
Kummer Surfaces:
200 Years of Study
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The fascinating story about the Kummer surface starts from
the discovery by Augustin-Jean Fresnel in 1822 of the equa-
tion describing the propagation of light in an optically
biaxial crystal [Fre]. Biaxial crystals are an example of
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material where double refraction occurs: a ray of light
splits into two, traveling at the same speed along different
paths. The speed of light may depend on the coordinates
𝑥 = (𝑥1, 𝑥2, 𝑥3) of a point and the unit direction vector
𝜉 = (𝜉1, 𝜉2, 𝜉3). The propagation of light is described by
the speed 𝑣(𝑥, 𝜉) at 𝑥 in the direction 𝜉. We say that the
matter is homogeneous if 𝑣 does not depend on 𝑥 and we
say that it is isotropic if it does not depend on 𝜉. For exam-
ple, while a student, James Maxwell described a lens that
reminded him of the eyes of a fish. Through his fish eye,
he found that light is inhomogeneous but isotropic, bend-
ing in arcs whose shape depends on where they start and
converging to a single point.

NOVEMBER 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1527



Figure 1. Augustin-Jean Fresnel.

A biaxial crystal gives an example of homogeneous but
anisotropic propagation. Fresnel found the equation of
the propagation of light in such a crystal to be of the form:

𝜉21
𝑎−21 − 𝑣−2

+ 𝜉22
𝑎−22 − 𝑣−2

+ 𝜉23
𝑎−23 − 𝑣−2

= 0, (1)

where 𝑎1, 𝑎2, 𝑎3 are constants describing the property of
the crystal (principal refraction indices). By substituting
(𝑧1, 𝑧2, 𝑧3) = 𝑣(𝜉1, 𝜉2, 𝜉3), one can rewrite the previous
equation as

𝑎21𝑧21
𝑧21 + 𝑧22 + 𝑧23 − 𝑎21

+ 𝑎2𝑧22
𝑧21 + 𝑧22 + 𝑧2 − 𝑎22

+ 𝑎3𝑧23
𝑧21 + 𝑧22 + 𝑧23 − 𝑎23

= 0.

After clearing the denominators and homogenizing, we
find an equation of a quartic surface in ℙ3. In 1833 Sir
William Hamilton discovered that the surface has four real
singular points

(±𝑎3√
𝑎21 − 𝑎22
𝑎21 − 𝑎23

, 0, ±𝑎1√
𝑎22 − 𝑎23
𝑎21 − 𝑎23

, 1)

and also four real planes 𝛼𝑥+𝛽𝑦+𝛾𝑧+𝑤 = 0 that cut out
the surface along a conic (trope-conics), where

(𝛼, 𝛽, 𝛾, 1) = (±𝑎3
𝑎22√

𝑎21 − 𝑎22
𝑎21 − 𝑎23

, 0, ±𝑎1
𝑎22√

𝑎22 − 𝑎23
𝑎21 − 𝑎23

, 1)

[Ham37, p. 134]. In fact, as we shall see later, over ℂ, it
has additionally 12 nodes and 12 trope-conics.

In 1849 Arthur Cayley proved that Fresnel’s wave surface
is a special kind of a tetraedroid quartic surface. The latter
is characterized by the following property. There are four

Figure 2. Sir William Hamilton.

planes forming a tetrahedron such that each plane cuts out
the surface along a pair of conics. The three vertices of the
tetrahedron are conjugate with respect to the two conics
lying in the face of the tetrahedron they span. Moreover
16 intersection points of four pairs of conics are singular
points of the surface. Cayley also discovered an important
property of tetraedroid quartic surfaces: they are projec-
tively self-dual (or reciprocal). Wave surfaces were the sub-
ject of study for many famous mathematicians of the 19th
century.

Among them were A. Cauchy, J. Darboux, J. MacCul-
lagh, J. Sylvester, and W. Hamilton (see [Lor96, pp. 114–
115]). A nice modern exposition of the theory of Fresnel’s
wave surfaces can be found in [Knö86].

Projective equivalence classes of Fresnel’s wave surfaces
depend on two parameters and as we shall see momen-
tarily, these are examples of Kummer surfaces which are
determined by three parameters.

In 1847Adolph Göpel, using the transcendental theory of
theta functions, had found a relation of order four between
theta functions of second order in two variables that ex-
presses an equation of a general Kummer surface [Göp47].
To give Göpel’s equation, we next briefly discuss theta func-
tions.

Let 𝑇 = ℂ𝑔/Λ be a compact 𝑔-dimensional torus, the
quotient of ℂ𝑔 by the group of translations Λ isomor-
phic to ℤ2𝑔. There are no nonconstant holomorphic func-
tions on 𝑇 because it is a compact complex manifold; in-
stead one considers nonzero holomorphic sections of a
holomorphic line bundle 𝐿 on 𝑇. For general Λ no line

1528 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 10



Figure 3. Arthur Cayley.

bundle has enough sections to embed 𝑇 into a projective
space, i.e., 𝑇 does not admit a structure of a projective alge-
braic variety. However, in 1857 Bernard Riemann found
a condition on Λ such that 𝑇 admits a line bundle 𝐿 with
dimΓ(𝑇, 𝐿𝑛) = 𝑛𝑔 and whose sections embed 𝑇 onto a pro-
jective space. Such complex tori are now called principally
polarized abelian varieties. They depend on

1
2
𝑔(𝑔 + 1) com-

plex parameters. Holomorphic sections of 𝐿𝑛 can be lifted
to holomorphic functions on ℂ𝑔 that are Λ-invariant up
to some multiplicative factor. They are called theta func-
tions of order 𝑛. For 𝑛 = 1, such a holomorphic func-
tion is the famous Riemann theta function Θ(𝑧, Λ). One
can modify Riemann’s expression for Θ(𝑧, Λ) to include
some parameters which are elements (𝑚,𝑚′) of the group
(ℤ/𝑛ℤ)𝑔 ⊕ (ℤ/𝑛ℤ)𝑔, called theta characteristics. They gen-
erate the linear space Γ(𝑇, 𝐿𝑛).

An example of a principally polarized abelian variety is
the Jacobian variety Jac(𝐶) of a Riemann surface 𝐶 of genus
𝑔. Here Λ is spanned by vectors 𝑣𝑖 = (∫𝛾𝑖 𝜔1, … , ∫𝛾𝑖 𝜔𝑔) ∈
ℂ𝑔, 𝑖 = 1, … , 2𝑔, where (𝜔1, … , 𝜔𝑔) is a basis of the linear
space of holomorphic differential 1-forms and (𝛾1, … , 𝛾2𝑔)
is a basis of 𝐻1(𝑇, ℤ).

Göpel was able to find a special basis (𝜃0, 𝜃1, 𝜃2, 𝜃3) in
the space Γ(Jac(𝐶), 𝐿2) ≅ ℂ4 such that the map

Φ ∶ 𝑇 → ℙ3, (𝑧1, 𝑧2) ↦ (𝜃0(𝑧) ∶ 𝜃1(𝑧) ∶ 𝜃2(𝑧) ∶ 𝜃3(𝑧))

satisfies Φ(−𝑧1, −𝑧2) = Φ(𝑧1, 𝑧2) and its image 𝑋 is the set

Figure 4. Ernst Kummer.

of zeros in ℙ3 of a quartic polynomial

𝐹 = 𝐴(𝑥4 + 𝑦4 + 𝑧4 + 𝑤4) + 2𝐵(𝑥2𝑦2 + 𝑧2𝑤2)
+ 2𝐶(𝑥2𝑧2 + 𝑦2𝑤2) + 2𝐷(𝑥2𝑤2 + 𝑦2𝑧2) + 4𝐸𝑥𝑦𝑧𝑤,

where the coefficients (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) satisfy a certain ex-
plicit equation in terms of theta constants, the values of
theta functions at 0. The images of 16 two-torsion points
𝜖 ∈ 1

2
Λ/Λ ∈ ℂ2/Λ are singular points of𝑋 . The Abel-Jacobi

map 𝐶 → Jac(𝐶), 𝑥 ↦ (∫𝑥
𝑥0 𝜔1, ∫

𝑥
𝑥0 𝜔2) mod Λ embeds 𝐶

into Jac(𝐶) and the images of the curves𝐶+𝜖 = {𝑐+𝜖, 𝑐 ∈ 𝐶}
are the 16 trope-conics of 𝑋 .

In 1864 Ernst Kummer had shown that 16-nodal quar-
tic surfaces depend on three complex parameters and Fres-
nel’s wave surface represents only a special case of these
quartic surfaces. Kummer proved that such surfaces con-
tain 16 trope-conics which together with 16 nodes form
an abstract incidence configuration (166) (this means that
each node lies on six trope-conics and each trope-conic
contains six nodes) [Kum64]. Kummer shows that any 16-
nodal quartic surface has a tetrahedron with conic-tropes
in the faces intersecting at two points on the edges. More-
over, he proved that no vertex can be a node. From this he
deduced that there exists a quadric surface that contains
the four trope-conics. Using this observation, he found an
equation of a general Kummer surface of the form

(𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 + 𝑎(𝑥𝑦 + 𝑧𝑤) + 𝑏(𝑥𝑧 + 𝑦𝑤)

+𝑐(𝑥𝑤 + 𝑦𝑧))2 + 𝐾𝑥𝑦𝑧𝑤 = 0,
where 𝑥𝑦𝑧𝑤 = 0 is the equation of a chosen tetrahedron
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Figure 5. Carl Borchardt.

and 𝐾 = 𝑎2 + 𝑏2 + 𝑐2 − 2𝑎𝑏𝑐 − 1. Since then any 16-nodal
quartic surface became known as a Kummer quartic surface.

It took almost 30 years since Göpel’s discovery to real-
ize that the Göpel equation, after a linear change of vari-
ables, can be reduced to a Kummer equation. This was
done by Carl Borchardt in 1877 [Bor77]. In fact, Göpel’s
discovery leads to a modern definition of the Kummer sur-
face and its higher-dimensional version, the Kummer va-
riety. One considers any 𝑔-dimensional complex torus 𝑇
and divides it by the involution 𝑧 ↦ −𝑧; the orbit space is
called the Kummer variety of 𝑇 and is denoted by Kum(𝑇).
It was shown by Andre Weil that 𝑇 has always a structure of
a Kähler manifold. If 𝑇 admits an embedding into a pro-
jective space, then Kum(𝑇) is a projective algebraic variety
with 22𝑔 singular points. Moreover, if 𝑇 is a principally
polarized abelian variety, for example the Jacobian variety
of a genus 𝑔 algebraic curve, one can embed Kum(𝑇) into
the projective space ℙ2𝑔−1 to obtain a self-dual subvariety
of degree 2𝑔−1𝑔! with 22𝑔 singular points and 22𝑔 trope hy-
perplanes. If 𝑔 ≥ 3, each intersects it with multiplicity 2
along a subvariety isomorphic to the Kummer variety of a
(𝑔 − 1)-dimensional principally polarized abelian variety.

There is also a generalized Kummer variety of complex di-
mension 2𝑟 introduced by Arnaud Beauville in 1983. It is
a nonsingular compact holomorphic symplectic manifold
birationally isomorphic to the kernel of the addition map
𝐴(𝑟+1) → 𝐴, where 𝐴 is an abelian variety of dimension 2
and 𝐴(𝑟+1) = 𝐴𝑟/𝔖𝑟+1 is its symmetric product. The family
of such surfaces is one of a few known examples of com-
plete families of compact holomorphic symplectic mani-
folds of dimension 2𝑟.

Figure 6. Felix Klein.

The first book entirely devoted to Kummer surfaces
that combines geometric, algebraic, and transcendental ap-
proaches to their study was published by Ronald Hudson in
1905 [Hud05].

As I understand, Kummer’s interest in 16-nodal quar-
tic surfaces arose from his pioneering study of two-
dimensional families (congruences) of lines in ℙ3. They
are naturally parameterized by irreducible surfaces in the
Grassmann variety𝐺1(ℙ3) of lines in ℙ3. In [Kum66] Kum-
mer gives a classification of quadratic line congruences
(i.e., congruences of lines such that through a general point
𝑥 ∈ ℙ3 passes exactly two lines from the congruence). Let
𝑛 be the class of the congruence, i.e., the number of lines
of the congruence that lie in a general plane. Kummer had
shown that 2 ≤ 𝑛 ≤ 7 and when 𝑛 = 2 all the lines are
tangent to a Kummer quartic surface at two points. There
are six congruences like that whose lines are tangent to the
same Kummer surface.

In 1870, Felix Klein in his dissertation develops a beau-
tiful relationship between the Kummer surfaces and qua-
dratic line complexes [Kle70]. A quadratic line complex
is the intersection 𝑋 = 𝐺 ∩ 𝑄 of the Grassmann quadric
𝐺 = 𝐺1(ℙ3) in the Plücker space ℙ5 with another quadric
hypersurface. For any point 𝑥 ∈ ℙ3 the set of lines pass-
ing through 𝑥 is a plane 𝜎𝑥 contained in 𝐺. Its intersection
with 𝑋 is a conic. The locus of points 𝑥 such that this conic
becomes reducible is the singular surface of the complex,
and Klein had shown that it is a Kummer surface if the in-
tersection 𝐺 ∩ 𝑄 is transversal. Its 16 nodes correspond to
points where 𝜎𝑥 ∩ 𝑋 is a double line. In fact, Klein shows
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that the set of lines in 𝑋 is parameterized by the Jacobian
of 𝐶, Jac(𝐶), where 𝐶 is the Riemann surface of genus 2,
the double cover of ℙ1 realized as the pencil of quadrics
spanned by 𝐺 and 𝑄 ramified along six points correspond-
ing to six singular quadrics in the pencil. The Kummer
surface is isomorphic to Kum(Jac(𝐶)). By a simultaneous
diagonalization of quadrics 𝐺 and 𝑄, Klein shows that the
Kummer surface admits a birational nonsingular model as
a complete intersection of three quadrics

6
∑
𝑖=1

𝑥2𝑖 =
6
∑
𝑖=1

𝑎𝑖𝑥2𝑖 =
6
∑
𝑖=1

𝑎2𝑖 𝑥2𝑖 = 0,

where 𝑦2 = (𝑥−𝑎1)⋯ (𝑥−𝑎6) is the genus 2 Riemann sur-
face𝐶 from above. Instead of 16 nodes and 16 trope-conics
we now have two sets of 16 skew lines that form an abstract
incidence configuration (166) isomorphic to the Kummer
configuration of 16 nodes and 16 trope-conics. Klein also
shows that Fresnel’s wave surface is characterized by the
condition that 𝐶 is bielliptic, i.e., it admits an involution
with quotient an elliptic curve. By degenerating the qua-
dratic complex to a tetrahedral quadratic complex one ob-
tains Cayley’s tetraedroid quartic surface. In Göpel’s equa-
tion of a Kummer surface from above this corresponds to
vanishing of the coefficient 𝐸. Jessop’s book [Jes03] gives
an exposition of the works of Kummer and Klein on the re-
lationship between line geometry and Kummer surfaces.

Klein’s equations of a Kummer surface exhibit obvi-
ous symmetry defined by changing signs of the variables.
These symmetries generate an elementary abelian 2-group
25, the direct sum of five copies of the cyclic group of or-
der 2. The quartic model also admits 16 involutions 𝑡𝑖 de-
fined by the projection from the nodes 𝑝𝑖 (take a general
point 𝑥, join it with the node 𝑝𝑖, and then define 𝑡𝑖(𝑥) to be
the residual intersection point). They are birational trans-
formations, i.e., defined by an invertible rational change
of variables which may be not defined on some locus of
zeros of a finite set of polynomials. In 1886 Klein asked
whether the group of birational automorphisms Bir(𝑋) of
a (general) Kummer surface is generated by the group 25
and the projection involutions [Kle86]. In the remainder,
we will discuss the progress on this problem.

In 1901 John Hutchinson, using the theory of theta func-
tions, showed that a choice of one of 60 Göpel tetrad of
nodes (means the tetrahedronwith the tetrad as its vertices
has no trope-conics on its faces ) leads to an equation of
the Kummer surface of the form

𝑞(𝑥1𝑥2 + 𝑥3𝑥4, 𝑥1𝑥3 + 𝑥2𝑥4, 𝑥1𝑥4 + 𝑥2𝑥3) + 𝑐𝑥1𝑥2𝑥3𝑥4 = 0,

where 𝑞 is a quadratic form in three variables [Hut01]. He
observed that the transformation 𝑥𝑖 ↦ 1/𝑥𝑖 leaves this
equation invariant, and hence defines a birational involu-
tion of the Kummer surface.

Figure 7. John Hutchinson.

He proves that these 60 transformations generate an in-
finite discontinuous group. However, Hutchinson did not
address the question of whether adding these new trans-
formations to Klein transformations would generate the
whole group Bir(𝑋).

In 1850 Thomas Weddle, correcting a mistake of Michel
Chasles, noticed that the locus of singular points of
quadric surfaces passing through a fixed set of six general
points in ℙ3 is a quartic surface with singular points at the
six points [Wed50]. It contains 15 lines joining pairs of
the points and the unique twisted cubic curve through the
six nodes (it seems that Chasles asserted that there is noth-
ing else except the twisted cubic). Different equations of
the Weddle surface were given by Arthur Cayley in 1861,
Carl Hierholzer in 1871, and Eugen Hunuady in 1882. The
simplest equation was given later by F. Caspari [Cas91]:

det
⎛
⎜
⎜
⎝

𝑎𝑎′𝑦𝑧𝑤 𝑥 𝑎 𝑎′
𝑏𝑏′𝑥𝑧𝑤 𝑦 𝑏 𝑏′
𝑐𝑐′𝑥𝑦𝑤 𝑧 𝑐 𝑐′
𝑑𝑑′𝑥𝑦𝑧 𝑤 𝑑 𝑑′

⎞
⎟
⎟
⎠

= 0.

Here the six points are the points (1 ∶ 0 ∶ 0 ∶ 0), (0 ∶
1 ∶ 0 ∶ 0), (0 ∶ 0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 0 ∶ 1) and two
points with coordinates given in the last two columns of
the matrix. It is immediate to see that, after change of vari-
ables 𝑥 = 𝑎𝑎′𝑥′, 𝑦 = 𝑏𝑏′𝑦′, 𝑧 = 𝑐𝑐′𝑧, 𝑤 = 𝑑𝑑′𝑤′, the same
inversion transformation used by Hutchinson leaves the
Weddle surface invariant.

In 1889 Friedrich Schottky, using the theory of theta func-
tions, proved that a Weddle surface is birationally isomor-
phic to a Kummer surface [Sch89].
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Figure 8. Friedrich Schottky.

This implies that the groups of birational automor-
phisms of a Weddle surface and a Kummer surface are
isomorphic. For example, in 1911 Virgil Snyder gave many
geometric constructions of involutions of the Weddle sur-
face that give corresponding involutions of the Kummer
surface.1 In a paper of 1914, Francis Sharpe and Clide Craig
pioneered the new approach to study birational automor-
phisms of algebraic surfaces based on Francesco Severi’s
Theory of the Base. It consists of representing an automor-
phism of an algebraic surface as a transformation of the
group of algebraic cycles on the surface. This gave an easy
proof of Hutchinson’s result that 60 Göpel-Hutchinson in-
volutions generate an infinite group.

The Hutchinson involutions act freely on a nonsingular
model of the Kummer surface and the quotient by these
involutions are special Enriques surfaces. Enriques surfaces
were discovered by Federigo Enriques in 1894 and, together
with K3 surfaces, now occupy an important role in the
theory of algebraic surfaces. In their paper of 2013 un-
der the title “Enriques surfaces of Hutchinson-Göpel type
and Mathieu automorphisms” Shigeru Mukai and Hasinori
Ohashi study some finite groups of automorphisms of En-
riques surfaces.

John Hutchinson also discovered the following amaz-
ing fact. A tetrad of nodes is called a Rosenhain tetrad if
any three nodes in the tetrad lie on a trope-conic. A We-
ber hexad is the symmetric sum of a Göpel tetrad and a
Rosenhain tetrad. Hutchinson proves that the linear sys-
tem of quadric surfaces through aWeber hexad of nodes on
a Kummer surface defines a birational isomorphism to the

1John Hutchinson, Virgil Snyder, Francis Sharpe, and Clide Craig were on the
faculty of the Cornell Mathematics Department.

Hessian surface of a nonsingular cubic surface
𝐹3(𝑥, 𝑦, 𝑧, 𝑤) = 0 (the Hessian surface defined by the Hes-
sian matrix of 𝐹3(𝑥, 𝑦, 𝑧, 𝑤)) [Hut00]. The Hessian surface
can also be defined as the locus of singular polar quadrics
of the surface (quadrics given by linear combinations of
partial derivatives of 𝐹3). The rational map that assigns to
a singular quadric its singular point defines a fixed-point-
free involution on a nonsingular model of the Hessian
surface with quotient isomorphic to an Enriques surface.
There are 192 Weber hexads, each defines a birational in-
volution of a Kummer surface, called theHutchinson-Weber
involution. The automorphism groups as well as complex
dynamics of the Hessian quartic surfaces are the subjects
of study of several recent papers.

It is not surprising that none of the classical geometers
could decide whether a given finite set of birational trans-
formations generates the group Bir(𝑋) of birational auto-
morphisms of 𝑋 . It had to wait until the end of the century
for new technical tools to arrive.

A nonsingular birational model of a Kummer surface is
an example of a K3 surface. By definition, a K3 surface 𝑌
is a compact analytic simply connected surface with trivial
first Chern class 𝑐1(𝑌). Its second Betti number is equal
to 22. By a theorem of John Milnor, its homotopy type is
uniquely determined by the quadratic form expressing the
cup-product on𝐻2(𝑌, ℤ) ≅ ℤ22. It is a unique unimodular
even quadratic lattice of signature (3, 19) isomorphic to the
orthogonal sum of two copies of the even rank 8 negative
definite unimodular lattice 𝐸8(−1) and three copies of the
integral hyperbolic plane 𝑈. All K3 surfaces are diffeomor-
phic and realize the homotopy type defined by this lattice.
Any complex K3 surface admits a Kähler metric and, by
Yau’s theorem, it also admits a Ricci-flat metric. It is not
known how to write it explicitly (a problem of great im-
portance for physicists). The Kummer surface is flat in this
metric outside the singular points, but still one does not
know how to extend this flat metric to a Ricci-flat metric
on 𝑌 .

The quadratic lattice of cohomology𝐻2(𝑌, ℤ) of an alge-
braic K3 surface contains a sublattice 𝑆𝑌 = 𝐻2(𝑌, ℤ)𝑎𝑙𝑔 ≅
ℤ𝜌 of algebraic 2-cycles. It contains 𝑐1(𝐿), where 𝐿 is an am-
ple line bundle. The signature of 𝑆𝑌 is equal to (1, 𝜌 − 1)
and, in general, it is not a unimodular lattice. The group
Bir(𝑋) is isomorphic to the group Aut(𝑌) of biregular au-
tomorphisms of 𝑌 and it admits a natural representation
𝜌 ∶ Aut(𝑌) → O(𝐻2(𝑌, ℤ)) in the orthogonal group of
𝐻2(𝑌, ℤ) that leaves 𝑆𝑌 invariant.

The fundamental Global Torelli Theorem for K3 sur-
faces of Ilya I. Pyatetsky-Shapiro and Igor R. Shafarevich (its
original proof relies heavily on the theory of Kummer sur-
faces) allows one to describe the image of homomorphism
𝜌 as the set of all isometries of 𝐻2(𝑌, ℤ) that leave (af-
ter complexification) 𝐻2,0(𝑌, ℂ) invariant and also leave
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invariant the semi-group of cohomology classes of holo-
morphic curves on𝑌 . The group of automorphisms Aut(𝑌)
acts naturally on the lattice 𝑆𝑌 and on the hyperbolic space
ℍ𝜌−1 associated with the linear space 𝑆𝑌 ⊗ℝ of signature
(1, 𝜌 − 1). In this way it is realized as a discrete group of
motions of a hyperbolic space. By using an isometric em-
bedding of 𝑆𝑌 into the unimodular even lattice 𝐼𝐼1,25 of
signature (1, 25) isomorphic to the orthogonal sum of the
Leech lattice and the hyperbolic plane 𝑈, Richard Borcherds
introduced a method that in several cases allows one to
compute the automorphism group of a K3 surface using
the isometries of 𝐼𝐼1,25 defined by the reflections into Leech
roots. In 1998, based on Borcherds’ ideas, Shigeyuki Kondo
proved that the group of birational automorphisms of a
general Kummer surface (i.e., the Jacobian surface of a gen-
eral curve of genus 2) is generated by the group 25, 16
projection involutions, 60 Hutchinson-Göpel involutions,
and 192 Hutchinson-Weber involutions.2 The group of bi-
rational automorphisms of an arbitrary Kummer surface is
still unknown.

For a modern exposition of the classical theory of Kum-
mer surfaces, we refer the reader to [Dol12]. I apologize
for omitting, because of the brevity of the article, many
important contributions to the study of Kummer surfaces
by various mathematicians in the past and in the present.
Note that a search of the title “Kummer surface” in the data
base ofMathSciNet gives 132 items (72 of them in this cen-
tury).
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C. R. Hébdomadaires Acad. Sci. Paris 112 (1891), 1356–
1359.

[Dol12] Igor V. Dolgachev, Classical algebraic geometry. a mod-
ern view, Cambridge University Press, Cambridge, 2012.
MR2964027

[Fre] A. Fresnel, Oeuvres compl‘etes d’Augustin Fresnel, Im-
primerie Impériale, Paris. 1866, par M. M. Henri de San-
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