale coho-

mology (see [508, Chapter 6, Theorem 4.1], or [375, Section 9]). By definition, this
implies the equality of Euler–Poincaré characteristics. Since Euler characteristics of
coherent sheaves are constant in flat families, and intersection numbers of Cartier di-
visors can be defined using such Euler characteristics, we deduce j(OX[̄ ) = j(OX0̄ )
and  2

X[̄ =  
2
X0̄

(for the latter, one could also use Noether’s formula (0.10.22)).
Let us denote by ?= (. ) the =-th plurigenus ℎ0 (., l⊗=

.
). By the semi-continuity

theorem, we have ?= (X[̄) ≤ ?= (X0̄) for all = ≥ 1, which implies ^(X[̄) ≤ ^(X0̄).
If X[̄ is not minimal, then there exists a curve � with  [̄ · � < 0, and after

specializing, we find that also  X0̄ is not nef. If moreover ^(X0̄) ≥ 0, then  X0̄ not
being nef implies that X0̄ is not minimal. Conversely, if X0̄ is not minimal, then it
contains a (−1)-curve and this curve lifts toX[̄ by a deformation argument, see [375,
Lemma 9.4]. This implies both minimality assertions.

By lifting (−1)-curves as in loc. cit. and contracting them in families, we may
assume that X0̄ is minimal. Now, let ^(X[̄) = −∞. Then,  X[̄ is not nef, which
implies that  X0̄ is not nef (by the same argument as above) and minimal, whence
^(X0̄) = −∞.

To show equality of Kodaira dimensions in the remaining cases, we may assume
that X0̄ and X[̄ are both minimal surfaces of non-negative Kodaira dimension.
If ^(X[̄) = 2, then  2

X0̄
=  2

X[̄ > 0 since intersection numbers are preserved
under specialization. Applying Theorem 1.1.3 to X0̄, we find ^(X0̄) = 2. Also, if
^(X[̄) = 0, then 12 X[̄ = 0 by Theorem 1.1.14, which implies that 12 X0̄ = 0,
whence ^(X0̄) = 0. But then, also ^(X[̄) = 1 must imply ^(X0̄) = 1. �

By inspecting Table ??, we see that the type of surfaces of Kodaira dimension
zero does not change in smooth families.

Corollary 1.2.11 In the situation of the theorem, X0̄ is an Enriques surface (resp.
K3 surface, abelian surface, (quasi-)bielliptic surface) if and only if X[̄ is of the
same type.

We will study the degenerations of Enriques surfaces varying in not necessary
smooth families in Chapter 5 and Chapter 9 of Volume II.

Another application is that Enriques surfaces that are liftable to characteristic
zero satisfy d = 12 = 10. To be precise, we have the following.

Corollary 1.2.12 In the situation of the theorem, if X0̄ is an Enriques surface and '
is of characteristic zero, then d(X0̄) = 12 (X0̄) = 10.
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Proof If ' is of characteristic zero and X0̄ is an Enriques surface, then X[̄ is an
Enriques surface in characteristic zero and we have d(X[̄) = 12 (X[̄) = 10 by
Lemma 1.2.8. The assertion then follows from the inequalities 10 = 12 (X[̄) =
d(X[̄) ≤ d(X0̄) ≤ 12 (X0̄) = 10. �

We are now in the position to sketch Lang’s proof of Theorem 1.2.7 from [433]:

Proof By Lemma 1.2.8, the assertion is true if k is of characteristic zero. Thus,
we will assume that k is of characteristic ? > 0. We start with the following
observation: since

∧2Ω1
(/k � l( , we have Θ(/k � Ω1

(/k ⊗ l( , from which we
obtain isomorphisms

�2 ((,Θ(/k) � �2 ((,Ω1
(/k ⊗ l() � �

0 ((,Θ(/k)∨, (1.2.3)

where the second one is Serre duality.
First, let us assume that ( is classical and that ℎ0 (Θ() = 0. By the previous

observation, we find ℎ2 (Θ() = 0 and thus, deformation theory implies that ( admits
a formal lift over the Witt ring , = , (k). Moreover, since we have ℎ2 (O() = 0,
deformation theory implies that every invertible sheaf L on ( extends to such a
formal lift. In particular, if we choose an ample L, this shows that every formal lift
of ( is algebraizable by Grothendieck’s existence theorem. From this, we deduce
that ( admits projective algebraic lifts to , (see the details and the references in
Volume II). Thus, Corollary 1.2.12 gives the assertion.

Second, assume that ( is classical and that ℎ0 (Θ() ≠ 0. Then, ( is unirational by
Proposition 1.2.9 and thus, d(() = 12 (() holds true by loc. cit.

Thus, we may assume that ( is non-classical, in which case we have ? = 2 by
Theorem 1.1.8. From here on, we will only sketch the proof: if ( is a -2-surface, then
there exists an algebraic lift by [433, Theorem 1.3] (see also Volume II) and then, the
assertion follows from Corollary 1.2.12. If ( is an "2-surface, then ( is unirational
by the analysis in [433] (see also Theorem 1.3.11) and the assertion follows from
Proposition 1.2.9. �

We now come to Liedtke’s proof of Theorem 1.2.7 from [464]: let us recall that
we discussed the crystalline version of the Tate conjecture for divisors in Remark
0.10.27. Its connection to 1.2.7 is as follows.

Proposition 1.2.13 Let ( be an Enriques surface over a finite field F@ . If ( satisfies
the Tate conjecture, then Theorem 1.2.7 holds for ( ×F@ F@ .

Proof We set ( := ( ×F@ F@ . By Proposition 0.10.21 or Corollary 1.2.5, we find that
the F-isocrystal �2 ((/,) ⊗,  is of slope one. Thus, after possibly replacing F@ by
a finite extension, there exists a  -basis {48} of �2 ((/,) ⊗,  such that Frobenius
acts as F(48) = ? · 48 for all 8. In particular, the Tate module )� ⊆ �2 ((/,) is a
Z?-module of rank 12 (() = 10. Since we assumed that the Tate conjecture holds for
(, we conclude that ( satisfies d = 12. �

Interestingly, this special case is sufficient to deal with the general case.
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Proposition 1.2.14 In order to prove Theorem 1.2.7, it suffices to establish it for
Enriques surfaces over F? .

Proof Let ( be an Enriques surface over an algebraically closed field k. Then, there
exists a sub-Z-algebra ' of k that is of finite type over Z and a smooth and projective
morphism S → � := Spec ' with S ×� Spec k � (. Moreover, if B ∈ � is a closed
point, then the residue field ^(B) is a finite field. In particular, the geometric fiber SB̄
is an Enriques surface over ^(B) and we have d(SB̄) = 12 (SB̄) by assumption. Using
Table ?? and Proposition 0.9.14, the first assertion follows. �

Corollary 1.2.15 If the Tate conjecture holds for Enriques surfaces over finite fields,
then Theorem 1.2.7 is true.

Remark 1.2.16 This corollary reduces Theorem 1.2.7 to a fundamental conjecture
in arithmetic geometry, namely, the Tate conjecture. However, at the moment, the
Tate conjecture is still wide open. For Enriques surfaces, it can be rather easily
deduced from the already-established cases, see [464, Section 3], and we obtain an
unconditional proof of Theorem 1.2.7. Since the Tate conjecture is an arithmetic
version of the Lefschetz theorem on (1, 1)-classes, this proof of Theorem 1.2.7 is
very close to the proof of Lemma 1.2.8.

Having dealt with Picard schemes and Picard groups of Enriques surfaces, let
us end this section by computing their cohomological Brauer groups, which we
introduced in Chapter 0.10.

Theorem 1.2.17 Let ( be an Enriques surface over an algebraically closed field k.
Then,

Br(() �
{
Z/2Z if ( is classical,
{0} if ( is non-classical.

Proof First, we prove the result in characteristic zero. By the Lefschetz principle,
we may assume k = C and then, we may use analytic methods: taking cohomology
in the exponential sequence (0.10.9) and using ℎ1 (O() = ℎ2 (O2) = 0, we obtain
�2 ((,Z) � Pic(() � Z10 ⊕ (Z/2Z). Thus, the universal coefficient formula 0.10.1
and Poincaré duality yield

Tors �3 ((,Z) � Tors �2 ((,Z) � Tors �2 ((,Z) � (Z/2Z).

Since the transcendental lattice of ( is zero, exact sequence (0.10.17) yields the
statement.

Essentially the same proof also works in positive characteristic ? > 0, but we
have to treat the ?-torsion and the prime-to-?-torsion separately: it follows from
(0.10.26) or (0.10.61) and Theorem 1.2.7 that there exists isomorphisms NS(() ⊗
Zℓ � �

2
ét ((,Zℓ (1)) and that we have tℓ = 0 for all primes ℓ (including ℓ = ?). From

this, it already follows that Br(() is a finite abelian group. Using that ( is a surface,
Poincaré duality in ℓ-adic cohomology, and (0.10.32), we find
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ℓ∞ Br(() � ℓ∞�
3
ét ((,Zℓ (1)) � ℓ∞�

2
ét ((,Zℓ (1))

for all primes ℓ ≠ ? from which Theorem 1.2.1 yields the ℓ-power torsion of Br(().
Moreover, using (0.10.79) and (0.10.85), we find

?∞ Br(() � ?∞�
3
ét ((,Z? (1)) � ?∞ Ker(F−1 : �2 ((, ,Ω1

(/k) → �2 ((, ,Ω1
(/k)).

Using Theorem 1.2.1 and the computation of the Hodge–Witt cohomology groups
of Enriques surfaces that we will establish in Proposition 1.4.16 below, the result
follows. �

We already mentioned that the proof of Theorem 1.2.7 in [77] uses genus one
fibrations. Similarly, Theorem 1.2.17 can be established using genus one fibrations by
applying Theorem 4.10.3 to Theorem 4.3.13. Concerning Brauer groups of Enriques
surfaces, we refer the interested reader to [51] for more information, as well as to
[271, Section 8] for a more algebraic point of view.

1.3 The K3-cover

In this section, we discuss the K3-cover c : - → ( of an Enriques surface (. In
characteristic ? ≠ 2, the surface - is a K3 surface and c is an étale morphism of
degree 2, which links the theory of Enriques surfaces to the theory of K3 surfaces.
However, in characteristic 2, the situation is much more complicated: for example,
- may even be a non-normal and rational surface, although it will always be “K3
like” in a certain sense. Then, we discuss the unirationality of Enriques surfaces in
positive characteristic and relate it to the unirationality of the K3-cover. We end the
section by studying the pull-back of the Picard group and the Brauer group from an
Enriques surface to its K3-cover.

Theorem 1.3.1 Let ( be an Enriques surface over an algebraically closed field k of
characteristic ?. Then, there exists a non-trivial (Picg

(/k)�-torsor

c : - → (.

In particular, c is a finite and flat morphism of degree 2.

Proof This follows by applying Theorem 0.2.34 to Theorem 1.2.1. �

Before proceeding, let us be a little bit more explicit about these torsors, see also
Proposition 0.2.29.

1. First, let ( be a classical Enriques surface, in which case we havePicg
(/k � (Z/2Z)

and (Picg
(/k)� � -2. By Corollary 1.2.3, the canonical sheaf l( = O( ( () is

a non-trivial 2-torsion element of Pic((). As explained in (0.2.4), a choice of
isomorphism l⊗2

(
� O( defines an O(-algebra structure on (O( ⊕l(), and thus,

a finite flat double cover
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c : - := Spec(O( ⊕ l() → (,

which is a -2-torsor. In particular, c is étale if ? ≠ 2 and purely inseparable if
? = 2.

2. Next, let ( be a -2-surface, in which case we have ? = 2, as well as Picg
(/k �

-2 and (Picg
(/k)� � (Z/2Z). Then, the Artin–Schreier exact sequence in étale

topology
0 → (Z/2Z)( → G0,(

F−id−−−→ G0,( → 0

gives rise to an isomorphism

�1
ét ((,Z/2Z) � Ker

(
�1 ((,O()

F−id−−−→ �1 ((,O()
)
≠ 0.

As explained in Section 0.3, a non-zero element [ of this cohomology group
defines a non-trivial étale double cover c : - → (, that is, a (Z/2Z)-torsor. It is
easy to see that the isomorphism class of this cover does not depend on the choice
of [.

3. Finally, let ( be an "2-surface, in which case we have ? = 2, as well as Picg
(/k �

(Picg
(/k)� � "2. Then, the exact sequence in flat topology

0 → "2,( → G0,(
F−→ G0,( → 0

gives rise to an isomorphism

�1
fl ((,"2) � Ker

(
�1 ((,O()

F−→ �1 ((,O()
)
≠ 0.

Again, as explained in Section 0.3, a non-zero element [ of this cohomology
group defines a flat double cover c : - → (, which is an "2-torsor. In particular,
c is purely inseparable. It is easy to see that the isomorphism class of this cover
does not depend on the choice of [.

Definition 1.3.2 The flat double cover c : - → ( is called the K3-cover of ( (or the
canonical cover).

Since it is a non-trivial torsor under a finite flat group scheme of prime order, - is
reduced and irreducible, that is, an integral scheme. Moreover, the name is justified
by the fact that it is always “K3-like” in the following sense.

Proposition 1.3.3 Let c : - → ( be the K3-cover of an Enriques surface (. Then,
- is an integral Gorenstein surface (not necessary normal) satisfying

�1 (-,O- ) = 0 and l- � O- .

Moreover:

1. if ? ≠ 2 or ( is a -2-surface, then - is smooth and a K3 surface, and
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2. if ? = 2 and ( is classical or an "2-surface, then - is not a smooth surface.

Proof As seen in Section 0.3 or via the above case-by-case analysis, - is locally a
hypersurface in a line bundle over (. In particular, - is Gorenstein and we already
mentioned above that - is an integral variety. Moreover, we have an exact sequence

0 → O( → c∗O- → L−1 → 0 (1.3.1)

with L = l( . From this, we conclude j(-,O- ) = j((, c∗O- ) = 2j((,O() = 2.
Next, for the dualizing sheaf of - we have l- = c∗ (l( ⊗ L−1) � c∗ (O() � O- ,
see Proposition 0.2.12 and Proposition 0.2.20. Then, Serre duality implies ℎ2 (O- ) =
ℎ0 (l- ) = 1. Combining this with j(O- ) = 2, we find ℎ1 (O- ) = 0.

If ? ≠ 2 or if ( is a -2-surface, then c is étale, hence - is smooth. Sincel- � O-
and ℎ1 (O- ) = 0, it follows from the very definition that - is a K3 surface.

In the remaining cases, we have ? = 2 and c is purely inseparable. Seeking a
contradiction, assume that - is smooth. Since c is a homeomorphism in the étale
topology, we find 22 (-) = 22 (() = 12. On the other hand, we have j(O- ) = 2, and
l- � O- implies  2

-
= 0, which contradicts Noether’s formula (0.10.22). �

Now, we study the K3-cover c : - → ( in the case where - is not smooth, that
is, if ? = 2 and ( is not a -2-surface, or, equivalently, ( is a unipotent Enriques
surface. Since - may not be normal, let

a : . → -

be the normalization of - . Then, the composition c̃ = c ◦ a : . → ( is a finite and
inseparable morphism of degree 2 from a normal surface onto a smooth surface.
Since . is Cohen–Macaulay (it is a normal surface) and - is regular, f̃ is flat by
Proposition 0.2.4. Thus, by Proposition 0.2.27, also c̃ is a torsor under a finite flat
group scheme of length 2. In particular, also . is a Gorenstein scheme. Also, we
have an exact sequence

0 → O( → c̃∗O. → L̃−1 → 0 (1.3.2)

for some invertible sheaf L̃ on (. If this is a -2-torsor, then the exact sequence splits.
We also have

l. � c̃∗
(
l( ⊗ L̃

)
� c̃∗ (L̃). (1.3.3)

Here, we have used that c̃∗l( = a∗c∗l( = a∗O- � O. . To understand the normal-
ization a, we consider the conductor ideal

ℭ := Ann(a∗O. /O- ) ⊆ O-

of the normalization a, which can be defined equivalently as H><O- (a∗O. ,O- ).
We note that ℭ can be considered as an ideal sheaf of O. and that it is the largest
ideal sheaf of O- that is also an ideal sheaf of O. . We refer to [611] for details. Let
� ⊂ - and � ⊂ . be the closed subschemes defined by these ideal sheaves, both
of which are of pure codimension one (if nonempty). The duality theorem for finite
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morphisms (see [611, Proposition 2.3] in this situation and [292] for the general
machinery) gives isomorphisms

a∗l. � H><O- (a∗O. , l- ) � ℭ · l- ,
a∗l- � a∗O- � O. � H><O. (ℭ, l. ) � l. (�),

(1.3.4)

wherel. (�) denotes the reflexive saturation of ofl. ⊗O. (�), that is, the reflexive
O. -module of rank one, whose local sections are rational sections of l. with at
worst a single pole along �. Taking into account (1.3.3), we obtain

O. (�) � l−1
. � c̃∗ (L̃−1).

In particular, if non-empty, then � ⊆ . is an effective Cartier divisor. From the
commutative diagram with exact rows (1.3.1) and (1.3.2)

0→ O( → c∗O- → l−1
(
→ 0

| | ↓ ↓
0→ O( → c̃∗O. → L̃−1 → 0

we obtain an injective homomorphism of invertible sheavesl−1
(
→ L̃−1 on (, which

gives rise to an effective Cartier divisor � on (, and we conclude

L̃ � l( (−�). (1.3.5)

Since a |.−� : (. − �) → (- − �) is an isomorphism, it follows that � lies below
� ⊆ . , as well as below � ⊆ - . Following [213], we make the following definition.

Definition 1.3.4 The effective Cartier divisor � of ( is called the conductrix and
� := 2� is called the bi-conductrix.

The relevance of the bi-conductrix will become clear in Proposition 1.3.8 and
when discussing exceptional Enriques surfaces in Section 6.2 from Volume II, see
also [213]. After these preparations, we have the following result that describes the
geometry of the K3-cover - In the case where it is not smooth.

Theorem 1.3.5 Let ( be an Enriques surface over an algebraically closed field of
characteristic 2 that is classical or an "2-surface. Let c : - → ( be its K3-cover.

1. If - is normal with at worst rational singularities, then it has only rational double
point singularities. The minimal resolution - ′ of singularities is a K3 surface that
satisfies 12 = d = 22 (i.e. - ′ is supersingular in the Shioda sense).

2. If - is normal with non-rational singularities, then it is a rational surface with
one elliptic Gorenstein singularity.

3. If - is non-normal, then its normalization is a rational surface with at worst
rational double point singularities.

Proof By Proposition 1.3.3, - is Cohen–Macaulay. Thus, if - has only isolated
singularities, then it is normal by Serre’s normality criterion. We now do a case-by-
case analysis.
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Case 1: - has only isolated singularities that are, at worst, rational.
Then, let g : - ′ → - be the minimal resolution of singularities. Since - is

Gorenstein, Proposition 0.4.17 implies that all singularities of - are rational double
points and we compute l- ′ � g∗l- � g∗O- � O- ′ . Using Serre duality, we find
ℎ2 (O- ′) = ℎ0 (l- ′) = 1. From j(O- ′) = j(O- ) = 2, we find ℎ1 (O- ′) = 0 and
thus, - ′ is a K3 surface.

Moreover, the composition - ′ → - → ( and the Frobenius morphism give rise
to a dominant and rational map ( (1/?) d - ′, which extends to a generically finite
morphism (̃ (1/?) → - after a suitable blow-up of ( (1/?) . Since 12 = d holds for
Enriques surfaces, it also holds for their blow-ups, and thus, in particular, for (̃ (1/?) .
Then, this also holds for - by [675], that is, - is supersingular in the Shioda sense.
Case 2: - has only isolated singularities, at least one of which is not rational.

Again, let g : - ′ → - be the minimal resolution of singularities. Then, the
five-term exact sequence of the Grothendieck-Leray spectral sequence

�
8, 9

2 := � 9 (-, '8g∗O- ′) =⇒ �8+ 9 (- ′,O- ′)

is the long exact sequence

0 → �1 (-,O- ) → �1 (- ′,O- ′) → �0 (-, '1g∗O- ′) → �2 (-,O- ) → �2 (- ′,O- ′).

By Serre duality and Proposition 1.3.3, we find ℎ1 (-,O- ) = 0 and ℎ2 (-,O- ) = 1.
Since l- � O- , the canonical divisor class  - ′ has a representative � that is

supported on the exceptional curve of the resolution g. If we had |= - ′ | ≠ ∅ for
some = ≥ 1, then we could find a rational function 5 on - ′ such that ( 5 ) + =� ≥ 0.
Consider 5 as a rational function on - , then it is regular outside isolated normal
singularities, thus, it has to be regular everywhere, and thus, constant. Hence, =� ≥ 0
for all = ≥ 0. If we had =� = 0 for some = ≥ 1, then l⊗=

- ′ = g
∗l⊗=

-
. But then, every

integral curve ' inside the exceptional divisor of g would satisfy ' ·  - ′ = 0, as
well as '2 < 0 (being exceptional). The adjunction formula then yields '2 = −2
and ' � P1, which implies that all singularities of - are rational double points by
Proposition 0.4.8. Since we assumed to have at least one non-rational singularity, we
conclude that =� > 0 for at least one = ≥ 1, which contradicts the non-emptyness
of |= - ′ |. This contradiction implies |= - ′ | = ∅ for all = ≥ 1.

Since the morphism c : - → ( is purely inseparable, there exists a dominant
rational map ( (1/?) d - ′, and thus, if - ′ had a non-trivial Albanese morphism,
then so would (, contradicting 11 (() = 0. This contradiction implies 11 (- ′) = 0.
Since |2 - ′ | = ∅ by the above, Castelnuovo’s Rationality Criterion shows that - ′ is
a rational surface.

Being a rational surface, we have ℎ1 (O- ′) = ℎ2 (O- ′) = 0. Together with
ℎ2 (O- ) = 1, we find ℎ0 ('1g∗O- ′) = 1. In particular, there is precisely one sin-
gular point that is not rational, and it is elliptic. Since - is Gorenstein by Proposition
1.3.3, this is an elliptic Gorenstein singularity. This shows that there is a unique
elliptic Gorenstein singularity on - .
Case 3: - is not normal.
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Let a : . → - be the normalization, let � be the conductrix, and let g : . ′ → .

be the minimal resolution of singularities. We have l. � c̃∗ (L̃) � c̃∗O( (−�) by
(1.3.3) and (1.3.5). In particular,  . < 0, which implies  . ′ < 0, and we obtain
|= . ′ | = ∅ for all = ≥ 1. As In case 2, we find 11 (. ′) = 11 (() = 0, and conclude
that . ′ is a rational surface by Castelnuovo’s Rationality Criterion.

Since . ′ is rational, we have ℎ1 (. ′,O. ′) = 0, and since . is a Gorenstein surface
with  . < 0, we have ℎ2 (.,O. ) = ℎ0 (., l. ) = 0. Applying the Grothendieck-
Leray spectral sequence to its minimal resolution g : . ′ → . as In case 1, the
long exact sequence in low terms yields ℎ0 (., '1g∗O. ′) = 0. This implies that all
singularities of . are rational, and since . is Gorenstein, its singularities are rational
double points. �

Remark 1.3.6 In [639, Theorem 14.1], it is shown in the second case - is smooth
outside of its elliptic singularity. We will return to this case later in Volume II.

Corollary 1.3.7 Let ( be an Enriques surface over an algebraically closed field of
characteristic 2 that is classical or an "2-surface. Then, ( is algebraically simply
connected.

Proof Let c : - → ( be the K3-cover. Then, the minimal resolution of the singular-
ities of - is a rational surface or a K3 surface, both of which are algebraically simply
connected, see [272, Corollaire XI.1.2] and Proposition 1.1.9. Since c is purely
inseparable, it is a homeomorphism in the étale topology, and so, ( is algebraically
simply connected. �

We note that the first case of Theorem 1.3.5 is the generic case, see Remark 1.3.9
below. Let us now continue with a more detailed analysis of the singularities of the
K3-cover - of an Enriques surface ( in characteristic 2. By Proposition 0.2.21, the
singularities of - lie above the zeros of a section of the sheaf Ω1

(/k. This already
implies ℎ1,0 (() = ℎ0 (Ω1

(/k) ≠ 0 for such surfaces, that is, there exists a non-zero and
regular 1-forml. Let / = / (l) be its scheme of isolated zeros and let � = � (l) be
its divisorial part, that is, the largest effective divisor such that O( (�) is a subsheaf
of Ω1

(/k containing the image of l. Thus, we obtain a short exact sequence

0 → O( (�) → Ω1
(/k → I/ (�

′) → 0, (1.3.6)

where I/ is the ideal sheaf of the 0-dimensional closed subscheme / and � ′ is a
divisor that is linearly equivalent to − ( −�, see Proposition 0.3.18 and (0.3.3) and
use that Ω1

(/k � Θ(/k for classical and "2-surfaces (see also the proof of Theorem
1.4.4). We note that the scheme of zeros of l is the union of the supports of � and
/ . Here, / may intersect the support of � and there could be non-reduced scheme
structures on both closed subsets.

Proposition 1.3.8 Let ( be an Enriques surface over an algebraically closed field of
characteristic 2 that is classical or an "2-surface. Let c : - → ( be its K3-cover.
Then,

�0 ((,Ω1
(/k) ≠ 0.
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More precisely, let l be a non-zero and regular 1-form and let � and / be its
schemes of divisorial and isolated zeros as above. Then, � = 2�, where � denotes
the conductrix of ( and we have

−�2 + ℎ0 (O/ ) = 12. (1.3.7)

Moreover, if - is non-normal, then:

1. the divisor � is effective, supported on (−2)-curves, numerically connected and
satisfies �2 = −2, as well as ℎ0 ((,O( (2�)) = 1, and

2. the normalization of - is a rational surface with four rational double points of
type �1 or one rational double point of type � (0)4 .

Proof We have established ℎ0 (Ω1
(
) ≠ 0 already in the above discussion. Next, taking

Chern classes in (1.3.6) and using  ( = 21 (Ω1
(
) = � + � ′, we find 12 = 22 (() =

22 (Ω1
(
) = −�2 + ℎ0 (O/ ), see also Proposition 0.3.18.

Let a : . → - be the normalization and thus, a is an isomorphism if and only if
- is normal. We set c̃ := c ◦ a : . → (, which is an UL̃-torsor with respect to an
invertible O(-module L̃ as explained in (1.3.2). By Proposition 0.2.21 there exists
an injection L̃⊗(−?) → Ω1

(
, whose zero set lies below the singularities of . (note

that, since the cover is inseparable, 0 = 0, in the notation of the proposition). Since
. is normal, its singularities are isolated, and this injection is saturated. We thus
obtain a short exact sequence

0 → L̃⊗(−2) → Ω1
(/k → I/ ′ (�

′′) → 0, (1.3.8)

where I/ ′ is the ideal sheaf of some 0-dimensional closed subscheme / ′ of ( and
� ′′ is a divisor on (. Inspecting the proof of Proposition 0.2.21, we see that the two
short exact sequences (1.3.8) and (1.3.6) coincide. Using (1.3.5), we obtain � = 2�.

Finally, assume that - is not normal, that is, � ≠ 0. Then, we have

0 < ℎ0 (O( (2�)) ≤ ℎ0 (Ω1
(/k) = ℎ1,0 (().

In Corollary 1.4.9 below, we will see that ℎ1,0 (() = 1 for classical and "2-surfaces
in characteristic 2, from which we conclude ℎ0 (O( (2�)) = 1. Now, if we had
�2 ≥ 0, then Riemann–Roch would imply the ℎ0 (O( (2�)) ≥ 2, a contradiction.
Thus, �2 < 0 and after applying (1.3.7), we conclude �2 = −2. Moreover, if
� = �1 + �2 for some �1 > 0, �2 > 0, then �2

1 < 0 and �2
2 < 0, because otherwise

2�1 or 2�2 would move. This gives �2 = �2
1+2�1 · �2+�2

2 = −2, hence �1 · �2 > 0.
Thus, � is 1-connected. Moreover, we also see that every irreducible component of
� is a (−2)-curve.

Now, consider c̃ : . → (. Using Proposition 0.2.10 and Proposition 0.2.21, we
see that the singular points of. are defined by the zeros of a section ofΩ1

(
⊗O( (2�).

A computation with Chern classes shows that 22 (Ω1
(
⊗ O( (2�)) = 4. Moreover, by

Theorem 1.3.5, all singular points of . are rational double points. Since . is a
purely inseparable double cover of a smooth surface, these singular points have local
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equations of the form I2 + 5 (G, H) = 0 and we know that the colength of ( 5G , 5H) is
at most 4. Using the list of rational double points from Proposition 0.4.13, we find
that the only possibilities are singularities of type �1, which are of colength 1, or of
type � (0)4 , which are of colength 4. �

Remark 1.3.9 To complete the picture, let us also mention the following results
concerning K3-covers of Enriques surfaces.

1. In every characteristic and even when non-smooth or when non-normal, the
K3-cover is always birationally equivalent to the complete intersection of three
quadrics in P5 (see Corollary 3.4.2 and Lemma 1.1.11, Case 3). This shows some
relation to the theory of K3 surfaces in all cases.

2. In characteristic 2, the K3-cover of an Enriques surface ( is non-normal if and
only if ( admits a quasi-elliptic fibration, see [489].

3. In characteristic 2 and for a quantitative comparison of the three cases of the
K3-cover from Theorem 1.3.5, we have to use moduli spaces, which we will
construct in Chapter 5.

a. Inside moduli spaces for classical and "2-surfaces in characteristic 2, there
exist an open and dense subsets, such that the K3-covers of the corresponding
surfaces are normal with 12 rational double points of type �1. Moreover, for a
surface ( on these open subsets, every non-zero regular 1-form l ∈ �0 (Ω1

(/k)
has no divisorial part and 12 isolated zeros. In particular, the first case of
Theorem 1.3.5 is generic.

b. The locus of classical and "2-surfaces, whose K3-cover is not a K3 surface
with rational double points, that is, cases 2 and 3 of Theorem 1.3.5, is closed
and everywhere of codimension at least 3.

We also refer to Remark 1.6.9 for some illustrating examples and refer to [214]
for details.

We will say more about singularities of the K3-cover in Volume II.

We have already seen in Proposition 1.2.9 that Enriques surfaces with non-
zero regular vector fields are Zariski surfaces. In characteristic zero, unirational
varieties are of Kodaira dimension −∞, and in particular, K3 surfaces and Enriques
surfaces in characteristic zero are never unirational. However, K3 surfaces in positive
characteristic can be unirational, and Shioda [675] showed that then, the K3 surface
is Shioda-supersingular. For a Shioda-supersingular K3 surface, the discriminant of
the Néron-Severi group is of the form ?2f0 for some integer 1 ≤ f0 ≤ 10, called the
Artin invariant, see also Remark 0.10.31. The following nontrivial results are due to
Rudakov–Shafarevich [627] if ? = 2, 3 to Pho–Shimada [594] if ? = 5 and to Shioda
[676] for ? ≥ 3.

Theorem 1.3.10 Let - be a Shioda-supersingular K3 surface in characteristic ? >
0.

1. If ? = 2 or else ? = 3 and f0 ≤ 6 or else ? = 5 and f0 ≤ 3, then - is a Zariski
surface, and thus, unirational.
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2. If ? ≥ 5 and f0 ≤ 2, then - is unirational.

In [655], Serre showed that the étale fundamental group of a smooth, projec-
tive, and unirational variety is finite, and over the complex numbers, the étale and
topological fundamental groups are even trivial. Moreover, by loc. cit., a smooth
and projective variety is unirational if and only if some (and hence, every) finite
étale cover is unirational. This allows us to determine which Enriques surfaces are
unirational.

Theorem 1.3.11 Let ( be an Enriques surface in characteristic ?.

1. If ? = 2, then ( is unirational if and only if it is not a -2-surface. Moreover, if the
minimal resolution of singularities of the K3-cover is not a K3 surface, then ( is
a Zariski surface.

2. If ? ≥ 3, then ( is unirational if and only if its K3-cover is a unirational K3
surface.

Proof Let us first assume that ? is an odd prime. Then, an Enriques surface is
unirational if and only if its K3-cover is unirational by [655] or [676, Lemma 3.1].

We will now assume that ? = 2. If ( is a -2-surface, then its K3-cover is an étale
double cover. On the other hand, by [655] and [143], the étale fundamental group
of a smooth, projective, and unirational variety in characteristic ? is finite of order
prime to ?. Therefore, ( is not unirational.

Finally, assume that ( is not a -2-surface. Let c : - → ( be its K3-cover, which
is purely inseparable of degree ? = 2. If - is rational, then ( is a Zariski surface by
definition, and we are done. Thus, we may assume that - is not a rational surface.
But then, its minimal resolution of singularities - ′ is a Shioda-supersingular K3
surface by Theorem 1.3.5, which is unirational by Theorem 1.3.10. In particular, (
is also unirational. �

Remark 1.3.12 By a result of Crew [143, Theorem 2.7], the K3-cover of a -2-surface
is an ordinary K3 surface, that is, the height of the formal Brauer group of - is equal
to one, see Section 0.10 and Theorem 1.4.21.We refer to Remark 1.6.12 and Example
1.6.13 for families and examples of unirational as well as non-unirational Enriques
surfaces in characteristic ? ≥ 3.

For the remainder of this section, let ( be an Enriques surface over an algebraically
closed field k of characteristic ? ≥ 0 and assume that the K3-cover c : - → ( is
étale, that is, ? ≠ 2 or that ? = 2 and ( is a -2-surface. In particular, - is a K3
surface. We want to compare the Picard groups and the Brauer groups of ( and - .
To do so, we have pull-backs

c∗ : Pic(() → Pic(-) and c∗ : Br(() → Br(-),

which are homomorphisms of abelian groups. Since c∗ (l() � O- , the first homo-
morphism factors through an injective homomorphism which we continue to denote
by c∗

c∗ : Num(() ↩→ Pic(-) = Num(-).
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Let � be the group of deck transformations of - , which is isomorphic to Z/2Z. If
we denote the subgroup of �-invariant invertible sheaves of - by Pic(-)� , then the
following result describes kernel and image of c∗ for Picard groups.

Proposition 1.3.13 Let ( be an Enriques surface over an algebraically closed field
k of characteristic ? ≠ 2 and let c : - → ( be its K3-cover. Then, there exists a
short exact sequence

0 → Z/2Z → Pic(() c∗−→ Pic(-)� → 0,

and the kernel of c∗ is generated by l( . Moreover, the lattice embedding c∗ :
Num(() (2) → Pic(-) is primitive.

Proof Consider the Hochschild–Serre spectral sequence in étale cohomology

�
8, 9

2 := �8
(
�, �

9

ét (-,G<)
)
⇒ �

8+ 9
ét ((,G<). (1.3.9)

Using �1,0
2 = �1 (�,G<) = Hom(�,G<) and �2,0

2 = �2 (�,G<) = 0, the five-term
exact sequence yields a short exact sequence

0 → Hom(�,G<) → Pic(() c∗−→ Pic(-)� → 0,

see also [351]. We have Hom(�,G<) � -2 � Z/2Z and since c∗l( � l- � O- ,
we see that l( is a non-trivial element of Ker c∗, and thus, a generator.

Finally, every torsion class of Pic(-)/Pic(-)� can be lifted to an L ∈ Pic(-)
with L⊗= ∈ Pic(-)� for some = ≥ 1. Since L⊗= is �-invariant and Pic(-) is
torsion-free by Proposition 1.1.9, also L is �-invariant, that is, L ∈ Pic(-)� .
This shows that the quotient Pic(-)/Pic(-)� is torsion-free, that is, the embedding
Pic(-)� → Pic(-) is primitive. �

The behavior of c∗ on cohomological Brauer groups is more complicated. To
understand it, let us recall the norm homomorphism

Nm : Pic(-) → Pic((), (1.3.10)

which is defined as follows: if L ∈ Pic(-), then c∗L is a locally free O(-module of
rank 2, and then, Nm(L) := det(c∗O- )∨ ⊗ det(c∗L) � l( ⊗ det(c∗L), where the
last isomorphism follows from taking the determinants in (1.3.1). Next, let f ∈ �
be the generator, which we will refer to as the Enriques involution on - . Being
a homomorphism and �-invariant, we compute Nm(L−1 ⊗ f∗L) = Nm(L)−1 ⊗
Nm(L) � O( and conclude

(id − f∗) Pic(-) ⊆ Ker(Nm).

By the following result of Beauville [51], the quotient of these groups controls the
kernel of c∗ of Brauer groups.
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Theorem 1.3.14 Let ( be an Enriques surface over an algebraically closed field k
of characteristic ? ≠ 2 and let c : - → ( be its K3-cover. Then,

Ker
(
Br(() c∗−→ Br(-)

)
� Ker(Nm)/(id−f∗) Pic(-). (1.3.11)

Proof Let us only sketch the proof and refer to [51] for details. As in the proof of the
previous proposition, the starting point is the Hochschild–Serre spectral sequence
(1.3.9). From �

2,0
2 = �2 (�,G<) = 0, we obtain an isomorphism

Ker
(
Br(() c∗−→ Br(-)

)
� �

1,1
∞ = Ker(�1,1

2
32−→ �

3,0
2 ).

Using periodicity of the group cohomology of �, we find that �3,0
2 = �3 (�,G<) is

isomorphic to �1 (�,G<) = Hom(�,G<) = �� , the Cartier dual group scheme. If
we denote by k the endomorphism of Pic(-) that is defined by L ↦→ L ⊗ f∗ (L),
then �1,1

2 = �1 (�, Pic(-)) is isomorphic to Ker(k)/Im(id−f∗). Since we have
c∗ Nm(L) = k(L) for all L ∈ Pic(-), we find that the norm homomorphism maps
Ker(k) to Ker(c∗ : Pic(() → Pic(-)), and that the latter is canonically isomorphic
to�� � -2 by (the proof of) Proposition 1.3.13. Since Nm ◦(id−f∗) = 0, the norm
induces a homomorphism �1 (�, Pic(-)) → Ker(c∗ : Pic(() → Pic(-)) � �∗. By
[51, Lemma 4.2], which is a non-trivial computation, this homomorphism coincides
with the differential 32. �

Remark 1.3.15 Let ( be an Enriques surface over the complex numbers. In this case,
Beauville [51] showed that the kernel (1.3.11) is non-trivial if and only if there exists
an invertible sheaf L ∈ Pic(-) with f∗L � L−1, whose self-intersection satisfies
L2 ≡ 2 mod 4. From this, he deduced that over the complex numbers, the locus
of Enriques surfaces inside their moduli space, where the kernel (1.3.11) is non-
trivial, forms an infinite and countable union of non-empty hypersurfaces, whereas
this kernel is trivial for a very general Enriques surface. We refer to [247] for more
information in the case where the K3-cover is a Kummer surface.

Remark 1.3.16 Given a K3 surface - , one may ask in how many ways it can be
realized as the canonical cover of an Enriques surface. In other words, we ask how
many conjugacy classes of fixed-point-free involutions there are in its automorphism
group. We will come back to this in Section 10.7 from Volume II.

1.4 Cohomological Invariants

In this section,wewill determine the following fundamental invariants of an Enriques
surface: the Betti and Hodge numbers, the fundamental group, the de Rham, Hodge–
Witt, and crystalline cohomology groups, as well as the cohomology of the tangent
sheaf. On our way, we will also study the degeneration behavior of the Frölicher
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spectral sequence from Hodge to de Rham cohomology, as well as the slope spectral
sequence from Hodge–Witt to crystalline cohomology.

Over the complex numbers, an Enriques surface ( can also be considered merely
as a topological or differentiable 4-manifold, and we may consider its singular
cohomology and homology groups.

Theorem 1.4.1 Let ( be an Enriques surface over k = C. Then, as a topological
4-manifold, ( has the following singular cohomology and homology groups:

8 0 1 2 3 4
�8 ((,Z) Z (Z/2Z) Z10 ⊕ (Z/2Z) 0 Z
�8 ((,Z) Z 0 Z10 ⊕ (Z/2Z) (Z/2Z) Z

Moreover, the topological fundamental group is isomorphic to (Z/2Z) and the
universal cover of ( is the K3-cover.

Proof The assertions about singular (co-)homology for 8 = 0, 4 follow from the
fact that ( is a compact, orientable, and topological 4-manifold. Using ℎ1 (O() =
ℎ2 (O() = 0 and taking cohomology in the exponential sequence (0.10.9), we find
�2 ((,Z) � Pic((). From this, we obtain the statement about�2 usingTheorem1.2.1
and Theorem 1.2.7. Since 11 (() = 0, we obtain �1 ((,Z) = 0, and then, the universal
coefficient formula yields �1 ((,Z) � Tors(�2 ((,Z)) � Z/2Z. The remaining (co-
)homology groups can be computed using the isomorphisms �8 ((,Z) � �4−8 ((,Z)
induced from Poincaré duality.

Let c : - → ( be the K3-cover of (. We already know from Proposition 1.1.9 that
a K3 surface is algebraically simply connected. The fact that it is a simply connected
4-manifold if k = C is much harder to prove (see, for example, [43, Corollary (8.6)]
or [320, Chapter 7, Theorem 1.1]). It follows that - is the universal cover of (, and
since c is of degree 2, we find c1 (() � Z/2Z. �

Remark 1.4.2 We will construct in Section 5.3 a moduli space for complex Enriques
surfaces that is connected. Therefore, by a theorem of Ehresmann, all Enriques
surfaces are diffeomorphic as differentiable 4-manifolds, and in particular, home-
omorphic as topological spaces, see Corollary 5.3.10. We refer to [580] for the
homotopy type, homeomorphism type, and the smooth structures of the manifold
underlying an Enriques surface - for example, there exist infinitely many distinct
smooth structures on the topological manifold underlying an Enriques surface.

Let us now work again over arbitrary algebraically closed ground fields. We start
with a result that holds for all smooth and proper surfaces.

Proposition 1.4.3 Let - be a smooth and proper surface over a field k. Then,

1.
∑
9 (−1) 9ℎi,j (-) = j(O- ) for 8 = 0, 2,

2.
∑
9 (−1) 9ℎ1,j (-) = 2j(O- ) − 22 (-),

3.
∑
8, 9 (−1)8+ 9ℎi,j (-) = 22 (-),

4.
∑
8 (−1)8ℎ8DR (-) = 22 (-).
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Proof Assertion (1) follows from the definition and Serre duality and (2) follows
from Riemann–Roch theorem applied to the sheaf Ω1

-
. Assertion (3) follows from

(1) and (2). Finally, (4) follows from (3) and the existence of the Frölicher spectral
sequence (degeneracy at �1 is not needed) from Hodge to de Rham cohomology
(0.10.35). �

Before turning to Enriques surfaces, we need a couple of results aboutK3 surfaces.

Theorem 1.4.4 Let - be a K3-surface over an algebraically closed field k. Then,

Θ-/k � Ω1
-/k

and

ℎi,j (-) = ℎj,i (-) =


1 if (8, 9) = (0, 0), (2, 0), (0, 2), (2, 2),
20 if (8, 9) = (1, 1),
0 otherwise.

Moreover, the étale fundamental group of - is trivial, that is, - is algebraically
simply connected.

Proof The natural multiplication map
∧A Ω1

-
⊗ ∧2−A Ω1

-
→ ∧2Ω1

-
is a perfect

pairing for any A by [294, Exercise II.5.16]. We thus obtain isomorphisms Ω1
-
�

Θ- ⊗ l- � Θ- , where the last isomorphism uses that l- � O- . This implies that
for all 9

ℎ 9 (-,Ω1
- ) = ℎ2− 9 (-, l- ⊗ (Ω1

- )∨) = ℎ2− 9 (-,Ω1
- ).

By a highly non-trivial result of Rudakov and Shafarevich [626] (see also [440],
[563] and [491] for different proofs), we have

ℎ0 (-,Θ- ) = 0.

(In characteristic zero, this is an easy consequence of the isomorphism Ω1
-
� Θ-

and the Hodge symmetry ℎ0,1 = ℎ1,0, but this symmetry is known to fail in general
for surfaces in positive characteristic.) Thus, ℎ 9 (Ω1

-
) = 0 if 9 ≠ 1. Using Serre

duality and the definition of a K3 surface, we also have ℎ 9 (Ω0
-
) = ℎ 9 (Ω2

-
) = 1 for

9 = 1, 2 and ℎ1 (Ω0
-
) = ℎ1 (Ω2

-
) = 0. Using 4(-) = 22 (-) = 24 (see Table A.2.5)

and Proposition 1.4.3, the remaining Hodge numbers follow. The assertion on the
étale fundamental group was already shown in Proposition 1.1.9. �

The previous result allows us to compute the cohomology of tangent and cotangent
bundle of those Enriques surfaces, whose K3-cover is a smooth K3 surface.

Corollary 1.4.5 Let ( be an Enriques surface over an algebraically closed field k of
characteristic ? ≥ 0. Assume that ? ≠ 2 or that ( is a -2-surface. Then,

ℎ1, 9 (() = ℎ 9 (Ω1
(/k) = ℎ

9 (Θ(/k) =
{

10 if 9 = 1, and
0 otherwise.

Moreover, the étale fundamental group of ( is isomorphic to (Z/2Z).
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Proof Let c : - → ( be the K3-cover of (, which is étale of degree 2. Then, - is
a K3 surface by Proposition 1.3.3, and since K3 surfaces are algebraically simply
connected by Proposition 1.1.9, the assertion on étale fundamental groups follows.

Since c is étale, we have c∗Ω8
(
� Ω8

-
for all 8, and then, the projection formula

yields
c∗ (Ω8- ) = c∗

(
c∗Ω8(

)
= Ω8( ⊗ c∗ (O- ).

From this, we obtain a short exact sequence

0 → Ω8( → c∗Ω
8
- → Ω8( ⊗ l( → 0. (1.4.1)

If ? ≠ 2, then this sequence splits. Then, taking cohomology and using Theorem
1.4.4, we find ℎ0 (Ω1

(
) = ℎ2 (Ω1

(
) = 0. Using 22 (() = 12, j(O() = 1 (see Table ??),

and Proposition 1.4.3, we find ℎ1 (Ω1
(
) = 10. Taking cohomology in (1.4.1) again

allows us to compute ℎ 9 (Ω1
(
⊗ l(), which, by Serre duality, is equal to ℎ2− 9 (Θ().

If ( is a -2-surface, then l( � O( . As in the proof of Theorem 1.4.4, we find
Ω1
(
� Θ( . Taking cohomology in (1.4.1), we find ℎ0 (Ω1

(
) = ℎ2 (Ω1

(
) = 0. From this,

we compute ℎ1 (Ω1
(
) = 1

2 ℎ
1 (Ω1

-
) = 10. �

The analogous results for Enriques surfaces in characteristic 2 that are not -2-
surfaces are more complicated. We start with the following result, which is indepen-
dently due to Illusie [329] and Lang [432].

Theorem 1.4.6 Let ( be an Enriques surface over an algebraically closed field k
of characteristic ?. Then, all regular 1-forms are 3-closed, that is, 3U = 0 for all
U ∈ �0 ((,Ω1

(/k).

Proof We have to show that the differential

31 : �1,0
1 = �0 ((,Ω1

() → �
2,0
1 = �0 ((,Ω2

()

in the Frölicher spectral sequence is zero and we shall follow [432]. If ( is a classical
Enriques surface, then ℎ0 (Ω2

(
) = 0, and if ( is a -2-surface, then ℎ0 (Ω1

(
) = 0. In

these cases, the assertion is trivially true, and we may assume that ? = 2 and that ( is
an "2-surface. Then, we have l( � O( and Ω1

(
� Θ( . Seeking a contradiction, we

assume that 31 is non-zero. Then, it follows from ℎ0 (Ω2
(
) = 1 that 31 is surjective.

Thus, by Poincaré duality in de Rham cohomology, the transpose

3∨1 : �0,2
1 = �2 ((,O() → �

1,2
1 = �2 ((,Ω1

()

of 31 is injective.
Let 0 ∈ �1 ((,O() be a non-zero element. We have already seen in the proof of

Theorem 1.2.1 that the cup-product 0∪ 0 ∈ �2 ((,O() is non-zero. Using ? = 2, we
compute 3∨1 (0 ∪ 0) = 0 ∪ 3

∨
1 (0) + 3

∨
1 (0) ∪ 0 = 2(0 ∪ 3∨1 0) = 0, which contradicts

the injectivity of 3∨1 . Thus, 31 is not surjective, whence, the zero-map, and so, all
regular 1-forms are 3-closed, also for "2-surfaces. �
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Remark 1.4.7 We will see in Proposition 1.4.12 below that the slope spectral se-
quence of an Enriques surface degenerates at �1, which also implies Theorem 1.4.6,
see Remark 0.10.17. Over the complex numbers, it follows from Stokes’ theorem
that holomorphic 1-forms on a compact complex surface are 3-closed (even without
the Kähler assumption), see [43, Lemma IV.2.1]. On the other hand, Mumford [536]
gave examples of smooth projective surfaces in positive characteristic with regular
1-forms that are not closed.

Corollary 1.4.8 Let ( be an Enriques surface over an algebraically closed field k of
characteristic ? ≥ 0. Then,

ℎ1
DR (() =

{
0 if ? ≠ 2,
1 otherwise.

Proof Since all 1-forms are 3-closed by Theorem 1.4.6, Oda’s results [567] imply
that �1

DR ((/k) is isomorphic to the Dieudonne module of the ?-torsion subgroup
scheme of Picg

(/k, see also the proof of [432, Theorem 2]. By Theorem 1.2.1, this
module is zero if ? ≠ 2 and a 1-dimensional k-vector space if ? = 2. �

Corollary 1.4.9 Let ( be an Enriques surface over an algebraically closed field k of
characteristic ? = 2 that is not a -2-surface. Then,

ℎ1, 9 (() = ℎ 9 ((, Ω1
(/k) =

{
12 if 9 = 1, and
1 otherwise.

Moreover:

1. if ( is an "2-surface, then ℎ 9 ((,Θ(/k) = ℎ 9 ((,Ω1
(/k) for all 9 , and

2. if ( is a classical Enriques surface, then

ℎ 9 ((, Θ(/k) =
{

10 + 20 if 9 = 1, and
0 otherwise,

for some integer 0 ≤ 0 ≤ 1. If 0 ≠ 0, then the K3-cover - → ( is a non-normal
and rational surface. Thus, in this case, ( is a Zariski surface via its K3-cover.

Proof Passing to �2-terms of the Frölicher spectral sequence (0.10.38), we obtain an
inclusion of Ker(3 : �0 (Ω1

(
) → �0 (Ω2

(
)) into �1

DR ((). The former coincides with
�0 (Ω1

(
) by Theorem 1.4.6 and it is non-zero by Proposition 1.3.8. Since �1

DR (() is
one-dimensional by the previous corollary, we find ℎ0 (Ω() = 1. Next, Serre duality
gives ℎ2 (Ω1

(
) = 1, and using Proposition 1.4.3, we find ℎ1 (Ω1

(
) = 12.

If ( is an "2-surface, then l( � O( , which gives Ω1
(
� Θ( as in the proof of

Theorem 1.4.4. In particular, we obtain ℎ 9 (Ω1
(
) = ℎ 9 (Θ() for all 9 .

If ( is classical, then we set 0 := ℎ0 (Θ(). Using Serre duality and Proposition
1.4.3, we conclude ℎ1 (Θ() = 10 + 0 and ℎ2 (Θ() = 0. It remains to show that
0 ≤ 1. Let c : - → ( be the K3-cover and let � be the conductrix, which could be
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zero. Dualizing the short exact sequence (1.3.8) and using (1.3.5), we find a closed
subscheme / (empty or zero-dimensional) with ideal sheaf I/ and a short exact
sequence

0 → l( (2�) → Θ( → I/ (−2�) → 0. (1.4.2)

The singular locus of - lies over /∪�, and thus, since - is not smooth by Proposition
1.3.3, / or � cannot be both empty. From this,we deduce 0 = ℎ0 (Θ() = ℎ0 (l( (2�)).
In particular, if 0 ≠ 0, then � ≠ 0 and - is not normal. In this case, - is a rational
surface by Theorem 1.3.5 and since - → ( is purely inseparable of degree ?, it
follows that ( is a Zariski surface via - . Let � = 2� be the biconductrix, and then,
taking cohomology in the short exact sequence

0 → l( → l( (�) → l� → 0

and, using that ( is classical, we find ℎ0 (l( (�)) = ℎ0 (�, l�). We will show in
Proposition 4.10.6 that � is a proper part of reducible fibers of a genus one fibration
on (. This then implies that |2�+ ( | does not have a moving part varying in a linear
system of positive dimension. Thus, we find 0 = ℎ0 (l( (�)) ≤ 1. �

Enriques surfaces in characteristic ≠ 2 have no nonzero global vector fields. On
the other hand, "2-surfaces always have nonzero global vector fields, whereas -2-
surfaces have no nonzero global vector fields. Concerning vector fields on classical
Enriques surfaces in characteristic 2, we have just established ℎ0 (Θ() ≤ 1 and note
that we encountered classical Enriques surfaces with vector fields in Proposition
1.2.9 in connection with Lang’s proof of Theorem 1.2.7. The following result is due
to Ekedahl and Shepherd–Barron [213].

Theorem 1.4.10 Let ( be a classical Enriques surface over an algebraically closed
field of characteristic 2. Then,�0 ((,Θ() ≠ 0 if and only if ( contains a configuration
of smooth rational curves that defines a root basis of type)3,3,4,)2,4,5, or)2,3,7 inside
Num(().

Proof We will only mention the ingredients of the proof: let c : - → ( be the
K3-cover. If - is normal, then we have ℎ0 (Θ() = 0 by Corollary 1.4.9. Thus, if
ℎ0 (Θ() ≠ 0, then - is non-normal and thus, there is a non-zero conductrix �. More
precisely, � is equal to the divisorial part of the scheme of zeros of a regular 1-form
on (. Using (1.4.2), we conclude that ℎ0 (Θ() ≠ 0 if and only if ℎ0 (2� +  () ≠ 0.
From here, the proof consists of a careful analysis of possible divisors � and finding
all possible � for which this condition is satisfied. We will give more details in
Section ?? when discussing exceptional Enriques surfaces. �

The following table summarizes our findings. As usual, we set ℎ8, 9 (() = ℎ 9 (Ω8
(/k)

and Serre duality gives ℎ8, 9 (() = ℎ2−8,2− 9 ((). Moreover, we set C 9 := ℎ 9 (Θ(/k). The
integer 0 is the one from Corollary 1.4.9, where we also established 0 ≤ 0 ≤ 1.

Remark 1.4.11 Let ( be an Enriques surface over an algebraically closed k of char-
acteristic ? > 0. If C2 (() = 0, then the deformation theory implies the existence of a



1.4 Cohomological Invariants 231

Picg
(/k ℎ1,0 ℎ0,1 ℎ2,0 ℎ1,1 ℎ0,2 C0 C1 C2 ℎ1

�'
c1

characteristic ? ≠ 2:
-2 � Z/2Z 0 0 0 10 0 0 10 0 0 Z/2Z

characteristic ? = 2:
Z/2Z 1 0 0 12 0 0 10 + 20 0 1 {4}
-2 0 1 1 10 1 0 10 0 1 Z/2Z
"2 1 1 1 12 1 1 12 1 1 {4}

Table 1.2 Differential invariants of Enriques surfaces

formal lifting of ( over the Witt ring, = , (k). If moreover ℎ2,0 (() = 0 holds true,
then even algebraic lifts over , are easy to establish. We note that both conditions
are satisfied if ? ≠ 2. On the other hand, "2-surfaces do not even lift over ,2, but
there always exist algebraic lifts over ramified extensions of, . We will come back
to this in Theorem 5.11.5 and Volume II.

Next, in order to compute the crystalline and Hodge–Witt cohomology groups of
an Enriques surface, let us remind the reader that we computed Serre’s Witt vector
cohomology groups �8 (,O() already in Corollary 1.2.5 using results on Picg

(/k.
This is already sufficient the degeneration behavior of the slope spectral sequence
(0.10.45).

Proposition 1.4.12 The slope spectral sequence of an Enriques surface over an
algebraically closed field of positive characteristic degenerates at �1.

Proof By Theorem 0.10.16, we have to show that � 9 (,Ω8
(
) is a finitely gener-

ated ,-module for all 8, 9 . Moreover, by Remark 0.10.17, it suffices to check that
�2 (,O() is finitely generated, which is true by Corollary 1.2.5. �

Next, we compute the crystalline cohomology groups, which should be compared
to the singular cohomology groups in the complex case in Theorem 1.4.1.

Theorem 1.4.13 , Let ( be an Enriques surface over an algebraically closed field k
of characteristic ? > 0 and let , = , (k) be the ring of Witt vectors. Then, ( has
the following crystalline and de Rham cohomology groups:

0 1 2 3 4
? ≠ 2 � 8 ((/, ) , 0 , 10 0 ,

� 8DR (() k 0 k10 0 k

? = 2 � 8 ((/, ) , 0 , 10 ⊕ k k ,
� 8DR (() k k k11 0 k

Table 1.3 Crystalline and de Rham cohomology of Enriques surfaces

Moreover, if ? ≠ 2 or ( is a -2-surface, then the étale fundamental group is
isomorphic to Z/2Z. In the remaining cases, ( is algebraically simply connected.
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Proof The assertions about �8 ((/,) for 8 = 0, 4 follow from the fact that ( is a
smooth and proper surface. Also, sincePic◦( is zero-dimensional, we find�1 ((/,) =
0.

First, assume that ? ≠ 2. Since NS(() has no ?-torsion, also %1�1 ((/,) has
no ?-torsion by (0.10.48). And since �2 (,O() = 0 by Corollary 1.2.5, we have
�2 ((/,) = %1�2 ((/,), and conclude that �2 ((/,) has no ?-torsion. Since it
is of rank 12 = 10, we find �2 ((/,) � ,10. From this, Poincaré duality gives
�3 ((/,) = 0.

Next, assume that ? = 2. If ( is classical, thenwe have�2 (,O() = 0 byCorollary
1.2.5 and conclude�2 ((/,) = %1�2 ((/,) as before. The ?-torsion of %1�2 ((/,)
is computed from that of NS((), and we find %1�2 ((/,)tors � k. Again, the rank
of �2 ((/,) is equal to 12 = 10, and we conclude �2 ((/,) � ,10 ⊕ k. Thus, we
obtain �3 ((/,) � k by Poincaré duality.

Finally, assume that ( is non-classical. Since NS(() has no ?-torsion, neither has
%1�2 ((/,) by (0.10.48). By Corollary 1.2.5, we have �2 (,O() = k. Now, the +-
torsion of�2 (,O() injects into the torsion of�2 (,/(), and the torsion of�2 (,/()
surjects onto the torsion of �2 (,O(), see also [329, Section II.(6.7.2)]. This implies
that the torsion of �2 ((/,) is k, and since 12 = 10, we find �2 ((/,) � ,10 ⊕ k.
Using Poincaré duality, we find �3 ((/,) = k.

In all cases, the de Rham cohomology groups can easily be computed from the
crystalline cohomology groups using the universal coefficient formula (0.10.43). �

Corollary 1.4.14 Let ( be an Enriques surface over an algebraically closed field k.
Then, the exotic torsion of ( is zero.

Proof Applying the theorem and Corollary 1.2.5 to (0.10.49), it follows that the
torsion of �2 ((/,) is divisorial and thus, the exotic torsion is zero. �

Corollary 1.4.15 Let ( be an Enriques surface over an algebraically closed field k.

1. The Frölicher spectral sequence of ( from Hodge to de Rham cohomology degen-
erates at �1 if and only if ( not an "2-surface.

2. If ( is an "2-surface, then the Frölicher spectral sequence degenerates at �2 and
the non-zero differentials on the �1-page are

3
0,1
1 : �1 ((, O() → �1 ((, Ω1

(/k) and 3
1,1
1 : �1 ((, Ω1

(/k) → �1 ((, Ω2
(/k).

Proof The Frölicher spectral sequence of a smooth and proper variety degenerates
at �1 if and only if ℎ=DR =

∑
8+ 9== ℎ

8, 9 holds for all =, see Proposition 0.10.9. Using
this, the first claims follows from inspecting Table 1.2 and Table 1.3.

Let ( be an "2-surface. Since global 1-forms on ( are 3-closed by Theorem 1.4.6,
it follows that the only differentials on the �1-page of the Frölicher spectral sequence
that can be non-zero are 30,1

1 and 31,1
1 . By the established first claim, at least one

of them must be non-zero. Since 30,1
1 and 31,1

1 are dual maps via Serre duality, it
follows that if one is non-zero, then so is the other. Therefore, both maps must be
non-zero. �
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For more details about the Frölicher spectral sequence of an Enriques surface and
its differentials, we refer the interested reader to [329, Proposition II.7.3.8] and its
proof. We end this section by computing the Hodge–Witt cohomology groups

�
8, 9

,
(() := � 9 ((, ,Ω8

(/k),

that is, the cohomology groups of the de Rham-Witt complex, which we discussed
in Section 0.10.

Proposition 1.4.16 Let ( be an Enriques surface over an algebraically closed field
k of characteristic ? > 0 and let , = , (k) be the ring of Witt vectors. Then, we
have �0,0

,
� �2,2

,
� , , as well as

Picg
(/k �

1,0
,

�
0,1
,

�
2,0
,

�
1,1
,

�
0,2
,

�
2,1
,

�
1,2
,

characteristic ? ≠ 2:
-2 � Z/2Z 0 0 0 , 10 0 0 0

characteristic ? = 2:
Z/2Z 0 0 0 , 10 ⊕ k 0 0 k

-2 0 0 0 , 10 k k 0
"2 0 0 0 , 10 k 0 k

Table 1.4 Hodge–Witt cohomology of Enriques surfaces

Proof Since ( is a smooth and proper surface, we have �0,0
,

� �2,2
,

� , . Next, by
partial degeneration of the slope spectral sequence (0.10.45) we obtain a short exact
sequence of free,-modules

0 → �0 ((, ,Ω1
() → �1 ((/,) → �1 ((, ,O() → 0,

see (0.10.47). Since �1 ((/,) = 0 by Table 1.3, we conclude �1,0
,

= �
0,1
,

= 0.
Next, the F-isocrystal �2 ((/,) ⊗  is of slope 1 by Corollary 1.2.5, which implies
that �0 (,Ω2

(
) ⊗  is zero, since the latter is isomorphic to the sub-F-isocrystal of

�2 ((/,)⊗ of slope 2. All�8,0
,

are free,-modules of finite rank by (0.10.46), from
which we conclude that�2,0

,
= 0. Moreover, we already computed�0,2

,
= �2 (,O()

in Corollary 1.2.5.
By Proposition 1.4.12, the slope spectral sequence of ( degenerates at �1, and

thus, looking up �2 ((/,) in the Table 1.3, as well as using the already computed
groups �2,0

,
and �0,2

,
, this enables us to compute �1,1

,
.

It remains to compute�2,1
,

and�1,2
,

. Again, using that the slope spectral sequence
degenerates at �1, we obtain a short exact sequence

0 → �1 ((, ,Ω2
() → �3 ((/,) → �2 ((, ,Ω1

() → 0
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and �3 ((/,) is given by Table 1.3. If ? ≠ 2, then this immediately implies �2,1
,
=

�
1,2
,
= 0. We may thus assume that ? = 2. From here, we sketch only the proof and

refer to [329, Section II.7.3] for details. Since ? = 2, we have �3 ((/,) � k, which
implies that one of the two desired cohomology groups is isomorphic to k, whereas
the other one is zero. Therefore, it suffices to compute�1 (,Ω2

(
). Now,Verschiebung

+ induces a short exact sequence 0→ ,Ω2
(
→ ,Ω2

(
→ ,Ω2

(
/+,Ω2

(
→ 0. Taking

cohomology, using �2 (,Ω2
(
) � , and using the Cartier operator � in Hodge–Witt

cohomology, we obtain an isomorphism

�1 ((, ,Ω2
()/+�

1 ((, ,Ω2
() � lim←−−

�

�1 ((, Ω2
().

Next, Frobenius F is an automorphism of �2,1
,

and since + = ?F−1, the term on
the left is isomorphic to �2,1

,
/?�2,1

,
. Thus, if ( is classical, then �1 (Ω2

(
) = 0,

which implies �2,1
,
/?�2,1

,
= 0 and we conclude �2,1

,
= 0. In the case where ( is

not classical the �-limit over �1 (Ω2
(
) is dual to the F-limit over �1 (O(). This is

isomorphic to k if ( is a -2-surface and it is zero if ( is an "2-surface. Thus, we find
�

2,1
,

� k (resp. = 0) In the case where ( is a -2-surface (resp. an "2-surface). �

We end this section by discussing �-split and ordinary Enriques surfaces in pos-
itive characteristic – these behave particularly nicely when it comes to degeneration
of the Frölicher spectral sequence from Hodge to de Rham cohomology, in view of
their crystalline cohomology, and in view of the vanishing theorems that we will
discuss in Section 2.1.

Let - be a variety over a perfect field k of characteristic ? > 0 and let F : - → -

be the absolute Frobenius morphism. Then, - is called Frobenius split, or �-split
for short, if the injective homomorphism O- → F∗O- splits as a homomorphism of
O- -modules. We remind the reader that we already discussed �-split singularities
in Section 0.4 and refer the reader to [97] for an introduction to �-split varieties.

Proposition 1.4.17 Let - be a smooth and proper variety over an algebraically
closed field k of characteristic ? > 0 that is �-split. Then, ℎ0 (-, l⊗(1−?)

-
) ≠ 0. In

particular, the Kodaira dimension of - satisfies ^(-) ≤ 0.

Proof Weonly sketch the proof and refer to [97, Section 1.3] for details: by definition
of −!, there is an isomorphism

H><(F∗O- ,O- ) � F∗ (F!O- ).

Using duality for finite and flat morphisms and suitable trace maps, one can show
that there exists an isomorphism

F!O- � l
⊗(1−?)
-

.

Thus, if - is �-split, then a choice of splitting i : F∗O- → O- yields a non-zero
section of F∗ (F!O- ), which implies that ℎ0 (F!O- ) = ℎ0 (l⊗(1−?)

-
) ≠ 0. �
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In particular, surfaces of Kodaira dimension zero as classified in Section 1.1 have
a chance of being �-split. We refer to Section 0.10 for a discussion of ordinary
varieties.

Theorem 1.4.18 Let - and ( be smooth and proper varieties in characteristic ? > 0.

1. If - is an abelian variety or a K3 surface, then - is �-split if and only if - is
ordinary.

2. If ( is an Enriques surface, then:

a. If ? ≠ 2, then ( is �-split if and only if its K3-cover is �-split.
b. If ? = 2, then ( is �-split if and only if ( is a -2-surface. In this case, the

K3-cover of ( is a K3 surface that is ordinary or, equivalently, �-split.

Proof If - is an abelian variety, then the equivalence of being ordinary and being
�-split is well-known, see, for example, [505, Lemma 1.1].

Next, it follows from [97, Remarks 1.3.9] that a smooth, proper, and =-dimensional
variety - is �-split if and only if the map

F∗ : �= (-, l- ) → �= (-, l⊗?
-
)

induced by Frobenius on cohomology is non-zero.
Thus, if - is aK3 surface, then - is �-split if and only ifF∗ : �2 (O- ) → �2 (O- )

is non-zero. We showed in Example 0.10.26 that this means that it is ordinary in
degree 2. Since �1 (O- ) = 0, it is ordinary in degree 1. We refer to this example for
other characterizations of an ordinary K3 surface.

Now, let ( be an Enriques surface in characteristic ? > 0, say with K3-cover
c : - → (. First, assume that ? ≠ 2. Since c is a finite and étale morphism, we have
c∗l( � l- and thus, we obtain a commutative diagram

�2 (-, l- )
F // �2 (-, l⊗?

-
)

�2 ((, l()

c∗

OO

F // �2 ((, l⊗?
(
).

c∗

OO

Since c is a finite of degree prime to ?, the vertical maps are split injections (via
trace maps). On the other hand, the vector spaces on the left are one-dimensional,
from which it is easy to see that the upper horizontal map is injective if and only if
the lower horizontal map is. Using the above criterion for �-splitting, assertion (a)
follows.

If ? = 2 and ( is an �-split Enriques surface, then Proposition 1.4.17 implies
that ℎ0 (l−1

(
) ≠ 0, that is, ( is a non-classical Enriques surface. Moreover, since

O( → F∗O( is a split injection, so is F : �1 (O() → �1 (F∗O(), which implies that
the Frobenius action on �1 (O() is injective. Thus, ( is a -2-surface. Conversely, let
( be a -2-surface. Then, the K3-cover c : - → ( is an ordinary K3 surface by [143],
see also Remark 1.3.12. In particular, F∗ : �2 (-,O- ) → �2 (-,O- ) is injective.
Since c is a Z/2Z-torsor, we have a short exact sequence
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0 → O( → c∗O- → O( → 0,

see Section 0.3. From this, it is easy to see that the injective F-action on �2 (-,O- )
forces also the F-action on �2 ((,O() to be injective. Since l( � O( , it follows that
( is �-split. �

Theorem 1.4.19 Let ( be an Enriques surface in characteristic ? > 0. Then:

1. If ? ≠ 2, then ( is ordinary (in the sense of Definition 0.10.22).
2. If ? = 2, then ( is ordinary if and only if ( is not an "2-surface.

In particular, �-split Enriques surfaces are Bloch–Kato–Illusie–Raynaud ordinary,
but the converse is not true in general.

Proof First, assume that ? ≠ 2 or that ? = 2 and that ( is classical. Taking
cohomology in the short exact sequence

0 → O( → F∗O(
3−→ �Ω1

(/k → 0 (1.4.3)

and using ℎ1 (O() = ℎ2 (O() = 0, we find �8 (�Ω1
(/k) = 0 for all 8 ≥ 0. If ? = 2

and ( is a -2-surface, then it is �-split by Theorem 1.4.18 and thus, (1.4.3) is split.
Therefore, the maps �8 (O() → �8 (F∗O() are injective for all 8 ≥ 0, which implies
that �8 (�Ω1

(
) = 0 for all 8 ≥ 0.

Since ( is a surface, the Cartier operator induces a perfect pairing

F∗ (O() ⊗ F∗ (Ω2
(/k) → Ω2

(/k = l(

that is given by ( 5 , l) ↦→ � ( 5 l). This induces a perfect pairing �Ω1
(
⊗�Ω2

(
→ l( ,

see the proofs of [354, Theorem 2.4.1]. and [505, Lemma 1.1]. Thus, a surface (
that satisfies �8 (�Ω1

(
) = 0 for all 8 ≥ 0 automatically satisfies �8 (�Ω2

(
) = 0 for all

8 ≥ 0 and is thus ordinary in the sense of Bloch, Kato, Illusie, and Raynaud.
It remains to show if ( is an "2-surface over an algebraically closed field k of

characteristic 2, then it is not ordinary: taking cohomology in (1.4.3) and using that
the map �1 (O() → �1 (F∗O() is zero, we obtain an isomorphism and an injection
k � �1 (F∗O() → �1 (�Ω1

(
), which implies that ( is not Bloch–Kato–Illusie–

Raynaud ordinary. �

Remark 1.4.20 For varieties that are ordinary in the sense of Bloch, Kato, Illusie,
and Raynaud, the Frölicher spectral sequence from Hodge to de Rham cohomology
degenerates at �1 by [332, Théorème IV.4.13]. Therefore, we obtain another proof
that the Frölicher spectral sequences degenerates at �1 for all Enriques surfaces that
are not "2-surfaces. By Corollary 1.4.15, we know that it does not degenerate at �1
for "2-surfaces.

If ( is an Enriques surface in characteristic ? > 0, then �1 ((/,) and �3 ((/,)
are zero and torsion, respectively, see Theorem 1.4.13. Moreover, the Newton poly-
gon and the Hodge polygon arising from �2 ((/,) coincide and are straight lines.
In particular, these crystalline cohomology groups do not give rise to interesting
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invariants. However, if ? ≠ 2 or ? = 2 and ( is a -2-surface, then the K3-cover
c : - → ( is a K3 surface and we can look at the height ℎ(-) := ℎ(B̂r-/k) of the
formal Brauer group. If ℎ(-) = 1, then - is an ordinary K3 surface. Moreover, if
ℎ(-) = ∞, that is, if - is supersingular, then we may consider the Artin invariant
f0 (-).

Theorem 1.4.21 Let ( be an Enriques surfaces in characteristic ? > 0 and let
c : - → ( be its K3-cover:

1. If ? = 2 and ( is a -2-surface, then ℎ(-) = 1, that is, - is an ordinary K3
surface.

2. If ? ≥ 3, then:

a. either ℎ(-) ≤ 6,
b. or else ℎ(-) = ∞, that is, - is supersingular, and then, f0 (-) ≤ 5.

3. Conversely, if ? ≥ 3, then:

a. for every 1 ≤ ℎ ≤ 6, there exists aK3 surface - with ℎ(-) = ℎ in characteristic
? that is the K3-cover of an Enriques surface.

b. Every supersingular K3 surface - in characteristic ? with f0 (-) ≤ 5 is the
K3-cover of an Enriques surface.

Proof The assertion for ? = 2 is due to Crew [143], see also Theorem 1.4.18, and
thus, we may assume ? ≥ 3.

We have 12 (-) = 22 since - is a K3 surface. Next, we have d(() = 10 by
Theorem 1.2.7, and the map c∗ : Pic(() → Pic(-) is injective up to torsion (see
also Proposition 1.3.13) and we find d(-) ≥ 10. Thus, if ℎ(-) < ∞, then the
Igusa–Artin–Mazur inequality (0.10.53) yields ℎ(-) ≤ 1

2 (12 (-) − d(-)) ≤ 6.
If ℎ(-) = ∞, then the assertion f0 (-) ≤ 5 is due to Jang, see [347, Corollary

3.4].
The converse result (3) is also due to Jang, see [347, Theorem 2.3] and Corollary

2.4. �

Remark 1.4.22 The formal moduli space of K3 surfaces (resp. Enriques surfaces) in
characteristic ? of height ≥ ℎ is of dimension 21 − ℎ (resp. 11 − ℎ), see [25] and
[347]. Moreover, if ? ≥ 3, then every K3 surface can be the K3-cover of at most
finitely many Enriques surfaces. Thus, for dimensional reasons, a general K3 surface
of height ≤ 6 is not the K3-cover of an Enriques surface.

For example, let � be an abelian surface in characteristic ? ≥ 3, and - be a
minimal resolution of the associated Kummer surface Kum(�). Then the quotient
( := -/〈]〉 by a fixed–point–free involution ] is an Enriques surface with the K3-
cover - . Since - is a Kummer surface, it is well-known that we have either ℎ(-) ≤ 2
or else ℎ(-) = ∞ and f0 (-) ≤ 2. We refer to Example 1.6.13 for explicit examples.
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1.5 The Enriques Lattice

In this section, we turn to the Néron-Severi lattice of an Enriques surface (. We will
study root bases, Weyl groups, fundamental weights, and orbits of primitive vectors.
We start with the isometry class of this lattice; it is the same for all Enriques surfaces.

Proposition 1.5.1 Let ( be an Enriques surface over an algebraically closed field k.
Then,

Num(() = NS(()/Tors = NS(()/( () � U ⊕ E8,

which is an even and unimodular lattice of rank 10 and signature (1, 9).

Proof By Theorem 1.2.7, the rank of Num(() is equal to 10. Let us first treat the
case where k is of characteristic zero. By the Lefschetz principle, we may assume
that k = C. Then, Lefschetz’s Theorem on (1, 1)-classes implies that the first Chern
class 21 : NS(() → �2 ((,Z) gives rise to an isomorphism of abelian groups up to
torsion subgroups, that is,

Num(() � �2 ((,Z)/Tors � Z10.

Since this isomorphism is compatible with intersection pairings on both sides,
Poincaré duality for �2 ((,Z) implies that Num(() is a unimodular lattice. By the
Hodge Index Theorem, it is of signature (1, 9). Given an effective class� ∈ Num((),
the adjunction formula yields �2 = �2 + � ·  ( = −2j(O�), which is an even in-
teger. Since ( is projective, every divisor class � ∈ Num(() can be written as the
difference of two effective divisor classes, from which it follows that �2 is in general
an even integer. This shows that Num(() is an even lattice. By Proposition 0.8.8,
there exists only one isomorphism class of even and unimodular lattices of signature
(1, 9) and it is represented by U ⊕ E8.

Let us now treat the case, where k is of characteristic ? > 0. For all primes
ℓ ≠ ?, it follows from (0.10.29) that )ℓ (Br(()) = 0, which shows that there is an
isomorphism

Num(() ⊗Z Zℓ � �2
ét ((,Zℓ (1))/Tors

that is compatible with intersection pairings on both sides. By Poincaré duality for
ℓ-adic cohomology of algebraic surfaces, we find that Num(() ⊗ Zℓ is a unimodular
lattice over Zℓ for all ℓ ≠ ?. Next, the Artin–azur formula (0.10.65) yields ℎ(() =
t? = 0, and then, (0.10.61) implies that there is an isomorphism

Num(() ⊗Z Z? � �2
fl ((,Z? (1))/Tors

that is compatible with intersection pairings on both sides. We note that even if a
surface satisfies d = 12, then this does not imply that the pairing on the right–hand
side is unimodular, see Remark 0.10.31. In our case, it follows from (the proof of)
Theorem 1.4.13 that there exist isomorphisms

Num(() ⊗Z, � (�2
ét ((,Z? (1)) ⊗Z? ,)/Tors � �2 (-/,)/Tors
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that are compatible with intersection pairings. By Poincaré duality in crystalline
cohomology, the pairing on the right–hand side is perfect, which implies that the
pairing on Num(() ⊗ Z? is perfect. Putting all these computations together, we find
that Num(() ⊗ Zℓ is a unimodular lattice over Zℓ for all primes ℓ (including ℓ = ?),
which implies that Num(() is a unimodular lattice over Z. From here, we proceed
as in the characteristic zero case. �

Definition 1.5.2 The lattice

E10 := U ⊕ E8 � E2,3,7

is called the Enriques lattice.

In fact, this lattice is part of the following series of lattices: for every integer
= ≥ 4, we define

E= := E2,3,=−3,

where the lattices E?,@,A are the ones introduced in Example 0.8.7. In this notation,
the Enriques lattice isE10, which is consistent with the previous definition.Moreover,
we note that there are isomorphisms of lattices for = ≥ 11

E= � U ⊕ E8 ⊕ A=−10.

These lattices can be realized as follows using rational surfaces, see also the discus-
sion around (0.5.1): consider

c : - = -=
c=−→ -=−1

c=−1−→ . . .
c2−→ -1

c1−→ -0 := P2, (1.5.1)

where each c8 : -8 → -8−1 is the blow-up of a point G8 ∈ -8−1. If 40 denotes the
pull–back of the divisor class of a line in P2 and the 48 , 8 = 1, . . . , = denote the classes
of the exceptional configuration E8 = (c ◦ · · · ◦ c8)−1 (G8), then we have already seen
in the discussion around (0.5.5) that the 40, 41, . . . , 4= form a basis of Pic(-).

For an integer = ≥ 3, let I1,= = 〈1〉 ⊕ 〈−1〉= be the standard hyperbolic lattice with
its standard basis e0, . . . , e=, see Example 0.8.7. Then, the map that sends e8 ↦→ 48
for all 8 defines an isomorphism of lattices I1,= � Pic(-). Next, we define

k= := 3e0 − e1 − · · · − e=,

which corresponds to the anti-canonical divisor class − - in Pic(-). It is easy to
check that

E= � (Zk=)⊥ ⊂ I1,=. (1.5.2)

Under this identification, the vectors

"0 := e0 − e1 − e2 − e3, "8 := e8 − e8+1, 8 = 1, . . . , = − 1,

form a root basis of E=. In particular, if = = 10, that is, for the Enriques lattice
E10, then the Coxeter–Dynkin diagram of this root basis is of type )2,3,7, see also
Example 0.8.7 for the definition of the graphs )?,@,A :
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• • • • • • • • •

•

"1 "2 "3 "4 "5 "6 "7 "8 "9

"0

Fig. 1.1 The Enriques lattice E10

With respect to this root basis, the splitting E10 � U ⊕ E8 can be seen as follows:
first, the "0, . . . ,"7 span a lattice of type E8. Next, we define

f := 3"0 + 2"1 + 4"2 + 6"3 + 5"4 + 4"5 + 3"6 + 2"7 + "8, (1.5.3)

and then, we have f · "8 = 0 for 8 = 0, . . . , 7. Moreover, f and "9 span a sublattice
isomorphic to U and orthogonal to E8, which yields the asserted splitting.

The Dynkin diagram in Figure (1.1) has only one parabolic subdiagram, namely
the one that is obtained by deleting the vertex "9. Since its rank is equal to 8,
Theorem 0.8.23 implies that B = ("0, . . . ,"9) is a crystallographic basis. By Propo-
sition 0.8.20, we have,B (E10) = , (E10). Since the graph )2,3,7 has no non-trivial
symmetries, (0.8.16) implies that there is an isomorphism

O(E10) ′ � , (E10). (1.5.4)

As explained in Section 0.3, reflections in the "8 give rise to an action of, (E10) on
I1,= and it is easy to see that it leaves vector k10 fixed. Conversely, using (1.5.2), we
see that an isometry f ∈ O(I1,10) that fixes k10 defines an isometry of E10. Thus, by
(1.5.4) we find

O(E10) ′ � {f ∈ O(I1,10) : f(k10) = k10}.

Using the isomorphism Num(() � E10 for an Enriques surface (, the pre-image
, (Num(()) of , (E10) becomes a subgroup of index 2 of the orthogonal group
O(Num(()). The group, (Num(()) is called the Weyl group of (.

Since E10 is unimodular, the intersection form induces a canonical isomorphism
with its dual lattice E∨10 and we denote by B∗ = (80, . . . ,89) the dual basis of B. Its
elements are called the fundamental weights of E10. We note that this is compatible
with Lie theory: for E10, the set of roots B coincides with the set of coroots, and
thus, the fundamental weights are dual to the coroots, as defined, for example, in
[88, Chapter VI, Section 10].

Proposition 1.5.3 The vectors

f8 := k10 + e8 , 8 = 1, . . . , 10, and � :=
1
3
(f1 + · · · + f10)

belong to E10 and satisfy
f8 · f 9 = 1 − X8 9 .

Moreover, the corresponding fundamental weights are as follows:
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80 = �

81 = � − f1,

82 = 2� − f1 − f2,

88 = 3� − f1 − · · · − f8 = f8+1 + · · · + f10, 8 ≥ 3.

The Gram matrix with respect to the basis B∗ is the following:

©«

10 7 14 21 18 15 12 9 6 3
7 4 9 14 12 10 8 6 4 2

14 9 18 28 24 20 16 12 8 4
21 14 28 42 36 30 24 18 12 6
18 12 24 36 30 25 20 15 10 5
15 10 20 30 25 20 16 12 8 4
12 8 16 24 20 16 12 9 6 3
9 6 12 18 15 12 9 6 4 2
6 4 8 12 10 8 6 4 2 1
3 2 4 6 5 4 3 2 1 0

ª®®®®®®®®®®®®®®®¬
Proof Since k2

10 = −1 and e8 · k10 = 1 for all 8 ≥ 1, we find f8 ∈ k⊥10 = E10
using(1.5.2). Next, we have

Δ =
1
3

(
10k10 +

10∑
8=1

e8

)
=

1
3

(
30e0 − 9

10∑
8=1

e8

)
= 10e0 − 3

10∑
8=1

e8 ,

which thus lies in I1,10. It is easy to see that it is perpendicular to k10, which shows
that Δ lies in E10. The remaining assertions are easily verified by straightforward
computations. �

Explicitly, one can express the isotropic vectors f8 in terms of the root basis B as
follows:

f8 = f +
9∑
9=8

" 9 , for 8 = 1, . . . , 9, and f10 = f. (1.5.5)

Let us recall the following notations that we introduced in Section 0.8: if " is a
lattice, then "3 denotes the set of vectors { ∈ " that satisfy {2 = 3. Moreover, we
denote by " ′

3
the subset of "3 that consists of primitive vectors. As an application

of the previous proposition, we have the following.

Corollary 1.5.4 The O(E10)-orbits of primitive vectors of E10 of self-intersection at
most 10 are as follows:
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(E10) ′0 = O(E10) · 89

(E10) ′2 = O(E10) · 88

(E10) ′4 = O(E10) · 81
⊔

O(E10) · (88 + 89)

(E10) ′6 = O(E10) · 87
⊔

O(E10) · (88 + 289)

(E10) ′8 = O(E10) · (288)
⊔

O(E10) · (88 + 389)
⊔

O(E10) · (81 + 89)

(E10) ′10 = O(E10) · 80
⊔

O(E10) · (87 + 389)
⊔

O(E10) · (88 + 489).

(1.5.6)

Proof Since � (B) = R≥080 + · · · + R≥089 is a fundamental domain for the ,B-
action on ++ and since O(E10) = ,B × {±1}, each vector in E10 belongs to the orbit
of a vector that is a positive sum of88’s. From this observation, the assertion follows
from straightforward computations with the Gram matrix of B∗. �

Remark 1.5.5 All fundamental weights can be written as positive sums of isotropic
vectors: by the previous proposition, this is obvious for all 88 with 8 ≥ 3. In the
remaining cases, we define

f8, 9 := � − f8 − f 9 , 1 ≤ 8 < 9 ≤ 10,

which are isotropic vectors and then, we have

81 := f1,2 + f2, 82 := 2f1,2 + f1 + f2.

Definition 1.5.6 An ordered isotropic :-sequence in a lattice is a set of vectors
51, . . . , 5: with 58 · 5 9 = 1 − X8 9 for all 1 ≤ 8, 9 ≤ : .

In particular, the vectors of an ordered isotropic :-sequence are isotropic and
(f1, . . . , f10) is an example of an ordered isotropic 10-sequence in the Enriques
lattice E10. In fact, we have the following observation.

Lemma 1.5.7 To give an ordered isotropic 10-sequence in the Enriques lattice E10
is equivalent to giving a primitive embedding E10 ↩→ I1,10. Both determine a root
basis in E10.

Proof In Proposition 1.5.3, we saw that a primitive embeddingE10 ↩→ I1,10 gives rise
to a root basis in E10 and an ordered isotropic 10-sequence. Conversely, an ordered
isotropic 10-sequence ( 51, ... 510) defines a primitive embedding E10 ↩→ I1,10 and
hence, a root basis in E10: to see this, we consider the sublattice ! of E10 spanned by
51, . . . , 510. A direct computation shows that its discriminant is equal to 9, and thus,
it is a sublattice of index 3 in E10. Moreover, the vector X = 1

3 ( 51 + · · · + 510) has
integer intersection with each 58 and hence, it defines an element in the dual lattice
!∗ with 3X ∈ !. This implies that X ∈ E10 and we may set l0 = X, l1 = X − 51, etc.
as in Proposition 1.5.3. As there, the vectors l8 represent the dual of a root basis
U0, . . . , U10. �

Let
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� := R+80 + · · · + R+89

be the fundamental domain of the Weyl group, (E10) in (E10)R. Any vector { ∈ E10
belongs to the orbit of a unique vector

∑
<888 ∈ �.

We can also write any { ∈ E10 uniquely in the form

{ = <� −
10∑
8=1

<8f8 , (1.5.7)

where 3< −∑10
8=1 <8 = 0.

Lemma 1.5.8 Assume that { ∈ �. Then:
• < − <1 − <2 − <3 ≥ 0;
• <1 ≥ <2 ≥ · · · ≥ <10;
• { · � = <;
• { · f8 = <8;
• {2 = <2 −∑

8=1 <
2
8
.

Proof Since { ∈ �, we have { · "8 ≥ 0, 8 = 0, . . . , 9. This verifies the first two
assertions. We have { · � = 10< − 3

∑10
9=1 < 9 = <. Also, we get { · f8 = 3< −∑10

9=1, 9≠8 < 9 = <8 . The last assertion is immediate. �

This is reminiscent of the well-known representation of divisor classes of the
blow-up of a set of points in P2 in terms of the geometric basis. In fact, using
Proposition 1.5.3, we can write { in the form

{ = <e0 −
10∑
8=1

<8e8 ,

where (e0, . . . , e10) is the orthonormal basis of I1,10 that corresponds to a geometric
basis of the blow-up - of 10 points in P2 under a geometric marking Pic(-) → I1,10.
The condition 3< =

∑10
8=1 <8 means that the divisor class is orthogonal to the

canonical class of - . As we will see later in section 5.4 and Chapter 9 in Volume II,
this analogy acquires a geometric meaning when we degenerate ( to a Coble surface.

1.6 Examples

In this section, we present several constructions to obtain some more or less explicit
families of Enriques surfaces in arbitrary characteristic. We start with three classical
constructions, due to Castelnuovo and Enriques. Then, we settle existence of all
types of Enriques surfaces in every characteristic using a construction of Bombieri
and Mumford. To make this latter construction even more explicit, we use Kummer
surfaces associated to Jacobians of genus two curves. We start with the following
well-known observation.
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Lemma 1.6.1 Let - be a smooth and projective variety of dimension 3 ≥ 2 over an
algebraically closed field k such that:

1. - is the complete intersection of (# − 3) smooth hypersurfaces in P#
k
, or

2. - is a simple -=-cover of P3k associated to some data (L, B).

Then, - is algebraically simply connected and satisfies ℎ1 (-,O- ) = 0.

Proof To prove the first assertion, we note that we have shown ℎ1 (-,O- ) = 0
already in the proof of Lemma 1.1.11. To show that the étale fundamental group
c1 (-) is trivial, we proceed by induction: let - = . ∩ �, where . is a smooth
complete intersection of smooth hypersurfaces, and � is a smooth hypersurface. By
the Lefschetz hyperplane theorem, the homomorphism of étale fundamental groups
c1 (. ) → c1 (-) induced by restriction is an isomorphism if dim(-) ≥ 2, see [273,
Théorème X.3.10].

To prove the second assertion, let - → P3 be a simple -=-cover associated to
data (L, B). Since 3 ≥ 2, we have �1 (P2,L⊗8) = 0 for all 8 ∈ Z. Therefore, (0.2.3)
implies ℎ1 (-,O- ) = 0. Next, - is a hypersurface in the total space of the line
bundle L = V(L−1) → P3 , see the discussion in Section 0.3. We can embed L into a
P1-bundle �→ P3 . Since � is a proper, rational, and smooth variety, c1 (�) is trivial
by [272, Corollaire XI.1.2]. Since - is an ample divisor inside �, the restriction
homomorphism c1 (�) → c1 (-) is an isomorphism by Lefschetz’s theorem. �

Since Enriques surfaces are not algebraically simply connected in characteristic
≠ 2 and those that are algebraically simply connected in characteristic 2 satisfy
ℎ0,1 ≠ 0, it follows that the standard constructions from Lemma 1.6.1 never give
Enriques surfaces. Thus, it should not be surprising that the examples below arise
as resolutions of singularities of non-smooth hypersurfaces in projective space and
of non-smooth and rational double covers.

We start with Enriques’ original construction [109], [218] of the first Enriques
surface over the complex numbers, see also the bibliographical notes at the end of this
section, [179], and Theorem 3.5.1. We note that the generic Enriques surface over
the complex numbers arise this way, which was shown by Enriques [219]. Moreover,
Mumford [536] observed that this construction actually works in any characteristic.

Example 1.6.2 Let k be an algebraically closed field of arbitrary characteristic and
consider the sextic surface in P3

k
that is given by

�6 (&) : C0C1C2C3&(C0, C1, C2, C3) + C21C
2
2C

2
3 + C

2
0C

2
2C

2
3 + C

2
0C

2
1C

2
3 + C

2
0C

2
1C

2
2 = 0,

where & = &(C0, C1, C2, C3) is a quadratic form. Then, the surface �6 (&) is singular
along the tetrahedron given by the six lines {C8 = C 9 = 0}8≠ 9 . In particular, �6 (&) is
not normal.

More precisely, for a generic choice of & (for example being nondegenerate and
not vanishing on the edges of the coordinate tetrahedron), the surface �6 (&) has very
classical types of singularities: quite generally, an integral, but possible non-normal
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surface - over an algebraically closed field k has ordinary singularities if the locus
of non-smooth points consists of a double curve Γ that is smooth outside triple points
and pinch points, singular points of the surface. More precisely, the completion of
a local ring at a general point of Γ is isomorphic to k[[I1, I2, I3]]/(I1I2), it is
isomorphic to k[[I1, I2, I3]]/(I1I2I3) at triple points, and to k[[I1, I2, I3]]/(I2

1 +
I2

2I3) at pinch points. Let a : - ′ → - be the normalization morphism, which is
an isomorphism outside Γ, and then, an easy computation shows that - ′ is even
smooth over k. Moreover, the pre-image of a general point (resp. triple point, resp.
pinch point) of Γ under a consists of two points (resp. three points, resp. one point).
The importance of these singularities comes from the fact that every smooth and
projective surface over the complex numbers is birationally equivalent to a surface
in P3 with ordinary singularities, see [259, Chapter 4.6] for details, pictures, and
proofs.

Proposition 1.6.3 Let k be an algebraically closed field of characteristic ? ≥ 0 and
let & = &(C0, C1, C2, C3) ∈ k[C0, ..., C3] be a general quadratic form. Then, �6 (&) has
ordinary singularities and its normalization is an Enriques surface. If ? = 2, then
this Enriques surface is classical.

Proof We leave it to the reader to check that if& = &(C0, C1, C2, C3) ∈ k[C0, ..., C3] is a
generic quadratic form, then �6 (&) has at worst ordinary singularities. Thus, let& be
generic and let a : ( → � := �6 (&) be the normalization morphism. The conductor
ideal ℭ of a gives rise to closed subschemes Δ ⊂ ( and Γ ⊂ �, respectively. By the
above discussion, ( is a smooth surface over k and the singular locus of � is equal to
Γ, which is equal to six lines forming a tetrahedron as explained in Example 1.6.2.
Also, � has no pinch points and the triple points of � correspond the intersection
points of three lines of the tetrahedron.

Being a hypersurface in P3 and a smooth surface, respectively, both surfaces � and
( are Gorenstein and we denote byl� andl( their dualizing sheaves. Moreover, the
adjunction formula for the degree 6 surface � in P3 yields l� �� lP3 ⊗ O� (�) �
O� (2). duality for the finite morphism a yields

l( � a∗l� (−Δ) � a∗ (O� (2)) (−Δ), (1.6.1)

see also (1.3.4). From this, the projection formula yields a∗l( � O� (2) ⊗IΓ. Taking
global sections and using that Γ is a curve of degree 6 in P3, we find ℎ0 ((, l() = 0.

It is known that the curve Γ is an arithmetically Cohen–Macaulay (ACM) scheme
[177, 7.2.2] (where the exposition is characteristic-free). It implies that the natural
restriction morphism �0 (P3,OP3 (=)) → �0 (Γ,OΓ (=)) is surjective for all = ≥ 0
and Γ does not lie on a quadric. Using this and taking cohomology in the short exact
sequence

0 → IΓ (2) → OP2 (2) → OΓ (2) → 0,

we find �1 ((, l() � �1 (�,IΓ (2)) � �1 (P3,IΓ (2)) = 0. and thus, �1 ((,O() = 0.
Next, using (1.3.4) or (1.6.1), we find

l⊗2
(

� c∗
(
l⊗2
�
(−2Γ)

)
� c∗ (O� (4) (−2Γ)) � c∗ (O� (4) ⊗ I (2)Γ

),
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where � (=) denotes the =-th symbolic power of an ideal (sheaf) �. We leave it to
the reader to deduce l⊗2

(
� O( from this. Thus, ( is a minimal surface of Kodaira

dimension zero with ℎ0,1 = ℎ0,2 = 0. Thus, Table ?? identifies ( as an Enriques
surface with Δ = 0. In particular, if ? = 2, then ( is classical. We refer to [179] for
more details and note that if ? = 2, then Mumford [536] explicitly showed that, if (
is non-classical, then ℎ0,1 (() ≠ 0 and ℎ1,0 (() = 0. �

Let us mention the following variant of Example 1.6.2, which is due to Casteln-
uovo and yields a birational model that is birationally equivalent to �6 (&).

Example 1.6.4 Let k be an algebraically closed field of characteristic ? ≥ 0 and
consider the rational and birational self-map

) : P3
k

d P3
k

[H0, ..., H3] ↦→ [H2H3, H0H1, H0H2, H0H3] .

(This is a Cremona transformation of degree 2.) Let �6 (&) be as in Example 1.6.2
and, after plugging in ) into �6 (&) and dividing by H3

0H
2
2H

2
3, we find

�5 (&) : H1&(H2H3, H0H1, H0H2, H0H3) + H3
0H

2
1 + H0H

2
2H

2
3 + H0H

2
1H

2
3 + H0H

2
1H

2
2 = 0.

If the quadric & is general, then this defines a normal surface of degree 5 in P3 that
has four singular points: namely the points [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and
[0, 0, 0, 1], all of which are simple elliptic singularities, the first two are of degree 2,
the last two are of degree 3.1 In classical terminology, the first two singularities are
ordinary tacnodes and the last two are ordinary triple points. The minimal resolution
of singularities is an Enriques surface.

In fact, ) induces a birational map between �6 (&) and�5 (&), which implies that
the Enriques surfaces constructed from & in Example 1.6.2 and Example 1.6.4 are
in fact isomorphic. We refer to [389], [686], and [711] for modern treatments and
the study of quintic models of Enriques surfaces. Let us also mention the following
presentation of Example 1.6.4 as a rational double cover of the plane, which is due
to Enriques.

Example 1.6.5 Let k be an algebraically closed field of characteristic ? ≥ 0 and let
�5 (&) be the quintic surface from Example 1.6.4. Since [0, 0, 0, 1] is a triple point,
we can write this surface as

�5 (&) : H2
3�(H0, H1, H2) + H3�(H0, H1, H2) + � (H0, H1, H2) = 0,

where �, �, and � are homogeneous forms in the variables H0, H1, H2 that are of
degree 3, 4, and 5, respectively. In this form, we see that projection away from
[0, 0, 0, 1] induces a rational map

1 A simple elliptic singularity of degree 3 is the singularity of the affine spectrum of the section
ring of an invertible sheaf of degree 3 over an elliptic curve.
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5 : �5 (&) d P2

that is generically finite of degree 2. If ? ≠ 2, then this map is generically étale and
the branch curve is given by �2 − 4�� = 0, which is of degree 8. More precisely,
this curve is the union of two lines ℓ1 = + (H0) and ℓ2 = + (H1) with a degree 6 curve
, . The sextic curve, has a double point at the intersection of these lines and two
simple points of type 03 (classically called tacnodes) such that the lines ℓ1 and ℓ2
intersect, at these points with multiplicity 4. This is an Enriques octic and we refer
to Example 3.3.20 for explicit equations.

If ? = 2, the map 5 could be separable or inseparable. We will study these covers
in Section 3.3.

The next construction is due to Bombieri and Mumford [77], who attribute it to
Miles Reid. It gives examples of Enriques surfaces in arbitrary characteristic. In par-
ticular, it also gives examples of all three types of Enriques surfaces in characteristic
2 as in Definition 1.1.7. In fact, by a result of Liedtke [460], all Enriques surfaces
in arbitrary characteristic arise this way (when also allowing rational double point
singularities). We will construct our surfaces as quotients of complete intersections
of 3 quadrics in P5 by a finite flat group scheme of length 2. If - is such a complete
intersection, then ℎ1 (O- ) = 0 and l- � O- , and if - is smooth, then it is a K3
surface, see Lemma 1.1.11. By Theorem 0.1.10, there exist three group schemes
of length 2 over an algebraically closed field k of characteristic ? = 2, namely,
(Z/2Z)k, -2,k, and "2,k. On the other hand, if ? ≠ 2, then there is only one, namely
(Z/2Z)k � -2. Let us slightly extend our setup for later use.

Example 1.6.6 Let ' be a local, complete, and noetherian ring with residue field k
of characteristic ? ≥ 0. Fix 0, 1 ∈ ' with 01 = 2. Then, we define

G0,1 := Spec '[C]/(C2 − 0C),

which is a finite and flat scheme of length 2 over '. It becomes a group scheme over
' via the comultiplication map

'[C]/(C2 − 0C) → '[C]/(C2 − 0C) ⊗' '[C]/(C2 − 0C), C ↦→ C ⊗ 1 + 1 ⊗ C − 1C ⊗ C.

By the classification results of Oort and Tate [584] (see also Theorem 0.1.10), every
finite group scheme of length 2 over ' is isomorphic to G0,1 for some 0, 1 as above.
Let us make the following remarks:

1. If D ∈ ' is invertible, then we have G0,1 � G0D,1D−1 .
2. In particular, if ? ≠ 2, then 2 ∈ ' is invertible, and all finite flat group schemes

of length 2 over ' are isomorphic to G1,2 � G2,1 � -2,' � (Z/2Z)'.
3. If ? = 2, then there are three possibilities over k:

G0,1,k � -2,k, G0,0,k � "2,k, G1,0,k � (Z/2Z)k,

see also Theorem 0.1.10. In the case where ' is a local and complete DVR
with residue field k of characteristic 2 and G0,1 is as before, then the Oort–Tate
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classification implies that if the special fiber over k is isomorphic to -2 or Z/2Z,
respectively, then so is the generic fiber. On the other hand, if the special fiber is
isomorphic to "2, then it is easy to construct examples over ' = k[[D]], where
the generic fiber is isomorphic to "2 (e.g. 0 = 1 = 0), or to -2 (e.g. 0 = 0, 1 = D),
or to Z/2Z (e.g. 0 = D, 1 = 0). This observation will become important when
discussing moduli of Enriques surfaces in characteristic 2.

4. Cartier duality takes the following form:

G�0,1 = H><(G0,1 ,G<) � G1,0 .

For the construction of our examples, we need an action of G0,1 on P5 over
'. First, we consider the two-dimensional representation of G0,1 that is given by
associating to every '-algebra ( the homomorphism

G0,1 (() → GL2,' ((), B ↦→ ( 1 B
0 1−1B ).

This defines an isomorphism from G0,1 onto a closed subgroup scheme of GL2,'.
We extend this to a 6-dimensional representation

d : G0,1 → GL6,'

by simply taking the direct sum of three copies of the former representation. More
precisely, consider the variables G0, G1, G2, H0, H1, H2, and then, define a G0,1-action
by setting

G8 ↦→ G8 , H8 ↦→ BG8+(1−1B)H8 for 8 = 0, 1, 2 and B ∈ G0,1 (() = {B ∈ ( |B2 = 0B}.

After these preparations, we have the following lemma, due to Bombieri and Mum-
ford [77, page 222].

Lemma 1.6.7 The following 12 elements of degree 2 in '[G0, G1, G2, H0, H1, H2] span
the '-module of G0,1-invariants of degree 2:

G8G 9 , H2
8 − 0G8H8 , G8H 9 + G 9 H8 + 1H8H 9 .

Moreover, they also generate the '-algebra of G0,1-invariants of even degree.

Consider the induced G0,1-action on P5 = Proj '[G0, G1, G2, H0, H1, H2]. Let us
also specialize to the case ' = k. Then, the examples of Bombieri–Mumford–Reid
from [77] are the following.

Example 1.6.8 Let k be an algebraically closed field of characterstic ? ≥ 0, let G0,1
with 0, 1 ∈ k and 01 = 2 be the finite flat group scheme of length 2 over k as in
Example 1.6.6, and consider P5 with the G0,1-action introduced above. Let - ⊂ P5

be the complete intersection of three generic G0,1-invariant quadrics. By Lemma
1.1.11, - is an integral Gorenstein surface with l- � O- and ℎ1 (O- ) = 0, and by
construction, it carries a G0,1-action. Since - is generic, the quotient
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( := -/G0,1

is an Enriques surface with K3-cover - → ( and Picg( � G�0,1 � G1,0. In particular,
this shows the existence of Enriques surfaces in every characteristic, as well as the
existence of the three possible types in characteristic 2.

We will see in Corollary 3.4.3 that all Enriques surfaces arise in this way, when
also allowing rational double point singularities. This will be done in Section 3.4,
where we discuss in greater detail quotients of degree 8 polarized K3 surfaces that
lead to polarizations of degree 4 on Enriques surfaces.

Remark 1.6.9 Let us make the following remarks concerning moduli and deforma-
tions of the three types of Enriques surfaces in characteristic 2.

1. Let S → � be a flat family of Enriques surfaces, where � is a base scheme of
characteristic 2. Table 1.2 and the semi-continuity theorem applied to ℎ0,1 and to
ℎ1,0 show that the locus of classical, as well as the locus of -2-surfaces, is open
in �. The locus of "2-surfaces is closed in �. In particular, if � is irreducible,
then this family cannot contain both classical and -2-surfaces.

2. Let ( = -/G0,0 be an "2-surface over an algebraically closed field k of charac-
teristic 2 as in Example 1.6.8. As explained in Example 1.6.6, there exists finite
and flat group schemes G0,1 of length 2 over ' := k[[D]] with special fiber
G0,0 � "2 and generic fiber G0,1 � -2 or G1,0 � Z/2Z. It is not difficult to see
that one can deform the three G0,0-invariant quadrics cutting out - ⊂ P5 to three
G0,1-invariant families over '. The resulting complete intersection X in P5 over
' is G0,1-invariant, and the quotient S = X/G0,1 yields families of Enriques
surfaces over ', whose special fiber is an "2-surface, and whose generic fiber is
a classical or a -2-surface, respectively.

This shows that moduli spaces of Enriques surfaces in characteristic 2 cannot be
irreducible, since classical and -2-surfaces have to lie on different irreducible com-
ponents. On the other hand, some "2-surfaces can be deformed into classical, as well
as into -2-surfaces (in fact, this is true for all "2-surfaces). We refer to Section 5.9
for details and examples.

Finally, we give explicit constructions of Enriques surfaces in characteristic ≠ 2
as quotients of complete intersections of three quadrics in P5 by free Z/2Z-actions.
This makes Example 1.6.8 more explicit. In fact, these complete intersections are
Kummer K3 surfaces associated to Jacobians of genus two curves.

Example 1.6.10 Let � be an abelian surface over an algebraically closed field k of
characteristic ? ≠ 2. Then, the sign involution (with respect to the group structure)
]� : G ↦→ −G is an involution, that is, it generates a cyclic group 〈]�〉 � Z/2Z.
The quotient Kum(�) := �/〈]�〉 is a normal surface, which has 16 rational double
point singularities of type �1. Its minimal resolution �Kum(�) of singularities is a
K3 surface, called the Kummer K3 surface associated to �.

To obtain explicit equations, let � be a smooth and projective curve of genus two
over an algebraically closed field k of characteristic ? ≠ 2. Since � is a hyperelliptic
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curve, there exists a finite morphism � → P1 of degree 2 that is branched over 6
points, say [1 : 08], 8 = 0, . . . , 5 for pairwise distinct 08 ∈ k. The Jacobian variety
Jac(�) = Pic◦

�/k of � is an abelian surface, see Example 0.9.15. In this case, it is
well-known that the Kummer K3 surface - = �Kum(Jac(�)) is isomorphic to the
complete intersection of three quadrics in P5 with equations

5∑
8=0

C28 =

5∑
8=0

08C
2
8 =

5∑
8=0

02
8 C

2
8 = 0, (1.6.2)

see, for example, [177, Chapter 10.3.3]. Next, let � ⊂ {0, 1, 2, 3, 4, 5, 6} be a subset
with 3 elements and let f� be the involution of - that is defined by C8 ↦→ −C8 if 8 ∈ �
and C8 ↦→ C8 otherwise. It has no fixed points on - and thus, the quotient c : - → (

by 〈f� 〉 is an Enriques surface and - is its K3-cover.

As an application, we find examples of unirational and non-unirational Enriques
surfaces in every characteristic ? ≥ 3. We have already seen in Theorem 1.3.10 that
an Enriques surface in odd characteristic is unirational if and only if its K3-cover is.
In the case of Kummer K3 surfaces, unirationality can be decided using the Picard
number d by the following result of Shioda [676, Theorem 1.1].

Theorem 1.6.11 Let � be an abelian surface over an algebraically closed field k of
characteristic ? ≥ 3 and - = �Kum(�) be a Kummer K3 surface. Then, the following
are equivalent:

1. - is a unirational K3 surface,
2. d(-) = 22, that is, - is a Shioda-supersingular K3 surface,
3. d(�) = 6,
4. � is a supersingular abelian surface,
5. � is isogenous to the product of two supersingular elliptic curves.

Remark 1.6.12 Both, the moduli spaceM2 of genus two curves, as well the moduli
space of principally polarized abelian surfaces A2, are 3-dimensional and the map
� ↦→ Jac(�) defines a morphismM2 → A2 that induces a bĳection on geometric
points by the Torelli theorem. Moreover, the moduli space of supersingular abelian
surfaces Ass

2 is a 1-dimensional subspace of A2.
It follows from Theorem 1.6.11 that, for a generic curve� of genus two in charac-

teristic ? ≥ 3, the Enriques quotients of�Kum(Jac(�)) constructed in Example 1.6.10
are not unirational. On the other hand, this construction also yields 1-dimensional
families of unirational Enriques surfaces in every characteristic ? ≥ 3. It follows
from Example 1.6.2 that isomorphism classes of Enriques surfaces depend on 10
parameters, which implies that the family of Enriques Kummer quotients is of large
codimension. We will come back to this in Chapter 5 and in Volume II.

Even more explicitly, the following two examples are due to Shioda [676, Section
1], and yield explicit examples of unirational Enriques surfaces in infinitely many
positive characteristics.
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Example 1.6.13 We keep the assumptions and notations of Example 1.6.10.

1. Assume ? = 3. If we represent a point in M2 by a hyperelliptic curve G2
2 +

56 (G0, G1) = 0, where 56 =
∑6
8=0 28G

8
0G

6−8
1 is a binary form of degree 6, then the

pre-image of Ass
2 in M2 consists of the isomorphism classes of hyperelliptic

curves satisfying the conditions

222
2
1 + 2

3
4 = 2

3
125 + 24

4 = 0.

(see Example 0.10.24).
2. Assume that ? ≠ 2, 5. Then, there exists a unique curve � of genus two that

admits an automorphism of order 5 and it is known that the Kummer surface
- = �Kum(Jac(�)) is isomorphic to the complete intersection from (1.6.2) with

(00, . . . , 05) = (0, 1, Z5, Z
2
5 , Z

3
5 , Z

4
5 ),

where Z5 is a primitive 5-th root of unity. By a direct computation, Shioda [676]
shows that - is unirational if ? . 1 mod 5. In particular, the construction of
Example 1.6.10 yields unirational Enriques surfaces.

3. Similarly, if ? ≠ 2, 3 and if � is the unique curve that has an automorphism
of order 6, then �Kum(Jac(�)) is unirational if ? ≡ 2 mod 3. Again, we obtain
unirational Enriques surfaces in these characteristics via Example 1.6.10.
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Chapter 2
Linear Systems on Enriques Surfaces

2.1 Vanishing Theorems

After stating the Riemann–Roch theorem and Serre duality for Enriques surfaces
and making some elementary, yet useful observations, we turn to the vanishing
theorems of cohomology on Enriques surfaces. On our way, we discuss ample, big,
and nef invertible sheaves, as well as criteria to check whether a given invertible
sheaf has these properties. Then, we turn to the Zariski decomposition, as well as
general vanishing theorems. We refer to [612] for more on these notions for surfaces,
and to [447] for a general background on positivity questions and applications. For
vanishing theorems for surfaces over the complex numbers, we refer the interested
reader to [43, Chapter IV.12].

Let ( be an Enriques surface over an algebraically closed field k. Since the
canonical divisor class  ( is numerically trivial (see Theorem 1.1.14 or Corollary
1.2.3) and we have j(O() = 1 by Table ??, the Riemann–Roch theorem (0.10.23)
for an invertible sheaf L on ( becomes

ℎ0 ((,L) − ℎ1 ((,L) + ℎ2 ((,L) = 1
2L

2 + 1. (2.1.1)

Moreover, Serre duality for ( becomes

�8 ((,L) � �2−8 ((, l( ⊗ L−1)∨ and thus, ℎ8 ((,L) = ℎ2−8 ((, l( ⊗ L−1)
(2.1.2)

for 0 ≤ 8 ≤ 2. Next, if � is an effective divisor on (, then the adjunction formula for
the arithmetic genus ?0 (�) of � becomes

?0 (�) = 1
2�

2 + ℎ0 (�,O�). (2.1.3)

Combined with (2.1.1), we obtain the following relation:

ℎ0 ((,O( (�)) − ℎ1 ((,O( (�)) + ℎ0 ((,O( ( ( − �)) = ?0 (�).

Concerning the vanishing of ℎ2, we have the following elementary observation.

253
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Lemma 2.1.1 Let ( be an Enriques surface in characteristic ? ≥ 0. Let L be an
invertible sheaf on ( with ℎ0 ((,L) ≠ 0. If ? = 2 and ( is non-classical, assume
moreover that L � O( . Then,

ℎ2 ((,L) = ℎ0 ((, l( ⊗ L−1) = 0

holds true.

Proof The first equality is Serre duality (2.1.2). If ? ≠ 2 or ? = 2 and ( is classical,
then we have ℎ2 (O() = 0 by Serre duality and Definition 1.1.7, that is, we may
assume L � O( in any case. Being projective, we may choose an ample divisor �
on (. Since L is effective and non-trivial, we have � · L > 0. On the other hand, if
we had ℎ0 (l( ⊗ L−1) ≠ 0, then there would exist a divisor � ∈ |l( ⊗ L−1 |. This
divisor would satisfy � · � ≥ 0, as well as � · � = � · (l( ⊗ L−1) = −� · L < 0,
a contradiction. �

We now want to give conditions under which ℎ1 is zero. To do so, we introduce
a couple of notions, which are meaningful and important for much more general
varieties than Enriques surfaces and we refer to [447] for the general background.
An invertible sheaf L on a smooth and proper variety - over some algebraically
closed field k is called nef (short for numerically effective or numerically eventually
free) if we have

L · � ≥ 0

for every curve � on - . Clearly, it suffices to check L · � ≥ 0 for every integral
curve � on - , that is, every curve that is reduced and irreducible. If � is a divisor
on - , then it is called nef if the associated invertible sheaf O- (�) is. A related
notion is the following: an invertible sheaf L on a smooth and projective surface
- is called pseudo-effective if L · M ≥ 0 for all ample invertible sheaves on M.
The name is justified by the fact that if ℎ0 (-,L⊗=) ≠ 0 for some = ≥ 1, then L
is pseudo-effective. For Enriques surfaces, we have the following elementary, but
useful observations.

Lemma 2.1.2 Let ( be an Enriques surface. Let L be an invertible sheaf on ( with
L2 ≥ 0. Then:

1. L or L∨ is pseudo-effective.
2. If L is nef, then L is pseudo-effective.
3. If L2 > 0 and L is nef, then L is effective and we have ℎ0 ((,L) ≥ 1 + 1

2L
2 ≥ 2.

Proof By Riemann–Roch and Serre duality, we have

ℎ0 (L) + ℎ0 (l( ⊗ L∨) ≥ j(O() +
1
2
L2 ≥ 1.

Since the order of l( in Pic(() is at most two, it follows that ℎ0 (L⊗2) ≠ 0 or
ℎ0 (L⊗−2) ≠ 0. In particular, L or L∨ is pseudo-effective. Assume furthermore
that L is nef. If ℎ0 (L⊗2) ≠ 0, then L is pseudo-effective and we are done. If
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ℎ0 (L⊗2) = 0, then ℎ0 (L⊗(−2) ) ≠ 0 and thus, we have L · M ≤ 0 for all ample
invertible sheavesM on (. Since L was nef, it follows that L must be numerically
trivial in this case, and thus,L is again pseudo-effective. Finally, assume thatL2 > 0
and that L is nef. Then, L is not numerically trivial and the previous analysis shows
that ℎ0 (L⊗−2) = 0, which implies ℎ0 (l( ⊗ L⊗−1) = 0. In particular, Serre duality
yields ℎ2 (L) = 0 and then, Riemann–Roch implies ℎ0 (L) ≥ 1 + 1

2L
2 ≥ 2. �

Let us recall that we introduced the Kodaira–Iitaka dimension ^(-,L) of an
invertible sheafL on - in Section 1.1.Moreover, we definedL to be big if ^(-,L) =
dim(-). If � is a divisor on - , then it is called big if the associated invertible sheaf
O- (�) is. Clearly, if L is an ample invertible sheaf on - , then it is big and nef.
Using Riemann–Roch for L⊗< for all < > 0, we have the following useful result
and refer to [38, Lemma 14.7] for proof.

Lemma 2.1.3 Let - be a smooth and proper surface and letL be an invertible sheaf
on - that is nef. Then, L is big if and only if L2 > 0.

Next, we have the following fundamental theorem, which characterizes ample
invertible sheaves in terms of intersection theory.

Theorem 2.1.4 (Nakai–Moishezon criterion)Let - be a smooth and proper surface
and let L be an invertible sheaf on - . Then, L is ample if and only if the following
two conditions are fulfilled:

1. L2 > 0 and
2. L · � > 0 for every curve � on - .

Remark 2.1.5 Mumford gave an example of a smooth and complex projective surface
- together with an invertible sheaf L that is not ample but that satisfies L · � > 0
for every curve � on - . In particular, the assumption L2 > 0 cannot be dropped.
For proofs, history, examples, and further details, we refer to [38, Theorem 1.22] or
[447, I:Section 1.2.B].

For K3 surfaces and Enriques surfaces, we have the following interesting result
that describes the difference between invertible sheaves that are ample and those that
are merely big and nef. This result also establishes a connection to the negative defi-
nite lattices A=,D=, E6, E7, and E8 introduced in Example 0.8.7. Finally, it also shows
a connection to the theory of rational double point singularities, see Proposition 0.4.8
and Proposition 0.4.9. Despite its simplicity, this is a key observation.

Proposition 2.1.6 Let - be a K3 surface or an Enriques surface.

1. Let � be an integral curve on - .

a. If �2 < 0, then  - · � = 0, �2 = −2, and � � P1.
b. If � � P1, then  - · � = 0 and �2 = −2

Such a curve � is called a (−2)-curve or a nodal curve.
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2. Let L be a big and nef invertible sheaf on - . Then, the set

{� | � is an integral curve on - with L · � = 0}

is finite and consists of (−2)-curves only. These span an even and negative definite
sublattice " inside Num(-) (not necessary primitive) that is the orthogonal sum
of negative definite lattices of type A=, D=, E6, E7, and E8. Moreover, these
(−2)-curves form a root basis of finite type inside " .

Proof Since  - is numerically trivial, we have  - · � = 0 for every integral curve
�. Moreover, the adjunction formula gives ?0 (�) = 1 + 1

2�
2. If we have �2 < 0,

then ?0 (�) ≥ 0 and the adjunction formula imply ?0 (�) = 0 and �2 = −2. In
particular, we find � � P1. Conversely, if � � P1, then  - · � = 0 and ?0 (�) = 0
imply �2 = −2. This establishes the first claim.

Now, let L be a big and nef invertible sheaf. If � is an irreducible curve with
L ·� = 0, then the Hodge index theorem implies�2 < 0, and thus,� is a (−2)-curve
by the first claim. By definition, the classes of these curves lie in the orthogonal
complement " ′ := 〈L〉⊥ inside Num(-). Since Num(-) is of signature (1, d − 1)
and L2 > 0, it follows that " ′ is a negative definite primitive sublattice equal to
the primitive closure of " . It follows from Riemann–Roch and the fact that  - is
numerically trivial that Num(-) is an even lattice and thus, also the sublattice " is
even.

Since �2 = −2 for every integral curve with L · � = 0, the � are primitive
vectors in " and it is easy to verify (0.8.6), that is, these curves are roots. The
remaining assertions can be shown along the lines of Proposition 0.4.9 or follow
from Proposition 0.8.15, which we leave to the reader. �

A fundamental result for pseudo-effective divisors is the Zariski decomposition.
Before stating it, we note that this is a result for which we have to pass to Q-divisors.
Let us briefly digress on this: if Div(-) denotes the abelian group of divisors on the
smooth and proper surface - , then a Q-divisor is an element of Div(-) ⊗ZQ. Being
defined in terms of intersection numbers, the notions nef and pseudo-effective also
make sense for Q-divisors. Moreover, if � =

∑
8 08%8 for some prime divisors %8

and some 08 ∈ Q, we define [�] :=
∑
8 [08]%8 , where [G] denotes the largest integer

≤ G for all G ∈ Q. Moreover, we will say that � is effective, denoted by � ≥ 0, if
we have 08 ≥ 0 for all 8. Also, if � is a Q-divisor on - , one can still define a sheaf
O- (�) by defining its global sections over a Zariski open subset* ⊆ - to be

�0 (*,O- (�)) := { 5 ∈ k(-) | [( 5 ) + �] |* ≥ 0} ∪ {0}.

Since - is a smooth surface, this is an invertible sheaf.

Theorem 2.1.7 (Zariski–Fujita) Let - be a smooth and proper surface and let
� ∈ Pic(-) ⊗Z Q be a pseudo-effective Q-divisor. Then, there exists a unique
decomposition of Q-divisors

� = % + # ∈ Div(-) ⊗Z Q,
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such that % is a nef Q-divisor class and # is effective (not necessary nef). Moreover,
if # > 0, say # =

∑=
8=1 08�8 , with pairwise distinct integral curves�8 and 08 ∈ Q>0,

then % · �8 = 0 for all 8 and the intersection matrix(
�8 · � 9

)
1≤8, 9≤=

is negative definite.

In this decomposition, % is called the positive part and # is called the negative
part of �. For example, we have the following useful corollary, which generalizes
Lemma 2.1.3. We refer to [38, Corollary 14.18] for proof.

Corollary 2.1.8 Let � ∈ Div(-) ⊗Z Q be a pseudo-effective Q-divisor on - with
Zariski decomposition � = % + # . Then, � is big if and only if %2 > 0.

For K3 surfaces and Enriques surfaces, we have the following result, whose proof
we leave to the reader since it can be done along the lines of the proof of Proposition
2.1.6. This shows again the connection between the geometry of K3 surfaces and
Enriques surfaces, the theory of even and negative definite lattices of finite type, and
the theory of rational double point singularities.

Proposition 2.1.9 , Let - be a K3 surface or an Enriques surface and let � ∈
Div(-) ⊗Z Q be a pseudo-effective Q-divisor on - with Zariski decomposition
� = % + # , say with # =

∑
8 08�8 for pairwise distinct integral curves �8 and

08 ∈ Q>0. Let " ⊆ Num(-) be the sublattice spanned by the �8 .

1. The lattice " is even and negative definite and the �8 form a root basis of finite
type.

2. Moreover, " is the orthogonal sum of negative definite lattices of type A=, D=,
E6, E7, and E8.

Next, if - is a smooth and proper surface and � is an effective divisor on - , then
� is called numerically connected if whenever we have two non-zero and effective
divisors �1 and �2 on - with � = �1 + �2, then

�1 · �2 > 0

holds true. In Section 2.5, we will generalize and refine this notion. We start with a
couple of general remarks from [612, Lemma 3.11] and include the proofs for the
reader’s convenience.

Lemma 2.1.10 Let - be a smooth and proper surface.

1. Let � be an irreducible curve (but not necessarily reduced) on - with �2 > 0.
Then, � is nef and numerically connected.

2. Let � be an effective and numerically connected divisor on - . Then, we have

ℎ0 (�,O�) = 1.
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3. Let L be a big and nef invertible sheaf on - with ℎ0 (-,L) ≠ 0. Then, every
effective divisor 0 ≠ � ∈ |L| is numerically connected.

4. Assume that ℎ1 (-,O- ) = 0 and let L be a big and nef invertible sheaf on - with
ℎ0 (-,L) ≠ 0. Then, we have

ℎ1 (-,L−1) = ℎ1 (-, l- ⊗ L) = 0.

Proof First, let � be an irreducible curve on - with �2 > 0. Numerical connectivity
is trivially true. To prove that � is nef, let � be a reduced and irreducible curve on
- . If the supports of � and � coincide, then we find � · � > 0 using �2 > 0.
Otherwise, � · � is equal to the number of intersection points of � and �, counted
with multiplicities, which is a non-negative number. This proves the first assertion.

To prove assertion (2), let �1 ⊆ � be an effective divisor with ℎ0 (�1,O�1 ) = 1
(such divisors exist, for example, one could choose�1 to be reduced and irreducible).
Now, if �1 ≠ �, then �1 · (� − �1) ≥ 1 by numerical connectivity. Thus, there
exists a reduced and irreducible divisor Γ ⊆ (� − �1) with �1 · Γ ≥ 1. Clearly, we
have an exact sequence

�0 (Γ,OΓ (−�1)) → �0 (�1 + Γ,O�1+Γ) → �0 (�1,O�1 ) .

Since the k-vector space on the left is zero and the one on the right is one-dimensional,
we find ℎ0 (O�1+Γ) = 1. From this, the claim follows by induction.

To prove Assertion (3), let 0 ≠ � ∈ |L|. Let �1 and �2 be two effective and
non-zero divisors with � = �1 + �2. Since � is nef, we find

�2
1 + �1 · �2 = � · �1 ≥ 0,

�1 · �2 + �2
2 = � · �2 ≥ 0.

Now, if we had �1 · �2 ≤ 0, then we would find �2
1 · �

2
2 ≥ (�1 · �2)2 ≥ 0, which

contradicts the Hodge index theorem and establishes the assertion.
To showClaim (4), letL be a big and nef invertible sheaf on - with ℎ0 (-,L) ≠ 0.

The first equality is Serre duality (2.1.2). Consider the short exact sequence

0 → O- (−�) → O- → O� → 0.

By assumption, we have �1 (O- ) = 0 and it follows from assertion (2) that the
restriction map �0 (O- ) → �0 (O�) is surjective. Thus, taking cohomology, we
find ℎ1 (L−1) = ℎ1 (O- (−�)) = 0. �

For Enriques surfaces, we obtain the following effectivity and vanishing result.

Corollary 2.1.11 Let ( be an Enriques surface in characteristic ? ≥ 0 and let L be
a big and nef invertible sheaf on (. Then:

1. ℎ0 ((,L) ≠ 0 and every divisor � ∈ |L| is numerically connected.
2. If ? ≠ 2 or if ? = 2 and ( is classical, then ℎ1 ((,L) = ℎ1 ((,L−1) = 0.
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Proof By Lemma 2.1.2, we have ℎ0 (L) ≠ 0 and then, Assertion (1) follows from
Lemma 2.1.10.(3). If ? ≠ 2 or ? = 2 and ( is classical, then we have ℎ1 (O() = 0
and thus, ℎ1 (L−1) = 0 follows from Lemma 2.1.10.(4). Since also l( ⊗L is big and
nef and l( � l−1

(
by Corollary 1.2.3, we find 0 = ℎ1 (l( ⊗ L−1) = ℎ1 (L), where

the first equality follows from what we have just established. �

For more results on curves on surfaces, we refer the interested reader to [538].
Before establishing vanishing results also for non-classical Enriques surfaces in

characteristic 2 in Theorem 2.1.16 below, let us put vanishing of �1 into a larger
perspective. Namely, we have the following classical and famous results for surfaces,
which are muchmore sophisticated than the results of the above discussion andmuch
more difficult to prove.

Theorem 2.1.12 Let - be a smooth and proper surface over an algebraically closed
field k of characteristic ? ≥ 0. Let L be a big and nef invertible sheaf on - . Then,

ℎ8 (-,L−1) = ℎ2−8 (-, l- ⊗ L) = 0

for all 8 ≤ 1 holds true in the following cases:

1. ? = 0,
2. ? > 0 and - admits a flat lift to,2 (k),
3. ? > 0, L is effective, and Frobenius F acts injectively on �1 (O- ).

Proof In all cases, the first equality is Serre duality (2.1.2).
If k = C andL is ample, then the stated vanishing is the famousKodaira vanishing

theorem [400], see also, for example, [259, Chapter 1.2]. If k = C and L is merely
big and nef, then the stated vanishing is the Kawamata–Viehweg vanishing theorem
[379], [717], see also [447, I:Chapter 4.3]. By the Lefschetz principle, these results
hold more generally if k is of characteristic zero. Moreover, we refer the interested
reader to [223] for an introduction to vanishing theorems.

If ? > 0 and - lifts to,2 (k), then these vanishing results are due to Deligne and
Illusie [156], see also [331] and [568] for overviews and further information.

Finally, ℎ0 (L−1) = 0 follows easily from the fact that L is big and nef. Moreover,
if ? > 0, L is effective, and F acts injectively on �1 (O- ), then the assertion
ℎ1 (L−1) = 0 is the Ramanujam vanishing theorem [602], see also [612, Theorem
3.13]. �

Remark 2.1.13 Raynaud [608] gave examples of smooth and projective surfaces and
ample invertible sheaves in positive characteristic, for which these vanishing results
do not hold.

Let us recall that we introduced Frobenius-split, or, �-split, varieties in Section
1.4. For this class of varieties in positive characteristic, vanishing theorems are easy
to establish:

Theorem 2.1.14 Let - be a proper variety over an algebraically closed field k of
characteristic ? > 0 that is �-split. Let L be an invertible sheaf on - .
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1. If ℎ8 (-,L⊗a) = 0 for a fixed index 8 and a � 0, then ℎ8 (-,L) = 0.
2. If L is ample, then ℎ8 (-,L) = 0 for all 8 > 0.

Proof We only sketch the proofs and refer to [97] for details: first of all, we have
F∗L � L⊗? and F∗L = L ⊗O- F∗O- , see [97, Lemma 1.2.6]. Since - is �-split,
it follows that also the induced map L → F∗L � L ⊗ F∗O- is split, which implies
that the induced map on cohomology �8 (-,L) → �8 (L ⊗ F∗O- ) is split. Since
L ⊗ F∗O- � F∗ (F∗L) � F∗ (L⊗?), we find an isomorphism �8 (L ⊗ F∗O- ) �
�8 (L⊗?) and thus, we obtain a split injection

�8 (-,L) → �8 (-,L⊗?).

In particular, if �8 (L⊗? 9 ) = 0 for some 9 ≥ 0, we find �8 (L) = 0. From this,
assertion (1) follows, see also [97, Lemma 1.2.7] and Theorem 1.2.8. Assertion (2)
is a consequence of (1) and Serre vanishing [294, Proposition III.5.3]. �

In Theorem 1.4.18, we have determined, which Enriques surfaces are �-split. In
terms of moduli spaces, “most” Enriques surfaces in characteristic ? ≥ 3 are �-split,
and the previous theorem gives an elementary proof of Kodaira vanishing for them.
However, one can prove Kodaira vanishing for Enriques surfaces in characteristic
zero using Frobenius-splittings in characteristic ? - of course, we know this already
andwe already have easier proofs, but the arguments of this proofmay be nevertheless
interesting.

Proposition 2.1.15 Let ( be an Enriques surface in characteristic zero and let L be
an ample invertible sheaf on (. Then, ℎ8 ((,L) = 0 for all 8 ≥ 1.

Proof Being a variety in characteristic zero, ( and L can be defined over a field
k that is finitely generated over Q. Thus, k is the function field of some variety �
over a number field  , that is, a finite extension of Q. Spreading out, we obtain a
family 5 : S → � over  , whose generic fiber is isomorphic (. Replacing � by
an open and dense subset � if necessary, we may assume that 5 is smooth and (by
openness of ampleness) that the restriction of L to the fiber S1 is still ample for
all 1 ∈ �. By semi-continuity of cohomology it suffices to find a 1 ∈ � such that
�8 (S1 ,L|S1 ) = 0 for all 8 ≥ 1. Thus, we may assume that k is a number field.

Let c : - → ( be the K3-cover of the Enriques surface ( that is defined over a
number field  . Let O ⊂  be the ring of integers and for a prime p ∈ O we
denote by -p (resp. (p) a reduction modulo p, which is unique up to isomorphism if
it is smooth. After possibly replacing  by a finite extension, the set of primes

% := {p ∈ SpecO : -p is a smooth and ordinary K3 surface}

is of density one, see [74] and the preprint version of [354]. In particular, this set
is infinite. For all but finitely many primes p ∈ %, also the reduction (p is smooth
and -p → (p is the K3-cover. For all but finitely many primes p ∈ %, the reduction
of c∗ (L) modulo p is still ample. In particular, there exists a p ∈ O such that -p
is an ordinary K3 surface, such that c∗ (L)p is ample, and such that cp : -p → (p
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is the K3-cover. Being ordinary, -p is �-split by Theorem 1.4.18 and thus, we have
�8 (-p, c∗ (L)p) = 0 for all 8 ≥ 1 by Theorem 2.1.14. By semi-continuity, this
implies �8 (-, c∗L) = 0 for all 8 ≥ 1. Since c is a simple -2-cover associated to l( ,
we obtain a short exact and split sequence

0 → L → c∗c
∗L → L ⊗ l( → 0.

In particular,�8 ((,L) is a direct summand of�8 (-, c∗L), which implies the desired
vanishing. �

We now come to the main result of this section, namely, a vanishing theorem
that holds for every Enriques surface in every characteristic. In view of Raynaud’s
counter-examplesmentioned inRemark 2.1.13, it is interesting that Enriques surfaces
do satisfy the desired vanishing, even for "2-surfaces in characteristic 2: for these
surfaces, F does not act injectively on �0,1 by definition, they are not �-split, and
they do not admit flat lifts to ,2 (k) as mentioned in Remark 1.4.11. In particular,
none of the vanishing results established above applies to "2-surfaces.

Theorem 2.1.16 (Vanishing Theorem) Let ( be an Enriques surface and let L be
a big and nef invertible sheaf on (. Then,

ℎ1 ((,L) = ℎ1 ((,L−1) = 0

holds true.

Proof Let ( be an Enriques surface over an algebraically closed field k of character-
istic ? ≥ 0. If ? ≠ 2 or if ? = 2 and ( is classical, then we established the assertions
on ℎ1 already in Corollary 2.1.11.

Thus, we may assume that ? = 2 and that ( is non-classical. In particular, we
have l( � O( and then, the first equality follows from Serre duality. By Lemma
2.1.2, there exists non-zero section 0 ≠ B ∈ �0 (L), say with divisor of zeros �, and
then, we obtain a short exact sequence

0 → O(
×B−→ L → L|� → 0. (2.1.4)

Since l( � O( , the adjunction formula on ( yields

L|� � O( (�) |� � l( (�) |� � l� ,

and thus, Serre duality for the Gorenstein curve � implies

ℎ1 (�,L|� ) = ℎ1 (�, l� ) = ℎ0 (�,O� ).

By Lemma 2.1.10, the divisor � is numerically connected and thus, we find
ℎ0 (�,O� ) = 1. We have ℎ2 (L) = 0 by Lemma 2.1.1 and thus, taking cohomology
in (2.1.4), we obtain a long exact sequence

... → �1 ((,O() → �1 ((,L) → �1 (�,L|� ) → �2 ((,O() → 0 (2.1.5)
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We have ℎ1 ((,O() = ℎ1 (�,L|� ) = ℎ2 ((,O() = 1, from which we conclude that
�1 ((,O() → �1 ((,L) is surjective and that ℎ1 ((,L) ≤ 1.

Now, every section B ∈ �0 ((,L) gives rise to a map O( → L, which induces a
map �1 ((,O() → �1 ((,L) and gives n a linear map

�0 ((,L) → Hom(�1 ((,O(), �1 ((,L)). (2.1.6)

We denote by�0 ((,L)◦ its kernel, that is, the subspace that consists of those sections
B ∈ �0 ((,L) such that the corresponding map �1 ((,O() → �1 ((,L) in (2.1.5) is
trivial. Since ℎ1 ((,O() = 1 and ℎ1 ((,L) ≤ 1, we find that the right-hand side of
(2.1.6) is at most one-dimensional. This implies that codim�0 ((,L)◦ ≤ 1.

On the other hand, we have ℎ0 ((,L) ≥ 2 by Lemma 2.1.2, which im-
plies that �0 ((,L)◦ ≠ {0}. In particular, there does exist a non-zero section
0 ≠ B ∈ �0 ((,L)◦. By definition of this latter vector space, the corresponding
map �1 ((,O() → �1 ((,L) is zero, and thus, the surjectivity of this map estab-
lished after (2.1.5) implies that �1 ((,L) = 0. �

Corollary 2.1.17 Let ( be an Enriques surface and L an invertible sheaf that is big
and nef. Then,

dim |L| = dim |l( ⊗ L| = 1
2L

2,

or, equivalently, ℎ0 ((,L) = ℎ0 ((, l( ⊗ L) = 1 + 1
2L

2.

Proof The assertion on ℎ0 follows immediately from the just–established vanishing
of ℎ1, Riemann–Roch (2.1.1), Lemma 2.1.1, and Lemma 2.1.2. �

In Corollary 2.4.4, we will give another proof of this fundamental vanishing result
using Bogomolov instability of rank two vector bundles.

2.2 Nef Divisors and Genus One Pencils

In this section, we study nef divisors and their associated linear systems on Enriques
surfaces. First, we make a couple of general remarks concerning the cones of effec-
tive, nef, and ample divisors on an Enriques surface and relate these cones to root
systems and Weyl groups. Then, we classify nef divisor classes of self-intersection
number zero, which leads to genus one pencils, their (half-)fibers, and Kodaira’s
classification of degenerate fibers. This will take up most of this section. We end
this section by treating linear systems associated to big and nef divisors, their fixed
components, and whether they contain irreducible divisors.

Let - be a smooth and proper surface over an algebraically closed field k of
characteristic ? ≥ 0. In Section 0.9, we defined the group Num(-) of divisor classes
of - modulo numerical equivalence. It follows from Theorem 0.9.6 that Num(-)
is a finitely generated abelian group, whose rank d(-) is called the Picard number
of - . Thus, Num(-)R := Num(-) ⊗Z R is a finite-dimensional real vector space.
Since - is a surface, Num(-) is equipped with an intersection pairing, and by the
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Hodge index theorem, this pairing is non-degenerate of signature (1, d − 1). As
explained in Chapter 0.8, the non-degeneracy implies that we may view Num(-)
as a sublattice of finite index of the dual lattice Num(-)∨. Clearly, this inclusion
induces an isomorphism Num(-)R � Num(-)∨R that is compatible with intersection
forms.

The classes of effective divisors of - generate a cone

Eff (-) ⊆ Num(-)R,

the cone of effective divisors, or, the effective cone, of - . We remind the reader that a
cone is a subset � ⊆ + of a real vector space, such that for all 2 ∈ � and all _ ∈ R>0
we have _2 ∈ + . Moreover, a cone � is said to be convex if for all 21, 22 ∈ � we also
have 21 + 22 ∈ �. It is easy to see that Eff (-) is a convex cone.

As defined in the previous section, a divisor � is nef, if we have � · � ≥ 0 for
every effective curve � on - . Thus, in terms of the effective cone, a nef divisor class
is an element of Num(-) ⊆ Num(-)∨ that is non-negative on the effective cone
Eff (-). Thus, the cone of nef divisors, or, the nef cone, is the dual cone to Eff (-)

Nef (-) = Eff (-)∨ := { G ∈ Num(-)R | G · H ≥ 0 for all H ∈ Eff (-)}.

It is easy to see that Nef (-) is a convex cone inside Num(-)R and that the set of
nef divisor classes is equal to the intersection Nef (-) ∩ Num(-) inside Num(-)R.

We note that a nef divisor � satisfies �2 ≥ 0, see, for example, [612, Chapter
D.2.3]. By Theorem 2.1.4, a nef divisor � is ample if and only if �2 > 0. Thus,
the cone of ample divisors, or, the ample cone, denoted by Amp(-), is the cone
generated by ample divisor classes inside Num(-)R. Again, it is easy to see that this
is a convex cone, and that we have an inclusion of convex cones

Amp(-) ⊆ Nef (-) ⊆ Num(-)R.

More precisely, Amp(-) is the interior (with respect to the classical topology) of
Nef (-) inside Num(-)R.

Next, let
+- := {G ∈ Num(-)R : G2 ≥ 0},

Then, +- \ {0} has two connected components, since the lattice Num(-) is hyper-
bolic, see also Section 0.8. We set +- \ {0}+ to be the connected component that
contains the ample cone. We denote the interior of the cone ++

-
by Big(-). This the

cone of big divisor classes. The intersection Big(-)∩Num(-) consists of numerical
classes of effective divisors with positive self-intersection. We have

Amp(-) ⊆ Big(-) ⊆ Eff (-) ⊆ Num(-)R.

We recall fromSection 0.8 that the image of the interior of+- in the real projective
space |Num(-)R) | = Num(-)R \ {0}/R× is the hyperbolic space associated to
Num(-)R. The following result applies to K3 surfaces and Enriques surfaces and
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should be compared with Proposition 2.1.6 and Proposition 2.1.9, where we already
observed a connection to the theory of lattices and their root bases.

Proposition 2.2.1 Let - be a K3 surface or an Enriques surface. Let R := R(-) ⊂
Num(-) be the set of classes of (−2)-curves. Then:

1. R is a root basis in Num(-),
2. the nef cone Nef (-) is the fundamental chamber � (R) of R, and
3. the ample cone Amp(-) is the interior of the fundamental chamber.

Proof Let � be a divisor class with �2 ≥ 0. By Riemann–Roch, we have ℎ0 (�) +
ℎ0 ( - − �) ≥ j(-,O- ) > 0 and thus, � or ( - − �) is effective. Passing to
their classes in Num(-), we find that [�] or −[�] lies in Eff (-). Thus, we may
represent [�] by a divisor � = ±∑

<8 [�8], where <8 > 0 and where the �8 are
integral curves. Intersecting with the class of an ample divisor, we conclude that
[�] ∈ ++

-
if and only if [�] is effective. If � is effective and � is an integral curve,

then the intersection number � ·� = ∑
<8�8 ·� can only be negative if � coincides

with a component �8 with �2
8
< 0. Since  - is numerically trivial, the adjunction

formula implies that such a �8 must be a (−2)-curve, see also Proposition 2.1.6.
Thus, Nef (-) consists of classes of divisors � that satisfy � · ' ≥ 0 for every
' ∈ R = R(-). Since we have ' · '′ ≥ 0 if ' ≠ '′, we see that R satisfies
the conditions for a root basis in Num(-). By definition, its fundamental chamber
coincides with the nef cone. In our discussion above, we have already seen that the
ample cone is the interior of the nef cone. �

We denote by,nod
-

the Weyl group defined by the root basis R = R(-). This is
called the nodalWeyl group of - and it is a subgroup of theWeyl group, (Num(-)).
If - is aK3 surface, then the group,nod

-
coincideswith theWeyl group, (Num(-)),

see [175, Proposition 5.10], or [549, Remark 3.5].Wewill discuss nodalWeyl groups
of Enriques surfaces in Section 2.3.

We now turn to Enriques surfaces and classify nef divisors on them. Thus, let (
be an Enriques surface over an algebraically closed field and let � be a nef divisor.

First, we treat the case where �2 = 0. These divisors are interesting because they
occur as fibers of genus one fibrations, see Lemma 2.2.2 below.Wewrite � =

∑
=8'8

as a sum of its irreducible components with multiplicities =8 . Since  ( ≡ 0, we have
 ( · '8 = 0. If '2

8
< 0, then '8 is a (−2)-curve by Proposition 2.1.6. On the other

hand, for every component '8 with '2
8
≥ 0, we compute

0 = �2 ≥ � · '8 = =8'
2
8 +

∑
9≠8

= 9' 9 · '8 ,

which implies that '2
8
= 0, as well as '8 · ' 9 = 0 for all 9 . In particular, if �

is connected, then it is either supported on an integral curve with self-intersection
number zero or else it is supported on a union of (−2)-curves. We will refine this
observation in Proposition 2.2.5 below.

Let us remind the reader that we defined the notion of numerically connected
divisors in the previous section. We note that if � is an irreducible curve with �2 = 0
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and < ≥ 1 is an integer, then <� is connected for all < ≥ 1, whereas <� is
numerically connected if and only if < = 1.

We now define (indecomposable) divisors of canonical type on smooth and proper
surfaces, which were introduced by Mumford [539]. Divisors of canonical type
should be thought of as sums of fibers of genus one fibrations, and indecomposable
divisors of canonical type should be thought of as non-multiple and connected fibers
of genus one fibrations. If - is a smooth and proper surface, then an effective divisor
� =

∑
=8'8 with =8 > 0 for all 8 that satisfies - ·'8 = 0 and � ·'8 = 0 for all 8 is said

to be a of canonical type. In particular, divisors of canonical type are nef. If a divisor
of canonical type � is moreover connected and if the greatest common divisor of the
=8’s is equal to 1, then it is said to be indecomposable, see [38, Section 7] or [539,
Section 2]. Clearly, every divisor of canonical type is the sum of indecomposable
divisors of canonical type.

In [612], Reid defines a divisor � to be of elliptic fiber type if it is nef, not
numerically trivial, and if it satisfies �2 =  - · � = 0. Using the Hodge index
theorem it is easy to see that an effective divisor is of elliptic fiber type if and
only if it is of canonical type. Moreover, in [612], Reid defines a 0-curve to be an
effective divisor of elliptic fiber type � =

∑
=8'8 with =8 > 0 for all 8, such that

the greatest common divisor of all =8 is equal to 1. Thus, a 0-curve is the same as
an indecomposable divisor of elliptic fiber type. We note that such a curve need
not be irreducible, that is, this definition is not compatible with the notion of (−=)-
curves previously introduced. Before coming to the classification of indecomposable
divisors of canonical type in Proposition 2.2.5 below, we motivate this notion.

Lemma 2.2.2 Let - be a K3 surface or an Enriques surface. Let 5 : - d � be a
dominant and rational map to a smooth and proper curve. Then:

1. � � P1.
2. If 5 is a fibration, that is, a morphism with 5∗O- = O�, then all fibers of 5

are divisors of canonical type. In particular, all irreducible fibers are curves of
arithmetic genus one.

Proof By resolution of indeterminacies, there exists a smooth blow-up c : -̃ → -

such that 5 extends to a morphism 5 ◦ c : -̃ → �. Since 11 ( -̃) = 11 (-) = 0, the
Albanese variety of - is trivial. Thus, by the universal property defining theAlbanese
map, also the Jacobian of � must be trivial, that is, � � P1. This establishes claim
(1).

Next, assume that 5 is a fibration and let � =
∑
=8'8 be a fiber of 5 . Since  -

is numerically trivial, we have  - · '8 = 0. Let � ′ be another fiber of 5 , distinct of
�. Then, � ′ is disjoint from every component '8 of � and thus, � ′ · '8 = 0 for all 8.
Since � is linearly equivalent to � ′, we find � · '8 = 0 for all 8, which identifies �
as a curve of canonical type and establishes claim (2). �

To avoid confusion of terminology, we will call a linear system |� | a pencil if
it has no fixed components and if its dimension is equal to one. If �2 = 0 and �
is a pencil, then |� | defines a morphism to P1, whose connected fibers equal to the
members of |� |. If |� | is a positive-dimensional linear system with �2 = 0 and
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without fixed components, then |� | = |:% |, where % is a pencil. If : > 1, then �
is said to be composite with a pencil, see [294, Chapter III, Exercise 11.3]. In this
case, the linear system |� | has dimension : and defines a morphism, whose Stein
factorization is of the form 5 : ( → � → P1, where � → P1 is a finite cover of
degree : , see [294, Corollary 11.5].

Next, we establish some elementary properties of (indecomposable) divisors of
canonical type and relate them to some previously defined notions.

Proposition 2.2.3 Let - be a smooth and proper surface with  - nef.

1. If � is an effective and nef divisor with  - · � = �2 = 0, then � is a divisor of
canonical type. If � is moreover numerically effective, then � is indecomposable.

2. If � =
∑
8 =8'8 is an indecomposable divisor of canonical type, then � is numer-

ically connected. Moreover, if L is an invertible O�-module with degL|'8 = 0
for all 8, then

�0 (�,L) ≠ 0 if and only if L � O� .

Proof First, let � =
∑
8 =8'8 be as in the first part of Assertion (1). Since  - is nef

and  - · � = 0, we conclude  - · '8 = 0 for all 8. Similarly, since � is nef and
�2 = 0, we conclude � · '8 = 0 for all 8. Thus, � is of canonical type. Since � is of
canonical type, it is a sum

∑
08�8 of indecomposable divisors �8 of canonical type,

where �8 and � 9 are disjoint for 8 ≠ 9 . Thus, if � is numerically connected, then �
is indecomposable.

Now, let � =
∑B
8=1 =8'8 be an indecomposable divisor of canonical type. If � is

irreducible, then being indecomposable implies that it is also numerically connected
and thus, we may assume B ≥ 2. Since  - is nef and  - · � = 0, we conclude
 - · '8 = 0 for all 8. Since B ≥ 2, the Hodge index theorem implies '2

8
< 0 for

all 8, and thus, the adjunction formula actually implies '2
8
= −2. If " ⊆ Num(-)

denotes the sublattice spanned by the '8 , then B := {'8}8 is a root basis of " . Since
� · '8 = 0, the '8 lie in the orthogonal complement of the class [�] and thus, [�]
lies in the radical of " . Since �2 = 0, it follows from the Hodge index theorem that
" is negative semi-definite and � is connected, the root system B is irreducible.
But then, the radical of " is actually spanned by [�], which implies that for every
decomposition � = � + �, where �, � are effective and non-zero, we have �2 < 0
and �2 < 0. Thus, from 0 = � · � = �2 + ��, we conclude � · � ≥ 1, that is, � is
numerically connected. For the remaining assertions of Claim (2), we refer to [38,
Theorem 7.8] or [539, Section 2]. �

In particular, if  - is numerically trivial, then we obtain the following corollary.

Corollary 2.2.4 Let - be a K3 surface or an Enriques surface. For a divisor � on
- , the following are equivalent:

1. � is effective, nef, and numerically connected with �2 = 0, and
2. � is indecomposable of canonical type.

We now come to the classification of indecomposable divisors of canonical type:
quite generally, for any effective divisor � =

∑
=8'8 with =8 ≥ 1 and '8 integral
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curves for all 8 on a smooth projective surface, we denote by Γ(�) the graph whose
vertices are the irreducible components '8 of � and two vertices are joined by
an edge if the components intersect. Moreover, we label the edge with intersection
number if it is greater than 1.

It follows from the above discussion or the proof of the previous Proposition that
an indecomposable divisor of canonical type � is either of the form ', where ' is
an irreducible curve with '2 = 0, or it is of the form � =

∑
=8'8 , where the '8 are

(−2)-curves, the greatest common divisor of the =8’s is equal to 1, and the graph
Γ(�) is connected. In case ' is irreducible with '2 = 0, the adjunction formula
implies that ' is of arithmetic genus one, and thus, one of the following: a smooth
elliptic curve, or a rational curve that is singular with one ordinary node singularity,
or a rational curve that is singular with one ordinary cusp singularity. In terms of
simple curve singularities as discussed in Chapter 0.4 and if the characteristic of the
ground field is different from 2, an ordinary node (resp. cusp) is a singularity of type
01 (resp. 02). On the other hand, if � is a reducible divisor, then have already seen in
the proof of the previous Proposition that the set B := {['8]}8 is an irreducible root
system of affine type of the lattice "B spanned by the classes ['8] inside Num(-).
Moreover, the class [�] belongs to the radical of "B. Applying the classification of
irreducible root systems of affine type from Proposition 0.8.16, we thus obtain the
following classification.

Proposition 2.2.5 Let � =
∑
=8'8 be an indecomposable divisor of canonical type

on a smooth and proper surface over an algebraically closed field. Then, either � is
irreducible and it is one of the following

�0 a smooth elliptic curve,
�1 a singular rational curve with an ordinary node,
� � a singular rational curve with a cusp,

or else � is reducible, all '8 are (−2)-curves, and it is one of the following

�2 : Γ(�) is of type �̃1, that is,
� = '1 + '2, where '1 and '2 intersect transversally in two points,

� � �: Γ(�) is of type �̃1, that is,
� = '1 + '2, where '1 is tangent to '2 at one point and '1 · '2 = 2,

�3 : Γ(�) is of type �̃3, that is,
� = '1 + '2 + '3 with '8 · ' 9 = 1 if 8 ≠ 9 and '1 ∩ '2 ∩ '3 = ∅,

�+ : Γ(�) is of type �̃3, that is,
� = '1 + '2 + '3 with '8 · ' 9 = 1 if 8 ≠ 9 and '1 ∩ '2 ∩ '3 ≠ ∅,

�= : Γ(�) is of type �̃=, and = ≥ 4, that is,
� = '1 + · · · + '=, with '1 · '2 = '2 · '3 = . . . = '=−1 · '= = '= · '1 = 1 and
'8 · ' 9 = 0 otherwise,

�∗
=+4: Γ(�) is of type �̃=+4, that is,
� = '0 + '1 + '2 + '3 + 2'4 + · · · + 2'4+= with '1 · '4 = '2 · '4 = '4 · '5 =
. . . = '3+= · '4+= = '4+= · '2 = '4+= · '3 = 1 and '8 · ' 9 = 0 otherwise,
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�+∗: Γ(�) is of type �̃6, that is,
� = '0 + 2'1 + '2 + 2'3 + 3'4 + 2'5 + '6 with '0 · '1 = '1 · '2 = '1 · '4 =
'2 · '3 = '3 · '4 = '4 · '5 = '5 · '6 = 1 and '8 · ' 9 = 0 otherwise,

� � �∗: Γ(�) is of type �̃7, that is,
� = 2'0 + '1 + 2'2 + 3'3 + 4'4 + 3'5 + 2'6 + '7 with '0 · '4 = '1 · '2 =
'2 · '3 = . . . = '6 · '7 = 1 and '8 · ' 9 = 0 otherwise,

� �∗: Γ(�) is of type �̃8, that is,
� = 2'0 + 2'1 + 4'2 + 6'3 + 5'4 + 4'5 + 3'6 + 2'7 + '8, where '0 · '3 =
'1 · '2 = '2 · '3 = . . . = '7 · '8 = 1 and '8 · ' 9 = 0 otherwise.

The multiplicities should be compared to the fundamental cycles associated to
root systems of finite type, see Corollary 0.4.12.

Remark 2.2.6 Here, we have used Kodaira’s notation from [401], but there is also
Néron’s notation from [553], which we include here for the reader’s convenience:

Kodaira �0 �1 �=, = > 1, � � � � � �+ �∗0 �∗= �+∗ � � �∗ � �∗

Néron 0 11 1= 21 22 23 24 25= 26 27 28

root lattice �̃0 �̃
∗
0 �̃=−1 �̃∗∗0 �̃∗1 �̃∗2 �̃4 �̃=+4 �̃6 �̃7 �̃8

Wewill use the notation for the corresponding type of the affine root basis. The only
cases where the type of the root basis does not determine the Kodaira type are the
pairs (�2, � � �) and (�3, �+). Also, the types �0, �1, and � � do not have an associated
root basis. We will see later in Section 4.8 that all the above types with at most 9
irreducible components do occur on Enriques surfaces.

We end our discussion of indecomposable divisors of canonical type with the
following useful remarks and computations, whichwere alreadymore or less implicit
in the above discussion.

Lemma 2.2.7 Let - be a smooth and proper surface over an algebraically closed
field k with  - nef. Let � be an indecomposable divisor of canonical type. Then:

1. ℎ8 (�,O�) = 1 for 8 = 0, 1.
2. l� � O� .
3. O� (�) � O� ( ().
4. If � is an effective divisor on - with � · '8 = 0 for all 8 ∈ �, then � = =� + � for

some integer = ≥ 0 and an effective divisor � that is disjoint from �.
5. There exists 0 ∈ Q with 0 ≥ 0 such that  - = 0 · � in Num(-) ⊗ Q.

Proof (1) It suffices to consider the case where � is reducible. Then, it follows from
the previous classification that there exists an 8 ∈ � such that � = '8 +� ′, where � ′
does not contain '8 and coincides with the fundamental cycle / of a rational double
point, see Corollary 0.4.12. Thus, we have ℎ0 (� ′,O�′) = ℎ1 (� ′,O�′) = 1. Now,
the assertion follows easily from taking cohomology in the exact sequence

0 → O'8 ⊗ O- (−� ′) → O� → O�′ → 0 (2.2.1)
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and the observation that deg(O'8 ⊗ O- (−� ′)) = −'8 · � ′ = −2.
Alternatively, we know from Proposition 2.2.3 that � is numerically connected

and thus, we have ℎ0 (O�) = 1 by Lemma 2.1.10. Moreover, the adjunction formula
yields j(O�) = 0, which implies ℎ1 (O�) = ℎ0 (O�) = 1.

(2) Tensoring exact sequence (2.2.1) with O- ( - + �), we obtain the exact
sequence

0 → l'8 → l� → O�′ ⊗ O- ( - + �) → 0. (2.2.2)

There exists a non-zero section B ∈ �0 (�, l�) � �1 (�,O�)∨ � k. Restricting
B to � ′, we obtain a non-zero section of L := O�′ ⊗ O- ( - + �) � O�′ ⊗ l� .
Since deg(L ⊗ O' 9 ) = � · ' 9 = 0 for all components ' 9 of � ′, we deduce
L � O�′ from Proposition 0.4.6. Therefore, B generates l� at each point of � ′.
Since deg(l� ⊗ O' 9 ) = 0, the section B generates l� ⊗ O' 9 or it is identically
zero. Since '8 intersects � ′, the latter case does not occur. Thus, B generates l�
everywhere.

Alternatively, we have l� � O- ( - + �) |� and thus, we have degl- |'8 =
( - +�) ·'8 = 0 for all 8. Since ℎ0 (l�) = ℎ1 (O�) = 1 by Serre duality, Proposition
2.2.3 implies l� � O� .

(3) By the adjunction formula, we have O� � l� � O� (� + �) and from this,
the assertion follows.

(4) Write � = � + � as a sum of effective divisors, where � is chosen such that
it does not have a common irreducible component with �. For every 8 ∈ �, we have
0 = � · '8 = � · '8 + � · '8 = � · '8 . Since Γ(�) is connected, it follows that the
support of � is equal to the support of �. Since � is numerically connected, it also
follows that � = =� for some integer = ≥ 0.

(5) is a consequence of the Hodge index theorem, see also [612, Section E.6]. �

Proposition 2.2.8 Let ( be an Enriques surface. Let � be an effective, numerically
connected, and nef divisor with �2 = 0 or, equivalently, an indecomposable divisor
of canonical type. Then:

1. |� | or |2� | is a pencil without base points.
2. dim |� | = 0 if and only if the class [�] ∈ Num(() is a primitive isotropic vector.
Moreover, if ( is classical then dim |� +  ( | = 0.

Proof By assumption, we have ℎ0 (O( (�)) ≥ 1. It follows from Riemann–Roch that
ℎ0 (O( (�)) = 1 if and only if ℎ1 (O( (�)) = 0. Assume that this is the case. Then,
taking cohomology of the exact sequence

0 → O( (�) → O( (2�) → O� (2�) → 0 (2.2.3)

shows that ℎ0 ((,O( (2�)) = ℎ0 ((,O( (�)) +ℎ0 (�,O� (2�)). By Lemma 2.2.7 and
the adjunction formula, we have

O� (2�) � O� . (2.2.4)

Since ℎ0 (�,O�) = 1 and ℎ1 ((,O( (�)) = 0, we find ℎ0 ((,O( (2�)) = 2. Let
|2� | = ) + |" |, where) denotes the fixed part of the linear system |2� |. Since every
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proper subdivisor of � has negative self-intersection, we get "2 = (2� − ))2 =
)2 < 0, which contradicts the fact that " is movable. Thus, |2� | has no fixed part
and since �2 = 0, it must be an irreducible pencil without base points.

Next, assume that ℎ1 ((,O( (�)) ≠ 0. The adjunction formula and Lemma 2.2.7
give O� � l� � O� ( ( + �). Using that 2 ( = 0, we find O� (�) = O� ( (), as
well as

0 ≠ ℎ0 (O� (�)) = ℎ0 (O� ( ()) ≤ ℎ0 (O� (2 ()) = ℎ0 (O�) = 1,

and thus, ℎ0 (O� (�)) = ℎ0 (O� ( ()) = 1. We have the standard exact sequence

0 → O( → O( (�) → O� (�) → 0 . (2.2.5)

If ( is classical, then taking cohomology, shows ℎ0 (O( (�)) = 2. If ( is non-classical,
then we have  ( = 0 and thus, O� (�) � O� . Inspecting the long exact sequence
in cohomology, we find ℎ0 (O( (�)) = 2. Thus, we find dim |� | = 1 in any case.
Arguing as above, we conclude again that |� | is an irreducible pencil without base
points. This establishes Claim 1.

To prove Claim 2, let us first assume that dim |� | ≥ 1. Since ℎ0 ((,O( (�)) ≥ 2,
it follows from Riemann–Roch that ℎ1 ((,O( (�)) ≠ 0. Moreover, it follows from
Riemann–Roch that ℎ0 ((,O( ( ( + �)) ≥ 1, that is, there exists an effective divisor
� ′ ∈ | ( + � |, which is of canonical type. Seeking a contradiction, we assume that
� ′ is indecomposable. In particular, � ′ is numerically connected and thus, satisfies
ℎ0 (O�′) = 1. Taking cohomology in the standard exact sequence

0→ O( (−� ′) → O( → O�′ → 0

and using Lemma 2.2.7, we obtain a long exact sequence

0 → �1 ((,O( (−� ′)) → �1 ((,O() → �1 (� ′,O�′)
→ �2 ((,O( (−� ′)) → �2 ((,O() → 0.

(2.2.6)

If ( is classical, this and Serre duality give

0 = ℎ1 ((,O( (−� ′)) = ℎ1 ((,O( (�)),

contradicting what we have already seen. If ( is non-classical, that is,  ( = 0, then
we have O� (�) � l� � O� by Lemma 2.2.7. Exact sequence (2.2.3) shows that
the map

�0 ((,O( (�)) → �0 (�,O� (�))

is surjective. Hence, we have a long exact sequence

0→ �1 ((,O() → �1 ((,O( (�)) → �1 (�,O�)
→ �2 ((,O( (�)) = �0 ((,O( (−�)) = 0.

(2.2.7)
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Since ℎ1 (O( (�)) = 1, we get a contradiction, also in the non-classical case. These
contradictions show that � ′ is not indecomposable. We write � ′ =

∑
9 0 9� 9 as sum

of indecomposable divisors of canonical type. Since the latticeNum(() is hyperbolic,
each � 9 , as well as � ′ all span the same line inside the vector space Num(() ⊗ Q.
Since � ′ is not indecomposable, this shows that [� ′] is not primitive in Num(().

Conversely, assume that the class [�] is not primitive. Then, we either have
� = =� ′ or � = =� ′ +  ( for some divisor of canonical type � ′ and some = ≥ 2.
In the first case, we have dim |� | ≥ 1 using the already established first claim. In
the second case, we note that, ℎ0 (� ′ +  () + ℎ0 (−� ′) ≥ 1

2�
′2 + 1 ≥ 1 implies that

there exists an effective divisor � ′′ ∈ |� ′ +  ( |. Obviously, � and (= − 1)� ′ + � ′′
are distinct divisors in |� | and thus, dim |� | ≥ 1. This establishes the Claim 2.

To prove the last assertion, we take cohomology in the exact sequence

0→ O( (−�) → O( → O� → 0 (2.2.8)

and using Lemma 2.2.7 as well as ℎ1 (O() = 0, we find ℎ1 (O( (−�)) = 0. By Serre
duality, we find ℎ1 (O( (� +  ()) = ℎ1 (O( (−�)) = 0 and thus, Riemann–Roch
yields dim |� +  ( | = 0. �

If � is as in the previous proposition, then we call the pencil |� | or |2� | a genus
one pencil. Moreover, if � is as in the second assertion of the proposition, then it is
called a half-fiber. Every genus one fibration on an Enriques surface has at least one
and at most two half-fibers, as the next result shows.

Corollary 2.2.9 Let ( be an Enriques surface.

1. If ( is classical (resp. non-classical), then every genus one pencil on ( has
precisely two half-fibers (resp. one half-fiber).

2. If � is an effective and nef divisor on ( with �2 = 0, then:

a. either dim |� | = 0 and � is the sum of = ≤ 2 half-fibers of some genus one
pencil |% |.

b. or else dim |� | > 0 and there exists a genus one pencil |% | such that |� | =
|:%+4� | for some : > 0 and 4 = 0, 1, where � is a half-fiber of |% |. Moreover,
dim |� | = dim |:% + 4� | = : + 1.

In particular, amember of a linear system |� | without fixed part has even intersection
number with any effective divisor on (.

Proof Let [�] be the class of � in Num((). We have [�] = < 5 , where < is a
positive integer and 5 is a primitive isotropic vector represented by some indecom-
posable effective nef divisor �. If ( is classical (resp. non-classical), then the torsion
of Pic(() is equal to Z/2Z (resp. trivial) and thus, there exist precisely two (resp.
one) representative(s) of 5 . If ( is not classical, we obtain that � ∈ |<� | and if ( is
classical, we have � ∈ |<� | or � ∈ |<� + � ′ |, where � ′ ∈ |� +  ( |. If < = 1, then
we find � = � or � = � +� ′ and in both cases, we have dim |� | = 0. If < > 1, then
we write < = 2: + 4 with 4 = 0or 4 = 1. If 4 = 0, then |2� | = |% | for some pencil
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% by the previous proposition and dim |<� | = dim |:% | = : + 1 > 0. If 4 = 1, then
|� | = |:% + � | or |:% + � ′ |. Let � denote � or � ′. The exact sequence

0→ O( (:%) → O( (:% + �) → O� (:% + �) → 0

together with the fact that O� (:% + �) � O� (�), and hence ℎ0 (O� (:% + �)) =
ℎ0 (O� (�)) = 0 (because dim |� | = 0) shows that dim |:% | = dim |:% + � |. Thus,
� or � ′ is the fixed component of the linear system |� | and dim |� | > 0. �

Remark 2.2.10 Half-fibers taken with multiplicity 2 are examples of multiple fibers
of genus one pencils. Moreover, the unique half-fibers taken with multiplicity 2 of
genus one pencils on non-classical Enriques surfaces are examples of multiple fibers
that are wild. The generic member of a genus one fibration of an Enriques surface
in characteristic ≠ 2 is in fact a smooth curve, that is, the pencil is an elliptic pencil.
However, in characteristic 2, it may happen that the generic member of a genus one
pencil on an Enriques surface is a rational curve with a cusp singularity, in which
case the pencil is quasi-elliptic. We will come back to these topics when discussing
genus one fibrations on arbitrary surfaces in Chapter 4.

We end this section by describing linear systems associated to big and nef invert-
ible sheaves. Compared to the previous analysis of genus one fibrations and divisors
of canonical type, this is relatively easy.

Proposition 2.2.11 Let ( be an Enriques surface and letL be a big and nef invertible
sheaf on (. Then, every effective divisor in |L| is numerically connected and:

1. either |L| has no fixed components,
2. or elseL2 = 2 and |L| = |% | +', where the moving part |% | is a genus one pencil,

and where the fixed component ' is a smooth rational curve with % · ' = 2.

Proof Numerical connectivity of effective divisors in |L| follows from Lemma
2.1.10.(3) or Corollary 2.1.11.

By Riemann–Roch, we have ℎ0 ((,L) ≥ 2. We write |L| = |" | + / , where / is
the fixed part and |" | is the moving part and we will now assume that / ≠ 0.

Seeking a contradiction, we suppose that "2 > 0. Then, since " is nef, we can
apply the Vanishing Theorem (Theorem 2.1.16) to conclude that ℎ0 ((,O( (")) =
1
2"

2 + 1. Since every divisor in |L| is numerically connected, we find the strict
inequality L2 ≥ L ·" = "2 + / ·" > "2. On the other hand, we have 1

2"
2 + 1 =

ℎ0 ((,O( (")) = ℎ0 ((,L) ≥ 1
2L

2 + 1, a contradiction. This implies "2 = 0.
Thus, by Corollary 2.2.9, the linear system |" | = |:% | is composed of a genus

one pencil. Since L2 = /2 + / · " > 0 and / · " > 0 (by numerical connectivity
of / + %), we obtain /2 < 0 by the Hodge index theorem. Let ' be an irreducible
component of / with / · ' < 0, which exists since we have /2 < 0. Since L is nef,
we obtain L · ' = / · '+" · ' ≥ 0, which implies ' ·% > 0. We have A := ' ·% ≥ 2
by Corollary 2.2.9 and compute

(' + %)2 = −2 + 2' · % = 2A − 2 ≥ 2 and ' · (' + %) = −2 + A ≥ 0.
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Thus, '+% is a nef divisor with ('+%)2 > 0. By Riemann–Roch and the Vanishing
Theorem, we have ℎ0 (' + %) = A ≥ 2. Since ' is the fixed part of |' + % | and
ℎ0 (%) = ℎ0 (' + %) = A, we get A = 2. This implies that : = 2 and 1 = dim |' + % | =
dim |% |. Since 2 = ℎ0 (%) = ℎ0 (L) = 1

2L
2 + 1, we conclude L2 = 2.

Next, we compute

2 = L2 = L · (% + /) = ' · % + (/ − ') · % + L · / = 2 + (/ − ') · % + L · /,

which gives L · / = 0 and hence, L · ' = 0 and L2 = L · % = 2. Thus, we find

det
(

L2 L · (% + ')
L · (% + ') (% + ')2

)
= L2 · (% + ')2 − (L · (% + '))2 = 2(2% · ' − 2) − 4 = 0.

By the Hodge index theorem, the divisor classes of % + ' and L are proportional in
Num(()R and since (% + ')2 = L2, they are equal. Finally, since (% + ') · ' = 0
and % is nef, we conclude that % + ' is nef. By Riemann–Roch and the Vanishing
Theorem, we find ℎ0 (% + ') = 1

2 (% + ')
2 + 1 = 2 = ℎ0 (%) and thus, ' is the fixed

part of |% + ' |. �

We refer to Section 2.4 and in particular, to Corollary 2.4.6, for base points of
linear systems on Enriques surfaces. Moreover, as an application of Proposition
2.2.11, we have the following Bertini–type theorems for linear systems on Enriques
surfaces.

Corollary 2.2.12 Let ( be an Enriques surface and let L be a big and nef invertible
sheaf on (.

1. If L2 > 2, then the linear system |L| contains an integral divisor, that is, a
reduced and irreducible curve.

2. If L2 = 2 and ( is classical, then |L| or |L ⊗ l( | contains an integral divisor.

Proof If L2 > 2, then |L| has no fixed components by the previous proposition . In
characteristic zero, Bertini’s theorem states that a general member of |L| is even a
smooth divisor away from the base locus. In positive characteristic, it is at least still
true that a general member of |L| is an integral divisor. We refer to [355, Théorème
5.1] for proofs and details. For further details, see also [433, Lemma 3.3].

Next, suppose that L2 = 2 and that ( is classical. If the linear system |L| contains
no irreducible curve, then |L| = |% | + ', where |% | is a genus one pencil and ' is
a smooth rational curve with ' · % = 2. Let us show that in this case |% + ' +  ( |
contains an irreducible curve. If not, then we can write |% + ' +  ( | = |%′ | + '′ for
some genus one pencil |%′ | and a smooth and rational curve '′ with '′ · %′ = 2.
From 2 = % · (% + ') = % · (%′ + '′) ≥ % · %′ ≥ 0 and the fact that |% | = |2� |,
|%′ | = |2� ′ | for two half-fibers �, � ′, we conclude % · %′ = 0. This implies % = %′
and ' + ( ∼ '′. The latter equality gives 2' ∼ 2'′, and since (2')2 = −8 < 0, we
find ' = '′ (see also Lemma 2.3.2) and thus,  ( = 0, a contradiction. �
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Remark 2.2.13 IfL is a big and nef invertible sheaf, then it follows from the Enriques
Reducibility Lemma (see Corollary 2.3.5 below) that the linear system |L| also
contains at least one reducible curve.

2.3 The Nodal Weyl Group and the Enriques Reducibility
Lemma

In this section, we study effective divisors on Enriques surfaces that are not neces-
sarily nef. We introduce the nodal Weyl group and prove the Enriques Reducibility
Lemma, which states that every effective divisor is linearly equivalent to a sum of
reduced and irreducible curves of arithmetic genus zero and one. As an application,
we will see that every Enriques surface carries at least one genus pencil.

Let ( be an Enriques surface and let ' be a smooth and rational curve. By the
adjunction formula, this is equivalent to saying that ' is an irreducible curve with
'2 = −2, see also Proposition 2.1.6. We denote by R(() the set of such (−2)-curves
on (.

Definition 2.3.1 An Enriques surface ( is called unnodal if R(() = ∅, that is, if (
does not contain any (−2)-curves. Otherwise, ( is called nodal.

In Chapter 5, we will see that inside the 10-dimensional moduli spaces of (polar-
ized) Enriques surfaces, the sets of unnodal Enriques surfaces are open and dense,
whereas nodal Enriques surfaces form divisors inside these moduli spaces. We will
study nodal Enriques surfaces in detail in Volume II.

The following observation shows that we may identify a (−2)-curve with its class
in Num(() or NS(().

Lemma 2.3.2 Let '1 and '2 be (−2)-curves on an Enriques surface (. Then,

'1 ≡ '2 ⇔ '1 ∼ '2 ⇔ '1 = '2,

where ≡ and ∼ denote numerical and linear equivalence of divisors, respectively.

Proof The implications from the right to the left are trivial. Since dim |'1 | =
dim |'2 | = 0, we see that '1 ∼ '2 implies '1 = '2. Finally, '1 ≡ '2 implies
that either '1 ∼ '2 holds and we are done or else, we must have '1 ∼ '2 +  (
with  ( ≠ 0. However, the second case cannot occur, since then, we would deduce
2'1 ∼ 2'2 and from dim |2'1 | = dim |2'2 | = 0, we infer '1 = '2, a contradiction.�

In the previous section, we identified the nef cone Nef (() of an Enriques surface
( with the fundamental chamber of the root basis in Num(() formed by the classes
of (−2)-curves. Let ,nod

(
be the Weyl group of this basis, which we call the nodal

Weyl group of (. It is a subgroup of the Weyl group, (Num(()). In particular, every
effective divisor of ( can be moved into the nef cone by an element of,nod

(
. Since

the numerical class of any (−2)-curve has a unique representative in Pic((), the
group,nod

(
also acts on Pic((). More precisely, we have the following result.
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Theorem 2.3.3 Let � be an effective divisor on an Enriques surface ( with �2 ≥ 0.
Then,

� ∼ � ′ +
∑
8

<8'8 , <8 ≥ 0, (2.3.1)

where � ′ belongs to the unique nef divisor class in the ,nod
(

-orbit of the divisor
class of � and where the '8 are (−2)-curves. Moreover, one of the following cases
occurs:

1. �2 > 0 and |� ′ | contains an integral curve,
2. �2 = 2 and |� ′ | or |� ′ +  ( | contain an integral curve,
3. �2 = 2 and � ′ ∈ |% + ' |, where |% | is a genus one pencil and ' is a (−2)-curve

with ' · % = 2, or
4. �2 = 0 and � ′ is nef.

Proof The numerical class [�] ∈ Num(() belongs to the closure of a connected
component of++

(
= {G ∈ Num(()R : G2 > 0}. The nef cone is a fundamental chamber

of,nod
(

by Proposition 2.2.1. By Corollary 0.8.14, we can write a representative � of
its numerical class in the asserted form (2.3.1) with [� ′] ∈ Nef ((). The remaining
assertions follow from Proposition 2.2.11 and Corollary 2.2.12. �

Corollary 2.3.4 Every Enriques surface carries at least one genus one pencil.

Proof Let ( be an Enriques surface. Since d(() = 10 and Num(() is a unimodular
and indefinite lattice, it contains an isotropic vector, see, for example, [661, Chapter
5]. Alternatively, we have seen and classified (orbits) of isotropic vectors in the
Enriques lattice in Corollary 1.5.4. Applying Theorem 2.3.3 and Proposition 2.2.8,
the assertion follows. �

The next assertion is known as Enriques’ Reducibility Lemma or simply as the
Reducibility Lemma, which is a fundamental result for the study of linear systems
on Enriques surfaces.

Theorem 2.3.5 (Enriques Reducibility Lemma) Let � be a divisor on an Enriques
surface (.

1. If � is effective, then it is linearly equivalent to a sum of integral curves of
arithmetic genus zero or one.

2. If � is big and nef, then the linear system |� | contains a reducible divisor.
Moreover, one can even find �1 + �2 ∈ |� |, where the �8 , 8 = 1, 2, are effective
divisors with �2

8
≥ 0.

Proof Let � be an effective divisor on (. Since � is a sum of integral divisors, we
are reduced to the case where � is integral with �2 > 0. By Theorem 2.3.3, we may
reduce to the case where � is nef. Applying a suitable element | ∈ , (Num(()),
we can write |( [�]) as a linear combination of fundamental weights. Thus, by
Remark 1.5.5, we can write the class |( [�]) in Num(() as a non-negative linear
combination of isotropic vectors 58 such that 58 · 5 9 > 0 for all 8 ≠ 9 . Applying
|−1 to |( [�]), we obtain a numerical equivalence � ≡ ∑

=8�8 with �2
8
= 0 and
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�8 · �9 > 0 for 8 ≠ 9 . Since � is nef and �2 > 0, we have � · �8 > 0. Thus, we may
assume each �8 to be an effective divisor. If  ( = 0, then numerical equivalence
coincides with linear equivalence and thus, � is in fact linearly equivalent to the
sum of effective divisors �8 = =8�8 with �2

8
= 0. If  ( ≠ 0, then we replace �1

with � ′1 ∈ |�1 +  ( | if necessary to conclude the same. In particular, we see that
any big and nef divisor � can be written as a sum �1 + (� − �1) of two divisors
with non-negative self-intersection.

Applying Theorem 2.3.3, we can write each �8 as a sum %8 +
∑
8∈� '8 , where %8 is

a nef divisor with %2
8
= 0. By Corollary 2.2.9, each %8 is linearly equivalent to a sum

of half-fibers. Moreover, each half-fiber is either an irreducible curve of arithmetic
genus one or a sum of (−2)-curves. �

Remark 2.3.6 If ( is a classical Enriques surface and � is a big and nef divisor, then
Enriques gave the following beautiful and geometric argument for the existence of a
reducible divisor in |� |: inside the projective space |2� | = P(�0 ((,O( (2�))), we
have the two closed subschemes + and + ′ formed by divisors of the form �1 + �2
and � ′1 + �

′
2 with �8 ∈ |� | and � ′8 ∈ |� +  ( |, respectively. Since = := dim |� | =

dim |� +  ( | = 1
2�

2 by Corollary 2.1.17, we conclude that dim+ = dim+ ′ = 2=.
Similarly, we have dim |2� | = 4= and |2� | contains integral divisors by Corollary
2.2.12. Thus, + ∩+ ′ ≠ ∅ and there exists a divisor � ∈ |2� | that can be written as

� = �1 + �2 = � ′1 + �
′
2,

with �8 ∈ |� | and � ′8 ∈ |� +  ( |. However, since |� | ∩ |� +  ( | = ∅, this can only
happen if �1 and �2 are reducible divisors. This establishes a reducible divisor in
|� |.

In particular, if an Enriques surface is unnodal, then it does not contain curves of
arithmetic genus zero, and then, we have the following.

Corollary 2.3.7 If ( is an unnodal Enriques surface, then every effective divisor on
( is linearly equivalent to a sum of integral curves of arithmetic genus one.

Finally, since the canonical class  ( is trivial or equal to the class of the difference
of two half-fibers of a genus one pencil, we obtain the following.

Corollary 2.3.8 If ( is an Enriques surface, then Pic(() is generated by the classes
of curves of arithmetic genus zero and one.

Remark 2.3.9 Note that we can prove this corollary without using the Enriques
Reducibility Lemma. In fact, we may use Proposition 1.5.3 to conclude that the
Enriques lattice E10 is generated by isotropic primitive vectors 51, . . . , 510 and � −
51 − 52. This corollary should also be compared with the fact that the Picard group
of a rational surface is generated by classes of smooth rational curves.



2.4 Base Points and the Φ-function 277

2.4 Base Points and the �-function

In this section, we discuss Bogomolov instability for rank two vector bundles and
Reider’s theorem for surfaces. As an application, we not only obtain another proof of
the fundamentalVanishingTheorem for Enriques surfaces (Theorem2.1.16), but also
results on base points of linear systems and Fujita’s conjecture. Then, we introduce
the function Φ for invertible sheaves, which is fundamental for the study of big and
nef linear systems on Enriques surfaces. Finally, we briefly discuss :-ampleness and
Seshadri constants.

Definition 2.4.1 A rank 2 vector bundle E on a smooth and proper surface - is
called Bogomolov unstable if there exists a short exact sequence

0 → O- (�) → E → I/ (�) → 0, (2.4.1)

where I/ is the ideal sheaf of a 0-dimensional closed subscheme / ⊂ - and the
divisor � − � satisfies (� − �)2 > 0 and (� − �) · � > 0 for some ample divisor �.

The following theorem, due to Bogomolov [72] over the complex numbers, gives
a very useful criterion for a rank two vector bundle to be Bogomolov unstable.

Theorem 2.4.2 Let - be a smooth and proper surface in characteristic ? ≥ 0 and let
E be a rank two vector bundle on - . Assume that ? = 0 or that ? > 0 and that - is
of Kodaira dimension ^(-) ≤ 0. If 22

1 (E) > 422 (E), then E is Bogomolov unstable.

Proof Over the complex numbers, we refer to [72], as well as [43, Chapter IV,
Sections 10 and 12] and [610]. In positive characteristic, this theorem is a special
case of [668, Theorem 7]. �

Remark 2.4.3 In positive characteristic ?, more is known: this theorem still holds if
^(-) = 1 with some very explicit exceptions if ? ≤ 3, see [211, Theorem 1.6]. For
surfaces of general type, that is, if ^(-) = 2, then we refer the reader to [211] and
[668]. Finally, we refer the reader to [441] and [442] for further results and with a
view towards the Bogomolov–Miyaoka–Yau inequality in positive characteristic.

Before applying this result and Reider’s theorem below to the study of base points
of linear systems on Enriques surfaces, we give another proof of the Vanishing
Theorem (Theorem 2.1.16). Let us recall some results from Section 2.2: if - is a
smooth and proper surface, then we defined the cone Big(-) of big numerical divisor
classes. If we fix some ample class ℎ ∈ NS(-), then the set of big divisors{

G ∈ NS(-) : G2 > 0, G · ℎ > 0
}

does not depend on the choice of ℎ and generates the cone Big(-). If � ∈ NS(-)
is a numerically effective class, then the Hodge index theorem implies that we have
[�] · G > 0 for all G ∈ Big(-). After these preparations, we give another proof of
Theorem 2.1.16.
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Corollary 2.4.4 Let - be a smooth and proper surface that satisfies the assumptions
of Theorem 2.4.2, for example, an Enriques surface. If � is an effective and nef
divisor with �2 > 0 on - , then

�1 ((,O- (−�)) = 0.

Proof Set L := O- (�) and assume that �1 (-,L−1) ≠ 0. Using the isomorphism
Ext1 (L,O- ) � �1 (-,L−1), we deduce that there exists a non-trivial extension of
invertible sheaves

0 → O- → E → L → 0. (2.4.2)

Computing the Chern classes, we find 21 (E) = [�] and 22 (E) = 0. By Theorem
2.4.2, the vector bundle E is Bogomolov–unstable. Thus, there exists an exact se-
quence like (2.4.1) for E and we let q : O- (�) → L be the composition of the
inclusion map O- (�) → E followed by the projection E → L.

Seeking a contradiction, let us assume q = 0. Then, the image of O- (�) in E
is contained in O- and hence, � ≤ 0. Moreover, if � < 0, then, after taking global
sections in (2.4.1),wefind that � ≥ 0 and hence (�−�)·� < 0 for all ample invertible
sheaves � on - , which contradicts the properties of (2.4.1). This contradiction
implies � = 0. Thus, the exact sequence (2.4.1) gives 21 (E) = [�] + [�] = [�].
Hence, [�] = [�] and again (� − �) · � = −� · � ≤ 0 for all ample �. This
contradiction shows that q ≠ 0.

Using q ≠ 0, we conclude ℎ0 (L(−�)) = ℎ0 (O- (�)) ≠ 0. Now, since [� −
�] ∈ Big(-), we conclude � · (� − 2�) = � · (� − �) > 0. Also, we have
0 = 22 (E) = � · � + ℎ0 (O/ ), which implies � · � = (� − �) · � ≤ 0. Thus, we
obtain �2 ≥ � · � and �2 > 2� · � ≥ � · �, which gives

�2 > 0 and �2 · �2 > (� · �)2.

By the Hodge index theorem, this implies [�] = 0 and hence, � = 0. Thus, L =

O- (�) and q defines a splitting of the exact sequence (2.4.2), a contradiction. This
final contradiction shows that ℎ1 (-,L−1) = 0. �

We now come to the main application of Theorem 2.4.2, which is the analysis of
base points of adjoint linear systems, due to Reider [613].

Theorem 2.4.5 Let - be a smooth and proper surface that satisfies the assumptions
of Theorem 2.4.2. Let L be a big, nef, and effective invertible sheaf.

1. Suppose that L2 ≥ 5 and that |L ⊗ l- | has a base point G ∈ - . Then, there
exists an effective divisor � that contains G, such that either

a. �2 = 0 and L · � = 1, or
b. �2 = −1 and L · � = 0.

2. Suppose that L2 ≥ 9 and that |L ⊗ l- | does not separate two points G, H ∈ -
(possibly infinitely near). Then, there exists an effective divisor � that contains G
and H, such that
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a. �2 = 0 and L · � ≤ 2, or
b. �2 = −1 and L · � ≤ 1, or
c. �2 = −2 and L · � = 0, or
d. L2 = 9, �2 = 1, and L ≡ 3� in Num(-).

Proof A point G ∈ - is a base point of the linear system |L ⊗ l- | if and only if
ℎ0 (IG ⊗ L ⊗ l- ) = ℎ0 (L ⊗ l- ), where IG ⊆ O- denotes the ideal sheaf of G ∈ - .
Taking cohomology in the short exact sequence

0 → IG ⊗ L ⊗ l- → L ⊗ l- → OG → 0

and applying Corollary 2.4.4, we conclude that G is a base point if and only if

0 ≠ �1 (-,IG ⊗ L ⊗ l- ) � Ext1 (IG ⊗ L ⊗ l- , l- ) � Ext1 (IG ⊗ L,O- ),

where the first isomorphism is Serre duality. Thus, a non-zero element in the latter
Ext-group gives rise to a non-split exact sequence

0 → O- → E → IG ⊗ L → 0. (2.4.3)

One can show that E is locally free and thus, a vector bundle of rank 2. Computing
Chern classes, we find 21 (E) = [L] and 22 (E) = [G]. Since L2 ≥ 5, Theorem 2.4.2
implies that E is Bogomolov unstable, that is, there exists a short exact sequence

0 → O- (�) → E → I/ (�) → 0 (2.4.4)

as in (2.4.1). Moreover, we have 2ℎ · � > ℎ · L > 0 for every ample class ℎ. Since L
is big and nef, it is a limit of ample divisors, from which we conclude 2L · � ≥ �2.
Combining (2.4.3) and (2.4.4), we claim that the composition

O- (�) → E → IG ⊗ L

is non-zero: otherwise, we obtain � = −� for some effective divisor � , and thus,
2ℎ · � ≤ 0 for all ample classes, which contradicts the above. From this, we conclude
that there exists an effective divisor � on - such that

L � O- (� + �) and G ∈ �.

In particular, � is not numerically trivial and thus, the inequality 2L · � ≥ �2

becomes L2 ≥ 2L · � . We rewrite (2.4.4) as the short exact sequence

0 → L(−�) → E → I/ ⊗ O- (�) → 0

and computing Chern classes, we find 1 = 22 (E) = L · � − �2 + ℎ0 (O/ ). This
implies L · � − �2 ≤ 1 and we conclude the following inequalities

2L · � ≤ L2 L · � − �2 ≤ 1
L · � ≥ 0 L2 · �2 ≤ (L · �)2 .
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The third inequality follows from the fact that L is nef and � is effective and the
fourth inequality follows from the Hodge index theorem. Putting these together, we
conclude

L · � ≤ 1 + �2 ≤ 1 + (L · �)
2

L2 ≤ 1 + 1
2
(L · �).

From this, we obtain L · � ≤ 2 and we have equality if and only if L and �
generate the same line in Num(-). In this latter case, we find �2 ≥ 1 and L2 ≤ 4
contradicting our assumptions. Thus, we haveL ·� = 0 orL ·� = 1. In the first case,
we have �2 ≤ 0 by the Hodge index theorem and we have �2 = 0 if and only if �
is numerically trivial, which is not the case. Since −�2 ≤ 1, we conclude �2 = −1.
In the second case, that is, if L · � = 1, then we find �2 ≤ (L2)−1 ≤ 1

5 and thus,
�2 ≤ 0. On the other hand, we have �2 ≥ 1 − L · � = 0 and we find �2 = 0. This
establishes the first claim.

Similarly, a pair G, H of points on - (possibly infinitely near), which are not
separated by |L ⊗ l- | gives rise to a non-split extension

0 → O- → E → IG,H ⊗ L → 0, (2.4.5)

and we note that we have ℎ0 (OG,H) = 2. Again, E turns out to be a vector bundle of
rank two and computing Chern classes, we find 21 (E) = [L] and 22 (E) = [G + H].
Thus, if L2 > 4ℎ0 (OG,H) = 8, then E is Bogomolov unstable by Theorem 2.4.2.
From there, an analysis similar to the above yields the second claim. We refer the
interested reader to [43, Chapter IV, Theorem 11.4], or [240, Chapter 9, Theorem 6]
or [613] for details. �

Next, we apply Reider’s theorem to Enriques surfaces, which allows us to analyze
base points of linear systems rather than their adjoint linear systems.

Corollary 2.4.6 Let ( be an Enriques surface and let L be a big and nef invertible
sheaf.

1. If L2 ≥ 6 and |L| has a base point G, then there exists an effective divisor �
containing G such that �2 = 0 and L · � = 1.

2. If L2 ≥ 10 and |L| does not separate two points G, H (possibly infinitely near),
then there exists an effective divisor � containing G, H such that

a. �2 = 0 and L · � = 2, or
b. �2 = −2 and L · � = 0.

Proof Since l( is numerically trivial, also L ′ := L ⊗ l( is big and nef with
L2 = L ′2 and then, we can apply Theorem 2.4.5 to L ′. By Proposition 1.5.1, the
intersection pairing on Num(() is even, which implies that the cases 1 (a), 2 (b), and
2 (d) of Theorem 2.4.5 cannot occur. �

Remark 2.4.7 Wecan even say a little bit more about the effective divisors � occuring
in Corollary 2.4.6:

1. In Case 2 (b), the Hodge index theorem implies that we may assume � to be a
sum of (−2)-curves.
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2. In the remaining cases, we have �2 = 0 and then, Theorem 2.3.3 shows that �
is numerically equivalent to the sum of a multiple of some half-fiber � and a
non-negative sum of (−2)-curves. Again, by the Hodge index theorem, we must
have L · � > 0, and hence

a. either L · � = 1 and |L| has a fixed point on �,
b. or else L · � = 2 and |L| does not separate two points. These two points either

lie on a � or � ′ ∈ |� +  ( | or on both � and � ′.

We will say more about base points of linear systems in Theorem 2.4.14, as well as
in Section 2.6 below.

Next, we apply these results to establish Fujita’s conjecture for K3 surfaces and
Enriques surfaces: given an ample invertible sheaf L on a smooth and projective
variety - of dimension 3 over an algebraically closed field, it follows from the very
definition that L⊗# , as well as L⊗# ⊗ l- , will be base point free and even very
ample for # � 0. More precisely, Fujita [241] conjectured thatL⊗# ⊗l- should be
base point free (resp. very ample) if # ≥ (3+1) (resp. # ≥ (3+2)). Reider’s theorem
can be used to prove this conjecture for surfaces and we refer the interested reader
to [447] for more about this conjecture. For K3 surfaces and Enriques surfaces, we
have the following.

Corollary 2.4.8 Let - be a K3 surface or an Enriques surface and letL be an ample
invertible sheaf.

1. Both, L⊗2 and L⊗2 ⊗ l- , are globally generated, that is, the associated linear
systems have no base points.

2. Both, L⊗3 and L⊗3 ⊗ l- , are very ample.

Proof Since L is ample and the intersection form on Num(-) is even, we have
L2 ≥ 2.

Thus, we have (L⊗2)2 ≥ 8 and every effective divisor � satisfies L⊗2 · � ≥ 2.
Thus, Theorem 2.4.5.(1) implies that L⊗2 ⊗ l- has not base points. If - is a K3
surface, then l- � O- and thus, also L⊗2 has no base points. If - is an Enriques
surface, then Corollary 2.4.6.(1) shows that also L⊗2 has no base points.

The proof of the second claim follows similarly and we leave to the reader. �

In view of the Enriques Reducibility Lemma (Theorem 2.3.5), as well as the
previous analysis, it is clear that genus one fibrations and isotropic vectors inNum(()
play an important role for linear systems and their base points on an Enriques surface
(. This leads to introducing the functionΦ. In Section 0.9, we introduced the notation
Num(()0 for the set of isotropic vectors inNum((), that is, classes of self-intersection
zero. Moreover, in Corollary 1.5.4, we classified isotropic vectors of Num((). Then,
we define

Φ : Num(() → Z≥0
G ↦→ inf {|G · 5 | | 5 ∈ Num(()0} .

(2.4.6)

We extend it by linearity to a function on Num(()R. To simplify notation, if � is a
divisor or if L is an invertible sheaf on (, then we denote by Φ(�) and Φ(L) the
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just–defined function Φ evaluated on the corresponding class in Num((). If L is a
big and nef invertible sheaf, then Φ(L) should be thought of as a sort of positivity
measure or ampleness measure – we will make this precise below.

Remark 2.4.9 Clearly, Φ can be defined for every lattice " that contains isotropic
vectors (see [138, Chapter III, §7], where this function is studied for hyperbolic
lattices). Note that Φ makes sense only for very few lattices beside the hyperbolic
ones. First, the need for isotropic vectors implies that" cannot be positive or negative
definite. Moreover, if " is an indefinite lattice of rank ≥ 6 and signature (C+, C−)
with C+ ≥ 2 and C− ≥ 2, then for every 0 ≠ G ∈ " , the sublattice (Z · G)⊥ ⊆ "

is indefinite of rank ≥ 5, thus, contains isotropic vectors, which implies Φ(G) = 0,
which makes Φ a trivial function.

Next, we recall some notation. Let Big(() ⊂ Num(() be the cone of big divisors;
we set

Num(()+ := Big(() ∩ Num(().

Then, we have the following useful properties of Φ.

Lemma 2.4.10 Let ( be an Enriques surface and let G ∈ Num(().

1. For every isometry k ∈ O(Num(()) we have

Φ (k(G)) = Φ(G).

In particular, this applies to elements of the Weyl group , (Num(()) and the
nodal Weyl group,nod

(
.

2. If G ∈ Num(()+, then Φ(G) can be achieved on the class of a half-fiber. In
particular, we have

Φ(G) = 1
2

inf {G · %, where |% | is a genus one pencil} (2.4.7)

and Φ(G) ≥ 1 in this case.

Proof We have

Φ(k(G)) = inf{|k(G)· 5 | : 5 ∈ Num(()0} = inf{|G·k−1 ( 5 ) | : 5 ∈ Num(()0} ≥ Φ(G).

Replacing k with k−1, we get the opposite inequality, which establishes the first
claim.

In particular, to compute Φ(G), we may replace G with a nef class in the same
, (Num(())-orbit.

To prove the second assertion, we may assume that G ∈ Num(()+ is nef by the
above. By Theorem 2.3.3, we can write 5 = 50 + ', where 50 is nef and ' is a
non-negative sum of the classes of (−2)-curves. Since G · 50 ≤ G · 5 and G · 5 is
minimal, we conclude that Φ(G) = G · 50. Thus, 50 is a divisor of canonical type.
Since G · 50 is minimal and G is nef, it follows that 50 is indecomposable. Moreover,
again by minimality, 50 must be a half-fiber. Clearly, if |% | is a genus one pencil, then
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[%] ∈ Num(()0 and it is divisible by 2 in Num(() and thus, we have the inequality
“≤” in (2.4.7). Since |2 50 | is a genus one pencil and Φ(G) = G · 50, this shows that
we have equality in (2.4.7). The positivity of Φ(G) follows from the Hodge index
theorem. �

Next, we have the following inequalities.

Proposition 2.4.11 Let ( be an Enriques surface and G ∈ Num(()+. Then, the
inequality

Φ(G) ≤
√
G2

holds true. Moreover, equality holds if and only if G is in the orbit of the fundamental
weight 81 and thus satisfies G2 = 4, Φ(G) = 2.

Proof Consider the function k(G) = Φ(G)2
G2 . We have to show that k(-) ≤ 1 and

have determine when equality holds.
First,we show that it is a convex function on the fundamental chamber� of, (E10)

in (E10)R, the convex cone of the fundamental weights 80, . . . ,89. Since any two
non-proportional vectors in � span a hyperbolic plane, we have (G · H)2 > G2 · H2.
For any two positive _, ` ∈ R, we compute

k(_G + `H) (_G + `H)2

≤ (_G · 89 + `H · 89)2

= _2 (G · 89)2 + 2_`(G · 89) (H · 89) + `2 (H · 89)2

< _2Φ(G)2G2 + 2_`Φ(G)Φ(H)
√
G2H2 + `2Φ(H)2H2

≤ max{k(G), k(H)}(_G + `H)2.

Thus, k(_G + `H) < max{k(G), k(H)}, which shows that k is convex.
Using the convexity of k, it now suffices to check k(G) ≤ 1 on the fundamental

weights of 88 , 8 ≠ 10. Using Proposition 1.5.3, we compute that k(80) = 9/10,
k(81) = 1, k(82) = 8/9, k(83) = 6/7, k(84) = 5/6, k(85) = 4/5, k(86) = 3/4,
k(87) = 2/3, and k(88) = 1/2. From these computations, it is also easy to see that
we have k(G) = 1 if and only if G is in the orbit of 81. �

Remark 2.4.12 As remarked already in Remark 2.4.9, we can define the function
Φ for any hyperbolic lattice " with isotropic vectors. In [138, Theorem 2.7.1], it
is shown that Φ(G)/G2 is always bounded by some constant, which is an invariant
of the lattice. For example, it is known that Φ(G)/G2 ≤ 2 if " � E2,4,5,E2,4,6 and
Φ(G)/G2 ≤ 3

2 if " = E3,3,4.

Remark 2.4.13 It is shown in [396, Proposition 4.1] that the functionΦ does not take
all possible positive values. In fact, it is proven in loc. cit. that

G2 ≤ Φ(G)2 +Φ(G) − 2.
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As a first result that shows the usefulness of the Φ-function, we show that it does
detect whether a linear system on an Enriques surface has base points. The proof uses
some results that we will establish in Section 2.6 below, but it is useful to already
state it at this point.

Theorem 2.4.14 Let ( be an Enriques surface and let L be a big and nef invertible
sheaf on (. Then, the following are equivalent:

1. Φ(L) = 1.
2. The linear system |L| has at least one base point.

Proof First, assume that Φ(L) = 1. Using Lemma 2.4.10 (3), we see that there
exists a half-fiber � of some genus one pencil such that L · � = 1. By Lemma 2.2.7,
we have l� � O� . It thus follows from Riemann–Roch that ℎ0 (�,L|� ) = 1. Thus,
there exists a unique point G ∈ � such that every member of |L| passes through G,
that is, G is a base point of |L|.

Conversely, if Φ(L) ≥ 2, then |L| has no base points by Corollary 2.6.8. (In the
case where L2 ≥ 6, it already follows from Corollary 2.4.6 that |L| has no base
points.) �

More precisely, we will see in Proposition 2.6.4 below that if Φ(L) = 1, then the
linear system |L| has exactly two simple base points (if ( is not classical, then one
base point is infinitely near).

Corollary 2.4.15 Let ( be an Enriques surface and let L be a big and nef invertible
sheaf with Φ(L) ≥ 2 and L2 = 23. Then, the linear system |L| has no base points
and the associated morphism

i : ( → P3

is generically finite onto its image, which is a surface. Moreover, we have the estimate
for the generic degree deg i of i

1 ≤ deg i ≤ 2 ·
(
1 + 1

3 − 1

)
≤ 4 .

In particular, if 3 ≥ 4, then deg i ≤ 2.

Proof SinceΦ(L) ≥ 2, the linear system |L| has no base points, and since L2 > 0,
the image of i must be a surface. Next, we have ℎ0 ((,L) = 1 + 1

2L
2 by Corol-

lary 2.1.17, and thus, i is a morphism to projective space of dimension 1
2L

2. By
Proposition 0.5.1, we have deg i(() ≥ 3 − 1 and thus, we find

L2 = deg i · deg i(() ≥ deg i · (3 − 1).

From this and the fact that 23 ≥ Φ(L)2 ≥ 4, the claimed estimates follow. �

The following theorem says that linear systems |L| arising from big and nef
invertible sheaves L with Φ(L) ≥ 3 always give rise to birational morphisms. We
will study linear systems |L| and their base points withΦ(L) ≤ 2 in detail in Section
2.6 below.
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Theorem 2.4.16 Let ( be an Enriques surface and let L be a big and nef invertible
sheaf with L2 = 23. Then, the following are equivalent:

1. Φ(L) ≥ 3.
2. The linear system |L| has no base points and the associatedmorphism i : ( → P3

is birational onto its image (′ = i((), which is a normal surface.

In this case, (′ has at worst rational double point singularities.

Proof (2) ⇒ (1) Since |L| has no base points, we have Φ(L) ≥ 2 by Theorem
2.4.14. Seeking a contradiction, we assume Φ(L) = 2. Using Lemma 2.4.10.(3),
we see that there exists a genus one pencil |2� | with L · � = 2. More precisely,
by Lemma 2.2.7, we have l� � O� . By Riemann–Roch, we have ℎ0 (�,L|� ) = 2,
which implies that either |L| has at least one base point on �, which contradicts our
assumptions (or Theorem 2.4.14), or else |L| induces a morphism of degree 2 from
� to P1. However, since i was assumed to be birational with normal image (′, this
contradicts Zariski’s Main Theorem (see [294, Corollary III.11.4]).
(1) ⇒ (2) First, we have 3 ≥ 5 by Proposition 2.4.11 andwemay apply Corollary

2.4.6. First of all, this implies that |L| has no base points and we let i : ( → P#

be the associated morphism. In fact, we have # = 3 by Corollary 2.1.17. If i does
not separate two points G, H (possibly infinitely near), then Corollary 2.4.6 implies
that there exists a (−2)-curve ' with L · ' = 0 that contains G and H (the other
possibility does not occur because we have Φ(L) ≥ 3). Obviously, i blows down '
to a point in the image. Since [L]⊥ is a negative lattice inside Num((), the number
of (−2)-curves ' such that L · ' = 0 is finite, see also Proposition 2.1.6. This
shows that i is an isomorphism outside the union of such curves. Moreover, all these
curves are blown down to rational double points of (′ = i(() by Proposition 0.4.8
and Proposition 2.1.6. �

As an application, we obtain the following generalization of Corollary 2.4.8 and
Fujita’s conjecture.

Corollary 2.4.17 . Let ( be an Enriques surface and letL be a big and nef invertible
sheaf.

1. The invertible sheaves L⊗2 and L⊗2 ⊗ l( are globally generated, that is, their
associated linear systems have no base points.

2. The rational maps associated to the linear systems |L⊗3 | and |L⊗3 ⊗ l( | are
morphisms and ( is birational to the image.

Proof First, we have Φ(L) ≥ 1 by Lemma 2.4.10.(3). Thus, we have Φ(L⊗2) =
Φ(L⊗2 ⊗ l() ≥ 2 and then, the first claim follows from Theorem 2.4.14. Similarly,
we have Φ(L⊗3) = Φ(L⊗3 ⊗ l() ≥ 3 and then, the second claim follows from
Theorem 2.4.16. �

Interestingly, theΦ-function also controls the behavior of the linear system |c∗L|
on the K3-cover c : - → ( of an Enriques surface (, see Section 3.1.

We end this section by relatingΦ to two classical positivitymeasures for invertible
sheaves. First, if L is an invertible sheaf on some proper variety - , then L is called
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:-very ample if for every closed and zero-dimensional subscheme / ⊂ - with
ℎ0 (/,O/ ) ≤ (: + 1) the restriction map

�0 (-,L) → �0 (/,L ⊗ O/ )

is surjective. Clearly, L is 0-very ample if and only if L is globally generated.
Moreover, L is 1-very ample if and only if L is very ample in the usual sense.
Geometrically, :-very ampleness for : ≥ 1 means that under the embedding defined
by |L| there are no (< + 1)-secant (< − 1)-planes to - for < ≤ : . Equivalently,
any zero-dimensional subscheme / ⊆ - of length < with < ≤ (: + 1) imposes
independent conditions on global sections of L, that is,

ℎ0 (-,I/ ⊗ L) = ℎ0 (-,L) − lg(/),

whereI/ ⊆ O- denotes the ideal sheaf of / and lg(/) = ℎ0 (O/ ) as it was defined in
(0.3.3). A relation between this notion and the Φ-function is given by the following
theorem, which is due to Szemberg [696] – it seems likely that these results also
hold in positive characteristic.

Theorem 2.4.18 Let ( be an Enriques surface over an algebraically closed field of
characteristic zero and let L be a big and nef invertible sheaf.

1. If L is :-very ample, then Φ(L) ≥ (: + 2).
2. If ( is unnodal and Φ(L) ≥ (: + 2) for some integer : ≥ 1, then L is :-very

ample.

Let us also mention the following theorem, due to Knutsen [396] and Szemberg
[696] - again, it seems likely that it also holds in positive characteristic.

Theorem 2.4.19 Let ( be an Enriques surface over an algebraically closed field of
characteristic zero and let L be a big and nef invertible sheaf.

1. L is :-very ample if and only if there exists no effective divisor � on ( with

a. �2 = −2 and L · � ≤ (: − 1) or
b. �2 = 0 and L · � ≤ (: + 1).

2. If L is ample and = ≥ (: + 2), then L⊗= is :-very ample.

Remark 2.4.20 In the following two cases, we already established the first statement
and even in arbitrary characteristic:

1. If : = 0, then L is 0-very ample, that is, L is globally generated, if and only if
Φ(L) ≥ 2. We have seen this in Theorem 2.4.14.

2. If : = 1, then L is 1-very ample, that is, L is very ample, if and only ifΦ(L) ≥ 3
and there exists no (−2)-curve � withL·� = 0. This easily follows fromTheorem
2.4.16.

Moreover, the first statement can be thought of as a generalization of Corollary 2.4.6
and the second statement can be thought of as a generalization of Corollary 2.4.8.
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The next positivity measures are the following and we refer to [45] or [447, Part I]
for introduction and background: if L is an ample invertible sheaf on a smooth and
proper variety - over some algebraically closed field, then we define the Seshadri
constant of L in the closed point G ∈ - to be the real number

n (L, G) := inf
G∈�

L · �
multG�

,

where the infimum is taken over all curves � passing through G. Moreover, the
Seshadri constant of L is defined to be

n (L) := inf
G∈-

n (L, G).

A priori, Seshadri constants are real numbers and on surfaces, we have the estimate

0 ≤ n (L) ≤
√
L2,

see, for example, [447, II:Proposition 5.1.9]. In general, not much is known about Se-
shadri constants. For Enriques surfaces, we have the following result, which slightly
extends a theorem of Szemberg.

Theorem 2.4.21 LetL be an ample invertible sheaf on an Enriques surface (. Then,
n (L) is a rational number and satisfies

1
2
≤ n (L) ≤ Φ(L) ≤

√
L2. (2.4.8)

Moreover:

1. If Φ(L) ≥ 2, or, equivalently, if L is globally generated, then n (L) ≥ 1.
2. If n (L) < 1, then Φ(L) = 1 and n (L) ∈ { 1

2 ,
2
3 }.

Proof The inequality Φ(L) ≤
√
L2 is Proposition 2.4.11. Moreover, by definition

of Φ and Lemma 2.4.10, there exists a half-fiber � of ( such that L · � = Φ(L) and
thus, if G ∈ �, we find

n (L) ≤ n (L, G) ≤ L · �
multG �

≤ L · � = Φ(L).

Over the complex numbers, Y(L) ∈ Q is shown in [696, Theorem 3.3]. We leave it
the reader to check that the proof works in arbitrary characteristic. If L is ample,
then L⊗2 is globally generated by Corollary 2.4.17. Since L is ample and globally
generated, we have Y(L⊗2) ≥ 1 (see, for example [447, I:Example 5.1.18]), which
implies Y(L) ≥ 1

2 . This establishes all inequalities in (2.4.8).
An ample invertible sheaf L is globally generated if and only if Φ(L) ≥ 2 by

Theorem 2.4.14 and for ample invertible sheaves that are globally generated, we
already mentioned that we have n (L) ≥ 1.

If n (L) < 1, then Φ(L) < 2 by the just established result and thus, Φ(L) = 1 by
Lemma 2.4.10. In particular, there exists a half-fiber � such thatL·� = 1. Moreover,
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if G ∈ ( is a point such that n (L, G) < 1, then there exists a unique non-multiple
� (G) ∈ |2� | passing through G. As explained in the proof of [696, Proposition 3.5],
the infimum n (L, G) is achieved on a component of � (G). This implies that

L · � (G)
multG� (G)

=
2

multG� (G)
= n (L, G) < 1.

Since n (L) ≥ 1
2 , the classification of irreducible divisors of canonical type shows

that � (G) must be a double curve and G must be a non-smooth point of its reduction
or � (G) is a triple point of a fiber of type �̃∗2. From this, we infer n (L, G) = 1

2 or 2
3

and the remaining assertion follows. �

Remark 2.4.22 In the case where there exists a half-fiber � on ( with Φ(L) = L · �
and such that � is a singular curve, then the proof shows that n (L) ≤ 1

2Φ(L) holds
true in this case.

We refer to [696] and the more recent article [246] for more about Seshadri
constants on Enriques surfaces, further bounds, and the relation to generation of
B-jets. It would be interesting to extend these results to positive characteristic.

2.5 Numerically Connected Divisors

In Section 2.1, we introduced numerically connected divisors. In this section, we
briefly discuss a generalization and some useful applications.

Let � be an effective divisor on a smooth and proper surface - . We say that � is
called numerically<-connected if for every decomposition � = �1+�2 as a sum of
two nonzero effective divisors �1 and �2, we have �1 ·�2 ≥ <. Clearly, an effective
divisor is numerically 1-connected if and only if it is numerically connected in the
sense of Section 2.1. In particular, we refer to Lemma 2.1.10 for some easy results on
1-connected divisors. Next, we define a linear system |� | (resp. an invertible sheaf
L) on - to be <-connected if every effective divisor in |� | (resp. every effective
divisor in |L|) is <-connected.

Proposition 2.5.1 Let � be an irreducible curve on an Enriques surface ( with
�2 > 0. Then:

1. Φ(�) ≥ 1 and |� | is 1-connected.
2. If |� | is <-connected, then �2 ≥ 2<.
3. |� | is <-connected if and only if |� +  ( | is <-connected.
4. |� | is 2-connected if and only if Φ(�) ≥ 2.

Proof Since � is irreducible with �2 > 0, it follows that O- (�) is big and nef.
Thus, |� | is 1-connected by Lemma 2.1.10.(3) and we have Φ(�) ≥ 1 by Lemma
2.4.10. From this, the first claim follows.
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Assume that |� | is <-connected. By the Reducibility Lemma (Theorem 2.3.5),
|� | contains a sum of non-zero effective divisors �1 + �2 with non-negative self-
intersection. Thus, �2 = (�1 +�2)2 = �2

1 +�
2
2 + 2�1 ·�2 ≥ 2<, which establishes

the second claim.
To show the third claim, assume that |� | is<-connected. Seeking a contradiction,

suppose that � ∈ |� +  ( | is not <-connected. Thus, there exist two non-zero
and effective divisors �1 and �2 with � = �1 + �2 and �1 · �2 < <. By the
previous assertion, we have �2 = �2 ≥ 2<, hence one of the divisors �1, �2, say
�1, has positive self-intersection. Thus, by Riemann–Roch, there exists an effective
divisor � ′1 that is linearly equivalent to �1 +  2. From this we find � ′1 + �2 ∈ |� |
with � ′1 · �2 < <, contradicting the assumption that |� | is <-connected. This
contradiction establishes the third claim.

To show the fourth claim, let us first assume Φ(�) ≤ 1 and thus, Φ(�) = 1 by
the first claim. Let � be a genus one curve with � · � = 1 and let 2= = �2. Then,
(� − =�)2 = 0 and |� − =� | ≠ ∅. Thus, we can write � = �1 +�2 with �1 = � and
�2 = (=−1)� +� ′ for some � ′ ∈ |�−=� |. Since�1 ·�2 = � · (�−�) = 1, it follows
that |� | is not 2-connected. Conversely, suppose that |� | is not 2-connected. Then,
we can find effective divisors �1, �2 with �1 + �2 ∈ |� | and �1 · �2 = 1. First,
suppose that we have �2

1 ≤ 0 and �2
2 ≤ 0. Since 0 < (�1 + �2)2 = �2

1 + �
2
2 = 0,

we find �2
1 = �

2
2 = 0 and �1 · �2 = 1, from which we infer Φ(�) = Φ(�) = 1 in

this case. Thus, we may now suppose that �2
1 > 0 or �2

2 > 0, say �2
1 > 0. Then,

by the Hodge index theorem, we find �2
1 · �

2
2 ≤ (�1 · �2)2 = 1, which implies

�2
2 ≤ 0. If �2

2 = 0, then � · �2 = 1, and we find Φ(�) = Φ(�) = 1. Finally, if
�2

2 < 0, then we find �2
1 ≥ �

2 and ℎ0 (�1) ≥ ℎ0 (�). However, since |� | = |� | has
no fixed components, we get a contradiction and thus, this case does not exist. This
establishes the fourth claim. �

Proposition 2.5.2 If � is an indecomposable divisor of canonical type, then it is
2-connected.

Proof If we write � as a sum of two proper and effective divisors � = �1 + �2,
then �2

1 ≤ −2 and �2
2 ≤ −2. Hence, 0 = �2 = �2

1 + �
2
2 + 2�1 · �2 implies that

�1 · �2 ≥ 2. �

Let � be nef divisor with �2 > 0 on an Enriques surface (, that is, � is big
and nef. By the Hodge index theorem, see also Proposition 2.1.6, the orthogonal
complement of [�] in Num(()

[�]⊥ := {G ∈ Num(() | G · [�] = 0} ⊆ Num(()

contains the orthogonal sum of negative definite lattices that are spanned by the
(−2)-curves

R� := {' ∈ R(() | ' · � = 0},

see also Proposition 2.1.6.More precisely, for every such orthogonal summand, there
is a root basis of finite type formed by (−2)-curves. In this situation, we established
in Proposition 0.4.7 a unique fundamental cycle. Moreover, by Proposition 0.4.11,
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this fundamental cycle can be identified with the highest root. This motivates to
define the fundamental cycle of � to be the sum of the fundamental cycles of these
orthogonal summands. By the results of Section 0.4, the fundamental cycle of �
is the unique effective divisor / of ( such that /2 = −2 and / · ' ≤ 0 for every
(−2)-curve ' with ' · � = 0. Since � is big and nef, the linear system |� | is
1-connected by Lemma 2.1.10. Moreover, in most cases also |� − / | is 1-connected:

Proposition 2.5.3 Let � be a big and nef divisor on an Enriques surface ( and let
/ be its fundamental cycle. If |� − / | is not 1-connected, then �2 = 2 and at least
one of |� | and |� +  ( | has a fixed component.

Proof Let �1, �2 be effective divisors with �1 + �2 ∈ |� − / |. Since |� | is 1-
connected by Lemma 2.1.10, we find �1 · (�2 + /) ≥ 1 and �2 · (�1 + /) ≥ 1. This
gives

2�1 · �2 + (� − /) · / = 2�1 · �2 − /2 = 2�1 · �2 + 2 ≥ 2.

Therefore, we have �1 · �2 ≥ 1, unless �1 · �2 = 0 and �1 · / = �2 · / = 1.
Now, assume the latter. Since 0 ≤ � · �1 = (�1 + �2 + /) · �1 = �2

1 + 1, we
conclude �2

1 ≥ 0, and similarly, we find �2
2 ≥ 0. Using the Hodge index theorem,

we conclude �1 ≡ �2, hence �2
1 = �2

2 = 0 and �2 = 2. Then, we can write
�1 = �1 + /1 and �2 = �2 + /2, where |2�1 | = |2�2 | is a genus one pencil and /1,
/2 are nodal cycles. This gives |� | = |�1 + �2 + /1 + /2 + / |. If �1 = �2, then we
find dim |� | = dim |2�1 | = 1 and |� | has a fixed component. If �1 ≠ �2, then we
find dim |� +  ( | = dim |2�1 | = 1, and |� +  ( | has a fixed component. It follows
from Proposition 2.2.11 that in each of these cases / is a (−2)-curve. �

2.6 Big and Nef Divisors with � ≤ 2

In Section 2.4, we began our study of the linear system associated to a big and nef
invertible sheaf L on an Enriques surface (. If Φ(L) ≥ 2, then |L| has no base
points, see Theorem 2.4.14. IfΦ(L) ≥ 3, then |L| defines a morphism to projective
space such that ( is birational onto its image, see Theorem 2.4.16. This motivates to
study divisors and linear systems with Φ ≤ 2 in greater detail, which is the subject
of this section.

We start with linear systems associated to big and nef divisors with Φ = 1.

Proposition 2.6.1 Let � be a big and nef divisor on an Enriques surface ( with
Φ(�) = 1 and �2 = 2= ≥ 2. Then, one of the following cases occurs:

1. |� | = |=�1 + �2 |, where |2�1 | and |2�2 | are genus one pencils with �1 · �2 = 1,
2. |� | = | (= + 1)�1 + ' |, where |2�1 | is a genus one pencil and ' is a (−2)-curve

with ' · �1 = 1,
3. |� | = | (=+1)�1+'+ ( |, where |2�1 | is a genus one pencil and ' is a (−2)-curve

with ' · �1 = 1.
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If the linear system |� | has a fixed component, then = = 1 and � is from the second
case. More precisely, we then have |� | = |2�1 | + ' for a genus one pencil |2�1 | with
� · �1 = 1.

Proof Let � be as in the assumptions. Let |2� | be a genus one pencil with � ·� = 1.
Then, (� − =�)2 = 0, hence � ∼ =� + �, where � is a divisor with �2 = 0 and
� · � = 1. This shows that [�] ∈ Num(() is a primitive isotropic vector. Replacing
� by an effective divisor and applying Proposition 2.3.3, we find � ∼ � ′ + / , where
� ′ is a nef divisor with � ′2 = 0. This implies that |2� ′ | is a genus one pencil and
that / is a nodal cycle. We have:

1. either � · � ′ = 1 and � ′ · / = 0,
2. or else � · � ′ = 0 and � · / = 1.

In the first case, we find |� | = |=� + � ′ + / | and �2 = (=� + � ′)2 implies that
|� | = |=� + � ′ | because |=� + � ′ | has no fixed components. This leads to the first
case claimed in the proposition. In the second case, we have � ′ = � or � ′ ∼ � +  (
and then, we find |� | = | (= + 1)� + / | or |� | = | (= + 1)� + / +  ( |. Let ' be
the unique irreducible component of / such that ' · � = 1. If = ≥ 2, then, since
((= + 1)� + ')2 = 2= = �2 and |� | has no fixed components, we obtain that / = '.
If = = 1, we come to the same conclusion by applying Proposition 2.2.11.

The assertion on the fixed components follows applying the just established
classification to Proposition 2.2.11 and Corollary 2.2.12. �

All three cases of the previous Proposition do exist. Of course, if ( is unnodal,
Cases (2) and (3) cannot occur on (.

Corollary 2.6.2 Let � a nef divisor with Φ(�) = 1 and �2 ≥ 4. Then, there exists
a unique genus one pencil |2� | such that � · � = 1.

Proof If |� | = |=�1 + �2 | as in the first case of the Proposition, then �1 satisfies
� · �1 = 1. Moreover, if |� | is a genus one pencil on ( different from |2�1 |, then
�1 · � ≥ 1 and thus, � · � = (=�1 + �2) · � ≥ =�1 · � ≥ = ≥ 2 (here, we use
�2 = 2= ≥ 4). Thus, |2�1 | is the unique genus one pencil with � · �1 = 1. We leave
the remaining cases to the reader. �

Lemma 2.6.3 Let |2�1 | and |2�2 | be two genus one pencils on an Enriques surface
with �1 · �2 = 1. Then, �1 and �2 have no common irreducible components. In
particular, �1 ∩ �2 consists of one point.

Proof By Proposition 2.5.2, the divisors �1 and �2 are 2-connected. Let �1 be the
maximal effective divisor with �1 ≤ �1 and �1 ≤ �2. If we let �1 = �1 + �2 and
�2 = �1+� ′2 be the decompositions into effective divisors, thenwe have�2 ·� ′2 ≥ 0.
Therefore, 1 = �1 · �2 = (�1 + �2) · �2 = �2 · �2 = �2 · �1 + �2 · � ′2 ≥ �2 · �1,
where we use that �1 · �2 = 0. Hence, �1 = 0. �

We now describe the base points of linear systems |� | if � is big and nef with
Φ(�) = 1.
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Proposition 2.6.4 Let � be a big and nef divisor on an Enriques surface ( with
Φ(�) = 1 and �2 = 2=. Assume that |� | has no fixed components. Then, |� | has
two simple base points; one of them is infinitely near if ( is not a classical Enriques
surface.

Proof SinceΦ(�) = 1 and using Lemma 2.4.10.(3), we see that there exists a genus
one pencil |2� | with � ·� = 1. More precisely, � is a half-fiber and by Lemma 2.2.7,
we have l� � O� . It thus follows from Riemann–Roch that ℎ0 (�,O( (�) |� ) = 1.
Thus, there exists a unique point G ∈ � such that every member of |� | passes through
G, that is, G is a base point of |� |. If ( is classical, then |2� | has another half-fiber
by Corollary 2.2.9 and we find a second base point of |� |.

Next, let us show that the number of base points, counted with multiplicities is
even. If �2 = 2,then this is obvious since |� | is a pencil, hence the number is equal
to �2 = 2. So, we may assume that �2 ≥ 4. Let % be a general member of |2� |. The
short exact sequence

0 → O( (� − %) → O( (�) → O( (�) |% → 0,

together with the Vanishing Theorem 2.1.16 applied to O( (�−%) (here, we use that
�2 ≥ 4) shows that the restriction of |� | to % is a complete linear system of degree
2 on %, which defines a morphism % → P1 of degree 2. In particular, the rational
map defined by |� | on ( is generically finite of degree 2. Thus, the number of base
points of |� | is even, when counted with multiplicities.

Now, suppose = is odd, say = = 2: + 1. We use the notation from Proposition
2.6.1. Then, |� | contains |2:�1 | + |� − 2:�1 |, and since |2:�1 | is composite with
: genus one pencils |2�1 |, the base points of |� | are contained in the base points of
|� − 2:�1 |.

In Case (1) of Proposition 2.6.1, we have |� − 2:�1 | = |�1 + �2 |. This is an
irreducible pencil with (�1 + �2)2 = 2. Thus, the number of base points is equal to
(�1 + �2)2 = 2. We have

O�1 (�1 + �2) � O�1 (�1) ⊗ O�1 (�2).

If ( is classical, that is,  ( ≠ 0, then O�1 (�1) is the non-trivial normal sheaf of
�1 and hence, the base point on �1 is different from the intersection point �1 ∩ �2.
Since O� ′1 (�1 + �2) � O�1 (�1 ∩ �2), the second base point is the intersection point
� ′1 ∩ �2.

If ( is classical, then we find two base points lying on half-fibers of |2�1 |. If ( is
non-classical, that is,  ( = 0, then we find one base point �1 ∩ �2 and the infinitely
near point to it corresponding to the tangent direction different to that of �1 and �2.

In Case (2) of Proposition 2.6.1, we have |� − 2:�1 | = |2�1 + ' |. This linear
system has a fixed component, which is equal to ', see also Proposition 2.2.11.
More preicsely, all base points of |2�1 + ' | = |2�1 | + ' lie on '. Writing � =

(2: − 2)�1 + �1 + (3�1 + '), we see that the base points of |� | outside �1 are base
points of |3�1 + ' |. Since (3�1 + ') · ' = 1, we find one base point on ' outside
�1 ∩ '. In fact, this must be equal to � ′1 ∩ ', where �

′
1 ∼  ( + �1. The other base
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point is �1 ∩ '. If  ( ≠ 0, then |� | contains a divisor :� + � ′1 + ', where � ≠ 2�1
belongs to |2�1 |. This divisor is smooth at the point �1 ∩ ' and its direction at this
point is equal to '. Since (3�1 + ') · ' = 1, this shows that the base point �1 ∩ '
is simple. Similarly, we see that the base point � ′1 ∩ ' is simple. If  ( = 0, then
|3�1 + ' | is a double point with two branches tangent to �1 and '. Again, a general
member at this point is smooth. After blowing up this point, we find a simple base
point of the proper transform of the linear system. This shows that �1 ∩ ' is a point
of multiplicity 2.

In Case (3) of Proposition 2.6.1, we use the decomposition � = 2:�1 + (2�1 +
' + (). We may assume that  ( ≠ 0 (otherwise we are in the previous case). Then,
the linear system |2�1 + ' +  ( | is irreducible and (2�1 + ' +  ()2 = 2. We argue
as in first case above and find two simple base points on �1 and � ′1.

Next, suppose that = is even, say = = 2: .
In Case (1) of Proposition 2.6.1, we use the decomposition � = (2: − 2)�1 +

(2�1 + �2). The base points are base points of |2�1 + �2 |. Suppose  ( ≠ 0. Then the
restriction of |2�1 + �2 | to �1 (resp. � ′1) has one base point equal to �1 ∩ �2 (resp.
� ′1 ∩ �2). Since (2�1 + �2) · �2 = 2, there are no more base points on �2. Thus,
we conclude that there are only two base points. To compute their multiplicities, we
argue as in the previous case: we use that the divisor � + �2, where � is a general
member of |2�1 | is nonsingular at �1 ∩ �2 and � ′1 ∩ �2. Its tangent direction is �2.
Since (2�1 + �2) · �2 = 2, we conclude that the base points are simple. If  ( = 0,
then a similar argument shows that all members of |2�1 + �2 | are tangent to �2 at the
unique base point.

We leave the remaining cases to the reader. �

If ( is a classical Enriques surface and � is a big and nef divisor with Φ(�) = 1
and �2 = 2= ≥ 2, then the following pictures show the positions of the two base
points of |� |. The three columns correspond to the three cases of Proposition 2.6.1
and the two rows distinguish, whether = is even or odd - we refer to the proof of
Proposition 2.6.4 for details.
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Fig. 2.1 Base points of |� | for big and nef divisors � with Φ(�) = 1
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As another corollary of the proof of Proposition 2.6.4, we describe the rational
map associated to the linear system |� | of a big and nef divisor with Φ(�) = 1. If
|� | has a fixed component, then |� | = |2� | + ' for some genus one fibration |2� |
and a (−2)-curve ' with � · ' = 1 by Proposition 2.6.1. Thus, the map associated
to |� | is the genus one fibration |2� |. In the remaining cases, we have the following
result. We continue our study of these rational maps in Section 3.2.

Corollary 2.6.5 . Let � be a big and nef divisor on an Enriques surface ( with
Φ(�) = 1 and �2 = 2= ≥ 2. Assume that |� | has no fixed components. Let (̄ → (

be the blow-up in the two base points (possibly infinitely near) of |� |. Then, the
rational map q |� | defined by |� | extends to a morphism

q̄ |� | : (̄ → P=

with the following properties:

1. If = = 1, then k is a fibration, whose generic fiber is an integral curve of genus
two. If the ground field is of characteristic ? ∉ {2, 3, 5}, then the generic fiber of
q̄ |� | is smooth.

2. If = ≥ 2, then q̄ |� | is generically finite of degree 2 onto a surface of minimal
degree (= − 1) in P=, see Theorem 0.5.2.

Proof If = ≥ 2, then we saw already in the proof of Proposition 2.6.4 that the rational
map defined by |� | is generically finite of degree 2 onto its image. If �̄ denotes the
strict transform of � on (̄, then �̄2 = �2 − 2 = 2(= − 1). Thus, q̄ |� | ((̄) is a surface
of degree (= − 1) in P=, that is, a surface of minimal degree.

If = = 1, then either |� | = |�1 +�2 | or |� | = |2� + ( + ' | and a generic member
of |� | is an integral curve of arithmetic genus two by the adjunction formula, see
also the proof of Proposition 2.6.4 In these cases, q̄ |� | is a genus two fibration. It
follows from Theorem 4.1.3 that the generic fiber of q̄ |� | is smooth if the ground
field is of characteristic ? ∉ {2, 3, 5}. �

Next, we study big and nef divisors � with Φ(�) = 2 modulo numerical equiva-
lence. By Proposition 2.4.11, such divisors satisfy �2 ≥ 4. We distinguish between
self-intersection numbers �2 of the form 4: and 4: + 2.

Proposition 2.6.6 Let � be a big and nef divisor on an Enriques surface ( with
Φ(�) = 2 and �2 = 4: > 0. Then, � ≡ �, where � is one of the following curves:

1. :�1 + 2�2, where �1 · �2 = 1 and : ≥ 2,
2. (: + 2)�1 + 2'1, where �1 · '1 = 1 and : ≥ 2,
3. :�1 + �2, where �1 · �2 = 2,
4. (: + 1)�1 + '1 + '2, where �1 · '1 = �1 · '2 = 1 and '1 · '2 = 0,
5. :�1 + �2 + ', where ' = '1 + · · · + '= is a fundamental cycle of type �= with
' · '1 = ' · '= = −1 and �1 · ' = �1 · '1 = �2 · ' = �2 · '= = �1 · �2 = 1,

6. (: +1)�1+', where ' = 2'1+· · ·+2'=+'=+1+'=+2 with �1 ·'1 = '8 ·'8+1 = 1,
8 = 1, . . . , =, '= ·'=+1 = '= ·'=+2 = 1 and all other intersection indices of different
components are zeros.
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Here, the |2�8 | are genus one pencils and the '8 are (−2)-curves.
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Fig. 2.2 Big and nef divisors � with Φ(�) = 2 and �2 = 4:

Proof The proof is similar to the proof of Proposition 2.6.1. We only sketch the
proof and refer the interested reader to [133] for details. Let |2�1 | be a genus one
pencil with � · �1 = 2. Then, (� − :�1)2 = 0, hence � ∼ :�1 + �, where �2 = 0
and �1 · � = 2. We have either � ∼ 2�2 +', where ' is a nodal cycle with �2 · � = 0,
or else � ∼ �2 + ', where ' is a nodal cycle with �2 · ' = 1. The first possibility
leads to cases (1) and (2). The second possibility leads to the remaining cases. �

Proposition 2.6.7 Let � be a big and nef divisor on an Enriques surface ( with
Φ(�) = 2 and �2 = 4: + 2 > 0. Then, � ≡ �, where � is one of the following
curves:

1. :�1 + �2 + �3, where �8 · �9 = 1 for all 8 ≠ 9 ,
2. :�1 + 2�2 + '1, where �1 · �2 = �2 · '1 = 1 and �1 · '1 = 0,
3. (: + 1)�1 + �2 + '1, where �1 · �2 = �1 · '1 = 1 and �2 · '1 = 0,
4. (: + 2)�1 + 2'1 + '2, where '1 · '2 = �1 · '1 = 1 and �1 · '2 = 0.

Here, the |2�8 | are genus one pencils and the '8 are (−2)-curves.
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Fig. 2.3 Big and nef divisors � with Φ(�) = 2 and �2 = 4: + 2

As an important application, we obtain the following result on base-point freeness
of linear systems on Enriques surfaces.

Corollary 2.6.8 Let � be a big and nef divisor on an Enriques surface ( with
Φ(�) ≥ 2. Then, the linear system |� | has no base points.

Proof Since Φ(�) ≥ 2, we have �2 ≥ 4 by Proposition 2.4.11. By Corollary 2.4.6,
the assertion is true if �2 ≥ 6. Thus, we may assume �2 = 4. By the Proposition
2.6.6, � is numerically equivalent to a curve of one of the types (3) – (6) with : = 1.
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First, assume that � is of type (3), that is, � ≡ �1 + �2, where |2�8 | are genus
one pencils with �1 · �2 = 2. Replacing �2 by �2 +  ( if necessary, we may assume
that � ∼ �1 + �2. Taking cohomology in the exact sequence

0 → O( (�1) → O( (�) → O( (�) |�2 → 0

together with the fact that �1 ((,O( (�1)) = 0, it follows that the restriction homo-
morphism �0 ((,O( (�)) → �0 (�2,O( (�) |�2 ) is surjective. Since O( (�) |�2 is an
invertible sheaf of degree 2 on a curve of arithmetic genus one curve, the linear
system |� |�2 | has no base points. This shows that |� | has no base points on �2.
Similarly, it follws that |� | has no base points on �1. Hence, divisor �1 + �2 ∈ |� |
does not pass through base points, hence |� | has no base points.

The remaining cases can be treated similarly, and we leave to the reader. Assume
�2 ≤ 4. It follows from Corollary 1.5.4 that, for any vector { ∈ E10 with {2 ≤ 4,
Φ({) ≤ 2 and the equality takes place only if {2 = 4. Thus, we may assume that
�2 = 4. By Proposition 2.6.6, � is of types (3)-(6i) with : = 1. Assume � is of type
(3). Then, the exact sequence

0→ O( (�1) → O( (�) → O�2 (�) → 0,

together with vanishing of�1 ((,O( (�1)), shows that the restriction homomorphism
�0 ((,O( (�)) → �0 (�2,O�2 (�)) is surjective. Since O�2 (�) is a degree 2 invert-
ible sheaf on a curve of arithmetic genus one curve, the linear system |O�2 (�) |
has no base points. This shows that |� | has no base points on �2. Similarly, we
show that it has no base points on �1. Hence, the divisor �1 + �2 ∈ |� | does not
pass through base points, hence |� | has no base points. The remaining cases can be
treated similarly, and we leave it to the reader. �
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Chapter 3
Projective Models of Enriques Surfaces

In this chapter, we study (rational) maps from Enriques surfaces that arise from
big and nef divisor classes of small self-intersection and with small Φ. This leads to
explicit models and explicit covers of Enriques surfaces.We find birational models of
Enriques surfaces as surfaces of small degree in low-dimensional projective spaces.
We also find presentations of Enriques surfaces as covers of small degree of explicit
rational surfaces. On our way, we also study (rational) maps from K3-covers of
Enriques surfaces.

3.1 Preliminaries

In this section, we collect some general facts about maps of K3 surfaces and Enriques
surfaces defined by a complete linear system.

Let ( be an Enriques surface and let � be a nef divisor with �2 = 23 > 0. In this
section, we will study rational maps

q |� | : ( d |� |∨ � P3

defined by the complete linear system |� |. We assume that 3 ≥ 2 and then, by
Corollary 2.2.12, the linear system |� | has no fixed components and it contains an
irreducible curve. In particular, it is not composed of a pencil and hence, its image
(′ := q |� | (() is a surface, and we refer to Proposition 3.1.1 for the list of possible
cases. A refined analysis in the next sections leads to explicit birational models of
Enriques surfaces (Section 3.5) and to descriptions of Enriques surfaces as branched
double covers of rational surfaces. On our way, we also establish a similar analysis
for K3-covers of Enriques surfaces, see Theorem 3.1.7 and Section 3.4.

In Section 2.3, we introduced the set R(() of (−2)-curves on ( and in Section
2.5, we introduced

R� := {' ∈ R(() | ' · � = 0} .

299
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Since �2 > 0, by Theorem 2.1.6, the (−2)-curves of R� form a root system of finite
type (not necessarily irreducible) inside the lattice Num(() and thus, they span a
negative definite lattice that is orthogonal to the class of �. We will identify R�
with the union of its members and call it the nodal cycle of |� |. If no base points of
the linear system |� | lie on R� then every (−2)-curve of R� is contracted to a point
under q |� | . More precisely, if we factor q |� | through the normalization of q |� | ((),
then the image of R� on this normalization consists of rational double points, see
also Theorem 2.4.16.

Let us also recall that we introduced in Section 2.4 the function Φ : Num(() →
Z≥0, which satisfies the estimates

1 ≤ Φ(�) ≤
√
�2

by Lemma 2.4.10 and Proposition 2.4.11. Moreover, the linear system |� | has base-
points if and only if Φ(�) = 1 by Theorem 2.4.14 and Corollary 2.6.8. Moreover,
if Φ(�) = 1, then we gave a complete description of the base points of |� | and the
geometry of q |� | in Section 2.6. IfΦ(�) ≥ 2, then q |� | is generically finite onto its
image and the generic degree satisfies the estimate

1 ≤ deg q |� | ≤ 2 ·
(
1 + 2

�2 − 2

)
≤ 4

by Corollary 2.4.15. Putting all these observations together, we obtain the following
list of possibilities. In it, the classification of surfaces of small degree from Section
0.5 will be very useful in describing the image (′ := q |� | (() if deg q |� | ≥ 2, that
is, if ( is not birational to (′.

Proposition 3.1.1 Let ( be an Enriques surface, let � be a nef divisor with �2 =
23 > 0, let

q |� | : ( d P3

be the rational map associated to |� | and let (′ := q |� | ((). Then, one of the
following cases occurs.

1. Φ(�) = 1 and �2 = 2. Then,

a. either |� | has a fixed component and q |� | rationally defines a genus one
fibration,

b. or |� | has no fixed components and q |� | rationally defines a genus two
fibration.

These are the only cases, where (′ is not a surface.
2. Φ(�) = 1 and �2 ≥ 4. Then, |� | has two base points, maybe infinitely near, and

deg q |� | = 2 and deg (′ = codim (′ + 1.

In particular, the possible images (′ are classified in Theorem 0.5.2.
3. Φ(�) = 2, �2 ≥ 4, and |� | has no base points. Then, we have the following

subcases:
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a. deg q |� | = 1, that is, ( → (′ is a birational morphism.
b. deg q |� | = 2 and deg (′ = codim (′ + 2. In particular, the possible images (′

are classified in Theorem 0.5.5.
c. �2 = 4, deg q |� | = 4, and (′ = P2.
d. �2 = 6, deg q |� | = 2, and (′ ⊆ P3 is a cubic surface.

4. Φ(�) ≥ 3, �2 ≥ 10, and |� | has no base points. Then, deg q |� | = 1, that is,
( → (′ is a birational morphism, and (′ has at worst rational double point
singularities.

Remark 3.1.2 We will show in Proposition 3.3.1 that �2 = 8 in case (3b).

Proof If |� | has a fixed component, then �2 = 2 and |� | = |" | + ' for a genus
one fibration |" | with " · ' = 2, see Proposition 2.2.11. In this case, Φ(�) = 1
and |� | rationally defines a genus one fibration. If |� | has no fixed components and
�2 = 2, then |� | has two base points and rationally defines a genus two fibration by
Corollary 2.6.5. This establishes Case (1).

If Φ(�) = 1 and 23 = �2 ≥ 4, then |� | has two base points, counted with
multiplicity, see Theorem 2.4.14 and Corollary 2.6.8. The analysis leading to Case
(2) has been carried out in Corollary 2.6.5.

Third, if Φ(�) ≥ 2, then |� | has no basepoints and together with �2 > 0, we
conclude that (′ is a surface. Moreover, we have �2 ≥ Φ(�)2 ≥ 4 by Proposition
2.4.11. The generic degree deg q |� | can be estimated using Corollary 2.4.15. From
this, the subcases (a) and (b) of Case (3) follow immediately. If �2 = 4, then the
image (′ = q |� | (-) is P2, which implies deg q |� | = 4, and we obtain subcase (c).
If �2 = 6, then we have 1 ≤ deg q |� | ≤ 3. Since Φ(�) = 2, there exists an elliptic
fibration |� | with � · � = 2 and so, the restriction of q |� | to a general fiber of |� | is
of degree 2, which implies deg q |� | = 2. This gives subcase (d).

Finally, ifΦ(�) ≥ 3, then 23 = �2 ≥ 9 by Proposition 2.4.11 and (′ has at worst
rational double point singularities by Theorem 2.4.16. This establishes Case (4). �

In the next sections, we will analyze Cases (2) and (3) in greater detail - they will
lead to some classical models and presentations of Enriques surfaces. To do so, we
collect a couple of results and facts that we will use in this chapter.

Proposition 3.1.3 Let ( be a classical Enriques surface, that is,  ( ≠ 0. Let � be
an effective divisor on ( with �1 ((,O( (�)) = 0. Then,

�0 (�,O� ( ()) = 0.

Proof Consider the long exact sequence in cohomology associated to

0 → O( ( ( − �) → O( ( () → O� ( () → 0.

Then ℎ0 ((,O( ( ()) = 0 and ℎ1 ((,O( ( ( − �)) = ℎ1 ((,O( (�)) = 0, which
follows from Serre duality, imply ℎ0 (�,O� ( ()) = 0. �

Applying the adjunction formula, we obtain the following useful result.
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Corollary 3.1.4 Let ( be an Enriques surface and let � be a nef and effective divisor.
Assume that �2 > 0 or that � is the half-fiber of a genus one pencil. Then,

O� (�) � l� (Y),

where Y is an element of order at most 2 in Pic(�). If ( is classical (resp. non-
classical), that is,  ( ≠ 0 (resp.  ( = 0), then Y is non-trivial (resp. trivial).

Proof If we set Y := O� ( (), then the adjunction formula yields O� (�) � l� (Y),
where l� denotes the dualizing sheaf of the Gorenstein curve �. If  ( = 0, then Y
is trivial, whereas if  ( ≠ 0, then Y is a 2-torsion element of Pic(�) since  ( is a
2-torsion element of Pic((). Moreover, if  ( ≠ 0, then ℎ0 (�, Y) = 0 by Proposition
3.1.3 and thus, Y is a non-trivial 2-torsion element. �

If � is a smooth and proper curve with canonical sheaf l� and Y ∈ Pic(�) is a
non-trivial 2-torsion element, then the map associated to the complete linear system
|l� | (resp. |l� (Y) |) is called the canonical map (resp. a Prym canonical map).
Thus, if ( is a classical (resp. non-classical) Enriques surface and � is as in the
previous corollary, then the restriction of |� | to � gives rise to a Prym canonical
map (resp. to the canonical map) of �. Moreover, if ( is classical, then the restriction
of |� + ( | to � gives rise to the canonical map of � and if � ′ ∈ | ( +� |, then the
restriction of |� | to � ′ gives rise to the canonical map of � ′.

Finally, one should compare Proposition 3.1.1, as well as some of the results of
Chapter 2, with the analogous results for K3 surfaces, which are due to Saint-Donat
[630], see also [612, Sections 3.8 and 3.15].

Theorem 3.1.5 Let - be a K3 surface and let � be an effective divisor on - .

1. The linear system |� | contains a divisor of the form " +∑
=8'8 , where " is nef

and where the '8 are (−2)-curves.
2. Assume that � is nef.

a. If �2 = 0, then � = :�, where |� | is a genus one pencil.
b. If �2 > 0, then �1 (-,O- (�)) = 0 and thus, dim |� | = 1

2�
2 + 1.

c. If �2 > 0 and |� | has a fixed component, then � ∼ :� + ', where |� | is a
genus one pencil and ' is a (−2)-curve with � · ' = 1.

3. Assume that � is big and nef and that |� | has no fixed components. Then, |� |
has no base points and for the associated morphism q |� | |� | : - → P

1
2�

2+1 one
of the following cases occurs:

a. q |� | is of degree 1, that is, birational, onto a normal surface - ′ ⊆ P 1
2�

2+1 of
degree �2 that has at worst rational double points as singularities.

b. q |� | is a morphism of degree 2 onto a surface - ′ ⊆ P 1
2�

2+1 of degree 1
2�

2. In
particular, - ′ is a surface of minimal degree, as classified in Theorem 0.5.2.
Moreover, q |� | can be factored as compositionk◦q |�′ | , where q |�′ | : - → -̄ ′

is a birational morphism onto a normal surface with at worst rational double
points as singularities and k : -̄ ′→ - ′ is a finite morphism of degree 2.
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Case (b) happens if and only if there exists a genus one pencil |% | on - such that
� · % = 2.

Concerning the equations defining a subvariety - ⊆ P# , we recall that Mumford
[540] showed that if the embedding of - is given by a “sufficiently ample” invertible
sheaf, then the homogeneous ideal of - is generated by quadrics. For example, if �
is a smooth and proper curve of genus 6 and if L is an invertible sheaf of degree
≥ 26 + 1 on �, then L is very ample and the image of the map defined by |L| is cut
out by quadrics, see for example, [540, Section 2].

When studying linear systems on surfaces, it is a general technique to restrict
these linear systems to general divisors and to study the induced linear system on
these restrictions. Thus, from Corollary 3.1.4 it already becomes clear that canonical
maps and Prym canonical maps of curves play an important role in the study of
linear systems on K3 surfaces and Enriques surfaces. For canonical maps of curves,
we have classical results that go back to Babbage, Enriques, Noether, and Petri, see,
for example, [12, Chapter III.3]. For example, if 6 ≥ 3 and if � is not hyperelliptic,
thenl� is very ample, the canonical map |l� | embeds� as a curve of degree 26−2
into P6−1, and the homogeneous ideal is generated by quadrics and cubics. Cubics
are only needed if the curve is not trigonal, that is, if there does not exist a morphism
� → P1 of degree 3.

For K3 surfaces, we have the following theorem of Saint-Donat [630] concerning
the equations defining their projective models.

Theorem 3.1.6 Let - be a K3 surface and let � be a big and nef divisor with �2 ≥ 8
such that |� | has no base points. Let q |� | : - → - ′ ⊆ P 1

2�
2+1 be the associated

morphism.

1. If deg q |� | = 1, then the homogeneous ideal of - ′ is generated by quadrics and
cubics. Moreover, cubics are needed if and only if

a. |� | = |2� + ' |, where � is an irreducible curve with �2 = 2 and ' is a
(−2)-curve with ' · � = 1, or

b. there exists a genus one pencil |% | on - such that � · % = 3.

2. If deg q |� | = 2, then the image - ′ is a surface of minimal degree, whose homo-
geneous ideal is generated by quadrics.

Let c : - → ( be the K3-cover of an Enriques surface (. In view of Saint-Donat’s
results, we obtain the following analog of Proposition 3.1.1 for the K3-cover. What
makes this result a little bit tricky (and not a straightforward corollary of Theorem
3.1.6), is that the K3-cover in characteristic 2 may not be a K3 surface, in fact, it
may not even be normal. Over the complex numbers, the following result is due to
Cossec [133] and its extension to positive characteristic (including characteristic 2)
is due to Liedtke [460].

Theorem 3.1.7 Let ( be an Enriques surface, let c : - → ( be its K3-cover, and let
� be a nef divisor with �2 = 23 > 0. Then, the a priori rational map
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q̃ |� | : - d P1+23

associated to the invertible sheaf c∗O( (�) is a morphism, its image - ′ := q̃ |� | (-)
is a surface, and it is generically finite of degree deg q̃ |� | ≤ 2.

1. If Φ(�) = 1, then deg q̃ |� | = 2 and - ′ is a surface of minimal degree 23. In
particular, the possible images - ′ are classified in Theorem 0.5.2).

2. If Φ(�) ≥ 2, then �2 ≥ 4 and deg q̃ |� | = 1, that is, - → - ′ is a birational
morphism, and - ′ is a surface of degree 43.

Proof We work over an algebraically closed field k of characteristic ? ≥ 0.
We start with the second assertion and follow [460, Theorem 2.2]: sinceΦ(�) ≥

2, the linear system |� | has no base points on ( by Theorem 2.4.14 and thus,
c∗O( (�) is a globally generated invertible sheaf on - . (Since - may not even be
normal, we will use the language of invertible sheaves, global generation, etc. rather
than divisors and linear systems.) By Proposition 2.4.11, we have �2 ≥ Φ(�)2 ≥ 4.
Next, we set L := O( (�) and consider the short exact sequence

0 → L → c∗c
∗L → L ⊗ l( → 0. (3.1.1)

We have ℎ0 ((,L) = ℎ0 ((,L ⊗l() = 1+ 1
2L

2 and ℎ1 ((,L) = 0 by Theorem 2.1.16
and Corollary 2.1.17. Thus, we find ℎ0 (-, c∗L) = 2 + L2. Thus, c∗L gives rise to
a morphism q̃ |� | from - to projective space of dimension 1 + L2 = 1 + 23. Also,
since the image of the map associated to |L| is a surface by Corollary 2.4.15, the
same is true for q̃ |� | . Moreover, - ′ = q̃ |� | (-) is an integral surface, that is, reduced
and irreducible, since - is.

If ? ≠ 2 or if ( is a -2-surface, then - is a smooth K3 surface and we compute
(c∗L)2 = 2L2. Since c∗L is globally generated, we find 43 = 2L2 = deg q̃ |� | ·
deg(- ′). By Proposition 0.5.1, a non-degenerate and integral surface in P# has
degree at least (# − 1), and thus, we conclude deg q̃ |� | ≤ 2.

If ? = 2 and ( is classical or supersingular, then c is a torsor under -2 or "2.
In particular, c is purely inseparable of degree 2, and the extension k(() ⊂ k(-) of
function fields is obtained by adjoining a square root. If we denote by k(()1/2 the
field that is obtained by adjoining all square roots of k((), then the resulting field
extension k(() ⊂ k(()1/2 is purely inseparable. Moreover, we have an inclusion
of fields k(() ⊂ k(-) ⊂ k(()1/2. If we denote by ( (1/2) the normalization of (
inside k(()1/2, then ( (1/2) is abstractly isomorphic to (, and the field extension
k(() ⊂ k(()1/2 induces a purely inseparable and finite morphism F : ( (1/2) → (

of degree 4, the k-linear Frobenius morphism. Similarly, k(-) ⊂ k(()1/2 induces
a purely inseparable and finite morphism s : ( (1/2) → - of degree 2 such that
F = c ◦s. Thus, we obtain the following diagram:
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( (1/2)

F

��

s

!!
-

c

��

q̃|� |

// P1+23

(

(3.1.2)

The composition i◦s corresponds to a linear subsystem of |2� | (here, we identify (
with ( (1/2) ). Both, q̃ |� | ands are morphisms, and we have 2 deg q̃ |� | = deg(q̃ |� | ◦
s), as well as (L⊗2)2 = 4L2. As before, we find deg q̃ |� | ≤ 2, this time by arguing
on ( (1/2) .

In order to show deg q̃ |� | = 1 (now again, for arbitrary c and ?), we assume
deg q̃ |� | ≠ 1 and seek a contradiction. Then, deg q̃ |� | = 2 and the image - ′ is an
integral surface of degree 23 in P1+23 , that is, a surface of minimal degree. These
surfaces have been explicitly classified in Theorem 0.5.2.

Now, the morphism c is a torsor under a finite flat group scheme �, which is of
length 2 over k. Since the quotient of - by � is isomorphic to ( and not isomorphic
to q̃ |� | (-), it follows that the �-action on - induces a non-trivial �-action on
P(�0 (-, c∗L)) and q̃ |� | (-). As already seen above, we can write global sections
of c∗L as

0 → �0 ((,L) → �0 (-, c∗L)
pr
−→ �0 ((,L ⊗ l() → 0 (3.1.3)

and consider it as a sequence of �-modules. It is not difficult to see that �0 ((,L) is
the id-eigenspace for the�-action on�0 (-, c∗L) and that� acts via the determinant
of its regular representation on �0 ((,L ⊗ l().

We set P+ := P(�0 ((,L)). In the case � where is linearly reductive, that is, if
? ≠ 2 or if ? = 2 and � � -2, then the �-action has a second eigenspace, providing
us with a splitting of (3.1.3), and which we can identify with �0 ((,L ⊗ l(). We
denote by P− its projectivization and set P− := ∅ in the case � where is not linearly
reductive. Clearly, if a point in P(�0 (-, c∗L)) is fixed under the �-action (in the
scheme-theoretic sense) then it lies in P+ or in P−.

For { ∈ �0 ((,L⊗l(), the hyperplane P{ := P(pr−1 ({)) is�-stable and contains
P+. For generic {, the intersectionΔ := P{∩i(-) is an irreducible and non-degenerate
curve inside P{ � PL

2 . Since Δ is of degree (L2−1) in a L2-dimensional projective
space, it is a rational normal curve and in particular, smooth and rational. Since Δ
is isomorphic to P1 and equipped with a non-trivial �-action, its fixedpoint scheme
has length 2.

In particular, q̃ |� | (-) contains points that are fixed under� and so, its intersection
with P+ or P− is non-empty. On the other hand,

P+ ∩ q̃ |� | (-) =
⋂

B∈c∗� 0 ((,L)∨
{B = 0} ∩ q̃ |� | (-),
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and similarly for P− ∩ q̃ |� | (-) and B ∈ c∗�0 ((,L ⊗ l()∨. This implies that L
or L ⊗ l( is not globally generated, a contradiction. Thus, deg q̃ |� | = 1, which
establishes Assertion (2).

We now establish the first assertion and follow [460, Theorem 2.5]: As in the
proof of the second assertion, we find ℎ0 ( -̃, c∗O( (�)) = 2 + 23. Let us first
assume �2 ≥ 4. In this case, |� | has no fixed component, but two base points, and
- ′ = q̃ |� | (-) is a surface since already the image of the rational map associated to
|� | on ( is a surface, see Proposition 3.1.1.

Seeking a contradiction, we assume that q̃ |� | is birational. As in the proof of
the second assertion, we find that a generic Cartier divisor �̃ ∈ |c∗O- (�) | is an
integral Gorenstein curve. Since Φ(�) = 1, there exists a genus one half-pencil � ′
on ( such that � · � ′ = 1. ThenM := c∗O( (� ′) |�̃ satisfies degM = 2 and taking
cohomology in

0 → c∗O( (� ′ − �) → c∗O( (� ′) → M → 0

we find ℎ0 (�̃,M) ≥ 2. Since ?0 (�̃) ≥ 5, Riemann–Roch implies ℎ1 (�̃,M) ≠ 0.
But then, Clifford’s inequality ℎ0 (�̃,M) ≤ 2 is in fact an equality, which implies
that �̃ is hyperelliptic. In the proof of the second assertion, we have seen that q̃ |� |
restricted to �̃ induces |l

�̃
|, which contradicts the fact that q̃ |� | is birational. Thus,

deg q̃ |� | ≥ 2 and since - ′ is a non-degenerate integral surface in P1+23 , we conclude

2�2 ≤ deg q̃ |� | · �2 ≤ deg q̃ |� | · deg(- ′).

On the other hand, c∗O- (�) is globally generated outside a finite set of points
and thus, we find

deg q̃ |� | · deg(- ′) ≤ 2�2

with equality if and only if c∗O- (�) is globally generated: this is clear if c is étale,
because then -̃ is smooth. If c is inseparable, we consider q̃ |� | ◦s in the diagram
(3.1.2) and obtain the same result by arguing on ( (1/2) .

Putting these inequalities together, we find that c∗O( (�) is globally generated,
deg q̃ |� | = 2 and deg(- ′) = �2. In particular, - ′ is a surface of minimal degree.

It remains to deal with the case Φ(�) = 1 and �2 = 2. Then, |� | may have fixed
components, see Proposition 3.1.1 (and Proposition 2.2.11). Assume first that |� |
has no fixed part. Since Φ(�) = 1, we may choose a genus one half-pencil � ′ with
� ·� ′ = 1. Moreover, q̃ |� | is a possibly rational map to P3. By contradiction, assume
that - ′ = q̃ |� | (-) is a curve. A generic � ∈ |c∗O( (� ′) |, where � ′ is a half-fiber
with � · � ′ = 1, is an integral curve with ?0 = 1. We find deg c∗O( (�) |� = 2,
which implies ℎ0 (�, c∗O( (�) |�) = 2 by Riemann–Roch and Clifford’s inequality.
This implies that q̃ |� | (�) is a linearly embedded P1 ⊂ P3. But then, - ′ is equal to
this P1, contradicting the fact that - ′ linearly spans the ambient P3. Thus, - ′ is a
surface and we conclude as before.

It remains to consider the case where |� | has a fixed part. We write |� | = �+ |" |,
where � (resp. ") is the fixed (resp. movable) part. Let � be a half-fiber with
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� · � = � · � + " · � = 1. If " · � = 0, then |" | is a genus one pencil and
�2 = �2+2� ·" = 2 together with 0 ≤ � · � = �2+ � ·" imply that � ·" = 2, i.e.,
� � P1. Since the K3-cover splits over � and" , we obtain �̃ ∼ �1+�2+2"̃ , where
�1, �2 are (−2)-curves (equal if c is inseparable), and |"̃ | is a genus one pencil.
Since dim |2"̃ | = 2 and dim |�̃ | = 3, the linear system |�̃ | has no fixed components
and we conclude as before. On the other hand, if " · � = 1, then � · � = 0 and
hence, � is a component of a member of |2� |. Thus, " · � ≤ 2" · � = 2. A before,
we conclude that |" | is a pencil and � is a (−2)-curve with " · � = 2. We finish as
before by showing that |�̃ | has no fixed component. �

We end this section by a result on the equations defining Enriques surfaces
in projective space. Assume that � is a nef divisor with �2 = 23 > 0 on an
Enriques surface ( such that the complete linear system |� | defines an embedding
q |� | : ( ↩→ P3 . By Proposition 3.1.1, we have Φ(�) ≥ 2 and 3 ≥ 3. We will see
in Section 3.5 below that if Φ(�) = 2 and 3 ≤ 4, then the map q |� | cannot be an
embedding. Since Φ(�) ≥ 3 implies 3 ≥ 5, this shows that in order for q |� | to
define an embedding, we must have 3 ≥ 5. The question of projective normality and
the homogeneous ideal of an Enriques surface in projective space was addressed in
[250] and [398]. The following is the main result of these articles.

Theorem 3.1.8 Let ( be an Enriques surface in characteristic zero, let � be a nef
divisor on ( with �2 = 23 > 0, and assume that the linear system |� | defines an
embedding ( ↩→ P3 . Then, we have 3 ≥ 5.

1. If 3 ≥ 6 or if 3 = 5 and ( does not lie on a quadric, then ( is projectively normal
in P3 and its homogeneous ideal is generated by quadrics and cubics.

2. We have Φ(�) ≥ 4 if and only if the homogeneous ideal of ( is generated by
quadrics only.

Wewill see in Section 8.9 of Volume II that, if 3 = 5 and ( ⊂ P3 lies on a quadric,
then ( has a smooth rational curve, that is, ( is nodal. Conversely, if ( has an ample
linear system with �2 = 10 and ( contains a smooth rational curve, then |� +  ( |
or |� | embeds ( into a smooth quadric in P5. Note that a general Enriques surface is
unnodal, that is, it does not contain smooth rational curves.

3.2 Hyperelliptic Maps

In this section, we study linear systems |� | on an Enriques surface ( such that � is
big and nef and such that |� | has base points. This is Case (2) of Proposition 3.1.1,
that is, � is a nef divisor with �2 = 2= ≥ 4 and Φ(�) = 1. We remind the reader
that we classified such linear systems in Section 2.6 in terms of genus one fibrations
and nodal curves. In particular, |� | has two base points (counted with multiplicity)
and the rational map q |� | is generically of degree deg q |� | = 2. Thus, the image
(′ := q |� | (() of

q |� | : ( d P=
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is a nondegenerate surface of degree (=− 1) in P=, that is, (′ is a surface of minimal
degree as classified in Theorem 0.5.2. In this case, we say that |� | or q |� | is
hyperelliptic. In this section, we will classify the images of hyperelliptic maps, as
well as their branch and ramification loci. The name is justified by Proposition 3.2.8
below.

By Theorem 0.5.2, the surface (′ is either P2, or a Veronese surface of degree 4
in P5, or a rational normal scroll (0;= = (0,1;= ⊆ P=, where 0 + 1 = = − 1. It follows
from Section 0.5 that we have the following isomorphisms and special cases:

(0;2 � P2, which arises in this context as
the contraction of the unique (−1)-curve on F1,

(0;3 � P(1, 1, 2) the quadric cone in P3, which is isomorphic to
the contraction of the unique (−2)-curve on F2,

(:;2:+1 � F0, embedded via |:f + e| and : ≥ 1,
(:−1;2: � F1, embedded via |:f + e| and : ≥ 2,
(:−1;2:+1 � F2, embedded via | (: + 1)f + e| and : ≥ 2.

After these preparations, we determine the images of hyperelliptic maps in terms
of their classification via genus one pencils, as established in Proposition 2.6.1. It
turns out that only the just mentioned examples occur as images of hyperelliptic
maps.

Proposition 3.2.1 Let |� | be a hyperelliptic linear system on an Enriques surface
( with �2 = 2= ≥ 4. Let q |� | : ( d P= be the associated rational map and
(′ = q |� | (() be its image. Then, one of the following cases occurs:

1. If = = 2: is even, then (′ = (:−1;= ⊆ P=.
2. If = = 2: + 1 is odd and

a. |� | = |=�1 + �2 | or
b. |� | = | (= + 1)�1 + ' +  ( | with  ( ≠ 0,

then (′ = (:;= ⊆ P=.
3. If = = 2: + 1 ≥ 3 is odd and |� | = | (= + 1)�1 + ' |, then (′ = (:−1;= ⊆ P=.

Here, we use the classification from Proposition 2.6.1, that is, |2�1 | and |2�2 | are
genus one pencils on ( with �1 · �2 = 1 and ' is a (−2)-curve with �1 · ' = 1.

Proof Let (̄ → ( be the blow-up of ( at the two base points of |� | and let |�̄ | be the
proper transform of |� | on (̄, which is without base points. Thus, |�̄ | gives rise to
a morphism q̄ |� | : (̄ → P=, which resolves the indeterminacy of q |� | and which is
generically finite onto its image (′ = q |� | ((), which is a surface of minimal degree
(= − 1). We already established this in Proposition 2.6.4 and Corollary 2.6.5.

Next, let &1 + &2 be the exceptional divisor of the blow-up (̄ → (, where &2 is
a (−1)-curve. Since �̄ · &2 = 1, the map q̄ |� | maps &2 to a line in P=. Since the
Veronese surface of degree 4 in P5 does not contain lines, it cannot be the image
of q̄ |� | . Thus, by Theorem 0.5.2 the image (′ of q̄ |� | is a rational normal scroll
(0;= ⊆ P=.
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First, suppose we are in Case (1) of Proposition 2.6.1, that is, |� | = |=�1 + �2 |
for two genus pencils |2�8 |, 8 = 1, 2 with �1 · �2 = 1 and = ≥ 2. Then, the ruling of
the scroll (0;= is the image of the pencil |2�1 |.

Next, let �̄2 be the proper transform of �2 in (̄. The restriction of the proper
transform of |� | to �̄2 is a linear system of degree 2: if = = 2: + 1 and of degree
2: − 2 if = = 2: . Since �2 · 2�1 = 2 and the since map q |� | defines a degree 2
map of a general member of the pencil |2�1 |, we see that the image of �2 is a curve
of degree (: − 1) if = = 2: (resp. of degree : if = = 2: + 1). (Here, a curve of
degree 0 means a point.) It spans a linear subspace of P= of codimension equal to
dim |� − �2 | = dim |=�1 |. Moreover, we know that |=�1 | is composed of : pencils if
= = 2: , or composed of : pencils and one fixed component �1 if = = 2: + 1. From
this, we conclude that we have dim |� − �2 | = : in both cases. Thus, the image of
�2 spans a subspace of dimension equal to its degree (if �2 is reducible, then all its
components except one belong to R� , and are hence blown down to points). It is
a Veronese curve of degree (: − 1) or : . A rational normal scroll in P= containing
such a curve is generated by this curve and another Veronese curve of degree (: −1)
(resp. :). Thus, it must be the scroll (:−1;= if = = 2: (resp. (:;= if = = 2: + 1).

Second, suppose we are in Case (2) of Proposition 2.6.1, that is, |� | = | (=+1)�1+
' | for a genus one pencil |2�1 | and a (−2)-curve ' with �1 · ' = 1. We argue as in
the previous case, replacing �2 by '. If = = 2: , then ' contains one base point and
its proper transform intersects the proper transform of � with multiplicity (2: − 2).
The image q |� | (') is a Veronese curve of degree (: −1), hence (′ = (:−1;2: ⊆ P2: .
If = = 2: + 1, then ' contains two base points, and its proper transform intersects
the proper transform of � with multiplicity (2: − 2). The image q |� | (') is a again
a Veronese curve of degree (: − 1), hence (′ = (:−1;2:+1 ⊆ P2:+1.

Finally, suppose we are in Case (3) of Proposition 2.6.1, that is, |� | = | (=+1)�1+
' +  ( | for a genus one pencil |2�1 |, a (−2)-curve ' with �1 · ' = 1, and  ( ≠ 0.
Then, � ∼ (= + 1)�1 + ' +  ( ∼ =�1 + � ′1 + ' and ' contains one base point on �1
if = = 2: (resp. no base points if = = 2: + 1). The image of ' is a Veronese curve
of degree (: − 1) in the former case and degree : in the latter case. This shows that
(′ = (:−1;= ⊆ P= if = = 2: (resp. (′ = (:;= ⊆ P= if = = 2: + 1). �

Next, we will describe the branch divisor of the double cover q̄ |� | : (̄ → (′,
where |� | is a hyperelliptic linear system and where (̄ → ( is the blow-up in the
base points of |� |. If a hyperelliptic linear system is of the form |=�1 + �2 |, that is,
as in Case (1) of Proposition 2.6.1, then it is called non-special, otherwise, the linear
system is called special. For example, if ( is unnodal (which is the generic case),
then every hyperelliptic linear system on ( is non-special. To describe the branch
locus of q̄ |� | , we will use the notation from Proposition 3.2.1. We start with the
non-special case.

Theorem 3.2.2 Let ( be an Enriques surface over an algebraically closed field
of characteristic ? ≠ 2 and let |� | = |=�1 + �2 | be a non-special hyperelliptic
linear system. Let (̄ → ( be the blow-up at the two base points of |� | and let
q̄ |� | : (̄ → (′ be the associated generically finite morphism of degree 2. Then, the
Stein factorization of q̄ |� | is equal to
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(̄
5
−→ (̄′

6
−→ q̄ |� | (() = (′ ⊆ P=,

where

1. 5 is the birational morphism that blows down the nodal cycle R� and the proper
transforms of the curves �1 and � ′1. If = = 2, then 5 also blows down the proper
transform of �2.

2. 6 is a finite morphism of degree 2, whose branch divisor � ⊂ (′ is given by one
of the following three cases

a. (′ = (0;2 � P
2 and |� | is from Case (1) of Proposition 3.2.1:

� is a curve of degree 8 equal to the union of two lines ℓ1, ℓ2 and a curve of
degree 6 that has an ordinary double point at ?1 := ℓ1 ∩ ℓ2, as well as four
additional double points ?2, ?3 ∈ ℓ1 and ?4, ?5 ∈ ℓ2, where ?3 � ?2, ?5 � ?4
are infinitely near points.

b. = = 2: ≥ 4, (′ = (:−1;= � F1 and |� | is from Case (1) of Proposition 3.2.1:
F1 can be identified with the blow-up of P2 at ?1 and then, � is the proper
transform of the branch curve from Case (1).

c. = = 2: + 1 ≥ 3 is odd and (′ = (:;= � F0 and |� | is from Case (2) of
Proposition 3.2.1:
F0 is isomorphic to P1 × P1 and � is the union of two fibers ℓ1, ℓ2 of one of
the projection maps F0 → P1 and a curve of bidegree (4, 4) that has double
points ?1, ?

′
1 ∈ ℓ1 and ?2, ?

′
2 ∈ ℓ2, where ?′1 � ?1, ?′2 � ?2 are infinitely near

points.

The remaining singularities (if any) of � are simple curve singularities.

Proof We only sketch the main points of the proof and leave the details to the reader.
The assertion about 5 is clear since the proper transform of |� | does not intersect
the proper transforms of �1, � ′1 and R� . (As usual, � ′1 denotes the half-fiber that is
the unique effective divisor in |�1 +  ( |, that is, �1 and � ′1 are the half-fibers of the
genus one pencil |2�1 |.) Moreover, if = = 2, then the proper transform of |� | also
does not intersect the proper transform of �2.

Since ( is a minimal surface of non-negative Kodaira dimension, the rational deck
transformation of q̄ |� | extends to an automorphism f of order 2 of (. The locus
of fixed points of f consists of a curve , (nonsingular because ? ≠ 2) and some
isolated fixed points.

Since� ·�1 = 1, the restriction of q̄ |� | to a generalmember of |2�1 | is amorphism
of degree 2 onto P1, see also the proof of Proposition 2.6.4. Thus, the restriction of
f to a general member � of |2�1 | is an involution of an elliptic curve with quotient
isomorphic to P1. Since this map has 4 fixed points, we conclude , · � = 4. Next,
let � be a general member of the pencil |�1 + �2 |. It is spanned by the curves �1 + �2
and � ′1 + �

′
2.

If = = 2: + 1 ≥ 3, then (′ = (:;= is isomorphic to F0 � P1 × P1 embedded into
P= via the complete linear system |:f + e|. In this case, the set of base points of
|� | is equal to the set of base points of |� |. The proper transform �̄ of � on (̄ has
self-intersection zero and its image � ′ on (′ is a curve of the same self-intersection.
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Therefore, � ′ must belong to the ruling |e|. The other ruling |f| is the image of the
pencil |2�1 |. Since � is of genus two, we find that the branch curve � intersects � ′
at 4 points. The other two branch points come from the intersections with the images
_1, _2 of &1, &2, where the &8 are the exceptional divisor of (̄ → ( as in the proof
of Proposition 3.2.1. This implies that � is a curve of bidegree (4, 4). It contains
two singular points ?1 ∈ ℓ1, ?2 ∈ ℓ2, which are the images of �1 and � ′1. Since the
base points of |� | are isolated fixed points of the deck transformation, the curve �
intersects ℓ1 and ℓ2 with multiplicity 4 at its singular points ?1, ?2. The member
�1 + �2 (resp. � ′1 + �

′
2) of |� | has the image equal to a section B (resp. B′) from |e|

passing through the singular point ?1 (resp. ?2) of �. Since , · �2 = , · � ′2 = 2,
we conclude that � intersects B (resp. B′) with multiplicity 2 at ?1 (resp. at ?2).
This shows that ?1 and ?2 are double points of � and it shows that also � has two
infinitely near double points ?′1 � ?1 and ?′2 � ?2.

If = = 2: ≥ 4, then (′ = (:−1;= is isomorphic to F1 embedded into P= via the
complete linear system |:f + e|. In this case, only one base point of |� | is a base
point of |�1 + �2 | and it is equal to � ′1 ∩ �2. The proper transform |� | of |�1 + �2 |
on (̄ has one base point, which is equal to the pre-image of the point �1 ∩ � ′2. The
image of |� | is a pencil, which is contained in the linear system |f + e| on (′ � F1.
The branch curve consists of the union of two members ℓ1, ℓ2 from |f| and a curve
� from |6f + 4e|. It has two double points ?2 ∈ ℓ1, ?4 ∈ ℓ2 and two infinitely near
points ?3 � ?2, ?5 � ?4 with tangent directions ℓ1, ℓ2.

If = = 2, then the branch curve on (′ � P2 is the image of the branch curve from
the previous curve under the blow-up morphism F1 → P2. �

•

•

ℓ1

ℓ2

(′ � P2

p2

p3

p1

•
•

e

ℓ1 ℓ2

(′ � F1

p1

p2

•

•

e

ℓ1 ℓ2

(′ � F0

p1

p2

Fig. 3.1 Branch curve of a non-special hyperelliptic map

Remark 3.2.3 We note that the branch curve � may have additional infinitely near
points at the points ?1, ?2, ?3. This happens if one of the half-fibers of |2�1 | or |2�2 |
is reducible.

The next theorem describes the branch locus of q̄ |� | in case |� | is a special
hyperelliptic linear system. Again, we will use the notation from Proposition 2.6.1
and Proposition 3.2.1.

Theorem 3.2.4 Let ( be an Enriques surface over an algebraically closed field
of characteristic ? ≠ 2 and let |� | be a special hyperelliptic linear system with
�2 = 2= ≥ 4. Let (̄ → ( be the blow-up in the two base points of |� | and let
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q̄ |� | : (̄ → (′ be the associated generically finite morphism of degree 2. Then, the
Stein factorization of q̄ |� | is equal to

(̄
5
−→ (̄′

6
−→ q̄ |� | (() = (′ ⊆ P=,

where:

1. 5 is the birational morphism that blows down the nodal cycle R� and the proper
transforms of the curves �1 and � ′1. If (

′ � P2 or (′ � P(1, 1, 2), then 5 also
blows down the proper transform of '.

2. 6 is a finite morphism of degree 2, whose branch divisor � ⊂ (′ is given by one
of the following five cases:

a. (′ = (0;2 � P
2 and |� | is from Case (1) of Proposition 3.2.1:

� is a curve of degree 8 equal to the union of two lines ℓ1, ℓ2 and a curve �′
of degree 6. The curve �′ has double points in ?1 = ℓ1 ∩ ℓ2 and another point
?4 ∈ ℓ2. It also has two infinitely near points ?3 � ?2 � ?1, such that the line
ℓ1 passes through them and an infinitely near point ?5 � ?4, such that the line
ℓ2 passes through ?1, ?4, and ?5.

b. = = 2: ≥ 4, (′ = (:−1;= � F1 and |� | is from Case (1) of Proposition 3.2.1:
� is the union of two members ℓ1 and ℓ2 of |e + f| and a curve �′ ∈ |4e + 6f|.
The curve �′ has double points ?1 ∈ ℓ1 and ?2 ∈ ℓ2 and one of them lies on
the exceptional section e. It also has two infinitely near points ?′1 � ?1 and
?′2 � ?2 with tangent directions ℓ1 and ℓ2. The image of ' is equal to e.

c. = = 2: + 1 ≥ 3, (′ = (:;= � F0 and |� | is from Case (2) of Proposition 3.2.1
F0 is isomorphic to P1 × P1 and � consists of the union of two members ℓ1
and ℓ2 of |f| and a curve �′ of bidegree (4, 4). The curve �′ has two double
points ?1 ∈ ℓ1 and ?2 ∈ ℓ2. It also has two infinitely near points ?′1 � ?1 and
?′2 � ?2 with tangent directions ℓ1 and ℓ2. The image of ' is a section from
|e|, which passes through ?1 and ?2.

d. = = 2: + 1 ≥ 5, (′ = (:−1;= � F2 and |� | is from Case (3) of Proposition
3.2.1:
� is the union of two members ℓ1 and ℓ2 of |f| and a curve �′ ∈ |8f + 4e|. The
curve �′ has two double points ?1 ∈ ℓ1 and ?2 ∈ ℓ2, neither of which lies on
the exceptional section e. It also has two infinitely near points ?′1 � ?1 and
?′2 � ?2 with tangent directions ℓ1 and ℓ2. The image of ' is equal to e.

e. = = 3, (′ = (0;3 � P(1, 1, 2) and |� | is from Case (3) of Proposition 3.2.1:
� is the image the branch curve in the previous case under the contraction
F2 → P(1, 1, 2) of e.

The remaining singularities (if any) of � are simple curve singularities.

Proof We only indicate and sketch the main points of the proof and leave the details
to the reader. The assertion about 5 is clear since the proper transform of |� | does
not intersect the proper transforms of �1, � ′1 and R� . (As usual, � ′1 denotes the
half-fiber that is the unique effective divisor in |�1 +  ( |, that is, �1 and � ′1 are
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the half-fibers of the genus one pencil |2�1 |.) Moreover, if = = 2, then the proper
transform of |� | also does not intersect the proper transform of �2.

Since ( is a minimal surface of non-negative Kodaira dimension, the rational deck
transformation of q̄ |� | extends to an automorphism f of order 2 of (. The locus
of fixed points of f consists of a curve , (nonsingular because ? ≠ 2) and some
isolated fixed points.

Since� ·�1 = 1, the restriction of q̄ |� | to a generalmember of |2�1 | is amorphism
of degree 2 onto P1, see also the proof of Proposition 2.6.4. Thus, the restriction of
f to a general member � of |2�1 | is an involution of an elliptic curve with quotient
isomorphic to P1. Since this map has 4 fixed points, we conclude , · � = 4. Next,
let � be a general member of the pencil |�1 + �2 |. It is spanned by the curves �1 + �2
and � ′1 + �

′
2.

If = = 2: + 1 ≥ 3, then (′ = (:;= is isomorphic to F0 � P1 × P1 embedded into
P= via the complete linear system |:f + e|. In this case, the set of base points of
|� | is equal to the set of base points of |� |. The proper transform �̄ of � on (̄ has
self-intersection zero and its image � ′ on (′ is a curve of the same self-intersection.
Therefore, � ′ must belong to the ruling |e|. The other ruling |f| is the image of the
pencil |2�1 |. Since � is of genus 2, we find that the branch curve � intersects � ′ at
4 points. The other two branch points come from the intersections with the images
_1, _2 of &1, &2, where the &8 are the exceptional divisor of (̄ → ( as in the proof
of Proposition 3.2.1. This implies that � is a curve of bidegree (4, 4). It contains
two singular points ?1 ∈ ℓ1, ?2 ∈ ℓ2, which are the images of �1 and � ′1. Since the
base points of |� | are isolated fixed points of the deck transformation, the curve �
intersects ℓ1 and ℓ2 with multiplicity 4 at its singular points ?1, ?2. The member
�1 + �2 (resp. � ′1 + �

′
2) of |� | has the image equal to a section B (resp. B′) from |e|

passing through the singular point ?1 (resp. ?2) of �. Since , · �2 = , · � ′2 = 2,
we conclude that � intersects B (resp. B′) with multiplicity 2 at ?1 (resp. at ?2).
This shows that ?1 and ?2 are double points of � and it shows that also � has two
infinitely near double points ?′1 � ?1 and ?′2 � ?2.

If = = 2: ≥ 4, then (′ = (:−1;= is isomorphic to F1 embedded into P= via the
complete linear system |:f + e|. In this case, only one base point of |� | is a base
point of |�1 + �2 | and it is equal to � ′1 ∩ �2. The proper transform |� | of |�1 + �2 |
on (̄ has one base point, which is equal to the pre-image of the point �1 ∩ � ′2. The
image of |� | is a pencil, which is contained in the linear system |f + e| on (′ � F1.
The branch curve consists of the union of two members ℓ1, ℓ2 from |f| and a curve
� from |6f + 4e|. It has two double points ?2 ∈ ℓ1, ?4 ∈ ℓ2 and two infinitely near
points ?3 � ?2, ?5 � ?4 with tangent directions ℓ1, ℓ2.

If = = 2, then the branch curve on (′ � P2 is the image of the branch curve from
the previous curve under the blow-up morphism F1 → P2. �

We will deal with branch divisors of hyperelliptic maps in characteristic ? = 2 in
the next section.

Remark 3.2.5 These results admit converses, that is, the double cover of (′ branched
over a curve � = �′ + ℓ1 + ℓ2 as described above is birationally equivalent to an
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Fig. 3.2 Branch curve of a special hyperelliptic map

Enriques surface. This is an exercise, which can be done using the formula for the
canonical class of a nonsingular model of a double cover as in Section 0.3.

Let us sketch this claim for Case (2a) of Theorem 3.2.2, that is, where the
Enriques surface ( is birational to a double cover of (′ = P2 associated to a non-
special hyperelliptic linear system |� | with �2 = 4. We leave the remaining cases to
the reader. For this construction, we will use the notion of a geometric basis of the
blow-up of points in P2 as introduced in (0.5.5) in Section 0.3.

Example 3.2.6 Choose five points ?1, ..., ?5 in P2 such that ?1, ?2, ?4 are not
collinear and such that ?3 � ?2 and ?5 � ?4. Next, choose a reduced plane curve of
degree 6 in the linear system

�′ ∈ |OP2 (6) − 2(?1 + · · · + ?5) |,

and let

ℓ1 ∈ |OP2 (1) − ?1 − ?2 − ?3 | and ℓ2 ∈ |OP2 (1) − ?1 − ?4 − ?5 |,

that is, ℓ1 (resp. ℓ2) is the unique line passing through ?1, ?2, ?3 (resp. ?1, ?4, ?5).
Let � be the union of �′ and the two lines ℓ1 and ℓ2.

Claim: The minimal resolution (̄ of the double cover of P2 branched along � is
isomorphic to the blow-up of the two base points of a hyperelliptic linear system
|2�1 + �2 | on an Enriques surface (.

Proof (of the claim) Let c : . → P2 be the blow-up in five points ?1, ..., ?5. Let
40 be the divisor class of c∗ (OP2 (1)) and let 48 = [E8] be the divisor classes of the
exceptional curve of c over ?8 . Then, we have

c−1 (�) ∼ 840 − 441 − 342 − 343 − 344 − 345.

Next, 42 − 43 (resp. 44 − 45) is the class of the unique component '2 (resp. '3) of
E2 (resp. E3) with self-intersection −2. On . , we consider the curve

�
′ := � + '2 + '3 ∼ 840 − 441 − 242 − 443 − 244 − 445,

where �̄ denotes the proper transform of � on . . Then, the canonical divisor class
of . is linearly equivalent to
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 . ∼ −340 + 41 + · · · + 45.

Let g : - → . be the double cover of . branched over �. By formula (0.2.10), we
have

 - ∼ g∗ (40 − 41 − 43 − 45).

Amember of the linear system |40− 41− 43− 45 | is a line passing through ?1, ?3, ?5.
This implies that the line also passes through ?1, ?2, ?3 and by assumption on the
position of these points, we conclude |40 − 41 − 43 − 45 | = ∅. Using the projection
formula, we compute

ℎ0 (-,O- ( - )) = ℎ0 (., g∗ (O- ( - ))) = ℎ0 (O. ( . )) + ℎ0
(
O.

(
 . −

1
2
�̄

))
= 0.

On the other hand, we have

2 - ∼ g∗ (240 − 241 − 243 − 245)
= g∗ ((40 − 41 − 42 − 44) + (40 − 41 − 43 − 45) + (42 − 43) + (44 − 45)).

Using the projection formula again, we find that the only effective divisor in |2 - |
is the curve g∗ (ℓ̄1 + ℓ̄2 + '2 + '3). Since the curves ℓ̄8 and '8 are components of the
branch locus of g, we conclude that

2 - ∼ 2(&1 +&2 +& ′2 +&
′
3),

where g∗ (ℓ̄8) = 2&8 and g∗ ('8) = 2& ′
8
. It is not difficult to see that the &8 and

& ′
8
are (−1)-curves. After blowing down these four curves, we obtain a surface

( with 2 ( = 0 and  ( ≠ 0 and thus, ( is an Enriques surface. The composition
c◦g : - → P2 corresponds to the complete linear system associated to the invertible
sheaf

g∗c∗OP2 (1) ∼ g∗ ((40−41−42−43)+41+(42−43)+243) = 2&1 + �1 + 2& ′2 + 2�3,

where �1 = g
∗ (41) and �3 = g

∗ (43). Let �1 (resp. �2) be the image of �3 (resp.
�1) on (. Then, the images of the (−1)-curves &1 and & ′2 on ( are the two base
points of the hyperelliptic linear system |2�1 + �2 |. The surface - ′ obtained from
- by blowing down the curves &2 and & ′1 is the blow-up of ( at the base points.
The rational map ( d P2 defined by linear system |2�1 + �2 | induces the morphism
c ◦ g : - ′→ P2. �

We end this section by describing the general member of a hyperelliptic linear
system on an Enriques surface. Extending the usual definition, we will say that an
integral curve � that is proper over an algebraically closed field is hyperelliptic if
there exists an invertible sheaf L of degree 2 on� such that ℎ0 (�,L) = 2. It follows
that the linear system |L| has no base points and that the curve � is Gorenstein, see
[308]. We mention that if � is smooth and of genus ≥ 2, then � is hyperelliptic in
the classical sense and the linear system |L| is the unique 61

2 on �, see, for example,
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[294, Proposition IV.5.3]. A smooth rational or an elliptic curve is hyperelliptic with
respect to our generalization.

The linear system |L| defines a finite morphism c : � → P1 of degree 2. It is a
separable map if � is smooth. The formula for the canonical sheaf of a double cover
shows thatl� � c∗OP1 (=−2) = L⊗(=−2) , where c∗O� = OP1 ⊕OP1 (−=). Applying
the projection formula, we obtain ?0 (�) = ℎ0 (l� ) = ℎ0 (OP1 (= − 2)) = = − 1. This
gives the familiar formula

l� � L⊗(?0 (�)−1) . (3.2.1)

Assume that ?0 (�) ≥ 2. Sincedim (?0 (�)−1 (�0 (�,L)) = ?0 (�) = dim�0 (�, l� ),
we conclude that the canonical map 5 : � → P?0 (�)−1 is a degree 2 map onto
P1, which is embedded into P?0 (�)−1 as a Veronese curve. Since the canonical
map is independent of a choice of L defining a hyperelliptic curve, it follows that
L = 5 ∗ (OP1 (1)) is uniquely defined. We keep the classical notation 61

2 for the lin-
ear system |L|. We refer the interested reader to [112], [114], [308], and [692] for
some extensions of some standard results about basepoints of linear systems and
pluricanonical maps from smooth to integral Gorenstein curves with a view towards
embeddings of curves and surfaces.

Remark 3.2.7 The hyperelliptic linear system |� | with �2 = 4 was originally used
by Enriques in order to define a double planemodel of an Enriques surface (, that is,
a degree 2 cover of P2 branched over the octic curve � that is birationally equivalent
to (. He also distinguished special and non-special models corresponding to special
or non-special hyperelliptic linear systems.

If |� | is a hyperelliptic linear system on an Enriques surface (, then Φ(�) = 1,
see Case (2) of Proposition 3.1.1 or the beginning of Section 3.2.

Proposition 3.2.8 Let ( be an Enriques surface over an algebraically closed field of
characteristic ? ≥ 0.

1. If � is a big and nef divisor on ( with Φ(�) = 1, then a general member of |� |
is a hyperelliptic curve. If moreover

a. �2 = 2 and ? ∉ {2, 3, 5} or
b. �2 ≥ 4 and ? ≠ 2,

then a general member of |� | is a smooth curve.
2. Conversely, let � ⊂ ( be a smooth and hyperelliptic curve with �2 ≥ 4. If ( is

classical or �2 ≥ 6, then |� | is a hyperelliptic linear system.

Proof First, let � be a big and nef divisor with �2 = 2= > 2 and Φ(�) = 1. Let
(̄ → ( be the blow-up in the base points of |� | and q̄ |� | : (̄ → P= be the map
that resolves the indeterminacy of the rational map q |� | associated to |� |. Being of
codimension one in a smooth variety, every divisor � ∈ |� | is a Gorenstein curve.
If = ≥ 2, then the pre-image of a general hyperplane section of P= is an integral
curve in |� |. Similarly, if = = 1, then again a general member of |� | is integral by
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Corollary 2.6.5. SinceΦ(�) = 1, there exists a genus one pencil |2� | with � ·� = 1.
Thus, a general member � ∈ |� | is an integral Gorenstein curve. The restriction of
O( (2�) to � is an invertible sheaf of degree 2. Moreover, taking cohomology in the
short exact sequence

0 → O( (2� − �) → O( (2�) → O( (2�) |� → 0

we find ℎ0 (�,O( (2�) |� ) = 2 and thus,� is a hyperelliptic curve (in the generalized
sense above).

Finally, if �2 = 2, then q̄ |� | is a fibration. Moreover, if ? ∉ {2, 3, 5}, then a
general fiber �̄ of q̄ |� | is smooth by Corollary 2.6.5. If �2 = 2= ≥ 4, then q̄ |� | is a
morphism that is generically finite of degree 2 onto its image (′ ⊆ P=. If ? ≠ 2, then
this map is separable and thus, the inverse image �̄ of a general hyperplane section
under q̄ |� | is smooth by Bertini’s theorem, see [630, Lemma 5.8.2]. Since the linear
system |� | has two simple base points by Proposition 2.6.4, it follows in both cases
that the two (−1)-curves of (̄ intersect the smooth curve �̄ transversally. But then,
the image of �̄ on ( is a smooth curve, which shows that a general member of |� |
is smooth.

To prove the converse, we follow the argument from [714, Lemma 1.2]: let� ⊂ (
be a smooth curve with �2 ≥ 4 that is hyperelliptic.

First, assume that ( is classical, that is,  ( ≠ 0. The adjunction formula and the
short exact sequence

0 → O( ( () → O( (� +  () → O( (� +  () |� → 0 (3.2.2)

show that the restriction of the linear system |� +  ( | to � is the canonical linear
system |l� |. Since� is hyperelliptic, it follows from (3.2.1) that it defines a degree 2
map ontoP1 embedded as aVeronese curve inP?0 (�)−1. This shows that the (possibly
rational) map q�+ ( associated |� +  ( | cannot be birational onto its image. From
Theorem 2.4.16, we seeΦ(�) = Φ(�+ () ≤ 2. Seeking a contradiction, we assume
that the linear system |� | is not hyperelliptic, that is, Φ(�) = Φ(� +  () = 2. By
Theorem 2.4.14, the linear system |� +  ( | has no base points.

Thus, for every point G ∈ (, the linear system |� − G | of divisors of |� | passing
through G is of dimension dim |� | − 1. Let |L| be the unique 61

2 on �.
Assume that |� | is not hyperelliptic, that is,Φ(�) = 2 and |� | has no base points.

Let G be a general point on ( and |�−G | be the linear system of dimension dim |� | −1
of divisors in |� | containing the point G. Since |l� | is composed of the pencil 61

2,
for any � ∈ |� − G |, there exists a unique point G� ∈ � such that G + G� ∈ 61

2. This
implies that any divisor from |�+ ( | passing through G contains G� , too. Thus, G� is
a base point of the linear system |�+ (−G |. SinceΦ(�+ () = Φ(�) = 2, the linear
system |� +  ( | has no base points. Hence, the codimension one linear subsystem
|� + ( −G | has only finitely many base points. This implies that G� does not depend
on � and it must be a base point of |� − G |. Thus, ℎ0 (O� (�)) = ℎ0 (O( (�)) − 1 = =
and ℎ0 (O� (� − G − G�)) = ℎ0 (O� (� − G)) = = − 1. This gives

ℎ0 (O� (�−G−G�)) = ℎ1 (O� ( � −� +G+G�)) = ℎ1 (O� ( ( +G+G�)) = =−1.
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By Riemann–Roch on �, we find ℎ0 (O� ( ( + G + G�)) = 2 + = − 1 + 1 − ?0 (�) =
2 + = − (= + 1) = 1. Let 0 + 1 ∈ |O� ( ( + G + G�) |. Since

ℎ0 (O� (�−0−1)) = ℎ0 (O� (�+ (−G−G�)) = ℎ0 (O� (� ′−G))−1 = = = ℎ0 (O� (�)),

we obtain that 0 and 1 are base points of |O� (�) | and hence, of |O( (�) |. This
contradiction shows that the linear system |� | is hyperelliptic.

Finally, assume that�2 ≥ 6 and that ( is not necessarily classical. Using the exact
sequence (3.2.2) and the fact that ℎ1 (O() = 1, we conclude that the restriction of
|� | to � is a codimension 1 linear subsystem of the canonical linear system |l� |. If
it has a base point, then |� | is hyperelliptic. Since the canonical linear system maps
� two-to-one onto a Veronese curve ' of degree = := ?0 (�) − 1 in P=, we obtain
that the restriction of q� := q |� | to � is equal to the composition of this map with
the projection from a point outside of '. Since �2 ≥ 6, we find ?0 (�) ≥ 4 and
thus, = ≥ 3. Since = > 2, the projection is a degree 1 map onto a rational curve of
degree = in P=−1. This implies that q� is a degree 2 map onto a surface of degree
=, whose hyperplane sections are rational curves of degree =. By Proposition 0.5.5,
the image (′ of q� is a projection of a rational normal scroll. A line from the ruling
of the scroll intersects a general hyperplane section at one point. This implies that
the pre-image of this line is a divisor % such that % · � = 2. By the Hodge Index
Theorem, �2 · %2 − (% · �)2 = 2=%2 − 4 < 0. This implies %2 = 0 and we find
Φ(�) = 1. In particular, |� | is hyperelliptic. �

3.3 Bielliptic Maps

In this section, we study linear systems |� | on an Enriques surface ( that give rise to
double covers, that is, Cases (3b) and (3d) of Proposition 3.1.1. Thus, we study nef
divisors � with �2 = 23 ≥ 4, Φ(�) = 2, the linear system |� | has no base points,
and the map q |� | associated to |� | is generically finite of degree 2 onto its image
q |� | ((). Thus, the image (′ of

q |� | : ( → P3

is a non-degenerate surface of degree 3 in P3 , that is, one of the surfaces classified
in Theorem 0.5.5. In this case, we say that the linear system |� | is bielliptic. We note
that such linear systems were called superelliptic in [138]. We remind the reader that
we classified such linear systems in Section 2.6 in terms of genus one fibrations and
nodal curves. Proposition 3.3.1 explains the terminology.

In the course of our analysis, we will see that 3 ∈ {3, 4} and that D := q |� | (() ⊂
P3 is an anti-canonical del Pezzo surface of degree 3. We will analyze the branch
locus of q |� | and wewill see thatD is a symmetroid surface in the sense of Definition
0.6.4. If 3 = 4, then D is a symmetroid quartic surface as classified in Section 0.6.
Composing this map with some birational map to a minimal ruled surface, we obtain
various birational models of ( that exhibit it as a double cover of a rational surface.
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Among them, there is theHorikawa model, which is frequently used in the literature,
see Remark 3.3.21.

We start with the classification of the possible images of a biellipticmorphism. Let
us recall that we defined an anti-canonical del Pezzo surface to be the anti-canonical
model of a weak del Pezzo surface.

Proposition 3.3.1 Let |� | be a bielliptic linear system on an Enriques surface (.
Then, �2 = 6 or �2 = 8, and the image q |� | (() is an anti-canonical Pezzo surface
of degree 1

2�
2. The restriction of q |� | to a general member of |� | is a double cover

of an elliptic curve.

1. If �2 = 8, then |� | is one of the following linear systems from Proposition 2.6.6:

a. |2�1 + 2�2 | and �1 · �2 = 1 (Case (1)),
b. |4�1 + 2' | and �1 · ' = 1 (Case (2)).

2. If �2 = 6, then |� | is one of the following linear systems from Proposition 2.6.7:

a. |�1 + �2 + �3 | and |�1 + �2 − �3 | ≠ ∅ (Case (1)),
b. |�1 + 2�2 + '1 | and |�1 − '1 | ≠ ∅ (Case (2)),
c. |3�1 + 2'1 + '2 | and |�1 − '2 | ≠ ∅ (Case (3)).

Proof We know that q |� | has no base points and that . := q |� | (() is a surface
of degree 3 in P3 , see Theorem 0.5.5 for a classification of these surfaces. The
argument from the last paragraph of the proof of Proposition 3.2.8 shows that . is
not the projection of a normal rational scroll. It also cannot be a cone over a normal
elliptic curve, since there are no maps from ( to a curve of positive genus. Thus, .
is an anti-canonical del Pezzo surface of degree 3. In particular, we have 3 ≤ 9.

The case 3 = 9 cannot occur: in that case, . would be a Veronese surface of
degree 9, hence � = 2�, where |�| defines a degree 2 map onto P2. But then, we
compute �2 = 2 and �2 = 8, a contradiction.

Since Φ(�) = 2, there exists a genus one pencil |% | on ( with % · � = 4.
Its image on . is a pencil of conics. Since a conic is contained in a plane, we
have ℎ0 (� − %) = ℎ0 (O( (�)) − 3 = 3 − 2. Thus, |� − % | is a linear system
of dimension 3 − 3 without fixed components. Since �2 = 23 ≤ 16, we obtain
(� − %)2 = 23 − 8 ≤ 8. If � − % is big and nef or (� − %)2 = 0 and ℎ1 (� − %) = 0,
then dim |� − % | = 3 − 4 < 3 − 3 and we obtain a contradiction. This shows that if
(� − %)2 > 0, then � − % is not nef.

Next, we use the description of linear systems |� | with Φ(�) = 2. First, assume
23 = �2 = 4: and that we are in Case (1) of Proposition 2.6.6. Then, |% | is equal to
the pencil |2�1 | or |2�2 | and : = 2. In the first case |� − % | = | (: − 2)�1 + 2�2 |. If
: > 2, then the divisor � − % is big and nef, hence dim |� − % | = 3 − 4 < 3 − 3.
This shows that : = 2, 3 = 4, and |� | = |2�1 + 2�2 |. In both cases, we find
|� | = |2�1 + 2�2 |. Let � be a general member of the pencil |�1 + �2 |. It is a curve
of arithmetic genus 2, and

l⊗2
�

� O� (2�1 + �2 + 2 () � O� (2�1 + 2�2).
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The short exact sequence

0 → O( (�1 + �2) → O( (2�1 + 2�2) → O� (2�1 + 2�2) → 0

implies that the restriction of |� | to � is the complete bicanonical linear system.
Since � is hyperelliptic, the restriction of q |� | is of degree 2, hence q |� | is of degree
2, and |� | is bielliptic.

In Case (2) of Proposition 2.6.6, we must have |% | = |2�1 |. If : ≥ 3, then
� − % = :�1 + 2' is big and nef and hence, |� | is not bielliptic. If : = 2, then
% = 2�1 and � − % = (: − 2)�1 + �2. On the other hand, if : > 2, then � − % is big
and nef, which shows : = 2. Restricting the map q |� | to a general member of the
pencil |2�1 + '1 |, we obtain, as above, that |� | = |4�1 + 2'1 | is bielliptic. We leave
it to the reader to check that in the remaining cases of Proposition 2.6.6, the linear
system |� | is not bielliptic.

Assume we are in Case (1) of Proposition 2.6.7. If : ≥ 2, then |% | = |2�8 | and
|� − % | = | (: − 2)�1 + �2 + �3 |. Moreover, if : ≥ 2, then the divisor � − % is big
and nef or ℎ1 (� − %) = 0. Thus, |� | is not bielliptic. If : = 1, then we may assume
that % = �1 and (� − %)2 = (�2 + �3 − �1)2 = −2. We have dim |� − % | = =− 3 = 0
if and only if �2 + �3 − �1 is effective. Similar to the previous case we can show that
the restriction of q |� | to a general member of the pencil |�1 + �2 | is a degree 2 map.
Thus, |� | is bielliptic.

In Case (2), we obtain with similar arguments that |% | = |2�1 | or |2�2 | and : = 1.
In the first case |� −% | = |2�2 + '1 −�1 | must be of dimension =−3 = 0 and hence,
|2�2 + '1 − �1 | ≠ ∅. Since the unique effective divisor from this linear system must
be connected, we must have �1 − '1 > 0. If |% | = |2�2 |, then |� − % | = |�1 + '1 |.
In this case, the image of |% | is a pencil of conics on a cubic surface, so '1 must be
again a component of �1.

In Case (3), we must have : = 1, and this case is identical to the previous one.
In Case (4), we get |% | = |2�1 | and : = 1 with similar arguments as above. Then,

|�−% | = |�1+2'1+'2 | is not empty. As above, the unique effective divisor linearly
equivalent to � − % must be connected, hence �1 − '2 > 0. �

Remark 3.3.2 One can show (see [138, Corollary 4.7.1]) that a bielliptic linear system
|� | of degree 6 and in Case (1a) is equal to a linear system

|� | = |/1 + /2 + /3 |,

where the /8 are (−2)-curves with /8 ·/ 9 = 2 for 8 ≠ 9 andwhere the |2�8 | = |/8+/ 9 |
are genus one pencils.

We will call a bielliptic linear system of the form |2�1 + 2�2 | if �2 = 8 or of the
form |�1+�2+�3 | if �2 = 6 a non-special bielliptic linear system. These correspond
to Case (1) in the previous proposition. Bielliptic linear systems of the remaining
types will be called special.

Moreover, we have just established that the image q |� | (() ⊂ P3 is the anti-
canonical model of a weak del Pezzo surface with 3 = 1

2�
2 ∈ {3, 4}. We remind

the reader that we studied such surfaces of minimal degree in Section 0.5. Now,
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the morphism ( → q |� | (() is generically finite of degree 2. Thus, after passing to
its Stein factorization, we obtain a finite degree 2 cover of q |� | ((). By Proposition
0.2.27, the restriction of this cover to the smooth locus of q |� | (() is a torsor under
a finite flat group scheme of length 2. Thus, q |� | (() is a symmetroid surface in
the sense of Definition 0.6.4 and we refer to Section 0.6 and Section 0.7 for their
classification.

We start with the case 3 = 1
2�

2 = 4, in which case q |� | (() ⊂ P4 is a symmetroid
quartic surface. We will be frequently using such bielliptic systems.

Definition 3.3.3 A pair of genus one pencils |2�1 | and |2�2 | with �1 ·�2 = 1 (resp. a
genus one pencil |2� | and a special bisection ') is called a*-pair (resp. degenerate
*-pair).

The reason for this terminology is that a*-pair of genus onefibrations corresponds
to a canonical pair of isotropic vectors 51 = [�1] and 52 = [�2] (resp. 52 = [� + '])
that in its turn corresponds to a primitive embedding U ↩→ E10 of the hyperbolic
plane U into the Enriques lattice E10.

We will use the notations and classification results from Section 0.6.

Theorem 3.3.4 Let q |� | : ( → D ⊂ P4 be a bielliptic map defined by a bielliptic
linear system |� | with �2 = 8.

1. Assume that ( is classical, that is,  ( ≠ 0.

a. If |� | is non-special, then D = D1.
b. If |� | is special, then D = D′1.

2. Assume that ( is a -2-surface.

a. If |� | is non-special, then D = D2.
b. If |� | is special, then D = D′2.

3. Assume that ( is an "2-surface.

a. If |� | is non-special, then D = D3.
b. If |� | is special, then D = D′3.

Proof We start with Case (1). First, assume that |� | is non-special, that is, |� | =
|2�1 + 2�2 |. The restriction of q |� | to the half-fibers �1, �

′
1, �2, �

′
2 is a degree 2

map. Since ℎ0 (O( (� − �8)) = ℎ0 (O( (� − � ′8 )) = 3, the image of each of these
four half-fibers is a line on D. Conversely, if an irreducible curve � is mapped onto
a line, then � · � = 2(� · �1 + � · �2) = 2 and dim |� − � | = 2. The first condition
gives � · �1 or � · �2 = 0. Thus, we may assume that � · �1 = 0 and � · �2 = 1. The
first condition implies that � is a component of �1 or � ′1 or that � is a component
of a member of |2�1 | that is not equal to 2�1 or 2� ′1. Since � · �2 = 1, we see that
in the first case � is mapped to the line q |� | (�1) or q |� | (� ′1). In the second case,
we have dim |� − � | = dim |2�2 | = 1. Thus, all lines are accounted for: we have
exactly four lines on D and we note that they span a hyperplane. Next, we count
the number of conic pencils on D. We have obvious pencils coming from the four



322 3 Projective Models of Enriques Surfaces

pencils in |� |, which are given by |2�1 |, |2�2 |, |�1 + �2 |, and |�1 + �2 +  ( |. Let
us show that there are no more: the pre-image of a conic is a movable nef divisor
� with �2 ≥ 0 and � · (2�1 + 2�2) = 4. By the Hodge Index Theorem, we have
� ∼ 2�8 or � · �1 = � · �2 = 1. In the latter case, we find Φ(�) = 1 and applying
Proposition 2.6.1, we obtain that � ≡ �1 + �2. This proves the claim. It remains to
apply Proposition 0.6.16 to conclude that D is isomorphic to D1.

Next, assume that |� | is special, that is, |� | = |4� +2' |. Then, we have two lines
equal to the images of � and � ′ ∈ |� +  ( | and two pencils of conics equal to the
images of the pencils |2� | and |2� + ' |. As before, applying Proposition 2.6.1 and
the Hodge Index Theorem, we see that there are no more lines on D and no more
pencils of conics. We also see that Proposition 0.6.17 shows that D = D′1.

We continue with Case (2). First, assume that |� | = |2�1 + 2�2 | is non-special.
The images of �1 and �2 are lines ℓ1 and ℓ2 on D. As in Case (1), one can show that
there are no more lines on D. We also have three pencils of conics |2�1 |, |2�2 |, and
|�1 + �2 |. As in the previous cases, one can show that there are no more. Applying
Proposition 0.6.19, we obtain that D = D2 or D = D3.

Suppose that D = D3. By Proposition 0.6.12, there exists a principal "2-cover
& ′ → Dsm, where & ′ is the complement of one point on a nonsingular quadric.
Its pull-back on ( \ {B0} is a principal "2-cover. By Theorem 0.1.4, it extends to
a principal "2-cover of (. We claim that this cover is non-trivial. Then D is an
"2-surface and we are done. This claim is true if q |� | is a separable map because in
this case the base change ( ×D - is reduced. Thus, we may assume that q |� | defines
an inseparable cover. Let F : ( → ( (2) be the relative Frobenius morphism. The
surface D is sandwiched between ( and ( (2) , thus there exists a degree 2 inseparable
cover k : D→ ( (2) and we identify ( (2) with (. Let c : - → ( be the K3-cover of
(, which is a non-trivial and principal (Z/2Z)-cover. Since k is an homeomorphism
in the étale topology over a complement of finitely many points (over which k is not
finite), the pre-image of the K3-cover is a non-trivial principal cover of Dsm. This
implies that D � D2.

If |� | = |4� + 2' | is a special bielliptic linear system, then we use similar
arguments as above to show that D contains only one line and one pencil of conics
and hence, by Proposition 0.6.21, it must be either D′2 or D′3. Using the previous
argument, we conclude that D = D′2.

In Case (3), the arguments from Case (2) show that the assumptions D = D2 or D′2
imply that ( admits a nontrivial (Z/2Z)-cover, which contradicts to the assumption
that ( is a "2-surface. �

We continue with the case 3 = 1
2�

2 = 3 and then, q |� | (() ⊂ P3 is a symmetroid
cubic surface. We will use the notations and classification results from Section 0.7.

Theorem 3.3.5 Let q |� | : ( → C ⊂ P3 be a bielliptic map defined by a bielliptic
linear system |� | with �2 = 6.

1. Assume that  ( ≠ 0

a. If |� | is non-special, then C = C1.
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b. If |� | is special, then C = C′1 (resp. C = C′′1 ) if |� | is of type (b) (resp. of type
(c)).

2. Assume that ( is a -2-surface.

a. If |� | is non-special, then C = C2.
b. If |� | is special, then C = C′2 (resp. C = C′′2 ) if |� | is of type (b) (resp. of type

(c)).

3. Assume that ( is an "2-surface.

a. If |� | is non-special, then C = C3.
b. If |� | is special, then C = C′3 (resp. C = C′′3 ) if |� | is of type (b) (resp. of type

(c)).

Proof Applying Proposition 3.3.1, we can write the divisor class � in the form

� = �1 + �2 + �3 = (2�1 + 2�2) − (�1 + �2 − �3), in case (a),
� = �1 + 2�2 + '1 = (4�2 + 2'1) − (2�2 − �1 + '1), in case (b),
� = 3�1 + 2'1 + '2 = (4�1 + 2'1) − (�1 − '2), in case (c).

Here, / = �1 +�2 −�3 (resp. (2�2 −�1 + '1), resp. (�1 − '2)) is an effective divisor
with /2 = −2 and �1 · / = �2 · / = 0 (resp. / · �2 = 0, resp. / · �1 = 0). This
implies that / is a connected nodal cycle contained in a fiber of |2�1 and in a fiber of
|2�2 |. Under the bielliptic map q : ( → D given by the linear system |2�1 + 2�2 | or
|4�1 + 2'1 |, this nodal cycle / is mapped to a point G0 of an anti-canonical quartic
del Pezzo surface D . In case (1), we have D = D1,D2 or D3 and the point G0 lies on
the intersection of conics from different pencils on D = and hence, does not lie on a
line. Composing q with the projection map with center at G0, we map to the cubic
anti-canonical del Pezzo surface C = C1,C2 or C3 depending on the type of (. In
case (2), we have D = D′1,D

′
2 or D′3 and G0 does not lie on the line q(�2). Projecting

from G0, we map to C = C′1,C
′
2 or C′3. In case (3), we find that / is a component of

a half-fiber �1 of the pencil |2�1 |, so its image lies on a line and projection from G0
gives us the surface C3,C′3 or C′′3 . �

Next, we describe the branch locus of a bielliptic map q : ( → q |� | ((). We
restrict ourselves to the case �2 = 8 and leave the case �2 = 6 as an exercise to the
reader. First, we introduce some notations that will be used in the statements and in
their proofs.

If D ⊂ P4 is a symmetroid quartic surface, then we let 9 : Dsm ↩→ D be the open
immersion of the smooth locus of D. Let q := q |� | : ( → D be a bielliptic map
defined by a bielliptic linear system |� | with �2 = 8 and let

(
f→ (′

q′

→ D ⊂ P4 (3.3.1)

be the Stein factorization of q. Then, q′ is a finite morphism of degree 2 and f is
a birational morphism from ( onto a normal surface with at worst rational double
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point singularities. More precisely, f contracts all (−2)-curves� ⊂ ( with� ·� = 0
and nothing else.

Lemma 3.3.6 We keep the notations and assumptions. Let H ∈ D be a singular point
and let B = q−1 (H) and B′ = q′−1 (H).

1. If q is a non-special bielliptic map, then B′ ∈ (′ is a nonsingular point and the
morphism q is finite at B.

2. If ( is a special bielliptic map, if H is a rational double point of type �1, and
if D = D′1, then B

′ ∈ (′ is a nonsingular point and the morphism q is finite at
B. In the remaining cases, B′ ∈ (′ is a rational double point of type �1 and the
birational morphism f : ( → (′ contracts a (−2)-curve ' to the point B′.

Proof First, assume D is not special, that is, D = D1, D2, or D3. Then, every singular
point of D is equal to the intersection of two lines. The pre-image of a line on ( is
a half-fiber of |2�1 | or |2�2 |. If  ( ≠ 0, then we obtain that q−1 (Sing(D)) consists
of four points B8 9 = �

(8)
1 ∩ � ( 9)2 , where � (1)

8
, �
(2)
8

are the irreducible components
of the half-fibers of |2�8 | containing a point from q−1 (Sing(D)). If  ( = 0, then
Sing(D) = {H0} and B0 = c−1 (H0) is equal to �1 ∩ �2, where �8 are irreducible
components of the unique half-fibers of |2�8 |. Any (−2)-curve '′ passing through
B0 intersects positively both components � (8)1 and � ( 9)2 (resp. �1 and �2). Hence, it
cannot be contracted by the map f. Thus, every point B′ ∈ q′−1 (H0) is nonsingular
and q′ is a finite morphism near B′0.

Next, assume that D is special, that is, D = D′1, D′2, or D′3. In this case, the linear
system |� | = |4� + 2' | is special and the curve ' is contracted by q to a singular
point B′0 ∈ (

′.
First, assume that  ( ≠ 0. Then, the images of the half-fibers � and � ′ of |2� |

are the lines on D′1. Thus, the image of ' is the intersection point H0 of the two lines
ℓ1 and ℓ2. It follows from the description of the surface D′1 that this point is a rational
double point of type �3. The other two singular points H1 and H2 lie on the lines ℓ1
and ℓ2. Any (−2)-curve '′ ≠ ' on ( passing through one of the points B0 = q

−1 (H0),
B1 = q−1 (H1), B2 = q−1 (H2) must intersect ' or the irreducible components of �
or � ′ passing through these points. Hence, such an '′ is not contracted by f. This
shows that B′0 = f(B0) is a rational double point of type �1 and that the points
B′1 = q(B1) and B′2 = q(B2) are nonsingular points of (′. The map q′ is a finite
morphism near B′0, B

′
1, and B

′
2.

Finally, we assume that  ( = 0, that is, D = D′2 or D′3. In this case, the image
of the unique half-fiber of |2� | is the unique line ℓ on D. The unique singular point
H0 of D lies on ℓ. The curve ' is contracted to a point H ∈ ℓ. The pre-image of
the 2-dimensional linear system of hyperplane sections of D containing the line ℓ
consists of divisors of the form � + ' + � ′ ∈ |� |. They are all singular at the point
B0 = ' ∩ �, where � is an irreducible component of � intersecting '. This implies
that H = H0. Any other (−2)-curve '′ passing through B0 intersects � and ', hence
'′ · � ≠ 0, and '′ is not contracted to a point on (′. This shows that B′0 = f(B0) is a
rational double point of type �1 and that q′ is a finite morphism near B′0. �
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Now, let g : D̃→ D be the minimal resolution of singularities of D and let (̃′ be
the normalization of D̃ in the field of rational functions on (. A proof of the next
lemma can be found in [28, Proposition 1.5] in the case of a principal (Z/2Z)-cover,
but it also works for principal -2-covers or "2-covers.

Lemma 3.3.7 Let - = Spec � be the henselization of the local ring of a rational
double point singularity on a normal algebraic surface. Let - ′→ - be its minimal
resolution of singularities and let. → - be a finite degree 2 map that is a non-trivial
principal double cover outside the closed point G0 ∈ - . Assume that the closed point
H0 ∈ . over G0 is again a rational double point singularity. Let . ′ → - ′ be the
normalization of - ′ in the field of fractions of . . Then, there is a morphism . ′→ .

that factors through a minimal resolution . ′′ of . . A complete integral curve � ⊂ . ′
gets contracted to a point on . ′′ if and only if 2� is equal to the pre-image of an
irreducible component of a resolution of singularities - ′→ - .

Let (̃′ be the normalization of D̃ in the field of rational functions of (′. It comes
with a birational morphism g′ : (̃′ → (′ and a degree 2 cover q̃′ : (̃′ → D̃. We
set * = (′ \ q′−1 (Sing(D)) and note that its complement consists of finitely many
points B1, . . . , B: . We can identify * with an open subset of (̃′ that lies over the
complement of the exceptional divisor of D̃→ D. The morphism f−1 (*) → * is a
resolution of singularities. It defines a rational map ( d (̃′, which we extend to a
birational morphism f′ : (̃ → (̃′, where g′′ : (̃ → ( is a suitable composition of
blow-ups with centers at nonsingular points. Summing up, we obtain the following
commutative diagram:

(̃

g′′

��

f′ // (̃′
q̃′ //

g′

��

D̃

g

��
(

f // (′
q′ // D

(3.3.2)

and we define
q̃ := q̃′ ◦ f′ : (̃ → D̃.

index[not]g : D̃→ D
Applying Lemma 3.3.7, we conclude that g′ factors through the minimal resolu-

tion of singular points B8 - in fact, there can be only one such point and this happens
only if D = D′1,D

′
2, or D′3. This implies that we may assume f′ to be an isomorphism

over g′−1 (B8) and hence, q̃ is a finite morphism of degree 2 over a neighborhood of
�. In particular, the exceptional divisor �̃ of g′′ is a finite cover of the exceptional
divisor � of g.

Let us describe the exceptional divisor � =
∑:
8=1 �8 , where : = 4 if D = D8 and

: = 5, otherwise, in terms of a geometric basis (40, . . . , 45) of Pic(D̃) given in the
Propositions 0.6.16, 0.6.17, 0.6.19, and 0.6.21.

• D = D1:

�1 = 40 − 41 − 42 − 43, �2 = 42 − 43, �3 = 44 − 45, �4 = 40 − 41 − 44 − 45
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−2 −2 −2 −2

�1 �2 �3 �4

• D = D′1:

�1 = 40−41−42−43, �2 = 44−45, �3 = 40−41−44−45, �4 = 42−43, �5 = 41−42.

−2 −2 −2 −2 −2−2 −2−2 −2

�1 �2 �3 �5 �4

• D = D2,D3:

�1 = 40 − 41 − 42 − 43, �2 = 42 − 43, �3 = 43 − 44, �4 = 44 − 45.

−2 −2 −2−2

−2

−2

−2

−2

−2

−2

−2

�1 �4

�3

�2

• D = D′2,D
′
3:

�1 = 40−41−42−43, �2 = 42−43, �3 = 43−44, �4 = 44−45, �5 = 41−42.

−2 −2 −2−2

−2

−2

−2

−2

−2

−2

−2

−2 −2

�1 �4

�3

�2 �5

Observe that

�1 + · · · + �4 =

{
2(40 − 41 − 43 − 45) if D = D1,D′1,
40 − 41 − 43 − 45 otherwise.

Set �̃8 := q̃−1 (�8)red. Observe that the image of the component �̃5 in ( is the
special bisection ' that is mapped under f to the ordinary double point B8 ∈ (′ lying
over a singular point of D.

Lemma 3.3.8 The dual graph of the exceptional divisor �̃ of g′′ is as follows:

• D = D1:

−1 −1 −1 −1

�̃1 �̃2 �̃3 �̃4

• D = D′1:

−1 −1 −1 −1−1 −1

�̃1 �̃2 �̃3 �̃5 �̃4

• D = D2,D3:
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−1 −1 −1−1

−4

−1

−4

−1

−4

−1

−4

�̃1 �̃4

�̃3

�̃2

• D = D′2,D
′
3:

−1 −1 −1−1

−4

−1

−4

−1

−4

−1

−4

−1 −4

�̃1 �̃4

�̃3

�̃2 �̃5

Proof Since (̃ is smooth, the pre-image �̃ of the exceptional divisor � of g is a
divisor on (̃ that can be blown down to nonsingular points. For each component
�8 of �, the pre-image �̃8 is either a (−1)-curve or a (−4)-curve. The former case
happens if and only if the pullback of �8 is equal to 2�̃8 .

If D = D1, then � consists of four disjoint (−2)-curves, hence �̃ consists of four
disjoint smooth rational curves that can be blown down to nonsingular points. They
have to be (−1)-curves.

If D = D′1, then � consists of two disjoint (−2)-curves and a chain of three
(−2)-curves, hence �̃ consists of two disjoint smooth rational curves and a chain of
three smooth rational curves. We know that the middle component gets mapped to a
special bisection ' on (. Thus, the extreme components get mapped to nonsingular
points and this leaves us with the only possibility given by the picture.

Assume that D = D2 or D3. Then �̃ is the union of three disjoint smooth rational
curves �̃1, �̃2, �̃4 and a smooth rational curve �̃3 that intersects each �̃8 , 8 ≠ 3, with
multiplicity 1. Let g′′ be the composition of the blow-downs of one (−1)-curve. It is
immediate to see that the first curve that is blown down cannot be �̃3. Thus, we may
assume that it is �̃1. The image of �̃3 after the first blow-down is a chain of three
smooth rational curves. The only way that this gets blow them down to a nonsingular
point, is to assume that �0 is a (−4)-curve and that all other �̃8 are (−1)-curves.
This gives the asserted picture.

Finally, assume that D = D′2 or D′3. In this case �̃5 gets mapped to a special
bisection with self-intersection −2, and �̃ − �̃3 gets mapped to a nonsingular point
on (. Similar arguments to the above give us the asserted picture. �

We now continue with our analysis of the double cover q̃ : (̃ → D̃. We have a
short exact sequence

0 → OD̃ → q̃′∗O(′ → L−1 → 0, (3.3.3)

where L is an invertible sheaf. If ? ≠ 2, then q′ this exact sequence splits, then the
cover q̃′ is given by a global section B of L⊗2, whose zero divisor B(q̃′) is equal to
the branch divisor of the cover. If ? = 2 and if q′ is separable, then the cover is an
Artin–Schreier cover defined by data (L, 0), where 0 is a section of L, whose zero
divisor B(q̃′) is the branch divisor of the cover. If ? = 2, if q′ is inseparable, and
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if the exact sequence splits, then the cover is defined by a section of L⊗2 modulo a
square of a section of L. If the exact sequence does not split, then we get a cover of
type "L .

Since D has rational singularities, we have '1g∗OD̃ = 0 and thus, after applying
g∗ to the exact sequence (3.3.3), we obtain a short exact sequence

0 → OD → q′∗O(̃′ → g∗L−1 → 0. (3.3.4)

We know that the direct image of a reflexive sheaf is reflexive and thus,Q := g∗L−1 is
a reflexive sheaf. If q′ is separable and ? ≠ 2 (resp. ? = 2), then Q [2] � OD (−B(q))
(resp. Q � OD (−B(q))), where B(q) = g∗ (�̃) is the Weil divisor that is defined to
be the image of the branch divisor of q̃. We call B(q) the branch divisor of q. Its
pre-image in �̃ is the branch divisor B(q̃) of q̃′.

Proposition 3.3.9 Let L be the invertible sheaf from the data defining the double
cover q̃ : (̃ → D̃. Then:

1.

L �

{
l−1

D̃
⊗ OD̃ (

1
2 �) if D = D1,D′1,

l−1
D̃
⊗ OD̃ (�) otherwise.

2.

�1 (D̃,L) �
{

0 if D = D1,D′1,
k otherwise.

Proof (1) It follows from Lemma 3.3.8 that

 (̃ =

{
g′′∗ ( () + �̃1 + �̃2 + �̃3 + �̃4 if D = D1,D′1,
g′′∗ ( () + 2�̃1 + 2�̃2 + �̃3 + 2�̃4 otherwise.

By Proposition 0.2.10, we have

l(̃′ � q̃′∗(lD̃ ⊗ L).

Since all singularities of (̃′ are rational double points, we have

l(̃ � q̃∗ (lD̃ ⊗ L).

Applying Proposition 0.2.14, we obtain that lD ⊗L is a 2-torsion element of Pic(D)
and it is a non-trivial 2-torsion element only if  ( ≠ 0, that is, D = D1,D′1. By
Lemma 3.3.8, we have q̃∗ (�8) = 2�̃8 for 8 = 1, . . . , 4 if D = D1,D′1, and otherwise,
we have q̃∗ (�8) = 2�̃8 , 8 = 1, 2, 4 and q̃∗ (�3) = �̃3 otherwise. This proves the first
assertion.

(2) Assume that D = D1,D′1. We have − D̃ +
1
2 � ∼ 440−241− 42−243− 44−245.

It is easy to see that the moving part of the linear system | −  D̃ +
1
2 �| is equal to

|240 − 42 − 44 | (resp. |240 − 41 − 44 |) if D = D1 (resp. D = D′1). It corresponds to
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the linear system of conics through the points ?2, ?4 (resp. ?1, ?4). Thus, we find
ℎ0 (L) = 4. On the other hand, we obtain by Riemann–Roch that

ℎ0 (L) = 1
2
(2 2

D̃
+ 1

4 �
2) + 1 + ℎ1 (L) = 4 + ℎ1 (L).

This shows that ℎ1 (L) = 0.
Finally, assume that D ≠ D1,D′1. Let 0 be a section of l−1

D̃
with zero divisor �

disjoint from � + �5. This defines a section of L and the corresponding short exact
sequence

0 → OD̃ → L → O�+�(� + �) → 0. (3.3.5)

We compute

�1 (O�+�(� + �)) � �1 (O� (�)) ⊕�1 (O�(�)) � �1 (O�(�)) � �1 (l�) � k.

Taking cohomology in (3.3.5), we obtain the remaining assertion. �

Remark 3.3.10 Let 0 be a global section of L. It follows from the proof that the map

F + 0 : �1 (D̃,L) → �1 (D̃,L⊗2) (3.3.6)

can be identified with the map F + 0 : �1 (�,O�(�)) → �1 (�,O�(2�)). Both
maps F and 0 come from the same map O�(�) → O�(2�) that is multiplication by
the section of O�̃ (�), whose scheme of zeros is equal to �. Thus, the map F + 0 is
zero and we conclude that

Ker(F + 0) � �1 (D̃,L) � k (3.3.7)

if �1 (D̃,L) ≠ 0.

Theorem 3.3.11 Concerning the double cover q̃ : (̃ → D̃, we have the following:

1. If ? ≠ 2, then:

(i) D = D1 or D′1.
(ii) is a separable -2 cover with branch divisor

B(q̃) = , + �,

where, ∈ | − 2 D̃ | is a reduced curve disjoint from �.
(iii) The elliptic fibrations on ( are the pre-images of the pencils |40 − 41 | and
|240 − 42 − 43 − 44 − 45 | if D = �1 and |40 − 41 | if D = D′1.

2. If ? = 2 and  ( ≠ 0, then:

(i) D = D1 or D′1.
(ii) q̃ is an inseparable -2-cover defined by a section 1 of L with

/ (1) = , + �,
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where, ∈ | − 2 D̃ | is a reduced curve disjoint from �, or
(ii’) q̃ is a separable split Artin–Schreier cover defined by data (L, 0, 1) with

/ (0) = � + �5 + / (0)0, / (1) = � + / (1)0,

where / (0)0 ∈ |240 − 42 − 44 | (resp. |240 − 41 − 44 |) if D = D1 (resp. D = D′1)
and / (1)0 ∈ | − 2 D̃ |.

(iii) The genus one fibrations on ( are the pre-images of the pencils |40 − 41 | and
|240 − 42 − 43 − 44 − 45 | if D = D1 and |40 − 41 | if D = D′1.

3. If ? = 2 and ( is a -2-surface, then:

(i) D = D2 or D′2.
(ii) q̃ is a non-split and separable Artin–Schreier cover defined by data (L, 0)

with
/ (0) = � + / (0)0,

where / (0)0 ∈ | −  D̃ | is disjoint from �.
(iii) The genus one fibrations on ( are the pre-images of the pencils |40 − 41 | and
|240 − 42 − 43 − 44 − 45 | if D = D2 and |40 − 41 | if D = D′2.

4. If ? = 2 and ( is an "2-surface, then:

(i) D = D3 or D′3.
(ii) q̃ is a non-split separable Artin–Schreier cover defined by data (L, 0) with

/ (0) = 2� + 2�5 + �3 + / (0)0,

where / (0)0 ∈ |240 − 42 − 43 | (resp. |240 − 41 − 42 |) if D = D3 (resp. D = D′3).
(ii’) q̃ is a non-split and inseparable "2-cover.
(iii) The genus one fibrations on ( are the pre-images of the pencils |40 − 41 | and
|240 − 42 − 43 − 44 − 45 | if D = D3 and |40 − 41 | if D = D′3.

Proof In each of the four cases Assertion (i) follows from Theorem 3.3.4 and we
listed it only for convenience of the reader.

Assume that ? ≠ 2. In this case, we have D = D1 or D2. Applying Proposition
3.3.9, we find that q̃ is a separable -2-cover, whose branch divisor is given by a
section 1 of O( (−2 �̃ + �). Since q defines a local -2-cover of singular points,
/ (1) consists of a reduced curve, ∈ | − 2 D̃ | and the curve � that is disjoint from
, .

Assume that ? = 2,  ( ≠ 0, and q̃ is separable. Applying Proposition 3.3.9,
we obtain that its branch divisor / (0) belongs to the linear system | −  �̃ + 1

2 �|.
By Lemma 3.3.8, the curves �8 with 8 ≠ 5 are contained in the branch curve. The
residual curve belongs to

| −  �̃ −
1
2
�| = | (340 − 41 − · · · − 45) − (40 − 41 − 43 − 45) | = |240 − 42 − 44 |.
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If D = D′1, then �5 · (240 − 42 − 44) = (41 − 42) · (240 − 42 − 44) = −1 and thus, �5 is
an irreducible component of / (0), whose residual component is linearly equivalent
to (240 − 42 − 44) − (41 − 42) = 240 − 41 − 44. If D = D1, then the linear system
|240 − 42 − 44 | is irreducible and consists of the inverse transform of conics passing
through the points ?2, ?3, ?4. If D = D′1, then the linear system |240 − 41 − 44 | is
irreducible and consists of the inverse transform of conics passing through the points
?1, ?4. Thus, we can write

/ (0) = / (0)0 + � + �5,

where we ignore �5 if D = D1 and / (0)0 is as in the assertion of the theorem.
Assume ? = 2,  ( ≠ 0, and q̃ is inseparable. By Theorem 3.3.9, we have

�1 (�̃,L) = 0. Thus, the cover is a split -2-cover defined by data (L, 1), where
/ (1) ∈ | − 2 �̃ + �|. Using Lemma 3.3.8 again, we see that � enters in / (1). Thus,
/ (1) = , + � for some reduced curve, ∈ | − 2 �̃ |.

Assume that ? = 2, ( is a -2-surface, and q̃ is inseparable. Then, the pre-image
of the pencil of conics on D is a pencil of genus one curves on (, whose general
fiber is isomorphic to an inseparable cover of P1. This curve is isomorphic to a
cuspidal cubic. According to the terminology of Section 4.1, we obtain a quasi-
elliptic fibration on (. We will prove later in Theorem 4.10.3 that a -2-surface
does not admit quasi-elliptic fibrations and hence, q̃ must be separable. Applying
Proposition 3.3.9, we obtain that it is a separable Artin–Schreier cover defined by
data (L, 0) with / (0) ∈ | −  �̃ + � − �5 |.

The unique singular point of D admits a local principal Z/2Z-cover by a nonsin-
gular point if D = D2 and a rational double point of type �1 if D = D′2. Since such a
point does not admit a ramified local principal cover by a nonsingular (resp. singular
point of type �1), the branch curve B(q) does not pass through the singular point
of D. This implies that / (0) = / (0)0 + ', where ' is supported on the exceptional
divisor and / (0)0 is disjoint from '. Applying Lemma 3.3.8, we see that the curves
�1, �2, �4 enter in '. This gives

/ (0) − �1 − �2 − �4

∼ (340 − 41 − · · · − 45) + (40 − 41 − 43 − 45) − (42 − 43) − (40 − 41 − 42 − 43) − (44 − 45)
∼ 340 − 41 − 42 − 244 − 45.

Intersectingwith �3 ∼ 43−44, we obtain that �3 is a component of / (0)−�1−�2−�4
and that / (0)−�1−�2−�3−�4 = / (0)−(�−�5) ∼ 340−41−42−43−44−45 = − D̃.
Thus, we can write / (0) = / (0)0 + � − �5 with / (0)0 ∈ | −  D̃ |. Applying Lemma
3.3.8, we see that �3 enters in the branch divisor but its pre-image under the cover
is a reduced curve.

Finally, assume that ? = 2, that ( is an "2-surface, and that q̃ is separable.
Since �0 (D̃,L) ≠ 0, we obtain that q̃ is split or a non-split Artin-Schreier cover
defined by some data (L, 0). The singular point of D is of type � (0)4 or � (0)5 .
It has no local principal covers with Galois group Z/2Z. This shows that / (0)
contains a curve / (0)0, which has no exceptional components but intersects the
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exceptional locus. As in the previous case, we obtain that / (0) ∼ / (0) ′ + � with
/ (0) ′ ∈ | −  D̃ |. Thus, / (0) ′ = / (0)0 + �′, where �′ ≠ 0 is supported on the
exceptional divisor. We may assume that �′ is the largest divisor with this property.
Thus, (− D̃−�′) ·�8 = −�′ ·�8 ≥ 0 for each exceptional component �8 . This implies
that �′ is the fundamental cycle of the singularity, hence equal to �1 + �2 +2�3 + �4
(resp. �1 + 2�2 + 2�3 + �4 + �5) if D = D3 (resp. D3 = D′3). Thus, we get

/ (0) = 2� + �3 + / (0)0, (resp. / (0) = 2� + �2 + �3 − �5 + / (0)0),

where / (0)0 ∈ |240 − 42 − 43 | (resp. |240 − 41 − 42 |). If D = D3, then we compute

2� + �3 + / (0)0
= 2(40 − 41 − 43 − 45) + (43 − 44) + (240 − 42 − 43)
= 440 − 241 − 42 − 243 − 44 − 245

= (340 − 41 − 42 − 43 − 44 − 45) + (40 − 41 − 43 − 45)
= − D̃ + � = / (0).

We restrict the sequence to the punctured local ring of the singular point of D and
then, the cover splits. However, when the cover is an "2-cover of a Z/2Z-cover in
characteristic 2, the local cover of the punctured local ring does not split. This follows
from exact sequence (0.1.5) because F − 0 is surjective on global sections. �

A1 A2

A4 A3

non-special

-1 -1

-1

-1

-2 -2

-2 -2

A1 A2

A4 A3

A5

special

-1 -1

-2 -2

-2 -2
-2

/ (1)

Fig. 3.3 Branch curve of a bielliptic map (? ≠ 2)

If ? = 2, then a bielliptic map q |� | : ( → D could be inseparable. However, the
next proposition shows that in this case the surface ( is a nodal Enriques surface,
that is, it contains at least one smooth rational curve. In the next chapter, we will
reprove this result by using the theory of genus one fibrations on (.

Remark 3.3.12 In the case ? = 2 and  ( ≠ 0, the cover splits over the complement
of the union of the lines. In fact, the blow-up D̃ → P2 makes it isomorphic to the
complement of one line on the plane and hence, it is affine. Over this open subset
the cover is given by data (L, 0, 1), where 0 is a section of L and 1 is a section of
L⊗2 restricted to this open subset. So, one can construct a birational model of ( by
using this data.
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Fig. 3.4 Branch curve of a separable bielliptic map (? = 2,  ( ≠ 0)
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Fig. 3.5 Branch curve of a separable bielliptic map (-2-surface)

A3

A4

A2

A1

-1

-1

non-special

A3

A4

A1

A2

-1

A5

special

/ (0)

/ (1)

/ (0) ∩ / (1)

Fig. 3.6 Branch curve of a separable bielliptic map ("2-surface)

Proposition 3.3.13 Assume that ? = 2, that |� | be a bielliptic linear system with
�2 = 8, and that the associated bielliptic map q : ( → D is inseparable. If |� | is
non-special (resp. special), then q contracts a set of eight (resp. nine) (−2)-curves. In
particular, ( contains smooth rational curves and thus, is a nodal Enriques surface.

Proof The maps f′ : (̃ → (̃′ and q̃′ : (̃′ → D̃ from (3.3.2) are the minimal
resolution of singularities and an inseparable finite map of degree 2, respectively.
We have 4((̃′) = 4(D̃) = 4(P2) + 5 = 8 and 4((̃) = 4(() + 4 = 16. Being the
minimal resolution of rational double points, we have 4((̃) = 4((̃′) + =, where = is
the number of smooth rational curves blown down to singular points. If |� | is non-
special, then the exceptional divisor of f′ is isomorphic to the exceptional divisor of
f, so we get that f blows down = = 8 smooth rational curves. If |� | is special, then
the exceptional divisor of f consists of the exceptional divisor of f′ and a special
bisection ' that is blown down to the singular point of (′ lying over the singular
point of D. Thus, f′ blows down 9 smooth rational curves. �
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Remark 3.3.14 We know that the singular locus of the inseparable cover q̃′ : (̃′→ D̃
lies over the zeros of a section U of Ω1

D̃
⊗ L⊗2. We have

22 (Ω1
- ⊗ L⊗2) = 22 (Ω1

- ) + 21 (Ω1
- ) · 21 (L⊗2) + 21 (L⊗2)2. (3.3.8)

We know that 22 (Ω1
D̃
) = 4(D̃) = 8 and

21 (Ω1
D̃
) · 21 (L⊗2) =  D̃ · (!1 + · · · + !4 +,) =  D̃ ·, =  D ·, = −8,

21 (L⊗2)2 = (!1 + · · · + !4 +,)2 = −8 + 16 = 8.

Adding up, we find 22 (Ω1
D̃
⊗ L⊗2) = 8. In the case where the zero cycle / of the

section U is reduced, this shows that Sing((̃′) consists of 8 ordinary double points
and this agrees with the previous proposition. It also suggests that, for any singular
point G of type �=, �=, �=, we have ℎ0 (O/,G) = =.

Let F : D̃ → (̃′ → D̃ be the factorization of the Frobenius map. Comparing
formula (3.3.8) with formula (0.3.4) and using Remark 0.3.15 we find that ℎ0 (O/̃ ) =
ℎ0 (/), where /̃ is the scheme of zeros of the rational vector field m on D̃ such that
D̃m � (̃′.

Proposition 3.3.15 Let |� | be a bielliptic linear system with �2 = 8 and let q : ( →
D be the associated bielliptic map. Let d : & → D be the degree 2 cover by a quadric
surface described in Propositions 0.6.11, 0.6.12, 0.6.13. Then, the first projection
c : ( ×D & → ( is isomorphic to the K3-cover of (.

Proof Set & ′ := d−1 (Dsm). If D = D1,D2,D3, then the & is a nonsingular quadric
and & \& ′ consists of 4 points if D = D1 and one point otherwise. If D = D′1,D

′
2,D

′
3,

then & is a quadric cone and & \ & ′ consists of the singular point of & and two
more points if D = D1 and consists of only the singular point otherwise. The cover
d′ : & ′ → D \ Dsm is a principal �-cover, where � = -2 (resp. (Z/2Z), resp. "2)
if D = D1 (resp. D2, resp. D3). The base change ( ×D &

′ → († := q−1 (Dsm) is a
nontrivial principal �-cover isomorphic to the pre-image of the torsor & ′ → Dsm

by the morphism q. By Theorem 0.1.4, it extends to a nontrivial principal cover of
( isomorphic to the K3-cover. �

Now, consider the second projection q̄ : - = ( ×D & → &. We can factor both q
and q̄ as birational morphisms f, f̄ followed by a finite morphism q′, q̄′ of degree
2 and obtain a commutative diagram

-

c

��

f̄ // - ′
q̄′ //

c′

��

&

d

��
(

f // (′
q′ // D.

It follows that the double cover q̄′ : - ′ → & is given by the pre-image to & of the
data defining the cover q′ : (′→ D.
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1. If ? ≠ 2, then the cover q̄′ is a -2-cover, whose branch curve satisfies

B(q̄′) ∈ |d∗ (−2 D) | = | − 2 & |

and is contained in & ′.
2. If ? = 2, if  ( ≠ 0, and if q is separable, then q̄′ is a split Artin–Schreier cover

associated to data (l−1
&
, 0, 1), where

B(q̄′) = / (0) ∈ | − 2 & |, / (1) ∈ | − 4 & |.

In this case, B(q̄′) is contained in & \& ′.
3. If ? = 2 and if  ( = 0, then q̄ is a separable and non-split Artin–Schreier cover,

whose branch curve B(q̄′) ∈ | − 2 & | is contained in & ′ if ( is a -2-surface.

Theorem 3.3.11 admits a converse, whose proof we leave to the reader. It gives
an explicit recipe for constructing birational models of Enriques surfaces as double
covers of symmetroid quartic surfaces:

Theorem 3.3.16 Let D ⊂ P4 be a non-degenerate symmetroid quartic surface and
let � and L be as in Theorem 3.3.9.

1. Assume that ? ≠ 2. Let D = D1 (resp. D′1) and, ∈ | − 2 D̃ | be a reduced divisor
disjoint from the exceptional curve �. Then, a minimal resolution of the double
cover (̃′ → D̃ branched along , + �1 + · · · + �4 is isomorphic to the blow-up
of an Enriques surface ( at four points G1, . . . , G4. It descends to a bielliptic map
q : ( → D defined by a non-special (resp. special) bielliptic linear system |� |
of degree 8. If |� | = |2�1 + 2�2 | (resp. |4� + 2' |), then the points G8 are the
intersection points of the irreducible components � (8)1 ∩ � ( 9)2 of the two half-
fibres � (8)1 of |2�1 | and two half-fibers � (8)2 of |2�2 |. If |� | = |4�1 + 2' |, then
G8 = ' ∩ � (8)1 , 8 = 1, 2 and G3 ∈ � (1)1 , G4 ∈ � (2)1 .

2. Assume ? = 2 and letD = D1 (resp. � ′1). Let 0 be a section ofL with / (0) = �+B
with B ∈ |240 − 42 − 44 | (resp. |240 − 41 − 44 |) and let 1 be a section of L⊗2 with
/ (1) = �+, and, ∈ | −2 D̃ |. Then, a minimal resolution of the normalization
of the split Artin–Schreier double cover of (′ → D defined by the data (L, 0, 1)
is isomorphic to a classical Enriques surface ( blown up at four points as in (1).

3. Assume ? = 2 and letD = D2 (resp.D′2). Let 0 be a section ofL with / (0) = �+B,
where B ∈ |− D̃ | is disjoint from �, and let (′ be a non-trivial"L,0-torsor, whose
cohomology class is mapped to a nonzero element of Ker(F + 0 : �1 (D,L)) →
�1 (D,L⊗2)). Then, a minimal resolution of the normalization of (′ is isomorphic
to the blow-up of a -2-Enriques surface ( blown up at four points G2 � G1, G3 � G1,
G4 � G1. The cover (′ → D̃ descends to a bielliptic map defined by the linear
system |� |. If |� = |2�1 + 2�2 | (resp. |4�1 + 2' |), the point G1 is the intersection
point of irreducible components of �1 and �2 (resp. ').

4. Assume ? = 2 and let D = D3 (resp.D′3). Let 0 be a section of L with / (0) =
2� + �3 + � with � ∈ |240 − 42 − 44 | (resp. |240 − 41 − 44 |). Then, a minimal
resolution of the normalization of the non-split Artin–Schreier double cover of
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(′ → D defined by an "L,0-torsor is isomorphic to an "2-Enriques surface (
blown up at four points G2 � G1, G3 � G1, G4 � G1 as in (3).

5. Assume ? = 2 and let D = D1 (resp. D′1). Let , ∈ | − 2 D̃ | be a divisor disjoint
from the exceptional curve � such that the inseparable -2-cover defined by
/ (1) = , + � − �5 is normal. Then, its minimal resolution is isomorphic to the
blow-up of an Enriques surface ( at four points G1, . . . , G4 as in (1).

6. Assume ? = 2 and let D = D3 (resp. D′3) and let (′ be a non-trivial "2,L-torsor.
Assume that (′ is normal. Then, its minimal resolution is isomorphic to the
blow-up of an "2-Enriques surface ( at four points G1, . . . , G4 as in (1).

Remark 3.3.17 It follows from Proposition 3.3.23 below and Corollary 6.2.14 in
Volume II that if the K3-cover is a normal surface, then every bielliptic map is
separable.

Remark 3.3.18 Let q : ( → D be a bielliptic map onto an anti-canonical quartic del
Pezzo surface. If D = D8 (resp. D = D′

8
), then one can also construct a rational map

of degree 2 from ( onto an irreducible and nonsingular (resp. singular) quadric:

1. If D = D1 (resp. D′1), then this map is defined to be the composition of the induced
map (̃ → D̃ followed by a birational morphism from (̃ to a nonsingular (resp.
singular) quadric D& (not to be confused with the double cover & of D) given by
the linear system |240 − 42 − 44 | (resp. |240 − 41 − 44 |). It blows down the four
(resp. two) lines on D to points on the quadric D&.
If ? ≠ 2, then the branch curve is the union of a curve, of bidegree (4, 4) with
four double points at the vertices of a quadrangle of lines on D& and the four
sides of the quadrangle (resp. the union of two lines of the ruling and a curve
, of degree 4 with two tacnodes with tangent directions along the lines). The
linear system defining the rational map ( d D& is given by the linear subsystem
of the linear system |� +  ( | spanned by the two pencils �1 + � ′1 + |2�2 | and
�2 + � ′2 + |2�1 | (resp. by the linear subsystem of |4� + ' +  ( | spanned by the
pencils ' + 2� + |2� + ' +  ( | and 2' + 2� ′ + |2� |).

2. If D = D2,D3 (resp. D′2,D
′
3), then the map is the composition of the induced map

(̃ → D̃ and a birational morphism from (̃ onto a singular quadric D& given by
the linear system |240 − 42 − 43 | (resp. |240 − 41 − 42 |). It blows down the two
lines (resp. one line) on D to points on the same line on the quadric D&. It is
given by the 3-dimensional linear subsystem of |2�1 + 2�2 | that is spanned by the
pencils �1 + �2 + |�1 + �2 |, 2�2 + |2�1 |, and 2�1 + |2�2 | with one base point of
multiplicity 2 (resp. the 3-dimensional linear subsystem of |4� + 2' | spanned by
the plane 2' + |4� | and the pencil 2� + ' + |2� + ' |).

Remark 3.3.19 Suppose that we have a non-degenerate canonical isotropic sequence
(�1, �2), such that |2�1 + 2�2 | defines an inseparable bielliptic map q : ( → D.
Then, both genus one fibrations |2�1 | and |2�2 | are quasi-elliptic. On the other hand,
if q is separable, then we will see in Proposition 3.3.23 that at most one of the genus
one fibrations can be quasi-elliptic. In fact, one would expect that both fibrations are
elliptic, but in special cases one of them can be quasi-elliptic, see Example 3.3.24.
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Example 3.3.20 In the case where D = D1,D′1, let us give equations of the image
+ (�6) of the curve, ′ ∈ |640 − 2(41 + · · · + 45) | in the plane under the blow-down
D→ P2 defined by the geometric basis 40, 41, . . . , 45 of Pic(D). In this example, we
give an explicit formula for the double plane model (see Remark 3.2.7) of (.

1. D = D1. We choose the coordinates such that D1 such that ?1 = [1, 0, 0], ?2 =
[0, 1, 0], and ?4 = [0, 0, 1] and D is the blow-up of these points followed by the
blow-up the infinitely near points ?3 � ?2 and ?5 � ?4 corresponding to the
directions defined by C1 = 0 and C2 = 0.
If ? ≠ 2 or ? = 2 and the cover ( → D1 is inseparable, then the double plane
model of ( from Remark 3.2.7 is a birational model equal to the double cover
of P2 branched along the curve + (C1C2�6) of degree 8 passing through the points
?1, . . . , ?5 with multiplicity 2. By straightforward computations we find that

�6 = C40�1 (C1, C2)+C30C1C2�2 (C1, C2)+C20C1C2�3 (C1, C2)+C0C21C
2
2�4 (C1, C2)+C21C

2
2�5 (C1, C2) = 0.

(3.3.9)
Thus, the equation of the double plane in the weighted projective space
P(1, 1, 1, 2) is

|2 + C1C2�6 (C0, C1, C2) = 0. (3.3.10)

If ? = 2, and the cover ( → D1 is separable, then the equation of the double plane
is

|2 + |C1C2 (0C20 + 1C0C1 + 2C0C2 + 3C1C2) + C1C2�6 (C0, C1, C2) = 0. (3.3.11)

2. D = D2. We choose the coordinates such that D2 is the blow-up of points
?1, . . . , ?5, where ?1 = [1, 0, 0], ?2 = [0, 0, 1] and ?5 � ?4 � ?2 � ?2 with the
line C1 = 0 passing through ?1, ?2, ?3. The equation of the double plane in affine
coordinates G = C0/C1, H = C2/C1) outside the line C1 = 0 is

|2 + |�3 (G, 1, H) + �6 (G, 1, H) = 0, (3.3.12)

where

�3 = 01C1C
2
2 + (02C

2
0 + 03C

2
1)C2 + C1 (04C

2
0 + 05C0C1 + 06C

2
1) = 0

is the equation of a cubic curve passing through the points ?1, . . . , ?5.
3. D = D3. If the cover is inseparable, then the affine equation over the complement

of the line C1 = 0 is
|2 + �6 (G, 1, H) = 0, (3.3.13)

If the cover is separable, then the affine equation is

|2 + |�2 (G, 1, H) + �6 (G, 1, H) = 0, (3.3.14)

where �2 = 01C
2
0 + 02C0C1 + 03C1C2 + 04C

2
1 = 0 is the equation of a conic passing

through the points ?2, ?3.
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4. D = D′1. In this case, ?1 = [1, 0, 0], ?4 = [0, 0, 1] and ?3 � ?2 � ?1 and ?5 � ?4
are infinitely near points and we find

�6 = C30C
2
2�1 (C0, C1) + C20C1C2�2 (C1, C2) + C0C21C2�3 (C1, C2) + C21�4 (C1, C2) = 0.

(3.3.15)
If ? ≠ 2 or ? = 2 and the cover ( → D1 is inseparable, then the double plane
model of ( is given by equation (3.3.10). If ? = 2 and the cover is separable, then
the double plane model is given by the equation (3.3.11).

5. D = D′2. The surface D is the blow-up of ?5 � ?4 � ?3 � ?2 � ?1, where
?1 = [1, 0, 0] and ?2 is defined by the tangent direction C1 = 0. The cover must
be separable and the equation of the double plane over the complement of the

|2 + |�3 (G, 1, H) + �6 (G, 1, H) = 0, (3.3.16)

where �3 (C0, C1, C2) = 0 is the equation of a cubic passing through the points
?1, . . . , ?5.

6. D = D′3. If the cover is inseparable, then the affine equation of the double plane
over the complement of the line is (3.3.13). If the cover is separable, then the
equation is (3.3.14), where �2 (C0, C1, C2) = 0.

The octic curve + (C1C2�6) is called an Enriques octic. It is called non-degenerate
(resp. degenerate if its equation is given by (3.3.9) (resp. (3.3.15)). The equation
(3.3.10) (resp. (3.3.15)) is called the Eniriques double plane. (resp. Enriques degen-
erate double plane)

Remark 3.3.21 One can derive various birational models of a bielliptic map by
composing it with a birational map from D onto a ruled surface. For example, let
2 : D̃′1 → F2 be the birational morphism from the minimal resolution of a degenerate
4-nodal anti-canonical quartic del Pezzo surface D′1 onto the minimal ruled surface
F2 (see Section 0.5) that blows down the curves from the divisor classes 44 − 45, 45,
42 − 43, and 43. The image of the (−2)-curve �5 is the unique section of F2 → P1

with self-intersection number −2 and the images of the curves �1 and �3 are fibers.
We can define similar birational morphisms from D̃′2 and D̃′3 onto F2, as well as
birational morphisms from D̃1, D̃2, D̃3 onto F0 = P

1 × P1. These models are often
called Horikawa models of an Enriques surface, see [309].

Let q : ( → D be a bielliptic map to an anti-canonical quartic del Pezzo surface.
If D = D1,D2,D3, then q gives rise to two genus one fibrations |2�1 |, |2�2 | on ( with
�1 · �2 = 1, see Proposition 3.3.1. Otherwise, q gives rise to a genus one fibration
|2�1 | with a bisection ' � P1. Moreover, if q is an inseparable map, then it is easy
to see that both, |�1 | and |�2 | are quasi-elliptic fibrations.

Lemma 3.3.22 Let 5 : � → P1 be a separable degree two cover in characteristic
2, where � is a cuspidal curve of arithmetic genus one. Then, � is given by an
Artin–Schreier equation

� = H2 + D2H + �(D, {) = 0,
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where �(D, {) is a binary form in D, { of degree 4, such that D2 divides 3�.

Proof Let |� | be the linear system of degree 2 on � that defines 5 .
Let us first assume that there exists a nonsingular point ? ∈ � such that 2? ∈ |� |.

We claim that then, all divisors of |� | are of the form 2@. There exists a group law
on the smooth locus of �, isomorphic to the additive group G0, and we may assume
that ? is zero with respect to this group law. In this case, any smooth point @ with
2@ ∈ |� | is a 2-torsion point with respect to this group law and conversely, every
2-torsion point @ of the group law satisfies 2@ ∈ |� |. Since we are dealing with G0
in characteristic 2, there is a one-dimensional linear subsystem of |� | consisting of
divisors of the form 2@. By Riemann–Roch, dim |2? | = 1, and thus, this subsystem
is actually equal to |2? |. This proves that every divisor in |� | is of the form 2@ and
thus, the map 5 is inseparable, contradicting our assumptions.

So, we may assume that |� | contains a divisor of the form ? + @ with ? ≠ @

and hence the map is separable. Since |� | does not contain divisors of the form 2?,
the only ramification point is the cusp. In particular, we see that the equation of �
must be of the form � = H2 + D2H + �(D, {) = 0, where �(D, {) = ∑4

8=0 08D
8{4−8

is a binary form of degree 4. By taking partial derivatives, we obtain that 3� =

(01D
2 + 03{

2) (D3D + {3{) vanishes at the point [0, 1]. This happens if and only if
03 = 0.

The condition 03 = 0 is equivalent to the condition in the assertion of the lemma.�

Proposition 3.3.23 Let q : ( → D be a separable bielliptic map. Then, at most one
of the two genus one fibrations |2�1 | and |2�2 | is quasi-elliptic.

Proof Assume that q is separable and that the genus one fibration |2�1 | is quasi-
elliptic. We use the double plane model of ( from Example 3.3.20. We will prove
later in Theorem 4.10.3 that a -2-Enriques surface does not admit a quasi-elliptic
pencil. So, we may assume that D = D1 or D = D3.

First, assume that D = D1. The genus one pencils on ( are the pre-images of
the pencil of lines through the point ?1 on the plane defining the linear system
|40 − 41 | on D̃ and the pencil of conics through ?2, ?3, ?4, ?5 defining the linear
system P = |240 − 42 − 43 − 44 − 45 |. Its pre-image on ( is the pencil |2�2 |. We will
often identify these linear systems. Changing the blow-down morphism D→ P2, we
may assume that the pencil |2�1 | defined by |40 − 41 | is quasi-elliptic. By Lemma
3.3.22, a general line through ?1 is tangent to the conic �̄ through ?2, ?4 representing
on the plane the curve � ∈ |240 − 42 − 44 | (or the conic is the double line 〈?2, ?4〉).
Note that this condition implies that either |2�1 | is quasi-elliptic or its general fiber
is a supersingular elliptic curve. This means that ?1 is the strange point, that is, a
point contained in all tangent lines of the conic �̄. It implies that the conic is given
by the equation C20 + _C1C2 = 0 and hence, belongs to the pencil P. It follows that the
curve � is equal to the union of a conic from this pencil and the lines ;3, ;5 with the
divisor classes 43, 45. Their pre-images on ( are the half-fibers �1, �

′
1 of |2�1 |. Thus,

the ramification divisor of a general member � of |�2 | consists of two distinct points
of intersection of � with �1, �

′
1. By Lemma 3.3.22, it must be an elliptic curve.

Assume D = D3. In this case, / (0)0 is a conic from |240 − 42 − 43 |. The argument
is similar to the previous case. We may assume that the quasi-elliptic pencil is the
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pre-image of the pencil |40 − 41 | passing through ?1. The part � of the branch curve
is represented by a conic �̄ in the plane passing through the points 42 and 43, that is,
a conic passing through ?1 and tangent to the line 〈?1, ?2〉. The point ?1 must be the
strange point, and hence, �̄must be defined by the equation C20 +_C1C2+`C

2
1 , where we

assume that ?1 = [1, 0, 0] and ?2 = [0, 0, 1]. Let a general member � of the pencil
P = |240 − 42 − 43 − 44 − 45 | be given by the equation C20 + 0C0C2 + _C1C2 + `C

2
1 , which

expresses the condition that it passes through ?2 and is tangent to the line C1 = 0.
Assume that �̄ does not belong to this pencil, that is, 0 ≠ 0. The pencil generated by
the conics� and �̄ contains the reducible conic C1 (0C0 +UC1 + VC2) = 0, where 0 ≠ 0.
We see that �̄ intersects this conic at three points, it is tangent to the component
C1 = 0 and it intersects the other component in two distinct points. This shows that
00 = 0 and �̄ belongs to the pencil P. Thus, � intersects a general member of the
pencil at two distinct points on the lines ;1 and ;2, and we finish as in the previous
case. �

Example 3.3.24 Assume that D = D1 and choose equation (3.3.9) to be

Φ = C23 + C1C2 (C1C2 + C
2
0) (C3 + @4 (C0, C1, C2)) = 0,

where + (@4) is a quartic curve with a double point at ?1 = [1, 0, 0] and tangent to
C1 = 0 and C2 = 0 at the points ?2 = [0, 1, 0] and ?4 = [0, 0, 1]. To satisfy these
conditions, @4 must be of the form

@4 = C20�2 (C1, C2) + C0C1C2�1 (C1, C2) + �0C
2
1C

2
2 ,

where �8 is a binary form of degree 8.
In the open subset C1 ≠ 0, we use affine coordinates I = C3/C41 , G = C2/C1, and

H = C0/C1, to rewrite the equation of the surface in the form

I2 + G(G + H2)I + G(G + H2) (H2�2 (1, G) + HG�1 (1, G) + �0G
2) = 0.

The pre-image of a general line ℓ = + (G + _) through ?1 is given by the equation

I2 + _(_ + H2)I + _(_ + H2) (H2�2 (1, _) + _H�1 (1, _) + �0_
2) = 0.

We see that the equation satisfies the condition of Lemma 3.3.22 and hence, the
pre-image of the line is a quasi-elliptic curve.

3.4 Degree 4 Covers of the Plane

In this section, we study linear systems |� | on an Enriques surface ( such that � is
nef with �2 = 4 and Φ(�) = 2. This is case (3d) of Proposition 3.1.1. In this case,
the linear system |� | has no base points and the associated morphism

q |� | : ( → (′ := q |� | (() = P2
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is generically finite of degree 4, which is also denoted by q+ below. We note that in
Proposition 2.6.6 we classified such linear systems in terms of genus one fibrations
and nodal curves. More precisely, they are types (3)–(6) with : = 1. A linear system
of type (3), that is, � ∼ �1 + �2 with �1 · �2 = 2, where the |2�8 | are genus one
pencils, is called non-special otherwise special. In [460], the associated invertible
sheaf O( (�) was called a Cossec–Verra polarization.

To analyze the morphism q |� | : ( → P2, we first study the morphism associated
to c∗O( (�) on the K3-cover c : - → ( in more detail and refer to Theorem 3.1.7
for the first general results. This gives also explicit equations for the K3-cover of an
Enriques surfaces, which we already encountered in Example 1.6.8. If the K3-cover
is smooth, then this is shown in [133] and in [460] in the general case. It refines
Theorem 3.1.6 and Theorem 3.1.7 for K3-covers of Enriques surfaces.

Theorem 3.4.1 Let ( be an Enriques surface and let � be a nef divisor with �2 = 4
and Φ(�) = 2. Let c : - → ( be the K3-cover of (, let

q̃ |� | : - → P5 = P(�0 ((,O( (�)))

be the morphism associated to c∗O( (�) and let - ′ := q̃ |� | (-) be the image. Then,
- → - ′ is a birational morphism and - ′ is a surface of degree 8 in P5 that is a
complete intersection of three quadrics.

More precisely, let � := (Picg
(/k)

� be the Cartier dual of the torsion subgroup
scheme of Pic(/k. Then, there exists a Cartesian diagram

-

c

��

q̃|� | // - ′

c′

��

⊂ // P5

(
k // (′

such that:

1. c and c′ are �-torsors and q̃ |� | and k are birational morphisms.
2. The morphism k contracts precisely those curves on ( that have zero-intersection

with�, all of which are (−2)-curves. In particular, (′ has at worst rational double
point singularities.

3. The �-action on - extends to - ′ and to a linear action on the ambient P5. The
three quadrics cutting out - ′ can be chosen to be individually �-invariant.

Proof By Theorem 3.1.7, the map q̃ |� | is a morphism to P5, the induced morphism
- → - ′ := q̃ |� | (-) is birational, and - ′ is a surface of degree 8. By Theorem 1.3.1,
the morphism c is a �-torsor. Next, we define

k : ( → (′ := Proj
⊕
=≥0

�0 ((,O( (=�)).

Since � is big and nef, k is a proper birational morphism onto a normal surface.
It contracts precisely those curves that have zero-intersection with �. Such curves
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are (−2)-curves and thus, (′ has at worst rational double point singularities. Then,
O(′ (1) is an ample invertible sheaf on (′ with k∗O(′ (1) � O( (�).

Since Picg
(/k � Picg

(′/k, there exists a �-torsor c
′′ : - ′′ → (′, such that the �-

torsor - → ( arises as pull-back from - ′′ → (′ via ( → (′. Moreover, c′′∗O(′ (1)
is an ample invertible sheaf and q̃ |� | factors as - → - ′′ → - ′ → P5. Clearly,
- → - ′′→ - ′ are birational morphisms, and it is not difficult to see that - ′′→ - ′

is actually an isomorphism.
Since O( (�) is an invertible sheaf on (, there is a �-action on c∗O( (�) and

thus, a linear �-action on �0 (-, c∗O( (�)). Therefore, the �-action on - extends
to - ′ and to a linear �-action on the ambient P5.

As in (3.1.3) in the proof of Theorem 3.1.7, we have a short exact sequence

0 → �0 ((,O( (�)) → �0 (-, c∗c∗O( (�)) → �0 ((, l( (�)) → 0 . (3.4.1)

We have an induced �-action on the function field k(-) with invariants k(() and
consider the space �0 (-, c∗c∗O( (�)) as a k-sub-vector space of k(-). From this,
we conclude that the�-action on �0 (-, c∗c∗O( (�)) is a direct sum of three copies
of the 2-dimensional regular representation d of � over k. The �-action restricts to
a trivial representation on �0 ((,O( (�)). In characteristic ? ≠ 2, the �-action on
�0 ((, l( (�)) is via the sign-involution.

From this, we obtain a short exact sequence of �-representations

0 → Ker ` → (2�0 (-, c∗O( (�))
`
−→ �0 (-, c∗O( (�)⊗2) → 0 . (3.4.2)

It is easy to compute thatKer ` is 3-dimensional.Working out the�-representations,
it is not difficult to see that the �-action on Ker ` is trivial. This implies that the
quadrics of P5 that contain - ′ form a 3-dimensional space and that all these quadrics
are �-invariant.

It remains to show that - ′ is actually a complete intersection of three quadrics.
Here, we will only treat the case where ? ≠ 2 or where ? = 2 and that - is
a -2-surface. We refer to [460, Proposition 2.4] for the two remaining cases in
characteristic 2. By Theorem 3.1.6, - ′ ⊂ P5 is cut out by quadrics and cubics.
Moreover, if cubics are needed, then there are two possible cases. We set �̃ := c∗�
and note that we have �̃2 = 8. Case (1) is impossible, since we have |�̃ | = |2� + ' |
with �2 = 2, '2 = −2, and � · ' = 1, which implies �̃2 = 10. In Case (2),
there exists a genus one fibration |% | on - with % · �̃ = 3. Let g : - → - be
the covering involution of c : - → (. Using the Hodge Index Theorem, we find
�̃2 · (% · g(%)) ≤ 9. This implies |% | = |g(%) | or % · g(%) = 2. If |% | = |g(%) |, then
there exists a genus one fibration |� | = |2� ′ | on ( such that |% | = |c−1 (�) | and we
find 2� ′ · � = � · � = 3, which is impossible. Thus, we may assume % · g(%) = 2.
We compute (�̃ − % − g(%))2 = 0 and so, Riemann–Roch shows that the moving
part |" | of |�̃−%−g(%) | is non-empty. Since " · �̃ ≤ 2, the Hodge Index Theorem
implies that |" | is a genus one pencil. If we had |" | = |% |, then we would find
|�̃ | = |2%+g(%) | since dim |�̃ | = dim |2%+g(%) |, hence % ·�̃ = % · (2%+g(%)) = 2,
a contradiction. Similarly, one shows that |�̃ | is distinct from |g(%) |. From this, we
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obtain

5 = dim |�̃ | ≥ dim |" + % + g(%) | ≥ 1 + 1
2
(" + % + g(%))2 = 7,

a contradiction. Thus, also Case (2) does not occur and thus, - ′ is cut out by quadrics
in P5. Since Ker ` is 3-dimensional, it follows that - ′ is a complete intersection of
quadrics. �

As an application, we obtain the following result:

Corollary 3.4.2 Let ( be an Enriques surface with K3-cover c : - → (. Then, (
admits a Cossec–Verra polarization. In particular, - is birationally equivalent to a
complete intersection of three quadrics in P5.

Proof It suffices to show that ( admits a Cossec–Verra polarization: in fact, these
correspond to the fundamental weight 81 in the Enriques lattice E10 � Num(().
Applying Proposition 2.2.1, we may assume that it is represented by a nef divisor
class. We have seen in the proof of Proposition 2.4.11 that Φ(81) = 2, that is, every
invertible sheaf with class 81 corresponds to a Cossec–Verra polarization. �

In fact, one can be very explicit about the �-action on P5 and the �-invariant
quadrics: the group scheme� in Theorem 3.4.1 is of length two, and thus, described
by Example 1.6.6. Moreover, in the same lemma, we described the regular repre-
sentation d : � → GL2, which yields a �-action on the polynomial ring k[G, H].
Taking three copies of d, we obtain a �-action on k[G0, G1, G2, H0, H1, H2], and thus,
on P5. Now, we set

�+ := �0 ((,O( (�)), �− := �0 ((, l( (�)), and � := �0 (-, c∗O( (�)),

which are k-vector spaces of dimension 3, 3, and 6, respectively. By (3.4.1), we
obtain an extension of k-vector spaces

0 → �+ → � → �− → 0

The �-action on � restricts to a trivial �-action on �+ and there is an induced �-
action on the quotient �− � �/�+. In characteristic ? ≠ 2, the non-trivial element
of� acts as −id, so one can canonically split this sequence as � � �+ ⊕ �− in such a
way that is compatible with the �-action – we note that this is not possible if ? = 2.
In any case, the proof shows that the �-action on P5 stated in Theorem 3.4.1 is of
this form. The space of �-invariant quadrics have been computed by Bombieri in
Mumford [77, page 222], see also Lemma 1.6.7. Thus, the previous corollary shows
that the examples given in Example 1.6.8 yield in fact all Enriques surfaces:

Corollary 3.4.3 Let ( be an Enriques surface. Then, after possibly contracting
some (−2)-curves to rational double points ( → (′, the surface (′ arises via the
Bombieri–Mumford–Reid construction given in Example 1.6.8.

Remark 3.4.4 Assume that the characteristic is ? ≠ 2.
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1. First, the Bombieri–Mumford–Reid construction simplifies as follows: in this
case, � � Z/2Z � -2, the �-action on k[G0, G1, G2, H0, H1, H2] is given by the
involution

g : G8 ↦→ G8 and H8 ↦→ −H8 ,

and the g-invariant quadrics are

G8G 9 and H8H 9 ,

for 0 ≤ 8 ≤ 9 ≤ 2. In particular, the image - ′ ⊂ P5 of the K3-cover is the
complete intersection of three quadrics �̃0, �̃1, �̃2 that are of the form

�̃A =

{∑
8, 9

0
(A )
8 9
G8G 9 +

∑
8, 9

1
(A )
8 9
H8H 9 = 0

}
⊂ P5 .

Without loss of generality, we may assume that the �A := (0A
8 9
) and �A := (1A

8 9
)

are symmetric 3 × 3 matrices.
2. Consider the three reducible quadrics

�̃8 := {G2
8 − H2

8 = 0} = {G8 − H8 = 0} ∪ {G8 + H8 = 0} ⊂ P5,

for 0 ≤ 8 ≤ 2, each of which is the union of two hyperplanes. We note that g
interchanges all these pairs of connected components. The complete intersection
-∞ := &1 ∩ &2 ∩ &3 is a reducible surface of degree 8 in P5 that is a union of 8
planes, which intersect along 12 lines, and the 12 lines intersect in 6 points. Thus,
these planes form an octahedron upon which g acts.
Given a smooth complete intersection - of three g-invariant quadrics in P5,
one can easily find a one-parameter family deforming them into -∞ keeping
the involution g. This is an example of a type III degeneration of a K3 surface.
The polyhedron associated to this degeneration is a topological 2-sphere S2 and
these types of degenerations of K3 surfaces are characterized by maximal order
of nilpotence of the monodromy operator on the second cohomology. We will
discuss all of this in Section 5.10. By assumption, we can form the quotient by
g in this family and obtain an example of a type III degeneration of an Enriques
surface.Wewill discuss this later, in Section 5.10.Here, the polyhedron associated
to the degeneration is the real projective plane RP2, which arises as quotient of
S2 by the involution induced by g. We refer to [421, 591] for details.
After a linear change of variables, one may assume that the &8 are of the form
I8|8 for some coordinates I8 , |8 of the projective space P5, that is, the above
degeneration -∞ is an example of a monomial degeneration that is compatible
with the structure of P5 as a toric variety. Being a degeneration of maximal
unipotent monodromy, such types of degenerations play an important role in some
aspects of mirror symmetry [139]. From these, one can pass to the tropicalizations
of K3 surfaces and Enriques surfaces, see [75].

We now turn to the morphisms
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q+ : ( → P(�+) = P(�0 ((,O( (�))),
q− : ( → P(�−) = P(�0 ((, l( (�))),

both ofwhich are generically finite of degree 4 ontoP2. In the terminology introduced
earlier, we have q+ = q |� | and q− = q | (+� | and it turns out to be useful to study
both morphisms at the same time via the morphism q̃ |� | from the K3-cover - . We
note that both morphisms q± factor over ( → (′, where (′ is the contraction of the
nodal cycle /� formed by all (−2)-curves that have zero-intersection with �. The
induced morphisms q′± : (′→ P(�±) are finite.

Let us now assume that the characteristic is ? ≠ 2. Then, � � Z/2Z � -2 and
we denote by g ∈ � the non-trivial element, which is the Enriques involution on
- . As seen above, the g-action decomposes � into the direct sum �+ ⊕ �− of ±id-
eigenspaces. The inclusions �± ⊂ � give rise to embeddings Λ± := P(�±) ⊂ P(�)
and to rational maps ?± : P(�) d P(�±). Using the notations of Theorem 3.4.1,
we thus obtain a factorization

-

c

��

q̃|� | // - ′

c′

��

⊂ // P5

?±

��
(

k // (′
q′± // P(�±)

with q± = q′± ◦k. As seen in Theorem 3.4.1, the map c′ : - ′→ (′ is a�-torsor, that
is, the fixed-point free Enriques involution g induces a fixed-point free involution g′
on - ′.

The equations cutting out - are very special.More precisely,we have the following
result.

Theorem 3.4.5 Let ( be an Enriques surface in characteristic ? ≠ 2, let � be a
nef divisor with �2 = 4 and Φ(�) = 2, let c : - → ( be the K3-cover, and let
g : - → - be the covering involution. Let � = �+ ⊕ �− and q̃ |� | : - → - ′ ⊂ P(�)
be as above. Then, there exist 3-dimensional linear subspaces #± of (2�± and an
isomorphism W : #+ → #− such that

- ′ =
⋂
@∈#+

+ (@ + W(@)) ⊂ P(�). (3.4.3)

Proof The covering involution g : - → - decomposes � = �0 (-, c∗O( (�)) into
±id-eigenspaces � = �+ ⊕ �− of the induced g-action. In particular, we obtain a
g-action on P(�) and the induced g-action on Λ± = P(�±) is trivial.

Let # be the kernel of the restriction map

(2� = �0 (
P(�),OP(�) (2)

)
→ �0 (- ′,O- ′ (2)) ,

which defines the base locus of the net of quadrics in P(�) vanishing on - ′ =
q̃ |� | (-), see also (3.4.2). The g-action on � induces an action on (2� , which
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decomposes into two eigensubspaces of dimensions 12 and 9 with eigenvalues 1 and
−1, respectively. More precisely, we can decompose it as

(2� = ((2�)1 ⊕ ((2�)−1 =
(
(2�+ ⊕ (2�−

)
⊕ (�+ ⊗ �−) .

Next, we choose coordinates G0, G1, G2 in �+ and coordinates H0, H1, H2 in �−.
Then, the quadrics G2

8
, G8G 9 , H

2
8
, H8H8 are a basis of ((2�)+ and the G8H 9 are a basis

of ((2�−)−1. We know that # is contained in either ((2�)1 or ((2�)−1, see the
discussion around (3.4.2). If it is contained in ((2�)−1, the base-locus contains the
planes G0 = G1 = G2 = 0 and H0 = H1 = H2 = 0, and hence, it is reducible. So we
obtain that # ⊂ ((2�)1. Thus, we can find an injective map # → (2�+ ⊕ (2�− such
that its composition of with the projections onto each factor is injective (otherwise,
|# | contains a quadric with singular locus of dimension ≥ 2, in which case the base
scheme - has a singular point on it). Let #± be the images of the compositions
W± : # → #±. We define W to be W− ◦ W−1

+ and the assertion follows. �

For the future use, let us note the following.

Proposition 3.4.6 Suppose that q̃� : - → - ′ is an isomorphism, or, equivalently,
that the surface - ′ given by the equations (3.4.3) is smooth. Then, the two nets of
conics |#± | have no base points.

Proof Seeking a contradiction, assume that one of the nets |#± | has a base point,
say, G = [{] with { ∈ �∨± . Without loss of generality, we may assume that { ∈ �+.
Thus, there exists a conic + (@) in the net that has a singular point at G. Then, the
point [({, 0)] ∈ P(�) = P(�+ ⊕ �−) is a singular point of all quadrics + (@ + W(@)).
Thus, - ′ contains a base point of the net |# | of quadrics with base locus - ′. Since
P(�±) consists of fixed points of the involution g′ and g′ acts freely on - ′, we obtain
a contradiction. �

Consider the Veronese maps

v± : �± → (2�± ⊂ �0 ((,O( (2)), B ↦→ B2 := B ⊗ B.

Both spaces (2�± are 6-dimensional linear subspaces of �0 ((,O( (2)), which is 9-
dimensional. Therefore, their intersection is of dimension ≥ 3 and we can choose a
3-dimensional subspace ! of this intersection. Considering it as a subspace of (2�±,
it defines a 3-dimensional linear space of quadratic forms on �∨± and thus, a net # ′±
of conics in P(�±). Moreover, ! defines a canonical bĳection W′ : # ′+ → # ′−. The
so-constructed triple (# ′+, # ′−, W′) is similar to the triple (#+, #−, W) from Theorem
4.7.2. In particular, it allows us to introduce a 3-dimensional linear space # ′ of
quadratic forms in �∨ and a K3-like complete intersection of three quadrics

. :=
⋂
@∈# ′+

+ (@ + W′(@)) . (3.4.4)

Of course, one expects that (#+, #−, W) = (# ′+, # ′−, W′) and thus, . = - ′. This is
indeed true and we will see this in Remark 3.4.9 below.
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The maps q± : ( → P(�±) coincide with q |� | and q |�+ ( | , respectively, and
thus, the pre-images of lines are divisors in |� | and |� +  ( |, respectively. Thus,
the pre-images of double lines are divisors of type 2�, 2� ′ ∈ |2� |, where � ∈ |� |,
or � ′ ∈ |� +  ( |. Using the definition of the Veronese map, we identify |! | with a
non-complete linear subsystem of |2� |.

Proposition 3.4.7 Consider the maps U± : P(�±) → P(!) given by the linear system
of conics |# ′± | identified with |! |. Then, the map q+ × q− : ( → P(�+) × P(�−) is
a morphism that is birational map on its image. This image coincides with the fiber
product of the maps U+ and U−. In other words, the commutative diagram

(

q−
��

q+ // P(�+)

U+

��
P(�−)

U− // P(!)

is a Cartesian square.

Proof The composition of the map q+ × q− and the Segre map P(�+) × P(�−) →
P(�+ ⊗ �−) is defined by the linear system |2� +  ( |. Since Φ(�) = 2, we find
Φ(2� +  () = 4 and thus, by Theorem 2.4.16, the composition is a morphism
that is birational onto its image. Let q : ( → |!∨ | = P(!) be the map given by a
non-complete linear system |! | ⊂ |2� |. It follows from the definitions above that
q = U+ ◦ q+ = U− ◦ q−. Thus, the diagram in the assertion is commutative. The
verification that the square is Cartesian is straightforward and we leave it to the
reader. �

Next, consider the variety of secant lines ℓB ⊂ P(�) with B ∈ (, joining pairs
of points (G ′, g′(G ′)) on - ′. Obviously, it is birationally equivalent to (. Since each
line is invariant with respect to the involution g′, there are two fixed points of g′ on
ℓB . Since - ′ does not intersect P(�±), one fixed point must be in P(�+) and another
one in P(�−). This gives rise to a map

] : ( → P(�+) × P(�−), B ↦→ (ℓB ∩ P(�+), ℓB ∩ P(�−)) (3.4.5)

that factors over ( → (′. We have the following relation of y relation to the maps
in Proposition 3.4.7, the K3-cover - → ( and the linear projections ?± : P(�) d
P(�±).

Proposition 3.4.8 Themorphism ] coincideswith q+×q−.Moreover, the composition

-
q̃|� |−→ P(�)

?+×?−
d P(�+) × P(�−)

factors through the projection c : - → ( and the induced map ( → P(�+) × P(�−)
also coincides with ] and q+ × q−.
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Proof If 0 ∈ P(�−), then (?+ ◦ q̃ |� |)−1 (0) is equal to the intersection of the 3-
dimensional subspace %0 spanned by P(�−) and 0 with - . Let !0 be the pencil of
quadrics in |# | vanishing in the point 0. For every point G ∈ ?−1

+ (0) every quadric
in !0 vanishes in G and 0. Since �+ and �− are orthogonal with respect to all
polar symmetric bilinear forms associated with quadratic forms on # , we conclude
that all quadrics in !0 contain the line G, 0. In fact, it follows from the equations
of - that the restriction of & ∈ !0 to %0 is the quadratic cone with vertex at 0
and its intersection with the plane P(�−) is a conic from the net #−. Thus, we can
identify !0 with a pencil of conics in #−. Similarly, we can project G to a point
1 ∈ P(�−) from P(�+) and conclude that the line G, 1 is contained in !1 . The map
?+ × ?− : - → P(�+) × P(�−), G ↦→ (0, 1) is obviously invariant with respect to
g and thus, its fiber over (0, 1) contains the two points c−1 (c(G)). Hence, the line
joining these points must coincide with the lines G, 0 and G, 1. This shows that the
map ] coincides with the map (?+, ?−). Also, our identification of !0 (resp. !1)
with the pencil of conics in #+ (resp. (#−)) with base point 0 (resp. 1) shows that ]
coincides with the map q+ × q−. �

Remark 3.4.9 It follows from the proof and Proposition 3.4.7 that the triples
(#+, #−, W) and (# ′+, # ′−, W′) coincide and thus, the surface . from (3.4.4) is equal
to - ′.

We now come back to the nets #± of conics in P(�±). Quite generally, the
discriminant curve Δ of a base-point-free net of conics is a plane cubic curve. The
classification of such nets and their discriminant curves can be found in Example
7.2.10 in Volume II: up to projective equivalence, there are four families. The curve
Δ is nonsingular if and only if the net does not contain double lines, that is, the net of
conics is regular. This follows from this classification or from the description of the
tangent space of the discriminant variety of quadrics in P=, see, for example [177,
Example 1.2.3]. Quite generally, if � is a nonsingular (resp. one-nodal) plane cubic
curve, then it follows from Plücker’s formulas (see, for example, [177, Section 1.2.3])
that the dual curve�∗ is a curve of degree 6 (resp. 4) with 9 (resp. 3) ordinary cusps.
Also, if � is two-nodal, then �∗ is nonsingular cubic curve and if � is three-nodal,
then �∗ is a set of three points. In any case, we define �∗∗ to be the union of �∗ with
the double lines corresponding to the pencils of lines through the singular points.
Then, �∗∗ will be a plane curve of degree 6, which is non-reduced if � is singular.

Theorem 3.4.10 Let ( be an Enriques surface in characteristic ? ≠ 2 and let � be
a nef divisor with �2 = 4 and Φ(�) = 2. Then, the maps

q |� | : ( → P(�+) and q |�+ ( | : ( → P(�−)

are morphisms that factor through the birational map ( → (′ that blows down the
nodal cycle /� (the curves of ( that have intersection number zero with �) and a
finite morphisms of degree 4

q± : (′ → P(�±).
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The branch locus of q± is equal to the pre-image of the curve Δ∗∗± , where Δ± is the
discriminant curve of the net of conics |#± | under the map |P(�±) | → |#± | given
by the net. If this cubic curve is nonsingular, it is a curve of degree 12. In general, it
has 36 cusps lying on a plane sextic.

Proof It follows from Proposition 3.4.7 that the branch curve of the map q± : ( →
P(�±) is the pre-image of the branch curve of U∓ on P(�±). The discriminant curve
Δ± of the net of conics |#± | parametrizes singular conics of the net. A conic in the
net is the pre-image of a line in P(�±). It is singular if and only if it is tangent to Δ±
or passes through a singular point. Thus, the branch curve of U± coincides with Δ∗∗± .
Assume that Δ± is nonsingular. Then, Δ∗∗± = Δ∗± is a curve of degree 6 with 9 cusps.
Since the pre-image of a line in P(!) is a conic in P(�±), the degree of the branch
curve is equal to 12. The pre-image of a cusp of Δ∗± consists of 4 cusps, unless they
are on the branch locus of U∓. The 9 cusps of a nonsingular cubic lie on a cubic
curve. Its pre-image under U∓ is a curve of degree 6. �

Remark 3.4.11 An intersection point of the plane cubics Δ+ and Δ− corresponds to a
quadric & that is the join of a singular conic in P(�+) and P(�−), hence it has rank
≤ 4. Since the base locus of the net is irreducible, this easily implies that Δ+ and Δ−
have no common irreducible components and hence, intersect in 9 points, the base
points of the pencil of cubic curves spanned by Δ+ and Δ− (some of them could be
infinitely near base points). We also see that all base points are simple base points
since otherwise, we find a reducible quadric in the net.

The quadric& contains two pencils of 3-dimensional subspaces and the restriction
of the net of quadrics N to such a 3-dimension subspace is a quartic curve of genus
one. This defines two genus one pencils |�1 | and |�2 | on - , which intersect in 4
points. Moreover, �1 + �2 is the divisor class of a hyperplane section. Both pencils
are invariant under the involution g and give rise to genus one pencils |2�1 | and
|2�2 | on (. These satisfy �1 ·�2 = 2 and |�8 | is the pre-image of |2�8 |. This shows
that a choice of an intersection point @ of Δ+ and Δ− defines a representative of the
divisor class � as a sum of two genus one curves intersecting with multiplicity 2,
compare also Proposition 2.6.6, case (3) with : = 1.

Remark 3.4.12 Let . ′ be the double cover of the plane |# | branched along the
discriminant curve Δ = Δ+ ∪ Δ− and let . → . ′ be the minimal resolution of
singularities. By the previous remark, all singular points of Δ are simple singular
points, hence a minimal resolution . of . ′ is a K3 surface that is isomorphic to the
moduli space of rank 2 simple sheaves on - with Mukai vector (2, 21 (O- (1)), 2),
see [526, Example 0.9]. This is an example of a Fourier–Mukai transform between
- and . . Moreover, if - contains a smooth and rational curve, then - is isomorphic
to . , see [177, Lemma 10.3.1].

Finally, we assume that the characteristic of the ground field is ? = 2 and that ( is
a -2-surface. In particular, the K3-cover c : - → ( is étale, - is a K3 surface, and
there exists an involution g on - with quotient (. We keep the previous notations,
but since l( � O( , the maps q+ and q− coincide and we denote them simply by q.
We set �+ := c∗ (�0 ((,O( (�))) ⊂ � = �0 (-, c∗O- (�)) and note that the target
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of the map q is the space P(�+). The map q̃ : - → - ′ ⊂ P(�) is birational onto its
image and the composition q ◦ c : - → P(�+) is the projection from |�⊥+ |.

The involution g on - extends uniquely to a linear involution g̃ of � , which has
�+ as its invariant part. Thus, the fixed locus of g in the space P(�) where - ′ lies
is equal to one plane P(�⊥+ ). Since g extends to a fixed-point free involution g′ on
- ′, we conclude P(�⊥+ ) ∩ - ′ = ∅. The Jordan normal form of the linear involution
g̃ consists of three Jordan blocks of size 2 × 2. We can thus choose coordinates
(G0, G1, G2, H0, H1, H2) in � such that g is given as follows:

g : (G0, G1, G2, H0, H1, H2) ↦→ (G0, G1, G2, G0 + H0, G1 + H1, G2 + H2).

The space of g-invariant quadratic forms is spanned by

G2
8 , G8G 9 , H

2
8 + H8G8 , G8H 9 + G 9 H8 ,

see also Lemma 1.6.7. Thus, the net # of quadrics vanishing on - is generated by
three quadrics + (@: ), : = 0, 1, 2, which are of the form

@: = @′: (G0, G1, G2) +
2∑
8=0

U
(:)
8
(H2
8 + H8G8) +

∑
0≤8< 9≤2

V
(:)
8 9
(G8H 9 + G 9 H8) = 0 .

Its restriction to |�⊥+ | is the net of conics generated by the three conics + (@′
:
),

: = 0, 1, 2.
Let 0 ∈ P(�+) and let %(0) be the pre-image of 0 under the projection P(�) →

P(�+). Then, the fiber of the map - → P(�+) is equal to the intersection - ∩ %(0).
The restriction of |# | to %(0) can be written in the form

&(C; 0) = �(C; 0)I2 +
2∑
8=0

(
�8 (C)H2

8 + �8 (C; 0)H8I
)
= 0,

where �(C; 0) is a bihomogeneous form of degree 1 in C and degree 2 in 0, where the
�8 (C) are linear forms in C, and where the�8 are bilinear forms in C, 0. The base locus
of &(C; 0) is not reduced if and only if there exists a singular quadric with singular
point inside the base locus. The quadric &(C; 0) is singular if and only if the partial
derivatives

m&

mH8
= �8 (C; 0)I and

m&

mI
= �8 (C; 0)H8

have a common zero at a point satisfying &(C; 0) = 0. Since - ′ ∩ P(�+) = ∅, we are
interested only in singular points with I ≠ 0. Such a point must satisfy �8 (C; 0) = 0.
Its singular locus is the plane

√
�(C; 0)I +∑2

8=0
√
�8H8 = 0. The quadrics of the net

|# | restrict to a pencil of conics in this plane and hence, they always have a common
point. This shows that the branch locus of q consists of the points 0 ∈ P(++) such
that the three lines �8 (C; 0) = 0 in the plane |# | are concurrent. Since the �8 (C; 0)
depend linearly on C, the branch locus is either a plane cubic curve or the whole
plane. The latter happens if and only if the map q is inseparable.



3.5 Birational Maps 351

3.5 Birational Maps

Let � be a nef and big divisor with �2 = 2= on an Enriques surface ( and let
q |� | : ( d P= be the associated rational map. We classified the possibilities for
the degree of q |� | (if finite) and the image (′ = q |� | (() in Proposition 3.1.1. In
the previous sections, we studied the case where q |� | is generically finite of degree
greater than 1. In this section, we will assume that deg q |� | = 1, that is, q |� | defines
a birational map from ( onto its image (′. Of course, this is the case for almost all
polarizations. We will, therefore, only discuss three cases in some detail:

1. Enriques’ sextic model (′ ⊂ P3, which is non-normal,
2. the Fano model (′ ⊂ P5, and
3. the Mukai model (′ ⊂ P9.

Quite generally if q |� | : ( d (′ is a birational (possibly rational) map, then we
have Φ(�) ≥ 2 by Corollary 2.6.5 and then, by Theorem 2.4.14, the linear system
|� | has no base points, that is, q |� | is a morphism.

Let us recall from Theorem 2.4.16 and Proposition 3.1.1 that if � is a big and
nef divisor with Φ(�) ≥ 3, then �2 = 2= ≥ 10 and q |� | defines a birational
morphism ( → (′ ⊂ P=. More precisely, (′ is a normal surface with at worst
rational double point singularities and ( → (′ is equal to the contraction morphism
of all (−2)-curves on ( that have zero-intersection with �.

If � is a big and nef divisor with Φ(�) = 2, then � = 2= ≥ 4 and if q |� | is
birational onto its image in P=, then = ≥ 3, that is, we have �2 ≥ 6. Since the image
(′ = q |� | (() may not be a normal surface, we let (̄ be the normalization of (′ and
then, ( → (′ factors through (̄. If �2 ≤ 8, then it follows from the description of
linear systems in Section 2.6 that the only cases where q |� | could be birational onto
its image are the cases where |� | = |� ′+ ( |, where |� ′ | is a bielliptic linear system
and  ( ≠ 0. Then, q |� | is birational onto a non-normal surface of degree 6 (resp. 8)
in P3 (resp. P4) if �2 = 6 (resp. �2 = 8).

Let us begin with the case �2 = 6. This leads to Enriques’s original construction
of an Enriques surface as a non-normal sextic surface in P3 passing doubly through
the edges of the coordinate tetrahedron, see also Example 1.6.2. We note that in
Section 1.6, we also encountered a birationally equivalent model: using a suitable
Cremona transformation, Enriques’ examples can be transformed into non-normal
quintic surfaces in P3, see Example 1.6.4. To describe the non-normal sextic models
in detail, we will use the notation from Proposition 2.6.7, where we described nef
divisors � with �2 = 6. We start with the generic case.

Theorem 3.5.1 Let ( be an Enriques surface with  ( ≠ 0 and let � = �1 + �2 + �3
be a nef divisor with Φ(�) = 2 as in case 1 of Proposition 2.6.7. Suppose that
neither |� | nor |� +  ( | is a bielliptic linear system.

Then, (′ = q |� | (() ⊂ P3 is a surface of degree 6. Its singular locus consists of
rational double points and 6 lines, which are the double locus of the union of four
linearly independent planes in P3.

Moreover, the surface (′ is projectively equivalent to a surface with equation
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C0C1C2C3&(C0, C1, C2, C3) + C21C
2
2C

2
3 + C

2
0C

2
2C

2
3 + C

2
0C

2
1C

2
3 + C

2
0C

2
1C

2
2 = 0,

where & is a homogeneous quadratic form. The surface (′ is singular along the six
edges C8 = C 9 = 0 of the coordinate tetrahedron in P3.

Proof Since � · �8 = 2, the restriction of |� | to any the genus one curves �8 (resp.
� ′
8
) defines a map of degree 2 onto a line ℓ8 (resp. ℓ′8 ) in P

3. Since � ′
8
∼ �8 +  ( , we

have
�1 + �2 + �3 ∼ � ′1 + �

′
2 + �3 ∼ � ′1 + �2 + � ′3 ∼ �1 + � ′2 + �

′
3.

This shows that among the planes in P3 corresponding to divisors from the linear
system |� | there are four planes �1, . . . , �4 that cut out the triples of lines

ℓ1 + ℓ2 + ℓ3, ℓ′1 + ℓ
′
2 + ℓ3, ℓ′1 + ℓ2 + ℓ′3, and ℓ1 + ℓ′2 + ℓ

′
3. (3.5.1)

Let us show that these four planes are linearly independent or, equivalently, their
intersection is empty. Suppose they are linearly dependent. Two of the planes contain
the line ℓ1 and the other two contain the line ℓ′1. This implies that the lines ℓ1 and ℓ′1
intersect, hence they span a plane. It follows that |�−�1−� ′1 | = |�2+�3−�1+ ( | ≠ ∅.
Applying Proposition 3.3.1, we conclude that the linear system |� + ( | is bielliptic,
which contradicts our assumptions.

It remains for us to find the equation Φ6 (C0, C1, C2, C3) = 0 of the sextic surface (′.
After choosing coordinates in P3, we may assume that the planes are the coordinate
hyperplanes C8 = 0. Since the line C8 = C 9 = 0 is a double line of the surface, each
monomial entering in Φ6 is divisible by one of the monomials C8C 9 , C28 , C

2
9
. A linear

combination of monomials divisible by C0C1C2C3 is equal to C0C1C2C3&(C0, C1, C2, C3),
where & is a homogeneous quadratic form. A monomial that does not contain, say
C3, must be of the form G2

0G
2
1G

2
2. Each such monomial should enter with nonzero

coefficient, otherwise the polynomial is reducible. After rescaling the variables, we
may assume that the coefficients at monomials of type G2

0G
2
1G

2
2 are equal to 1. This

shows that Φ6 is as claimed. �

Next, we consider degenerate cases. They can only appear if the surface ( is nodal,
that is, if it contains smooth rational curves. As we will see later, a general surface (in
the sense of moduli) is unnodal. First, we continue to assume that |� | = |�1+�2+�3 |
is not bielliptic, but allow |� +  ( | to be bielliptic. The difference here is that all
the planes �8 intersects at one point and that all the lines ℓ8 pass through this point.
The 6 lines are the intersection lines �8 ∩ � 9 . Arguments similar to the ones in the
previous proof shows that the equation of (′ = q |� | (() is projectively equivalent to

C0C1C2 (C0 + C1 + C2)&(C0, C1, C2, C3) + 01C
2
1C

2
2 (C0 + 02C1 + C2)2 + 02C

2
0C

2
2 (C0 + C1 + C2)

2

+ 03C
2
0C

2
1 (C0 + C1 + C2)

2 + 04C
2
0C

2
1C

2
2 = 0.

Here, we can only scale the coordinates C0, C1, C2 simultaneously. Also, we can use
transformations C3 ↦→ UC3 + VC2 + WC1 + XC0. The coefficient at C23 in & is not equal
to zero for otherwise the surface has a point [0, 0, 0, 1] of multiplicity 5, in which
case the surface would be rational. If the characteristic satisfies ? ≠ 2, then we can
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use the change of C3 to transform & to the form &1 (C0, C1, C2) + C23 . In this case, the
equation of the sextic acquires the form

C0C1C2 (C0 + C1 + C2) (&1 (C0, C1, C2) + C23) + 01C
2
1C

2
2 (C0 + 02C1 + C2)2 + 02C

2
0C

2
2 (C0 + C1 + C2)

2

+ 03C
2
0C

2
1 (C0 + C1 + C2)

2 + C20C
2
1C

2
2 = 0. (3.5.2)

From this, we see that these surfaces depend on 9 parameters, whereas there are
10 parameters in the general case from Theorem 3.5.1. This is consistent with the
moduli dimensions.

Second, we assume that the linear system is of the form |�1 + 2�2 + ' | as in case
2 from Proposition 2.6.7. The curves �1, �

′
1, �2, �

′
2 are mapped to the double lines

ℓ1, ℓ
′
1, ℓ2, ℓ

′
2 of the sextic surface (′. The curve '1 is blown down to a point % ∈ (′.

Since �2, �
′
2 intersect ', the lines ℓ2, ℓ

′
2 intersect at %. Also, since the restriction of

|� | to �2 contains the divisor �1∩�2 and '∩�2, hence the intersection point �1∩�2
is mapped to %. Similarly, we find that the intersection point �1 ∩ � ′2 is mapped to
%. Thus, the four lines ℓ8 , ℓ′8 intersect at %. They are not coplanar because the linear
system |�−�1−� ′1−�2−� ′2 | = |'−�1 | is empty. However, |�−�2−� ′2−�

′
1 | = |' |

is not empty and thus, the lines ℓ2, ℓ
′
2, ℓ
′
1 are coplanar. The plane spanned by ℓ1, ℓ2

(resp. ℓ′1, ℓ
′
2) cuts out the line ℓ2 (resp. ℓ′2) with multiplicity 4. The plane spanned by

ℓ1, ℓ
′
1 cuts out additionally a conic equal to the image of a curve with the divisor class

�−�1−� ′1 = 2�2−�1 +'+ ( . The normalization of the surface is always singular
at the pre-image of the point %. In this case, the equation of the sextic surface is of
the form

(C20 + 0C
2
1)C

4
2 + 1C0C1

(
C22&(C0, C1, C3) + C0C1 (C0 + C1)

2
)
= 0, (3.5.3)

where & is a homogeneous quadratic form. If ? ≠ 0, we can additionally reduce &
to the form @(C0, C1) + C23 . In this case, the equations of the lines are

ℓ1 : C0 = C1 = 0,
ℓ′1 : C2 = C0 + C1 = 0,
ℓ2 : C2 = C0 = 0,
ℓ′2 : C2 = C1 = 0.

Here, the double locus of the sextic surface consists of 4 lines and two lines that are
infinitely near to ℓ2 and ℓ′2.

Finally, we assume that the linear system is of the form |� | = |3� + 2'1 + '2 |,
see Case 4 of Proposition 2.6.7. In this case, we have two coplanar lines ℓ, ℓ′, which
are the images of the curves �, � ′. Their intersection point is the image of the curve
'1 + '2. Let C0 = 0 be the hyperplane corresponding to the divisor 3� + 2'2 + '1
and C1 = 0 be the hyperplane corresponding to the divisor 2� ′ + � + 2'2 + '1. They
intersect along the line ℓ, which we may assume to be given by C0 = C1 = 0. We may
also assume that the equation of ℓ′ is C1 = C2 = 0. Then, the equation of the sextic
surface (′ can be reduced to the form
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G6
1 + C0

(
C0C

2
1&(C0, C1, C2, C3) + C

3
0C2

)
= 0.

This finishes our discussion of non-normal sextic models of Enriques surfaces.
Now, we turn to big and nef divisors � with Φ(�) = 3. As seen above, this

implies �2 ≥ 10. A nef divisor class � with �2 = 10 andΦ(�) = 3 is called a Fano
polarization. Its numerical class ℎ10 = [�] ∈ Num(() is called a Fano numerical
polarization

The image (′ = q |� | (() in P5 is called a Fano model of the Enriques surface (.
By Corollary 1.5.4, there are two , (Num(())-orbits of vectors of norm 10 and

only the orbit that contains 80 satisfiesΦ = 3. Moreover, it also follows from Corol-
lary 1.5.4 that the class 3ℎ10 is the sum over an isotropic 10-sequence ( 51, . . . , 510)
(see Section 1.5. We will prove in Section 6.1 of Volume II that the isotropic se-
quence must be a canonical isotropic sequence in the sense that it contains a certain
number 2 of nef classes 581 , . . . , 582 and that every other 5 9 is obtained from some
58: by adding a chain of smooth rational curves. Thus, we obtain the following.

Lemma 3.5.2 Let ℎ10 = [�] be a Fano numerical polarization on an Enriques
surface (. Then,

3ℎ10 = 51 + · · · + 510, (3.5.4)

for some canonical isotropic 10-sequence ( 51, . . . , 510). Moreover, ℎ10 lies in the
, (Num(())-orbit of 80 in the notation Section 1.5.

We note that the isotropic 10-sequence ( 51, ..., 510) consists of nef classes (we
say that non-degenerate in this case) if and only if � is ample. In the case where the
58’s are nef numerical divisor classes, they are uniquely defined by ℎ10 since they
are characterized among nef classes by the property that ℎ10 · 58 = 3. In other words,
the restriction of the genus one pencil |2�8 | with [�8] = 58 to any smooth curve �
with [�] = ℎ10 is the gonality pencil, that is, a linear system of type 61

3
: a pencil on

a curve of minimal possible degree 3.
Let |� | be a Fano polarization of an Enriques surface such that q |� | (() is not

contained in a quadric. By Theorem 3.1.8, the embedding q |� | (() = (′ ⊂ P5

is projectively normal. Therefore, (′ is a scheme-theoretical intersection of 10 =

ℎ0 (OP5 (3)) − ℎ0 (O( (3�)) cubic hypersurfaces. Assume moreover that � is ample
so that the isotropic sequence ( 51, . . . , 510) is non-degenerate. Note that the image of
any curve representing one of the vectors 58 in (3.5.4) is a curve of degree 3, which
spans a plane inside P5 = |� |∗. Thus, a choice �1, . . . , �10 of representatives of
( 51, . . . , 510) defines an ordered sequence of 10 planes (Λ1, . . . ,Λ10). If � −�8 −�9
is nef, then ℎ0 (� − �8 − �9 ) = 1 and we conclude that Λ8 ∩Λ 9 = �8 ∩ �9 is a point.
Assume ( ≠ 0 and let |�8+ ( | = {� ′8 }. Then, (� ′1, . . . , �

′
10) defines another ordered

sequence of 10 planes (Λ′1, . . . ,Λ
′
10). Since ℎ

0 (� − �8 − � ′9 ) = 1, we conclude that
Λ8 ∩Λ′9 is a point if 8 ≠ 9 . We will prove later in Proposition 7.10.3 in Volume II that
Λ8 ∩Λ′8 = ∅ unless q |� | (() lies on a quadric. We call the two 10-uples (Λ1, . . . ,Λ10)
and (Λ′1, . . . ,Λ

′
10) the double-ten of planes associated with a Fano polarization.
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Another interesting polarization is the following: a nef divisor class � with
�2 = 18 andΦ(�) = 4 on an Enriques surface ( is called aMukai polarization. We
will call the image (′ = q |� | (() in P9 a Mukai model of the Enriques surface (.

Lemma 3.5.3 Let v ∈ (E10)18 with Φ(v) = 4. Then v belongs to the , (E10)-orbir
of the vector

v1 = 82 = 2� − f1 − f2

in the notation from Section 1.5.

Proof It follows from the intersection matrix of the fundamental weights given in
Proposition 1.5.3 that the only positive integral linear combination of them with
norm 18 is equal to 82 or 87 +810. It follows that there are two, (Num(())-orbits
of vectors of norm 18. These are represented by the two vectors

v1 = 82 = 2� − f1 − f2 and v2 = 87 + 89 = f1 + f2 + f3 + 2f10.

It is easy to see that Φ(v2) = 3 and we claim that Φ(v1) = 4. Set

g8 = � − f8 − f10, 8 = 1, . . . , 9.

Then, we find g8 · g 9 = 1− X8 9 , and
∑

g8 = 9�− (f1 + · · · + f9) − 9� = 6�− 8f10. Let

v :=
1
2
(g1 + · · · + g9) = 3� − 4f10.

It is clear that v2 = 18 and Φ(g1 + · · · + g9) = 8, hence Φ(v) = 4. Thus, v
lies in a , (E10)-orbit different from the , (E10)-orbit of v2. This implies that
Φ(v1) = Φ(v) = 4. �

Note that replacing one g8 with g−8 = h − g8 gives an isotropic 9-sequence
(g1, . . . , g−8 , . . . , g10) with

g1 + · · · + g−8 + · · · + g10 = 2v − g8 + (h − g8) = 2v − 2g8 + h

which is not divisible by 2 in E10. It can be extended to an isotropic 10-sequence.
It follows from Proposition 6.1.1 in Volume II that there are two , (E10)-orbits

of isotropic 9-sequences. One of them represents isotropic sequences that can be
extended to an isotropic 10-sequence. The sum of the vectors in this sequence is
not divisible by 2. The isotropic sequence (g1, . . . , g9) in the proof of the previous
lemma represents the other orbit.

Thus, if � is a Mukai polarization and ℎ18 = [�], we can write

2ℎ18 = 61 + · · · + 69, (3.5.5)

where (61, . . . , 69) is a canonical isotropic 9-sequence that cannot be extended to a
canonical isotropic 10-sequence. If � is ample, then all classes 68 are nef.

Since Φ(�) = 4, the linear system |� | defines a birational morphism q� : ( →
(′ = q |� | (() ⊂ P9, where (′ is a normal surface with at most rational double points
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as singularities, see Proposition 3.1.1. Note that the image of a divisor �8 representing
68 is a curve of degree 4 spanning a 3-dimensional subspace Λ8 . Similar to the case
of a Fano model, we obtain a sequence (Λ1, . . . ,Λ9) of 3-dimensional subspaces
in P9. Since (� − �8 − �9 )2 = 4, we conclude that any pair Λ8 ,Λ 9 , 8 ≠ 9 , spans a
codimension 3 subspace in P9 instead of a codimension 2 subspace, which would be
the expected codimension. Since �8 ∩ �9 = 1, we obtain that Λ ∩ Λ 9 is a point. If
� − 2�8 is nef and  ( ≠ 0, then ℎ0 (� − �8 − � ′8 ) = 2, and we obtain a double-nine
of 3-dimensional subspaces (Λ1, . . . ,Λ9) and (Λ′1, . . . ,Λ

′
9) such that Λ8 ∩ Λ′9 is a

point if 8 ≠ 9 and empty if 8 = 9 .
By Theorem 3.1.8, a Mukai model of an Enriques surface ( in characteristic zero

is a scheme-theoretical intersection of 18 = ℎ0 (OP9 (2)) − ℎ0 (O( (2�)) quadrics.
We end this section by explaining a close connection betweenMukai polarizations

and Cossec–Verra polarizations discussed in Section 3.4. Keeping the notations from
the above and Section 1.5, we set

h = � − f10,

and let " be the sublattice of the Enriques lattice E10 generated by h, g1, . . . , g9.

Lemma 3.5.4 The lattice " is isomorphic to U ⊕ D8.

Proof We have h = g8 + f8 , 8 = 1, . . . , 9, so that " is generated by Δ − f10 =

−2Δ + f1 + · · · + f9, f2, . . . , f9. We note that (Δ, f1, . . . , f9) is a basis of E10 and thus,
the index of " in E10 is equal to 2. Next, the Gram matrix of " with respect to the
basis (h, g1, . . . , g9) is equal to

©«

4 2 2 2 . . . 2 2
2 0 1 1 . . . 1 1
2 1 0 1 . . . 1 1
...
...
...
...
...
...
...

2 1 1 1 . . . 0 1
2 1 1 1 . . . 1 0

ª®®®®®®®®¬
Let 3: be the greatest common divisor of all : × : minors. It is easy to see that 3: =
1, : ≤ 8. Moreover, every 9 × 9-minor except the one defined by the last 9 rows and
columns contains a row of even numbers. Thus, it is an even number. The remaining
9× 9 minor is equal to 28. This implies that 39 is even. The determinant of the Gram
matrix is equal to the square of the index of " in E10, which implies 310 = 4. Thus,
the sequence of the elementary divisors (31, . . . , 310) is equal to (1, . . . , 1, 2, 2).
This shows that the discriminant group of " is isomorphic to (Z/2Z)2. Thus, " and
U ⊕ D8 have the same discriminant groups. We now conclude by applying Nikulin’s
results. Alternatively andmore explicitly, we note that the vectors g8, g9 span a lattice
isomorphic to U and that the vectors g1 −g2, . . . , g6 −g7, g7 +g8 +g9 −h, h−g1 −g2
span a lattice isomorphic to D8. Thus, " contains a sublattice isomorphic to U ⊕ D8
and thus, must be equal to it. �
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Now, let �CV be a Cossec–Verra polarization on an Enriques surface (, that is,
�CV is a nef divisor class with �2

CV = 4 andΦ(�CV) = 2. Assume additionally that
�CV is ample. We will freely use the notations and results from Section 3.4, where
we studied these polarizations. We also assume that ? ≠ 2.

The pull-back c∗�CV to the K3-cover c : - → ( is very ample and defines an
embedding q̃�CV : - → P(�) � P5, whose image is the complete intersection of
three quadrics. Here, we have � := �0 (-, c∗O( (�CV)), and we let |# | be the net
generated by three such quadrics. We know that the discriminant curve Δ of |# | is
the union of two cubics Δ+ ∪ Δ−. We assume that the cubics intersect transversally
(this is the generic case) at 9 points ?1, . . . , ?9. Each point ?8 defines a quadric&8 in
|# |, whose singular locus is equal to a line ℓ8 . Moreover, the quadric&8 contains two
pencils of 3-planes containing ℓ8 . Fix one pencil. Then, the restriction of |# | to each
3-plane of this pencil is equal to a complete intersection of two quadrics, hence it is
a curve of arithmetic genus one. This defines an elliptic pencil |�8 | on - . Replacing
the pencil of planes with the other one, we obtain another pencil of elliptic curves
which we denote by |�−8 |. Since the union of the 3-spaces, one from each family,
spans a hyperplane, we obtain that, for each 8, the divisor class of c∗�CV in Num(-)
is equal to [�8] + [�−8]. Note that two 3-planes from different pencils intersect along
the singular line ℓ8 of &8 . Thus, �8 ∩ �−8 consists of two points on this line taken
with multiplicity 2. This agrees with the equality 8 = (c∗ (�CV))2 = 2�8 · �−8 . It
follows from formula (3.4.3) that the pencils |�±8 | are invariant under the involution
g of c : - → ( and, hence are equal to the pre-images of genus one pencils |2�±8 |
on (. In Num((), we have the equalities

[�CV] = 68 + 6−8 , 8 = 1, . . . , 9,

where 6±8 = [�±8]. Since �2
CV = 4, we find 68 · 6−8 = 2. We also have

2 = [�CV] · 6 9 = (68 + 6−8) · 6 9 = 68 · 6 9 + 6−8 · 6 9 .

Since 68 · 6 9 ≥ 1, we must have 68 · 6 9 = 6−8 · 6 9 = 1. This defines an isotropic
9-sequence (61, . . . , 69) in Num((). We allow to replace here each 68 with 6−8 . The
Gram matrix of (ℎ, 61, . . . , 69) coincides with the Gram matrix of (h, g1, . . . , g9)
from above. However, we doThus, ℎ, 61, . . . , 69 generate a sublattice ! � U ⊕ D8 of
E10 of index 2. The product of { = 1

2 (61+ · · · +69) with each vector in ! is an integer,
hence { belongs to Num((). We have {2 = 18, so it defines a Mukai polarization on
(.
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The construction of a degree 2 map from an Enriques surface onto an anti-canonical del Pezzo
surface defined by a bielliptic map (called a superelliptic map in [138]) is a birational version of the
original double plane construction of Enriques [219]. He also considered the case of a degenerate
bielliptic map defined by a degenerate* -pair of genus one pencils. The double plane constructions
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first studied by Cossec in [133] and later in all characteristics in [138].
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latter construction for a general Enriques surface was first given by Enriques [220], although he did
not prove that every Enriques surface can be obtained in this way. The construction of an Enriques
surface as a 4-fold plane in characteristic 2 seems to be new. The corresponding construction as a
quotient of a Gorenstein K3-like surface of degree 8 in P5 was first given by Liedtke [460].

The sextic model goes back to Enriques himself [219]. Its modern treatment was given in Artin’s
thesis [18]. For any Enriques surface ( with  ( ≠ 0, the construction of both degenerate and non-
degenerate sextic models was obtained by W. Lang [435]. The existence of possibly degenerate
sextic models for non extra-special surfaces of type �̃8 was shown by Lang [435].

The fact that a general Enriques surface can be embedded by a complete linear system of degree
10 in P5 was first shown by Fano [227]. The Fano model was studied also in his later paper [228].
Fano also related it to the existence of 10 genus one pencils |2�8 | with �8 · �9 = 1. The Mukai
polarization of degree 18 was introduced and studied in unpublished work of Mukai.



Chapter 4
Genus One Fibrations

In this chapter, we study genus one pencils and genus one fibrations on algebraic sur-
faces. We emphasize the situation in positive characteristic and genus one fibrations
whose generic fiber is not smooth. We study the geometry of their fibers, multiple
fibers, and their invariants, and we determine the basic invariants of surfaces with a
genus one fibration. We study fibrations admitting a section, that is, jacobian genus
one fibrations, their invariants, Mordell–Weil lattices, and Weierstrass models. We
then turn to genus one fibrations without section and the relation to their associated
jacobian fibrations, which is controlled by theWeil–Châtelet group. We finally apply
these results to the study of genus one fibrations on rational surfaces and Enriques
surfaces.

4.1 Elliptic and Quasi-Elliptic Pencils: Generalities

Let k be an algebraically closed field of arbitrary characteristic ? ≥ 0. In this section,
we first collect some generalities about fibrations of relative dimension one. If ? = 0,
then the generic fiber of such a fibration is always smooth by Bertini’s theorem, but
if ? > 0, then this need no longer be true. We will then turn to genus one fibrations,
especially from surfaces onto curves: we will classify their local geometry, such
as the degenerate fibers, as well the global geometry, such as Euler numbers and
Betti numbers. For other textbooks treating the theory of (genus one) fibrations from
surfaces onto curves, we refer to [38], [43], [513], [645], [646], and [683].

Let 5 : - → . be a proper morphism between two varieties over k. We set
. ′ := Spec 5∗O- , the affine spectrum of the O. -Algebra 5∗O- . We thus obtain a
factorization 5 = 5 ′′ ◦ 5 ′ with 5 ′ : - → . ′ and 5 ′′ : . ′→ . , the Stein factorization
of 5 . Since 5 is proper, 5∗O- is a coherent sheaf of O. -modules, which implies
that the natural morphism 5 ′′ is finite. We have 5 ′∗O- = O. ′ by construction and
thus, it follows from Zariski’s Main Theorem that 5 ′ has connected fibers. We refer
to [294, Chapter III.11] for details and proofs. We define a fibration between two
varieties - and. over k to be a proper and surjective morphism 5 : - → . such that

359
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5∗O- = O. . As just mentioned, this implies that the fibers of 5 are connected. The
dimension of the generic fiber of 5 is called the relative dimension of the fibration.

Theorem 4.1.1 Let 5 : - → . be a fibration of relative dimension one between
normal varieties - and . over an algebraically closed field k of characteristic
? ≥ 0.

1. If ? = 0, then the generic fiber of 5 is a smooth curve over the function field
k(. ). In particular, the generic fiber is geometrically integral and geometrically
regular.

2. If ? > 0 and dim(. ) = 1, then the generic fiber of 5 is a regular curve over k(. )
that is geometrically integral.

3. If dim(. ) = 1, then 5 is a flat morphism.

Proof Let �[ be the generic fiber of 5 , which is a scheme of dimension one over
k(. ) by assumption. Since all points in �[ are (non-closed) points in - , it follows
that �[ is normal. Being of dimension one, �[ is regular.

If ? = 0, then regularity implies geometric regularity and thus, �[ is smooth over
k(. ), see [497, Section 28]. In particular, �[ is geometrically regular, geometrically
integral, and geometrically reduced.

The assertion that �[ is geometrically integral if dim(. ) = 1 and ? > 0 is highly
non-trivial and we refer to [38, Theorem 7.1] or [639, Corollary 2.5] for a proof. We
also refer to [639] for a more general result, which implies the geometric integrality
of �[ if dim(. ) = 1.

If dim(. ) = 1, then - is a normal surface, whence Cohen–Macaulay and . is a
normal curve, whence regular. This implies that 5 is flat, see Proposition 0.2.4. �

Remark 4.1.2 The condition dim(. ) = 1 in assertion (2) is really needed: for exam-
ple, if ? = 2, then there do exist examples of fibrations 5 : - → (, such that - is
a smooth threefold, ( is a smooth surface, and such that every geometric fiber of 5
is non-reduced of multiplicity ? and with reduction isomorphic to P1, see [522] or
[406, Exercise IV.1.13.5]. In fact, such wild conic bundles play an important role
in the classification of Fano threefolds in positive characteristic. We refer to [639]
for some bounds on the embedding dimension of the geometric generic fiber of a
fibration in characteristic ? > 0.

Now, let 5 : - → . be a fibration of relative dimension one from a normal surface
- to a normal curve . over an algebraically closed field k of characteristic ? > 0.
Let �[ be the generic fiber of 5 , which is a geometrically integral curve over k(. )
by the previous theorem. Let �[ be the base-change of �[ to some algebraic closure
k(. ) of k(. ), that is, �[ is the geometric generic fiber of 5 . Then, we consider the
normalization morphism

a : �̃[ → �[

and thus, �̃[ is a normal curve, whence smooth over k(. ). Moreover, F :=
a∗ (O�̃[ )/O�[ is a torsion sheaf on �[ , whose support is equal to the singular
locus of �[ . More precisely, if G ∈ �[ is a closed point, then X(G) := dimk FG is zero
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if and only if G is a smooth point. If X(G) > 0, then this is the arithmetic genus of the
singular point G. The reason for this terminology is the equality

?0 (�[) = ?0 (�̃[) +
∑
G∈�[

X(G),

where ?0 (−) denotes the arithmetic genus of an integral curve. The following
theorem is a consequence of a slight generalization of Tate’s theorem of genus
change in inseparable field extensions [699].

Theorem 4.1.3 We keep the assumptions and notations and assume moreover that
? ≥ 3. Then, every singular point G ∈ �[ satisfies

? − 1
2
| X(G).

In particular, if ? > 2?0 (�[) + 1, then �[ is geometrically normal, that is, smooth
over k(. ).

Proof The fact that ?−1
2 divides

∑
G X(G) is the classical theorem of Tate [699] and

we refer to [638] and [669] for a modern treatment. The fact that each X(G) divides
?−1

2 was established in [303, Remark 2.18], also see [340, Theorem 5.7]. �

After these preparations, we now turn to fibrations of relative dimension one,
whose generic fiber is a curve of arithmetic genus one. By a genus one curve over a
field ! we mean a projective and one-dimensional scheme � over ! that satisfies

dim! �
0 (�,O� ) = dim! �

1 (�,O� ) = 1. (4.1.1)

The first condition implies that � has no embedded components and that � is
geometrically connected, that is, stays connected after any field extension. Since �
has no embedded components, it is a Cohen–Macaulay scheme and thus, admits a
dualizing sheaf l� . Serre duality then gives dim! �

0 (�, l� ) = dim! �
1 (�,O� ) =

1, and thus, there exists a nonzero section B : O� → l� . If we also assume that �
is reduced, then we obtain a short exact sequence

0 → O� → l� → F → 0,

where F is a torsion sheaf on � . Taking cohomology and using (4.1.1), we conclude
that B is an isomorphism. In particular, a reduced genus one curve is a Gorenstein
curve with trivial canonical sheaf. We will be mostly concerned with genus one
curves lying on a nonsingular projective surface over an algebraically closed field k.

A genus one curve is called an elliptic curve if it is smooth. Otherwise, we call it
a quasi-elliptic curve.

A genus one fibration is a fibration 5 : - → . between normal varieties over
a field k, such that 5 is flat and such that the generic fiber -[ is a geometrically
integral and regular genus one curve. If k is algebraically closed and. is of dimension
one, then flatness of 5 and geometric integrality of the generic fiber are automatic,
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see Theorem 4.1.1. A genus one fibration is called elliptic if -[ is smooth and
quasi-elliptic otherwise.

It follows from Theorem 4.1.3 that quasi-elliptic fibrations exist only if ? = 2, 3.
In Remark 4.4.3 below, we will give an independent proof of this fact.

By definition of a fibration, the canonical homomorphism O� → 5∗O- is bi-
jective. By general properties of morphisms of schemes, all geometric fibers are
geometrically connected and there exists an open non-empty subset* of� such that
an elliptic (resp. quasi-elliptic) 5 is smooth (resp. geometrically integral) over *,
see [269, Part III, §9].

We will be mostly concerned with the case when the base is a regular integral
noetherian scheme of dimension 1. To distinguish this case from the general one
we will re-denote the base � by �. When � is a smooth projective curve over k,
the surface - , together with an elliptic (resp. quasi-elliptic) fibration 5 : - → � is
called an elliptic surface (resp. quasi-elliptic surface).

As we saw in Section 2.2, an Enriques surface ( always admits a base point free
elliptic or quasi-elliptic pencil, which defines an elliptic or a quasi-elliptic fibration
on (. In this chapter, we will develop a general theory of genus one fibrations
5 : - → �, which, by far, exceeds our needs, but which will hopefully serve its
purpose as a convenient reference to the theory.

Unless, stated otherwise, - will be assumed regular, and the base scheme � will
be one of the following:

• Global Case: � is a smooth algebraic curve over an algebraically closed field k.
In this case, - is a smooth and irreducible algebraic surface.

• Local Case � = Spec ', where ' is a local ring of a smooth algebraic curve at
its closed point or its completion or its henselization. In the latter cases, we say
that � is strictly local.

In both cases, we will often denote by  the residue field k([) of the generic point
[ of �.

For any morphism q : . → � and a closed point C ∈ �, we denote by qC : . (C) →
SpecO�,C the base change of q under the canonical morphism SpecO�,C → �. We
call it the localization of q at the point C. Similarly, we define the strict localization
qℎC : . (C)ℎ → SpecOℎ

�,C
of q. A genus one fibration 5 : - → � is called relatively

minimal if the relative canonical sheafl-/� is nef. Each fibration admits a birational
morphism over� onto a relatively minimal fibration, which blows down (−1)-curves
in fibers over closed points. From now on, we will assume that genus one fibrations
are relatively minimal.

Let 5 : - → � be a genus one fibration and Σ be the set of closed points C ∈ �
such that the scheme-theoretical fiber -C is not smooth if the fibration is elliptic
or not irreducible if the fibration is quasi-elliptic. The fibers -C , C ∈ Σ, are called
degenerate fibers or singular fibers.

We consider a fiber -C of 5 over a closed point C as an effective Cartier divisor,
whose sheaf of ideals is equal to the pull-back of the ideal sheaf of the point C.

Since - is regular, we can identify -C with the corresponding Weil divisor and
write the fiber
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-C =
∑
8∈�

=8'8

as a linear combination of its irreducible components. The number =8 is called the
multiplicity of the component '8 . The greatest common divisor <C of the =8’s is
called the multiplicity of -C .

We denote by NSC (-) the free abelian group generated by the irreducible com-
ponents of -C inside NS(-). For effective divisors � and � on - , such that � is
supported in a closed fiber, one defines the intersection product

� · � := deg� (O- (�) ⊗ O� ),

see [151]. In particular, it equips NSC (-) with the structure of a quadratic lattice.
The next result, originally due to Kodaira and Néron, describes the structure of

possible degenerate fibers.

Theorem 4.1.4 Let -C =
∑
8∈� =8'8 be a degenerate fiber of multiplicity <. Then,

-C = <-̄C , where -̄B is:

1. either an irreducible curve with an ordinary double point or a cuspidal point,
2. or a reducible divisor, whose irreducible components define a canonical root

basis of affine type in the lattice NSC (-).

The type of -C is the type of the root basis, which is one of �̃=, �̃=, �̃6, �̃7, of �̃8. The
type determines the geometry of the fiber -C uniquely except in the following cases

1. A fiber of type �̃1 could be either the union of two components intersecting
transversally at two points (notation: type �̃1) or two components tangent at one
point (notation: type �̃∗1).

2. A fiber of type �̃2 could be either the union of three components forming a divisor
with normal crossings or the union of three components intersecting each other
transversally at the same point (notation: type �̃∗2).

The multiplicities =8/< are equal to the coefficient of the generator of the radical of
NSC with respect to the root basis. In the case �̃= all the coordinates are equal to 1.
In other cases, they are indicated by the numbers above the vertices of the Dynkin
diagrams.

The notation for the types of the fiber agrees with the notation for irreducible divisors
of canonical types from Proposition 2.2.5. From now on we choose this notation and
refer to Remark 2.2.6 for comparison with other notations of Kodaira or Néron.

Remark 4.1.5 We will see in Corollary 4.3.22 that this list is much smaller for quasi-
elliptic fibrations. If the ground field is of characteristic ? ∈ {2, 3} and imperfect,
then the classification is different, see [473] and [697].

The types �̃= are said to be of multiplicative type or semi-stable. They are the only
singular fibers for which the first Betti number 11 (-C ) is not equal to zero but rather
equal to 1. All other degenerate fibers are said to be of additive type or unstable.
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Fig. 4.1 Reducible fibers of genus one fibration

The reason for this terminology multiplicative and additive will become clear when
discussingNéronmodels in Section 4.2.Moreover, base changes of semi-stable fibers
remain semi-stable, whereas for every unstable fiber admits a finite base change that
is semi-stable. This explains this part of the terminology.

It follows from the above classification that every fiber -C is equal to <C -̄C ,
where <C is the multiplicity and where -̄C has at least one reduced and irreducible
component.

Another useful observation is that the number of components of -̄C of multiplicity
1 is equal to the order of the discriminant group of the finite root system of the affine
root system associated to -̄C . In particular, this number is equal to the determinant
of the Cartan matrix of the finite root system.

Theorem 4.1.6 Let 5 : - → � be a genus one fibration. Then

l-/� � 5 ∗L⊗−1 ⊗ O-

(∑
C ∈�

0C -̄C

)
, (4.1.2)

where L is an invertible sheaf on � that is defined by

'1 5∗O- � L ⊕ T with T = Tors '1 5∗O- .
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Moreover:

1. degL = −j(O- ) − ℎ0 (T ).
2. 0 ≤ 0C < <C .
3. The order aC of O-̄C ( -̄C ) in Pic( -̄C ) divides <C and 0C + 1.
4. <C = aC ?AC , where ? = char(k).
5. 0C = <C − 1 if and only if TC = {0}.

Proof We use the relative duality theorem. The complexl-/� [1] withl-/� placed
at degree −1 is a dualizing complex in the sense that there is an isomorphism of
functors

�� ◦ ' 5∗ � ' 5∗ ◦ �-/� , (4.1.3)

where �� = RHom(−,O� ) and �-/� = RHom(−, l-/� [1]) denote the Hom
functors in the derived categories of coherent sheaves on � and - , respectively. In
particular, for any locally free sheaf E, we have an isomorphism

5∗ (l-/� ⊗ E∨) � ('1 5∗E)∨ = H><O� ('1 5∗E,O� ). (4.1.4)

Taking E = O- , we obtain an isomorphism

5∗l-/� � ('1 5∗O- )∨ = L⊗−1. (4.1.5)

Since 5 is of relative dimension one, we have '2 5∗O- = 0, and hence, by the
base change theorem [294, Chapter 3, §7]), the fiber '1 5∗O- (C) of '1 5∗O- at a
point C is isomorphic to �1 (-C ,O-C ). For any fiber -C with ℎ1 (O-C ) = 1 we have
'1 5∗O- (C) � k(C), and hence, the generic rank of '1 5∗O- is equal to 1. Moreover,
'1 5∗O- is invertible around a point C with ℎ1 (O-C ) = 1. By Proposition 2.2.3, we
have ℎ1 (O-C ) = 1 for any non-multiple fiber. It follows that '1 5∗O- is isomorphic
(non-canonically) to L ⊕ T , where L is an invertible sheaf and T is a torsion sheaf.
The length of T at a point C is equal to ℎ1 (O-C ) − 1.

We have a canonical homomorphism of invertible sheaves on -

5 ∗L⊗−1 = 5 ∗ 5∗l-/� → l-/� ,

which is an isomorphism outside the set of multiple fibers. Tensoring withl⊗−1
-/� , we

obtain the sheaf 5 ∗L⊗−1 ⊗l⊗−1
-/� as an ideal sheaf of O- , which defines an effective

Cartier divisor �. Since both 5 ∗L and l-/� restrict to O-C at each non-multiple
fiber, we see that � is supported in multiple fibers. Since degl-/� ⊗ O-C =  - · -C
is constant and equal to zero for a non-multiple fiber, we obtain that it is equal to
zero for all C. Also, each proper irreducible component ' of -C , is a (−2)-curve
and hence, degl-/� ⊗ O' =  - · ' = 0. It follows that the divisor class [�C ] in
each fiber �C of � belongs to the radical of the sublattice of NS(-) generated by
irreducible components of the fiber, and hence �C = [0C -̄C ] for each fiber -C . This
gives us formula (4.1.2) from the assertion of the theorem.

To prove Assertion 1, we use the Grothendieck–Leray spectral sequence for the
morphism 5 and the Riemann–Roch theorem on �. They show that
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j('1 5∗O- ) = ℎ0 (T ) + degL + j(O- ) = j( 5∗O- ) − j(O- ) = j(O� ) − j(O- ),

hence
degL = −j(O� ) − ℎ0 (T ).

Let us prove Assertion 2. Let � =
∑
C �C , where �C = <C -̄C . Using (0.2.8) and

applying 5∗ to l-/� , we obtain by the projection formula

5∗l-/� � L⊗−1 � L⊗−1 ⊗ 5∗O- (�).

Cancelling L⊗−1, we get 5∗O- (�) � O� . If 0C > <C for some C, then 5 ∗O- (C) ⊂
O- (�) and hence, O- (C) ⊂ 5∗O- (�) = O� , a contradiction.

Since
O-̄C (<C -̄C ) � O-̄C ⊗ O-C � O-̄C .

we find aC |<C . By the adjunction formula, we have

O-̄C � l-/� ( -̄C ) ⊗ O-̄C � O-̄C ((1 + 0C ) -̄C ).

We conclude aC |1 + 0C , which proves Assertion 3.
We will prove the last two assertions in the next section (Lemma 4.2.10 and

Corollary 4.2.3). �

Corollary 4.1.7 Let - be a surface that admits a relatively minimal genus one
fibration. Then,

 2
- = 0.

Definition 4.1.8 A fiber -C is called wild if TC ≠ {0} and tame otherwise.

We have already noticed in the proof of the theorem that -C is wild if and
only if ℎ1 (O-C ) > ℎ1 ( -̄C ) = 1 and thus, by duality, if and only if ℎ0 (O-C ) >
ℎ0 ( -̄C ) = 1. Also, the difference is equal to the length ; (Tors('1 5∗O- )C ). We recall
from [268, (7.8.1)] that a proper flat morphism of finite type 5 : . → ) is said
to be cohomologically flat if taking 5∗ commutes with all base changes. Since
O) → 5∗ (O. ) is an isomorphism in our case, it follows that a fiber is tame if and
only if it is cohomologically flat, see also [606, Théorème 7.2.1].

In his unpublished manuscript [607], Raynaud gives a more precise computation
of the coefficients 0C in the formula for l-/� . We will reproduce it in the next
section.

Remark 4.1.9 The fact that 0C = <C − 1 if k = C was proven by Kodaira and we
refer to [43, Chapter V, Theorem 12.1] for a proof. The proof that the normal bundle
O-̄C ( -̄C ) is always of order equal to <C is [43, Chapter III, Lemma 8.3]. We will
prove in the next section that if ? > 0, then this happens if and only if -C is a tame
fiber.

Remark 4.1.10 Suppose that �1 (-,O- ) = 0. For example, - could be a rational sur-
face or a classical Enriques surface. Then, the Grothendieck–Leray spectral sequence
gives an exact sequence
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0 → �1 (�,O� ) → �1 (-,O- ) → �0 (�, '1 5∗O- ) → �2 (�,O� ) = 0.

This implies that �0 (�, '1 5∗O- ) = 0 and hence, the torsion subsheaf T is zero.
Thus, all fibers are tame and we have 0C = <C − 1 for all C ∈ �.

Let
4(/) =

∑
8≥0
(−1)8 dimQℓ �

8
ét (/,Qℓ)

be the ℓ-adic Euler–Poincaré characteristic of a scheme / of finite type over a field k,
see Section 0.10. Unless stated otherwise, we will assume that ℓ is a prime different
from ? = char(k). Straightforward computations give

4(-C ) =


0 if C ∉ Σ and 5 is an elliptic fibration,
2 if C ∉ Σ and 5 is a quasi-elliptic fibration,
1 + # Irr(-C ) if -C is not of type �̃=, and
# Irr(-C ) if -C is of type �̃=.

and

11 (-C ) =


0 if -C is of additive type,
1 if -C is of multiplicative type, and
2 if -C is smooth.

Here, Irr(-C ) denotes the set of irreducible components of -C . Next, we introduce
the wild ramification invariant of a fiber: Let a : ' → Z be a discrete valuation
ring with an algebraically closed residue field k of characteristic ? > 0, let  be its
fraction field, and let c be a generator of the maximal ideal of '. Let !/ be a finite
Galois extension of  with group �. Let '! be the integral closure of ' in !, which
is again a discrete valuation ring, and let c! be a generator of the maximal ideal or
'! We define a function 0� : � → Z via

0� (6) :=

{
−a(6c! − c!) if 6 ≠ 1,
−∑

6≠1 0� (6) if 6 = 1.

By a theorem of E. Artin, the function 0� is a character of some complex represen-
tation [658, Chapter 6], the Artin representation. If the ramification index of !/ is
prime to ?, that is, if !/ is tamely ramified, then this representation it coincides
with the regular representation and 0� is the character of the regular representation,
which we will denote by 8� . If ? divides the ramification index of !/ , that is, if
!/ is wildly ramified, then the Artin representation strictly contains the regular
representation and 0� − 8� takes zero value on elements of � of order prime to ?.
Artin used this to show that the Artin representation is rational over any ℓ-adic field
Qℓ , where ℓ ≠ ?. Next, we define a sequence of subgroups of � by setting �0 := �
and

�8 := {6 ∈ � : 0� (6) ≥ 8 + 1}, 8 ≥ 1,

and denote their orders by 48 := #�8 and 4 := 40 := #�. Then, each �8+1 is a normal
subgroup of �8 , that �/�1 is a subgroup of k∗, and that �8/�8+1 is a subgroup of
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k+ if 8 > 0. For any �-module " that is a finite abelian ℓ-group, we define

X( , ") :=
∑
8=0

48

4
dimFℓ ("/"�8 ).

One can show that the representation with character 0� − 8� is defined by some
projective Zℓ [�]-module %� and that X( , ") = dimFℓ Hom� (%� , ").

Let 5 : - → � be a fibration of relative dimension = over a global� as above. Let
'8 5∗-ℓ,- be the étale sheaves on� killed by ℓ. We chose the prime ℓ large enough so
that dimFℓ ('8 5∗-ℓ)C = dimQℓ �

8 (-C ,Qℓ) for every geometric point C of �. For any
generic point [C of the localization of � at a closed point C, the fiber ('8 5∗-ℓ,- )[C is
a module over � C , which will be trivialized over some Galois extension !C/ C , so
that we can take it as the module " from above,

XC ( 5 ; ℓ)8 := X( C , ('8 5∗-ℓ,- )[C ), (4.1.6)

as the definition of the invariant of the wild ramification.

Theorem 4.1.11 Let 5 : - → � be a fibration of relative dimension = over a global
� as above. Then

4(-) = 4(-[̄) 4(�) +
∑
C ∈�̄

(
4(-C ) − 4(-[̄) +

=∑
8=0
(−1)8XC ( 5 ; ℓ)8

)
, (4.1.7)

where �̄ denotes the set of closed points of �.

Proof First, assume = = 0. In this case, - → � is a finite cover of complete smooth
algebraic curves over k of some degree # . We have 4(-[̄) = # and 4(-C ) = # 5 −1 (C)
and we can rewrite the formula as

4(-) = # · 4(�) −
∑
G∈-̄
(4G − 1 + UG), (4.1.8)

where 4G is the ramification index at a closed point G ∈ - and where
∑
G∈ 5 −1 (C) UG =

XC ( 5 ; ℓ)0. Thus, the formula becomes the adjustment of the usual Hurwitz formula to
characteristic ?. The proof of the formula in this case can be found in [658, Chapter
VI, Proposition 7].

The case = > 0 can be reduced to the case = = 0: we first use the Grothendieck–
Leray spectral sequence for the sheaf -ℓ,- , which gives

4(-) = j(-, -ℓ) =
=∑
8=0

j('8 5∗-ℓ,- ).

Then, one shows that the constructive sheaves '8 5∗-ℓ,- are trivialized over some
finite separable extension q : - → � and coincide with the sheaves q∗ (-ℓ,- ). We
refer for the details to [604]. �
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Now, we specialize this formula to the case of genus one fibrations. First of all,
the invariants XC ( 5 ; ℓ)0 and XC ( 5 ; ℓ)2 are both equal to zero. The invariant

XC = XC ( 5 , ℓ)1

is independent of ℓ and it is zero if -C is smooth or of multiplicative type [570].
Since ('1 5∗-;,- )[C � �1 (-[C , -ℓ) � ℓ Pic(-[C ), it depends only on the fiber of
the corresponding jacobian fibration, see Section 4.3. Since the invariant of wild
ramification X( , ") does not change after a separable extension and a jacobian
fibration admits a semi-stable reduction after an extension of some degree dividing
24, it is equal to zero if ? ≠ 2, 3. If ? = 2 (resp. ? = 3), then it is always non-zero
unless the fiber is of type �̃∗2 or �̃6 (resp. �̃∗1, �̃7, �̃=), see [477, Theorem 4.1]. It
is also equal to zero if 5 is a quasi-elliptic fibration, because in this case, the sheaf
'1 5∗-ℓ,- is zero.

Corollary 4.1.12 Assume that � is global and that 5 : - → � is a genus one
fibration. Then,

4(-) =
{∑

C ∈� (4(-C ) + XC ) if 5 is elliptic,
24(�) +∑

C ∈� (12 (-C ) − 1) if 5 is quasi-elliptic.

Remark 4.1.13 In the case when 5 is smooth outside of a finite set of points, formula
(4.1.7) was proven by Deligne [152, Proposition 2.1]. There, he also shows that
X( 5 ; ℓ)8 = 0 if 8 ≠ = and that X( 5 ; ℓ)= does not depend on ℓ. The term 4(-C )−4(-[̄)+
XC ( 5 )= coincides with (−1)=−1`-/� (G), where `-/� (G) is equal to the length of the
module EGC1 (Ω1

-/� ,O- )G . For example, if - is a singular fiber of multiplicative
type of an elliptic fibration, then we have `-/� (G) = 1 at each singular point of -C
and hence, the term is equal to = = 4(-C ). In particular, we see that XC = 0 in this
case.

Let 5 : - → � be a quasi-elliptic fibration. Its generic fiber -[ contains a unique
non-smooth point, which becomes an ordinary cusp after passing to the algebraic
closure of k(�). The closure of this point in - is an irreducible reduced subscheme
ℭ of - , which we call the curve of cusps. For any C ∉ Σ, the intersection of the curve
of cusps with -C is equal to the unique non-smooth point of -C , the unique cusp.

Proposition 4.1.14 The curve of cusps ℭ is a smooth curve on - with ℭ · -C = ? =
char(^(C)). The restriction of 5 to ℭ is a purely inseparable finite cover of degree ?.

Proof It is proven in [77, Proposition 1] that ℭ intersects any irreducible fiber at its
cusp with multiplicity equal to ? ∈ {2, 3}. Since ℭ[ is equal to the closure in - of
the unique non-smooth point on the generic fiber -[ , it does not intersect any closed
fiber at its smooth point. Since the intersection number ℭ · �C is constant, we see that
ℭ must be smooth at each point (otherwise the intersection number would be larger
than or equal to 4). It is clear that the restriction of 5 to ℭ is a homeomorphism and
hence, it is an inseparable map of degree ?. �
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This proposition has the following interesting applications.

Corollary 4.1.15 The multiplicity of a multiple fiber of a quasi-elliptic fibration is
equal to the characteristic ? ∈ {2, 3}.

Corollary 4.1.16 If - is a quasi-elliptic surface, then there exists a surface . that is
ruled overℭ and a dominant morphism. → - that is generically purely inseparable
and finite of degree ?. In particular, - is a uniruled surface and supersingular in
the sense of Shioda.

Proof Let ( be a desingularization of the base-change - ×� ℭ → ℭ. The generic
fiber of ( → ℭ is a smooth rational curve, that is, ( is a ruled surface over ℭ. The
induced map ( → - is dominant, generically finite of degree ? and generically
purely inseparable. Thus, - is a uniruled and thus, supersingular in the sense of
Shioda. �

Proposition 4.1.17 Let 5 : - → � be a genus one fibration and assume that there
exists a multiple fiber -C = <C -̄C with ? - <C . Then, 5 is an elliptic fibration.
Moreover, -C is a smooth elliptic curve or a singular fiber of multiplicative type �̃=
for some =.

Proof Since the <C ≠ ?, Corollary 4.1.15 implies that 5 is an elliptic fibration.
It follows from Theorem 4.1.6 that the normal sheaf O-̄C ( -̄C ) is of order equal to

<C and thus, it is prime to ?. Using the Kummer sequence and taking cohomology,
we obtain an isomorphism

< Pic( -̄C ) � �1
ét ( -̄C , -<).

An elementary computation shows that the group on the right is non-trivial only if
-̄C is smooth or multiplicative of type �̃= for some =. (In these cases, this group is
isomorphic to (Z/<Z)2 in the former case and isomorphic to Z/<Z in the latter.) �

4.2 The Picard Group

Let 5 : - → � be a genus one fibration (global, local or strictly local) and let Pic
-/�

be the relative Picard functor. In this section, we study this relative Picard functor,
Néron models, and associated invariants. In particular, we will consider degree
homomorphisms and discriminant groups. Finally, we study non-reduced and wild
fibers in genus one fibrations and give an estimate of the torsion of '1 5∗O- .

We keep our assumption that � is a smooth curve over an algebraically closed
field or a local ring of such curve or the henselization of such a local ring. In
this case Br(�) = �2

ét (�,G<) = {0}, see [508, Chapter 4, 4.1]. It follows from
Proposition 0.9.2 that the value of the functor Pic

-/� on � is equal to the group
Pic(-)/ 5 ∗ Pic(�). For any complete curve / over a field with the set Irr(/) of
irreducible components, we let
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deg : Pic(/) → ZIrr(/ ) (4.2.1)

be the degree homomorphism that assigns to L ∈ Pic(/) the function, whose value
on an irreducible component /8 is equal to the degree of the restriction of L to /8 .
We set

Pic0 (/) := Ker(deg).
Proposition 4.2.1 Let 5 : - → � be a genus one fibration with � a strictly local
scheme with closed point C. Then, the restriction homomorphism

AC : Pic(-) → Pic(-C )

is surjective and its kernel is uniquely divisible by any integer prime to the charac-
teristic.

Proof Since � is strictly local, we have

Pic(-) � �1
ét (-,G<) � �0 (�, '1 5∗G<).

Next, the proper base change theorem asserts that ('1 5∗G<) (C) � �1
ét (-C ,G<), see

[508, Chapter 6, Corollary 2.3]. This implies the surjectivity of AC . Moreover, by
loc.cit., Corollary 2.7, the canonical homomorphism

�8ét (-, -=) → �8ét (-C , -=), 8 ≥ 0,

is bĳective for any = that is prime to the characteristic. It follows from Theorem
4.3.11 that

�2 (-,G<) � �2 (-C ,G<) = 0.

The Kummer exact sequence (0.1.6) implies that the canonical homomorphisms

= Pic(-) → = Pic(-C ), and Pic(-)/= Pic(-) → Pic(-C )/= Pic(-C )

are bĳective. This proves the assertion. �

Let us assume that � = Spec ' is strictly local and let m be the maximal ideal of
'. For all 8 > 0, we denote by '8 the artinian ring '/m8 .

For brevity of notation, we set � := -̄C so that -C = <�, where < = 30 · ?A is
the multiplicity of the closed fiber. Let -= be the closed subscheme defined by the
Cartier divisor =� with the ideal sheaf I-= = O- (−=�). By Oort’s dévissage [582],
the closed embeddings -= ↩→ -=+1 define surjective homomorphism of groups

A= : Pic◦ (-=) → Pic◦ (-=−1) (4.2.2)

with kernel isomorphic (as an abelian sheaf) to

Ker
(
�1 (-=,O-= ) → �1 (-=−1,O-=−1 )

)
= Coker

(
�0 (-=−1, l-=−1 ) → �0 (-=, l-= )

)∨
,

where l-= = l-/� (=�) ⊗ O-= is the canonical sheaf of -=.
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Proposition 4.2.2 The restriction homomorphism A= from (4.2.2) is surjective and
its kernel is either trivial or isomorphic to the additive group of k. The latter happens
if and only if l-= is isomorphic to O-= .

Proof Since -1 is an indecomposable divisor of canonical type by Proposition 2.2.3,
we have �0 (-1,O-1 ) � k. Sincel-= is of degree zero on each component of -1, we
have �0 (-1, l-= ⊗ O-1 ) is either zero or l-= ⊗ O-1 � O-1 . In the first case, A= is
an isomorphism. We have l-= (-=) � O-= (-=). This gives a short exact sequence

0 → l-=−1 → l-= → l-= ⊗ O-1 → 0.

Sincel-= ∈ Pic0 (-=), we havel-=⊗O-1 � O-1 if and only if�0 (-1, l-=⊗O-1 ) �
k. In this case, we use a commutative diagram

O-= //

��

l-= ⊗ O-=

��
O-1

// l-1 ⊗ O-1

to conclude that a non-zero section O-1 → l-= ⊗ O-1 lifts to a non-zero section of
l-= ⊗ O-= , hence l-= ⊗ O-=+1 � O-= . �

Note that the projective system (-=<)= coincides with the projective system
(-=). By Artin’s algebraization theorem [21, Theorem 3.5], we have an injective
homomorphism

Pic◦ (-) → lim←−− = Pic◦ (-=)

with dense image. It follows from above that the kernel of each map Pic◦ (-=) →
Pic◦ (-=−1) is surjective with the kernel isomorphic to the additive group of a linear
space over k. This gives another way to see Proposition 4.2.1 and it also shows that
the kernel on ?-torsion points can be very large.

The following corollary is assertion 4 from Theorem 4.1.6.

Corollary 4.2.3 Let 30 be the order of O-1 (-1) in Pic(-1) and < be the multiplicity
of the closed fiber. Then, < = 30 · ?A for some A ≥ 0 and < = 30 if ? = 0.

Proof The invertible sheaf N = O- (-1) ∈ Pic(-) is of order < and its image in
Pic(-1) is of order 30. If ? = 0, then we know that the kernels of the restriction maps
A= are vector spaces over a field of characteristic zero and hence A= is an isomorphism
on torsion subgroups. This proves that < = 30. On the other hand, if ? > 0, then the
kernel of A= is killed by ?, so the set of orders 3= ofM ⊗ O-= consists of numbers
30 · ?B (=) with non-decreasing function B(=) bounded by the multiplicity <. Since
the image of Pic(-) in lim←−− = Pic(-=) is dense, we obtain < = 30 · ?A for some A . �

At the end of this section, we will return to the study of the truncation maps
Pic(-=+1) → Pic(-=) to give an application to Theorem4.1.6 and to the computation
of the length of the torsion sheaf T of '1 5∗O- .
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Assume that � is strictly local with closed point C and generic point [. Let
Div(-)fib be the free abelian group generated by irreducible components '8 of -C .
Then, the kernel Div(-)0fib of the natural homomorphism Div(-)fib → Pic(-) is the
cyclic group Z[-C ] generated by the class of the fiber -C = <C (

∑
8 =8'8), where <C

denotes the multiplicity of the fiber. The image of Divfib (-) inside Pic(-) is equal
to the kernel Pic0 (-) of the restriction homomorphism A[ : Pic(-) → Pic(-[).

Let Divfib (-)∨ = Hom(Divfib (-),Z) be the dual abelian group and let

degC : Pic(-) → Divfib (-)∨ (4.2.3)

be the homomorphism that assigns to a divisor class � the linear function '8 ↦→
� · '8 . For any irreducible component '8 of -C of multiplicity =8 , there exists a
finite and flat (-scheme ) of degree =8 and a regular �-embedding D : ) → - , such
that ) ∩ '8 = ) ×- '8 is a point, see [606, Corollary 7.1.2]. This shows that there
exists an invertible sheaf L ∈ Pic(-), such that degC (L) is the delta-function of the
component '8 . In particular, the homomorphism degC is surjective.

Next, let
VC : Divfib (-)∨ → Z, ; ↦→ ; (-C )

be the evaluation of -C . Then, the composition VC ◦ degC assigns to � ∈ Pic(-) its
total degree, that is, the intersection number � · -C .

Next, we consider the composition

UC : Divfib (-) → Pic(-) → Divfib (-)∨, (4.2.4)

where the first map is the natural homomorphism followed by degC . Using the basis
{'8} of Divfib (-) and the induced basis of Div∨fib, the map UC is given by the matrix
('8 · ' 9 ). In the case where -C is reducible, this is the Cartan matrix of an affine root
system of type equal to the type of -C . It equips Divfib (-) with the structure of a
quadratic lattice. The kernel of UC is the cyclic group generated by -̄C , which is also
equal to the radical of the lattice. In particular,

Divfib (-) := Divfib (-)/Ker(UC ) � Im(UC )

is isomorphic to the root lattice of finite type corresponding to the affine root system
associated to -̄C . In other words, it is of type �=, �=, �= if -C is of type �̃=, �̃=, '̃=,
respectively. Moreover, it follows that

DiscrC (-) := Ker(VC )/Im(UC )

is the discriminant group of the root lattice D̄ivfib.
In the following, we review some results of Raynaud from [606] about the relative

Picard functor Pic
-/� , which we will identify with its sheafication P-/� . First, we

note that this functor is never representable by a separated group scheme unless the
fiber -C is an integral scheme. The reason is simple: assume that -C is reducible
or multiple. Then, the subgroup Pic0 (-) of Pic(-) is isomorphic to the non-trivial
group Divfib/Divfib (-)0. The restriction of P-/� (�) = Pic(-) to P-/� (-[) has
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a non-trivial kernel, from which it follows that P-/� cannot be represented by a
separated scheme.

To remedy this situation, Raynaud considers the scheme-theoretical closure E of
the zero section inside P-/� . First, we recall that for any abelian sheaf F in the flat
topology on some scheme ( and every subsheaf � of F[ , the scheme-theoretical
closure �̄ of � in F is an abelian subsheaf of F , which is generated by morphisms
D : / → F , where / is a flat (-scheme, such that D[ : /[ → F[ factors through
�. In the case where the sheaf F is representable by a scheme � over (, then this
coincides with the scheme-theoretical closure of the subscheme� in �, which is the
unique flat subscheme of �, whose general fiber equal to �, see [269, (2.4.5)].

Let P ′
-/� (resp. P0

-/� ) denote the subsheaf of P-/� whose values on any ) → �

are elements of P-/� ()) such that their restriction to any fiber of -) → ) are the
isomorphism classes of invertible sheaves of degree 0 (resp. degree zero on each
irreducible component of the fiber).

Proposition 4.2.4 Let - → � be a genus one fibration over a strictly local � with
closed fiber -C of multiplicity <C . Let E be the scheme-theoretical closure of the zero
section in P-/� .
1. The closed fiber EC is representable by an affine group scheme e, which is of finite

type over k of dimension ℎ0 (O-0 ) − 1, the reduced scheme e◦red is a connected
unipotent algebraic group of the same dimension.

2. E(�) � Divfib (-)/Ker(UC ).
3. E(�) ∩ P0

-/� (�) � Divfib (-)/Divfib (-)0 � Z/<CZ.
4. P ′(�)/(� (�) + P0

-/� (�)) � DiscrC (-).
5. eC is reduced if and only if -C is a tame fiber or, equivalently, if and only if 5 is

cohomologically flat.

We note that (eC )◦red is the vector space equal to the kernel of the canonical
surjective map �1 (-C ,O×-C ) → �1 ( -̄C ,O×-̄C ) defined by the surjection O-C → O-̄C .
The dimension of this kernel is equal to the dimension of the kernel of the map
�1 (-C ,O-C ) → �1 ( -̄C ,O-̄C ), see [20].

In characteristic zero, every group scheme is reduced by Cartier’s theorem, see
Theorem 0.1.12 and Remark 0.1.13. Thus, in characteristic zero, Assertion (5)
implies the following.

Corollary 4.2.5 If ? = 0, then all fibers of a genus one fibration 5 : - → � are
tame and 5 is cohomologically flat. In particular, EC is a constant group scheme
associated to the abelian group

Divfib (-C )/Z[-̄C ] � DC ⊕ Z/<CZ.

The main result of Raynaud is the following theorem, see [606, Theorem (4.1.1)].

Theorem 4.2.6 Let - → � be a genus one fibration, let P-/� = Pic
-/� be the

sheafication of the relative Picard functor, and letE be the scheme scheme-theoretical
closure of the zero section in P-/� .
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1. The sheaf P-/� is representable by a separated group scheme over � (resp.
algebraic space over �), which is locally finite type if and only if -C is integral
(resp. 5 is cohomologically flat).

2. The quotient sheaf Q-/� = P-/�/E in the flat topology is representable by a
separated smooth group �-scheme Q-/� , which is of locally finite type.

3. The quotient sheaf Q ′
-/� = P ′

-/�/E in the flat topology is representable by a
separated smooth group �-scheme Q′

-/� of finite type.
4. The quotient sheaf Q◦

-/� = P
◦
-/�/E is the identity component of Q′

-/� ,
5. Any �-homomorphism of P to a separated algebraic group space over � factors

through Q.

Remark 4.2.7 The results of Raynaud are stated in the case where � is the spectrum
of a discrete valuation ring. However, they can be globalized to the case where � is
a regular one-dimensional scheme. We define the maximal representable factor Q
of Pic

-/� , whose strict localizations at any closed point coincides with Q from the
above. Theorem 4.2.6 generalizes several previously known results concerning the
representability of the functor P-/� , which we discussed earlier in Section 0.9.

From now we do not make the assumption that the base � of the fibration is
strictly local. We recall from [86, 1.2] the definition of a Néron model.

Definition 4.2.8 Let ( be a Dedekind scheme with residue field  at the generic
point [. Let - be a smooth and separated  -scheme of finite type. A Néron model
is a smooth and separated scheme X of finite type over ( that satisfies the following
universal property:

For each smooth (-scheme . and each  -morphism D : . → - there exists
a unique (-morphism D : . → X extending D .

The universal property of this definition, which is called the Néron mapping
property, is somewhat reminiscent of the valuative criterion for properness. Note
that a Néron model (if it exists) is usually not proper over (, because if it is, then
the valuative criterion of properness would allow one to extend any morphism D 
to a morphism . → - , where . is the spectrum of a valuation ring. We refer for the
many properties of Néron models to [86, Chapter 7].

It follows from the definition, taking . = (, that there is a canonical bĳection

- ( ) → X(().

If ( is strictly local, then this bĳectivity property even characterizes Néronian group
schemes, see [86, Chapter 7, Theorem 1.1]. Moreover, � is a Néron model of �[ if
and only if the strict localization at every closed point C is the Néron model of �[C
(see [603, (2.3)]). Finally, let ] : [→ ( be the inclusion of the generic point.

We will study Néron models only in the cases when ( = �, global or local, and
- is a group scheme � over  , in which case the Néron model G, if it exists,
is a group scheme over � that extends the group scheme � , see [86, Chapter 1,
Proposition 6]. It is known that the Néron scheme exists if � is an abelian variety
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over  or if � is a non- -unirational wound unipotent algebraic group over  that
admits a regular compactification, see Section 4.8.

Here is our main example of a Néron model. Let 5 : � → � be a genus one
fibration together with a fixed section O. Let �♯ be the open subset of points G ∈ �
such that 5 is smooth at G. Assume � is strictly local. The closure of any rational
point of � is a section of � that intersects each fiber at its smooth point. Thus, it
defines a section B : � → �♯. Conversely, any section of �♯ restricts to a rational
point of � . This implies that �♯ is a Néron model of �♯[ in the strictly local case and
hence, it is a Néron model in a global case. Its identity component is obtained from
�♯ by throwing away all irreducible components of the fiber that do not intersect
O. Moreover, it follows from the theory of relative minimal models of regular two-
dimensional schemes (see the details in the next section) that � is the unique, up to
isomorphism over �, relatively minimal genus one fibration over � that contains �♯.

Theorem 4.2.9 We keep the assumptions and notations of Theorem 4.2.6.

1. The group scheme Q′
-/� is the Néron model of its generic fiber (Q-/� ) ′[ �

Pic◦
-[/[ � Jac(-[).

2. The group schemeQ◦
-/� is the identity component of the Néron model of Jac(-[).

3. For every closed point C ∈ �, there is a natural isomorphism

DiscrC (-) → (Q-/� ) ′C/Q◦-/� .

The last statement is an improvement of a result of Raynaud [606, Proposition
8.1.2], whose proof can be found in [86, Theorem 9.6.1].

Let - be the generic fiber of 5 : - → � and Jac(- ) = Pic◦-[ be its jacobian
variety over  . It is an elliptic curve if 5 is an elliptic fibration and a one-dimensional
unipotent algebraic group over  otherwise. Let 9 : � → � be a relatively minimal
regular projective completion of the Néron model J of Jac(- ). This is a genus
one fibration over � with �♯ � J. We call it the jacobian fibration associated to
5 : - → �..

Recall that the Lie algebra of the relative Picard functor P-/� coincides with the
Lie algebra of the functor P◦

-/� and is isomorphic, as a O� -Module, to '1 5∗O- .
On the other hand, the Lie algebra of the Néron model 9 : J → � is isomorphic to
'1 9∗O� . The morphism

@ : P◦
-/� → Q

′
-/�

defines a homomorphism of O� -Modules

Lie(@) : '1 5∗O- → l := '1 9∗O� . (4.2.5)

We know from Theorem 4.1.6 that the quotient of the sheaf '1 5∗O- by its torsion
subsheaf T is an invertible sheaf L of degree −j(O� ) − ℎ0 (T ). It follows from
[473, Theorem 3.1] that the cokernel of Lie(@) is isomorphic to T . In particular, this
compares T of 5 with T of its Néron model.

For the remainder of this section, we study finer invariants associated to multiple
fibers, which lead to the Raynaud polygon and give estimates for the length of the
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torsion subsheaf of '1 5∗O- . Let

q(=) := ℎ1 (-=,O-= )

and let a= be the order of the invertible sheaf O-= (�) in Pic(-=).
It follows from Proposition 4.2.2 that a=+1 = a=, unless O-=+1 (�) belongs to

the kernel of A=. Since the kernel is killed by ?, we have a=+1 = ?a= in this case.
Moreover, we have a1 = 30. Let <1 be the first = such that a(=) jumps and becomes
equal to 30?. Let <2 be the first = that it jumps again and becomes equal to 30?

2.
In this way, we obtain a sequence of numbers (<0 = 1, <1, . . . , <A ). It follows from
the definition of <8 that O-<8 (�) belongs to Ker(A<8 ). Hence, by Proposition 4.2.2,
l-<8 (<8�) = O-<8 (<8�) is trivial.

Lemma 4.2.10 Set <0 := 1. Then:

1. < = 30 · ?A .
2. <8+1 = <8 + :830?

8 for some positive integer :8 .
3. <A = <ℎ − 0 for some positive integer ℎ and 0 ≤ 0 < <.

Proof (1) We know that O- (�) is of order < in Pic(-) and that O-1 (�) is of order
30 in Pic(-1). The image of O- (�) under the homomorphism Pic(-) → Pic(-=)
is of order </?=(8)3 and its image in Pic(-1) is 30. From this, the assertion follows.

(2) Let 9 : � → � be the jacobian fibration associated to 5 and letl = ('1 9∗O� )∨.
Let _ be defined by the equality

l-/� � 5 ∗l ⊗ O- (_�) (4.2.6)

and set
M8 = l-/� (<8�) = O- ((_ + <8)�).

Proposition 4.2.2 implies thatl-<8 =M8⊗O-<8 is trivial. SinceM is a tensor power
of O- (�), its restriction to -= is trivial for = < <8+1 and alsol-<8+1 =M8 ⊗O-<8+1
is trivial. Thus, O- ((_ + <8)�) ⊗ O-<8 = O-<8 (�)

⊗_+<8 is trivial for = < <8+1
and it is of order 1 or ? for = = <8+1. From this, it follows that for = = <8 + ℎ with
<8+1 − <8 > ℎ > 0, the sheaf l-= = O- (ℎ�) ⊗ O-= is trivial if and only if 30?

8

divides ℎ.
Now, for = = <8+1, l-= = M ⊗ O-<8+1 ((<8+1 − <8)�) is trivial and thatM ⊗

O-<8+1 of order 1 or ?. This implies that O- (?(<8+1 − <8)�) ⊗ O-<8+1 is trivial,
hence 30?

8+1 divides ?(<8+1−<8). Therefore, there exists a positive integer :8 , such
that <8+1 = <8 + :830?

8 .
(3) The sheaf O-< (<�) is the normal sheaf of a fiber, hence it is trivial. Thus,

O-< (�) is of some order 30?
8 . Hence, <A > < and can be written in the form

<A = <ℎ − 0 as stated in the assertion. �

Thus, with :8 as in the previous lemma, we have

q(<0) = 1 and q(<8) = 1 + :1 + · · · + :8−1, 1 ≤ 8 ≥ A.
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Let Rnd-/' (C) : [0, <A ] → R be the continuous piecewise affine convex function
such that Rnd-/' (<8) = 1+ :1 + · · · + :8 , 8 = 1, . . . , A .We call its graph the Raynaud
polygon. It has slope U8 := 1

30 ?8
in the interval [<8 , <8+1].

· · ·

·

·

·

1 <1 <2

1

1 + :0

1 + :0 + :1

1
30

1
30?

=

q

Fig. 4.2 The Raynaud polygon Rnd-/�

It follows that the Raynaud polygon of a tame fibration is just the linear function
with slope 1 in the segment [0, 1].

Let k = Rnd−1
-/� be the inverse function. It is a piecewise linear strictly increasing

function with
k(1) = 1 and k(1 + :0 + · · · + :8) = <8 .

For 1 + :0 + · · · + :8−1 ≤ = < 1 + :0 + · · · + :8 we have

k(= + 1) = k(=) + <8+1 − <8
:8

= 30?
8 = a(=).

Let @ : P◦
-/� → Q

0
-/� be the quotient map from Theorem 4.2.9. Then, we have the

following result, see [58, §4].

Proposition 4.2.11 Let A= : P0
-/� (�) = Pic0 (-) → Pic0 (-=) and A ′= : Q0

-/� (�) →
Q0
-/� ('=) be the restriction homomorphisms. There exist homomorphisms @= :

Pic0 (-k (=) ) → Q0
-/� ('=) that make the following diagram commutative:

Pic0 (-) @ //

Ak (=)

��

Q0
-/� (�)

A ′=
��

Pic0 (-k (=) )
@= // Q0

-/� ('=).

Moreover, each homomorphism @= is surjective and its kernel is the subgroup of
Pic0 (-k (=) ) generated by O-k (=) (−�).

Finally, following [606], we give an application of the function q(=) to the
computation of the length of the torsion sheaf T from Theorem 4.1.6.
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Theorem 4.2.12 Let '1 5∗O- = L ⊕ T , where L is invertible and T is a torsion
sheaf. Then,

; (T ) =
[ ℓ
<

]
=

[
(1 − 1

<
) + :0 (1 −

1
?A
) + · · · + :A−1 (1 −

1
?
)
]
.

Proof Taking the transpose of the homomorphism of Lie algebras (4.2.5), we obtain
a homomorphism

l → ('1 5∗O- )∨ = L⊗−1,

whose cokernel is isomorphic to the torsion sheaf T . By definition of ; in (4.2.6),
we have 5∗l-/� = l ⊗ m−[

ℓ
<
] . Comparing it with the equality '1 5∗O- = L ⊕ T ,

we get T � '/m[ ℓ< ] and ; (T ) =
[
ℓ
<

]
.

It remains to compute ℓ
<
. Applying Lemma 4.2.10, we obtain

q(<A ) = 1 + :0 + · · · + :A−1 = q(<A + 0) = q(<ℎ).

In particular, for = ≥ <A , we have q(=) = q(= − 1) + 1 if and only if = = <A + :<.
Since <A = <ℎ − 0 by the previous lemma, we get

q(<A ) = q(<A + 0) = q(<ℎ). (4.2.7)

The coherent sheaves '1 5∗O- , L, and T correspond to '-modules " , !, and ) ,
respectively. We have 5 ∗m = O- (−<�) and '1 5∗O-<= = "/m=" . The short
exact sequence

0 → m=/m=+1 → "/m=+1" → "/m=" → 0

shows that ; ("/m=+1") = ; ("/m=") + 1. Hence, we find ; ('1 5∗O-<ℎ ) = ; ()) +
; (!/mℎ!) = ; ()) + ℎ. By the Base Change Theorem, we have ; ('1 5∗O-<= ) =
ℎ1 (O-<= ) for = > ℎ, hence

q(ℎ<) = ; ()) + ℎ. (4.2.8)

Since l-<A = O- ((; + <A )�) ⊗ O-<A is trivial and the order of O- (�) ⊗ O-<A is
equal to <, we have

ℓ + <A = U<

for some positive integer U. By Lemma 4.2.10, we have ℓ = (U− ℎ)< + 0 and taking
into account (4.2.7) and (4.2.8), we obtain

; ()) =
[ ℓ
<

]
= U − ℎ = q(<A ) − ℎ.

Thus, U = q(<A ) and we get

ℓ = q(<A )< − <A = <(1 + :0 + · · · + :A−1) − (1 + :030 + · · · + :A−130?
A−1).
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This gives
ℓ

<
= (1 − 1

<
) + :0 (1 −

1
?A
) + · · · + :A−1 (1 −

1
?
)

as asserted. �

Corollary 4.2.13 Let 0C and <C = 30 · ?AC be as in Theorem 4.1.6. Then

0C

<C
=

ℓC

<C
−

[ ℓC
<C

]
,

where
ℓC = <C

(
(1 − 1

<C
) + :0 (1 −

1
?A
) + · · · + :AC−1 (1 −

1
?
)
)

for some positive integers :0, . . . , :AC−1 if -C is wild. In particular, we have 0C = <C−1
if and only if -C is tame.

Proof We localize at C ∈ � and may assume that � is strictly local. We let ;C = ;,
<C = <, 0−C = 0 be as in the local computations from above. It follows fromTheorem
4.1.6 thatl-/� = 5 ∗L−1⊗O- (0�). On the other hand, it follows from the definition
of ; thatl-/� = 5 ∗l⊗O- (;�). It remains to use that 5 ∗L−1 = 5 ∗l⊗O- (; ())<�),
which implies that ℓ = 0+ ; ())<C . Then, we divide by< and apply Theorem 4.2.12�

Corollary 4.2.14 Let < = 30 · ?A . Then

; (T ) ≥ A.

Proof Since (1 − 1/?A ) ≥ (1 − 1/2A ), we obtain

ℓ

<
≥ (1 − 2−A ) + A − (2−A + · · · + 2−1) = (1 − 2−A ) + A − 1 + 2−A = A,

hence
[
ℓ
<

]
≥ A − 1. �

Example 4.2.15 Assume ; ()) = 1. Then we have A = 1 by the above. Since :0 < ?,
we compute

ℓ

<
= (1 − 1

30?
) + :0 (1 −

1
?
) = (1 + :0) −

1 + 30:0
30?

.

Since
[
ℓ
<

]
= 1 and 1+30:0

30 ?
≤ 1, we find :0 = 1,<1 = 1+30?, and< = ?. Conversely,

if :0 = 1 then
[
ℓ
<

]
= 1. If the fiber is wild with 30 = 1, then 30 = 1 and hence

Rnd-/' (C) =
{

1 if 0 ≤ C ≤ 1,
(G + ? − 1)/? if 1 ≤ C ≤ 1 + ?.

We have 0C
30 ?

= 1 − 1+30:0
30 ?

and hence, using our assumption ; ()) = 1,
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0C = <C − 1 − 30.

This result is shown by other means in the corollary to [78, Proposition 4].

4.3 Jacobian Fibrations

A genus one fibration 5 : - → � is called a jacobian fibration if it admits a section,
that is, if - (�) ≠ ∅. In the previous section, we showed how to associated to a genus
one fibration 5 : - → � its jacobian fibration 9 : � → �, but see also Proposition
4.3.1. In this section, we will study how invariants like the Brauer group, Betti
numbers, the Euler–Poincaré characteristic, and the geometry of the fibers change
when passing from 5 to 9 . On our way, we will introduce the Mordell–Weil group
and prove the Shioda–Tate formula.

The generic fiber -[ of a jacobian fibration 5 : - → � is a regular and geo-
metrically irreducible curve of genus one with a  -rational point. Here,  denotes
the function field k(�) or, equivalently, the residue field of � at its generic point
[, that is, [ = Spec . If -[ is smooth, then the choice of such a  -rational point
turns -[ into a one-dimensional abelian variety over  , that is, an elliptic curve
over  . On the other hand, if -[ is not smooth, then there is a unique non-smooth
point on -[ , the cusp, and the choice of a  -rational point turns the smooth locus
-
♯
[ = -[ \ {cusp} of -[ into a one-dimensional unipotent algebraic group over  .

In fact, the base change of -[ to an algebraic closure  of  is isomorphic to the
additive group G

0, 
and thus, -[ is a twisted form of G0 over [ = Spec (see also

Section 0.1).
For any morphism 6 : - → ) of regular schemes, we set

-♯ := {G ∈ - : 6 is smooth at G}.

The following proposition summarizes what we have found in the previous section.

Proposition 4.3.1 Let 5 : - → � be a genus one fibration. Then, there exists
a jacobian genus one fibration 9 : � → �, unique up to a �-isomorphism, that
satisfies the following properties:

1. �♯[ � Jac(-[),
2. the natural map of sections � (�) → �[ ([) is a bĳection and defines the structure

of an abelian group on � (�),
3. the image of any section � → � lies in �♯, and
4. there exists a natural group scheme structure over � on 5 : �♯ → �, which is

isomorphic to the Néron model of �♯[ .

It follows from Theorem 4.2.9 that �♯C is a one-dimensional and commutative
algebraic group, which is not necessarily proper, reduced, or connected. Its connected
component of identity (�♯C )◦ is an elliptic curve if �C is smooth, it is the multiplicative
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group G<,k if the fiber is singular of multiplicative type, and it is the additive group
G0,k otherwise. The group of connected components �♯C /(�

♯
C )◦ is trivial in the first

case and it is isomorphic to the discriminant group DiscrC otherwise. We recall that
the structure of the discriminant groups is given by (0.8.5) and Table (0.2) from
Section 0.8. We have

�
♯
C /(�

♯
C )◦ �



{1} if �C is smooth, or of types �̃∗0, �̃
∗∗
0 ,

Z/(= + 1)Z if �C is of type �̃=, �̃∗=,
(Z/2Z)⊕2 if �C is of type �̃2: ,

Z/4Z if �C is of type �̃2:+1,

Z/3Z if �C is of type �̃6,

Z/2Z if �C is of type �̃7,

{1} if �C is of type �̃8.

For a point C ∈ � (not necessarily closed) we let

AC : Pic(-) → Pic(-C )

be the restriction homomorphism. We set

Picfib (-) := Ker(A[),
Picfib (-/�) := Picfib (-)/ 5 ∗ Pic(�),

Pic0 (-) := Ker(deg ◦A[),

where [ denotes the generic point of�. Then, the following proposition follows from
the definitions and the local information about Pic(- (C)) that we established above.

Proposition 4.3.2 There are the following isomorphisms of quadratic lattices:

1. Picfib (-/�) � ⊕C ∈�DC/D0
C .

2. Picfib (-/�) ∩ Pic0 (-) � ⊕C ∈� Ker(UC )/D̄0
C � ⊕C ∈�Z/<CZ.

3. Pic0 (-)/Picfib (-) � Jac(-[) ([).

We will say that a genus one fibration 5 : - → � is trivial if it is isomorphic to a
product, that is, isomorphic to pr2 : � × � → � over �. Since we assumed - to be
regular, this implies that � is smooth, that is, an elliptic curve. The following result
is known as the Mordell–Weil Theorem.

Theorem 4.3.3 Assume that � is global and let 5 : � → � be a non-trivial jacobian
genus one fibration.

1. The abelian group � ( ) � � (�) is a finitely generated abelian group.
2. If 5 is quasi-elliptic, then �♯ ( ) is an elementary abelian ?-group.

Proof First, assume that 5 is an elliptic fibration. The pull-back morphism 5 ∗ :
Pic�/k → Pic�/k induces a homomorphism of abelian varieties Jac(�) = Pic◦

�/k →
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Pic◦
�/k. By the Poincaré Reducibility Theorem (see [541], Chapter 4, §19), there

exists an abelian variety �0 over k and an isogeny

�0 × Pic◦�/k → Pic◦
-/k.

Under the restriction morphism A[ : Pic◦
-/k → Pic◦

� / , the image of �0 is the
 /k-trace of � . We now assume �0 = 0. Then,

Pic(�)/ 5 ∗ (Pic(�)) � Pic�/k (k)/ 5 ∗Pic�/k (k),
Pic�/k (k)/Pic◦�/k (k) � NS(�),
Pic�/k (k)/Pic◦�/k (k) � Z.

This implies that Pic(�)/ 5 ∗ Pic(�) is a finitely generated abelian group of rank equal
to d(�) − 1. Thus, Pic0 (�)/ 5 ∗ Pic(�) is finitely generated of rank d(�) − 2. Finally,
� ( ) is finitely generated and it follows from Proposition 4.3.2 that

rank � ( ) = d(-) − 2 −
∑
C ∈�
(# Irr(�C ) − 1) . (4.3.1)

Let us show that under our assumptions �0 is always trivial. If �0 was not trivial,
then dim �0 = 1, and � � �0 ⊗k  . Thus, the trivial minimal elliptic fibration
�0 × � → � would have the same generic fiber as our fibration. By the uniqueness
of relative minimal models, it would follow that � � �×� over�, that is, 5 : � → �

is trivial, a contradiction to our assumptions.
Finally, assume that 5 : � → � is a quasi-elliptic fibration. Since its generic

geometric fiber is a cuspidal cubic over the separable closure of ^([), it cannot
contain an abelian variety. The previous argument implies that the group �♯ ( ) is a
finitely generated subgroup of the additive group of  , hence it is a finite elementary
abelian ?-torsion group. �

Definition 4.3.4 The group � ( ) is called the Mordell–Weil group of the jacobian
genus one fibration 5 : � → � and it is denoted by MW(�/�) or MW(� ). If
5 : � → � is the jacobian fibration associated to a genus one fibration - → �, then
Jac(- ) � � and we extend the notion of the Mordell–Weil group to - → � by
setting MW(-/�) := MW(�/�).

In Section (4.5), we will study lattice structures on the Mordell–Weil group and
its dual and relate these to the intersection pairing on NS(�). Formula (4.3.1) is
called the Shioda–Tate formula.

We note that the Shioda–Tate formula for a quasi-elliptic fibration 5 : - → �

becomes
d(�) = 2 +

∑
C ∈�
(# Irr(�C ) − 1) . (4.3.2)

Next, we note that the proof of the Mordell–Weil theorem shows that in the case
when the associated jacobian fibration is not trivial, then there is an isomorphism

MW(�/�) � Num(�)0/Numfib (�), (4.3.3)
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whereNum(�)0 (resp.Numfib (�)) is the image ofPic0 (�) (resp.Picfib (�)) inNum(�).

Proposition 4.3.5 Let 5 : � → � be a global genus one jacobian fibration.

1. If 5 is non-trivial, then 11 (�) = 11 (�).
2. If 5 is trivial, then 11 (�) = 11 (�) + 2.
3. If j(O� ) > 0, then the Néron–Severi group NS(�) has no torsion and coincides

with Num(�).

Proof Assertion 1 follows essentially from the proof of Theorem 4.3.3. First, assume
that the k-trace �0 of �[ is zero if 5 is an elliptic fibration. Then, we have an isogeny
of abelian varieties Jac(�) → Pic◦ (�). The usual Kummer exact sequence in the
étale topology implies that 11 (�) = 2 dim Jac(�) and 11 (�) = 2 dimPic◦ (�). This
proves the assertion in this case.

If �0 is non-zero, then �0 × Jac(�) is isogenous to Pic◦ (�), and Assertion 2
follows easily from that.

Let us prove the last assertion. We follow the proof of [646, Theorem 6.4]. Let
� ≠ 0 be a torsion divisor class. Then ℎ0 (�) + ℎ0 ( � − �) ≥ j(O� ) > 0. Since a
non-trivial torsion class cannot be effective, we have  � − � ∼ � ′, where � ′ is an
effective divisor. The restriction of � and� to each irreducible component of a fiber
is of degree 0, hence � ′ is a linear combination of fibers and hence � ′ = 5 ∗ (3 ′) for
some effective divisor class on �. By Theorem 4.1.6,  � = 5 ∗ (:) for some divisor
class on �, we obtain that � = 5 ∗ (: − 3) where : − 3 is a torsion divisor class on
�. Hence, � ∈ 5 ∗ Jac(�) and thus, it is algebraically equivalent to zero. �

Corollary 4.3.6 If 5 : � → � is a jacobian genus one fibration, then NS(�) is
torsion free unless 5 is a smooth non-trivial elliptic fibration or a quasi-elliptic
fibration 5 : � → �, where � is an elliptic curve and all fibers are irreducible.

Proof Suppose that 5 is not a smooth elliptic fibration. We will prove later in
Proposition 4.4.9 that deg '1 5∗O� > 0, then Theorem 4.1.6 implies that j(O� ) > 0.
If 5 is a trivial fibration, then obviously NS(-) is torsion-free.

Next, suppose that 5 is a quasi-elliptic jacobian fibration. Then the inequality
(4.4.35) from Section 4.4 shows that j(O� ) > 0 unless � is an elliptic curve. Then
we have 11 (�) = 11 (�) = 2, and, since � is obviously minimal, the classification
Proposition 4.4.12 shows that � is a bielliptic surface (a surface from the last two
rows in the table of Proposition 1.1.5). These surfaces are classified in [77]. �

We will see later in Proposition 4.3.14 that 11 (-) = 11 (�) if � → � is the
jacobian fibration of - → �, hence the first two assertions are true for any elliptic
fibration. Also, in Section 4.7 we will show that NS(�) may have torsion if 5 is a
smooth fibration.

Let 5 : � → � be a jacobian genus one fibration. By definition, there exists
a section and we will now fix a section e : � → �. Its image E := e(�) ⊂ � is
a one-dimensional subscheme. We therefore obtain the structure of a commutative
group scheme on �♯ over �, which is isomorphic to the Néron model of �♯[ . Its zero
section is equal to e.
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For every closed point C ∈ �, the intersection number �C · E is equal to 1, which
implies that a jacobian fibration has no multiple fibers. In particular, the canonical
bundle formula, that is, Theorem 4.1.6, simplifies in this case as follows.

Proposition 4.3.7 Let 5 : � → � be a global genus one jacobian fibration. Then,

l� � 5 ∗ (L−1 ⊗ l� ),

where L = '1 5∗O� is an invertible sheaf of degree −j(O� ) on �.

Corollary 4.3.8 If s : � → S ⊂ � is a section of a jacobian fibration, then

S2 = −j(O� ),

where S2 denotes the self-intersection number.

Proof By the adjunction formula, we have

l� � s∗lS � s∗ (OS (S) ⊗ l� )
� s∗OS (S) ⊗ s∗ ( 5 ∗ (lS ⊗ L−1)) � OS (S) ⊗ l� ⊗ L−1.

This implies OS (S) � L, hence S2 = degOS (S) = degL = −j(O� ). �

Theorem 4.3.9 Let 5 : � → � be a non-trivial jacobian genus one fibration and let
MW(�/�) be its Mordell–Weil group.

1. For any closed point C ∈ � and a prime number ℓ ≠ ?, the natural restriction
homomorphism

ℓ∞ MW(�/�) → ℓ∞�
♯
C

is injective.
2. Any non-trivial torsion section is not contained in (�♯)◦ unless 5 is a smooth

fibration.
3. Assume that MW(�/�) is finite. Then,

# MW(�/�)2 · # Discr(Num(�)) =
∏
C ∈�

# DiscrC (�). (4.3.4)

Proof (1) Since � (�) ⊂ � ( C ), where  C is the fraction field of a strict henselization
Oℎ
�,C

, we may assume that � is strictly local. We know that �♯ → � represents the
sheaf Pic

�/�/E. Since � is strictly local, this implies that � (�) = Pic(�)/E(�). By
Proposition 4.2.1, the kernel of the restriction homomorphism AC : Pic(�) → Pic(�C )
is a group that is uniquely divisible by any prime ℓ ≠ ?. By Proposition 4.2.4, we
have ℓ∞E(�) = {0}. Now, we consider the following commutative diagram, whose
vertical arrows are restriction homomorphisms.
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0 //
ℓ: Pic(�) //

��

ℓ: � (�) //

��

� (�) (ℓ: )

��
0 // Pic(�C ) // �♯C // � (C) (ℓ: ) .

Since E(�) → E(C) is a bĳection, we obtain that ℓ∞ Ker(� (�) → ℓ∞�
♯
C ) is equal to

the kernel of ℓ∞ Pic(�) → ℓ∞ Pic(�C ). Since it is divisible by ℓ, it has no non-trivial
ℓ-torsion elements.

(2) Let �1, �2 ∈ (�♯)◦ (�) be two different torsion sections. Then, there exists
an integer = such that =(�1 − �2) ∈ Picfib (�). Since �1 and �2 intersect the same
irreducible components in each fiber, we have �1 − �2 ∈ Picfib (�)⊥. This easily that

=(�1 − �2) ≡ <�,

where � is any closed fiber. Applying Corollary 4.3.8, we get

0 = (�1 − �2)2 = �2
1 + �

2
2 − 2�1 · �2 = −2j(O� ) − 2�1 · �2.

Taking �2 to be the zero section O, we get 0 ≤ � · O = −j(O� ), hence

� · O = 0, j(O� ) = 0.

By Proposition 4.4.9 in the next section this happens if and only if 5 : � → � is
smooth.

(3) It follows from the proof of the Mordell–Weil Theorem that the restriction
homomorphism Pic0 (�) → � (�) is surjective and that its kernel is generated by
Picfib (�). This homomorphism factors through a surjection Num0 (�)/Numfib (�) →
� (�), where Num0 (�) is the group of numerical divisor classes, whose restriction to
�[ is of degree 0, and Numfib (�) is generated by the numerical classes of irreducible
components of fibers. Let !1 be the sublattice of Num(�) generated by the class [�C ]
and the class of the zero section E. This is a sublattice of Num(�) isomorphic to the
hyperbolic plane. The orthogonal complement !2 of !1 in Numfib (�) is contained in
Num0 (�) and is generated by the components that do not intersect E. It is isomorphic
to the direct sum of the root lattices of finite type DC/D0

C . We have

(Num(�)/!1) ⊥ !2 � Num0 (�)/Numfib (�) � � (�).

Now, the assertion follows from the relationship between the discriminant of a lattice
and its sublattice of finite index, see (0.8.2). �

We will say more about smooth genus one fibrations in Section 4.5 when dis-
cussing Mordell–Weil lattices.

Remark 4.3.10 The formula in Assertion 1 is a special case of the determinant
formula in Section 4.5.
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Wewill now study the relationship between the geometry of a genus one fibration
and that of its associated jacobian fibration. We start with the Brauer group and to
do so, we will use the following quite general vanishing theorem of M. Artin, see
[271, II, Corollaire (3.2)].

Theorem 4.3.11 Let 5 : - → . be a proper and flat morphism of relative dimension
one between locally noetherian regular schemes. Assume that all local rings of .
are Japanese. Then

'8 5∗G< = 0 for all 8 ≥ 2.

Recall that a Japanese ring is an integral domain ', such that its normalization
in any finite extension of its fraction field is finitely generated as an '-module, see
[204, 4.2]. Our global or local bases � satisfy these conditions.

Corollary 4.3.12 If 5 : - → � is a genus one fibration, then there exist canonical
isomorphisms

Br(-) = �2 (-,G<) � �1
ét (�, '

1 5∗G<,- ),
�3 (-,G<) � �2

ét (�, '
1 5∗G<,- ),

�= (-,G<) = 0 for all = > 3.

Proof We know that �2 (�,G<) = Br(�) = 0 by the Tsen’s theorem. Applying
Artin’s vanishing theorem to the morphism c : � → Spec k and using that k is
algebraically closed, we obtain that '8c∗G<,� = �8 (�,G<,� ) = 0 for 8 ≥ 2. Thus,
the Grothendieck–Leray spectral sequence

�
?,@

2 = �
@

ét (�, '
? 5∗G<,- ) ⇒ H?+@ = � ?+@

ét (-,G<,- )

degenerates already on the �2-page. Using that �8ét (�,G<) = 0 for 8 > 1, we obtain
the stated isomorphism

H:+1 = �=ét (-,G<,- ) → �
:,1
2 = �1

ét (�, '
1 5∗G<,- ), : ≥ 1

and the result follows. �

We define the index ind( 5 ) of a genus one fibration 5 : - → � to be the smallest
degree of a multisection of 5 . By Corollary 4.6.6, this is the same as the index
ind(-[)of the generic fiber. This latter is the smallest degree of a non-trivial and
effective divisor on -[ or, equivalently, the gcd of all degrees of divisors on -[ ,
see Lemma 4.6.3. We will discuss the notion of index in detail in Section 4.6 when
studying Weil–Châtelet groups.

Theorem 4.3.13 Let 5 : - → � be a genus one fibration and let 9 : � → � be the
associated jacobian fibration. Let ind( 5 ) be the index of -[ and ind( 5 ) ′ = ind( 5 )/;,
where ; = ;.2.<({<C , C ∈ �}). Then, there exists an exact sequence of abelian groups

0 → Z/ind( 5 ) ′Z → Br(�) → Br(-) → ⊕C ∈� Z/<CZ
Z/;Z → � → 0,
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where the group Z/;Z embeds diagonally and the group � is trivial if 9 is not a
trivial fibration.

Proof From the previous section, we know that '1 5∗G<,- , considered as a sheaf in
the flat topology, coincides with the relative Picard sheafP-/� and its quotient by the
subsheaf E 5 is a Néronian sheaf Q 5 . Since the sheaf Q 5 is represented by a smooth
group scheme that is of locally of finite type over�, we have �∗fl ((,Q) � �

∗
ét (�,Q),

see [508], Chapter 3, Theorem 3.9. Applying Lemma 4.3.12, we obtain an exact
sequence

�1
ét (�, E 5 ) → Br(-) → �1

ét (�,Q 5 ) → �2 (�, E 5 ).

Since E 5 is supported in finitely many closed points, the cohomology groups �1

and �2 of E are zero. This gives us an isomorphism

Br(-) � �1
ét (�,Q 5 ).

Replacing 5 with 9 in the previous discussion, we obtain an isomorphism

Br(�) � �1
ét (�,Q 9 ).

Now, let Q ′
5
be the scheme-theoretic closure of Pic0 (-[) in Q 5 . We know that Q ′

5

coincides with Q ′
9
and that it is represented by the Néronian scheme �♯. We denote

it by A and have an exact sequence

0 → A → Q 5
deg
−→ Z( . (4.3.5)

If 5 = 9 , then the degree map is surjective on sheaves and surjective on global
sections. It is known that

�1 (�,Z� ) = 0

(see [508, Chapter 3, §3]), and hence, we obtain an isomorphism

�1 (�,A) � �1 (�,Q 9 ) � Br(�).

We denote by Z′
�
the subsheaf of the constant sheaf Z� that is equal to the image of

the homomorphism deg. Then, we have an exact sequence

0 → Z′� → Z� → ⊕C ∈� (8C )∗ (Z/<CZ)C → 0, (4.3.6)

where 8C : C ↩→ � denotes the inclusion of the closed point C ∈ (. Passing to
cohomology in exact sequence

0 → A → Q 5 → Z′( → 0

gives an exact sequence
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0 → Coker(�0 (�,Q 5 )
deg
→ �0 (�,Z′� )) → Br(�) → Br(-) → Ker(�1 (�,Z′� ) → �2 (�,A)) → 0.

By the Chinese Remainder Theorem we obtain

�0 (�,Z′� )) � Ker(Z→ ⊕C ∈�Z/<CZ) = ;Z

and
�1 (�,Z′� )) � Coker(Z/;Z→ ⊕C ∈�Z/<CZ).

This gives

Coker
(
�0 (�,Q 5 )

deg
→ �0 (�,Z′� )

)
� Z/ind( 5 ) ′Z.

By Theorem 4.7.9, the group �2 (�,A) is trivial if 9 is not trivial �

Proposition 4.3.14 Let 5 : - → � be a genus one fibration, let 9 : � → � be the
associated jacobian fibration, and assume that � is global. Then,

j(O- ) = j(O� ) and 4(-) = 4(�),

where j and 4 denote the coherent and the topological (ℓ-adic) Euler–Poincaré
characteristic, respectively.

Proof We already cited a result from [473] that the kernel and the cokernel of the
map (4.2.5)

Lie(@) : '1 5∗O- → '1 9∗O�
is isomorphic to the torsion subsheaf T of '1 5∗O- . This implies that j('1 5∗O- ) =
j('1 9∗O� ) and the equality j(O- ) = j(O� ) follows now from the Grothendieck–
Leray spectral sequence. By Corollary 4.1.7,  2

-
=  2

�
= 0. The second equality

now follows from Noether’s formula. �

We already noted that jacobian fibrations do not havemultiple fibers. In particular,
when passing from a genus one fibration to its jacobian fibration, there are no longer
multiple fibers. Another way to get rid of a multiple fiber is via a suitable base
change, which we may even assume not to affect the smooth fibers.

Definition 4.3.15 Let 5 : - → � be a genus one fibration and let Σ′ be a set of
points in � such that the fibers -C with C ∈ Σ′ are multiple. We say that a finite and
separable cover q : � ′→ � eliminates multiple fibers from Σ′ if there exists a genus
one fibration 5 ′ : - ′ → � ′ and a rational map Φ : - ′ d - of finite degree making
the following diagram commutative:

- ′

5 ′

��

Φ // -

5

��
� ′

q // �
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and such that 5 ′ has no multiple fibers over points in q−1 (Σ′).

The fact that it is always possible to eliminate multiple fibers by a base change
was first proved by Kodaira in the case k = C. The proof uses the fact that given a
finite set of points C1, . . . , C: on a compact Riemann surface �, then one can find a
finite Galois cover q : � ′ → � that is ramified over these points with prescribed
ramification indices <8 . If we take <8 to be the multiplicity of the fiber -C8 , then
locally the base change is given by D = {<8 , where D is a local parameter at C8 and {
is a local parameter at a point C ′

8
∈ q−1 (C8). Over C, a multiple fiber is always of type

�̃=−1 and one shows that after the base change the fiber over C ′ ∈ q−1 (C8) becomes
non-multiple of type �̃<8=−1, see [402, Section 4] or [43, Section V.7].

The situation in positive characteristic is more complicated: for example, multiple
fibers can be of additive additive type [374] and thanks to wild ramification, it is
more complicated to construct Galois covers of curves with prescribed ramification
indices and prescribed inertia groups. To show that it is possible to eliminate multiple
fibers in the case of positive characteristic, we use the following result, see [281,
Theorem 3.4] and [377].

Theorem 4.3.16 Let k be an algebraically closed field of characteristic ? > 0. Let�
be a smooth curve over k with closed points C8 , 8 = 1, . . . , C: . Let � be a finite group
with subgroups �8 , 8 = 1, . . . , : , such that each �8 is isomorphic to the product of a
?-group with a cyclic group of order prime to ?. Then, there exists a Galois�-cover
� ′ → � of smooth curves over k, whose branch divisor contains {C1, . . . , C: } and
such that the inertia groups at C8 is isomorphic to �8 for all 8.

Now, in the situation of Definition 4.3.15, choose {C1, . . . , C: } to be the set Σ′ and
let <8 be the multiplicity of the fiber -C8 . For any C8 , let Oℎ�,C8 be the henselization of
O�,C8 and let  8 =  ℎC8 be its field of fractions. Let 8C8 : � (C8) := Spec Oℎ

�,C8
→ �

be the canonical morphism and let 5 (C8) : - (C8) = - ×� � (C8) → � (C8) be the
base change. The closed fiber of 5 (C8) is isomorphic to -C8 and the generic fiber
-[8 := - ×�  ℎC8 is a genus one curve over the field  ℎC8 . We use the analogous
notation for the jacobian fibration. The curve - (C8)♯[8 is a torsor under the curve
� ×�  8 of order <8 . Let B8 be a closed point of degree <8 on -[8 . Let !8 be the
residue field of this point, which is an extension of  8 of degree equal to <′C ?=,
where <′ is coprime to ?. Its Galois group is the product of a ?-group and a cyclic
group of order prime to ?. Now we apply Theorem 4.3.16. We find a finite group
� that contains subgroups isomorphic to the groups �8 (for example, the direct
product of these groups). Then we find a�-cover� ′→ �, whose intertia subgroups
over the points C1, . . . , C: are isomorphic to �1, . . . , �: . We make the base change
- ′ = - ×� � ′ → � ′ and take a relative minimal model of the generic fiber - ′

[′ .
Then, for any C ′

8
over C8 , - (C8) ′[′

8

has a rational point and hence, the fiber - ′
C′
8

is not
multiple. Since the process of going to the relative minimal model gives us a rational
map q : - ′ d - , we have eliminated the multiple fibers over the points C8 ∈ Σ′.

For more effective results about elimination of multiple fibers of elliptic fibrations
that are not of additive type, we refer to the work of Katsura and Ueno [374], [375].

Using the elimination process, we will now prove the following.
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Proposition 4.3.17 Let 5 : - → � be a genus one fibration, let 9 : � → � be the
associated jacobian fibration, and let C ∈ � be a closed point. Then,

18 (-C ) = 18 (�C ), 8 ≥ 0,

that is, the Betti numbers of the fibers coincide.

Proof This is clear for 8 = 0 and for 8 ≥ 3. For 8 = 1, we argue as follows: for
any integer = coprime to the characteristic ?, the Kummer exact sequence gives an
isomorphism of sheaves in étale topology

'1 5∗-= = ='
1 5∗G<,- := Ker

(
'1 5∗G<,-

[=]
→ '1 5∗G<,-

)
and we have similar isomorphism for '1 9∗-=. Using the comparison of the sheaves
'1 5∗G<,- and '1 9∗G<,� from the proof of Proposition 4.3.13, we obtain an iso-
morphism '1 5∗-= � '

1 9∗-=. Passing to fibers, we get 11 (-C ) = 11 (�C ).
It remains to deal with the case 8 = 2. Here, we will use the elimination of multiple

fibers process. Fix one multiple fiber -C1 and let -C2 , . . . , -C# be the remaining
multiple fibers. We apply the elimination process to the set Σ′ = {C2, . . . , C# }, but
taking the base change q : � ′ → � to be unramified over C1 (that is, we take
�1 = {1} in Theorem 4.3.16). Let - ′ → � ′ be the relative minimal model of the
base change - ×� � ′ → � ′. We do the same for the base change of the jacobian
fibration 9 : � → �. For any C ′1 ∈ �

′ over C1, the fibers of - ′C′1 and �
′
C′1
are isomorphic.

Both fibrations have no multiple fibers outside points over C1. Thus, the fibrations
are strictly locally isomorphic and hence, the fibers - ′

C′ and �
′
C′ are isomorphic for all

points C ′ ∉ q−1 (C1).
Now we invoke the formula for the Euler–Poincaré characteristic of a genus one

fibration from Proposition 4.1.12:

4(- ′) = 4(-[̄′)4(� ′) +
∑

C′∉q−1 (C1)

(
4(- ′C′) − 4(- ′[̄′) + XC′

)
+ #

(
4(- ′C′1 ) − 4(-

′
[̄′
) + XC′1

)
4(� ′) = 4(� ′

[̄′
)4(� ′) +

∑
C′∉q−1 (C1)

(
4(� ′C′) − 4(� ′[̄′) + XC′

)
+ #

(
4(� ′C′1 ) − 4(�

′
[̄) + XC′1

)
,

where # = #q−1 (C1). We already know that 4(- ′
C′) = 4(� ′

C′) for C ′ ∉ q−1 (C1) and
we also know that 4(- ′) = 4(� ′). Moreover, the invariants of wild ramification XC′
at C ′ ∈ � ′ for - ′ and � ′ coincide: this is because their definition depends on the
ramification of the sheaves '1 5∗-= and '1 9∗-= for = = ℓ: , where ℓ is a prime
different from ?, and by above, they are isomorphic if (=, <C ) = 1. Thus, we obtain
that 4(- ′C ) = 4(- ′C ) = 4(� ′C ) = 4(�C ). Since we already know that 11 (-C ) = 11 (�C ),
we obtain 12 (-C ) = 12 (�C ). �

Corollary 4.3.18 Let 5 : - → � be a genus one fibration, let 9 : � → � be the
associated jacobian fibration, and assume that � is global. Then:
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d(-) = d(�) and 18 (-) = 18 (�), 8 ≥ 0,

where d denotes the Picard number.

Proof The equalities for 18 (-) = 18 (�) for 8 = 0, 4 are obvious. We have 11 (-) =
11 (�) by Corollary 4.3.5 and then, we obtain 13 (-) = 13 (�) by Poincaré duality.
Moreover, we have 4(-) = 4(�) by Proposition 4.3.14. This implies that 12 (-) =
12 (�).

Finally, we know from (0.10.29) that 12 (-) = d(-) + Cℓ (-) and 12 (�) = d(�) +
Cℓ (�), where Cℓ (−) denotes the rank of the ℓ-adic Tate module )ℓ (Br(−)) of the
Brauer group. The equality d(-) = d(�) now follows from Theorem 4.3.13. �

Remark 4.3.19 In fact, one can say a little bitmore than just the equality d(-) = d(�).
Namely, it follows from Proposition 4.3.2.(3) that there is an isomorphism of groups

Pic0 (-)/Picfib (-) � Pic0 (�)/Picfib (�). (4.3.7)

By Proposition 4.3.2.(1), the rank of the subgroup Picfib (-) (resp. Picfib (�)) is equal
to

∑
C (# Irr(-C ) − 1) (resp. ∑C (# Irr(-C ) − 1)). By Proposition 4.3.17, these numbers

are equal.

Theorem 4.3.20 Let 5 : - → � be a genus one fibration and let 9 : � → � be the
associated jacobian fibration. Let C ∈ � be a closed point. Then

1. -C and �C are of the same type.
2. Moreover, if -C is not a multiple fiber, then -C � �C .

Proof Passing to the strict localization, we may assume that � is strictly local. If
-C is not multiple, then, by Hensel’s lemma, there exists a section of - → � that
intersects -C in a smooth point. Thus - is a trivial torsor and hence, - → � is
isomorphic to � → �. This proves Assertion 2.

To prove Assertion 1, we first use Artin’s Approximation Theorem [22] to assume
that � is global. We have 18 (-C ) = 18 (�C ) by Proposition 4.3.17. Then, the classifi-
cation of degenerate fibers shows that -C and �C must be of the same type unless -C
is of type �̃= (resp. �̃=) and �C is of type �̃= (resp. �̃=). However, Theorem 4.2.9
implies that DiscrC (-) and DiscrC (�) are isomorphic. This is enough to see that also
in these remaining cases the types of -C and �C are the same, see also Table 0.2 for
the discriminant groups of root lattices of finite type. �

Remark 4.3.21 The crucial fact used in the proof of this fundamental result is The-
orem 4.2.9. A more highbrow proof of the previous theorem can be found in [473,
Theorem 6.6], where the authors define the discriminant of a genus one fibration
in the strictly local situation and prove that it coincides with the discriminant of its
associated jacobian fibration.

We end this section by showing that the list of possible degenerate fibers of a
quasi-elliptic fibration is much smaller than the corresponding list of an elliptic
fibration.
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Corollary 4.3.22 Let 5 : - → � be a quasi-elliptic fibration and let C ∈ � be a
closed point.

1. If ? = 2, then -C can be of type �̃∗∗0 , �̃∗1, �̃2: , �̃7, or �̃8.
2. If ? = 3, then -C can be of type �̃∗∗0 , �̃∗2, �̃6, or �̃8.
3. If 5 is a jacobian fibration, then the discriminant group of the lattice Num(-) is

an elementary ?-group.

Proof By the previous theorem, we may assume that 5 is a jacobian fibration and
that � is strictly local. We also know that the Mordell–Weil group MW(-/�) is a
finite ?-group by Theorem 4.3.3. By Proposition 4.3.1, the Néron modelA of - is a
unipotent group, from which we conclude that AC/A0

C is an elementary ?-group. By
Theorem 4.2.9, this group is isomorphic to DiscrC (-), hence DiscrC (-) is a ?-group.
Since A0 is a smooth group scheme with unipotent generic fiber, the closed fiber
of A◦ is isomorphic to G0. This implies that all singular fibers must be of additive
type. Consulting again Table (0.2) and using Kodaira’s classification of degenerate
fibers of a genus one fibration, we obtain the lists asserted in (1) and (2). Applying
the Shioda–Tate formula, we get (3). �

4.4 Weierstrass Models

In this section, we study genus one fibrations 5 : - → � together with a section
e : �→ - . Contracting the fiber components that do not meet E := e(�), we arrive
at a fibration, → � with a usually slightly singular total space, , the Weierstrass
model of the fibration 5 . This , can be embedded into the projectivization of a
locally free sheaf E3 of rank 3 on �, that is, a P2-bundle over �. More precisely,
, ⊂ P(E3) → � is locally given by an equation of degree 3, that is, , → �

is a relative cubic, which makes the Weierstrass model a useful tool for explicit
computations. For example, it allows us to analyze the singular fibers, to compute
automorphisms, and to compute local and global invariants.

Let 5 : - → � be a genus one fibration, where � is any integral scheme over an
algebraically closed field k. We will also make the following assumptions:

1. 5 admits a section e : �→ - such that 5 is smooth at each point of E = e(�),
2. 5 is cohomologically flat, and
3. for every point C ∈ �, the canonical sheaf l-C is isomorphic to O-C .

If - is normal and if � is a regular one-dimensional scheme, then the second
condition follows from the first one, see [606, Théorème 7.2.1]. If - is even smooth
over k, then we are in the situation studied in the previous sections and we remind
the reader of the discussion after Theorem 4.1.6, where we treated wild fibers and
the relation to cohomological flatness. Since wild fibers are multiple, the existence
of a section implies that there are no multiple fibers, in particular no wild fibers, and
thus, 5 is cohomologically flat. For other criteria of cohomological flatness, we refer
to [166, Proposition 2.7].
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Coming back to the general setup above, we note that the third condition is
satisfied, for example, if all fibers -C are reduced or we are in the situation of
Proposition 4.3.7.

It follows from the discussion in the beginning of this chapter that every fiber -C
of 5 is a genus one curve, whose canonical sheaf l-C is isomorphic to O-C .

In the case where � = Spec k, a genus one fibration is simply a genus one curve
and the section E gives a distinguished k-rational point. This point defines a Cartier
divisor of degree 1 and three times this divisor is a very ample divisor on - that
embeds it as a curve of degree 3 inside P2. The equation of this latter curve can be
chosen in such way that the image of E is the point [0, 1, 0] at infinity and linear
coordinate changes yield theWeierstrass normal form of the cubic, see, for example,
[682, Chapter 3, §1]. Coming back to the general setup 5 : - → � from above, we
now want to construct a relative Weierstrass model 6 : , → �. That is, we would
like to derive a birational model 6 : , → � of 5 : - → �, whose generic fiber is
isomorphic to a plane cubic curve in P2

[ given by its Weierstrass normal form.

Lemma 4.4.1 Under the above assumptions:

1. If 8 > 0 and = > 0, then '8 5∗O- (=E) = 0.
2. If = ≥ 0, then the sheaf 5∗O- (=E) is locally free of rank equal to =.
3. The natural homomorphism of sheaves 5∗O- → 5∗O- (E) is an isomorphism.
4. There is an isomorphism of invertible sheaves ('1 5∗O- )⊗−1 � e∗Ω1

-/�, and
5. If = > 0, then the cokernel of the natural homomorphism 5∗O- (=E) → 5∗O- ((=+

1)E) is isomorphic to L⊗=, where L = '1 5∗O- .

Proof We use some standard properties of cohomology of a projective morphism,
see [294, Chapter III]. Since 5 is of relative dimension one, we have, for any coherent
sheaf F on - that '8 5∗F = 0 if 8 > 1. The base change theorem allows us to compute
the fiber of '1 5∗F at a point C ∈ �. We have

('1 5∗F )C � �1 (-C , F ⊗ O-C ).

Next, let us show that
�1 (-C ,O-C (=E)) = 0, (4.4.1)

which implies that
'1 5∗O- (=E) = 0 for all = > 0. (4.4.2)

Of course, if -C is an integral scheme, then this follows from the vanishing of
cohomology of any invertible sheaf with positive degree on a genus one curve. By
Serre duality on -C , we have dim�1 (-C ,O-C (=E)) = dim�0 (-C ,O-C (−=E)). We
will prove (4.4.1) by induction on =. First, we treat the case = = 1. Consider the usual
short exact sequence

0 → O- (−E) → O- → OE → 0.

After tensoring with O-C , we obtain the exact sequence
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0 → O-C (−E) → O-C → Oo → 0,

where o = e(C) ∈ E. Here, we have used that TorO-1 (OE,O-C ) = 0, since -C
and E intersect transversally at o and since -C is smooth at o0. By assumption, 5
is cohomologically flat and we find �0 (-C ,O-C ) = k. Since the homomorphism
�0 (-C ,O-C ) → O- (E) → Oo is nonzero, we obtain that �0 (-C ,O-C (−E)) = 0 and
hence, �1 (-C ,O-C (E)) = 0.

To prove the induction step, we tensor the exact sequence

0 → O- (=E) → O- ((= + 1)E) → OE ((= + 1)E) → 0 (4.4.3)

with O-C and obtain an exact sequence

0 → O-C (=E) → O-C ((= + 1)E) → Oo → 0.

Here, we have used that the sheaf N = OE (E) is the normal sheaf of a regularly
embedded hypersurface E, hence it is an invertible sheaf. Taking cohomology and
using the induction hypothesis, we obtain (4.4.1). This proves (1).

It follows from (4.4.1) that '1 5∗O- (E) = 0. By the Base Change Theorem, this
implies that 5∗O- (E) is a locally free sheaf. Its rank is equal to dim�0 (-C ,O-C (E)) =
j(O-C (E)). Since 5 is flat, this number is the same for every C, which is why we may
assume that -C is an integral genus one curve. But then, we obtain by Riemann–Roch
that this number is equal to degO-C (E) = 1. This proves (2) and (3).

Let us prove the remaining two assertions. We use exact sequence (4.4.3). The
sheaf OE ((= + 1)E) is isomorphic to the (= + 1)-fold tensor power of the normal
sheafN = OE (E) of the section E. Let = ≥ 0. Applying the functor 5∗ and using (2)
and (4.4.2), we obtain an exact sequence

0 → 5∗O- (=E) → 5∗O- ((= + 1)E) → 5∗ (N ⊗(=+1) ) → 0. (4.4.4)

Let us take = = 0. Since 5 is cohomologically flat and of relative dimension one, we
find dim('1 5∗O- ) (C) = dim�1 (-C ,O-C ) = 1. Thus,

L := '1 5∗O- (4.4.5)

is an invertible sheaf. In particular, the exact sequence (4.4.4) is an exact sequence
of invertible sheaves. Since a surjective homomorphism of invertible sheaves is an
isomorphism, we obtain that the arrow

5∗N � e∗N → L

is an isomorphism and 5∗O- → 5∗O- (E) is bĳective. This proves (3).
The exact sequence

0 → N−1 → Ω1
-/� → ΩE/� → 0

gives an isomorphism
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e∗N−1 � e∗Ω1
-/�

and establishes assertion (4). Since

5∗ (N ⊗=) � e∗N ⊗= � (e∗N)⊗= � L⊗=,

we get (5). �

We now come to the construction of the Weierstrass model. We set

E= := 5∗O- (=E). (4.4.6)

For for every = ≥ 0, we obtain a filtration

0 ⊂ E0 ⊂ E1 ⊂ . . . ⊂ E=,

such that

gr(E=) �
=⊕
:=0
L⊗: .

Next, we recall that to give a �-morphism from - to a projective bundle P(E) → �

is equivalent to giving an invertible sheafM on - and a surjective homomorphism
U : 5 ∗E → M of O- -modules. We take M = O- (3E) and E = E3, so that we
can choose U to be given by an isomorphism E3 = 5∗ 5 ∗ (E3) → 5∗O(3E). This
isomorphism gives thus rise to a morphism

q : - → P(E3) (4.4.7)

of schemes over �.
If C ∈ � is a closed point and we restrict q to the -C , then we obtain a morphism

qC : -C → P2. This map qC corresponds to the complete linear system |O-C (3o) |.
If -C is irreducible, then qC is an isomorphism. If -C is reducible, then qC blows
down all reducible components that do not intersect the zero section. In particular,
the morphism q : - → P(E3) depends in general on the choice of the zero section
E.

Definition 4.4.2 The image of q is a closed subscheme , ⊂ P(E3), which we will
call the Weierstrass model of the genus one fibration 5 : - → � with respect to the
section E.

Next, we let G* (resp. H* ) be a section of E2 over some open affine set *. We
assume that * is small enough so that both projections E2 → L⊗2 and E3 → L⊗3

are split over*. Locally, this section generates a subsheaf of E2 (resp. E3), which is
isomorphic to L⊗2 (resp. L⊗3).

We can consider G* as a section of O-* (2E) and H* as a section of O-* (3E).
Thus, G3

*
and H2

*
are sections of O-* (6E) or E6 = 5∗O-* (6E), whose images

generate L⊗6. After multiplying by a unit, we may assume that H2
*
− G3

*
is a section

of E5. Thus, after replacing G* with −G* , we can write
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H2
* + 0*1 · H*G* + 0

*
3 · H* + G

3
* + 0

*
2 · G

2
* + 0*4 · G* + 0

*
6 = 0,

where 0*
:
are certain sections over*. Our choice of indices will become clear below.

This is a local Weierstrass equation.
Next, let U = (*8) be an open affine cover of �. We now study how G* , H*

and 0*
:
change when passing from some *8 to some * 9 . We denote by G8 , H8 , 0 (8):

the sections over *8 introduced above. Choose a local generator D8 of L in *8 . Let
(28 9 ) be the transition functions for the invertible sheaf L⊗−1, that is, D 9 = 28 9D8 in
*8 ∩* 9 . Then, we can write

G8 = 22
8 9G 9 + W8 9 and H8 = 23

8 9 H 9 + 22
8 9U8 9G 9 + V8 9 , (4.4.8)

where U8 9 , V8 9 , W8 9 ∈ O� (*8 ∩* 9 ). It follows that the transition functions for L are
(2−1
8 9
). We can rewrite (4.4.8) in the form

©«
1
G 9
H 9

ª®¬ =
©«

1 0 0
−W8 92−2

8 9
2−2
8 9

0
(W8 9U8 9 − V8 9 )2−3

8 9
−2−3

8 9
U8 9 2

−3
8 9

ª®®¬
©«

1
G8
H8

ª®¬ . (4.4.9)

This also gives the transition functions for E3

68 9 =
C
©«

1 0 0
−W8 92−2

8 9
2−2
8 9

0
(W8 9U8 9 − V8 9 )2−3

8 9
−2−3

8 9
U8 9 2

−3
8 9

ª®®¬ =
©«
1 −W8 92−2

8 9
(W8 9U8 9 − V8 9 )2−3

8 9

0 2−2
8 9

−2−3
8 9
U8 9

0 0 2−3
8 9

ª®®¬ .
The transition matrices for E2 are (

1 −W8 92−2
8 9

0 2−2
8 9

)
.

In particular, this shows that in general, E2 and E3 may not split into direct sums of
invertible sheaves.

Using the coordinate change (4.4.8), we obtain that in order that the local equations
glue together, the transition matrix for the coefficients is the following:

©«

1
0
(8)
1
0
(8)
2
0
(8)
3
0
(8)
4
0
(8)
6

ª®®®®®®®®¬
=

©«

1 0 0 0 0 0
0 28 9 0 0 0 0
0 0 22

8 9
0 0 0

0 0 0 23
8 9

0 0
0 0 0 0 24

8 9
0

0 0 0 0 0 26
8 9

ª®®®®®®®®¬

©«

1 0 0 0 0 0
2U8 9 1 0 0 0 0

3W8 9 + U2
9

U8 9 1 0 0 0
2V8 9 W8 9 0 1 0 0

2U8 9 V8 9 + 3W2
8 9
U8 9W8 9 + V8 9 2W8 9 U8 9 1 0

V2
8 9
+ W3

8 9
W8 9 V8 9 W2

8 9
V8 9 W8 9 1

ª®®®®®®®®¬

©«

1
0
( 9)
1
0
( 9)
2
0
( 9)
3
0
( 9)
4
0
( 9)
6

ª®®®®®®®®¬
.

(4.4.10)
This shows that the local equations

H2
8 + 0

(8)
1 H8G8 + 0 (8)3 H8 + G3

8 + 0
(8)
2 G2

8 + 0
(8)
4 G8 + 0 (8)6 = 0
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glue together to define a closed subscheme of P := P(E3 ⊗ L−2)

H2 + 01HG + 03H + G3 + 02G
2 + 04G + 06 = 0 (4.4.11)

defined by an nonzero section in �0 (P,OP (3)) � (3 (E3) ⊗L⊗−6. We call it a global
Weierstrass equation.

To say more, we consider the following five possible cases in detail:

1. ? ≠ 2, 3,
2. ? = 2 and 5 : - → � is an elliptic fibration,
3. ? = 3 and 5 : - → � is an elliptic fibration,
4. ? = 2 and 5 : - → � is a quasi-elliptic fibration,
5. ? = 3 and 5 : - → � is a quasi-elliptic fibration.

We start with the most common case of an elliptic fibration and ? = char k ≠ 2, 3,
that is:

• Case 1: characteristic ? ≠ 2, 3.

Replacing H8 with H8 + 1
2 (0

(8)
1 G8 + 0 (8)3 ) and then replacing G8 with G8 +

1
302, we may

assume that 0 (8)1 = 0
(8)
2 = 0

(8)
3 = 0. In order for this form to be preserved under the

change from *8 to * 9 , we have to take U8 9 = V8 9 = W8 9 = 0. In other words, for this
to be fulfilled, the sheaves E2 and E3 must split as follows:

E2 � gr(E2) � O� ⊕ L⊗2,

E3 � gr(E3) � O� ⊕ L⊗2 ⊕ L⊗3.

For example, this is always possible if � = P1 because in this case degL =

−j(-,O- ) ≤ 0, hence Ext1 (L⊗2,O� ) � �1 (�,L⊗−2) = 0 and Ext1 (L⊗2 ⊕
L⊗3,O� ) � �1 (�,L⊗−2 ⊕ L⊗−2) = 0.

If E2 and E3 split into invertible sheaves as above, then the coefficients 0: become
sections ofL⊗: , which also explains our choice of numbering the indices. Moreover,
in this case we obtain a global equation of the form

H2 + G3 + 04G + 06 = 0. (4.4.12)

We cannot use this if the sheaves E2 and E3 do not split.
Localizing at the generic point, we get a Weierstrass equation of the elliptic curve

-[ (whence also the name Weierstrass model). The condition that the generic fiber
is indeed smooth is that

Δ := 403
4 + 2702

6 ∈ Γ(�,L
⊗−12) (4.4.13)

is not zero. More precisely, it may vanish at some closed points of �, but it cannot
be identically zero.

Remark 4.4.3 TheWeierstrass form can be used to show that a regular curve of genus
one over a field  is always smooth if ? = char( ) ≠ 2, 3, which we already deduced
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from the much more general Theorem 4.1.3. Here is the argument: first, we pass to
the Jacobian and thus, we may assume that - ( ) ≠ ∅. We may thus assume that -
is given by a Weierstrass equation of the form H2 + G3 + 04G + 06 = 0. (Here, we use
? ≠ 2, 3.) Computing the partial derivatives of this equation, we find that the curve
is not smooth if and only if Δ = 403

4 + 2702
6 = 0 and in this case the non-smooth

point has coordinates (G, H) = (− 306
204
, 0) if 04 ≠ 0 and (0, 0) if 04 = 0. (Here, we use

? ≠ 2, 3 again.) We see from this explicit description that if there is a non-smooth
point, then it is  -rational. In particular, if - is not smooth over  , then there is a
non-smooth and  -rational point, and thus, - cannot be regular.

• Case 2: 5 : - → � is an elliptic fibration and ? = 2.

First, we determine the condition for the generic fiber -[ to be smooth. Taking
partial derivatives, a non-smooth point satisfies

01G + 03 = 01H + G2 + 04 = 0,

where we omit the upper indices. First, assume that 01 = 0. We find that -[ is smooth
if and only if 03 ≠ 0. If 01 ≠ 0, we get G = 03/01, H = (G2 +04)/01 = (02

3 +040
2
1)/0

3
1

and plugging this into the Weierstrass equation, we find

(02
3 + 040

2
1)

2

06
1

+
03 (02

3 + 040
2
1)

03
1

+
03 (02

3 + 040
2
1)

03
1

+
03

3

03
1
+
020

2
3

02
1
+ 0403

01
+ 06

= 04
3 + 0

3
1 (0

3
3 + 010

2
4 + 0

2
10304 + 01020

2
3 + 0

3
106) = 0.

Also, we see that if we replace 0: here with 0 (8): using the local coordinates H8 , G8 ,
then we obtain that they can be glued together to define a section

Δ := 04
3 + 0

3
10

3
3 + 0

4
1 (0

2
4 + 0

2
10304 + 020

2
3 + 0

2
106) ∈ Γ(�,L⊗−12). (4.4.14)

This section is called the discriminant of a jacobian elliptic fibration. The fibration
is elliptic if and only if Δ ≠ 0.

In particular, if Δ ≠ 0, then we see that at least one of the coefficients 01 and 03
must be non-zero. In this case, we may not be able to split E2 or E3. In general, the
coefficients (01, 02, 03, 04, 06) define a section of an affine bundle of rank 6 with
transition functions

©«

1
0
(8)
1
0
(8)
2
0
(8)
3
0
(8)
4
0
(8)
6

ª®®®®®®®®¬
=

©«

1 0 0 0 0 0
0 28 9 0 0 0 0
0 0 22

8 9
0 0 0

0 0 0 23
8 9

0 0
0 0 0 0 24

8 9
0

0 0 0 0 0 26
8 9

ª®®®®®®®®¬

©«

1 0 0 0 0 0
0 1 0 0 0 0

W8 9 + U2
8 9

U8 9 1 0 0 0
0 W8 9 0 1 0 0
W2
8 9

U8 9W8 9 + V8 9 0 U8 9 1 0
V2
8 9
+ W3

8 9
W8 9 V8 9 W2

8 9
V8 9 W8 9 1

ª®®®®®®®®¬

©«

1
0
( 9)
1
0
( 9)
2
0
( 9)
3
0
( 9)
4
0
( 9)
6

ª®®®®®®®®¬
. (4.4.15)
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We may locally kill the coefficient 0 (8)2 by replacing G8 with G8 + 0 (8)2 . In order
to eliminate 02 in the global equations, we must have U8 9 = 0 if 0 (8)1 ≠ 0 and
U2
8 9
+ W8 9 = 0 if 0 (8)6 ≠ 0. We can achieve this if E2 and E3 split.

• Case 3: 5 : - → � is an elliptic fibration and ? = 3

Replacing H8 with H8 + 1
2 (0

(8)
1 G8 + 0 (8)3 ), we may assume that 0 (8)1 = 0

(8)
3 = 0. In

order to preserve this form in the global equation, we must have W8 9 = V8 9 = 0. Then,
E3 must split into a direct sum E2 ⊕ L⊗3, but E2 may not split. We obtain the global
Weierstrass equation

H2 + G3 + 02G
2 + 04G + 06 = 0. (4.4.16)

Here, 02 is a section of L⊗−2. On the other hand, (02, 04, 06) is a section of a rank
3 affine bundle with transition functions

©«
1
0
(8)
2
0
(8)
4
0
(8)
6

ª®®®®¬
=

©«
1 0 0 0
0 22

8 9
0 0

0 0 24
8 9

0
0 0 0 26

8 9

ª®®®®¬
©«

1 0 0 0
U2
8 9

1 0 0
−U8 9 V8 9 −W8 9 1 0
V2
8 9
+ W3

8 9
W2
8 9
W8 9 1

ª®®®¬
©«

1
0
( 9)
2
0
( 9)
4
0
( 9)
6

ª®®®®¬
. (4.4.17)

Computing partial derivatives, we find that -[ is smooth if and only if

03
4 + 202

20
2
4 + 0

3
206 ≠ 0,

where we consider the coefficients as rational functions on �. The expressions
0
(8)
4

3 + 20 (8)2
20
(8)
4

2 + 0 (8)2
30
(8)
6 glue together to a section

Δ := 03
4 + 202

20
2
4 + 0

3
206 ∈ Γ(�,L⊗−12). (4.4.18)

The generic fiber -[ is an elliptic curve if and only if Δ ≠ 0.

• Case 4: 5 : - → � is a quasi-elliptic fibration and ? = 2.

In this case, the expression Δ from (4.4.13) must be equal to zero after passing
to an inseparable cover of k(�), but it cannot be equal to zero over k(�). We use
(4.4.11), where we assume that the coefficients are rational functions on �.

If 01 ≠ 0, then we replace 01G + 03 with G ′ to assume 03 = 0, 01 = 1. Then, we
replace H with H + 04 and may assume that 04 = 0. The discriminant Δ becomes
equal to 02

6. Thus, the curve is not smooth if and only if 06 = 0. However, in this
case it is also a non-regular point contradicting the assumption. So, 01 = 0 and then,
formula (4.4.13) shows that 03 = 0. Replacing G8 with G8 + 02

3 , we may assume that
the local equation becomes

H2
8 + G3

8 + 0
(8)
4 G + 0 (8)6 = 0.
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Taking the partial derivative with respect to the G8’s, we see that G2
8
+0 (8)4 and H2

8
+0 (8)6

both must vanish at a singular point of, .
Putting these observations together, we have thus shown that the fibration is

quasi-elliptic if and only if 0 (8)4 or 0 (8)6 is not a square in k(�).
Since 0 (8)2 = 0

(8)
3 = 0, the transition functions (4.4.15) show that W8 9 = U2

8 9
. This

allows us to define a global Weierstrass equation

H2 + G3 + 04G + 06 = 0. (4.4.19)

The coefficients (04, 06) are sections of an affine bundleA2 of rank 2 with transition
functions defined by matrices

©«
1
0
(8)
4
0
(8)
6

ª®¬ =
(1 0 0
0 24

8 9
0

0 0 26
8 9

) ( 1 0 0
W2
8 9

1 0
V2
8 9
+ W3

8 9
W8 9 1

) ©«
1
0
( 9)
4
0
( 9)
6

ª®¬ . (4.4.20)

If E2 and E3 split, then we may choose W8 9 = V8 9 = 0, and obtain that 04 ∈
Γ(�,L⊗−4) and 06 ∈ Γ(�,L⊗−6). If 0 (8)4 = 12

8
is a square in  , then the ideal of the

cusp is given by G8 + 18 = 0 and it must be preserved under the transition functions.
We have

G8 + 18 = 22
8 9G 9 + W8 9 + 22

8 9 (1 9 + W8 9 )

= 22
8 9 (G 9 + 1 9 ) + (22

8 9 + 1)W8 9 .

Assume that degL = −j(�) < 0. Then, 28
8 9
≠ 1, 8 > 0, and hence W8 9 = 0.

Remark 4.4.4 Suppose [ (01/2
4 , 0

1/2
6 ) :  ] = 2 (for example, if  = k((C)) or k(C)).

If 04 is not square in , thenwe canwrite 06 = B
204+A2, and replacing Hwith H+A, we

may assume that A = 0 and 06 = B
204. Now, replacing (G, H) with (G + B2, H+ BG + B3),

we get a Weierstrass equation H2 + G3 + (0 + B4)G = 0 with 06 = 0. The problem with
this simple and local equation is that we cannot globalize it: because in order to do
so, we would have to be able to choose W = U = V = 0, which may not always be
possible.

• Case 5: 5 : - → � is a quasi-elliptic fibration and ? = 3.

We argue as in the previous case. First, we show that 01 = 03 = 0. If 02 ≠ 0,
then we can eliminate 04 by replacing G with G − 1

20
−1
2 04. Then, the formula for

the discriminant implies that 06 = 0 and hence, (G, H) = (0, 0) ∈ -[ is a singular
point and -[ is not regular. So, we may assume that 02 = 0 and the formula for the
discriminant implies 04 = 0. This gives us local equations of the form

H2
8 + G3

8 + 0
(8)
6 = 0.

The fibration is quasi-elliptic if and only if 0 (8)6 is not a cube in O� (*8). The local
equations can be glued together to a global Weierstrass equation of the form
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H2 + G3 + 06 = 0 (4.4.21)

only if U8 9 = V8 9 = 0, that is, E2 may not split, but E3 has to split as E3 � E2 ⊕ L⊗3.
We have

0
(8)
6 = 26

8 9 (0
( 9)
6 + W

3
8 9 ). (4.4.22)

This finishes our case-by-case analysis.
Of course, we can use equation (4.4.11) in all Cases 1, 2, and 3 from above, that

is, in the cases where the fibration is generically smooth, that is, is elliptic. Following
[702], we can unify the formulas for the discriminant in these cases by introducing
the following expressions:

12 := 02
1 − 402

14 := 0103 − 204
16 := 02

3 − 406
18 := 010304 − 02

4 − 0
2
106 − 020

2
3 + 40206.

(4.4.23)

In terms of these, we have the following

Proposition 4.4.5 The expression

Δ = −12
218 + 9121416 − 813

4 − 2712
6

is equal to the discriminant of an elliptic fibration (up to multiplying by an integer
scalar).

Proof Assume ? ≠ 2, 3. Then 01 = 03 = 02 = 0 and we obtain

12 = 0, 14 = 204, 16 = −406, 18 = −02
4.

This gives

Δ = −813
4 − 2712

6 = −2603
4 − 332402

6 = −24 (403
4 + 2702

6),

which agrees with formula (4.4.13).
Next, assume ? = 2. Then

12 = 0
2
1, 14 = 0103, 16 = 0

2
3, 18 = 010304 + 02

4 + 0
2
106 + 020

2
3.

This gives

Δ = 12
218 + 121416 + 12

6 = 04
3 + 0

3
10

3
3 + 0

4
1 (0

2
4 + 0

2
10304 + 020

2
3 + 0

2
106),

which agrees with formula (4.4.14).
Finally, assume ? = 3. Then 01 = 03 = 0 and

12 = −02, 14 = −04, 16 = −06, 18 = −02
4 + 0206.

This gives
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Δ = −12
218 + 13

4 = −0
2
2 (0

2
4 + 0206) − 03

4,

which agrees with formula (4.4.18). �

We can simplify the formula for Δ further by introducing

24 = 1
2
2 − 2414,

26 = −13
2 + 361412 − 21616.

Then, we have
1728Δ = 23

4 − 2
2
6.

(If ? = 2, 3, then this formula is also true, but there, it becomes 0 = 0, which has
not much content.) From now on we use this expression for the discriminant of an
elliptic fibration.

The rational function on �
9 := 23

4/Δ (4.4.24)

is called the absolute invariant or the j-invariant of the elliptic fibration.
We have

9 =


1728 403

4
403

4+2702
6

if ? ≠ 2, 3,
012

1
Δ

if ? = 2,
06

2
Δ

if ? = 3,

(4.4.25)

and we refer to [682, Appendix A] for further details. The significance of the absolute
invariant lies in the following proposition, which shows that it classifies elliptic
fibrations geometrically, that is, up to finite covers of the base.

Proposition 4.4.6 Let � be a global or local. Then, two relatively minimal jacobian
fibrations 5 : - → � and 5 ′ : - ′ → � admit isomorphic relative minimal models
after some separable finite cover � ′→ � if and only if their absolute invariants are
equal.

Proof A finite separable cover � ′ → � is determined, via normalization, by the
field extension  ′/ of their rational function fields. Applying the theory of relative
minimal models, it is enough to assume that 5 and 5 ′ are elliptic curves over the
field  . Let 4 ∈ - ( ) and 4′ ∈ - ′( ). Suppose the - and - ′ become isomorphic
over some separable finite extension  ′/ . After composing with a translation
automorphism of - , we may assume that we have an isomorphism q : - → - ′ of
elltiptic curves that sends 4 to 4′.

Then, the isomorphism q gives rise to an isomorphism q : , → , ′ of the
Weierstrass models defined over  ′. Let E=, L, E ′=, and L ′ be the O�′-modules
defined in the previous discussion, which we may regard as linear spaces over  .
An isomorphism q defines isomorphisms l → l′ and E= → E ′=. These are given
by invertible matrices with entries in  ′. It follows that an isomorphism , → , ′

is given by a projective automorphism of the form (I, G, H) = (I, 22G ′ + WI′, 23H′ +
22UG ′ + VI′) that preserves the Weierstrass equations.
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First, assume that we are in Case 1, that is, ? ≠ 2, 3. Then, we have U = V = W = 0.
Thus, the automorphism is given by (G, H, I) = (23H, 22G, I). The projective curves
+ (H2I + G3 + 04GI

2 + 06I
3) and + (H2I + G3 + 0′4GI

′2 + 0′6I
′3) are isomorphic if and

only if 02 = 0
′
22

4 and 06 = 0
′
62

6. This gives the equality of their absolute invariants.
Conversely, assume 9 = 9 ′ and 04, 06 ≠ 0. We get 02

6/0
′
6

2 = 03
4/0
′
4

3. Let  ′/ 
be a separable extension such that these ratio is of the form 26 for some 2 ∈  ′.
Then the projective transformation (G, H, I) = (23H, 22G, I) defines an isomorphism
- ′ � - ′

 ′ . If 9 = 9
′ and 04 = 0

′
4 = 0, then we have 06, 0

′
6 ≠ 0. Then we find  ′/ 

containing 2 = (06/0′6)
1/6 and we can define an isomorphism - ′ → - ′

 ′ . If 9 = 9
′

and 06 = 0
′
6 = 0, then 04, 0

′
4 ≠ 0 and we find  ′/ containing 2 = (04/0′4)

1/4 and
define an isomorphism - ′ → - ′

 ′ .
Next, assume we are in Case 2, that is, ? = 2 and the curves - and - ′ are smooth

over  . We useWeierstrass equation (4.4.11). Suppose - and - ′ become isomorphic
over some separable extension  ′/ . Arguing as in the previous case, we obtain a
projective transformation

(I, G, H) = (I, 22G + WI, 23H + 22UG + VI) (4.4.26)

with coefficients 2 ∈  ′× and U, V, W ∈  ′. The transition formulae for the coeffi-
cients of the Weierstrass equation easily give that 9 = 9 ′. Conversely, assume that
9 = 9 ′. We know that (01, 03) and (0′1, 0

′
3) are not equal to (0, 0). Assume 01 = 0.

Then Δ = 04
3 ≠ 0 and 9 = 0. Thus 9 ′ = 0 and we get 0′1 = 0, 0′3 ≠ 0. Now, we can get

rid of the coefficients 02 and 0′2. We can solve the equations

03 = 2
30′3, 04 = 2

40′4 + 2
3U0′3 + U

4,

06 = 2
60′6 + 2

4U20′4 + 2
3 (U3 + V)0′3 + V

2

over a separable extension  ′/ . The projective transformation (4.4.8) will define
an isomorphism - → - ′ over  ′.

Assume 01 ≠ 0. Then 9 = 9 ′ implies that 0′1 ≠ 0. Replacing G with 01G + 03
and G ′ with 0′1G

′ + 0′3, we get 03 = 0
′
3 = 0 and 01 = 0

′
1 = 1. Then 9 = 9 ′ implies

Δ = 02
4 + 06 = Δ

′ = 0′4
2 + 0′6. Now, replace H with H + 04 and H′ with H′ + 0′4. We get

the Weierstrass equations H2 + GH + G3 + 02G
2 +Δ = 0 and H2 + GH + G3 + 0′2G

2 +Δ = 0.
Let  ′ =  (U), where U is a root of the separable equation C2 + C +02 +0′2 = 0. Then,
the transformation (4.4.8) with 2 = 1 and W = V = 0 yields an isomorphism of the
Weierstrass models.

Finally, let us consider Case 3, that is, ? = 3 and -, - ′ are smooth over  . We
check immediately that 9 is an invariant under an isomorphism. Assume 9 = 9 ′ =
02 = 0. Let 2 = (04/0′4)

1/4 so that 24 = 04/0′4. Let W be a solution of the separable
equation C3 + 0′4C − 2

20′6 + 06 = 0. Then, the transformation (4.4.8) with U = V = 0
defines an isomorphism of the Weierstrass models. �

The proof of the previous proposition allows us to determine the automorphism
group schemeAutgr (�) of an elliptic curve� over a field , that is, the automorphism
group scheme of � considered as an abelian variety over  .
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Let � be an elliptic curve over a field  with Weierstrass equation

H2 + 01GH + 03H + G3 + 02G
2 + 04G + 06 = 0.

We have seen in the proof of the previous proposition that any automorphism of
� as an elliptic curve is a projective automorphism that preserves the Weierstrass
equation. We now determine the group scheme of automorphisms Autgr (�) of the
elliptic curve � .

• Case 1, that is, ? ≠ 2, 3.

Here, 01 = 02 = 03 = 0 and the only possible automorphisms are the projective
automorphisms of the form (I, G, H, I) = (I, 22G, 23H). Moreover, we have 24 = 1 if
04 ≠ 0 and 26 = 1 if 06 ≠ 0. This gives

Autgr (�/ ) �


-2, if 04, 06 ≠ 0,
-6, if 04 = 0, or, equivalently, 9 = 0,
-4, if 06 = 0, or, equivalently, 9 = 1728.

• Case 2, that is, ? = 2.

As we observed in the proof of the previous proposition, we may assume that
either 01 = 1, 03 = 04 = 0 if 9 ≠ 0, or 01 = 02 = 0, 03 ≠ 0 if 9 = 0.

If 9 ≠ 0, then the only possible automorphism is given by the projective auto-
morphism 6 : (I, G, H, I) = (I, G, H + G). If 9 = 0, then an automorphism is given by
(4.4.8), where W = U2, and

23 = 1, (1+2)04+03U+U4 = 0, 2U204+ (U3+ V)03+U6 = V2+ V03+U204+U6 = 0.

The group scheme of automorphisms is étale of order 24. The kernel of the homomor-
phism Aut(�) → -3, , 6 ↦→ 2 is isomorphic to a separable form of the quaternion
group&8. Its center is isomorphic to -2, and is generated by the transformation 61
with 2 = 1, U = 0, V = 03. The quotient is a separable form of the group (Z/2Z)2

 
.

In fact, it is not too difficult to see that this group scheme is a separable form of the
constant group scheme that is isomorphic to the binary tetrahedral group of order
24, which is isomorphic to the group SL(2, F3).

• Case 3, that is, ? = 3.

If 9 ≠ 0, then the only possible automorphism is given by H → −H, G → G.
Assume 9 = 0. Then, an automorphism is given by (4.4.8), where we drop the

indices, with 24 = 1, U = V = 0 and W equal to a root of the separable equation
C3+04C + (1−22)06 = 0. It is a group scheme of order 12. It admits a homomorphism
onto -4, , whose kernel a separable form of the group (Z/3Z) .

Summarizing our calculations, we have the following.

Proposition 4.4.7 Let � be an abelian curve over a field  . Then, Autgr (�/ ) is a
separable form of a constant group scheme � over  , where � is as follows:
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� �



Z/2Z if 9 ≠ 0, 1728,
Z/4Z if ? ≠ 2, 3, 9 = 1728,
Z/6Z if ? ≠ 2, 3, 9 = 0,
SL(2, F3) if ? = 2, 9 = 0 = 1728,
Z/6Z o Z/2Z if ? = 3, 9 = 0 = 1728.

Example 4.4.8 Let H2 + G3 + 04G + 06 = 0 be the Weierstrass equation of an elliptic
curve � over a field  of characteristic ? ≠ 2, 3. Let U ∈  × \  ×2. The curve
� ′ = + (UH2 + G3 + 04G + 06) becomes isomorphic to � over the quadratic field
extension  (U). In fact, � ′ is an elliptic curve with Weierstrass equation H2 + G3 +
U04G + U206 = 0. One says that � ′ is the quadratic twist of � with respect to U,
see also [682, Chapter X]. By Proposition 4.4.6, the absolute invariants of � and
� ′ must be equal, but in this explicit case, this also follows from a straightforward
computation with their Weierstrass equations.

Quite generally, an elliptic curve � ′ over  that becomes isomorphic to � over
some finite (and separable) field extension  ′/ is called a (separable) form or a
(separable) twist of � over . By Proposition 4.4.6, an elliptic curve � ′ is a separable
form of � if and only if 9 (�) = 9 (� ′). Quite generally, separable twists of � are
classified by the cohomology set �1 (Gal( ̄/ ),Aut(�) ( ̄)), which is an abelian
group if Aut(�) ( ̄) is an abelian group and which is merely a pointed set in the
general case. Since Autgr (�/ ) is always a finite and étale group scheme over  , it
follows that any twist (a priori not necessarily separable or finite) of � is in fact a
finite and separable twist of � .

Moreover, Proposition 4.4.7 tells us that there are three possibilites forAut(�) ( ̄)
(note that we assume ? ≠ 2, 3 in this example). If Aut(�) � -2, , then it follows
from Kummer theory that �1 (Gal( ̄/ ),Aut(�) ( ̄)) is an abelian group that is
isomorphic to  ×/ ×2. In this case, every separable form is obtained as in the
example just discussed and we refer to [682, Proposition X.5.4] for the details.
However, if Aut(�) ( ̄) is a cyclic group of order 4 or 6, then we have more separable
forms and we refer again to [682, Proposition X.5.4] for details and equations.

Proposition 4.4.9 Let 5 : - → � be a minimal jacobian elliptic fibration over a
one-dimensional base�. Let div(Δ) be the zero-dimensional subscheme of� defined
by the discriminant Δ ∈ Γ(�,L⊗12). Then:

1. C ∈ div(Δ) if and only if -C is not smooth.
2. If � is global, then deg div(Δ) = 22 (-) = 4(-) ≥ 0 and the following assertions

are equivalent:

a. deg div(Δ) = 0,
b. L⊗12 � O� ,
c. 5 is a smooth morphism,
d. there exists a finite étale cover � ′→ � such that - ×� � ′ � � ′ × � , where �

is an elliptic curve over k.
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In these equivalent cases, all fibers of 5 are isomorphic, 4(-) = 0, and j(O- ) =
0. If 5 is not smooth, then 4(-) = 12j(O- ) > 0.

Proof (1) It follows from the construction of the Weierstrass model that the map
q : - → , to the Weierstrass model is a birational morphism, which contracts all
irreducible components of closed fibers -C except the components ->C that contain
the intersection point -C ∩ E. It follows from the classification of singular fibers of
genus one fibrations that -C is either irreducible and then D(C) : -C → ,C is an
isomorphism, or else that -C is reducible and that the component ->C is isomorphic
to P1. Hence, ,C is a rational curve and thus, not smooth. This shows that ,C is
singular if and only if -C is singular.

(2) We know from Corollary 4.3.8 that degL = −j(O- ). Applying Noether’s
formula, we obtain deg div(Δ) = degL⊗12 = 12j(O- ) = 22 (-) = 4(-). Also,
since an invertible sheaf of degree 0 is isomorphic to O� if and only if it has a
nonzero section, we see that (a) and (b) are equivalent. It follows from Proposition
4.1.12 that 4(-) ≥ 0 and that 4(-) = 0 if and only if 5 is smooth. In particular,
j(O- ) ≥ 0 and j(O- ) = 0 if and only if 5 is smooth. This shows that (a) is
equivalent to (c).

The implication (d)⇒(c) is easy and if (d) holds, then all fibers of 5 are isomor-
phic. Thus, it remains to show the implication (c)⇒(d).

Assume now that 5 is a smooth morphism, suppose ? ≠ 2, 3, and let q : � ′→ �

be an étale cyclic cover of degree 12 that trivializes L, that is, q∗L � O�′ . The
elliptic fibration 5 ′ : - ′ = - ×� � ′ → � ′ has a trivial sheaf '1 5 ′∗O- ′ . It follows
from the construction of theWeierstrass model, ′ that all its coefficients are sections
of O�′ , hence they are constants. This shows that , ′ is isomorphic to the product
� ′ × � . Since D : - ′ → , is an isomorphism in this case, we obtain that - ′ is a
product, too. This proves the implication (c)⇒(d) in the case ? ≠ 2, 3.

The implication (c)⇒(d) if ? = 2, 3 ismore involved.Wenowgive a rather abstract
and technical, but also conceptual, argument that works for all characteristics. Here,
we use the construction of a fine moduli space of elliptic curves together with a level
structure, see, for example, [158]. Since 5 is smooth, the morphism 5 : - → �

defines on - a structure of an abelian scheme A over � (a relative elliptic curve).
Let ℓ > 3 be a prime number that is different from ?. The ℓ-torsion ℓA is a relative
étale group scheme of degree ℓ2 over � and we set � ′ :=ℓ A. Then, we consider
the pull-back - ′ = - ×� � ′ → � ′, which is an abelian scheme over � ′. We have
that ℓA′ gives rise a nonzero section of - ′ → � ′, hence defines a smooth family
of elliptic curves equipped with a nontrivial ℓ-torsion point. Since ℓ > 3, there
exists a fine moduli schemeM0 (ℓ) for families of elliptic curves with a non-trivial
ℓ-torsion section. Thus, our family - ′ → � ′ gives rise to a classifying morphism
� ′ → M0 (ℓ). It is known that M0 (ℓ) is affine. Since � is global, it is proper
and thus, the classifying morphism � ′ → M0 (ℓ) must be constant. Since M0 (ℓ)
is a fine moduli space, the family - ′ → � ′ is isomorphic to the pull-back of the
universal family over M0 (ℓ) via the classifying morphism. Since the classifying
morphism is constant, it follows that - ′ → � ′ is isomorphic to the trivial family,
which establishes (c)⇒(d). �



408 4 Genus One Fibrations

Let us assume now that � = P1, that is, we study (quasi-)elliptic fibrations over
P1. Here, some of the previous discussions simplify - for example, it is easier to
determine whether the sheaves E2 or E3 are split, as is the computation with singular
fibers. This casewill be of particular interest for the study of (quasi-)elliptic fibrations
on Enriques surfaces and rational surfaces. Let = = j(O- ). It follows from Theorem
4.1.6 that

L = '1 5∗O- � OP1 (−=).

In particular, �1 (P1,L⊗: ) = 0 if : > 0, and hence,

E2 � gr(E2) � OP1 ⊕ OP1 (−2=),
E3 � gr(E3) � OP1 ⊕ OP1 (−2=) ⊕ OP1 (−3=).

Then, we can unify the five cases by writing down a general global Weierstrass
equation

H2 + 01GH + 03H + G3 + 02G
2 + 04G + 06 = 0, (4.4.27)

where
0: ∈ �0 (P1,L⊗−: ) = �0 (P1,O(:=))

and where we realize the Weierstrass model as

, ⊂ P(OP1 ⊕ OP1 (−2=) ⊕ OP1 (−3=)).

Locally, H8 (resp. G8) generates the subsheaf L⊗3 (resp. L⊗2) of E3. It defines a
section of E3 ⊗ ?∗L⊗3 (resp. E3 ⊗ ?∗L⊗2). Hence, the right-hand side of the global
Weierstrass equation can be considered as a section of E3 ⊗ 5 ∗L⊗6 or as a section
of O- (3E) ⊗ ?∗L⊗6 = O- (3E) ⊗ 5 ∗OP1 (6=).

The inclusion of the symmetric algebras (• (E2) ⊂ (• (E3) defines a rational map
P(E3) d P(E2). It is the projection map from the section q(E). The restriction of
this projection to, is a cyclic double cover

c : , → P(E2) � P(OP1 ⊕ OP1 (−2=)). (4.4.28)

The surface P(E2) is a minimal ruled surface F2=. The image of E is the section
of P(E2) defined by the surjection E2 → L⊗2. It is the exceptional section e with
self-intersection −2=. The blow-down of this section defines a birational morphism
F2= → P(1, 1, 2=) onto the weighted projective plane P(1, 1, 2=), which is isomor-
phic to the cone over the Veronese curve a2= (P1) of degree 2= in P2=.

Let ,̄ be obtained from , by blowing down the section E (recall that its self-
intersection is equal to −2=). Then, we obtain an embedding

,̄ ↩→ P(1, 1, 2=, 3=)

and it is given by equation (4.4.11) of degree 6=, where the weights of H, G are equal
to 3=, 2= and the coordinates C0, C1 on P1 are of weight 1. The image of E under
the composition - → , → ,̄ is the point with coordinates [0, 0, 1, 1]. In the case
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= = 1, this is an equation for the anti-canonical model of a del Pezzo surface of
degree 1.

If 5 is an elliptic fibration, then the map c : ,̄ → F2= is a split cyclic cover
of degree 2 given by the data (O- ((= + 1)f + 2e), B), where the zero scheme of the
section B is equal to the union of the exceptional section e and a divisor from the
linear system |3=f + 2e|. The canonical class formula tells us that

l,̄ � c∗OP1 (−2(= + 1)f − 2e) ⊗ OP1 (3=f + 2e) � c∗OP1 (= − 2). (4.4.29)

Since the morphism - → , blows down nodal cycles of type �: , �: , �: , all
singular points of, are rational double points. This gives an isomorphism

l- � 5 ∗OP1 (= − 2). (4.4.30)

Applying Riemann–Roch, this confirms in this case the formula = = −j(O- ) that
we already established in Corollary 4.3.8. For example, if = = 1, then we conclude
that - is a rational elliptic surface and if = = 2, then - is a K3 surface.

If ? = 2 and if the fibration is quasi-elliptic, then the cover c : ,̄ → F2= is
inseparable. More precisely, it is a -2-cover defined by the invertible sheaf O- (3=f+
2e). The formula for the canonical class of - is the same.

We now return to the general study of jacobian (quasi-)elliptic fibrations. Our next
task is to determine the types of fibers of a jacobian fibration 5 : � → � in terms
of the coefficients of the Weierstrass model , of 5 . We know that the morphism
q : � → , blows down those components of reducible fibers �C that do not meet the
zero section E. The type of a reducible fiber of 5 : � → � can be read off from the
type of the corresponding rational double point on, .

To determine the type of a singular fiber, wemay assume that� is local. In fact, we
may even assume that � is strictly local, that is, � = Spec k[[C]]. Then, the sheaves
l and E= can be identified with modules over k[[C]]. Since the fibration 5 : - → �

is relatively minimal, any automorphism of the generic fiber extends to an isomor-
phism over �. Assume (01, 02, 03, 04, 06) = (C0′1, C

20′2, C
303, C

40′4, C
60′6). Then the

generic fibers of the Weierstrass models with coefficients (01, 02, 03, 04, 06) and
(0′1, 0

′
2, 0
′
3, 0
′
4, 0
′
6) are isomorphic via G = C2G ′, H = C3G ′. However, the isomorphism

on generic fibers does not extend to an isomorphism of the Weierstrass models since
C is not invertible on �. By successively performing isomorphisms of the generic
fiber of this form, we may eventually assume that the order of vanishing satisfies

a(0: ) < : (4.4.31)

for at least one nonzero coefficient 0: .
We nowbriefly discussTate’s algorithm that determines the type of a singular fiber

given a Weierstrass equation, of some elliptic fibration 5 : - → � = Spec k[[C]].
For further details and for the more involved computations if ? = 2, 3 we refer to
Tate’s original article [703] or to [683, Chapter IV.9]. Since � is strictly local, the
sheaves E2 and E3 split into invertible sheaves. We assume ? ≠ 2, 3 and thus, we
may assume that we have a Weierstrass equation of the form (4.4.12), that is,
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, : H2 + G3 + 04G + 06 = 0

for some 04, 06 ∈ k[[C]]. By (4.4.31), we may assume that a(04) < 4 or a(06) < 6.
First, concerning the regularity of , : taking the partial derivatives with respect

to G, C, H we find that the scheme, ⊂ A2
'
is not regular if and only if

3G2 + 04, −2G3 + 06,
304
3C
G + 306

3C

vanish at some point (C, G, H) = (0, G0, 0). The first two conditions imply that Δ =
403

4 + 2702
6 vanishes at C = 0, which is equivalent to saying that the special fiber of

5 : - → � is singular. The remaining condition implies that either 304
3C

and 306
3C

both vanish at C = 0 or else that 304
3C

does not vanish and then 04 ( 304
3C
)2 = 3( 306

3C
)2.

Next, assume that , is regular, that is, the morphism q : - → , over � is an
isomorphism. Then, the closed fiber of , is irreducible with Weierstrass equation
H2 + G3 + 04 (0)G + 06 (0) = 0. If Δ = 403

4 + 2706 does not vanish at C = 0, then this
fiber is smooth. Otherwise, it is a singular rational curve that has either one node or
one cusp as singular locus.

In particular, we obtain that, if, is regular, then the fiber is cuspidal if and only
if a(04) ≥ 1 and a(06) = 1.

Case (a): 04 = 0.

After possibly scaling H, G by an invertible element of k[[C]], we may assume that
06 = C

= with 1 ≤ = ≤ 5. If = = 1, then, is regular and the closed fiber is of type �∗∗0 ,
a cuspidal cubic. Otherwise,, has a rational double point of type �1, �4, �6, �8 if
= = 2, 3, 4, 5, respectively. In this case, the closed fiber is of type �̃∗1, �̃4, �̃6, �̃8 if
= = 2, 3, 4, 5, respectively.

Suppose now that 04 ≠ 0. After scaling, we may assume that 04 = C< and
06 = nC

=, where n is a unit.

Case (b): 04 ≠ 0 and < < 4.

If < = 0, then Δ = 403
4 + 2702

6 does not vanish at C = 0 if = > 0. So, in this
case , is regular and its closed fiber is a nonsingular elliptic curve with equation
H2 + G3 + G = 0.

If = = 0, then, is not regular if Δ(0) = 4 + 27n (0)2, and 306
3C
(0) = 0. We write

n = n (0) + C:[ for some unit [. If : = 1, then the scheme , is regular. If : > 1,
then we write G3 + G + n (0) = (G − U)2 (G + n (0)

U2 ), where −2U3 + n (0) = 0. We find a
singular point (U, 0, 0) and the singularity is formally isomorphic to the singularity
+ (GH + C: ), that is, a rational double point of type �:−1, and the fiber is of type �̃:−1.
We also have a(Δ) = a(4 + 27(n (0) + C:[)2) = a(54C:[) = : .

If < = 1, then Δ = 4C3 + 27C2=n2. If = = 0, then Δ(0) ≠ 0 and , is regular and
the fiber is isomorphic to + (H2 + G3 + n (0)), which is an elliptic curve with 9 = 0.
If = > 0, then the equation is of the form H2 + CG + C=n + · · · . It is regular if = = 1
and an ordinary double point if = > 1. In the former case, the fiber is of type �̃∗∗0 , a
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cuspidal cubic. In the latter case, we obtain that the fiber is of type �̃∗1, a nodal cubic.
We also have a(Δ) = 2 in the first case and a(Δ) = 3 in the second case.

If < = 2, then Δ = 4C6 + 27C2=n2. If = = 0, then the fiber is nonsingular, and if
= = 1, then, is regular, and the fiber is a cuspidal cubic. If = = 2, then 5 is a semi-
quasi-homogeneous polynomial with quasi-homogeneous part 51 = H2 + G3 + n (0)C2
of type �2 (see Remark 0.4.14). Thus, the singular point is of type �2 and the fiber
is of type �̃∗2. We find also that a(Δ) = 4.

If < = 2 and = > 3, then 5 is a semi-quasi-homogeneous polynomial with quasi-
homogeneous part 51 = H2 + G3 + C2G of type �4. Thus, the singular fiber is of type
�̃4. Applying Remark 0.4.14, we obtain that the singularity is of type �4. Thus,
the singular fiber is of type �̃4. We also find that a(Δ) = 6. Finally, if = = 3, then
Δ = (4 + 27n (0)2)C6 with a(Δ) = 6 + a((4 + 27n (0)2) = 6 + : . We can rewrite the
equation in the form H2 + (G +UC)2 (G + VC) + C:+3[ = 0, where 3U2 = −1, U2V = n (0),
and [ is a unit. Replacing G + U with G, we find a semi-quasi-homogeneous equation
with quasi-homogeneous part 51 = H2 + G2C + C:+3 of type �:+4. This gives us a
singular fiber of type �̃:+4 and a(Δ) = 6 + : .

If < = 3, then Δ = 4C9 + 27C2=n2. If a(Δ) = 2= ≤ 6, then we obtain the previous
cases with the same value of a(Δ). If = = 4, then a(Δ) = 8 and 5 is a semi-quasi-
homogeneous polynomial with the quasi-homogeneous part 51 = H2 + G3 + C3G of
type �̃7. This gives us a singular fiber of type �̃7.

Case (c): 04 ≠ 0 and = < 6.

After possibly re-scaling, we may assume that 04 = C
<n with < > 3 and 06 = C

=.
If = = 0 (resp. = = 1), then , is regular, the closed fiber is nonsingular (resp. a

cuspidal cubic) and a(Δ) = 0 (resp. 2).
If = = 2, 3, 4, 5, then 5 is a semi-quasi-homogeneous polynomial with the quasi-

homogeneous part 51 = H2 + G3 + C=G of type �2, �4, �6, �8, respectively. The
closed fiber is of type �̃∗2, �̃4, �̃6, �̃8, respectively and we have a(Δ) = 4, 6, 8, 10,
respectively.

We now summarize our computations in Table 4.1.

Type a (04) a (06) a (Δ) a ( 9)
�̃0 0 ≥ 0 0 ≥ 0
�̃0 ≥ 0 0 0 ≥ 0
�̃∗0 0 0 1 −1
�̃∗∗0 ≥ 1 1 2 ≥ 1
�̃∗1 1 ≥ 2 3 0
�̃∗2 < ≥ 2 2 4 ≥ 1
�̃= 0 0 = − 1 1 − =
�̃4 2 ≥ 3 6 ≥ 0
�̃4 3 2 6 ≥ 0

�̃4+: , : > 0 2 3 6 + : −6 − :
�̃6 < ≥ 3 4 8 3< − 8
�̃7 3 = ≥ 5 9 0
�̃8 < ≥ 4 5 10 3< − 2

Table 4.1 Types of fibers of an elliptic fibration if ? ≠ 2, 3

Comparing a(Δ) and the ℓ-adic Euler characteristic 4(-0) of the closed fiber, we
obtain that a(Δ) = 4(-0). If we also allow ? = 2, 3, then it follows from [570] that
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we have more generally
a(Δ) = 4(-0) + X, (4.4.32)

where X is an invariant of the wild ramification that already occured in Proposition
4.1.12 and which can be non-zero only if ? = 2, 3. The formula from this proposition
gives the following.

Corollary 4.4.10 Let 5 : � → � be a jacobian elliptic fibration over a global base
�. Then,

4(�) = degΔ = −12 degL.

As alreadymentioned above, there is also a Tate algorithm in small characteristics,
that is, if ? = 2, 3. Then, the algorithm becomes a little bit more involved and rather
than reproducing it here, we refer to [703] or [683, Chapter IV.9]. As an application
of Tate’s algorithm we obtain Table 4.2 below.

�̃∗∗0 �̃∗1 �̃∗2 �̃4 �̃= , = > 1 �̃6 �̃7 �̃8

min a (08 )
8

1
6

1
4

1
3

1
2

1
2

2
3

3
4

5
6

extra condition − − a (16) = 2 a (3) = 6 a (3) > 6, a (02
2 − 304) = 2 a (16) = 4 − −

Table 4.2 Types of fibers of additive types

Here, we have

16 = 0
2
3 − 406,

3 = Disc(G3 + 02G
2 + 04G + 06) = −403

206 + 02
20

2
4 + 18020406 − 403

4 − 2702
6.

We note that a simpler approach than a case-by-case analysis using Tate’s algo-
rithm has been given in [164].

For example, a fiber of additive type �̃=+4 occurs if and only if:

• a(02) = 1,
• a(08) ≥ 8

2 +
[
8−1
2

]
=
2 ,

• a(3) = = + 6 and a(16) ≥ = + 3 if 2|= and = = + 3 otherwise.

Note that can combine Ogg’s formula (4.4.32) together with Table 4.2 to compute
the value of the invariant of wild ramification X. We illustrate this with an example.

Example 4.4.11 Consider the Weierstrass equations

H2 + C3H + G3 + CG2 + CG + C = 0 if ? = 2,
H2 + G3 + C4G + C = 0 if ? = 3.

These define elliptic fibrations over k[[C]]. Then, theWeierstrass model, is regular,
we find Δ = C12, and we see that the type over C = 0 is a cuspidal cubic. Therefore,
we conclude X = 12 − 2 = 10, which illustrates that the wild ramification invariant
can become quite large.
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Next, we study jacobian quasi-elliptic fibrations and their associated Weierstrass
equations. We define a discriminant and a j-invariant, establish formulae similar to
the ones for elliptic fibrations, and show how to read off the type of the fibers from
the coefficients of a Weierstrass equation. We remind the reader that such fibrations
can exist only in characteristic ? = 2, 3.

First, we define the discriminant of a quasi-elliptic fibration. To point out the
obvious, no fiber of a quasi-elliptic fibration 5 : - → � is smooth and the generic
fiber has a cusp over the algebraic closure of k(�). Therefore, the zero locus of the
discriminant corresponds to those fibers of 5 that are “more” singular than the cusp
inherited from the generic fiber, see also Proposition 4.4.12 below.

In the following discussion, the base � = � may be global, local, or strictly
local. After covering � by sufficiently small open affines, we have local Weierstrass
equations H2

8
+ G3

8
+ 0 (8)4 G8 + 0 (8)6 = 0, see Cases 4 and 5 in the above discussion. The

singular points of theseWeierstrass models satisfy G2
8
+0 (8)4 = 0 and G830 (8)4 +30

(8)
6 =

0. The transition functions for 0 (8)4 and 0 (8)6 show that the maps 0 (8)4 → 30
(8)
4 and

0
(8)
6 ↦→ 30

(8)
6 can be glued together to define global sections 304 ∈ �0 (L−4 ⊗ l� )

and 306 ∈ �0 (L−6⊗l� ). After squaring, we defineΔ8 := 0 (8)4 (30
(8)
4 )
⊗2+ (30 (8)6 )

⊗2.
One can immediately check that the Δ8’s glued together to a global section

Δ := 0430
⊗2
4 + 30

⊗2
6 ∈ Γ(�,L⊗−12 ⊗ l⊗2

�
). (4.4.33)

We call Δ the discriminant of a quasi-elliptic fibration. In characteristic 3, we may
assume that the local Weierstrass models satisfy 0 (8)4 = 0 (see the discussion of
Case 5 above) and in particular, we can arrange Δ to be of the form 30⊗2

6 . In both
characteristics 2 and 3, it is easy to see that the singularities of, lie over the zeros
of the discriminant Δ in �.

Now, if � is global, comparing with formulas (4.1.7) and Theorem 4.1.6, we
obtain

degΔ = 12j(O� ) − 2j(O� ) = 4(-) − 4(�)4(�[) =
∑
B∈�
(4(�B) − 4(�[)).

(4.4.34)
This is similar to the formulae for an elliptic fibration, where Δ ∈ �0 (�,L⊗−12).

For any closed point B ∈ �, we have the local ring O�,B, which comes with a
discrete valuation aB : O�,B → Z. We define aB (Δ) to be aB (Δ(C)), where C is a local
parameter of O�,B and where we write locally Δ = Δ(C)3C in O(,B . It is easy to check
that this is well-defined, that is, does not depend on the choice of the local parameter
C. Below, we will see that if 5 : � → � is a jacobian genus one fibration, then

aB (Δ) = 4(�B) − 4(�[) + XB ,

which is a local version of (4.4.34) and which generalizes (4.4.32) from elliptic
fibrations to arbitrary jacobian genus one fibrations.
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Proposition 4.4.12 Let Δ be the discriminant of a jacobian quasi-elliptic fibration
5 : � → � and let, → � be its Weierstrass model. Then:

1. C ∉ Δ if and only if �C is irreducible if and only if, is regular over C.
2. If � is global, then degΔ = 22 (�) − 4j(O� ).

Proof (1) By construction and our discussion above, C ∈ Δ if and only if , is not
regular over C. On the other hand,, is not regular over C if and only if the contraction
morphism � → � is not an isomorphism, which is the case if and only if �C is
reducible.

(2) By the proof of Corollary 4.3.8, we have degL = deg '1 5∗O� = −j(O� ).
We have degΔ = −12 degL + 2 degl� by (4.4.33), and thus, applying Noether’s
formula, we obtain

degΔ = 12j(O� ) + 2 degl� = 22 (�) − 4j(O� ).

By Corollary 4.3.22, a fiber of a jacobian quasi-elliptic fibration is irreducible
if and only if it is of type �̃∗∗0 , that is, an irreducible rational curve with a cusp.
This is the generic case and thus, the discriminant detects precisely those fibers of a
quasi-elliptic fibration that are “more” singular than the generic fiber or, equivalently,
the reducible fibers of a jacobian quasi-elliptic fibration.

It follows from (2) that

j(O� ) ≥ j(O� ) −
1

12
degΔ =

1
3
j(O� ). (4.4.35)

In particular, if 3 does not divide j(O� ) (for example, if� = P1), then the inequality
is strict, which implies degΔ > 0 and then, we must have at least one reducible fiber.

Remark 4.4.13 Following [77, p. 203], there is a “ghost” of the classical absolute
invariant or the j-invariant for quasi-elliptic fibrations: let* be an open subset of �
where Δ does not vanish, i.e. the fibers over points in* are irreducible. Then,

30⊗3
4
Δ

=
30⊗3

4

0430
⊗2
4 + 30

⊗2
6
∈ �0 (*, l* ), (4.4.36)

which should be compared to (4.4.24) and (4.4.25).

Finally, we study Tate’s algorithm for jacobian quasi-elltiptic fibrations. Let

H2 + G3 + 04G + 06 = 0,

be theWeierstrassmodel of a quasi-elliptic fibration over the strictly local base k[[C]].
We consider the left-hand-side polynomial as a formal singularity in k[[G, H, C]].
Since they arise from the Weierstrass models of a jacobian quasi-elliptic fibrations,
they are formally isomorphic to rational double points. Moreover, since the equation
is of the form H2 + 5 (G, C) if ? = 2 and can be chosen to be of the form G3 + 5 (H, C)
if ? = 3, these singularities arise as purely inseparable covers of k[[G, C]] and



4.4 Weierstrass Models 415

k[[H, C]], respectively, that is, they are Zariski singularities, see Section 10.2 of
Volume II. In our case, it follows from the classification of reducible fibers of quasi-
elliptic fibrations (see Corollary 4.3.22) that the rational double points are of types
�1, �

(0)
2: , �

(0)
7 , �

(0)
8 if ? = 2 and of types �2, �

(0)
6 , �

(0)
8 if ? = 3. Here, the upper

indices follow from the fact that the singularities are Zariski singularities. These
singularities correspond to reducible fibers of respective types �̃∗1, �̃2: , �̃7, �̃8 if
? = 2 and �̃∗2, �̃6, �̃8 if ? = 3. We will now analyze the Zariski double points on
the Weierstrass models, which is sufficient to determine the singular fibers of the
original quasi-elliptic fibration.

• Characteristic ? = 2.

After a suitable change of variables from (G, H) to (C24G, C34H), we may assume
that

a(04) < 4 or that a(06) < 6, (4.4.37)

see also the discussion around (4.4.31). If a(04) = 0 or a(04) = 1, then the ring
k[[H, G, C]]/( 5 ) is regular, so the fiber is irreducible. If a(04) = 1, then 5 = H2 + GC +
· · · and the singularity is an ordinary double point of type �1. So, in the following
we may exclude these cases.

By a change of coordinates H ↦→ H + UG + V, G ↦→ G + U2, we may add U4 to 04
and add a square (1 + U)2 to 06. Thus, we may assume that 04 (resp. 06) does not
contain monomials of degree ≡ 0 mod 4 (resp. even degree). We can now write

04 = C4:1+1U4
1 + C

4:2+2U4
2 + C

4:3+3U4
3 and 06 = C2:+1U2

4,

where the U8’s are units or zero. This can be rewritten in the form

04 = C4B+2U4 + C2<+1V2 and 06 = C
2:+1W2, (4.4.38)

where U, V, W are units or zeros.

Case 1: W = 0.

Since 04 is not a square, we have V ≠ 0.
If B ≠ 0, then a(04) = 2< + 1 < 4 and hence, < = 1. We can write 5 = 51 + 52,

where 51 = H2 + G3 + C3G is a weighted homogeneous polynomial of degree 18
with weights (9, 3, 2) and 52 does not contain monomials of degree ≤ 18. Applying
Remark 0.4.14 and Theorem 0.4.13, we see that the singularity is isomorphic to the
rational double point of type � (0)7 , which corresponds to a fiber of type �̃7. On the
other hand, if B = 0, then we get a singular point of type �1, which corresponds to a
fiber of type �̃∗1.

Case 2: V = 0. Since 06 is not a square, we have W ≠ 0.

In view of (4.4.37) and the excluded cases, it remains to consider the following
cases:

1. U = 0 or B > 0 and : = 1, 2.
2. U ≠ 0 and B = 0.
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First, assume that we are in subcase (1). Then, we can write 5 = 51 + 52, where
51 = H2 + G3 + C2:+1 is a weighted-homogeneous polynomial of degree 6 with
weights (3, 2, 2) if : = 1 (resp. degree 30 with weights (15, 10, 6) if : = 2) and all
monomials in 52 = 21C

4 + · · · are of degree > 6. Applying Remark 0.4.14, we see
that the singularity is isomorphic to the rational double point of type � (0)4 (resp. of
type � (0)8 ), which corresponds to a fiber of type �̃4 (resp. �̃8).

In subcase (2), we replace G+U2C by D and C by (D+G)U−2 and rewrite the equation
in the form

5 = H2 + GD2 + (D + G)2:+1n2 = H2 + GD2 + GD2: + 52,

where 51 = H2 + GD2 + DG2: is a weighted homogeneous polynomial of degree 8: − 2
with weights (4: −1, 4: −2, 2) and no monomial entering in 52 has degree less than
or equal to 8: − 2. Applying Remark 0.4.14 and Theorem 0.4.13, we obtain that the
singularity is a rational double point of type � (0)4: .

Case 3: V ≠ 0.

In view of (4.4.37), we have to consider the following cases:

1. U = 0 or B > 0.
2. U ≠ 0 and B = 0.
3. U ≠ 0 and B > 0.

In subcase (1), we have 5 = H2 + G3 + C2<+1V2G + C2:+1W2 = 0. First, assume
that < < : . Then, < = 1 and 5 is a semi-quasi-homogeneous polynomial with
quasi-homogeneous part 51 = H2 + G3 + C3G of type �7 (see Remark 0.4.14). Thus, 5
defines a rational double point of type �̃ (0)7 . Second, if : ≤ <, then : = 1, 2 and we
can write 5 = H2 + G3 + C2:+1 + 52, and similar arguments show that the singularity
is formally isomorphic to a double rational point of type � (0)4 if : = 1 and of type
�
(0)
8 if : = 2.
In subcase (2) and if : = 1, we can write 5 = H2 + G3 + C2G + C3 + 52 and obtain a

rational double point of type � (0)4 . If : > 1 and < < : , then we write

5 = H2 + G(G + CU2)2 + C2<+1 (G + CU2) + C2:+1W2.

We replace G + CU2 by D and C by (G +D)U2 as in Case 2.(ii) and we write 5 as a semi-
quasi-homogeneous polynomial with quasi-homogeneous part 51 = H2+GD2+DG2<+1

of type �4<+2. This gives us a rational double point of type � (0)4<+2. If< ≤ : , then we
write 5 = H2 + G(G + CU2)2 + C2:+1 + GC2<+1 and making a similar change of variables
we obtain a rational double point of type � (0)4: .

Assume that we are in subcase (3). If a(04) < 4, then 5 = H2 + G3 + C3G + 52 is a
semi-quasi-homogeneous polynomial with quasi-homogeneous part of type �7 and
we obtain a rational double point of type � (0)7 . If a(04) ≥ 4, then a(06) = 2: +1 < 6,
and we can write 5 = H2 + G3 + C2:+1 + 52. From this, we obtain a rational double
point of type � (0)4 if : = 1 and of type � (0)8 if : = 3.
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• Characteristic ? = 3.

After a suitably rescaling (G, H), we may assume that a(06) < 6. After adding a
cube to 06, we may write

06 = C3:+1U3 + C3<+2V3

for some : < < and where U, V are units or zero.
First, assume 3: + 1 < 3< + 2. Then, : = 0, 1 and we obtain a singular point

that is formally isomorphic to H2 + G3 + C3:+1 = 0. If : = 0, then it is nonsingular. If
: = 1, then this is a rational double point of type � (0)6 .

Second, assume 3: + 1 > 3< + 2. Then we have < = 0, 1. If < = 0, then we get a
singular point of type �2. If < = 1, then we get a singular point of type � (0)8 .

The analysis of these singular points allows us to find the type of a singular fiber.
We use the normal form (4.4.38).

Char a (04) a (06) a (Δ) Type
any 1 0 �̃∗∗0
1 any 1 �̃∗1
> 3 3 4 �̃

(0)
4

? = 2 3 > 3 7 �̃
(0)
7

> 4 5 8 �̃
(0)
8

2 2: + 1 ≥ 5 4: �̃
(0)
4:

2, < > 1 > 2< + 1 4< + 2 �̃ (0)4<+2
− 1 0 �̃∗∗0

? = 3 − 2 2 �̃∗2
− 4 6 �̃6
− 5 8 �̃8

Table 4.3 Types of degenerate fibers of a quasi-elliptic fibration

From this table, we conclude

a(Δ) = 4(-0) − 2. (4.4.39)

4.5 Mordell–Weil Lattices

Let 5 : � → � be a global jacobian genus one fibration. In Section 4.3, we introduced
the Mordell–Weil group MW(�/�), the abelian group of sections �[ ([). This maps
to Num(�) and has a trivial intersection with Numfib (�), the subgroup of Num(�)
generated by components of fibers of 5 . It follows from the Shioda–Tate formula
(4.3.1) that the subgroup of Num(�) generated by Numfib (�), the zero section O, and
MW(�/�) is of finite index. In this section, we study this index in detail. Moreover,
we study the intersection forms on Num(�) and Numfib (�) and the relation to the
intersection form on MW(�/�) coming from the canonical height pairing on �[ .



418 4 Genus One Fibrations

For further details, we refer the interested reader to [645], as well as to the book
[646], which is entirely dedicated to the theory of Mordell–Weil lattices.

Let 5 : � → � be a global and jacobian genus one fibration. If 5 is elliptic, then
we will assume that 5 is non-smooth. If 5 is quasi-elliptic, then we will assume that
not all fibers of 5 are irreducible. Then, j(O� ) > 0 by Proposition 4.4.9 if 5 is
elliptic and the proof of Corollary 4.3.6 if 5 is quasi-elliptic In particular, we have
NS(�) = Num(�) and these groups have no torsion by Proposition 4.3.5, see also
Corollary 4.3.6.

The generic fiber �[ → [ is an elliptic curve (resp. cuspidal rational curve) if 5 is
elliptic (resp. quasi-elliptic). Thus, the set of sections �[ ([) is an abelian group, the
Mordell–Weil group of �[ or 5 , which we denoted by MW(�/�) in Section 4.3, see
also Proposition 4.3.1. By the Mordell–Weil theorem (Theorem 4.3.3), this abelian
group is finitely generated and the rank is called the Mordell–Weil rank. Moreover,
the sections �[ ([) extend to divisors on �, which gives rise to a morphism of abelian
groups �[ ([) → Pic(�).

Let us recall from Section 4.3 that we defined Picfib (�) to be the kernel of the
restriction map Pic(�) → Pic(�[). Then, we defined Pic0 (�) to be the kernel of
Pic(�) → Pic(�[) → Z, where the last map is the degree map. We also defined
Picfib (�/�) := Picfib (�)/ 5 ∗ Pic(�). Let Num0 and Numfib denote the images of
Pic0 and Picfib inside Num(�). In Proposition 4.3.2 and (4.3.3), we showed the
isomorphisms

MW(�/�) = �[ ([) � Pic0 (�)/Picfib (�) � Num(�)0/Numfib (�)

Next, the Shioda–Tate formula (4.3.1) expresses the Picard rank d(�) in terms of
the Mordell–Weil rank and the number of components of all reducible fibers. Thus,
one should be able to describe Num(�) in terms of MW(�/�) and Numfib (�/�).
However, what makes the situation a little bit subtle is the following: first, the
Shioda–Tate formula is about the ranks, which implies that the sublattice generated
by �[ ([) and Numfib (�) inside Num(�) is of finite index, but this index could be
large. Second, Num(�) comes with an intersection form, that is, it is a lattice, which
should somehow be explained by lattice structures on Numfib (�/�) and MW(�/�).
In this section, we study these two observations in detail.

First, we introduce several lattices. Let O be the zero section of 5 , considered as
a divisor class of �. Let ) be the sublattice of Num(�) generated by Numfib (�/�)
and O. Following [646], we will call ) the trivial lattice of the jacobian genus
one fibration. We remind the reader that we determined the lattice structure of
Numfib (�/�) in Proposition 4.3.2. The trivial lattice has its name from the fact that a
basis and the intersection numbers can be determined quite easily from the geometry
of the reducible fibers and how they meet the zero section.

For a divisor class � we define deg 5 (�) := � ·�, where � is a fiber of 5 . Clearly,
this number depends only of the class [�] ∈ Num(�). Recall that we have the class
O of the zero section. Then, we have a surjective homomorphism

Num(�) → MW(�/�) � ↦→ � − (deg 5 �)O mod Num(()fib.
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Its kernel is generated by Num(()fib and O and thus, equal to the trivial lattice ) .
Thus, we obtain an isomorphism

tr : Num(�)/) � MW(�/�) (4.5.1)

and we will identify these two groups via this isomorphism. We denote by

" := )⊥ ⊂ Num(�)

the orthogonal complement of ) inside Num(�) and call it the essential lattice. It
follows from the Hodge Index Theorem that " is negative definite.

The essential lattice leads to the Mordell–Weil lattice, the main topic of this
section. Let

MW(�/�)fr := MW(�/�)/MW(�/�)tors

be the maximal free quotient of the Mordell–Weil group. We want to equip the dual
group MW(�/�)∨fr with positive definite quadratic form with values in Q. Above,
we introduced the essential lattice " ⊂ Num(�). The intersection product induces a
homorphism " → Num(�)∨ by sending < ∈ " to the linear function G ↦→ 〈G, <〉.
The image of " is equal to (Num(�)/))∨ = MW(�/�)∨. Passing to duals, we
obtain an isomorphism

" � MW(�/�)∨ := HomZ (MW(�/�),Z) (4.5.2)

and hence an isomorphism

q : MW(�/�)fr → "∨. (4.5.3)

We have a symmetric bilinear Q-valued form on "∨ (−1) and use q to obtain such
a form on MW(�/�). By construction, we have

〈S,S′〉 = −q(S) · q(S′) ∈ Q (4.5.4)

and this is called the height pairing. Thus, MW(�/�)fr carries the structure of a
quadratic lattice over Q, which is dual to the negative definite lattice " .

Definition 4.5.1 The positive definite quadratic Q-lattice

MWL(�/�) := MW(�/�)fr (−1) = "∨ (−1)

is called the Mordell–Weil lattice of �/�.

Remark 4.5.2 The name “height pairing” needs some explanation: quite generally, a
height function is a function that measures the “arithmetic complexity” of numbers
in a local or global field or of closed points of a variety over some local or global
field. For example, the naive height of a rational number G = 0/1 ∈ Q with 0, 1 ∈ Z
and coprime is � (G) := max{|0 |, |1 |} (multiplicative naive height) or its logarithm
ℎ(G) := log� (G) (logarithmic naive height). Given a height function ℎ on a global
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field  , one can define the height of a point [G0, ..., G# ] ∈ P# with G8 ∈ O (ring of
integers of  ) with the {G8} assumed to be coprime, as max{ℎ(G8)}8 . This defines a
height function ℎ : P#

 
( ) → Q, which can be extended to all closed points of P#

 

and to subvarieties of P#
 
. These functions are called theWeil heights. Of course, the

Weil heights on a projective variety - over  are not unique and depend on many
choices, such as an ample invertible sheaf on - that defines the embedding into P#

 
.

For an abelian variety � over a global field  , e.g., for an elliptic curve over  , there
are special height functions, theNéron–Tate heights: one starts with an arbitraryWeil
height ℎ : �( ) → Q and then, it turns out that the limit ℎ̂(G) := lim#→∞ ℎ(#G)/#2

defines a quadratic form on �( ). For elliptic curves, the Néron–Tate heights are
even unique. These heights are important in proving the Mordell–Weil theorem
(Theorem 4.3.3) and they play a crucial role in the arithmetic of elliptic curves, see,
for example, [682, Chapter VIII]. For a jacobian genus one fibration 5 : � → �,
one still has the Néron–Tate height on its generic fiber �[ → Spec k(�), although
k(�) is not a global field if k is not a finite field, and it is given by (4.5.4), see [683,
Chapter III]. We will say more about computing heights via local contributions in
(4.5.9) and we will give some general computations of heights at the end of this
section.

Let �C be the fiber of 5 : � → � over a closed point C ∈ �. Let 'C ,0, 'C ,1, . . . , 'C ,=C
be the irreducible components of a reduced fiber (�C )red and assume that 'C ,0 is the
unique component thatmeets the zero section. Let �C = ('C ,8 ·'C , 9 )with 1 ≤ 8, 9 ≤ =C
be the intersection matrix of those components that do not meet the zero section.
The 'C ,8 with A > 0 form a root basis of finite type, see Proposition 0.8.15 for the
associated Dynkin diagram and the associated negative definite lattice. We also refer
to Proposition 2.2.5 for the connection to genus one fibrations. Associated to the
invertible matrix �C , we have an even and negative definite lattice and let DiscrC
be the associated discriminant group, which we computed in Table (0.2) in Section
0.8. It follows from the classification of fibers and the computation of discriminant
groups that the order |DiscrC | is equal to the number AC of the reduced components of
�C (components of �C of multiplicity 1). If S is a section of 5 , then we have S · �C = 1,
which implies thatS passes through exactly one of the reduced components of �C . IfS
meets the component 'C , 9 , we let (<C ,1, . . . , <C ,=C ) be the 9 .th column of the inverse
matrix �−1

C . The following proposition immediately follows from the definition of
isomorphism (4.5.3).

Proposition 4.5.3 For S ∈ MWL(�/�), we have

q(S) ≡ S − O − [(S − O) · O]� −
∑
C ∈�

=C∑
8=1

<C ,8'C ,8 .

Corollary 4.5.4 For S ∈ MW(�/�)tors, we have

S ≡ O + [(S − O) · O]� +
∑
C ∈�

=C∑
8=1

<C ,8'C ,8 .
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This corollary can also be proved directly by using that =(S − O) ∈ Numfib (�).
Let MW(�/�)0 be the subgroup of MW(�/�) that is generated by those sec-

tions that intersect each fiber at the irreducible component that meets the zero
section. Since 5 : � → � is not smooth by assumption, Proposition 4.3.9 implies
that MW(�/�)0 has no torsion and hence, can be identified with a subgroup of
MW(�/�)fr.

Proposition 4.5.5 The image of MW(�/�)0 under isomorphism (4.5.3) is equal to
the sublattice " of "∨. In particular, as a lattice, MWL(�/�)0 is isomorphic to
" (−1).

Proof If � ∈ MW(�/�)0, then � − O ∈ )⊥ and thus, by definition of the map
q, the image of MW(�/�)0 is contained in " . Conversely, let � ∈ " = )⊥.
Then, the intersection of � with any component 'C ,1, . . . , 'C ,=C is equal to zero,
hence all <C ,8 are equal to zero and q−1 (� − (deg 5 �)O) ∈ MWL(�/�)0. Thus,
q : MWL(�/�)0 → " is bĳective. �

Definition 4.5.6 The subgroup MW(�)0 of MW(�/�)fr equipped with the height
pairing is called the narrow Mordell–Weil lattice and it is denoted by MWL(�/�)0.

TheShioda–Tate formula (4.3.1) implies that theMordell–Weil latticeMWL(�/�)
and the trivial lattice ) generate a sublattice of Num(�) of finite index. We now ad-
dress this index and relate the three lattice structures. In general, the sublattice
) ⊂ Num(�) may not be primitive, that is, the quotient group Num(�)/) may not be
free. Let ) ′ = ()⊥)⊥ the double-dual of Num(�), which is the primitive closure of
) in Num(�). Under the trace isomorphism (4.5.1), the image of ) ′/) is the torsion
subgroup of MW(�/�)

MW(�/�)tors � ) ′/). (4.5.5)

It follows from the definition of ) that we have |discr()) | = ∏
C ∈� |DiscrC | and

hence,
|discr() ′) | = discr())

|MW(�/�)tors |2
=

∏
C ∈� |DiscrC (�) |
|MW(�/�)tors |2

. (4.5.6)

Note formula (4.5.6) implies that if
∏
C ∈� |DiscrC (�) | is square-free, then the

Mordell–Weil group is torsion-free. Note that this formula agrees with formula
(4.3.4) in the case where the Mordell–Weil group is finite. Next, we prove the
following discriminant formula.

Proposition 4.5.7 Let A be the rank of MW(�/�). Then,

discr (MWL(�/�)) = | discr(Num(�)) | · |MW(�/�)tors |2
discr())

= (−1)A · discr (Num(�)) · discr() ′).
(4.5.7)

Proof Let < be the index of " ⊕ ) ′ inside Num((). It is equal to the index of " in
Num(()/) ′ = MW(�/�)fr, which is equal to |"∨/" | = | discr(") |. We compute



422 4 Genus One Fibrations

| discr(" ⊕ ) ′) | = discr(") discr() ′) = < discr() ′)

=
< | discr(Num(() |

<2 =
| discr(Num(()) |

discr(") .
(4.5.8)

This implies

| discr(MWL(�/�)) | = | discr("∨) | = 1
| discr(") |

=
| discr() ′) | · | discr(") |

<2 · | discr() ′) |
=
| discr(Num(�) |
| discr() ′) | .

Taking into account its rank and using formula (4.5.6), we obtain the asserted
formula. �

Next, we turn to the computation of the height pairing. For this, we need an
explicit formula for computing the vectors (<C ,1, . . . , <C ,=C ), where we remind the
reader that these are the columns of the matrix �−1

C . Using Proposition 4.5.3, we find

〈S,S′〉 = −O2 + S · O + S′ · O − S · S′ −
∑
C ∈�

contrC (S,S′), (4.5.9)

where contrC (S,S′) is the local contribution expressed in terms of the vectors
(<C ,1, . . . , <C ,=C ) and (<′C ,1, . . . , <

′
C ,=C
). Let us recall that we have O2 = −j(O� ) by

Corollary 4.3.8.
It remains to understand and to compute the local contributions contrC (S,S′),

which depend on the type of the reducible fiber �C and on which components of
�C the sections S and S′. First, we observe that a section intersects only reduced
components of a fiber. Thus, we have to compute the intersection of a section only
with these components. To this end, we number the components as follows:

1. If �C is of type �̃=, then we index the components cyclically by (0, 1, . . . , = − 1),
where 0 corresponds to the component that intersects the zero section O and
neighboring numbers correspond to components that intersect each other.

2. If �C is of type �̃=, then we index the components by (0, 1, 2, 3), where 0 cor-
responds to the component that intersects the zero section O and where 1 corre-
sponds to the reduced component closest to the zero component in the Dynkin
diagram.

3. If �C is one of the remaining types, which is additive type, then we number O by
0 and all other reduced components are indexed in an arbitrary way.

Now, assume that S intersects �C in the component 'C ,8 and that S′ intersect �C in
the component 'C , 9 . Then, we have

contrC (S,S′) = −(�−1
C ) (8, 9) ,

the (8, 9)-entry of the matrix �−1
C . Here, 8, 9 are assumed to be non-zero or otherwise

the contribution is 0. The entries of the matrix �−1
C can be computed easily for each

type. The following table gives the computations of local contributions.
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�̃=−1, �̃
∗
=−1 �̃6 �̃7 �̃=

8 = 9 8 (= − 8)/= 4
3

3
2 1 8 = 1

1
2 +

=−4
4 8 = 2, 3

8 < 9 8 (= − 9)/= 2
3 - 1

2 8 = 1
1
2 +

=−4
4 8 = 2

Table 4.4 Local contributions to the height pairing

Example 4.5.8 Consider a general pencil of cubic curves in P2, let ?0, ?1, . . . , ?8 be
its base points, and let c : � → P2 be the blow-up at these base points. Then the
pull-back of this pencil of cubics to � gives rise to a genus one fibration 5 : � → P1

and we obtain a rational elliptic surface. Since every exceptional divisor of c is a
section of 5 , this fibration is jacobian. We let O be the exceptional divisor c−1 (?0).
Moreover, using c, we see that Num(�) is a unimodular and odd lattice isomorphic
to I1,9. Every fiber of 5 is irreducible and thus, the trivial lattice ) is of rank 2
generated by the classes of the fixed section O and a fiber �. In particular, ) is
a primitive sublattice of Num(�), the intersection matrix is

( −1 1
1 0

)
and thus, ) is

unimodular. This implies that ) is equal to its primitive closure, that is, ) ′ = ) .
We also find MWL(�/P1) = MWL(�/P1) � )⊥. Since the canonical divisor class
satisfies  � = −[�], the essential lattice " = )⊥ is contained in  ⊥

�
and hence, an

even lattice. Thus, MWL(�/P1) is an even and positive definite unimodular lattice
of rank 8, which is thus isomorphic to the lattice E8 (−1). In fact, it is naturally
isomorphic to the lattice Num(� ′) (−1), where � ′→ P2 is the blow-up of the points
?1, . . . , ?8.

We have O = c−1 (?0) and let (8 be the eight sections of 5 defined by the
exceptional curves c−1 (?8), 8 ≠ 0. Since (8 · O = (8 · ( 9 = 0, 8 ≠ 1, the definition
of the height shows that ℎ((8) = 2 and 〈(8 , ( 9〉 = 1 for 8, 9 > 1. The Gram matrix
(〈(8 , ( 9〉) has 1 as an eigenvalue of multiplicity 7 and is of trace equal to 16. Thus,
the second eigenvalue is equal to 9, hence the determinant is equal to 9. This shows
that the sublattice of the Mordell–Weil lattice spanned by the disjoint sections (8 has
discriminant 9 and hence, its index is equal to 3.

Let S be a section of 5 . We consider its type, which is the vector (3, 00, . . . , 08) of
coefficients in the geometric basis (4, 40, 41, . . . , 48) of the blow-up Bl?1 ,..., ?8 (P2).
Since S is a section, it is an exceptional (−1)-curve, which implies S2 = −1 and
S ·  � = −1, from which we conclude 02 −∑

8=0 0
2
8
= −1 and 33 −∑

8=0 08 = 1.
Next, assume that S lies in the subgroup of MW(�/�) generated by the disjoint

sections S1, ...,S8. Thus, S = <1(1 ⊕ · · · ⊕ <8S with respect to the group law of
sections. According to [485, Theorem 6], its type is equal to (33, 3 − B − 1, 3 +
<1, . . . , 3 + <8), where

3 =

8∑
8=1
(<2

8 + <8) +
∑

1≤8< 9≤8
<8< 9 and B =

8∑
8=1

<8 .
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In particular, we see that the section equal to the proper transform of a line through
two points ?8 , ? 9 does not belong to this subgroup. Also, there is a unique section S0
with the property 3(0 = S1 ⊕ · · · ⊕ S8. Its type is equal to (4, 3, 1, 1, 1, 1, 1, 1, 1, 1),
that is, it is equal to the proper transform of a plane curve of degree 4 with triple point
at ?0 and simple points at the remaining points ?8 . Summing up, one can choose the
sections S0,S1, . . . ,S7 as a basis of the Mordell–Weil group.

It follows from the definition of the height that we have ℎ(S) = 2 + 200 if S is
of type (3, 00, 01, . . . , 08). Replacing S0 with S0 − S1, we compute its height to be
equal to 2. Thus, the Mordell–Weil group has a basis formed by elements of minimal
height 2.

Finally, we compare our definition of the height with the definition given in [683,
III, §4], see also Remark 4.5.2. Assume that we have a global Weierstrass model

, : H2 + 01GH + 03H + G3 + 02G
2 + 04G + 06 = 0 (4.5.10)

of 5 : � → �. Let us also assume for simplicity that � = P1, which will be enough
for our applications. The coefficients 08 are binary forms in C0, C1 of degrees 8: , where
: = j(O� ) = −O2. Next, we view the Weierstrass equation , as a hypersurface
of degree 6: in the weighted projective space P(1, 1, 2:, 3:). A section S defines a
morphism

B : P1 → P(1, 1, 2:, 3:),

which is given by

(D, {) ↦→ (C0, C1, G, H) = (�0 (D, {), �1 (D, {), �2 (D, {), �3 (D, {)) ,

where the �0, �1, �2, �3 are binary forms of degrees 3, 3, 2:3, 3:3, respectively.
Since B is a section, the composition with the rational map given by the projection
to P1 must be the identity. This implies that the first two coordinates can be written
in the form D!, {!, where ! is a binary form of degree 3 − 1. Its zeros correspond
to the intersection points of S and O. In particular, we see that 3 − 1 = S · O. The
image B(+ (!)) is equal to the point [0, 0, 1, 1] ∈ - , the image of the zero section
O under the contraction map q : � → , . Consider the image of the projection of
B(P1) to P(1, 1, 2:) � F2: : Its pre-image in F2: is a curve from the divisor class
(2: +3−1) 5 + 4, where 5 is the class of a fiber on the minimal ruled surface F2: and
where 4 is the class of the exceptional section with self-intersection −2: . It intersects
the exceptional section, whose pre-image in � is equal to O, with multiplicity 3 − 1.

Summing up, a section of 5 is defined by a solution (G, H) of the equation (4.5.10)
given by binary forms �2 and �3 of degrees 2:3 and 3:3, respectively, such that the
binary form of degree 6:3

�2
3 + 01!�2�3 + 03!

3�3 + �3
2 + !

202�
2
2 + !

606

is equal to zero.
If we assume that all fibers of 5 : � → P1 are irreducible, then the height ℎ(S) of

the section S is equal to −(2O2 + 2O · S) = 2: + 23 − 2. In other words, the degree



4.6 The Weil–Châtelet Group: the Local Case 425

of the coordinate G as a binary form in D, { determines the height. If we view (G, H)
as a rational point of the general fiber �[ , then G has to be considered as a rational
function G̃ = G/{23: = �2 (C), where C = D/{ of degree 23: .

On the other hand, if some of the fibers of 5 : � → P1 are reducible, then the
components that do notmeet the zero section get blown down to singular points of the
Weierstrass model, . A section from the narrowMordell–Weil latticeMWL(�/P1)0
defines a section of, that does not pass through any of these singular points. On the
other hand, sections from MWL(�/P1) \MWL(�/P1)0 do pass through the singular
points of, and the local correction terms in ℎ(S) reflect the behavior of the section
at the singular points.

4.6 The Weil–Châtelet Group: the Local Case

In the previous sections, we studied genus one fibrations that admit a section, that
is, jacobian genus one fibrations. In Proposition 4.3.1, we saw that every genus one
fibration has an associated jacobian fibration. In the next three sections, we want to
understand the set of all genus one fibrations whose associated jacobian fibrations
are isomorphic to a fixed one. This set carries a group structure, the so-called Weil–
Châtelet group. In this section, we will study this group over a local base, in the next
section over a global base, and in Section 4.8, we will study quasi-elliptic fibrations.

We start with some generalities concerning torsors before turning to torsors under
abelian varieties and elliptic curves. Let � be a commutative group scheme over a
field � and let PHS(�/�) be the group of �-torsors over � as defined in Section
0.1. If� is a smooth quasi-projective group scheme, then Theorem 0.1.3 tells us that
the group PHS(�/�) coincides with the cohomology groups

�1
ét (�, �) := �1

ét (Spec �, �) � �1 (Gal(�sep/�), � (�sep)) ,

where �sep denotes a separable algebraic closure of �, where we identify a smooth
commutative group scheme over a base scheme � with its abelian sheaf in the étale
topology of �, and where the left hand side denotes étale cohomology and where
the right hand side denotes Galois cohomology.

Let - be a �-torsor over Spec � and let [-] ∈ PHS(�/�) be its class. Using
the isomorphisms PHS(�/�) � �1

ét (�, �) � Ext1� (Z� , �), the class [-] defines
an extension of group schemes

0 → � → � ′ → Z� → 0,

such that the image of 1 under the boundary homomorphism in the cohomology
sequence is equal to [-]. The fiber of � ′ → Z over 1 is isomorphic to �, see [277,
VII, §1.4]. The pre-image of = ∈ Z is a �-torsor over Spec �, whose isomorphism
class in PHS(�/�) is equal to =[-]. Since the Galois cohomology is a torsion group,
[-] is an element of finite order in PHS(�/�). The order is called the period of the
torsor - and denoted by per(-). A torsor of period = can be reconstructed from �
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by means of the extension

0 → � → �̄ ′ → (Z/=Z)� → 0

as the pre-image of 1 in �̄ ′.
Let . be a regular, proper, and geometrically irreducible algebraic curve over a

field �. For brevity of notation, we denote by P. /� the abelian sheaf in the flat
topology associated to the relative Picard functor Pic

. /� , which is representable
by the Picard scheme Pic. /� . Its connected component Pic◦

. /� is a (generalized)
Jacobian variety Jac(./�) of . , which is a connected, commutative, and smooth
algebraic group scheme over �. If . is smooth over �, then Jac(./�) is an abelian
variety over �. In any case, the degree homomorphism defines an exact sequence of
group schemes over �

0 → Jac(./�) → Pic. /� → Z� → 0.

Taking cohomology, let X be the boundary homomorphism Z = �0
ét (�,Z� ) →

�1
ét (�, Jac(./ )). The image X(1) ∈ �1

ét (�, Jac(./ )) is the isomorphism class
of the Jac(./�)-torsor . → Spec �. It is equal to the pre-image of 1 in the exact
sequence and coincides with Pic1

. /� , considered as a natural Pic◦
. /� -torsor.

Definition 4.6.1 A connected, commutative, and algebraic group scheme over a field
� is called a genus 6 algebraic group if it is isomorphic to the Jacobian variety of a
regular and geometrically irreducible projective algebraic curve . over �.

The case that will be relevant to us is where � is either an elliptic curve � or a
one-dimensional and inseparable form U ofG0, over the field � = k([), where [ is
a generic point of a local or global base �. Applying the theory of minimal models,
we can always realize � as algebraic group �♯, where � → � is a jacobian fibration
over �. Then, we obtain that the group �1

ét (�, �) classifies isomorphism classes of
genus one fibrations over�, whose jacobian fibrations are isomorphic to 5 : � → �.
Put differently, every genus one algebraic group over  can be realized as �♯, where
5 : � → � is a genus one fibration.

Definition 4.6.2 Let � be an abelian variety over a field �. Then the group

WC(�, �) := WC(�/�) := �1
ét (Spec �, �)

is called the Weil–Châtelet group of �.

This group has been extensively studied, especially in the arithmetic situation
where � is a number field or a local field.

Let - → Spec � be an �-torsor, where � is an abelian variety � over �. There is
a canonical isomorphism between the Picard variety Pic◦

-/� and the dual abelian �′
variety of �, see [605, VII, 1.1]. In the one-dimensional case, that is, if � is an elliptic
curve, then there is an isomorphism � → � ′ = Pic◦

�/� and such an isomorphism
depends on the choice of an �-rational point � (�). More precisely, let % ∈ � (�)
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(usually, one takes the neutral element of � (�) of the group law) and then, a closed
point G ∈ � is sent to O� (G − deg(G)%). Similarly, there exists an isomorphism

- � Pic1
-/�

that assigns to an �-rational point G ∈ - the isomorphism class of the invertible
sheaf O- (G). The degree of O- (G) in Pic(- ⊗� � (G)) is equal to 1. Under an
isomorphism � → Pic◦

�/� , the action of � on - corresponds to the natural action
of Pic◦

-/� on Pic1
-/� , see [58, Lemma 3.2]. Coming back to the case of a general

�-torsor - → Spec �, it follows from this discussion that the period of - is equal
to smallest integer =, such that the Pic◦

-/� -torsor Pic
=
-/� is a trivial torsor, that is,

Pic=
-/� (�) ≠ ∅. By abuse of notation, we will use the same notation for a torsor and

its isomorphism class.
One also defines the index (resp. separable index) ind(-) (resp. indB (-)) of -

as the greatest common divisor of the degrees of closed points on it (resp. closed
points whose residue fields are separable extensions of �). The following lemma
shows that in our situation, this gcd is attained at one closed point.

Lemma 4.6.3 Let . be a regular genus one curve over a field � and - = . ♯. Then,
the index of the Jac(. )-torsor - is equal to the smallest degree of a closed point on
- .

Proof Since . is regular, all Weil divisors are automatically Cartier divisors. By
Riemann–Roch on a regular curve of arithmetic genus one, any divisor of positive
degree is effective. Let G ∈ - be a closed point of the smallest degree 3. Suppose
there exists a closed point H ∈ - of degree coprime to 3, say of degree = = :3 + A
with 0 < A < 3. Then, the divisor =H − :G is effective and of degree A < 3, a
contradiction. �

Remark 4.6.4 One has to be a little bit careful with the notion of index because there
are different notions in use that are related but usually not equal: For the purposes of
this remark (this is not standard terminology), let us define themin-index of a variety
- over a field � to be the smallest degree [� (G) : �] among all closed points G ∈ - .
Let us also define the gcd-index of - to be the gcd of the degrees [� (G) : �] of all
closed points G ∈ - . Clearly, the gcd-index is less than or equal to the min-index
of - , but they need not be equal. For example, - has gcd-index 1 if and only if
there exists a zero-cycle of degree 1. This latter does not necessarily imply that -
has min-index 1, which is equivalent to - having an �-rational point. The previous
lemma shows that the two indices coincide for regular curves of genus one. We refer
to [472, Exercise 1.9 of Section 9.1] for the index of a curve that arises as generic
fiber of a fibration.

Note that residue field of a closed point G ∈ - of degree ind(-) splits - , which
implies that per(-) divides ind(-). In particular, we have the following divisibility
relations:

per(-) | ind(-) | indB (-) . (4.6.1)
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Moreover, all three numbers have the same prime factors, but this is much harder to
show, see, for example, [430, Proposition 5].

Proposition 4.6.5 Let . be a regular genus one curve over a field �. Set - := . ♯.
Assume that � is infinite and that Br(�) = {0}. Then we have per(-) = ind(-) =
indB (-) for the Jac(. )-torsor - .

Proof We know from Section 0.9 that the étale sheaf P. /� is representable by a
scheme Pic. /� . By Proposition 0.9.2, we have Pic. /� (�) = Pic(. ) if . (�) ≠ ∅
or Br(�) = 0. Since the period is equal to the smallest = such that Pic= (. ) ≠ ∅,
the vanishing of Br(�) implies that there exists a �-rational divisor of degree = on
. . By Riemann–Roch, we may assume that it is effective and thus, coincides with
a closed point of degree =. If - = . is an elliptic curve, we get ind(-) | per(-)
and hence per(-) = ind(-). Since the residue field of the cusp on a quasi-elliptic
curve . is a purely inseparable extension of  of degree ?, it remains to prove that
ind(-) = indB (-).

Let G be a point of degree = = ind(-). It suffices to find a point of the same
degree with separable extension � (G)/�. If � (G)/� is inseparable, then = = ?4 for
some 4. By Riemann–Roch, the dimension of the linear system |G | is equal to = − 1.
We will show that one of the divisors in |- | contains a separable point in its support.
An effective Cartier divisor of degree 3 is an �-rational point of the symmetric
product . (3) , where the latter denotes the Hilbert scheme Hilb3 (. ) of 3 points on
. . We consider the map of symmetric products . (4) → . (=) , which is defined by
multiplying an effective divisor of degree 4 by ?. Since 4 < = − 1, unless ? = = = 2,
the image of this map does not contain the subvariety |G | of . (=) of dimension =− 1.
Since � is an infinite field, we can find a divisor � =

∑
=8G8 ∈ |G | of degree =,

such that one of the points in its support has degree not divisible by ?. This point is
separable, and hence indB (-) ≤ ind(-), Together with ind(-) | indB (-), this implies
indB (-) = ind(-).

It remains to consider the case = = ? = 2. The image of . in . (2) is contained in
the diagonal of .̄ (2) , where .̄ = . ⊗� �̄. Suppose that . has no separable points of
degree 2. Then, - is the union of linear systems |H | � P1 (�) and hence, the diagonal
contains the union of P1

�̄
’s, which is a contradiction. �

By Tsen’s theorem, Br( ) = 0 if  is the field of rational functions on a algebraic
curve over an algebraically closed field or its localization, see [660, Chapter X, §6].
We recall that that we defined the index ind( 5 ) of a genus one fibration 5 : - → �

to be the smallest degree of a multisection of 5 . Using this result, we obtain the
following.

Corollary 4.6.6 Let 5 : - → � be a genus one fibration. Then,

per(-[) = ind(-[) = indB (-[) = ind( 5 ).

The multiplicity of any fiber divides this index. If � is strictly local, then it coincides
with the multiplicity of the closed fiber.
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Proof The generic fiber -[ is a genus one curve over the field of rational functions
on an algebraic curve over an algebraically closed field. By Tsen’s theorem, we
have Br( ) = 0, see, for example, [660, Chapter X, §6]. The equality per(-[) =
ind(-[) = indB (-[) then follows from the previous proposition. Moreover, any
closed point on -[ extends to a multi-section of 5 and every multi-section of 5
induces a closed point on -[ . This shows that ind(-[) = ind( 5 ).

Similarly, any closed point on -[ extends to a multi-section of 5 , whose inter-
section number with every closed fiber is divisible by the multiplicity of the fiber.

Now, let � be strictly local. Let -C be the fiber over the closed point C ∈ � and
let <C be the multiplicity of -C . In Section 4.2, we have already used the fact that
there exists a regular closed embedding ) ↩→ - such that ) · -C = <C , see also [606,
Corollary 7.2.1]. The restriction of ) to the generic fiber -[ is a point of degree <C
on -[ and thus, ind( 5 ) | <C . The closure of a point G on the generic fiber is a finite
cover of � of degree deg(G). It intersects -C with multiplicity divisible by <C . Thus,
ind( 5 ) = <C . �

From now on and until the end of this section, � is a strictly local base and
5 : - → � is an elliptic fibration. We will consider the case when 5 is a quasi-
elliptic fibration in Section 4.8.

For any abelian group �, we denote by �(≠ ?) the direct sum of the ℓ-primary
components of � with ℓ ≠ ?, that is, the prime-to-? part of the abelian group �.
The next result computes the prime-to-? part of the Weil–Châtelet group WC(� ).

Theorem 4.6.7 Let 5 : � → � be an elliptic fibration over a strictly local base �.
Then,

WC(�[) (≠ ?) � (Q/Z) (≠ ?)11 (�B) .

Proof We know that the order of any element [-/ ] of WC(� ) is equal to the
multiplicity of the closed fiber -C of 5 . Let � := � , which we identify with the
étale sheaf on [ = Spec represented by �. We have WC(�[) � �1 ([, �[) and, for
every = coprime to ?, the exact sequence

0 → =� → �
[=]
→ � → 0

of group schemes over  gives an exact sequence of cohomology groups

0 → � ( ) (=) → �1 ([, =�) → =,� (�,  ) = =�
1 ( , �) → 0. (4.6.2)

Consider the Weil pairing
=� × =� → -=,

see [682, Chapter III, §8]. The induced cup-product in cohomology produces a
perfect pairing (see [508, Chapter V, §1, §2])

�1 ( , =�) × =� ( ) → �1 ( , -=) �  ∗ (=) � Z/=Z. (4.6.3)

Let E → � be the Néron model of � . By the Néronian property, we have � ( ) �
E('). LetE◦ be the identity component ofE. The quotient groupE/E◦ is isomorphic
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to the group DiscrC of reduced components of �C . We have an exact sequence

0 → � ( )◦ → � ( ) → DiscrC → 0,

where � ( )◦ = E◦ ('). Since (=, ?) = 1 and E◦C is a connected commutative
algebraic group over k, Proposition 4.2.1 implies that (� ( )◦) (=) � (E◦C ) (=) = {0}.
Thus, we obtain an exact sequence

=� ( )◦ → =� ( ) → = DiscrC → 0. (4.6.4)

The duality �1 ( , =�) � Hom(=� ( ),Z/=Z) identifies � ( ) (=) � (DiscrC ) (=) in
the exact sequence (4.6.2) with Hom(= DiscrC ,Z/=Z), which is a finite group of the
same order. It is easy to see that this defines an isomorphism

= WC(�,  ) � Hom(=� ( )◦,Z/=Z) � Hom(=E◦C ,Z/=Z) � (Z/=Z)11 (�C )

(4.6.5)
and thus, finishes the proof. �

The structure of ?∞ WC(�,  ) is much more complicated. Understanding it will
take up most of the remainder of this section.

Recall that at the end of Section 0.1 we associated to a group scheme � over a
complete discrete valuation ring ' a perfect pro-algebraic group G = (G(�)=), the
perfect Greenberg realization of �. We define the fundamental group of � by

c1 (�) := lim←−
=

(G=).

For our applications, we take � to be the Néron model E. Since the fundamental
group of a finite group scheme is trivial, we have

c1 (E) = c1 (E◦).

Letm be themaximal ideal of ' and set '= := '/m=. The reduction homomorphisms

A= : E◦ ('=) = G(E)= → E◦ (k)

define surjective homomorphisms c1 (G(E)=) → c1 (E◦C ), and passing to the limit,
we obtain a surjective homomorphism

Ã : c1 (E◦) → c1 (E◦C ).

Aswewill see later,we have = Ker(Ã) = {0} for any = prime to ? and the computations
from Section 0.10 show that =c1 (E◦C ) � =E◦C . Thus, the duality isomorphism (4.6.5)
can be re-stated as saying that the pairing

WC(�,  ) (≠ ?) × c1 (E) (≠ ?) → Q/Z(≠ ?)
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is a perfect duality. Shafarevich conjectured that there must be an extension of this
duality to a perfect duality

WC(�,  ) × c1 (A∨) → Q/Z,

where � is an abelian variety over k and A∨ is the Néron model of the dual abelian
variety �∨. This conjecture has been solved by Bester [63] and Bertapelle [56,
Theorem 3]. In the case of elliptic curves that satisfy some mild assumptions this
was already proved much earlier in a series of papers by Vvedenskii.

Theorem 4.6.8 Let � be stricly local and let  be its function field. Let � be an
abelian variety over  , let �∨ be its dual abelian variety, and let A∨ be the Néron
model of � over �. Then,

WC(�/ ) � Hom
(
c1 (A∨),Q/Z

)
.

To compute the group WC(�,  ) explicitly, we need to know the structure of
c1 (E◦).

Let L(�) be the kernel of the reduction homomorphism A : E( ) = E(') →
EC (k). It is called the Lutz group of � . It coincides with the maximal ideal m of '
equipped with the group law defined by the formal group associated to the elliptic
curve � over  , see [682, Chapter IV].

Let us recall the definition of the formal group �̂ associated to an elliptic curve
� over an arbitrary field �, see, for example, [682, Chapter IV] for details. Let

| − (01|I + 03|
2 + I3 + 02|I

2 + 04|
2I + 06|

3) = | − 5 (I, |) = 0

be the affine equation of � obtained from the Weierstrass equation

H2 + 01GH + 03H + G3 + 02G
2 + 04G + 06 = 0

by the change the variables I = −G/H and | = −1/H, so that the point at infinity in
theWeierstrass equation becomes the point (0, 0) in the new equation and I becomes
a local uniformizer at (0, 0). By recursively substituting | = 5 (I, |) in the equation,
we obtain a unique solution | = |(I) as a formal power series of the equation
. − 5 (-,. ) = 0. This solution has the form

|(I) = I3
∞∑
8=0

�8I
8 ∈ Z[01, ..., 06] [[I]],

where the �8’s are quasi-homogeneous or weighted homogeneous polynomials in the
coefficients 08 of the Weierstrass equation of � and �0 = 1. Now, if I is any element
of the maximal ideal m = C� [[C]], then we plug in the above formula I = I(C) and
find a power series |(I) = |(I(C)), such that (I, |(I)) is a solution of the equation
. − 5 (-,. ) = 0 in formal power series in a variable C. Note that the substitution of
a formal power series in a power series is not defined unless the power series has no
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constant term. Since our power series belongs to m, we have no problem with the
substitution.

Considering [1, I, |(I)] as a point in P2 (�), we can use the group law on � (�)
to obtain that (I1, |(I1)) ⊕� (I2, |(I2)) = (I3, |(I3)), where

I3 = −I1−I2+
01_ + 03_

2 − 02a − 204_a − 306_
2a

1 + 02_ + 04_2 + 05_3 = � (I1, I2) ∈ Z[01, . . . , 06] [I1, I2],
(4.6.6)

and

_ =
|2 − |1
I2 − I1

=

∞∑
==3

�=−3
I=2 − I

=
1

I2 − I1
∈ Z[01, . . . , 06] [[I1, I2]]

is the slope of the line joining the two points, and where a = |1 − _I1. The inverse
in the group law on � (�) is given by the formula

](I) = I−2 − 01I
−1 − · · ·

−I3 + 201I−2 + · · ·
∈ Z[01, 02, 03, 04, 06] [[I]] .

The formal power series Φ(-,. ) ∈ Z[01, 02, 03, 04, 06] [[-,. ]] defined by

Φ(I1, I2) := ] (� (I1, I2)) ,

for I1, I2 ∈ m = C� [[C]], defines the structure of a formal group on the formal
completion of the local ring of � at the origin isomorphic to the ring � [[C]]. If we
equip m with the structure of an abelian group with composition

G(C) ⊕ H(C) := Φ (G(C), H(C))

and inverse 	G(C) = G(](C)), then we obtain a homomorphism of abelian groups

m → � (� [[C]]) , I ↦→ (G(I), H(I)) . (4.6.7)

Suppose now that our field � is the quotient field  of the ring ' = k[[C]], where
k is an algebraically closed field. Let � be an elliptic curve over  , let E be its Néron
model over ', and let L(�) be its Lutz group. The formula for the map shows that
its image lies in L(�). It is proven in [682, Chapter VII, Proposition 2.2] that the
map (4.6.7) is an isomorphism onto the Lutz group.

This allows us to equip the Lutz group L(�) with the pro-algebraic structure
defined by the filtration on m by its powers m8 . It coincides with the pro-algebraic
structure of the Greenberg realization of L(�).

Let [=] : m→ m be the multiplication-by-= homomorphism in the formal group
�̂ . It follows from the formula for the formal law � (-,. ) in (4.6.6) that [=] (I) = =I+
higher order terms. In particular, we see that [=] is bĳective if = is invertible in ',
hence Ker( [=]) is uniquely divisible by any integer coprime to the characteristic.
This agrees with Proposition 4.2.1.

If = = ? is the characteristic of k and  , then multiplication [=] is more compli-
cated and the height comes into play: recall from Section 0.1 that the height of the
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formal group � (-,. ) on ' = � [[C]] of characteristic ? is the largest power ?A of ?
such that [?] (C) = 6(?A ) for some power series 6()) ∈ '. For formal groups arising
from elliptic curves as just explained, we have the following result, see, for example,
[682, Corollary 7.5].

Proposition 4.6.9 The height of the formal group of an elliptic curve � over a field
of characteristic ? > 0 is equal to 1 if � is ordinary and it is equal to 2 if � is
supersingular.

Let m8 = m8 . It follows from the formula of the formal group law on m that the
filtration

m = m1 ⊃ m2 ⊃ . . .

has graded parts m8/m8+1 isomorphic to G0,k.
We know that the height ℎ0 of the formal group associated to the reduction E◦C of

E◦ is equal to 1 if E◦C is G<,k or an ordinary elliptic curve, the height is equal to 2
if it is a supersingular elliptic curve, and the height is equal to ∞ if the reduction is
additive. Let ℎ be the height of L(�).

It follows that the multiplication by ? in the formal group L(�) can be written in
the form

[?] (C) = 5 (C ?) = ?C + 20C
? + 21C

?2 + · · · , (4.6.8)

where the following conditions on the values of the valuations at 20, 21 determine
the heights of Ê◦C and L(�):

a (20) a (21) ℎ0 ℎ1
∞ A2 > 0 ∞ 2

A1 > 0 A2 > 0 ∞ 1
0 any 1 1

A1 > 0 0 2 1
∞ 0 2 2

Proposition 4.6.10 Let � be strictly local, let  be its function field  , and let �
be an elliptic curve over  . Let � = L(�) be the Lutz group of � considered as a
perfect pro-algebraic group � (L(�))pf over k with filtration

�1 := m ⊃ �2 := m2 ⊃ · · ·

There is a strictly increasing function _ : Z+ → Z+, such that the morphism [?] :
� → �, G ↦→ ?G maps �= to �_(=) . Then:

1. If ℎ0 = 1 and ℎ1 = 1, then _(=) = ?=.
2. If ℎ0 = 2 and ℎ1 = 2, then _(=) = ?2=.
3. If ℎ0 = 2 and ℎ1 = 1, then

a. _(=) = ?2= if = ≤ a(22)/?(? − 1) and
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b. _(=) = ?= + a(22) if = ≥ a(22)/?(? − 1).

The induced homomorphism D= : �=/�=+1 → �_(=)/�_(=)+1 is an isomorphism
for all =.

In Case (1), the formal group L(�) is isomorphic to the formal group associated
to the group * of units of  , and the proof in this case can be found in [658, 1.7].
The other cases were studied in [726] and [727].

Let, be the additive group of the ring of Witt vectors, = , (k). We consider
, as a pro-algebraic group of the additive groups arising from the rings ,= (k) of
Witt vectors of length =. The proof of the next lemma can be found in [658, 1.8,
Proposition 7].

Lemma 4.6.11 For each =, the isomorphism 5= : G0,k → �=/�=+1 and the natural
projection d : , → G0 can be lifted to fit into a commutative diagram

,

d

��

q= // �=

��
G0

5= // �=/�=+1.

These diagrams define an isomorphism of pro-algebraic groups

, � � �,

where � := Z+ \ _(Z+).

Corollary 4.6.12 Let � be an elliptic curve over  = k((C)), let E be its Néron
model over ' = k[[C]], and let EC be the closed fiber of E. Suppose that EC is not of
additive type. Then

?∞ WC(� ) � Hom
(
c1 (E◦),Q?/Z?

)
� k� × (Q?/Z?) n ,

where n = 1 if EC is an ordinary elliptic curve and n = 0 otherwise.

Proof We use Theorem 4.6.8 and Proposition 4.6.11. First, we have c1 (L(�)) =
c1 (, (k))4. It follows from [658, 8.5, Remarque] that

Hom (c1 (, (k)),Z/?Z) � Hom
(
c1 (, (k)) (?) ,Z/?Z

)
� Hom (c1 (G0),Z/?Z) .

By [658, 8.3], the latter group is isomorphic to G0,: . Now

c1 (E◦) � c1 (L(� )) × c1 (E◦C ).

It remains to use the known structure of the group c1 (E◦C ), see Section 0.1. �

The treatment in the case of the additive reduction is more complicated and it is
achieved by passing to a semi-stable reduction. By this, we mean the following.
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Proposition 4.6.13 Let � be strictly local with function field  and let � be an
elliptic curve of  with additive reduction. Then, there exists a finite separable
totally ramified extension !/ such that �! has good or multiplicative reduction.

Proof Choose a prime ℓ different from ? and consider the action of the absolute
Galois group Gal of  on ℓ� ( ̄) � (Z/ℓZ)⊕2. This becomes trivial after a finite
and separable extension !/ , which we may assume to be totally ramified. Then,
the base-change � ′ = �! has all its ℓ-torsion points defined over !. Let '′ be the
normalization of ' in ! and let C ′ be the pre-image of the closed point C. Let E′ be
the Néron model of � ′ over '′. We know from Proposition 4.2.1 that the kernel of
the reduction homomorphism � ′(!) = E′('′) → E′

C′ has no torsion points of order
prime to ?. Thus, ℓE′C′ � (Z/ℓZ)⊕2 and hence either E′

C′ is smooth or E′
C′ contains a

subgroup isomorphic to G< ⊕ (Z/ℓZ). �

The previous proposition is a special case of Grothendieck’s theorem on semi-
stable reduction of abelian varieties over the field of fractions of any noetherian
regular irreducible scheme of dimension 1, see [277, IX, Théorème 3.6]. In this
general context, semi-stable reductionmeans that the closed fiber of the Néronmodel
does not contain a non-trivial unipotent connected subgroup. A more elementary
proof in the case of Jacobians was given in [32].

Example 4.6.14 If we avoid some small characteristics ?, then the proof of the
previous proposition can be made very explicit.

For example, suppose that the special fiber is additive of type �̃= and that ? ≠ 2.
Let �0 := '1 + '2 + 2'3 + · · · + 2'=−1 + '= + '=+1 as in Proposition 2.2.5. We have
�0 = ' + 2

∑=−1
8=3 '8 . Thus, O- (') is divisible by 2 in Pic(�). Since ? ≠ 2, there

exists a separable double cover - → � ramified over '. The proper transform of the
components of ' on - are disjoint (−1)-curves. The proper transforms of '3 and
'=−1 are smooth rational curves with self-intersection −4. The pre-images of other
curves '8 split into the disjoint unions of two (−2)-curves. Blowing down the proper
transform of ', we obtain a minimal relative model of - → �. Its closed fiber is
smooth if = = 4 or of type �̃2=−9 if = > 4.

A similar procedure leads to a smooth fiber if the special fiber is additive of type
�6 or �̃∗2 (assuming ? ≠ 3), of type �̃7 (assuming ? ≠ 2), or of type �̃8.

If the invariant of wild ramification X is equal to zero (for example, if ? ≠ 2, 3),
then a semi-stable reduction can always be attained after a tamely ramified finite
extension  ′/ . The smallest degree of a tame extension achieving this is equal
to 2, 3, 4 or 6 as in the following table shows. This table also gives the type of
semi-stable reduction, see [646, Table 5.2].

�̃∗∗0 �̃∗1 �̃
∗
2 �̃4 �̃= , = > 4 �̃6 �̃7 �̃8

[ ′ :  ] 6 4 3 2 2 3 4 6
Type �̃0 �̃0 �̃0 �̃0 �̃2=−9 �̃0 �̃0 �̃0

Table 4.5 Semi-stable reduction: the tame case
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If ? ≠ 2, 3, then it follows from this table that the semi-stable reduction is of
multiplicative type if and only if the singular fiber is of additive type �̃= with = > 4.
If ? = 2, then there are examples of elliptic curves over  , whose reduction is
additive of type �̃= with = > 4 that have a good semi-stable reduction, see [478,
Theorem 2.8].

Remark 4.6.15 One can reconstruct an elliptic fibration from a semi-stable reduction
as the quotient of the minimal relative model of the semi-stable reduction by a finite
group, which is isomorphic to the Galois group of the field extension. If the order of
the group is prime to ? or if the extension is tame, then it is easy to find the singular
points of the quotient and resolve them. For example, if ? ≠ 2, [ ′ :  ] = 2, and the
semi-stable reduction has good reduction, then the quotient has 4 ordinary double
points and resolving them we obtain a singular fiber of type �̃4.

Let � be an elliptic curve over  and let �0 be the special fiber of the Néronmodel
of � . Let  ′/ be a finite field extension such that � ′ has semi-stable reduction.
Let � ′0 be the special fiber of the Néron model of � ′ . We use the notation from
Proposition 4.6.10. We would like to see how the heights ℎ0, ℎ1 change under a
semi-stable reduction.

First we use the following result, see [682, Appendix A, Corollary 1.4].

Lemma 4.6.16 Let � be an elliptic curve over a local field  with ring of integers
'. Then � ′ has good semi-stable reduction if and only if 9 (�) ∈ '.

Concerning supersingular elliptic curves, we have the following results of Deur-
ing, see [429, Chapter 13, Theorem 6] and [682, Chapter V, Theorem 4.1] for details
and proofs.

Theorem 4.6.17 If � is a supersingular elliptic curve over a field of characteristic
? > 0, then 9 (�) ∈ F?2 . Over an algebraically closed field of characteristic ? > 0,
there exist only a finite number of supersingular elliptic curves (in fact, roughly
?/12) and they all can be defined over F?2 .

Being supersingular does not depend on the groundfield, that is, � is supersingular
if and only if �! is supersingular for any finite extension !/ . Moreover, if � has
good reduction, say with special fiber �0 of the Néron model, then the special fiber
of the Néron model of �! is isomorphic to �0. In particular, having good and
ordinary (resp. good and supersingular) reduction does not change after passing to
finite extensions of  .

Remark 4.6.18 We thank Yuri Zarhin for the following remark: Let � be an ordinary
elliptic curve over  with additive reduction �0 and such that 9 ∈ ' and 9 mod m'
is the 9-invariant of some supersingular elliptic curve � ′0. Then, by Lemma 4.6.16,
there exists some finite extension  ′/ such that � ′ := � ′ has good reduction. In
this case, the special fiber of the Néronmodel of � ′ is isomorphic to � ′0. In particular,
� ′ is an ordinary elliptic curve, but � ′0 is supersingular.

On the other hand, it is possible that �0 is an ordinary elliptic curve but its
semi-stable reduction � ′ has good supersingular reduction. If ? ≥ 5 and if H2 +
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G3 + 04G + 06 = 0 is the Weierstrass equation of � over  , then we may consider
the quadratic twist �3 of � , that is, separable form � defined by an equation
H2 + G3 + 3204G + 3306 = 0, where 3 ∈ m is not a square in  . The reduction of
�3 is additive but its semi-stable reduction must have a supersingular elliptic curve.
Since the two elliptic curves are isomorphic over  (

√
3), we obtain that � has a

semi-stable reduction with good supersingular reduction.

We will use the Weil restriction functor, which we discussed in Section 0.1. We
apply it to the following situation: let  be a local field and  ′ be a finite Galois
extension of  (totally ramified in practice), say with Galois group Γ. Let � be an
elliptic curve over  and � ′ := � ′ and let E and E′ be their Néron models over '
and '′, respectively. The Γ-action on  ′ induces a Γ-action on � ′ and E′. We have
the Weil restrictions ℜ ′/ (� ′) and ℜ'′/' (E′). We note that there are canonical
homomorphisms of group schemes � → ℜ ′/ (� ′) and E→ ℜ'′/' (E′).

The following proposition [56, Lemma 15] plays an important role in the proof
of the duality theorem 4.6.8. It allows one to reduce the proof to the case where the
abelian variety in question has a semi-stable reduction.

Proposition 4.6.19 Let � be an abelian variety over  and let  ′/ be a finite and
totally ramified Galois extension, such that �′ := � ′ has semistable reduction. Let
A′ be the Néron model of �′ over '′. Let - andX be the Weil restrictionsℜ ′/ (�′)
and ℜ'′/' (A′), respectively. Then,

c1 (X) � c1 (A′), WC(-/ ) � WC(�′/ ).

Proof We have a canonical homomorphism of group schemes A→ X that induces
a homomorphism of Greenberg realizations G(A) → G(X). So, it suffices to prove
that G(X) � G(A′). Let m′ be the maximal ideal of the ring '′ of integers of �! .
We have

'′ ⊗' '8 = '′ ⊗' '/m8 = '′/m8'′ = '′/m′48'′ = '′48 ,

where 4 = [ ′ :  ]. By assumption, 4 coincides with the ramification index of
 ′/ . It is known that the Weil restriction commutes with the base changes. This
gives

ℜ'8/k (X ⊗' '8) = ℜ'8/k (ℜ'′48/'8 (A
′ ⊗' '′48)) = ℜ'′48/k (A

′ ⊗'′ '′48).

Since the set 4Z+ is a cofinal subset of Z+, we can pass to the projective limit and
obtain that G(A′) is also the projective limit of ℜ'′

48
/k (A′ ⊗'′ '48). �

This result has the following interesting corollary and we refer to Lemma 16 and
Theorem 3 of [56] for details.

Corollary 4.6.20 The canonical homomorphism of group schemes A→ ℜ'′/' (A′)
induces a monomorphism

c1 (� ) → c1 (� ′).
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Under the Shafarevich pairing from Theorem 4.6.8, its transpose is the corestriction
homomorphism of the Weil–Châtelet groups WC(�′/ ′) →WC(�/ ).

We can now complement Proposition 4.6.10 by treating the case when ℎ0 = ∞,
that is, where the reduction of the elliptic curve � is of additive type. There are two
possible cases to consider, namely (1) ℎ1 = ℎ

′
0 = ℎ

′
1 = 1 and (2) ℎ1 = ℎ

′
0 = ℎ

′
1 = 2.

Let G = G(L(�))pf (resp. G′ = G(L(� ′))pf be the perfect Greenberg realization
of the Lutz group of � (resp. � ′). It follows from the proof of Proposition 4.6.19
that we have a commutative diagram for every = > 0,

G=
q= //

[?]
��

G′4=
[?]
��

G_(=)
q_(=) // G′

4_(=)

Applying Proposition 4.6.10, we obtain that the right vertical arrows are isomor-
phisms and that the function _ coincides with _′(4=)/4. The function _′ is given in
Proposition 4.6.10 and it shows that _′(4=)/4 = _′(=) in all cases. This allows us to
compute _. Applying Lemma 4.6.11, we obtain

G(E)pf � , (k)� × G0,k,

where � = Z+ \ _′(Z+).

Corollary 4.6.21 Let � be an elliptic curve over  with additive reduction. Then

?∞ WC(�/ ) � Hom
(
c1 (E◦),Q?/Z?

)
� c1 (, (k))� × k.

The next corollary was proved in [473, Corollary 6.3].

Corollary 4.6.22 Let � be an elliptic curve over  . Then, for any < > 0,

?< WC(�/ ) ≠ {1}.

Proof Since  is a field of cohomological dimension 1, it follows that the
multiplication-by-?< map �1 ( , � ) → �1 ( , � ) is surjective. Thus, the group
WC(�/ ) if divisible by any power of ?. Thus, it suffices to prove that ? WC(�/ ) ≠
{1}. To see this, we note that this group is isomorphic to Hom(c1 (, (k)� ),Z/?Z).
The surjection , (k) → G0,k induces a surjection c1 (, (k)) → c1 (G0,k). It only
remains to note that there is a natural isomorphism G0 → Hom(G0,k,Z/?Z), see
[657, 8.3, Proposition 3]. �

As an application, we now can prove the following result, which was proven by
other methods in [606], §9.

Theorem 4.6.23 Let k be an algebraically closed field of characteristic ? > 0, let
' := k[[C]], and let  be the field of fractions of '. Let � be an elliptic curve  , let
E be its Néron model over ', and let EC be its closed fiber. Then,
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1. If EC is an ordinary elliptic curve, then ?∞ WC(�/ ) is given by an extension

0 → Q?/Z? → ?∞ WC(�/ ) → Hom
(
Gal( ab/ ),Q?/Z?

)
→ 0.

(4.6.9)
2. If E◦C � G<,k, then

?∞ WC(�/ ) � Hom
(
Gal( ab/ ),Q?/Z?

)
.

Proof We apply Theorem 4.6.8. Applying the exact sequence of homotopy groups
to the reduction homomorphism A : � ( ) = E(') → E(k) = EC (k), we obtain an
exact sequence

0 → c1 (L(�)) → c1 (E) → c1 (EC ) → 0. (4.6.10)

It follows from Examples 0.1.22 and 0.1.23 that

Hom
(
c1 (L(�)),Q?/Z?

)
= Hom

(
Gal( ab/ ),Q?/Z?

)
and

Hom
(
c1 (EC ),Q?/Z?

)
� Hom

(
Z? ,Q?/Z?

)
= Q?/Z?

if EC is an ordinary elliptic curve. If E0
C is of multiplicative type, we have

Hom
(
c1 (E0

C ),Q?/Z?
)
= 0.

Applying the functorHom(−,Q?/Z?) to exact sequence 4.6.10, the assertions follow
from Theorem 4.6.8. �

Remark 4.6.24 As already mentioned, this result was also shown by Raynaud in
[606, §9]. He also showed that in Case (1), a non-zero element from ?∞ WC(�/ )
coming from an element from the subgroup Q?/Z? has a tame closed fiber. In Case
(2), all non-zero elements from ?∞ WC(�/ ) define torsors with wild closed fiber.

Let Ã : c1 (E◦) → c1 (E◦C ) be the reduction homomorphism. It gives an inclusion

Hom
(
c1 (E◦C ),Q?/Z?

)
⊆ Hom

(
c1 (E◦),Q?/Z?

)
� ?∞ WC(�/ ).

We denote by WC(�/ )tame the subgroup of WC(�/ ) that is defined to be the
image ofHom(c1 (E◦C ),Q?/Z?) under the duality isomorphism from Theorem 4.6.8.
The name and the notation are justified by the following.

Proposition 4.6.25 Let - → � be a regular relatively minimal model of an �-torsor
- → Spec . Then its closed multiple fiber is tame if and only if the isomorphism
class of - belongs to WC(�/ )tame.

IfEC is additive or an ordinary elliptic curve, then the groupHom(c1 (E◦C ),Q?/Z?)
is non-trivial. These are also the only possible cases when a torsor may have a tame
multiple fiber. We conjecture that
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Hom
(
c1 (E◦C ),Q?/Z?

)
= WC(�/ )tame,

where WC(�,  )tame is the subgroup of isomorphism classes of torsors with tame
multiple fiber. Raynaud’s results imply that this is true if EC is an ordinary elliptic
curve.

It is an interesting open problem to find the subset of WC(�/ ) of isomorphism
classes of torsors with given type of a wild multiple fiber described by the function
q(=) discussed in Section 4.2.

4.7 The Weil–Châtelet Group: the Global Case

Having studied the Weil–Châtelet group in the local case, we now study it in the
global case. Thus, we assume that � is global and that we have a jacobian elliptic
fibration 5 : � → �. Let � := �[ be the generic fiber of 5 , which is an elliptic curve
over the generic point [ = Spec , where  is the function field of�. In this section,
we show how to compute the group WC(�/ ).

For every closed point C ∈ �, we have the generic point ℎC of the strict localization
of � at C. For the base change of 5 : � → � to  ℎC , the results of the previous section
give us some control over the Weil–Châtelet group WC(� ℎC / 

ℎ
C ). An element

of WC(�/ ) defines for every C ∈ � an element in WC(� ℎC / 
ℎ
C ) and thus, a

homomorphism from the global Weil–Châtelet group WC(�/ ) into the product
(we will see that it lies in the direct sum) of local Weil–Châtelet groups

WC(�/ ) →
∏
C ∈�

WC(� ℎC / 
ℎ
C ).

In order to understand and compute the former, we have to understand the latter, as
well as the kernel and cokernel of this homomorphism.

Quite generally, let F be an abelian sheaf in the étale topology on [ = Spec .
The Grothendieck–Leray spectral sequence for the inclusion morphism 8 : [ ↩→ �

gives a long exact sequence

0 → �1
ét (�, 8∗F ) → �1

ét ([, F[) → �0
ét (�, '

18∗F ) → �2
ét (�, 8∗F ) → �2

ét ([, F[).
(4.7.1)

Next, assume that F is the sheaf associated to a smooth connected group scheme
� over [ that admits a Néron model G over�. Then, the Néronian mapping property
implies that 8∗� � G, where we identify a group scheme with its associated sheaf
in the étale topology. The known computation of the fiber of direct images of étale
sheaves [508, Chapter III, Theorem 1.15] shows that the fiber of the sheaf ('18∗�)C at
a closed point C ∈ � is isomorphic to�1 ([̃C , 8̃∗CG), where 8̃C : [̃ℎC → Spec(Oℎ

�,C
) → �

and where [̃C = Spec ℎC is the generic point of the strict localization of� at a closed
point C. By functoriality of Néron models, we obtain an isomorphism
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�1
ét

(
[̃C , 8̃

∗
CG

)
� �1

ét

(
 ℎC , � ⊗  ℎC

)
.

An element of �1
ét ( ,�) is the isomorphism class of a �-torsor - → Spec .

It is trivialized over some finite separable finite extension !/ . Let � ′ be the
normalization of � in ! and ? : � ′→ � be the corresponding finite map. For every
C ∈ �, such that � ′ is not ramified over C, the torsor - ⊗  ℎC is trivial and hence, its
image in ('18∗�)C is equal to zero. This shows that the image of each element is zero
in almost all fibers of '18∗� and hence, we can replace �0 (�, '18∗F ) in the exact
sequence (4.7.1) by the direct sum ⊕C ∈��1

ét ( 
ℎ
C , � ⊗  ℎC ). The exact sequence

0 → �1 (�,G) → �1 ([, �) →
⊕
C ∈�

�1 ( ℎC , �⊗  ℎC ) → �2 (�,G) → �2 ([, �)

(4.7.2)
is the global-to-local tool for the computation of the group of isomorphism classes
of torsors under a commutative algebraic group � over  .

In this section, we apply this exact sequence to the case when � is an abelian
variety � over  with Néron model A.

Definition 4.7.1 The group �1 (�,A) is called the Tate–Shafarevich group and it is
denoted by Ш(�,  ) or by Ш(�/ ).

Note the order in the names is reversed, probably because in the Cyrillic alphabet
the letter Ш goes after the letter ) .

Theorem 4.7.2 Let 5 : � → � be a jacobian elliptic fibration over a global base �.
Let � be the generic fiber of 5 , which is an elliptic curve over the function field  of
�.

1. If � is not a supersingular surface, or if ?6 (�) = 0, then for any prime ℓ (possibly
equal to ?),

ℓ∞Ш(�/ ) � (Qℓ/Zℓ)tℓ (� )
⊕

ℓ NS(�).

The group ℓ NS(�) is trivial if 5 is not smooth or 5 is a trivial fibration.
2. If ? > 0 and if the surface � is supersingular, then

?∞Ш(�/ ) = U(k) ⊕ (Q?/Z?)t? (� )
⊕

? NS(-),

for some unipotent algebraic group U. (Conjecturally, we have t? (�) = 0.) The
group ? NS(�) is trivial if 5 is not smooth or 5 is a trivial fibration.

Proof Let E be the Néron model of � over �. We have proved in Corollary 4.3.12
that Br(�) = �1

ét (�, '
1 5∗G<). The exact sequence

0 → E → '1 5∗G< → Z� → 0 (4.7.3)

together with the vanishing of �1
ét (�,Z� ) implies that
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Ш(�/ ) = �1
ét (�,E) � Br(�).

Now almost all the assertions follow from Theorem 0.10.2 and Theorem 0.10.29,
which compute the Brauer group of a surface. The only remaining assertion is that
NS(�) has no torsion if 5 is not smooth or not trivial. However, this follows from
Corollary 4.3.5 and the assertion is obvious if 5 is trivial. �

Let us give more information about the Tate–Shafarevich group in the case of
a smooth elliptic jacobian fibration 5 : � → �. In this case, the 9-invariant of the
generic fiber � := �[ is a constant, that is, lies in k, and all fibers are isomorphic
to one and the same elliptic curve �0 over k. Since the 9-invariant � := �[ is equal
to the 9-invariant of �0, it follows from Proposition 4.5.5 that � and �0 become
isomorphic over some finite extension !/ . In fact, this extension can be chosen to
be separable of degree 2 if 9 (�) ≠ 0, 1728 and of degree dividing 24 otherwise, see
[429, Theorem 2, Appendix 1].

Moreover, we can choose !/ to trivialize the Tate module )ℓ (�) for some
suitable prime ℓ and thus, by [86, 7.4, Theorem 5], the extension !/ may assumed
to be unramified. Passing to the Galois closure of !/ , we may assume the extension
to be Galois, say with group � and it will still be unramified. Let � ′ → � be the
normalization of � in ! and thus, � ′ → � is a finite étale morphism of curves.
Moreover, � acts on � ′ and the morphism � ′ → � is Galois with group �. In
particular, we have� � � ′/�. By construction, the base change - := �×�� ′→ � ′

is a trivial fibration, that is, isomorphic to � ′ × �0 → � ′. We note that - coincides
with the Néron model of �! over � ′. In particular, we obtain an isomorphism

� � (�0 × � ′)/�,

where � acts freely on the product �0 × � ′ by 6 : (G, H) = (6(G), d(6) (H)) for
some homomorphism d : � → Aut(�0). The projection �0 × � ′ → � ′ onto
the second factor, which is a trivial elliptic fibration, induces an elliptic fibration
� → � ′/� � �. In this case, we will say that the fibration is étale isotrivial.

Remark 4.7.3 The previous observations can also be viewed from the point of view
of moduli stacks and actually, it lies at the very heart of what a stack is as opposed
to a scheme: first, there exists a moduli stack M1,1,k of elliptic curves over k, see
also Example 5.1.1. Assigning to an elliptic curve its 9-invariant yields a morphism
9 : M1,1,k → A1

k
, which is the closest approximation of M1,1,k to a scheme, namely

its so-called coarse moduli space.
If 5 : � → � is a smooth elliptic fibration as above, then we have a classifying

morphism W : � → M1,1. There is a universal elliptic curve E → M1,1 and
5 : � → � is isomorphic to the pull-back E ×M1,1 � → � via W. The composition
9 ◦ W : � → A1 must be constant since � is proper and A1 is affine. In particular,
every fiber of 5 has the same 9-invariant, which implies that every fiber of 5 is
isomorphic to the same elliptic curve �0 over k.

If 9 was an isomorphism, that is, if M1,1 was a scheme, then the pull-back
E ×M1,1 � → � would be a trivial product family, that is, of the form �0 × � → �.
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However, in general, we have that � � (�0 × � ′)/� with the notation as above.
This type of phenomenon is possible since M1,1 is a stack and in fact, a Deligne–
Mumford stack: we have 5 : � → � and the trivial family �0 × � → �, both of
which give rise to classifying morphisms W, W′ : � → M1,1. Since 9 ◦ W = 9 ◦ W′,
this implies that there exists a finite and étale cover � ′ → �, that can be assumed,
without loss of generality, to be a Galois cover with respect to some group �, such
that � ×� � ′→ � ′ and �0 ×� ′→ � ′ are isomorphic. From there, one can argue as
above to conclude the existence of an isomorphism � � (�0 ×� ′)/� → � ′/� = �.

Proposition 4.7.4 Let 5 : � → � be a non-trivial but étale isotrivial jacobian
elliptic fibration. Then, there exists an isomorphism of abelian groups

MW(�/�) � Tors (NS(�)) .

Proof Let � ′ → � be a Galois cover trivializing the fibration as above and let
� be its Galois group. Let  and ! be the function fields of � and � ′ as above.
Let � := �[ be the generic fiber of 5 , which is an elliptic curve over  . We have
� ( ) = � (!)� = �0 (k)� . Let �0 be the image of � in Autgr (�0). The group �0
acts on �0 with a finite set of fixed points, which form a subgroup isomorphic to
MW(�). For example, if� is of order 2 and ? ≠ 2, thenMW(�) � 2�0 � (Z/2Z)⊕2.

The Grothendieck–Leray spectral sequence for the morphism 5 and the sheaf -=
gives a long exact sequence

0 → �1
ét (�, -=) → �1

ét (�, -=) → �0
ét (�, '

1 5∗-=) → �2
ét (�, -=) → �2

ét (�, -=).

Next, we use the isomorphism �1
ét (/, -=) � = Pic(/) for / = � or �, as well as the

fact that '1 5∗-= � ='
1 5∗G< = =P�/� . Also we use that the map �2

ét (�, -=) →
�2

ét (�, -=) is injective. Thus, we can rewrite the above long exact sequence as

0 → = Pic(�) → = Pic(�) → = Pic(�/�) → 0.

The group Pic◦ (�) is =-divisible and the maximal =-divisible subgroup of Picg (�)
is Pic◦ (�). The homomorphism 5 ∗ : Pic◦ (�) → Pic◦ (�) is a bĳection since 5 is
non-trivial. This gives

= Tors(NS(�)) = = (Picg (�)/Pic◦ (�)) � = MW(�/�)

and finishes the proof. �

The group � acts on �0 via d : � → Aut(�0) as above and we let �0 be
the subgroup of � that consists of those automorphisms of �0 that fix the group
structure. It follows from the description of the automorphism group of an elliptic
curve in Proposition 4.4.7 that the torsion of NS(�) is restricted.

Corollary 4.7.5 Let 5 : � → � be as before. Then,

Tors (NS(�)) ∈
{
{0}, Z/2Z, Z/3Z, Z/4Z, (Z/2Z)⊕2 }

.
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Example 4.7.6 Let us briefly digress on hyperelliptic or bielliptic surfaces: namely,
we specialize to the case where� := � is also an elliptic curve. Then, �1 := � ′→ �

is an étale �-cover and thus, a separable isogeny of elliptic curves with kernel �.
Let  be the subgroup of � that acts on �0 by translations. Then, we can replace �0
with its quotient by  to assume that  is trivial. In this case, projection onto the
first factor induces another elliptic fibration

5 ′ : � → P1 = �0/�.

This fibration has multiple fibers and its jacobian is the trivial fibration. Since
L⊗12 � O� , the canonical class formula gives l⊗12

�
� O� . Since 11 (�) = 2,

the surface � is a hyperelliptic surface of Kodaira dimension zero. We mentioned
these surfaces already at the end of Section 1.1. We refer to [47] for classification
of such surfaces over the complex numbers and to [78] or the survey [458] for
the classification in all characteristics. Since dim�1 (�,O� ) = 1, we know from
Example 4.2.15 that ; (Tors('1 5 ′∗O� )) ≤ 1 and that there can be at most one wild
multiple fiber. We refer to [78] for the classification of possible configuration of
multiple fibers.

In Section 0.10, we discussed ordinary varieties. It follows from Example 0.10.24
that � is ordinary in degree 1 if and only if the base� of the fibration 5 is an ordinary
curve of genus 6 and Pic�/k is reduced (here, we use that Jac(�) is isogenous to the
Albanese variety of �). Being ordinary in degree 1, we see that Pic(�) is reduced,
that ℎ1 (O� ) = ℎ1 (O� ) = 6, and that ℎ2 (O� ) = 6 − 1.

Lemma 4.7.7 Assume ? ≥ 5. Then, the following properties are equivalent:

1. �0 and � are supersingular.
2. � is a supersingular surface.

Proof The trivializing cover c : � ′ := �0 × � ′ → � is étale and, since we assumed
? ≠ 2, 3, its degree is prime to ?. A trace map argument shows that the homomor-
phism c∗ : �2 (�,O� ) → �2 (� ′,O� ′) is injective. The map is the map of the Lie
algebras of the homomorphism of formal Brauer groups c∗ : B̂r(�) → B̂r(� ′). Since
there are no non-trivial maps between formal groups of different heights, we see that
� ′ is supersingular if and only if � is supersingular.

The Künneth formula in crystalline cohomology [61, Chapter 5, 4.1] yields a
decomposition

�2 (� ′/,) �
(
�1 (�0/,) ⊗ �1 (� ′/,)

)
⊕ �2 (�0/,) ⊕ �2 (� ′/,),

which is compatible with the action of Frobenius. We know that � ′ is supersingular
if and only if �2 (� ′/,) ⊗,  = (�2 (� ′/,) ⊗,  )1, where the subscript 1
indicates the slope 1 sub-isocrystal. This implies that � ′ is supersingular if and only
if�1 (�0/,) ⊗,  = (�1 (�0/,) ⊗,  )1 and�1 (� ′/,) ⊗,  = (�1 (� ′/,) ⊗,
 )1. The latter happens if and only if� ′ and �0 are supersingular curves. Since� ′ is
an étale cover of�, we have that� ′ is supersingular if and only if� is supersingular.�
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We refer to [345] for more information about the ordinarity of isotrivial elliptic
fibrations.

Next, we study the group�2 (�,E). By (4.7.2), this group is crucial for the global-
to-local tool: given a system of local classes, that is, elements in �1 ( ℎC , � ⊗  ℎC )
for every closed point C ∈ �, the obstructions to realizing them in a global fibration,
lies in �2 (�,E).

Lemma 4.7.8 Let � be an abelian variety over  . Then, �2 ( , �) = 0.

Proof Since �2 ( , �) is a torsion group, it is enough to show that ℓ�2 ( , �) = 0
for every prime ℓ including the characteristic ? = char( ). Using the long exact
sequence in the flat cohomology associated to the short exact sequence

0 → ℓ� → �
[ℓ ]
→ � → 0,

we see that it is enough to prove that �2 ( , ℓ�) = 0. The sheaf ℓ� is represented
by a finite group scheme of height one over  . It is known that, for any scheme
- and every finite group --scheme � of height one, we have �8 (-, �) = 0 for
8 > 2(-) + 1, where 2(-) is the cohomological dimension of - in the category of
quasi-coherent sheaves on - , see [30, Corollary (1.3)]. By taking - = Spec , we
obtain �8 ( , ℓ�) = 0 for 8 > 1, and we are done. �

Applying this lemma to the exact sequence (4.7.2), we find the exact sequence

0 → Ш(�/ ) → WC( /�) →
⊕
C ∈�

WC(� ℎC / 
ℎ
C ) → Tors

(
�2 (�,A)

)
→ 0.

(4.7.4)
For non-trivial elliptic fibrations, we have the following fundamental result.

Theorem 4.7.9 If 5 : � → � is a non-trivial elliptic jacobian fibration over a global
base �, then

Tors
(
�2 (�,E)

)
= 0.

On the other hand, if 5 is trivial, say, � � �0 ×� for some elliptic curve �0 defined
over k, then

=�
2 (�,E) � =�0

for every =.

Proof Assume that 5 is non-trivial. It suffices to prove that ℓ�2 (�,E) = 0 for any
prime ℓ including the characteristic ? = char(k).

First, assume that 5 is not smooth.ByCorollary 4.3.12,we have�2 (�, '1 5∗G<) �
�3 (�,G<). Next, we use the exact sequence (4.7.3) and the exact sequence of con-
stant sheaves

0 → Z� → Q� → (Q/Z)� → 0

to conclude that

�1 (�,Z� ) = 0, and �2 (�,Z� ) = �1 (�, (Q/Z)� ).
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This gives an isomorphism

ℓ�
2 (�,E) � Ker

(
ℓ�

3 (�,G<) → ℓ�
1 (�, (Q/Z)� )

)
.

Multiplication by ℓ in (Q/Z)� shows that we have an isomorphism

ℓ�
1 (�, (Q/Z)� ) � �1 (�, (Z/ℓZ)� ) .

This gives

ℓ�
2 (�,E) � Ker

(
ℓ�

3 (�,G<) → ℓ�
1 (�, (Z/ℓZ)� )

)
. (4.7.5)

Next, the Kummer exact sequence on � gives an exact sequence

0 → Br(�) (ℓ) → �3 (�, -ℓ) → ℓ�
3 (�,G<) → 0.

Since 5 is not smooth, Theorem 4.7.2 implies that Br(�) is a divisible group. Thus,
�3 (�, -ℓ) � ℓ�

3 (�,G<) and (4.7.7) gives that

ℓ�
2 (�,E) � Ker

(
�3 (�, -ℓ) → �1 (�, (Z/ℓZ)� )

)
. (4.7.6)

Assume ℓ ≠ ?. Then, by Poincaré duality (0.10.18),

Hom
(
ℓ�

2 (�,E),Z/ℓZ
)
� Coker

(
5 ∗ : �1 (�, -ℓ) → �1 (�, -ℓ)

)
. (4.7.7)

By Corollary 4.3.5, we have 11 (�) = 11 (�) and the map 5 ∗ is an isomorphism and
hence, we find ℓ�2 (�,E) = 0.

If ℓ = ?, then we use duality in -?-cohomology for curves from [30, Corollary
4.9] that gives

Hom
(
�1 (�, (Z/?Z)� ),Q/Z

)
� �1 (�, -?)

and duality for flat cohomology of surfaces from [30, §5], which we discussed in
Section 0.10, gives a short exact sequence

0 → U2 (�, -?)∨ → �3 (�, -?) → D1 (�, -?)∨ → 0.

Since U1 (�, -?) = 0 and D1 (�, -?) � ? Jac(�), we obtain an isomorphism of
quasi-algebraic groups over k

?�
2 (�,E) � U2 (�, -?)∨ � Coker

(
? Jac(�) → ? Pic(�)

)
.

Since 11 (�) = 11 (�), we get Coker(? Jac(�) → ? Pic(�)) � ? NS(�) and this
concludes the proof in the case when the elliptic fibration is non-trivial.

Assume � � �0 ×�. We consider � as a constant abelian scheme over � identify
it with its Néron model. In this case
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Ш(�) � Br(�) � Br(�) × Br(�0) = {0}.

The Kummmer type exact sequence

0 → =� → �
[=]
→ � → 0 → 0

shows that
=�

2 (�, �) � �2 (�, =�).

Duality in étale cohomology gives an isomorphism

�2 (�, =�) � �0 (�, =�) � =�0,

finishing the proof. �

Remark 4.7.10 We have an exact sequence of sheaves of abelian groups on �

0 → E◦ → E → F → 0,

where F is a constant sky-scraper sheaf, whose fibers are the groups of connected
components of fibers of E. Taking flat or étale cohomology and using the Néronian
property of E, we obtain an exact sequence

0 → E◦ (�) → E(�) → F → Ш(�/ ) ′ → Ш(�/ ) → 0, (4.7.8)

where Ш(�/ ) ′ := �1 (�,E◦). Let � be the cokernel of the map � ( ) = E(�) →
�0 (�, F ), which is a finite group. We have an exact sequence

0 → � → Ш(�/ ) ′ → Ш(�/ ) → 0. (4.7.9)

The group Ш(�/ ) ′ has a geometric interpretation as the group of locally trivial
torsors of � of together with a choice of a component of multiplicity 1 in each
reducible fiber of its relatively minimal model - → �, see see [433, p. 486].

Remark 4.7.11 Let � be an abelian variety over a local or global field  and let A be
its Néron model over �. The original Ogg–Shafarevich theory computes the Weil–
Châtelet group = WC(�/ ) of �-torsors over  , where (=, ?) = 1. If dim � ≥ 2, we
cannot use the computation of the Brauer group of a minimal model of �. Thus, the
theory of torsors of an abelian variety � over a global field  and, in particular, the
computation of the Tate–Shafarevich group, is different. Raynaud [604], following
Grothendieck, deduces the following formula for the Euler–Poincaré characteristic
of any constructive sheaf F of finite modules over a commutative ring ' in the
étale topology of � or some open subset * of �. The formula, which is called the
Ogg–Shafarevich formula, is as follows:

j' (F ) =
2∑
8=0
(−1)8 cl'

(
�8 (�, F )

)
= (2 − 26(�)) cl' (F[̄) −

∑
G∈� (1)

n'G (F ).
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Here, cl' (") denotes the class of a finite '-module in the Grothendieck group of
the abelian category of finite '-modules. The local invariant n'G (F ) is given by

n'G (F ) = U'G (F ) + cl' (F[̄) −
∑
8=0
(−1)8 cl'

(
�8G (F )

)
,

where �8G (F ) is the étale cohomology with support at G and the U'G (F ) are the
invariants of wild ramification X( ̂G , ") for the Gal( ̂BG/ ̂G)-module " defining
the sheaf 8̂∗GF . We defined these invariants in Section 4.1. Note that both Ogg and
Shafarevich assume that the sheaf =A is moderately ramified, that is, that all the
invariants U'G (=A) are zero.

We note that one can also deduce formula (4.1.7) for the Euler–Poincaré character-
istic of an elliptic fibration from the Ogg–Shafarevich formula by taking ' = Z/=Z
and F = '1 5∗-=.

4.8 The Weil–Châtelet group: Quasi-Elliptic Fibrations

In this section, we will study Weil–Châtelet groups for quasi-elliptic fibrations.
We will use many ideas and results from the previous two sections and focus on
the differences that arise from having a non-smooth generic fiber. We recall that
quasi-elliptic fibrations can and do exist in characteristic ? ∈ {2, 3} only.

The setup is as follows: let 5 : � → � be a jacobian quasi-elliptic fibration over
a global basis �. We let �[ be the generic fiber over [ = Spec and let U = �

♯
[

be the smooth locus of �[ . Then, U is a wound unipotent group of dimension one
and its Néron model U (which does exist despite that fact that U is not proper)
is isomorphic to �♯ → �. We can still apply exact sequence (4.7.2) by taking
� = U and G = U. We denote �1 (�,A) by Ш(U / ) and continue to call it the
Tate–Shafarevich group of U . The sequence (4.7.2) thus becomes

0 → Ш(U / ) → �1 ([,U ) →
⊕
C ∈�

�1 ( ℎC ,U ℎC ) → �2 (�,U) → �2 ([,U).

(4.8.1)
Since multiplication by ? kills G0, , it also kills U and U. Thus, all groups in this
exact sequence, are ?-torsion groups.

To compute �1 ([,U ), we need to understand and compute Ш(U / ), the
groups of local invariants �1 ( ℎC ,* ℎC ), as well as the group of obstructions
Ker(�2 (�,U) → �2 ( ,U )).

We start with the Tate–Shafarevich group Ш(U / ) = �1 (�,U): as in the
elliptic case, this is isomorphic to the Brauer group of the jacobian surface �. Since
the Mordell–Weil group MW(�♯/�) = U ( ) is a finite ?-group, the Shioda–Tate
formula gives d = 12 (the surface � is supersingular in the sense of Shioda) and
hence, t? (�) = 0. Thus, Theorem 4.7.2 shows that



4.8 The Weil–Châtelet group: Quasi-Elliptic Fibrations 449

Ш(U / ) � k?6 (- ) ⊕ ?∞ (NS(�)) . (4.8.2)

We know from Corollary 4.3.5 that Tors(NS(�)) = {0} unless j(�) = 0. Quasi-
elliptic jacobian surfaceswith j(�) = 0 are precisely the quasi-hyperelliptic surfaces,
whichwe briefly discussed in Corollary 4.3.6. As in the case of hyperelliptic surfaces,
we have a presentation of the form � � (�0 ×�1)/�, but now, �0 is a cuspidal cubic
curve over k (rather than an elliptic curve), �1 → � is an isogeny of elliptic curves,
and � is a finite group scheme (possibly not étale). It follows from the analysis of
all possible � in [77, p. 214] that

Tors (NS(�)) = (�0 (k) \ {cusp})�0 = {0},

where�0 denotes the subgroup scheme of� that fixes 0. Let us record this discussion
in the following.

Theorem 4.8.1 Let 5 : � → P1 be a jacobian quasi-elliptic surface over a global
base � and let U = �

♯
[ . Then, there is an isomorphism of abelian groups

Ш(U / ) � k?6 (� ) .

Example 4.8.2 Let - be a K3 surface that admits a jacobian quasi-elliptic fibration
5 : - → P1. The theorem implies that the Brauer group is ?-torsion and in fact
isomorphic to the additive group of k. In fact, - is a supersingular and unirational
K3 surface, see also Corollary 4.1.16. The Tate–Shafarevich group is a ?-torsion
group also for any elliptic fibration 6 : - → P1. Thus, any elliptic  3-surface whose
jacobian fibration is isomorphic to - : � → P1 has a multi-section of degree ? and
all other multi-sections are of degree divisible by ?.

The proof of Theorem 4.7.9 extends word-by-word to quasi-elliptic fibrations.
Since we do not have trivial quasi-elliptic fibrations (the total space would not be
normal and in particular, not a smooth surface), we obtain the following.

Theorem 4.8.3 Let 5 : � → � be a quasi-elliptic fibration over a global base �.
Then,

�2 (�,U) = 0.

In particular, there are no obstructions in (4.8.1) to realize any given set of local
conditions in a global quasi-elliptic fibration.

In order to finish our discussion on Ogg–Shafarevich theory for quasi-elliptic
fibrations, it remains to compute theWeil–Châtelet group of a quasi-elliptic fibration
over a strictly local base � = Spec '. We start with explicit equations.

Proposition 4.8.4 Let - be a quasi-elliptic curve over  that has a  -rational point.
If ? = 2, assume that the residue field of the cusp c is a quadratic extension of  .
Then, the unipotent group UK = X♯ = X \ {c} is isomorphic to a closed subgroup of
the group scheme

G2
0, � Spec [D, D−1, {, {−1]

given by the following equations:
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1. ? = 2

a. D2 + { + 02{
2 + 06{

4 = 0, where H2 + G3 + 02
2G + 06 = 0 is the Weierstrass

equation of - . The map given by the linear system |c| is inseparable.
b. D4 + { + 04{

2 = 0, where 04 is not a square in  and one can choose a
Weierstrass equation with 06 = 0. The map given by the linear system |c| is
separable.

2. ? = 3

• D3 + { + 06{
3 = 0, where H2 + G3 + 06 = 0 is the Weierstrass equation of - . The

map given by the linear system |c| can be separable or inseparable.

Proof First, assume that ? = 2. Let 5 : - → P1
 
be a degree 2 map given by the

linear system |c|.
Suppose 5 is inseparable. It follows from Example 0.2.22 and the formula for the

canonical sheaf of a split cyclic cover that the equation of the curve in the weighted
projective plane P(1, 1, 2) can be chosen to be

C22 + 14 (C0, C1) = 0,

where 14 =
∑4
8=0 28C

8
0C

4−8
1 . The non-smooth locus is the pre-image of the zero sub-

scheme of 304, which is of the form+ (21C
2
0 +23C

2
1). Since it coincides with the image

of the cuspidal point c, which is of degree 2, the polynomial 21C
2
0 + 23C

2
1 must be the

square of a linear polynomial. After a linear change of the coordinates (C0, C1), we
may assume that 21 = 0, 23 = 1. Since - has a  -rational point, we may assume
that its image is the point with coordinates [0, 1, 0]. This allows us to assume that
20 = 0 and to write the equation of - in affine coordinates G = C1/C0, H = C2/C20 in the
following form:

H2 + G3 + 02G
2 + 06 = 0. (4.8.3)

Using the change of variables D = H/G2, { = 1/G, we arrive at equation (4.8.3).

D2 + { + 02{
2 + 06{

4 = 0. (4.8.4)

Note the Weierstrass equation H2 + G3 + 04G + 06 = 0 can be reduced to (4.8.3) if
04 = 0

2
2 is a square.

Assume now that 5 is a separable map of degree 2. Then, the equation of - has
the form

C22 + 12 (C0, C1)C2 +
4∑
8=0

28C
8
0C

4−8
1 = 0,

where 12 is a binary form of degree =. We may assume that [0, 1, 0] is a  -rational
point of - . We may thus assume 20 = 0. Also, we may assume that the cusp is the
point [1, 0, 21/2

0 ] and that 12 = C
2
1 . Taking partial derivatives, we see that 23 = 0 and

we obtain the equation

C22 + C
2
1C2 + 20C

4
0 + 21C0C

3
1 + 22C

2
0C

2
1 = 0.
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Replacing C2 by C2 + UC20 + VC0C1 for suitable U and V, we may assume 21 = 22 = 0. In
affine coordinates D = C0/C1, { = C2/C21 , we thus obtain an equation {2 + { + 20D

4 = 0.
Replacing { by 20{ and cancelling by 20, we get equation

D4 + { + 20{
2 = 0. (4.8.5)

Let us see how to derive this equation from the Weierstrass equation of - . By
the above, the coefficient 04 in the Weierstrass form H2 + G3 + 04G + 06 = 0 is not
a square. As we noted in Remark 4.4.4, we may find another Weierstrass equation
of the same curve with 06 = 0. Following [600], we set { = 04

G2+04
and D = G

H
and

we check that {2 + { + 04D
4 = 0. Replacing { by 04{ and cancelling by 04, we get

equation (4.8.5) with 0 = 04.
This gives the relationship between the coefficients in (4.8.5) and the coefficients

04, 06 of the Weierstrass form.
Next, assume that ? = 3.
Suppose 5 is a separable map. Then, - has an equation of the form

C32 + 12 (C0, C1)C2 + 20C
3
1 + 21C

2
1C0 + 22C1C

2
0 + 23C

3
0 = 0 .

We may assume - has a  -rational point with coordinates [0, 1, U], where U3 +
12 (0, 1)U + 20 = 0. After a linear change C2 ↦→ C2 − U, we may assume that 20 = 0
and U = 0. Taking partial derivatives, we find that 12 must be square of a linear
form and after a linear change of variables C0, C1, we may assume that 12 = C

2
1 , 22 = 0

and that the cusp has coordinates in  ̄ equal to [1, 0,−21/3
3 ]. After the linear change

C2 ↦→ C2 + 21C0, we may assume that 21 = 0. In affine coordinates, D = C2/C1, { = C0/C1,
the equation is

D3 + D + 2{3 = 0. (4.8.6)

The same equation is obtained from the Weierstrass equation H2 + G3 + 06 by a
substitution D = G/H, { = 1/H, which shows that 2 = 06.

Finally, assume that 5 is inseparable and then, - is given by

C32 + 20C
3
1 + 21C

2
1C0 + 22C1C

2
0 + 23C

3
0 = 0.

As above, we may assume that the  -rational point on - has coordinates [0, 1, 0],
which forces 20 to be 0. Also, we may assume that the cusp has coordinates in
 ̄ equal to [1, 0,−21/3

3 ]. Taking partial derivatives, we find that the image of the
cusp is the point + (21C1 + 22C0). As above, we may assume that 20 = 0 and hence,
the pre-image of this point in - ̄ is [−22, 21, 2

1/3
3 ]. Taking partial derivatives, we

obtain 22 = 0. Now, after suitably scaling C0 and working in the affine coordinates
D = C2/C1, { = C0/C1, the equation becomes (4.8.6). �

Let us put these results into a broader perspective: Russell [629] studied purely
inseparable twisted forms � of G0 over fields � of characteristic ? > 0, that is, � is
a group scheme over � such that there exists purely inseparable extension !/� such
that �! is isomorphic G0. More precisely, he showed that a non-trivial inseparable
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form � of G0 is isomorphic to a closed subgroup of G2
0,�

given by an equation

D?
= + { + 01{

? + · · · + 0A {?
A

= 0. (4.8.7)

where the coefficients 08 satisfy 08 ∉ � ?
8 . Thus, our groups U = �

♯
[ correspond to

the cases ? = 2 and = = 1, A = 2 or = = 2, A = 1 (equation (4.8.5)) or ? = 3, = = 1
(equation (4.8.6)). It is known that the number = is equal to the height, which is the
smallest degree of a purely inseparable extension such that the base change to it is
isomorphic to G0.

The group � admits a �-equivariant compactification, which is isomorphic
to a plane curve - of degree ?max{<,=} in the weighted homogeneous plane
P(1, 1, ?max{<,=}−min{<,=}), which is given by an equation

C
?=

2 + C
?<−1
0 C1 + · · · + 0<−1C

?

0 C
?<−1

1 + 0<C ?
<

1 = 0 (4.8.8)

if = ≤ < and which is given by an equation

C
?=

2 + C1C
?<

0 + · · · + 0<−1C
?

0 C
?<−1

1 + 0<C ?
<

1 = 0 (4.8.9)

if < ≤ =. With respect to these equations, U is given by the complement of the
hyperplane at infinity, that is, + (C0).

Using formula (4.1.6), we obtain

l- � O-
(
−2 − ?max{<,=}−min{<,=} + ?max{<,=}

)
and

?0 (-) =
1
2

(
?min{<,=} − 1

) (
?max{<,=} − 2

)
. (4.8.10)

This curve is smooth except at the point at infinity C0 = 0, where it has a singular
unibranch point. More precisely, we make the following local computations: First,
suppose = ≥ <. In the open subset C1 ≠ 0, the affine equation is

1 + G?<−?=−< H + · · · + 0<−1G
?H?

<−? + 0<H?
<

= 0 .

We can write it as 1 + 0<H?
< + G?n = 0, where n in the local ring at the non-smooth

point. If 0< ∉ � ?
B for any 0 ≤ B ≤ <, then G generates the maximal ideal m and

then, the curve is regular. However, if 0< = 2?
B , then 1 + 2H?=−B ∈ m but does

not belong to (G), so the curve is not normal and we have to take its normalization
defined over �. Second, if = ≤ <, then we obtain an affine equation

H?
= + G?<−1 + · · · + 0<−1G

?<−?<−1 + 0< = 0

and come to a similar conclusion: the curve is regular if and only if 0< is not a ?.th
power.
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Definition 4.8.5 A wound one-dimensional unipotent group is called a unipotent
group of genus 6 if it admits a regular compactification of arithmetic genus 6. A
unipotent group of genus one is called a quasi-elliptic group.

We note that wound unipotent groups of genus 0 can exist only in characteristic
? = 2 and that they have a regular compactification given by an equation of the form

G2
2 + G0G1 + 0G2

1 = 0,

where 0 is not a square.
It follows from the genus formula that the weighted homogeneous compactifica-

tion fromabove is a quasi-elliptic groupwith (?; =, <) ∈ {(2; 1, 2), (2; 2, 1), (3; 1, 1)},
which is in agreement with Proposition 4.8.4. In the case (?; =, <) = (2; 2, 2) and the
equation D4+{+0{2+22{4 = 0, the genus formula gives ?0 = 3 and then, theweighted
homogeneous compactification C42 + C

3
0C

2
1 + 0C

2
0C

2
1 + 2

2C41 = 0 is not regular. The affine
part H4+G3+0G2+12 = 0 is not normal since C = H2+1

G
satisfies C2 = G+0 and has to be

added to the coordinate ring in order to obtain the normalization, which is then given
by equation H2 + |3 + 0| + 1 = 0, see [445, Example 3.14]. This normalization is a
regular curve of genus one. It follows from [600] that any quasi-elliptic curve is iso-
morphic to one of the four cases (? : <, =) ∈ {(2; 1, 2), (2; 2, 1), (3 : 1, 1), (2; 2, 2)}.

Proposition 4.8.6 Let U be a unipotent group over  of genus 6 > 0. Then

WC(U/ ) �  /Φ( ⊕2),

where Φ :  ⊕2 →  is the homomorphism of additive groups given by

Φ(D, {) = D?
= + { + 01{

? + · · · + 0A {?
A

,

where the 08 are the coefficients of U with respect to Russell’s equation (4.8.7). In
particular,

WC(U/ ) = ? WC(U/ ),

that is, the Weil–Châtelet group of U is a ?-torsion group.

Proof Given an equation (4.8.7) for U and definingΦ as in the proposition, we have
a short exact sequence of group schemes in the flat topology

0 → U → G2
0, 

Φ→ G0, → 0.

Taking cohomology and using (0.1.2), we obtain an isomorphism WC(U/ ) =
�1 ([, �[) �  /Φ( ⊕2). �

Now, we are ready to compute the group WC(�[/[) for a quasi-elliptic fibration
5 : � → � over a strictly local base � with function field  . As a first step, we make
the equations from Proposition 4.8.4 more explicit.
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Proposition 4.8.7 A quasi-elliptic group over  := k((C)) is isomorphic to a sub-
group scheme of G2

0, 
= Spec [D, D−1, {, {−1] given by one of the following equa-

tions:

1. ? = 2

a. D2 + { + C2:+1{4 = 0, : = 0, 1, 2.
b. D2 + { + C2B+1n2{2 + C2:+1{4 = 0, : = 0, 1, 2.
c. D4 + { + C2:+1{2 = 0, : = 0, 1, 2.
d. D4 + { + (n4 + Cn4

2 + C
2n4

3 + C
3n4

3 ){
2 = 0.

e. D4 + { + C2 (n4 + Cn4
2 + C

2n4
3 + C

3n4
3 ){

2 = 0,

where n is a unit and the n8’s are units or zeroes.
2. ? = 3

D3 + { + CB{3 = 0, B = 1, 2, 4, 5.

Proof Let a :  × → Z be the discrete valuation with respect to the uniformizer C.
We use Proposition 4.8.4.

Assume ? = 2. case (1a). We know that the quasi-elliptic group arises from a
quasi-elliptic curve of the form H2+G3+02

2G+06 = 0. Replacing H by H+UG+ V+02U

and G by G + U2 changes (02, 06) to (02 + U2, 06 + V2). We also can change (G, H) to
(23G, 22H) in order to assume that a(06) < 6.

Since 06 ≠ 0 in this case, we may write 06 = C2:+1n2 for some unit n and
: = 0, 1, 2. This gives us an equation

D2 + { + C2B+1n2{2 + C2:+1[{4 = 0, : = 0, 1, 2, (4.8.11)

where n is a unit or zero and [ is a unit. Applying Hensel’s lemma, we may change
the local parameter to C[1/2:+1 in order to assume that [ = 1.

Assume that we are in case 1(b). Then, as already noted earlier, we may assume
that 06 = 0 and thus, deal with an equation

D4 + { + CBn{2 = 0, : = 0, 1, 2, 3, (4.8.12)

where n is a unit. If B is odd, then we may rescale C to assume that n = 1. If B is even,
then we may assume that n is not a square. Since we may also add a fourth power of
an element from  to 06, we may obtain the following equations

D4 + { + n{2 = 0,
D4 + { + C{2 = 0,
D4 + { + C2n = 0,
D4 + { + C3 = 0,

where n = n4 + Cn4
1 + C

2n4
2 + C

3n4
3 for some unit n and some units or zeros n8 .

Assume ? = 3. Then the equation may be chosen to be D3 + {+0C3 = 0. Replacing
D by CBD and { by C3B{ for a suitably large B, we may assume that 0 ∈ '. Replacing D
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by D + C:n{, we may assume that : = 1. Using Hensel’s lemma, we may assume that
n = 1 and obtain an equation

D3 + { + C<{3 = 0, < = 1, 2, 4, 5, (4.8.13)

which ends the proof. �

Using this proposition, we can now give explicit equations for representatives of
theWeil–Châtelet groupWC(U/ ) of a quasi-elliptic groupU over . ByProposition
4.8.6, we have that WC(U/ ) is isomorphic to  /Φ( ⊕2). In characteristic ? = 3,
the following realizations of elements of these groups were given by Lang in [431,
Theorem 2.1].

Proposition 4.8.8 Assume ? = 3. Let - → Spec be a non-trivial torsor under a
quasi-elliptic unipotent group U over  . Then, - is isomorphic to an affine curve
over  given by an equation of the form

D3 + { + C:{3 + C−:@= (C−3) = 0,

where : = 1, 2, 4, 5 and @= is a polynomial of degree =.

Proof The equation of U can be chosen to be Φ := D3 + { + C:{3 = 0. We set
ℎ({) := Φ(0, {) = { + C:{3. Let 5 (C) ∈  be a representative of  /Φ( ⊕2). Using
the fact that Φ(D, 0) = D3, we may assume that 5 (C) does not contain cubes of
monomials. Using ℎ({) = {+ C:{3 and Hensel’s lemma, we can find any given power
series of k[[C]] in the image of Φ. Thus, we may assume that 5 (C) is a Laurent
polynomial in negative powers of C.

We we write 5 ∼ 6 if 5 − 6 ∈ Im(Φ). For any constant 2 ∈ k, we have

ℎ(2C−8) = Φ(0, 2C−8) = 2C−8 + 23C−38+: .

First, assume : = 1. We see that all monomials C−8 , 8 ≡ 1 mod 3 enter only in one of
these equations and that C−2 ∼ C−1, C−5 ∼ C−2 ∼ C−1, and C−8 ∼ C−3 ∼ 0. Continuing in
this way, we see that each monomial whose degree is not divisible by 3 is equivalent
to a monomial of the form C−8 with 8 ≡ 3 mod 3. Thus, we can choose a unique
representative of  /Φ( ⊕2) of the form 5 (C) = C−1@= (C−3) as claimed.

Next, if : = 2, then the same arguments as before show that monomials C−8 , 8 ≡ 2
mod 3 form a basis of the cokernel ofΦ. Thus, we can choose a unique representative
of  /Φ( ⊕2) of the form 5 (C) = C−2@= (C−3).

Finally, assume that : = 4 or : = 5. Then we see that C−1 and C−2 both lie in
Im(Φ). We can thus find representatives of the form 5 (C) = C−5@= (C−3), if : = 4 and
of the form 5 (C) = C−4@= (C−3), if : = 5. �

Corollary 4.8.9 Keeping the assumptions of the proposition, a non-trivial U-torsor
admits an integral affine model over ' = k[[C]] given by one of the following
equations:

1. D3 + C2=+2{ + C{3 + C2?= (C3) = 0.
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2. D3 + C2=+2{ + C2{3 + C ?= (C3) = 0.
3. D3 + C2=+3{ + C{3 + C2?= (C3) = 0.
4. D3 + C2=+3{ + C2{3 + C ?= (C3) = 0,

where ?= is a polynomial of degree ≤ = that does not vanish in 0.

Proof Assume : = 1. Multiplying the equation by C3=+3 and replacing D by C=+1D,
as well as { by C=+1{, we obtain the equation D3 + C2=+2{ + C{3 + C2C3:@= (C−3) = 0. It
remains to write C3=@= (C−3) = ?= (C3). If : = 3, we multiply both sides by C3=+6 and
replace (D, {) by (C=+2D, C=+1{). The other two cases are treated similarly. �

The case ? = 2 is more complicated.

Proposition 4.8.10 Assume ? = 2. Let - → Spec be a non-trivial torsor under
a quasi-elliptic unipotent group U over  . Then, - is isomorphic to an affine curve
over  given by one of the following equations:

1. D2 + { + C{4 + C−1@= (C−4) = 0,
2. D2 + { + C3{4 + C−3@= (C−4) = 0,
3. D2 + { + C5{4 + C−5@= (C−4) = 0,
4. D2 + { + C2B+1n2{2 + C{4 + C−1@= (C−4) = 0,
5. D2 + { + C2B+1n2{2 + C2:+1{4 + C−5@= (C−4) = 0, : = 1, 2,
6. D4 + { + (n4 + Cn4

2 + C
2n4

3 + C
3n4

3 ){
2 + C−1@= (C−4) = 0,

7. D4 + { + C{2 + C−2@= (C−4) = 0,
8. D4 + { + C2 (n4 + Cn4

2 + C
2n4

3 + C
3n4

3 ){
2 + C−3@= (C−2),

9. D4 + { + C3{2 + C−6@= (C−4) = 0,

where @= is a polynomial of degree =.

Proof As in the characteristic 3 case before, we define 5 ∼ 6 if 5 (C) −6(C) ∈ Im(Φ).
We start with equation (4.8.11). Assume first that n = 0. Replacing C with C[ 1

2:+1 ,
we may assume that [ = 1, so that ℎ({) = Φ(0, {) = { + C2:+1{4. As in the proof
of Proposition 4.8.8, we may represent 5 (C) ∈  /Φ( ⊕2) by a negative Laurent
polynomial that is not a square. We have

ℎ(2C−8) = 2C−8 + 24C2:+1−48 .

If : = 0, then all monomials C3−48 enter only in one of the relations from above. All
monomials of the form C1−48 are equivalent to one such monomials. Thus, we can
choose a unique representative of the form 5 (C) = C−1@= (C−4).

If : = 1, then we have

ℎ(2C−8) = 2C−8 + 24C3−48 .

Arguing as in the previous case, we find a representative of the form C−3@= (C−4).
If : = 2, everything works as in the case : = 0, except that we can eliminate

C−1 ∼ 0 and C−3 ∼ C−2. Thus, we find representatives of the form 5 (C) = C−5@= (C−4).
Assume n ≠ 0. If : = 0, then 24C−3 ∼ 2C−1 + 22C2B−1 and hence, C−3 ∼ C−1. By

induction, we see that any monomial C1−48 is congruent to a monomial of the form
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C3−48 . Thus, we can find representatives of the form C−1@= (C−4). Unfortunately, these
representatives may be not unique.

If : = 1, 2, then we find 2C−1 ∼ 0 and thus, we find representatives of the form
C−5@= (C−4).

Next, let us consider equation (4.8.12).Wewrite n in the form n4+Cn1+C2n4
2 +C

3n4
3 .

First, we eliminate all fourth powers.
Assume : = 0. Then, we have

ℎ(2C−28−1) = 2C−28−1 + 22C−48−2 (n4 + Cn1 + C2n4
2 + C

3n4
3 )

and we obtain that C−48−2 is equivalent to a linear combination of monomials of odd
degree and monomials of even degree larger than −48 − 2. By induction, we see that
all monomials of even degree can be expressed in terms of monomials of odd degree.
Thus, we find representatives of the form C−1@= (C−2). Note however, that we do not
claim that they are linearly independent modulo the image of ℎ.

If : = 1, then we have 2C−8 ∼ −22C−28+1. We see that (2 + 22)C−1 ∼ 0 and hence,
C−1 ∼ 0. Also C−3 ∼ C−2 ∼ 0. By induction, we see that all odd degree monomials are
equivalent to monomials of even degree. Thus, we find representatives of the form
C−2@(C−4).

If : = 2, then we get

C−28−1 ∼ C−48 (n4 + Cn4
1 + C

2n4
2 + C

3n34).

By induction, we see that any monomial of the form C−48+2 can be expressed in terms
of monomials of odd degree. This is similar to the case : = 0, but in this case we
have C−1 ∼ 0. Thus, we can find representatives of the form C−3@(C−2).

The case : = 3 can be treated in the same way as the case : = 1, except that we
get C−2 ∼ 0. Here, we can find representatives of the form C−6@(C−4). �

Multiplying the equations by a suitable power of the form C4<, we obtain the
following.

Corollary 4.8.11 Keeping the assumptions of the proposition, a non-trivial U-torsor
admits an integral affine model over ' = k[[C]] given by one of the following
equations:

1. D2 + C3=+3{ + C{4 + C3?= (C4) = 0.
2. D2 + C3=+3{ + C3{4 + C ?= (C4) = 0.
3. D2 + C3=+5{ + C{4 + C3?= (C4) = 0.
4. D2 + C3=+3{ + C2B+2=+3n2{2 + C{4 + C3?= (C4) = 0.
5. D2 + C3=+6{ + C2B+2=+5n2{2 + C3{4 + C3?= (C2) = 0, : = 0, 1, 2.
6. D2 + C3=+5{ + C2B+2=+7n2{2 + C{4 + C3?= (C2) = 0, : = 0, 1, 2.
7. D4 + C2=+2{ + (n4 + Cn4

1 + C
2n4

1 + C
3n4

3 ){
2 + C3?= (C4) = 0.

8. D4 + C2=+2{ + C{2 + C2?= (C4) = 0.
9. D4 + C2=+3{ + (n4 + Cn4

1 + C
2n4

2 + C
3n4

3 ){
2 + C ?= (C4) = 0.

10. D4 + C2=+5{ + C{2 + C2?= (C4) = 0,
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where ?= is a polynomial of degree ≤ = that does not vanish at 0. In cases (1),(2),(3),
(8), and (10), the polynomial ?= is uniquely determined by the equation of U.

Remark 4.8.12 The degree = of polynomials ?= must have something to do with the
length ; (T ) of the torsion sheaf Tors(T ) from the canonical class formula Theorem
4.1.6.

In our case, the multiplicity of the closed fiber is equal to ?. If -C is wild, then
30 = 1 and we have only <0 = 1 and <1 = 1 + :0 in the formula for ; (T ) from
Section 4.2. It follows from this formula that

; (T ) =
{[

<1
2

]
if ? = 2,[ 2<1

3
]

if ? = 3.

Lang conjectures in [433] that ; (T ) =
[ 2=

3
]
if ? = 3, or, in other words, that <1 = =.

We conjecture that <1 = = if ? = 2 and that ?= is uniquely determined.
Let - = <� be the multiple fiber. The restriction homomorphisms Pic(=�) →

Pic((= − 1)�) have kernels isomorphic to k, so O<� (�) depends on < parameters.
Let : be as in Corollary 4.8.9 and Corollary 4.8.11. The number of parameters for
multiple fibers with fixed = is equal to the number of possible non-zero coefficients
in the polynomial ?=, that is, equal to = + 1. Then Lang conjectured in [431] that
< = = + 1 if ? = 3 and we conjecture that < = = + 1 if ? = 2. In particular, the torsor
is tame only if = = 0 in cases (1)–(6) if ? = 2, and = = 0 in all cases if ? = 3. In
this case, the polynomial ?= is a non-zero constant from k that defines a ?-torsion
divisor class of the normal bundle of �.

Example 4.8.13 Assume that ? = 3.
Consider Case (1) with = = 0. After scaling C, we obtain an equation

D3 + C2{ + C{3 + 0C2 = 0

with 0 ≠ 0. By homogenizing C, D, and {, we get an equation

C20G
3 + C21HI

2 + C0C1H3 + 0C21I
3 = 0.

This is a hypersurface in P1 × P2 of bidegree (2, 3) with trivial canonical sheaf.
One checks that the surface is singular along the curve C0G3 + H3 = I = 0. Taking a
minimal resolution of singularities of its normalization, we obtain a rational quasi-
elliptic surface 5 : + → P1. It follows fromRemark 4.1.10 that this non-trivial torsor
has only one multiple fiber and that it is tame. This verifies Lang’s conjecture in this
case.

In Case (2) and = = 0, we obtain a surface in P1×P2 of bidegree (2, 3) with trivial
canonical sheaf given by an equation

C20G
3 + C21HI

2 + C21H
3 + 0C1C0I3 = 0.

We find that this surface has two isolated singular points ( [1, 0], [0, 1, 0]) and
( [0, 1], [1, 0, 0]). The first one is a simple elliptic singularity and the second one is
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a rational double point. The minimal resolution of the surface is a rational surface.
This verifies Lang’s conjecture in this case.

In Case (3) and = = 0, we obtain a surface of bidegree (3, 3) with canonical
divisor of bidegree (1, 0). The equation of the surface is

C30G
3 + C31HI

2 + C1C20H
3 + 0C0C21I

3 = 0.

It has a double curve I = C0 = 0 and an isolated elliptic singularity ( [1, 0], [0, 0, 1]).
A resolution of singularities of its normalization is a rational surface.

Finally, in Case (4) and = = 0, we obtain a surface of bidegree (3, 3) with equation

C30G
3 + C31HI

2 + C0C21H
3 + 0C20C1I

3 = 0.

It has two elliptic singularities ( [1, 0], [0, 1, 0]) and ( [0, 1], [1, 0, 0]). A resolution
of singularities of its normalization is a rational surface.

Let 5 : � → � be a non-trivial jacobian quasi-elliptic fibration over a global base
�. Theorem 4.7.2 applies to this case too. We conclude thatШ(U/ ) = �1

ét (�,U) is
a ?-group and that Tors(�2

ét (�,U)) = 0. However, a more precise knowledge of the
structure of the Néron model U allows us to give an independent proof and makes
this assertion more explicit.

The following is an explicit equation of the identity component U◦, see [734,
Theorem 2.8].

Theorem 4.8.14 Any smooth affine scheme over a discrete valuation ring ' of char-
acteristic ? > 0 with connected closed fiber and wound unipotent generic fiber is
isomorphic to a subgroup scheme of G2

0,'
defined by an equation of the form

D?
= + { + 01{

? + · · · + 0A {?
A

= 0,

where 08 ∈ '.

In Proposition 4.8.4, we gave three explicit models for quasi-elliptic unipotent
algebraic groups over  – a Russell equation Φ = Φ(D, {). From there, we can
find such an equation as in the previous theorem by using a Russell equation of the
generic fiber over  . Let C be a local parameter. We replace D by C−BD and { by C−B?={
for a suitably large B in order to assume that 08 ∈ '. The point of the proposition
is that any smooth connect group model of the generic fiber can be written in this
way. In particular, we may assume that the identity component of the Néron model
is given by such an equation.

Before proceeding, we recall that the Lie algebra of a relative group scheme
� → ( is the vector group scheme Lie(�), whose values on any affine scheme
5 : Spec � → ( is equal to the kernel of � (�[n]) → � (�), where n2 = 0 and
�[n] → �, 0 + 1n → 0. We know that the Lie algebra of the relative Picard functor
P�/( is given by V(L⊕−1) → (.

We will now consider a general Russell equation over the function field  of a
global base �
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D?
= + { + 01{

? + · · · + 0<{?
<

= 0.

Of course, for our applications to quasi-elliptic fibrations, we will only need the cases
(=, <) = (1, 2), (2, 1), (2, 2) if ? = 2 or (=, <) = (1, 1) if ? = 3. We will assume
that the genus of the unipotent group U is not zero. In this case, U admits a Néron
model U over �.

Applying Theorem 4.8.14, we find an open affine cover (+8)8∈� of � such that the
restriction U◦

8
of U◦ to each +8 is given by a Russell equation with coefficients in

O� (+8)
Φ8 (D8 , {8) = D

?=

8
+ {8 + 0 (8)1 {

?

8
+ · · · + 0 (8)< {?

<

8
= 0.

Since any derivation of O(+8) [D, {]/(Φ8) is a derivation of O(+8) [D, {] that vanishes
on {8 , the O(+8)-module Lie(U8) = Lie(U◦

8
) is generated by m

mD8
.

For brevity of notation, we let L be the invertible sheaf on � equal to Lie(U� ).
Let (28 9 ) be the transition functions of L, so that D8 = 2−1

8 9
D 9 .

The transition functions for U from ({8 , D8) to ({ 9 , D 9 ) must be ?-polynomials in
O� (+8 ∩+ 9 ). Suppose = ≤ <. Then

{8 = 2
−?=
8 9

{ 9 ,

D8 = 2
−1
8 9 D 9 + 2

−?=
8 9

U
(1)
8 9
{ 9 + · · · + 2−?

<

8 9
U
(<)
8 9

{
?<−=

9
,

and
0
(8)
:
= 2

?=+:−?=
8 9

0
( 9)
:
− (U (:)

8 9
)−?= , (4.8.14)

where U (:)
8 9

= 0 for : < =. If = > <, then the U (:)
8 9

are all zero.
We can view (1, 0 (8)1 , . . . , 0

(8)
< ) as a section of a vector bundle A of rank < + 1

that sits in an extension

0 → O� → A → L⊗?
=−?=+1 ⊕ · · · ⊕ L⊗?=−?<+= → 0 (4.8.15)

with transition functions inverse to the transition functions (4.8.14).
Next, let V be the group scheme over � that is locally isomorphic to G2

0 and
whose transition functions are defined as above. The group scheme V fits into an
extension of commutative group schemes over �

0 → V(L⊗−?= ) → V → V(L⊗−1) → 0 (4.8.16)

given by the projection (D, {) → D. Taking cohomology, we obtain a long exact
sequence

0 → �0 (�,L⊗?= ) → V(�) → �0 (�,L)

→ �1 (�,L⊗?= ) → �1 (�,V) → �1 (�,L) → 0.

If = > <, exact sequence (4.8.16) splits and in this case we get

�8 (�,V) � �8 (�,L) ⊕ �8 (�,L⊗?= ).
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In any case, the local embeddings of the U◦
8
’s into the G2

0,+8
’s glue together, from

which we obtain a short exact sequence

0→ U◦ → V
`
→ V(L⊗−?= ) → 0. (4.8.17)

of group schemes over �.

Remark 4.8.15 Note that V is a vector group if and only if < = =. In this case, the
transition matrices are given by (

2
?=

8 9
−U8 92?8 9

0 28 9

)
.

The vector group scheme V is equal to V(E∨), where E sits in an extension

0 → L⊗?= → E → L → 0.

If Ext1 (L,L⊗?= ) � �1 (�,L⊗1−?= ) is zero, then this extension splits, that is, we
may assume that U8 9 = 0, if �1 (�,L⊗1−?= ) = 0 For example, this happens if
(1 − ?=) deg(L) > 26(�) − 2. If E splits, then we may assume U (:)

8 9
= 0 and hence,

A also splits.

We recall that quasi-elliptic surfaces is uniruled and supersingular in the sense of
Shioda, see Corollary 4.1.16. Thus, the computation for the Brauer group gives

Ш(U/ ) = �1
ét (�,U) � k?6 (� ) ⊕ ? NS(�), (4.8.18)

where ? NS(�) can be non-zero only if 6(�) = 1 and if all fibers are irreducible. We
briefly discussed such surfaces in the previous sections.

Since there are no trivial quasi-elliptic fibrations (the total space of a trivial
quasi-elliptic fibration would be non-normal), we get

�2
ét (�,U) = 0. (4.8.19)

Thus, there are no obstructions for constructing a non-jacobian quasi-elliptic surface
from a collection of local torsors.

Let us confirm (4.8.18) and (4.8.19) using a global equation of U◦. For simplicity,
let us assume that the Picard scheme of � is reduced. The Grothendieck–Leray
spectral sequence for 5 : � → � gives a short exact sequence

0 → �1 (�,O� ) → �1 (�,O� ) → �0 (�, '1 5∗O- ) → 0.

The map �1 (�,O� ) → �1 (�,O� ) is the map Lie( 5 ∗) of Lie algebras. We define
L = '1 5∗O� = Lie(U), which is an invertible sheaf on � and thus, our assumption
is equivalent to

�0 (�,L) = 0.
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Let us even assume the stronger condition that degL < 0. Then, �0 (�,L) =
�0 (�,L⊗?= ) = {0} and hence, �0 (�,V) = {0}. It follows that

�0 (�,U◦) = {0}.

Taking cohomology in (4.8.17), we obtain an exact sequence

0 → �1
ét (�,U

◦) → �1
ét (�,V) → �1

ét (�,L
⊗?= ) → �2

ét (�,U
◦) → 0.

(4.8.20)
Here, we use that the étale cohomology of a vector group schemeV(E) is isomorphic
to the Zariski cohomology of E∨, see, for example, [508, Chapter III, Proposition
3.7].

Let ` : V → V(L⊗−?= ) be the map from exact sequence (4.8.17) and let U be
the restriction of ` to the subgroup V(L⊗−?= ). This is a surjective homomorphism
in the étale topology and we denote its kernel by �. This is a finite group scheme
over �, but not necessary flat over �. We have

�1
ét (�,�) = Ker

(
�1 (U) : �1 (�,L⊗−?= ) → �1 (�,L⊗−?= )

)
,

and

�2
ét (�,�) = Coker

(
�1 (U) : �1 (�,L⊗−?= ) → �1 (�,L⊗−?= )

)
.

It follows that �1
ét (�,U

◦) fits in an extension

0 → �1
ét (�,�) → �1

ét (�,U
◦) → �1 (�,L) → 0. (4.8.21)

We also have an isomorphism

�2
ét (�,U

◦) � �2
ét (�,�).

Unfortunately, we do not know how to compute the cohomology groups�8ét (�,�)
for a general unipotent group U of genus 6 > 0. In the particular case of quasi-elliptic
groups in the cases (1b) or 2 of Proposition 4.8.4, we can apply the next proposition,
which immediately follows from Lemma 0.10.23.

Proposition 4.8.16 Let D?= + { + 01{
? + · · · + 0<{?

<

= 0 be the equation of the
Néron model U of a unipotent group U of genus 6 > 0 over  . Suppose that
01 = · · · = 0<−1 = 0 and let

U : L⊗?= → L⊗?=

be the map given by { ↦→ { + 0{?< and consider

�1 (U) : �1 (�,L⊗?= ) → �1 (�,L⊗?= )
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be the induced map on cohomology. Then, �1 (U) is surjective and its kernel is a
vector space over F?< of dimension equal to the stable rank A of the ?<-linear map
�1 (U) − id. In particular, we have

�1
ét (�,�) � (Z/?

<Z)A , �2
ét (�,U) = �2

ét (�,�) = 0.

Let
c0 (U) := U/U◦,

which is a sky-scraper group scheme over�. It follows from the short exact sequence

0 → U◦ → U → c0 (U) → 0

that
�2

ét (�,U) � �2
ét (�,U

◦) = �2
ét (�,�) = 0.

We also have a short exact sequence

0 → c0 (U)/U(�) → �1
ét (�,U

◦) → �1
ét (�,U) → 0. (4.8.22)

Assume Tors(NS(-)) = {0}. The images of the divisor classes of a fiber of
5 : - → � and of a section O generate a sublattice of NS(-) isomorphic to the
integral hyperbolic plane U. It splits off as an orthogonal summand of NS(-). Let
NS0 (-) be the orthogonal complement. The image of the restriction homomorphism
NS0 (-) → Pic(-) is isomorphic to the group of sections U(�) and its kernel is the
sublattice NS0

fib (-) that is generated by components of fibers not intersection O. Let
us consider the chain of lattices and the corresponding dual lattices

NS0
fib (-) ⊂ NS(-)0 ⊂ NS0 (-)∨ ⊂ NS0

fib (-)
∨.

The discriminant group NS0
fib (-)∨/NS0

fib (-) of the lattice NS0
fib (-) is isomorphic

to the group c0 (U) (see [606, 8.1.2]) and the discriminant group NS0 (-)∨/NS0 (-)
of the lattice NS0 (-) is isomorphic to the discriminant group � (NS(-)) of NS(-).
This gives a chain of finite abelian groups

U(�) ⊂ U(�) ′ ⊂ c0 (U)

with quotients U(�) ′/U � � (NS(-)) and c0 (U)/U(�) ′ � U(�). Comparing it
with exact sequences (4.8.21) and (4.8.22), we make the following:

Conjecture 4.1 The intersection�1
ét (�,�)0 of the subgroups�

1
ét (�,�) and c0 (U)/U(�)

inside �1
ét (�,U

◦) splits the exact sequence

0 → � (NS(-)) → c0 (U)/U(�) → U(�) → 0.

The group �1
ét (�,U) is isomorphic to �1 (�,L) and fits in an extension

0 → �1
ét (�,�)/�

1
ét (�,�)0 → �1

ét (�,U) → �1 (�,L) → 0.
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We end this section with some explicit computations of a global quasi-elliptic
fibrations 5 : � → �.

Example 4.8.17 Assume that 6 = 1, � = P1, and that L � OP1 (−:) for some : > 0.
Then we have �0 (�,L⊗=) = 0 for all = ≥ 0 and hence,

�0
ét (�,U

◦) = �2
ét (�,U) = 0, �1 (�,U) � �1 (�,L).

The k-vector space �1 (�,L⊗?) � �1 (�,OP1 (−?:)) has a basis given by the
negative Laurent monomials 48 = C−80 C

?:−8
1 for 8 = 1, . . . , ?: − 1, see also [294,

III,§5].
Now, assume ? = 3 and let D3 + { + 06:{

3 = 0 be the equation of U, where
06: ∈ �0 (�,L⊗6) = �0 (�,OP1 (6:)) is a binary form of degree 6: . Write 06: =∑6:
8=0 28C

8
0C

6:−8
1 and let � = (28 9 ) be a matrix with entries defined by(

06: (C0, C1)
C380 C

9:−38
1

) ′
=

3:−1∑
9=1

28 94 9 , 8 = 1, . . . , 3: − 1.

Here, (−) ′ means that we eliminate all monomials C80C
9

1 with non-negative 8, or 9
from the Laurent polynomial. We compute the entries 28 9 of � and obtain that

� =

©«
23−1 26−1 · · · 233−1
23−2 26−2 · · · 233−2
...

...
...

...

23−3 26−3 · · · 233−3

ª®®®®¬
,

where 2 9 = 0 if 9 < 0 and 3 = 3: − 1. The group �1 (�,�) is isomorphic to
(Z/3Z)⊕A , where A is the stable rank of �, see (0.10.50).

The matrix � coincides with the Hasse–Witt matrix that computes the ?-rank of
the hyperelliptic curve � of genus 3 that is given by equation C22 + 06: (C0, C1) = 0,
that is, the maximal A such that (Z/?Z)A embeds in its Jacobian. In our case it may
of course happen that the polynomial 06: (C0, C1) may degenerate and then, it does
not define an hyperelliptic curve. Note that the projection c : � → P1 is a double
cover that is ramified over + (06) that gives and exact sequence

0 → OP1 → c∗O� → OP1 (−3:) → 0

and an isomorphism�1 (�,O� ) = �1 (P1, c∗O� ) � �1 (P1,OP1 (−3:)). Thematrix
� describes the action of the Frobenius on the basis (41, . . . , 43:−1) of �1 (�,O� ).

Let us now discuss the cases : = 1 and : = 2 in detail.

1. Assume : = 1. The surface - is a rational quasi-elliptic surface with a section.
The classification of such surfaces is known. In particular, the group U(�) is
known in each case, see Section 4.9. The conjecture is checked in characteristic
? = 2, 3 by explicit computations of the groups �1 (�,�). Note that in this
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case � (NS(-)) = {0} and �1 (�,L) = 0, so that the Tate–Shafarevich group
Ш(U/ ) = �1

ét (�,U) is trivial, which is in agreement with (4.7.2).
2. Assume : = 2. Thus, L = OP1 (−2) and we obtain a quasi-elliptic K3 surface
5 : - → P1. In this case, we get

�1
ét (�,U) � �1 (�,L) � G0 (k).

Example 4.8.18 The following two exampleswere communicated to us byT.Katsura.
1. It is known that the Fermat quartic surface G4 + H4 + I4 +|4 = 0 in characteristic 3

is a supersingular K3 surface with Artin invariant f = 1. It admits a quasi-elliptic
fibration withWeierstrass equation H2 +G3 + C20C

2
1 (C

8
0 + C

8
1) = 0, see [366]. A Russell

equation of U◦ is given by

D3 + { + C20C
2
1 (C

8
0 + C

8
1){

3 = 0.

The quasi-elliptic fibration has 10 reducible fibers of Kodaira type IV with
c0 (U) � (Z/3Z)⊕10 and the Mordell–Weil group U(�) is isomorphic to
(Z/3Z)⊕4. The discriminant group � (NS(�)) is isomorphic to (Z/3Z)⊕2. We
compute the Hasse–Witt matrix � and find that �1 (�,�) � (Z/3Z)⊕4 � U(�).

2. If we take the K3 surface in characteristic 3 given by the Weierstrass equation

H2 + G3 + C20C
10
1 + C

5
0C

7
1 + C

8
0C

4
1 + C

10
0 C

2
1 = 0,

then we obtain that its Mordell–Weil group U(�) is an elementary 3-group of
rank 2. The quasi-elliptic fibration contains 10 reducible fibers of type �+ . Thus,
its Artin invariant is equal to f = 3, so that � (NS(�)) is an elementary 3-group
of rank 6 and c0 (U) is an elementary 3-group of rank 10. Computing the Hasse–
Witt matrix � we find that its stable rank is equal to 4. Thus, U(�) � (Z/3Z)⊕2

is isomorphic to a proper subgroup of �1
ét (�,�) � (Z/3Z)

⊕4. Katsura found an
explicit isomorphism from a certain subgroup �1

ét (�,�)
′ of �1

ét (�,�) to U(�).

4.9 Genus One Fibrations on Rational Surfaces

In the remaining two sections of this chapter we apply the results from the previous
sections to rational surfaces and Enriques surfaces. We will start with genus one
fibrations on rational surfaces. In the next section, we will study genus one fibrations
on Enriques surfaces. We will see in the next section that the jacobian fibration of
a genus one fibration on an Enriques surface is a genus one fibration on a rational
surface. A large part of this section will be concerned with the explicit classification
of jacobian and minimal genus one fibrations on rational surfaces that are extremal,
that is, where the classes of components of reducible fibers span a sublattice in the
Picard lattice of rank 9, which is the maximum possible.

Let 5 : � → � = P1 be a jacobian genus one fibration on a rational surface �.
Since � is a rational surface, 5 is non-trivial and Br(�) = 0. Using Theorem 4.7.2,
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Theorem 4.7.9, and applying it to the exact sequence (4.7.1), we obtain the following
result concerning Weil–Châtelet groups of genus one fibrations on rational surfaces.

Theorem 4.9.1 Let 5 : � → P1 be a genus one fibration on a rational surface �. Let
�[ be the generic fiber over the function field  of � and let �♯[ be the smooth locus.
Then,

loc : WC(�♯[/ ) →
⊕
C ∈�

WC(�♯[ ×  ℎC / ℎC ) (4.9.1)

is an isomorphism.

Corollary 4.9.2 Let 5 : - → P1 be a genus one fibration, whose jacobian fibration
� → P1 is a rational surface. Let (<1, . . . , <A ) be the multiplicities of the multiple
fibers of 5 . Then, the order of [ 5 ] in WC(�/P1) is equal to the least common multiple
of <1, . . . , <A .

Proposition 4.9.3 Let 5 : - → � be a relatively minimal genus one fibration on a
rational surface and let 9 : � → � be the associated jacobian fibration. Then:

1. � is a rational surface, � � P1, and  � = − 9∗�, where � is a fiber of 9 .
2. If 5 has multiple fibers, then there exists precisely one multiple fiber <0-0.

Moreover, this unique multiple fiber is tame and we have  - = −-0.
3. Any (−1)-curve � on - is an<-section of 5 for some< ≥ 1, that is, 5 |� : � → P1

is a finite morphism of degree equal to <.
4. - is a basic rational surface, that is, it admits a birational morphism c : - → P2.

Proof (1) Applying Proposition 4.3.14 and Corollary 4.3.18 we obtain that 11 (-) =
11 (�) = 0 and ?6 (-) = ?6 (�) = 0. In particular, we find � � P1. By Corollary
4.3.8, we have S2 = −1 for any section S on � and hence,  � ·S = −1. By Proposition
4.3.7, we have l� � 9∗ (OP1 (−1)). This implies that � is a rational surface.

(2) By Theorem 4.1.6, we have Tors('1 5∗O- ) = 0 and degL = −1. Thus, 5
cannot have wild fibers and we have 0C = <C − 1 for all multiple fibers. By Theorem
4.1.6, we have  - = −� +

∑
C ∈P1 (<C − 1) -̄C , where � is some fiber. Since  - is not

nef, there exists some irreducible curve � with  - · � < 0. This curve � cannot
be contained in a fiber and thus, we find � · � = � (<C-C ) = 0 for some 0 > 0 and
every C ∈ �. From this, we find −1 + ∑

C ((<C − 1)/<C ) < 0. This is only possible
if we have at most one multiple fiber and if we have a multiple fiber, then we find
� ∼ <C0-C0 and  - = −-C0 .

(3) By the adjunction formula, we have −1 = � ·  - = − 1
<
� · -C and thus,

� · -C = <.
(4) Since - is a relatively minimal rational genus one surface, it does not contain

smooth rational curves with self-intersection < −2. The assertion now follows from
Lemma 9.1.3 from Section 9.1 in Volume II. �

Let - be a smooth projective rational surface and let

- = -#
c9 // -#−1

c8 // · · · c2 // -1
c1 // -0 = P2 (4.9.2)
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be the factorization of a birational morphism of c : - → P2 into a composition
of blow-ups c8 : -8 → -8−1 in closed points G8 ∈ -8−1. Let E1, . . . , E# be the
exceptional configurations and let |3ℎ − <1G1 − · · · − <# G# | be the linear system
of plane curves of degree 3 with points G8 of multiplicity ≥ <8 , see [177, 7.3.1].
The rational map 5 : - d P= defined by the linear system |c∗ (3ℎ) − <1E1 − · · · −
<#E# | is obtained from the rational map 6 : P2 d P= defined by the linear system
|3ℎ−<1G1−· · ·−<# G# | by (minimally) resolving its base points.We have 5 = 6◦c
as composition of rational maps.

We now apply this to the situation where - is a rational surface that admits a
relatively minimal genus one fibration 5 : - → P1. We have

 - = c∗ P2 + E1 + · · · + E# .

Since  2
-
= 0, we have # = 9. Thus,

| − < - | = |-C | = | − c∗ ( P2 ) − <E1 − · · · − <E9 | = |3<ℎ − <(G1 + · · · + G9) |.

Thus, the linear system |3<ℎ−<(G1+· · ·+G9) | is a pencil and the genus one fibration
5 : - → P1 is obtained from the rational map P2 d P1 defined by resolving the
base points of this pencil.

The pencil |3<ℎ − <(G1 + · · · + G9) | is called a Halphen pencil of index <. Its
general member is a curve of degree 3< and geometric genus 1 if the fibration is
elliptic and geometric 0 if the fibration is quasi-elliptic. We have multiple points of
multiplicity < at G1, . . . , G9. Among the members of the pencil is the curve <c( -̄C0 ),
where <-̄C0 is a multiple fiber of 5 of multiplicity <. The curve c( -̄C0 ) is a plane
cubic (unique if < ≥ 2), which passes through the points G1, . . . , G9. A rational
surface obtained by minimally resolving the base points of a Halphen pencil of index
< is called a Halphen surface of index <.

Remark 4.9.4 A set of points G1, . . . , G9 ∈ P2, possibly including infinitely near
points, is called a Halphen set if the linear system |3<ℎ − <(G1 + · · · + G9) | is a
pencil. Its mobile part of its full pre-image on the surface - obtained as a sequence
of blow-ups (4.9.2) of G1, . . . , G9 and defines a relatively minimal genus one fibration
on - . Thus, we have bĳections between:

1. The set of Halphen pencils in P2 (up to Cremona equivalence).
2. Halphen sets of points (up to Cremona equivalence).
3. Rational surfaces with genus one fibrations.

We refer for more details about the geometry of surfaces obtained by blowing up
Halphen sets of points to [104].

Remark 4.9.5 Let _� + `� = 0 be a pencil of plane curves, whose general member
is birationally equivalent to a regular irreducible curve of arithmetic genus one.
Let c′ : - ′ → P2 be a resolution of the base points of this pencil. It comes with
a genus one fibration 5 ′ : - ′ → P1, which is not necessary relatively minimal.
Let q : - ′ → - be a birational morphism to a relatively minimal model. Then,
5 ′ factors through a relatively minimal genus one fibration 5 : - → P1. The
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formula for the canonical class gives that  - = −�, where <� is a fiber of 5 . Let
c : - → -# → · · · → -1 → . be a birational morphism onto a minimal rational
surface. We can write it as a composition c : - → -# → · · · → -1 → . of
blow-ups in points. Suppose that . is not isomorphic to P2. If . � F0, then we find a
birational morphism -1 → P2 that blows down proper transforms of two intersecting
lines on F0. Thus, we get a birational morphism c′ : - → P2. Next, assume that
. = F= for some = ≥ 2 and let �0 be the exceptional section on . → P1. If -1 → .

is the blow-up of a point G ∉ �0, then we obtain a birational morphism -1 → F=−1
that blows down the proper transform of the fiber of F= → P1 passing through G. By
induction, we may assume that G ∈ �0. Then, the proper inverse transform c−1 (�0)
is a curve on - with self-intersection ≤ −3. The formula for  - shows that there are
no such curves on - .

The upshot of this discussion is that we may assume that . = P2. The image of
the genus one fibration in the plane is a Halphen pencil of index <. This proves a
classical theorem of Bertini that states that any pencil of plane curves of geometric
genus one can be reduced by a Cremona transformation ) to a Halphen pencil. The
transformation ) here makes the following diagram of rational maps commutative:

- ′

5 ′

~~

//

c′

��

-

c

��

5

  
P1 P2oo ) // P2 // P1

Let + (�3) be the plane cubic passing through a Halphen set of points G1, . . . , G9
and let + (�3<) be a member of this Halphen pencil different from + (�3). The
Halphen pencil consists of curves + (_�3< + `�<3 ). If the cubic � = + (�3) is a
nonsingular elliptic curve and if there are no infinitely near points among G1, . . . , G9,
then the divisor <(G1 + · · · + G9) on + (�3) is cut out by a curve + (�3<) of degree
3<. This shows that O� (<(G1 + · · · + G9)) � O� (3<). By considering the group law
on � with respect to an inflection point as its origin, this can be interpreted as that
the sum G1 ⊕ · · · ⊕ G9 in the group law is an<-torsion point. In fact, the order = of this
sum must be equal to <, since reversing the argument we find a curve + (�3<) that
intersects � at the points G1, . . . , G< with multiplicities <. One can choose �3= such
that + (�3=) has multiple points of multiplicities = at G1, . . . , G<, see [174, Lemma
4.4]. This shows that + (_�3= + `�=3 ) is a Halphen pencil of index =. If � is any
reduced cubic curve and G1, . . . , G= are nonsingular points, then the same is true if
one uses the group law on the set of nonsingular points on a reduced plane cubic,
see [161, Appendix].

Without any assumption on � or on G1, . . . , G9, let � = E1 + · · · + E9 and L =

O- (�). We have L⊗< � O- (<�) � O- (−< - ) � O- (-C ). Let -C0 = <-̄C0 be a
multiple fiber of multiplicity < of 5 and ] : -̄C0 ↩→ - be the closed embedding. The
invertible sheaf ]∗ (L) � O-̄C0 ( -̄C0 ) satisfies ](L)

⊗< � O-̄0 , hence its isomorphism
class in Pic( -̄C0 ) belongs to < Pic( -̄C0 ). If the order is equal to =, then the exact
sequence

0 → O- → O- (=-̄C0 ) → O- (]∗ (L)⊗=) → 0
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shows that ℎ0 (O- (=-̄C0 ) = 2. Thus, =-̄C0 moves in a pencil. This implies that = = <.
This is the analog of the condition <(G1 ⊕ · · · ⊕ G9) = 0 in the case of infinitely near
points.

Let 5 : � → P1 be a jacobian genus one fibration on a rational surface �. Since
l- � 5 ∗OP1 (−1), we obtain that the sheafl = ('1 5∗O- )∨ is isomorphic to OP1 (1).
Thus, the Weierstrass model , of 9 is a closed subscheme of P(OP1 ⊕ OP1 (−2) ⊕
OP1 (−3)). The projection - → , → P(OP1 ⊕ OP1 (−2)) = F2 is a composition
of a birational morphism that blows down irreducible components of fibers not
intersecting a fixed section E0 and a finite morphism of degree 2 as described in
Section 4.4.

By Theorem 4.3.20, the types of degenerate fibers of 9 are the same as the types
of fibers on any genus one fibration 5 : - → P1, where [ 5 ] ∈ WC(�/P1). Since
dfib ≤ 9, all the reducible fibers can have at most 8 irreducible components.

All possible types of degenerate fibers on rational elliptic surfaces were classified
by Persson [590] in characteristic zero, by Lang [438] in characteristic 2, and by
Jarvis, Lang, et al. in characteristic 3 [350]. All quasi-elliptic rational surfaces were
classified by Ito [336], [335].

In the sequel, we will give our own method for the classification of extremal
genus one fibrations on jacobian rational surfaces. By definition, this means that
dfib takes the maximal possible value, which is equal to 9 on a rational surface. By
formula (4.3.2), this is equivalent to the property that the Mordell–Weil group of the
fibration is finite. All quasi-elliptic surfaces are automatically extremal.Wewill need
the classification later for classifying Enriques surfaces with finite automorphism
groups. The classification was done by Naruki [551] and by Miranda and Persson
[515] in characteristic ? ≠ 2, 3. The classification in characteristic 2 and 3 is due
to Lang [438], [439]. Their classification is based on the analysis of the Weierstrass
equation of a jacobian rational elliptic surface. In the following we will do it in all
characteristics by another, more geometric method.

Let 5 : - → P1 be a relatively minimal genus one fibration on a rational surface.
Then, Pic(-) � NS(-) � Num(-) is isomorphic to the unique odd unimodular lat-
tice I1,9 of signature (1, 9). Its orthonormal basis can be chosen to be (40, 41, . . . , 49),
where c∗ (Pic(P2)) = Z40 and 48 are the classes of the exceptional configurations E8 .
We have

 - = −340 + 41 + · · · + 49.

If - is a Halphen surface of index <, then the class of a fiber of 5 : - → P1 is equal
to −< - . We have isomorphisms of quadratic lattices  ⊥

-
� Ẽ8 and  ⊥-/Z - � E8.

It follows that Picfib (-) is a primitive sublattice of �̃8 and that the quotient by the
class - is isomorphic to a primitive sublattice of E8. This gives a useful information
about possible structure of reducible fibers.

We have the following lemma, which we will use below for a detailed analysis of
extremal and jacobian genus one fibrations on rational surfaces.

Lemma 4.9.6 Let 5 : � → P1 be an extremal jacobian genus one fibration on a
rational surface. Then the types of reducible fibers belong to the following list:
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�̃8, �̃8, �̃8, �̃7 + �̃1, �̃7 + �̃1, �̃6 + �̃2, �̃5 + �̃3, �̃4 + �̃4, �̃4 + �̃4,

�̃6 + �̃1 + �̃1, �̃5 + �̃2 + �̃1, �̃3 + �̃3 + �̃1 + �̃1, �̃2 + �̃2 + �̃2 + �̃2.

Here, type �̃: for : = 1, 2 means type �̃: or �̃∗: .

Proof Let �C be the subgroup of Pic(�)C generated by irreducible components of
a reducible fiber �C and �̄C = �C/Z[�C ] be the quotient by its radical. This is an
irreducible root lattice. The orthogonal sum of lattices �̄C is a root sublattice of
E8. Its reflection group is a subgroup of, (E8). All such subgroups and hence, the
types of root sublattices of E8, can be found using the Borel–de Siebenthal–Dynkin
algorithm, see Section 6.4. In particular, we can find all root sublattices of maximal
possible rank 8. Among them are sublattices whose Dynkin diagram is obtained by
deleting one vertex from the Dynkin diagram of Ẽ8. These are the lattices

�8, �8, �8, �1 + �7, �2 + �6, �1 + �2 + �5, �4 + �4, �3 +�5, �2 +�6, �1 +�7.

Not all root sublattices are realized in extremal fibrations. Indeed, it follows from
the Shioda–Tate formula that the discriminant of the lattice ⊕C �̄C must be a square
of the order of the Mordell–Weil group. For example, the discriminants of the
sublattices of types �2 + �6, �2 +�6, �1 +�7 are not squares and hence, they cannot
be realized. Applying the Borel–de Siebenthal–Dynkin algorithm and checking the
square condition, we arrive at the asserted list. �

Remark 4.9.7 As we will see later, all types can indeed be realized as the types of
reducible fibers on rational surfaces with a genus one fibration. However, some of
them cannot be realized in characteristic zero.

We will need also the following result [645, Corollary 8.6].

Lemma 4.9.8 Let � → P1 be a jacobian elliptic fibration on a rational surface.
Then, any two different torsion sections are disjoint.

Proof In fact, we may assume that one section is the zero section O and that the
other section S is a non-trivial torsion section. We use the theory of Mordell–Weil
lattices from Section 4.5. Since � is a rational surface, we have S2 = −1. Suppose
that S and O are not disjoint, that is, S ·O ≥ 1. Since S is a torsion section, its height
〈S,S〉 is equal to 0. Applying (4.5.9), we obtain that

0 = 〈S,S〉 ≥ 4 −
∑
C ∈�

contrC (S,S).

The sum of the local contributions is less or equal than the sum of local contributions
on an extremal rational surface. Using Lemma 4.9.6 and Table 4.4, we check that it
is always less than 4. This contradiction proves the assertion. �

Remark 4.9.9 Note that this assertion is false in general for quasi-elliptic rational
surfaces. Given such a surface in characteristic ? = 2 with 8 reducible fibers of type
�̃∗1, then its Mordell–Weil group is isomorphic to (Z/2Z)⊕4 and then, some 2-torsion
sections intersect.
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In fact, Table 4.4 gives us useful information on how a torsion section intersects
the irreducible components of a reducible fiber. Note that on an extremal surface
all sections are torsion sections (the Mordell–Weil rank is zero). First, we use the
equality ∑

C ∈�
contrC (S,S) = 2. (4.9.3)

Let
H2I + 01GHI + 03HI

2 + G3 + 02G
2I + 04GI

2 + 06I
3 = 0 (4.9.4)

be the Weierstrass equation of the jacobian genus one fibration 9 : � → P1. Since
the base curve is P1 and since � is a rational surface, the 0: ∈ k[D, {] are binary
forms of degree : . We now analyze the possible types of Lemma 4.9.6 case by case
and deal with small characteristics ? separately. These are the elliptic cases, but we
will treat the quasi-elliptic cases of these types at the same time. We note that there
are a couple of types that can show up on quasi-elliptic surfaces but not on rational
extremal elliptic surfaces and we will deal with them afterwards.

• Type �̃8

It follows from the determinant formula (4.3.4) that

MW( 9) = {1}.

Thus, we have the following diagram:

• • • • • • • •

•

'2 '3 '4 '5 '6 '7 '8 '9

'1

E★

Fig. 4.3 Extremal rational elliptic surface: type �̃8

Starting from E, we blow down the 9 curves '9, . . . , '2. The image of '1 is a line
ℓ taken with multiplicity 3. It is the tangent line of the image of a general fiber at its
inflection point. Let ! = 0 be the equation of this line and let + (�3) be the image
of a nonsingular member if the fibration is elliptic and of an irreducible member
otherwise. Our fibration is obtained from resolving the base points G9 � · · · � G1 of
the pencil of cubic curves _�3 + `!3 = 0.

Choose projective coordinates, such that the equation of the pencil is given as

_�3 + `�3 = _(H2I + 21GHI + 23HI
2 + G3 + 22G

2I + 24GI
2) + `I3 = 0. (4.9.5)

Multiplying the equation by _5, replacing G by _2G, and H by _3H, we obtain an
equation

H2 + _21GHI + _323HI
2 + G3 + _222G

2I + _424GI
2 + _5`I3 = 0.
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3ℓ G1•

This equation is the global Weierstrass equation over P1 with coefficients

(01, 02, 03, 04, 06) = (_21, _
222, _

323, _
424, _

5`).

In characteristic ? ≠ 2, 3, we may assume that 21 = 22 = 23 = 0. If 24 ≠ 0,
then after scaling _, we may assume that 24 = 1. The coefficients in the Weierstrass
equation become

(01, 02, 03, 04, 06) = (0, 0, 0, 4_4, _5`). (4.9.6)

where 4 = 0, 1. The formula (4.4.14) and (4.4.24) gives

Δ = −16_10 (44_2 + 27`2), 9 = 1728
44_2

44_2 + 27`2 .

This shows that fibration has two irreducible singular fibers of type �̃∗0 if 4 = 1 and
one irreducible fiber of type �̃∗∗0 if 4 = 0. In the latter case, we have 9 = 0.

Assume ? = 2. If 21 ≠ 0, then replacing 21G + 23_
2I2 by G, we may assume that

21 = 1 and 23 = 0. Replacing H by H + U_G + V_2I, we may assume that 22 = 24 = 0.
The coefficients in the Weierstrass equation then become

(01, 02, 03, 04, 06) = (_, 0, 0, 0, _5`). (4.9.7)

Computing the discriminants and the 9-invariant, we find

Δ = _11`, 9 =
_

`
.

Thus, we have two singular fibers, one of type �̃8 andwith wild ramification invariant
X = 1 and the other of type �̃∗0.

If 21 = 0 and 23 ≠ 0, then we can arrange 23 = 1 and 22 = 24 = 26 = 0 and obtain
that

(01, 02, 03, 04, 06) = (0, 0, _3, 0, 0, _5`), (4.9.8)

Thus, we have only one singular fibers of type �̃8 with wild ramification invariant
X = 2. The discriminant now is equal to _12 and 9 = 0.

If 21 = 23 = 0, then the pencil is quasi-elliptic with Weierstrass equation

H2 + G3 + _4G + _5` = 0.



4.9 Genus One Fibrations on Rational Surfaces 473

We have one reducible fiber of type �̃8.
If ? = 3, then we may assume that 21 = 23 = 0. If 22 ≠ 0 then after a linear

transformation G ↦→ G + U_2, we may assume that 24 = 0. Thus,

(01, 02, 03, 04, 06) = (0, _, 0, 0, _5`).

Computing the discriminant Δ and the 9-invariant, we find that

Δ = −_11`, 9 = −_/`.

In this case, we have two reducible fibers of types �̃8 and �̃∗0.
If 22 = 0 and 24 ≠ 0, then after scaling we get

(01, 02, 03, 04, 06) = (0, 0, 0, _4, _5`).

and then
Δ = _12, 9 = 0.

This time, we have only one singular fiber of type �̃8.
If 24 = 0, then the pencil is quasi-elliptic with Weierstrass equation

H2 + G3 + _5` = 0.

We have one reducible fiber, which is of type �̃8.
If ? = 2 or ? = 3 and if the fibration is quasi-elliptic, then we have 21 = 23 = 0

and Proposition 4.4.12 and Corollary 4.4.10 tell us that the fibration has only one
reducible fiber, which is of type �̃8.

• Type �̃8

Applying the determinant formuls (4.3.4), we get

MW( 5 ) � Z/2Z.

Thus, we have the following diagram, where the curves E1 and E2 are sections.

• • • • • • •

• •

'2 '3 '4 '5 '6 '7 '8

'9'1

E2★E1★

Fig. 4.4 Extremal rational elliptic surface: type �̃8

First, we blow down �1, '2, '3, '4, '5 and then, we blow down �2, '8, '7, '9 to
points G1 and G2 in the plane. We obtain a birational morphism c : � → P2. The
images of '1 and '6 are a line ℓ1 and a line ℓ2, taken with multiplicity 2. The line ℓ1
is the inflection tangent of the image of a general fiber at the point G1, the line ℓ2 is
tangent to the image of a general fiber at the point G2.
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ℓ1

2ℓ2

G2

G1

•

•

After a linear change of the parameters, we can write the equation of the pencil
in the form

_�3 + `�3 = _(H2I + 21GHI + 23HI
2 + G3 + 24GI

2 + 26I
3) + `G2I = 0. (4.9.9)

Since the line G = 0 is tangent to the curve + (�3), we must have

22
3 − 426 = 0. (4.9.10)

If ? ≠ 2, then we may assume that 21 = 23 = 0. Equation (4.9.10) gives 26 = 0.
After scaling the coordinates and _, `, we may assume that 24 = 1. Arguing as in
the previous case, we get a Weierstrass equation with

(01, 02, 03, 04, 06) = (0, _`, 0, _4, 0). (4.9.11)

The formula (4.4.14) gives

Δ = 16_10 (−4_2 + `2), 9 = 28 (−3_2 + `2)3
_4 (−4_2 + `2)

. (4.9.12)

In this case, there are two irreducible singular fibers of type �∗0.
If ? ≠ 2, 3, then we can reduce the equation to a Weierstrass equation with

01 = 02 = 03 = 0 and

(04, 06) = (3D2 (3D2 − {2), D3{(−9D2 + 2{2))

with Δ = 36D10 (4D2 − {2).
If ? = 2, then it follows from (4.9.10) that 23 = 0. If the pencil is elliptic, then

21 ≠ 0 and after scaling _, we may assume that 21 = 1. Replacing H by H + 24_I, we
may assume that 24 = 0. Thus, we obtain a Weierstrass equation with

(01, 02, 03, 04, 06) = (_, _`, 0, 0, 26_
6). (4.9.13)

Here, 26 ≠ 0 since otherwise the curve is not regular. This gives

Δ = _1226_
12, 9 = 1/26.

Thus, there is only one singular fiber and it has wild ramification index X2. Note that
the family depends on one parameter.
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If 21 = 0, then we may arrange 26 = 0 and after a linear change G ↦→ G + _`I, we
get a quasi-elliptic fibration with Weierstrass equation

H2 + G3 + _2`2G + _5` = 0,

which has one reducible fiber of type �̃8.

• Type �̃8

Applying the determinant formula (4.3.4), we get

MW( 9) � Z/3Z.

We have the following diagram:

• • • • • • • • •

★ ★ ★
E3 E1 E2

'0
'1 '2 '3 '4 '5 '6 '7

'8

Fig. 4.5 Extremal rational elliptic surface: type �̃8

We first blow down E1, '3, '4, then E2, '6, '7, and then E3, '0, '8 to obtain a
birational morphism c : � → P2. This is the blow up of 9 points G5 � G4 � G1, G7 �
G6 � G2, G9 � G8 � G3. The image of '2 + '5 + '8 is a triangle of lines with vertices
at G1, G2, G3. The image of a general fiber is tangent to the sides of the triangle at its
vertices. We can choose projective coordinates to write the equation of the pencil of
cubics in the form

_(H2G + G2I + I2H) + `GHI = 0. (4.9.14)

ℓ1 ℓ2

ℓ3G1

G2

G3

• •

•

We conclude that the pencil is unique. In affine coordinates D = G/I, { = H/I, the
equation is _D{2 + D2 + { + `D{ = 0. Multiplying by D and setting | = D{, we get the
equation _|2 + D3 + | + `D| = 0. Homogenizing again, we obtain that the generic
fiber of the fibration is isomorphic to the Weierstrass curve
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H2 + `HG + _3H + G3 = 0. (4.9.15)

We have

Δ = −_9 (27_3 + `3), 9 = −`3 (24_3 + `3)3/_9 (27_3 + `3).

If ? ≠ 3, then we have three additional singular fibers of type �̃∗0.
If ? = 3, then

Δ = −_9`3, 9 = −`9/_9.

In this case, there is only one additional fiber of type �̃∗∗0 and it has wild ramification
index X = 1.

If ? ≠ 2, 3, then we can reduce the equation to a standard Weierstrass form with

(04, 06) = (−3`(_3 + 24`3),−2(216_3 + 36_3`3 + `6).

Conversely, resolving the base points of the pencil (4.9.14), we obtain a genus one
fibration on a rational surface with fibers of type �̃8.

• Type �̃7 + �̃1

Applying the determinant formula (4.3.4), we get

MW( 9) � Z/2Z.

We have the following diagram:

• •

•

•

• • • •

••'2

'3 '4 '5 '6 '7

'8'1

E2
★

E1
★

'9 '10

Fig. 4.6 Extremal rational elliptic surface: type �̃7 + �̃1

We blow down the curves E1, '2, '3, '4, '5, '1 to a point G1 and then, we blow
down the curves �2, '8, '7 to a point G2. The image of the fiber of type �̃7 is equal
to the image of '1. It is a line ℓ1 = + (!1) with multiplicity 3. The image of the fiber
of type �1 is the union of a nonsingular conic � = + (&) that is equal to the image
of '9 and a line ℓ2 = + (!2) that passes through G2 ∈ ℓ1. The line ℓ1 is tangent to �
at the point G1. This way, we obtain a pencil of cubic curves + (_&!2 + `!3

1). We
have to consider the following two possible cases: first, the fiber '9 + '10 is of type
�̃1 or second, it is of type �̃∗1. In the first case, ℓ2 and & intersect transversally. In
the second case they are tangent to each other. Fixing the equation of �, we are left
with a 3-dimensional group of projective transformations that fixes the equations of
the tangent line ℓ1 and the line ℓ2. In appropriate coordinates, we have
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_I((H + I)2 + GH) + `G3 = _(H2I + 2HI2 + HGI + I3) + `G3 = 0 (4.9.16)

if ℓ2 is not tangent to � and

_I((H + I)2 + GI) + `G3 = _(H2I + 2HI2 + GI2 + I3) + `G3 = 0 (4.9.17)

otherwise.

3ℓ1

ℓ2 �

G1 G2
•• 3ℓ1

ℓ2

�

G1 G2
••

After replacing H + _2` by H, the Weierstrass equation becomes

H2 + _GH + G3 + _3`G = 0. (4.9.18)

if ℓ2 is not tangent to � and

H2 + G3 + _3`G = 0

otherwise. Moreover, we obtain

Δ = _9`2 (_ − 64`), 9 =
(_ − 48`)3
`2 (_ − 64`)

,

in the former case and
Δ = −64_9`3, 9 = 1728,

in the latter case. Assume that ? ≠ 2. Then, the pencil is elliptic with singular fibers
of types �̃7, �̃1, �

∗
0 or of types �̃7, �̃1. In the latter case, all nonsingular fibers are

isomorphic. The standard Weierstrass equation is

H2 + G3 − 3_3 (_ − 2`)G − 2_5 (_ − 3`) = 0.

If ? = 2, then the first case is an elliptic pencil with

Δ = _10`2, 9 = _2/`2.

It has singular fibers of types �̃7 (with X = 1) and �̃∗1. If ? = 2, then the second case
is a quasi-elliptic pencil with Weierstrass equation

H2 + G3 + _3`G = 0. (4.9.19)
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It has two reducible fibers, which are of types �̃7 and �̃∗1.

• Type �̃7 + �̃1

Applying the discriminant formula (4.3.4), we get # MW( 9) = 4. To choose one
of the two possible groups of order 4, we use Lemma 4.9.8 that implies that MW( 9)
embeds in the discriminant group of each fiber (otherwise an element of the kernel
intersects the zero section). This gives

MW( 9) � Z/4Z.

We have the following diagram:

•

•

•

• •

•

•

•

•

• ★

★

★

★

'2

'3 '4

'6

'7'8

'5

'1 '9

'10

E1
E3

E4E2

Fig. 4.7 Extremal rational elliptic surface: type �̃7 + �̃1

We blow down the exceptional configurations E1 = �1 + '8 + '7 + '6 + '5,
E2 = �2 + '2 + '3, and E3 = �3 to points G1, G2, G3 in the plane. The image of '1
in the plane is a conic � that passes through the points G1, G2. The image of '4 is a
line ℓ that passes through G2, G3. The image of '9 is a conic � ′ that passes through
G1 and G3. The image of '10 is a line ℓ′ that passes through G2. The line ℓ′ is tangent
to � at the point G2. The conics � and � ′ are tangent at G1 with multiplicity 4. We
have the following picture:

0.8 ℓ

ℓ′

�

�′

G1 G2 G3
• • •

We fix the equation of the conic � to be HI + G2 = 0 and the equation of the
line ℓ to be G = 0. The points G1, G2 have coordinates [0, 0, 1] and [0, 1, 0]. The line
ℓ′ must now be equal to + (I). The equation of a conic � ′ has to be of the form
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HI + G2 + UH2 = 0 with U ≠ 0. Using the transformation (H, I) ↦→ (CH, C−1I), we may
assume that U = 1. Note that ℓ′ intersects� ′ at two distinct points if ? ≠ 2 and at one
point if ? = 2. Thus, we see that the fiber '9 + '10 is of type �̃1 if ? ≠ 2 and of type
�̃∗1 if ? = 2. Now, the pencil is uniquely determined up to a projective isomorphism,
and its equation is

_I(HI + G2 + H2) + `G(HI + G2) = 0. (4.9.20)

The Weierstrass equation is

H2 + `GH + _2`H + G3 + _2G2 = 0. (4.9.21)

Replacing G + _2 by G, we arrive at the equation

H2 + `GH + G3 − 2_2G2 + _4G = 0

The discriminant and the absolute invariant are

Δ = _8`2 (16_2 + `2), 9 =
(16_4 + 16_2`2 + `4)3
_8`2 (16_2 + `2)

.

The pencil is elliptic in all characteristics. If ? ≠ 2, then its singular fibers are of
types �̃7, �̃1, �̃

∗
0, �̃

∗
0.

If ? = 2, then we have

Δ = _8`4, 9 = `8/_8,

and then, the pencil has two singular fibers of types �̃7 and �̃∗1.
If ? ≠ 2, 3, then we can transform the Weierstrass equation to an equation of the

form

H2 + G3 + 3(_4 + 4D2`2 + {4)G + (4_2 + `2) (_4 − 8_2`2 − 2`4) = 0.

Conversely, resolving the base points of the pencil (4.9.20), we obtain a rational
elliptic surface with reducible fibers of type �̃7, �̃1 or �̃7, �̃

∗
1.

• Type �̃6 + �̃2

Applying the determinantal formula (4.3.4), we obtain

MW( 9) � Z/3Z.

We have the following diagram 4.8:
We blow down the curves E0, '1, '2, then E1, '6, '3, and then E2, '5, '4 to the

points G1, G2, G3 in the plane. The image of '0 is the image of the fiber of type �̃6,
which is a line ℓ in the plane of multiplicity 3. The image of the second reducible
fiber is the triangle of lines, the images of '7, '8, '9. The line ℓ does not pass through
the vertices of the triangle. Thus, by choosing appropriate projective coordinates,
we find that the equation of the pencil is
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•

• • •

• • •

• • •

'2 '1

'3

'4
'5

'6

'7

'8

'9

'0

★

★

E2
★

E0

E1

Fig. 4.8 Extremal rational elliptic surface: type �̃6 + �̃2

_HI(H + I + nG) + `G3 = _(H2I + HI2 + nGHI) + `G3 = 0, (4.9.22)

where n = 1 if the triangle consists of non-concurrent lines and 0 otherwise. The
latter happens if the fiber '8 + '9 + '10 is of type �̃∗2.

ℓ1

ℓ2

ℓ3

G1 G3
G2

• ••3ℓ

ℓ1

ℓ2
ℓ3

G1 G3
G2

• ••3ℓ

Multiplying equation (4.9.22) by _3`2 and changing _`G to G and _2`H to H, we
get the Weierstrass equation

H2 + _2`H + n_GH + G3 = 0. (4.9.23)

We have
Δ = −_8`3 (n_ + 27`), 9 = − n_(_ + 24`)3

`3 (n_ + 27`)
.

Thus, if 4 = 1, we have three singular fibers of types �̃6, �̃2 and �̃∗0. If 4 = 0, then
we have two singular fibers of types �̃6 and �̃3.

If ? ≠ 3, then the fiber � = '8 + '9 + '10 is of type �̃2 or �̃∗2. The latter happens
if n = 0. Thus the singular fibers are of types �̃6, �̃2, �̃

∗
0 or �̃6, �̃

∗
2.

If ? = 3 and n = 1, we have

Δ = _9`3, 9 = _3/`3.

If ? = 3 and n = 0, then the pencil is quasi-elliptic with Weierstrass equation

H2 + G3 + _4`2 = 0.

It has two reducible fibers of types �̃6 and �̃∗2.
If ? ≠ 2, 3, we can reduce the Weierstrass equation to the form

H2 + G3 − 3_3 (_ + 2`)G − 2D4 (2_2 + 3_` + 18`2) = 0.
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Conversely, resolving the base points of the pencil (4.9.22), we obtain a rational
surface with a genus one fibration with fibers of types described above.

• Type �̃5 + �̃3

Applying the determinantal formula (4.3.4), we obtain that # MW( 9) = 4. As we
explained earlier, Lemma 4.9.8 shows that

MW( 9) � Z/4Z.

We have the following diagram 4.9:

• • • •

• • • •

• •

'1
'2 '3

'4

'5 '6 '7 '8

'9 '10

★ ★ ★ ★E0 E1 E2 E3

Fig. 4.9 Extremal rational elliptic surface: type �̃5 + �̃3

We blow down the curves E1 + '5 + '9, then E2, '3, then E3, '7, and, finally,
E4, '8 to the points G1, G2, G3, G4 in the plane. The remaining curves in the diagram
are mapped to lines. The curves '6, '10 are mapped to a member of the pencil equal
to the union of two lines 2ℓ1 + ℓ2. The curves '1, '2, '4 are mapped to a member of
the pencil equal to the union of three non-concurrent lines ℓ3 + ℓ4 + ℓ5.

ℓ3

ℓ4

ℓ5

G1 G3
G2

G4

• ••

•
2ℓ1

ℓ2

The equation of the pencil is

_H(G + H)I + `G(G + I)2 = _GHI + H2I + `(G3 + 2G2I + GI2) = 0.

The Weierstrass equation is

H2 + _GH + G3 + 2_`G2 + _2`2G = 0. (4.9.24)

We have
Δ = _7`4 (_ − 16`), 9 =

(_2 − 16_` + 16`2)3
_`4 (_ − 4`)

.
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In any case, the fibration is elliptic. If ? ≠ 2, then we have three singular fibers of
types �̃5, �̃3, �

∗
0.

If ? = 2, we have a Weierstrass equation of the form

H2 + _GH + G3 + _2`2G = 0

with Δ = _8`4 and 9 = _4

`4 . The fibration has two singular fibers of types �̃5 with
wild ramification invariant X = 1 and �̃3.

If ? ≠ 2, 3, then we can reduce the Weierstrass equation to the form

H2 + G3 − 3D2 (D2 − 4D{ + {2)G − 2D3 (D − 2{) (_2 − 4D{ − 2{2) = 0

with discriminant Δ = − 1
212_

7`4 (_ − 4`).

• Type �̃4 + �̃4.

Applying the determinantal formula 4.3.4, we obtain

MW( 9) � (Z/2Z)2.

We have the diagram (4.10) below.

•

•

•

•

•

•

•

•

•

•

★

★

★

★

'1

'2

'3

'4

'6

'7

'8

'9

'5 '10

E1

E2

E3

E4

Fig. 4.10 Extremal rational elliptic surface: type �̃4 + �̃4

We blow down the curves E1, '1, '5, then E2, '7, then E3, '8, and finally E4, '9.
The image of the fiber 2'5 + '1 + '2 + '3 + '4 is the union of three concurrent
lines ℓ1, ℓ2, ℓ3, the image of the second reducible fiber is the union of two lines ℓ, ℓ′,
where one has to be taken with multiplicity two. The line with multiplicity two does
not pass through the concurrency point. The equation of the pencil is

_H2I + `G(G + I) (G + 0I) = _H2I + `(G3 + (0 + 1)G2I + 0GI2) = 0,

where 0 ≠ 0, 1. The cross-ratio of the four lines + (H), + (I), + (H + I), + (H + 0I) in
the pencil of lines is an invariant of the surface.

The Weierstrass equation is

H2 + G3 + (0 + 1)_`G2 + 0_2`2G = 0 (4.9.25)



4.9 Genus One Fibrations on Rational Surfaces 483

ℓ1

ℓ2
ℓ3

G1 G3
G2

G4

• ••

•

2ℓ

ℓ′

and we have

Δ = 1602 (0 − 1)2_6`6, 9 =
28 (02 − 0 + 1)3
02 (0 − 1)2

.

Note that we must have 0 ≠ 0, 1, since otherwise the general member is not regular.
If ? ≠ 2, then the fibration is elliptic with two singular fibers of type �̃4.

If ? = 2, then the fibration is quasi-elliptic with Weierstrass equation

H2 + G3 + (02 + 0 + 1)_2`2G + 0(0 + 1)_3`3 = 0.

There are no additional singular fibers.
If ? ≠ 2, 3, then the Weierstrass equation can be transformed to the form

H2 + G3 − 3(02 − 0 + 1)_2`2G + (0 + 1) (20 − 1) (0 − 2)_3`3 = 0

with discriminant Δ equal to −3602 (0 − 1)2_6`6.
If ? = 2, then the fibration is quasi-elliptic with two reducible fibers of type �̃4.

In this case, its Weierstrass equation is

H2 + G3 + _2`2 (02 + 0 + 1) + 0(0 + 1)_3`3 = 0.

• Type �̃4 + �̃4

Applying the discriminant formula 4.3.4, we obtain

MW( 9) � Z/5Z.

We have diagram 4.11:

Let f : - → . be the blow-down morphism of the curves �0, . . . , �4. The
images of the curves '8 , '′8 are (−1)-curves on . , whose intersection graph is the
Petersen graph.

Recall that the Petersen graph is the incidence graph of lines on a del Pezzo
surface of degree 5, see [177, 8.5]. The surface is obtained by blowing up four points
G1, G2, G3, G4 in the plane no three of which are collinear. The ten lines are the inverse
transforms of the lines ℓ8 9 = G8 , G 9 . Our surface. is isomorphic to a del Pezzo surface
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• • • • •

• • • • •

★ ★ ★ ★ ★

'′0 '′1 '′2 '′3 '′4

'0 '1 '2 '3 '4

E0 E1 E2 E3 E4

Fig. 4.11 Extremal rational elliptic surface: type �̃4 + �̃4

•

•

••

••

•

••

•

•

•

•

'2
'′1

'0

'4

'′2

'1

'′4

'3

'′3

'′0

Fig. 4.12 Petersen graph

of degree 5 and we can blow down the curves '0, '2, '
′
4, '

′
2 on . to four points in

the plane.
We can also go to the plane in another way: we blow down E0, '0, '1, '2, '3 and

E4, '
′
2, '

′
3, '

′
4 to points G1, G2 in the plane. The image of the fiber '0 + · · · + '4 is

equal to the image of the curve '4. It is a nodal cubic curve � with the node at G1.
The image of the fiber '′0 + · · · + '

′
4 is equal to the image of '′0 and '′1. The image

of '′0 is an irreducible conic & that intersects � at G1 with multiplicity 5 and passes
through G2. The image of '′1 is the inflection tangent line ℓ of � and the point G2.

Choose the equation of � to be G3 + H3 + GHI = 0, such that G1 = [0, 0, 1] and
G2 = [1,−1, 0] with the inflection tangent line ℓ = + (3G+3H− I). Then, the equation
of the conic & must be (up to switching G with H) G2 − H2 + HI = 0. This gives us the
equation of the pencil:

_(G3 + H3 + GHI) + `(G2 − H2 + HI) (3G + 3H − I) = 0. (4.9.26)

After a linear change of variables (G ′, H′, I′) = (G + H, H, 3G + 3H − I), the equation
of the pencil becomes

_(G3 + H2I − GHI) + `(G2I + GHI − HI2) = 0.

The Weierstrass equation is

H2 + (−_ + `)GH − _2`H + G3 + _`G2 = 0, (4.9.27)
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which is always an elliptic pencil. We have

Δ = _5`5 (−_2 − 11_` + `2), 9 =
(_4 + 12_3` + 14_2`2 − 12_`3 + `4)3

Δ
.

The discriminant of _2 + 11_`− `2 is equal to 125. Thus if ? ≠ 5, then we have four
singular fibers of types �̃4, �̃4, �̃

∗
0, �̃

∗
0. If ? = 5, then we get three singular fibers of

types �̃4, �̃4, �̃
∗∗
0 .

• Type �̃6 + �̃1 + �̃1

Applying the discriminant formula 4.3.4, we obtain

MW( 9) � (Z/2Z)2.

We have the following diagram 4.13:

• • • •

• •

• • • •

★ ★

★ ★

★
E1

E4

E2

E3

'1 '3 '4 '5 '6

'2 '7

'5

'8 '9 '10 '11

Fig. 4.13 Extremal rational elliptic surface: type �̃6 + �̃1 + �̃1

We blow down the curves E1, '1, '2, '3, '4, then E2, '9, and then E3, �10 to
points G1, G2, G3 in the plane. The image of the fiber of type �̃6 is the union of three
lines ℓ1, ℓ2, ℓ3, which are equal to the images of '2, '6 and '7, respectively. They
intersect at the point G1. The image of '8 and '10 are singular irreducible cubics &1
and&2 with singular points at G2, G3, respectively. Each cubic passes simply through
the node of the other and they are tangent with multiplicity 5 at G1. The line ℓ1 is the
inflection tangent of&1 at the point G1. The lines ℓ2, ℓ3 join the points G1 with G2 and
G3, respectively.

If ? ≠ 2, then in an appropriate coordinate system, the equation of the pencil can
be written in the form

_(H2I + G3 − G2I) + `(G2I − GI2) = 0. (4.9.28)

The Weierstrass equation is

H2 + G3 + (`_ − _2)G2 − `_3G = H2 + G(G + _`) (G − _2) = 0. (4.9.29)

We get

Δ = 16_8`2 (_ + `)2, 9 = 256
(_2 + _` + `2)3
_2`2 (_ + `)2

.

There are three singular fibers, which are of types �̃6, �̃1, �̃1.



486 4 Genus One Fibrations

ℓ2

ℓ1

ℓ3

G1

G2

G3

•

•

•

If ? = 2, then the pencil is quasi-elliptic. The singular cubics &1 and &2 are
cuspidal cubics. The equation of the pencil can be reduced to the form

_(H2I + G3) + `(G2I + GI2) = 0.

The third singular fiber of the fibration corresponds to _ = ` = 1. The Weierstrass
equation can be transformed to the equation

H2 + G3 + _`(_ + `)2G + _4`2 = 0.

Applying formula (4.4.33), we find that the pencil has three reducible fibers, which
are of types �̃6, �̃∗2, and �̃

∗
2.

• Type �̃5 + �̃2 + �̃1

Applying the discriminant formula 4.3.4, we obtain

MW( 9) � Z/6Z.

We have the following diagram (4.14).

• • • • • •

• • • • •

★ ★ ★ ★ ★ ★

'0 '1 '2 '3 '4 '5

'6 '7 '8 '9 '10

E0 E1 E2 E3 E4 E5

Fig. 4.14 Extremal rational elliptic surface:�̃5 + �̃2 + �̃1

We blow down E1 + '1, �3 + '3, �5 + '5 and E0, �2, �4. The image of the fiber
'0 + · · · + '5 of type �̃5 is a triangle of lines in the plane. The image of the fiber
'6 + '7 + '8 of type �̃2 is another triangle of lines, whose sides pass through the
vertices of the former triangle. The image of the fiber '9 + '10 of type �̃1 is the
union of a line that passes through the vertices of the second triangle and a conic
which pass through the vertices of the first triangle and tangent direction equal to the
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sides of the second triangle. In appropriate coordinates, the equation of the pencil
becomes

_(G + H) (G + I) (H + I) + `GHI = 0. (4.9.30)

Assume ? ≠ 2. We set C := 2_/` in order to avoid fractions in formulas. We apply a
linear change of variables (G ′, H′, I′) = (G − H, H + G, I), then multiply the equation
by (GC + I) and then replace H by H(GC + I). We reduce the equation to the form

H2 − C2G4 + 2C (C + 1)G3 + (C + 1)2G2 + CG = 0.

Multiplying the equation by C2/G4, replacing CH/G2 by H, −C/G with G, we arrive at
the Weierstrass equation

H2 + G3 − (1 + C)2G2 + 2C2 (1 + C)G − C4 = H2 + G3 − ((1 + C)G − C2)2 = 0.

Replacing H with 8H + (1 + C)G + C2 and G with −G, we obtain

H2 − 2(C + 1)GH + 2C2H + G3 = 0.

We compute

Δ = 16D6{3 (4D + {) (D − 2{)2, 9 =
256(D + {)3 (D3 − 3D2{ + 3D{2 + {3)3

D6 (4D + {) (D − 2{)
.

If ? ≠ 3, then the fibration has one additional irreducible singular fiber of type �̃∗0.
If ? = 3, then we have three singular fibers of types �̃5, �̃2, �̃

∗
1 and

Δ = D6{3 (D + {)3, 9 =
(D + {)9

D6{3 .

If ? = 2, then we take C = `/_ and replace (G, H, I) by (H, G, I + CG + H) and set
I = 1, to obtain an equation

H2 + H + CGH + C (C + 1)G3 + G2 + G = 0.

Multiplying by C2 (C + 1)2 and replacing C (C + 1)H by H and C (C + 1)G with G, we get a
Weierstrass equation

H2 + C (C + 1)H + G3 + G2 + C (C + 1)G = 0.

We have
Δ = D4{6 (D + {)2, 9 =

D8

{6 (D + {)2
.

We have three singular fibers, which are of types �̃1, �̃∗2, and �̃5.

• Type �̃3 + �̃3 + �̃1 + �̃1

Applying the discriminant formula 4.3.4, we obtain
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MW( 9) � (Z/2Z) ⊕ (Z/4Z).

Note that we have 2 MW(�/�) � (Z/2Z)⊕2 and that an elliptic curve in characteristic
2 does not contain such a 2-torsion group, we see an elliptic fibration of this type
can exist only if ? ≠ 2. Moreover, a quasi-elliptic unipotent group does not contain a
subgroup isomorphic to Z/2Z ⊕ Z/4Z. Thus, there exists no quasi-elliptic fibration
of this type.

Being an extremal fibration, all sections are torsion sections and we have just seen
that such fibrations are elliptic. In particular, all sections of 9 are disjoint by Lemma
4.9.8. Moreover, it follows from the formula for the Euler–Poincaré characteristic
that there are no irreducible singular fibers.

We have the diagram (4.15) below.

• • • • • • • •

• • • •

★ ★ ★ ★ ★ ★ ★

★

E6 E1 E3 E0 E5 E7 E4

E2

'1 '2 '3 '4 '5 '6 '7 '8

'9 '10 '11 '12

Fig. 4.15 Extremal rational elliptic surface: type �̃3 + �̃3 + �̃1 + �̃1

We blow down the curves E0, '4, then E2, '7, then E1,E3,E5,E6,E7 to points
G1, . . . , G7. The images of the fibers �1 are two triangles of lines. One side of one
triangle passes through the vertex of the another one. In appropriate coordinates, we
can write the equation of the pencil in the form

_GHI + `(G + 0H) (G + H + I) (G + H + 1I) = 0,

where 1 ≠ 1. We also have to use the condition that the point G6 is collinear with
two other points not on the same side of triangles. An easy check gives 0 = 1 = −1.
Thus, the pencil is unique and has the equation

_GHI + `(G − H) (G + H + I) (G + H − I) = 0. (4.9.31)

One checks that the members of the pencil with _/` = ±4 are singular. They are
unions of a line and a conic given by equations ((G + H)2 + I(H − I)) (G − H + I) = 0
and ((G + H)2 + I(I − H)) (G − H − I) = 0. The conics are tangent at the base points
of multiplicity 2.

To compute theWeierstrass form,we firstmake the variable change G ′ = G−H, H′ =
G + H and `′ = 4`, to transform the equation to the form
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ℓ1

ℓ′1ℓ′3

ℓ3

• • •
•

••
•

ℓ2

ℓ′2

_(H2 − G2)I + `G(H2 − I2) = H2 (`G + _I) − GI(_G + `I) = 0.

Multiplying by `G + _I, replacing H by H′ = H(`G + _I), and dividing by I4, we get

H2 − G(_G + `I) (`G + _I) = H2 − _`G3 − (_2 + `2)G2 − _`G = 0.

Multiplying by −_2`2, replacing H by _`H, and replacing G by −_`, we get a
Weierstrass equation

H2 + G3 + (_2 + `2)G2 + _2`2G = 0. (4.9.32)

We compute the discriminant and the absolute invariant to obtain

Δ = 16_4`4 (_ − `)2 (_ + `)2, 9 =
28 (_4 − _2`2 + `4)3
_4`4 (_2 − `2)2

.

If ? = 2, then the general fiber is not a regular curve. There are no irreducible
singular fibers.

If ? ≠ 2, 3, then we can transform the Weierstrass equation to the form

H2 − 3(_4 − _2`2 + `4)G − 3_4`2 + 3(_2 + `2) (2_2 − `2) (_2 − 2`2) = 0

with discriminant Δ = −_4`4 (_2 − `2)2.

• Type �̃2 + �̃2 + �̃2 + �̃2

Applying the discriminant formula 4.3.4, we obtain

MW( 9) � (Z/3Z)2.

Before entering the detailed analysis of this case, we note that if ? ≠ 3, then this
type can be realized by the famous Hesse pencil, see [177, 3.1] or [16]:

_(G3 + H3 + I3) + `GHI = 0, (4.9.33)

which we will encounter again several times in Volume II. The blow up of its nine
base points is the universal elliptic curve with a fixed basis of 3-torsion points. The
picture of the surface is given by the following Levi graph of the configuration of
lines and points in the affine plane A2 (F3) over the field F3 of 3 elements.
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Fig. 4.16 Extremal rational elliptic surface: type �̃3 + �̃3 + �̃3 + �̃3

Wenowanalyze this type in detail. First, let us find theWeierstrass form.Replacing
_/` by B, then making the variable change (G, H, I) ↦→ (G + H,−H,−I + 3BG), and
finally dehomogenizing with respect to I, we get the equation

H2 + GH + B(G3 + (−1 + 3BG)3) = 0.

Multiplying both sides by B2 (1 + 27B3)2 and replacing G by B(1 + 27B3)G and H by
B(1 + 27B3)H), we get the equation

H2 + HG + G3 − 27B3G2 + 9B3 (1 + 27B3)G − B3 (1 + 27B3)2 = 0.

Next, after a linear change (G, H) = (G ′+9B3, H′−G ′−6B3), we obtain theWeierstrass
equation

H2 + {GH + 3D3H + G3 + 6D3{G + 9D6 − D3{3 = 0 (4.9.34)

Using formula (4.4.14), we find

Δ = D3 ({3 − 27D3)3, 9 =
{3 ({3 − 216D3)3
D3 ({3 − 27D3)3

.

This means that the singular fibers are over the points {/D = ∞,−3,−3l,−3l2,
where l3 = 1 and l ≠ 1. It is known that the singular members of the Hesse pencil
(4.9.33) correspond to the same values of the parameter C.

Assume ? ≠ 2, 3. Then, after homogenizing the parameter and change (D, {) to
(D/6, {), we can rewrite the Weierstrass equation in terms of _ = C/6, and then, it
acquires the following form:

H2 + G3 + 12{(D3 − {3)G + 2(D6 − 20D3{3 − 8{6) = 0 (4.9.35)

with
Δ = −2633D3 (D3 + 8{3)3, 9 = 21233 {3 (D3 − {3)

D3 (D3 + 8{3)3
.

This is the classical way to write the Weierstrass equation of the Hesse pencil

G3 + H3 + I3 + 6CGHI = 0,
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where C = {/D, see [16].
Assume ? = 2. Then, after substituting (G, H) ↦→ (G + B3, H + 1), we can rewrite

the equation in the form

H2 + {GH + D3H + G3 + D3 (D3 + {3) = 0. (4.9.36)

We have
Δ = D3 (D3 + {3)3, 9 =

{12

D3 (D3 + {3)3
.

Suppose ? = 3. Note that the reduction of the Hesse pencil modulo 3 is the pencil

(G + H + I)3 + CGHI = 0.

Its fiber over C = 0 is of type �̃6 and its fiber over C = ∞ is of type �̃2. Thus, it is an
extremal elliptic fibration of type �̃6 + �̃2, which have been already studied above. In
particular, type under consideration, that is, �̃2 + �̃2 + �̃2 + �̃2, does not arise from
the Hesse pencil. Instead, we have to look at a quasi-elliptic pencil in this case. It
must have four reducible fibers of type �̃∗2. It follows from (4.3) that the Weierstrass
equation

H2 + G3 + 06 (D, {) = 0,

where 306 has four simple zeros. The polynomial 06 (D, {) =
∑6
8=0 06−8{8 is consid-

ered up to addition of a cube of a binary quadratic form. First, for a general form 06,
one can find a linear transformation of the variables to assume that 01 = 05 = 0, see
[217, p. 287]. Then, after possibly adding a cube, we assume that 00 = 03 = 06 = 0.
After scaling, we reduce the polynomial to the form D2{2 (D2+{2). In the affine subset
with coordinate C = D/{, we have 306 = 3 (C4 + C2) = (C3 − C)3C, so the differential
has 3 simple roots at C = 0, 1,−1. In the open subset with affine coordinate C = {/D,
it has additional simple root at C = 0. Thus, it has 4 simple roots and the order of the
discriminant is equal to 2 at each root. By (4.1), we see that the fibration has four
fibers of type �̃∗2 with Weierstrass equation

H2 + G3 + D2{2 (D2 + {2) = 0.

This suggests that there must be a unique quasi-elliptic fibration with such fibers.
To confirm this, we use the conic bundle argument that the nine sections must be
disjoint. Thus, the fibration comes from a pencil of cubic curves with nine distinct
base points. It has four reducible members, each of which is equal to the union of
three concurrent lines. It is easy to check that such a pencil is unique up to a linear
transformation, and that it coincides with the pencil

_H(G2 − H2) + `I(G2 − I2) = 0. (4.9.37)

It singular members are four triples of concurrent lines
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+ (I(G − I) (G + I)), + (H(G − H) (G + H)),
+ ((H − I) (G + H − I) (G − H + I)),+ ((H + I) (−G + H + I) (G + H + I)).

(4.9.38)

It has nine base points

[1, 0, 0], [1, 1, 0], [1, −1, 0], [1, 0, 1], [1, 1, 1], [1, −1, 1], [1, 0, −1], [1, 1, −1], [1, −1, −1].

The 9 points and the 12 lines corresponding to the irreducible components of
reducible fibers form a Hesse configuration (123, 94). We can view the points as
points in the projective plane P2 (F3) with coordinates (C0, C1, C2) lying outside the
line C0 = 0 and take all lines in the plane except this one. In particular, the Hesse
configuration can be realized over the finite field F3.

Note that the singular points of the reducible members of the pencil are
[0, 1, 0], [0, 0, 1], [0, 1,−1]. They are points at the line C0 = 0. The line is the
image of the curve of cusps on the rational quasi-elliptic surface.

We summarize our investigation with the following table. Even in characteristic
? ≠ 2, 3, for typographical reasons, we sometimes give a Weierstrass form with
nonzero coefficients 01, 02, 03 ≠ 0. One can use formula (4.4.14) to recompute
the coefficients satisfying 01 = 02 = 03 = 0. Also, for typographical reason, we
dehomogenize the coordinates (D, {) on the base P1.

Singular fibers MW Weierstrass equation Δ 9

�̃8, 2�̃∗0 {0} H2 + G3 + G + C −16(4 + 33C2) − 21033

4+33C2 )
�̃8, �̃

∗∗
0 {0} H2 + G3 + C C 0

�̃8, 2�̃∗0 Z/2Z H2 + G3 + C G2 + G 16(C2 − 4) 28 (C2−3)3
(C2−4)

�̃8, 3�̃∗0 Z/3Z H2 + C GH + H + G3 −(27 + C3) C3 (24+C3 )3
27+C3

�̃7, �̃1, �̃
∗
0 Z/2Z H2 + GH + G3 + G C2 (1 − 64C) (1−48C )3

C2 (1−64C )
�̃7, �̃

∗
1 Z/2Z H2 + G3 + C G −64C3 1728

�̃7, �̃1, 2�̃∗0 Z/4Z H2 + C GH + G (G − 1)2 C2 (16 + C2) (16+16C2+C4 )3
Δ

�̃6, �̃2, �̃
∗
0 Z/3Z H2 + GH + G3 + C G −C3 (1 + 27C) − (1+24C )3

C3 (1+27C )
�̃6, �̃

∗
2 Z/3Z H2 + C H + G3 −27C4 0

�̃5, �̃3, �̃
∗
0 Z/4Z H2 + C GH + G (G + C)2 C4 (1 − 16C) (1−16C+16C2 )3

C4 (1−16C )

�̃4, �̃4 (Z/2Z)⊕2 H2 + G3 + (0 + 1)C G2 + 0C2G 1602 (0 − 1)2C6, 0 ≠ 0, 1 256(02−0+1)3
02 (0−1)2

2�̃4, 2�̃∗0 Z/5Z H2 + (C − 1)GH − C H + G3 + C G2 C5 (C2 − 11C − 1) (1+12C+14C2−12C3+C4 )3
Δ

2�̃4, �̃
∗∗
0 , (? = 5) Z/5Z H2 + (C − 1)GH − C H + G3 + C G2 −C5 (C − 3)2 C−3

C5

�̃6, 2�̃1 (Z/2Z)2 H2 + G (G + 1) (G − C) 16C2 (1 + C)2 (1+C+C2 )3
C2 (1+C )2

�̃5, �̃2, �1, �
∗
0 Z/6Z H2 − 2(1 + C)GH + C2H + G3 16C6 (C − 2)2 (1 + 4C) 212 (1+C )3 (3+3C−3C2−C3 )3

Δ

2�̃3, 2�̃1 Z/2Z ⊕ Z/4Z H2 + G3 + (1 + C2)G2 + C2G 16C4 (1 − C2)2 256(1−C2+C4 )3
Δ

4�̃2 (Z/3Z)⊕2 H2 + G3 + 12C (1 − C3)G + 2(1 − 20C3 − 8C6) −2633 (1 + 8C3)3 21233C3 (1−C3 )3
(1+8C3 )3

Table 4.6 Extremal elliptic rational surfaces (? ≠ 2, 3)
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Singular fibers MW Weierstrass equation Δ 9

�̃8, �̃
∗
0 {0} H2 + GH + G3 + C C 1

C

�̃8 {0} H2 + C H + G3 + C5 C12 0
�̃8 Z/2Z H2 + C GH + G3 + C G2 + 0C4, 0 ≠ 0 0C12 0−1

�̃8, 3�̃∗0 Z/3Z H2 + C GH + H + G3 1 + C3 C12

1+C3

�̃7, �̃1 Z/2Z H2 + GH + G3 + C G C2 1
C2

�̃7, �̃
∗
1 Z/4Z H2 + C GH + G3 + G C4 C8

�̃6, �̃2, �̃
∗
0 Z/3Z H2 + GH + C H + G3 C6 (1 + C)4 1

C3 (1+C )
�̃6, �̃

∗
2 Z/3Z H2 + C H + G3 C4 0

�̃5, �̃3 Z/4Z H2 + GH + G3 + C2G C4 1
C4

2�̃4, 2�̃∗0 Z/5Z H2 + G3 + (C + 1)GH + C H + C G2) C5 (1 + C + C2) (1+C
4 )3
Δ

�̃5, �̃
∗
2, �1 Z/6Z H2 + G3 + (C + 1) (GH + C H + C G2) C6 (1 + C)4 C8

C6 (C+1)2

4�̃2 (Z/3Z)⊕2 H2 + C GH + H + G3 + 1 + C3 (1 + C3)3 C12

1+C3 )3

Table 4.7 Extremal elliptic rational surfaces (? = 2)

Singular fibers MW Weierstrass equation Δ 9

�̃8, �̃
∗
0 {0} H2 + G3 + G2 + C −C 0 1

C

�̃8 {0} H2 + G3 + G + C 1 0

�̃8, 2�̃∗0 Z/2Z H2 + G3 + C G2 + G C2 − 1 C6

C2−1
�̃8, �̃

∗
0 Z/3Z H2 + C GH + H + G3 −C3 −C9

�̃7, �̃1, �̃
∗
0 Z/2Z H2 + GH + G3 + C G C2 (1 − C) 1

C2 (1−C )
�̃7, �̃

∗
1 Z/2Z H2 + G3 + C G −C3 0

�̃7, �̃1, 2�̃∗0 Z/4Z H2 + C GH + G (G − 1)2 C2 (C2 + 1) (1−C2 )6
Δ

�̃6, �̃2 Z/3Z H2 + G3 + GH + H + G3 C3 1
C3

�̃5, �̃3, �̃
∗
0 Z/4Z H2 + GH + G (G + C)2 C4 (1 − C) (1−C )6

Δ

�̃4, �̃4 (Z/2Z)⊕2 H2 + G3 + (0 + 1)C G2 + 0C2G, 0 ≠ 0, 1 02 (0 − 1)2C6 (0+1)6
02 (0−1)2

2�̃4, 2�̃∗0 Z/5Z H2 + (C − 1)GH − C H + G3 + C G2 C5 (C2 + C − 1) ( (1−C )6
Δ

�̃6, 2�̃1 (Z/2Z)2 H2 + G (G − 1) (G − C)3 C2 (1 + C)2 (1+C+C2 )3
C2 (1+C )2

�̃5, �̃2, �
∗
1 Z/6Z H2 + (1 + C)GH + (1 − C)C H + G3 + (1 − C)G2 C3 (C − 1)3 C9

C3 (C−1)3

2�̃3, 2�̃1 Z/2Z ⊕ Z/4Z H2 + G3 + (1 + C2)G2 + C2G C4 (1 − C2)2 (1+C2 )6
Δ

Table 4.8 Extremal elliptic rational surfaces (? = 3)

As a result of our explicit classification, we now draw a couple of conclusions.
For example, by inspection of the table we find the following.

Corollary 4.9.10 Let 5 : � → P1 be an extremal jacobian elliptic fibration on a
rational surface. Assume that the 9-invariant is constant. Then one of the following
cases occurs:

1. ? ≠ 2, 3

• 9 = 0 and 5 has two singular fibers of types �̃8 and �̃∗∗0 .
• 9 = 1728 and 5 has two singular fibers of types �̃7 and �̃∗1.
• 9 = 0 and 5 has two singular fibers of types �̃6 and �̃∗2.
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• 9 is constant depending on the parameter C of the elliptic fibration with two
singular fibers of types �̃4.

2. ? = 2

• 9 = 0 and 5 has one singular fiber of types �̃8.
• 9 = 2 ≠ 0 and 5 has one singular fiber of types �̃8.
• 9 = 0 and 5 has two singular fibers of types �̃6 and �̃∗2.

3. ? = 3

• 9 = 0 and 5 has one singular fiber of types �̃8.
• 9 = 0 and 5 has two singular fibers of types �̃7 and �̃∗1.
• 9 is a constant depending on the parameter C of the elliptic fibration with two

singular fibers of types �̃4.

We can also give the table for quasi-elliptic fibrations. It follows from Proposition
4.4.12 that the Euler–Poincaré characteristics of reducible fibers add up to 8 + 2: ,
where : is the number of reducible fibers.

Suppose ? = 3. Then a possible reducible fiber must be of type �̃8, �̃6 or �̃∗2.
This allows us to list all possible configurations of reducible fibers

�̃8, �̃6 + �̃∗2, 4�̃∗2.

All such configurations occur on extremal rational elliptic surfaces and they occur as
specialization of such surfaces in characteristic 3. We discussed these specializations
in our classification of extremal rational elliptic surfaces.

Suppose that ? = 2. Then a possible reducible fibermust be of type �̃8, �̃7, �̃2: , �̃
∗
1.

We also know that the Mordell–Weil group is finite, that is, a quasi-elliptic fibration
is automatically extremal, hence

∑
C ∈� (# Irr(�C ) − 1) = 8. This allows us to list all

possible configurations of reducible fibers. They are

�̃8, �̃8, �̃7 + �̃∗1, 2�̃4, �̃6 + 2�̃∗1, �̃4 + 4�̃∗1, 8�̃∗1.

Note that the first five cases have been already discussed in our analysis of extremal
rational elliptic surfaces. The last two cases are new, and are not realized as elliptic
fibrations on rational surfaces. Let us realize these two new cases.

• Type �̃4 + 4�̃∗1 (quasi-elliptic and ? = 2)

For this type, the Mordell–Weil group MW( 9) is isomorphic to (Z/2Z)3.
Let �1 = '0 + '1 + '2 + '3 + 2'4 be the fiber of type �̃4 and �2 = '5 + '6, �3 =

'7 + '8, �4 = '9 + '10, �5 = '11 + '12 be other reducible fibers. Each '0, . . . , '3
intersects two sections and each '8 , 8 = 5, . . . , 10 intersects four sections.We assume
that the zero section �0 intersects '0. Let �1 intersect '0, let �2, �3 intersect '1,
and the rest intersect '2, '3. We may assume that �0 intersects '5, '7, '9, '11 and
we will call them the zero component. It follows from the computations of local
contributions for the height of sections in the Mordell–Weil group that �1 intersects
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'6, '8, '10 and '12. Also, �2, �3 intersect two zero components of fibers of type �̃∗1
and other sections intersect three zero components of these fibers.

We blow down �0, '0, '4 to a point G0 and then blow down �2, . . . , �8 to six
points G1, . . . , G6. The image of �1 is the union of three lines passing through G0. The
images of the zero components of �2, . . . , �5 are conics �1, . . . , �4 that intersect
each other with multiplicity 3 at the point G0. The images of the other components
of these fibers are lines !1, . . . , !4, each passing through two points G1, . . . , G6 and
intersecting only at one these points. Each line !8 is tangent to the conic �8 .

Let us see that these properties define a one-parameter family of quasi-elliptic
pencils that give rise to our surface.

First, we observe that the six points G1, . . . , G6 must be the vertices of a
complete quadrilateral. We choose projective coordinates, such that the sides
are + (G), + (H), + (I), + (G + H + I) and the points G1, . . . , G6 have coordinates
[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 0], [0, 1, 1], [1, 0, 1]. The image of �1 must be the
union of the diagonals, that is, it must be equal to+ ((G− H) (G− I) (H− I). Each conic
�8 belongs to the pencil of conics through three non-collinear points G8 . The line
component passes through the remaining three points. An easy computation shows
that the four conic+line members belong to the following pencils:

02H(H + G) + (02 + 1)I(I + G) = 0, G(G + I) + 02H(H + I) = 0,

G(G + H) + (02 + 1)I(I + H) = 0 H(G + I) + 02G(H + I) = 0.

Each conic from each pencil passes through the point @1 = (1, 1, 1). It remains
to choose one irreducible conic  8 from each pencil, such that the four conics are
tangent at @1 with multiplicity 3. Computing the equations of tangent lines of the
conics at the point (1, 1, 1), we easily find that the four conics must be

02H(H + G) + (02 + 1)I(I + G) = 0, G(G + I) + 02H(H + I) = 0,

G(G + H) + (02 + 1)I(I + H) = 0 H(G + I) + 02G(H + I) = 0.

The common tangent is G + 02H + (02 + 1)I = 0. The singular points of the corre-
sponding reducible cubics from the pencil are the points [0, 0 + 1, 0], [0, 1, 0], [0 +
1, 0, 1], [1, 0, 0 +1]. They lie on the line G + 0H + (1+ 0)I = 0. The inverse transform
of this line on the blow-up surface is the curve of cusps ℭ. The equation of our pencil
is

_(G + H) (G + I) (H + I) + `I(G2 + GI + 02H2 + 02HI) = 0,

where 0 ≠ 0, 1. The pencil has four reducible fibers corresponding to the parameters
[_, `] = [0, 1], [1, 0], [1, 1] and [1, 0−1]. The Weierstrass equation

H2 + G3 + D{(D2 + 0{D + (0 + 1){2)G = 0.

Replacing the parameter 0 with
√
0 + 1, we get the same equation as in [336, Table

1 (f)].

• Type 8�̃∗1 (quasi-elliptic and ? = 2)
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For this type, the Mordell–Weil group MW( 9) is isomorphic to (Z/2Z)4.
Let ℭ be the curve of cusps of 9 , which is a smooth rational curve and a bisection

(a 2-section). We have ℭ ·  � = −2, hence ℭ2 = 0.
Consider the map q : � → , → F2, where the first map is the birational

morphism onto the Weierstrass model that blows the irreducible components that
do not intersect a fixed section E. The morphism , → F2 is purely inseparable
of degree 2 given by the invertible sheaf L = OF2 (3f + 2e), see (4.4.29). Applying
Proposition 0.2.10, we expect that, has 22 (ΩF2 ⊗L⊗2) = 8 ordinary double points.
This can happen only if the quasi-elliptic fibration has 8 reducible fibers of type �̃∗1.
Taking a general curve � ∈ |6f + 3e|, we see that we get a quasi-elliptic fibration
of this type. It follows from the Weierstrass equation that such fibrations depend
on 5 parameters, namely the coefficients of (04 (C0, 1), 06 (C0, C1)) modulo projective
transformations and modulo adding to 06 the square of a binary form of degree 3.

Obviously, the 16 sections cannot be disjoint in this case. It follows from Section
4.5 that each non-zero section intersects the zero section with multiplicity 1 and
does not intersect the zero component for any reducible fiber �8 (the sum of local
contributions must be equal to 4). If two sections are disjoint, then they intersect
exactly four common irreducible components of reducible fibers. Let O, %1, . . . , %7
be the eight sections that intersect the zero component of a reducible fiber �1 and
let O′, &1, . . . , &7 be the sections intersecting the other component. We may assume
that O′ intersects O and that all other &8 do not intersect O, but intersect exactly one
%8 .

The theory of heights tells us that each section from the first group intersects one
section from another group, say O · O′, %8 ·&8 = 1. Following [336], we blow down
the components O, %1, . . . , %6, &7 and the non-zero component of �1. The image of
�1 is an irreducible cuspidal cubic. All other reducible fibers are mapped to the union
of a conic and its tangent line. We have eight distinct base points @1, @2, . . . , @8, @

′
8

and one base point @′8 � @8 infinitely near to @8. The point @8 is the cusp of the image
�̄1 of �1. The image of seven sections O′, &1, . . . , &6 are lines ℓ1, . . . , ℓ7 passing
through the point @8 and one other point @8 , which is the image of %8 . The image of
%7 is the cuspidal tangent of the curve �̄1. The image of the section &7 is the line ℓ9
passing through @8, @

′
8 and other point @8 . We see that the set of points @1, . . . , @7

and the lines ℓ1, . . . , ℓ7 form the configuration of points and lines in the Fano plane
P2 (F2). The net of cubics through @1, . . . , @8 has equation

� (0, 1, 2) = 01GH(G + H) + 02GI(G + I) + 03HI(H + I) = 0. (4.9.39)

The point [
√
1,
√
2,
√
0] is the singular point of � (0, 1, 2) = 0. Let c : . → P2 be

the blow-up of the base points @1, . . . , @7. The net defines a quasi-elliptic fibration
over . . Its reducible fibers over the pre-images of the lines in the Fano plane with
coordinates (01, 02, 03) are of type �̃∗1. Thus, any general pencil in the net defines a
quasi-elliptic surface with seven singular fibers of type �̃∗1. Their line components
are the lines in the Fano plane with coordinates (G, H, I). The points in the Fano
plane are among its base points. Any other base point @8 comes automatically with
an infinitely near base point, and the member of the pencil with the cusp at @8 gives
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the eighth reducible fiber of type �̃∗1. Let the equation of the line defining the pencil
be 01 = D, 02 = {, 03 = 0D + 1{. The equation of the pencil is

D(GH(G + H) + 0HI(H + I)) + {(GI(G + I) + 1HI(H + I)) = 0.

We find that the base points are the seven points of the Fano plane, the eighth point

@8 = [G0, H0, I0] := [
√
01(0 + 1),

√
0(0 + 1),

√
1(1 + 1)],

and the infinitely near point @′8 with tangent direction I0G + 1I0H + (G0 + 1H0)I = 0.
Since @8 does not lie on any line in the Fano plane, we get

0, 1 ≠ 0, 0 ≠ 1, 1 ≠ 1, and 0 ≠ 1.

(The restriction on the parameters is stronger than in [336], where the parameters
0, 1 satisfy only 0 ≠ 0.) The reduced fibers correspond to the points

[D, {] = [1, 0], [0, 1], [1, 1], [1, 0], [1, 0+1], [0, 1+1], [1+1, 0+1], [1(1+1), 0(0+1)] .

Let us find theWeierstrass equation. Recall that the transformations H ↦→ H+U1G+U3
changes the coefficients 04, 06 to

0′4 = 04 + U4
1, 0′6 = 06 + U2

104 + V3.

Let + (:) denote the linear space of binary forms of degree : . Counting parameters,
we see that quasi-elliptic surfaces depend on dimP(+ (4) + + (6)) − dim(+ (1) +
+ (3)) − dim PGL(2) = 5 + 7 − (2 + 4 − 1 − 3) = 2 parameters, as expected from the
previous analysis. Write

04 =

4∑
8=0

A8D
4−8{8 , 06 =

6∑
8=0

B8D
6−8{8 .

We know that Δ = 0430
2
4 + 30

2
6 has eight simple distinct zeros. This implies that

the coefficients A2 and A4 are non-zero. Taking appropriate V3, we may assume that
B0 = B2 = B4 = B6 = 0. Taking U1 = �D + �{, we can make the coefficients B1, B5
equal to zero. Then again adding some square to 06, and scaling the unknowns, we
may assume that 06 = D

3{3. After a linear change of the coordinates (D, {), we may
assume that 04 has zeros [0, 1] and [1, 0]. Thus, the Weierstrass equation acquires
the form

H2 + D{(D2 + UD{ + V{2)G + D3{3 = 0.

This agrees with the formula in [336, Table 1(g)].
The following table contains the classification of rational quasi-elliptic surfaces

in characteristic 2 and 3. We refer to [336, Table 1] for explicit formula for sections
in terms of the Weierstrass equations.
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? Types MW( 5 ) Weierstrass equation
2 �̃8 {1} H2 + G3 + C
2 �̃8 Z/2Z H2 + G3 + C2G + C
2 �̃7, �̃

∗
1 Z/2Z H2 + G3 + C G

2 �̃4, �̃4 (Z/2Z)⊕2 H2 + G3 + (02 + 0 + 1)C2G + 0 (0 + 1)C3
2 �̃6, 2�̃∗1 (Z/2Z)

2 H2 + G3 + C (1 + C2)G + C2
2 �̃4, 4�̃∗1 (Z/2Z)

3 H2 + G3 + (1 + 0 + 02)C2G + 0 (0 + 1)C3, 0 ≠ 0, 1
2 8�̃∗1 (Z/2Z)4 H2 + G3 + C (1 + 0C + 1C2)G + C3
3 �̃8 {1} H2 + G3 + C
3 �̃6, �̃

∗
2 Z/3Z H2 + G3 + C2

3 4�̃∗2 (Z/3Z)⊕2 H2 + G3 + C2 (1 + C2)

Table 4.9 Quasi-elliptic rational surfaces

Remark 4.9.11 Suppose ? = 2 and let 5 : - → P1 be a jacobian quasi-elliptic
fibration and ℭ be its curve of cusps. Then it intersects each fiber with multiplicity 2
at its singular point. Since ℭ is invariant with respect to a translation automorphism
by a non-zero torsion point of the Mordell–Weil group, it intersects a fiber of type
�̃2: at its central component of multiplicity 2. It follows from Figure 4.6 that it
intersects the component '1 of a fiber of type �̃7. The description of the blow-down
morphism - → P2 shows that it intersects the component '2 of a fiber of type �̃8.
In all other cases, it is clear which components the curve ℭ must intersect.

Remark 4.9.12 Assume k = C. Some of the extremal rational elliptic surfaces are
isomorphic to modular elliptic surfaces. Let Γ be a subgroup of finite index of
SL(2,Z) that does not contain −1. Given such a Γ, one defines the modular elliptic
surface ((Γ) to be the relatively minimal elliptic surface birationally isomorphic to
the quotient

((Γ) := (Γ o Z2)\(H × C) → - (Γ) := Γ\H,

where H = {I = 0 + 18 ∈ C : 1 > 0} is the upper half-plane and Γ o Z2 is the
semi-direct product is taken with respect to the natural action of Γ on Z2, and ΓoZ2

acts on H × C by the formula

((<, =), 6) · (g, I) :=
(
0g + 1
2g + 3 ,

I + <g + =
2g + 3

)
.

The structure of an elliptic surface is given by the projection onto the first factor, that
is, to - (Γ) = Γ\H. The unique smooth projective comptactification -̄ (Γ) of - (Γ)
is called the modular curve. The name has to do with the fact that these curves often
have descriptions as moduli spaces of elliptic curves with some extra structure. The
complement -̄ (Γ)\- (Γ) consists of some finite number C of points and by definition,
these points are called cusps. Cusps come in two kinds. The fibers of ((Γ) → -̄ (Γ)
over cusps of the first kind (resp. second lind) are of type �̃= or �̃∗0 (resp. �̃=, = > 4).
There could be also some singular fibers over points in - (Γ). They correspond to
elements of finite order 2 or 3 in Γ. (Note that we assumed if −1 ∉ Γ. If we allow
−1 ∈ Γ, then there may also be elements of order 4, 6.) The corresponding fibers are
of type �̃∗2 and �̃6 in the former case and of type �̃7 and �̃8 in the latter case.
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Let 6 be the genus of the modular curve -̄ (Γ) and let ?6 be the geometric genus
of ((Γ). We have (see [674])

6 = 1 + `

12
− A2

4
− A3

3
− C

2
,

?6 = 26 − 2 + C − C1
2
− A2

3
,

where
` =

1
2
[(! (2,Z) : Γ],

where C1 denotes the number of cusps of the first kind, and where A2 (resp. A3) is the
number of points in - (Γ) corresponding to orbits with stabilizer subgroup of order
2 (resp. 3).

The connection between the modular elliptic surfaces and the surfaces discussed
in this section is as follows: an modular elliptic surface has finite Mordell–Weil
group and non-constant 9-invariant [674]. Conversely, a jacobian elliptic surface
with ?6 = 0 over C with finite Mordell–Weil group, non-constant 9-invariant and
?6 = 0, and no singular fibers of type �̃8 and �̃7 is isomorphic to an modular elliptic
surface [562].

Comparing this result with our list of extremal rational elliptic surfaces, we find
that all of themaremodular elliptic surfaces, except those of type �̃8, �̃7+�̃1, �̃4+�̃4.
In fact, we can say more. Recall that Γ is called a congruence subgroup if it contains
a subgroup of the form

Γ(=) :=
{
" =

(
0 1

2 3

)
∈ SL2 (Z) : " ≡ �2 mod =

}
.

, for some = ≥ 2. For = ≥ 3, the group Γ(=) does not contain −1 and we have

` =
1
2
=3

∏
? |=
(1 − ?−2), C = C1 = `/=, A2 = A3 = 0.

An example of a congruence subgroup is the group

Γ< (=) :=
{
" =

(
0 1

2 3

)
∈ SL2 (Z) : " ≡

(
1 ∗
0 1

)
mod =, 1 ≡ 0 mod <

}
,

where <, = are positive integers with < |=. Obviously, we have Γ(=) = Γ= (=). More-
over, we have (see [140]):
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` =


3 if (=, <) = (2, 1),
6 if (=, <) = (2, 2),
1
2<=

2 ∏
? |= (1 − ?−2) otherwise.

C =


2 if (=, <) = (2, 1),
3 if (=, <) = (2, 2), (4, 1),
1
2
∏
? |= (? − 1)?a? (<=)−2 (? + 1 + (? − 1)a? (=/<)) otherwise.

We also recall the group

Γ0 (=) :=
{
" =

(
0 1

2 3

)
∈ SL2 (Z) : 2 ≡ 0 mod =

}
.

Let (̄< (=) → -̄< (=) be the elliptic surface associated to the modular surface
elliptic (< (=) := ((Γ< (=)) together with its elliptic fibration over the modular
curve -< (=) = - (Γ< (=)). Its Mordell–Weil group is known to be isomorphic to
(Z/=Z) ⊕ (Z/<Z), see [140]. In particular, if (̄< (=) is a rational surface, then it is
an extremal rational elliptic surface. It is thus natural to identify the pairs (<, =), for
which the surface is rational.

Next, it is known that over C, a semi-stable jacobian elliptic surface over P1 has
at least four singular fibers, see [48]. The surfaces with exactly four singular fibers
are known as Beauville surfaces, they were classified in [49], and they coincide with
extremal rational semi-stable elliptic surfaces. The corresponding modular groups
are torsion-free congruence subgroups of the modular group with 6 = 0 and ` = 12,
which can be found in the list of torsion free congruence subgroups with 6 = 0, see
[648]. All finite index subgroups of SL(2,Z) of genus 6 ≤ 24 were found in [144].

In Table 4.10, we use their notation for some of the groups. Here, the level # of
Γ is defined to be largest # , such that Γ(#) is contained in Γ.

Singular fibers Level ` Γ

�̃8, �̃
∗
0, �̃

∗
0, �̃

∗
0 9 12 Γ0 (9) ∩ Γ1 (3)

�̃7, �̃1, �̃
∗
0, �̃

∗
0 8 12 Γ0 (8) ∩ Γ1 (4)

�̃4, �̃4, �̃
∗
0, �̃

∗
0 5 12 Γ1 (5)

�̃5, �̃2, �̃1, �̃
∗
0 8 12 Γ1 (6)

�̃3, �̃3, �̃1, �̃1 4 12 Γ1 (4) ∩ Γ(2)
�̃2, �̃2, �̃2, �̃2 3 12 Γ(3)
�̃5, �̃3, �̃

∗
0 4 6 Γ1 (4)

�̃6, �̃1, �̃1 4 6 3�0

�̃8, �̃
∗
0, �̃

∗
0 2 6 2�0

�̃6, �̃2, �̃
∗
0 3 4 Γ1 (3)

�̃7, �̃1, �̃
∗
0 2 3 2�0

�̃8, �̃
∗
0, �̃

∗
0 2 2 2�0

Table 4.10 Rational modular elliptic surfaces

Remark 4.9.13 Assume k = C and consider extremal rational elliptic surfaces, all of
whose singular fibers are of additive type or, equivalently, whose 9-invariants are



4.10 Genus One Fibrations on Enriques Surfaces 501

constant. There are four of them, and their fibers are the following types:

�̃4 + �̃4, �̃7 + �̃∗1, �̃6 + �̃∗∗0 , �̃8 + �̃∗∗0 .

After an appropriate base change ramified over the two points corresponding to the
two singular fibers, the surface is birationally equivalent to a constant elliptic fibration
(� ×�) → �. We may assume� → P1 to be Galois, say with group�, and ramified
over two points {G1, G2}. In particular, � is a quotient of c1 (P1 − {G1, G2}) � Z,
which implies that� is cyclic. Moreover, the Riemann–Hurwitz formula implies that
� � P1. Thus, the original surface is isomorphic to the quotient (�×P1)/� → P1/�
by a cyclic group � of order 2, 4, 3, 6, respectively to the order in the list.

4.10 Genus One Fibrations on Enriques Surfaces

Every Enriques surface ( admits a genus one fibration, seeCorollary 2.3.4.Moreover,
there is a bĳection between the set of genus onefibrations ( and nef primitive isotropic
vectors in Num((). We also know from Corollary 2.2.9 that a genus one fibration on
( cannot be jacobian and that it has one or two multiple fibers of multiplicity 2. The
first case occurs if and only if ( is a non-classical Enriques surface in characteristic
? = 2.

Proposition 4.10.1 Let 5 : ( → � be a genus one fibration on an Enriques surface
and let 9 : � → � be the associated jacobian fibration. Then, � is a rational surface.

Conversely, let 9 : � → P1 be a jacobian genus one fibration on a rational
surface. Then, any torsor of 9 with two tame fibers of multiplicity 2 or with one wild
fiber of multiplicity 2 and ℎ0 (Tors('1 5∗O- )) = 1 is a genus one fibration on an
Enriques surface.

Proof The first assertion follows from Proposition 4.3.14, Corollary 4.3.18, and the
formula (4.3.7) for the canonical class.

Concerning the second assertion, let 5 : - → P1 be a torsor of 9 with at most two
double fibers. Then, the same comparison assertions show that - is a surface with
12 (-) = 10 and 11 (-) = 0. If we have two tame double fibers, then the formula for
the canonical class shows that  - is the difference of two half-fibers. Thus,  - ≠ 0
but 2 - = 0, so that - is a classical Enriques surface. If we have one wild fiber -C ,
then ? = 2 and it follows from Theorem 4.1.6 that 0C = 0 and the formula for the
canonical class shows that  - = 0 and dim�1 (-,O- ) = 1. Using the classification
of algebraic surfaces, we obtain that - is a non-classical Enriques surface. �

If ? ≠ 2, then it follows from Ogg–Shafarevich theory that an elliptic fibration on
an Enriques surface is uniquely determined by its local invariants of order 2 at the
pair of points where the associated jacobian fibration has a smooth or a multiplicative
type singular fiber. Moreover, any pair of local invariants of order 2 is realized. If
? = 2, then the situation is more complicated. It follows from Proposition 4.6.23
that a torsor with two tame double fibers exists if the local invariants are of order
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2 and at arbitrary two points where the fibers of the jacobian fibration are ordinary
elliptic curves. We can also construct a torsor with one wild double fiber, but we do
not know how to control the torsion of '1 5∗O- . We do not know how to compute
the length of T for a torsor over a quasi-elliptic fibration.

By Theorem 4.3.20, the types of singular fibers of a genus one fibration on
an Enriques surface are the same as the types of singular fibers on the associated
jacobian fibrationa. For example, one can define an extremal genus one fibration on
an Enriques surface to be a fibration such that the rank of Picfib is maximal possible,
that is, equal to 9. The types of singular fibers of such a fibration will be the same as
for the extremal jacobian fibration. We classified them in the previous section.

Lemma 4.10.2 Let ( be a non-classical Enriques surface in characteristic ? = 2.

1. If ( is a -2-surface, then every genus one fibration is elliptic.
2. If ( is a -2-surface (resp. "2-surface), then the unique multiple fiber of an elliptic

fibration on ( is either an ordinary (resp. supersingular) elliptic curve or it is
singular of multiplicative type (resp. additive type).

Proof Let � be the unique half-fiber of a genus one fibration on (. The short exact
sequence

0 → O( (−�) → O( → O� → 0

induces an isomorphism �1 ((,O() → �1 (�,O� ). One can check that it is com-
patible with the action of the Frobenius morphism F. In particular, F is bĳective
(resp. zero) on �1 ((,O() if and only if it is bĳective (resp. zero) on �1 (�,O� ).
If � is nonsingular, then � is an ordinary (resp. supersingular) elliptic curve if F is
bĳective (resp. zero) on �1 (�,O� ). If � is singular, then �1 (�,O� ) is isomorphic
to the Lie algebra of Pic0

�/k, hence the latter is G< (resp. G0) if F is bĳective (resp.
zero) on �1 (�,O� ). Finally, ( is a -2-surface (resp. an "2-surface) if F is bĳective
(resp. zero) on �1 ((,O(). From this, all statements follow.

In particular, if ( is a -2-surface, then the half-fiber is an ordinary elliptic curve or
singular of multiplicative type, which implies that the generic fiber cannot be quasi-
elliptic. Here is another argument: we know that ( is not unirational by Theorem
1.3.11. By Corollary 4.1.16 and the fact that the base of a genus one fibration on an
Enriques surface is P1, it follows that quasi-elliptic Enriques surfaces are unirational.
Thus, ( does not admit quasi-elliptic fibrations. �

The following theorem summarizes what we know about singular fibers of a genus
one fibration on an Enriques surface.

Theorem 4.10.3 Let 5 : ( → P1 be a genus one fibration on an Enriques surface.

1. If ? ≠ 2, then  ( ≠ 0 and 5 is an elliptic fibration with two half-fibers, each of
which is either nonsingular or singular of multiplicative type. In particular, there
exist no quasi-elliptic fibrations on Enriques surfaces in characteristic ? = 3.

2. If ? = 2, then there are three cases:
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a. If  ( ≠ 0, that is ( is classical, then 5 is either a quasi-elliptic or an elliptic
fibration. It has two half-fibers, each of which is either an ordinary elliptic
curve or singular of additive type.

b. If ( is a non-classical -2-surface, then 5 is an elliptic fibration with one
half-fiber that is a nonsingular ordinary elliptic curve or a singular curve of
multiplicative type.

c. If ( is a non-classical "2-surface, then 5 is either an elliptic or a quasi-elliptic
fibration with one half-fiber that is either a supersingular elliptic curve or a
singular curve of additive type.

Fibers and half-fibers on any ( are of the same type as the corresponding fibers of
the jacobian fibration on a rational surface.

Proof We have seen 5 has at least one and at most two multiple fibers in Corollary
2.2.9. Moreover, there is one multiple fiber if and only if ? = 2 and ( is non-classical.
Multiple fibers are of multiplicity 2.

It follows from Corollary 4.1.15 that there are no quasi-elliptic fibrations on ( if
? = 3. Moreover, if there are no quasi-elliptic fibrations on ( if ? = 2 and ( is a
-2-surface by Lemma 4.10.2.

If ? ≠ 2, then the assertions concerning the types of the multiple fibers follow
from Proposition 4.1.17.

If ? = 2 and ( is non-classical, then the assertions concerning the types of the
multiple fibers have been established in Lemma 4.10.2.

If ? = 2 and ( is classical, then it follows from Theorem 4.1.6 that the Picard
group of a half-fiber contains a non-trivial 2-torsion element. This happens only if it
is either an ordinary elliptic curve or a singular fiber of additive type.

The last assertion follows from Theorem 4.3.20. �

Remark 4.10.4 In characteristic ? = 2, there exist elliptic as well as quasi-elliptic
Enriques surfaces. Let us do some (naive) moduli counts and note that we properly
treat moduli spaces of Enriques surfaces in the next chapter.

Let 5 : ( → P1 be an elliptic fibration on an Enriques surface (, let 9 : � → P1

be its associated jacobian fibration, and assume ? = 2. We know that the Weierstrass
fibration of 9 is of the form

H2 + (01G + 03)H + G3 + 02G
2 + 04G + 06 = 0,

where the 0: are binary forms of degree : . It follows that the generic fiber of 9 is
supersingular if 01 = 0. Otherwise, it has one fiber that is a supersingular elliptic
curve or a singular fiber of additive type.

1. Concerning classical Enriques surfaces: Pencils of plane cubic curves depend
on 8 parameters and a general pencil defines a jacobian elliptic fibration with
non-constant 9-invariant. Thus, classical Enriques elliptic surfaces depend on 10
parameters defined by a choice of two smooth ordinary fibers of its jacobian
fibration and a non-trivial 2-torsion point on each of them. Note that a classical
Enriques surface may not admit any elliptic fibrations but only quasi-elliptic
fibrations, We will see examples of such surfaces in Volume II.



504 4 Genus One Fibrations

2. Concerning non-classical Enriques surfaces: First, we recall from Example 4.2.15
that a wild fiber of multiplicity < = ?, where the length of the torsion sheaf is
equal to 1, is defined by a choice of an element in the kernel of the homomorphism
Pic(-2) → Pic(-1), which is isomorphic to the additive group of k. This suggests
that a wild fiber of an elliptic fibration on an Enriques surface depends on one
parameter.

a. Thus, a -2-surface is defined by choosing an ordinary smooth fiber or a fiber of
multiplicative type and a wild fiber over it, which gives 10 = 8+ 2 parameters.

b. On the other hand, an "2-surface is defined by the choice of a supersingular
smooth fiber or a fiber of additive type that vary in a finite set unless 9 ≡ 0,
which gives one condition on the moduli of the jacobian surface. This gives
us at most 8 + 1 = 9 parameters.

We can also do a moduli count for Enriques surfaces that admit a quasi-elliptic
fibration. We know that jacobian quasi-elliptic fibrations on rational surfaces are
extremal. It follows from Table 4.9 that they depend on at most two parameters.
Similar to the above, we conclude that:

1. Classical Enriques surfaces admitting a quasi-elliptic fibration depend on at most
6 parameters (two points on the base and one parameter for the identity component
of the corresponding fiber).

2. Non-classical "2-surfaces admitting a quasi-elliptic fibration depend on at most
4 parameters.

Remark 4.10.5 In a recent paper [372], one can findmore precise count of parameters
of quasi-elliptic fibration on Enriques surfaces. First, the authors find normal forms
for equations of a quasi-elliptic surface.

1. If ( is classical, then it can be given by the following affine equation:

H2 + C201H + CG4 + C300G
2 + C302G + C3 (1 + C4) = 0.

2. If ( is supersingular surface, then it can be given by the following affine equation:

H2 + C401H + CG4 + C500G
2 + C602G + C3 = 0.

coefficients 08 are polynomials in C of degree ≤ 8.
From this the authors Here the deduce that classical (resp. supersingular) quasi-

elliptic surfaces with a fixed jacobian fibration with only irreducible fibers depend
on 4 (resp. 3). This confirms our count in the classical case and also confirms our
conjecture from Remark 4.8.12.

We refer to [438] where one can find the classification of all possible collections
of singular fibers on rational elliptic surfaces in characteristic 2. This gives the
classification of possible collections of singular fibers of an elliptic fibration on an
Enriques surface in characteristic 2. For example, it follows that the singular non-
multiple fibers of a "2-surface whose jacobian fibration has a 9-invariant equal to
zero are all of multiplicative type.
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The following proposition often allows us to distinguish an elliptic fibration from
a quasi-elliptic fibration. Recall our discussion of bielliptic maps in Section 3.3.

Proposition 4.10.6 Let ( be an Enriques surface in characteristic ? = 2, let
|2� |, |2� | be a non-degenerate *-pair of genus one pencils, and let q : ( → D
be the corresponding bielliptic map.

1. If q is inseparable, then both genus one pencils are quasi-elliptic.
2. If q is separable, then at most one of the two pencils can be quasi-elliptic. If one

of them is quasi-elliptic, then its curve of cusps is a component of a non-multiple
fiber of the second pencil, as well as a component of the ramification curve of q.
If ( is classical, then a general member of the other pencil, which is necassirly
elliptic, is an ordinary elliptic curve.

3. � and � have no common irreducible components.

Proof First, if q is inseparable, a general member of |2� | is equal to the pre-image
of a conic on D under an inseparable cover. Obviously, it cannot be an elliptic curve.
The same argument applies to |2� |. In particular, both pencils are quasi-elliptic.

Second, suppose that q is separable. In this case, we already saw that at most one
of the pencils can be quasi-elliptic in Proposition 3.3.23. Since a -2-surface does
not admit quasi-elliptic fibrations, we may assume that ( is either a classical or an
"2-surface and D = D1 or D3, respectively.

Suppose ( is classical. In the notation of Theorem 3.3.11, the cover is defined
by a quartic curve / (0)0 ∈ |240 − 42 − 44 | that passes through the singular points
of D and an octic / (1)0 ∈ | − 2 D |. Suppose that one of the genus two fibrations
is quasi-elliptic. We may assume that it is given by the pencil of lines |40 − 41 | in
the double plane model of (. Let � be the conic in the plane representing the curve
/ (0)0. If a general line from this pencil intersects �, transversally at two points,
then its pre-image must be an elliptic curve. So, we obtain that point ?1 must be the
strange point of the conic �, that is, a general line through ?1 is touching � at one
point. If additionally / (1) has / (0)0 as a component of multiplicity 2 (the other
components will be represented by lines passing through ?1), then the pre-image of
each point of � will be a cusp of a member of |2� | and the proper transform of �
will be the curve of cusps. In the usual coordinates used in Section 0.5, the equation
of � must be G2

0 + 0G1G2 = 0. The second genus one pencil is given by the pencil
of conics |240 − 42 − 43 − 44 − 45 | ⊂ |240 − 42 − 44 |. This shows that the branch
curve of q on D1 contains two disjoint lines corresponding to double fibers of the
genus one fibration |2� | defined by the pencil |240 − 42 − 43 − 44 − 45 |. Thus, any
member of the pencil |2� | different from the one defined by the conic � intersects
it at two distinct points and, hence, it is an ordinary elliptic curve. Also, we see that
the inverse transform of � on ( is a simple fiber of the elliptic fibration. The proper
inverse transform of � is its irreducible component.

Next, suppose ( is an "2-surface. Then D = D3 and / (0)0 is a rational quartic
curve from |240 − 42 − 43 |. The curve / (1) is the union of the exceptional curve
� = �1 + �2 + �3 + �4 on D and a curve / (1)0 from | − 2 D |. The pencils |2� | and
|2� | are the pre-images of the pencils of conics |240− 42− 43− 44− 45 | and |40− 41 |
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(recall that a minimal resolution of D is the blow-up of ?1, ?5 � ?4 � ?3 � ?2).
We may assume that, in the plane model, a general member of |2� | corresponds to a
general line ℓ through ?1 and that / (0)0 is represented by a conic through ?2, ?3. If
we choose coordinates in the plane such that ?1 = [1, 0, 0] and ?2 = [0, 1, 0], then
a conic from |240 − ?2 − ?3 | for which ?1 is its strange point must have an equation
G2

0 + 0G1G2 = 0. So, if we choose such a conic for � and additionally choose / (1)0
singular along / (0)0, then the pencil |40 − 41 | defines a quasi-elliptic pencil whose
curve of cusps is equal to the proper inverse transform of�. A general member of the
pencil |240−42−43−44−45 |may intersect� at two points if� ∉ |240−42−43−44 |.
In this case, the second pencil is elliptic and its general member is an ordinary elliptic
curve. If � ∈ |240 − 42 − 43 − 44 | (resp. � ∈ |240 − 42 − 43 = 44 − 45 |), then �
contributes to the branch curve on D the line ℓ1 with class 45 and |2� | is an elliptic
pencil whose general fiber is a supersingular elliptic curve.

To prove (3), we use that � is numerically 2-connected, that is, if we write �
as a sum of two proper effective divisors � = �1 + �2, then �1 · �2 ≥ 2, see
Section 2.5. To see this, we use that �2

1 < 0, �2
2 < 0, and � · �1 = � · �2 = 0,

hence 2�1 · �2 = −�2
1 − �

2
2 + 2�1 ≤ −4. Now, if �1 is the maximal effective

divisor with �1 ≤ � and �1 ≤ � and if we let � = �1 + �2 and � = �1 + � ′2
be decompositions into effective divisors, then we have �2.�

′
2 ≥ 0. Therefore

1 = � · � = (�1 + �2) · � = (�2 · �1 + �2 · � ′2) ≥ �2 · �1 and hence, �1 = 0. �

In the following example, we construct a couple of genus one fibrations on an
Enriques surface in characteristic ? = 2 and describe their fibers.

Example 4.10.7 Suppose ( → D1 is a separable double cover of the anti-canonical
del Pezzo surface D1, that is, the quartic symmetroid surface in P4 given in Corollary
0.6.14, see also Theorem 3.3.4. We know that it is a split Artin–Schreier cover
defined by minimally resolving the surface given by equation + (�),

� = I2 + C1C2�2 (C0, C1, C2)I + C1C2�6 (C0, C1) = 0, (4.10.1)

where � = + (�2) is a conic from the linear system |240 − 42 − 44 |, and where
, ′ = + (�6) is a sextic from the linear system |640−2(41+· · ·+45) |. The polynomial
�6 is given in (3.3.9). Suppose the conic �2 = 0 is nonsingular and that m�2

mC0
≠ 0. The

latter condition means that the conic has only two tangent lines containing the point
?1 = [1, 0, 0]. We also assume that none of the lines C1 = 0, C2 = 0 is the tangent
line. Let ℓ : C2 + _C1 = 0 be a line passing through ?1 that intersects � at two distinct
points. The restriction of the cover over the line is the Artin–Schreier split cover

D2 + 0(C)I + 1(C) = 0,

where C = C1/C0 is the affine parameter on ℓ, D = I/C2, 0(C) = 0 (resp. 1(C) = 0)
give the intersection points of ℓ with � (resp. with, ′ outside ?1). We see that, for
a general line ℓ, the cover is a nonsingular elliptic curve. It is a fiber of the elliptic
fibration |�1 | on ( defined by the pencil |40 − 41 |. The fiber is singular if and only
if 1′(2)2 + 1(2)0′(2)2 = 0, where 2 is one of the two roots of 0(C). For example,



4.10 Genus One Fibrations on Enriques Surfaces 507

this happens if the conic � and the sextic, ′ intersect at some point @ such that line
ℓ = ?1, @ is tangent to, ′ at @. Now, let us specialize and see what happens.

1. First, suppose ℓ is tangent to � at some point C = 2 ≠ 0. Replacing C by C + 2, the
equation becomes

D2 + C2D + 1(C + 2) = 0. (4.10.2)

a. If 1′(2) ≠ 0, that is, if the coefficient of 1(C + 2) at C is not zero, then the
cover is a smooth supersingular elliptic curve. Using the equation of, ′ from
(3.3.9), we find that the cover is singular if and only if

�2 (1, _) + _22�4 (1, _) = 0, (4.10.3)

where �2 and �3 are linear forms from (3.3.9). Thus, we may have 0, 1 or 2
supersingular elliptic fibers.

b. If 1′C (2) = 0, then the pre-image of the line ℓ in the cover is a singular curve
with an ordinary cusp. After minimally resolving the singular point of the
cover, we obtain that the corresponding fiber is of additive type.

2. Next, we assume that a general line in |40 − 41 | intersects the conic � with
multiplicity 2. For example, � could be the double line ℓ = ?2, ?4. If we assume
that equation (4.10.3) is not identically zero, then a general fiber of the elliptic
fibration is a supersingular elliptic curve given by equation (4.10.2). The absolute
invariant of the associated jacobian fibration is identically zero and all singular
fibers must be of additive type.
The equation of the conic � must be of the form � = C20 + 0C1C2 = 0. A line
C2 + _C1 = 0 intersects the conic at the point [1, 1,

√
_−10]. Thus, by (4.10.3), we

must have 22 = _−10 and thus, the equation transforms to 0�2 (1, _)+�4 (1, _) = 0.
In this case, the equation of the curve, ′ takes the form

C40�1 (C1, C2) + C20C1C2�3 (C1, C2) + C0C1C2� (C0, C1, C2)�4 (C1, C2) + C21C
2
2�5 (C1, C2) = 0.

Observe that if we take the partial derivatives of the equation of the surface, we
get m�

mC0
= m�

mI
= 0 and m�

mC1
= m�

mC2
when restricted to the conic �. This shows

that the surface has some singular points over the curve �. The proper transform
of � must be the curve of cusps on (. Also, note that the exceptional curves 43
and 45 on D enter in the branch locus because the conic � belongs to the pencil
|240 − 42 − 43 − 44 − 45 |. This shows that the genus one pencil |�2 | on ( defined
by this pencil is an elliptic fibration. So, we have constructed an example of a pair
of genus one fibrations |�1 | and |�2 |, one is elliptic and the other is quasi-elliptic
such that the linear system |�1 +�2 | is bielliptic and maps ( to a 4-nodal quartic
del Pezzo surface D1. Any conic from the pencil |240−42−43−44−45 | is tangent
to a line from the pencil |40 − 41 | at some point. We see that a general fiber of the
genus one pencil |�2 | is tangent to the general fiber of the quasi-elliptic pencil
|�1 | on ( defined by the pencil |40 − 41 | at two points.
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Let ? = 2 and ( be a classical Enriques surface or an "2-surface. In these
two cases, there exists a non-zero global 1-form on ( and more precisely, we have
dim�0 ((,Ω1

(/k) = 1, see Section 1.4. The following proposition is taken from [364].

Proposition 4.10.8 Assume ? = 2 and let 5 : ( → P1 be a genus one fibration on a
classical or an "2-Enriques surface ( as above. Letl be a generator of�0 ((,Ω1

(/k).
Then there exists a rational 1-form [ on P1 such that l = 5 ∗ ([). More precisely,
there exists an affine coordinate C on P1, such that l = 5 ∗ (3C/C) (resp. l = 5 ∗ (3C))
if ( is classical (resp. an "2-surface).

Proof First, assume that ( is a classical Enriques surface and let 5 be as in the
proposition. Choose an affine coordinate C on P1, such that the multiple fibers of 5
are over 0 and ∞. Set [ := 3C/C. Let ' be an irreducible component of the fiber
�0 over 0 and let < be its multiplicity. Then, 5 is given locally at a general point
of ' by C = nq2<, where q = 0 is a local equation of ' and where [ is a unit.
Next, 5 ∗ ([) = q2<3n is regular at this point. A similar argument shows that 5 ∗ ([)
is regular at a general point of any irreducible component of the other multiple
fiber. It is obviously regular over the complement of the two multiple fibers. Thus,
5 ∗ ([) is regular outside ofa finite set of points, and hence regular everywhere. Since
�0 ((,Ω1

(/k) is one-dimensional, we obtain l = 5 ∗ (2[) for a suitable constant 2.
Second, assume that ( is an "2-surface. Let � = 2� be the unique double fiber of

a genus one fibration 5 . Since this fiber is wild, we have dim�0 (�,O� ) ≥ 2. The
exact sequence

0 → O( (−�) → O( → O� → 0 (4.10.4)

defines a non-trivial coboundary homomorphism X : �0 (�,O� ) → �1 ((,O( (−�)).
Let � ′ be any other fiber. As above, we chose an affine coordinate C to assume that
� is a fiber over ∞ and � ′ is the fiber over 0. Then O( (−� ′) � O( (−�) and the
isomorphism is defined explicitly by multiplication by a rational function 5 ∗ (C),
which we identify with C. Replacing � by � ′ in exact sequence (4.10.4), we obtain
an isomorphism �1 ((,O( (−� ′)) → �1 ((,O(). Let U ∈ �0 (�,O� ) be such that
X(U) ≠ 0. Choose an affine open cover (*8) such that U is represented by regular
functions 68 on *8 and X(U) is represented by a cocycle ( 58 9 ) in this cover. The
composition �0 (�,O� ) → �0 ((,O( (−�)) → �0 ((,O( (−� ′)) → �1 ((,O() al-
lows us to write 68 − 6 9 = 58 9 C. Since the Frobenius endomorphism acts trivially on
�1 ((,O(), we obtain that 5 2

8 9
= 58 − 5 9 for some regular functions 58 on *8 . This

gives
(68/C8)2 − 58 = (6 9/C 9 )2 − 5 9 on *8 ∩* 9 .

We know that a nonzero regular 1-form l on ( can be defined locally by 358 . The
previous equality shows that l = 3q, where q is a rational function on ( defined by
q8 = (68/C8)2 − 58 on *8 . This rational function is regular outside � and hence, it is
equal to 5 ∗ (ℎ(C)) for some rational function ℎ(C) on the base. Thus, l = 5 ∗ (3ℎ(C)).
The function ℎ(C) must have pole of order 2 at ∞ and it must be regular outside ∞.
Thus, ℎ(C) = 0C2 + 1C + 2 and hence, 3ℎ(C) = 13C. This shows that l can be written
in the form 5 ∗ (3C). �
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Next, we study Enriques surfaces, genus one fibrations, and the induced fibrations
on their K3-covers. Let c : - → ( be the K3-cover of ( and let 5 : ( → P1 be a
genus one fibration on (. Consider the composition 6 = 5 ◦ c : - → ( → P1. Since
6∗O- = 5∗ (c∗O- ) is a locally free sheaf of algebras of rank 2, the Stein factorization
gives us a degree 2 morphism 0 : � = Spec(6∗O- ) → P1 such that the following
diagram is commutative:

-
c //

5̃

��

(

5

��
�

0 // P1.

(4.10.5)

Let C ∈ P1 be a point such that the fiber �C of 5 is not multiple.

1. If c is a -2-cover corresponding to the canonical sheaf l( , then the restriction
of l( to � is isomorphic to the canonical sheaf l� , which has has a nonzero
section. This implies that the pre-image of � in - splits and hence, 0 : � → P1

is étale over C. Thus, 0 is a separable cover of degree 2, which is ramified over
two points corresponding to the multiple fibers.

2. Next, suppose c is not a -2-cover. The exact sequence

0 → O( ( ( − �) → l( → l� → 0

together with the fact that ℎ1 (O( (−�)) = ℎ0 (O� ) = 1, shows that the homo-
morphism �1 ((,O() → �1 (�,O� ) is zero. Thus, the restriction of c defined
by some U ∈ �1 ((,O() to � is a trivial principal cover. It follows from � � P1

that the cover 0 : � → P1 is an inseparable -2-cover defined by the sheaf
L � OP1 (−2) and a section B of this sheaf vanishing at the point corresponding
to the unique half-fiber.

In particular, we see that a general fiber of 5̃ is a genus one curve and that� � P1.
Let us now study the genus one fibration 5̃ : - → � and its singular fibers in

detail.
First, assume that - is smooth, that is, we have ? ≠ 2 or that ( is a -2-surface.

The morphism 5̃ defines a genus one fibration on the K3 surface - . We now discuss
its singular fibers. Obviously, each non-multiple fiber of 5 defines two isomorphic
fibers of 5̃ . If a half-fiber � is smooth, then its pre-image is a smooth fiber �̃ of 5̃ and
the morphism �̃ → � is an étale double cover corresponding to the sheaf O� ( ().
If � is of type �̃=, then a straightforward computation shows that �̃ is of type �̃2=+1.

Let us study a more interesting case when ? = 2 and - is not smooth. Assume
first that - is normal and that is has only rational double points (this is the generic
case if - is not smooth). Let f : - ′ → - be a minimal resolution of singularities
of - , which is a K3 surface. The composition 5̃ ◦ f : - ′ → - is a relatively
minimal genus one fibration. Let us study the singular fibers of this fibration and the
singularities of - .

1. First, assume that � is a non-multiple fiber.
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a. If it is of type �̃=, then the morphism 5 is locally given at a singular point
of the fiber as C = D{ and the pre-image of C on � is equal to C1/2. Thus, the
pre-image of the singular point of � is an ordinary double point of - . After
resolving it, we obtain a fiber of type �̃2=+1, as in the case of ? ≠ 2.

b. Next, assume that � is of type �̃∗∗0 . Then, we have C = n (D2 + {3), where n is a
unit at the singular point of the fiber. The singular point of - over this point is
locally given by I2 = n (D2 + {3). Replacing n by n1/3, we may assume that the
equation is I2 = nD2 + {3. Write n = n2

0 + [ and replacing I by I + n (0)D, we
may assume that the equation is I2 +0(D, {)D2 + {3 = 0, where 0(D, {) vanishes
at the singular point. It follows from the classification of rational double points
that the singular point could be of type �̃ (0)4 , �̃

(0)
7 , or �̃8.

c. Next, suppose � is of type �̃∗1. Similarly to the previous case, the equation of
the singular point is I2 + 0(D, {)D2 + D{2 = 0. We get the singular fiber over
this point is of type �̃ (0)= for some = ≥ 6.

d. Finally, if � is of type �̃∗2, then we get the equation I2 + 0(G, H)G3 + H3 = 0.
The possible type of the singular fiber is �̃ (0)4 or �̃ (0)7 .

2. Next, assume that � is a half-fiber of 5 , that is, � = 2�. Following the proof of
Theorem 4.10.3, we see that the restriction of - → ( over � is a principal cover
of degree 2. Using Example 0.3.8, we conclude that if � is an ordinary (resp. su-
persingular) elliptic curve, then its pre-image is an ordinary (resp. supersingular)
elliptic curve. If � is of type �̃∗∗0 , then the pre-image of � is a singular fiber of
additive type. Unfortunately, nothing more can be said.

The following result describes the pre-image of rational 2-sections of an elliptic
fibration 5 : ( → P1 on an Enriques on its K3 cover in characteristic ? ≠ 2. In
particular, this shows that the induced elliptic fibration on the K3 cover is jacobian
in this case.

Lemma 4.10.9 Assume ? ≠ 2. Let 5 : ( → P1 be an elliptic fibration on an Enriques
surface and let c : - → ( be the K3 cover of (. Let ' be an irreducible rational
bisection of 5 with < ordinary nodes or smooth. Then, its pre-image under c splits
into two smooth rational curves '+ + '−, which intersect transversally at < pairs of
points and each pair is over one of the nodes.

Proof First, if ' is smooth, then the assertion is obvious.
Next, if < = 1, then ' is of arithmetic genus one and since it is a bisection,

it must be a half-fiber of some elliptic fibration on (. In this case, we know that
�1 (O( (−' +  ()) = �1 (O( (')) = 0. The short exact sequence

0 → O( (−' +  () → O( ( () → O' ( () → 0

shows that �0 (O' ( ()) = 0, and hence, the restriction of the canonical cover over
' is a non-trivial étale cover.

Finally, if < ≥ 2, then '2 > 0 and �1 (O( (')) = 0 by the Vanishing Theorem.
Let ? : '̃ → ' be the normalization map. The base change - ×( '̃ → '̃ splits into
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components, whose images under the first projection are the curves '+ and '− as
asserted. �

The following extends a result of Kondō [409, Lemma (2.6)], see also [315]. It
connects a genus one fibration 5 : ( → P1 on an Enriques surface with its jacobian
fibration 9 : � → P1, as well as with the induced fibration 5̃ : - → P1 on the K3
cover c : - → (. It also gives a recipe to construct an Enriques surface from a
jacobian elliptic fibration on a rational surface and the choice of two points on the
base of the fibration, which we will discuss after this result. We will refer to it as a
quadratic twist construction.

Proposition 4.10.10 Assume ? ≠ 2 and let 5 : ( → P1 be an elliptic fibration on an
Enriques surface ( with two half-fibers �C1 and �C2 . Let c : - → ( be the K3 cover
of (. Suppose that 5 admits a rational bisection ' with < ordinary nodes.

1. The Stein factorization of 5 ◦c : - → P1 is equal to the composition of a jacobian
elliptic fibration 5 ′ : - → P̃1 followed by the double cover q : P̃1 � P1 → P1

that is ramified over C1, C2.
The surface - is a minimal resolution of the base change 9 : � → P1 along the
double cover P̃1 → P1 that is ramified over C1, C2. It coincides with � if the fibers
�C1 , �C2 are smooth.

2. There exists an involution f : - → - , such that the quotient � ′ = -/(f) is
smooth and admits a birational morphism V : � ′ → �, where 9 : � → P1 is the
jacobian fibration of 5 : ( → P1.

If � denotes the image of '+ + f('+) on �, then � is a rational bisection of 9 and
we have the following additional properties:

1. The bisection ' splits into two sections '+ and '− of the induced fibration 5̃ on
- . The curve '− is f-invariant and its image on � is a section O of 9 : � → P1.

2. The bisection � is tangent to the fibers �C1 , �C2 if they are smooth.
3. If �C8 is singular of type �̃2:−1 (resp. �̃2: ), then � is tangent to an irreducible

component (resp. passes through the singular point) opposite to the component
intersected by O.

4. The bisection � intersects the zero section O at < ordinary double points.
5. If none of the fibers �C8 is singular of type �̃2:+1, then the section � is invariant

with respect to the negation involution of � → P1 with respect to the zero section
O.

( ×P1 P̃1 -
/f //

c

yy

5 ′

��

� ′

V

��
(

5

��

P̃1 ×P1 �
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�
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��
P1 P̃1oo // P1
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Proof By Lemma 4.10.9, the bisection ' splits on the canonical cover - into the
union of smooth rational curves '+ +'−. They intersect at 2< points, where < is the
number of double points of '. As explained earlier in (4.10.5), the canonical cover
c : - → ( is obtained from the base change 0 : P̃1 → P1 ramified at the points
C1, C2. One can see also that the base change cover coincides with the composition
'̃ → '

c→ P1, where '̃ → ' is the normalization map.
We use '+ to be the zero section of the elliptic fibration 5 ′ : - → P̃1 and we let

C'− : - → - be the translation automorphism that sends '+ to '−. Let

f := C'− ◦ g,

where g is the deck involution of the K3-cover. Set '′− := C'− ('−), where C'− is the
translation automorphism with respect to the zero section '+. Then

f('+) = C'− ('−) = '′−, f('−) = C'− ('+) = '−.

The automorphism f preserves the elliptic fibration 5̃ , but it acts as an involution
on the base of the fibration. Thus, f2 acts is identity on the fibration and fixes its
section '−. It must act on the general fiber -[ as an automorphism of the elliptic
curve -[ with the zero point '−. Since g (resp. C'− ) acts as −1 (resp. identically)
on �0 (-, l- ) � �0 (-[ , l-[ ), we see that f acts as −1 on �0 (-, l- ). Hence, f2

acts identity on this vector space. Since a non-trivial automorphism of an elliptic
curve that acts non-identically on the regular 1-form, we get that f2 must be the
identity.

Let � ′ = -/(f) be the quotient by the cyclic group (f). The involutionf switches
the non-multiple fibers and its fixed points have to lie on the half-fibers. The curve
'± intersects �̃8 at the point ? (8)+ and ? (8)− . If �8 is singular of type �̃:8−1 (type �̃0∗ if
:8 = 1), then �̃8 is singular of type �̃2:8−1. We index them by � (8)B , where B ∈ Z/2:8Z,
?+ ∈ � (8)0 , and ?− ∈ � (8):8 . We call the components � (8)B even (resp. odd) if B ≡ 0
mod 2 (resp. B ≡ 1 mod 2).

The restriction of C'− and g to �̃8 sends ?
(8)
+ to ? (8)− . If � is smooth, then they are

both translations by the same point, so that f acts as the identity on �̃8 . Suppose that
�8 is singular. Then g and C'− send �

(8)
B to � (8)−B and hence, f leaves all components

invariant. Since � (8)
:8

contains 3 fixed points of f, it is pointwise fixed. Suppose
that one of the intersection points � (8)

:8−1 ∩ �
(8)
:8−2 or � (8)

:8−1 ∩ �
(8)
:8−2 is an isolated

fixed point of f, say the first case occurs. Then the extension of f to the blow-up
of this point has no isolated fixed points on the proper transform of � (8)

:−1, whose
self-intersection is equal to −3. Taking the quotient by f, we find a contradiction
using how intersection numbers behave under finite maps. Continuing in this way,
we obtain that the components � (8)B with B ≡ :8 mod 2 are pointwise fixed. In
particular, if : is even, then � 80 is pointwise fixed. Otherwise, f is an involution on
� 80 that fixes two points �

(8)
0 ∩�

(8)
±1 and sends ? (8)+ to @ (8)+ = �

(8)
0 ∩ '

′
−. The point @

(8)
+

is a 2-torsion point of �̃♯
8
with respect to the group law, where ? (8)+ is the zero point.
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Thus, we infer from the above discussion that the fixed locus -f of f consists
of disjoint union of :1 + :2 isolated curves contained in the fibers -C1 and -C2 . Two
(resp. one) of them are elliptic curves if :1 + :2 = 0 (resp. :1 + :2 = 1), the rest of
them are (−2)-curves. If :8 > 0, then the image of �̃8 in � ′ = -/(f) is a (2:8)-gon
of smooth rational curves. If :8 is odd (even), then the odd (even) components are in
-f . Their images on � ′ are (−2)-curves. The images of the remaining components
are (−1)-curves on � ′. Blowing down these (−1)-curves, we obtain a rational elliptic
surface 9 : � → P1 with a section O that is equal to the image of '− and a 2-section
�, the image of '+ + '′−. The involutions g and f of - differ by a translation
automorphism and act on the base P̃1 of the fibration 5 ′ : - → P̃1 in the same way.
This shows that the generic fiber of 5 ′ is obtained from the generic fiber of 5 or 9
by the same base change [̃→ [, where [̃ is the generic point of P̃1. This proves that
9 : � → P1 is the jacobian fibration of 5 : ( → P1. We also see that the base change
P̃1 ×P1 � is singular at the pre-images of the singular points of �C1 ∪ �C2 and hence,
the morphism - → P̃1 ×P1 � is a minimal resolution of singularities. If :8 is odd,
the exceptional curves over singular points of �C8 are even (odd) components of -C8 .

Suppose �C8 is smooth. Then, '+ and '′− intersect it at the same point ? (8)+ . Since
�8 lies in the ramification locus of - → � ′, their image is a bisection � which is
tangent to � ′C8 at the image of ? (8)+ . If �C8 is singular and :8 is odd, then '+ and '′−
intersect at different points in an even component of �C8 . Their images belong to a
(−1)-curve of �C′

8
, which is blown down to a point on �C8 . Thus, the images of '++'′−

is a bisection on � that passes through the singular point of �C8 . It is opposite of the
component that intersects O.

To see the last property we use that

'+ · '− = f('+) · f('−) = '′− · '− = 2<.

This shows that the image � of '+ + '− intersects the image O of '− at < double
points, which are the images of the intersection points of '+ and '−. �

Wenow explain a converse result, which gives an explicit construction of Enriques
surfaces. Let � → , be the birational morphism from � to its Weierstrass model.
Recall that , is a double cover of the rational minimal ruled surface F2 branched
along the union of the special section � and a curve � ∈ |6f + 3e|, where f is the
divisor class of a fiber of ? : F2 → P1 and e is the divisor class of � . The linear
system |2O − 2 � | defines a map equal to the composition of the map � → F2 and
the contraction of the special section.

1. Suppose that �C8 is smooth. Since '+ and '′− intersect -C8 at a 2-torsion point with
respect to the zero section '−, the bisection� is tangent to �C8 at a 2-torsion point
with respect to the zero section O. The image of �C8 on F2 is the fiber ?−1 (C8),
which intersects � transversally at 3 points. The image �̄ of � in F2 passes
through one of them and intersects the fiber transversally at this point. This shows
that �̄ is a section of ? and hence, belongs to the linear system |0f + e|. Since
� · O = 2<, the curve �̄ is tangent to � at < points and hence, belongs to the
linear system | (2<+2)f+e|. We have �̄ ·� = ((2<+2)f+e) · (6f+3e) = 6(<+1).
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If �̄ intersects � transversally at some point not lying over C1 and C2, then the
composition of the normalization map '+ → � and the double cover � → �̄

is ramified over more than 2 points and hence is not rational. This shows that �̄
must be tangent at all 1

2 (6(< + 1) − 2) = 3< + 2 intersection points with � not
over C1, C2. Since dim((2< + 2)f + e) = 3 + 2<, we see that one does not expect
that such curve � exist. This agrees with the fact that a general Enriques surface
does not contain a rational bisection '.

2. Suppose that �C8 is of type �̃:8−1. Then � has a simple singular point 18 of type
0:8−1 on ?−1 (C8). The fiber intersects � with multiplicity 2 at this point. If :8 is
odd, then the curve �̄ is nonsingular at 18 and intersects � with multiplicity 2:8
at this point. It belongs to the linear system | (2< + 2)f + e) | and the rest of the
analysis is similar to the previous case. If :8 is even, then 18 is a simple singular
point of �̄ of type 0:8+1. It intersects � with multiplicity 4:8 at this point. The
curve �̄ is a bisection of ? and splits under the cover � → F2 into the sum of �
and � ′ = ](�), where � is the negation involution. It belongs to the linear system
| (4< + 4)f + 2e|. The singularities of �̄ on � are tacnodes locally isomorphic to
H2 + G4 = 0, where H = 0 is the local equation of � . We have �̄ · � = 6(< + 2)
and we have to impose some further conditions to guarantee that � is a rational
curve.

Example 4.10.11 Let ( be an unnodal Enriques surface (that is, ( does not contain
smooth rational curves) that admits an elliptic fibration with an irreducible nodal
half-fiber. By Lemma 4.10.9, this half-fiber splits in the K3-cover c : - → (. To
construct the surface ( from its jacobian fibration, we have to find a curve �̄ in
the linear system |4f + e| on F2 that satisfies the following condition: it is tangent
to the exceptional section at one point, it passes through a point 11 ∈ � where
it is tangent to the fiber of ? : F2 → P1, and it passes through another point
12 ∈ �, where the fiber intersects � transversally and tangent to other four points
on �. Since dim |4f + e| = 7 and each tangency condition imposes one constraint,
counting constants, we can always find an irreducible member of |4f + e| satisfying
our conditions. The moduli space of curves � is of dimension 8 and the curves �̄
depend on one parameter corresponding to a choice of one smooth half-fiber on (.
From this, we see that the moduli space of unnodal Enriques surfaces that admit an
elliptic fibration with an irreducible nodal half-fiber depends on 9 parameters. Over
C, this corresponds to the fact that the Picard number of the K3-cover is equal to 11,
see Section 5.3.

Example 4.10.12 Assume that ( is a nodal surface, that is, ( contains at least one
smooth and rational curve. We will prove in Theorem 6.3.3in Volume II that (
admits an elliptic fibration with a special bisection '. Suppose for simplicity, that its
half-fibers are smooth. Then, < = 0 and we have to look for a curve �̄ ∈ |2f + e| that
passes through two fixed points on � and also tangent to � at two other points. The
set of pairs (�̄, �) ∈ |2f + e| × |6f + 3e| satisfying these conditions is an irreducible
subvariety of |2f + e| × |6f + 3e| that is fibered over |6f + 3e| with general fiber
isomorphic to a hypersurface in |2f+ e|. It is easy to see that the variety of such pairs
modulo Aut(F2) is of dimension 9. This confirms our expectation that the moduli
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space of nodal Enriques surface is of dimension 9: all Enriques surfaces form a 10-
dimensional moduli space and containing at least one smooth rational curve should
impose one condition.

Example 4.10.13 Assume ? ≠ 2, 3 and let

� (C) := G3 + H3 + I3 + CGHI = 0

be the Hesse pencil of plane cubics (4.9.33). It has nine base points

?0 = (0, 1,−1), ?4 = (0, 1,−n), ?7 = (0, 1,−n2),

?2 = (1, 0,−1), ?5 = (1, 0,−n2), ?8 = (1, 0,−n),

?3 = (1,−1, 0), ?6 = (1,−n, 0), ?9 = (1,−n2, 0),

where n denotes a primitive third root of unity. Let � → P1 be the corresponding
rational elliptic surface. The base points lead to sections of this elliptic fibrations
and we fix one of the base base points, say ?1 = (0, 1,−1) to define a group law on
� → P1 by declaring the corresponding section to be the zero section.

The polar conic of + (�C ) splits into the union of the tangent line + (3H + 3I − CG)
at the point (0, 1,−1) and the line + (H + I) that does not depend on C. It is called the
harmonic polar line. It intersects any member at the set of 2-torsion points of the
connected component of identity of (�♯C )0. Its image in F2 is our curve �. It has four
cusps, the images of the components of singular fibers different from the one that
intersects O. Fix two cusps 28 , 2 9 on � and consider the pencil  (8, 9) in |2f + e| of
conics (in the embedding of F2 into P3) passing through 28 , 2 9 . A general member �̄
of the pencil intersects � with multiplicity 2 outside 28 , 2 9 . It is tangent to � at two
points 11, 12.

Now we can make our construction of a torsor 5 : ( → P1 with two smooth
fibers over the projections of 11, 12 under the projection ? : � → P1. This way, we
construct a pencil of Enriques surfaces with an elliptic fibration of Hesse type (that
is, with four singular fibers of type �̃2) and a special bisection.

We can do this even more explicitly: it follows from [16, Remark 6.2] that the
map q′ : P2 d �

q
→ F2 is given by the linear system

0(G3 + H3 + I3)2 + 1G2H2I2 + 2GHI(G3 + H3 + I3) + 3Φ6 (G, H, I)

of plane curves of degree 6 with double points at the base points ?2, . . . , ?9. Here,Φ6
is a certain invariant of degree 6 with respect to the Hesse group �216 of projective
automorphisms leaving invariant the Hesse pencil. The deck transformation of the
cover q : � → F2 corresponds to the projective involution

60 : [G, H, I] ↦→ [G, I, H] .

The pre-image of a curve from |2f + e| passing through three of the cusps is a pair of
disjoint sections on � that add up toO in theMordell–Weil group. Its pre-image under



516 4 Genus One Fibrations

q′ is the union of three pairs of sides of the triangles of lines corresponding to the
reduciblemembers of the pencil lines that intersect the sections. For example, assume
that the sections correspond to the base points ?2 = [1,−1, 0] and ?3 = [1, 0,−1].
They intersect the six components + (H), + (I), + (G + H + nI), and + (G + n H + I) of
reducible members of the Hesse pencil that do not contain ?1. The pencil  (1, 2) is
generated by conics from |2f + e| that pass through the cusps 21, 22, 23 and 21, 22, 24
of �. For example, we may assume the first curve splits into a pair of sections
corresponding to the base points ?2, ?3 and the pair of base points ?5 = [1,−n, 0]
and ?6 = [1, 0,−l]. This shows that the pre-image of a conic from the pencil (1, 2)
belongs to the pencil generated by the curves + (HI(G + H + nI) (G + H +l2I) (G + n H +
I) (G + n2H + I)) and + (HI(G + n H + l2I), (G + n2H + nI) (G + H + nI) (G + H + n2I)).
Getting rid of the common irreducible components, we obtain a pencil of conics

G2 − GH + H2 − HI + I2 + BGI = 0.

It has four base points, the remaining base points ?4, ?7, ?8, ?9 of the Hesse pencil.
The two reducible fibers correspond to the parameters B = −1, 2.

The intersection of a general member � (B) of this pencil with a general member
�C of the Hesse pencil consists of six points, four of which are base points of both
pencils. This shows that the residual set of two intersection points is given by a
quadratic polynomial %(), B, C) in a rational parameter ) of � (B). We parameterize
a general member of the pencil of conics

[G, H, I] = [−n)2 − n2B)2 + (1 − n2)),−n ()2 + )B + 1), n2)2 − n) + 1] .

Then we find the equation for ) that determines the intersection points of � (B) with
�C :

%(), B, C) = )2 (−n2B2−2n B+nC−1)+(−B2n+(−2n2+nC)B+2))+(n2+2)B−n2+nC+n .

If B ≠ −1, 2 corresponding to C = −3,−3n2, then this is a quadratic equation in ) and
its discriminant is equal to

'(B, C) := (B − 2)
(
C2 (B + 2) − 2C (B2 + 2B − 2) + B3 + 6B2 + 4

)
.

This shows that fixing a pair of cusps of �, the pre-image � (B0) of a member of
|2f+e| that passes through these cusps is tangent to twomembers �C1 , �C2 of the Hesse
pencil, where C1, C2 are solutions of the quadratic equation (B−2)−1'(B0, C) = 0. Note
that the special values of the parameter B = 2 and B = −1 (in this case we get a double
root C = −3) correspond to the reducible members � + 58 , � + 5 9 of the pencil |2f+e|,
where 58 , 5 9 are the fibers of F2 → P1 that pass through the two fixed cusps of �.

We see an explicit relationship between two multiple fibers of an elliptic fibration
of Hesse type that admit a special bisection. The pairs of fibers, considered as a
point in (P1) (2) � P2 (Hilbert scheme of two points of P1) is a cubic curve given in
parametric form as
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[G, H, I] = [(D + 2{){2,−2{(D2 + 2D{ − 2{2), D3 + 6D2{ + 4{3)]

or in an explicit form as

432G3 − 216G2H + 72GH2 − 5H3 − 144G2I + 12GHI + H2I − 4GI2 = 0.

This is an irreducible plane cubic with a node at [1, 24, 90] (It corresponds to the
parameters B = −7 ± 3

√
−3, whose geometric meaning we do not know).

Note that the Hesse group �216 of automorphisms of � acts transitively on pairs
of reducible fibers, so we may also fix the choice of the pair of cusps 28 , 2 9 . This
shows that each irreducible component of the moduli space of Enriques surfaces
together with an elliptic fibration of Hesse type that admits a special bisection is a
rational curve.

Remark 4.10.14 Let 5 : ( → P1 be an extremal elliptic fibration on an Enriques
surface (that is, the associated jacobian fibration is an extremal rational surface)
with a special bisection '. Suppose we can choose one irreducible component in
each reducible fiber, such that the remaining components of reducible fibers together
with ' generate a negative root lattice, which is then necessarily of rank 9. Blowing
down the nine (−2)-curves, we obtain a surface with rational double points and
Picard number equal to 1, a Q-homology projective plane. In [322] and [643], it is
shown that there are 31 different isomorphism classes of negative definite lattices
of rank 9 that can be realized in this way (in characteristic ? = 0). The latter paper
describes the moduli spaces of Enriques surfaces supporting such lattices. In our
example, the special bisection that we constructed intersects two reducible fibers at
one component and the other two reducible fibers at two components. This gives
a lattice isomorphic to A2 ⊕ A2 ⊕ A5. The other possibility is when ' intersects
one component in one fiber and two components in other three fibers. This gives the
lattice isomorphic to A2⊕A2⊕A2⊕A3. The parametric equation of the corresponding
curve parameterizing the locus of Enriques surfaces of Hesse type admitting such
bisections is given in [643, Table 5]. It is a nodal cubic curve.
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Mumford [78] and [77]. We have also borrowed a lot from unpublished notes of M. Raynaud [607].
In particular, we supplied the proofs of Raynaud’s improvement of the formula for the canonical
sheaf of a non-jacobian genus one fibration, see also [58, Proposition 3.17].



518 4 Genus One Fibrations

The material in Section 2 is mostly due to M. Raynaud and can be found in [603] and [606].
The theory of Néron models is discussed in the monograph [86] by S. Bosch, W. Lütkebohmert,
and M. Raynaud.

The study of elliptic fibrations as torsors under their jacobian fibrations goes back to F. Enriques
[221] and the theory of torsors applied to elliptic fibrations is discussed by I. Shafarevich in [5,
Chapter VII]. The transcendental construction of torsors based on logarithmic transformations is
due to K. Kodaira [401]. In his work Kodaira also introduced the complex-analytic analog of
the Tate–Shafarevich group and showed that its elements define a locally trivial complex analytic
torsors and that its torsion elements define locally trivial algebraic torsors. An exposition of this
theory can be found in [43] and [240], we are not discussing it here. The formula for the rank
of the Mordell–Weil group is due to [674], see also [701]. It is often referred to as the Shioda–
Tate formula.. The description of all possible finite Mordell–Weil groups given by formula (4.3.4)
appeared first in [674] and [141]. The relationships between Brauer groups and other invariants of
an elliptic surface and its jacobian surface are discussed in [25] and [607]. The result that the types
of reducible fibers of torsors and their jacobian fibrations coincide is proven in [473] and a partial
result can be found in [138].

The notion of a Mordell–Weil lattice of an elliptic surface was introduced by T. Shioda [678],
[679] and, independently, by N. Elkies (unpublished). However, many aspects of this theory already
appeared earlier in the work of Yu. Manin [485] and D. Cox and S. Zucker [141]. For more history,
we refer to the Historical Notes in chapter 6 of M. Schütt’s and T. Shioda’s book [646] that contains
the by now most complete exposition of the theory of Mordell–Weil lattices and their various
applications.

TheWeil–Châtelet group was first introduced by A.Weil [736]. Its cohomological interpretation
was first given by I. Shafarevich [664] and independently, by S. Lang and J. Tate [430]. The extensive
study of this group was undertaken by I. Shafarevich [665] and, independently, by A. Ogg [569].
A complex analytic version of the theory of elliptic fibrations was developed at the same time
by K. Kodaira [401]. Almost all the results that we discussed in this chapter have analogs in this
situation. The analog of the twist construction of a torsor from a 1-cocycle is Kodaira’s logarithmic
transformation. A beautiful exposition of Kodaira’s theory can be found in [240].

Ogg and Shafarevich compute the prime-to-? part of the Weil–Châtelet group for the field of
algebraic functions in one variable with algebraically closed field of constants. An exposition of
their work based on Grothendieck’s theory of cohomology of constructive sheaves on algebraic
curves was the subject of a Bourbaki talk by M. Raynaud [604]. The relationship between the
Tate–Shafarevich group of a generic fiber of a jacobian elliptic fibration on a surface and the Brauer
group of the surface is due to A. Grothendieck [271].

The work on the ?-part of the Weil–Châtelet groups was initiated in a series of articles by O.
Vvedenskii [726], [727], [728]. He proved the duality theorem for elliptic curves with all possible
types of reduction, but omitted the case of additive reduction in characteristic ? = 2, 3. The general
duality theorem for abelian varieties was proved by M. Bester [53] in the case of a good reduction
and by A. Bertapelle [56] with no restriction on the reduction.

The theory of torsors for quasi-elliptic fibrations is based on the work of P. Russell [629]. The
first geometric application was given by W. Lang in the case where ? = 3 [431]. We have extended
some of his results to the case where ? = 2. The results discussed at the end of the section are taken
from [183].

The classification of singular fibers of extremal rational elliptic surfaces was given over the
complex numbers by R. Miranda and U. Persson [515] in terms of Weierstrass equations and by I.
Naruki [551] in terms of pencils of cubic curves. In special cases ? = 2, 3, 5, this requires some
special arguments, and the classification in terms of the Weierstrass equations was first given by W.
Lang [436], [437] . Some misprints from the former article have been corrected by A. Schweizer
[647]. The classification of rational quasi-elliptic surfaces can be found in H. Ito’s work [336]
and [335]. The equations of the one-dimensional unipotent group that arise from a jacobian quasi-
elliptic fibration were given first in [600], [601]. The computation of the Weil–Châtelet group of a
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wound unipotent group over global or local base� was initiated by W. Lang [431]. It was extended
to characteristic two in [183].





Chapter 5
Moduli Spaces

In this chapter, we study moduli spaces of Enriques surfaces. Over the complex
numbers, this can be done via lattice-polarized K3 surfaces and their moduli spaces,
which leads to constructions of moduli spaces of marked, unmarked, polarized,
and nodal Enriques surfaces. We discuss maps between these moduli spaces and the
birational geometry of these moduli spaces, that is, their dimensions, Kodaira dimen-
sions, and (uni-)rationality questions. We study some classical compactifications of
some of these moduli spaces and we address the question whether the boundary itself
has a modular interpretation. This leads to the study of Coble surfaces of K3 type
and Kulikov degenerations of Enriques surfaces. Finally, we study moduli spaces in
positive and mixed characteristic.

5.1 Moduli Problems and Moduli Spaces

In this section, we discuss various moduli spaces of Enriques surfaces. The idea and
the terminology of a moduli space goes back to Riemann, who showed that the set
of isomorphism classes of compact Riemann surfaces of genus 6 ≥ 2 depends on
36−3 parameters or moduli, that is, this set forms a (36−3)-dimensional space. See,
for example, [259, Chapter 2.3] for Riemann’s original heuristics and considerations
that led to these insights.

To make this idea and some of these heuristics more precise, one has to consider
not individual objects, but families of the objects one wants to parametrize from the
very beginning. Next, one has to introduce appropriate equivalence relations on these
families, and then, one seeks for a universal family, from which all families arise via
base change. This leads to the very conceptual approach to moduli problems using
the language of functors. However, one is then led to the problem of showing that
such a functor is representable by a suitable space (a scheme, an algebraic space,
or an algebraic stack), which is the sought moduli space, and which automatically
comes with a universal family of the objects one wants to parameterize. A necessary
condition for the representability of the moduli functor is that it satisfies a sheaf
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522 5 Moduli Spaces

axiom (with respect to some fixed Grothendieck topology) and that one can find
some family that contains all the objects one wants to parametrize. The idea of
Deligne and Mumford was to turn this approach into a definition: by definition,
a groupoid–valued functor that satisfies a sheaf axiom is a stack, and if it can be
covered by some algebraic families then it is algebraic. In this section, we will
sketch the ideas and notions of this approach, but we claim by no means a thorough
treatment of moduli theory, of algebraic stacks, etc. Working out this program in
detail requires quite an amount of theoretical foundations and is rather complicated
and lengthy. Here, we will only sketch some of the main ideas so that we can work
with the objects and refer the reader to [581] for a thorough treatment.

In this chapter, our objects of concern will be K3 surfaces or Enriques surfaces.
We fix an algebraically closed field k. An algebraic family of such surfaces is a
smooth morphism 5 : X → ) in the category of schemes (or algebraic spaces) over
k, such that the fiber ]C̄ : XC̄ → X over every geometric point C̄ : Spec → ) is a
K3 surface (resp. Enriques surface) over  . Often, we will put additional structures
on these families. For example, the families may come together with an invertible
sheaf L onX, such that ]∗

C̄
(L) is ample or nef onXC̄ . We will give details later, when

discussing moduli of polarized surfaces.
Next, we define a contravariant functor

M : (Schemes/k) → (Sets)

that associates to every scheme ) over k the set of all families over ) modulo some
appropriate notion of isomorphism. If ) ′ → ) is a morphism of schemes, then
M()) is a family X → ) and then, the fiber product X ×) ) ′→ ) ′ is a family over
) ′, that is, an element ofM() ′). This defines a mapM()) → M() ′) and turnsM
into a contravariant functor. The idea behind this approach is as follows: we hope
for the existence of a scheme M over k together with a family U → M, such that
for every family 5 : X → ) as above there exists a unique morphism ) → M, the
classifying morphism, such that the family X → ) is isomorphic to the pull-back
U ×M ) → ) along the classifying morphism. In particular, if  is a field extension
of k, then the set of all objects we are interested over  is in bĳection with the set
of  -valued points of M, that is, M( ). In this case, the space M is called a fine
moduli space and the familyU → M is called the universal family. The relation to
the functorM is as follows: if such an M exists, then the functorM is isomorphic
to the Yoneda functor ℎM : ) → Mork (),M). Moreover, the universal family U
corresponds to the identity morphism in Mork (M,M).

In view of this discussion, we say that our moduli problem admits a fine moduli
space if the functorM is representable by a scheme, that is, if there exists a scheme
M over k, such that the functorM is isomorphic to the Yoneda functor ℎM : ) →
Mork (),M). It follows from the Yoneda lemma that a fine moduli space, if it exists,
is unique up to isomorphism. As explained above, it comes with a universal family
U → M, namely, the family over M corresponding to the identity in ℎM (M). It is
easy to see that this universal family has the property that every family over ) is
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isomorphic to the base change of the universal family along the classifyingmorphism
) →M.

Unfortunately, finemoduli spaces exist rather rarely, unlesswe put some additional
structure on the families. One of the reasons is the existence of automorphisms of
objects that we want to parametrize. Here is a classical example.

Example 5.1.1 Let M1,1 be the moduli problem of pairs (�,$) of elliptic curves
together with a fixed point $ (the neutral element of the group law) over k. Thus, a
family 5 : E → T is a smooth genus one fibration together with a section B : ) → E.
Suppose that a fine moduli space M1,1 exists and letU1,1 → M1,1 be the universal
family. Then, for every family X → ) , we have a Cartesian diagram

X

��

q̃ // U1,1

��
)

q // M1,1

Now, consider the negation involution ] : G ↦→ −G with respect to the group law
of the relative elliptic curve X → ) . Then, the composition X ]→ X → ) yields
an isomorphic family, hence defines, by uniqueness, the same classifying morphism
) → M1,1. If M1,1 was a fine moduli space, then ) → M1,1 would correspond to
a unique family of elliptic curves rather than two distinct ones that are isomorphic.
However, even when identifying isomorphism classes of families, then this does not
help: suppose that there exists a non-trivial (Z/2Z)-torsor ( → ) . Then, one can
form the twisted family X′ := (X ×) ()/(]) → ) , where the quotient is with respect
to the diagonal action given by ] on the first factor and by the (Z/2Z)-action on
the second factor. Both families over ) have isomorphic geometric fibers and thus,
define the same classifying morphism T → M1,1. In general, these two families
over ) are not isomorphic, but since they have the same classifying morphism, at
most one can be the pull-back of the universal family over M1,1. This contradiction
shows that there does not exist a universal family and thus, the functorM1,1 is not
representable. To give an explicit example, we let ) = A1

k
− {0} = Spec : [C] (C) and

consider the two families of elliptic curves over )

X : H2 = G3 − 1 and X′ : H2 = G3 − C.

In both cases, all geometric fibers are isomorphic to the elliptic curve H2 = G3 − 1,
that is, in both cases, the classifying morphism ) → M1,1 would be constant. In
particular, the pull-back from the universal familyU →M1,1 along this classifying
morphism would yield a trivial product family. This is indeed the case for X, but
not for X′, and we refer to [581, Preface] for details and further discussion of this
example.

Similar arguments show that the moduli problem for hyperelliptic curves of genus
6 ≥ 2 is not representable. We refer to [290, Section 2.A] for details and further
discussion.
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However, the following approach can remedy this problem: let = ≥ 3 be an integer
that is coprime to the characteristic ? of k. Now, consider the functor that associates
to a scheme ) over k the set of families E → ) of smooth genus one fibrations
together with a choice of section B : ) → E (the zero section that turns this family
into a family of elliptic curves) and another section that is fiberwise an =-torsion
point. Then, there are no automorphisms of such families and in fact, this time, a
fine moduli space does exist, namely the modular curve -0 (=).

Since fine moduli spaces do not exist in many cases of interest, one often asks for
less, namely for a coarse moduli space. Instead of requiring the representability of
the functorM, we merely ask for the existence of a scheme (or an algebraic space
and we note that we discuss algebraic spaces below) M over k and a morphism of
functors c :M → ℎM, such thatM(Spec  ) → ℎM (Spec  ) is bĳective for every
algebraically closed field and such that for every scheme (or algebraic space)# over
k and every morphism 6 :M → ℎ# , there exists a unique morphism 5∗ : ℎM → ℎ#
(or, equivalently, a unique morphism 5 : M → #), such that 6 = 5∗ ◦ c. A coarse
moduli space, if it exists, is unique up to isomorphism. In the sense made precise by
its definition, it is the closest approximation ofM to a scheme (or algebraic space).
We refer to [581, Chapter 11] for details.

For example, a coarse moduli space of the moduli functorM1,1 from Example
5.1.1 exists and coincides with the affine line A1

k
. More precisely, for every family

E → ) inM1,1 ()), the 9-invariant C → 9 (EC ) defines a map ) → A1
k
. This defines

a morphism of functors M1,1 ()) → ℎA1
k
that satisfies the properties of a coarse

moduli space. The 9-invariant is the classifying morphism in this case.
Unfortunately, even this weaker notion of representing a moduli functor may not

exist, as the following example shows.

Example 5.1.2 Let� be an affine group scheme over k, let - be a variety over k, and
assume that - comes with a �-action. LetM()) be the set of diagrams

%
5 //

?

��

-

)

where 5 is a �-equivariant morphism and where ? : % → ) is a �-torsor over ) ,
that is, ? is a �-equivariant morphism 5 : - → ) , where � acts trivially on ) and
such that locally for some chosen Grothendieck topology, - is isomorphic to ) ×�.
A morphism q : ) ′ → ) defines a map from M()) → M() ′) that sends a pair
(?, 5 ) as above to (?′ : % ×) ) ′→ ) ′, 5 ◦ pr2).

Now, suppose that - is affine. We claim that if the functorM admits a coarse
moduli space, then it is isomorphic to M := Spec O- (-)� . In fact, it follows from
the definition of a torsor that O) = (?∗O%)� and hence, O) ()) = O% (%)� . The
�-equivariant morphism 5 : % → - defines a homomorphism of coordinate rings
O- (-)� → O% (%)� = O) ()). This defines a morphism ) → M. Using this, it
is easy to check that a coarse moduli space, if it exists, coincides with M. Taking
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) = Spec k, we see thatM()) consists of �-orbits in - . On the other hand, it must
be equal to Homk (O- (-)� , k). However, this cannot be always true. For example,
one could take � = C×, - = C, and the �-action on - defined by I ↦→ _I. Then, we
have O- (-) = C, but we have the two orbits {0} and C − {0}.

To overcome these difficulties, Deligne and Mumford [157] introduced a novel
idea that a moduli problem should not be considered as a contravariant functor
(Schemes/k) → (Sets), but rather as a contravariant functor from (Schemes/k)
to the category to groupoids rather than sets. (A groupoid is a category, in which
every morphism is an isomorphism. A set becomes a groupoid, whose objects are
the elements of the sets and whose morphisms are only the identity maps.) In
particular, when considering a family X → ) as above, then we do not identify
isomorphic families, that is,M()) is the groupoid of all families over ) . All such
families must form a categoryM that comes with a functor ? :M → (Schemes/k).
More precisely, the categoryM()) is a fiber of this functor, that is, it consists of
objects 5 inM, such that ?( 5 ) = ) . One also says thatM is a category fibred in
groupoids. We will write objects ofM()) as arrows q : - → ) . The morphisms
( 5 : - → )) → ( 5 ′ : - ′ → ) ′) consist of morphisms q : ) ′ → ) in (Schemes/k)
and a morphism q̃ : - ′→ - , such that the diagram

-

5

��

- ′

5 ′

��

q̃oo

) ) ′
qoo

is Cartesian, that is, a pull-back diagram.
This definition is too general to work with. Without being very precise (we

refer to [581] for details and precise definitions), we say that M is a stack if the
association ) ↦→ M()) is a presheaf with values in groupoids, that is, it satisfies
the axiom of a sheaf with respect to coverings {)8 → )}8∈� with respect to some
chosen Grothendieck topology (usually flat or étale) and it also is required that for
any 5 , 6 ∈ M()) the presheaf Isom( 5 , 6) on the category (Schemes/)) is a sheaf.
Roughly speaking, the first condition says that to give a family X → ) is equivalent
to giving a covering {)8 → )}8∈� and families X8 → )8 , such that the pull-backs of
X8 and X9 to )8 ×) )9 are isomorphic and fulfill a certain cocycle condition on triple
fiber products over ) . Similarly, the second condition says that to give a morphism
5 : X → Y of families over ) is equivalent to giving a covering {)8 → )}8∈�
and morphisms 58 : X ×) )8 → Y ×) )8 , such that the pull-backs of 58 and 5 9 to
X ×) ()8 × )9 ) coincide. Even more roughly, these conditions ensure that one can
constructs families and morphisms between them locally if they glue on overlaps.
An example of a stack is the category (Schemes/-) for any - ∈ (Schemes/k). We
denote it by - . More precisely, the groupoid - ()) is the set of all morphisms of
schemes to ) → - , that is, ℎ- ()).
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A morphism of stacksM ′ →M is a functor � :M ′ →M that commutes with
the projection functors ?′ : M ′ → (Schemes/k) and ? : M → (Schemes/k) and
the pull-back functors.

For example, a morphism - → M assigns to any morphisms of schemes 5 :
) → - a “family” 5 ∈ M()). We say that - is a fine moduli space for the stack
M if there exists an equivalence of categories - → M. One can also define a
coarse moduli space of a stack. If it exists, then it is an object M of (Schemes/k) (or
(AlgebraicSpaces/k)), together with a morphism of stacks c : M → M, such that
M(Spec ) → - ( ) is an equivalence of categories for every algebraically closed
field extension  of k and such that for every scheme (or algebraic space) # and
every morphism 6 :M → # , there exists a unique morphism 5 : M→ # such that
6 = 5 ◦ c. Clearly, a coarse moduli space, if it exists, is unique up to isomorphism.

Next, one may try to cover a stack by a scheme - , that is, to find a morphism
of stacks - → M, such the functor - ()) → M()) is surjective on objects. Such
stacks are said to be algebraic.

An example of such stacks, which generalize the notion of a scheme, is an
algebraic space, where M is defined to be the quotient of some scheme - by an
equivalence relation ' → - ×k - , where the two projections ' → - are étale
morphisms. Then, the sheaf in the étale topology associated to the pre-sheaf of
quotients - ())/'()) defines a stack and since it can be covered by - , it is algebraic.
A morphism of algebraic spaces U : F → G is a morphism of étale sheaves. We
say that U is representable by a scheme if for every ) ∈ (Schemes)/k and every
morphism of sheaves ℎ) → G the fiber product

F ×G ) : * ↦→ {(0 ∈ F (*), 5 : * → )) | U(0) = � ( 5 )}

is representable by a scheme. Thismeans that the restriction of themorphismF → G
to the subcategory (Schemes/)) of (Schemes/k) coincides with a morphism of a
scheme. We say that a representable morphism F → G has property P (for example,
affine, étale, a closed immersion, an open immersion, proper, or smooth) if, for every
scheme ) , the projection morphism of schemes F ×G ) → ) has property P.

An equivalent definition of an algebraic space F is that F is a sheaf in the étale
topology, that the diagonal morphismΔ : F → F ×kF is representable by a scheme,
and that there exists a surjective and étale morphism * → F . The property of the
diagonal map being representable guarantees that for every scheme ) any morphism
ℎ) → F is representable by a scheme. Conversely, the latter property implies that
F is a quotient of a scheme by an étale equivalence relation.

It is known that, for any algebraic space F , there exists a morphism from a k-
scheme 5 : - → F that is representable by a birational morphism of algebraic
varieties. In particular, there exists an open and dense subalgebraic space of F that
is isomorphic to a scheme.

Example 5.1.3 The following two examples are typical sources of algebraic spaces
that are not schemes:
1. Let k be an algebraically closed field of characteristic zero. Let�0 ⊂ P2

k
a smooth

cubic curve, let %1, ..., %10 be ten distinct points on �0, let - ′ be the blow-up
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of P2 in these ten points, and let � be the strict transform of �0 on - ′. Thus,
� is isomorphic to �0 and satisfies �2 = −1. Then, there exists a contraction
- ′→ - of � in the category of algebraic spaces, that is the morphism is proper,
birational, equal to its own Stein factorization, it contracts � to a point, and
induces an isomorphism on - ′−�. If the %1, ..., %10 are chosen to be sufficiently
general, then - is not isomorphic to a scheme. This classical example is due to
Mumford and Nagata and we refer to [23, Section 4] for details.

2. Second, if a finite group � acts on a quasi-projective variety - , then the quotient
-/� exists in the category of quasi-projective schemes. In fact, quasi-projectivity
ensures that there exists an open and affine cover {*8 = Spec '8}8∈� of - such
that each*8 is �-stable. Given such a cover, the individual quotients*8/� exist,
namely, Spec '�

8
, where '�

8
denotes the ring of �-invariants. These quotients

{*8/�}8∈� then glue to -/�. On the other hand, if - is not quasi-projective, then
there exist examples, where the quotient -/� exists as an algebraic space, but
not as a scheme. We refer to [399, Chapter 4] for details.

Moreover, a theorem of Keel and Mori asserts that the quotient of an algebraic
variety by a proper action of a group scheme acting with finite stabilizers always
exists as a separated algebraic space [381]. This collection of results should illustrate
that the category of algebraic spaces does have some advantages over the category
of schemes. We refer to [23, 399, 581] for more about algebraic spaces.

Remark 5.1.4 Let - be a compact analytic manifold over C. Then, its field of mero-
morphic functions C(-) is of transcendence degree at most equal dim(-). If it is
equal to dim(-), then - is said to be a Moishezon manifold. Now, given a smooth
and proper algebraic space . over C, there is an associated complex analytic man-
ifold . an and since the function field of . is of transcendence degree equal to the
dimension of . over C, it follows that . an is a Moishezon manifold. Conversely,
every Moishezon manifold arises as analytification of a smooth and proper algebraic
space over C. We refer to [294, Appendix B] for details and references.

Finally, we come to the notion of an algebraic stack and a Deligne–Mumford
stack. We say that a stack is an algebraic stack or an Artin stack if the diagonal
morphism Δ : M → M ×k M is representable and if there exists a surjective
morphism - →M for some scheme - . If additionally this surjective morphism can
be chosen to be étale, we say thatM is a Deligne–Mumford stack. We note that an
algebraic stackM is a Deligne–Mumford stack if for every algebraically closed field
 the automorphism group scheme of any object inM( ) is a finite reduced group
scheme, see [581], Theorem 8.3.3 and Remark 8.3.4.

Similar to the above notion for algebraic spaces a morphism � :M →M ′ is said
to be representable if for any k-scheme ) the fiber productM×M′ ) is representable
by an algebraic space. The condition that the diagonal morphism is representable is
equivalent to the following: for any k-scheme ) and two objects 51, 52 ∈ M()), the
sheaf Isom(D1, D2) on (Schemes/)) is an algebraic space.

The following crucial results show that this approach via stacks does indeed work
in the sense that some very important and central moduli problems are representable
by Deligne–Mumford stacks.
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Example 5.1.5 For non-negative integers 6, =, one defines the moduli functor

M6,= : (Schemes/k) → (Groupoids),

that associates to every k-scheme ) the groupoid of families X → ) , whose
geometric fibers are smooth and projective curves of genus 6, together with disjoint
sections B1, ..., B= : ) → X. That is,M6,= is the moduli functor for =-marked curves
of genus 6. If 26 − 2+ = > 0, thenM6,= is a smooth Deligne–Mumford stack over k.
In particular, the set-valued moduli functor from Example 5.1.1 does not admit a fine
moduli space, but the just constructed groupoid-valued functor can be represented
by a Deligne–Mumford stack. The key point is that, if 26 − 2 + = > 0, then the
automorphism group scheme of an =-marked curve of genus 6 over a field is finite
and étale. We refer to [581, Chapter 13] for details, proof, and further discussion.

Example 5.1.6 This is the follow-up of Example 5.1.2: first, we convert the moduli
problem M into a stack that will be denoted by [-/�]. We set [-/�] to be the
category whose objects are (% → ), 5 : % → -) as before and whose morphisms
from (%′ → ) ′, 5 ′ : %′ → -) to (% → ), 5 : % → -) are isomorphisms of torsors
Φ : (%′ → % ×) ) ′ → ) ′) → (%′ → ) ′) such that 5 ◦ pr1 ◦Φ = 5 ′. This is a
fibered category [-/�] → (Schemes/k) whose fibers [-/�] ()) are the category,
whose objects are pairs (% → ), 5 : % → -) as above and whose morphisms
(% → ), 5 : % → -) → (%′ → ), 5 ′ : % → -) are isomorphisms of torsors
Φ) : %′ → % with 5 ◦ Φ = 5 . Note the stack makes sense even if � acts trivially
on - . One can check that [-/�] is an algebraic stack, and that if � is an algebraic
group that acts with finite and reduced stabilizer subgroup schemes, then it is a
Deligne–Mumford stack [157], Theorem 4.21. For example, if - = Spec k, then we
obtain the so-called classifying stack for the group �.

Finally, let us mention the following fundamental result of Keel and Mori [381,
Corollary 1.3]: a separated algebraic stack of finite type over k and with finite inertia
stack always admits a coarse moduli space in the category of algebraic spaces (but
not necessarily in the category of schemes). In Example 5.1.6, assuming that � acts
with finite stabilizers, the coarse moduli space of [-/�] is the geometric quotient
of the subset -s (Pre) of pre-stable points, that is, points admitting an open affine
neightborhood that is �-invariant.

This suggests the following strategy when constructing moduli spaces: one first
sets up a functor M from (Schemes/k) to (Groupoids) that associates to ) the
groupoid of families over ) one is interested in. IfM is a sheaf with respect to the
étale topology, say, and if the automorphism group schemes are finite and étale, then
there is a good chance to representM by a Deligne–Mumford stack, which is indeed
true in many cases of interest. Moreover, since the stabilizers are finite, a coarse
moduli space exists at least in the category of algebraic spaces. Moreover, whenever
a “parameter space” was classically constructed using geometric invariant theory,
then the discussion of the previous paragraph suggests that this might actually be the
coarse space forM, which is true in many cases.
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5.2 Lattice Polarized K3 Surfaces

In this section, we consider moduli spaces for pairs (-, 9), where - is a K3 surface
and 9 : " → Pic(-) is a primitive embedding of lattices for some fixed lattice " .
These moduli spaces will be used in the next section to construct moduli spaces
for Enriques surfaces. For more details on moduli spaces of lattice polarized K3
surfaces, we refer to [2, 52, 173, 620].

Let - be an algebraic K3 surface. By Definition 1.1.10, this means that - is
a smooth and projective surface with  - = 0 and ℎ1 (O- ) = 0. Note that there
exist compact complex but not algebraic surfaces satisfying these conditions. They
admit a structure of a Kähler manifold [52, Exp. XII]. However, we will be mainly
concerned with K3 surfaces that are K3 covers of Enriques surfaces and these are
always algebraic.

First, assume that - is a complex K3 surface. Let us briefly run through the com-
putations of some important invariants and we refer to Section 0.10 for background
and further discussion of the results we are using. Recall that  - = 0 and Wu’s
formula (0.10.12) imply that �2 (-,Z) is an even lattice with respect to the cup-
product, which is a symmetric bilinear form. By Poincaré duality, it is unimodular.
Since ℎ1 (-,O- ) = 0, we have 11 (-) = 13 (-) = 0 and thus, by Noether’s formula
(0.10.22), we find 12 (-) = 22. By Hirzebruch’s signature theorem (0.10.8), the
signature of the cup-product on �2 (-,R) is (3, 19). Moreover, by Theorem 1.4.4,
the Hodge numbers of - are given by ℎ2,0 (-) = ℎ0,2 (-) = 1 and ℎ1,1 (-) = 20.
Thus, by Proposition 0.8.8, there is an isomorphism of lattices

�2 (-,Z) � U⊕3 ⊕ E⊕2
8 � U ⊕ E2

10,

where E10 denotes the Enriques lattice studied in Section 1.5. We denote the lattice
on the right-hand side by L and call it the K3 lattice. It follows from Proposition
1.1.9 that the Picard scheme of - is reduced and its connected component of identity
is trivial. There is an isomorphism of abelian groups

Pic(-) � NS(-) � Num(-) � Zd,

where d is the Picard number of - . The Chern class homomorphism

21 : Pic(-) → �2 (-,Z)

is injective and its image lies in �2 (-,Z) ∩ �1,1 (-). This implies that the Picard
number satisfies

1 ≤ d(-) ≤ 20.

The intersection form on Pic(-) defines a structure of a quadratic lattice on Pic(-).
The Chern class homomorphism 21, which respects the intersection forms on both
sides, and thus, identifies Pic(-) with a sublattice of �2 (-,Z). Moreover, it fol-
lows from Lefschetz’s theorem on (1, 1)-classes that this embedding of lattices is
primitive.
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Now, we use the terminology from Section 0.8. Assume d > 1, so that the lattice
Pic(-) is hyperbolic. We let,- := Ref2 (Pic(-)) to be the Weyl group of the lattice
Pic(-), which is generated by reflections in the divisor classes X with X2 = −2.
We have already seen in Section 2.2 that this group coincides with the nodal Weyl
group ,nod

-
defined by the root basis R(-) that consists of (−2)-curves on - . By

Proposition 2.2.1, the fundamental chamber of this root basis coincides with the nef
cone Nef (-) of - . The interior of Nef (-) is the ample cone Amp(-) of - . The
boundary mNef (-) := Nef (-) \ Amp(-) consists of those numerical classes [�]
in Nef (-) with �2 = 0 or �2 > 0, such that � · ' = 0 for some ' ∈ R(-). We set

Pic(-)pa = {G ∈ mNef (-) : G2 > 0} ∩ Pic(-),
Pic(-)a = Amp(-) ∩ Pic(-).

which are the line bundles on - that are big and nef (also called “pseudo-ample”)
and ample, respectively.

Let us now generalize and formalize this setup: let " be an even and non-
degenerate lattice of signature (1, C). Let

+ (") :=
{
"R | G2 > 0

}
⊂ "R,

We choose one of the connected components of + (") and denote it by + (")+.
Then, we define

� (") := fundamental chamber of, (") := Ref2 (") in + (")+.

With respect to this setup, we now make the following definition and refer to [173]
for background and further information.

Definition 5.2.1 An"-polarizedK3 surface is a pair (-, 9), where - is aK3 surface,
and

9 : " → Pic(-)

is a primitive lattice embedding and 9 (� (")) contains a big and nef divisor class
�. Moreover, we say that the "-polarization (-, 9) is ample if 9 (� (")) contains
an ample class.

Remark 5.2.2 Let� (")◦ be the interior of� ("). It follows from this definition that
a connected component of 9 (� (")◦) intersects the interior of the nef (resp. ample)
cone. Since both sets are convex, there exists a convex cone � (")+ in � ("), such
that 9 (� (")+) is contained in the nef (resp. ample) cone of - .

If one is interested only in ample lattice polarizations (as it seems to be in
many applications of the theory of lattice polarized K3 surfaces), then the definition
should only require that the image 9 (ℎ) of some ℎ ∈ " is ample. This will fix
(+ (")+, � (")) by requiring that ℎ ∈ � (")◦.

Remark 5.2.3 It is important to understand that a lattice polarization comes with a
choice of the data (+ (")+, � (")). Composition with an isometry of the lattice "
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changes the polarization but also may change the choice of (+ (")+, � (")). It sends
an ample polarization to an ample polarization.

Example 5.2.4 Let " = Z · 4 with 42 = 23 and 3 > 0. Choose + (")+ to be one
of the rays of "R\{0}. In this particular case, an "-polarized K3 surface (-, 9) is
called a degree 23 polarized K3 surface. A polarization is ample if and only if 9 (4)
is an ample divisor class. (A polarization that is big and nef, but not ample, is often
called a quasi-polarization.) There are three possibilities depending on the behavior
of the complete linear system | 9 (4) | and the associated rational map 5 .

1. (Unigonal case) The linear system | 9 (4) | = |� + (3 + 1)� |, where � is a smooth
rational curve and � is a genus one curve with � · � = 1. It has � as fixed
component and the map associated to | (3+1)� | is a morphism - → P3+1, whose
image is a rational normal curve of degree 3 + 1.

2. (Hyperelliptic case) The linear system | 9 (4) | has no base points and 5 is a
morphism of degree 2 onto a normal surface of degree 3 in P3+1, whose singular
points are at worst rational double points.

3. (Birational case) The linear system | 9 (4) | has no base points and 5 is a morphism
of degree 1 onto a normal surface of degree 23 in P3+1, whose singular points
are at worst rational double points.

We refer to [52, Exposé IV] for details.

Example 5.2.5 If ( is an Enriques surface, then there exists an isometry Num(() �
E10, where E10 is the Enriques lattice, see Section 1.5. If c : - → ( denotes the
canonical K3 cover, then c∗ (Pic(. )) → Pic(-) yields a sublattice isometric to
E10 (2) � U(2) ⊕ E8 (2), and we obtain a lattice E10 (2) polarized K3 surface

9 : E10 (2) → Pic(-).

In Proposition 5.2.12 below we will see that we obtain in this way a bĳection of sets
of marked Enriques surfaces and ample E10 (2)-polarized K3 surfaces.

Next, we want to construct moduli spaces of lattice polarized K3 surfaces. First,
we set up the moduli functor as discussed in Section 5.3. Then, we first describe
their automorphisms and infinitesimal deformations, which gives a local description
of the moduli spaces we look for and allow us to conclude that they exist as smooth
Deligne–Mumford stacks. Let us slightly enhance the setup and work over arbitrary
fields or even arbitrary base schemes, where we loosely follow [2, 173, 576, 620]
and refer to these articles for more details and proofs.

First, we define families of (ample) "-polarized of K3 surfaces and associated
moduli functors in the following two settings.

1. (Algebraic) In this case, we fix a base scheme �, for example, � = Spec k, where
k is a field or � = SpecZ, which is the universal case since every scheme is a
scheme over Z. Given a lattice " , we define two functors

K3" (resp. K3a
" ) : (Schemes/�) → (Groupoids)
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that assign to every scheme ) over � the groupoid of pairs (X → ), 9), where
X → ) is a smooth projective family of K3 surfaces andwhere 9 : ") ↩→ PicX/)
is a map of sheaves in the étale topology such that 9 (� (")) contains a nef
and big invertible sheaf (resp. 9 (+ (")+) contains an ample invertible sheaf).
Clearly, K3a

"
is an open subfunctor of K3" , that is, for any ) , the morphism

K30
"
×K3" ℎ) → ℎ) is represented by an open embedding of schemes.

2. (Analytic) Then, a family of "-polarized K3 surfaces is a morphism of complex
spaces X → ) , each of whose fibers is a complex K3 surface, and a morphism
"( → PicX/) as before.

3. (Analytic andmarked)We fix a lattice" and an embedding" → L of" into the
K3 lattice and then, we define a marked (ample) "-polarized K3 surface to be a
pair (-, q), where - is a K3 surface and q : �2 (-,Z) → L is an isomorphism of
lattices, such that q−1 |" : " → Pic(-) is an (ample) "-polarization. Similarly,
families of (ample) marked "-polarized K3 surfaces are defined, which leads to
the functors

K" and Ka
" : (ComplexSpaces) → (Groupoids).

We refer to [173] for details.

The following result gives the local structure and local charts for the moduli spaces
of "-polarized K3 surfaces that we want to construct.

We refer to Section 5.11 for some basic definitions and results in the theory of
local deformations.

Proposition 5.2.6 Let " be an even non-degenerate lattice of signature (1, C).

1. Let (-, 9) be an "-polarized K3 surface over an algebraically closed field k
of characteristic ? ≥ 0. Then, there exists a formal deformation space (" of
"-polarized K3 surfaces that is a formal scheme over k. Assume that one of the
following holds:

a. ? = 0,
b. ? > 0 and ? does not divide the discriminant disc("),
c. ? > 0 and - is not a supersingular K3 surface.

Then, (" is formally smooth and of dimension (19 − C) over k. If ? > 0, there
even exists a formal deformation space (" over the ring of Witt vectors , (k)
that is smooth of relative dimension (19 − C).

2. If, additionally to assumptions (a), (b) and (c), we assume that (-, 9) is an
ample "-polarization, then the formal deformation space can be algebraized,
that is, there exists a smooth proper morphism 5 : X → Spec ', where ' �
k[[C1, . . . , C19−C ]] whose fiber over the closed point is isomorphic to - and every
ample L from 9 (") lifts to an ample invertible sheaf on X. If ? > 0 one may
choose ' to be, (k) [[C1, . . . , C19−C ]] .

3. Let (-, 9) be a marked or ample "-polarized K3 surface over C. Then, there
exists a local moduli space of "-polarized K3 surfaces that is a formal complex
space that is smooth of dimension (19 − C).
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Proof There exists a formal deformation space Def (-) of - that is a smooth formal
scheme of dimension 20 over Spf (k) (or even Spf (, (k)) if ? > 0). Next, Deligne
[155, Théorème 1.6] showed that if L is an invertible sheaf on - , then the formal
deformation space of the pair (-,L) is a formal Cartier divisor Def (-,L) inside
Def (-), which is flat over , (k) when ? > 0 and allows deformations in mixed
characteristic. Thus, after choosing a basis <0, ..., <C of " , the desired local moduli
space (" is the intersection of the (C + 1) formal Cartier divisors Def (-, 9 (<8))
inside Def (-), and it is easy to see that it is flat over k (resp. , (k)) of relative
dimension at least (19 − C). Next, 3 log induces a map X : " ⊗Z : → �1 (-,Ω1

-
),

which is compatible with intersection forms on both sides. The Zariski tangent space
of (" is the orthogonal complement of X(" ⊗ :) in �1 (-,Ω1

-
). In the case where

? = 0 or where ? does not divide disc("), then the intersection form on " ⊗Z :
is non-degenerate, and thus, X is injective. Thus, in these cases, the Zariski tangent
space of (" has dimension (19− C), and (" is at least of dimension (19− C) over k
(resp. , (k)). Being flat over k (resp. , (k)), it follows that (" is formally smooth
of relative dimension (19 − C) over k (resp., (k)). See also [2, Proposition 3.8]. If
? > 0 and - is ordinary, then the claimed dimension and formal smoothness have
been shown in [2, Proposition 3.3 and Section 3.5]. In fact, this argument works
more generally if ? > 0 and if - is not supersingular, which is slightly implicit in
[454], see also [117, Proposition 2.11]. The algebraization assertion follows from
[155, Corollary 1.8].

We leave the proof in the complex analytic setting to the reader. In the marked
case, we refer to [173, Proposition (2.1)] for details. �

This result is the key to proving the following result, which shows that the moduli
functors introduced above give rise to reasonable moduli spaces.

Proposition 5.2.7 Let " be an even non-degenerate lattice of signature (1, C).
1. The functors K3" and K3a

"
can be represented by Deligne–Mumford stacks.

Moreover,K3a
"

is separated. When non-empty, both stacks are smooth of relative
dimension (19 − C) over SpecZ[ 1

3
], where 3 = disc(").

2. For complex K3 surfaces, there exists a fine moduli space K" of marked "-
polarized K3 surfaces as a smooth and non-separated complex space.

Proof In the first case, the assertion aboutK30
"

is proven essentially in [50, Propo-
sition 2.6] (over C) with details in the general case given in [2, Proposition 3.3]. The
latter proof relies on results of [620] on the moduli functor for polarized K3 sur-
faces with ample primitive polarization. This latter has been extended to the case of
quasi-polarized K3 surfaces in [500] and [483]. Let us briefly sketch the arguments:
it is easy to see that the functors K3" and K3a

"
are sheaves in the étale topology

and thus, give rise to stacks. Next, the formal deformation spaces that we established
in Proposition 5.2.6 can be algebraized because the families considered come with
(pseudo-)ample polarizations. From these algebraizations, we obtain morphisms to
the functors K3" and K3a

"
. In fact, these morphisms can be combined to give an

algebraic family (usually not connected when constructed this way) that maps sur-
jectively toK3" andK3a

"
. This shows that both stacks are algebraic stacks or Artin
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stacks.Moreover, the automorphism group scheme of a (quasi-)polarized family is fi-
nite and since K3 surfaces have no global vector fields, these group schemes are finite
and étale. This implies that the stacksK3" andK3a

"
are Deligne–Mumford stacks.

Finally, the statement about smoothness and dimensions of these spaces follow again
from the local description of these stacks provided by Proposition 5.2.6.

For the second statement, we refer to [173, Section 3], [52, Exposé XIII], and
[555]. It uses the theory of periods of K3 surfaces, which we will discuss later in
this section. �

Remark 5.2.8 We end this discussion with two remarks.

1. The non-separatedness of these moduli spaces when working with non-ample
polarizations has to do with flops or elementary modifications. More precisely,
there may exist the spectrum ) of a discrete valuation ring, say with algebraically
closed residue field, and smooth families X → ) of K3 surfaces together with an
invertible sheaf L such that L is ample on the generic fiber X[ , that is big and
nef, but not ample on the special fiber X0. In this case, there exists at least one
(−2)-curve ' ⊂ X0 such that L has zero intersection with ' and a rational and
birational map

q : X d X+

of smooth and proper algebraic spaces over ) that is defined outside ' and
such that q restricted to X − ' is an isomorphism onto its image. Although
q does not extend to a morphism, it induces an isomorphism of the special
fibers X0 and X+0 . These two families X and X+ over ) are not isomorphic,
but have isomorphic geometric fibers. In particular, they violate the uniqueness
requirement for the valuative criterion of separatedness of the moduli stackK3" .
This type of phenomenon cannot happen for ample polarized families.

2. The moduli space M1,1 of elliptic curves exists as a Deligne–Mumford stack,
but not as an algebraic space or scheme, and we mentioned in Example 5.1.1 the
modular curves -0 (=) → M1,1, which are representable by algebraic spaces (in
this case even schemes). Now, if one wants to have moduli spaces that exist as
algebraic spaces rather than Deligne–Mumford stacks in the case of "-polarized
K3 surfaces, then one can add level structures as follows: one considers fam-
ilies of "-polarized K3 surface 5 : X → ( together with an isomorphism
' 5∗ (Z/=Z) � (L/=L) of the relative étale cohomology. If = is sufficiently large,
then such families do not admit non-trivial automorphisms and then, the corre-
sponding moduli functor can be represented by Deligne–Mumford stacks with
trivial stabilizers, which are representable by algebraic spaces. We refer to [620]
and [483] for further information, details, and results.

The previous results show the existence of moduli spaces for lattice polarized K3
surfaces, give smoothness and dimension (if non-empty). However, to understand the
geometry of these spaces, such as non-emptiness, number of connected components,
or their birational geometry, such as uniruledness or unirationality of these spaces,
one needs another approach to these moduli spaces. Over the complex numbers, such
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an approach is provided by period maps, period spaces, and yields coarse moduli
spaces.

For the remainder of this section,weworkwith complex algebraicK3 surfaces. Let
" be an even non-degenerate lattice of signature (1, C) together with an embedding
y" : " → L into the K3 lattice. Then, we define

# := "⊥

to be the orthogonal complement of " in L and note that it is a lattice of signature
(2, 19− C). Now, given a marked "-polarized K3 surface (-, q), the Hodge decom-
position of �2 (-,C) defines a point [l] := q(�2,0 (-)) in |LC) | = P(L∨C). More
precisely, �2,0 (-) is orthogonal to �1,1 (-) with respect to the cup-product, and
thus, [l] is orthogonal to " ⊂ L, which implies that [l] is a point in |#C | ⊂ |"C |.
Since l2 := l · l lies in �4,0 (-), which is zero, we conclude that [l] lies in the
quadric

&# :=
{
[l] ∈ |#C | |l2 = 0

}
⊂ |#C |.

Next, we observe that l · l lies in �2,2 (-) ∩ �4 (-,R) � R and that it is positive.
Putting these observations together, we find that

q(�2,0 (-)) ∈ D# :=
{
C · l ∈ |#C |l2 = 0, l · l > 0

}
⊂ |#C |.

We call the open subset D# of &# the period space or period domain. Note that
D# is not connected and consists of two connected components, each of which
is analytically isomorphic to a Hermitian symmetric domain (of type IV or of
orthogonal type). We refer to Section 5.9 and especially Example 5.9.2 for details.

To see these two components, we choose a basis in #C with coordinates
C1, C2, . . . , C: , where = := rank(#) = 19 − C, such that D# consists of points in
P(#C) with projective coordinates [I1, . . . , I=] satisfying

I2
1 + I

2
2 − I

2
3 − · · · − I

2
= = 0,

|I1 |2 + |I2 |2 − |I3 |2 − · · · − |I= |2 > 0,

This set consists of two connected components that are distinguished by the sign of
Im(C1/C2). Another way to see this is to consider a real plane %(I) ⊂ #R spanned
by the imaginary and real part of a vector I = G + 8H ∈ #C that represents a
point [I] ∈ Q# . Then, 0 = I2 = (G + 8H)2 implies G2 − H2 = G · H = 0 and
I · Ī = (G + 8H) · (G − 8H) > 0 implies G2 + H2 > 0. Thus, G2 = H2 > 0 and G · H = 0
implies that %(I) is a positive definite plane in #R. This defines a map from Q# to
the Grassmannian � (2, #R)+ of positive definite planes in #R. This consists of two
connected components defined by a choice of an orientation of the plane.

Via the natural action of O(#R) � O(2, 19 − C) on � (2, #R), the Grassmannian
inherits the structure of a homogeneous space isomorphic to O(2, 19 − C)/SO(2) ×
O(19 − C). The connected component containing the image of neutral element is
isomorphic to SO(2, 19 − C)/SO(2) × SO(19 − C) and it is a Hermitian symmetric
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domain. The complex involution switches the two components and the action on the
periods correspond to switching the complex structure to the conjugate one.

Let (-, q) be a marked "-lattice polarized K3 surface and let X → (" be the
local moduli space together with its universal family around (-, q) established in
Proposition 5.2.6. Shrinking if necessary, wemay assume that (" is contractible, and
thus, we may assume that the marking q extends to a marking q : �2 (XB ,C) → L
for all fibers XB with B ∈ (" . Thus, we obtain a period point q(�2,0 (XB)) ∈
D# for all B ∈ (" with respect to the extended marking. By the local Torelli
theorem for K3 surfaces [52, Exposé V], the resulting local period map ? : (" →
D# is holomorphic and locally an isomorphism in a neighborhood around the
point corresponding to (-, q). Thus, if K" is the fine moduli space of marked
"-polarized K3 surfaces from Proposition 5.2.7, then these local period maps glue
to a holomorphic map

? : K" → D# .

Being locally an isomorphism, ? is étale, but not necessarily injective. In the
following proposition we describe the fibers. Let I ∈ Q# and let c be a positive
definite oriented plane in #R associated to I. Let c⊥ be its orthogonal complement in
!R. It contains "R. Let,c be the 2-reflection group of c⊥ ∩ !. It acts on " and its
subgroup leaving� (") invariant is contained in the reflection group, (c⊥∩#). We
denote it by ,c (#). Applying the Global Torelli Theorem for Kähler K3 surfaces
from [100], we obtain the following theorem (see [173, Theorem (3.1)]).

Theorem 5.2.9 The restriction

?′ := ? |K" : K" → D#

of the period map ? to the subset K" of marked "-polarized K3 surfaces is
surjective. For all c ∈ D# , there is a natural bĳection between the fiber ?′−1 (c)
and the subgroup,c (#).

To determine the image of Ka
"

under the period map, we recall and define

#−2 =
{
X ∈ # | X2 = −2

}
�# ,X := {G ∈ #C | G · X = 0} , X ∈ #−2,
H# (−=) :=

⋃
X∈#−= �X ∩ D# ,

D◦
#

:= D# \H# (−2)

and note that D◦
#
is an open and dense subset of D# .

The divisorH# (−=) is called theHeegner divisor. If = = 2, then we also call it the
discriminant of the period domain. Now, if (-, q) is an ample marked "-polarized
K3 surface, then the ampleness assumption implies 21 ( 9 ("))⊥ ∩ �1,1 (-) does not
contain vectors X with X2 = −2. Thus, the period point c := q(�2,0 (-)) satisfies
c⊥ ∩ #−2 = ∅, and we obtain the following corollary, see [173, Corollary (3.2)].

Corollary 5.2.10 The restriction

? |Ka
"

: Ka
" → D

◦
#
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of the period map ? to the subset Ka
"

of marked ample "-polarized K3 surfaces
is bĳective. In particular, the points in H# (−2) are the period points of marked
pseudo-ample but not ample "-polarized K3 surfaces.

Note that during the proof of Theorem 5.2.9 and its corollary, we used the Global
Torelli Theorem for K3 surfaces given below. In fact, this result is the key to the
injectivity of the period map ?. We refer to [599] for the original proof; other proofs
can be found in [43] or [52].

Theorem 5.2.11 Let -, - ′ be complex algebraicK3 surfaces and let q : �2 (-,Z) →
�2 (- ′,Z) be an isometry such that the induced linear isomorphism qC : �2 (-,C) →
�2 (- ′,C) sends �2,0 (-) to �2,0 (- ′) and that it also sends the nef cone Nef (-) to
the nef cone Nef (- ′). Then, there exists a unique isomorphism 5 : - ′ → - , such
that q = 5 ∗.

Note that the condition q(Nef (-)) = Nef (- ′) is equivalent to one of the following
conditions:

• 5 (Eff (-)) = Eff (- ′).
• 5 (Amp(-)) ∩ Amp(- ′) ≠ ∅.
• 5 (Amp(-)) = Amp(- ′).
• 5 (R(-)) = R(- ′).

In Proposition 5.2.7, we constructed algebraic moduli spaces for (ample) "-
polarized K3 surfaces. To link these moduli spaces to the analytic moduli spaces of
marked and "-polarized K3 surfaces, we have to get rid of the markings. Let "
be a primitive sublattice of finite index of a non-degenerate lattice !. Suppose an
isometryf of" acts as identity on the discriminant group � ("). Using the chain of
sublattices (see Section (0.8)), we see that f acts identically on !/" , transforming
any G ∈ ! to G+< ∈ !, < ∈ " . In particular, it defines an isometry of ! that restricts
to the isometry f. Applying this to our situation, let

O(#)♯ := Ker (O(#) → O(� (#)) . (5.2.1)

We introduced this notation in Section 0.8 for an arbitrary even non-degenerate
lattice # . As we explained in this section, for any f ∈ O(#)♯, the isometry id" ⊕f
extends to an isometry of !. Conversely, if f̃ is an isometry of ! that leaves "
invariant and acts as identity on it, then its restriction to "⊥ = # belongs to O(#)♯.

An element f ∈ O(#)♯ acts as identity on O(� (" ⊕ #)) and hence extends to
an isometry f̃ ∈ O(!) that leaves both " and # invariant and acts as identity on " .
Therefore, the group O(#)♯ acts on K" by replacing the marking of a K3 surface,
but not changing the lattice polarization. The group O(#) contains a subgroup of
index ≤ 2 that is an arithmetic group of automorphisms of a Hermitian symmetric
domain. This implies that O(#) and hence O(#)♯, acts discretely on D# and that
the quotient has a uniquely defined structure of a quasi-projective algebraic variety,
see [44]. We come back to the structure of this quasi-projective variety in Section
5.9 below.
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Since any reflection in an element X ∈ #−2 belongs to the subgroup O(#)♯, each
fiber of the map ? : K" → D# is mapped to the same O(#)♯-orbit K" . Thus, by
Theorem 5.2.9, we obtain a bĳection

M 3," := O(#)♯\K" � O(#)♯\D# . (5.2.2)

The points of the quotient on the left are precisely the isomorphism classes of
"-polarized K3 surfaces, where we fixed the embedding of " into L. Changing
the embedding may change # and hence the group O(#)♯ and the corresponding
quotient.

The quotient on the right carries the structure of a quasi-projective variety. How-
ever, we should warn that the moduli functor K3" is not a separated Deligne–
Mumford stack and that M 3," is not its coarse moduli space. We only have a
bĳection of points between the isomorphism classes of complex "-polarized K3
surfaces and points ofM 3," .

Finally, we assume that " has the property that every two primitive embeddings
of " into L differ by an isometry of L. For example, it is true if rank " ≤ 9,
hence ; (") ≤ 9. Then rank # ≥ 13 > 2 + ; (#) = ; ("). Theorem 0.8.6 implies
that all primitive embedding of # , and hence of " are equivalent. Now, if (-, 9)
is an "-polarized K3 surface, we obtain a primitive embeddings " → Pic(-) →
�2 (-,Z) � L into the K3 lattice. By assumption, we can change this previous
embedding so that it coincides with the fixed one. Thus, the pair (-, 9) occurs as
a point of O(#)♯\D# and we may view this latter quotient as the moduli space of
"-polarized K3 surfaces. In fact, following [52, Exposé XIII], one can show that
O(#)♯\D# is a coarse moduli space of"-polarized K3 surfaces. In Section 5.11 we
will discuss compactifications of the quotients O(#)♯\D# , which will be projective
algebraic varieties. The existence of such compactifications implies that the just–
considered quotients are quasi-projective varieties. Moreover, it follows from [173,
Proposition 5.6] that these varieties are irreducible if # contains a direct summand
isomorphic to U(<).

Proposition 5.2.12 Let " be an even non-degenerate sublattice of L of signature
(1, C) with C ≤ 9 and set # = "⊥.

1. The quotient O(#)♯\D# has the structure of a quasi-projective variety and its
points are in a natural bĳection with isomorphism classes of lattice " polarized
K3 surfaces. It is irreducible if # contains a direct summand isomorphic to U(<)
(this condition is satisfied, for example, if rank # ≥ ; (#) + 3 [556, Proposition
1.13.5]).

2. The quotientO(#)♯\D◦
#
is an open subvariety ofO(#)♯\D# , and it is the coarse

moduli space for the moduli space K3a
" of ample "-polarized K3 surfaces.

3. The quotient O(#)♯\D◦
#
is a Zariski open subset of O(#)♯\D# , whose comple-

ment is a union of finitely many hypersurfaces.

Example 5.2.13 Assume " = 〈23〉. We have O(") = {±1} and O(� (")) =
O(〈 1

23 〉) � (Z/2Z)
? (3) , where ?(3) is the number of prime divisors of 3, see

[636, Lemma 3.6.1]. Although the homomorphism d" : O(") → O(� (")) is not
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surjective, the homomorphism d# : O(#) → O(� (#)) is surjective. This follows
from Theorem 0.8.6. The same theorem implies that all primitive embeddings of
# = E⊕2

10 ⊕ 〈−23〉 into L are equivalent. Thus, there is no ambiguity and we can
denote the moduli space of lattice " polarized K3 surfaces by M 3,23 . It is an
irreducible space of dimension 19 and it is isomorphic to an arithmetic quotient of
Γ
♯

23\D# , where Γ23 = O(#).
Let

"̌ := E10 ⊕ E8 ⊕ 〈−23〉

be the orthogonal direct sum decomposition of U⊥ in # . The moduli spaceM 3,"̌
is one-dimensional and it is the mirror moduli space in the sense of [173]. We
have "̌⊥ � U ⊕ 〈23〉. The period space D"̌⊥ is the union of two copies of the
upper half plane H = {I = 0 + 18 ∈ C : 1 > 0}. The subgroup of O("̌⊥)♯ that
fixes one of the copies is isomorphic to the modular group Γ0 (3)+. It is a subgroup
of PSL(2,R) generated by the modular group Γ0 (3) ⊂ PSL(2,Z) and the Fricke
involution defined by the matrix (

0 − 1√
=

1√
=

0

)
.

We thus obtain an isomorphism

M 3,"̌ � Γ0 (3)+\H .

To obtainM0

 3,"̌
we have to throw away # points, namely the orbits of the points

2
1
+ 8

1
√
3
, 2 ∈ Z and 1 |223+1. They correspond to isomorphism classes of K3 surfaces

with Picard number 20 that contain a (−2)-class in their Picard group orthogonal to
"̌ . In other words, their transcendental lattices ) (-) are contained in the orthogonal
complement of a (−2)-vector in the lattice 〈23〉 ⊕ U. One can compute the number
# and finds

# =


1 if 3 ≤ 4,
2ℎ(−43) if 3 ≡ 7 mod 8,
4ℎ(−43)/3 if 3 ≡ 3 mod 8, 3 ≥ 4,
ℎ(−4=) otherwise,

where ℎ(:) denotes the class number of integral primitive positive definite binary
forms with discriminant : , see [173, Theorem 7.3].

Example 5.2.14 Let - be a K3 surface with " � Pic(-). This corresponds to
a general point of M 3," . We fix one lattice polarization 90 : " → Pic(-)
and choose � (") to be the pre–image of the nef cone Nef (-). Obviously, any
polarization is ample and differs by an isometry of Pic(-) (or ") that preserves the
nef cone Nef (-). We denote the group of such isometries by �(-). The elements of
�(-)♯ lift to isometries of �2 (-,Z) that preserve the nef cone and act identically
on ) (-). Thus, they are realized by automorphisms of - .
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Let �(� (")) be the subgroup of O(") that leaves invariant � ("). It follows
from above that �(� ("))0 = �(� (")) ∩ O(")♯ acts as identity on M 3," .
Assume that d" : O(") → O(� (")) and d# : O(") → O(� (")) are surjective.
Choose an isomorphism W : � (") → � (#) such that @� (# ) ◦ W = −@� (" ) .
This gives rise to an isomorphism of groups O(� (")) → O(� (#)) and in this
way O(� (#)) = O(#)/O(#)♯ acts onM 3," by composing lattice polarizations
9 : " → Pic(-) with elements of �(� (")). In the case where �(� (")) = O(") ′,
we get a geometric realization of the quotient space

M 3,"/O(� (")) ′ = O(#)\D# .

There is a dense subset that parameterizes K3 surfaces with Picard number d =
rank " that admit a lattice " polarization.

Let U : " ′ ↩→ " be a primitive sublattice of " of signature (1, C ′). We
choose the data (+ (" ′)+, � (" ′)+) such that we have U((+ (" ′)+, � (" ′)◦)) ⊂
(+ (")+, � (")◦). Note that the latter condition is equivalent to the condition that
the orthogonal complement  of " ′ in " does not contain vectors of norm square
−2.

The forgetful functor defines a morphism of Deligne–Mumford stacks

� (U) : M 3," → M 3," ," ′ , � (U)0 : M0
 3," → M

0
 3," ," ′ , (5.2.3)

where the target denotes the stack of lattice " ′ polarized K3 surfaces where we
choose the embedding " ′ ↩→ L equal to the composition " ′

U
↩→ " ↩→ L. Given a

)-point ofM 3," ," ′ , the fiber

M 3," ×M 3,","′ )

over this point is either empty or a torsor under the subgroup O(")U of O(") that
restricts to id" ′ on " ′. Since the orthogonal complement  of " ′ in " is negative
definite, the group O(")U is finite. Also, it follows from the assumption on U that
any f ∈ O(")U leaves invariant (+ (")+, � (")+).

Example 5.2.15 Choose" ′ = Z{ � 〈{2〉, where { ∈ � (")◦. This defines a primitive
embedding U : " ′ ↩→ " . ThenM 3," ,{ is an open substack of the stack P 3 of
polarized K3 surfaces of degree 23 = {2. The fibers of � (U) are either empty or
torsors under the group O(")U = O("){ .

Over the complex numbers, U gives rise to a morphism of quasi-projective vari-
eties

� (U) : O(#)♯\D# → O(# ′)♯\D# ′ ,

where# (resp.# ′) is the orthogonal complement of" (resp." ′) inL. LetO(# ′, #)♯
be the subgroup of O(# ′)♯ of elements that leave # ⊂ # ′ invariant. The image of
the natural homomorphism A# : O(# ′, #)♯ → O(#) is the subgroup of O(#) of
isometries that can be lifted to isometries of L that leave invariant " = #⊥ and acts
as identity on " ′. Let �̃ (U) be the subgroup of the image of A# that in its action on
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" leaves invariant (+ (")+, � (")). It acts onD# with kernel of the action equal to
O(#)♯. Let � (U) be the quotient group �̃ (U)/O(#)♯. It is isomorphic to the group
O(")U from above. In this way, we see that

M 3," ," ′ = O(# ′)♯\D# ′ � �̃\D# � M 3,"/� (U). (5.2.4)

5.3 Marked and Unmarked Enriques Surfaces

In this section, we construct and discuss coarse moduli spaces of marked and un-
marked Enriques surfaces over the complex numbers using moduli spaces of ample
E10 (2)-lattice polarized K3 surfaces. On our way, we show that every two Enriques
surfaces are diffeomorphic, we discuss their automorphism groups, we establish the
Global Torelli Theorem, and we introduce Coble surfaces.

Let us start with a more general situation, where we only assume that the char-
acteristic satisfies ? ≠ 2 so that the canonical cover of an Enriques surface is a
K3 surface. In the previous section, we defined the Deligne–Mumford stacks K3"
and K3a

"
. In the sequel, we will consider the case where " is equal to or contains

E10 (2). Following Achter [2], we modify these functors and define the functor in
groupoids F",d (resp. F a

",d
) of triples (X

5
→ ), U, d), where (X

5
→ ), U) ∈ K3"

(resp. inK3a
"
) and d : -2,) → Aut(X/)) is a non-trivial homomorphism such that

(PicX/) )-2,) = U(") and -2,) acts as minus the identity onH2 (X,OX) = '2 5∗O- .
The following assertion is proven in [2, Proposition 3.6].

Proposition 5.3.1 The functors FE10 (2) ,d and F a
E10 (2) ,d are represented by smooth

Deligne–Mumford stacks over Z of relative dimension 10. The stack F a
E10 (2) ,d is

separated.

Applying the main theorem of Keel andMori from [381] we obtain the following.

Corollary 5.3.2 The stacks FE10 (2) ,d and F a
E10 (2) ,d admit coarse moduli spaces in the

category of algebraic spaces. The coarse moduli space of F a
E10 (2) ,d is separated.

We will now work over the complex numbers. We will show that the coarse
moduli space of F 0E10 (2) ,d is isomorphic to the coarse moduli space of K30E10 (2) and,
as such, it is isomorphic to an open subset of the arithmetic quotient O(#)♯\D# ,
where # is the orthogonal complement of E10 (2) in the K3-lattice L. Since such a
description as an arithmetic quotient is not available in positive characteristic ?, it
is not clear whether a coarse space of F 0E10 (2) ,d, if it exists, is irreducible if ? > 0.

First, we fix a primitive embedding of the lattice E10 (2) in the K3-lattice L.
Since � (E10 (2)) � u⊕5

2 , we can apply Theorem 0.8.6 to obtain that all primitive
embeddings of E10 (2) are equivalent with respect to O(L). We can fix one such an
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embedding as follows. We write E10 (2) as the orthogonal sum U(2) ⊕ E8 (2) and
write L as the orthogonal sum U⊕3 ⊕ E⊕2

8 . Then, we embed diagonally U(2) into
U ⊕ U and E8 (2) into E8 ⊕ E8.

Lemma 5.3.3 Let - be a complex algebraic K3 surface.

1. Assume that there exists an involution 6 that acts as − id on the transcendental
lattice ) (-). Then, the sublattice Pic(-)6∗ of Pic(-) of divisor classes fixed by
6∗ is a 2-elementary lattice that contains an ample divisor class.

2. Conversely, let Pic(-) ′ be a 2-elementary primitive sublattice of Pic(-) that
contains an ample divisor class. Then, there exists a unique involution 6 of - that
acts as the identity on Pic(-) ′ and as the minus the identity on the transcendental
lattice )- .

Proof Let 6 be an involution of - such that 6∗ acts as − id) (- ) on the transcendental
lattice ) (-). Thus, �2 (-,Z)6∗ is contained in Pic(-), which actually shows that
Pic(-)6∗ coincides with �2 (-,Z)6∗ . Since 6 is of finite order, we can always find
a 6-invariant ample divisor class. Let " := Pic(-)6∗ and let # be the orthogonal
complement of " in �2 (-,Z) � L. The restriction of 6∗ to # acts as − id# . Since
it extends to an involution of L that acts trivially on the orthogonal complement of
# , it acts as identity on � (#). This is possible only if � (#) (and hence � ("))
is a 2-elementary abelian group. Thus, # is an 2-elementary lattice and so is its
orthogonal complement " .

To prove the converse, we use the Global Torelli Theorem for K3 surfaces 5.2.11.
Let " = Pic(-) and # = "⊥ inside �2 (-,Z). We define an involution f of
�2 (-,Z) that extends the involutionf0 = id" ⊕−id# to an involution on�2 (-,Z).
Since " is 2-elementary, # is also 2-elementary and thus, f0 acts trivially on its
discriminant lattice, which implies that it extends to �2 (-,Z). Now, f acts as
− id) (- ) on ) (-) and hence, preserves �2,0 (-) and leaves invariant an ample
divisor on - . By the Global Torelli Theorem, there exists a unique involution 6 of
- such that f = 6∗. It acts as id" on " and as − id) (- ) on ) (-). �

Let " be a 2-elementary lattice of rank A and signature (1, A − 1), that is, the
discriminant group of " is a 2-elementary abelian group (Z/2Z); . All such lattices
that admit a primitive embedding into the K3 lattice L were classified by Nikulin
[557]. It follows that the isomorphism class of " is uniquely determined by a
triple (A, ;, X), where X is equal to 0 or 1 depending on whether the quadratic form
on � (") is of even or odd type. All possible invariants (A, ;, X) can be found in
Nikulin’s triangle diagram in [?]Section 6]Nikulin2. In particular, we find that ; ≤ 11
and A ≤ 11. Of course, the lattice E10 (2) is one of them and it corresponds to the
triple (A, ;, X) = (10, 10, 0).

Let 6 be an involution on a complex algebraic K3 surface - that acts as minus
the identity on ) (-). By the previous result " := Pic(-)6∗ is a 2-elementary lattice
and we let (A, ;, X) be the triple associated to " as defined above. Then the locus of
fixed points is described in [557, Theorem 4.2.2]. We have
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-6 =


∅ if (A, ;, X) = (10, 10, 0),
�
(1)
1 + � (1)2 if (A, ;, X) = (10, 8, 0),
� (6) +∑:

8=1 '8 otherwise,
(5.3.1)

where � (6) denotes a curve of genus 6 ≥ 0, '8 are disjoint (−2)-curves, and

6 =
1
2
(22 − A − ;), : =

1
2
(A − ;).

Proposition 5.3.4 Let " be a 2-elementary lattice. Then, the two functors F 0
",d

and
K30

"
coincide over the complex numbers.

Proof Given a scheme ) → SpecC, a family (X → ), 9) , d) ∈ F 0",d ()) defines a
family in F 0

"
()) by forgetting the action d.

Conversely, let ( 5 : X → ), 9) , d) ∈ F 0" ()). Replacing ) by a contractible set,
we introduce a marking of the family q) : L) → '2 5∗ZX with q = 9) on " and,
using Lemma 5.3.3, define an involution f on �2 (X,Z) that induces an involution
6C on each fiber XC with 6∗C = f. The union of the graphs of these involutions on
X × X is the graph of an involution 6̃ of X/) that restricts to the involutions 6C on
fibers. The involution 6̃ defines an action d : -2,) → Aut(X/)) that turns the pair
( 5 , 9) ) into a family from F 0

",d
()). Since the functor F 0

",d
is a stack, the local

families glue together to a global family over ) . �

Definition 5.3.5 A marked Enriques surface is a pair ((, q) of an Enriques surface
( and an isomorphism q : Num(() → E10 (called amarking). Two marked Enriques
surfaces ((1, q1) and ((2, q2) are said to be isomorphic if there exists an isomorphism
of surfaces 5 : (1 → (2 such that q1 ◦ 5 ∗ = ±q2. A family of marked Enriques
surfaces is a pair ( 5 : S → ), 9) ) that consists of a family of Enriques surfaces
5 : S → ) and an isomorphism of abelian sheaves 9) : (E10)) → PicS/) /PicgS/)
that is compatible with the quadratic form on E10 and the intersection form on
PicS/) /PicgS/) .

We define an isomorphism of marked families (S → ), q) → (S′ → ), q′) to
be an isomorphism 5 : S/T → S′/) , such that q = 5 ∗ ◦ q′. It follows that for any
C ∈ ) , an automorphism of a marked family acts as identity on the group Num(SC ).
It follows from Proposition 8.2.1 in Volume II that the group of such automorphisms
is finite. This allows us to show that the functor Em of families of marked Enriques
surfaces is a Deligne–Mumford stack. We denote byMm

Enr its coarse moduli space.

Corollary 5.3.6 Over an algebraically closed field of characteristic ? ≠ 2, the
functor F 0E10 (2) ,d coincides with the functor Em of marked Enriques surfaces.

Proof Let " := E10 (2) and let 6 be an involution on a lattice "-polarized K3
surface - with Pic(-)6∗ = 9 ("). Since ? ≠ 2, we can apply the Lefschetz fixed–
point formula

Lef(6) = Tr
(
6∗ : �∗ét (-,Qℓ) → �∗ét (-,Qℓ)

)
= 4(-6)
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to conclude 4(-6) = 0. We set . = -/(6) and we note that the map - → . is
generically étale of degree 2. The Hurwitz–type formula 4(-) = 24(. ) − 4(-6)
gives that 4(. ) = 12. Since 6 acts non-trivially on �0 (-, l- ) and the map - → .

is generically étale, the classification of algebraic surfaces shows that . must be
either an Enriques surface or a rational surface. A rational surface with 4(. ) = 12
is not minimal, hence contains a (−1)-curve. Its pre-image on - is a 6-invariant
(−2)-curve. Obviously, its class does not belong to 9 ("). This contradiction shows
that . must be an Enriques surface.

Let (X → ), 9) , d) ∈ F 0",d and let 6 be the involution on X defined by d.
The restriction of 6 to each fiber has no fixed points, hence 6 has no fixed points
on X and the quotient family is a smooth family of Enriques surfaces. The lattice
polarization 9) descends to a marking of the family. Conversely, let (S → ), q) be a
smooth family of marked Enriques surfaces. Then, lS/) ∈ PicgS/) ()) is a non-zero
2-torsion element. It defines an étale degree 2 cover c : X → S, whose fibers XC are
the K3-covers of the fibers SC . Thus, it is a smooth family X → ) of K3 surfaces.
The marking q : (E10)) → PicS/) /PicgS/) defines a lattice E10 (2)-polarization
q∗ (�) ) : E10 (2) → PicX/) . Since PicS/) ()) contains a relatively ample invertible
sheaf, the lattice polarization is ample. �

Corollary 5.3.7 Over an algebraically closed field of characteristic ? ≠ 2, the coarse
moduli space of the functor F 0E10 (2) is isomorphic toM

m
Enr.

We have just established that any ample lattice E10 (2)-polarized complex
K3 surface (-, 9) admits a fixed-point involution g. If we choose a marking
q : �2 (-,Z) → L compatible with 9 , then ) (-) = Pic(-)⊥ admits a primi-
tive embedding in # = E10 (2)⊥ = U ⊕ E10 (2). Since the polarization 9 is ample,
the orthogonal complement of 9 (�10) in Pic(-) does not contain divisor classes
with self-intersection −2. Since its image  under q coincides with the orthogonal
complement of q() (-)) in # , we have  −2 = ∅. We now prove the converse (see
[383, Theorem 1]).

Theorem 5.3.8 A complex K3 surface - admits a fixed-point-free involution if and
only if ) (-) admits a primitive embedding into the lattice # = U ⊕ E10 (2) such that
the orthogonal complement of the image does not contain vectors of norm square
−2.

Proof Let ] : ) (-) ↩→ # be a primitive embedding satisfying the assumption from
the theorem. The composition with the inclusion # ⊂ L gives a primitive embedding
of ) (-) into L. If we choose a marking q : �2 (-,Z) → L, then its restriction to
) (-) defines another primitive embedding of) (-) intoL. Suppose we prove that all
primitive embeddings of ) (-) into L are equivalent. Then, after composing with an
isometry of L, we may assume that q() (-)) ⊂ # . Then " = E10 (2) ⊂ q(Pic(-))
and hence, q| Pic(-) defines a lattice " polarization 9 : " ↩→ Pic(-) of - .
After choosing + (")+ appropriately, we may assume that 9 (+ (")+) = 9 (� (")) ⊂
+ (Pic(-))+. By assumption, Pic(-) has no (−2)-divisor classes in the orthogonal
complement of 9 ("), hence the image of + (")+ lies in the interior of Nef (-) and
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hence contains an ample divisor class. Thus, the lattice " polarization is ample and
hence, - admits a fixed-point-free involution.

It remains to prove that all primitive embedding of) (-) intoL are equivalent.We
follow an argument due to Ohashi. Let C (-) = 22− d(-) ≤ 12 be the rank of ) (-).
If C (-) = 12, then " � Pic(-) and we know that all primitive embeddings of the
Enriques lattice into the K3 lattice are equivalent. If C (-) ≤ 10, then d(-) ≥ 12 and
; (Pic(-)) ≤ 10. Applying Theorem 0.8.6, we obtain that all primitive embeddings
of Pic(-) into L are equivalent, hence all primitive embeddings of ) (-) into L are
equivalent.

It remains to consider the case C (-) = d(-) = 11. In this case rank  = 1
and hence  � 〈−2=〉. Since, by assumption,  −2 = ∅, we have = ≥ 2. The
lattice Pic(-) = ) (-)⊥ contains E10 (2) ⊕ 〈−2=〉 as a sublattice of finite index and
hence, the embedding E10 (2) ⊕ 〈−2=〉 ↩→ Pic(-) corresponds to an isomorphism
W : � → � ′ ⊂ � (〈−2=〉 of a subgroup � of u⊕5

2 to a subgroup � ′ of � (〈−2=〉).
Since � is an elementary 2-group and � (〈−2=〉) is cyclic of order 2=, we have two
possibilities:

1. � = � ′ = {1}.
2. � and � are of order 2.

Since u⊕5
2 is isomorphic to the even non-degenerate quadratic space F10

2 and the
group of its symmetries acts transitively on its non-zero elements, we can fix �
and hence W. In case (1) we get " = E10 (2) ⊕ 〈−2=〉 and in case (2) we get
" � U⊕E8 (2)⊕〈−4:〉. It remains to applyTheorem0.8.6 to conclude the uniqueness
of a primitive embedding of Pic(-) into L. �

All possible isomorphism classes of transcendental lattices of K3 surfaces admit-
ting a fixed-point-free involution have been classified in [93]. There are only 11 with
rank) (-) ≥ 7.

We will further discuss the functor E< in characteristic ? = 2 in Section 5.11.
We remind the reader thatwe introduced period spaces forK3 surfaces, orthogonal

groups acting on them, and Heegner divisors in Section 5.2. To simplify the notation,
we set

DEnr := DE10 (2)⊥ ,

�X := �E10 (2)⊥ , X , X ∈ E10 (2)⊥,
H(−2=) := ∪X∈(E10 (2)⊥)−2=�E10 (2)⊥ , X ,

D◦Enr := D◦E10 (2)⊥ .

We also set
ΓEnr = O(E10 (2)⊥)♯, ΓEnr (2)♯ := O(E⊥10)

♯

Taking into account Proposition 5.2.12, Proposition 5.3.4, Corollary 5.3.6, and
Corollary 5.2.10, we obtain the following.

Theorem 5.3.9 Over the complex numbers, the period mapK0E10 (2) → DEnr defines
an isomorphism
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Mm
Enr := Γ♯Enr\D

◦
Enr.

In particular, Mm
Enr carries the structure of a 10-dimensional irreducible quasi-

projective variety over C.

A projective model of a compactification of the moduli spaceMm
Enr is described

in the appendix.
Since this space is irreducible, it is connected, which has the following important

application to the differential topology of complex Enriques surfaces.

Corollary 5.3.10 Any two complex Enriques surfaces are homeomorphic and dif-
feomorphic as four-manifolds.

To get rid of a marking, we consider the group O(E10 (2)) ′ � O(E10) ′ = , (E10)
and note that we have to restrict to isometries of the lattice " that preserve + (")+.
We have a natural isomorphism

E10 ( 1
2 )/2E10 ( 1

2 ) → E10 (2)∨/E(2) = � (E10 (2)). (5.3.2)

Using this, we can identify the quadratic form @E10 (2) with an even quadratic form
on the vector space E10/2E10 � F

10
2 and obtain an isomorphism

O
(
� (E10 (2), @E10 (2) )

)
� O+ (10, F2),

see Corollary 6.4.7 in Section 6.4 of Volume II. Also, the natural homomorphisms
give rise to a commutative diagram

O(�10)

��

q // O(E10 (2))

��
O(E10/2E10)

q̄ // O(� (E10 (2)))

where the horizontal arrows are isomorphisms. Applying Theorem 0.8.6, we see
that the right vertical arrow is surjective, so the left vertical arrow is also surjective.
By the same theorem, an isometry of E10, identified with an isometry of E10 (2),
lifts to an isometry of E10 (2)⊥ and hence, acts onM<

Enr by changing the markings.
The kernel of this action is the 2-congruence subgroup , (E10) (2) identified with
O(E10 (2))♯. The quotient by the action of

, (E10) := , (E10)/, (E10) (2) � O+ (10, F2)

is identified with the action of the quotient of ΓEnr/Γ♯Enr on DEnr.
We set

MEnr := ΓEnr\Mm
Enr =M

m
 3/, (E10)

and call it the moduli space of (unmarked) complex Enriques surfaces.
The group, (E10) does not act freely onMm

Enr. The stabilizer subgroup of (-, q)
is equal to the image Aut(()∗q of the group
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q∗ (Aut(()∗) := q−1 ◦ Aut(() ◦ q.

in, (E10). In other words, we have

Aut(()∗q = q∗ (Aut(()∗)/q∗ (Aut(()∗) ∩, (E10) (2). (5.3.3)

Remark 5.3.11 Aswewill see in Chapter 8 ofVolume II, the group of automorphisms
of an unnodal Enriques surface is an infinite discrete group. Thus, although we can
define the stack of Enriques surfaces, it is not an algebraic stack and it is unclear
whether it admits a coarse moduli space. In particular, our moduli space MEnr is
not a coarse moduli space in the usual sense because the automorphism group of a
general Enriques surface is infinite. What we can really say is that its points are in a
bĳective correspondence with the set of isomorphism classes of complex Enriques
surface and that this correspondence is compatible with the bĳection between the
set of isomorphism classes of marked Enriques surfaces and the points of its coarse
moduli space.

Remark 5.3.12 Note that via the isomorphism (5.3.2), a marking 8 : Num(() → E10
of an Enriques surface ( defines an isomorphism

(E10/2E10, @E10 mod 2) � (F10
2 , @) → (Num(()/2 Num((), @Num(() mod 2)

that can be thought as a 2-level structure on Num((). This is in analogy with the
notion of a 2-level structure on a principally polarized abelian variety of dimension
6, which defines an isomorphism between the group of 2-torsion points in its Picard
variety equipped with the Weil pairing and the space F26

2 equipped with the standard
non-degenerate symplectic form

∑6

8=1 (G8H8+6 + G8+6H8), see [541, Chapter IV, 20].

We have just established that the canonical cover - of a general Enriques surface
( admits a unique lattice E10 (2) polarization, and hence, its transcendental lattice is
isomorphic to U ⊕ E10 (2).

Let (-, 9) be a K3 surface with an ample lattice polarization 9 : " → Pic(-)
such that 9 is bĳective. We discussed such lattice polarizations in Example 5.2.14.
We have # = "⊥ � ) (-), where ) (-) is the transcendental lattice of - .

It is a natural question whether a given K3 surface - admits a fixed-point-free
involution and how many of them there are, up to conjugacy by automorphisms of
- . In the case k = C we gave a necessary and sufficient condition in Theorem 5.3.8
for the existence of such an involution in terms of the transcendental lattice ) (-) of
- .

If g is a fixed-point-free involution on - , then Pic(-)g is isomorphic to
Num(-/(g)) (2) � E10 (2). Thus, any fixed-point-free involution of - defines a
primitive sublattice of Pic(-) isomorphic to E10 (2) that does not contain a (−2)-
vector in its orthogonal complement. In turn, it defines an ample lattice E10 (2)
polarization on - . However, we identify two such polarizations if they differ by
an isometry of E10 (2). Let M be the set of such sublattices of Pic(-) and let
{"1, . . . , ": } be representatives of the orbits of O(Pic(-)) on M. For any "8 let
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�̄8 be the image of the stabilizer subgroup �8 of "8 under the homomorphism
dPic(- ) : O(Pic(-)) → O(� (Pic(-))). We set

� :=
:∑
8=1
[O(� (Pic(-))) : �̄8] . (5.3.4)

and then, we have the following theorem of Ohashi [577].

Theorem 5.3.13 The number of conjugacy classes of fixed-point-free involutions on
a complex algebraic K3 surface is less than or equal to the number � from (5.3.4).
It is equal to this number if the homomorphism O(Pic(-)) → O(� (Pic(-))) is
surjective and AutHdg () (-)) = {±1}.

Proof Let #8 be the number of fixed-point-free involutions g of - such that Pic(-)g
belongs to the orbit of "8 . Let f ∈ O(Pic(-)) ′ and after composing it with some
reflection| ∈ ,- , wemay assume that"8 → Pic(-) is an ample lattice polarization
98 : E10 (2) → Pic(-). Then we know that it defines a fixed-point-free involution
g8 of - . The stabilizer subgroup of 98 in O(Pic(-)) is equal to the subgroup �(-)
that preserves the ample cone of - . Its subgroup �(-)♯ extends to a group of
automorphisms of - and all involutions from the orbit of �(-)♯ of 98 define conjugate
involutions. Thus the number of conjugacy classes of involutions defined by the orbit
of " 9 is at most [�(-) : �(-)♯] = [O(� (Pic(-))) : �̄8]. This proves the asserted
bound.

Suppose d = dPic(- ) is surjective. Let  8 be the orthogonal complement of
"8 . Since " is 2-elementary, the isometry (− id" , id 8 ) of " ⊕  8 extends to an
isometry of Pic(-) that does not preserve + (")+ and hence, does not preserve
the ample cone of - . Since its image in � (" ⊕  8) is trivial, its lift to O(Pic(-))
belongs toO(Pic(-))♯. Thus, the restriction of d to the index 2 subgroupO(Pic(-)) ′
of elements preserving + (Pic(-))+ is surjective. Since , (Num(-)) is contained
in O(Pic(-))♯ and O(Pic(-)) ′ = , (Num(-)) o �(-), we see that d defines
a surjective homomorphism �(-) → O(� (Pic(-))). Thus, the subgroup �̄8 of
O(� (Pic(-))) is equal to the image of some subgroup of �(-) and we may assume
that �8 is such a subgroup. The bound is sharp if no non-zero element f from �̄8
is equal to the image of 6∗ for some 6 ∈ Aut(-). Here, the second assumption is
used. If f is such an element, then it extends to an isometry of �2 (-,Z) that leaves
) (-) invariant and defines a non-trivial element of O(� () (-)) � O(� (Pic(-))).
But then, it defines a Hodge isometry of ) (-) different from ± id) (- ) , contradicting
our assumption. �

Example 5.3.14 The following example is taken from [577]. It shows that the number
of possible fixed-point-free involutions for complex K3 surfaces can be arbitrarily
large.

Let - be a K3 surface and assume that - admits an ample E10 (2)-polarization
and rank() (-)) = 11. It follows from the proof of Theorem 5.3.8 that Pic(-) � " ,
where " = E10 (2) ⊕ 〈−23〉 with 3 ≥ 2, or " � U ⊕ E8 (2) ⊕ 〈−43〉. We have
O(� (Pic(-))) � O(10, F2)+ × (Z/2Z) ? (3) in the first case and that it is isomorphic
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to O(8, F2)+ × (Z/2Z)⊕? (23) in the latter case. It follows from Theorem 0.8.6 that
the homomorphism d : O(Pic(-)) → O(� (Pic(-))) is surjective. Since the rank
of ) (-) is odd, we have AutHdg () (-) = {±1} [321, Corollary 3.5].

Assume that " is as in the first case. Since Pic(-) ( 1
2 ) is an integral lattice and

any primitive embedding of E10 (2) in " is defined by a primitive embedding of
the unimodular lattice E10 in Pic(-) ( 1

2 ), it follows from Theorem 0.8.6 that all such
embedding are equivalent. Let  be the orthogonal complement of E10 (2) in " . It
is isomorphic to 〈−23〉. The stabilizer of the embedding E10 (2) → " is equal to
O(E10 (2)) × O(〈−23〉). Since the homomorphism dE10 (2) is surjective, we obtain
that the image of  in O(� (")) is isomorphic to O(� (E10 (2)) × {±1}. Its index
� in O(� (")) is at least 1

2 #$ (〈− 1
23 〉). Using [636], we see that � ≥ 2? (3)−1 – in

fact, it follows from [577, Lemma 3.1] that � = 210+? (3) .

Example 5.3.15 Let � be an abelian surface and let - = �Kum(�) be the minimal
resolution of the Kummer surface Kum(�) = �/(]), where ] is the sign involution.
In case there is no danger of confusion, we continue to call it a Kummer surface. Let
�̃→ � be the blow-up of 16 fixed points of ] and let c : �̃→ - be the quotient map
for the action of the lift of ] to �̃. The homomorphism c∗ : �2 (-,Z) → �2 ( �̃,Z)
defines an isomorphism of lattices ) (-) (2) → ) (�)[321, Chapter 3,2.5]. Since the
sum of the classes of the exceptional curves of - → Kum(�) is divisible by 2,
the sublattice of Pic(-) generated by the classes of the exceptional curves is not
primitive. In fact, its primitive closure (called the Kummer lattice) is defined by
an isotropic subgroup of � (〈−2〉⊕16) isomorphic to (Z/2Z)⊕5, see [321, Chapter
14.3.3].

Since �2 (�,Z) is a unimodular even lattice of signature (3, 3), it is isomorphic
to U⊕3. The Néron–Severi lattice NS(�) is equal to the image of Pic(�) in �2 (�,Z)
under the Chern class map 21. It is isomorphic to the numerical lattice Num(�). If �
is moduli general, then Num(�) is isomorphic to 〈23〉 for some positive integer 3.
Thus, rank) (-) = 5 and d(-) = 17. We have ) (-) = ) (�) (2) � U(2)⊕2 ⊕ 〈−43〉.
If d(-) = 18 (resp. 19 or 20), then ) (-) � ) (2) ⊕ U(2) (resp. ) (2)) for some
even hyperbolic lattice ) . For example, if � = �1 × �2, where �1, �2 are two non-
isogenous elliptic curves, then we have d(-) = 18. If � = �1×�2 are two isogenous
elliptic curves then d(-) ≥ 19. If � = � × � and # Aut(�) > 2, then d(-) = 20.

Since ) (-) is always contained in U(2)⊕2 ⊕ 〈−43〉, we can primitively embed it
in # = U⊕U(2) ⊕E8 (2) by embedding U(2) ⊕ 〈−43〉 into U⊕E8 (2). A less obvious
fact is that we can find an embedding such that its orthogonal complement does not
contain (−2)-vectors, see [383, Theorem 2]. This shows that any Kummer surface
admits a fixed-point-free involution.

To compute the number of these involutions, we apply Theorem 5.3.13. For
example, assume that � � Jac(�) for some general curve � of genus two. In this
case, Pic(�) � 〈2〉 and ) (-) � U(2)⊕2 ⊕ 〈−4〉. One can choose a representative
Θ of a generator of NS(�) such that the linear system |2Θ| defines a map � → P3

that factors through a closed embedding of Kum(�). Its image is a quartic surface
with 16 ordinary nodes, a Kummer quartic surface . The sign involution of � acts
on �0 (�,O�(4Θ)) and the linear subsystem of |�0 (�,O�(4Θ))− | of anti-invariant
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sections is of dimension 5. The 2-torsion points of � are its base points. It defines a
map of �̃ that factors through a closed embedding of - into P5 as a surface of degree
8. In suitable projective coordinates it can be given by equations

5∑
8=0

G2
8 =

5∑
8=0

08G
2
8 =

5∑
8=0

02
8 G

2
8 = 0,

where (00, 01, . . . , 05) are the branch points of the cover � → P1 defined by the
hyperelliptic involution of �, see [177, 10.3]. The group of automorphisms of -
generated by changing the signs of the coordinates is isomorphic to (Z/2Z)⊕5. An
involution obtained by changing the signs of odd number of coordinates is called a
switch) (for reasons that we do not discuss here). A switch changing the signs of three
coordinates is fixed-point-free. Note that the subring � of invariant element of the
projective coordinate ring of - inP5 is generated by G3, G4, G5 and H8 9 = G8G 9 , 8, 9 ≤ 2.
Thus, the quotient Enriques surface ( is isomorphic to Proj � and admits two maps
to P2 defined by the homomorphism k[G3, G4, G5] → � and k[G0, G1, G2] (2) → �.
This agrees with our models of Enriques surfaces defined by a polarization of degree
4 discussed in Section 3.4. We can express G2

0, G
2
1, G

2
3 as quadratic forms in G3, G4, G5

and obtain the equations of ( in P(1, 1, 1, 2, 2, 2) given by these quadratic forms
and the quadratic forms in G0, G1, G2 corresponding to the equations of the Veronese
surface a2 (P2) in P5.

There are also other examples of fixed-point-free involutions.
It is known that a minimal nonsingular model of the Hesse quartic surface of a

Sylvester non-degenerate cubic surface is a K3 surface that admits a natural fixed-
point-free involution, see Example 6.4.20 in Volume II. It was shown by Hutchinson
that the Kummer surface associated to a the Jacobian variety of a curve of genus
two admits a birational model isomorphic to the Hessian surface of a cubic surface
(it must be a special cubic surface), see [187] and the references there. Each such
model is defined by a choice of a Weber hexad of nodes on Kum(�). Another type
of a fixed-point-free involution is also due to Hutchinson. It is defined by a cubic
Cremona involution with a set of four fundamental points forming a Göpel tetrad
of nodes. It is shown in [578] that the set of conjugacy classes of fixed-point-free
involutions on - can be represented by 10 switches, 6 Hutchinson-Weber involutions
and 15 Hutchinson-Göpel involutions, see Theorem 10.7.5 in Volume II. We will
give later in Volume II many examples of fixed-point-free involutions on Kummer
surfaces of other types.

5.4 Moduli of Coble Surfaces of K3 Type

In this section, we will show that the Heegner divisor

Γ
♯

Enr\H (−2) = Γ♯Enr\(DEnr − D◦Enr)
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is irreducible and that it contains a dense and locally closed subset that parameterizes
isomorphism classes of marked Coble surfaces, which wewill discuss in this section.
We denote this devisor byMm

Coble and its image in ΓEnr\DEnr byMCoble.
We will start with the following nice observation of Allcock [6, Lemma 1].

Lemma 5.4.1 Let " be an even unimodular lattice and set # := " (2) ⊕ U. Then,
there exists an odd lattice # ′ isomorphic to " ⊕ I1,1 with # ′R = #R, such that
every isometry of # extended to #R preserves # ′ and vice-versa. In particular,
O(" (2) ⊕ U) � O(" ⊕ I1,1).

Proof Note that the lattice 1√
2
" (2) ⊂ "R is isomorphic to" and that 1√

2
U � U( 1

2 ).
Thus, there exists an isometry of lattices ( 1√

2
#)∨ � " ⊕ U(2). Their discriminant

quadratic forms are isomorphic to the discriminant quadratic form of U(2) given by
the Gram matrix 1

2 ·
( 0 1

1 0
)
. Adding a suitable non-zero non-isotropic vector, gives an

unimodular odd overlattice of U(2), which must be isomorphic to I1,1. Thus, ( 1√
2
#)∨

lies in # ′ = " ⊕ I1,1. We can recover # from # ′ as (
√

2# ′ev)∨, where # ′ev is the
maximal even sublattice of # ′. It is clear that any isometry of # or # ′ preserves the
other. �

Corollary 5.4.2 The boundary

Mm
Coble := Γ♯Enr\H (−2)

ofMm
Enr in Γ

♯

Enr\DEnr is an irreducible divisor.

Proof This follows from the fact that all (−2)-vectors in E10 (2) ⊕ U form one
orbit with respect to the Γ♯Enr. First, we see that they form one orbit with respect to
ΓEnr = O(E10) ′. We apply Lemma 5.4.1 to " = E10. Then, the set of vectors of
norm −2 in # := E10 (2)⊥ = E10 (2) ⊕ U corresponds bĳectively to the set of vectors
of norm −1 in # ′ := E10 ⊕ I1,1. Next, we use that O(E10 ⊕ I1,1) acts transitively on
vectors of norm −1. In fact, for any such vector {, the orthogonal complement 〈{〉⊥
is an odd unimodular lattice of signature (1, 10) and hence, by Proposition 0.8.8, it
must be isomorphic to I1,9, which gives a decomposition

E10 ⊕ I1,1 = 〈{〉 ⊕ 〈{〉⊥ = 〈−1〉 ⊕ I1,10.

Given two vectors of norm −1, it is immediate that there exists an isometry sending
one to another.

To see that there is only one orbit under the Γ♯Enr-action, we use an argument from
[410, Lemma 2.1]. Since Γ♯Enr is a normal subgroup of ΓEnr with quotient � (E20 (2)),
it follows that the number of orbits is equal to

2 :=
[ΓEnr : Γ♯Enr]

[(ΓEnr)A : (Γ♯Enr)A ]
,
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where A ∈ #−2. However, the reflection BA defined by A belongs to Γ♯Enr, so that the
natural map from (ΓEnr)A/(Γ♯Enr)A to � (E10 (2)) is an isomorphism. This implies that
2 is equal to 1. �

We recall the definition of a Coble surface from [195].

Definition 5.4.3 A Coble surface is a smooth projective rational surface V with
| −  V | = ∅ and | − 2 V | ≠ ∅.

Wewill be interested only in terminal Coble surfaces of K3 type, see [195, Section
6.1]. These are Coble surfaces with | − 2 V | = {�1 + · · · + �=}, where �1, . . . , �=
are disjoint smooth rational surfaces with self-intersection −4, which we will call
(−4)-curves for short. Following Mukai, we call these (−4)-curves the boundary
components and the union of them the boundary of V.

In characteristic ? ≠ 2, the double cover c : - → V branched along �1 + · · · +�=
is a K3 surface - . The pre-images �̄8 of the curves �8 are disjoint (−2)-curves on
- . Generically, the ramification divisor of the cover is described by (5.3.1), where
6 = 0 and : = = − 1. Thus, Pic(-) is a 2-elementary lattice of rank A = 10 + = and
the rank ; of the 2-elementary discriminant group is equal to 12 − =.

It is known thatV is a basic rational surface, that is, it admits a birationalmorphism
5 : V → P2 that decomposes as the blow-up of # points, which are allowed to be
infinitely near (see Proposition 9.1.3 in Volume II). The condition | − V | = ∅ implies
that # ≥ 10, so that rank Pic(V) ≥ 11. We have

 2
V = 9 − # = −=. (5.4.1)

Now, let (40, 41, . . . , 4# ) be a geometric basis in Pic(+) as introduced in (0.5.5)
in Section 0.3. A marking of V is a choice of such a geometric basis. It defines an
isomorphism of lattices Pic(V) → I1,# . The sublattice Pic(V) ′ of Pic(V) spanned
by 40, 41, . . . , 410 is a sublattice of I1,# , which is isomorphic to I1,10. It contains
the lattice isomorphic to E10 as the orthogonal complement to the vector :10 :=
340 − 41 − · · · − 410.

Let " = Pic(-) ′ be the sublattice of Pic(-) generated by c∗ (Pic(V)) and the
classes of the curves �̄8 . It is a 2-elementary sublattice of Pic(-) of index 2:−1 in
c∗ (Pic(V)) � I1,# (2). Taking into account formula (5.4.1), we obtain

; (� (")) = ; (I1,# (2)) − 2(= − 1) = 21 − #.

This agrees with formula (5.3.1), where 6 = 0 and : = = − 1. Thus, generically,
Pic(-) is a 2-elementary lattice of rank A = 10+= and the rank ; of the 2-elementary
discriminant group is equal to 12 − =. The discriminant quadratic form could be
of even or of odd type. Table 5.1 below is based on Nikulin’s classification of
2-elementary lattices, see [557, 4.3] or Theorem 10.1.6 in Volume II.
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: #  2
+
(A , ;, X) 2-elementary lattice " # = "⊥

1 10 −1 (11, 11, 1) E10 (2) ⊕ A1 I2,9 (2)
2 11 −2 (12, 10, 1) E10 (2) ⊕ A⊕2 I2,8 (2)
3 12 −3 (13, 9, 1) D⊕2

4 ⊕ A⊕3
1 ⊕ U(2) I2,7 (2)

4 13 −4 (14, 8, 1) E7 ⊕ A⊕5
1 ⊕ U(2) I2,6 (2)

5 14 −5 (15, 7, 1) E8 ⊕ A⊕5
1 ⊕ U(2) I2,5 (2)

6 15 −6 (16, 6, 1) E10 ⊕ A⊕6
1 I2,4 (2)

7 16 −7 (17, 5, 1) E8 ⊕ D6 ⊕ A1 ⊕ U(2) I2,3 (2)
8 17 −8 (18, 4, 0) E8 ⊕ D8 ⊕ U(2) U(2)⊕2

8 17 −8 (18, 4, 1) E10 ⊕ D6 ⊕ A⊕2
1 I2,2 (2)

9 18 −9 (19, 3, 1) E10 ⊕ D8 ⊕ A1 I2,1 (2)
10 20 −10 (20, 2, 1) E10 ⊕ D10 〈2〉⊕2

Table 5.1 Types of Coble surfaces

Note all such lattices are marked on the right–hand side of Nilulin’s triangle table.
We now give some explicit constructions of Coble surfaces. Let D5 be a del Pezzo
surface of degree 5, see also Section 0.5.

Example 5.4.4 Werecall that aD5 is obtained by blowing up four points ?1, ?2, ?3, ?4
in the projective plane P2, which are in general position, that is, no three of them are
collinear. A general member of the linear system | − 2 D5 | is of proper transform of
a plane curve of degree 6 with double points ?1, . . . , ?4. Let � be a member from
| − 2 D5 | that is either a rational irreducible curve with double points (including
infinitely near) or a reducible curve which consists of ℎ > 1 irreducible rational
components �1, . . . , �ℎ and such that all singular points of � are double points. Let
V be the blow-up ofD5 with centers at the singular points of �. It is a Coble surface
with # = 4 + X, where X is the number of singular points of �. Since ?0 (�) = 6, the
formula ?0 =

∑ℎ
8=1 68+X−ℎ+1 implies that X = 5+ℎ. Moreover, in the anti-canonical

embedding D5 → P5, the curve � is of degree 10, so we obtain ℎ ≤ 10. We have
the following extreme cases:

1. If � is irreducible, then ℎ = 1, X = 6, # = 10, and V is the Coble surface originally
considered by A. Coble, namely, the blow-up of the 10 nodes of a plane rational
sextic curve. This realizes the top row of Table 5.1.

2. If the Coble surface V is obtained by blowing up the 15 intersection points of ten
lines on D5, then we have ℎ = 10, X = 15, and # = 19. This realizes the bottom
row of Table 5.1. Moreover, the double cover of V branched over � is isomorphic
to one of the two most algebraic K3 surfaces studied by E. Vinberg in [721].

Example 5.4.5 It is known that aD5 contains five pencils of conics, see also the end
of Section 0.5. They are the proper transforms of pencils of lines through each point
?8 and the pencil of conics through the four points ?8 . Two conics from different
families intersect transversally at one point.We choose one conic 8 fromeach pencil.
They mutually intersect in 10 =

(5
2
)
points @8 9 =  8 ∩  9 . Suppose  1, . . . ,  B with
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0 ≤ B ≤ 5 are reducible conics and let @1, . . . , @B be their singular points if B > 0.
Let V be the blow-up of D5 with centers at the 10 + B points @8 9 , @1, . . . , @B .

This is a Coble surface with the boundary �1 + · · · + �5+B ∈ | − 2 + |. A general
surface obtained in this way depends on 5 − B parameters and represents a general
Coble surface with = = 5, . . . , 10 or, equivalently, # = 14, ..., 19, whose K3 double
cover has transcendental lattice I2,5−B (2).

To construct the other case with = = 8, where "⊥ � U(2)⊕2 of Table 5.1, we
consider the double cover of P1 × P1 branched along four curves of bidegree (0, 1)
and four curves of type (1, 0). The corresponding K3 double cover is a nonsingular
model of the Kummer surface associated with the product of two elliptic curves. Of
course, it can also obtained by blowing up points on D5 or P2.

The proof of the next proposition is completely analogous to Theorem 5.3.9 and
we leave it to the reader.

Proposition 5.4.6 Let "1 = E10 (2) ⊕ A1, that is, the first lattice from Table 5.1.
Then,K30

"1
admits an open embedding intoK3E10 (2) , such that its image under the

period map is an open subset ofMCoble. The coarse moduli space of K30
"1

is the
coarse moduli space of marked Coble surfaces with = = 1.

Similarly, one can prove that. for each lattice " of rank 10+ = from Table 5.1, the
functorK30

"
admits an embedding intoK3E10 (2) as an open subset of an irreducible

and closed subset of codimension = − 1 of Γ♯Enr\H (−2). It can be interpreted as a
coarse moduli space of Coble surfaces with = boundary components.

5.5 Automorphisms of Complex Enriques Surfaces

In this section, we study automorphisms of complex Enriques surfaces. The case
where the ground field is of arbitrary characteristic will be discussed in Chapter 8
of Volume II. We will see that the group of automorphisms of any Enriques surface
is discrete and finitely generated and will determine the automorphism group in the
very general case.

We recall from Section 2.3 that a nodal curve on an Enriques surface ( is a
(−2)-curve, that is, a smooth and rational curve, and we denote by R(() the set of
all nodal curves. The nodal Weyl group ,nod

(
is the Weyl group associated to the

root basis formed by the classes of R(() inside Num((). Let ,̃nod
(

be the image of
,nod
(

in O(E10 (2)) under the homomorphism c∗ : Num(() → Num(-) = Pic(-).
For a smooth rational curve ' ∈ R(() with class X = ['] ∈ Num((), we denote by
A X ∈ ,nod

(
the associated reflection. On the K3-cover c : - → (, the curve ' splits

into the disjoint union of two (−2)-curves '′1 and '
′
2. Thus, c

∗ (X) = X′1 + X
′
2, where

X′
8
= ['′

8
]. For any G ∈ Num((), we compute
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c∗ (A X (G)) = c∗ (G + (G · X)X) = c∗ (G) + (G · X) (X′1 + X
′
2)

= c∗ (G) + 1
2
(c∗ (G) · (X′1 + X

′
2)) (X

′
1 + X

′
2)

= c∗ (G) + (c∗ (G) · X′1)X
′
1 + (c

∗ (G) · X′2)X
′
2

= A X′1 ◦ A X′2 (c
∗ (G)).

This shows that ,̃nod
(

can be extended to a subgroup of the Weyl group ,nod
-

:=
, (Pic(-)) of Pic(-) by setting Ã X :=: A X′1 ◦ A X′2 . It is easy to see that this subgroup
is contained in ,nod

-
∩ Cent(g∗), where Cent(g∗) is the centralizer of the covering

involution g∗ of - → (. In general, it does not coincide with the centralizer of g∗ in
,nod
-

. In fact, if ( admits an elliptic fibration with an irreducible nodal double fiber
2�0, then the pre-image of �0 in - splits into the sum of two (−2)-curves '1 and
'2 with '1 · '2 = 2 and the product of the reflections A ['1 ] ◦ A ['2 ] belongs to the
centralizer, but does not come from,nod

(
.

Theorem 5.5.1 Let Aut(()∗ be the image of the automorphism group of ( in
O(Num(()) ′ = , (Num(()). Then,

, (Num(()) (2) ⊂ ,nod
( o Aut(()∗.

Proof We fix a marking Num(() → E10 and its lift to a marking q0 : �2 (-.Z) → L
such that we can identify Num(() with E10 and its image in Pic(-) with E10 (2).
The elements of the group , (Num(()) (2) are lifted to isometries of L that act
identically on E10 (2)⊥. Let ℎ be an ample divisor class of (. We know that its
pre-image ℎ̃ = c∗ (ℎ) is an ample class in Pic(-). Let f̃ ∈ O(E10 (2))♯ be a lift of
f ∈ , (�10) (2). Composing f̃ with the lift |̃ of some | ∈ ,nod

(
, we may assume

that |̃ ◦ f̃( ℎ̃) belongs to the ample cone Amp(-). By the Global Torelli Theorem
for K3 surfaces 5.2.11, we obtain that |̃ ◦ f̃ = 6′∗ for some automorphism 6′ of - .
Since both |̃ and f̃ commute with g, we obtain that 6′ descends to an automorphism
6 of (. Thus, any element of, (E10) (2) can be written as the product of an element
of,nod

(
and an element of Aut(()∗. So we obtain that, (Num(()) (2) is contained in

the subgroup � = ,nod
(
· Aut(()∗ generated by,nod

(
and Aut(()∗. Clearly, Aut(()∗

normalizes ,nod
(

and hence ,nod
(

is a normal subgroup of �. Since no element of
,nod
(

leaves the nef cone invariant, we see that ,nod
(
∩ Aut(()∗ = {1}. This proves

the assertion of the theorem. �

Corollary 5.5.2 Aut(() is a finitely generated group.

Proof We use that , (Num(()) is isomorphic to the Coxeter group ,2,3,7, which
is finitely generated by its Coxeter generators. We have just seen that the subgroup
,nod
(

oAut(()∗ of, (Num(()) contains a finitely generated subgroup of finite index,
hence it is finitely generated. SinceAut(()∗ is its quotient, it is also finitely generated.
Finally, we use that the kernel of Aut(() → Aut(()∗ is a finite group, see Section
8.2 in Volume II. �
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Corollary 5.5.3 The action of Aut(() in Nef (()R has a rational polyhedral cone as
a fundamental domain. In particular, Aut(() has finitely many orbits on the set of
divisor classes of irreducible curves with fixed arithmetic genus.

Proof We use that the Coxeter group ,2,3,7 has a natural linear representation
in R�, where � is the set of Coxeter generators. This linear action preserves the
quadratic form and the latticeE2,3,7 = E10. Passing to the associated hyperbolic space
H9, it becomes isomorphic to a discrete group of its motions with a fundamental
domain equal to a convex rational simplicial polyhedron, see 0.8. We have seen
that ,nod

(
o Aut(()∗ is a subgroup of finite index inside , (Num(()). Thus, its

fundamental domain Π in H9 is of finite covolume. Fix an interior point ℎ ∈ Π
defined by an ample class � ∈ Num((). Let d(G, H) be the hyperbolic distance
defined by formula (0.8.9). It is known that Π is a Dirichlet domain for Γ, that is,

Π = {G ∈ H9 : d(G, ℎ) ≤ d(W(G), ℎ), W ∈ Γ} = {G ∈ H9 : (G, ℎ) ≤ (W(G), ℎ)},

see [724], 1.4. A Dirichlet domain is bounded by hyperplanes �W in H9 passing
through the middle point of the geodesic connecting ℎ with W(ℎ). Thus, it is a
rational convex polyhedron in our case. Taking W = BA ∈ ,nod

(
, we obtain that, for

any G ∈ Π, we have (G, ℎ) ≤ (BA (G), ℎ) = (G + (A, G)A, ℎ) = (G, ℎ) + (A, G) (G, ℎ),
hence (A, G) ≥ 0. This shows that Π is a subset of the image Nef (() of the nef cone
in H9. Thus, Π is a fundamental domain for Aut(()∗ in H9. Taking the pre-images
of Π,Nef (() in Num(()R, we conclude that the fundamental domain of Aut(()∗ in
Num(()R is a rational polyhedral cone inside the nef cone.

Since Π is of finite volume, its closure in H̄9 has only finitely many points on
the boundary, the cusps. The rational cusps correspond to primitive isotropic vectors
in the lattice representing elliptic curves. This proves the assertion for curves of
arithmetic genus one. An irreducible curve of positive arithmetic genus corresponds
to a rational point in the interior. There is also only finitely many of them. It remains
to prove the assertion for smooth rational curves. These correspond to the faces
�A = {G : G · A = 0} of the nef cone. The group Aut(()∗ acts on this set and has only
finitely many orbits represented by �A inside of Π. �

Corollary 5.5.4 The following properties are equivalent:

1. Aut(() is a finite group.
2. ,nod

(
is of finite index in, (Num(()).

3. The set of smooth rational curves on ( forms a crystallographic basis in Num(().

Remark 5.5.5 Properties 1 and 2 can be stated also for a K3 surface and can be proven
along the same lines using the Global Torelli Theorem for K3 surfaces, see [321,
Chapter 4]. TheKawamata–Morrison conjecture states that the automorphism group
of a Calabi–Yau manifold has a rational polyhedral cone as a fundamental domain
with respect to its action on the nef cone. We refer to Section 8.1 in Volume II, where
we extend the previous two corollaries to the case of arbitrary characteristic.

Corollary 5.5.6 Assume that ( is unnodal. Then,Aut(()∗ containsO(Num(()) ′(2) �
,2,3,7 (2).
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In Section 8.2 fromVolume II, we will prove the same result for Enriques surfaces
over fields of arbitrary characteristic. We also prove that the homomorphism

d : Aut(() → Aut(()∗

is an isomorphism if ( is an unnodal surface or a general nodal surface.
Now, suppose that ( is unnodal and let 6 ∈ Aut(() be an automorphism such

that 6∗ does not belong to O(Num(()) (2). Its lift 6̃ to the K3-cover - fixes the
period point and hence, has �2,0 (-) as an eigensubspace with some eigenvalue _.
Since 6̃∗ preserves �2 (-,Q), the eigenvalues of 6̃∗ are algebraic integers and the
degree of the minimal polynomial divides dim) (-)Q = 12. This gives the following
possibilities for possible orders of 6:

ord(6) ∈ {1, . . . , 16, 18, 20, 21, 22, 24, 26, 28, 30, 36, 42}. (5.5.1)

This also shows that the period point of a surface admitting such an automorphism be-
longs to a countable set of eigensubspaces of elements f ∈ ΓEnr \{±} in (E10 (2)⊥)C.
Let F be the union of the images of these eigensubspaces inMm

Enr.

Definition 5.5.7 An unnodal Enriques surface with Aut(() ≠ , (Num(()) (2) is
called an unnodal Enriques surface with extra automorphisms.

We will discuss unnodal surfaces with extra automorphisms in Section 8.3 in
Volume II and refer to [490] for more information about such surfaces.

Let Mun,m
Enr be the open and dense subset of Mm

Enr of isomorphism classes of
unnodal Enriques surfaces. We will describe the nodal locus in detail in the next
section. The action of the discriminant group � (E10 (2)) onMm

Enr is free outside F .
Its locus of fixed points corresponds to the isomorphism classes of unnodal Enriques
surfaces with extra automorphisms. Since these surfaces belong to F , a very general
Enriques surface inMm

Enr will be unnodal and it will not have extra automorphisms.
We remark that, in general, a fixed point of � (E10) onMm

Enr is the isomorphism
class of an Enriques surface with non-trivial image of Aut(()∗ in � (Num(()).

Let us consider the natural projection map

? : Mm
Enr � Γ

♯

Enr\D
◦
E10 (2)⊥ −→ MEnr � ΓEnr\D◦E10 (2)⊥ .

Over the open and dense subsetMun
Enr of unnodal Enriques surfaces (we will describe

the nodal locus in detail in the next section), it is a finite map of degree

#(ΓE10/Γ
♯

E10
) = #, (E10)/, (E10) (2) = # O(10, F2)+ = 221 · 35 · 52 · 7 · 17 · 31.

A point in ?−1 (Mun
Enr) represents the isomorphism classes of a marked unnodal

Enriques surface. The map ? is unramified over the open subset ofMun
Enr that consists

of isomorphism classes of unnodal Enriques surfaces without extra automorphisms.
The map is ramified over the locusMnod

Enr of nodal surfaces.



558 5 Moduli Spaces

Now, let I ∈ MEnr be a point corresponding to the isomorphism class of an
Enriques surface ( and let,nod

(
be its nodal Weyl group. Then the fiber of ? over I

corresponds to a weak isomorphism class of marked Enriques surfaces:

Definition 5.5.8 Let ( be an Enriques surfaces. Two marked Enriques surfaces ((, y)
and ((′, y′) are called weakly isomorphic if there exists an isomorphism 5 : ( → (′,
an element | ∈ ,nod

(
in the nodal Weyl group of (, and an isometry f ∈ O(E10)

such that
±| ◦ 5 ∗ ◦ y = y′ ◦ f.

The surfaces are called isomorphic if we can choose f = id.

In fact, this is a special case of the following result, the Global Torelli Theorem
for Enriques surfaces:

Theorem 5.5.9 Let (1 and (2 be two complex Enriques surfaces, let -1 and -2 be
their K3-covers, and let 5 : Num((1) → Num((2) be an isometry of lattices such
that:

1. 5 extends to an isometry 5̃ : �2 (-2,Z) → �2 (-1,Z) that preserves the period,
that is, we have 5̃ (�2,0 (-2)) = �2,0 (-1), and

2. 5 maps each effective class of �2 ((2,Z) to an effective class of �2 ((1,Z).

Then, 5 is induced by an isomorphism 0 : (1 → (2.

Proof From the assumptions, we obtain 5 (� ((2)+) = � ((1)+, which implies that
5̃ (� (-2)+) ∩ � (-1)+ ≠ ∅, which implies that 5̃ (� (-2)+) = � (-1)+. Thus, by
the Global Torelli Theorem for K3 surfaces, 5̃ is induced by an isomorphism 0̃ :
-1 → -2 that commutes with the covering involutions. Therefore 0̃ descends to an
isomorphism 0 : (1 → (2 that induces 5 . �

Remark 5.5.10 Assuming condition 1 of the theorem holds, the following assertions
are equivalent

1. Condition 2 of the theorem.
2. 5R (+ ((2)+) ⊆ + ((1)+ and 5 (Δ((2)+) ⊆ Δ((2)+.
3. 5 (� ((2)+) = � ((1)+.
4. 5 (� ((2)+) ∩ � ((1)+ ≠ ∅.

In the case of K3 surfaces, the Global Torelli Theorem even gives uniqueness
of the isomorphism 0. However, for an Enriques surface - , the homomorphism
d : Aut(() → O(Num(()) may fail to be injective: there are two 2-dimensional
families of Enriques surfaces with involutions, and a 1-dimensional family of En-
riques surfaces with an automorphism of order 4, such that d is not injective, see
Section 8.2 in Volume II. Thus, the isomorphism 0, whose existence is assured in
Theorem 5.2.11 is even unique except for the three families just explained, see also
[549, Remark 5.4].

The next corollary is Theorem (3.3) from [42].
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Corollary 5.5.11 Let �(() be the subgroup of O(Num(()) that preserves the nef
cone Nef (() of a complex Enriques surface (. Then,

� := �(() ∩, (Num(()) (2) ⊂ Aut(()∗.

Proof Let c : - → ( be the K3-cover. We know that, (Num(()) (2) lifts to a group
of isometries of Pic(-) that acts as the identity on the orthogonal complement of
c∗ (Num(()) in �2 (-,Z). In particular, it leaves the period of - invariant. Since any
element of � leaves invariant the nef cone, it leaves invariant the cone of effective
divisors. The previous theorem finishes the proof. �

5.6 Moduli of Nodal Enriques Surfaces

In this section, we discuss and construct coarse moduli spaces for complex (marked
and unmarked) nodal Enriques surfaces, that is Enriques surfaces with (−2)-curves.
These are constructed via ample U⊕E8 (2) ⊕ 〈−4〉-polarized K3 surfaces. Finally, we
construct moduli spaces of nodal Enriques surfaces with fixed Nikulin '-invariant.

Let ( be a nodal Enriques surface and ' be a (−2)-curve on it. Then, its pre-image
under the K3-cover c : - → ( splits into a disjoint sum of two (−2)-curves '′1 + '

′
2.

Fix a E10 (2)-lattice polarization of - , fix a marking q : �2 (-,Z) → L, and let y be
the involution of L corresponding to the covering involution. Obviously, ['1−'2] ∈
c∗ (Pic(())⊥ and ('1 − '2)2 = −4, hence X := q( ['′1 − '

′
2]) ∈ (E10 (2)⊥)−4.

The following lemma is due to Namikawa [549, Theorem 2.15].

Lemma 5.6.1 Let # = E10 (2) ⊕U and let { ∈ #−4. Then its orthogonal complement
{⊥ in # is isomorphic to either E8 (2) ⊕U⊕〈4〉 or to E8 (2) ⊕U(2) ⊕ 〈4〉. In particular,
there are two orbits of such vectors.

Proof The discriminant group of # is equal to the discriminant group of E10 (2).
By (5.3.2), it is isomorphic to the even type quadratic space F10

2 and hence, it is also
isomorphic to u⊕5

1 . Here, we use the notation for the discriminant quadratic forms
from Section 0.8. The discriminant group of Z{ is Z/4Z with quadratic form 〈− 1

4 〉.
As explained in Section 0.8, the discriminant group of the overlattice # of 〈−4〉 ⊕ {⊥
is isomorphic to �⊥/�, where � is an isotropic subgroup of 〈− 1

4 〉 ⊕ � ({
⊥). This

gives only two possibilities, namely � ({⊥) � u⊕4
1 ⊕ 〈

1
4 〉 or u⊕5

1 ⊕ 〈
1
4 〉. Applying

Theorem 0.8.6, we conclude that an even hyperbolic lattice % of rank 11 with
such a discriminant quadratic form is unique up to isometry and the canonical
homomorphism d{⊥ is surjective. We may take % = E8 (2) ⊕ U ⊕ 〈4〉 in the first case
and % = E8 (2) ⊕ U(2) ⊕ 〈4〉 in the second case. Applying the theorem again, we
find that there are two orbits of {: one is represented by a vector { = 51 + 61 in the
U(2)-summand of # and the other one is represented by a vector { = 2 52 + 62 in the
U-summand. Here, ( 58 , 68) is the standard basis of U(2) or U. �

We call a vector { ∈ #−4 of even type if its orthogonal complement is isomorphic
to E8 (2) ⊕U⊕ 〈4〉 and of odd type otherwise. It follows from the proof of the previous
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lemma that { is of even type if and only if 1
2 { belongs to #

∨. Also, it follows from
the proof of Lemma 5.4.1 that an even vector corresponds to a vector of square norm
−2 in the unimodular lattice E ⊕ I1,1 and an odd vector corresponds to a vector of
norm −8 in this lattice.

Theorem 5.6.2 Let

H(−4)ev :=
⋃

even { ∈ #−4

{I ∈ DEnr : I · { = 0}

and letH(−4)◦ev be the complement of the discriminantH(−2), which is open. Then,

Mnod,m
Enr � Γ

♯

Enr\H (−4)ev◦,
Mnod

Enr � ΓEnr\H (−4)ev◦.

Both varieties are irreducible and quasi-projective of dimension 9.

Proof Let c : - → ( be the canonical cover of an Enriques surface. We fix an
isomorphism Pic(-) → L and identify c∗ (Num(())⊥ with the lattice # = E10 (2)⊥.
Suppose that ( contains a smooth rational curve '. In the K3-cover, it splits as
c∗ (') = '1 + '2 and we set X+ = ['1 + '2] and X− = ['1 − '2]. Obviously, X− ∈ # .
Since X+ ∈ E10 (2), 1

2X− = ['1] − 1
2X+ ∈ #

∨. Thus X− is an even vector in # .
Since X± ∈ Pic(-), the period of - must belong to H(−4)ev. Since c∗ (Pic(())

contains an ample divisor, it does not belong toH(−2). Thus, the isomorphism class
of a marked (resp. unmarked) nodal Enriques surface belongs to O(#)♯\H# (−4)◦
(resp. O(#)\H# (−4)◦).

Suppose that the period point of a marked ample E10 (2)-polarized K3-surface -
belongs to a hyperplane�{ = {[I] : I·{ = 0}, where {2 = −4. First, assume that { is of
odd type. By the characterization given above, we may assume that { = 52 − 262 ∈ U
with 52, 62 as above. Applying an element | from ,nod

-
= , (Pic(-)), we may

assume that 6′ is a nef isotropic vector. Then ( 52 − 62)2 = −2 and thus, A = 52 − 62
is effective or −A is effective by Riemann–Roch. Since A · 62 = 1, it follows that
A must be effective. Hence, if the period of (-, q) belongs to �{ , then it is also
belongs to H# (−2). However, since the lattice polarization is ample, we find a
contradiction. Thus, we may assume that { is of even type. In this case, the period
point lies in the orthogonal complement of {, which is isomorphic to P(#C), where
# = U ⊕ E8 (2) ⊕ 〈4〉. Also, the stabilizer ofH# (−4) is isomorphic to O(#)♯.

Thus, suppose that the period point lies in �X− for some vector X− with X2
− =

−4 and of even type. Note that X− ∈ q(Pic(-)) and y(X−) = −X−. By taking a
particular nodal Enriques surface, we may assume that one of these vectors comes
from the previous scenario. In this case, there exists a vector X+ ∈ E10 (2)−4, such that
1
2 (X+ + X−) = A for some A ∈ Pic(-). Since all vectors of even type form one orbit
with respect to the orthogonal group, we may assume that X− satisfies this property.
Thus, returning to our marked E10 (2)⊥-lattice polarized K3 cover of (, we obtain
that there exists A+ ∈ Pic(()−2 such that A = 1

2 (c
∗ (A+) + A−) ∈ Pic(-) ⊂ �2 (-,Z),

where A2
+ = A

2
− = −4 and g∗ (A−) = −A−. We have A2 = −2, hence A or −A is effective.
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Since c∗ (A) = c∗ (c∗ (A+) + c∗ (A−)) = 2A+, and we may assume that A is effective, we
obtain that A+ is effective. This shows that ( is a nodal Enriques surface. �

Definition 5.6.3 A Cayley lattice is a lattice isomorphic to the lattice

Ca := U ⊕ E8 (2) ⊕ 〈−4〉.

The reason for this name is that, by Proposition 7.7.3, the Picard lattice of a
minimal resolution - of a general Cayley quartic symmetroid is isomorphic to such
a lattice, see also Section 8.4 in Volume II. By Corollary 7.9.9, the Picard lattice of
the K3-cover of a general nodal Enriques surface is isomorphic to the lattice Ca.

We define a primitive embedding E10 (2) ↩→ Ca by taking the identity on the
summand E8 (2) and take the embedding U(2) ↩→ U ⊕ 〈−4〉 that sends the basis
( 51, 61) ofU(2) to (2 52+62+4, 62), where 4 is a basis of 〈−4〉. Using this embedding,
we see that the coarse moduli space Mm

Ca of marked Cayley lattice polarized K3
surfaces is included naturally inMm

Enr and that it coincides withMnod,m
Enr .

We end this section by defining subloci in Mnod,m
Enr that correspond to nodal

Enriques surface with special configurations of nodal curves. These are described
using Nikulin '-invariants and we refer to Section 6.4 for details. A Nikulin '-
invariant on an Enriques surface ( consists of a pair of abelian groups ( , �), where
 is a root lattice of finite type and where � is a finite abelian group. This data
is associated to a nodal Enriques surface as follows: Let  ′ be the sublattice of
Pic(-) ∩c∗ (Pic(())⊥ that is generated by the classes of ['+−'−], where '++'− =
c∗ (') for some (−2)-curve ' ⊂ (. We set  :=  ′( 1

2 ). The finite abelian group �
is defined to be the kernel of the homomorphism W : � ( ) → Num(()/2 Num(()
that sends ['+ − '−] to the class of [']. The group � is a 2-torsion subgroup
of the discriminant group of  and it defines an odd overlattice  ̃ of  with
 ̃/ � �. Equivalently, it defines an even overlattice  ̃ ′ of  ′ contained in Pic(-)
with  ̃ ′/ ′ � �.

Theorem 5.6.4 Let ( , �) be a Nikukin '-invariant and let A be the rank of  . Let
 ′ :=  (2) ↩→ E10 (2)⊥ be a primitive embedding and let  ̃ ′ be an overlattice with
 ̃ ′/ ′ � �. LetM ( ,� )

Enr be the closure of the locus of Enriques surfaces inMEnr
with Nikulin '-invariant ( , �). Then,

M ( ,� )
Enr � ΓEnr, \D◦ ⊥ ,

where  ⊥ is the orthogonal complement of  in E10 (2)⊥ and where ΓEnr, is the
stabilizer subgroup of  in ΓEnr. In particular,

dimM ( ,� )
Enr = 10 − A.

Proof Choose a marking of ( and a marking q of the corresponding E10 (2)-lattice
polarized K3 cover (-, 9). Then, q( ) is a root sublattice of E10 (2)⊥ and since
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 ⊂ Pic(-), we see that the period of (-, q) lies in P(( ⊥)C), where the orthogonal
complement  ⊥ is taken in the lattice E10 (2)⊥. This shows that the isomorphism
class of (-, 9) belongs to Γ \D◦ ⊥ , where Γ is the stabilizer subgroup of in Γ♯Enr.
More precisely, if (:1, . . . , :A ) is a root basis of  and X8 = q(:8), then the period
of (-, 9) belongs to the intersection of the hyperplanes �X8 , which is contained in
the Heegner divisorH(−4).

Conversely, suppose the period of (-, q) belongs to the intersection of A hypersur-
faces �X8 , which are contained in H(−4). Assume also that X1, . . . , XA are linearly
independent over Z. Then, we define  ′ to be the lattice q−1 (ZX1 + · · · + ZXA ). It is
a negative definite sublattice generated by vectors of norm −4. Moreover, the lattice
 =  ′( 1

2 ) is a root lattice of rank A . Using the proof of Theorem 5.6.2, we can show
that the vectors :8 = q−1 (X8) are equal to '+

8
− '−

8
, where '±

8
are smooth rational

curves that are interchanged by the covering involution. Thus,  together with the
group � defined above form the Nikulin R-invariant of (. �

Example 5.6.5 If = A1 = 〈−2〉 and� = {0}, then an Enriques surfacewithNikulin
'-invariant ( , �) is a general nodal Enriques surface as defined in Section 6.5 in
Volume II. In this case,M ( ,� )

Enr is equal toMnod
Enr , the locus of all nodal Enriques

surfaces in MEnr. We will give more examples and computations of Nikulin '-
invariants in Section 6.4 of Volume II.

Remark 5.6.6 We note that the notation D◦
 ⊥ is somewhat misleading since there

could be different primitive embeddings of  (2) in E10 (2)⊥ that are not equivalent
with respect to the orthogonal group of E10 (2)⊥. Thus, the moduli space of Enriques
surfaces with a fixed abstract Nikulin '-invariant could be reducible. However, if
we fix a sublattice  (2), then it consists of at most two irreducible components. For
example, it is irreducible if the orthogonal complement of  (2) in E10 (2)⊥ contains
a lattice isomorphic to U or U(2).

5.7 Moduli of Polarized Enriques Surfaces

Having constructed themoduli spacesMEnr andMm
Enr of (marked)Enriques surfaces,

we construct and study moduli spaces of polarized Enriques surfaces in this section.
Slightly changing the terminology, we call a choice of isomorphism class of a

big and nef (=pseudo-ample) invertible sheaf L on a smooth projective algebraic
variety - a polarization. We say that the polarization is an ample polarization if L
is ample.

A numerical (ample) polarization is a choice of a numerical equivalence class
of a big and nef (ample) of an invertible sheaf on - In [542] an ample numerical
polarization is called an inhomogeneous polarization. A homogeneous polarization
is a choice of the set of rational multiples of a numerical polarization.

A smooth projective variety equipped with a (numerical) polarization are called
(numerically) polarized varieties. Two polarized varieties (-, [L]) and (- ′, [L ′])
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are called isomorphic if there exists an isomorphism 5 : - → . such that 5 ∗ ( [L ′]) =
[L] in Pic(-) (resp. Num(-)).

There is a natural notion of a family of (numerically) polarized varieties ( 5 :
X → ),L). It consists of a smooth projective morphism 5 : X → ) and a relatively
pseudo-ample (ample) invertible sheaf L on X. Two families ( 5 : X → ),L) and
( 5 ′ : X′ → ),L ′) are isomorphic if there exists an isomorphism q : X/) → X′/)
such that q∗ (L ′) � L (resp. their isomorphism classes are numerically equivalent).
In particular, taking ) = Spec k, we see that an isomorphism class of a polarized
variety (resp. numerically polarized) defines the isomorphism class of a pseudo-
ample (ample) invertible sheaf (resp. the numerical class of such a sheaf).

Example 5.7.1 Let � be an abelian variety over a field  . Then, a choice of an
invertible sheaf defines a map _L : � → �̂ := Pic0

�/ . If L is algebraically
equivalent to zero, then this map is zero. This allows one to associate a unique map _
to any numerical equivalence class of an invertible sheaf. If the numerical class of L
is not zero, thenL is ample and the map _L is an isogeny. A polarized abelian variety
is an abelian variety equipped with an isogeny _ : �→ �̂, see [542, Chapter 6,§2].
Using the universal Poincaré sheaf P on � × �̂, one can show that each isogeny _ is
equal to _L for some L. Thus, the notion of a numerical polarization of an abelian
variety coincides with the notion of a numerically polarization from above.

More precisely, there are two types of polarizations, namely numerical and Picard
polarizations, giving rise to different types of moduli spaces that are related by an
étale double cover. We also refer to [262] for details.

We have a functor P (Pnum) (resp. P0 (Pnum,0) from the category Schemes/k to
the category of groupoids that assigns to ) the groupoid of families of polarized (nu-
merically polarized) (resp. ample polarized (resp. numerically polarized varieties)).
It is known that it defines an algebraic stack.

We could also consider Pnum as the quotient of P by the equivalence relation
R → P such that

R()) = {(- → ),L), (- ′→ ),L ′) : ∃ q : -/) �→ - ′/) such that q∗ (L ′) ≡ L}.

The quotient by this equivalence relation is the algebraic stack Pnum.
For any & ∈ Q[C] we can consider the subfunctor of families (X → ),L) such

that for all points C ∈ ) , we have j(L⊗< ⊗ OXC ) = &(<). It is an open substack of
P which we denote by P&. We have similar notations P&,0,P&,num,P&,num,0.

Let Hilb&
P=
k
be the Hilbert schemes parametrizing closed subschemes / ⊂ P#

k

with j(/,O/ (=)) = &(=). We have a natural morphism of algebraic stacks

Hilb&
P=
k
→ P&,0 .

Its image parameterizes families with very ample polarizations. Its image is con-
tained in P&,0 and denoted by P&,va.

Now, we specialize and consider families of polarized (numerically polarized)
Enriques surfaces with a polarization L satisfying (L,L) = 23 (called the degree
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of the polarization) restricted to any fiber of a family. It is an open subfunctor of P&
(resp. P&,num), where & = 23C2 + 1. We denote it by ẼEnr,23 (resp. EEnr,23). They
are open substacks of P (resp. Pnum).

Proposition 5.7.2 Assume ? ≠ 2. The algebraic stacks ẼEnr,23 and Enum
Enr,23 are

Deligne–Mumford stacks.

Proof It follows from [581, Theorem 8.3.3] that to prove it we have to verify that the
subscheme � of the scheme of automorphisms Aut(/k of an Enriques surface ( that
leaves invariant the numerical class ofL is a finite étale group scheme.Wewill prove
in Theorem 8.1.1 in Volume II that, if ? ≠ 2, then the identity component Aut◦

(/k is
trivial, hence Aut(/k is reduced and coincides with the trivial group scheme Aut(()
over k. We will also prove in Proposition 8.2.1 that the kernel of its natural action
on Num(() is a finite group. This proves the assertion. �

Let ((, q,L) be a marked polarized Enriques surface, say, q(L) = { ∈ E10 with
{2 = 2=. We assume that { is a primitive vector. Taking the pre-image under the
canonical K3-cover c : - → (, we get a lattice E10 (2) polarization of - and a
sublattice Z{̃ � 〈4=〉 ⊂ E10 (2), where {̃ is the image of { in E10 (2). It defines a
primitive embedding U : 〈43〉 ↩→ E10 (2) with the image of a generator equal to {̃
and the corresponding morphism

� ({) : M<
Enr = M

0
 3,E10

→Mm
Enr,{ := M0

 3,E10 (2) , {̃ ,

which we introduced at the end of Section 5.2. It follows from (5.2.4) that

MEnr,{ � Mm
Enr/� ({),

where
� ({) = O(E10 (2)){̃/O(E10 (2))♯{ � , (E10){/, (E10) (2){ .

The group, (E10){/, (E10) (2){ is equal to the image of, (E10){ inO(E10/2E10) �
O+ (10, F2). We denote it by, (E10){ .

Note that the moduli spaceMm
Enr admits an explicit quasi-projective model de-

scribed in the appendix. This gives quasi-projective models of MEnr,{ as finite
quotients of this model.

We know that the group , (E10) acts on Mm
Enr with the stabilizer subgroup at

((, q) over the isomorphism class [(] of a surface ( isomorphic to the group

Aut(()∗
q

:= q−1 ◦
(
Aut(()∗/Aut(()∗ ∩, (Num(()) (2)

)
◦ q.

Since the forgetful mapMm
Enr →M

m
Enr,{ is a torsor under the group � ({), we obtain

the formula for the number %((, {) isomorphism classes of polarizations on - that
contains q({):

%((, {) = [, (E10) : 〈� ({),Aut(()∗
q0
〉], (5.7.1)

where we fix one marking q0 : E10 → Num(() with q0 ({) = ℎ.
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Note that applying to { an element from, (E10) (2) changes q({) = ℎ to a divisor
class, that may be not nef and hence, does not define a polarization. Thus, we may
change { only by isometries from the group �(()q0 = q

−1
0 ◦ �(() ◦q0. So, in the case

when Nef (() ≠ + (Num(())+, the number of isomorphism classes of polarizations
ℎ with ℎ2 = 2= is larger then the number of O(E10)-orbits on the set (E10)2=.

Recall that Corollary 5.5.11 gives that �(() ∩, (Num(()) (2) ⊂ Aut(()∗, so this
part disappears in Aut(()∗q . In the case where ( is an unnodal surface without extra
automorphisms, we know that Aut(()∗ = , (Num(()) (2), so the contribution of this
group in the counting formula disappears altogether. We will see in Section 8.4 in
Volume II that Aut(()∗ is contained in, (Num(()) (2) in the case of general nodal
surfaces. So again, we can ignore its contribution to %((, {).

Before we present some examples of computations of the number %((, {), let us
list the orbits of, (E10) of vectors of small square norm ≤ 10. The following table
can be deduced using the information that can be found in Section 1.5.

2= #{orbits} representatives of,2,3,7-orbits
0 1 89 = f10
2 1 88 = f9 + f10
4 2 81 = � − f1, 88 + 89 = f9 + 2f10
6 2 87 = f8 + f9 + f10, 88 + 289 = f9 + 3f10
8 3 2l8 = 2(f9 + f10), 88 + 389 = f9 + 4f10, 81 + 89 = � − f1 + f10

10 3 80 = �, 87 + 389 = f8 + f9 + 4f10, 88 + 489 = f9 + 5f10

Example 5.7.3 Let ( be an unnodal Enriques surface without extra automorphisms.
We know that Aut(()∗ = , (Num(()) (2), hence Aut(()∗

q
is trivial. This gives

%((; {) = [O+ (10, F2) : , (E10){] =
221 · 35 · 52 · 7 · 17 · 31

#, (E10){
. (5.7.2)

We have the following values of %((, {) for = ≤ 5 and primitive { satisfyingΦ({) ≥ 2
that define linear systems without fixed points:

2= orbit Φ({) %((, {)
0 89 − 17 · 31
2 88 1 27 · 17 · 31
4 81 2 26 · 3 · 5 · 17 · 31
6 87 2 210 · 5 · 17 · 31
8 81 + 89 2 29 · 17 · 31
10 80 3 213 · 3 · 17 · 31.

(5.7.3)

Let us explain the computations. We will skip the case = ≥ 3 and Φ({) = 1, which
define polarizations q({) such that the linear system |q({) | has base points.

Although we have assumed so far that the polarization is defined by a vector of
positive square norm, we can do similar computations for any primitive isotropic
vector. The fibers of the mapMEnr,{ → MEnr can be interpreted as the number of
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isomorphism classes of elliptic pencils on (. We can still use formula 5.7.2 to find
(,̄2,3,7){ , we can still complete l to a hyperbolic plane U, which we assume to be
the usual direct summand U of E10 = E8 ⊕ U. Using this realization, we find that
, (E10)l8 = E8 o, (E8) � O(E9). Its image in O(Ē10) � O+ (10, F2) is equal to
the stabilizer subgroup of an isotropic vector. We know that these are all equivalent
under the orthogonal group and that their number is equal to 527 = 24 (25 + 1) − 1.
Thus, the index of the stabilizer subgroup is equal to 527 = 17 · 31. This gives the
first row of the table.

If = = 1, then we embed 〈{〉 in U as the sum of two canonical generators of U to
obtain that {⊥ = 〈f9 − f10〉 ⊕ E8. Each isometry from (, (E10){ of this lattice leaves
invariant the first summand, and hence, (E10){ = {±1} ×, (E8). Its image modulo
, (E10) (2) is a group of order equal to #, (E8) = 214 · 33 · 52 · 7. This gives the
second row of the table.

If = = 2 and { = l8, then we check that 〈{〉⊥ is spanned by the vectors "8 , 8 ≠
1, where ("0, . . . ,"9) is a standard root basis in E10. They generate a sublattice
isomorphic to D9 with, (D9) � (Z/2Z)⊕8oS9. The group, (E10){ is a subgroup �
O(D9)♯ of index 2 in O(D9). It is mapped isomorphically to a subgroupof O+ (10, F2)
of order 214 · 34 · 5 · 7. This gives row 3 of the table.

If = = 2 and { = 88 + 89, then we check that 〈{〉⊥ is spanned by the vectors
"0, . . . , U7, U9−89 and it is isomorphic to ! = E8⊕ 〈−4〉. We have O(!)♯ � , (E8).
It is mapped isomorphically to a subgroup of O+ (10, F2) isomorphic to the group
O+ (8, F2) of order 213 · 33 · 52 · 7. This gives row 4 of the table.

Assume = = 3. In this case 〈{〉⊥ is generated by "0, . . . ,"5 and "8,"9 and it is
isomorphic to ! = E7 ⊕ A2. The group, (E10){ is isomorphic to O(!)♯ = Ker(d!).
Since the homomorphism d! is surjective byTheorem0.8.6 andO(� (!)) = O(〈 12 〉⊕
〈 13 〉 � O(〈 56 〉) = {1}, we get O(!)♯ = O(!). We have , (E10) (2) ∩ O(!) =
〈− idE7 ⊕ idA2〉. Thus, (E10){ is mapped isomorphically to a subgroup ofO+ (10, F2)
of order 210 · 35 · 5 · 7. This gives row 5 of our table.

Assume = = 4 and { = 81 + 89. In this case, the linear system |q({) | defines a
birational map onto a non-normal octic surface in P4. We can write { = (�− f1− f9) +
26, where 5 = � − f1 − f9, 6 = f9 are two primitive isotropic vectors with 5 · 6 = 2.
Their sum 5 + 6 defines a polarization of degree 4 considered before. As in the case
= = 2, {′ = 88 +89, we obtain that there is a degree 2 mapMEnr,{ →MEnr,{′ . This
gives row 6 of the table.

Finally assume = = 5. In this case 〈{〉⊥ is generated by "1, . . . ,"9 and isomorphic
to A9. We have , (Num(())2 � O(A9)♯ � S10 (for this, we use that O(� (〈 1

10 〉) =
{1}). It is mapped isomorphically onto a subgroup of O+ (10, F2) of order 28 ·34 ·5 ·7.
This gives row 7 of our table.

We will prove in Section 8.4 in Volume II that Aut(()∗ is contained in
, (Num(()) (2) in the case when ( is a general nodal surface. So, we can still
use formula (5.7.2). However, in this case �(() ≠ , (Num(()) and there are more
�(()-orbits of vectors of fixed norm square. For example, in case = = 1, we have
four orbits. The computation of the number %((, {) for {2 ≤ 10 in this case can be
found in Table 5.7.3.
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Remark 5.7.4 Observe that %((,88 + 89) = 2%((,88). For an ample marking q,
an ample representative of q(88 + 89) defines a linear system |�1 + 2�2 | with two
base points that defines a double plane model of (. An ample representative of
2q(88) defines a bielliptic linear system |2�1 + 2�2 | and therefore a bielliptic map
onto a 4-nodal quartic surface D1. We see that two linear systems |�1 + 2�2 | and
|2�1 + �2 | correspond to the same bielliptic linear system. They define two rational
maps ( d P2 that differ by a Cremona involution [G, H, I] ↦→ [I2, GH, GI] that
switches the pencil of lines |40 − 41 | with the pencil of conics |240 − 41 − · · · − 45 |.

By analogywith the spacesM 3," ," ′ introduced in Section 5.2we can introduce
the spacesMEnr," , where " is a primitive sublattice of E10. Over C, we can define
them to coincide withM0

E10 (2) ," (2) .

Example 5.7.5 Let us take " = U[: ] as defined in Section 0.8. It is generated by
isotropic vectors f1, . . . , f: forming an isotropic :-sequence. It contains the vector
v: = f1 + . . . + f: and the forgetful map

� (U) : M0
E10 (2) ," (2) = M

m
Enr → MEnr," ,

defined by the primitive embedding " (2) ↩→ E10 (2), is a torsor over the group
O("⊥)♯. The discriminant group � (U[: ]) is a cyclic group of order : generated by

1
:−1 v: and it is isomorphic to 〈 :−2

:−1 〉. We know that U[10] is a sublattice of index 3 in
E10. It follows from Proposition 6.1.1 in Section 6.1 in Volume II that all primitive
embeddings of U[: ] , : ≤ 9 are equivalent. There is a non-primitive embedding of
U[9] with 1

2 v9 ∈ E10. Its image under an ample marking of an Enriques surface is
the Mukai polarization of degree 18, see Section 3.5.

Assume : ≤ 7. Then, we find

U⊥[: ] ∈ {E8, E7, E6, D5, A4, A1 ⊕ A2} .

We have O(〈 :−2
:−1 〉) = Z/2Z if : ≠ 1, 2 and trivial otherwise. From this we deduce

that
O(U⊥[: ])

♯ � , (U⊥: ), : = 1, . . . , 7.

If : = 8, then the lattice U⊥[8] has a basis U, V with the Gram matrix
( −2 7

7 −28
)
. The

group O(U⊥[8]) is generated by the reflection BU. If : = 9, then U[9] is generated by
v9 − 8f10 and again O(U⊥[: ])

♯ is of order 2. This computation allows one to compute
the degree of the forgetful map

MEnr,U[: ] → MEnr.

It is equal to # O+ (10,F2)
# O(U⊥[: ] )♯

. For example, if : = 2, the degree is equal to 28 · 17 · 31.
As a corollary we see that all moduli spacesMU[: ] are irreducible.
The orthogonal complement v⊥

:
in U[: ] is isomorphic to the root lattice A:−1.

Since O(� (A:−1)) is trivial, we find that the forgetful map
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MEnr,U[: ] → MEnr,v:

is a Galois cover whose Galois group isomorphic to the symmetric group S: . For
example, we obtain that the forgetful map fromMEnr,v10 toMEnr is a Galois cover
with the group S10, as expected. The moduli space MEnr, 1

3 v10
coincides with the

moduli space MEnr,w0 . We re-denote it by MEnr,Fano. It is the moduli space of
Enriques surfaces with a numerical Fano polarization.

Our final remark is that we can consider the forgetful maps

5: : MEnr,U[:+1] → MEnr,U[: ] , : = 1, . . . , 7

by considering a primitive embedding U: ↩→ U:+1 defined by forgetting f:+1. This
corresponds to the natural embedding of, (U[: ]) into, (U[:+1] as the stabilizer of
the fundamental weight w:+1. Thus, we obtain that the degree of the map 5: is equal
to [, (U[: ]) : , (U[:+1])]. This coincides with the number of lines on a smooth
anti-canonical del Pezzo surface of degree : − 1. For example, the degree of 54 is
equal to 27. So the tower

MEnr,U[7] = Mm
Enr/, (A2⊕A1) → MEnr,U[6] → · · · → MEnr,U[2] = MEnr/, (E8)

is similar to the tower of the moduli spaces of marked del Pezzo surfaces together
with a choice of line

Mm
3%,1 → M

m
3%,2 → · · · → M

m
3%,6,

where the morphisms are defined by blowing down the last member in an exceptional
sequence of (41, . . . , 49−: ) whose image under a marking is an ordered set of skew
lines that defines the marking, see [177, Remark 9.4.19].

Example 5.7.6 Let ( be an Enriques surface over an algebraically closed field of
characteristic ? ≠ 2. An ample numerical polarization of degree two on ( is defined
by the image of {2 of vector v2 = 88 in Num(() such that { belongs to the ample
cone. Since Φ({2) = 1, one can find a unique pair { 5 , 6} of isotropic divisor classes
such that {2 = 5 +6. We also may assume that they are nef divisors such that |2 5 +26 |
defines a bielliptic map q : ( → D1 onto a non-degenerate quartic symmetroid del
Pezzo surface D1. Since {2 is ample, the branch curve , ∈ |OD1 (2) | is smooth.
Ordering the pair { 5 , 6} defines an ample U-marking of (. Conversely, such a lattice
marking defines a unique ample degree two polarization.

So far we dealt with numerical polarizations. We know that the moduli space of
polarized Enriques surfaces PEnr is a Deligne–Mumford stack that comes with an
étale morphism of degree 2 onto the stack Pnum

Enr of numerically polarized Enriques
surfaces. We denote its component overMEnr,{ by M̃Enr,{ .

Using Hilbert schemes, we can construct the substack M̃0
Enr,{ with Φ({) ≥ 3 as

follows:
Let ( be an Enriques surface embedded into P= by a complete linear system

|� | with �2 = 2=. Then, the Hilbert polynomial of ( ⊂ P= is given by %( (C) =
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j((,O( (C)) = 2=C2 + 1. We let HilbEnr,2= be the Hilbert scheme of subschemes of
P= with Hilbert polynomial %(C) = 2=C2 + 1. Next, we compute the tangent space
of HilbEnr,2= at the point [(]. Let N( be the normal bundle of ( ⊂ P=. We have a
natural short exact sequence

0 → Θ( → ΘP= ⊗ O( → N( → 0, (5.7.4)

where Θ( and ΘP= denote the tangent sheaves of ( and P=, respectively. We know
from Section 1.4 that

ℎ8 ((,Θ() = ℎ8 ((,Ω1
() − ℎ

8 ((,Ω1
() =

{
10 if 8 = 1 ,
0 otherwise.

Applying the exact sequence (5.7.4) and the exact sequence

0 → O( → O( (1)⊕(=+1) → ΘP= ⊗ O( → 0

obtained from the known resolution of the tangent sheaf of projective space (the
Euler sequence), we obtain

ℎ8 ((,N() = dim�8 ((,N() =
{

10 + =2 + 2= if 8 = 1 ,
0 otherwise.

(5.7.5)

By the deformation theory of Hilbert schemes, the tangent space of the Hilbert
scheme at the point corresponding to ( is isomorphic to �0 ((,N() and that it is
smooth at this point if �1 ((,N() = 0, see [265, §5] or [651, Theorem 4.3.5 and
Proposition 4.3.6]. Thus, we see thatHilbEnr,2= is smooth at the point [(] and that it is
of dimension =2+2=+10 at [(]. Since this dimension is equal to dim PGL(=+1)+10,
it follows that there is an open neighborhood of [(] in HilbEnr,2= that parametrizes
only Enriques surfaces that are embedded via a complete and ample linear system
|� | with �2 = 2=.

Proposition 5.7.7 The Hilbert scheme HilbEnr,2= of Enriques surfaces embedded
into P= by a complete linear system is a smooth variety. The dimension of each of its
connected (=irreducible) component is equal to =2 +2=+10 = dim PGL(=+1) +10.

The group PGL(= + 1) acts on HilbEnr,2= via its action on P=. Since the algebraic
group PGL(= + 1) is reductive, this action is proper, that is, orbits are closed, see
[542, 0.8]. It also has finite stabilizer groups: indeed, by Proposition 8.2.1 in Volume
II, the kernel of the homomorphism Aut(() → Aut(()∗ ⊂ O(Num(()) is finite.
Since Aut(()∗ leaves the numerical class [ℎ] of a big and nef divisor ℎ invariant,
as well as its negative definite orthogonal complement [ℎ]⊥, the group Aut(()∗[ℎ] is
also finite. Now, we can apply [381, Theorem 1.1] to conclude that the geometric
quotient HilbEnr,2=/PGL(= + 1) exists as a separated algebraic space.

Proposition 5.7.8 The quotientM0
Enr,2= := HilbEnr,2=/PGL(=+1) is a coarsemoduli

space for the functor PEnr,2=.
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This result is analogous to the existence of coarse moduli spaces for the moduli
functor of polarized K3 surfaces, see [320, Chapter 5, Theorem 2.4] and its proof.

We can similarly treat polarizations ((, �) with Φ(�) = 2. For example, if
�2 = 2, then we know that |2� | defines a bielliptic map ( → D to a quartic
symmetroid del Pezzo surface in P4. In characteristic ? ≠ 2 it is defined by a section
of OD (2) and we construct the moduli spaceMEnr,{ as the quotient of the Hilbert
scheme of curves in |OD (2) | by Aut(D). We will discuss this quotient in the next
section.

Example 5.7.9 Let us consider Fano polarizations as discussed in Section 3.5. It fol-
lows from Example 5.7.5 that the moduli space spaceMEnr,Fano of Enriques surfaces
with a numerical Fano polarization is irreducible. Let us consider its double cover
M̃Enr,Fano, that is, the moduli space of Enriques surfaces with a Fano polarization.

It follows from Theorem 3.5.1 that M̃Enr,v3 is rationally dominated by a 10-
dimensional affine spaceA10 of quadratic polynomials in four variables. In particular,
M̃Enr,v3 is an irreducible and unirational variety. The pre-image of each edge ℓ8 9 =
+ (G8 , G 9 ) of the coordinate tetrahedron + (G1G2G3G4) is a half-fiber �8 9 of an elliptic
pencil on (. In fact, a choice of such an equation defines a family of degree 6
polarized Enriques surfaces over an open and dense subset ofA10 that dominates the
coarse moduli space.

In [716] Verra uses the family X → ) from the previous example to prove
the irreducibility of the moduli space M̃Enr,Fano. Since he does not state this result
explicitly, we give a brief sketch of his argument and refer to [121] for details. Verra
chooses the edges ℓ12 and ℓ34 and considers the family F of quintic elliptic curves in
P3 that do not pass through the vertices of the coordinate tetrahedron, that intersect
exactly in one point the edges ℓ12, ℓ34, and that intersect exactly at two points of the
remaining edges. If we choose a Fano polarization �, then such curve can be taken
from the linear system |Δ − �13 − �14 |. This suggests to look for Δ as the divisor
class of �13 + �14 + � , where � is the pre-image of a quintic elliptic curve from the
family Q the pre-image is a Fano polarization curve from the family &, see [716,
Proposition 3.1]. In [716, Proposition 1.1], he shows that F is an irreducible rational
variety of dimension 10 that dominates M̃Enr,Fano.

Let us now briefly discuss supermarked Enriques surfaces.

Definition 5.7.10 A supermarking of an Enriques surface ( is an isomorphism q̃ :
E10 → Pic(() such that its composition with the natural map Pic(() → Num(() is
a marking q : E10 → Num((). A supermarking q̃ is called ample if q is an ample
marking.

Two supermarkings q̃ and q̃′ are called isomorphic if there exists an automorphism
6 of ( such that q̃′ = ±q̃ ◦ 6∗.

It is clear that, (E10) acts on supermarkings by compositions on the right. Also
any ; ∈ E10 = E10/2E10 � F10

2 acts on supermarkings by replacing q̃ with q̃ + ;
defined by G ↦→ q̃(G) + (; · G) ( . In this way, the group

,̃ (E10) := E10 o, (E10)
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acts on the set of isomorphism classes of supermarkings and the kernel of the action
is the subgroup Ãut(()∗ := Aut(()∗ o Aut(()∗, where Aut(()∗ is the image of
Aut(()∗ in its action on E10. In particular, if ( is a general unnodal surface without
extra automorphisms, then the normal subgroup E10 of ,̃ (E10) acts freely on the set
of isomorphism classes of supermarkings.

We can define a family of supermarked surfaces as a family (X → ), q :
(E10)) → PicX/) ) such that the composition of q with the map PicX/) →
PicX/) /PicgX/) defines a family of marked surfaces. This gives us a functor with
values in groupoids on the category schemes over k and a stack Esm

Enr on which
the group F10

2 acts with quotient isomorphic to the Deligne–Mumford stack EmEnr of
marked Enriques surfaces. One can prove that the stack Esm,0

Enr of ample supermarked
Enriques surfaces is a separated Deligne–Mumford stack.

The proof of the next theorem is rather involved and we skip it.

Theorem 5.7.11 Assume k = C. Then Esm,0
Enr is an irreducible Deligne–Mumford

stack.

Remark 5.7.12 It is natural to expect that the complex analytic space Msm,0
Enr is

isomorphic to the quotient of an open subset of the period domain for a normal
subgroup of the monodromy group Γ♯Enr with quotient group isomorphic to E10.
According to R. Borcherds, ΓEnr indeed contains such a subgroup. Let us explain his
construction:

Let # = E10 (2)⊥. We have

#/2#∨ � (E10 (2) ⊕ U)/(2E10 (2)∨ ⊕ 2U(2)∨ ⊕ 2U∨) � U/2U � F2
2.

Let 5 , 6 be the standard isotropic generators of U and let 5̄ , 6̄ be their cosets in
U/2U. The subgroup Γ♯Enr of O(#) in its natural action on (#/2#)∨ leaves the
vector [ = 5̄ + 6̄ invariant (since it is the only vector of square 2 mod 4 in F2

2 with
quadratic form inherited from U). Let � be the quotient F2

2/F2[ � F2. Define a map

U : Γ♯Enr → Hom(#∨/#, �) � F10
2

as follows: The image of 6 ∈ ΓEnr is equal to the linear function ; (|+#) = 6(|) −|
mod F2[. One can show that the images of reflections in vectors of square 2 are
nonzero and generate Hom(#∨/#, �) � F10

2 . One can hope that the quotient space
of an open subset of DEnr by the group Ker(U) is the coarse moduli space of the
stack Esm

Enr.

We know that over C the stack Em,0Enr admits the coarse moduli spaceM0
Enr, which

is isomorphic to Γ◦Enr\DEnr. The map of stacks Esm,0
Enr → E

m,0
Enr defines a Galois cover

Msm
Enr ofM

m
Enr with Galois group E10.

Using the irreducibility ofMsm
Enr, we can prove the following theorem that was

proved by other methods in [396].
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Theorem 5.7.13 The moduli space M̃Enr,{ is irreducible for all primitive ample
polarizations { ∈ E10.

Proof Let {̄ be the image of { in E10 and let 〈{̄〉⊥ be its orthogonal complement in
the corresponding quadratic space. We know that Msm,0

Enr /E10 � Mm,0
Enr , therefore

M̃m,0
Enr := Msm,0

Enr /〈{̄〉
⊥ is a double cover of Mm,0

Enr . We also know that M0
Enr,{ =

Mm,0
Enr /� ({), where � ({) is a subgroup of , (E10) that fixes {̄. It follows that the

pre-image of � ({) in E10 o, (E10 contains the subgroup 〈{̄〉⊥ o � ({) and that the
quotient ofMsm,0

Enr by this subgroup is a double cover ofM0
Enr,{ .

An element ; ∈ E10 acts on supermarkings q̃ : E10 → Pic(�) by replacing q̃ with
q̃ + ;, where ; (�) = � + ; ( [�] + 2 Num(()) ( , where [�] is the numerical class of
�. Under this action, the subgroup 〈{̄〉 fixes the divisor class � such [�] = q({). It
shows that, forgetting the supermarking, we get an isomorphism class of ( together
with a choice of a divisor class � with [�] = q({). This is the definition of the
moduli space M̃0

Enr,{ of ample polarized Enriques surface with polarization defined
by a vector {. We get

M̃0
Enr,{ � M

sm,0
Enr /〈{̄〉

⊥ o � ({) � M̃m,0
Enr /� ({).

As a finite quotient of an irreducible space Msm
Enr, the moduli space M̃0

Enr,{ is
irreducible. �

Note that for non-primitive polarizations (which we have ignored) the moduli
space could be reducible if { is divisible by 2. For example, take { = 2| with {2 = 2.
We used this numerical polarization to define bielliptic linear systems |2�1 + 2�2 |.
However, we know from Section 3.3 that if we take the adjoint polarization |2�1 +
2�2 +  ( |, t then he map is not bielliptic but defines a birational map onto a surface
of degree 8 in P4. It is proven in [397] that the reduciblity of the moduli space occurs
only in the case if the polarization is divisible by 2.

We remark also that restricting MEnr,{ to the hypersurface corresponding to
isomorphism classes of nodal Enriques surfaces the space usually becomes reducible.
We will compute the number of components with {2 ≤ 10 in Section 8.4 in Volume
II. As we mentioned earlier, there are four different irreducible components if {2 = 2.
It is an interesting problem to answer in general when the restriction of M̃Enr,{ to
these components becomes irreducible.

5.8 Birational Geometry of Moduli Spaces

In this section, we study birational geometry of coarse moduli spaces of – marked,
unmarked, polarized, and nodal – Enriques surfaces over the complex numbers.
Since these moduli spaces are of dimension 9 or 10, this means that we ask for the
Kodaira dimension ^ of these spaces, see Section 1.1 If ^ = −∞, one can ask whether
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these spaces are (uni-)ruled or (uni-)rational. We refer to [121] and [262] for further
results.

We start with the following result of S. Kondō [410]:

Theorem 5.8.1 The moduli spaceMEnr is a rational variety.

Proof The proof is based on a birational isomorphism (of non-geometric nature)
between the moduli spaceMEnr and the moduli spaceM5,cusp of  3 surfaces that
are isomorphic to the double cover of P2 branched along the union of a cuspidal
plane quintic curve and the cuspidal tangent line.

Let # = E⊥10 � U ⊕ U(2) ⊕ E8 (2) and recall thatMEnr � O(#) ′\D# . We have
#∨ � U ⊕ U(1/2) ⊕ E8 (1/2), from which we obtain that

#∨ (2) � U(2) ⊕ U ⊕ E8 � U ⊕ U ⊕ D8.

Here, we use that the lattices U(2) ⊕ E8 and U ⊕ D8 have isomorphic discriminant
groups together with their quadratic forms, hence, applying Nikulin’s theorem 0.8.6,
they must be isomorphic. Since O(#) ′ � O(#∨ (2), we obtain that

MEnr � O(#∨ (2)) ′\D# .

Let - be aK3 surface that is birationally equivalent to the double cover ofP2 branched
along a curve of degree 6 that is equal to the union of a plane quintic � with a cusp
20 ∈ � and the cuspidal tangent line ℓ, that is, the line that intersects � at 20 with
multiplicity 3. Thus, the local equation of� at the point 20 is given by (H2−G3)H = 0.
It follows from Proposition 0.4.13 that the double cover acquires a rational double
point over 20 that is of type �7. This cover has two more ordinary double points over
the remaining intersection points of ℓ with �. Consider the pencil of lines through
the point 20. Its pre-image on - is an elliptic pencil with two reducible fibers of type
�̃1 and one reducible fiber of type �̃8. The pre-image of the line ℓ is a section of
this fibration. If g denotes the covering involution of - as a double cover P2, then
Pic(-)g contains a sublattice " isomorphic to U ⊕ D8. LetM5,cusp be the moduli
space of lattice " polarized K3 surfaces. Using the isomorphism

"⊥ � U ⊕ U ⊕ D8 � #∨ (2),

we conclude that MEnr and M5,cusp both are isomorphic to the quotient of a 10-
dimensional period space by the same discrete group.

Now,M5,cusp is birationally equivalent to the quotient of the space of cuspidal
curves of degree 5 by the group pf projective automorphisms. Fixing the line ℓ and
a point 20 on it, the quotient becomes isomorphic to the quotient of a linear space
by a subgroup of PGL(3) that fixes the flag (20, ℓ), which is a solvable linear group.
A well-known result of Vinberg [720] and Miyata [519] asserts that this quotient is
rational. �

Werefer to [190] for a geometric explanation of the birational equivalence between
MEnr andM5,cusp. In the same article, one can find a proof of the following:
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Theorem 5.8.2 The moduli space of nodal Enriques surfacesMnod
Enr and the moduli

space of Coble surfaces of K3 typeMCob are rational varieties.

On the other extreme, according to a yet unpublished result of V. Gritsenko, the
moduli spaceMm

Enr of marked Enriques surfaces, which is a Galois cover ofMEnr
with Galois group O(10, F2)+, is of general type.

For a vector { ∈ E10, we constructed the corresponding coarse moduli space
MEnr,{ of numerically polarized Enriques surfaces in Section 5.5. We have also seen
that there exist dominant maps

Mm
Enr → MEnr,{ → MEnr, (5.8.1)

where the first map is the quotient map by a finite subgroup � ({) of , (E10) �
O+ (10, F2). We also have the irreducible moduli space M̃Enr,{ of primitively polar-
ized Enriques surfaces of type { that is a double cover ofMEnr,{ and is a quotient of
a double cover M̃m

Enr ofM
m
Enr by the group � ({).

The left–hand side being of general type, the right–hand side being rational (and
thus of negativeKodaira dimension), this begs the question for theKodaira dimension
and (uni-)rationality of the moduli spacesMEnr,{ and M̃Enr,{ . Among other things,
Gritsenko and Hulek [262] prove that the extremal cases do occur.

A standard approach to birational geometry of arithmetic quotients of period
spaces D# is via the theory of automorphic forms on it. We refer to the Appendix
for the definition of a holomorphic automorphic form of weight : ≥ 0 and character
j on D# . If the signature of # is equal to (2, 1), this is the usual definition of an
automorphic form in one variable. We assume that the signature of # is equal to
(2, =), where = ≥ 3. In fact, for our applications to Enriques surfaces, we may take
# = U ⊕ E10 (2) and = = 10. Let Γ be a subgroup of finite index of O(#). We will
consider the algebra of modular forms ": (Γ, j) of weight : , character j and the
group Γ.

LetMΓ := Γ\D# . When we refer to a birational property of this quasi-projective
algebraic variety we mean the birational property of a smooth projective model.
We will discuss in Section 5.9 various compactifications ofMΓ and in particular, a
torodal compactificationMtrd

Γ . It is known that there exists a toroidal compactifica-
tion with only canonical singularities [261, Theorem 1]. To investigate the Kodaira
dimension ofMtrd

Γ we have to study the linear spaces of holomorphic differentials
�0 (Mtrd

Γ , l
⊗:
Mtrd

Γ

). Let cW : D# → MΓ be the projection map to the quotient. If

it was unramified, then it would follow from the definition of a modular form that
the space �0 (MΓ, l

⊗:
MΓ
) coincides with the vector space "=: (Γ, 1). However, the

projection map cΓ is ramified along the Heegner divisors

H# (X) = {G ∈ D# : G · X = 0},

where X ∈ # such that, for any { ∈ # , 2X ·{
X2 ∈ Z. In other words X defines a reflection

BX : { ↦→ { − 2X ·{
X2 X on # . see [261, Corollary 2.13]. Let
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H# (−=) = ∪X∈#−=H# (X).

In our case # = U⊕ E10 (2), so there are only two types of Heegner divisors, namely
H# (−2) andH# (−4), which we denoted in Section 5.3 byH(−2) andH(−4). The
first one is the discriminant which we have to throw away to consider the moduli
space of Enriques surfaces. The quotient by ΓEnr = O(#)♯ is the moduli space
MCoble of Coble surfaces. The quotient of the second one by the same group is
the moduli space Mnod

Enr of nodal Enriques surfaces. To see the relations between
differential forms and modular forms we have to restrict ourselves with modular
forms from "10: (Γ, 1) that vanish on the ramification locus of order : and extend to
a holomorphic form on the compactification. According to the Koecher principle any
modular form extends to the boundary of the Baily–Borel compactification ofMΓ

(because we assumed that = ≥ 3). But it is not clear whether it extends to the toroidal
compactificationMtrd

Γ
. To construct modular form that extend to a holomorphic form

on the compactification one uses Borcherds forms, whose construction we review in
the Appendix.

We restrict ourselves to the case # = U ⊕ E10 (2). In this case, we have two
Borcherds automorphic forms with zeros on Heegner divisors. These are the forms
Φ4 (I) of weight 4 that vanishes with order 1 on the Heegner divisor H(−2) and
Φ124 (I) of weight 124 that vanishes or order 1 on the Heegner divisor H(−4), see
see Corollary A.2.9 and Corollary A.2.11 in the Appendix. The vectors X ∈ # (−4)
that define the Heegner divisorsHX are of even type, that is, 1

2X ∈ #
∨.

Suppose �10: (/) ∈ "10: (Γ, 1) that vanishes of order : onH(−2). Then, apply-
ing the Koecher principle, we obtain that

�6: (I) =
�10: (I)
Φ:4 (I)

∈ "6: (Γ, j),

where j is a character that depends on Γ. We put

� (I) =
∏
W∈ΓEnr

�6: (6 · I) ∈ "6: [ΓEnr:Γ] (ΓEnr, j
′).

Here, the product is finite since each factor depends only on the coset of W modulo
ΓEnr. The factor W� (I) = �6: (W · I) is an automorphic form with respect to the group
W−1 · Γ · W. If �6: vanishes on the Heegner divisor HX , then W� (I) vanishes on the
Heegner divisor HW−1 (X) . By Corollary 5.6.2, all even vectors X ∈ #−4 form one
orbit with respect to ΓEnr. We know that the orbits of Γ♯Enr on the set of even vectors
X ∈ #−4 are in bĳective correspondence with 496 non-isotropic vectors in E10 � F

10
2 .

Let ' = '(Γ) be the number of orbits of such vectors with respect to Γ. If Γ = ΓEnr,
then this number is equal to 1 and in another extreme case, if Γ = Γ♯Enr, then ' is
equal to 496. It follows that � (I) vanishes on the image of a Heegner divisorHX in
MEnr with multiplicity

< =
:'[ΓEnr : Γ]

496
.
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This implies that � is divisible by the automorphic form Φ<124 and that

6: [ΓEnr : Γ] ≥ 124< =
:'[ΓEnr : Γ]

4
.

Thus, ' ≤ 24 is the necessary condition in order that an automorphic form from
"10: (Γ, 1) extends to a non-zero holomorphic form onMtrd

Γ
. We have thus proved

the following theorem, which is [262, Theorem 5.1].

Theorem 5.8.3 Assume that the image Γ of Γ in O(E10) � O+ (10, F2) contains at
least 25 reflections with respect to non-isotropic vectors. Then the Kodaira dimension
ofMΓ is negative.

Corollary 5.8.4 LetMEnr," be the moduli space of Enriques surfaces with lattice
" polarization. Assume that the image of O(")♯ in O(E10) contains at least 25
reflections in non-isotropic vectors. ThenMEnr," has negative Kodaira dimension.

Example 5.8.5 Here are two examples of moduli spaces of Enriques surfaces that
are of negative Kodaira dimension.

1. Let " = U[: ] . We know from Example 5.7.5 that O(U[: ])♯ � , (E10−: ) for
: = 2, 3, 4. Its image in, (�10) contains 120, 56, 36 non-isotropic vectors. Thus,
the moduli spaceMEnr,U[: ] is of negative Kodaira dimension if : = 2, 3, 4.

2. Let { ∈ (U[: ])2= and assume : ≤ 4. Then the projection MEnr," → MEnr,{
shows thatMEnr,{ is of negative Kodaira dimension. In fact, computations from
[262] show thatMEnr,{ is of negative Kodaira dimension for all { with {2 ≤ 32.

On the other extreme, we have the following:

Theorem 5.8.6 There exists a { ∈ E10 such thatMm
Enr =MEnr,{ is of general type.

Let � be the fundamental chamber in E10 of the Weyl group defined by the root
basis "0, . . . ,"9 and fundamental weights 80, . . . ,89. We know from Section 1.5
that we can write { ∈ � as in (1.5.7)

{ = <� −
10∑
8=1

<888 , (5.8.2)

where <8 ≥ 0, 3< = <1 + · · · + <10 and < ≥ <1 + <2 + <3, <1 ≥ . . . ≥ <10. We
call the vector (<, <1, . . . , <10) the numerical type of {. For any vector { we choose
| ∈ , (E10) such that |({) ∈ � and say that the numerical type of { is the numerical
type of |({). If <1 ≥ . . . ≥ <: > <:+1 = · · · = <10, then we say that : is the
threshold of the numerical type (it is equal to zero if <1 = · · · = <10).

We have the following:

Lemma 5.8.7 If �2 > 0, then Φ({) = <10.

Proof Since { ∈ � and 510 is the unique primitive isotropic vector in �, we have
for any other primitive isotropic vector 5 5 = f10 +

∑
08"8 , 08 ≥ 0. This gives

{ · 5 ≥ { · 510. It follows from Lemma 1.5.8 that { · f10 = <10. �
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Lemma 5.8.8 Let { ∈ � be of numerical type (<1, . . . , <10) and threshold : . Then:
1. {2 = 0 if and only if <:+1 = 0 and in this case { = f10.
2. If : = 0, then { = 080.
3. If : = 1, then { = 081 + 180.
4. If : = 2, then { = 082 + 181 + 280.
5. If : ≥ 3, then { = 04f4 + · · · + 010f10 + {′, where 04 ≤ . . . ≤ 010 and {′ ∈ � is of

threshold : ′ ≤ 2.

Proof (1) By the previous lemma, <10 = 0. Then { · f10 = 3< −∑10
8=1 <8 = 0. Since

the lattice E10 has signature (1, 9) we obtain that { = 0f10.
(2) In this case 3< = 10<1, hence { = <1 ( 10

3 � − f1 − · · · − f10) = <1
3 �. So,

<1 = 30 and { = 0�. Since f1,2 = � − f1, we get � = f1,2 + f1.
(3) We have

81 = � − f1 = f12 + f2 = 7� − 3f1 − 2(f2 + · · · + f10).

So, its numerical type has threshold equal to 1. Suppose { ∈ � has threshold equal
to 1. We can write

{ = <� − <1f1 − <2 ( 52 + · · · + 510),

where 3< = <1 + 9<2 and < ≥ <1 + 2<2, <1 ≥ <2. This gives 3< = <1 + 9<2 ≥
3<1 + 6<2, hence 3<2 ≤ 2<1 > 2<2. This implies that <2 ≥ 2, <3 ≥ 3 and < ≥ 7.
Since { ·"1 = <1−<2 ≥ 1, subtracting81, we obtain that {−"1 is still in� and that
it is equal to { −"1 = (< − 7)�− (<1 − 3)f1 − (<2 − 2) (f2 + · · · + f10. Continuing in
this way, we will either get either a vector with threshold 0 or a vector with threshold
1 and <′10 = 2. It is equal to 81. Thus we obtain { = 081 + 1�.

(4) We have

82 = � − f1 − f2 = 4Δ − 2f1 − 2f2 − (f3 + · · · + f10)

has threshold equal to 2. As in the previous case, we can subtract subtract 082 until
we either get zero or a vector with threshold ≤ 1.

(5) We have

{′ = {−(f:+1+· · ·+f10) = (<+3:−30)�−
:∑
8=1
(<8+:−10)f8−(<:+1+:−9) (f:+1+· · ·+f10)

satisfies {′ · "0 = { · "0 ≥ 0 and {′ · · ·"8 ≥ 0, 8 ≠ 0, thus {′ ∈ �. Continuing
subtracting this vector, we get a vector with <′

:
= <′

:+1 = · · ·<
′
10 with threshold

: ′ < : . Then we subtract (f:′+1 + · · · + f10) and decrease the threshold again. In this
way, we arrive at a vector with threshold ≤ 2. �

The next corollary is [397, Proposition 2.3] that improves [397, Lemma 2.12].

Corollary 5.8.9 Every effective divisor class � with �2 ≥ 0 on an Enriques surface
can be written as a positive integer linear combination
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� = 00�0 + 01�1 + · · · + 07�7 + 08�8 + 09�9 + 010�10 + n ( ,

where (�1, . . . , �10) is an effective lift on an isotropic 10-sequence and �0 is an
effective lift of an isotropic vector 50 with 50 · 59 = 50 · 510 = 2 and 50 · 58 = 1, 8 ≠ 9, 10.
Moreover:

1. 08 = 0.
2. 01 ≤ · · · ≤ 07.
3. 09 + 010 ≥ 00 ≥ 09 ≥ 010.

Proof We fix a marking q : Num(() → E10 and let { = q( [�]). Apply-
ing | ∈ , (E10), we may assume that { belongs to the fundamental chamber
�. Let (<, <1, . . . , <10) be the numerical type of {. If �2 = 0, then we get
{ = 0f10 and the assertion is true. Let : be the threshold of {. If : = 0, then
{ = 080 = 0� = 0(f1,2 + f1 + f2), so we take �0 with [�0] = f1,2 and �8 with
[�8] = f8 and get (00, 01, . . . , 010) = (0, 0, 0, 0, . . . , 0). After permuting f8 , we get
(00, 01, . . . , 010) = (0, 0, . . . , 0, 0) and the assertion follows.

If : = 1, then we get

{ = 081 + 1l0 = 0(f1,2 + f2) + 1(f1,2 + f1 + f2),

hence(00, . . . , 010) = (0+1, 1, 0+1, 0, . . . , 0). After permuting f8 , we get (00, . . . , 010) =
(0 + 1, 0, . . . , 0, 0 + 1, 1), and the assertion follows.

If : = 2, then we get

{ = 082 + 181 + 280 = 0(2f12 + f1 + f2) + 1(f1,2 + f2) + 2(f1,2 + f1 + 1 5 52)

= (20 + 1 + 2)f1,2 + (0 + 2)f1 + (0 + 1 + 2)f2.

Thus, after permuting the f8’s, we find (00, 01, . . . , 010) = (20 + 1 + 2, 0, . . . , 0, 0 +
1 + 2, 0 + 2) and again the assertion follows.

Finally, if : ≥ 3, then we can write { as a sum of a vector with : ≤ 2 and
a vector 04f4 + · · · + 010f10 with 04 ≤ · · · ≤ 010. After permuting f8’s, we get
(00, 01, . . . , 010) = (00, 010, . . . , 04, 0, 09, 010) and the assertion follows again. �

Note that it follows from the uniqueness of the numerical type of a numerical
class [�] that it can be written uniquely in the form 00 50 + · · · + 010 510 as above.

To state the next theorem, we define, following [121], a simple isotropic decom-
position of a numerical class ℎ with ℎ2 > 0 to be a choice of primitive isotropic
vectors 61, . . . , 6= such that

ℎ = :161 + · · · + :=6=, :1, . . . , := ∈ Z+,

where one of the following conditions is satisfied:

1. = ≠ 9, and (61, . . . , 6=) is an isotropic =-sequence.
2. = ≠ 10, and 61 · 62 = 2 and 68 · 6 9 = 1 for all other 8 ≠ 9 .
3. 61 · 62 = 61 · 63 and 68 · 6 9 = 1 for all other 8 ≠ 9 .
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It follows from Corollary 5.8.9 that a simple isotropic decomposition always
exists although it is not unique (we take 61 = [�0] if 00 ≠ 0 and 61 = [�9] if
09 ≠ 0, 010 = 0 and 61 = [�9], 62 = [�10] if 010 ≠ 0).

The next theorem was proven in [121] using a construction similar to one we used
in Example 5.7.9 proving the rationality ofMEnr,Fano.

Theorem 5.8.10M0
Enr,{ is unirational in the following cases:

1. There exists a marking q : E10 → Num(() such that q({) admits a simple
isotropic decomposition with = ≤ 4.

2. There exists a marking q : E10 → Num(() such that q({) admits a simple
isotropic decomposition with = = 5 satisfying (1) and it is uniruled otherwise.

Note that in Example 5.8.5 we have proved thatMEnr,{ being of negative Kodaira
dimension if { ∈ U[4] that implies that = ≤ 4, so the case in the theorem improves
on this result.

We now turn to the moduli spacesMEnr,{ and we show that if {2 is small, then
not only the Kodaira dimension is negative, but that in some cases, these spaces are
actually rational. We start with polarizations of degree 2. We recall from Corollary
1.5.4 that every vector { ∈ E10 with {2 lies in the O(E10)-orbit of 88.

Theorem 5.8.11 The moduli space MEnr,2 = MEnr,88 of degree 2 numericallly
polarized Enriques surfaces is connected and rational.

Proof If L is a polarization of degree 2 on a general Enriques surface (, then the
complete linear system |L⊗2 | defines a bielliptic map of degree 2 from ( onto a
non-degenerate 4-nodal quartic del Pezzo surface D1 ⊂ P4, see Section 3.3. The
branch curve is cut out by a quadric. Thus, the moduli spaceMEnr,88 is birationally
equivalent to the quotient of the projective space |OD1 (2) | by the automorphism
group of D1, which is isomorphic to the semi-direct product � = G2

< o �4. We will
now use the equations and computations of Section 0.6.

First, we choose projective coordinates to write D1 in the equations

G2
0 + G1G2 = G2

0 + G3G4 = 0.

Then, the automorphism group � is generated by the transformations

6_,` : [G0, G1, G2, G3, G4] ↦→ [G0, _G1, _
−1G2, `G3, `

−1G4]
61 : [G0, G1, G2, G3, G4] → [G0, G2, G1, G3, G4],
62 : [G0, G1, G2, G3, G4] → [G0, G1, G2, G4, G3],
63 : [G0, G1, G2, G3, G4] → [G0, G3, G4, G1, G2] .

We set+ (15) := �0 (P4,OP4 (2)) and let+ (13) ⊂ + (15) be the subspace of harmonic
quadratic forms with respect to the linear space of quadratic forms spanned by
@1 = G

2
0 + G1G2 and @2 = G

2
0 + G3G4. This means that + (13) is equal to those quadratic

forms that are annihilated by the differential operators
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m2

mG2
0
+ 2

m2

mG1mG2
and

m2

mG2
0
+ 2

m2

mG3mG4
.

If+ (2) ⊂ + (15) denotes the subspace spanned by the quadratic forms @1, @2, thenwe
obtain a direct sumdecomposition of linear�-representations+ (15) = + (13)⊕+ (2).
This gives an isomorphism + (15)/+ (2) � + (13) of linear �-representations. The
space + (13) is spanned by the following thirteen polynomials:

G2
1, G

2
2, G

2
3, G

2
4, G0G1, G0G2, G0G3, G0G4, G1G3, G1G4, G2G3, G2G4, 2G2

0 − G1G2 − G3G4,

which we denote by <′
8
, 8 = 1, . . . , 13. Passing to the projective space P(+ (13)), we

introduce the 12 invariant rational functions <8 := <′
8
/<′13

38 , where 38 is the degree
of the monomial <8 .

We have to show that the field of invariants = C(<1, . . . , <12)� is a purely tran-
scendental extension of C. The torus G2

< acts on P(+ (13)) with a basis <1, . . . , <12
via the diagonal matrix by the characters

diag(_2, _−2, `2, `−2, _, _−1, `, `−1, _`, _`−1, _−1`, _−1`−1, 1).

A monomial <01
1 · · ·<

012
12 in the basis is invariant if and only if

201 − 202 + 05 − 06 + 09 + 010 − 011 − 012 = 0,
203 − 204 + 07 − 08 + 09 − 010 + 011 − 012 = 0.

Solving these equations, we conclude that the algebra of G2
<-invariant polynomials

in <8 is freely generated by the following ten Laurent monomials:

(=1, . . . , =10) = (<1<2, <3<4, <5<6, <7<8, <1<
−1
2 <−2

5 <2
6,

<3<
−1
4 <−2

7 <8, <9<10<11<12, <9<12<10<
−1
11 ,

<−4
5 <−4

6 <9<10<
−1
11<

−1
12 , <

4
7<

4
8<9<10<

−1
11<

−1
12 ).

Now, let us see how the finite subgroup �0 � �8 of � acts on this basis. We have

61 : (=1, . . . , =10) ↦→ (=1, =2, =3, =4, =
−1
5 , =6, =7, =

−1
8 , =

−1
9 , =10),

62 : (=1, . . . , =10) ↦→ (=1, =2, =3, =4, =5, =
−1
6 , =7, =

−1
8 , =9, =

−1
10 ),

63 : (=1, . . . , =10) ↦→ (=2, =1, =4, =3, =6, =5, =7, =
−1
8 , =

−1
10 , =

−1
9 ).

This shows that the field  is generated by ten rational functions

=1 + =2, =1=2, =3 + =4, =3=4, =5 + =−1
5 + =6 + =−1

6 , =5=6 + =−1
5 =6 + =−1

5 =−1
6 ,

=7, =8 + =−1
8 , =9 + =10 + =−1

9 + =
−1
10 , =9=10 + =−1

9 =−1
10 + =9=

−1
10 + =

−1
9 =10.

This proves the assertion. �
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Next, we turn to polarizations of degree 4. If { ∈ E10 satisfies {2 = 4, then it lies
in the O(�10)-orbit of 81 or of 88 + 89. Since Φ(88 + 89) = 1, polarizations of
this type correspond to hyperelliptic linear systems. On the other hand, Φ(81) = 2
and polarizations of this type correspond to Cossec–Verra polarizations, which we
studied in Section 3.4. The following result was proven by G. Casnati [107], but the
proof is too involved to be reproduced here. It is based on the construction of degree
4 covers of the projective plane using sections of vector bundles [108].

Theorem 5.8.12 The moduli spaceMEnr,CV :=MEnr,81 of Cossec–Verra polarized
Enriques surfaces is connected and rational.

Remark 5.8.13 We know from Section 3.4 that a general Cossec–Verra polarized
Enriques surface is defined by the choice of two nonsingular cubic curves Δ± =
+ (�±) in P2 with nontrivial 2-torsion points [± on both. It is well-known that the
Hessian curve + (Hess(�)) of a cubic curve + (�), which is defined by the Hessian
determinant Hess(�), comes with a unique nontrivial 2-torsion point and assigning
theHessian curve to+ (�) establishes a birational equivalence between the projective
space of plane cubics and its triple cover corresponding to pairs (�, [) consisting
of a plane cubic and a nontrivial 2-torsion point on it, see also [177], Section 3.2.
We conclude thatMEnr,CV is isomorphic to the moduli spaceM of unordered pairs
(�1, �2) of plane cubic curves modulo projective equivalence. Assigning to (�,� ′)
the pencil of cubic curves spanned by � and � ′, we obtain thatM is birationally
equivalent to the product P2 (more precisely: the symmetric product of the pencil)
and the 8-dimensional moduli space of pencils of plane cubics. We do not how to
prove the rationality of the latter moduli space, but it follows from Casnati’s result
that this space is stably rational.

Next we consider polarizations of degree 6. By Corollary 1.5.4, there are two
O(E10)-orbits of vectors { ∈ E10 with {2 = 6. The orbit that does not correspond to
hyperelliptic linear systems is the orbit containing87. By Proposition 3.1.1, there are
two polarizations L on an Enriques surface ( with L2 = 6 and Φ(L) = 2, namely
a bielliptic one and one that gives rise to a birational morphism. For the former, we
refer to Section 3.3 and for the latter to Section 3.5. Moreover, by Theorem 3.5.1,
if L is a polarization of the latter type, then |L| defines a morphism to P3, whose
image is a sextic surface that is singular along the lines of a tetrahedron, see also
Example 1.6.2. In fact, using the explicit description of these surfaces from Theorem
3.5.1, we find that the moduli space of such surfaces is isomorphic to the quotient
space of the space of quadratic polynomials in four variables modulo the action of
the symmetric groupS4 that permutes the variables. This is the key to the following
result.

Theorem 5.8.14 The moduli space M̃Enr,87 is connected and rational. An open and
dense subset parametrizes pairs ((,L) of an Enriques surface ( together with a
degree 6-polarization L with Φ(L) = 2, such that the image of |L| is an Enriques
sextic in P3.



582 5 Moduli Spaces

Proof This is an easy exercise. First, the representation of S4 in the space +10 of
quadratic polynomials in four variables {G1, ..., G4} decomposes as the direct sum of
representations +4 ⊕ +3 ⊕ + ′3, where

+4 = 〈G2
1, G

2
2, G

2
3, G

2
4〉,

+3 = 〈G1G2 + G3G4, G1G3 + G2G4, G1G4 + G2G3〉,
+ ′3 = 〈G1G2 − G3G4, G1G3 − G2G4, G1G4 − G2G3〉.

This implies that there is an isomorphism

C[+10]S4 � C[+4]S4 ⊗ C[+3]S4 ⊗ C[+ ′3]
S4 .

The first space C[+4]S4 is isomorphic to the polynomial algebra in elementary
symmetric polynomials in the G2

8
. The varieties+3/S4 � Spec C[+3]S4 and+ ′3/S4 =

Spec C[+3]S4 are both birationally equivalent to affine cones over the rational
surfaces P2/S4. All of them are obviously rational varieties. �

Remark 5.8.15 A bielliptic polarizationL of degree 6 has class [L] = 87. However,
such polarizations only exist on nodal Enriques surfaces and thus, form locally closed
subsets ofMEnr,87 andMEnr,l7 that are not dense. We refer to Table 5.7.3 at the
end of Section 8.4 in Volume II for details.

Finally, there are threeO(E10)-orbits of vectors { ∈ E10 with {2 = 10. One of them
is the orbit of the class80, which corresponds to the class of a Fano polarization, see
Section 3.5.We denote byMEnr,Fano be the component of theMEnr,80 corresponding
to Fano polarizations. Finally, we sketch the proof of the following result due to Verra
[716]:

Theorem 5.8.16 The moduli space M̃Enr,Fano of Fano-polarized Enriques surfaces
is irreducible and unirational.

Proof Let * be the 10-dimensional linear space of Enriques sextics given by the
equations from Theorem 3.5.1. Let ) = + (C0C1C2C3) be the coordinate tetrahedron.
Let ℓ8 9 : C8 = C 9 = 0 be its edges and let %8 be the vertex with C8 ≠ 0. Let ℎ be
the ample divisor class on a general Enriques surface from * that defines the sextic
model. We may assume that its numerical class is equal to 51 + 52 + 53, where
( 51, 52, 53) is a non-degenerate isotropic 3-sequence. Let F be the variety of elliptic
curves of degree 5 in P3 that intersect the edges ℓ23 and ℓ01 with multiplicity 1
and that intersect the other edges with multiplicity 2. If � ∈ F lies on - , then its
pre-image under the normalization map ( → - is an elliptic curve � ′, such that
� ′ · 51 = 1, � ′ · 52 = � ′ · 53 = 2. Then, the divisor class Δ = � ′ + 52 + 53 satisfies
Δ2 = 10 and Φ(Δ) ≥ 3. This is a Fano polarization on (.

Claim 1: For a general � ∈ F there exists a unique sextic - ∈ * that contains �.
To see this, we consider the 10-dimensional linear system of sextics -@ , @ ∈ *.

Each such surface cuts out on� a divisor of the form 230+3@ , where 30 is a divisor of
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degree 10 that is supported on the edges. Since � is an elliptic curve, the dimension
of the linear series |3@ | is equal to 9, hence there exists a surface - that contains �.
To show that - is unique, suppose that � is contained in two such surfaces -, - ′.
Subtracting the normalized equations of -, - ′, we see that � is contained in the
base locus of the pencil _&(C0, C1, C2, C3) + `&(C0, C1, C2, C3) ′ = 0 of quadrics. Since a
general � does not lie on a quadric, we find - = - ′.

Claim 2: There exists a dominant and rational map : F dMEnr,Fano.
It follows from the previous step that we have a rational map 5 : F d *. As we

saw above, each � ∈ F determines a Fano polarization on - 5 (�) . Thus, we obtain
a map F dMEnr,Fano. Since * dMEnr andMEnr,Fano →MEnr are finite rational
maps, it follows that 5 is dominant. Thus, the map is dominant.

Claim 3: F is an irreducible rational variety of dimension 10.
Let � ∈ F and let ? : P3 d + (C3) � P2 be the projection map from the point

%3 to the plane C3 = 0. The image of � is a plane quintic. It passes doubly through
the points @0 = ?(ℓ03) and @1 := ?(ℓ13) and it passes simply through the point
@2 = ?(ℓ23). It has also 3 other double points �, �, �.

Counting the dimension of variety F ′ of such plane elliptic quintics, we find that
it is equal to 10. However, two curves � and � ′ may project to the same plane.
This happens only if they differ by a projective automorphism that preserves the
coordinate tetrahedron, that fixes the vertex %3, and that acts as identity on the
coordinate plane C3 = 0. The set of such automorphisms is a one-parameter group of
homotheties. This seems to imply that dimF = 11. An explanation for this paradox
is that not every plane quintic from the above is the projection of a curve from F .
Verra proves in [716], Lemma 1.1 that a necessary and sufficient condition for a
quintic � ′ ∈ F ′ to be a projection is that there exists a plane cubic that passes
through the singular points @0, @1, @2, �, �, � of � ′ and also through the 5 residual
points of the intersection of � ′ with the edges ℓ03, ℓ13, ℓ23 lying in the plane C3 = 0.
This make F to be birationally equivalent to a line bundle over a 9-dimensional
variety F ′0 .

Finally, it remains to prove that F ′0 is a rational variety. First, we use that there is
a natural rational map from F ′0 to the symmetric product Sym3 (P2) of the plane that
assigns to F ′ the set of singular points {�, �, �}. The fiber of this map {�, �, �}
is isomorphic to the 3-dimensional linear projective space of plane cubics passing
through the points @0, @1, @2, �, �, �. Since Sym3 (P2) is a rational variety, we are
done. �

Remark 5.8.17 Verra uses this beautiful construction in order to give a proof of the
unirationality of the moduli space A5 of principally polarized abelian varieties and
its cover R6, the moduli space of genus 6 curves together with a non-trivial 2-torsion
divisor class. The cover R6 → A5 is given by the Prym variety construction. In
order to prove this, he introduces a P5-bundle overMEnr,Fano, whose fiber over the
isomorphism class ((,Δ) is the linear system |Δ|. A curve � from |Δ| is a genus six
curve that comes with a non-trivial 2-torsion divisor class defined by l( ⊗ O� .
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We refer to [121] for more results on unirationality of the moduli spacesMEnr,{ .
For example, if 0 < l2 ≤ 58, then all known components of these spaces are
unirational.

5.9 Compactifications of Moduli Spaces

In Section 5.3 and Section 5.5, we constructed the coarse moduli spacesMEnr and
MEnr,{ of unmarked and of numerically polarized Enriques surfaces, respectively,
as quotients of the form ΓEnr\D◦Enr and ΓEnr\D◦Enr,{ . These moduli spaces are quasi-
projective varieties, but not proper over C. In Section 5.4, we have already found a
partial compactificationM<

Enr andMEnr and interpreted its boundary as a moduli
space of Coble surfaces.

The goal of this section is to discuss compactifications of these moduli spaces in
the following way: using the Baily–Borel–Satake compactification DEnr ⊂ DEnr of
the period domain, we obtain a compactification

ΓEnr\D◦Enr ⊂ ΓEnr\DEnr ⊂ ΓEnr\DEnr,

which is a normal complex projective variety, such that the complement ofΓEnr\DEnr
in ΓEnr\DEnr has only components of dimension 0 and 1.

We refer to [173] for more background and to [34] for a thorough treatment of
compactifications of symmetric domains.

Before doing so, we first briefly review some general properties of the Baily–
Borel–Satake compactifications of bounded Hermitian symmetric domains.

We recall, for example from [301], that a symmetric Hermitian space is a con-
nected complex manifold " together with a Hermitian Riemannian metric, such that
every point is an isolated fixed point for some involution in the group �(") of holo-
morphic automorphisms of " . Both, the group �(") and its connected component
of the identity �(")◦, admit structure of real algebraic Lie groups. The group �(")◦
acts transitively on " and the stabilizer subgroup of every point is a maximal com-
pact subgroup  of �(")◦. If a symmetric Hermitian space is not the product of two
such spaces, it is said to be irreducible. Each such space is either a Euclidean space
or a homogeneous space �/ , where � is either a simply connected non-compact
(resp. compact) real Lie group and  is a maximal (resp. maximal proper) subgroup.
In the former case, it is of non-compact type and in the latter case it is of compact
type. Each irreducible symmetric Hermitian space�/ of non-compact type admits
a natural open embedding into an irreducible symmetric Hermitian space �2/ of
compact type, where �2 is a compact real form of the complex Lie group �C. It is
called the dual compact form of �/ . The dual compact form admits the structure
of a complex homogeneous space �C/%, where % is a parabolic subgroup of �C,
such that % ∩ � =  . An irreducible symmetric Hermitian space of non-compact
type also admits an open embedding into C=, whose image is a bounded domainD.
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It can be realized as an open subset of Ď = �2/ 2 . A bounded domain obtained in
this way is called a bounded Hermitian symmetric domain.

Example 5.9.1 The simplest example is the upper half-planeH = {I = 0 + 18 ∈ C :
1 > 0}. In this case, it is a homogeneous space with respect to � = SL(2,R) and
 � SO(2). Here,  is embedded into � as the subgroup of matrices of the form(
0 1
−1 0

)
. The group� acts onH by the Möbius transformations I ↦→ 0I+1

2I+3 . Although
H is not a bounded domain, it is holomorphically isomorphic to the unit disk

Δ := {I ∈ C : |I | < 1} ⊂ C .

via the map I ↦→ I−8
I+8 . In this latter case, we obtain a description of Δ as a ho-

mogeneous space with respect to � � SU(1, 1), the group of complex unimodular
matrices preserving the Hermitian form |I1 |2 − |I2 |2. The subgroup  is the group
of diagonal matrices in �. Since �C = SL(2,C) and  C = SO(2,C), we obtain an
embedding

D ⊂ Ď = SL(2,C)/SO(2,C) � P1
C .

The upper-half plane H is the one-dimensional case of the Siegel upper-half space
H6, which is defined as the set of complex symmetric 6 × 6 matrices with positive
definite imaginary part. It is an irreducible symmetric Hermitian space of non-
compact type with (�,  ) = (Sp(26,R),U(6)). It can be realized as a bounded
domain in C 1

2 6 (6+1) of complex symmetric 6×6-matrices / with �6 − /̄ · / > 0. The
bounded domainH6 serves as the period space for abelian varieties of dimension 6.
It is of Type � � � in Cartan’s classification. Its compact form is the Grassmannian of
maximal isotropic subspaces in a complex symplectic space of dimension 26.

Example 5.9.2 This example will be of the main interest for us. Let (+, @) be a real
quadratic space with signature (2, C) and let+C be its complexification. The complex
manifold

D := {CI ∈ P(+C) : (I, I) = 0, (I, Ī) > 0}

consists of two connected components, each isomorphic to an irreducible Hermitian
symmetric space �/ , where � = SO(+, @) � SO(2, C) and  = SO(2) × SO(C).
This is an example of an irreducible symmetric Hermitian spaces of orthogonal type
or of Type IV in Cartan’s classification of such spaces. The corresponding compact
symmetric Hermitian space is

Ď = SO(21 − C,C)/SO(2,C) × SO(19 − C,C),

which is isomorphic to a quadric hypersurface + (@) ⊂ P(+C). Another model of D
is the subset �+ (2, +) of the real Grassmannian � (2, +) that parameterizes positive
definite subspaces of+ . An isomorphism is given by assigning to I ∈ D the real plane
spanned by the real and the imaginary part of I. To choose a connected component
we put an orientation in this real plane.

To see that a connected component of D is realized as a Hermitian bounded
homogeneous domain, we use coordinates (G1, . . . , GC , GC+1, GC+2) in + , such that the
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quadric hypersurface is given by @ = G2
C+1 + G

2
C+2 −

∑C
8=3 G

2
8
. Let I8 = G8 + 8H8 be the

corresponding coordinates in +C. Choose a connected component ofD by requiring
that Im IC+1

IC+2
> 0. Then, the map is given by the formula

|1 =
I1 + 8I2

IC+1 + 8IC+2
, |2 =

I1 − 8I2
IC+1 + 8IC+2

, and |: =
I:

IC+1 + 8IC+2
, : = 3, . . . , C,

see [598, Chapter 2, §8], and [634, Appendix, §6]. The image is a domain in CC
given by inequalities

||1 |2 + ||2 |2 + 2
C∑
:=3
||: |2 < 1 + ||1|2 + |2

3 + · · · + |
2
C | < 2.

As we have seen in Section 5.3, the period spaces for K3 surfaces and Enriques
surfaces are examples of such spaces D with C ≤ 19. We keep calling D a period
domain. If C = 1, then D coincides with the upper half-plane H from the previous
example.

Being isomorphic to �C/%, the compact form Ď of D = �/ is a projective
algebraic variety. Thus, the open embeddingD ⊂ Ď could be viewed as a compact-
ification of D. However, this compactification has no geometric meaning, which is
why we proceed to define a smaller partial compactification of D, which leads to a
compactification of an arithmetic quotient of the period domain.

A subset � of the boundary mD := Ď\D is called a boundary component if it
satisfies the following properties:

1. � is an analytic subset of mD in an open neighborhood of each of its points,
2. any holomorphic curve in mD that intersects � is entirely contained in �, and
3. � is minimal with respect to the previous properties.

An equivalent definition is that � is a minimal analytic subset of the boundary, such
that any two points lie in the image of a holomorphic map from the unit disk to �.

The group� acts transitively on the set of boundary components and the stabilizer
subgroup of a boundary component � is amaximal parabolic subgroup�� of� (this
means that the Zariski closure in � (C) is a parabolic subgroup). The assignment{

boundary components of D ⊂ Ď
}
→ {maximal parabolic subgroups of �}

� → �� := {6 ∈ � | 6(�) = �}

is a bĳection of sets.
A choice of boundary component of a non-compact Hermitian symmetric domain

B gives a realization of B as a certain Siegel domain in a complex affine space. It
is given by the data (*, E,,, �+, �, �), where * is a real linear space, where
c : � → � is a complex vector bundle over a bounded domain � in a complex linear
space , , where �+ is an open convex cone in *, and where � is a semi-hermitian
form on E with values in the trivial vector bundle (*C)� (a semi-hermitian form
is the sum of a hermitian form and a symmetric bilinear form). A Siegel domain
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associated to this data is the set

S := {(G + 8H, {) ∈ *C × E : H − Re(�c ({) ({, {)) ∈ �+}. (5.9.1)

There are three kinds of Siegel domains:

1. In the case where, = E = {0}, we obtain

S = {G + 8H : H ∈ �+},

which is called a Siegel domain of the first kind. An example of such a domain
is the Siegel half-space H6, where �+ is the cone of positive definite symmetric
matrices.

2. In the case where, = E = � × {0} and � is a Hermitian form, we obtain

S = {(G + 8H, {) ∈ *C × � : H − � ({, {) ∈ �+},

which is called a Siegel domain of the second kind. One can show that such a
domain is holomorphically isomorphic to the unit ball in C=, where = = dim* +
dim � .

3. In the case where dim � > 0, a Siegel domain is called a Siegel domain of the
third kind.

We are now interested in the case of a period space D (more precisely, their
connected components) associated with a real quadratic space (+, @) of signature
(2, C), that is, we consider

D = {CI ∈ P(+C) : (I, I) = 0, (I, Ī) > 0}

as introduced in Example 5.9.2.
A boundary component corresponds to a parabolic subgroup of SO(+). Such

groups are stabilizer subgroups of flags of isotropic subspaces in + . Since the
signature of + is (2, C), there are three types of such flags: lines, planes, and lines
contained in planes. The first two types define maximal parabolic subgroups. More
precisely, we can describe the boundary components as follows: the boundary of D
consists of points CI ∈ Ď ⊂ P(+C) with (I, I) = (I, Ī) = 0. If we write I = G + 8H,
then this means that G2 = H2 = (G, H) = 0. Thus G, H span an isotropic subspace of
dimension 1 or 2.

1. In the first case, we have CI = C 5 , where 5 is an isotropic vector representing a
real point on the quadric Ď. This is a 0-dimensional boundary component.

2. In the second case, G, H span an isotropic plane � in + and the closure of the
boundary component � is equal to |�C | � P1. The conjugation involution I ↦→ Ī

switches the two connected components of D, so the intersection of |�C | with
one of the components, say D+, is the upper half-plane {G + 8H, D > 0}, and the
intersection with the other componentD− is the lower half-planne {G+8H, H < 0}.
This gives rise to a 1-dimensional boundary component.
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Next, we realize D± as Siegel domains. Below, we will use this to describe
neighborhoods of an arithmetic quotient of D± near the boundary components.

First, let � = R 5 be an isotropic line corresponding to a 0-dimensional boundary
component �. The tangent hyperplane of the quadric & = Ď at the point [ 5 ] is
given by the linear function { → ({, 5 ) that vanishes on | (�⊥)C |. Since any point
I ∈ D corresponds to a real positive definite subspace (spanned by the real and the
imaginary part of I ∈ +C), it does not lie in the tangent hyperplane. Projecting &
from the point [ 5 ], we obtain an open embedding

c� : D ↩→ �� = | (+/�)C |−|(�⊥/�)C | = {I = G+8H ∈ (+/�)C | (G, 5 ) = 1, (H, 5 ) = 0}.

A point I ∈ D can be represented by a vector _ 5 + G + 8H with G, H as above.
From (I, I) = 0, we find (G, G) − (H, H) + 2Re(_) = 0 and from (I, Ī) > 0, we find
(G, G) + (H, H) + Re(_) > 0. This gives (H, H) > 0 and conversely, if (H, H) > 0, then
we get (I, I) = 0 and (I, Ī) > 0. Thus, we obtain that a choice of a 0-dimensional
boundary component defines an isomorphism

c� : D+ → T� := {G + 8H ∈ +/� + 8(�⊥/�) : (G, 5 ) = 1, H ∈ �+},

where �+ is connected component of the cone � = {H ∈ (�⊥/�)R : (H, H) > 0}. The
real part {G ∈ +/� : (G, 5 ) = 1} is a real affine space associated to the vector space
(�⊥/�)R.

If C > 0, that is, if the quadratic space (+, @) is not positive definite (otherwise
D+ is a singleton), then we can choose an isotropic vector 6 with ( 5 , 6) = 1, we can
identify both the real and the imaginary parts with the linear subspace * = 〈 5 , 6〉⊥
of + , so that T� becomes a Siegel domain of the first kind. This is also a special case
of a tube domain, that is, a subset of C= of the form {G + 8H : H ∈ �}, where � is a
convex open subset in R=.

Now let us look at 1-dimensional rational boundary component � ⊂ |�C |, where
� ⊂ + is an isotropic plane. Since � is negative definite, we find D+ ∩ |�C | = ∅.
Thus, we can project D+ to | (+/�)C | � PC−1. The fibers of the projection of & from
the line |�C | are lines, namely the residual lines of intersections of & with planes
containing the line. The fibers of c� : D+ → |(+/�)C | are isomorphic to upper
half-planes. Next we project | (+/�)C | to | (+/�⊥)C | � |�∨C | � P1 from the subspace
| (�⊥/�)C |. The image of D+ under the composition of the projections will be our
boundary component �. The fibers of the second projection c�⊥ : c� (D+) → �

are vector spaces of dimension C − 2 isomorphic to (�⊥/�)C. As a result, we find an
isomorphism from D+ to an upper half-plane bundle over a complex vector bundle
of rank C − 2 over �. One can show that this gives a realization of D+ as a Siegel
domain of the third kind.

The Siegel domain realizations allow us to describe the neighborhoods of an
arithmetic quotient of D+ near the images of the boundary components. To do this,
we first have to describe the stabilizers of the boundary components.

Lemma 5.9.3 Let � be a 0-dimensional boundary component corresponding to
a one-dimensional isotropic subspace � = R 5 . Then, there is a homomorphism
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�� → O(�⊥/�), whose kernel /� is isomorphic to �⊥/�, where each | ∈ �⊥/� is
identified with a transformation of +

�|, 5 : { ↦→ { − (|, {) 5 + ({, 5 )| − 1
2
(|, |) ({, 5 ) 5

a so-called Siegel–Eichler transformation.

Proof One checks immediately that each �|, 5 is an orthogonal transformation of
+ that leaves � invariant and that induces transformations { ↦→ { − ({, 5 ) 5 on �⊥.
Thus, �⊥/� ⊂ /� . If f ∈ /� , then for any { ∈ �⊥, we have f({) = { − U({) 5 , where
U ∈ (�⊥)∨. Since f ∈ SO(+), it acts as identity on �. Hence, U ∈ (�⊥/�)∨ and it can
be written as U({) = (|, {). This shows that f coincides with �|, 5 on �⊥. Choosing
some splitting (not orthogonal) + = � ⊕ �⊥, we see that the only possible orthogonal
extension of f to the whole + is equal to �|, 5 for some | ∈ �⊥/�. �

Lemma 5.9.4 Let � be a 1-dimensional boundary component corresponding to a
two-dimensional isotropic subspace � of + . Then, there is a homomorphism �� →
GL(�) ×O(�⊥/�), whose kernel /� in its action on � preserves the flag 0 ⊂ � ⊂ �⊥,
and whose center /0

�
� Λ2� � R is the subgroup that acts trivially on the quotients

of the flag.

Proof For any f ∈ /� , the restriction of f − id to �⊥ is the identity on � and
it defines a homomorphism �⊥/� → �. Thus, we have a homomorphism /� →
Hom(�⊥/�, �) � (�⊥/�) ⊗ � � R2C . Using some splitting+ = � ⊕ �⊥, one can show
that the homomorphism is surjective. Its kernel /0

�
consists of transformations that

induce the identity on �⊥/�. Each such transformation can be written in the form
{ ↦→↦→ { + U({, 5 ′) 5 + V({, 5 ) 5 ′ in some basis ( 5 , 5 ′) of �. It depends only on the
image of 5 ∧ 5 ′ ∈ Λ2� and thus, it is isomorphic to this group. �

Remark 5.9.5 It follows from this lemma that we have a non-trivial and central
extension of groups

1 → /0
� → /� → (�⊥/�) ⊗ � → 1, (5.9.2)

so that /� is a non-abelian nilpotent group, a Heisenberg group.

In order to define an action on an arithmetic group Γ on D, one has to put a
Q-structure on the group�. We do it by fixing a sublattice # in+ of signature (2, C),
so that + can be identified with #R. An arithmetic subgroup of � is a subgroup Γ of
finite index of O(#). Recall that this means that Γ is a subgroup of � (Q), which is
commensurable with a subgroup of � (Z). An arithmetic subgroup of � is a discrete
subgroup, but the converse is in general not true.

We will call a boundary component � rational if �� is defined over Q. This is
equivalent to the isotropic subspace corresponding to � being of the form �R, where
� is a primitive isotropic sublattice of # . Thus, we have a bĳection between rational
boundary components of dimension 0 (resp. 1) and primitive isotropic sublattices
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of rank 1 (resp. 2). To distinguish the two different types of a rational boundary
domain, we will use � for a rank one primitive isotropic sublattice and we will use �
otherwise.

For an arithmetic subgroup Γ, we set

Γ� := �� (Q) ∩ Γ,

we denote by mratD the union of all rational boundary components, and we set

Dc := D ∪ mratD .

Thus, we have

Γ\Dc = Γ\D ∪ {Γ�\� : � is a rational boundary component} .

By a theorem of Cartan, the space Dc can be given a topology, such that Γ\Dc is
a Hausdorff and compact topological space and such that it is the topological space
underlying a normal analytic space containing Γ\D as an open and dense analytic
subset.

Next, let L be the line bundle on & = Ď ⊂ |#C | that arises as pull-back of O(1)
of the ambient projective space. There is an O(#C)-action on |#C |, which gives rise
to an action on & and therefore, all line bundles L⊗: are equivariant with respect to
the group O(#C). The canonical bundle of& satisfiesl& � L⊗C and hence, sections
of L⊗: restricted to D ⊂ & can be viewed as automorphic forms of weight :

C
. We

refer to L as the automorphic line bundle.
By a theorem of Baily–Borel [44], the automorphic line bundle descends to

the quotient Γ\D and it can be extended to an ample line bundle on Γ\Dc. It
particular, this shows that it is a projective algebraic variety. Moreover, it even
carries the structure of a normal projective algebraic variety, which is isomorphic to
the projective spectrum of a certain graded ring of automorphic forms. This is the
Baily–Borel compactification of Γ\D and we will be denote it by (Γ\D)BB.

Example 5.9.6 We return to the upper half-plane H , which we already studied in
Example 5.9.1. It is easy to see that a boundary component ofH ⊂ C is defined by
points I = 0 + 18 with 1 = 0 and the point∞ ∈ P1 (C). The group � = SL(2,R) acts
transitively on the set of boundary components. The stabilizer subgroup �∞ of∞ is
the parabolic subgroup of matrices

( 1 1
0 1

)
. A rational boundary component is simply

a point with rational coordinates on the real line and the point ∞. If Γ = SL(2,Z),
then Γ� consists of matrices as above where 1 is an integer.

The group SL(2,Z) acts transitively on the set of rational boundary components
and thus, all Γ� ’s, where � runs through the rational boundary components, are
conjugate by elements from SL(2,Z). Now, let Γ be a subgroup of SL(2,Z) of finite
index, which is an arithmetic subgroup. Then, - := Γ\H is an affine curve over C,
and the Baily–Borel compactification - := H/Γ is a smooth projective curve over
C, the modular curve of level Γ.

The boundary m- := -\- is a finite set of points, the so-called cusps, whose
number is equal to the index of Γ� ∩ Γ inside Γ∩ SL(2,Z). For example, if Γ is one
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of the congruence subgroups

Γ0 (=) :=
{(
0 1

2 3

)
, 2 ≡ 0 mod =

}
⊂ SL(2,Z),

then -0 (=) := - = H/Γ0 (=) is called the modular curve of level =. We refer to [673,
Chapter 1] for the genus of -0 (#) and the number 2= of cusps, as well as proofs and
details.

We now return to the period space D associated to a real quadratic space (+, @)
of signature (2, C). We fix a lattice # ⊂ + , which equips the orthogonal group O(+)
with a Q-structure. We let Γ be a subgroup of finite index in O(#) ′. Then, the two
previous Lemmas 5.9.3 and 5.9.4 give the following structure of the groups Γ� , Γ� ,
Γ� , and Γ� .

Γ� = �⊥/� � ZC ,

Γ� = Γ
� o Γ� ,

where Γ� is a subgroup of finite index in O(�⊥/�).

/ (Γ� ) = Λ2� � Z,

Γ�// (Γ� ) = �⊥/� � ZC−2,

Γ� = Γ
� o Γ

�
,

where Γ� is a finite subgroup of O(�⊥/�). We consider the quotient map

D# → Γ\D# ,

which extends to a continuous map D2
#
→ (Γ\D# )BB.

First, assume that � = |� | is a 0-dimensional rational boundary component.
The group Γ� (or its subgroup of index 2) preserves the tube domain realization
T� = c� (D+# ). The subgroup Γ� acts trivially on the subspace (�⊥/�)R, but acts on
the affine space �� by real translations. If we choose coordinates in + , such that the
quadratic form in (�⊥/�)R is given by H2

1 − H
2
2 − · · · − H

2
C , then we see that �+ is given

by inequalities H8 > 0. Using the vector exponential map exp(2c8I), the quotient
Γ� \T� becomes isomorphic to the product (Δ∗)C , where Δ∗ is the punctured unit
disk. It is an open subset *� of the complex algebraic torus (�⊥/�)C/Γ� � (C∗)C .
The group Γ� acts on *� via its action on the image 42c�+ of the cone �+ in the
purely imaginary part of T� .

Next, assume that � ⊂ |� | is a 1-dimensional boundary component. The center
of Γ� is isomorphic to Z and it acts on the upper half-plane bundle with quotient
isomorphic to a punctured unit disk bundle. The lattice Γ�// (Γ� ) acts on the
vector bundle with quotient a compact complex torus bundle. One can show that
the punctured unit disk bundle embeds into a principal C∗-bundle, whose associate
line bundle L is anti-ample. The line bundle L−1 and the bracket skew-symmetric
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bilinear form Γ� ×Γ� → / (Γ� ) defined by the extension class of the exact sequence
(5.9.2) is the first Chern class of L−1. This gives a structure of a smooth family of
abelian varieties of dimension (C − 2) for the map

(Γ�// (Γ� ))\c� (D# ) → Γ�\c�⊥ (D# ) � Γ�\�.

Finally, the finite group Γ� acts on the family and we have to take the quotient by
this group.

A toroidal compactification (Γ\D# )trd is a certain blow-up of the Baily–Borel
compactification. First, in a neighborhood of a cusp (the image of a 0-dimensional
rational boundary component), one partially compactifies the open subset of the
torus )� by using a toric compactification - (Σ� ), where Σ� is a certain (admissible)
fan of rational polyhedral cones inside of �+. Here, a choice of fan Σ� has to be
made. Over the images of 1-dimensional components, one adds to the punctured unit
disk bundle the zero section of the line bundle L. Then, the map

f� : (Γ�\D# )trd → (Γ�\D# )BB

blows down the zero section to the modular curve �̄ = Γ�\�. Finally, we have to
take a finite quotient by Γ� . All these local constructions can be glued together (here
one uses the definition of the admissibility of the fans Σ� ). As a result, we obtain a
birational morphism

f : (Γ\D# )trd → (Γ\D# )BB.

The fibers of themapf over a general point of the image of a 1-dimensional boundary
component are (finite quotients) of polarized abelian varieties of dimension (C − 2).
The fibers over the cusps are their degenerations.

A semi-toric compactification as introduced by Looĳenga is a certain version of
the toroidal compactification. In it, the lattice �⊥/� is replaced with a sublattice "
that contains �. This results in enlarging the boundary of the toroidal compactifica-
tion. More precisely, an appropriate choice of fan - (Σ" ) leads to the blow-up of
a Weil divisor on the Baily–Borel compactification. In all known applications, one
takes for " the primitive hull of � + (�⊥ ∩ A), where A is the set of vectors in
# of negative norm forming a finite set of Γ-orbits. It defines an arrangement of
hyperplanes in D# . We refer to [476] for the details.

We now apply this general machinery to our period spaceD. To obtain a rational
structure, we use (of course) the lattice # = E10 (2)⊥ = E8 (2) ⊕ U(2) ⊕ U and
Γ = O(E10 (2)⊥)♯ or Γ = O(E10 (2)) ′.

To understand the 0-dimensional rational boundary components, we have to un-
derstand primitive isotropic vectors. Let ( 5 , 6) (resp. ( 5 ′, 6′)) be the standard basis
of the summand U (resp. U(2)) that consists of isotropic vectors. It is clear that the
vectors 5 and 5 ′ belong to two different O(#) ′ orbits of primitive isotropic vectors
in # . Thus, there are at least two rational 0-dimensional boundary components. The
complete picture is given by the following result.
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Proposition 5.9.7 Every primitive isotropic vector of # is either O(#) ′-equivalent
to 5 or to 5 ′. In particular, there are two ΓEnr-orbits of rational 0-dimensional
boundary components of DEnr.

There are also two orbits of primitive isotropic planes and hence, two ΓEnr-orbits
of 1-dimensional rational boundary components of DEnr.

Proof We apply Lemma 5.4.1 to replace the lattice  with the odd unimodular
lattice U ⊕ E8 ⊕ I1,1 and follow the proof of Corollary 3 from [6]. By construction
of  , there is a bĳection between the orbits of primitive vectors in # and in  . Any
primitive isotropic vector { in an odd unimodular indefinite lattice I?,@ defines the
lattice "{ = 〈{〉⊥/〈{〉, which is unimodular of signature (? − 1, @ − 1). The lattice
"{ embeds into I?,@ with orthogonal complement a hyperbolic plane containing
{. This defines a bĳection between orbits of primitive isotropic vectors in I?,@ and
isomorphism classes of unimodular lattices of signature (?−1, @−1). Applying this
to our case, we see that we have two orbits corresponding to lattices E10 and I1,9.
This proves the first assertion.

Next, consider a primitive isotropic plane % in  and let %∗ be the set of primitive
isotropic vectors in %. We claim that %∗ contains an odd vector. If this were not
true, then the orthogonal complement of an even vector in %∗ contains a sublattice
� � E10. Since  is an odd lattice, the orthogonal complement of � is isomorphic
to I1,1. The intersection % ∩ � contains a vector { with 〈{〉⊥ containing a sublattice
isomorphic to I1,1, so that 〈{〉⊥ is odd and hence, { ∈ %∗ is odd. Since odd primitive
isotropic vectors form one orbit, any primitive isotropic plane can be transformed
to a plane %′ containing {. Let 〈|〉 (resp. 〈|′〉) be the image of % (resp. %′) in
" = 〈{〉⊥/〈{〉 � I1,9. There are two O(")-orbits of such sublattices corresponding
to whether | or |′ is odd or even. If | and |′ are in the same O(")-orbit, then we
can transform %′ to %. This gives one orbit. The other orbit is represented by a plane
%′ that is spanned by an odd and an even vector. �

The previous proposition allows us to give an explicit description of the Baily–
Borel compactification ofMEnr.

Theorem 5.9.8 There exist immersions

MEnr = ΓEnr\D◦Enr ⊂ ΓEnr\DEnr ⊂ MEnr := ΓEnr\D
◦
Enr

of complex quasi-projective varieties, such that:

1. ΓEnr\DEnr −MEnr is an irreducible divisor, which is isomorphic toMCob.
2. The boundaryMEnr− (MEnr∪MCob) is the union of two curves, one isomorphic

to the modular curve -0 (2) � P1 and the another one isomorphic to the modular
curve - � P1 corresponding to the group SL(2,Z). The two cusps of the -0 (2)
coincide with the two cusps ofMEnr. The two curves intersect at one of the cusps.

Proof By Theorem 5.3.9 and Corollary 5.4.6, it only remains to show claim 2. By
Proposition 5.9.7, there are two 0-dimensional boundary components ?1 and ?2
and they correspond to the ΓEnr-orbits of the isotropic vectors 5 ∈ U and 5 ′ ∈



594 5 Moduli Spaces

U(2), respectively. Moreover, by the same proposition, there are two 1-dimensional
boundary components �1 and �2 and they correspond to ΓEnr-orbits of two isotropic
planes %1 and %2. One easily sees that they can be represented by the planes 〈 5 , 5 ′〉
and 〈 5 , 5 ′ + 6′ + U〉, where U ∈ (E8)−4.

To determine the structure of�8 , we have to compute the groups#ΓEnr (%8)//ΓEnr (%8).
Case 1: %1 = 〈 5 , 5 ′〉. Given f ∈ #ΓEnr (%1), there exist integers 0, 1, 2, 3 such

that
f( 5 ′) = 0 5 ′ + 2 5 and f( 5 ) = 1 5 ′ + 35 .

Since 5 · # = Z and 5 ′ · # = 2Z, we find 3 ∉ 2Z and 2 ∈ 2Z. Thus, we have a
homomorphism

i : #ΓEnr (%1) → Γ0 (2)

f ↦→
(
0 1

2 3

)
.

Since %⊥/% � E8 (2), we can write # as

# = U ⊕ U(2) ⊕ (%⊥/%),

and thus, given amatrix � =
(
0 1

2 3

)
∈ Γ0 (2), we can define an isometryf� by setting

it to be the identity on %⊥/% and by setting it to be 5 ′ ↦→ 0 5 ′ + 2 5 , 5 ↦→ 1 5 ′ + 35 ,
6′ ↦→ − 22 6, and 6 ↦→ 06 − 2

2 6
′ on U ⊕ U(2). Then, i(f�) = �, which shows that

i is surjective. By definition, the kernel of i is /ΓEnr (%1). Thus, �1 is isomorphic
to the modular curve -0 (2) = Γ0 (2)\H. We recall that the modular curve -0 (2) is
a compactification of the moduli space of elliptic curves together with a choice of a
non-trivial 2-torsion point. It is isomorphic to P1 and the boundary consists of two
cusps, see, for example, [673].

Case 2: We may choose % to be 〈 5 ′, 2 5 + 26 + U〉, where U ∈ E8 (2) is of
norm −8. Since this plane is generated by isotropic vectors { with { · # ⊂ 2Z, it
does not belong to the orbit of the plane 〈 5 , 5 ′〉. This time, we have a surjective
homomorphism #ΓEnr (�) → SL(2,Z). In this case, the boundary component is the
modular curve - = SL(2,Z)\H with one cusp.

Since we have only two 0-dimensional boundary components, we see that the two
boundary components intersect at one point. �

Corollary 5.9.9 The number of I4A>–dimensional (resp. one–dimensional) bound-
ary components inMm

Enr is equal to 2 · 17 · 31 (resp. 22 · 33 · 5 · 17 · 31).

Proof The group ΓEnr/Γ♯Enr � � (E10 (2)) � O(10, F2)+ acts on the set of Γ♯Enr-
orbits of primitive isotropic vectors (resp. planes) with stabilizer subgroup isomor-
phic to the stabilizer subgroup of an isotropic vector (resp. isotropic line) in the
even quadratic space F10

2 . It is isomorphic to 28 o O(8, F2)+ (resp. 216 o O(6, F2)+).
This implies that the number orbits of 0-dimensional (resp. 1-dimensional) bound-
ary components is equal to 2[# O(10, F2)+ : 28# O(8, F2)+] = 2 · 17 · 31 (resp.
2[# O(10, F2)+ : 212# O(6, F2)+] = 22 · 33 · 5 · 17 · 31). �
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Corollary 5.9.10 LetMCob be the closure ofMCob inMEnr. Then, the boundary has
a unique zero–dimensional component and a unique one–dimensional component,
which is isomorphic to the modular curve - = SL(2,Z)\H .

Proof The orthogonal complement of any X ∈ (E10 (2)⊥)−2 contains primitive
isotropic vectors only of even type (that is, the corresponding linear form takes
values in 2Z). Thus, the closure ofMCob misses the boundary components isomor-
phic to -0 (2). �

Theorem 5.9.11 The moduli spacesMm
Enr,MEnr, andMEnr,{ for l ∈ E10 are ten–

dimensional quasi-affine varieties over C.

Proof Since the maps from (5.8.1) are quasi-finite, it is enough to prove thatMEnr,{
is quasi-affine for one l ∈ E10 or for the quotientMEnr,{ = Γ\D◦ with respect to
some arithmetic subgroup Γ of ΓEnr. We follow the proof of Pappas [587], and in the
Appendix we will give the original proof of this result due to Borcherds.

The proof consists of three steps. In Step 1, we fix anl ∈ E10 withl2 = 2, thenwe
construct a normal subgroupΓ of finite index inΓEnr such thatM =MEnr,{ = Γ\DEnr
can be realized as the base of smooth family 5 : S → M of Enriques surfaces. In
Step 2, we prove that 5∗ (lS/M) coincides with the descent LM of the automorphic
line bundle L to M. In Step 3, we prove that lS/M is a torsion line bundle. The
theorem now follows from this, because we know by Baily–Borel that some tensor
power of L⊗= extends to a very ample sheaf on the compactificationMBB. Thus, it
has a section, whose divisor of zeros is contained in the boundary ofMBB, which
implies thatM is an open subset of an affine variety, that is, quasi-affine.

Step 1: To choose Γ, we first consider a congruence subgroups of ΓEnr,{ with
l2 = 2 defined by

Γ′= := {6 ∈ ΓEnr : 6(l) = l, 6 ≡ id mod =E⊥10}.

For sufficiently large =, the congruence subgroup in SL(#,Z) will be torsion-free, so
we choose an = so that Γ′= is torsion free, see [84, Proposition 17.4]. Since we need a
normal subgroup of ΓEnr, we define Γ to be the normal subgroup ∩6∈ΓEnr6 · Γ′= · 6−1

contained in Γ′=. In general, an arithmetic quotient of the period space for lattice
polarized K3 surfaces DEnr is only a coarse moduli space, that is, it does not admit
a universal family. However, it is a fine moduli space if the group acts without fixed
points, see Remark 5.4.8 and the discussion in [321], Chapter 6. We denote by
5 : S →M := Γ\DEnr the universal family overM.

Step 2: We identify the family 5 : S →M with the corresponding family of lat-
tice polarized K3 surfaces and consider the Hodge line bundle 5∗ (lS/M) ⊂ '2 5∗C,
whose fibers are the subspaces �2,0 ⊂ �2 ( 5 −1 (<),C) spanned by a holomorphic
2−form on the fiber. It follows from the definition of the automorphic line bundle
that 5∗ (lS/M) coincides with LM .

Step 3: Since the restriction of l⊗2
S/M to each fiber is the pull-back of the bi-

canonical bundle on an Enriques surface, it is trivial along the fibers of 5 . Hence,
there exists a line bundleL onM, such thatl⊗2

S/M = 5 ∗ (L). Applying the projection
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formula and using that 5∗OS = OM , we conclude that L � L⊗2
M . Thus, Ω⊗2

S/M �

5 ∗ (L⊗2
M ).

Now, we apply the Grothendieck–Riemann–Roch formula for the proper mor-
phism 5 and the sheaf OS , see, for example, [242]. Let _ be the first Chern class
of 5∗ (lS/M). By the above, we find 5 ∗ (_) = −221 (l−1

S/M) = −221 (ΘS/M), where
ΘS/M is the relative tangent bundle. To simplify the notation, we let 21, 22 be the
Chern classes of this bundle. The Grothendieck–Riemann–Roch formula gives the
equality

21 (' 5∗OS) =
1
24
5∗ (21 · 22)

in Pic(M)Q. Since '8 5∗OS = 0 for 8 ≠ 0, we obtain 5∗ (21 · 22) = 0. Hence

0 = 2 5∗ (21 · 22) = − 5∗ ( 5∗ (21) · 22) = −_ · 5∗ (22).

Noether’s formula (0.10.22) implies that 5∗ (22) = 12 in the Chow group of M
tensored with Q. Thus, _ is trivial in Pic(M)Q, hence it is a torsion class. This ends
the proof. �

Remark 5.9.12 In fact, one can say more. By Theorem 5.9.8,MBB
Enr −MEnr consists

of the closure� of the irreducible divisorMCob and the union of twomodular curves
- and -0 (2), both of which are isomorphic to P1. It follows from Corollary 5.9.10
that the closure of the Coble divisor contains the modular curve - . This shows that
the complement of � in the Baily–Borel compactification is an affine open set that
consists ofMEnr and the affine line - \ {cusp}.

The fact that moduli spaces MEnr and Mm
Enr are quasi-affine has the following

interesting application to families of Enriques surfaces.

Corollary 5.9.13 Let Y → ) be a smooth family of Enriques surfaces, where � is
connected, proper and of dimension ≥ 1 over the complex numbers C. Then, this
family has no moduli, that is, for every two points C1, C2 ∈ ) , the fibers YC1 and YC2
are isomorphic.

Proof Given a flat family f : Y → ) of Enriques surfaces, we let PY/) = '1f∗G<
be the relative Picard sheaf and we let PgY/) be the quotient sheaf modulo numerical
equivalence. Then, a marking of the family is an isomorphism E10,) → PgY/) of
sheaves equipped with the structure of sheaves of quadratic lattices. Here, E10,)
denotes the constant sheaf associated with the quadratic lattice E10.

Now, let Y → ) be as in the statement of the corollary. Passing to some finite
cover of ) , we may assume that the general fiber (PgY/) )[ of PgY/) contains an
isotropic 10-sequence ( 51, . . . , 510) that defines a marking of the general fiber Y[
of the family. Using the specialization homomorphism of the Picard groups, which
is known to preserve the intersection form, we specialize ( 51, . . . , 510) to define a
marking of the whole family, that is, we trivialize the sheaf PgY/) and obtain a family
of marked Enriques surfaces. SinceMm

Enr is a coarse moduli space (in category of
analytic spaces), we get a holomorphic map ) →Mm

Enr that must be constant since
)̃ is proper andMm

Enr is quasi-affine. �
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Moreover, one can consider the compactifications and the boundaries of the
moduli spacesMEnr,{ of polarized and numerically polarized Enriques surfaces. As
far as we know, the only known case that has been worked out it is the case of degree
2 polarizations in work of Sterk [690], [691].

Let us briefly discuss Sterk’s results, that is, we consider the compactification
MEnr,2 of the coarse moduli spaceMEnr,2 =MEnr,88 = ΓE10 (2) ,2\DEnr of degree-2
numerically polarized Enriques surfaces. Moreover, there is a finite cover

MEnr,2 → MEnr,

which is of degree 27 ·17 ·31, see the end of Section 5.7. In these cases, the geometry
of the boundary is considerably more complicated than in the case of unpolarized
surfaces.

Theorem 5.9.14 . The boundary ΓE10 (2) ,2\(DEnr − DEnr) of MEnr,2 consists of 5
zero–dimensional (marked by (1), (2), (3), (4), (5) in the following diagram) and 9
one-dimensional components. The following graph describes the incidence relation
between the components:

•

•

•

•

•

•

•

•

•

• •

•

•

•

(1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2)

(3)

(4)

(5)

(3, 4)

(3, 5)

(4, 5)

(5, 5)

(2, 4, 5)

Fig. 5.1 Boundary components ofMEnr,2

The boundary components marked by (3, 5), (3, 4), (4, 5) are the modular curves
-1 (2). The boundary component marked by (5, 5) is the modular curve - for the
full modular group and the boundary component marked by (2, 4, 5) is the modular
curve - (2) for the 2-level congruence subgroup of SL(2,Z).

Let � be a non-special Picard polarization of degree 2 of an Enriques surface (.
Then, the linear system |2� | is bielliptic and defines a degree 2 map 5 : ( → D1,
where D1 is a non-degenerate 4-nodal quartic del Pezzo surface in P4. It ramifies over
the four nodes and a curve, cut out by a quadric. Let |OD1 (2) | be the projective space
of such curves. In Theorem 5.8.11, we studied the rational quotient of this space by
the group� = Aut(D1), which is isomorphic to (C∗)o�8. LetM := |OD1 (2) |//� be
the GIT-quotient. Passing to K3-covers, it is isomorphic to the GIT-quotient,//�,
where , is the projective space of curves of bi-degree (4, 4) on P1 × P1 that are
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invariant with respect to the involution with four isolated fixed points. The analysis
of stable and semi-stable points for the GIT-quotient was done by J. Shah [667]. It
follows from this description that the points represented by hyperplane sections of
D1 passing through two opposite vertices of the quadrangle of lines and taken with
multiplicity 2 form a minimal orbit of strictly semi-stable points. LetM ′ →M be
the blow-up of this point (in fact, a certain weighted blow-up). Sterk shows that points
in the exceptional divisor � can be viewed as minimal semi-stable orbits of curves
in the linear system |OD′1 (2) |, where D′1 is a degenerate 4-nodal quartic del Pezzo
surface. Next, he defines the blow up of M ′ along the proper inverse transform
on M ′ of one-dimensional strata of the union of two conics passing through the
opposite vertices of the quadrangle of lines on D1. LetM be the result of the two
blow-ups. Let [�] be a point in the GIT-quotient M representing a smooth curve
� in |OD1 (2) |. The double cover ( → D1 branched along � and the singular locus
of D1 is an Enriques surface (. The double cover is given by a non-degenerate
bielliptic linear system |2�1 + 2�2 | and ℎ = [�1] + [�2] equips ( with a numerical
ample polarization of degree 2. This defines a rational mapM d MEnr,2, which
is not defined on the divisor of special polarizations. LetMstrd

Enr,2 → MEnr,2 be the
semi-toric compactification of Looĳenga that blows up the Weil divisor of special
polarizations. The proof of the following theorem can be found in [691].

Theorem 5.9.15 The rational mapM dMEnr,2 extends to a birational morphism

5 : M d Mstrd
Enr,2

to the semi-toric compactification ofMEnr,2 obtained by blowing up the Weil divisor
� that corresponds to the locus (�, ℎ) of Enriques surfaces with special degree 2
polarizations. The strict transform of the exceptional divisor �1 of the first blow-up
M ′→M is mapped to the strict inverse transform of the divisor �.

Sterk’s paper also describes a match between different strata of semi-stable points
in |OD1 (2) | and the pre-images of the boundary components in the semi-toric com-
pactification. We come back to these two compactifications ofMEnr,2 at the end of
Section 5.10.

5.10 Degenerations of Enriques Surfaces

Having studied compactifications of moduli spaces of Enriques surfaces, it is natural
to ask whether the boundary has a modular description, that is, whether it also
parametrizes some interesting objects. In the previous section, we have interpreted
an open set of the boundary divisor as moduli space of Coble surfaces of K3
type. We have also seen that the remaining parts of the boundary in the Baily–
Borel compactification are unions of zero-dimensional and one-dimensional sets. To
understand these, we are led to studying degenerations of K3 surfaces and Enriques
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surfaces. We refer to [421], [422], [523], [589], and [591] for details and further
background.

More generally, let Δ := {I ∈ C| |I | < 1} be the complex disk and Δ∗ := {I ∈
C|0 < |I | < 1} the punctured disk.

Definition 5.10.1 A degeneration of a family of surfaces is proper and flat map
X → Δ from a 3-dimensional complex manifold such that for all C ∈ Δ∗, the fiber XC
is smooth. The degeneration is called semi-stable if the central fiber X0 is a simple
normal crossing divisor.

Let us recall that X0 being a simple normal crossing divisor means that all its
irreducible components are smooth, and that it is locally analytically at each point
G ∈ X0 of the form I0 · ... · I: = 0, where the I8 are local parameters of G inX. We will
say that two degenerationsX → Δ andX′→ Δ are bimeromorphically equivalent, if
there exists a bimeromorphic mapX d X′ overΔ that is an isomorphism outside the
central fibers. By a theorem of Mumford [34], [382], given a degeneration X → Δ,
then, after some finite base change Δ′ → Δ, it is bimeromorphically equivalent to a
semi-stable degeneration.

Now, let X → Δ be a semi-stable degeneration of a family of surfaces. Let
+1, ..., +: be the irreducible components of the special fiber X0. Being semi-stable,
all +8 are smooth surfaces, and their intersections �8 9 := +8 ∩+ 9 are smooth curves.
We shall call the irreducible components of the �8 9 the double curves of X0. Being
semi-stable, the intersection +8 ∩+ 9 ∩+: for pairwise distinct 8, 9 , : is either empty
or consists of triple points that are analytically locally of the form I1I2I3 = 0. The
dual graph Γ associated to X0 is the undirected graph with a vertex {8 for every
component +8 , and an edge ({8 , { 9 ) for every component of �8 9 , and a two-simplex
({8 , { 9 , {: ) for every triple point of +8 ∩+ 9 ∩+: .

For two components +,, ⊂ X0, and a double curve � ⊂ + ∩ , , we have
Persson’s triple point formula

�2
+ + �2

, = −g� ,

where �2
+

(resp. �2
,
) denotes the self-intersection number of � as a curve on the

surface + (resp. ,), and where g� denotes the number of triple points of - on �,
see [589, Corollary 2.4.2]. Next, we have the normal bundle formula

#+8/X � O+8 (−
∑
9

�8 9 ),

where the sum runs over all double curves �8 9 contained in +8 .
In particular, if X → Δ is a semi-stable degeneration of a family of surfaces with

numerically trivial canonical sheaves, then the normal bundle formula implies that
the components of the special fiber are ruled surfaces or also have a numerically
trivial canonical sheaf. For example, if the special fiber X0 is irreducible, then it
is a smooth surface with numerically trivial canonical class of the same type (K3,
Enriques, Abelian, Hyperelliptic) as the general fiber of that family. In the remaining
cases, we distinguish whether there exist triple points in X0 or not. We start with the
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case where there are no triple points, and refer to [589], Proposition 3.3.1 for details
and proofs.

Proposition 5.10.2 LetX → Δ be a semi-stable degeneration of a family of surfaces,
whose general fiber has a numerically trivial canonical sheaf. Assume thatX0 has no
triple points, and that the components of X0 are algebraic. Then, after having blown
down exceptional components of the special fiber, we have the following possibilities:

1. X0 is a smooth surface with numerically trivial canonical class (trivial degener-
ation).

2. X0 is a cycle+1 ∪ ...∪+: of elliptic ruled surfaces. The double curves are smooth
elliptic curves, and, more precisely, disjoint sections of the +8 .

3. X0 is a chain of surfaces+1∪ ...∪+: . The “interior” components+2, ..., +:−1 are
elliptic ruled surfaces. The “end” components +1 and +: are either elliptic ruled
or rational surfaces. The double curves are smooth elliptic curves. The general
fiber will be:
K3 in the case of two rational components
Enriques in the case of only one rational component
Hyperelliptic if all components are elliptic ruled.

4. X0 is a flower pot, and the general fiber is an Enriques surface. All components
and the double curves are rational. Each flower % is a P2, its double curve is a
conic. The stalk consists of rational minimal ruled surfaces F4, its double curves
are disjoint sections. All the double curves of the pot � have self-intersection −4.

Example 5.10.3 LetX → Δ be a smooth family of K3 surfaces that is equipped with
an involution g : X → X over Δ that acts without fixed points on every fiber XC ,
C ≠ 0, and whose fixed–point set on the special fiber X0 is equal to a (−2)-curve �.
We consider the quotient c : X → Y ′ := X/g, which is singular along � := c(�).
Then, Y ′∗ → Δ∗ is a smooth family of Enriques surfaces. In Example 5.4.5, we
showed that X0 → . := X0/g is a double cover of the Coble surface . , which is
branched over the smooth rational curve � := c(�) with �2 = −4. To obtain a
semi-stable degeneration, we have to resolve the double curve � ⊂ Y ′. For this,
let X̃ → X be the blow-up along �. Then, the exceptional divisor is isomorphic
to a smooth quadric surface intersecting the proper transform of X0 along a conic
(use the triple point formula and the normal bundle formula). Next, the involution g
extends to an involution g̃ on X̃. The restriction of g̃ to the exceptional divisor acts
without fixed points outside the conic. Then,

Y := X̃/g̃ → Δ

is a semi-stable degeneration of a family of Enriques surfaces. The central fiber Y0
is the union of the Coble surface . and a P2. The double curve of the intersection is
a smooth rational curve, which is a conic in P2 and a (−4)-curve on . . In particular,
Y → Δ is an example of a flower pot degeneration.

In the case where the special fiber X0 of a semi-stable degeneration has triple
points, we have a detailed description for which we refer to [523].
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Now, if we do not insist on finding a semi-stable degeneration over Δ, but also
allow finite base-changes Δ′ → Δ, then we have the existence of Kulikov models,
where the geometry of the special fiber becomes much simpler. Let us first introduce
these models.

Theorem 5.10.4 Let X → Δ be a semi-stable degeneration of a K3 surface or an
Enriques surface. Then, after a finite base change Δ′ → Δ, it is bimeromorphically
equivalent to a semi-stable fibrationX′→ Δ′, such thatlX′/Δ′ is numerically trivial.

Proof The original proof is due to Viktor Kulikov [421], but see also [591]. A
more recent approach is via the semi-stable minimal model program, which, given
X → Δ, produces a bimeromorphic (weakly) semi-stable model Y → Δ with
terminal singularities such that lY/Δ is numerically trivial. Weakly in the sense that
the special fiber Y0 is a normal crossing divisor but maybe not a simple normal
crossing divisor (the components of Y0 need not be smooth). However, there exists
a finite base-change Δ′ → Δ after which the singularities of Y and those of the
components ofY0 can be resolved. We refer to [500] for this point of view and [467]
for an overview. �

Now, when dealing with the Kulikov models, the classification of the special fiber
becomes much easier, see [421], [523], [589], and [591].

Theorem 5.10.5 LetX → Δ be semi-stable degeneration of K3 surfaces or Enriques
surfaces, and assume that lX/Δ is numerically trivial. Then, the special fiber is one
of the following:

1. X0 is smooth or a flower pot degeneration.
2. 2. X0 is not smooth, but contains no triple points. Then, X0 = +1 ∪ . . . ∪ +: is a

chain of elliptic ruled surfaces, whose end components are either elliptic ruled or
rational, meeting along elliptic smooth elliptic curves. There are two (resp. one)
rational components in the case of degeneration of a K3 surface (resp. Enriques
surface).

3. X0 contains triple points. Then, X0 is a union of rational surfaces +8 , the double
curves on each +8 form a cycle of smooth rational curves, and the dual graph Γ
associated toX0 is topologically homeomorphic to the 2-sphere S2 (degeneration
of K3 surfaces), or the real projective 2-plane RP2 (degeneration of Enriques
surfaces).

According to the three cases of the theorem, one also speaks of a Kulikov model
of type I (resp. type II, resp. type III).

Example 5.10.6 1. The degenerations of K3 surfaces and Enriques surfaces given in
Proposition 5.10.2 give examples of Kulikov models for families of K3 surfaces
and a family of Enriques surfaces, which are of of type III, that is, with triple
points.

2. This example is taken from [208]. Let Δ be a simplicial complex on the set
� = {40, . . . , 4=}. It defines a closed subscheme - (Δ) of P=

k
called the face

variety of Δ defined by the monomial ideal generated by monomials G80 · · · G8<
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such that {80, . . . , 8<} is not a face of Δ. The projective coordinate ring is the
Stanley–Reisner ring of Δ, see [687]. If the topological realization |Δ| of Δ
is a manifold, then - (Δ) is a locally Gorenstein scheme with dualizing sheaf
l⊗2
- (Δ) � O- (Δ) . Moreover, l- (Δ) � O- (Δ) if and only if |Δ| is an orientable

manifold. We have �8 (- (Δ),O- (Δ) ) � �8 ( |Δ|, k).
Now, we take Δ to be a minimal simplicial triangulation of P2 (R) given by the
following figure.

Fig. 5.2 A minimal simplicial triangulation of P2 (R)

Depending on the characteristic ? of k, we have the following:

a. If ? ≠ 2, then l- (Δ) � O- (Δ) since |Δ| is not orientable. Moreover,
�1 (- (Δ),O- (Δ) ) � �2 (- (Δ),O- (Δ) ) = 0. The surface - (Δ) is a degen-
eration of type III of an Enriques surface.

b. If ? = 2, then l- (Δ) � O- (Δ) since |Δ| is orientable with respect to mod 2
coefficients. Moreover, �1 (- (Δ),O- (Δ) ) � �2 (- (Δ),O- (Δ) ) � k because
these singular cohomology groups of P2 (R) with coefficients inZ/2Z in degree
1 and 2 are non-zero. The surface - (Δ) is a degeneration of type III of a non-
classical Enriques surface.

In both cases, - (Δ) is the union of ten planes in P5 and it is a projective degen-
eration of a Fano model of an Enriques surface.

3. Finally, the flower pot degeneration of Example 5.10.3 is not a Kulikov model.

An important feature of semi-stable degenerations and Kulikov models of K3
surfaces is that the type of the special fiber can be detected by monodromy. Let
c : X → Δ be a semi-stable degeneration of a family of K3 surfaces, and let Λ be
a commutative ring. Then, the restriction of '2c∗Λ to the punctured disk Δ∗ is a
locally constant sheaf with fibers ('2c∗Λ)C � �2 (XC ,Λ) for all C ∈ Δ∗. Next, we
identify the universal cover* := Δ̃∗ → Δ∗ with the exponential map exp : Δ→ Δ∗,
we fix some C0 ∈ Δ∗, and then, we choose a trivialization of the pull-back of the
local system exp∗ ('2c∗Λ) � �2 (XC ,Λ) × *. This gives rise to the monodromy
representation
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c1 (Δ∗, C0) → Aut
(
�2 (XC0 ,Λ)

)
,

and the image of a generator of c1 (Δ∗, C0) � Z under this representation is called
a monodromy operator. Since X is a degeneration of K3 surfaces, we can rep-
resent this operator by a matrix ) ∈ GL(22,Λ), the monodromy matrix. By the
Grothendieck–Landman–Monodromy Theorem [428] and [277, Theorem I.1.2], ) is
quasi-unipotent, that is, there exist positive integers A and = such that

()A − 1)= = 0.

Since the degeneration is semi-stable, we have A = 1. Moreover, being an operator
on �2, we may choose = = 2 + 1. Thus, # := ) − 1 is nilpotent and gives rise to a
filtration

0 ⊆ ,0 ⊆ ,1 ⊆ ,2 ⊆ ,3 ⊆ ,4 := �2 (XC0 ,Λ),

by setting

,0 := #2 (,4)
,3 := Ker(#2)
,1 := the inverse image of Ker(# : ,3/,0 → ,3/,0) in,3
,2 := image of # : ,3/,0 → ,3.

This is called the monodromy weight filtration. The monodromy operator # satisfies
# (,: ) ⊆ ,:−2 and # : induces isomorphisms ,:+2/,:+1 → ,2−:/,1−: for all
: , see also the discussion on [589], page 66.

In the case Λ = C, there is another filtration

0 ⊆ �2
∞ ⊆ �1

∞ ⊆ �0
∞ := �2 (XC0 ,C),

the limit Hodge filtration, that is defined as follows: for the family X∗ → Δ∗ of K3
surfaces, let * → Δ∗ be the universal cover, and let ? : * → D be the period map.
By definition, ?(I) is the line ℓ(I) = �2,0 (XI), considered as a point of D. As in
Example 5.9.6, we identify* with the upper half plane H, and use this to define

�2
∞ := limIm(I)→∞ exp(−I#)ℓ(I),
�1
∞ := �2

∞ +
(
�2
∞ ∩ �

2
∞

)
.

where �2
∞ denotes complex conjugation. This structure of two filtrations, an ascend-

ing weight filtration ,< and a descending Hodge filtration � 9∞ such that the � 9∞
induce Hodge structures on the subquotients ,</,<−1 is called a mixed Hodge
structure. For example, if # = 0, then the weight filtration is trivial, that is,,< = 0
for < = 0, 1 and,< = �2 (XC0 ,Λ) for < = 2, 3 in the example above, and we obtain
a pure Hodge structure. We refer to [725] for details and precise definitions.

After these preparations, we have the following result, which shows that the
monodromy can detect potential good reduction of K3 surfaces.
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Theorem 5.10.7 Let X → Δ be a semi-stable degeneration of K3 surfaces that is a
Kulikov model. Let # be the monodromy operator on �2 (XC0 ,C) for some C0 ∈ Δ∗.
Then:

1. X0 is smooth if and only if # = 0.
2. X0 is a chain of ruled surfaces if and only if # ≠ 0 and #2 = 0.
3. X0 is a union of rational surfaces, whose dual graph Γ is homeomorphic to S2, if

and only if #2 ≠ 0.

Proof See [422, Chapter V,§6] and also [467] for a discussion. �

Remark 5.10.8 In fact, the assumption that the degeneration is semi-stable and al-
ready a Kulikovmodel is not needed: given a smooth familyX∗ → Δ∗ of K3 surfaces
with trivial monodromy (resp. unipotent monodromy), that is, if # is trivial (resp. #
is unipotent), then this family can be completed to a smooth family (resp. a Kulikov
model) X → Δ of K3 surfaces. We refer to [298, Theorem 35], who attribute this
result to R. Friedman, D. Morrison, and F. Scattone.

If X0 is smooth, one also says that the family X∗ → Δ∗ has good reduction.
We note that if X8 → Δ are two smooth families of K3 surfaces that extend the
given X∗ → Δ∗, then these families are related by a sequence of flops or elementary
modifications in (−2)-curves of the special fiber X0. On the other hand, the special
fibers of the two models are birationally equivalent by a theorem of Matsusaka and
Mumford [499] and since they are K3 surfaces, they are isomorphic. Thus, the special
fibers are unique, but the completed families X8 → Δ usually are not.

For semi-stable degenerations of Enriques surfaces, we have the following analog
of the previous theorem:

Theorem 5.10.9 Let Y → Δ be a semi-stable degeneration of Enriques surfaces
that is a Kulikov model. Let # be the monodromy operator on �2 (ỸC0 ,C) for some
C0 ∈ Δ∗, where ỸC0 → YC0 denotes the K3 cover. Then,

1. Y0 is smooth or a flower pot degeneration if and only if # = 0.
2. Y0 is a chain of ruled surfaces if and only if # ≠ 0 and #2 = 0.
3. Y0 is a union of rational surfaces, whose dual graph Γ is homeomorphic to RP2,

if and only if #2 ≠ 0.

In particular, for Enriques surfaces, the monodromy operator cannot detect good
reduction. The typical example of this phenomenon is given in Example 5.10.3:
here, one has a family of Enriques surfacesY∗ → Δ∗, such that the associated family
X∗ → Δ∗ of K3 surfaces has trivial monodromy. Therefore, the latter family has good
reduction, say to X → Δ. The covering involution on X∗ → Y∗ → Δ∗ extends to
X, however, it acquires a fixed locus onX0. Thus, although the monodromy operator
does detect good reduction of X∗ → Δ∗, it cannot detect whether the involution acts
without fixed points on the special fiber X0.

Let us also briefly discuss the algebraic case: The roles of Δ and Δ∗ are played
by Spec ' and Spec , where ' is some DVR, where  is its field of fractions,
and where k is the residue field. As above, a degeneration of some surface - over
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 is a proper flat map X → Spec ' from a regular 3-dimensional algebraic space,
whose generic fiber is isomorphic to - . When discussing the Kulikov models in
the complex analytic setting, one has to work in the category of complex analytic
Moishezon manifolds and thus, it is not surprising that in the purely algebraic
situation one has to work with algebraic spaces. Again, we can define a notion of
semi-stable families, by requiring the components of the special fiber to be smooth,
and that the strict local ring at each point is étale locally of the form I0 · ... · I: = 0.
Unfortunately, the semi-stable reduction for surfaces is not known in this setting (if
the characteristic of k is zero, then it follows from [34] and [382]). Assuming this
result, K3 surfaces and Enriques surfaces do admit Kulikov models after possibly
replacing ' by a finite extension, which is a theorem of Maulik [500], see also the
discussion in [467]. The classification of the special fibers of Kulikov models in this
setting is due to Nakajima [548]. For the computation of the monodromy operator
and good reduction results, we refer to [118], [119], [467], and [495].

Finally, we come back to the compactifications of the moduli spaces of Enriques
surfaces. By Theorem 5.9.8, we have immersions

MEnr = ΓEnr\D◦Enr ⊂ ΓEnr\DEnr ⊂ MEnr,

where the left space is the moduli space of Enriques surfaces. Moreover, the com-
plement ΓEnr\DEnr − MEnr is an irreducible divisor, which we identified with the
moduli spaceMCob of Coble surfaces. Next, the complementMEnr − ΓEnr\DEnr is
the union of two curves - and -0 (2), which intersect in one point. There are two
cusps, which coincide with the cusps of - and -0 (2). Moreover, we also discussed
Sterk’s compactification [690], [691]

MEnr,2 = ΓE10 (2) ,2\D◦Enr ⊂ ΓE10 (2) ,2\DEnr ⊂ MEnr,2,

in Theorem 5.9.14, which has nine 1-dimensional boundary components and five
cusps.

The general expectation is that the period space should correspond to surfaces
with trivialmonodromy operator # . Since the period spaceDEnr of Enriques surfaces
is really that of their K3-covers, Theorem 5.10.9 suggests that this would correspond
to ΓEnr\DEnr = MEnr ∪ MCob. On the other extreme, the rational cusps of DEnr
should correspond to semi-stable degenerations with unipotent monodromy operator
# , such that #2 ≠ 0, that is, maximal unipotent monodromy. Moreover, the one-
dimensional boundary components outside the cusps should correspond to semi-
stable degenerations with # ≠ 0 and #2 = 0. Thus, one would hope to identify the
cusps (resp. the 1-dimensional boundary components) ofMEnr with Kulikov models
of Enriques surfaces ot type III (resp. type II). The main technical difficulty here is
that in general, the Baily–Borel compactification is “too small” to extend a universal
family to it, which is why in practice complicated blow-ups of boundary components
are needed. We illustrate this problem in the case ofMEnr,2.

In Section 5.9, we discussed two compactifications of the moduli spaceMEnr,2
of numerically polarized Enriques surfaces of degree 2. The first oneMEnr,2 is de-
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fined to be ΓE10 (2) ,2\DEnr. The other one is Looĳenga’s semi-toric compactification
Mstrd

Enr,2 → MEnr,2, which is the blow-up ofMEnr,2 along the Weil divisor of spe-
cial polarizations. In [667], Shah studied and classified projective degenerations of
Enriques surfaces. For example, he found 9 types of type II degenerations, compare
Theorem 5.9.14. Now, Shah’s results can used to “explain” the boundary components
of the compactifications of MEnr,2. It turns out that Shah’s results can be used to
interpreteMEnr,2 outside the cusps as the coarse moduli space of Enriques surfaces
including type II degenerations. If one also wants to include Shah’s degenerations
of type III, it turns out that the cusps ofMEnr,2 are too small and that one has to use
the blow-upMstrd

Enr,2 instead. This gives the following modular interpretation of the
compactifications discussed at the end of Section 5.9.

Theorem 5.10.10 If � denotes the set of cusps of MEnr,2, then MEnr,2 − � is the
coarse moduli space of numerically degree 2 polarized Enriques surfaces together
with Shah’s degree 2 polarized degenerations of type II.

Moreover,Mstrd
Enr,2 is the coarse moduli space of numerically degree 2 polarized

Enriques surfaces together with Shah’s degree 2 polarized degenerations.

5.11 Deformation Theory and Arithmetic Moduli

In this section, we study the deformation theory and moduli spaces of Enriques sur-
faces in positive characteristic, especially in characteristic 2, and then, over SpecZ.
We construct the moduli space of numerically Cossec–Verra polarized Enriques sur-
face over SpecZ and describe its geometry. We end by discussing crystalline period
maps and crystalline period spaces for unipotent Enriques surfaces in characteristic
2.

As general references for the theory of deformations, we refer to [230, Part 3] or
[651].We start by adapting this theory to deformations of Enriques surfaces, which is
easy in characteristic ? ≠ 2, and rather subtle if ? = 2. First, we recall Schlessinger’s
setup [637]: let Λ be a complete, Noetherian, local ring, with maximal ideal ` and
residue field k = Λ/`. Associated, we consider the following two categories:

C = CΛ Artinian local Λ-algebras with residue field k, and
Ĉ = ĈΛ Noetherian local Λ-algebras (',m) such that '/m= ∈ CΛ for all = ≥ 1.

The first category is a full subcategory of the second. A surjective morphism �→ �

in C is called a small extension if its kernel is a principal ideal (C) such thatm�C = 0,
where m� is the maximal ideal of �. Its importance comes from the fact that any
surjection in C can be factored into a sequence of small extensions.

We will be only interested in covariant functors � : C → (Sets) such that � (k)
contains just one element. If �, � : C → (Sets) are two such functors as above,
then a morphism of functors � → � is called smooth, if for any surjection � → �

in C, the canonical morphism � (�) → � (�) ×� (�) � (�) is surjective. In fact,
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it suffices to check small extensions � → �. Also, we extend a covariant functor
� : C → (Sets) to a functor �̂ : Ĉ → (Sets) by setting �̂ (') := lim←−− � ('/m

=) for
every ' ∈ Ĉ, wherem denotes the maximal ideal of '. Next, C� := � (k[Y]/(Y2)) is
called the tangent space to �. In practice, C� always carries naturally the structure
of a k-vector space, see [637, Lemma 2.10]. An important example of such functors
arises as follows: for every ' ∈ ĈΛ, we set

ℎ' : CΛ → (Sets)
� ↦→ Hom(', �),

and then, Cℎ' � Hom(', k[Y]/(Y2)), which is dual as k-vector space to m/(m2 +
`') � DerΛ (', k), where m ⊆ ', ` ⊆ Λ are the respective maximal ideals. In the
case where a functor � as above is isomorphic to ℎ' for some ' ∈ Ĉ, it is called
pro-representable. In this case, there exists ' ∈ Ĉ and a smooth morphism ℎ' → �,
such that the induced map on tangent spaces Cℎ' → C� is an isomorphism of k-vector
spaces, ' is called a hull (or miniversal defomation) for �.

Let us now turn to the deformation theory of a scheme - over a field k, that is,
we want to classify all flat schemes over ' ∈ C with special fiber - . Now, if k is
of characteristic zero, one usually sets Λ = k. On the other hand, if k is of positive
characteristic ?, then there are two natural choices: the first one is Λ = k, which
means that one only studies deformations over rings in characteristic ?, so called
equi-characteristic deformations. Secondly, if k is assumed to be perfect, one can
also consider the caseΛ = , (k), i.e., theWitt ring over k. In this latter case, one also
allows liftings to characteristic zero. This said, we make the following definition.

Definition 5.11.1 Let - be a scheme over k.

1. An infinitesimal deformation of - is a scheme X → Spec ' with ' ∈ C that is
flat over ', and with special fiber X ×Spec' Spec k isomorphic to - .

2. The functor Def- : C→ (Sets) that associates to each ' ∈ C the set of infinites-
imal deformations of - over ' modulo isomorphism is called the deformation
functor of - .

Before proceeding, let us mention a technical point: when constructing moduli
stacks below, it is crucial to look at deformations that are allowed to be algebraic
spaces rather than only schemes, even if one is only interested in moduli spaces for
schemes. Now, by [399, Corollary 3.6], an algebraic space over ' ∈ C, whose special
fiber over k is a scheme, is automatically a scheme. So, to understand the deformation
theory of a scheme - over k, it suffices to study deformations as previously defined.

Now, we want to understand Def- for a scheme - of finite type over a field
k in detail. Quite generally, whenever - is proper over k, or affine with isolated
singularities, then Def- possesses a hull, see [637, Proposition 3.10]. On the other
hand, pro-representability of this functor is more subtle and not even true for all
Enriques surfaces.

To understand pro-representability of Def- , let us briefly digress on tangent-
obstruction theories: first, let - be an affine scheme that is of finite type over k, let
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5 : � → � be a small extension in C, and let X → Spec � be a deformation of
- . Consider the pre–image of X ∈ Def- (�) under the map Def- (�) → Def- (�),
which is the set of deformations of - over � that become isomorphic to X when
restricting to �. This set, whichmay be empty, is a torsor underHom- (Ω-/k,O- ) ⊗k
Ker( 5 ). We note that if Λ = k, then there exist distinguished deformations, namely
trivial product families, which allow us to compare deformations with trivial ones,
and thus, the torsor-structure is in fact a module structure. However, if Λ is not a
k-algebra – for example, if k is perfect of positive characteristic and Λ = , (k) –
then there is no such thing as a trivial product family.

Now, let - be a scheme that is smooth over k, let 5 : �→ � be a small extension
in C, and let X → Spec � be a deformation of - . Next, we choose an open affine
cover UU, U ∈ � of X. Since - is smooth over : , also X is smooth over � by
openness of smoothness, and then, for every UU → Spec �, there exists a scheme
VU → Spec � that is smooth over � and withVU ×Spec � Spec � � UU. From this,
a standard computation with cocycles shows that there exists a cohomology class in

Ext2- (Ω-/k,O- ) ⊗k Ker( 5 ) � �2 ()- ) ⊗k Ker( 5 ),

whose vanishing is necessary and sufficient for the existence of a scheme Y →
Spec � with Y ×Spec � Spec � � X, i.e. for an extension of the deformation X from
� to �. If this class is zero, then the set of all such extensions is non-empty and is a
torsor under

Ext1- (Ω-/k,O- ) ⊗k Ker( 5 ) � �1 ()- ) ⊗k Ker( 5 ).

And finally, the set of automorphisms of an extension Y → Spec � that are trivial
overX → Spec � is isomorphic toExt1- (Ω-/k,O- )⊗kKer( 5 ) � �1 ()- )⊗kKer( 5 ).
If - is also assumed to be proper over k, then all the �8 ()- ) ⊗k Ker( 5 ) are finite-
dimensional k-vector spaces. These considerations show that if - is a scheme that is
smooth and proper over k, then the functor possesses a tangent-obstruction theory
via) 8

-
:= �8 ()- ), see also [230, Part 3, Definition 6.1.21] for definitions and details.

Let us now apply these general techniques to Enriques surfaces.

Proposition 5.11.2 Let ( be an Enriques surface over a perfect field k of character-
istic ? ≥ 0. Then, Def( possesses a hull. If we assume moreover that ℎ0 ()() = 0,
which holds, for example, if ? ≠ 2 (see Table 1.2 for all cases), then Def( is
pro-representable by ', where

' =

{
k[[G1, ..., G10]] if Λ = k,
, (k) [[G1, ..., G10]] if ? ≠ 0, k is perfect, and Λ = , (k),

and where, (k) denotes the ring of Witt vectors of k.

Proof Being a proper variety over a field, Def( possesses a hull by [637, Proposition
3.10]. Next, assume that �0 ()() = 0. Since this is the tangent space to the identity
component of Aut(/k, it follows that Aut(/k is reduced, and thus, smooth. By loc.
cit., Def( is pro-representable by some Noetherian, local and complete Λ-algebra '.
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Moreover, by Table 1.2, we have ℎ2 ()() = 0 and ℎ1 ()() = 10. The former implies
that ' is formally smooth over Λ, and since the latter gives the dimension of the
Zariski tangent space of ', the remaining assertions follow. �

Similar to Definition 5.11.1 above, one can also consider a scheme - over k
together with an invertible sheaf L ∈ Pic(-), and define the functor Def(-,L) :
C→ (Sets) that associates to each ' ∈ C the set of deformations of the pair (-,L)
over ' modulo isomorphism. Assume for simplicity that - is smooth over k so that
the tangent sheaf )- is a locally free of rank equal to dim(-). The first Chern class,
which can be purely algebraically defined via the 3 log-map, 21 (L) ∈ �1 (Ω1

-
) �

Ext1 ()- ,O- ) defines an extension

0→ O- → EL → )- → 0,

the Atiyah extension of L. Then, the deformation theory of the pair (-,L) has a
tangent-obstruction theory given by �8 (EL) with 8 = 0, 1, 2. If ( is an Enriques
surface in characteristic ≠ 2, and L ∈ Pic(() is arbitrary, then taking cohomology in
the Atiyah extension sequence and using Table 1.2 we find ℎ0 (EL) = 1, ℎ1 (EL) =
10, and ℎ2 (EL) = 0. We refer to [651, Section 3.3] for details and background.
We obtain the following result, whose proof is completely analogous to that of
Proposition 5.11.2.

Proposition 5.11.3 Let ( be an Enriques surface over a perfect field k of characteris-
tic ? ≠ 2, andL ∈ Pic(() be an invertible sheaf. Then,Def ((,L) is pro-representable
by a formally smooth Λ-algebra, where Λ = k or Λ = , (k) as above.

The tangent space to (the identity component of) the automorphism group scheme
Aut0

(/k of an Enriques surface ( is isomorphic to �0 ()(). In particular, this group
scheme is smooth if and only if it is reduced if and only if ℎ0 ()() = 0. By [637,
Proposition 3.10], this is also equivalent to Def( being pro-representable. In partic-
ular, for Enriques surfaces with ℎ0 ()() ≠ 0, which exist in characteristic 2 by Table
1.2, the situation is much more complicated. The following highly-non-trivial result
is due to Ekedahl, Hyland, and Shepherd-Barron [214].

Theorem 5.11.4 Let ( be an Enriques surface over an algebraically closed field k
of characteristic ? = 2, and let Λ = , (k).
1. If ( is an "2-surface, then the hull of Def( is given by

' = , (k) [[G1, ..., G12]]/( 5 6 − 2),

where 5 , 6 lie in the ideal (2, G1, ..., G12).
2. If ( is a classical Enriques surface with ℎ0 ()() = ℎ2 ()() = 1, then the hull of

Def( is given by
' = , (k) [[G1, ..., G12]]/(ℎ),

where the power series ℎ = ℎ(G1, ..., G12) that satisfies ? - ℎ.
In both cases, Def( is not pro-representable.
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We refer to [214, Section 4] for a more detailed analysis of the deformation func-
tors of Enriques surfaces (polarized as well as without polarization) in characteristic
2.

An important application is the liftability of Enriques surfaces to characteristic
zero. Let us recall the definitions: let - be a smooth and proper variety over some
perfect field k, and let ' be a Noetherian, local, and complete DVRwith residue field
k. Since k is perfect, ' contains naturally the ring, (k) of Witt vectors. Moreover,
if ' is a finite and integral extension of , (k), then the valuation (normalized such
that a uniformizer of ' has valuation 1) of ? with respect to the discrete valuation
of ' is called the (absolute) ramification index. An algebraic (resp. formal) lift of -
over ' is a scheme (resp. formal scheme) X → Spec ' (resp. X → Spf '), which
is flat over ' with special fiber - . By passing to the completion along its special
fiber, every algebraic lift yields a formal lift. Moreover, since ' is automatically a
, (k)-algebra, the most desireable lifts are algebraic lifts over , (k). We refer to
[458, Section 11] for more about lifting of varieties and references. The following
combines several results of Lang [433], Liedtke [460], as well as Ekedahl, Hyland,
and Shepherd-Barron [214].

Theorem 5.11.5 Let ( be an Enriques surface over an algebraically closed field k
of positive characteristic ?.

1. If ℎ0 ()() = 0, which holds, for example, if ? ≠ 2, then ( admits an algebraic lift
over, (k).

2. In the remaining cases, there exists a an algebraic lift of ( over a finite
extension ' ⊇ , (k), whose ramification index divides 29# , where # ∈
{9, 49, 56, 60, 128, 192}.

3. If ( is an "2-surface, then it does not lift over,2 (k). In particular, it does not lift
over, (k), not even formally.

Proof In the first case, we have ℎ0 ()() = ℎ2 ()() = 0, and then, it follows from
Proposition 5.11.2 that ( admits a formal lift over , (k). If ( is classical, then
ℎ2 (O() = 0, which implies that invertible sheaves can be lifted to every formal lift.
In particular, one can lift an ample invertible sheaf to this formal lift, which is thus
algebraizable by Grothendieck’s existence theorem. If ? = 2 and ( is a -2-surface,
then for every L ∈ Pic((), the invertible sheaf L⊗2 lifts to every formal lift by
[214], Proposition 4.2, [460], Proposition 4.4, see also [433], Theorem 1.4. From
this, algebraization follows as before.

In the remaining cases, ? = 2 and ( is an "2-surface or a classical Enriques
surface with ℎ0 ()() = ℎ2 ()() = 1. But then, there exists a formal lift over a possibly
ramified extension ' ⊇ , (k) by Theorem 5.11.4. Algebraicity of the formal lift
follows as in the case of -2-surfaces. Next, to bound the ramification, we use that by
Corollary 5.11.10 (see also [460, Theorem 4.9]), there exists a birational morphism
( → (′ such that (′ has at worst rational double point singularities, and such that
(′ lifts algebraically over , (k) (if it not an "2-surface), or to , (k) [

√
2] (if ( is

an "2-surface). By Artin’s theorem on simultaneous resolutions of rational double
point singularities [24], there exists an algebraic lift (via an algebraic space) to some
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' ⊇ , (k). Extending an ample invertible sheaf from the special fiber to the total
space of the lift, it follows that the algebraic space is projective over ', whence a
scheme. A careful analysis of the possible singularities of (′ then yields the estimate
on the bound of ramification, and we refer to [214, Corollary 5.7] for details.

Finally, if ( is an "2-surface, then Picg(/k � "2. If ( were to lift to,2 (k), then so
would Picg

(/k. On the other hand, it follows from the description of all deformations
of "2, see, for example, Example 1.6.6 or [584] that "2 does not admit a lift to
,2 (k). �

We now turn to moduli stacks of Enriques surfaces over arbitrary base rings and
remind the reader of the short introduction given in Section 5.3. We start with a
rather technical observation: we saw in Section 5.5 that a general Enriques surface
over C has an infinite and discrete automorphism group. Thus, when considering
moduli of Enriques surfaces with no extra data, we obtain a stack, whose stabilizers
are in general infinite discrete groups. Thus, the diagonal morphism of this stack
is not quasi-compact, that is, this stack is not quasi-separated. However, quasi-
separatedness is usually built in from the very beginning when discussing stacks for
several technical reasons, see for example [444] or [581]. Therefore, we shall only
consider moduli spaces of (numerically) polarized Enriques surfaces in the sequel,
as this will force the automorphism groups of the objects to be finite, and then, the
moduli spaces will exist as algebraic Artin stacks. In characteristic ≠ 2, these will
even be Deligne–Mumford stacks.

We fix a base scheme � or Z. We fix a positive and even integer = and consider
the functor of degree = polarized Enriques surfaces

F̃Enr,=,� : (Schemes/�) → (Groupoids)

) ↦→


morphisms of algebraic spaces (S, L) → ) ,
whose geometric fibers are Enriques surfaces,
and where L ∈ Pic(S/) ) restricts to a big and nef
invertible sheaf with self-intersection number =
in every geometric fiber.


We have the following related functors: F̃ a

Enr,=,� denotes the open subfunctor of
F̃Enr,=,� that takes values in those families where L is relatively ample, that is,
degree = ample polarized Enriques surfaces. Next, we denote by F̃ a

EnrRDP,=,� the
functor that takes values in families whose geometric fibers are pairs of Enriques
surfaces with at worst rational double point (RDP) singularities and ample invertible
sheaves of self-intersection =. Given a pair (.,L), where . is an Enriques surface
and L is big and nef, we consider the map:

. → . ′ := Proj
⊕
8≥0

�0 (.,L⊗8), (5.11.1)

which is a birational morphism that contracts precisely those curves on ( that have
zero-intersection with L and nothing else. Since contracted cycles have negative
intersection matrix, and since an integral curve on a surface with numerically trivial



612 5 Moduli Spaces

canonical sheaf must be a P1 with self-intersection number −2 by the adjunction
formula, we conclude that (′ has at worst RDP singularities. Moreover, the O(′ (1)
is an ample invertible sheaf with self-intersection number equal to that of L. Since
(5.11.1) works in families, we obtain a contraction morphism Φ of functors, and we
obtain the following:

F̃ a
Enr,=,�

y−→ F̃Enr,=,�
Φ−→ F̃ a

EnrRDP,=,� .

Here, y is an open immersion, and Φ ◦ y is still an open immersion. Moreover, since
RDP singularities have unique minimal resolutions, it follows that Φ is a bĳection
on geometric points. However, in general Φ is not an isomorphism, which is related
to functor of simultaneous resolution of deformations of RDP singularities.

Wemay also consider the functor of degree = numerically polarized Enriques sur-
faces, denoted FEnr,=,�, where we consider the class of L ∈ Pic(S/)) = PicS/) ())
insideNum(S/)). Similarly, we can define functorsF a

Enr,=,� andF
a

EnrRDP,=,�, Again,
we have a natural forgetful morphism

F̃Enr,=,� → FEnr,=,�

and similarly for the other functors. This map is a torsor under a finite and flat group
scheme of length 2. More precisely, if Y → ) is a family of numerically polarized
Enriques surfaces, then the fiber over it is a torsor under PicgY/) of In particular, if
2 is invertible in �, then this morphism of functors is a Z/2Z-torsor and thus, étale.
This follows easily from Theorem 1.2.1 and we note that the Z/2Z-action is given
on geometric points by (.,L) ↦→ (.,L ⊗ l. ).

After these preparations, we have the following representability results, which are
straight forward applications of Artin’s work on deformation theory, algebraization,
and stacks.

Theorem 5.11.6 For all positive integers = and base schemes �, the functors

F a
Enr,=,) , FEnr,=,( , F 0EnrRDP,=) , F a

Enr,=,) , F a
Enr,=,) , and F a

EnrRDP,=,)

are representable by quasi-separated Artin stacks of finite type over (. Moreover,

F a
Enr,=,�, F a

Enr,=,�, F a
EnrRDP,=,�, and Ma

EnrRDP,=,�

are separated over �. If 2 is invertible on �, then

FEnr,=,�, F a
Enr,=,�, FEnr,=,�, and F a

Enr,=,�

are representable by Deligne–Mumford stacks that are smooth over �.

Proof The fact that all these functors are representable by quasi-separated Artin
stacks of finite type over ' follows fromArtin’s work, see, for example, [26, Example
5.5]. The separatedness assertion for functors of polarized families follows from the
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Matsusaka–Mumford theorem [499], and we refer the reader to [620, Theorem 4.3.3]
for details.

If 2 is invertible on � then every geometric point (.,L) of FEnr,=,� or of F a
Enr,=,�

corresponds to a polarized Enriques surfaces in characteristic ≠ 2. By Table 1.2,
we have ℎ0 (Θ. ) = 0, which implies that the automorphism group scheme of . is
discrete and reduced. In particular, the automorphism group of (.,L) is discrete,
reduced, and finite, whence étale. In particular, F̃Enr,=,� and F̃ a

Enr,=,� are repre-
sentable by Deligne–Mumford stacks. Since deformations of polarized Enriques are
unobstructed by Proposition 5.11.3, these stacks are smooth over �. Using the finite
étale maps F̃Enr,=,� → FEnr,=,� and F̃ a

Enr,=,� → F
a

Enr,=,�, we obtain the remaining
assertions. We refer to [460] and [620] for more details. �

This settles existence of these moduli spaces, but it says nothing about their ge-
ometry, such as dimension, number of components, and birational geometry (such
as unirationality). For a field k and a vector l ∈ E10, we denote by FEnr,l,k (resp.
FEnr,l,k) the component of FEnr,l2 ,k (resp. FEnr,l2 ,k) corresponding to Enriques
surfaces that are numerically (resp. Picard) l-polarized. In Section 5.5, we con-
structed quasi-projective varieties M̃Enr,{ and M̃Enr,{ over C. Using period spaces
and complex analytic methods, we were able to describe their birational geometry in
some cases. It seems plausible that these latter spaces are the coarse moduli spaces
of the former stacks. This is indeed the case.

Theorem 5.11.7 Let l ∈ E10.

1. The moduli stacks FEnr,l,C and F̃Enr,l,C admit coarse moduli spacesMEnr,l,C
and M̃Enr,l,C. Moreover, we have a commutative diagram of algebraic stacks

F̃Enr,l,C → M̃Enr,l,C
↓ ↓

FEnr,l,C →MEnr,l,C,

where the horizontal morphisms are the universal maps of coarse moduli spaces
and where the vertical morphisms are étale of degree 2.

2. The complex algebraic space MEnr,l,C (resp. M̃Enr,l,C) is isomorphic to the
complex quasi-projective variety MEnr,{ (resp. M̃Enr,{) constructed in Section
5.5.

Proof Existence of the coarse moduli spacesMEnr,l,C and M̃Enr,l,C follows quite
generally from the theorem of Keel andMori [381]. Moreover, we have already noted
above that there is an étale morphism F̃Enr,l,C → FEnr,l,C of degree 2 of stacks.
This induces a morphism M̃Enr,l,C → MEnr,l,C of coarse moduli spaces and we
obtain the stated commutative diagram. See also [262, Proposition 4.1].

Let) be a scheme over C. We denote by "l the complex quasi-projective variety
MEnr,{ constructed in Section 5.5. To give a morphism ) → FEnr,l,C is the same
as to give a family S → ) of numerically l-polarized Enriques surfaces. In Section
5.5, we saw how this gives rise to morphism ) → "l . By the Yoneda lemma, this
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induces a morphism of stacks FEnr,l,C → "l and by the universal property of
coarse moduli spaces, we obtain a morphism of algebraic spacesMEnr,l,C → "l .
It follows from the construction of "l in Section 5.5 that this latter map induces a
bĳection on the level of C-valued points. Moreover,MEnr,l,C is a normal algebraic
space and by construction, "l is a normal and quasi-projective variety. Thus,
MEnr,l,C → "l is an isomorphism by Zariski’s Main Theorem. We leave the case
of Picard polarized Enriques surfaces to the reader. �

In the case � = Spec k, especially if k is a field of characteristic 2 or even
� = SpecZ, currently only one moduli space has been studied in detail, namely
the moduli stack for numerically Cossec–Verra polarized Enriques surfaces. Let us
recall (for example, from Corollary 1.5.4 or the discussion in Section 5.5), that there
are two , (E10)-orbits of vectors of self-intersection number 4 in E10, namely the
orbit of81 and the orbit of88+89. The vectors of the first orbit satisfyΦ = 2 and the
vectors of the second orbit satisfy Φ = 1 with respect to the Φ-function introduced
in (2.4.6). Clearly, the Φ-function is constant on every component of a (coarse)
moduli space of (numerically) polarized Enriques surfaces. In particular, moduli
spaces of (numerically) degree 4 polarized Enriques surfaces have component(s)
corresponding to Φ = 1-polarizations and component(s) corresponding to Φ = 2-
polarizations. We are now interested in the latter case. A (numerical) polarization L,
whose class belongs to the second case, that is, a big and nef (numerical) invertible
sheaf with L2 = 4 and Φ(L) = 2 is called a Cossec–Verra polarization and we
studied such polarizations in Section 3.4. In particular, we denote the union of
components of the moduli stacks F a

Enr,4,�, FEnr,4,�, and F a
EnrRDP,4,� by

F a
Enr,CV,�, FEnr,CV,�, and F a

EnrRDP,CV,�

respectively, and similarly for moduli stacks of numerically polarized Enriques
surfaces. The following result shows that the moduli stackMa

EnrRDP,CV,Z has a very
easy and beautiful geometry.

Theorem 5.11.8 There exists a smooth morphism of relative dimension 10

F a
EnrRDP,CV,Z

Picg−→ [SpecZ[0, 1]/(01 − 2) /G<] .

More precisely,

1. For every field k of characteristic ? ≠ 2, F a
EnrRDP,CV,k is a smooth, geometrically

irreducible, 10-dimensional, and unirational Artin stack over Spec k.
If ? ∉ {3, 5, 7}, then this stack is even a Deligne–Mumford stack.

2. For every field k of characteristic 2,

a. F 0EnRDP,CV,k consists of two components F Z/2Z and F -2 , both of which
are smooth, geometrically irreducible, 10-dimensional, and unirational Artin
stacks over Spec k.

b. They intersect transversally along a smooth, geometrically irreducible, 9-
dimensional, and unirational substack F "2 over Spec k.
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c. The geometric points of F "2 are "2-Enriques surfaces, whereas for � = -2
and � = Z/2Z, the geometric points of F�\F "2 are �-Enriques surfaces.

Proof Let us sketch the idea of proof and refer to [460] for details: Let ( be an
Enriques surface with at worst RDP singularities, let c : - → ( be its K3-cover, and
let L be an ample numerical Cossec–Verra polarization. Then, c∗L is a globally
generated invertible sheaf on - , and defines a morphism 5 : - → P5 that is an
isomorphism onto its image, which is the complete intersection of three quadrics, see
Theorem 3.4.1. Moreover, the (Picg

(/k)
∗-action on - extends to a linear action on P5,

and the three quadrics cutting out 5 (-) can be chosen to be (Picg
(/k)

∗-invariant. Thus,
we obtain a description of - and ( as in the Bombieri–Mumford–Reid examples from
Example 1.6.8. Using that complete intersections have unobstructed deformations,
the only obstruction to deforming - comes from deforming Picg

(/k, from which it
follows that the deformation functor of the pair ((,L) is smooth over the deformation
functor of Picg

(/k. Using the Oort-Tate classification [584] (see also Example 1.6.6),
we thus obtain a smooth morphism of relative dimension 10 from F a

EnrRDP,CV,Z to
[SpecZ[0, 1]/(01−2)/G<]. Next, let� be a group scheme of length 2 over a field k
and recall the�-invariant quadrics from Lemma 1.6.7. Then, complete intersections
of three�-invariant quadrics in P5 are parametrized by some open dense set of some
affine space, which is rational. From this, we obtain an over-parametrization of a
component of F a

EnrRDP,CV,k, and the stated unirationality and irreducibility results
follow. �

Remark 5.11.9 Since an Enriques surface ( in characteristic ? ≠ 2 satisfies
ℎ0 ((, )() = 0, the automorphism group Aut(() is reduced and thus, stacks of
smooth and polarized Enriques surfaces are then Deligne–Mumford stacks. On the
other hand, F 0EnRDP,CV,k parametrizes Enriques surfaces with RDP singularities.
Now, it could happen that such a surface does have global vector fields, which would
be related to the fact that the RDP singularities occuring on such a surface admit
non-trivial global vector fields that do not lift to the resolution of singularities and
refer to [305] for results concerning this phenomenon. At points of F 0EnRDP,CV,k
corresponding to such a surface, the stack cannot be Deligne–Mumford. We do not
know whether such RDP-Enriques surfaces with global vector fields exist in char-
acteristic ? ≥ 3. However, if ? ≥ 11, then no RDP singularity that can possibly
occur an Enriques surface admits such non-trivial and non-liftable vector field, that
is, no RDP-Enriques surface admits global vector fields, which shows that the stacks
F 0EnRDP,CV,k are Deligne–Mumford if ? ≥ 11.

In the proof of the theorem we have seen that the deformation functor of the pair
((,L), where ( is an Enriques surface with at worst RDP singularities and where
L is an ample numerical Cossec–Verra polarization, is smooth over the deformation
functor of Picg

(/k. It follows that deformations and liftings of ( to characteristic
zero are controlled by deformations and liftings of Picg

(/k. This has the following
interesting consequence.

Corollary 5.11.10 Let ( be an Enriques surface over an algebraically closed field k
of characteristic ? > 0.
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1. If ? ≠ 2, then ( lifts algebraically over, (k).
2. If ? = 2, then let L be an ample Cossec–Verra polarization and let ( → (′ be

the associated contraction morphism (5.11.1). Then, (′ is an Enriques surface
with RDP singularities and (′ lifts algebraically to, (k) (resp., (k) [√?]) if (′
is not an "2-surface (resp. an "2-surface).

Remark 5.11.11 The contraction morphism

Φ : FEnr,CV,Z → F a
EnrRDP,CV,Z

induces a bĳection on geometric points, but it is not an isomorphism of functors.
The fibers of Φ are related to the functor of simultaneous resolutions of families
of RDP singularities, and we refer to [24] for details. By Theorem 5.11.4, the
deformation functor of classical Enriques surfaces in characteristic 2 may not be
pro-representable by a smooth algebra. In particular, FEnr,CV,Z may not be smooth
at points corresponding to classical Enriques surfaces in characteristic 2. By the
previous theorem, these singularities can be explained from the fibers ofΦ, whereas
F a

EnrRDP,CV,Z is smooth at points corresponding to classical Enriques surfaces. We
refer to [460] for details.

We discussed coarse moduli spaces already in Section 5.3 and constructed coarse
moduli spaces for (numerically) polarized Enriques surfaces in Section 5.5. In the
case of F a

EnrRDP,CV,k for a field k, the previous theorem gives an explicit construction
of the coarse space: let + be the space of G0,1-invariant quadrics from Lemma 1.6.7
and let * ⊂ P(+)3 be the open and dense subset that consists of triples of quadrics
(&1, &2, &3) such that &1 ∩ &2 ∩ &3 ⊂ P3 is a complete intersection of three
quadrics, such that the quotient by the G0,1-action is an Enriques surface with at
worst RDP singularities. Then, the sought components of the coarse moduli spaces
arise as quotients of * by a linear algebraic group. In particular, also the coarse
moduli space is unirational. Moreover, the coarse moduli space of the double cover
F̃Enr,CV,C is even rational by a theorem of Casnati, see Theorem 5.8.12 or [107].

We end this section by discussing crystalline periods of unipotent Enriques sur-
faces in characteristic 2, as developed by Ekedahl, Hyland, and Shepherd-Barron
[214]. Here, an Enriques surface ( in characteristic 2 is called unipotent if Picg

(
is a

unipotent group scheme, that is, if ( is an "2-, or an Z/2Z-Enriques surface. Note
that the K3-cover - → ( of a unipotent Enriques surface is finite and flat, but not
étale. As before, a marking of ( is a choice of isomorphism q : E10 → Num(().
Inside the positive cone of E10 ⊗ R, we have the chamberD0 defined by the roots of
E10. More precisely, if 80, ...,89 denote the fundamental dominant weights of E10
defined by the root basis, then D0 is the R≥0-span of all the 88 . Then, we define the
moduli functor

Euni : (Schemes/F2) → (Groupoids)

� ↦→


morphisms of algebraic spaces (S, q) → �,
whose geometric fibers are unipotent Enriques surfaces,
and where q : E10,� → NumS/�
is a marking such that q(D0)lies fiberwise in the ample cone.
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Via such a marking, the fundamental dominant weight 81 corresponds to a Cossec–
Verra polarization, see [214, Lemma 5.3]. Thus, there exists a natural forgetful
functor

Euni −→ FEnr,CV,F2

that is surjective onto the F Z/2Z-component of the latter space, that is, the component
parametrizing unipotent Enriques surfaces.

Next, letEuni, 3 be the open and dense substack ofEuni of those Enriques surfaces,
whose associated flat double cover c : - → ( is a K3 surface with, at worst, RDP
singularities. More precisely, for a generic surface ( in Euni, 3, this double cover
- has 12 RDP singularities of type �1, and the tangent sheaf Θ- (the dual of the
sheaf of Kähler differentials) is trivial. Since c is a torsor under an infinitesimal
group scheme, it corresponds to a ?-closed foliation F ⊂ Θ- , and since ( is an
Enriques surface, we find F � O- . This leads us to considering the moduli stack of
E10 (2)-marked K3 surfaces with RDP singularities of RDP rank 12 and with trivial
tangent sheaf:

K : (Schemes/F2) → (Groupoids)

) ↦→



Families (X, q) → ) of algebraic spaces, whose
geometric fibers are non-smooth K3 surfaces with
RDP-singularities of RDP rank 12, and such that
5 ∗ 5∗ΘX/) → ΘX/) is an isomorphism, and where
q : E10 (2)) → PicX/) is a marking such that
q (D0 (2)) lies fiberwise in the ample cone.


see also [214, Section 8]. Next, we consider the P1-bundleP := P(( 5∗TX/K )∨) → K,
where TX/K is the relative tangent sheaf on the universal K3 surface 5 : X → K.
Thus, a geometric point of P is a marked K3 surface - from K together with a
line Ξ ⊂ �0 (-,Θ- ). Since Ξ is automatically ?-closed, we always have a purely
inseparable quotient map - → -/Ξ, and in the case where Ξ vanishes at the
singularities of - , the quotient is in fact a unipotent Enriques surface.More precisely,
if Ξ is a multiplicative vector field, which is the generic case, then -/Ξ is a Z/2Z-
Enriques surface, and in the case where Ξ is an additive vector field, then -/Ξ is an
"2-Enriques surface.

Example 5.11.12 An explicit example of a one–dimensional family of Enriques sur-
faces that arises as quotient of a K3 surface by a family of ?-closed vector fields was
constructed in [368]: in characteristic 2, the equation

H2 + H + G3 + C2 · G · (H2 + H + 1) = 0

is the Weierstrass model - ′C → P1 of an elliptic surface - → P1, which has four
singular fibers of type �6. This surface is the unique supersingular K3 surface with
Artin invariant f0 = 1. The model - ′ has twelve RDP singularities of type �1,
which correspond to singular points of the singular fibers. For parameters 0, 1 with
0 + 1 = 01 and 03 ≠ 1 we obtain a family
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�0,1 :=
1

1 + C

(
(C + 1) (C + 0) (C + 1) m

mC
+ (1 + C2G) m

mG

)
of ?-closed vector fields on - ′ and we let

(0,1 := - ′/�0,1

be the corresponding quotient. Then, if moreover 0 ∉ F4 (resp. 0 = 1 = 0), then (0,1
is a classical Enriques surface (resp. "2-surface).

IfU ⊂ P denotes the open substack, where Ξ vanishes at the singularities, then
we obtain the following diagram of moduli stacks:

P ⊇ U

��

q // Euni, 3

K

As shown in [214, Theorem 8.2], q is a smooth and surjective morphism, that is in
fact a gerbe associated with the height one subgroup scheme of the stabilizer of K
over SpecF2.

Finally, K can be described using an extension of Ogus’ period map to moduli
spaces of supersingular K3 crystals. More precisely, consider the lattice 〈−2〉12, say
with generators 41, ..., 412, such that 48 ·4 9 = −2X8 9 , and let ' be the lattice generated
by 41, ..., 412 and 1

2
∑12
8=1 48 .

Next, let " := ' ⊕ E10 (2). Then, extending Ogus’ moduli space of supersingular
K3 crystals from [575] to characteristic 2, there exists a moduli space Mcrys

"
. Its

geometric points of Mcrys
"

are supersingular K3 crystals (�, 〈−,−〉,Φ), where �
is a free , (k)-module of rank 22 together with an injective Frobenius-linear map
Φ, 〈−,−〉 is a non-degenerate symmetric bilinear form, together with an isometric
embedding " → )� of " into the Tate-module. This data satisfies certain axioms
see [214] or [575].

This space is called the period space for supersingular "-polarized K3 surfaces,
andMcrys

"
× F2 has two components, both of which are smooth, 9-dimensional, and

unirational.
Next, the locus H ⊂ Mcrys

"
, whose points correspond to "-marked crystals

(�, q : " → )� ), such that there exists a root in the saturation of E10 (2) → "
y→

)� ⊂ �, is a divisor by [214, Lemma 6.11]. We denote its complement byMcrys,◦
"

,
and by [214, Proposition 8.6], there exist morphisms

Mcrys,◦
"

→ [Mcrys,◦
"
/S12] → K,

where S12 denotes the symmetric group on 12 letters that acts on the {48} in ' by
permutations. In loc. cit., it is shown that the induced maps on geometric quotients
induces a bĳection on geometric points.
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Put a little bit sloppily, we thus obtain a description of an open substack of
Euni as an open subset of a P1-bundle over an open subset of the period space of
"-polarized supersingular K3 crystals. The latter space parametrizes "-polarized
supersingular K3 surfaces and let - be such a surface. After contracting the (−2)-
curves corresponding to " , one obtains a K3 surface - ′ with RDP singularities and
trivial tangent sheafΘ- ′ . There is an open and dense subset of P(�0 (- ′,Θ- ′)) � P1,
whose points correspond to ?-closed vector fields � on - ′, such that the quotient
- ′/� is a unipotent Enriques surface.
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Appendix A
Automorphic Forms and Moduli Spaces by S.
Kondō

In this Appendix, we will discuss a theory of automorphic forms on bounded sym-
metric domains of type IV associated with an even lattice of signature (2, =). In
particular, we will give a proof of the existence of a discriminant form on the period
space of Enriques surfaces mentioned in Volume I, Chap. 5, Theorem 5.9.11.

A.1 Multiplicative and Additive Liftings

We follow the notation of Chapter 5. Let ! be an even lattice of signature (2, =) and
let

D! = {[l] ∈ P(!C) | l2 = 0, l · l̄ > 0}.

Let Γ be a subgroup of O(!) of finite index. We recall the notion of automorphic
forms on D! with respect to Γ. Let

D̃! = {l ∈ !C | l2 = 0, l · l̄ > 0}.

The natural map D̃! → D! gives a structure of a principal C∗-bundle. A holo-
morphic (resp. meromorphic) function 5 : D̃! → C is called a holomorphic (resp.
meromorphic) automorphic form on D! of weight : ∈ Z≥0 if{

5 (W · l) = j(W) 5 (l) (∀W ∈ Γ),
5 (U · l) = U−: 5 (l) (U ∈ C∗),

(A.1.1)

where j : Γ → U(1) is a unitary character of Γ. There is also some technically
stated condition requiring that a holomorphic form must be holomorphic at cusps.
This condition is automatically satisfied when = ≥ 3, the fact often referred to as
the Koecher principle [405]. Since D̃! → D! can be identified with the principal
C∗-bundle associated to the =th root of the cotangent bundle of D! , an equivalent
definition is that 5 is a holomorphic (meromorphic) function on D! satisfying

621
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5 (W · I) = j(W) 1
(det 3WI)

:
=

5 (I) (∀W ∈ Γ). (A.1.2)

In this way, the notion of an automorphic form extends to the notion of an auto-
morphic form on any complex domain and a discrete group Γ of its holomorphic
automorphisms. The notion of a modular form is a special case of this definition
when = = 1. In this case D! is identified with two copies of the upper half-plane
H = {I = 0 + 18 ∈ C : 1 > 0}, W = 0I+1

2I+3 is a fractional-linear transformation with
03 − 12 = ±1 and 3WI = 1

(2I+3)2 . Let � (!) = !
∨/! be the discriminant group of !,

@! : � (!) → Q/2Z the discriminant quadratic form and 1! : � (!)×� (!) → Q/Z
the discriminant bilinear form of � (!).

Now, for simplicity, we assume that = = 2< is an even integer because this is
enough for applications to the case of Enriques surfaces. Let

) =

(
1 1
0 1

)
, ( =

(
0 −1
1 0

)
, (A.1.3)

be the standard generators of SL(2,Z). Let C[� (!)] be the group ring of � (!)
and let {4U}U∈� (!) be the standard generators of C[� (!)]. There is a unitary
representation d! of SL(2,Z) on C[� (!)] defined by

d! ()) · 4U = 4c
√
−1@! (U)4U,

d! (() · 4U =
√
−1<−1
√
|� (!) |

∑
V∈� (!) 4

−2c
√
−11! (U,V)4V .

(A.1.4)

This representation d! is called the Weil representation associated with the dis-
criminant quadratic form (� (!), @!). In the general case, that is, not assuming the
evenness of =, one can consider a double cover of SL(2,Z) called the metaplec-
tic group. We remark that the natural action of the orthogonal group O(� (!)) on
C[� (!)] commutes with the action of SL(2,Z) on C[� (!)]. If we denote by # the
smallest integer such that #1! (U, V) = #@! (U)/2 = 0 for all U, V ∈ � (!), then the
representation d! factors through the finite group SL(2,Z/#Z).

One extends the notion of a holomorphic (resp. meromorphic) modular form of
weight : with respect to Γ = SL(2,Z) by considering a holomorphic map 5 : H→
C[� (!)] satisfying

5 (W · g) = (2g + 3): d! (W) · 5 (g)

for any W =
(
0 1

2 3

)
∈ SL(2,Z), and requiring that 5 is holomorphic (resp. meromor-

phic) at ∞. If ! is not unimodular, this is a vector-valued function. As usual, 5 has
a Fourier expansion

5 (g) =
∑

_∈� (!)
4_

∑
<∈Q

2_ (<)42c
√
−1<g .
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The following theorem, due to Borcherds [82] (see also [99]), gives a criterion for
the existence of an automorphic form whose zero or pole divisor is a given Heegner
divisor.

Theorem A.1.1 Suppose ! is an even lattice of signature (2, =) and let 5 be a
modular form of weight 1 − =

2 with respect to d! whose Fourier coefficients 2_ (ℓ)
are integers for ℓ ≤ 0. Then, there exists a meromorphic function Ψ(l) for l ∈ D̃!
with the following properties:

1. Ψ is an automorphic form of weight 20 (0)/2.
2. The only zeros or poles of Ψ lie on a Heegner divisor _⊥ for _ ∈ ! with _2 < 0

and their order is equal to ∑
0<G∈R,G_∈!∨

2G_(G2_2/2)

(or poles if this number is negative).
3. Ψ is a holomorphic function if the orders of all zeros in item 2 above are

nonnegative. If, in addition, rank(!) ≥ 5, or if rank(!) = 4 and ! contains no
2-dimensional isotropic sublattice, then Ψ is a holomorphic automorphic form.

The function Ψ is called a Borcherds product or a multiplicative lifting.
On the other hand, Borcherds generalizes constructions of Saito-Kurokawa,

Shimura, Maass, Gritsenko, Oda, and others for liftings of modular forms to au-
tomorphic forms. For our application, it is sufficient to consider the most simple
case; that is, modular forms of weight 0 with respect to d! .

Theorem A.1.2 Suppose ! is an even lattice of signature (2, =) with an even integer
= ≥ 4. Then there exists an O(!)-equivariant linear map

C[� (!)]SL(2,Z) → [O(!)♯, =/2 − 1], (A.1.5)

where [O(!)♯, =/2 − 1] is the space of holomorphic automorphic forms of weight
=/2 − 1 with respect to O(!)♯, and with trivial character. Here O(!) acts on the
target of the map because O(!)# is a normal subgroup, and it acts on the source of
the map via the action on � (!).

The linear map from the theorem is called an additive lifting. The weight =/2 − 1
is called the singular weight which is the smallest weight of non-zero holomorphic
automorphic forms. The Fourier series of the obtained automorphic form is given
explicitly in terms of Fourier coefficients of the original modular form. Here we give
only the constant term of the Fourier expansion.

Theorem A.1.3 Suppose ! is an even lattice of signature (2, =) with an even integer
= ≥ 6. Let � be the additive lifting corresponding to

∑
2U4U ∈ C[� (!)]SL(2,Z) .

Let I be a primitive isotropic vector of !. Then the constant term of the Fourier
expansion of � around I is given by
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−
∑

X∈Z/#Z
2XI/#

∑
0<n ≤#

#=/2−242c
√
−1Xn /# �=/2−1 (n/#)/(= − 2), (A.1.6)

where �=/2−1 (G) is the Bernoulli polynomial of degree =/2 − 1.

A.2 Borcherds �-Function

In this section, we restrict ourselves to the case @! = u⊕;1 , where u1 = @* (2) is given
by the matrix

(
0 2−1

2−1 0

)
. Its discriminant group and quadratic form can be identified

with the quadratic space (F2;
2 , @) of even type. We will show the existence of the

Borcherds Φ-function found in the paper [81], that is, an automorphic form on the
period space of Enriques surfaces vanishing exactly on the locus of the periods
of Coble surfaces. Recall that in this case ! = E10 (2) ⊕ U and the discriminant
group � (E10 (2)) can be identified with the quadratic space (E10/2E10, @), where
@(G + 2E10) = 1

2G
2 mod 2 (see (5.3.2)). The quadratic form is of even type, i.e. can

be reduced to the form
∑5
8=1 G8G8+5. It is known that all non-zero vectors form two

orbits with respect to the orthogonal group represented by a vector with @(G) = 1
and @(G) = 0. The number of vectors in each orbit is equal to 24 (25 − 1) = 496
(resp. 24 (25 + 1) = 528). This extends to any lattice ! with discriminant quadratic
form isomorphic to u⊕;1 . An easy count of vectors with @(G) = 0 (by induction on ;
or using Witt’s Theorem) gives the following.

Lemma A.2.1 The discriminant group � (!) consists of the following 22; vectors:
Type (00) : U = 0;
Type (0) : U ≠ 0, @! (U) = 0, #{@−1 (0) − {0}} = 2;−1 (2; + 1) − 1;
Type (1) : @! (U) = 1, #@−1

!
(1) = 2;−1 (2; − 1).

Let <8 9 (:) be the number of nonzero vectors of type ( 9) = (0) or (1) which have
the inner product : = 0 or 1 with respect to 21! with a fixed vector of type (8) = (0)
or (1). A straightforward inductive computation shows that

<00 (0) = 2;−1 (2;−1 + 1) − 1, <01 (0) = 2;−1 (2;−1 − 1),
<00 (1) = 22;−2, <01 (1) = 22;−2,

<10 (0) = 22;−2 − 1, <11 (0) = 22;−2,

<10 (1) = 2;−1 (2;−1 + 1), <11 (1) = 2;−1 (2;−1 − 1).

By definition of the Weil representation A.1.4, we have d(()2 = d())2 = 1 on
C[� (!)]. Hence the action of SL(2,Z) factorizes through that of SL(2,Z/2Z). The
conjugacy classes of SL(2,Z/2Z) � S3 consist of �,), (), where � is the identity
matrix. Let j1, j2, and j3 be the trivial character, the alternating character, and
the irreducible character of degree 2 of S3, respectively. For the convenience of the
reader we give the character table of S3.
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� ) ()

j1 1 1 1
j2 1 −1 1
j3 2 0 −1

Table A.1 Character table of S3

Lemma A.2.2 Let j be the character of the Weil representation d! of SL(2,Z/2Z)
on C[� (!)]. Let

j =

3∑
8=1

<8j8

be the decomposition of j into irreducible characters. Then,

j =
1
6
(22; + 3 · 2; + 2)j1 +

1
6
(22; − 3 · 2; + 2)j2 +

1
3
(22; − 1)j3.

Proof It follows from the definition of d! and computation of the numbers <8 9 (:)
that trace(d! (�)) = 22ℓ , trace(d! ())) = 2ℓ−1 (2ℓ + 1) − 2ℓ−1 (2ℓ − 1) = 2ℓ ,
trace(d! (())) = 2−ℓ2ℓ = 1. Thus, we have

<1 + <2 + 2<3 = 22ℓ , <1 − <2 = 2ℓ , <1 + <2 − <3 = 1,

and hence we have proved the Lemma. �

Let 
500 (g) = 8[(2g)8/[(g)16,

50 (g) = −8[(2g)8/[(g)16,

51 (g) = 8[(2g)8/[(g)16 + [(g/2)8/[(g)16,

where [(g) is the Dedekind eta function. Recall that

[(g)24 = @

∞∏
==1
(1 − @=)24 (@ = 42c

√
−1g).

Then, we have

500 (g + 1) = 500 (g), 50 (g + 1) = 50 (g), 51 (g + 1) = − 51 (g),

500 (−1/g) = g−4 (− 500 (g) + 51 (g))/2,

50 (−1/g) = g−4 ( 500 (g) − 51 (g))/2,

51 (−1/g) = g−4 (3 500 (g) + 51 (g))/2.

By using these, we have the following:

Lemma A.2.3 Let



626 A Automorphic Forms and Moduli Spaces by S. Kondō

ℎ00 = (2; − 1) 500, ℎ0 = 50, ℎ1 = 51.

Then {ℎU}U∈� (!) is a modular form of weight −4 and of type d! , and their @-
expansion are given by

ℎ00 = 8(2; − 1) + 128(2; − 1)@ + · · ·
ℎ0 = −8 − 128@ + · · ·
ℎ1 = @

−1/2 + 36@1/2 + · · · .

By applying Theorem A.1.1 to {ℎU}U∈� (!) in Lemma A.2.3, we now have the
following theorem.

Theorem A.2.4 Let ! be an even lattice of signature (2, 10) with @! = u⊕;1 . Then
there exists an automorphic form Ψ of weight 4(2; − 1) on the bounded symmetric
domainD! of type �+ associated to ! such that the zero divisor (Ψ) is the Heegner
divisorH−1.

Wekeep the assumption that ! is an even lattice of signature (2, 10)with @! = u⊕;1 .
Let U ∈ � (!) be a non-isotropic vector, i.e. @! (U) = 1. We define a map

CU : � (!) → � (!), G → G + 21! (G, U)U,

which is called a transvection and is contained in O(@!). Let A be a vector in ! with
A2 = −4 such that A/2 + ! = U. Since A/2 ∈ !∨, the reflection

BA : G → G − 2〈G, A〉
A2 A

associated with A is contained in O(!). Note that BA induces the transvection CU.
Let + be a subspace of � (!) = F2;

2 . Then + is called totally isotropic if @! |+ ≡ 0
and totally singular if it is generated by mutually orthogonal non-isotropic vectors.
For each maximal totally singular subspace + in � (!), let � be the maximal totally
isotropic subspace in + . Then there exist exactly two maximal totally isotropic
subspaces "+ and "− in � (!) containing � because �⊥/� (� F2

2) is a hyperbolic
plane. Let

\+ =
∑
U∈"+

4U −
∑
U∈"−

4U .

Lemma A.2.5 (1) \+ ∈ C[� (!)]SL(2,Z) .
(2) CU (\+ ) = −\+ for any U ∈ + with @! (U) = 1.

Proof (1) It suffices to see that, for any maximal totally isotropic subspace " ,∑
U∈" 4U ∈ C[� (!)]SL(2,Z) . By definition, d! ()) (

∑
U∈" 4U) =

∑
U∈" 4U. On the

other hand,

d(() (
∑
U∈"

4U) =
1
2ℓ

∑
V∈"

( ∑
U∈"
(−1)21! (U,V)

)
4V +

1
2ℓ

∑
V∉"

( ∑
U∈"
(−1)21! (U,V)

)
4V .
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Obviously
∑
U∈" (−1)21! (U,V) = 2ℓ for any V ∈ " and

∑
U∈" (−1)21! (U,V) = 0 for

any V ∉ " .
(2) Since the projection of U in �⊥/� is non-isotropic, CU exchanges "+ and "−,

and hence the assertion follows. �

Recall that zero-dimensional rational boundary components of D! bĳectively
correspond to primitive isotropic vectors in !. Since ! is a 2-elementary indefinite
lattice, by Theorem 0.8.6, the natural map

O(!) → O(� (!))

is surjective and hence O(!) acts transitively on the set of nonzero isotropic vectors
in � (!). This implies that any nonzero isotropic vector in � (!) represents a 0-
dimensional boundary component.

Proposition A.2.6 Let �+ be the additive lifting associated to \+ . Then �+ is a
non-zero automorphic form of weight 4.

Proof Note that 20 = 0 for \+ . It follows from Theorem A.1.3 that there exists
a primitive isotropic vector I ∈ !∨ satisfying the formula �+ (I) = 0 · 2U, where
0 = 0ℓ is a nonzero constant and U = I + ! ≠ 0 ∈ � (!). �

Since the additive lifting is O(� (!))-equivariant and the transvections CU is
represented by (−4)-reflections in O(!), Lemma A.2.5, (2) implies that the zero
divisor (�+ ) contains the Heegner divisor

H(+) :=
∑

U∈+ , @! (U)=1
HU .

Let < be the number of all maximal totally singular subspaces + in � (!). Put

: = </(2; − 1).

Consider the ratio ∏
+

�+ /Ψ: ,

where + varies in the set of all maximal totally singular subspaces in � (!). Note
that

∏
�+ is of weight 4< and vanishes along each Heegner divisor HU, U ∈

� (!), @! (U) = 1, with multiplicity ≥ 2;−1</2;−1 (2; − 1) = </(2; − 1) = : . On the
other-hand,Ψ: is of weight 4(2;−1): = 4< and vanishes alongHU withmultiplicity
: . Thus, the ratio is a holomorphic automorphic form of weight zero, and hence it is
constant. This gives the following:

Theorem A.2.7 Let ! be an even lattice of signature (2, 10) with @! = u⊕;1 . Then
�+ is a holomorphic automorphic form of weight 4 with (�+ ) = H(+).

Now we apply these results to the case of complex Enriques surfaces. Recall that
the moduli space of Enriques surfacesMEnr is given by an arithmetic quotient
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MEnr := O(E10 (2)⊥)\D◦E10 (2)⊥ .

For simplicity we denote E10 (2)⊥ by # , which is isomorphic to U ⊕ U(2) ⊕ E8 (2).
Then � (#) = (Z/2Z)10 and @# = u⊕5

1 . Note that

#∨ (2) � U(2) ⊕ U ⊕ E8, O(#) � O(#∨ (2)).

We denote by " the lattice #∨ (2). Obviously � (") = (Z/2Z)2 and @" = u1.
By applying Theorem A.2.4 to the lattice " we have the following:

Corollary A.2.8 There exists an automorphic form Φ of weight 4 on D" whose
zero divisor is the Heegner divisorH(−4).

Recall from the proof of Corollary 5.4.2 that (−2)-vectors in # form one orbit
with respect to O(#). Therefore, any such vector is conjugate to a (−2)-vector in
the factor* in # under the action of O(#). Therefore (−2)-vectors in # bĳectively
correspond to (−4)-vectors A in" with A/2 ∈ "∨, or, in other words, (−1)-vectors in
"∨. Moreover, we identifyD# andD# ∨ (2) under O(#) � O(#∨ (2))-equivarinant
isomorphism. Then Corollary A.2.8 implies the following:

Corollary A.2.9 There exists an automorphic formΦ of weight 4 onD# whose zero
divisor is the Heegner divisorH(−2).

It is surprising that the above corollary came from the denominator formula in
some generalized super Kac–Moody algebra (Borcherds [81]). Later Borcherds [82]
reproved the corollary as considered in this section.

Recall that D◦
#
= D# \ H−2 and Φ defines an ample line bundle on the Baily–

Borel compactification of O(#)\D# . Therefore, Corollary A.2.9 implies:

Corollary A.2.10 The moduli space of Enriques surfaces is quasi-affine.

Recall that we have proved this result in Theorem 5.9.11 by a different method. On
the other hand, by applying Theorem A.2.4 to # , we have the following:

Corollary A.2.11 There exists an automorphic formΦ′ of weight 124 onD# whose
zero divisor is the Heegner divisorH(−4).

SinceH(−4) is the locus of nodal Enriques surfaces, we have the followingCorollary
as in the case of Corollary A.2.10.

Corollary A.2.12 The moduli space of unnodal Enriques surfaces is quasi-affine.

We can also apply Theorem A.2.7 to the lattice " . Note that u1 has a unique non-
isotropic vector and hence "∨/" has a unique 1-dimensional singular subspace.
Thus, we have an automorphic form � of weight 4 whose zero divisor is the Heegner
divisor H(−4). This automorphic form � is nonzero by calculating the Fourier
expansion at a cusp. Since the ratio �/Φ is a holomorphic automorphic form of
weight zero, �/Φ is constant. Thus, we have the following:

Corollary A.2.13 The Borcherds product Φ is obtained as an additive lifting.
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A.3 A Projective Model of the Moduli Space of Marked Enriques
Surfaces

By applying the results in the previous sections, we will show the following theorem.
LetM<

Enr be themoduli space of marked Enriques surfaces and letM<

Enr be its Baily–
Borel compactification.

Theorem A.3.1 There exists a holomorphic O(� (#))-equivariant map

i :M<

Enr → P186,

defined by automorphic forms of weight 4 obtained as additive liftings. The map is
birational onto its image.

We use the same notation as in the previous section and assume ℓ = 5. Then
the discriminant group � (#) consists of 0, 527 nonzero isotropic vectors and 496
non-isotropic vectors. By applying Lemma A.2.2, we have the following:

Proposition A.3.2 The character of the Weil representation d# is given by

j = 187j1 + 155j2 + 341j3.

Denote by , the subspace of C[� (#)] of dimension 187. Since the action d#
of SL(2,Z) and that of O(� (#)) on C[� (#)] commute, O(� (#)) acts on, . The
degrees of irreducible representations of O(� (#)) are 1, 155, 186, . . . . On the other
hand, the character of the action of O(� (#)) on the space C4590 of maximal totally
isotropic subspaces in � (#) is given by ([131], p. 146)

2j1 + 2j186 + 2j2108.

Thus we can see that , decomposes into 1-dimensional and 186-dimensional sub-
spaces ,1 and ,186 on each of which O(� (#)) acts irreducibly. Note that ,1 is
fixed under the action of SL(2,Z) ×O(� (#)). Proposition A.2.6 and Schur’s lemma
imply that the additive lifting

,186 → [O(#)#, 4]

is injective. On the other hand,,1 is generated by

\ =
∑
"

∑
U∈"

4U,

where " varies on the set of all maximal totally isotropic subspaces in � (#). We
can easily see that

\ = 270 ©«1740 +
∑

U≠0,@! (U)=0
4U

ª®¬ .
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It follows from Theorem A.1.3 that the additive lifting �0 of \ is a non-zero auto-
morphic form of weight 4 with respect to the full orthogonal group O(#). Thus we
have a rational map

i :M<

Enr → P186. (A.3.1)

For the base-point freeness of the map i, we use the following lemmas.

Lemma A.3.3 ⋂
+

H(+) = ∅,

where + varies on the set of all maximal totally singular subspaces in � (#).
For the proof of this lemma we need a case-by-case analysis and hence omit it here
(see [412, Theorem 5.1]).

We denote by H(+) the closure of H(+) in &# = {[l] ∈ P(! ⊗ C) | l2 =
0}. Recall that 0-dimensional rational boundary components of the Baily–Borel
compactification O(#)#\D# bĳectively correspond to O(#)#-orbits of isotropic
vectors in � (#). Denote by 4 a primitive isotropic vector in # such that 4/2 is not
in #∨. Let �4 denote the 0-dimensional boundary component corresponding to 4.
By the proof of Proposition A.2.6, we have the following (see [412, Remark 5.12]).

Corollary A.3.4 ⋂
+

H(+) = O(#) · �4,

where + varies on the set of all maximal totally singular subspaces in � (#).
On the other hand, by Theorem A.1.3, we see that the additive lifting �0 of \ does

not vanish at 4. Thus, combining this with Theorem A.2.7, we have proved that the
map i is holomorphic. SinceM<

Enr is compact, i is a proper map.
To prove that i is birational, we consider a special point inM<

Enr. Let l0 ∈ D#
be the period of the marked Enriques surface of type VI in Section 8.9. It is known
that

l⊥0 ∩ # = �6 (2) ⊕ �4 (2)

(see Proposition 8.9.26).

Lemma A.3.5 Let l ∈ D# . Assume that l is not equivalent to l0 under the
action of O(#)#. Then there exists a maximal totally singular subspace + satisfying
l ∈ H (+), l0 ∉ H(+) or l ∉ H(+), l0 ∈ H (+).
It follows that i−1 (i( [l0])) = [l0] and hence i has degree 1. Thus i is birational.

Remark A.3.6 Corollary 7.2 in [412] is wrong. Theorem A.3.1 is the correction of
the corollary. This was pointed out by Freitag and Salvati Manni [239].

Remark A.3.7 In the case ℓ = 3, we have an analogy of Theorem A.3.1, that is, we
get an embedding of the moduli space of semi-stable ordered sets of eight points
in the projective line into P13 which is O(� (!)) (� S8)-equivariant ([413]). This
embedding coincides with the one defined by the “cross ratios” of ordered sets of
eight points in the projective line.
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Remark A.3.8 It would be very interesting to find a geometric meaning of the map i
in Theorem A.3.1.

Bibliographical Notes

The construction of modular forms on Hermitian symmetric homogeneous domains of orthogonal
type from modular forms in one variable is the special case of the theta correspondence that
transforms automorphic forms on the Lie group Sp(+1) to the automorphic form on the Lie group
SO(+2) [311]. The fundamental discovery of Borcherds was the fact that the denominator of the
Kac–Weyl character formula for some hyperbolic generalized Kac–Moody infinite-dimensional Lie
algebras is the infinite product of some such modular forms.

Later, based on the ideas of physicists J. Harvey and G.Moore who used Borcherds automorphic
forms in string theory, Borcherds gave another less computational treatment of his theory [82]. In
between, he was already able to give the first application to algebraic geometry by proving that
the moduli space of Enriques surfaces is quasi-affine [81]. We follow his proof in this appendix.
Bruinier’s book [99] gives a good exposition of Borcherds’s theory.

Allcock and Freitag [9] were the first to apply Borcherds additive and multiplicative liftings
to moduli problems. They considered the moduli space of marked cubic surfaces and obtained an
embedding of the moduli space into P14 which is, (�6)-equivariant. This embedding coincides
with the one due to Naruki [550], defined by Cayley’s cross ratios of cubic surfaces. The systematic
use of Borcherds automorphic forms for the study of different moduli spaces in algebraic geometry,
in particular. the moduli spaces of K3 and Enriques surfaces can be found in the works of S. Kondō
[412], [416], [415], [414]. A brief exposition of some of this work is given in this appendix.
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369. Katsura, T., Kondō, S.: Enriques surfaces in characteristic 2 with a finite group of automor-
phisms. J. Alg. Geom. 27, 173–202 (2018)
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414. Kondō, S.: Moduli of plane quartics, Göpel invariants and Borcherds products. Int. Math.
Res. Not. IMRN 2011, no. 12, 2825–2860 (2011)
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(−=)-curve, 66, 70, 92, 96, 255, 264,
265

�-rational, 82
�-split, 234
 /k-trace, 383
*-pair, 321

degenerate, 321
"?-cover, see cover
"?-torsor, see cover
"L,0-torsor, see cover
Q-homology projective plane, 517
Z/?Z-cover, see cover
F-crystal, 171
?-linear, 182
effective, 172
Hasse-Witt matrix, 182
Hodge polygon, 173
isocrystal, 171
isogeny, 171
multiplicity, 172
Newton polygon, 173
slope, 172
stable rank, 182
supersingular, 185

-=-cover, see cover
:-very ample, see invertible sheaf
<-section, 466
?-linear, see F-crystal
étale cohomology, see cohomology
étale topology, see topology

abelian variety, see group scheme
absolute invariant, 403, 414
action, 4
fixed locus, 4
fixed-point-free, 4
geometric quotient, 5
linearization, 50

additive lifting, 623
adjunction formula, 32

Albanese morphism, 205
Albanese variety, 150, 178, 205
algebraic curve

arithmetic genus, 75, 361
hyperelliptic, 316

algebraic family, 522
algebraic group

genus 6, 426
linear, 2
unipotent, 435

algebraic space, 526
algebraically simply connected, 204
arithmetic subgroup, 589
Artin representation, 367
Artin–Schreier extension, 24
Artin–Schreier sequence, 9
Artin–Schreier torsor, see cover
Artin-Schreier cover, see cover
automorphic form, 590, 621
automorphic line bundle, 590

Baily–Borel compactification, 590
basic rational surface, 466
Beauville surface, 500
Betti number, see cohomology, 161,

165
Bockstein operator, 146
Bogomolov’s theorem, seevector bun-

dle
Borcherds form, 575
Borcherds product, 623
Borel–deSibenthal–Dynkin algorithm,

470
branch locus, 29, 35, 40, 46, 74

inertia subgroup scheme, 35
purity, 29
wild ramification, 40

Brauer group, 178
analytic, 160
Azumaya algebra, 162
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cohomological, 143, 160, 163, 214
formal Brauer group, 178, 237
of a field, 162
of a scheme, 163
of a surface, 192

canonical dimension, see Kodaira di-
mension

canonical isotropic sequence, 354
canonical sheaf, 25
cap-product, 154
Cartan matrix, 141
Cartier divisor, see divisor
Cartier isomorphism, 167
Cartier operator, 166, 167, 189
Cartier–Dieudonné module, 15, 180
of a formal group, 18

Castelnuovo’s Rationality Criterion,
201

Cayley lattice, 561
Cayley surface, see cubic surface
chamber
fundamental, 133

character group, see group scheme
Chern class, 158, 162, 163
in crystalline cohomology, 173

class group, see divisor, see singular-
ity

Coble surface, 552
(−4)-curve, 552
boundary components, 552
marking, 552
moduli space, 551
Picard lattice of the K3-cover, 553
terminal of K3 type, 552

cohomological flatness, 366, 393
cohomology
�-zip, 168
ℓ-adic, 160, 201
étale, 5, 160, 201
Betti number, 147, 155, 161, 165,

211
Cartier operator, 167
Chern class, 158, 162, 163
comparison theorem, 161

crystalline, 169
de Rham, 155, 164
de Rham–Witt, 176
deformation invariance, 211
divisorial torsion, 180
Euler–Poincaré characteristic, 155,

161, 201, 367, 389
exotic torsion, 180, 232
flat, 5, 186
Frölicher spectral sequence, 165
Hilbert’s Theorem 90, 8
Hodge, 156, 201, 211
Hodge filtration, 165
Hodge versus de Rham spectral se-

quence, 165
local, 83
Poincaré duality
for constructible sheaves, 162
in ℓ-adic cohomology, 161
in crystalline cohomology, 170
in the étale cohomology, 161
in topology, 154

singular, 154
Tate module, 161, 173
Tate twist, 161
torsion, 154, 171, 180, 187
universal coefficient formula, 154,

171
Witt vector, 168

conductor ideal, 217
conductrix, see Enriques surface
cone

ample cone, 263, 530
effective cone, 263
nef cone, 263, 530
of big divisor classes, 263

connection, 31
Cartier, 31

Cossec–Verra polarization, 341, 356,
581, 614

cover
"?-cover, 42
"?-torsor, 37, 47
"L,0-torsor, 37, 203
Z/?Z-cover, 42
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Z/?Z-torsor, 47
-=-cover, 34
-=-torsor, 47
Artin–Schreier torsor, 37, 203
branch locus, 29, 35, 40, 46
cyclic torsor, 47
inertia subgroup scheme, 35
inseparable, 31, 38
local principal �-cover, 81
of type -=, 28
separable, 29
simple -=-cover, 28
split "L,0-torsor, 39
splitting, 46
trivial, 45

Coxeter group, 131
Euclidean, 134
geometric representation, 134
hyperbolic, 134
irreducible, 133
Lanner, 140
length function, 135
quasi-Lanner, 140
spherical, 134
Tits representation, 134

Coxeter–Dynkin diagram, 69, 132
rank of a subgraph, 141
subgraph of finite type, 141
subgraph of parabolic type, 141

Cremona involution, 121
crystalline cohomology, see cohomol-

ogy
cubic surface, 117
Cayley cubic surface, 120
symmetroids, 117

cup-product, 154
cusp, 591

de Rham cohomology, see cohomol-
ogy

de Rham–Witt complex, see coho-
mology

Dedekind eta function, 625
Degeneration
Enriques surface, 344

K3 surface, 344
of type III, 344

degeneration, 599
elementary modification, 534, 604
flop, 534, 604
good reduction, 604
Kulikov model, 601
type, 601

semi-stable, 599
type III, 601

degree
homomorphism, 371

del Pezzo surface, 91, 94
(−2)-curve, 96
anti-canonical algebra, 92
anti-canonical model, 92, 96, 98
conics, 96
degree, 91
lines, 96
nodal curve, 96
of degree 1, 409
of degree 4, 99
Picard group, 96
quartic
four-nodal, 111
symmetroid, 110, 111

quintic, 483, 553
root diagram, 97
weak, 101

del Pezzo surface
anti-canonical, 319

derivation, see vector field, 51
determinantal formula, 386
Dieudonné ring, 15
Dirichlet domain, 556
discrete group, 131
discriminant

of a quasi-elliptic fibration, 413
of an elliptic fibration, 399, 402,

403, 412
discriminant bilinear form, see lattice
discriminant quadratic form, see lat-

tice
isotropic subgroup, 125

divided power structure, 168
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divisible group, 157
divisor

0-curve, 265
Q-divisor, 256
ample, 263
big, 200, 255
Cartier, 26
class group, 25
fundamental cycle, 290
linear equivalence, 200
nef, 200, 254, 263
negative part, 257
numerical equivalence, 200
numerically <-connected, 288
numerically connected, 257, 265
of canonical type, 265, 297
of elliptic fiber type, 265
Picard group, 26
positive part, 257
Weil, 25
Zariski decomposition, 256

double plane model, 358
double-nine, 356
double-ten, 354
dual resolution graph, 70
duality
Cartier, 11, 12, 248
in flat cohomology, 193
Poincaré in ℓ-adic cohomology, 195
Poincaré in ?-adic cohomology, 195
Poincaré in flat cohomology, 196
quasi-algebraic groups, 194

dualizing sheaf, 25, 32, 76

elementary modification, see degen-
eration

elliptic curve, 4, 10
automorphisms, 405
formal group, 18, 431
Frobenius morphism, 4
modular elliptic surface, 498
ordinary, 10, 18, 48, 57
quadratic twist, 406, 437
supersingular, 10, 18, 48, 57, 250,

436

elliptic fibration, see genus one fibra-
tion

absolute invariant, 403
extremal, 469
j-invariant, 403
Lutz group, 431
semi-stable reduction, 434

elliptic surface, 362
Enriques double plane, 338

degenerate, 338
Enriques involution, seeEnriques sur-

face, 345
Enriques lattice, 239

fundamental weights, 240
Weyl group, 240

Enriques octic, 247, 338
Enriques Reducibility Lemma, 275
Enriques surface, 203

2-level structure, 547
�-split, 260
"2-surface, 203, 209
-2-surface, 203, 209
Bloch–Kato–Illusie–Raynaud ordi-

nary, 236
Brauer group, 214, 225, 388
canonical cover, 216
classical, 203
conductrix, 218, 221
degeneration, 344
double plane model, 316, 337
Enriques involution, 224
exceptional, 218, 230
Fano model, 354, 582, 602
function Φ, 282
general nodal, 562
Hodge versus de Rham spectral se-

quence, 232
Horikawa model, 319, 338
K3-cover, 216, 237, 303, 341
Kulikov model, 601
marked, 543
moduli space, 613
Mukai model, 355
nodal, 274, 562
moduli space, 561
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nodal curve, 255, 264
nodal Weyl group, 264, 274
ordinary, 203
Picard group, 207, 224, 238
polarization
Mukai, 355

polarized, 564
quintic model, 246
sextic model, 244, 351, 581
simply connected, 207, 231
singular, 203
slope spectral sequence, 231
supersingular, 203
Tate conjecture, 214
tropicalization, 344
unipotent, 207, 616
unirational, 210, 223, 250
unnodal, 274
with extra automorphisms, 557

weakly isomorphic, 558
Weyl group, 240, 264
with vector fields, 210, 230
Zariski surface, 210, 229

Euler–Poincaré characteristic, see co-
homology

of a fiber, 367
of a genus one fibration, 389

exceptional configuration, see surface
exceptional configurations, 467
exceptional curve, 66
(−1)-curve, 66
of the first kind, 66

exceptional cycle, 67
exponential sequence, 158
extremal genus one fibration, 469

face variety of a simplex, 601
Fano model, 354, 582, 602
Fano polarization, 354, 568, 582
numerical, 354

Fano variety, 92
fiber
Euler–Poincaré characteristic, 367
multiple fiber, 363
of additive type, 363

of multiplicative type, 363
semi-stable, 363
tame, 366
unstable, 363
wild, 366

fibration, 360
elliptic, 201, 362
genus one fibration, 361
genus one pencil, 271
half-fiber, 271
multiple fiber, 272
quasi-elliptic, 201, 331, 362
relative dimension, 360
wild conic bundle, 360
wild fiber, 272

flat cohomology, see cohomology
flat topology, see topology
flop, see degeneration
foliation, 54
?-closed, 54, 60
integrable, 54

formal group
Ĝ<, 17
additive, 17
Artin–Mazur functors, 177
Cartier–Dieudonnémodule, 18, 178,

184
elliptic curve, 18
formal Brauer group, 178, 184, 223
formal group law, 178
formal Picard group, 178
Frobenius morphism, 17
height, 18, 184, 223, 433
multiplicative formal group, 17
of elliptic curve, 431

formal Lie group, see formal group
four-nodal quartic
�3-vertex, 112
degenerate quadrangle, 112
simple vertices, 112

Fourier–Mukai transform, 349
Fricke involution, 539
Frobenius morphism, 3, 14, 15, 17,

31, 38, 51, 52, 166, 203, 234
�-splitting, 83, 234
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absolute, 3
flatness, 82
linear, 3
relative, 3

Fujita’s conjecture, 281
fundamental cycle, 68
of a nef divisor, 290

fundamental group, 430
fundamental weights, see Enriques

lattice

genus one curve, 361
genus one fibration, 361
étale isotrivial, 442
absolute invariant, 403, 414
Betti number, 392
Brauer group, 388
curve of cusps, 369
degenerate fiber, 362
degenerate fibers, 363
discriminant, 399
elimination of multiple fibers, 390
elliptic, 362
Euler–Poincaré characteristic, 389
extremal, 469, 502
Halphen pencil, 467
height pairing, 425
index, 387, 427, 428
jacobian, 381
Kodaira’s notation, 268
Mordell–Weil group, 383, 418
Mordell–Weil lattice, 419
Néron’s notation, 268
period, 426
Picard rank, 383, 392
quasi-elliptic, 362
ramification invariant XG , 368
relatively minimal, 362
separable index, 427
Shioda–Tate formula, 383
singular fiber, 362
Tate’s algorithm, 409
Tate–Shafarevich group, 441
trivial, 382
Weierstrass model, 396

Weil–Châtelet group, 426
wild fiber, 366

genus one pencil, see fibration
geometric basis, 95
Global Torelli Theorem

for Enriques surfaces, 558
for K3 surfaces, 537

gonality pencil, 354
Gorenstein, 25, 32
Greenberg realization, 23, 430

perfect, 23
group scheme, 1

"? , 8
"L,0, 9, 37
G0, 7
G

pf
0 , 20

G<, 8
G

pf
< , 20

L=,<, 15
-=, 9, 28
étale, 2
abelian variety, 2, 147, 205, 235,

249
action, 4
additive, 7
additive perfect group scheme, 20
Cartier duality, 11, 12, 49, 248
character group, 12, 34
connected component, 11
connected-étale exact sequence, 12
constant, 2
diagonalizable, 11
dual abelian variety, 147
duality, 21
elliptic curve, 2
finite, 2
Frobenius morphism, 3
Hopf algebra, 2
identity component, 11, 145
inertia, 35
Lie algebra, 16, 145
linearly reductive, 13, 40
multiplicative, 8
multiplicative perfect group scheme,

20
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of multiplicative type, 11
perfect group scheme, 20
torsor, 47, 49
torus, 11
twisted form, 8, 381, 406, 451
unipotent, 15, 40, 207
vector, 8
Witt group scheme, 15

half-discriminant, 121
half-fiber, see fibration
Halphen pencil, 467
Bertini theorem, 468
index, 467

Halphen set of points, 467
Halphen surface, 467
Hasse–Witt matrix, 182, 464
Heegner divisor, 574, 623
height
of a field extension, 52
of a formal group, 18, 184, 223, 433
of a morphism, 52

height pairing, 425
Heisenberg group, 589
Hesse configuration, 492
Hesse pencil, 489, 515
harmonic polar line, 515

Hilbert scheme, 563
of Enriques surfaces, 569

Hochschild–Serre spectral sequence,
224

Hodge decomposition, 156
Hodge filtration, 165
Hodge index theorem, see signature
Hodge polygon, see F-crystal
Hodge symmetry, 152, 156
Hopf algebra, see group scheme
Horikawa model, 319, 338
Hurwitz formula
positive characteristic, 368

hyperbolic space, 130
absolute, 130
isometry group, 131

hyperelliptic surface, 444

Igusa inequality, 164

index, 427
of a genus one fibration, 387, 428
of a variety, 427

infinitely near point, see surface
intersection form, 148
intersection matrix, 66
invariant subscheme, 4
invertible sheaf
:-very ample, 286
algebraic equivalence, 148
ample, 263
big, 200, 255
Fujita’s conjecture, 281
Kodaira–Iitaka dimension, 199, 255
linear equivalence, 148, 200
nef, 200, 254, 263
numerical equivalence, 148, 200
pseudo-effective, 254
section ring, 199
Seshadri constant, 287

isotropic sequence, see lattice
isotropic vector, see lattice
isotropic vectors

simple isotropic decomposition, 578

j-invariant, see absolute invariant
jacobian fibration, see genus one fi-

bration
associated to a genus one fibration,

376
Jacobian of a curve, 149, 152, 250
Jacobson correspondence, 53
Jung–Milnor formula, 75

K3 lattice, 529
K3 surface, 217, 529
�-split, 235
Artin invariant, 196, 222, 237
degeneration, 344
Global Torelli Theorem, 537
Global Torelli theorem, 536
K3 lattice, 529
Kulikov model, 601
Kummer surface, 249
lattice-polarized, 530
most algebraic, 553
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ordinary, 175, 223, 235
Picard number, 529
polarized, 531
projective models, 303
quasi-polarized, 531
Shioda-supersingular, 196, 218, 219,

222, 250
supersingular, 175, 185, 186, 188
tropicalization, 344
unirational, 222
Weyl group, 264

K3-cover, see Enriques surface
Kähler differentials, see variety
Künneth formula
in crystalline cohomology, 444

Kawamata–Morrison conjectures, 556
Kodaira dimension, 61, 200, 211, 251
Kodaira–Iitaka dimension, see invert-

ible sheaf
Koecher principle, 621
Kulikov model, 601
Kummer exact sequence
in classical topology, 160
in flat topology, 10, 186
in the étale topology, 147, 163

Kummer extension, 24
Kummer lattice, 549
Kummer surface, seeK3 surface, 250,

549
Göperl tetrad, 550
octic model, 550
quartic surface, 549
Weber hexad, 550

lattice, 122
2-elementary, 542
A=, etc., 69, 128, 255
E=, 239
E?,@,A , 127, 239
H, 128
I<,=, 127, 239
U, 128
U[=] , 128
:-reflective, 139
?-elementary, 123

affine orthogonal group, 130
Cayley lattice, 561
definite, 122
discriminant, 123
discriminant bilinear form, 124
discriminant group, 123
discriminant quadratic form, 124
dual lattice, 123
embedding of, 122
Enriques lattice, 239, 529
essential, 419
even, 122
function Φ, 282
genus, 124
Gram matrix, 123
hyperbolic, 122, 128, 239, 282
hyperbolic plane, 128
indefinite, 122, 128
isometry, 122
isotropic sequence, 242
isotropic vector, 127, 281
K3 lattice, 529
Kummer lattice, 549
motion, 129
odd, 122
orthogonal complement, 123
orthogonal group, 122, 129
orthogonal sum, 123
primitive element, 123
primitive embedding, 123
primitive sublattice, 123
quadratic form, 122
quadratic module, 122
radical, 123
reflection group, 132, 530
reflection in a root, 129
reflective, 139
root basis, 133, 239
root lattice, 137
root vector, 128
signature, 122
sublattice, 122
sublattice of finite index, 123
sum, 123
trivial, 418
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unimodular, 128
Weyl group, 132, 240, 530

Lie algebra, 16, 53, 459
?-Lie algebra, 16, 53
restricted, 16, 53

lift to characteristic 0, 170
linear system
anti-canonical, 92, 96
bielliptic, 318
non-special, 320

canonical, 199, 302
composite with a pencil, 266
Cossec–Verra, 341, 356, 581, 614
Fano, 354, 568, 582
gonality pencil, 354
hyperelliptic, 308
non-special, 309

Mukai, 567
non-special, 341
pencil, 265
projective normality, 307
Prym canonical, 302
special, 341
superelliptic, 318

Lobachevsky space, see hyperbolic
space

local cohomology, see cohomology
log differentials, see variety
logarithmic transformation, 518
Lutz group, 431

map, see linear system
marking, 543
metaplectic group, 622
Milnor number, 73, 75
minimal surface, see surface
modular curve, 498, 524, 590
cusp, 498

modular elliptic surface, 498
modular form, 622
moduli space
"-polarized K3 surfaces, 533, 538
algebraic space, 526
Artin stack, 527
coarse moduli space, 524, 613

compactification
Baily–Borel–Satake, 584

compatictification
semi-toric, 598

Deligne–Mumford stack, 443, 527
elliptic curve, 443, 524
fine moduli space, 522
modular curve, 524, 590
modular elliptic surface, 498
moduli stack, 443, 525
of Enriques surfaces, 619

2-level structure, 547
nodal, 619
polarized, 620

of polarized Enriques surfaces, 564
of polarized varieties, 522
of supermarked Enriques surfaces,

571
Monodromy Theorem, 603
Mordell–Weil group, 383, 418
Mordell–Weil lattice, 419

discriminant formula, 421
essential lattice, 419
height pairing, 419, 425
local contribution, 422
narrow, 421
trivial lattice, 418

Mordell–Weil Theorem, 382
Mukai model, 355
Mukai polarization, 358, 567
multiple fiber, see fibration
multiplicative lifting, 623
multiplicity

of a fiber component, 363

Néron model, 375, 376
Néron mapping property, 375

Néron–Severi group, seePicard group
Nakai–Moishezon criterion, 255
net of conics, 349, 350

discriminant curve, 348, 349
Newton polygon

see F-crystal, 173
Nikulin '-invariant, 561
nodal curve, see (−=)-curve
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nodal cycle, 300
Noether formula, 162

Ogg–Shafarevich formula, 447
ordinary double point, see rational

double point
ordinary node, see rational double

point
ordinary singularity, 245
ordinary variety, 181
abelian variety, 183
algebraic curve, 183
algebraic surface, 183
K3 surface, 175

orisphere, 141
orthogonal group, see lattice

perfect group scheme, see group scheme
perfect scheme, 19
period, 426
period domain, 535, 586
Baily–Borel compactification, 590
boundary component, 586
cusp, 591
discriminant, 536
Grassmann realization, 585
Heegner divisor, 536
Siegel domain, 587
Siegel half-space, 585
toroidal compactification, 592
tube domain, 588
upper half-plane, 585

period space, see period domain
Petersen graph, 483
Picard functor, 142
Picard group, 26, 142, 211
Chern class, 158
formal Picard group, 178
Igusa inequality, 164
Igusa–Artin–Mazur inequality, 184,

187
local Picard group, 76
Néron–Severi group, 148, 159, 180
Néron-Severi group, 209
Picard lattice, 149
Picard number, 148, 159, 211

Picard number, 262
Picard scheme, 49, 144, 207

Lie algebra, 146
Picard variety, 148
Poincaré sheaf, 144

Picard variety, see Picard scheme
pinch point, 245
Pinkham–Demazure construction, 83
plurigenus, 61, 212
Poincaré duality, see cohomology, 172
Poincaré sheaf, see Picard scheme
polarization, see linear system, 562

ample, 562
Cossec–Verra, 341, 356, 357, 581,

614
degree, 564
Fano, 568, 582
Mukai, 567
numerical, 564
Picard, 564

polarized variety, 522
positive cone, 130
principal �-cover

local, 81
principal homogeneous space, see tor-

sor
pro-algebraic group, 20
projective normality, 307
proper transform of a linear system,

95
purity

for torsors, 6
of the branch locus, 29

quadratic form, see lattice
quadratic lattice, see lattice
quadratic module, see lattice
quadratic twist construction, 511
quartic surface

Kummer, 549
quasi-algebraic group, see perfect group

scheme
duality functor, 194

quasi-elliptic curve, 361
quasi-elliptic fibration, 331, 362
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absolute invariant, 414
j-invariant, 414
Tate–Shafarevich group, 448

quasi-elliptic surface, 362
quasi-hyperelliptic surface, 449
quintic model, 246

ramification locus, see branch locus
rational double point, 59, 68, 255
�-injective, 85
�-rational, 83
�-regular, 83
�-split, 85
classical form, 72
dual resolution graph, 70
nodal cycle, 70
of type �=, etc., 70
ordinary double point, 42, 70
ordinary node, 70
Pinkham–Demazure construction,

83
quotient singularity, 81
taut, 73
Zariski singularity, 415

rational normal scroll, see surface
rational surface, 201
basic, 552
Coble surface, 552
Halphen surface, 467

Raynaud polygon, 378
reflection group
chamber, 131
cocompact, 139
Euclidean, 137
finite covolume, 139
root basis, 133
spherical, 136
uniform, 139
Weyl group, 132, 264, 274

reflexive hull, see reflexive sheaf
reflexive sheaf, 24
rank, 24
singular locus, 26

Reider’s Theorem, 277, 297
relative duality, 365

Riemann-Roch theorem, 162
root basis, 133, 239

canonical, 133
crystallographic, 139
hyperbolic type, 139
of affine type, 136, 267
of finite type, 69, 136, 257

root vector, 69, see lattice
positive, 136
reflection group, 133

section ring, see invertible sheaf
semi-quasihomogeneous, 73
semi-stable reduction, 434
Seshadri constant, see invertible sheaf
sextic model, 244, 351
Shafarevich pairing, 431
Shioda–Tate formula, 383, 518
Siegel domain, 587

first kind, 587
second kind, 587
third kind, 587

Siegel half-space, 585, 587
Siegel–Eichler transformation, 589
signature, 122

Hirzebruch signature theorem, 157
Hodge index theorem, 159

simple curve singularity, 74, 267
of type 0=, 3=, . . ., 74

singular point, see singularity
singularity, 65
�-injective, 83
�-regular, 82
�-split, 83
analytic isomorphism, 65
canonical, 76
class group, 76
Cohen–Macaulay, 76
cyclic quotient, 59
cyclic quotient singularity, 58, 78
double curve, 245
dual resolution graph, 70
elliptic, 59, 67, 246
embedding dimension, 68
exceptional curve, 66
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exceptional cycle, 67
exceptional locus, 65
formal isomorphism, 65
fundamental cycle, 68
genus, 66, 361
Gorenstein, 76
Hirzebruch–Jung, 59, 79
intersection matrix, 66
Jacobian algebra, 73
linearly reductive quotient singu-

larity, 59, 78
local fundamental group, 76
local Picard group, 76
Milnor number, 73, 75
minimal resolution, 66
multiplicity, 68
numerical cycle, 68
ordinary, 245
ordinary tacnode, 246
ordinary triple point, 245, 246
pinch point, 245
Pinkham–Demazure construction,

83
quotient singularity, 78
rational, 67
rational double point, 59, 68
resolution, 65
simple, 267
taut, 73
terminal, 76
vector field, 58

spectral sequence
conjugate, 168
Frölicher, 165
Hodge filtration, 165
Hodge versus de Rham, 165, 171,

232
slope, 176, 231

splitting under a cyclic cover, 46
stable rank, 182
stack, 525
algebraic, 527
Artin, 527
Deligne–Mumford, 527

Stanley–Reisner ring, 602

strange point of a conic, 339
sublattice, see lattice
superelliptic map, 358
supermarking, 570
supersingular

F-crystal, 185
algebraic curve, 183
in the sense of Shioda, 196
K3 surface, 175

supersingular surface, 184
in the sense of Shioda, 185, 370
K3 surface, 185

surface
(weak) del Pezzo surface, 91
abelian surface, 2, 205, 249
Beauville surface, 500
bielliptic surface, 206, 444
Coble, 552
elliptic, 201, 362
Enriques surface, 203
exceptional configuration, 95
Fano surface, 92
geometric genus, 202
Halphen surface, 467
Hirzebruch surface, 90
hyperelliptic surface, 206, 444
infinitely near points, 95
minimal, 200, 211
minimal model, 201
modular elliptic, 498
of general type, 201
quasi-elliptic, 362
rational normal scroll, 90
ruled, 201
Segre surface, 90
symmetroid, 100, 321
unirational, 62, 210
uniruled, 370
Zariski surface, 62, 210

symmetric space
Baily–Borel compactification, 590
cusp, 591
Grassmannian realization, 585
irreducible, 585
of (non-)compact type, 585
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orthogonal type, 585
Siegel domain, 587
Siegel half-space, 585
symmetric Hermitian space, 585
toroidal compactification, 592
tube domain, 588
upper half-plane, 585

symmetroid surface, 100, 321
automorphism group, 114
cubic, 117
determinantal equation, 121
type, 100, 118

tacnode, 247
tame fiber, 366
tangent sheaf, 162
relative, 30

Tate conjecture, 184, 213
Tate module, 213
ℓ-adic, 157, 161
crystalline, 173

Tate twist, 161
Tate’s algorithm, 409
Tate–Shafarevich group, 441, 442, 447,

448
tight closure, 82
topology
étale, 5, 142, 160
classical, 153
crystalline, 169
flat, 5, 142, 186
Zariski, 142

toroidal compactification, 592
torsor, 5, 47, 49

"?-torsor, 37
"L,0, 37
"L,0-torsor, 37
cyclic, 47
extension theorem, 6
index, 427
period, 426
purity, 6
separable index, 427
Weil–Châtelet group, 426

transcendental lattice, 159

Tropicalization
Enriques surface, 344
K3 surface, 344

Tsen’s Theorem, 201, 387, 428
tube domain, 588

unipotent group
height, 452
of genus 6, 453
quasi-elliptic, 453
wound, 376

universal coefficient formula, see co-
homology

upper half-plane, 585, 590
cusp, 591

vanishing theorem
for �-split varieties, 259
for Enriques surfaces, 261, 277
Grauert–Riemenschneider, 67
Kawamata-Viehweg, 259
Kodaira, 259
Ramanujam, 259

variety, 1
�-split, 234, 259
canonical sheaf, 25
cone, 90
dualizing sheaf, 25, 32
exact differential form, 49
Kähler differentials, 25, 51, 164,

166
Kodaira dimension, 200, 234
log differentials, 48
minimal degree, 90
non-degenerate, 90
ordinary, 168, 223, 235
plurigenus, 212
supersingular, 168, 184, 188
unirational, 210

vector bundle
Bogomolov unstable, 277
Bogomolov’s theorem, 277
geometric, 27
line bundle, 27
tautological section, 27
total space, 27
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vector field
?-closed, 53
divisor of, 58, 220
integral curve, 63
isolated zero, 58, 220
multiplicity, 58
non-divisorial zeros, 58
of additive type, 16, 53
of multiplicative type, 16, 53
quotient by, 52
rational, 52
resolution of singularities, 64, 89
singularity, 58

Verschiebung morphism, 14, 15
Vinberg’s criterion, 141

web of quadrics, 121
discriminant surface, 121

Weierstrass equation
discriminant, 399, 402
elliptic fibration, 398
elliptic fibration, ? = 3, 400
global, 398
local, 397
quasi-elliptic fibration, ? = 2, 401
quasi-elliptic fibration, ? = 3, 401

Weierstrass model, 396
Weil divisor, see divisor
Weil representation, 622
Weil restriction, 19, 437
Weil–Châtelet group, 426
Weyl group, 132
affine, 137
length function, 135
of an Enriques surface, 240, 264,

274
order, 138

wild fiber, see fibration
Witt ring, see Witt vectors
Witt vectors, 13, 15, 21, 168

F-crystal, 171
Cartier–Dieudonné module, 15
Dieudonné ring, 15
Frobenius, 14
local cohomology group, 85

Serre’s cohomology, 168
Verschiebung, 14

Wu’s formula, 159

Zariski decomposition, 256
Zariski singularity, 415
Zariski surface, 62, 210
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(−=)-curve, 66, 70, 92, 96, 255, 264,
265

�-rational, 82
�-split, 234
 /k-trace, 383
*-pair, 321

degenerate, 321
"?-cover, see cover
"?-torsor, see cover
"L,0-torsor, see cover
Q-homology projective plane, 517
Z/?Z-cover, see cover
F-crystal, 171
?-linear, 182
effective, 172
Hasse-Witt matrix, 182
Hodge polygon, 173
isocrystal, 171
isogeny, 171
multiplicity, 172
Newton polygon, 173
slope, 172
stable rank, 182
supersingular, 185

-=-cover, see cover
:-very ample, see invertible sheaf
<-section, 466
?-linear, see F-crystal
étale cohomology, see cohomology
étale topology, see topology

abelian variety, see group scheme
absolute invariant, 403, 414
action, 4
fixed locus, 4
fixed-point-free, 4
geometric quotient, 5
linearization, 50

additive lifting, 623
adjunction formula, 32

Albanese morphism, 205
Albanese variety, 150, 178, 205
algebraic curve

arithmetic genus, 75, 361
hyperelliptic, 316

algebraic family, 522
algebraic group

genus 6, 426
linear, 2
unipotent, 435

algebraic space, 526
algebraically simply connected, 204
arithmetic subgroup, 589
Artin representation, 367
Artin–Schreier extension, 24
Artin–Schreier sequence, 9
Artin–Schreier torsor, see cover
Artin-Schreier cover, see cover
automorphic form, 590, 621
automorphic line bundle, 590

Baily–Borel compactification, 590
basic rational surface, 466
Beauville surface, 500
Betti number, see cohomology, 161,

165
Bockstein operator, 146
Bogomolov’s theorem, seevector bun-

dle
Borcherds form, 575
Borcherds product, 623
Borel–deSibenthal–Dynkin algorithm,

470
branch locus, 29, 35, 40, 46, 74

inertia subgroup scheme, 35
purity, 29
wild ramification, 40

Brauer group, 178
analytic, 160
Azumaya algebra, 162

675
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cohomological, 143, 160, 163, 214
formal Brauer group, 178, 237
of a field, 162
of a scheme, 163
of a surface, 192

canonical dimension, see Kodaira di-
mension

canonical isotropic sequence, 354
canonical sheaf, 25
cap-product, 154
Cartan matrix, 141
Cartier divisor, see divisor
Cartier isomorphism, 167
Cartier operator, 166, 167, 189
Cartier–Dieudonné module, 15, 180
of a formal group, 18

Castelnuovo’s Rationality Criterion,
201

Cayley lattice, 561
Cayley surface, see cubic surface
chamber
fundamental, 133

character group, see group scheme
Chern class, 158, 162, 163
in crystalline cohomology, 173

class group, see divisor, see singular-
ity

Coble surface, 552
(−4)-curve, 552
boundary components, 552
marking, 552
moduli space, 551
Picard lattice of the K3-cover, 553
terminal of K3 type, 552

cohomological flatness, 366, 393
cohomology
�-zip, 168
ℓ-adic, 160, 201
étale, 5, 160, 201
Betti number, 147, 155, 161, 165,

211
Cartier operator, 167
Chern class, 158, 162, 163
comparison theorem, 161

crystalline, 169
de Rham, 155, 164
de Rham–Witt, 176
deformation invariance, 211
divisorial torsion, 180
Euler–Poincaré characteristic, 155,

161, 201, 367, 389
exotic torsion, 180, 232
flat, 5, 186
Frölicher spectral sequence, 165
Hilbert’s Theorem 90, 8
Hodge, 156, 201, 211
Hodge filtration, 165
Hodge versus de Rham spectral se-

quence, 165
local, 83
Poincaré duality
for constructible sheaves, 162
in ℓ-adic cohomology, 161
in crystalline cohomology, 170
in the étale cohomology, 161
in topology, 154

singular, 154
Tate module, 161, 173
Tate twist, 161
torsion, 154, 171, 180, 187
universal coefficient formula, 154,

171
Witt vector, 168

conductor ideal, 217
conductrix, see Enriques surface
cone

ample cone, 263, 530
effective cone, 263
nef cone, 263, 530
of big divisor classes, 263

connection, 31
Cartier, 31

Cossec–Verra polarization, 341, 356,
581, 614

cover
"?-cover, 42
"?-torsor, 37, 47
"L,0-torsor, 37, 203
Z/?Z-cover, 42
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Z/?Z-torsor, 47
-=-cover, 34
-=-torsor, 47
Artin–Schreier torsor, 37, 203
branch locus, 29, 35, 40, 46
cyclic torsor, 47
inertia subgroup scheme, 35
inseparable, 31, 38
local principal �-cover, 81
of type -=, 28
separable, 29
simple -=-cover, 28
split "L,0-torsor, 39
splitting, 46
trivial, 45

Coxeter group, 131
Euclidean, 134
geometric representation, 134
hyperbolic, 134
irreducible, 133
Lanner, 140
length function, 135
quasi-Lanner, 140
spherical, 134
Tits representation, 134

Coxeter–Dynkin diagram, 69, 132
rank of a subgraph, 141
subgraph of finite type, 141
subgraph of parabolic type, 141

Cremona involution, 121
crystalline cohomology, see cohomol-

ogy
cubic surface, 117
Cayley cubic surface, 120
symmetroids, 117

cup-product, 154
cusp, 591

de Rham cohomology, see cohomol-
ogy

de Rham–Witt complex, see coho-
mology

Dedekind eta function, 625
Degeneration
Enriques surface, 344

K3 surface, 344
of type III, 344

degeneration, 599
elementary modification, 534, 604
flop, 534, 604
good reduction, 604
Kulikov model, 601
type, 601

semi-stable, 599
type III, 601

degree
homomorphism, 371

del Pezzo surface, 91, 94
(−2)-curve, 96
anti-canonical algebra, 92
anti-canonical model, 92, 96, 98
conics, 96
degree, 91
lines, 96
nodal curve, 96
of degree 1, 409
of degree 4, 99
Picard group, 96
quartic
four-nodal, 111
symmetroid, 110, 111

quintic, 483, 553
root diagram, 97
weak, 101

del Pezzo surface
anti-canonical, 319

derivation, see vector field, 51
determinantal formula, 386
Dieudonné ring, 15
Dirichlet domain, 556
discrete group, 131
discriminant

of a quasi-elliptic fibration, 413
of an elliptic fibration, 399, 402,

403, 412
discriminant bilinear form, see lattice
discriminant quadratic form, see lat-

tice
isotropic subgroup, 125

divided power structure, 168
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divisible group, 157
divisor

0-curve, 265
Q-divisor, 256
ample, 263
big, 200, 255
Cartier, 26
class group, 25
fundamental cycle, 290
linear equivalence, 200
nef, 200, 254, 263
negative part, 257
numerical equivalence, 200
numerically <-connected, 288
numerically connected, 257, 265
of canonical type, 265, 297
of elliptic fiber type, 265
Picard group, 26
positive part, 257
Weil, 25
Zariski decomposition, 256

double plane model, 358
double-nine, 356
double-ten, 354
dual resolution graph, 70
duality
Cartier, 11, 12, 248
in flat cohomology, 193
Poincaré in ℓ-adic cohomology, 195
Poincaré in ?-adic cohomology, 195
Poincaré in flat cohomology, 196
quasi-algebraic groups, 194

dualizing sheaf, 25, 32, 76

elementary modification, see degen-
eration

elliptic curve, 4, 10
automorphisms, 405
formal group, 18, 431
Frobenius morphism, 4
modular elliptic surface, 498
ordinary, 10, 18, 48, 57
quadratic twist, 406, 437
supersingular, 10, 18, 48, 57, 250,

436

elliptic fibration, see genus one fibra-
tion

absolute invariant, 403
extremal, 469
j-invariant, 403
Lutz group, 431
semi-stable reduction, 434

elliptic surface, 362
Enriques double plane, 338

degenerate, 338
Enriques involution, seeEnriques sur-

face, 345
Enriques lattice, 239

fundamental weights, 240
Weyl group, 240

Enriques octic, 247, 338
Enriques Reducibility Lemma, 275
Enriques surface, 203

2-level structure, 547
�-split, 260
"2-surface, 203, 209
-2-surface, 203, 209
Bloch–Kato–Illusie–Raynaud ordi-

nary, 236
Brauer group, 214, 225, 388
canonical cover, 216
classical, 203
conductrix, 218, 221
degeneration, 344
double plane model, 316, 337
Enriques involution, 224
exceptional, 218, 230
Fano model, 354, 582, 602
function Φ, 282
general nodal, 562
Hodge versus de Rham spectral se-

quence, 232
Horikawa model, 319, 338
K3-cover, 216, 237, 303, 341
Kulikov model, 601
marked, 543
moduli space, 613
Mukai model, 355
nodal, 274, 562
moduli space, 561
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nodal curve, 255, 264
nodal Weyl group, 264, 274
ordinary, 203
Picard group, 207, 224, 238
polarization
Mukai, 355

polarized, 564
quintic model, 246
sextic model, 244, 351, 581
simply connected, 207, 231
singular, 203
slope spectral sequence, 231
supersingular, 203
Tate conjecture, 214
tropicalization, 344
unipotent, 207, 616
unirational, 210, 223, 250
unnodal, 274
with extra automorphisms, 557

weakly isomorphic, 558
Weyl group, 240, 264
with vector fields, 210, 230
Zariski surface, 210, 229

Euler–Poincaré characteristic, see co-
homology

of a fiber, 367
of a genus one fibration, 389

exceptional configuration, see surface
exceptional configurations, 467
exceptional curve, 66
(−1)-curve, 66
of the first kind, 66

exceptional cycle, 67
exponential sequence, 158
extremal genus one fibration, 469

face variety of a simplex, 601
Fano model, 354, 582, 602
Fano polarization, 354, 568, 582
numerical, 354

Fano variety, 92
fiber
Euler–Poincaré characteristic, 367
multiple fiber, 363
of additive type, 363

of multiplicative type, 363
semi-stable, 363
tame, 366
unstable, 363
wild, 366

fibration, 360
elliptic, 201, 362
genus one fibration, 361
genus one pencil, 271
half-fiber, 271
multiple fiber, 272
quasi-elliptic, 201, 331, 362
relative dimension, 360
wild conic bundle, 360
wild fiber, 272

flat cohomology, see cohomology
flat topology, see topology
flop, see degeneration
foliation, 54
?-closed, 54, 60
integrable, 54

formal group
Ĝ<, 17
additive, 17
Artin–Mazur functors, 177
Cartier–Dieudonnémodule, 18, 178,

184
elliptic curve, 18
formal Brauer group, 178, 184, 223
formal group law, 178
formal Picard group, 178
Frobenius morphism, 17
height, 18, 184, 223, 433
multiplicative formal group, 17
of elliptic curve, 431

formal Lie group, see formal group
four-nodal quartic
�3-vertex, 112
degenerate quadrangle, 112
simple vertices, 112

Fourier–Mukai transform, 349
Fricke involution, 539
Frobenius morphism, 3, 14, 15, 17,

31, 38, 51, 52, 166, 203, 234
�-splitting, 83, 234
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absolute, 3
flatness, 82
linear, 3
relative, 3

Fujita’s conjecture, 281
fundamental cycle, 68
of a nef divisor, 290

fundamental group, 430
fundamental weights, see Enriques

lattice

genus one curve, 361
genus one fibration, 361
étale isotrivial, 442
absolute invariant, 403, 414
Betti number, 392
Brauer group, 388
curve of cusps, 369
degenerate fiber, 362
degenerate fibers, 363
discriminant, 399
elimination of multiple fibers, 390
elliptic, 362
Euler–Poincaré characteristic, 389
extremal, 469, 502
Halphen pencil, 467
height pairing, 425
index, 387, 427, 428
jacobian, 381
Kodaira’s notation, 268
Mordell–Weil group, 383, 418
Mordell–Weil lattice, 419
Néron’s notation, 268
period, 426
Picard rank, 383, 392
quasi-elliptic, 362
ramification invariant XG , 368
relatively minimal, 362
separable index, 427
Shioda–Tate formula, 383
singular fiber, 362
Tate’s algorithm, 409
Tate–Shafarevich group, 441
trivial, 382
Weierstrass model, 396

Weil–Châtelet group, 426
wild fiber, 366

genus one pencil, see fibration
geometric basis, 95
Global Torelli Theorem

for Enriques surfaces, 558
for K3 surfaces, 537

gonality pencil, 354
Gorenstein, 25, 32
Greenberg realization, 23, 430

perfect, 23
group scheme, 1

"? , 8
"L,0, 9, 37
G0, 7
G

pf
0 , 20

G<, 8
G

pf
< , 20

L=,<, 15
-=, 9, 28
étale, 2
abelian variety, 2, 147, 205, 235,

249
action, 4
additive, 7
additive perfect group scheme, 20
Cartier duality, 11, 12, 49, 248
character group, 12, 34
connected component, 11
connected-étale exact sequence, 12
constant, 2
diagonalizable, 11
dual abelian variety, 147
duality, 21
elliptic curve, 2
finite, 2
Frobenius morphism, 3
Hopf algebra, 2
identity component, 11, 145
inertia, 35
Lie algebra, 16, 145
linearly reductive, 13, 40
multiplicative, 8
multiplicative perfect group scheme,

20
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of multiplicative type, 11
perfect group scheme, 20
torsor, 47, 49
torus, 11
twisted form, 8, 381, 406, 451
unipotent, 15, 40, 207
vector, 8
Witt group scheme, 15

half-discriminant, 121
half-fiber, see fibration
Halphen pencil, 467
Bertini theorem, 468
index, 467

Halphen set of points, 467
Halphen surface, 467
Hasse–Witt matrix, 182, 464
Heegner divisor, 574, 623
height
of a field extension, 52
of a formal group, 18, 184, 223, 433
of a morphism, 52

height pairing, 425
Heisenberg group, 589
Hesse configuration, 492
Hesse pencil, 489, 515
harmonic polar line, 515

Hilbert scheme, 563
of Enriques surfaces, 569

Hochschild–Serre spectral sequence,
224

Hodge decomposition, 156
Hodge filtration, 165
Hodge index theorem, see signature
Hodge polygon, see F-crystal
Hodge symmetry, 152, 156
Hopf algebra, see group scheme
Horikawa model, 319, 338
Hurwitz formula
positive characteristic, 368

hyperbolic space, 130
absolute, 130
isometry group, 131

hyperelliptic surface, 444

Igusa inequality, 164

index, 427
of a genus one fibration, 387, 428
of a variety, 427

infinitely near point, see surface
intersection form, 148
intersection matrix, 66
invariant subscheme, 4
invertible sheaf
:-very ample, 286
algebraic equivalence, 148
ample, 263
big, 200, 255
Fujita’s conjecture, 281
Kodaira–Iitaka dimension, 199, 255
linear equivalence, 148, 200
nef, 200, 254, 263
numerical equivalence, 148, 200
pseudo-effective, 254
section ring, 199
Seshadri constant, 287

isotropic sequence, see lattice
isotropic vector, see lattice
isotropic vectors

simple isotropic decomposition, 578

j-invariant, see absolute invariant
jacobian fibration, see genus one fi-

bration
associated to a genus one fibration,

376
Jacobian of a curve, 149, 152, 250
Jacobson correspondence, 53
Jung–Milnor formula, 75

K3 lattice, 529
K3 surface, 217, 529
�-split, 235
Artin invariant, 196, 222, 237
degeneration, 344
Global Torelli Theorem, 537
Global Torelli theorem, 536
K3 lattice, 529
Kulikov model, 601
Kummer surface, 249
lattice-polarized, 530
most algebraic, 553
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ordinary, 175, 223, 235
Picard number, 529
polarized, 531
projective models, 303
quasi-polarized, 531
Shioda-supersingular, 196, 218, 219,

222, 250
supersingular, 175, 185, 186, 188
tropicalization, 344
unirational, 222
Weyl group, 264

K3-cover, see Enriques surface
Kähler differentials, see variety
Künneth formula
in crystalline cohomology, 444

Kawamata–Morrison conjectures, 556
Kodaira dimension, 61, 200, 211, 251
Kodaira–Iitaka dimension, see invert-

ible sheaf
Koecher principle, 621
Kulikov model, 601
Kummer exact sequence
in classical topology, 160
in flat topology, 10, 186
in the étale topology, 147, 163

Kummer extension, 24
Kummer lattice, 549
Kummer surface, seeK3 surface, 250,

549
Göperl tetrad, 550
octic model, 550
quartic surface, 549
Weber hexad, 550

lattice, 122
2-elementary, 542
A=, etc., 69, 128, 255
E=, 239
E?,@,A , 127, 239
H, 128
I<,=, 127, 239
U, 128
U[=] , 128
:-reflective, 139
?-elementary, 123

affine orthogonal group, 130
Cayley lattice, 561
definite, 122
discriminant, 123
discriminant bilinear form, 124
discriminant group, 123
discriminant quadratic form, 124
dual lattice, 123
embedding of, 122
Enriques lattice, 239, 529
essential, 419
even, 122
function Φ, 282
genus, 124
Gram matrix, 123
hyperbolic, 122, 128, 239, 282
hyperbolic plane, 128
indefinite, 122, 128
isometry, 122
isotropic sequence, 242
isotropic vector, 127, 281
K3 lattice, 529
Kummer lattice, 549
motion, 129
odd, 122
orthogonal complement, 123
orthogonal group, 122, 129
orthogonal sum, 123
primitive element, 123
primitive embedding, 123
primitive sublattice, 123
quadratic form, 122
quadratic module, 122
radical, 123
reflection group, 132, 530
reflection in a root, 129
reflective, 139
root basis, 133, 239
root lattice, 137
root vector, 128
signature, 122
sublattice, 122
sublattice of finite index, 123
sum, 123
trivial, 418
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unimodular, 128
Weyl group, 132, 240, 530

Lie algebra, 16, 53, 459
?-Lie algebra, 16, 53
restricted, 16, 53

lift to characteristic 0, 170
linear system
anti-canonical, 92, 96
bielliptic, 318
non-special, 320

canonical, 199, 302
composite with a pencil, 266
Cossec–Verra, 341, 356, 581, 614
Fano, 354, 568, 582
gonality pencil, 354
hyperelliptic, 308
non-special, 309

Mukai, 567
non-special, 341
pencil, 265
projective normality, 307
Prym canonical, 302
special, 341
superelliptic, 318

Lobachevsky space, see hyperbolic
space

local cohomology, see cohomology
log differentials, see variety
logarithmic transformation, 518
Lutz group, 431

map, see linear system
marking, 543
metaplectic group, 622
Milnor number, 73, 75
minimal surface, see surface
modular curve, 498, 524, 590
cusp, 498

modular elliptic surface, 498
modular form, 622
moduli space
"-polarized K3 surfaces, 533, 538
algebraic space, 526
Artin stack, 527
coarse moduli space, 524, 613

compactification
Baily–Borel–Satake, 584

compatictification
semi-toric, 598

Deligne–Mumford stack, 443, 527
elliptic curve, 443, 524
fine moduli space, 522
modular curve, 524, 590
modular elliptic surface, 498
moduli stack, 443, 525
of Enriques surfaces, 619

2-level structure, 547
nodal, 619
polarized, 620

of polarized Enriques surfaces, 564
of polarized varieties, 522
of supermarked Enriques surfaces,

571
Monodromy Theorem, 603
Mordell–Weil group, 383, 418
Mordell–Weil lattice, 419

discriminant formula, 421
essential lattice, 419
height pairing, 419, 425
local contribution, 422
narrow, 421
trivial lattice, 418

Mordell–Weil Theorem, 382
Mukai model, 355
Mukai polarization, 358, 567
multiple fiber, see fibration
multiplicative lifting, 623
multiplicity

of a fiber component, 363

Néron model, 375, 376
Néron mapping property, 375

Néron–Severi group, seePicard group
Nakai–Moishezon criterion, 255
net of conics, 349, 350

discriminant curve, 348, 349
Newton polygon

see F-crystal, 173
Nikulin '-invariant, 561
nodal curve, see (−=)-curve
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nodal cycle, 300
Noether formula, 162

Ogg–Shafarevich formula, 447
ordinary double point, see rational

double point
ordinary node, see rational double

point
ordinary singularity, 245
ordinary variety, 181
abelian variety, 183
algebraic curve, 183
algebraic surface, 183
K3 surface, 175

orisphere, 141
orthogonal group, see lattice

perfect group scheme, see group scheme
perfect scheme, 19
period, 426
period domain, 535, 586
Baily–Borel compactification, 590
boundary component, 586
cusp, 591
discriminant, 536
Grassmann realization, 585
Heegner divisor, 536
Siegel domain, 587
Siegel half-space, 585
toroidal compactification, 592
tube domain, 588
upper half-plane, 585

period space, see period domain
Petersen graph, 483
Picard functor, 142
Picard group, 26, 142, 211
Chern class, 158
formal Picard group, 178
Igusa inequality, 164
Igusa–Artin–Mazur inequality, 184,

187
local Picard group, 76
Néron–Severi group, 148, 159, 180
Néron-Severi group, 209
Picard lattice, 149
Picard number, 148, 159, 211

Picard number, 262
Picard scheme, 49, 144, 207

Lie algebra, 146
Picard variety, 148
Poincaré sheaf, 144

Picard variety, see Picard scheme
pinch point, 245
Pinkham–Demazure construction, 83
plurigenus, 61, 212
Poincaré duality, see cohomology, 172
Poincaré sheaf, see Picard scheme
polarization, see linear system, 562

ample, 562
Cossec–Verra, 341, 356, 357, 581,

614
degree, 564
Fano, 568, 582
Mukai, 567
numerical, 564
Picard, 564

polarized variety, 522
positive cone, 130
principal �-cover

local, 81
principal homogeneous space, see tor-

sor
pro-algebraic group, 20
projective normality, 307
proper transform of a linear system,

95
purity

for torsors, 6
of the branch locus, 29

quadratic form, see lattice
quadratic lattice, see lattice
quadratic module, see lattice
quadratic twist construction, 511
quartic surface

Kummer, 549
quasi-algebraic group, see perfect group

scheme
duality functor, 194

quasi-elliptic curve, 361
quasi-elliptic fibration, 331, 362
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absolute invariant, 414
j-invariant, 414
Tate–Shafarevich group, 448

quasi-elliptic surface, 362
quasi-hyperelliptic surface, 449
quintic model, 246

ramification locus, see branch locus
rational double point, 59, 68, 255
�-injective, 85
�-rational, 83
�-regular, 83
�-split, 85
classical form, 72
dual resolution graph, 70
nodal cycle, 70
of type �=, etc., 70
ordinary double point, 42, 70
ordinary node, 70
Pinkham–Demazure construction,

83
quotient singularity, 81
taut, 73
Zariski singularity, 415

rational normal scroll, see surface
rational surface, 201
basic, 552
Coble surface, 552
Halphen surface, 467

Raynaud polygon, 378
reflection group
chamber, 131
cocompact, 139
Euclidean, 137
finite covolume, 139
root basis, 133
spherical, 136
uniform, 139
Weyl group, 132, 264, 274

reflexive hull, see reflexive sheaf
reflexive sheaf, 24
rank, 24
singular locus, 26

Reider’s Theorem, 277, 297
relative duality, 365

Riemann-Roch theorem, 162
root basis, 133, 239

canonical, 133
crystallographic, 139
hyperbolic type, 139
of affine type, 136, 267
of finite type, 69, 136, 257

root vector, 69, see lattice
positive, 136
reflection group, 133

section ring, see invertible sheaf
semi-quasihomogeneous, 73
semi-stable reduction, 434
Seshadri constant, see invertible sheaf
sextic model, 244, 351
Shafarevich pairing, 431
Shioda–Tate formula, 383, 518
Siegel domain, 587

first kind, 587
second kind, 587
third kind, 587

Siegel half-space, 585, 587
Siegel–Eichler transformation, 589
signature, 122

Hirzebruch signature theorem, 157
Hodge index theorem, 159

simple curve singularity, 74, 267
of type 0=, 3=, . . ., 74

singular point, see singularity
singularity, 65
�-injective, 83
�-regular, 82
�-split, 83
analytic isomorphism, 65
canonical, 76
class group, 76
Cohen–Macaulay, 76
cyclic quotient, 59
cyclic quotient singularity, 58, 78
double curve, 245
dual resolution graph, 70
elliptic, 59, 67, 246
embedding dimension, 68
exceptional curve, 66
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exceptional cycle, 67
exceptional locus, 65
formal isomorphism, 65
fundamental cycle, 68
genus, 66, 361
Gorenstein, 76
Hirzebruch–Jung, 59, 79
intersection matrix, 66
Jacobian algebra, 73
linearly reductive quotient singu-

larity, 59, 78
local fundamental group, 76
local Picard group, 76
Milnor number, 73, 75
minimal resolution, 66
multiplicity, 68
numerical cycle, 68
ordinary, 245
ordinary tacnode, 246
ordinary triple point, 245, 246
pinch point, 245
Pinkham–Demazure construction,

83
quotient singularity, 78
rational, 67
rational double point, 59, 68
resolution, 65
simple, 267
taut, 73
terminal, 76
vector field, 58

spectral sequence
conjugate, 168
Frölicher, 165
Hodge filtration, 165
Hodge versus de Rham, 165, 171,

232
slope, 176, 231

splitting under a cyclic cover, 46
stable rank, 182
stack, 525
algebraic, 527
Artin, 527
Deligne–Mumford, 527

Stanley–Reisner ring, 602

strange point of a conic, 339
sublattice, see lattice
superelliptic map, 358
supermarking, 570
supersingular

F-crystal, 185
algebraic curve, 183
in the sense of Shioda, 196
K3 surface, 175

supersingular surface, 184
in the sense of Shioda, 185, 370
K3 surface, 185

surface
(weak) del Pezzo surface, 91
abelian surface, 2, 205, 249
Beauville surface, 500
bielliptic surface, 206, 444
Coble, 552
elliptic, 201, 362
Enriques surface, 203
exceptional configuration, 95
Fano surface, 92
geometric genus, 202
Halphen surface, 467
Hirzebruch surface, 90
hyperelliptic surface, 206, 444
infinitely near points, 95
minimal, 200, 211
minimal model, 201
modular elliptic, 498
of general type, 201
quasi-elliptic, 362
rational normal scroll, 90
ruled, 201
Segre surface, 90
symmetroid, 100, 321
unirational, 62, 210
uniruled, 370
Zariski surface, 62, 210

symmetric space
Baily–Borel compactification, 590
cusp, 591
Grassmannian realization, 585
irreducible, 585
of (non-)compact type, 585
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orthogonal type, 585
Siegel domain, 587
Siegel half-space, 585
symmetric Hermitian space, 585
toroidal compactification, 592
tube domain, 588
upper half-plane, 585

symmetroid surface, 100, 321
automorphism group, 114
cubic, 117
determinantal equation, 121
type, 100, 118

tacnode, 247
tame fiber, 366
tangent sheaf, 162
relative, 30

Tate conjecture, 184, 213
Tate module, 213
ℓ-adic, 157, 161
crystalline, 173

Tate twist, 161
Tate’s algorithm, 409
Tate–Shafarevich group, 441, 442, 447,

448
tight closure, 82
topology
étale, 5, 142, 160
classical, 153
crystalline, 169
flat, 5, 142, 186
Zariski, 142

toroidal compactification, 592
torsor, 5, 47, 49

"?-torsor, 37
"L,0, 37
"L,0-torsor, 37
cyclic, 47
extension theorem, 6
index, 427
period, 426
purity, 6
separable index, 427
Weil–Châtelet group, 426

transcendental lattice, 159

Tropicalization
Enriques surface, 344
K3 surface, 344

Tsen’s Theorem, 201, 387, 428
tube domain, 588

unipotent group
height, 452
of genus 6, 453
quasi-elliptic, 453
wound, 376

universal coefficient formula, see co-
homology

upper half-plane, 585, 590
cusp, 591

vanishing theorem
for �-split varieties, 259
for Enriques surfaces, 261, 277
Grauert–Riemenschneider, 67
Kawamata-Viehweg, 259
Kodaira, 259
Ramanujam, 259

variety, 1
�-split, 234, 259
canonical sheaf, 25
cone, 90
dualizing sheaf, 25, 32
exact differential form, 49
Kähler differentials, 25, 51, 164,

166
Kodaira dimension, 200, 234
log differentials, 48
minimal degree, 90
non-degenerate, 90
ordinary, 168, 223, 235
plurigenus, 212
supersingular, 168, 184, 188
unirational, 210

vector bundle
Bogomolov unstable, 277
Bogomolov’s theorem, 277
geometric, 27
line bundle, 27
tautological section, 27
total space, 27



688 INDEX

vector field
?-closed, 53
divisor of, 58, 220
integral curve, 63
isolated zero, 58, 220
multiplicity, 58
non-divisorial zeros, 58
of additive type, 16, 53
of multiplicative type, 16, 53
quotient by, 52
rational, 52
resolution of singularities, 64, 89
singularity, 58

Verschiebung morphism, 14, 15
Vinberg’s criterion, 141

web of quadrics, 121
discriminant surface, 121

Weierstrass equation
discriminant, 399, 402
elliptic fibration, 398
elliptic fibration, ? = 3, 400
global, 398
local, 397
quasi-elliptic fibration, ? = 2, 401
quasi-elliptic fibration, ? = 3, 401

Weierstrass model, 396
Weil divisor, see divisor
Weil representation, 622
Weil restriction, 19, 437
Weil–Châtelet group, 426
Weyl group, 132
affine, 137
length function, 135
of an Enriques surface, 240, 264,

274
order, 138

wild fiber, see fibration
Witt ring, see Witt vectors
Witt vectors, 13, 15, 21, 168

F-crystal, 171
Cartier–Dieudonné module, 15
Dieudonné ring, 15
Frobenius, 14
local cohomology group, 85

Serre’s cohomology, 168
Verschiebung, 14

Wu’s formula, 159

Zariski decomposition, 256
Zariski singularity, 415
Zariski surface, 62, 210
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