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Introduction

This book is an extended version of lecture notes of the first-named author for a short course lectures
at the University of Milan in February, 2014. The goal was to provide an introduction to the theory
of endomorphisms of complex abelian varieties with an emphasis on the geometric aspects of theory
related to classical algebraic geometry and the theory of K3 surfaces. The fruitful collaboration with
the second-named author allowed us to clean the notes of numerous inaccuracies, add more factual
material add some arithmetical aspects of the theory.

There are numerous expositions of the theory of abelian varieties, a book of Mumford [126] being
the best example. Most of them include the theory of abelian varieties as a separate chapter. The
novelty of our exposition is to provide an elementary self-contained and more detailed introduction
to this subject as well as to provide some new results and many examples relating this theory to
other objects of study in algebraic geometry like K3 surfaces, curves of low genus, and del Pezzo
surface.

The following is the contents of the book. In Chapter 1, we give the basic facts about complex tori
and complex abelian varieties and discuss the question of the fields of the definition for them,

In Chapter 2, we discuss the algebras of endomorphisms of a complex abelian varieties and their
linear representations on the subgroup of l-torsion points. We also give an introduction to the theory
of central simple finite-dimensional algebras.

In Chapter 3, we specialize in the case of one-dimensional abelian varieties, elliptic curves. In
particular, we discuss elliptic curves with complex multiplication and the conditions for the non-
existence of an isogeny between them. We also discuss the conditions for an abelian variety to be
isogenous to the product of elliptic curves.

In Chapter 4, we discuss Humbert’s condition on the period matrix of an abelian surface for its
endomorphism algebra containing a real quadratic algebra over Q. Such abelian varieties can be
parameterized by a complex surface known as a Humbert surface. We discuss two types of such
surfaces corresponding to whether the discriminant of the Humbert singular equation is square or
not.

In Chapter 5, we discuss abelian surfaces whose algebra of endomorphisms contains an indefinite
quaternion algebra. They are also known as fake elliptic curves because their moduli space is
isomorphic to the quotient of the upper half-plane by a discrete group. We give several explicit
examples of such abelian surfaces.

vii



viii INTRODUCTION

In Chapter 6, we relate the theory of abelian surfaces and K3 surfaces. The simplest example of the
relationship is the fact that quotient of an abelian surface by its negation involution is birationally
isomorphic to a K3 surface. We give a brief introduction to the theory of periods that is used to
construct the moduli space of K3 surfaces with a given structure of their Picard lattice. We explain
the isomorphism between the moduli space of abelian surfaces with polarization of degree n and
the moduli space of K3 surfaces with the lattice polarization of a certain type depending on n. In
particular, we discuss some explicit examples of moduli spaces of lattice polarized K3 surfaces that
are isomorphic to Humbert surfaces.

In Chapter 7, we discuss the moduli space of principally polarized abelian surfaces with level
two structures. By a theorem of Igusa, this moduli space admits a compaticfication isomorphic to
a hypersurface of degree four in P4 with an explicit S6-invariant equation. The hypersurface was
known classically as the Castelnuovo quartic three-fold and its projectively dial hypersurface is the
famous Segre cubic hypersurface with the maximal number of ordinary singular points. We discuss
some surfaces related to Humbert surfaces.

In Chapter 8, we discuss abelian varieties isomorphic to the Jacobian variety of a smooth projective
algebraic curve of genus three. The canonical model of such a curve is a plane quartic curve. We
discuss the geometry of such curves that admit a biregular involution. The cyclic cover of the
projective plane of degree four ramified along a a smooth quartic curve is a quartic K3 surface.
We discuss the geometry of quartic curves with some On the other hand, the double cover of the
projective plane ramified along a quartic curves is a rational del Pezzo surface of degree 2. We give
a brief introduction to the theory of del Pezzo surfaces and find the explicit condition on the del
Pezzo surface in order the endomorphism ring of the Jacobian is isomorphic to Z.

In Chapter 9, we give a brief introduction to the theory of Shimura varieties that serve as the moduli
spaces of abelian varieties with the given structure of its algebra of automorphisms. In particular,
we discuss the Mumford-Tate groups and abelian varieties with complex multiplication.

In Chapter 10, we discuss abelian varieties which are isomorphic to the Jacobian varieties of
genus g curves. The algebra endomorphisms of such an abelian varieties can be described in terms
of the algebra of correspondences on the curve. We find a condition on the curve for the algebra of
endomorphisms of its Jacobian variety to be isomorphic to Z.

Finally, in the last Chapter 11, we discuss the subvarieties of the moduli space of abelian vari-
eties with fixed polarization that contain a Zariski dense subset parametrizing abelian varieties with
complex multiplication.

We do not discuss results of Faltings [50,51,53] related to the Tate conjecture on homomorphisms
of abelian varieties in characteristic zero - there are several excellent books that discuss this topic in
details [31, 52, 163] as well as a survey article [177]. (See also [36, Sect. 4.4] and [14, 49, 186, 187,
192].)

The first-named author expresses his gratitude to Professor Bert van Geemen for giving him the
opportunity to give the course of lectures on endomorphisms of abelian varieties at the University
of Milan. He also thanks the audience for their active involvement with the lectures by correcting
inaccuracies and asking challenging questions.

The second named author was partially supported by the Simons Foundation Collaboration grant #



ix

585711. Part of this work was done in January–May 2022 and December 2023 during his stay at the
Max-Planck Institut für Mathematik (Bonn, Germany), whose hospitality and support are gratefully
acknowledged.
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Chapter 1

Complex Abelian Varieties

The main references here are to the book [106], [34], [88], [126]. For convenience for a reader, we
will briefly remind the basic facts and fix the notations.

1.1 Compact Complex Tori

Let A = V/Λ be a complex torus of dimension g over C. Here V is a complex vector space of
dimension g > 0 and Λ is a discrete subgroup of V of rank 2g.1 The tangent bundle of A is trivial;
it is naturally isomorphic to A × V . Thus, the complex space V is naturally isomorphic to the
tangent space of A at the origin, or to the linear space of holomorphic vector fields Θ(A) on A. It
is also isomorphic to the universal cover of A. The group Λ can be identified with the fundamental
group of A that coincides with H1(A,Z). The dual linear space V ∨ is naturally isomorphic to the
linear space Ω1(A) of holomorphic differential 1-forms on A. The map:

α : Λ = H1(A,Z)→ Ω1(A)∗ = V, α(γ) : ω 7→
∫
γ
ω,

can be identified with the embedding of Λ in V . Let (γ1, . . . , γ2g) be a basis of Λ and let (ω1, . . . , ωg)
be a basis of V ∨. The map H1(A,Z)→ V is given by the matrix:

Π =


∫
γ1
ω1

∫
γ2
ω1 . . .

∫
γ2g

ω1∫
γ1
ω2

∫
γ2
ω2 . . .

∫
γ2g

ω2

...
...

...
...∫

γ1
ωg

∫
γ2
ωg . . .

∫
γ2g

ωg

 , (1.1)

called the period matrix of A. The columns of the period matrix are the coordinates of γ1, . . . , γ2g

in the dual basis (e1, . . . , eg) of the basis (ω1, . . . , ωg), i.e. a basis of V . The rows of the period
matrix are the coordinates of (ω1, . . . , ωg) in terms of the dual basis (γ∗1 , . . . , γ

∗
2g) of H1(A,C).

1A subgroup Γ of V is discrete if for any compact subset K of V the intersection K ∩ Γ is finite, or, equivalently, Γ
is freely generated by r linearly independent vectors over R, the number r is the rank of Γ.

1



2 CHAPTER 1. COMPLEX ABELIAN VARIETIES

Let W = ΛR := Λ⊗Z R. We can view W as the vector space V considered, by the restriction of
scalars, as a real vector space of dimension 2g. A complex structure on V is defined by an R-linear
operator I : W → W satisfying I2 = −1. The complex linear space WC := W ⊗R C decomposes
into the direct sum Vi ⊕ V−i of eigensubspaces with eigenvalues ±i. Obviously, V−i = V̄i. We can
identify Vi with the subspace {w−iI(w), w ∈W}, and V−i with the subspace {w+iI(w), w ∈W}
(since I(w ± iI(w)) = I(w) ∓ iw = ∓i(w ± iI(w))). The map Vi → V,w − iI(w) 7→ w, is an
isomorphism of complex linear spaces. Thus, a complex structure V = (W, I) on W defines a
decomposition WC = V ⊕ V̄ .

Since a complex torus of dimension g is diffeomorphic to the product of 2g circles, for any abelian
group G of coefficients, we have an isomorphism

Hn(A,G) ∼=
n∧
H1(A,G).

In particularly, we have an isomorphism

Hn(A,Z) ∼=
n∧
H1(A,Z) =

n∧
Λ∨.

The linear space V (resp. V̄ ) can be identified with the holomorphic part T 1,0 (resp. anti-
holomorphic part T 0,1) of the complexified tangent space of the real torus W/Λ at the origin.
Passing to the duals, and using the De Rham Theorem, we get the Hodge decomposition

H1
DR(A,C) ∼= H1(A,C) = W∨C = H1,0(A)⊕H0,1(A), (1.2)

where H1,0(A) = Ω1(A) = V ∨ (resp. H0,1(A) = V̄ ∗) is the linear space of holomorphic (resp.
anti-holomorphic) differential 1-forms on A. Note that H1,0(A) embeds in H1(A,C) by the map
that assigns to ω ∈ Ω1(A) the linear function γ 7→

∫
γ ω. If we choose the bases (γ1, . . . , γ2g)

and (ω1, . . . , ωg) as above, then H1,0 is a subspace of H1(A,C) spanned by the vectors ωj =∑2g
i=1 aijγ

∗
i , where (γ∗1 , . . . , γ

∗
2g) is the dual basis in H1(A,C), and (aij) is equal to the transpose

tΠ of the period matrix (1.1).

The complex cohomology group Hn(A,C) admits the Hodge decomposition:

Hn(A,C) ∼=
⊕
p+q

Hq(A,Ωp
A), (1.3)

where Ωq
A is the head of holomorphic p-forms, and

Hq(A,Ωp
A) ∼=

p∧
V ⊗

q∧
V ∨. (1.4)

A complex torus is a Kähler manifold, a Kähler form Ω is defined by a Hermitian positive definite
form H on V . In complex coordinates z1, . . . , zg on V , the Kähler metric is given by

∑
hijziz̄j ,

where (hij) is a positive definite Hermitian matrix. The Kähler form Ω of this metric is equal
i
2

∑
hijdzj ∧ d̄zi. Its cohomology class [Ω] in the De Rham cohomology belongs to H2(A,R).
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Let Pic(A) be the group of isomorphisms of holomorphic line bundles on A. One can describe
it by means of the Appel-Humbert data attached to (V,Λ). It is a pair (H,χ) that consists of an
Hermitian form H : V × V → C such that

Im(H)(Λ,Λ) ⊂ Z (1.5)

and a semi-character χ : Λ→ U(1) of Λ, i.e. a map

χ : Λ→ U(1) := {z ∈ C, |z| = 1}

satisfying
χ(λλ′) = χ(λ)χ(λ′)eπiIm(H(λ,λ′)). (1.6)

Combining (1.5) and (1.6), we obtain that, for all λ, λ′ ∈ Λ,

χ(λλ′) = ±χ(λ)χ(λ′). (1.7)

(Notice that if H ≡ 0, a semi-character χ : Λ → U(1) is a group homomorphism, i.e., a character
of Λ.)

If H is a Hermitian form on V that enjoys property (1.5), then there exists a semi-character χ :
Λ → U(1) such that (H,χ) is an A.-H. data. If (H ′, χ′) is another A.-H. data for V , then both
(H + H ′, χχ′) and (H −H ′, χ/χ′) are also A.-H. datas. In other words, the set of all A.-H. datas
attached to (V,Λ) carries the natural structure of a commutative group where the identity element
is the pair (0,1) where 1 : Λ→ {1} ⊂ U(1) is the constant map.

If H is an Hermitian form on V that enjoys property (1.5), then there exists a semi-character
χ : Λ → U(1) such that the pair (H,χ) is an A.H. data. The set of of such χ (for given H) is
obviously a torsor over the group Hom(Λ,U(1)) ∼= Hom(Λ,U(1))2g.

Each A.-H. data (H,χ) defines a holomorphic line bundle L = L(H,χ). It is defined to be the
quotient of the trivial holomorphic line bundle V × C by the free action of Λ:

λ : (v, z) 7→ (v + λ, eπH(v,λ)+π
2
H(λ,λ)χ(λ)z).

The projection map V × C → V is Λ-equivariant (here the subgroup Λ acts on V by translations)
and induces the structure of a holomorphic line bundle over V/Λ = A on L = L(H,χ).

Conversely, every holomorphic line bundle L on A = V/Λ becomes trivial (isomorphic to V ×C)
after pulling back to V and is isomorphic to L(H,χ) for precisely one A.H. data (H,χ) attached to
(V,Λ) (Theorem of Appel-Humbert). In order to find H , one should consider the first Chern class
of L, i.e., the corresponding alternating bilinear form

c1(L) ∈ H2(A,Z) = Hom(
2∧

Λ,Z).

Extending this bilinear form by R-linearity to ΛR = V , we get an alternating R-bilinear form

E : V × V → R.

It turns out that E coincides with the imaginary part of H .
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It follows that

Pic0(A) := Ker(c1 : Pic(A)→ H2(A,Z)) ∼= Hom(Λ,U(1)).

Notice that, for all u, v ∈ V,

H(u, v) = R(u, v) + iE(u, v)

and, therefore (multiplying it by i),

−E(u, v) + iR(u, v) = i
(
R(u, v) + iE(u, v)

)
=

iH(u, v) = H(iu, v) = R(iu, v) + iE(iu, v).

Comparing the real and imaginary parts, we obtain the real part of H:

R(u, v) = E(iu, v), H(u, v) = E(iu, v) + iE(u, v), ∀u, v ∈ V. (1.8)

On the other hand, since H is Hermitian, H(iu, iv) = H(u, v), i.e.,

R(iu, iv) = R(u, v), E(iu, iv) = E(u, v), ∀u, v ∈ V. (1.9)

Remark 1.1. Suppose that H ≡ 0 and (0, χ) is an A.H. data. Then, χ : Λ → U(1) is a group
homomorphism and L(H,χ) is the quotient of V × C modulo the following action of Λ:

(v, z) 7→ (v + λ, χ(λ)z) ∀v ∈ V, z ∈ C, λ ∈ Λ. (1.10)

Let us consider the principal C∗-bundle L(0, χ)∗ obtained from L(H,χ) by deleting the zero sec-
tion. Then, L(0, χ)∗ may be viewed as the quotient of the commutative complex Lie group V ×C∗
by its discrete subgroup

Λ̃ = {(λ, χ(λ)) | λ ∈ Λ} ⊂ V × C∗.

It carries the natural structure of the commutative complex Lie group that fits in the short exact
sequence:

1→ C∗ → L(0, χ)∗ → A→ 0

(see [188, Sect. 11]).

We say that A.H. data (H,χ) is a polarization of A if H is a positive-definite Hermitian form on
V . Two polarizations with the same Hermitian form are called equivalent. (Sometimes one calls a
polarization just a positive-definite Hermitian form H on V that enjoys property (1.5).)

The following conditions are obviously equivalent.

1. (H,χ) is a polarization.

2. The symmetric R-bilinear formR = Re(H) : V × V → R is positive-definite.

3. If E = Im(H), then, for any nonzero v ∈ V ,

E(iu, u) > 0.
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1.2 Abelian Varieties

A complex torusA is called an abelian variety if it admits a polarization. A holomorphic line bundle
L on A is called ample if L ∼= L(H,χ) where H is a polarization. It is known that L is ample if
and only if the holomorphic sections of some positive tensor power of L embed A in a complex
projective space. More precisely, L is ample if and only if the holomorphic sections of L⊗3 embed
A in a projective space (a theorem of Lefschetz) [127, p. 28].

Note that the Hermitian form H on can be uniquely reconstructed from the restriction of Im(H)
to Λ × Λ, first one extends it, by R-linearity, to a R-bilinear and R-valued symplectic form E on
W , and then checks that

H(x, y) = E(ix, y) + iE(x, y). (1.11)

In fact,

H(x, y) = R(x, y) + iE(x, y); R(x, y) = Re(H(x, y)), E(x, y) = Im(H(x, y))

implies
H(ix, y) = R(ix, y) + iE(ix, y) = iH(x, y) = iR(x, y)− E(x, y).

Hence, comparing the real and imaginary parts, we get R(x, y) = E(ix, y). Since H(x, y) =
H(ix, iy) and its real part is a positive definite symmetric bilinear form, we immediately obtain that
E satisfies

E(ix, iy) = E(x, y), E(ix, y) = E(iy, x), E(ix, x) > 0, x 6= 0. (1.12)

We say that a complex structure (W, I) on the real vector space W is polarized with respect to a
symplectic form E on W if E satisfies (1.12) (where ix := I(x)).

We can extend E to a Hermitian form HC on WC, first extending E to a skew-symmetric form
EC, by linearity, and then setting

HC(x, y) = 1
2 iEC(x, ȳ). (1.13)

Let x = a+ ib, y = a′ + ib′ ∈WC with a, b, a′, b′ ∈W .

We have

HC(a+ bi, a′ − ib′) = 1
2(−EC(b, a′) + EC(a, b′)) + 1

2 i(EC(a, a′) + EC(b, b′)).

The real part of HC is symmetric and the imaginary part of HC is alternating, so HC is Hermi-
tian. Also, by taking a standard symplectic basis e1, . . . , e2g of W with respect to E and a basis
(f1, . . . , fg, f̄1, . . . , f̄g) of WC, where fk = ek + iek+g, f̄k = ek − iek+g, we check that HC is of
signature (g, g).

Now, if x = w − iI(w), x′ = w′ − iI(w′) ∈ V ,

HC(x, x) = 1
2 iEC(w − iI(w), w + iI(w)) = E(I(w), w) > 0

and
EC(x, x′) = EC(w − iI(w), w′ − iI(w′))
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= EC(w,w′)− EC(I(w), I(w′))− i(EC(I(w), w′) + EC(w, I(w′)) = 0.

Thus, V = (W, I) defines a point in the following subset of the Grassmann variety G(g,WC) of
g-dimensional subspaces of WC:

G(g,WC)E := {V ∈ G(g,WC) : HC|V > 0, EC|V = 0}. (1.14)

It is obvious that V and V̄ are mutually orthogonal with respect to HC, and HC|V̄ < 0.

Conversely, let us fix a real vector space W of dimension 2g that contains a discrete lattice Λ of
rank 2g, so that W/Λ is a real torus of dimension 2g. Suppose we are given a symplectic form
E ∈

∧2W∨ on W . We extend E to a skew-symmetric form EC on WC, by linearity, and define
the Hermitian form of signature (g, g) by using (1.13).

Suppose V = (W, I) ∈ G(g,WC)E . It is immediate to check that EC(x̄, y) = EC(x, ȳ). Thus,
H(x̄, x̄) = −H(x, x) < 0. This implies that V ∩ V̄ = {0}, hence WC = V ⊕ V̄ . Now W =
{v + v̄, v ∈ V } and the complex structure I on W defined by I(w) = i(v− v̄) is isomorphic to the
complex structure on V via the projection W → V, v+ v̄ → v. It is easy to check that EC restricted
to W is equal to E, and E(I(w), w) > 0, E(I(w), I(w)) = E(w,w). We obtain that the set of
complex structures on W polarized by E is parameterized by (1.14).

The group Sp(W,E) ∼= Sp(2g,R) acts transitively on G(g,WC)E with the isotropy subgroup of
V isomorphic to the unitary group U(V,HC|V ) ∼= U(g). Thus,

G(g,WC)E ∼= Sp(2g,R)/U(g)

is a Hermitian symmetric space of type III in Cartan’s classification. Its dimension is equal to
g(g + 1)/2.

Remark 1.2. According to Elie Cartan’s classification of Hermitian symmetric spaces there are four
classical types I,II, III and IV and two exceptional types E6 and E7. We will see type IV spaces
later while discussing K3 surfaces, and we will see other classical types while discussing special
subvarieties of the moduli spaces of abelian varieties. It is not known whether the exceptional types
admit realizations as the moduli spaces of some geometric objects.

So far, we have forgotten about the lattice Λ in the real vector space W . The space G(g,WC)E
is the moduli space of complex structures on a real vector space W of dimension 2g which are
polarized with respect to a symplectic form E on W or, in other words, it is the moduli space of
complex tori equipped with a Kähler metric H defined by a symplectic form E = Im(H). Now, we
put an additional integrality condition by requiring that

Im(H)(Λ× Λ) ⊂ Z.

Recall that a skew-symmetric form E on a free abelian group of rank 2g can be defined, in some
basis, by a skew-symmetric matrix

JD =

(
0g D
−D 0g

)
,

where D is the diagonal matrix diag[d1, . . . , dg] where all di are positive integers with di|di+1, i =
1, . . . , g − 1. The sequence (d1, . . . , dg) defines the skew-symmetric form uniquely up to a linear
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isomorphism preserving the skew-symmetric form. In particular, ifE is non-degenerate, the product
d = d1 · · · dg is equal to the determinant of any skew-symmetric matrix representing the form. It is
called the degree of the polarization.

If H is a positive definite Hermitian form defining a polarization on A, the sequence (d1, . . . , dg)
defining Im(H)|Λ× Λ is called the type of the polarization.

The number dg is equal to the exponent of the abelian group Λ/ι(Λ), where ι : Λ→ Λ is defined
by the non-degenerate bilinear form =(H). It is denoted by e(L) and is called the exponent of the
polarization defined by an ample line bundle L.

A polarization is called primitive if gcd(d1, . . . , dg) = 1. It is called principal if its degree is equal
to 1.

Choose a basis γ = (γ1, . . . , γ2g) of Λ such that the matrix of the symplectic form E|Λ × Λ is
equal to the matrix JD.

We know that the matrix (E(iγa, γb))g+1≤a,b≤2g is positive definite. This immediately implies
that the 2g vectors γa, iγa, a = g + 1, . . . , 2g, are linearly independent over R, hence we may take
1
d1
γg+1, . . . ,

1
dg
γ2g as a basis (e1, . . . , eg) of V . It follows that the period matrix Π in this basis of V

and the basis (γ1, . . . , γ2g) of Λ is equal to a matrix (Z D). Write Z = X + iY , where X = Re(τ)
and Y = Im(τ) are real matrices. Then γk =

∑g
s=1 xkses+

∑
yksies, k = 1, . . . , g, and the matrix

of E on W = ΛR in the basis (e1, . . . , eg, ie1, . . . , ieg) of W is equal to

t

(
X D
Y 0

)−1

JD

(
X D
Y 0

)−1

= t

(
X D
Y 0

)−1

JD

(
0 Y −1

D−1 −D−1XY −1

)

=

(
0 −Y −1

tY −1 −tY −1(X − tX)Y −1

)
.

Since E(ei, ej) = E(iei, iej) = 1
didj

E(γg+i, γg+j) = 0 and (E(iei, ej)) is a symmetric positive
definite matrix, we obtain that Y is a symmetric positive definite matrix, and X is a symmetric
matrix. In particular, Z = X + iY is a symmetric complex matrix.

We have proved one direction of the following theorem.

Theorem 1.3 (Riemann-Frobenius conditions). A complex torus A = V/Λ is an abelian variety
admitting a polarization of type D if and only if one can choose a basis of Λ and a basis of V such
that the period matrix Π is equal to the matriz (τ D), where

tZ = Z, Im(Z) > 0.

We leave the proof of the converse to the reader.

Note that the matrix of the Hermitian form H in the basis e1, . . . , eg as above is equal to S =
(E(iea, eb)). Since

dbδab = E(γa, γg+b) =

g∑
k=1

E((xka + iyka)ek, dbeb)
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=

g∑
k=1

ykaE(iek, dbeb) =

g∑
k=1

E(ieb, dbek)yka = db

g∑
k=1

E(ieb, ek)yka,

we obtain that
S = Im(τ)−1. (1.15)

So, we see that we can choose a special basis (γ1, . . . , γ2g) such that the period matrix Π of A is
equal to (τ D), where τ belongs to the Siegel upper-half space of degree g

Hg := {Z ∈ Matn(C) : tZ = Z, Im(Z) > 0}.

Every abelian variety with a polarization of type D is isomorphic to the complex torus

A ∼= Cg/ZZg + DZg.

Note that Hg ∼= G(g,Cg)E , where E : R2g × R2g → R is a symplectic form defined by the matrix
D. However, the isomorphism depends on a choice of a special basis in R2g. One must view Hg
as the moduli space of polarized complex structures on a symplectic vector space W of dimension
2g equipped with a linear symplectic isomorphism R2n → W , where the symplectic form R2n is
defined by the matrix D.

Two such special bases are obtained from each other by a change of a basis matrix that belongs to
the group

Sp(JD,Z) = {X ∈ Sp(2g,Q) : X · JD · tX = JD}.

If X =

(
N1 N2

N3 N4

)
, where N1, N2, N3, N4 are square integer matrices of size g, then X ∈

Sp(JD,Z) if and only if

N1 · D · tN2 = N2 · Dt ·N1, N3 · D · tN4 = N4 · D · tN3, N1 · D · tN4 −N2 · D · tN3 = D.

Thus, we obtain that the coarse moduli space for the isomorphic classes of abelian varieties with
polarization of type D is isomorphic to the orbit space

Ag,D = Sp(JD,Z)\Hg.

The group Sp(JD,Z) acts on Hg by

Z 7→ (ZN1 +N2)(N3Z +N4)−1D.

If JD = J , then we denote Sp(JD,Z) by Sp(2g,Z) and Ag,D by Ag and get

Ag = Sp(2g,Z)\Hg.

So far, the geometry of abelian varieties is reduced to linear algebra. One can pursue it further by
interpreting in these terms the intersection theory on A. It assigns to any holomorphic line bundles
L1, . . . , Lg an integer (L1, . . . , Lg) that depends only on the images of Li under the first Chern
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class map. Of course, it is also linear in each Li with respect to the tensor product of line bundles.
Let c1(Li) = αi ∈

∧2 Λ∨ and

α1 ∧ · · · ∧ αg ∈
2g∧

Λ∨.

A choice of a basis in Λ defines an isomorphism
∧2g Λ∨ ∼= Z. This isomorphism depends only

on the orientation of the basis. We choose an isomorphism such that Lg := (L, . . . , L) > 0 if
L is an ample line bundle. For example, if L corresponds to a polarization of type D, we have
α =

∑
diγi ∧ γi+g and

Lg = g!d1 · · · dg.

By constructing explicitly a basis in the linear space of holomorphic sections of an ample line bundle
L in terms of theta functions, one can prove that

h0(L) =
Lg

g!
= Pf(α),

where Pf(α) is the pfaffian of the skew-symmetric matrix defining α. More generally, for any ample
line bundle L, the Riemann-Roch Theorem gives

χ(L) =

g∑
i=0

(−1)i dimH i(A,L) =
Lg

g!
.

Let us now define a duality between abelian varieties. Of course, this should correspond to the
duality of the complex vector spaces.

Let A = V/Λ be a complex g-dimensional torus. Consider the Hodge decomposition (1.2), where
we identify the linear spaceH1,0(A) with the dual linear space V ∨. Using the Dolbeault’s Theorem,
one can identify H0,1(A) with the cohomology group H1(A,OA). The group H1(A,Z) = Λ∨

embeds in H1(A,C), and its projection to H0,1 is a discreet subgroup Λ′ of rank 2g in H0,1. The
inclusion H1(A,Z)→ H1(A,OA) corresponds to the homomorphism derived from the exponential
exact sequence

0→ Z→ OA
e2πi−→ O∗A → 0

by passing to cohomology. It also gives an exact sequence

H1(A,OA)/Λ′ → H1(A,O∗A)
c1→ H2(A,Z),

where the group H1(A,O∗A) is isomorphic to Pic(A). Thus, we obtain that the group of points of
the complex torus H1(A,OA)/Λ′ is isomorphic to the group Pic0(A). It is called the dual complex
torus of A and will be denoted by Â.

Remark 1.4. Note that one can define the group Pic0(X) for any irreducible projective algebraic
variety X over an algebraically closed field (in fact, in much more general situation) as the group
of classes of divisors algebraically equivalent to zero modulo linear equivalence. It can be equipped
with a structure of an algebraic connected commutative group variety. It X is nonsingular, it has
a structure of an abelian variety defined as a complete connected algebraic group. It is called the
Picard variety of X .
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Now, we assume that A is an abelian variety equipped with a polarization L of type D. The
corresponding Hermitian formH defines an isomorphism from the linear space V to the linear space
V̄ ∨ ofC-antilinear functions on V (where V̄ is equal to V with the complex structure I(v) = −iv).2

Considered as a vector space over R, it is isomorphic to the real vector space W∨ = HomR(V,R)
by means of the isomorphism

V̄ ∨ →W∨, l 7→ k = Im(l)

with the inverse defined by k → −k(iv) + ik(v). We may identify V̄ ∨ with H0,1(A). We have

Λ′ = Λ∨ := {l ∈ V̄ ∨ : l(Λ) ⊂ Z},

so that
Â = V̄ ∨/Λ∨.

Also, Im(H) defines a homomorphism Λ → Λ∨. Composing it with the homomorphism Λ∨ =
H1(A,Z)→ Λ′ ⊂ H0,1(A), we obtain a homomorphism Λ→ Λ′. Let

φL : A→ Â (1.16)

be the homomorphism defined by the maps V → H0,1 and Λ→ Λ′. It is a finite map, and

K(L) := Ker(φL) ∼= Λ∨/Λ ∼= (Zg/DZg)2 ∼=
g⊕
i=0

(Z/diZ)2.

In particular, φL is an isomorphism if L is a principal polarization. The dual abelian variety can be
defined over any field as the Picard variety Pic0(A), and one can show that an ample holomorphic
line bundle L defines a map (1.16) by using the formula

φL(a) = t∗a(L)⊗ L−1,

where ta denotes the translation map x 7→ x+ a of A to itself.

If we identify Â with A by means of this isomorphism, then the map φL corresponding to the
polarization L of type (d, . . . , d) can be identified with the multiplication map [d] : x → dx. Its
kernel is the subgroup A[d] of d-torsion points in A. Clearly, dg coincides with the exponent eL
of the group K(L), which is the smallest positive integer that kills the group. Then, Â ∼= A/KL

and the multiplication map [eL] : A → A is equal to the composition of the map φL : A → Â and

a finite map Â → A with kernel isomorphic to the group (Z/eLZ)2g/K(L) of order d2g−2
g

(d1···dg−1)2 .

Abusing the notation, we denote this map by φ−1
L . So, by definition, φ−1

L ◦ φL = [eL].

1.3 Questions of Rationality

In this section, we will view abelian varieties as algebraic varieties and discuss the fields of definition
of these varieties, their torsion points and endomorphisms.

2It also defines an isomorphism of complex vector spaces V̄ → V ∨
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Definition 1.1 (Definition-Construction). Let us fix a holomorphic embedding of an abelian vari-
ety A into a complex projective space PN (C). In what follows, we will identify A with its image
in PN (C). Then, A is complex projective manifold, hence by the Chow theorem, it is a complex
projective algebraic variety, i.e., is the set of common zeros of finitely many homogenous polyno-
mials in homogeneous coordinates (T0 : . . . Tn) in PN . (Its irreducibility follows readily.) All the
coefficients of these polynomials lie in C. However, there are only finitely many such coefficients
that generate a certain finitely generated subfield K of C over Q. Extending this subfield, in order
to make “rational” the zero 0A of group law on A, we may assume that 0A ∈ A(K). Applying
the Chow theorem to the graph in PN (C)× PN (C)× PN (C) ⊂ P(N+1)3−1(C) of the holomorphic
addition map A × A → A, (x, y) 7→ x + y, we obtain that the addition map is a regular map of
projective algebraic varieties that is defined over a certain finitely generated extension of K. So,
further extending K, we may and will assume that the addition map is defined over a certain sub-
field K of C that is finitely generated over Q. In a similar way, considering the inversion map
A → A, a 7→ −a and enlarging the field, we may and will assume that there is a subfield K ⊂ C
that is finitely generated over Q and such that A is a projective algebraic K-subvariety of PN such
that 0A ∈ A(K), and the group law and the inversion map on A are defined over K. If K enjoys all
these properties, we say that the abelian variety A is defined over K. If this is the case and L is a
subfield of C that contains K, we set

A(L) := A
⋂
PN (L),

which is a subgroup of A.

If L is finitely generated overQ, then a theorem of Mordell-Weil-Néron-Lang asserts that A(L) is
a finitely generated commutative group [104, 111].

In what follows, we will use the following elementary observation:

Lemma 1.5. Let K be a subfield of C that is finitely generated over Q, and K̄ be its algebraic
closure in C. Let Aut(C/K̄) be the group of all field automorphisms of C that leave invariant every
element of K̄. Let N be be a positive integer. Let us consider the natural action of Aut(C/K̄) on
PN (C).

Then, the set of fixed points coincides with PN (K̄). Every Aut(C/K̄)-orbit that is not a fixed point
is infinite.

Theorem 1.6. LetK be a subfield ofC that is finitely generated overQ, and K̄ its algebraic closure
in C. Suppose that A is an abelian variety that is defined over K. Then

(i) All points of finite order on A are defined over K̄.

(ii) Let f be a holomorphic endomorphism of the commutative complex Lie group A. Then, f is
a regular self-map of the projective algebraic variety A that is defined over K̄.

Proof. Since A is defined over K, it is a Aut(C/K̄)-invariant subset of PN (C); the set of fixed
points on A coincides with A(K̄).
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If n is a positive integer then let us consider the subgroup

A[n] = {x ∈ A | nx = 0A}

of A. For the future use we denote the subgroup Tors(A) of torsion elements of A by A[∞], and,
for any prime l, denote its l-primary component by A[l∞].

Since A = V/Λ, the group

A[n] =
1

n
Λ/Λ ∼= (Z/nZ)2g

is finite. Since A, together with its group structure, is defined over K, each σ ∈ Aut(C/K̄) sends
A[n] to A[n]. This implies that the Aut(C/K̄)-orbit of every x ∈ A[n] lies in A[n] and therefore is
a finite set. By Lemma 1.5, x ∈ PN (K̄), i.e.,

x ∈ A
⋂
PN (K̄) = A(K̄).

This means that A[n] ⊂ A(K̄), which proves (i).

In order to prove (ii), observe that the set

A[∞] =
∞⋃
n=1

A[n] =
∞⋃
n=1

1

n
Λ/Λ

is everywhere dense in A = V/Λ in classical complex topology and, therefore, in Zariski topology
as well. Since f is a group endomorphism,A[∞] is f -invariant; moreover, f is uniquely determined
by its restriction to A[∞]. Applying Chow’s theorem to the graph of f in the projective algebraic
variety A × A, we conclude that f is a regular self-map of A. Since A is defined over K, every
σ ∈ Aut(C/K̄) gives rise to the regular self-map σf of A characterized by

fσf(σ−1x) = σ(u(x)) ∀x ∈ A ⊂ Pn(C). (1.17)

In particular,
σf(x) = f(x) ∀x ∈ A(K̄). (1.18)

By already proven (i), A[∞] ⊂ A(K̄). Combining this with (1.18), we conclude that σf coincides
with f on A[∞] and therefore σf = f for all σ ∈ Aut(C/K̄). This means that f is defined over
K̄.

Let Gal(K) = Aut(K̄/K) be the absolute Galois group of K, i.e. the Galois group Gal(Ks/K)
of the separable algebraic closure of K. There is the natural action of Gal(K) on the commutative
group A(K̄). Clearly, A[n] is a Gal(K)-stable subgroup of A(K̄) for all positive integers n. This
gives rise to the continuous group homomorphism

ρn,A,K : Gal(K)→ Aut(A[n]) = AutZ/n(A[n]). (1.19)

We write
G̃n,A,K ⊂ Aut(A[n]) = AutZ/n(A[n])
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for the image of ρn,A,K in AutZ/n(A[n]). Then, G(n) := ker(ρn,A,K) is a closed normal subgroup
in Gal(K) of finite index and therefore is an open subgroup of Gal(K). We write K(A[n]) for
the subfield of ker(ρn,A,K)-invariants in K̄. We call K(A[n]) the field of definition of all points of
order dividing n on A, because K(A[n]) is the smallest overfield L of K such that A[n] ⊂ A(L).
By definition, K(A[n]) is a finite Galois extension of K and its Galois group

Gal(K(A[n])/K) = G̃n,A,K ⊂ Aut(A[n]) = AutZ/n(A[n]).

If m is any positive integer, then

A[n] =
1

n
Λ/Λ = m

(
1

nm
Λ/Λ

)
= mA[mn] ⊂ A[mn],

i.e.,
A[n] = mA[mn] ⊂ A[mn].

This implies that every automorphism of the commutative group A[nm] leaves invariant the sub-
group A[n], and gives rise to the natural homomorphism

πnm,n : Aut(A[mn])→ Aut(A[n]), πnm,n(u)(x) = u(x) ∀u ∈ Aut(A[mn]), x ∈ A[n] ⊂ A[mn].

This implies that

ρn,A,K = πmn,n ◦ ρmn,A,K : Gal(K)→ Aut(A[mn])→ Aut(A[n]),

and
K ⊂ K(A[n]) ⊂ K(A[mn]). (1.20)

The following observation that deals with m = 2 (and n = 2) will be used in Chapter ??.

Claim 1.7. Let n be an even positive integer.

If K(A[2n]) 6= K(A[n]), then K(A[2n])/K(A[n]) is an abelian field extension, whose Galois
group Gal(K(A[2n])/K(A[n]) is a finite abelian group of exponent 2.

Proof. Let
σ ∈ Gal(K(A[2n]/K(A[n])) ⊂ G̃2n,A,K ⊂ Aut(A[2n]).

Then, for any x ∈ A[2n], we have 2x ∈ A[n], and therefore, σ(2x) = 2x. This implies that

2(σ(x)− x) = σ(2x)− 2x = 0,

i.e., y = σ(x)− x ∈ A[2], and
σ(x) = x+ y.

Notice that σ(y) = y, because A[2] ⊂ A[n] (recall that n is even). Thus,

σ2(x) = σ(x+ y) = σ(x) + σ(y) = σ(x) + y = (x+ y) + y = x+ 2y = x.

This proves that each σ ∈ Gal(K(A[2n]/K(A[n]) has order dividing 2, and therefore, Gal(K(A[2n]/K(A[n]))
is a finite abelian group either of exponent 1 (i.e., K(A[2n]) = K(A[n])), or of exponent 2.
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Chapter 2

Endomorphisms of Abelian Varieties

In this chapter, we will discuss general facts about endomorphisms of abelian varieties.

2.1 Generalities on Endomorphisms of Abelian Varieties

A holomorphic map f : A = V/Λ→ A′ = V ′/Λ′ of complex tori that sends zero to zero is called a
homomorphism of complex tori. One can show that this is equivalent to that f is a homomorphism
of complex Lie groups, i.e.,

f(x+ y) = f(x) + f(y), ∀x, y ∈ A.

Obviously, it is defined by a unique linear C-map fa : V → V ′ (called an analytic representation
of f ) and a unique Z-linear map fr : Λ → Λ′ (called a rational representation of f ) such that the
restriction of fa to Λ coincides with fr. Namely,

f(v + Λ) = fa(v) + Λ′, ∀v ∈ V. (2.1)

If A′′ = V ′′/|Λ′′ a complex torus and h : A′ → A′′ a homomorphism of complex tori then the
composition h ◦ f : A → A′′ is also a homomorphism of complex tori and the corresponding
(h ◦ f)a : V → V ′′, (h ◦ f)r : Λ→ ΛA′′ enjoy the following properties:

(h ◦ f)a = ha ◦ fa, (h ◦ f)r = hr ◦ fr. (2.2)

Example 2.1. Suppose that V = V ′ and Λ is a subgroup of finite index in Λ′. Then,

f : A = V/Λ→ A′ = V/Λ′, f(v + Λ) = v + Λ′ ∀v ∈ V

is a homomorphism of complex tori such that fa : V → V is the identity map, and fr : Λ → Λ′ is
the inclusion map.

Remark 2.2. Since f is a group homomorphism, f(A[n]) ⊂ A′[n]) for all positive integers n.

Lemma 2.3. Let A = V/Λ and A′ = V ′/Λ′ be abelian varieties, and f : A→ A′ be a homomor-
phism of abelian varieties.

15
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(i) The kernel ker(f) ⊂ A of f is finite if and only if the corresponding homomorphism fr :
Λ→ Λ′ of lattices is injective. If this is the case and dim(A) = dim(A′, then f is surjective,
the image fr(Λ) of Λ is a subgroup of finite index in Λ′, and this index equals the order of
ker(f).

(ii) f is an isomorphism of abelian varieties if and only if dim(A) = dim(A′), and fr(Λ) = Λ′.

Proof. Recall that there is a C-linear map fa : V → V ′ such that

fa(λ) = fr(λ), ∀λ ∈ Λ,

f(v + Λ) = fr(v) + Λ′ ∈ V ′/Λ′ = A′ ∀v + Λ ∈ V/Λ = A.

If fr is not injective then there is a nonzero λ ∈ Λ such that fr(λ) = 0 ∈ V ′. This implies that
fa(λ) = 0 ∈ V ′. By C-linearity of fa, the line C · λ ⊂ V goes to 0 ∈ V ′. This implies that
the image of the uncountable set C · λ in V/Λ = A lies in the kernel of f . Since Λ is countable,
this image is also uncountable, and we obtaint that ker(f) is an uncountable set. In particular, it is
infinite, so f is not an isogeny. Assume now that fr is injective. It follows that fa is also injective,
because the natural map

Λ⊗ R→ V, λ⊗ c 7→ cλ

is an isomorphism of real vector spaces, and, for any c ∈ R, λ ∈ Λ,

fa(cλ) = cfa(λ) = cfr(λ).

Since A and A′ are of the the same dimension, the lattices Λ and Λ′ have the same rank. Hence,
the image fr(Λ) is a subgroup of finite index in Λ′. Let us denote this index by d. Then, Λ0 :=
f−1
a (Λ′) ⊂ V contains the sublattice

f−1
a (fr(Λ) = f−1

r (fr(Λ)) = Λ

as a subgroup of index d. It follows that the kernel of f is Λ0/Λ, which is a group of order d. This
ends the proof of (i). Assertion (ii) follows readily from (i).

Clearly, the set Hom(A,A′) of all homomorphisms f : A to A′ carries the natural structure of an
abelian group and the map

Hom(A,A′)→ HomZ(Λ,Λ′), f 7→ fr,

is an injective homomorphism of abelian groups. Since the group HomZ(Λ,Λ′) is isomorphic (non-
canonically) to

HomZ(Z2 dim(A),Z2 dim(A′)) = Z4 dim(A) dim(A′),

HomZ(Λ,Λ′) is a free abelian group of rank ≤ 4 dim(A) dim(A′) (actually, this bound can be
improved to 2 dim(A) dim(A′), which is sharp).

Let End(A) be the set of endomorphisms of a complex torus A = V/Λ, i.e. homomorphisms of
A to itself. As usual, the set of endomorphisms of an abelian group is equipped with the structure
of an associative unitary ring with multiplication defined by the composition of homomorphisms
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and the addition defined by value by value addition of homomorphisms. By above, we obtain two
injective homomorphisms of rings

ρa : End(A) ↪→ EndC(V ) ∼= Matg(C), f 7→ fa; ρr : End(A) ↪→ EndZ(Λ) ∼= Mat2g(Z), f 7→ fr.

They are called the analytic and rational representations, respectively.

Instead of the endomorphism ring End(A), it is often more convenient to work with the endomor-
phism Q-algebra of endomorphisms of A defined as

EndQ(A) := End(A)⊗Q (2.3)

(often denoted by End0(A)). By definition, EndQ(A) is a finite-dimensional Q-algebra and the
natural map

End(A)→ EndQ(A), u 7→ u⊗ 1

is a ring embedding. Extending ρr by Q-linearity, we get the embedding of Q-algebras

EndQ(A) ↪→ EndZ(Λ)⊗Q = EndQ(ΛQ), f ⊗ s 7→ fr ⊗ s ∀f ∈ End(A), s ∈ Q

which we continue to denote by ρr. Here

ΛQ := Λ⊗Q

is the Q-vector space of dimension 2 dim(A), which may be viewed as the following Q-vector
subspace of ΛR := Λ⊗ R = V .

ΛQ = {v ∈ V | ∃ a positive integer Nsuch that Nv ∈ Λ} ⊂ V.

Similarly, we may extend ρa by Q-linearity to the embedding of Q-algebras

EndQ(A) ↪→ EndC(V ), ⊗s 7→ sfa ∀f ∈ End(A), s ∈ Q.

Taking unto account that fr = ρr coincides with the restriction of ρa(f) = fa to Λ for all f ∈
End(A), we conclude that the homomorphism

ρr(f) : ΛQ → ΛQ ⊂ V

coincides with the restriction of ρr(f) : V → V to ΛQ for all f ∈ EndQ(A).

Example 2.4. LetA′ = V ′/Λ′ be a complex torus of positive dimension with End(A′) ∼= Z. Let us
consider the set Sub(Λ′) of all subgroups Λ of finite index in Λ′ that enjoy the following property:

Λ 6⊂ mΛ′, for any integer m > 1. (2.4)

Clearly, Sub(Λ′) is an infinite countable set containing Λ′. If Λ1,Λ2 ∈ Sub(Λ′), then let us consider
the infinite subgroup of Z defined by:

(Λ2 : Λ1) = {k ∈ Z | k · Λ1 ⊂ Λ2} ⊂ Z. (2.5)
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Clearly, (Λ2 : Λ1) = Z if and only if Λ2 ⊃ Λ1. In particular, for any Λ ∈ Sub(Λ′),

(Λ : Λ) = Z.

If Λ1,Λ2,Λ3 ∈ Sub(Λ′), then there is a natural biadditive map:

(Λ3 : Λ2)× (Λ2 : Λ1)→ (Λ3 : Λ1), (k32, k21) 7→ k32k21. (2.6)

For each Λ ∈ Λ′, let us consider the complex torus

AΛ := V ′/Λ.

If Λ1,Λ2 ∈ Sub(Λ′), then to each k ∈ (Λ2 : Λ1) ⊂ Z corresponds a homomorphism of complex
tori

[k] : AΛ1 :→ V ′/Λ2 = AΛ2 , v + Λ1 7→ kv + Λ2 ∀v ∈= V ′. (2.7)

such that the corresponding maps [k]a : V ′ → V ′ and [k]r : Λ1 → Λ2 are as follows:

[k]a(v) = kv, ∀v ∈ V ′, [k](r)(λ) = kλ ∈ Λ2 ∀λ ∈ Λ1. (2.8)

Clearly, the map k 7→ [k] defines an embedding of groups:

(Λ2 : Λ1)→ Hom(AΛ1 , AΛ2), k 7→ [k]. (2.9)

In what follows, we will identify (Λ2 : Λ1) with its image in Hom(AΛ1 , AΛ2).

If Λ1,Λ2,Λ3 ∈ Sub(Λ′), then, for each

k21 ∈ (Λ2 : Λ1) ⊂ Hom(AΛ3 , AΛ2)k32 ∈ (Λ3 : Λ1) ⊂ Hom(AΛ3 , AΛ2),

the composition k32 ◦ k21 ∈ Hom(AΛ3 , AΛ1) coincides with the product (2.6)

k32k21 ∈ (Λ3 : Λ1) ⊂ Hom(AΛ3 , AΛ1).

Remark 2.5. If A′ = V ′/Λ′ is a abelian variety then all AΛ := V ′/Λ are also abelian varieties.
Indeed, ifH is a positive-definite Hermitian form on V ′, whose imaginary part takes on only integer
values on Λ′, then the same is true for any Λ ⊂ Λ′.

Theorem 2.6. Suppose that
End(A′) = Z = (Λ′ : Λ′).

Then, the complex tori AΛ enjoy the following properties:

(i)
Hom(AΛ1 , AΛ2) = (Λ2 : Λ1) ∀Λ1,Λ2 ∈ Sub(Λ′).

(ii)
End(AΛ) = (Λ : Λ) = Z ∀Λ ∈ Sub(Λ′).

(iii) If Λ1,Λ2 ∈ Sub(Λ′) then the complex tori AΛ1 and AΛ2 are isomorphic if and only if Λ1 =
Λ2.
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Proof. Let f : AΛ1 → AΛ2 be a homomorphism of complex tori with the corresponding analytic
and rational representations

fa ∈ EndC(V ′), fr ∈ HomZ(Λ1,Λ2)

such that the restriction of fa to Λ1 coincides with

Λ1 → Λ2
fr→ V ′,

and
f(v + Λ1) = fa(v) + Λ2 ∀v ∈ V ′.

Let us consider the index d = [Λ′ : Λ1], which is a positive integer. Then,

dfa(Λ
′) = dfr(Λ

′) = fr(d(Λ′) ⊂ fr(Λ1) ⊂ Λ2 ⊂ Λ′,

and, therefore, the map

A′ = V/Λ′ → V/Λ′ = A′, v + Λ′ 7→ dfa(v) + Λ′ ∀v ∈ V ′ (2.10)

defines an endomorphism of the complex torus A′. Since End(A′) = Z, there is an integer m such
that

mv + Λ′ = dfa(v) + Λ′ ∀v ∈ V ′,

i.e.,
dfa(v) = mv ∀v ∈ V ′.

This implies that
fa(v) =

m

d
v.

It follows that
Λ2 ⊂ fr(Λ1) = fa(Λ1) =

m

d
Λ1,

and therefore,
m

d
Λ1 ⊂ Λ2 ⊂ Λ′. (2.11)

We claim that m/d is an integer. Indeed, there is a basis λ1, . . . , λ2g (with g = dimC(V ′)) of the
Z-module Λ′ and positive integers d1, . . . , d2d such that di | di+1, and

Λ1 =

2g⊕
i=1

Z · diλi ⊂
2g⊕
i=1

Z · λi = Λ′.

It follows from (2.4), that d1 = 1, and, therefore, λ1 ∈ Λ1. Applying (2.11), we conclude that
m
d λ1 ∈ Λ1.

Since λ1 is an element of a basis of the free Z-module Λ′, we obtain that k := m/d ∈ Z. This
means that fa = [k]a and therefore f = [k], which proves (ii).

(i) follows from (ii) applied to Λ1 = Λ2 = Λ. In order to prove (iii), suppose that f : AΛ1 → AΛ2

is an isomorphism. It follows from (ii) that there is an integer k such that kΛ1 ⊂ Λ2 and f = [k].
By Lemma 2.3(2), [k]r(Λ1) = Λ2. In light of (2.8), kΛ1 = Λ2. Now it follows from condition (2.4)
that k = ±1, i.e., Λ2 = Λ1.
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We will need the following elementary assertion:

Claim 2.7. Let A = V/Λ and A′ = V ′/Λ′ be complex tori, n a positive integer, and f : A→ A′ a
homomorphism of complex tori. Then,

f ∈ n · Hom(A,A′)⇐⇒ f(A[n]) = {0}.

In other words, the natural group homomorphism

Hom(A,A′)/n→ HomZ/n(A[n], A′[n]),

defined by f + nHom(A,A′)/ 7→ f |A[n] : A[n]→ A′[n], x 7→ f(x). is injective.

Proof. Both conditions are equivalent to the inclusion

fr(Λ) ⊂ n · Λ′.

Theorem 2.8. Let A = V/Λ and A′ = V ′/Λ′ be abelian varieties that are defined over a finitely
generated subfield K of C. Then, every homomorphism f : A → A′ is a regular map of projective
algebraic varieties that is defined over K̄.

Proof. The graph Γf ⊂ A×A′ is a compact smooth complex submanifold of the projective variety
A × A′. By Chow’s Theorem, Γf is a projective variety itself. It follows readily that f is a regular
map.

Recall (Remark 2.2) that, for all positive integers n,

f(A[n]) ⊂ A′[n].

Since both A and A′ are defined over K, every σ ∈ Aut(C/K) gives rise to the homomorphism of
abelian varieties

σf : A→ A′, x 7→ σ(f(σ−1(x)) ∀x ∈ A.

Assume now that σ ∈ Aut(C/K). Notice that the subfield CAut(C/K) of all Aut(C/K)-invariants
in C coincides with K.

Since, for all n,
A[n] ⊂ A(K̄), A′[n] ⊂ A′(K̄),

the homomorphisms f and σf coincide on A[n]. Taking into account that ∪∞n=1A[n] is dense in A,
we conclude that

σf = f, ∀σ ∈ Aut(C/K̄).

This means that
σ(Γf ) = Γf , ∀σ ∈ Aut(C/K̄).

It follows that the projective subvariety Γf is defined over K̄ and therefore f is also defined over
K̄.
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Remark 2.9. Actually, the same arguments prove that every homomorphism f is defined over the
compositum of the fields

K(A[∞]) = ∪∞n=1K(A[n]) and K(A′[∞]) = ∪∞n=1K(A′[n]).

Clearly, every f is defined over a certain finite algebraic extension of K, and therefore, it is defined
over the compositum of K(A[n]) and K(A′[n]) for some n, in light of the inclusions (1.20). Since
Hom(A,A′) is a finitely generated group, there is a positive integer n such that all the homomor-
phisms f : A→ A′ are defined over the compositum of K(A[n]) and K(A′[n]).

The following useful theorem of A. Silverberg [157], which is based on Minkowski’s Lemma [150,
Lemma1]), gives a refinement of this statement.

Theorem 2.10. Let n ≥ 3 be an integer. Let K be a subfield of C that is finitely generated over
Q. Suppose that A and A′ are abelian varieties that are defined over K. If A[n] ⊂ A(K) and
A′[n] ⊂ A′(K) then all homomorphisms from A to A′ are defined over K.

Proof. Since the group Hom(A,A′) is finitely generated, there is a finite Galois field extension
L/K (with L ⊂ K̄) such that all homomorphisms from A to A′ are defined over L. It follows that

f(A(L)) ⊂ A′(L), ∀f ∈ Hom(A,A′).

Let G = Gal(L/K) be the (finite) Galois group of L/K. Then, there is a natural group homomor-
phism

G→ Aut(Hom(A,A′)), σ 7→ {f 7→ σ(f)}. (2.12)

It is defined as follows: for any σ ∈ Gal(K), whose image in Gal(L/K) = G is σ,

σ(f) = σf

(since f is defined over L, g(f) does not depend on the choice of σ). We have

g(f)(g(x)) = g(f(x)), ∀x ∈ A(L).

In particular,
σ(f)(x) = f(x), ∀x ∈ A[n] ⊂ A(K) = A(L)G.

It follows from Claim 2.7 that

σ(f)− f ∈ n · Hom(A,A′) ∀σ ∈ G, f ∈ Hom(A,A′). (2.13)

Let G̃ ⊂ Aut(Hom(A,A′)) be the image of G under the homomorphism (2.12). Since G is finite,
its image G̃ is also a finite group. It follows from (2.13) that every

σ̃ ∈ G̃ ⊂ Aut(Hom(A,A′))

is congruent to the identity automorphism of the group Hom(A,A′) modulo n. Since n ≥ 3 and
Hom(A,A′) is a free abelian group of finite rank, it follows from Minkowski Lemma that G̃ boils
down to the identity map. This means that

σ(f) = f, ∀σ ∈ G = Gal(L/K), f ∈ Hom(A,A′),

which, in turn, means that all the f are defined over K.
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Remark 2.11. Suppose that dim(A) > 0 and n > 1. It what follows, we identify End(A)/n with
its (isomorphic) image in EndZ/n(A[n]. It is not necessarily true that all elements of End(A)/n are
endomorphisms of the Galois module A[n], because we do not assume that all endomorphisms of
A are defined over K. However, we know that all of them are defined over K̄. for all f ∈ End(A)
It follows from (1.17) and (1.19) that, for any σ ∈ Gal(K),

ρn,A,K(σ)End(A)/nρn,A,K(σ)−1 ⊂ End(A)/n. (2.14)

This implies
ρn,A,K(f + n · End(A)) =σ f + n · End(A).

We will mainly be interested in the case when n = ` is a prime number, i.e., when Z/n = F` is a
field.

2.2 Very Simple Linear Representations and Endomorphisms of Abelian
Varieties

Property (2.14) inspires the following definition, see [183, Defn. 1.1].

Definition 2.1. Let V 6= {0} be a vector space over a field k, letG be a group and ρ : G→ Autk(V)
be a linear representation of G in V . Suppose that R ⊂ Endk(V) is a k-subalgebra containing the
identity operator Id : V → V . We say that R is G-normal (or just normal) if

ρ(s)Rρ(s)−1 ⊂ R, ∀s ∈ G.

Remark 2.12. IfR is a subalgebra of Endk(V) then both R and ρ(s)Rρ(s)−1 have the same dimen-
sion over k. It follows that R is normal if and only if

ρ(s)Rρ(s)−1 = R, ∀s ∈ G.

Examples 2.13. 1. Obviously, Endk(V) and k·Id are normal subalgebras. We call them obvious
normal subalgebras.

2. Let A be an abelian variety of positive dimension that is defined over a field K. Let ` be a
prime number, V = A[`], G = Gal(K), ρ = ρA,`,K . It follows from (2.14) that End(A)/` is
a normal subalgebra of EndF`(A[`]).

The following definition was introduced in [180] (see also [183]).

Definition 2.2. Let V 6= {0} be a vector space over a field k, letG be a group and ρ : G→ Autk(V)
be a linear representation of G in V . We say that the G-module V is very simple if every normal
subalgebra of Endk(V) is obvious.

Remark 2.14. Very simple modules enjoy the following properties [180, 183]:

(0) Let ρ(G) ⊂ Autk(V) be the image of ρ. Then, the G-module V is very simple if the ρ(G)-
module V is very simple (because a subalgebra of Endk(V) is G-normal if and if it is ρ(G)-
normal).
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(1) If dimk(V) = 1, then the G-module V is very simple (because in this case any subalgebra of
Endk(V) coincides with Endk(V) = k · Id).

(2) Let k[G] be the group k-algebra of G. Then, every very simple G-module V is absolutely
simple, i.e., the k-algebra homomorphism k[G] → Endk(V) induced by ρ is surjective. (It
follows follows readily from the G-normality of the image of k[G]→ Endk(V).

(3) Let G′ be a subgroup of G such that the G′-module V is very simple. Then, the G-module V
is also very simple (because every G-normal algebra of Endk(V ) is also G′-normal).

(4) If the G-module V is very simple, dimk(V) > 1, and G′ is a non-central normal subgroup of
G, then the G′-module V is absolutely simple. In particular, G′ is non-abelian.

(5) If k = F2 and dimk(V) = 2, then every G-module V is not very simple.

The following assertion was proven in [183, Th. 6.4] for ` = 2.

Theorem 2.15. Let A be an abelian variety of positive dimension defined over a field K. Let ` be a
prime,

k = F`, V = A[`], G = Gal(K), ρ = ρA,`,K .

If the G-module A[`] is very simple, then End(A) = Z. In particular, A is a simple abelian variety.

Proof. Combining Example 2.13 with the definition of very simplicity, we conclude that End(A)/`
is either F` · Id, or EndF`(A[`]). This implies that the F`-dimension of End(A)/` is either 1, or
4 dim(A)2. Since End(A) is a free Z-module, its rank is either 1 or 4 dim(A)2. In the former
case, End(A) = Z and we are done. In the latter case, the rank of End(A) is strictly greater than
2 dim(A)2, that contradicts Theorem 2.29 below. This ends the proof.

Remark 2.16. Recall that dimF`(A[`]) = 2 dim(A). In particular, if dim(A) = 1 (i.e., A is an
elliptic curve) then dimF`(A[`]) = 2. In light of Remark 2.14(5), the conditions of Theorem 2.15
are not fulfilled if dim(A) = 1 and ` = 2.

We will use this theorem for ` = 2 in Chapter 10, in order to give an explicit construction of
hyperelliptic jacobians without nontrivial endomorphisms. This would require an analysis of the
following class of representations naturally related to permutation groups, see [183]. We discuss
this topic in the next section.

Let ` be an odd prime and δ be an automorphism of a positive-dimensional abelian variety A =
V/Λ that satisfies the `th cyclotomic equation

Φ`(δ) =

`−1∑
j=0

δj = 0

in End(A). Clearly δ` is the identity automorphism of A and the subgroup of fixed points of δ

Aδ = {x ∈ A | δ(x) = x}
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is contained in A[`], and therefore, may be viewed as a finite-dimensional F`-vector space. In order
to find its dimension, notice that the subring Z[δ] of End(A) is isomorphic to the `th cyclotomic ring
Z[ζ`] (a primitive `th root of unity ζ` goes to δ). Indeed, recall that the `th cyclotomic polynomial

Φ`(t) =
`−1∑
j=0

∈ Z[t] ⊂ Q[t]

is irreducible overQ and the ring Z[ζ`] is isomorphic to the quotient Z[t]/(Φ`(t)) of the polynomial
ring Z[t] by the ideal generated by Φ`(t) where under this isomorphism the coset of x goes to ζ`.
(The latter assertion follows from the fact that {1, ζ`, . . . ζ`−2

` } is a basis of the free Z-module Z[ζ`]
of rank `− 1.) Let us consider the surjective ring homomorphism

Z[t]/(Φ`(t))→ Z[δ], P (t) + Φ`(t)Z[t] 7→ P (δ) ∈ Z[δ] ∀P (t) ∈ Z[t]. (2.15)

Suppose that the map (2.15) is not injective. This means that there is a polynomial P(t) ∈ Z[t] not
divisible by (Φ`(t) such that P(δ) = 0. Replacing P(t) by its remainder with respect to division by
the (monic) Φ`(t), we may and will assume that deg(P) < `− 1. Since Φ`(t) is irreducible over Q
and

deg(Φ`) = `− 1 > deg(P),

the polynomials P(t) and Φ`(t) have no common roots, i.e., their resultant D 6= 0. Since both P(t)
and Φ`(t) have integer coefficients, there are polynomials h(t), s(t) ∈ Z[t] such that

D = h(t)Φ`(t) + s(t)P(t).

This implies that D ∈ Z, and in the ring Z[δ],

D = h(δ)Φ`(δ) + s(δ)P(δ) = h(δ) · 0 + s(δ) · 0 = 0,

i.e., the multiplication by D in A is the zero map, which is absurd. The obtained contradiction
proves that the map (2.15) is injective, and therefore, is a ring isomorphism. It follows that the
composition of ring isomorphisms

Z[ζ`]→ Z[t]/(Φ`(t))→ Z[δ],

`−2∑
j=0

ciζ
j
` 7→

`−2∑
j=0

cjt
j

+ Φ`(t)Z[t] 7→
`−2∑
j=0

ciδ
j
` (2.16)

is also a ring isomorphism. Thus, the ring Z[δ] is a Dedekind ring, and there is an isomorphism:

Z[δ]/(1− δ) ∼= Z[ζ`]/(1− ζ`) = F`.

In addition, the Q-subalgebra

Q[δ] := Z[δ]⊗Q ⊂ EndQ(A) := End(A)⊗Q

is isomorphic to the `th cyclotomic field Q(ζ`) (as above ζ` goes to δ). Since Λ is a free Z-module
of finite rank, the corresponding Z[δ]-module Λ is torsion-free and finitely generated. Since the ring
Z[ζ`] is Dedekind, Λ is a direct sum ⊕rj=1Pj of r invertible (i.e., rank 1 locally free) Z[δ]-modules,
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for some positive integer r. The Z-rank arguments imply that 2 dim(A) = r(` − 1). Thus, since
Z[ζ`] is a free Z-module of rank `− 1,

r =
2 dim(A)

`− 1
,

and, therefore,

Aδ = (1− δ)−1Λ/Λ ∼= Λ/(1− δ)Λ ∼= Z[ζ`]
r/(1− ζ`)Z[ζ`]

r = Fr` .

This implies that

dimF`(A
δ) = r =

2 dim(A)

`− 1
.

Since Λ = ⊕rj=1Pj , its endomorphism ring EndZ[δ](Λ) is a Z[δ]-algebra that (if viewed as the
Z[δ]-module) is a direct sum ⊕ri,j=1Hom(Pi, Pj) of r2 invertible Z[δ]-modules Hom(Pi, Pj). In
particular, EndZ[δ](Λ) is a free Z-module of rank r2(`− 1).

Let Endδ(A) be the centralizer of δ in End(A). It is a subring of End(A), and the center of
Endδ(A) contains Z[δ]. So, one may view End(A) as a Z[δ]-algebra. As above, Endδ(A) is a direct
sum of d projective Z[δ]-modules of rank 1 for some positive integer d. The rational representation
of elements of Endδ(A) gives us the ring embedding Endδ(A) ↪→ EndZ(Λ).Its image lies in
EndZ[δ](Λ), which gives us an embedding of Z[δ]-algebras

ιr : Endδ(A) ↪→ EndZ[δ](Λ), f 7→ fr. (2.17)

Remark 2.17. Comparing the ranks in (2.17), we obtain the inequality d ≤ r2. What will happen if
the equality holds? It follows immediately that there is a positive integer N such that

N · EndZ[δ](Λ) ⊂ ιr(Endδ(A)).

We claim that in this case the embedding (2.17) is bijective (and an isomorphism of Z[δ]-algebras),
i.e.,

ιr(Endδ(A)) = EndZ[δ](Λ). (2.18)

In the course of the proof, it is convenient to identify (via the rational representation) End(A)
with its image in EndZ(Λ) and consider ιr as the inclusion map. Let u ∈ EndZ[δ](Λ). Then,
Nu ∈ Endδ(A)). This implies that, if we extend Nu : Λ→ Λ by R-linearity to the R-linear map

(Nu)R : V = Λ⊗ R→ Λ⊗ R = V,

then uR is a C-linear self-map of V . Thus, 1
N (Nu)R is also a C-linear self-map of V . Taking into

account that the restriction of 1
N (Nu)R to Λ coincides with u and, in particular, sends Λ to Λ, we

conclude that u ∈ End(A). Since Nu commutes with δ in End(A), we conclude that

N(uδ − δu) = (Nu)δ − δ(Nu) = 0

in End(A). Therefore, the image (uδ − δu)(A) lies in the finite set A[N ]. Since dim(A) > 1,
uδ − δu is a constant map. Since this map sends the zero of A into itself, i.e.,

uδ − δu = 0 ∈ End(A),

we obtain that u ∈ Endδ(A).
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Let K be a finitely generated subfield of C such that A and its endomorphism δ are defined over
K. It follows that

Aδ ⊂ A[`] ⊂ A(K̄),

and Aδ is a Gal(K)-invariant F`-vector subspace of A[`]. The following assertion may be viewed
as a natural extension of Theorem 2.15.

Theorem 2.18. Let End(A)δ be the centralizer of δ ∈ End(A) and

EndQ(A)δ = End(A)δ ⊗Q ⊂ EndQ(A)

be the corresponding Q-subalgebra of EndQ(A). Suppose that the Gal(K)-module Aδ is very sim-
ple. Then, either End(A)δ = Z[δ], or EndQ(A)δ is isomorphic to the matrix algebra of size r over
the field Q[δ]. In the latter case, A is isogenous to a self-product Br of a (ell − 1)/2-dimensional
abelian variety B with EndQ(B) ∼= Q(ζ`).

Proof. First, notice that Endδ(A) is a torsion free finitely generated Z[δ]-algebra, hence, is a pro-
jective Z[δ]-module of finite rank, say d. Hence, the quotient Endδ(A)/(1 − δ)Endδ(A) is a d-
dimensional Z[δ]/(1− δ) = F`-algebra.

Lemma 2.19. Let u ∈ End(A)δ ⊂ End(A). Then:

(i) u(Aδ) ⊂ Aδ;

(ii) u(Aδ) = {0} if and only if u ∈ (1− δ)End(A)δ.

End of Proof of Theorem 2.18 (modulo Lemma 2.19). It follows from Lemma 2.19 that the
action of Endδ(A) on Aδ induces the F`-algebra embedding

Endδ(A)/(1−δ)Endδ(A) ↪→ EndF`(A
δ), u+(1−δ)Endδ(A) 7→ {x 7→ u(x) ∀x ∈ Aδ}. (2.19)

Since A and δ are defined over K, the image R of the embedding (2.19) is a normal Gal(K)-
subalgebra of EndF`(A

δ). Hence,

dimF`(R) = dimF`(Endδ(A)/(1− δ)Endδ(A)) = d.

Since the Galois module Aδ is very simple, either d = 1 or

d = dimF`(EndF`(A
δ) =

(
dimF`(A

δ
)2

= r2.

If d = 1, Endδ(A) is a projective Z[δ]-module of rank 1, which implies easily that

Z[δ] ⊂ Endδ(A) ⊂ Z[δ]⊗Q;

the latter is isomorphic to the `th cyclotomic field Q(ζ`). Since Endδ(A) is a free Z-module of
finite rank, it is integral over Z[δ]. Taking into account that Z[δ] = Z[ζ`] is integrally closed, we
conclude that Z[δ] = Endδ(A) and we are done.

Let us assume that d = r2. By Remark 2.17,

Endδ(A) = EndZ[δ](Λ).
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Proof of Lemma 2.19. (i) is obvious. Notice that if part in (ii) is obvious. In order to prove the only
if, part recall that there is λ ∈ Z[ζ`] such that λ(1 − ζ`) = `. This shows the existence of v ∈ Z[δ]
such that v(1− δ) = (1− δ)v = ` in Endδ(A). This implies that

v(A[`]) ⊂ Aδ.

It follows that u(Aδ) = {0}, hence uv(A[`]) = {0} and, therefore, there is w ∈ End(A) such that

vu = uv = `w = v(1− δ)w

and, hence, u = (1− δ)w. Clearly, w ∈ Endδ(A).

2.3 Permutational Representations

Let ` be a prime number and F` be the finite field of ` elements. Let n ≥ 3 be a positive integer
that is not divisible by `, and R be a set of cardinality n. We write Perm(R) for the group of all
permutations of R and Alt(R) for its unique subgroup of index 2. A choice of ordering on R defines
a group isomorphism Perm(R) ∼= Sn; the image of Alt(R) under this isomorphism coincides with
the alternating group An. Sometimes, slightly abusing notation, we denote Perm(R) by Sn and
Alt(R) by An. Let FR` be the n-dimensional F`-vector space of F`-valued functions φ : R → F`.
The vector space FR` is provided with the natural action of Perm(R) that is defined as follows. Each
permutation s ∈ Perm(R) sends a function φ : R→ F` to the function

s(φ) : b 7→ φ(s−1(b), b ∈ R.

This action provides FR` with the structure of a faithful Perm(R)-module. The permutation module
FR` contains the Perm(R)-invariant (n− 1)-dimensional hyperplane(

FR`
)0

= {φ : R→ F` |
∑
b∈R

φ(b) = 0} (2.20)

and the Perm(R)-invariant line F` ·1R where 1R is the constant function 1. Since n = #(R) is not
divisible by `, these subspaces meet each other only at 0. This implies that the permutation module
FR` splits into a direct sum

FR` =
(
FR`
)0
⊕ F` · 1R. (2.21)

Since Perm(R) acts faithfully on FR` and identically on F` · 1R, it follows from the splitting (2.21)
that the Perm(R)-module

(
FR`
)0 is faithful. It is well known [124] that the Perm(R)-module (and

even the Alt(R)-module)
(
FR`
)0 is absolutely simple if n ≥ 5.1

Let G ⊂ Perm(R) be a permutation group of R. Then,
(
FR`
)0 carries the natural structure of

a faithful G-module. It is reasonable to ask when this module is very simple? This question was
studied in ( [180], [179, Sect. 4], [183, Th. 5.5 and 5.7], [193, Th. 4.7]). Let us quote some of the
results that were obtained there.

1Absolutely simple means that, after any extension of scalars, the module does not have any non-trivial invariant
subspaces.
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Lemma 2.20. Suppose that ` = 2 and the G-module
(
FR2
)0 is very simple. Then, n = #(R) ≥ 5

and G is a doubly transitive permutation group.

Theorem 2.21. Suppose that n ≥ 5 and G = Sn or An. Then, the G-module
(
FR`
)0 is very simple

for all prime ` except the case where n = 5 and ` ≡ ±1 mod 5.

Remark 2.22. In light of Remark 2.14(3), the very simplicity of the Sn-module
(
FR`
)0 follows

readily from the very simplicity of the An-module
(
FR`
)0

Remark 2.23. We will use the case ` = 2 of Theorem 2.21 in Chapter 10 and Section 8.3, in order
to construct jacobians without nontrivial endomorphisms.

Proof of Theorem 2.21. Using Remark 2.22, it suffices to check the case G = An = Alt(R). We
have already seen that the faithful G = Alt(R)-module V =

(
FR`
)0 is absolutely simple.

Let R ⊂ EndF`(V) be a G-normal subalgebra. Clearly, V is a faithful R-module.

Step 1. V is a semisimple R-module. Indeed, let U ⊂ V be a simple R-submodule. Then
U ′ =

∑
s∈G sU is a non-zero G-stable subspace in V and therefore must coincide with V . On the

other hand, each sU is also a R-submodule in V , because s−1Rs = R. Moreover, since

Rs−1W = s−1sRs−1W = s−1RW = s−1W,

if W ⊂ sU is an R-submodule, then s−1W is an R-submodule in U , because

Since U is simple, s−1W = {0} or U . This implies that sU is also simple. Hence V = U ′ is a
sum of simple R-modules and therefore is a semisimple R-module.

Step 2. The R-module V is isotypic. Indeed, let us split the semisimple R-module V into the
direct sum

V = V1 ⊕ · · · ⊕ Vr
of its isotypic components. Dimension arguments imply that r ≤ dim(V) = n−1. It follows easily
from the arguments of the previous step that for each isotypic component Vi, for each s ∈ G, its
image sVi is an isotypicR-submodule. Therefore, it is contained in some Vj . Similarly, s−1Vj is an
isotypic submodule obviously containing Vi. Since Vi is the isotypic component, s−1Vj = Vi, and
therefore, sVi = Vj . This means that s permutes the Vi; since V is simple G-module, G permutes
them transitively. This gives rise to the homomorphism G→ Sr. Since G is a simple group, whose
order (= n!/2) is greater than (n − 1)! ≥ r! = order of Sr, this homomorphism must be trivial.
This means that sVi = Vi for all s ∈ G, and V = Vi is isotypic.

Step 3. Since V is isotypic, there exist a simple R-module W and a positive integer d such that
the R-modules V and W d are isomorphic. It follows that

d · dim(W ) = dim(V) = n− 1

and the centralizer EndR(V) is isomorphic to the matrix algebra Matd(EndR(W )) of size d over
EndR(W ).

Let us put
F = EndR(W ).
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Since W is simple, F is a finite division algebra of characteristic `. Therefore F is a finite field of
characteristic ` and [F : F`] divides n − 1. We have EndR(V ) ∼= Matd(F ). Clearly, EndR(V ) ⊂
EndF`(V) is stable under the adjoint action of An. This induces a group homomorphism

α : An → Aut(EndR(V)) = Aut(Matd(F )).

Since F is the center of Matd(F ), it is stable under the action of An, i.e., we get a homomorphism
An → Aut(F ), which must be trivial, since An is a simple non-abelian group, and Aut(F ) =
Gal(F/F`) is abelian. This implies that the center F of EndR(V) commutes with An. Since
EndG(V) = F` (recall that the An-module V is absolutely simple), we have k = F`. This im-
plies that EndR(V) ∼= Matd(F`), and

α : An → Aut(EndR(V)) = (EndR(V))∗/F∗` ∼= GL(d,F`)/F∗` = PGL(d,F`)

is trivial if and only if EndR(V) ⊂ EndAn(V ) = F` · Id. Since EndR(V) ∼= Matd(F`), α is trivial
if and only if d = 1, i.e. V is an absolutely simple R-module. It follows from the Jacobson density
theorem (see [18, §5] or [101, Chapter 4,§11]) that R ∼= Matm(F`) with dm = n− 1. This implies
that α is trivial if and only if R ∼= Matn−1(F`), i.e., R = End(V).

The adjoint action of An on R gives rise to a homomorphism

β : An → Aut(R) = R∗/F∗` ∼= PGL(m,F`).

Clearly, β is trivial if and only if R commutes with An, i.e., R = F` · Id. This implies that we are
done if either α, or β is trivial.

Step 4. Recall that md = n− 1. Let us put

c := min(d,m).

Then
c2 ≤ n− 1

and either c = d, or c = m. Thus, it suffices to check that every group homomorphism An →
PGL(c,F`) is trivial. Let us consider the following cases:

(0) If c = 1 then the group PGL(1,F`) is the one-element group, hence every homomorphism to
PGL(1,F`) is trivial, and we are done.

(i) If (n − 1) is a prime number, then c = 1 and, in light of case (i), we are done. So, in what
follows, we may and will assume that c > 1 (i.e., both m, d > 1) and n − 1 is not prime. In
particular, n 6= 6, 8.

(ii) Suppose that
`n−1

`− 1
<
n!

2
.

Since c2 ≤ n− 1, the order of PGL(c,F`)) is strictly less than the ratio

`c
2

`− 1
≤ `n−1

`− 1
<
n!

2
.

Since the order of An is n!/2, every homomorphism from An to PGL(c,F`) is trivial, so we
are done.
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(iii) Suppose that ` ∈ {2, 3}. We claim that in this case

`N−1

`− 1
<
N !

2

for all integers N ≥ 5. Indeed, after we replace N by N + 1, the left-hand side of the desired
inequality is multiplied by ` < 5 < N , while the right-hand side is multiplied by N > `.
Hence, it suffices to check the validity of the inequality for N = 5 and ` = 2, 3. In this case,
we get

`5−1

`− 1
=

`4

`− 1
< 60 =

5!

2
,

that proves the desired inequality. In light of case (ii), we are done if ` ∈ {2, 3}.

It follows from Case (iii), that we may assume that ` ≥ 5.

(iv) Suppose that n ≥ 9. Then,

c− 1 ≤ [
√
n− 1]− 1 < [n/3].

Let
γ : An → PGLc(F`)

be a group homomorphism. We need to prove that γ is trivial. Let F̄` be the algebraic closure
of F`. Since PGL(c,F`) ⊂ PGL(F̄`), it suffices to check that the composition

An → PGL(c,F`) ⊂ PGL(c, F̄`),

which we continue denote by γ, is trivial.

Let
π : Ãn � An

be the universal central extension of the perfect group An. It is well known that, for n ≥ 5,
Ãn is also perfect and the kernel (the Schur’s multiplier) of π is a cyclic group of order 2.
One could lift γ to the group homomorphism

γ′ : Ãn → GL(c, F̄`).

Clearly, γ is trivial if and only if γ′ is trivial. In order to prove the triviality of γ′. Let r :=
[n/3], and notice that An contains a subgroupD isomorphic to (Z/3Z)r (generated by disjoint
3-cycles). LetD′ be a Sylow 3-subgroup in π−1(D). Clearly, π mapsD′ isomorphically onto
D. Therefore, D′ is a subgroup of Ãn that is isomorphic to (Z/3Z)m. Now, let us discuss the
image and the kernel of γ′.

First, since Ãn is perfect, its image lies in SL(c, F̄`), i.e., one may view γ′ as a homomorphism
from Ãn to SL(c, F̄`). Second, the only proper normal subgroup in Ãn is the kernel of π. This
implies that if γ′ is nontrivial, then its kernel meetsD′ only at the identity element. Therefore,
SL(c, F̄`) contains the subgroup γ′(D′) isomorphic to (Z/3Z)r. Since ` > 3, the subgroup
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γ′(D′) is conjugate to an elementary 3-group of diagonal matrices in SL(c, F̄`). This implies
that

r ≤ c− 1.

Since r = [n/3], we get a contradiction implying that our assumption of the nontriviality of
γ′ was wrong. Hence, γ′ is trivial and therefore γ is also trivial.

By Case (iv), we may assume that n ∈ {5, 7}.

(v) Suppose that n = 7. Then, ` 6= 7, and n − 1 = 2 × 3. Since both integers 2 and 3 are
prime, c = 2. Let γ : A7 → PGL(2,F`) be a nontrivial group homomorphism. Since An is
simple and perfect, γ is injective. Moreover, its image H := γ(A7) lies in PSL(2,F`) and is
isomorphic to the group A7 of order is 7!/2. Suppose that H = PSL(2,F`). Since ` divides
the order of PSL(2,F`), we conclude that ` ≤ 7. This implies that ` = 5, and therefore, the
order of PSL(2,F`) is equal to 60 < 7!/2. Recall that 7!/2 is the order of H . Since H is
a subgroup of PSL(2,F`), we get a contradiction. Thist implies that H 6= PSL(2,F`). It
follows that H is a proper simple non-abelian subgroup of PSL(2,F`). It is known ( [162,
Theorems 6.25 and 6.26]) that each proper simple non-abelian subgroup of PSL(2,F`) is
isomorphic to A5; in particular, its order is equal to 60. However, the order of H is 7!

2 6= 60.
The obtained contradiction implies that if n = 7, then every homomorphism from A7 to
PGL(2,F`) is trivial, so we are done.

(vi) The only remaining case is n = 5. Since n − 1 = 2 × 2 and 2 is a prime, c = d = m = 2.
Since A5 is simple perfect,

α(A5) ⊂ PSL(2,F`), β(A5) ⊂ PSL(2,F`)

and we may view α and β as injective group homomorphisms from A5 to PSL(2,F`). It
follows that the order (`2 − 1)`/2 of PSL(2,F`) is divisible by 60, which is the order of
A5. In particular, (`2 − 1)`/2 is divisible by 5. Since the prime ` 6= 5, we conclude that
` ≡ ±1 mod 5. This ends the proof.

Remark 2.24. 1. It is known ( [162, loc.cit.]) that, if ` ≡ ±1 mod 5, then PSL(2,F`) contains
a subgroup isomorphic to A5.

2. If ` ≡ ±1 mod 5, then the A5-module
(
FR`
)0 is not very simple [193, Theorem 4.7]. (This

exceptional case was overlooked in [179], see [193]).

3. The S5-module
(
FR`
)0 is very simple for all prime ` [193, Theorem 4.7].

2.4 The Rosati Involution

We fix a polarization L0 on A of type D = (d1, . . . , dg). The corresponding Hermitian form on
H0 and the symplectic form E0 = Im(H0) on Λ allows us to define the involutions of the rings
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EndC(V ) (resp. EndQ(ΛQ)) by taking the adjoint operator with respect to H0 (resp. Im(H0)).2

Using the representations ρa and ρr, we transfer this involution to the endomorphism algebra

EndQ(A) := End(A)⊗Q

of A.

It is called the Rosati involution and, following classical notation, we denote it by f 7→ f ′. The
Rosati involution can be defined as

f ′ = φ−1
L0
◦ f∗ ◦ φL0 : A→ Â→ Â→ A

If we view Â as the Picard variety of A, then f∗ is the usual pull-back map of isomorphism classes
of holomorphic line bundles on A. Note that φ−1

L0
is defined only after we tensor End(A) withQ, so

the Rosati involution is defined only on EndQ(A). However, if L0 is a principal polarization, then
φL0 is an isomorphism, and the Rosati involution is an involution of End(A).

For any f ∈ End(A), let

Pa(f) = det(tIg − fa) =

g∑
i=0

tg−i(−1)icai

be the characteristic polynomial of fa, and

Pr(f) = det(tI2g − fr) =

2g∑
i=0

(−1)icri t
2g−i

be the characteristic polynomial of fr. It is easy to check that

Pa(f
′) = Pa(f),

so all eigenvalues of f ′a are conjugates of the eigenvalues of fa.

We have
(fr)C = fa ⊕ f̄a,

where (fr)C is considered as a linear operator on ΛC (see Proposition (5.1,2) in [106]). In particular,

Pr(t) = Pa(f)Pa(f̄).

An endomorphism f ∈ End(A) is called symmetric if f = f ′. Let Ends(A) denote the subring
of symmetric endomorphisms. It follows from above that, if f ∈ Ends(A), then fa is a self-adjoint
operator with respect to H0, and its eigenvalues are real numbers. Also, we see that Pr(f) =
Pa(f)2.

2Recall that the adjoint operator of a linear operator T : V → V of complex spaces equipped with a non-degenerate
Hermitian form H is the unique operator T ∗ : V → V such that H(T (x), y) = H(x, T ∗(y)) for all x, y ∈ V .
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Let Pic(A) be the group of isomorphism classes of holomorphic line bundles on a complex abelian
variety A and c1 : Pic(A)→ H2(A,Z) be the Chern class homomorphism. Its image is denoted by
NS(A) and is called the Néron-Severi group. By definition

NS(A) ∼= Pic(A)/Pic0(A).

We define a homomorphism of abelian groups

α : NS(A)→ EndQ(A), L 7→ ·φ−1
L0
◦ φL ∀L.

It induces a homomorphism of linear spaces over Q

αQ : NS(A)Q := NS(A)⊗Q→ EndQ(A).

If f ∈ End(A) lies in α(NS(A)), then φL = φL0 ◦ f for some L0 ∈ NS(A). This means that
H0(fa(z), z

′) = H(z, z′) for some Hermitian form H such that

Im(H)(Λ× Λ) ⊂ Q.

Since H(z, z′) = H(z′, z), this means that the operator fa is self-adjoint, hence f is symmetric.
This implies easily that α defines an isomorphism of Q-linear spaces

α : NS(A)Q
∼=→ EndsQ(A) := Ends(A)⊗Q. (2.22)

If L0 is a principal polarization, this defines an isomorphism

α : NS(A)
∼=→ Ends(A) (2.23)

[106, 5.2.1].

Note that α(L0) = idA, hence the subgroup generated by L0 is mapped isomorphically to the sub-
group of Ends(A) of endomorphisms of the form [m],m ∈ Z. Also, it follows from the definition
that if L is a principal polarization then α(L) is an automorphism of A. The converse is not true.

If we identify NS(A)Q with the linear space of Hermitian forms H on V such that Im(H)(Λ ×
Λ) ⊂ Q, then the inverse map α−1 assigns to f ∈ EndsQ(A) the Hermitian form

H = H0(fa(z), z
′). (2.24)

Suppose f ∈ End(A) and fa are given by a complex matrix M of size g. Then, we must have

M · (Z|D) = (Z|D) ·N, (2.25)

where the matrix

N =

(
N1 N3

N2 N4

)
∈ Mat2g(Z)

defines fr. Thus, we get
M = (Z ·N3 + DN4)D−1,
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hence,
Mτ = (Z ·N3 + DN4)D−1Z = τN1 + DN2. (2.26)

This shows that the period matrix Z must satisfies a “quadratic equation”. Now assume, addition-
ally, that f ∈ Ends(A) is a symmetric endomorphism. This means that fr and f ′r considered as
linear operators on W = ΛR are adjoint operators with respect to the alternating form E = Im(H)
defined by the matrix JD. This implies that the matrix N satisfies tN · JD = −JDt ·N . This gives

tN1D = DN4,
tN2D = −DN2,

tN3D = −DN3. (2.27)

If D = Ig (i.e., in the case of principal polarization), then

N =

(
N1 N2

N3
tN1

)
, (2.28)

where B and C are skew-symmetric matrices of size g × g.

The coefficients of the characteristic polynomial have the following geometric meaning in terms
of the intersection theory on Pic(A) (induced by the intersection theory on H∗(A,Z)).

For any f = α(L) ∈ Ends(A),

dcai =
(Lg−i0 , Li)

(g − i)!i!
, i = 0, . . . , g, (2.29)

where d = d1 · · · dg [106], (5.2.1). In particular, L is ample if and only if all eigenvalues of fa are
positive.3 In the last statement, we use that a line bundle L is ample if and only if (Lg−i0 , Li) > 0
for all i = 0, . . . , g.

A homomorphism f : A→ A′ of abelian varieties of the same dimension is called an isogeny if its
kernel is a finite group. The order of the kernel is called the degree of the isogeny and is denoted by
deg(f). It is equal to the topological degree of the map. Equivalently, f is an isogeny if its image is
equal to A′. An example of an isogeny is a map φL : A→ Â, where L is a holomorphic ample line
bundle. The “almost” inverse isogeny of f is the holomorphic homomorphism g : A′ → A such
that g ◦ f = [e], where e is the exponent of the kernel of f . (Such a g always exists and unique. In
addition, g is also an isogeny.) For example, e · φ−1

L is the almost inverse isogeny of φL. One may
easily check that the existence of an isogeny between abelian varieties is an equivalence relation on
the set of isomorphism classes of abelian varieties.

Suppose that α(L) = f ∈ Ends(A) is an isogeny. By definition, φL0 ◦ f = φL. It follows that
deg(φL0) deg(f) = deg(φL). We know that deg(φL0) = d = detD and deg(φL) = d′ = detD′,
where D′ is the type of L. This gives deg(f) = d′/d. Applying (2.29) with i = g, we obtain

cag =
d′g!

g!d
= deg(f). (2.30)

3This follows from Sturm’s theorem relating the number of positive roots with the number of changes of signs of the
coefficients of a polynomial.
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One can also compute the coefficients ci in the characteristic polynomial P af◦f ′

ci =
(
g
i

)(f∗(L0)i, Lg−i0 )

(Lg0)
(2.31)

(see [106], (5.1.7)). We set

Tr(f)a = ca1, Trr = cr1, Nm(f)a = cag , Nm(f)r = crg.

We have

Tr(f ◦ f ′) =
2

(g − 1)!

(f∗(L0), Lg−1
0 )

(Lg0)
, Nm(f ◦ f ′) =

(f∗(L0)g)

(Lg0)
. (2.32)

The first equality implies that the symmetric form (f, g)→ Tr(f◦g′) on End(A) is positive definite.

2.5 Semi-simple Finite-dimensional Algebras

We know that EndQ(A) is isomorphic to a subalgebra of the matrix algebra Mat2g(Q), and hence,
is a finite-dimensional algebra over Q. Recall that a finite-dimensional associative algebra D over a
field F is called a simple algebra if it has no nonzero two-sided ideals. An algebra over F is called
semi-simple if it is isomorphic to the direct product of simple F -algebras. The center of a simple
algebra is a field containing F . If the center coincides with F , the algebra is called a central simple
algebra.

If D is a skew field and K is the center of D then K is an overfield of F and the K-dimension
of D is always a square. This is proved by showing that, over some finite extension L of K, the
algebra DL = D ⊗K L splits, i.e., becomes isomorphic to a matrix algebra over L.

An example of a central simple algebra is the matrix algebra Matn(F ). Another example of a
simple algebra is a field, or a division algebra, also called a skew field, an algebra (often assumed to
be non-commutative), where every nonzero element is invertible.

By a Theorem of Wedderburn (see [18, Chapter 8,§8] or [101, Chapter 1,§3]), a semi-simple
algebra over a field F is isomorphic to the direct product of matrix algebras over division algebras.

An example of a non-commutative central simple F -algebra (if char(F ) 6= 2) is a 4-dimensional
quaternion algebra

H =
(a, b
F

)
= F + F I + FJ + FK,

where I2 = a 6= 0,J2 = b 6= 0,K = I · J = −J · I [58, Chapter 1], [170, Chapter 2]. Note that,
multiplying a or b by a non-zero square in the field does not change the isomorphism class of the
algebra. Also

(a,b
F

) ∼= ( b,a
F

)
. The algebra H is a division algebra if and only if the only solution in

F 3 of the equation x2
0 = ax2

1 + bx2 is the triple (x0, x1, x2) = (0, 0, 0) [58, 1.3], [136, 1.6]. Also,
note, for later computations, that

I ·K = −I ·K = I · I · J = aJ, J ·K = −K · J = J · I · J = −J2 · I = −b. (2.33)



36 CHAPTER 2. ENDOMORPHISMS OF ABELIAN VARIETIES

The quaternion algebra H is equipped with an anti-involution

x = α+ βI + γJ + δK 7→ x̄ = α− βI− γJ− δK

such that
Nm(x) = NmH(x) := xx̄ = x̄x = α2 − aβ2 − bγ2 + abδ2 ∈ F. (2.34)

If we put
tr(x) = trH(x) := x+ x̄ = 2α ∈ F. (2.35)

then direct calculations show that

tr(x̄) = tr(x), x2 − tr(x)x+ Nm(x) = 0, ∀x ∈ H. (2.36)

Clearly,
tr(1) = 2, tr(I) = tr(J) = tr(K) = 0. (2.37)

Notice that

tr(xy) = tr(yx) ∀x, y ∈ H; tr(yxx−1) = tr(x), yxy−1 = yx̄y−1, ∀x ∈ H, y ∈ H∗. (2.38)

Indeed, let us consider the F -algebra EndF (H) of all F -linear operators in the F -vector space H
and the corresponding faithful left regular representation of H

multH : H → EndF (H), y 7→ multH(y) : H → H, x 7→ yx, ∀x ∈ F, (2.39)

which is an injective homomorphism of F -algebras that sends 1 to 1. Let

TrH : EndF (H)→ F

be the corresponding F -linear trace map such that

TrH(uwu−1) = TrH(w), (2.40)

for all w ∈ EndF (H) and F -linear automorphisms u of the F -vector space H .

TrH (multH(yx)) = TrH (multH(x)multH(y)) = TrH (multH(y)multH(x)) = TrH (multH(xy))
(2.41)

for all x, y ∈ H . It follows that, for any x ∈ H, y ∈ H∗,

TrH
(
multH(yxy−1)

)
= TrH(multH(y)multH(x)multH(y)−1) = TrH(x).

Using (2.33), we get

TrH(I) = TrH(J) = TrH(K) = 0, and TrH(1) = 4. (2.42)

Combining the F -linearity of both tr and TrH with (2.37) and (2.42), we conclude that, for any
x ∈ H ,

TrH(mult(x)) = 2tr(x) = 2trH(x).

It follows from (2.40) that tr(yxx−1) = tr(x), which proves the first formula of (2.38). The second
formula of (2.38) follows from (2.35).
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Remark 2.25. The trace map onH gives rise to the symmetric non-degenerate F -bilinear trace form

H ×H → F, x, y 7→ tr(xy).

Indeed, the non-degeneracy follows from the explicit formula:

tr ((α1 + β1I + γ1J + δ1K)(α2 + β2I + γ2J + δ2K)) = α1α2+aβ1β2+bγ1γ2−abδ1δ2, ∀αi, βi, γi, δi ∈ F.

Later we will use a closely related to the trace form the non-degenerate F -bilinear form

Btr : H ×H → F, x, y 7→ tr(xȳ). (2.43)

It is symmetric, because

Btr(y, x) = tr(yx̄) = tr(yx̄) = tr(xȳ) = Btr(x, y).

Again, direct computations tell us that {1, I,J,K} is an orthogonal basis of the F -vector space H
with respect to Btr, while

Btr(1, 1) = 2, Btr(I, I) = −2α, Btr(J,J) = −2β, Btr(K,K) = 2αβ.

It follows that the determinant of the matrix of the form Btr with respect to the basis {1, I,J,K} is
equal to

2 · (−2α) · (−2β) · (2αβ) = (4αβ)2,

which is a (nonzero) square in F . Hence, the determinant of the form Btr with respect to any basis
of the F -vector space H is also a square.

The following assertion will be used in Chapter 5.

Proposition 2.26. If ρ ∈ H \ F and ρ2 ∈ F ∗, then:

(i) tr(ρ) = 0 = tr
(
ρ−1
)
, that is,

ρ̄ = −ρ ∈ F I + FJ + FK, ρ−1 = −ρ−1 ∈ F I + FJ + FK.

(ii) The F -bilinear form

E = Eρ : H ×H → F, E(x, y) = tr(ρxȳ) (2.44)

is an alternating nondegenerate F -bilinear form such that

E(xη, yη) = E(x, y) ∀x, y ∈ H and ∀η ∈ H \ F with η2 = −1. (2.45)

(iii) The map
H → H, x 7→ x∗ := ρx̄ρ−1

is an anti-involution of the F -algebra H .
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(iv) Suppose that c = ρ2 ∈ F is not as square in F . Let η ∈ H and s ∈ F ∗ satisfy the equality

η2 = s2ρ2 = s2c ∈ F ∗.

Then, there exists δ ∈ H∗ such that η = s · δρδ−1 and

E(xη, x) = s · c · Nm(δ)−1 · tr ((xδ)(xδ)∗) , ∀x ∈ H.

(v) Let F = R and c = ρ2 ∈ R, c < 0. Suppose that

tr(xx∗) > 0, ∀x ∈ H \ {0}.

Let X (H) := {η ∈ H | η2 = −1}. Then, either, for all η ∈ X (H),

E(xη, x) = tr(ρxηx̄) > 0, ∀x ∈ H \ {0}, (2.46)

or, for all η ∈ X (H),
E(xη, x) < 0 ∀x ∈ H \ {0}.

Proof. Indeed, ρ is obviously invertible in H . It follows from the second formula of (2.36) that
tr(ρ)x = ρ2 + Nm(ρ) ∈ F . Since ρ 6∈ F , we get tr(ρ)ρ = 0 and ρ 6= 0, which imply that tr(ρ) = 0,
i.e., ρ̄ = −ρ. Now, we have

ρ · ρ−1 = ρ−1 · ρ = 1 = 1̄ = ρ−1ρ = ρ̄ρ−1 = −ρρ−1.

This implies that ρ−1 = −ρ−1, i.e., tr(ρ−1) = 0. This ends the proof of (i).

Let us prove (ii). The F -bilinearity of E is obvious while its non-degeneracy follows from the
non-degeneracy of the trace form (see Remark 2.25). Now, using the first equality of (2.36), (2.38)
and the already proven assertion (i), we have

E(x, y) = tr(ρxȳ) = tr
(
ρxȳ

)
= tr(yx̄ρ̄) = tr (yx̄(−ρ)) = −tr(yx̄ρ) = −tr

(
ρ(yx̄ρ)ρ−1

)
= −tr(ρyx̄) = −E(y, x).

This proves that E is alternating. In order to finish the proof of (ii), notice that in light of (i),
η̄ = −η̄, hence

E(xη, yη) = tr(ρxηyη) = tr(ρxηyη) = tr(ρxηη̄y) = −tr(ρxη2y) = −
(
−tr(ρxȳ)

)
= tr(ρxȳ) = E(x, y).

Now, let us prove (iii), loosely following [102, Ch. IX, proof of Th. 4.3]. Since the map x 7→ x∗ is
a composition of an anti-automorphism and an automorphism, it is an anti-automorphism. In order
to check that this is an involution, it suffices to observe that

(x∗)∗ =
(
ρx̄ρ−1)

)∗
= ρ · ρx̄ρ−1 · ρ−1 = ρ · ρ−1xρ̄ · ρ−1 = (−ρρ−1)x(−ρρ−1) = x.

In order to prove (iv), first notice that η 6∈ F , because η2 is not a square in F . Further, replacing η
by s−1η, we may and will assume that

s = 1, ρ2 = η2 = c ∈ F ∗.
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Since c is not a square in F , both F -subalgebras F + Fρ and F + F · η are isomorphic to the
quadratic field extension F (

√
c) of F . In other words, the map

F + F · ρ→ F + F · η, α+ βρ 7→ α+ βη ∀α, β ∈ F

is a F -linear field isomorphism that sends ρ to η. It follows from the theorem of Skolem-Noether
(see [18, §11]) that there is δ ∈ H∗ such that

η = δρδ−1.

Then,

E(xη, x) = tr(ρxηx̄) = tr(xη̄x̄ρ̄) = tr (x(−η)x̄(−ρ)) = tr(xηx̄ρ)

= tr(xδρδ−1x̄ρ) = tr(xδρδ−1x̄ρ) = tr((xδ)(ρδ−1x̄ρ−1ρ2))

= tr((xδ)(ρδ−1x̄ρ−1)c)c · tr((xδ)(ρ(xδ̄−1)ρ−1))

= c · tr((xδ)(xδ̄−1)∗)) = c · tr((xδ)(xδδ−1δ̄−1)∗))

= c · tr((xδ)(xδNm(δ)−1)∗)) = c ·Nm(δ)−1 · tr((xδ)(xδ)∗)).

(2.47)

(v) follows readily from (iv) applied to F = R.

Remark 2.27. Let F̃ be an overfield of F . Then, H̃ = H ⊗F F̃ is the quaternion algebra
(a,b
F̃

)
.

Identifying H with
H ⊗ 1 ⊂ H ⊗F F̃ ⊂ H̃,

we may view H as the certain F -subalgebra of H̃ , and 1, I,J,K as a basis of the F̃ -vector space
H̃ . Now, the explicit formula (2.35) implies that

trH̃(x) = trH(x) ∈ F, ∀x ∈ H ⊂ H̃. (2.48)

This implies that the restriction of the canonical involution

H̃ → H̃, x 7→ x′ = trH̃(x)− x

to H coincides with the canonical involution

H → H, x 7→ x′ = trH(x)− x.

Combining this with (2.34), we obtain that

NmH̃(x) = NmH(x) ∈ F ∀x ∈ H ⊂ H̃.

Remark 2.28. The characteristic polynomial Px(t) ∈ F [t] of multH(x) : H → H coincides with(
t2 − tr(x)t+ Nm(x)

)2. Indeed, if H ∼= Mat2(F ) then our assertion follows readily from the fact
that the left Mat2(F )-module Mat2(F ) is isomorphic to a direct sum of two copies of the Mat2(F )-
moduleF 2. In order to do the general case, it suffices to recall that there is an overfield F̃ of F such
that HF̃ = H ⊗F F̃ is isomorphic to Mat2(F̃ ) and apply Remark 2.27.
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If, for any x 6= 0, Nm(x) 6= 0, then

x−1 =
1

Nm(x)
x′,

hence, H is a skew field. A quaternion algebra H over a totally real number field K is called totally
definite if for every (real) field embedding σ : K ↪→ R, the R-algebra Hσ = H ⊗K,σ R obtained
by the change of scalars Hσ is a skew field. If, for any σ as above, the algebra Hσ acquires zero
divisors, hence become isomorphic to Mat2(R), it is called totally indefinite.

For example, for the quaternion algebra H =
(a,b
Q
)
, a splitting field is L = Q+QI ∼= Q(

√
a), so

that H ⊗ L = L+ LJ. One can write any element in H as x = m+ nJ, where m = α+ βI, n =
γ + δK ∈ K. The multiplication rule becomes

(m+ nJ)(m′ + n′J) = mm′ + nn̄′b+ (mn′ + nm̄′)J;

in particular, for any m ∈ L, we have mJ = Jm̄. The map

m+ nj 7→
(
m n
bn̄ m̄

)
(2.49)

defines an isomorphism f : HL → Mat2(L).Observe thatm+ nJ = m̄−nJ and xy = ȳx̄. We see
that, under this isomorphism, the trace tr(x) (resp. the norm Nm(x)) corresponds to the usual trace
(resp. the determinant) of a matrix. Also, observe that f(x̄) = J · tf(x) · J−1, where J =

(
0 −1
1 0

)
.

Let R be a finite-dimensional simple algebra over a field F of characteristic 0. Then, its center
K is an extension of finite degree of F . In addition, there is an isomorphism of K-algebras R ∼=
Matr(D), whereD is a finite-dimensional central division algebra overK, and r is a certain positive
integer. Taking into account that dimK(D) is a complete square, we may define the reduced degree
of R (over K), denoted by [R : K]red, to be the positive integer r

√
dimK(D), whose square is

dimK(R) = r2 dimK(D). We also define the reduced degree [R : F ]red of R over F as the product
[R : K]red[K : F ]. Clearly,

[R : K]red | [R : K], [R : F ]red | [R : F ] (2.50)

if R is a simple F -algebra.

The reduced degrees admits a natural interpretation as the rank ofR equipped with a LieK-algebra
structure defined by the bracket operation

[u, v] = uv − vu, ∀u, v ∈ R. (2.51)

It is known ( [81, Ch. X, Sect. 3], [190, p. 66, Step 3]) that the Lie algebraR splits into a direct sum

R = K ⊕ sl(R)

of its center K and its derived algebra sl(R), which is a simple K-Lie algebra of rank√
dimK(R)− 1 = r

√
dimK(D)− 1 = [R : K]red − 1.
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This implies that R is a reductive K-Lie algebra of rank

([R : K]red − 1) + 1 = [R : K]red,

and also R is a reductive F -Lie algebra of rank

[R : K]red[K : F ] = [R : F ]red.

Now, let R be an arbitrary finite-dimensional semi-simple F - algebra. It follows that, if we define
the structure of a F -Lie algebra on R by (2.51), then R becomes a reductive Lie algebra over F .
Let us define the reduced degree [R : F ]red over F as the sum of the reduced degrees of its simple
factors over F . The additivity of ranks of reductive Lie algebras (wrt direct sums) implies that
[R : F ]red coincides with the rank of of theF -Lie algebra R. (Notice that each Cartan subalgebra
of R is either an overfield of F or a direct sum of finitely many overfields of F .)

A semi-simple finite-dimensional algebra F -algebra R comes equipped with the trace F -bilinear
map R × R → F defined by (x, y) 7→ Tr(xy), where Tr(a) is the trace of the F -linear linear
operator R → R, x 7→ xa. We can also define the reduced trace and the reduced norm of a central
simple K-algebra R by embedding R into the matrix algebra Matr(L) over a splitting field L of R,
and taking the usual trace and norm of a matrix. Note that this does not depend on the choice of L
and the values of the reduced trace and the reduced norm belong to K.

The possible structure of the Q-algebra EndQ(A) is known. It is a finite-dimensional associative
algebra R admitting an anti-involution4 x → x∗ and a symmetric bilinear form Tr : R × R → Q
such that the quadratic form x 7→ Tr(xx∗) is positive definite. An equivalent definition is that R is
a semi-simple algebra over Q admitting a positive definite anti-involution. Such algebras have been
classified by A. Albert and G. Scorza in the beginning of the last century.

Assume that R is a simple algebra over Q. Let K be the center of R, it is a field admitting an
involution σ, the restriction of the anti-involution ofR. LetK0 = Kσ be the subfield of σ-invariants.
Then, K0 is a totally real algebraic number field. If K 6= K0, then it is a purely imaginary quadratic
extension ofK0. SinceR is central simple overK, itsK-dimension is equal to n2 for some positive
integer n.

Let
e = [K : Q], e0 = [K0 : Q].

Then, [K : K0] = 1 or 2, and

dimQ(R) = en2 = [K : K0]e0n
2.

If R is not simple, then it is isomorphic to the finite product of such simple Q-algebras.

An abelian variety is called simple if it is not isogenous to the product of positive-dimensional
abelian varieties. An equivalent definition uses Poincaré’s Reducibility Theorem and asserts that

4An anti-involution means an involutive isomorphism from the algebra to the opposite algebra, i.e. the algebra with
the same abelian group but with the multiplication law x · y := y · x.
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an abelian variety is simple if and only if it does not contain a k-dimensional abelian subvariety of
dimension k 6= 0, g. The endomorphism algebra R = EndQ(A) of a simple abelian variety A is a
skew-field.

Let
ρ := dimQ NSQ(A)

be the Picard number of A. It follows from (2.22) that it coincides with dimQ EndsQ(A).

The following table gives four possible cases for a simple algebra R.

Type n e ρ Restriction
I 1 e0 e0 e|g

II 2 e0 3e 2e|g
III 2 e0 e0 2e|g
IV n 2e0 e0n

2 e0n|g

Table 2.1: Endomorphisms algebras of simple abelian varieties

It is known that any finite-dimensional simple algebra R over R is isomorphic to either Matr(R),
or Matr(C), or Mat(H), where H is the usual quaternion algebra

(−1,−1
R
)
. By embedding R into

RR, we can identify the anti-involution x 7→ x∗ with taking the transpose tx of the matrix x in
the first case, and with taking the adjoint tx̄ of the matrix x̄ in the remaining two cases. Since the
Q-subalgebra of symmetric elements in EndQ(A) is isomorphic to the subalgebra of R of elements
x such that x = x∗, this gives the information about the possible Picard number ρ of A.

If A is not simple, its endomorphism algebra is not a skew field, i.e., it has zero divisors.

Note that
[EndQ(A) : Q]red ≤ 2g. (2.52)

Indeed, EndQ(A) embeds in Mat2g(Q) via its rational representation. Hence, the reductive Q-Lie
algebra EndQ(A) is isomorphic to a Q-Lie subalgebra of the reductive Q-Lie algebra Mat2g(Q) of
rank 2g. This implies that [EndQ(A) : Q]red does not exceed 2g.

If A is a simple abelian variety, then EndQ(A) is a skew-field that acts faithfully on the 2g-
dimensional Q-vector space ΛQ. This implies that dimQ(EndQ(A)) divides 2g. In particular, for
any simple abelian variety A,

dimQ(EndQ(A)) ≤ 2 dim(A). (2.53)

It follows from (2.50) that [EndQ(A) : Q]red|2g. More precisely, [EndQ(A) : Q]red divides g if A
is of types I-III, and [EndQ(A) : Q]red divides 2g if A is of type IV. In the latter case, the equality
in (2.52) occurs if and only if A is of type IV with e0 = g. If A is not necessarily simple, the
equality occurs if and only if A is isogenous to the product of simple abelian varieties Ai with
[End0(Ai) : Q]red = 2 dimAi.

We say in this case that A is of CM-type. We will study such varieties in details in Chapter 9.
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Theorem 2.29. Let A and B be abelian varieties. Then, the rank of the free abelian group
Hom(A,B) does not exceed 2 dim(A) dim(B). In particular, for any abelian variety A,

dimQ(EndQ(A)) ≤ 2 dim(A)2. (2.54)

Proof. We may assume that A 6= {0}, B 6= {0}. Replacing A and B by abelian varieties isogenous
to them, we may and will assume that

A =

r∏
i=1

Ai, B =

s∏
j=1

Bj ,

where all Ai and Bj are simple abelian varieties. Then

Hom(A,B) =
r∏
i=1

s∏
j=1

Hom(Ai, Bj).

Since

dim(A) =
r∑
i=1

dim(Ai), dim(B) =
r∑
j=1

dim(Bj),

it suffices to check that the rank of each Hom(Ai, Bj) does not exceed 2 dim(Ai) dim(Bj). In other
words, it suffices to prove the theorem in the case of simple abelian varieties A and B. So, assume
that both A and B are simple. If A and B are not isogenous, then the group Hom(A,B) = {0}
and its rank is 0, which does not exceed 2 dim(A) dim(B). On the other hand, if A and B are
isogenous, the rank of Hom(A,B) equals the rank of End(A). As we have already seen in (2.53),
it does not exceed 2 dim(A). In its turn, since B 6= {0}, it does not exceed 2 dim(A) dim(B). This
ends the proof.

It follows from the Hodge decomposition (1.3) of complex cohomology of A of dimension g that

H1,1(A,C) = H1(A,Ω1
A) ∼= V ⊗ V ∨ ∼= Cg

2
.

Since the first Chern class homomorphism defines an invective homomorphism

c1 : NSQ(A)→ H1,1(A,C) ∩H2(A,Z),

we obtain that
dimQ NSQ(A) ≤ g2.

Definition 2.3. An abelian varietyA of dimension g > 1 is called singular if dimQ EndsQ(A) = g2.
In view of(2.22), this is equivalent to that dimQ NS(A)Q is maximal possible and equal to g2.

Theorem 2.30. [127] The following properties are equivalent:

• A is a singular abelian variety of dimension g;

• A is isogenous to the product of g elliptic curves Ei with complex multiplication.
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Proof. The second property obviously implies the first. Indeed, it is obvious that the Picard number
of A

ρ(A) := dimQ NSQ(A)

does not change under an isogeny. So, we may assume thatA is isomorphic to the product of elliptic
curves. Since there is only one isogeny class of an elliptic curve E with complex multiplication,

ρ(E × E) = 2 + dimQ(EndQ(E)) = 4.

By induction, we get ρ(Eg) = g2.

Conversely, if A is singular, then the classification of possible endomorphism algebras shows that
A is as in Case IV. The algebra EndQ(A) is a purely imaginary quadratic extension K of a totally
real field K0 with [K0 : Q] = g. Thus, [EndQ(A) : Q]red = 2g, and therefore, A is isogeneour to
the product of simple abelian varieties Ai with [EndQ(A) : Q]red = 2 dim(Ai). It is immediate to
see that dim(Ai) = 1.

In fact, we have a stronger result proven in [156] (see also [106, Chapter 10, Corollary (6.3)]) in
dimension 2 and in [86] for arbitrary dimension.

Theorem 2.31. A is a singular abelian variety if and only if it is isomorphic to a product of mutually
isogenous elliptic curves with complex multiplication.



Chapter 3

Elliptic Curves

An elliptic curve is a one-dimensional abelian variety. Here we recall some basic facts about elliptic
curves and discuss abelian varieties that are isogenous to the product of elliptic curves. There is an
enormous literature about elliptic curves, for example, we may refer the reader to [119], [158].

3.1 Weierstrass Equation

Let
H = {τ ∈ C : Im(τ) > 0} ⊂ C

be the upper half-plane.

An elliptic curve is a one-dimensional abelian variety E = C/Λ. We can find a special symplectic
basis in Λ of the form (τ, 1), where τ = x + iy ∈ H. The matrix of the symplectic form Im(H)

on Λ with respect to this basis is the matrix
(

0 1
−1 0

)
. Since i = −x

y + 1
y τ , we get Im(H)(i, 1) =

1
y . By (1.15), H = 1

yzz̄
′ in agreement with (1.15). The Hermitian form H defines a principal

polarization on E. It corresponds to a line bundle L0 of degree 1. We will always consider E as a
one-dimensional principally polarized abelian variety.

Note that Sp(2,Z) = SL(2,Z), so the moduli space of elliptic curves is

A1 = SL(2,Z)\H.

The orbit space is known to be isomorphic toC, the isomorphism is defined by a certain holomorphic
unction j : H → C, which is invariant with respect to SL(2,Z). It is called the absolute invariant.
If τ is the period of E, then j(τ) is called the absolute invariant of E. We refer to the explicit
definition of j to any (good) textbook on functions of one complex variable.

One may also find there the definition of the Weierstrass function ℘(z) attached to Λ. It is an even
Λ-periodic meromorphic function on C, whose set of poles coincides with Λ (and all those poles
are double). The holomorphic map

C/Λ \ {0 + Λ} → P2(C), z + Λ 7→ (X : Y : Z) = (℘(z) : ℘′(z) : 1)

45
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extends to a holomorphic embedding

φΛ : E ↪→ P2(C),

whose image φΛ(E) is the nonsingular cubic curve (the Weierstrass model of E)

CΛ : Y 2Z = 4X3 − g2X
2Z − g3Z

3, (3.1)

with
g2 = g2(Λ) = 60

∑
λ∈Λ\{0}

1

λ4
, g3 = g3(Λ) = 140

∑
λ∈Λ\{0}

1

λ6
. (3.2)

The cubic polynomial
PΛ(x) = 4x3 − g2(Λ)x− g3(Λ) (3.3)

has no multiple roots, i.e.,
∆(Λ) := g2(Λ)3 − 27g3(Λ)2 6= 0. (3.4)

In addition,

j(E) = j(C/Λ) = 1728
g2(Λ)

∆(Λ)
= 1728

g2(Λ)

g2(Λ)3 − 27g3(Λ)2
. (3.5)

In the following, we will identify E with its image in P2(C), i.e., with the plane cubic curve CΛ

(3.1). Then, the zero 0E of the group law on E is the point∞ := (0 : 1 : 0). The inversion map
[−1] is (X : Y : Z) → (X : −Y : Z) in light of evenness of ℘(z) and oddness of its derivative.
All three points of order 2 on E (i.e., the elements of E[2] \ {0E} are

W1 = (α1 : 0 : 1), W2 = (α2 : 0 : 1), W3 = (α3 : 0 : 1), (3.6)

where α1, α2, α3 are all three roots of the cubic polynomial PΛ(x) = 4x3 − g2(Λ)x− g3(Λ), i.e.,

PΛ(x) = 4x3 − g2(Λ)x− g3(Λ) = 4(x− α1)(x− α2)(x− α3). (3.7)

Remark 3.1. If p, q ∈ C are complex numbers such that p3 − 27q2 6= 0, then there exists precisely
one lattice Λ in C such that

p = g2(Λ), q = g3(Λ), j(C/Λ) = 1728
p3

p3 − 27q2
.

One can also arrive at the Weierstrass equation by embedding E into a P2 using sections of a line
bundle L = L3

0, where deg(L0) = 1. Its image in the plane is a nonsingular plane curve with
an inflection point equal to the image of 0E . In appropriate projective coordinates, the equation
becomes

y2z − x3 −Axz2 −Bz3 = 0, (3.8)

where 4A3 + 27B2 6= 0. The Weierstrass equation is the equation of its affine part that consists of
points (x : y; z) with z 6= 0. In fact, any nonsingular projective curve of genus 1 over a field K of
characteristic 6= 2, 3 that admits a rational K-point is isomorphic to a plane curve given by equation
(3.8). For this reason, any complex nonsingular curve of genus 1 is often called an elliptic curve.
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Remark 3.2. Let K be a finitely generated subfield of C that contains g2(Λ) and g3(Λ) over Q.
(E.g.,K = Q(g2(Λ), g3(Λ)).) Then, the group operations onE = CΛ are regular maps of algebraic
varieties that are defined over K. In addition,

K(E[2]) = K(α1, α2, α3), K(E[4]) = K(α1, α2, α3,
√
−1,
√
α1 − α2,

√
α2 − α3,

√
α3 − α1).

(3.9)
In particular, in the notation of Section 1.3, K(E[2]) coincides with the splitting field of the cubic
polynomial PΛ(x) over K. This implies readily that one of the following three conditions holds:

(i) PΛ(x) splits completely over K and K(E[2]) = K.

(ii) PΛ(x) has precisely one root in K and K(E[2]) is a quadratic extension of K.

(iii) PΛ(x) is irreducible and K(E[2])/K is a Galois extension, whose Galois group is either a
cyclic group of order 3 or the noncommutative full symmetric group S3 of order 6.

Claim 3.3. The Gal(K)-module E[2] is simple if and only if the polynomial PΛ(x) is irreducible
over K. Moreover, the Gal(K)-module E[2] is absolutely simple if and only if the Galois group
Gal(PΛ/K) of the irreducible polynomial PΛ(x) over K is the full symmetric group S3.

Proof. If PΛ(x) if reducible, then at least one of its roots, say αj lies in K. This means that
Wj = (αj : 0 : 1) ∈ E(K) and therefore E[2] contains a proper Gal(K)-submodule {0E ,Wj}. In
particular, E[2] is not simple.

On the other hand, if PΛ(x) is irreducible, then Gal(K) acts transitively on the set {α1, α2, α3}
of roots of PΛ(x). This implies that Gal(K) acts transitively on the set {W1 = (α1 : 0 : 1), W2 =
(α2 : 0 : 1),W3 = (α3 : 0 : 1)} of all nonzero elements of E[2]. Hence, the Gal(K)-module E[2]
is simple.

In order to prove the second assertion of the claim, recall that the absolute irreducibility (sim-
plicity) of an irreducible representation (simple module) over F2) means that its every nonzero
endomorphism is the identity map. Let u be a nonzero endomorphism of the simple Galois module
E[2]. By Schur’s Lemma, the simplicity implies that u is an automorphism of E[2]. This means
that u acts as a certain permutation of the set {W1,W2,W3} of all nonzero elements of E[2]. In
other words, there is a permutation σ ∈ S3 such that

u(Wi) = Wσ(i), ∀i = 1, 2, 3. (3.10)

Since u commutes with the Galois action on E[2], σ commutes with

Gal(PΛ/K) ⊂ S3.

The irreducibility of PΛ(x) means that Gal(PΛ/K) is either S3 or the alternating group A3, which
is a cyclic group of order 3. In the former case, σ is the identity permutation, which means that
u is the identity automorphism of E[2]. This implies that the Galois module E[2] is absolutely
simple. In the latter case, every even nontrivial even permutation σ is defined by (3.10) a non-trivial
automorphism of the Galois module E[2] that implies that E[2] is not absolutely simple.
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3.2 Elliptic Curves with Complex Multiplication

Let f be an endomorphism of E, then its analytic representation fa is defined by a complex number
z, and its rational representation fr : Λ → Λ is the map λ 7→ zλ. Following the classical tradition,
we denote the period Z ∈ H1 by τ . In the basis (τ, 1) of Λ, fr is given by an integral matrix
N = ( a11 a12

a21 a22 ), so that we have (zτ, z) = (a11τ + a12, a21τ + a22). This gives z = a21τ + a22 and
(a21τ + a22)τ = a11τ + a12, and hence a quadratic equations for τ

a21τ
2 + (a22 − a11)τ − a12 = 0. (3.11)

It agrees with (2.25). The discriminant of the quadratic equation (2.25) is equal to

D = (a22−a11)2 + 4a12a21 = (a11 +a22)2− 4(a11a22−a12a21) = Tr(N)2− 4 det(N). (3.12)

Since Im(τ) > 0, we must have a21 6= 0, D < 0, or a21 = a22 − a11 = a12 = 0. In the latter case,
the matrix N is a scalar matrix, and the endomorphism is just the multiplication [a1] and there is no
condition on τ . In the former case,

τ =
a11 − a4 + i

√
−D

2a21
.

It shows that τ ∈ Q(
√
D), i.e. it is an imaginary quadratic algebraic number. Also,

z = a21τ + a22 = 1
2(a11 + a22 + i

√
−D)

belongs to the same field. For this reason, an elliptic curveE is called an elliptic curve with complex
multiplication by K = Q(

√
D).

Multiplying (3.11) by a3, we obtain that a21τ and, hence z, satisfies a monic equation over Z,
hence belongs to the ring oK of integers of the field K. Note that formula (3.12) shows that, D is
divisible by 4 if Tr(N) = a11 + a22 is even, and D ≡ 1 mod 4 otherwise.

Recall that, if D is square-free, then oK has a basis, as a module over Z, equal to (1, 1
2(1 +

√
D)

if D ≡ 1 mod 4 or 1,
√
D otherwise. If D = m2D0, where D0 is square-free, then End(E) is

an order in K and D is its discriminant. The order is equal to Z + moK (see [16]). In any case,
EndQ(E) ∼= K, so we are in case IV of classification of endomorphism rings of abelian varieties.
Also, we see that End(E) is an order o in K. The lattice Λ must be a module over o, in fact, one
can show that it is a projective module of rank 1. Conversely, if we take Λ to be such a module over
an order o in K, we obtain an elliptic curve E = C/Λ with End(E) ∼= o.

In this way, one can show that there is a bijective correspondence between isomorphism classes of
elliptic curves E with End(E) = oK and the class group of K (i.e. the group of classes of ideals
in oK modulo principal ideals, or, in a scheme-theoretical language, the Picard group of Spec oK .
The number of such classes is called the class number of K.

Note that Aut(E), which is equal to the group End(E)∗ of invertible elements in End(A), can be
larger than {±1} only if E admits complex multiplication with Gaussian integers (i.e. D = −1)
or Eisenstein integers (i.e. D = −3). In fact, if D ≡ 1 mod 4, an invertible algebraic integer
a + 1

2b(1 +
√
D), a, b ∈ Z must satisfy Nm(1+

√
D

2 ) = ±1. This implies D = −3. Similarly, if
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D 6≡ 1 mod 4, we obtain a2 − Db2 = ±1 implies D = −1. If C is a birational model of E
as a nonsingular plane cubic, then C is a harmonic cubic if D = −1 and equianharmonic cubic
otherwise.

Remark 3.4. Let E be an elliptic curve with complex multiplication and EndQ(E) = K. Recall
that E admits a Weierstrass equation

y2 = 4x3 − g2x− g3,

and the isomorphism class of E is determined by the value of the absolute invariant

j(E) = 1728
g3

2

g3
2 − 27g2

3

.

The curve E has complex multiplication by Gaussian numbers (resp. Eisenstein number) if and
only if g3 = 0 (resp. g2 = 0).

According to the Theorem of Weber and Fuerter, the j-invariant j(E) of an elliptic curve with
complex multiplication is an algebraic integer; in addition, if End(E) is the whole ring of integers
oK in K, then [K(j(E)) : K] = [Q(j(E)) : Q]. The field K(j(E)) is the class field of K, i.e. the
maximal unramified extension of K (see [159], Chapter 2, Th. 6.1 and 4.3).

Assume that j(E) ∈ Q, by the class field theory, this implies that the class number of K is equal
to 1. Also, it is known that j(E) ∈ Q if and only if E can be defined overQ. There are exactly nine
imaginary quadratic fields K with class number 1. They are the fields Q(

√
−d), where

d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

The corresponding values of the absolute invariants j(E) are

26·33, 23·33·113 (d = 1); 26·53 (d = 2); 0, 24·33·53,−215·3·53 (d = 3); −33·53, 33·53·173 (d = 7);

26·53 (d = 2); −215 (d = 11); −215·33 (d = 19); −218·33·53 (d = 43); −215·33·53·113 (d = 67);

−218 · 33 · 53 · 233 · 293 (d = 163)

(see [159, Appendix A, Sect. 3])

Note that the classification of endomorphisms algebras in Table 2.1 shows that End(E) is either
isomorphic to Z, or it is an order in a totally imaginary quadratic extension K of Q.

3.3 Isogenies of Elliptic Curves

Let f : E → E be an endomorphism of E of finite degree n > 0. By Riemann-Hurwitz’ formula,
the map f is an unramified finite cover of degree n. Its kernel is a finite subgroup T of order n of
E. The group E[n] of n-torsion elements of E = C/Λ is 1

nΛ/Λ ∼= (Z/nZ)2.

Assume that fr is defined by a matrix N whose entries are mutually coprime (otherwise the endo-
morphism a composition of an endomorphism g with gr satisfying this property and multiplication
by an integer > 1).
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In other words, we assume that the kernel of f is a cyclic group of order n. In this case, f is called
a cyclic isogeny).

The theory of elementary divisors allows us to find two bases (γ1, γ2) and (γ′1, γ
′
2) in Λ such that

(fr(γ1), fr(γ2)) = (nγ′1, γ
′
2).

In particular, the kernel of f is the cyclic order n subgroup generated by 1
nγ1 mod Λ.

Since j(τ) depends only on Λ, we obtain that j(τ) = j(nτ). It is known that there exists a
polynomial Φn(X,Y ) with integer coefficients such that Φ(j(τ), j(nτ)) ≡ 0 for any τ ∈ H.

The equation Φn(X,Y ) = 0 is called the modular equation of level n. Thus, the number of
elliptic curves admitting an endomorphism of degree n with cyclic kernel is equal to the number of
solutions of the equation Φn(x, x) = 0. This number was computed by R. Fricke, and it is equal to
h0(−n) + h0(−4n) if n ≡ 2, 3 mod 4, and h0(−4n) if n ≡ 1 mod 4 [55]. Here h0(−d) is the
class number of primitive quadratic integral positive definite forms with discriminant equal to −d.

Let f : E → E′ be an isogeny of elliptic curves, and g : E′ → E be an isogeny that is an “almost”
inverse of f , i.e., g ◦ f = [n], where a positive integer n is the degree of f . Let fa be given by a
complex number z and g be given by a complex number z′. Then, zz′ = n. Also we know that
|z|2 = det fr = n. Thus, we obtain that z′ = z̄ is the complex conjugate of z.

The following two assertions allow us, in many cases, to check easily that given elliptic curves are
not isogenous [191].

Theorem 3.5. Let E = C/Λ and E′ = C/Λ′ be elliptic curves, and let K be a finitely generated
subfield of C such that

g2(Λ), g3(Λ), g2(Λ′), g3(Λ′) ∈ K,

i.e., the cubic polynomials

PΛ(x), PΛ′(x) ∈ K[x].

Suppose that PΛ(x) is irreducible over K while PΛ′(x) is reducible over K.

IfE andE′ are isogenous, then they both are isogenous to the elliptic curve with absolute invariant
0 and endomorphism ring Z

[
−1+

√
−3

2

]
.

Proof. It follows from Remark 3.2(iii) that replacing, if necessary, K with its quadratic extension,
we may assume that K(E[2])/K is a cyclic extension of degree 3.

Since PΛ′(x) is reducible, it follows from (3.9) that the field K(E′[2]) either coincides with K,
or with its quadratic extension. Moreover, K(E′[4])/K(E′[2]) is a finite abelian extension, whose
degree is a power of 2 (see (3.9) or Claim 1.7 applied to n = 2). This implies that K(E′[4])/K is
a Galois extension of degree equal to a power of 2. Since [K(E[2]) : K] = 3, the fields K(E[2])
and K(E′[4]) are linearly disjoint over K. Replacing now K by K(E′[4]), we may assume that
K(E′[4]) = K and K(E[2])/K is a cyclic extension of degree 3. By Theorem 2.10, all endo-
morphisms of E′ are defined over K. BY Claim 3.3, the Gal(K)-module E[2] is simple while the
Gal(K)-module E′[2] is not simple.
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Let G = G̃4,E,K be the Galois Group of the field extension K(E[4])/K. We know (see (3.9) or
Claim 1.7 applied to n = 2) that its normal subgroup

H = Gal(K(E[4])/K(E[2]))

is a finite abelian 2-group. By the Galois theory, the quotient

G/H = Gal(K(E[4])/K)/Gal(K(E[4])/K(E[2])) = Gal(K(E[2])/K).

It is a cyclic group of order 3. This implies that 1
3 [K(E[4]) : K] is a power of 2; in particular, it is

prime to 3.

Let C be a Sylow-3-subgroup of G that is a cyclic group of order 3. Clearly, the restriction to C
of the surjection

G� G/H = Gal(K(E[2])/K)

is a group isomorphism of cyclic groups of order 3. Let us consider the subfield

L := K(E[4])C

of C-invariants in K(E[4]). By definition of L, its degree

[L : K] =
1

3
[K(E[4]) : K],

as we know, is prime to 3. In addition,

L(E[4]) = K(E[4]), G̃4,E,L = Gal(L(E[4])/L) = C.

We claim that
L(E[2]) = K(E[4]) = L(E[4]). (3.13)

Indeed, L(E[2]) is the compositum of L andK(E[2]). SinceK(E[2])/K is Galois of prime degree
3, and [L : K] is prime to 3, the field extensions K(E[2])/K and L/K are linearly disjoint, i.e.,
their compositum L(E[2]) has degree

3 · [L : K] = 3 · [K(E[4]) : K]

3
= [K(E[4]) : K].

This implies that the fields L(E[2]) and K(E[4]) have the same degree over K. Since L(E[2]) is
obviously a subfield of K(E[4]), we get the desired equality (3.13).

Taking into account that L(E[2]) is the splitting field of the polynomial PΛ(x), we conclude that
this polynomial remains irreducible over L and its Galois group over L is the cyclic group C of
order 3. It follows from Theorem 2.10 that all homomorphisms from E to E′ are defined over
L(E[4]) = L(E[2]). Of course, PΛ′(x) remains reducible and (even splits) over the overfield L of
K.

It follows from Claim 3.3 that the Gal(K)-module E[2] is simple while the Gal(K)-module E′[2]
is not simple. This implies that every homomorphism of the Galois module E[2]→ E′[2] is zero.
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Suppose that E are E′ are isogenous and let f : E → E′ be an isogeny. Since Hom(E,E′) is a
free abelian group of finite rank, we may assume (dividing f by a suitable power of 2 if necessary)
that

f 6∈ 2 · Hom(E,E′).

This means that f(E[2]) 6= {0}. It follows that f is not defined over L, since otherwise, it induces a
non-identity homomorphism of the Galois modules E[2]→ E′[2], which (as we have already seen)
does not exist. However, f is defined over L(E(4]) = L(E(2]).

Let σ be any element of the cyclic group C = Gal(L(E(4])/L). Then, σ(f) : E → E′ is an
isogeny that does not coincide with f , unless σ is the identity element of C. This implies that there
exists a unique cσ ∈ EndQ(E′)∗ such that

σ(f) = cσf in Hom(E,E′)⊗Q.

In addition, if τ ∈ C, then

cστ (f) = στ(f) = σ(τ(f)) = σ(aτf) = σ(cτ )σ(f).

Since all the endomorphisms of E′ are defined over K, and therefore, over L, we have σ(cτ ) = cτ .
Thus,

cστf = cτσ(f) = cτ cσf.

Since C is commutative, στ = τσ and

cτσ(f) = cστ (f) = cτ cσf,

i.e.,
cτσ = cτ cσ, ∀τ, σ ∈ C.

In other words, the map
C → EndQ(E′)∗, σ 7→ cσ

is a group homomorphism. Take any non-identity element σ of C. Then, a := cσ is a non-identity
element of EndQ(E′), whose cube is the identity automorphism ofE. HenceQ[a] is aQ-subalgebra
of EndQ(E′) that contains a nontrivial cube root of unity. Since EndQ(E′) is either Q, or an
imaginary quadratic field, we conclude that EndQ(E′) is isomorphic to Q(

√
−3). Since E are E′

are isogenous, the endomorphism algebra of E is also isomorphic to Q(
√
−3).

Theorem 3.6 (See [181, 191]). Let E = C/Λ and E′ = C/Λ′ be elliptic curves, and let K be a
finitely generated subfield of C such that

g2(Λ), g3(Λ), g2(Λ′), g3(Λ′) ∈ K.

Suppose that both polynomials PΛ(x) and PΛ′(x) are irreducible over K. Assume additionally that

(i) The Galois group Gal(PΛ/K) is A3;

(i) The Galois group Gal(PΛ′/K) is S3.

Then, E and E′ are not isogenous.
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Proof. First, notice that the splitting fields K(E[2]) and K(E′[2]) are linearly disjoint over K.
Indeed, the Galois groups Gal(K(E[2])/K) = A3 and Gal(K(E′[2])/K) = S3 have no nontrivial
isomorphic quotients. This implies that the intersection K(E[2]) ∩K(E′[2]) = K, and therefore,
K(E[2]) and K(E′[2]) are linearly disjoint over K.

Claim 3.7. The natural action of Gal(K) on the F2-vector space HomF2(E[2], E′[2]) is irreducible.

Let us continue with the proof and prove the claim later. Recall that there is the natural Galois-
equivariant embedding of F2-vector spaces

Hom(E,E′)/2 ↪→ HomF2(E[2], E′[2]).

The irreducibility of HomF2(E[2], E′[2]) implies that either Hom(E,E′)/2 = {0}, or the F2-vector
spaces Hom(E,E′)/2 and HomF2(E[2], E′[2]) are isomorphic. In the former case, Hom(E,E′) =
{0} and we are done. In the latter case, Hom(E,E′) is a free Z-module of rank 4 that contradicts
the inequality from Theorem 2.29. This ends the proof.

Proof of Claim 3.7. Let L be the compositum of the fields K(E[2]) and K(E′[2]) in K̄. The linear
disjointness of these fields means that the Galois group

Gal(L/K) = Gal(K(E[2])/K)× Gal(K(E′[2])/K) = A3 × S3.

It follows that the irreducibility of the representation of Gal(K) in HomF2(E[2], E′[2]) is equiva-
lent to the irreducibility of the representation of Gal(L/K) in HomF2(E[2], E′[2]). In light of Claim
3.3, the Gal(K(E[2])/K)-module E[2] is simple and the Gal(K(E′[2])/K)-module E′[2] is abso-
lutely simple. Now the irreducibility of the representation of Gal(L/K) = Gal(K(E[2])/K) ×
Gal(K(E′[2])/K) in HomF2(E[2], E′[2]) is a special case of the following elementary Lemma
[181, Lemma 3.1] applied to

F = F2, H1 = Gal(K(E[2])/K), W1 = E[2], H2 = Gal(K(E′[2])/K), W2 = E′[2].

Lemma 3.8. Let F be a field. Let τ1 : H1 → AutF (W1) be an irreducible finite-dimensional
representation of a group H1 over F , and τ2 : H2 → AutF (W2) be an absolutely irreducible
finite-dimensional representation of a group H2 over F . Then, the natural linear representation

τ∗1 ⊗ τ2 : H1 ×H2 → AutF (HomF (W1,W2))

of the group H1 ×H2 in the F -vector space HomF (W1,W2) is irreducible.

We already know from Theorem 2.31 the description of EndQ(A) if A is isogenous to the product
of elliptic curves with complex multiplication.

Let us assume now that A = E1 × · · · × Eg is the product of g isogenous elliptic curves Ei with
End(Ei) ∼= Z..



54 CHAPTER 3. ELLIPTIC CURVES

Let αij be an isogeny Ei → Ej of minimal degree, so that any isogeny Ei → Ej can be written
in the form [dij ] ◦ αij (which we denote, for brevity, by dijαij) for some nonzero integer dij and a
complex number αij .

We may assume that αii = 1 and αji = αij for all i, j = 1, . . . g.

The analytic representation of an endomorphism f : A→ A is given by a Hermitian matrix:

M =


d11 d12α12 . . . d1gαig

d21α12 d22 . . . d2gα2g
...

...
...

...
dg1α1g dg2α2g . . . dgg

 .

We may choose the period matrix of A to be equal to the diagonal matrix diag[τ1, . . . , τg], where
τi = xi +

√
−1yi is the period of Ei. Let us choose a principal polarization L0 on A to be the

reducible one coming from the principal polarizations on the curves Ei. Its Hermitian form is given
by the diagonal matrix diag[y−1

1 , . . . , y−1
g ]. Assume that A has another principal polarization L and

M is a symmetric endomorphism corresponding to L. By (2.24), the matrix of the Hermitian form
H corresponding to L is equal to the matrix

M ′ = diag[y−1
1 , . . . , y−1

g ] ·M (3.14)

In particular, this implies that yidij = yjdji.

Assume now that E1 = . . . = Eg = E and End(E) = Z. Since E has no complex mul-
tiplications, αij = 1, hence M is a symmetric integral matrix. It follows from (2.25) that fr
is given by the matrix N =

(
M 0
0 M

)
. Since we are looking for f defined by a principal polar-

ization, f must be an isomorphism, hence detM = 1. We know also that the coefficients of
its characteristic polynomial are positive rational numbers. This implies that M is positive def-
inite. Let (γ1, . . . , γ2g) = (τe1, . . . , τeg, e1, . . . , eg) be a basis of ΛR. It follows from (3.14)
that the matrix of the symplectic form corresponding to H in this basis is equal to (aij), where
aij = y−1Im(H(γi, γj)). This gives

aij = y−1Im(H(ei, ej)|τ |2) = 0, ai,j+g = y−1Im(H(ei, ej)τ) = dij , 1 ≤ i < j ≤ g.

It follows that the type D of the polarization L is equal to the matrix (dij) (reduced to the diagonal
form).

A classical result that goes back to Hermite asserts that a positive definite integral symmetric
matrix of rank g ≤ 7 with determinant 1 can be reduced over Z to the identity matrix (see [91, p.
243–244]). By above, this implies that (up to an automorphism ofA) the only principal polarization
on an abelian variety A = Eg is of the form

∑g
i=1 p

∗
i (point), where pi is the projection to the i-th

factor. In particular,A cannot be isomorphic to the Jacobian variety of a curve of genus g. However,
if g = 8, there is a positive definite symmetric matrix with determinant 1 that cannot be reduced to
the identity matrix. This matrix is equal to 2I8 − PE8 , where PE8 incidence matrix of the Dynkin
diagram of type E8:

E8 • • • • • • •
••

(3.15)



3.3. ISOGENIES OF ELLIPTIC CURVES 55

Recall that this diagram describes the matrix by the following rule: all diagonal elements are equal
to 2, and, after we order the set of vertices, the off-diagonal elements are equal to 0 or−1 according
to whether two vertices are disjoint or incident.

Remark 3.9. It is known that the rank of any positive definite integral symmetric matrix with deter-
minant 1 and even diagonal entries is divisible by 8 (see [148, 2.3]).

Thus, if E has no complex multiplication and a positive integer r is not divisible by 8, then the
product of r copies of E does not admit a principal polarization such that the diagonal entries of the
corresponding unimodular symmetric matrix are even.

Note that there is only one isomorphism class of even positive definite unimodular quadratic lat-
tices of rank 16 not isomorphic to E8 ⊕ E8 and there are 24 non-isomorphic such lattices of rank
24. One of them is the notorious Leech lattice. It is distinguished from the other even unimodular
positive definite lattices of rank 24 by the property that the minimal value of its quadratic form is
equal to 4. So we have 2 (resp. 24) distinguished principally polarized abelian varieties isomorphic
to E8 (resp. E12), where E is an elliptic curve without complex multiplication.

Do they have any geometric meaning, for example, are they Prym varieties or Jacobian varieties?

Example 3.10. Let M be a quadratic lattice, i.e. a free abelian group of finite rank equipped with
a symmetric bilinear form B : M ×M → Z. Assume that the rank of M is an even number 2k
and the bilinear form is positive definite (when tensored with R). Assume also that the orthogonal
group of M (i.e. the subgroup of Aut(M) that preserves the symmetric form) contains an element
ι such that ι2 = −idM . Then, we can use ι to define the complex structure on W = MR and define
a hermitian form H by taking E(x, y) := −B(ι(x), y) so that E(ι(x), y) = B(x, y) is symmetric
and positive definite, and

E(y, x) = −B(ι(y), x) = −B(x, ι(y)) = −B(ι(x), ι2(y)) = B(ι(x), y) = −E(x, y)

is skew-symmetric, obviously non-degenerate.

Let us consider M as a module over Z[i] by letting i act on M as the isometry ι. Since Z[i] is a
principal ideal domain, we get M ∼= Z[i]k and we have an isomorphism (MR, ι) ∼= Ck, so that M
can be identified with the lattice Λ with a basis equal to the union of k copies of the basis (i, 1).
Obviously, the abelian variety A = Ck/M becomes isomorphic to the product Eki , where Ei is the
elliptic curve with complex multiplication by Z[i]. On the other hand, if we take M to be an even
unimodular1 lattice of rank 2k, then our Hermitian form H defines an indecomposable principal
polarization. As we remarked earlier, such a lattice M exists only in dimension divisible by 8. So,
k is divisible by 4.

If k = 4, there exists a unique such lattice, the E8-lattice M . The abelian 4-fold A = C4/M
is remarkable for many reasons. For example, it is isomorphic to the intermediate Jacobian of a
Weddle quartic double solid, i.e. a nonsingular model of the double cover of P3 branched along
a Weddle quartic surface with six ordinary nodes birationally isomorphic to the Kummer surface
of the Jacobian of a curve of genus 2 (see [168]). Another remarkable property of A is that its

1A quadratic lattice is called unimodular if the natural homomorphismM →M∨ defined by the associated symmetric
bilinear form is bijective. Equivalently, the determinant of the symmetric matrix of the bilinear form in any basis is equal
to ±1.



56 CHAPTER 3. ELLIPTIC CURVES

indecomposable principal polarization, considered as an irreducible divisor in A, has the maximal
possible number of singular points (equal to 10) for a simple abelian variety of dimension 4, which
is not isomorphic to the Jacobian variety of a hyperelliptic curve (see [34]).

The automorphism group Aut(A) = End(A)× of the abelian variety A, which can be called the
E8-abelian variety was computed by J.-P. Serre (in a letter of September 16 1986 to R. Valley). It is
isomorphic to the group G = 26 oS6, the semi-direct product of the elementary abelian group 26

of rank 6 and the symmetric group S6 that acts in 26 via its permutation representation on the set of
subsets of {1, . . . , 6} of even cardinality modulo taking the complementary subset. We leave it to
the reader to prove that this group is naturally isomorphic to the group Sp(4,F2) of automorphisms
of the symplectic linear space F4

2 equipped with the standard symplectic form
∑
xiyi.

It is known that the groupG can be realized as a group of automorphisms of the three-dimensional
variety X isomorphic to the double cover of P3 ramified over the Weddle quartic surface. It admits
a nonsingular birational model, which is a Fano variety with the intermediate Jacobian isomorphic,
as a polarized abelian variety, to the E8-abelian variety [?].

This follows from the classical fact that the index two subgroup G′ of G isomorphic to 25 o S6

(isomorphic to the Weyl group W (D6) of the root system of type D6) acts by projective transfor-
mations in P3 leaving invariant the Weddle quartic surface [24, p. 117] (see [44, p. 128], or [43] for
a modern exposition).

3.4 Intersection Theory on an Abelian Surface

In what follows, we will freely use the following results about the intersection numbers X · Y of
divisors X and Y on a two-dimensional abelian variety, (an abelian surface A. We will prove them
at the end of this section.

Claim 3.11. Let A be an abelian surface.

(i) The local intersection index of two distinct elliptic curves in A at any common point is 1.
So, their (global) intersection number is just the number of common points, each of which is
counted with multiplicity one.

(ii) The intersection number of two effective divisors on A is always a nonnegative integer.

(iii) If the intersection number of two irreducible curves on A is 0, then they both are elliptic
curves and one of them is obtained from another one by a translation.

(iv) Let X be an irreducible curve on A and E is an elliptic curve on A. If their intersection
number X ·E = 1 then X is an elliptic curve, and A is biregular to the product X ×E [174].

(v) LetC be an effective divisor onA that is a sum of two elliptic curvesE1 andE2 withE1·E2 =
1. Suppose that E is an elliptic curve on A such that C · E > 1.

Then,
E1 · E ≥ 1, E2 · E ≥ 1.
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Example 3.12. Following [69], let us give an example of the Jacobian of a curve of genus 2 iso-
morphic to the product of two isomorphic elliptic curves. Let d be a square-free positive integer
and K = Q(

√
−d) be the corresponding imaginary quadratic field, and o be its ring of integers.

We assume that the class number of K is greater than 1 and choose a non-principal ideal a in o.
For example, we can take d = 5. Since −5 ≡ 3 mod 4, the ring o is generated over Z by 1 and
ω =
√
−5. We may take for a the ideal (2, 1+ω). In fact, the norm ideal Nm(a) 6= Z of Z is gener-

ated by all integers Nm ((a+ b(1 + ω)) (with a, b ∈ Z). In particular, Nm(a) contains Nm(2) = 4
and Nm(1 + ω) = 6 and therefore contains 2Z.

Since the equation Nm(x+ yω) = x2 + 5b2 = 2 has no integer solutions, we obtain that the ideal
a is not principal. Let

E = C/o = C/Z+ Zω.

Consider a homomorphism
φ : E → E × E

defined by x 7→ (2x, (1 + w)x). Let E′ be the image of φ, which is also an elliptic curve in the
abelian surface

A := E × E.

LetE1 = E×{0}, E2 = {0}×E, and ∆ be the diagonal in the abelian surfaceA - all three of them
are elliptic curves isomorphic to E. Let us compute the intersection numbers E′ · Ei, i = 1, 2, 3.

Let x + o ∈ E with x ∈ C. If φ(x + o) ∈ E1, then x(1 + ω) ∈ o, hence there exists m,n ∈ Z
such that

x =
m+ nω

1 + ω
=

1

6
(m+ 5 + (m− n)ω) ∈ Z1− ω

6
+

1

6
Z.

This shows that there are three intersection points (0, 0),
(

1−ω
3 , 0

)
,
(

2(1−ω)
3 , 0

)
. This implies that

E′ · E1 = 3.

If φ(x + o) = (0, (ω + 1)x + o) ∈ E2, then 2x ∈ o, and hence, there are two intersection points
(0, 0), (0, 1

2(1− ω)). This implies that

E′ · E2 = 2.

If φ(x+ o) = (2x+ o, (1 + ω)x+ o) ∈ ∆, then (1− ω)x = 2x− (1 +w)x ∈ o. This implies that
x ∈ 1+ω

6 Z+Z, hence there are three intersection points (0, 0),
(

1+ω
3 , 1+ω

3

)
,
(

2(1+ω)
3 , 2(1+ω)

3

)
, and

E′ ·∆ = 3.

Now, we consider the divisor

C = 2∆ + E′ + E1 − 2E2.

We have C ·∆ = 2, C · E′ = 5, C · E1 = 3, C · E2 = 5, C2 = 2.
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By the Riemann-Roch theorem for abelian varieties [127, Sect. 16] applied to the abelian surface
A, the Euler characteristic of the invertible sheaf OA(C) is given by the formula

1 =
1

2!
C2 = dimC H0(A,OA(C))− dimC H1(A,OA(C)) + dimC H2(A,OA(C)). (3.16)

Since the canonical class of the abelian variety A is trivial, it follows from Serre’s Duality that
dimC H2(A,OA(C)) = dimC H0(A,OA(−C)). Now (3.16) implies that

1 = dimC H0(A,OA(C))− dimC H1(A,OA(C)) + dimC H0(A,OA(−C)) ≤

dimC H0(A,OA(C)) + dimC H2(A,OA(C)),

and therefore, either H0(A,OA(C)) 6= {0}, and hence, the linear equivalence class ofC is effective,
or H0(A,OA(−C)) 6= {0}, and hence the linear equivalence class of −C is effective. Taking into
account that C ·∆ = 2 is a positive integer and ∆ is an effective divisor; we conclude that the class
of −C is not effective. Hence, the class of C is effective. Let D be an effective divisor on A that
is linearly equivalent to C. Since D2 = C2 = 2, the theorem of Riemann-Roch [127, Sect. 16]
implies that the invertible sheaf L = OA(D) satisfies the conditions

χ(L) = 1, H0(A,L) 6= 0, deg(φL) = χ(L)2 = 1.

Since deg(φL) = 1, φL is an isomorphism. Since H0(A,L) 6= {0}, it follows from the vanishing
theorem of [127, Sect. 16] that the index i(L) = 0. By Corollary from [127, Sect. 16], the Hermitian
form attached to L is positive-definite, i.e., the class of D is a principal polarization on A. Since
D2 = 2, it follows that D is a curve of arithmetic genus 2, by the adjunction formula (recall that
the canonical class of A is zero). If D is irreducible, then it is a nonsingular curve of genus 2 2 and
A ∼= J(D) [174, Satz 2].

If the divisor D is reducible, then it follows from Claim 3.11 that D is a sum C1 + C2 of two
elliptic curves C1 and C2m and A = C1 × C2, where we identify C1 with C1 × {0} and C2 with
{0} × C2 [174, Satz 2]. Then,

C1 · C2 = 1.

Recall that
C ·∆ = 2 > 1, C · E1 = 3 > 1.

In light of Claim 3.11(vi),

C1 ·∆ ≥ 1, C2 ·∆ ≥ 1; C1 · E1 ≥ 1, C2 · E1 ≥ 1.

This implies that
C1 ·∆ = 1, C2 ·∆ = 1

and the sum
3 = C · E1 = C1 · E1 + C2 · E1

2To see this use one considers the normalization map C̄ → A and the dual map Â → J(C̄) and proves that it is
injective, hence the geometric genus coincides with the arithmetic genus.
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of two positive integers C1 ·E1 and C2 ·E1 is 3. Hence, precisely one of those summands is 1. We
may assume that C1 · E1 = 1.

So,C1, intersects ∆ andE1 with multiplicity 1. We haveC2 = D−C1 ∼ 2∆+E′+E1−2E2−C1.
Intersecting with C1, we get 1 = 4− 2(E2 · C1), a contradiction.

Proof of Claim 3.11. We write [−1] for the negation map

[−1] : A→ A, a 7→ −a

on A. For each b ∈ A, we write tb for the corresponding translation map

tb : A→ A, a 7→ a+ b

on A.

(i) Using translations in A, we may assume that two distinct elliptic curves E1, E2 ⊂ A meet at
0A. We need to check that they meet there transversally. Let A = C2/Γ where Γ is a discrete
lattice in C2 of rank 4. Then

E1 = W1/(Γ ∩W1), E2 = W2/(Γ ∩W2)

where W1 and W2 are distinct one-dimensional complex vector subspaces in C2 such that
Γ∩Wj is a discrete lattice of rank 2 in Wj for j = 1, 2. Since W1 and W2 meet transversally
at (0, 0) ∈ C2, the curves E1 and E2 meet tranversally at (0, 0) + Γ = 0A.

(ii) It suffices to check that if C1, C2 are irreducible curves in A, then C1 · C2 ≥ 0. Using a
suitable translation in A, we may assume that C1 6= C2, and therefore, C1 meets C2 only at
finitely many points (if any). This implies that C1 · C2 ≥ 0.

(iii) If C1 · C2 = 0, then C1 = C2 = C. We may also assume that C contains 0A. If P ∈ C,
then (C +P ) ·C = C ·C = 0 and therefore C is invariant under translation by every c ∈ C.
Similarly, (C − c) · C = C · C = 0 and therefore C is invariant under translation by −c for
every c ∈ C. So, if G is a closed connected algebraic subgroup of A generated by C, then G
acts transitively on C by translations. This implies that either G = A or G is an elliptic curve
that contains C. Since C is a curve, G 6= A, and therefore, C is a curve in the elliptic curve
G. By dimension arguments, C = G.

(iv) Using translations in A, we may assume that 0A is the only common point of X and E. This
implies that every point x of X is the only common point of the curves X and tx(E). Notice
also that

[−1]E = E.

Since
1 = E ·X = tx(E) ·X,

x is a nonsingular point of X , and hence, the curve X is smooth. Since X lies on the abelian
surface A, it is not rational. 3 Since the canonical class KA is equal too ero, the adjunction
formula implies that C2 ≥ 0, and C2 = 0 if and only if C is a smooth elliptic curve.

3A morphism of a rational curve C to a complex torus T = Cg/Λ can be composed with the normalization morphism
C̃ → C, and then lifted to a holomorphic map of the universal covers P1(C) → Cg . The latter map is obviously a
constant map.
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By writing any effective divisor as a sum of irreducible curves, we obtain that D2 ≥ 0 on
the cone Eff(A) in NS(A)R of classes of effective divisors modulo homological equivalence.
By Hodge’s Index Theorem, we have D · C ≥ 0 for any effective divisors D and C. This
implies that Eff(A) coincides with the cone Nef(A) of nef divisor classes. The latter is
known to be the closure of the cone Amp(A) of ample divisor classes. By Riemann-Roch
and the Vanishing Theorem, h0(D) = D2/2 for any ample divisor D. Thus, the restriction
of the trace quadratic form on End(A) to Amp(A) is equal to twice the restriction of the
intersection form to Amp(A).

Let us consider the regular map:

s : X × E → A, (x, e) 7→ x+ e

defined by the group law on A. Since both X and E are projective irreducible, the image
s(X) is an irreducible closed subset of the surface A that contains two distinct irreducible
curves X and A. Hence, the image is of dimension two, hence it coincides with A. This
means that s is surjective, i.e., for each a ∈ A there are exist x ∈ X and e ∈ E such that

a = x+ e.

This innocently looking equality actually means that for each a ∈ A there exist x ∈ X and
e ∈ E such that

ta([−1]X) 3 a− x = e ∈ E ∩ ta([−1]X); ta([−1]E) 3 a− e = x ∈ ta([−1]E) ∩X.

Taking into account that

ta([−1]X) = [−1]X · E = X · [−1]E = X · E = 1;

ta([−1]E) ·X = [−1]E ·X = E ·X = 1,

we conclude that such a pair (x, e) is unique for any given a ∈ A.

This implies that s : X × E → A is a birational regular map of smooth projective varieties.
Therefore, the dimensions of the linear spaces of regular 1-forms (differentials of the first
kind) on A and X × E coincide, i.e.,

2 = dim(A) = 1 + g,

which means that g = 1, i.e., X is an elliptic curve. Take 0A ∈ X as the zero of group law
on X . Then, the surjective regular map s : X × E → A sends the zero (0X , 0E) of X × E
to the zero of A, hence it is an isogeny of abelian surfaces that is bijective, i.e., deg(S) = 1.
This implies that s is a biregular isomorphism. Hence, A is biregular to X × E. This ends
the proof.

(v) Suppose that, say, E1 · E = 0. This means that E is a translation of E1, and therefore,

1 < C · E = C · E1,

i.e.,
C · E1 > 1.



3.4. INTERSECTION THEORY ON AN ABELIAN SURFACE 61

However,
C · E1 = (E1 + E2) · E1 = E2

1 + E1 · E2 = 0 + 1 = 1,

which contradicts the previous inequality. This contradiction proves that

E1 · E ≥ 1.
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Chapter 4

Humbert surfaces

In this chapter, we will study polarized abelian surfaces such that EndQ(A) contains a real quadratic
number field K such that all its elements of K are invariant under the corresponding Rosati involu-
tion. We also assume that End(A) contains a fixed order of K with discriminant ∆. . They form
a closed subvariety of codimension one in the moduli space of polarized abelian surfaces which is
called a Humbert surface.

4.1 The Singular Equation

Let A be an abelian surface. The Poincaré duality equips the group H2(A,Z) = Z6 with a structure
of a unimodular even quadratic lattice of signature (3, 3). By Milnor’s theorem, H2(A,Z) ∼= U ⊕
U ⊕ U , where U is a hyperbolic plane over Z, i.e. its quadratic form could be defined by a matrix(

0 1
1 0

)
, and the direct sum is the orthogonal direct sum [120, Chapter 2], [148, Chapter 5]. Let

T (A) be the orthogonal complement of NS(A) in H2(A,Z). By Hodge’s Index Theorem, the
signature of NS(A) is equal to (1, ρ− 1), where ρ is the Picard number of A. Since the signature of
H2(A,Z) is equal to (3, 3), the signature of T (A) is equal to (2, 4− ρ). Tensoring by Q, we get an
orthogonal decomposition of quadratic lattices

H2(A,Q) = NS(A)Q ⊕ T (A)Q.

The quadratic form on NS(A) is defined by the intersection theory of curves on an algebraic surface.

It follows from the Hodge decomposition (1.3) that

1 ≤ ρ(A) ≤ 4.

Using Table 2.1, we describe possible type of the endomorphism algebra EndQ(A).

1. A is simple.

(i) ρ(A) = 1: n = e = e0 = 1 and End(A) ∼= Z.

63
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(ii) ρ(A) = 2: n = 1, e = e0 = 2, and EndQ(A) is a real quadratic field.

(iii) ρ(A) = 2: n = 1, e0 = 2, e = 4, and A has a complex multiplication.

(iv) ρ(A) = 3: n = 2, e = e0 = 1, and A is totally indefinite quaternion algebra over Q.

2. A is not simple and hence isogenous to the product E1 × E2 of two elliptic curves.

(i) ρ(A) = 2: E1 is not isogenous to E2.

(ii) ρ(A) = 3: E1 is isogenous to E2, End(E1) ∼= End(E2) ∼= Z.

(iii) ρ(A) = 4: A ∼= E × E, EndQ(E) is a totally imaginary quadratic field.

Let

Z =

(
z1 z2

z2 z3

)
be the period matrix ofA. We assume thatA = C2/Z2 +DZ2 has a primitive polarization of degree
n. Its type is defined by the diagonal matrix D = diag[1, n]. Let f ∈ Ends(A), where fa is defined
by a matrixM and fr is defined by a matrixN as in (2.25). Since f is symmetric,N satisfies (2.27).
We easily obtain that (

N1 N3

N2 N4

)
=


a1 na2 0 nb
a3 a4 −b 0
0 nc a1 na3

−c 0 a2 a4

 .

By (2.25) and (2.26), we have

M = (Z ·N3 + DN4)D−1, M · Z = Z ·N1 + D ·N2,

and
(Z ·N3 + D ·N4) · D−1 · Z = τN1 + D ·N2.

The left-hand side in the second equality is equal to(
0 b(−z2

2 + z1z3)
b(z2

2 − z1z3) 0

)
+

(
a1z1 + a3z2 a1z2 + a3z3

na2z1 + a4z2 na2z2 + a4z3

)

=

(
a1z1 + a3z2 b(−z2

2 + z1z3) + a1z2 + a3z3

b(z2
2 − z1z3) + na2z1 + a4z2 +na2z2 + a4z3

)
.

The right-hand side is equal to(
a1z1 + a3z2 na2z1 + a4z2 + nc

a1z2 + a3z3 − nc na2z2 + a4z3

)
.

Comparing the entries of the matrices in each side, we find a relation

b(z2
2 − z1z3) + a2nz1 + (a4 − a1)z2 − a3z3 + nc = 0.

We rename the coefficients to write it in the classical form to obtain what Humbert called the sin-
gular equation for the period matrix τ :

naz1 + bz2 + cz3 + d(z2
2 − z1z3) + ne = 0. (4.1)
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We also assume that (a, b, c, d, e) = 1. In this new notations, the matrixN0 = N−a1I4 representing
(f0)r = (f − a1id)r can be rewritten in the form

N0 = −a1I4 +N =


0 na 0 nd
−c b −d 0
0 ne 0 −nc
−e 0 a b

 . (4.2)

and (f0)a is represented by the matrix

M0 =

(
−dz2 dz1 − c

−dz3 + na dz2 + b

)
. (4.3)

We have
Tr(N0) = 2Tr(M0) = 2b, det(N0) = det(M0)2 = n2(ac+ ed)2.

Thus, f0 satisfies a quadratic equation

t2 − bt+ n(ac+ ed) = 0, (4.4)

so that 1 and f0 generate a subalgebra o of rank 2 of Ends(A) isomorphic to

o ∼= Z[t]/(t2 − bt+ n(ac+ ed)). (4.5)

The discriminant ∆ of the equation (4.4) is equal to

∆ = b2 − 4n(ac+ ed). (4.6)

It is called the discriminant of the singular equation. Note that, if b is even, ∆ ≡ 0 mod 4,
otherwise ∆ ≡ 1 mod 4.

Since we know that the eigenvalues of M are real numbers,

∆ > 0. (4.7)

Thus, if ∆ is not a square, the algebra o is an order in the real quadratic field Q(
√

∆). On the other
hand, if ∆ is a square, then the algebra o has zero divisors defined by the integer roots 1

2(b±
√

∆)
of equation (4.4).

Note that, replacing t with t + α, we may assume that b = 0 if b is even, or b = 1, otherwise.
Suppose that there is a holomorphic line bundle L∆, whose algebraic equivalence class is mapped
to f0 inder α : NS(A)→ Ends(A)Q. (Such a bundle exists for all f0 ∈ nEnds(A).)

Applying (2.29), we obtain that

(L0, L∆) = nb = 1
2(L2

0)b, (L2
∆) = 1

2n(b2 −∆). (4.8)

Thus, the sublattice 〈L0, L∆〉 of NS(A) generated byL0, L∆ has discriminant equal to (L0)2(L2
∆)−

(L0, L∆)2 = −n2∆.
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Recall that a finite algebra R over Z of degree n can be considered as a quadratic lattice with
associated symmetric bilinear form defined by

(x, y) = Tr(xy), (4.9)

where Tr : R→ Z is the Z-linear function whose value on an element x ∈ R is equal to the trace of
the endomorphism αx : r 7→ xr (the coefficient at (−λ)n−1 in the characteristic polynomial). The
discriminant of the corresponding quadratic form is called the discriminant ofR (the last coefficient
of the characteristic polynomial of αx).

In our case, when R = o from (4.5), we take the basis (1, t̄) of o, where t̄ is the coset of t, and
obtain that the matrix of the bilinear form (4.9) is equal to(

2 −b
−b b2 − n(ac+ ed)

)
=

(
2 −b
−b 1

2(b2 −∆)

)
.

Comparing this with the sublattice 〈L0, L∆〉 of NS(A), we obtain that there is an isomorphism of
quadratic lattices

〈L0, L∆〉 ∼= o(n), (4.10)

where (n) means that we multiply the values of the quadratic form by n.

When L∆ is ample, we can also determine the type of the polarization defined by L∆. It is equal
to the type of the alternating form given by the matrix

tN0 · JD =


0 na 1 nd
−c b −d n
−1 ne 0 −nc
−e −n a b

 . (4.11)

LetA2,n = H2/Sp(JD,Z) be the coarse moduli space of abelian surfaces with polarization of type
(1, n). We denote by H∆ the set of period matrices Z ∈ H2 satisfying a singular modular equation
with discriminant ∆. Let

Humn(∆) = Sp(JD,Z)\H∆.

be the image of H∆ in A2,n := A2,D. This is the locus of isomorphism classes of abelian surfaces
with primitive polarization of degree n that admit an embedding of a quadratic algebra Z[t]/(t2 +
αt+β) with discriminant ∆ = α2−4β in End(A). It is called the Humbert surface of discriminant
∆.

Suppose Z ∈ H∆ and let Z ′ = M · Z for some M ∈ Sp(4,Z). If Z satisfies a singular equation
(4.1), then the matrix N0 defining an endomorphism of C2/Λτ changes to tM−1 ·N0 ·M ( [106],
8.1). Thus, Z ′ satisfies another singular equation although with the same discriminant.

We will prove later the following theorem, which is, in the case n = 1, due to G. Humbert.

Theorem 4.1. Every irreducible component of the Humbert surface Humn(∆) is equal to the image
in H2/Sp(JD,Z) of the surface given by the equation

nz1 + bz2 + cz3 = 0, (4.12)
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where ∆ = b2 − 4nc, 0 ≤ b < 2n. The number of irreducible components is equal to

#{b mod 2n : b2 ≡ ∆ mod 4n}.

Consider the quadratic Z-algebra o from (4.5). Let K = o⊗Q. If ∆ is not a square, then K is a
real quadratic extension ofQ. Let ∆ = m2∆0, where ∆0 is square-free. Then,K = Q(

√
∆0). Ifm

is odd, then the order o is generated by 1 and 1
2m(1 +

√
∆0). If m is even, then o is generated by 1

andm
√

∆0 if ∆0 ≡ 2, 3 mod 4, and by 1 and 1
2m(1+

√
∆0) otherwise. Note that the discriminant

of the order o is equal to ∆.

Let σ1, σ2 : K → R be two distinct embeddings of K into the field R of real numbers.

If ∆ = k2 is a square, then o = Z[ω] is just an order in K = o ⊗ Q = Q ⊕ Q. Under the
isomorphism

oQ → Q⊕Q, x+ yω 7→ (x+ yα+, x+ yα−),

where α± = 1
2(b± k), the order o becomes isomorphic to an order in Z⊕ Z. We denote by σ1, σ2

be the projections from K ⊗ R ∼= R⊕ R→ R.

Let SL2(o) be the group of 2× 2 matrices with determinant 1 and entries in o. Consider its action
on the product H× H of the upper-half planes

(z1, z2) 7→ (
σ1(α)z1 + σ1(γ)

σ1(β)z1 + σ1(δ)
,
σ2(α)z1 + σ2(γ)

σ2(β)z1 + σ2(δ)
).

Let R =

(
1 −1

2 (b−
√

∆)

−1
1
2 (b+

√
∆)

)
. Write ∆ in the form ∆ = b2 − 4nc. Consider the map

H× H→ H2, (z1, z2) 7→ tR

(
z1 0
0 z2

)
R.

Then, the image of the map is equal to the set of matrices (w1 w2
w2 w3 ) ∈ H2 satisfying equation (4.12).

Let Φ : SL2(o) 7→ Sp(JD,Z) be the homomorphism of groups defined by

(
a b
c d

)
7→
(
tR 0
0 R−1

)
·


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

 · (tR−1 0
0 R

)
.

One checks that the map H2 → H2 is equivariant with respect to the action of SL2(o) on H2, and
the action of Sp(JD,Z) on H2. This defines a morphism

Φ : SL2(o)\H2 → Humn(∆).

If b 6≡ 0 mod n, then the morphism Φ is of degree 1. Otherwise, Φ is of degree 2 and factors
through the involution σ that switches the factors in H2 (see [167], IX, Proposition 2.5).

The quotient SL2(o)\H2 (resp. (SL2(o), σ)\H2) is a special case of a Hilbert modular surface
(resp. symmetric Hilbert modular surface).
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4.2 ∆ is a Square

Let i : B ↪→ A be an abelian subvariety of an abelian variety A with primitive polarization L0 of
degree n. Let L′0 = i∗(L0) be the induced polarization of B, and let e(L′0) be the exponent of the
(finite) kernel ker(φL′0) of the isogeny φL′0 : B → B̂. Then, there is an isogeny

ψL′0 = e(L′0)φ−1
L′0

: B̂ → B

such that the composition
ψL′0 ◦ φL′0 : B → B̂ → B

is the multiplication by e(L′0) in B.

Consider the composition

NmB := i ◦ ψL′0 ◦ i
∗ ◦ ψL0 : A→ Â→ B̂ → B → A.

It is called the norm-endomorphism associated toB. It is a symmetric endomorphism corresponding
to the Hermitian form obtained by restricting the Hermitian form of L0 to H1(B,C) ⊂ H1(A,C),
and then, extending it to H1(A,C) by zero. Also, it is easy to see that Nm2

B = e(L′0)NmB . Taking
f = NmB and d = e(L′0), we obtain that f satisfies the equation f2 − df = 0.

Let us go back to abelian surfaces and assume that ∆ = k2 is a square. Then, the minimal
polynomial defining the corresponding endomorphism has roots α± = 1

2(b ± k). Since ∆ ≡ b2

mod 4n, α± ∈ Z. The equation

0 = (f − α+idA)(f + α−idA) = 0

shows that the endomorphisms g± = f − α±idA satisfy the equations

g2
± = ±kg±, g+ ◦ g− = 0. (4.13)

Let E± = g±(A) ⊂ A. These are elliptic curves on A, and we have exact sequences of homomor-
phisms of abelian varieties:

0 −→ E+ −→ A
g−−→ E− −→ 0, 0 −→ E− −→ A

g+−→ E+ −→ 0.

Note that g±|E± = [±k], hence E+ · E− = #Ker([k]) = k2. Since the kernel of the isogeny

E+ × E− → A, (x, y) 7→ x+ y

is the group E+ ∩ E−, we obtain that its degree is equal to k2.

SupposeA = J(C) for some curve C of genus 2 and the polarization L0
∼= OA(C) is the principal

polarization defined by C embedded in J(C) via the Abel-Jacobi map. Since k is equal to the trace
of the characteristic equation for g+, formula (2.31) and the projection formula imply that

Tr(g2
+) = Tr(kg+) = kTr(g+) = k2 = (g∗+(C), C) = (C, (g+)∗(C)) = d+C · E+ = d+d−,

where d± is the degree of the projection g±|C : C → E±. Since d+, d− ≤ k, we get d+ = d− = k.
Obviously, k > 1 since C is not isomorphic to an elliptic curve.

Thus, we obtain the following:
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Theorem 4.2. Suppose a period Z of J(C) satisfies a singular equation with discriminant ∆ =
k2 > 1, then C is a degree k cover of an elliptic curve.

Conversely, assume that there exists a degree k cover q : C → E, where E is an elliptic curve.
Then, the cover is ramified, hence the canonical map q∗ : E = J(E) → A = J(C) is injective. We
identify its image with E. Let N : J(C) → J(E) = E be the norm map (defined on divisors by
taking q∗). Then, N · q∗ : E → E is the map [k]. Let g = NmE : A → A. It follows from the
definition of the norm-endomorphism that g2 = kg. Arguing as above, we find that the symmetric
endomorphism NmE defines a singular equation for a period of J(C) whose discriminant is equal
to k2.

Example 4.3. Assume that a period of A = J(C) satisfies a singular equation with ∆ = 4, so that
C is a bielliptic curve, i.e. there exists a degree 2 cover α : C → E. Let ι : C → C be the deck
transformation of this cover. If C is given by the equations

y2 − f6(x) = 0, (4.14)

then, we may choose (x, y) in such a way that ι is given by (x, y) 7→ (y,−x) and f6(x) = g3(x2).
Let

v2 − g3(u) = 0

be the equation of an elliptic curve E. The map (x, y) → (x2, v) defines the degree 2 cover
α : C → E. Let du/v be a holomorphic 1-form on E, then α∗(du/v) = xdx/y is a holomorphic
1-form on C. The involution ι∗ acts on the linear space of holomorphic 1-forms on C spanned
by dx/y and xdx/y, and decomposes it into two eigensubspaces with eigenvalues +1 and −1.
Consider the involution ι′ : (x, y) 7→ (−y,−x). The field of invariants is generated by y2, xy, x2.
Again f6 = g3(x2) and we get the equation (xy)2 = x2g3(x2). Thus, the quotient C/(ι′) is another
elliptic curve with equation

v2 − ug3(u) = 0.

The map α′ : C → E′ is given by (u, v) 7→ (x2, xy). We have α′∗(du/v) = 2dx/y. Thus, any
hyperelliptic integral

∫
a+bdx
y can be written as a linear combination of elliptic integrals. This was

one of the motivations for the work of G. Humbert.

One may ask how to find whether a hyperelliptic curve given by equation (4.14) admits a degree
two map onto an elliptic curve in terms of the coefficients of the polynomial f6. The answer has
been known since the 19th century. Let us explain it. First, let us put a 2-level on the curve by
ordering the Weierstrass points (0, xi), f6(xi) = 0, i = 1, . . . , 6. By considering the Veronese map
ν : P1 → P2 we put these 6 points (xi, 1) on a conicK in P2. Let pi = ν(xi). Applying Proposition
9.4.9 from [41], we obtain that the following properties are equivalent:

• there exists an involution σ of P1 with orbits (x1, x2), (x3, x4), (x5, x6);

• the lines p1, p2, p3, p4, p5, p6 are concurrent;

• the three quadratic polynomial (x − x1)(x − x2), (x − x3)(x − x4), (x − x5)(x − x6) are
linearly dependent;
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• if ait0 + bit1 + cit2 = 0 are the equations of the three lines, then

D12,34,56 = det

a1 b1 c1

a2 b2 c2

a3 b3 c3

 = det

1 x1 + x2 x1x2

1 x3 + x4 x3x4

1 x5 + x6 x5x6

 = 0.

(see [41], p. 468). Let
I =

∏
σ∈S6

Dσ(1)σ(2),σ(3)σ(4),σ(5)σ(6).

The stabilizer subgroup of (D12,34,56)2 in S6 is generated by the transpositions (12), (34), (56) and
permutations of three pairs (12), (34), (56). It is a subgroup of order 48. Thus, after symmetriza-
tion, I defines the Clebsch skew invariant I15 of degree 6!/48 = 15 in coefficients of the binary
form.1 Recall that the algebra of SL2-invariants of binary forms of degree 6 is generated by Clebsch
invariants I2, I4, I6, I10, I15 (in Salmon’s notation they are A,B,C,D,E) of degrees indicated in
the subscript. These invariants satisfy a basic relation

I2
15 = P (I2, I4, I6, I10), (4.15)

where P is a weighted homogenous polynomial of degrees 15 explicitly given by the expression

P = det

1
2(I2A4 + 18A6) 4(A2

2 + 3I2A6) 2A10

4(2A3
4 + 3I2A6) 2A10 288(A3

4 + 2I2A4A6 + 9A2
4)

2A10 288(A3
4 + 2I2A4A6 + 9A2

4) 72(A4A10 + 48A2
4I6 + 72I2I

2
6 )

 ,

where

12A2 = I2
2 − 36A4,

216A6 = 108I2I4 + 54I6,

3125A10 = 9D − 384I5
2 + 12000I2

2 (I2A4 + 5A6)− 75000A4(I2A4 + 6A6).

Here D is the discriminant of a binary form of degree 6 . We have

− 1

2 · 34
D = 3 · 27I5

2 − 3 · 24 · 53I3
2I4 − 24 · 54I2

2I6 + 150(I2I
2
4 + I4I6) + 32 · 55I10.

Remark 4.4. Note that, if one does not assume that the 6 points p1, . . . , p6 are on a conic, the last
two conditions define an irreducible component of the moduli space of marked cubic surfaces with
an Eckardt point (see [41], 9.4.5).

Remark 4.5. Explicitly, suppose the characteristic equation of f0 and N0 is equal to t2− bt+ (ac+
ed) = 0. Suppose that ∆ = b2 − 4((ac + ed) = k2. The matrix N0 in its action on Λ has two
eigensublattices Λ± of Λ with eigenvalues α±. They are generated by

v±1 = (d, 0,−c, α±), v±2 = (0, d, b− α±,−a),

where the coordinates are taken with respect to the basis (γ1, γ2, e1, e2) of Λ = τZ2 + Z2. So, we
can write

v±1 = (dz1 − c, dz2 + α±), v±2 = (dz2 + b− α±, dz3 − a).

1Its explicit formula occupies 14 pages of Salmon’s book [144], Appendix.
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The endomorphism f0 represented by the matrix M0 has the eigenvalues α± with one-dimensional
eigensubspaces V± generated by the vectors w± = v±1 , the vectors v±1 , v

±
2 are proportional over C

with the coefficient proportionality equal to

τ± =
dz2 + α±
dz3 − a

=
dz1 − c

dz2 + b− α±
.

Let
E± = V±/Λ± ∼= C/Zτ± + Z.

The embedding Λ± ↪→ Λ defines a homomorphism E± → A. Its kernel is equal to the torsion
subgroup of the group Λ/Λ±. We have

v±1 ∧ v
±
2 = (d2, d(b− α±),−ad, cd, dα±, ed)

is equal to d times a vector with mutually coprime coordinates. More precisely,

av±1 + α±v
±
2 = (da, dα±,−ac+ α±(b− α±), 0) = d(a, α±, e, 0) = dg±.

This shows that the order of the torsion subgroup is equal to d.

Let Λ′± = Λ± +Zg±. Then, E′± = V±/Λ
′
± embeds in A. We have E(v±1 , g±) = (b− 2α±) = k,

where k2 = ∆.

There is a homomorphism of the complex tori:

E+ × E− = V+ ⊕ V−/Λ′+ ⊕ Λ′− → A = V+ ⊕ V−/Λ.

Its kernel is a finite group Λ/Λ′+ ⊕ Λ′− of order equal to the determinant of the 4 × 4-matrix with
columns v+

1 , v
−
1 , v

+
2 , v

−
2 divided by d2. Computing the determinant, we find that it is equal to d2∆.

Remark 4.6. We know from Example 3.12 that the Jacobian variety J(C) of a curve of genus 2 could
be isomorphic to the product of two isogenous elliptic curves E1 × E2. Let k1, k2 be the degrees
of the projections of C → Ei. Fix an embedding Ei ↪→ E1 × E2, and consider the corresponding
norm-endomorphisms gi. We obtain that the period matrix of A satisfies two singular equations
with discriminants k2

1 and k2
2 . There are two isogenies

E1 × E′1 → E1 × E2, E2 × E′2 → E1 × E2

of degrees k2
1 and k2

2 .

Remark 4.7. (see [129]). Consider the abelian variety A defined by the period matrix

τ =

(
z1 1/k

1/k z3

)
. (4.16)

Let p : C2 → C2 be the linear map (a, b) 7→ (0, kb). Then, p(γ1) = e2, p(γ2) = kγ2 − e1, p(e1) =
0, p(e2) = ke2. Thus, p defines an endomorphism of A with

fa =

(
0 0
, 0 k

)
, fr =


0 0 0 0
0 k 0 0
0 −1 0 0
1 0 0 k

 .
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We have p(Λ) = Z1+Zkz3 = C/Λ1 and Ker(p)∩Λ = Z(kγ1−e2)+Ze1. The matrix is a special
case of the matrix N0 from (4.2). We get a = c = d = 0, b = k, e = −1. Thus, τ satisfies the
singular equation kz2 = 1. Of course, this was obvious from the beginning. The discriminant of
this equation is equal to k2. This shows that p defines a surjective homomorphism to the complex
1-torusE = C/Z+Zkz3, and its kernel is the complex torusE′ = C/Z+Zkz1 = C/Λ2 embedded
in A by the map z 7→ (z, 0) that sends 1 to e1 and kz1 to kγ1 − e2. Also, one can embed E′ in A
via the map C → C2 that sends 1 to e2 and kz3 to kγ2. The determinant of the matrix of the map
Λ1 ⊕ Λ2 → Λ is equal to k2, this defines an isogeny E × E′ → A of degree k2.

Example 4.8. Assume k = 3. Let f : C → E be a degree 3 map onto an elliptic curve E. Assume
that J(C) contains only one pair of one-dimensional subgroups E,E′ with E ·E′ = k2, and that E
is not isomorphic to E′.

Let γ be the hyperelliptic involution of C and φ : C → C/(σ) = P1 be the canonical degree
2 cover. By our assumption, the subfield of the field of rational functions on C contains a unique
subfield isomorphic to the field of rational functions on E. This shows that σ leaves this field
invariant, and induces an involution σ̄ on E such that there is a commutative diagram

C

f
��

σ // C

f
��

E
σ̄ // E.

We assume that the map f : C → E ramifies at two distinct points. This is a general case; in
a special case, we may have one ramification point of ramification index 3. Let x be one of the
Weierstrass points, a fixed point of γ. We have f(x) = f(γ(x)) = γ̄(f(x)). Thus, by taking f(x)
to be the origin of a group law on E, we may assume that γ̄ is an order 2 automorphism of E.
Obviously, it has four fixed points, the 2-torsion points on E. This shows that f defines a map of a
set W of 6 Weierstrass points to the set F = Eγ̄ of four fixed points a1, . . . , a4 of σ̄. If a is one of
the fixed points ,and f(x) = a, then f(γ(x)) = a, hence γ preserves the fiber f−1(a) (considered
as an effective divisor of degree 3 on C). Since γ is of order 2, it must fix one of the points or the
whole fiber. The latter case happens if one of the points of the fiber is a ramification point of f .
Thus, the fibers of the map W → F have cardinalities (3, 1, 1, 1), or (2, 2, 1, 1). In the latter case,
both ramification points of f are over four points from F . Let us consider the commutative diagram

C

f
��

φ // P1

f̄
��

E
φ̄ // P1.

(4.17)

In the case (2, 2, 1, 1), the composition φ̄ ◦ f : C → P1 has four branch points. On the other hand,
the equal composition f ◦ φ : C → P1 has at least six branch points because φ has 6 branch points.
Therefore, the case (2, 2, 1, 1) is not realized. Let us consider the case (3, 1, 1, 1). Let us assume
that f−1(a1) consists of three points in W . Let yi = φ̄(ai). The map φ̄ ◦ f : C → P1 ramifies
at each of the three pre-images of any point yi ∈ φ̄(F ) with the ramification index equal to 2, and
ramifies at two points over the image b in P1 of the two branch points of C → E.
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It follows from the commutative diagram (4.17) that the branch points of the map f̄ : P1 → P1 are
three points y2, y3, y4 ∈ φ̄(F ). The fiber f̄−1(yi) contains one point from φ(W ), the other point in
this fiber is a ramification point.

Now, we see that the set of Weierstrass points W is the union of two disjoint triples of points
A + B, where f(A) = a ∈ F and f(B) = F \ {a}. We choose a group law on E to assume that
a1 = {0}. Since Ker(J(C) → E) = Ker(Nm : J(C) → E) and Nm(x + y + z) = 0, we obtain
that {x+ y + z} is contained in E′. The image φ(A) of A in P1 is a fiber of the map f̄ : P1 → P1

over y1 = φ̄(0). The image of each point in B under φ is contained in a fiber over a point y2, y3, y4

complementary to the ramification point over y2, y3, y4.

So, we arrive at the following problem. Let C : y2 − F6(x) = 0. The polynomial F6 should
be written as the product Φ3Ψ3 of two cubic polynomials such that there exists a degree 3 map
P1 → P1 such that the zeros of Φ3 form one fiber, and the zeros of Ψ3 are in the same fiber
containing 3 ramification points.

We follow the argument of E. Goursat [59] and H. Burhardt [20], a nice exposition of this can be
found in [154].

Let F (u, v) = 0 be the binary form of degree 6 defining the ramification points of φ : C → P1.
We seek a condition for a factorization F (u, v) = Φ(u, v)Ψ(u, v), where the cubic binary forms
satisfy the following conditions.

Let G(u, v) be a binary cubic, and

J(u, v) = J(G,Φ) = det

(
G′u G′v
Φ′u Φ′v

)
be the Jacobian of the pair of functions G,Φ. Its zeros are the four ramification points of the map
φ : P1 → P1 given by (G,Φ). Let

K = K(u, v;u′v′) = det

(
G(u, v) Φ(u, v)
G(u′, v′) Φ(u′, v′)

)
/(uv′ − u′v)

be the anti-symmetric homogeneous form of bidegree (2, 2) on C2 × C2 expressing the condition
that two points (u, v) and (u′, v′) are in the same fiber of φ. Its set of zeros (u : v) = (u′ : v′)
consists of 4 ramification points of φ. In other words,

K(u, v;u′, v′) = J(G,Φ).

Consider K as a polynomial in u′, v′ with coefficients in C[u, v]. Let

R(u, v) = R(K(u, v;u′, v′), J(u′, v′))

be the resultant. Its vanishing expresses the condition that K and J have a common zero. It is
a quartic binary form in u, v. Let Ψ(u, v) be a cubic binary form dividing R(u, v). Then, the
hyperelliptic curve y2 −Φ(u, v)Ψ(u, v) = 0 2 admits a map of degree 3 to C. The equation of C is
y2 − ψ(x) = 0, where v2ψ(u/v) = Ψ(u, v).

2One views this equation as a curve in the weight projective plane P(1, 1, 2).
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Using the projective transformations of (u, v), and a linear transformation of the linear space
generated by G and Φ, one may assume that G(u, v) = u2v. We can also assume that Φ(u, v) =
u3 + au2v + buv2 + v3. Then, we find that

F (u, v) = (u3 + au2v + buv2 + v3)(4u3 + b2 + 2bx+ 1),

so that a, b are two parameters on which our hyperelliptic curves depend.

One may ask about the description of the set of degree N covers f : C → E of a fixed elliptic
curveE. To describe this set, one introduces a functor (the Hurwitz functor) that assigns to a scheme
T the family of normalized T -covers f : C/T → (E × T )/T such that, for each t ∈ T , the cover
Ct → E × {t} is a normalized degree N cover of a genus two curve.3 By a result of E. Kani [84]
this functor is represented by an open subscheme of the modular curve X(N) of level N .

Finally, we refer to [20] and [154] for an explicit invariant of binary sextics defining the locus
Hum(9). In [110], one can find a treatment of the case k = 5.

Remark 4.9. A generalization of a problem of finding the conditions that a map C → E of degree
k exists is the following problem.

A principally polarized abelian variety P is called a Prym-Tyurin variety of exponent e if there
exists a curve C and an embedding of P ↪→ J(C) such that the principal polarization of C induces a
polarization of type (e, . . . , e) on P . Prym-Tyurin varieties of exponent 2 are the Prymians of covers
C → D of degree 2 with at most 2 branch points. A generalization of the Prym constructions is a
symmetric correspondence T on C such that (T −1)(T +e−1) = 0 in the ring of correspondences
(see Section 10.1). The associated Prym variety of exponent e is the image of T − 1.

For example, the existence of a degree k cover C → E gives a realization of E as a Prym-Tyurin
variety of exponent k. So, the problem is the following. Fix a ppav P of dimension p and a positive
number e. Find all curves C of fixed genus g such that P ⊂ J(C) and the principal polarization
induces a polarization of type (e, . . . , e) on P .

For example, assume that p = 2 and g = 3. Then, J(C) should be isogenous to the product P ×E,
where E is an elliptic curve.

Let k be a positive integer and X(k) be the compactification of Γ(k)\H, where Γ(k) is the prin-
cipal congruence subgroup of SL2(Z) i.e., Γ(k) is the kernel of the natural surjective group homo-
morphism (the entry-wise reduction map modulo k)

SL2(Z)→ SL2(Z/kZ).

(See [170, Th. 28.2.6] for a proof of the surjectiveness). Then, X(k) is called a modular curve of
principal level k. Let

Gk = SL2(Z)/Γ(k) = SL2(Z/kZ)

be the quotient group. For ε ∈ (Z/kZ)∗ denote by αε the automorphism of Gk induced by
the conjugation with the matrix

(
ε 0
0 1

)
. It sends the matrix

(
a b
c d

)
∈ SL2(Z/kZ) to the matrix(

a εb
ε−1c d

)
∈ SL2(Z/kZ). We define the diagonal modular surface

Z(k; ε) := X(k)×X(k)/Gk,

3A cover is normalized if it is not a composition of a cover C → E and an isogeny E → E.
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where Gk acts by g · (x, y) = (g(x), αε(g)(y).

The following theorem was proved by E. Kani [83].

Theorem 4.10. Let Z̃(k; ε) be a minimal desingularization of Z(k; ε). It is a regular surface with
Kodaira dimension min(2, pg,ε), where pg,ε is the geometric genus of the surface. We have

(a) Z̃(k; ε) is a rational surface if and only if k ≤ 5, or

(k, ε) = (6, 1), (7, 1), (8, 1).

(b) Z̃(k; ε) is birationally elliptic K3 if and only if

(k, ε) = (6, 5), (7, 3), (8, 3), (8, 5), (9, 1), (12, 1).

(c) Z̃(k; ε) is of Kodaira dimension 1 with pg = 2 if and only if

(k, ε) = (8, 7), (9, 2), (10, 1), (10, 3), (9, 1), (11, 1).

(d) Z̃(k; ε) is of general type with pg ≥ 3 if and only if k ≥ 13, or

(k, ε) = (11, 2), (12, 5), (12, 7), (12, 11).

LetMell
g (k) be the moduli space of curves of genus g that admit a finite map of degree k onto an

elliptic curve. If g = 2, then any such curve admits two maps onto an elliptic curve, henceMell
2 (k)

is a double cover of the Humbert surface Hum(k2).

The following nice observation is due to E. Kani.

Theorem 4.11. Mell
2 (k) is an open subvariety of of Z(k,−1). In particular, it is rational if and

only if k ≤ 5, K3 if and only if k = 6, 7, elliptic if and only if k = 8, 9, 10, and it is of general type
otherwise.

Proof. Recall that a principally polarized abelian surface A defines a point in Hum(k2) if and only
if there exists a pair of elliptic curves (E,E′) onA such thatE×E′ → A is an isogeny of degree k2.
Let U be an open subset of Hum(k2) of abelian surfaces for which such a pair of curves is unique.
Let U ′ be its pre-image under the natural map Mell

2 (k) → Hum(k2). The canonical inclusions
φ : E ∩ E′ ↪→ E and φ′ : E ∩ E′ ↪→ E′ define an isomorphism φ−1 ◦ φ′ : E′[k] → E[k]. One
can show that this isomorphism is compatible with the Weil pairing on E′, and the Weil pairing
multiplied by −1 on E[k]. If we fix a full k-level structure on E′, i.e. an isomorphism of the
standard symplectic group (Z/kZ)2 to E′[k], then the composition with φ′ ◦ φ−1 defines a full k-
level structure on E. This defines a point in X(k) × X(k). To get rid of the levels, we have to
consider the quotient of X(k)×X(k) by the group Gk(−1).

Corollary 4.12. The Humbert surfaces Hum(k2) are rational for k ≤ 10.
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Proof. If Z(k;−1) is rational, then the quotient is rational. Suppose Z(k; ε) is birationally isomor-
phic to a K3 surface. The fixed locus of the rational cover involution Z(k;−1)→ Hum(k2) consists
ofGk(−1)-orbits of pairs ((E,α), (E,α−1)), where α is the full k-level. It is a curveR isomorphic
to X(k).

Let Z̃(k;−1) be a resolution of singularities of Z(k;−1). Suppose that there is a birational mor-
phism from Z̃(k;−1) → Y , where Y is a K3 surface Y or a relatively minimal elliptic surface
of Kodaira dimensions one. The involution of Z(k;-1)liftstoabirationalinvolutionofZ̃(k;−1).
Since Y is a minimal surface of non-negative Kodaira dimension, it descends to a biregular involu-
tion of Y . It is known that a biregular involution of a K3 surface Y , which fixes point-wise a curve
acts non-trivially on the one-dimensional space Ω2(A) of regular differential 2-forms. It is easy to
see that the quotient by such an involution must be a rational surface. If Y is of Kodaira dimension
one, then the involution preserves the elliptic fibration, and, since X(k) is not isomorphic to an
elliptic curve, we obtain that it intersects the general fiber at 4 points. Since Y is nonsingular, the
quotient is birationally isomorphic to a rational ruled surface.

Remark 4.13. One should compare the previous result with known results about the rationality of
Humbert surfaces Humn(∆), where D is square-free. For example, when D = p ≡ 1 mod 4, it
is known that the corresponding Hilbert modular surface is rational for p = 5, 13, 17, a K3 surface
if p = 29, 37, 41 and an elliptic surface for p = 53, 61, 73 [72]. As before, one proves that the
quotient by S2 is rational for these primes.

Corollary 4.14. Let Hum(k2)′ be the closed subvariety of Hum(k2) parameterizing principally
polarized abelian surfaces A for which there exists an isogeny E × E → A of degree k2. Then,
Hum(k2)′ is a rational curve.

Proof. It follows from the proof of the previous corollary that Hum(k2)′ is isomorphic to the quo-
tient X(k)/Gk ∼= P1.

Remark 4.15. A recent thesis of Robert Auffarth [4] gives some conditions, in terms of the Néron-
Severi group, for the existence of an elliptic curve on an abelian variety of arbitrary dimension.

We will see more examples of Humbert surfaces with square discriminant in Chapter 10.

4.3 ∆ is Not a Square

Let us study the Humbert surface Hum(∆) := Hum1(∆), where ∆ is not a square. We will see the
speciality of abelian surfaces belonging to the Humbert surface Hum(∆) in terms of the associated
Kummer surface.

For any abelian variety A, the quotient space by the cyclic group generated by the involution
ι = [−1]A is denoted by Kum(A) and is called the Kummer variety associated to A. The fixed
points of the involution ι are 2-torsion points of A. In local coordinates z1, . . . , zg at such a point,
the involution acts as zi 7→ −zi. Thus, the image of a 2-torsion point in Kum(A) is a singular
point whose local ring is isomorphic to the local ring of the vertex of the affine cone over the second



4.3. ∆ IS NOT A SQUARE 77

Veronese variety Vg−1
2 , the image of Pg−1 in P

1
2g(g+1)−1 under the Veronese map given by quadratic

forms in z1, . . . , zg.

Let A be a principally polarized abelian surface and let Kum(A) be the associated Kummer sur-
face. Let L be a principal polarization of A. The involution ι is a symmetric endomorphism corre-
sponding to L−1. Then, ι∗ acts on H1(A,Z) as the multiplication by−1, hence its acts on H2(A,Z)
identically. This shows that c1(L) = c1(ι∗(L)), hence M = ι∗(L)⊗ L satisfies ι∗(M) = M (such
line bundles are called symmetric) and c1(M) = 2c1(L), or, equivalently, M defines a polarization
of type (2, 2) with (M,M) = 4(L,L) = 8. By Riemann-Roch, dimH0(A,M) = 4, and the linear
system |M | defines a regular map f : A→ P3 that factors through a degree 2 quotient map

φ : A→ Kum(A)

and a map ψ : Kum(A) → X ⊂ P3. If the polarization is irreducible, ψ is an isomorphism onto
a quartic surface X . Otherwise, the map ψ is a degree 2 map onto a nonsingular quadric Q, with
the branch divisor equal to the union of 8 lines, four from each ruling. Assume that the polarization
L is irreducible. It follows from above that X has 16 singular points which are locally isomorphic
to the singular point of a quadratic cone in C3, i.e. an ordinary double point. Then, A ∼= J(C) for
some smooth genus 2 curve C ⊂ A and A can be identified with the subgroup Pic0(C) of divisor
classes of degree 0. By translating C by a point in A, we may assume that C is the divisor of zeros
of a section of L. For any 2-torsion point e ∈ A, let Ce denote the translation of C by the point
e. We have 2(Ce) ∈ |L⊗2|. Let us identify Kum(A) with the quartic surface X and let Te be the
image f(Ce) in X . Then, f−1(2Te) = 2(Ce), hence 2Te is equal to X ∩He for some plane He in
P3. Since plane sections of X are plane curves of degree 4, we see that Te must be a conic. The
plane He (or the conic Ce) is called a trope.

Note that the map Ce → Te is given by the linear system |L⊗2|Ce| of degree 2 on Ce ∼= C. It
defines a degree 2 map Ce → Te, so Te is a smooth conic. Thus, we have 16 nodes pe ∈ X and
16 tropes Te. The 6 ramification points of the map Ce → Te are fixed points of ι. Hence, they are
2-torsion points lying on Ce. Thus, each trope passes through 6 nodes. It is clear that the number
of tropes containing a given node does not depend on the node (use that nodes differ by translation
automorphism of A descent to X). By looking at the incidence relation {(Ce, e′) : e′ ∈ Ce}, we
obtain that each node is contained in 6 tropes. Thus, we get a combinatorial configuration (166)
expressing the incidence relation between two finite sets. This is the famous Kummer configuration.

To obtain a minimal resolution of Kum(A), we lift the involution ι to an involution ι̃ of the blow-
up Ã→ A of the set A[2]. The quotient X̃ = Ã/(ι̃) has the projection to A/(ι) = Kum(A) which
is a minimal resolution of the 16 nodes of Kum(X).

Ã
φ̃ //

σ̃
��

X̃

σ
��

A
φ // X

Since ι acts as−1 on the tangent space T0(A), it acts identically on the exceptional curvesR′i of σ̃.
Thus, the quotient Ã/ι̃ is nonsingular and the projection p̃ is a degree 2 cover of nonsingular surfaces
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ramified over 16 curves R′i isomorphic to P1. Using the known behaviour of the canonical class
under a blow-up, we obtain KÃ =

∑
R′i. The Riemann-Hurwitz formula KÃ = p̃∗(KX̃) +

∑
R′i

implies that KX̃ = 0. Since ι̃ acts on H1(Ã,Q) as −1, we obtain that H1(X̃,Q) ⊂ H1(Ã,Q)p̃ =

{0} must be trivial. Thus, b1(X̃) = 0, and we obtain that X̃ is a K3 usrace (see more about K3
surfaces in Lecture 9).

Let p be one of the 16 nodes of X . Projecting from this point, we get a morphism X \ {p} → P2

of degree 2. Let us choose coordinates in P3 such that p = [1, 0, 0, 0]. Then, the equation of X can
be written in the form

t20F2(t1, t2, t3) + 2t0F3(t1, t2, t3) + F4(t1, t2, t3) = 0, (4.18)

where Fk(t1, t2, t3) is a homogeneous form of degree indicated by the subscript. It is clear that the
pre-image of a point [x1, x2, x3] on the plane consists of two points which coincide when

F = F3(t1, t2, t3)2 − F2(t1, t2, t3)F4(t1, t2, t3) = 0.

We see that X is birationally isomorphic to the double cover of P2 with branch curve B : F = 0
of degree 6. Note that the conic F2 = 0 is the image of the tangent cone at p and it is tangent to B
at all its intersection points with it. Of course, this is true for any irreducible quartic surface with a
node p. In our case we get more information about the branch curve B. Let C1, . . . , C6 be the six
tropes containing p. Then, any line in the plane Ti spanned by Ci intersects the surface at one points
besides p. This implies that the projection of Ci, which is a line `i in the plane, must be contained in
B. Thus, we obtain that B is the union of 6 lines `1, . . . , `6. Obviously, they intersect at 15 =

(
6
2

)
points, the images of the remaining 15 nodes on X . So, we obtain that X is birationally isomorphic
to a surface in P(3, 1, 1, 1) given by the equation

x2
0 = l1 · · · l6,

where l1, . . . , l6 are linear forms in variables x1, x2, x3. The corresponding lines `1, . . . , `6 are in
general linear position. However, they are not general 6 lines in the plane since they satisfy an
additional condition that there exists a smooth conic K that touches each line.

Conversely, one can show that equation (4.18) defines a surface birationally isomorphic to the
Kummer surface corresponding to the hyperelliptic curve of genus 2 isomorphic to the double cover
of K branched at the tangency points. One uses that the pre-image of K under the cover splits into
the sum of two smooth rational curves K1 +K2 intersecting at 6 points. Let h be the pre-image of
a general line in the plane. Then, h ·K1 = h ·K2 = 2 and (h+K1)2 = 2 + 4− 2 = 4. The linear
system |h+K1| maps the double plane to a quartic surface in P3 with 16 nodes, fifteen of them are
the images of the intersection points of the lines, and the sixteenth is the image of K2.

In the following we will follow the paper of C. Birkenhake and H. Wilhelm [13]. Applying Lemma
4.1, we may assume that b = 0, 1 and ∆ = b+ 4m. Recall from (4.8) that A ∈ Hum(∆) contains a
line bundle L∆ such that

(L2
∆) = 1

2(b2 −∆) = −2m, (L0, L∆) = b.

Suppose
∆ = 8d2 + 9− 2k,
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where k ∈ {4, 6, 8, 10, 12} and d ≥ 1. We have (L2
∆) = −(4d2 + 4− k). Let L = L⊗d0 ⊗ L∆. We

easily compute
(L2) = 4d(d+ 1) + k − 4, (L,L0) = 4d+ 1.

Applying (4.11), we find that the type of the polarization defined by L is equal to (1, 2d(d + 1) +
k
2 −2). After tensoring L with some line bundle from Pic0(A), we may assume that L is symmetric,
i.e. [−1]∗(L) = L.4 For any symmetric line bundle L defining a polarization of type (d1, d2), [−1]A
acts on H0(L) decomposing it into the direct sum of linear subspaces H0(L)± of eigensubspaces
of dimensions 1

4((L2)−#X∓2 (L)) + 2, where

X±2 (L) = {x ∈ A[2] : [−1]A|L(x) = ±1}.

It is known that

X+
2 (L) ∈


{8, 16} if d1is even,
{4, 8, 12} if d1is odd and d2is even,
{6, 10} if d2 is odd.

(see [106], 4.7.7 and 4.14). Since in our case d1 = 1, we can choose L such that k = #X2(L)+

and dimH0(L)− = d(d + 1) + 1. By counting constants, we can choose a divisor D ∈ |L| such
that mult0D ≥ 2d + 1 (the number of conditions is d(d + 1)). The geometric genus g(D) of D is
equal to 1 + 1

2D
2 − d(2d+ 1) = d+ k−2

2 . Let

φ : A→ Kum(A) = A/([−1]A) ⊂ P3

be the map from A to the Kummer surface given by the linear system |L⊗2
0 |. It extends to a map

Ã → X from the blow-up of sixteen 2-torsion points of A to a minimal nonsingular model of
Kum(A). The divisor D is invariant with respect to the involution [−1]A. The normalization D̄ of
D is mapped (2 : 1) onto the normalization C̄ of C = φ(D) and ramifies at k − 1 points and some
point in the pre-image of 0. The Riemann-Hurwitz formula applied to the map D̄ → C̄ gives

g(D̄) = d+
k − 2

2
= −1 + 2g(C̄) +

k − 1 + r

2
, (4.19)

where r is the number of ramification points over 0 (one can show that C is smooth outside φ(0),
see [13], Proposition 6.3). We can obtain D̄ by blowing up 0 and taking the proper inverse transform
ofD. The pre-image of 0 consists of 2d+1 points that are fixed under the involution [−1]A extended
to Ã. This shows that r = 2d + 1 and (4.19) gives g(C̄) = 0. Thus, C is a rational curve and the
proper transform of φ(C) in the blow-up of φ(0) intersects the exceptional curve with multiplicity
2d + 1. Since (L0, L) = 4d + 1, the image C ′ of C under the proejction π : X 99K P2 from φ(0)
is a plane curve of degree 4d + 1 − (2d + 1) = 2d that passes through k − 1 intersection points
`i ∩ `j . Also note that, if C intersects one of the six tropes Ti corresponding to the lines `i at a point
q with multiplicity m, then C ′ intersect `i at q̄ = π(q) with multiplicity 2m. This follows from the
projection formula (π(C), `i)q̄ = (C, π∗(`i))q = 2(C, Ti)q.

So, we obtain the following theorem.5

4We use that [−1]A acts as [−1] on Pic0(A), since M = [−1]∗(L) ⊗ L⊗−1 ∈ Pic0(A), we write M = N⊗2 and
check that [−1]∗(L⊗N) ∼= L⊗N .

5We omitted some details justifying, for example, why C can be chosen irreducible or why its singular point at 0 is
an ordinary point of multiplicity 2d+ 1.
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Theorem 4.16. Suppose ∆ = 8d2 + 9 − 2k, where d ≥ 1 and k ∈ {4, 6, 8, 10, 12}. If (A,L0)
is an abelian surface with an irreducible principal polarization L0 belonging to Hum(∆), then
the double plane model of Kum(A) defined by 6 lines `1, . . . , `6 has the property that there exists
a rational curve C of degree 2d with nonsingular points at k − 1 intersection points `i ∩ `j and
intersecting the lines at the remaining intersection points with even multiplicity.

Similarly, Birkenhake and Wilhelm prove the following:

Theorem 4.17. Suppose ∆ = 8d(d + 1) + 9 − 2k, where d ≥ 1 and k ∈ {4, 6, 8, 10, 12}. If
(A,L0) is an abelian surface with an irreducible principal polarization L0 belonging to Hum(∆),
then the double plane model of Kum(A) defined by 6 lines `1, . . . , `6 has the property that there
exists a rational curve C of degree 2d + 1 with nonsingular points at k intersection points `i ∩ `j
and intersecting the lines at the remaining intersection points with even multiplicity.

The following example is a special case considered by G. Humbert.

Example 4.18. Take ∆ = 5, d = 1, k = 6. Then, C is a conic passing through 5 intersection points
pi = `i ∩ `i+1, i = 1, . . . , 4 and p5 = `1 ∩ `5 forming the set of 5 vertices of a 5-sided polygon Π
with sides `1, . . . , `5 and touching the sixth line `6.

Together with the conic K touching all 6 lines, the pentagon is the Poncelet pentagon for the pair
of conics K,C (i.e. K is inscribed in Π and C is circumscribed around Π).

It is easy to see that an abelian surface with real multiplication by Q(
√

5) admits a principal
polarization. A general such surface is the Jacobian of a curve C of genus 2. We may assume that
its period τ satisfies a singular equation with b = 1. It follows from (4.7) that A admits a divisor
class D with D2 = −2 and C · D = 1. Let C ′ = C + D so that C ′2 = 2 and C · C ′ = 3. The
linear system |C + C ′| defines a map A → P4 onto a surface of degree 10. An abelian surface of
degree 10 in P4 was first studied by A. Comessatti [30]. We refer to [105] for a modern account
of Comessatti’s paper. There is a huge literature devoted to these surfaces, for example, exploring
the relationship between such surfaces and the geometry of the Horrocks-Mumford rank 2 vector
bundle over P4 whose sections vanish on Comessatti surfaces (see [75]).

Example 4.19. Take ∆ = 13, d = 1, k = 6. The only possibility is the following. Let p1 =
`1 ∩ `2, p2 = `2 ∩ `3, p3 = `1 ∩ `3. Take p4 = `1 ∩ `4, p5 = `2 ∩ `5, p6 = `3 ∩ `6. Then, there must
be a plane rational cubic passing through p1, . . . , p6 and touching `4, `5, `6.

These two theorems deals with the case when ∆ ≡ 1 mod 4 (although they do not cover all
possible ∆’s). The next theorem treats the cases with ∆ ≡ 0 mod 4

Theorem 4.20. Suppose ∆ = 8d2 + 8 − 2k (resp. 8d(d + 1) + 8 − 2k, where d ≥ 1 and
k ∈ {4, 6, 8, 10, 12}. If (A,L0) is an abelian surface with an irreducible principal polarization L0

belonging to Hum(∆), then the double plane model of Kum(A) defined by 6 lines `1, . . . , `6 has the
property that there exists a rational curve C of degree 2d (resp. 2d+ 1) with nonsingular points at
k (resp. k − 1) intersection points `i ∩ `j and intersecting the lines at the remaining intersection
points with even multiplicity.
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Remark 4.21. It follows from the Teichmüller theory that any holomorphic differential on a Riemann
surface X of genus g defines an immersion of H inMg such the image is a complex geodesic with
respect to the Techmüller metric. According to C. McMullen [113], the closure of the image of H
inM2 is either a curve, or a Humbert surface Hum(∆), where ∆ is not a square, or the wholeM2.
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Chapter 5

Fake Elliptic Curves

In this chapter, we will discuss abelian surfaces of quaternion type, also called abelian surfaces with
quaternion multiplication, or QM-surfaces for short, and also called fake elliptic curves . These are
simple abelian surfaces A with the ring End(A) isomorphic to an order in an indefinite quaternion
algebra over Q (Type II in Table 2.1). We refer to some details to [103, Chapter IX] and some
general properties of quaternion algebras to [58] or [170]. In what follows we will freely use the
notation and results of Section 2.5.

5.1 Indefinite Quaternion Algebras

Let F be a subfield of R. (We are mainly interested in the case when F = Q or R.) Let H =
(a,b
F

)
be a quaternion algebra over F . Throughout this chapter, we assume that it is totally indefinite. This
is equivalent to that H splits over a real quadratic extension L/F with L ⊂ R) and

ΦR : HR := H ⊗R R ∼= Mat2(R).

We fix this isomorphism and get the corresponding F -algebra embedding

Φ : H ↪→ Mat2(R),

which is the restriction of our isomorphism to H = H ⊗ 1 ⊂ HR. Clearly, Φ uniquely determines
ΦR, namely

ΦR(u⊗ r) = r · Φ(u) ∀u ∈ H, r ∈ R.

Explicitly, H is totally indefinite if and only if only one of the numbers a, b,−ab = K2 is positive.
By permuting I,J,K, we may assume that a > 0. Then, H splits over L = F (

√
a), and we can

write any x ∈ H in the form
x = m+ nJ,

where m = α+ βI, n = γ + δI belong to L i.e., α, β, γ, δ ∈ F . One can choose the embedding Φ
by

x 7→
(
m n
bn̄ m̄

)
.

83
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It is determined by

Φ(I) =

(√
a 0

0 −
√
a

)
, Φ(J) =

(
0 1
b 0

)
.

We have

Nm(x) := xx̄ = det(ΦR(x)) = mm̄− bnn̄ = α2 − aβ2 − bγ2 + abδ2. (5.1)

This shows that the anti-involution (called the canonical involution) x 7→ x̄ is not positive. To
replace it with a positive anti-involution, we use the following:

Lemma 5.1. Let ρ ∈ H∗ \ F with ρ2 ∈ F \ {0}. Then, x 7→ x∗ := ρ−1x̄ρ is an anti-involution of
H . Every anti-involution of H is obtained in this way. Moreover, it is positive, i.e., tr(xx∗) > 0, for
any x 6= 0, if and only if ρ2 < 0.

Proof. (see [103, Chapter IX, Theorem 1.4 and Theorem 2.3]). We have already checked in Prop.
2.26 that x 7→ x∗ is an anti-involution.

To prove the second assertion, we use that the composition of two anti-involutions is an automor-
phism of H . According to the Skolem–Noether Theorem, an automorphism of a central simple
algebra is an interior automorphism, i.e., x 7→ s−1xs for some s ∈ H∗. This proves the second
assertion.

Let us consider the quaternion algebra HR over R. As for the last assertion, let us prove that if
c := ρ2 < 0 then the anti-involution x→ x∗ is positive. Choosing a suitable isomorphism between
HR and Mat2(R), we may assume that

HR = Mat2(R), ρ =

(
c2 0
0 c2

)
where 0 6= c2 =

√
c ∈ R.

Then we get for each x =

(
α β
γ δ

)
∈ Mat2(R),

tr(x) = α+ γ, x̄ = tr(x)− x =

(
δ −β
−γ α

)
,

x∗ =

(
0 c1

−c1 0

)−1(
δ −β
−γ α

)(
0 c1

−c1 0

)
=

(
0 1
−1 0

)−1(
δ −β
−γ α

)(
0 1
−1 0

)
=

(
α γ
β δ

)
,

which is the transpose xt of the matrix x. In other words, x∗ = xt. Since tr(xxt) is positive for any
non-zero real matrix x, we get the positiveness of the involution if ρ2 = c < 0 on HR. In light of
Remark 2.27, this implies the positiveness of the involution on H .

Now assume that ρ2 = c > 0. In light of Remark 2.27, replacing F by R and H by HR, we may
assume that F = R. Choosing a suitable isomorphism between HR and Mat2(R), we may assume
that

H = Mat2(R), ρ =

(
c2 0
0 −c2

)
where 0 6= c2 =

√
c ∈ R.
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If we put

x0 =

(
0 1
−1 0

)
then tr(x0) = 0, x0 = −x0 =

(
0 −1
1 0

)
, and

x∗0 =

(
c2 0
0 −c2

)−1

(−x0)

(
c2 0
0 −c2

)
=

(
1 0
0 −1

)−1(
0 −1
1 0

)(
1 0
0 −1

)
=

(
0 1
−1 0

)
= x0.

This implies that

x0x
∗
0 = x2

0 =

(
−1 0
0 −1

)
and therefore

tr(x0x
∗
0) = −2 < 0.

It follows that the obviously open (in the real topology) subset

X− = {x ∈ HR | tr(xx∗) < 0} ⊂ HR

is non-empty. On the other hand, we have

Q ⊂ F ⊂ R.

Since Q is dense in R, the (sub)field F is also dense in R. It follows that H is everywhere dense in
HR. This implies that the intersection of H and X− is non-empty. Hence, our anti-involution on H
is not positive. This ends the proof.

We will also need the following assertion that will be used in order to describe the Rosati involution
on fake elliptic curves.

Proposition 5.2. Let ρ ∈ H∗ \F be an element of H with ρ2 ∈ F \ {0}, and x 7→ u∗ := ρ−1ūρ be
the corresponding anti-involution of H . Then

Btr ((ρ(ux), y) = Btr(ρx, u
∗y) ∀u, x, y ∈ H. (5.2)

Proof. We have

Btr ((ρ(ux), y) = tr(ρuxȳ) = tr ((ρu)(xȳ)) = tr ((xȳ)(ρu)) ;

hence,
Btr ((ρ(ux), y) = tr ((xȳ)(ρu)) . (5.3)
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On the other hand, since ρ̄ = −ρ, we have

Btr(ρx, u
∗y) = tr

(
ρxρ−1ūρy

)
=

tr
(
ρxȳ(−ρ)u(−ρ−1)

)
= tr

(
ρxȳρuρ−1

)
= tr (xȳρu) = tr ((xȳ)(ρu)) .

Now (5.3) implies the desired equality.

In what follows (unless otherwise stated) F = Q and H =
(a,b
F

)
is a quaternion Q-algebra.

Following Proposition 2.26(v), let us consider

X (HR) = {η ∈ HR | η2 = −1}.

Then, the map
X (HR) 3 η 7→ J = ΦR(η) ∀η ∈ X (HR)

is a bijection between X (HR) and

ΦR(X (HR)) = {J ∈ Mat2(R) | J2 = −1} = X (Mat2(R)} = {J ∈ GL(2,R) | J2 = −1}.

(Later, we explain how to identify X (HR) with C \ R.)

Definition 5.1. A lattice in H is an additive subgroup Λ of H that is a free Z-module of rank
4 = dimQH . Equivalently, an additive subgroup Λ of H is a lattice if and only if there is a basis
{e1, e2, e3, e4} of the Q-vector space H such that

Λ = Z · e1 + Z · e2 + Z · e3 + Z · e4.

The determinant D̃ of the matrix (Btr(ei, ej)) of the form Btr with respect to {e1, e2, e3, e4} is a
nonzero rational number that does not depend on a choice of a basis of the Z-module Λ. By Remark
2.43, D̃ is a square in Q. Let us put DΛ :=

√
D̃, which is a positive rational number that we call

the discriminant of Λ.

Remark 5.3. Let Λ be a lattice in H . Then ∀x ∈ H there exists a positive integer N such that
Nx ∈ Λ. In addition, the natural homomorphisms of Q-vector spaces

ΨΛ,Q : Λ⊗Q→ H, λ⊗ r 7→ rλ ∀λ ∈ Λ, r ∈ Q

and of R-vector spaces

ΨΛ,Q : Λ⊗ R→ HR, λ⊗ r 7→ rλ ∀λ ∈ Λ, r ∈ Q

are isomorphisms. In other words, every basis of the Z-module Λ is also a basis of the Q-vector
space H and a basis of the R-vector space HR. Notice also that every subgroup of finite index in Λ
is also a lattice in H . Moreover, an intersection of two (and even finitely many lattices in H is also
a lattice in H .
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Remark 5.4. Let Λ′ be a subgroup of finite index, say, n in a lattice Λ in H . Then there are a basis
{e1, e2, e3, e4} of the Z-module Λ and positive integers n1, n2, n3, n4 such that

Λ′ = ⊕4
i=1Z · (niei).

In particular, {n1e1, n2e2, n3e3, n4e4} of the Z-module Λ′ and

n =
4∏
i=1

ni.

This implies that the determinant D̃′ of the matrix (Btr(niei, njej)) of the form Btr with respect to
{n1e1, n2e2, n3e3, n4e4} is (in the notation of Definition 5.1) coincides with ∏

1≤i,j≤4

ninj

 ·D = n2D = n2 (discrΛ)2 .

Hence
D(Λ′) = n ·D(Λ).

A lattice o in H is an order in H if it is a subring of H containing 1. Clearly, Z = Z · 1 lies in o.
The corresponding homomorphisms Ψ0,Q and Ψ0,R are actually isomorphisms ofQ-algebras and of
R-algebras respectively.

On the other hand,
tr(x),Nm(x) ∈ Z ∀x ∈ o. (5.4)

Indeed,
tr(x),Nm(x) ∈ Q.

Let {e1, e2, e3, e4} be a basis of the free Z-module o, and let M(x) ∈ Mat4(Z) be the matrix of

mult(x) : Λ→ Λ, y 7→ xy

with respect to {e1, e2, e3, e4}. Let

Px(t) = det(t · 1−M(x)) ∈ Z[t]

be the characteristic polynomial of M(x), which is a monic quartic polynomial with integer coeffi-
cients. It follows from Remark 2.28 that

Px(t) =
(
t2 − tr(x)t+ Nm(x)

)2
.

Since Px(t) is a monic polynomial with integer coefficients, it follows from Gauss’ Lemma that the
monic polynomial t2 − tr(x)t+ Nm(x) also has integer coefficients, i.e.,

tr(x),Nm(x) ∈ Z.

It follows that
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x̄ = tr(x)− x ∈ Z · 1− x ⊂ o ∀x ∈ o. (5.5)

Hence, if x, y ∈ o then xȳ ∈ o and therefore

Btr(x, y) = tr(xȳ) ∈ Z.

It follows from the definition of the discriminant of a lattice that discr(o) is a positive integer.

Remark 5.5. Let o1 and o2 be orders in H . If o1 ⊂ o2 then o1 is an additive group of finite index
[o2 : o1] in o2 and

D(o1) = [o2 : o1] ·D(o2).

In particular, D(o2) ≤ D(o1); the equality holds if and only if [o2 : o1] = 1, i.e., o2 = o1.

We will need the following characterization of the multiplicative group o∗ of invertible elements
in an order o.

Lemma 5.6. Let o be an order in H . Then it enjoys the following properties.

(i)
o∗ = {x ∈ o | Nm(x) = 1 or− 1} = {x ∈ o | det(ΦR(x)) = 1 or− 1}.

In addition,
x−1 = Nm(x) · x̄ = ±x̄ ∀x ∈ o∗.

(ii) Let us consider
o1 = {x ∈ o | Nm(x) = 1}.

Then o1 is a normal subgroup of o∗, whose index is either 1 or 2. In addition,

o1 = {x ∈ o | ΦR(x) ∈ SL(2,R)}.

Proof. First, recall (5.1) that
Nm(x) = det(ΦR(x)) ∀x ∈ o.

Second, suppose that x ∈ o∗. Then x−1 ∈ o∗. It follows that

Nm(x),Nm(x−1) ∈ Z, 1 = Nm(x) · Nm(x−1),

which implies that both
Nm(x),Nm(x−1) ∈ {1,−1}.

Conversely, if x ∈ o then Nm(x) ∈ {1,−1} then

xx̄ = Nm(x) ∈ {1,−1}, Nm(x)−1 = Nm(x).

It follows that Nm(x)x−1 = x̄ and therefore

x−1 = Nm(x)−1x̄ = Nm(x)x̄ = ±x̄ ∈ o.

Hence, x ∈ o∗. This ends the proof of (i), which, in turn, implies readily (ii).
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Definition 5.2. An order o in H is called maximal if it is not contained in a strictly larger order.

Remark 5.7. (i) Let o be an order in H . Let us consider the set of all orders o′ containing o. It
follows from Remark 5.5 that all the discriminants D(o′) do not exceed D(o); if we choose
(among them) an order o′ with the smallest possible discriminant then o′ is a maximal order.

(ii) Let o1 and o2 be two maximal orders in H . Then o1 and o2 are conjugate [170], i.e., there is
u ∈ H∗ such that

o2 = uo1u
−1, o1 = u−1o2u.

In particular, D(o2) = D(o1), i.e., the discriminants of all maximal orders of H coincide.

(iii) Let o be a maximal order in H . Then o contains elements u, µ such that

Nm(u) = −1, µ2 = −D(o).

In addition,
tr(µo) ⊂ −D(o) · Z

for every µ ∈ o with µ2 = −D(o). (see [170, Example 28.6.5, Sect. 43.6.6, and Lemma
43.6.7]). In particular,

u ∈ o∗, ρ̄ = −ρ.

Remark 5.8. Let o be a maximal order in H . Its discriminant D(o) admits the following description
[170]. Let p be a prime, Zp the ring of p-adic numbers, and Qp the field of p-adic numbers. Then
the quaternion Qp-algebra HQp = H ⊗Q Qp is isomorphic either to the matrix algebra Mat2(Qp),
or to a unique (up to isomorphism) central division algebra over Qp of dimension 4. We say that
p ramifies at H if HQp is a division algebra. Otherwise, we say that the quaternion algebra H is
unramified or splits over p . If p 6= 2, the quaternion division algebra overQp is isomorphic to

( e,p
Qp

)
,

where e is any element in Zp that does not reduce to a square modulo p. If p = 2, the quaternion
division algebra over Q2 is isomorphic to

(−1,−1
Q2

)
. It is known that any field extension L/Q that

splits H ramifies at every prime over which H ramifies. The set Ram(H) of ramified primes in
H is non-empty, finite, and consists of an even number of elements. (It follows from the classical
Brauer-Hasse-Noether Theorem.) In adddition,

D(o) =
∏

p∈Ram(H)

p, (5.6)

i.e., the discriminant of o coincides with the product of all ramified primes.

The following assertion may be viewed as a special case of [66, Lemma 2.4]

Lemma 5.9. Let o be a maximal order in H . Let µ be an element of o such that

µ2 = −D(o).

Let us put
ρ :=

µ

D(o)
∈ H.
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Then

Q 3= ρ2 =
−D(o)

D(o)2
=
−1

D(o)
< 0,

and the pairing

Eρ =
1

D(o)
Eµ : o×o→ Z, x, y 7→ Eρ(x, y) =

1

D(o)
Eµ(x, y) =

1

D(o)
Btr(µx, y) =

1

D(o)
tr(µxȳ) = tr(ρxȳ)

is alternating and unimodular; the latter means that the determinant of the matrix ofEρ with respect
to a basis of o is 1.

Proof. Let us put D := D(o). In light of Remark 5.7(iii),

1

D(o)
Eρ(x, y) ∈ Z ∀x, y ∈ o.

It follows from Proposition 2.26 that Eρ is an alternating pairing. This implies that 1
D(o)Eρ is also

alternating. The index [o : ρo] is D(o)2. Indeed, we have the equality of indices

[o : ρo] = [ρo : ρ2o] = [ρo : Do].

It follows (recall that o is a free Z-module of rank 4) that

D4 = [o : Do] = [o : ρo] · [ρo : Do] = [o : ρo]2,

which implies that
[o : ρo] =

√
D4 = D2.

On the other hand, D2 coincides (up to the sign) with the determinant of the matrix (Btr(ei, fj))
where {e1, e2, e3, e4} and {f1, f2, f3, f4} are any bases of o. Clearly, {ρe1, ρe2, ρe3, ρe4} is a basis
of the free Z-module ρo. The formula for the index implies that the determinant of the matrix

(Eρ(ei, fj)) = (Btr(ρei, fj))

coincides (up to the sign) with the productD2·D2 = D4. It follows that the determinant (Eρ(ei, ej))
coincides (ip to the sign) with D4. Since Eρ is alternating, this determinant is a square in Q (the
square of the pfaffian of Eρ) and therefore equals D4. It follows that the determinant of the matrix
1
D (Eρ(ei, ej)) is D4/D4 = 1, which ends the proof.

5.2 PEL-Structures

Each lattice Λ gives rise to two orders in H– the left order Ol(Λ) of Λ and the right order Or(Λ) of
Λ defined by

Ol(Λ) = {x ∈ H | xΛ ⊂ Λ} ⊂ H, Or(Λ) = {y ∈ H | Λy ⊂ Λ} ⊂ H. (5.7)

Clearly,

Ol(Λ) = {x ∈ HR | xΛ ⊂ Λ} ⊂ HR, Or(Λ) = {y ∈ HR | Λy ⊂ Λ} ⊂ HR. (5.8)
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If a lattice Λ is an order, then
Ol(Λ) = Or(Λ) = Λ.

The lattice Λ carries the natural structure of a faithful left Ol-module, whose endomorphism ring
coincides with Or(Λ). IdentifyingH with its imageH⊗1 inHR, we may view Λ as a discrete lattice
in HR. The corresponding quotient HR/Λ can be provided with a family of natural structures of a
polarized abelian surface A with Ol ⊂ End(A). Before defining the family (that requires choices
of complex structures onHR), let us pick ρ ∈ H with ρ2 < 0. Since Λ is a free Z-module, replacing
ρ by Nρ for sufficiently divisible positive integer N , we may and will assume that (in the notation
of Proposition 2.26)

Eρ(x, y) = E(x, y) = tr(ρxȳ) ∈ Z, ∀x, y ∈ Λ. (5.9)

Combining Proposition 2.26 and Lemma 5.1 applied to HR over R, we conclude that either, for
all η ∈ X ,

E(xη, x) = tr(ρxηx̄) > 0 ∀x ∈ HR \ {0} (5.10)

or or all η ∈ X
E(xη, x) < 0 ∀x ∈ HR \ {0}.

Replacing (if necessary) ρ by −ρ, we may and will assume that (5.10) holds.

Now, choose an element η ∈ H∗R such that η2 = −1 and define a complex structure (i.e., multipli-
cation by i =

√
−1) on the 4-dimensional real vector space HR by

i · x := xη, ∀x ∈ HR.

Then, HR becomes the two-dimensional complex vector space, which we will denote by HR(η).
Let us consider the corresponding complex torus

A(Λ, η) := HR(η)/Λ. (5.11)

and consider the R-bilinear form

H = Hρ : HR(η)×HR(η)→ C, x, y 7→ Eρ(ix, y)+iEρ(x, y) = Eρ(xη, y)+iEρ(x, y). (5.12)

In light of Proposition 2.26 and (5.9), H is a positive-definite Hermitian form on HR(η), whose
imaginary part E takes on integer values on Λ × Λ. In other words, H is a polarization on the
complex torus A(Λ, η). In particular, A(Λ, η) is a complex abelian surface.

Clearly, the polarizationHρ is principal if and only if the alternating bilinear form

7→ Eρ : Λ× Λ→ Z

is unimodular.
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Since multiplications from the left commute with multiplications from the left onHR, we have the
ring embedding

Ol(Λ) ↪→ End(A(Λ, η)), u 7→ {x+ Λ 7→ ux+ Λ} ∀u ∈ Ol(Λ), x ∈ HR. (5.13)

On the other hand, let A = V/Π be an abelian surface provided with a ring embedding Ol(Λ) ↪→
End(A) such that the induced ring homomorphism Ol(Λ) ↪→ EndZ(Π) provides Π with the struc-
ture of a left Ol(Λ)-module that is isomorphic to Λ. Let us fix an isomorphism ψ : Π ∼= Λ of
Ol(Λ)-modules. Then, ψ extends by R-linearity to the isomorphism of left Ol(Λ) ⊗ R = HR-
modules

ψR : V = Π⊗ R ∼= Λ⊗ R = HR.

Since the endomorphism algebra of the left HR-module HR consists of right multiplication by
elements of HR, the multiplication by i in V corresponds (under ψR) to right multiplication by
some η ∈ X ⊂ HR, i.e.,

ψR(iv) = ψR(v)η ∀v ∈ V.

It follows easily that the map

V/Π→ HR(η)/Λ, v + Π 7→ ψR(x) + Λ

is an isomorphism of abelian surfaces A and A(Λ, η) that is compatible with the actions of Ol(Λ).

Remark 5.10. Recall that the natural homomorphism of Q-algebras

Ol(Λ)⊗Q→ H, u⊗ r 7→ ru

is an isomorphism of Q-algebras. Combining it with the embedding (5.13), we get the embedding
of Q-algebras

H ↪→ EndQ(A(Λ, η)).

Let us identify H with its image in EndQ(A(Λ, η)). Recall (Remark ??) that there is the Q-algebra
embedding

ρr : EndQ(A(Λ, η)) ↪→ End(ΛQ)

where ΛQ obviously coincides with H . On the other hand, since

A(Λ, η) = HR(η)/Λ = HR/Λ,

it follows from the very definition of the embedding (5.13) that the composition

H ⊂ EndQ(A(Λ, η))
ρr
↪→ EndQ(H)

coincides with the map
x 7→ multH(x) : H → H, y 7→ xy.

It follows from the very definition of Ol(Λ) that Ol(Λ) coincides with the intersection of H and
EndQ(A(Λ, η)) in EndQ(A(Λ, η)).
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Remark 5.11. Recall that there is the anti-involution

x 7→ x∗ = ρ−1x̄ρ

on H . The non-degeneracy of the bilinear form Eρ combined with Proposition 5.2 (applied to
F = Q) implies that x∗ coincides with the image of x with respect to the Rosati involution attached
to Hρ for all x ∈ H . On the other hand, if Hρ is principal, the image of any u ∈ End(A(Λ, η))
under the corresponding Rosati involution lies in in End(A(Λ, η)). In light of Remark 5.10, if

x ∈ Ol(Λ) ⊂ End(A(Λ, η))

then
x∗ ∈ End(A(Λ, η)) ∩H = Ol(Λ).

In other words, Ol(Λ) is stable under the anti-involution if Hρ is principal. In light of (5.5),

Ol(Λ) = ρOl(Λ)ρ−1 (5.14)

if Hρ is a principal polarization.

Now, let η1, η2 ∈ X (HR), and

f : A(Λ, η1)→ A(Λ, η2)

be a homomorphism of corresponding abelian surfaces that is compatible with the actions of Ol(Λ).
This means that the corresponding R-linear homomorphism

fa : HR → HR

such that f(x+ Λ) = f(x) + Λ satisfies the following properties:

fa(Λ) ⊂ Λ, fa(xη1) = fa(x)η2, ∀x ∈ HR,
fa(ux) = ufa(x), ∀∀x ∈ HR, u ∈ Ol(Λ).

(5.15)

The latter property actually means that

fa(ux) = ufa(x) ∀∀x ∈ HR, u ∈ HR.

It follows that there is precisely one w ∈ HR such that

fa(x) = xw ∀lx ∈ HR.

By the first property of (5.15), we get Λ · w ⊂ Λ. Since Λ generates H as the Q-vector space,
w ∈ H , and, therefore,

w ∈ Or(Λ).

It follows from the second property of (5.15) that, for any x ∈ HR,

(xη1)w = (xw)η2.
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This means that
η1w = wη2.

It follows easily that if f is an isomorphism then w ∈ Or(Λ)∗ and

η1 = wη2w
−1.

Conversely, each w ∈ Or(Λ) defines (for all η2 ∈ X ) the homomorphism of abelian surfaces

wr : A(Λ, wη1w
−1) = HR(wη1w

−1)/Λ→ A(Λ, η2) := HR(η2)/Λ, x+ Λ 7→ wx+ Λ,

which is an isomorphism if and only if w ∈ Or(Λ)∗.

Now, it is time to look closely at X (HR), which may be identified (if we fix Φ) with

X (Mat2(R)) = {J ∈ GL(2,R) = H∗R, J 2 = −1}.

Let us identify X (Mat2(R)) with C \ R in the following way. Each J ∈ X (Mat2(R)) is a linear
operator in R2, whose eigenvalues are ±i, both of multiplicity 1. Let v = (z1, z2) ∈ C2 be an
eigenvector of J with eigenvalue i. Clearly, none of coordinates z1, z2 vanishes. Rescaling v by
1
z2
· v, we may assume that z2 = 1, i.e., v = (τ, 1). Such a v is defined uniquely and

τ := τ(J ) ∈ C \ R.

On the other hand, such τ determines J uniquely, because the complex-conjugate vector (1, τ̄) is
an eigenvector of J with eigenvalue −i.

Conversely, if τ ∈ C\R, then let us define theC-linear operatorJ (τ)C : C2 → C2 by the property
that (τ, 1) ∈ C2 is an eigenvector of J (τ)C with eigenvalue i and (τ̄ , 1) ∈ C2 is an eigenvector
of J (τ)C with eigenvalue −i. Since τ 6∈ R, vectors (τ, 1) and (τ̄ , 1) constitute a basis of C2, that
implies that such a J (τ)C exists and unique; in addition J (τ)2

C = −1. It is also clear that J (τ)C
is defined over R, i.e., there is a linear operator J (τ) such that J (τ)C is obtained from J (τ) by
extensions of scalars from R to C. This implies that the maps

A : X (Mat2(R))→ C \ R, J 7→ τ(J ) and B : C \ R→ X , τ 7→ J (τ) (5.16)

are mutually inverse.

The group GL(2,R) acts on X (Mat2(R)) by conjugation:

J 7→MJM−1 ∀M ∈ GL(2,R).

The corresponding induced action of GL(2,R) on C \ R is the standard action by fractional-linear
transformations. Indeed, let

M =

(
α β
γ δ

)
∈ GL(2,R).

If τ = τ(J ) for J ∈ X , then

M(τ, 1) = (ατ + β, γτ + δ) ∈ C2
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is an eigenvector of MJM−1 with eigenvalue i. It follows that ( ατ+β
γτ+δ) , 1) is the eigenvector of

MJM−1 with second coordinate 1 (and eigenvalue i). Hence,

τ(MJM−1) =
ατ + β

γτ + δ
,

which ends the proof.

It follows that the set ofM(Λ) of isomorphism classes of abelian surfaces A = V/Π endowed
with a ring embedding Ol(Λ) ↪→ End(A) (that sends 1 to 1) and such that the corresponding
Ol(Λ)-module Π is isomorphic to Λ are in one-to-one correspondence with points of the quotient
Or(Λ)∗�(C \R) (here we identify Or(Λ)∗ with its image Φ(Or(Λ)∗) in GL(2,R) ). This quotient
is a compact Riemann surface (the Shimura curve, see below), whose compactness follows from the
compactness of Or(Λ)∗�GL(2,R)/R∗. This gives us the bijection

M(Λ)→ Or(Λ)∗�(C \ R) (5.17)

induced by

X (HR)
ΦR→ X (Mat2(R))→ C \ R, η 7→ ΦR(η) =: J 7→ τ(J ).

In our description ofM(Λ) we fixed the lattice and varied the complex structure in ΛR = Λ⊗ R
that gives rise to the complex torus (actually, the abelian surface) ΛR/Λ (fake elliptic curve). There
is an alternative description ofM(Λ) where we vary lattices in C2 (with fixed complex structure)
that we are going to discuss right now. First, we have the inclusions

Λ ⊂ H ⊂ HR
ΦR∼= Mat2(R) ⊂ Mat2(C).

Second, each τ ∈ C \ R gives rise to the isomorphism of 4-dimensional real vector spaces

φτ : HR → C2, x 7→ ΦR(x) ·
(
τ
1

)
.

Indeed, the dimension arguments imply that it suffices to check the injectiveness of the R-linear
map

Mat2(R)→ C2, M 7→M ·
(
τ
1

)
.

In order to check it, let

y =

(
α β
γ δ

)
∈ Mat2(R).

Then the vector

M ·
(
τ
1

)
= (ατ + β, γτ + δ)

equals (0, 0) if and only if α = β = 0 = γ = δ, because τ 6∈ R. This proves the desired
injectiveness. Since φτ : HR → C2 is an isomorphism of real vector spaces and Λ is a discrete
lattice of rank 4 in HR, its image

Λτ := φτ (Λ)
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is a discrete lattice of rank 4 in C2. Third, if J(τ) = ΦR(η) with η ∈ X (HR) then

φτ : HR(η) = HR → C2

is a C-linear map and, therefore, is an isomorphism of two-dimensional complex vector spaces.
Indeed, multiplication by i in HR(η) = HR is multiplication by η from the right:

multr(η) : HR → HR, x 7→ xη.

Hence
ΦR(multr(η)(x)) = ΦR(xη) = ΦR(x)ΦR(η) = ΦR(x)J(τ).

This implies that

φτ (xη) = (ΦR(x)J(τ)) ·
(
τ
1

)
= ΦR(x)

(
J(τ) ·

(
τ
1

))
.

Recall that

J(τ) ·
(
τ
1

)
= i

(
τ
1

)
.

It follows that

φτ (xη) = ΦR(x) ·
(
i

(
τ
1

))
= i

(
ΦR(x) ·

(
τ
1

))
= iφτ (x).

This proves that the map φτ isC-linear and (as we have already observed) is aC-linear isomorphism.
It follows that φτ induces an isomorphism of complex tori

φη,τ : A(Λ, η) = HR/Λ→ C2/Λτ =: Aτ .

Since A(Λ, η) is an abelian surface, Aτ is also an abelian surface, and φη,τ is an isomorphism of
abelian surfaces. The induced action of Ol(Λ) on Aτ is defined by the formula

Ol(Λ)→ End(Aτ ), x 7→ {w + Λτ 7→ ΦR(x) · w + Λτ ∀x ∈ Ol(Λ), w ∈ C2}.

Remark 5.12. The polarizationHρ (5.12) on A(Λ, η) gives rise (via φτ ) to the polarizationHρ,τ on
Aτ = C2/Λτ defined by the formula

Hρ,τ : C2 × C2 → C, φτ (x), φτ (y)y 7→ Hρ(x, y) ∀x, y ∈ HR. (5.18)

In particular,Hρ,τ is principal if and only ifHρ is principal, i.e., the alternating form

Eρ : Λ× Λ→ Z

is unimodular.

Now let us fix a maximal order o in H and concentrate on the case when Λ = o. Then (as we have
already seen)

Ol(Λ) = o = Or(Λ) = Λ.
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Then the “moduli space” is o∗�(C \ R). We are going to endow abelian surfaces Aτ (τ ∈ C \ R)
with a principal polarization. First, notice that (thanks to Lemma 5.6) we may replace the “moduli
space” o∗�(C \ R) by the quotient o1�H of the upper half-plane H. Indeed, the inclusions

H ⊂ C \ R, o1 ⊂ o∗

give rise to the map

o1�H→ o∗�(C \ R) ∼=M(o), o1τ 7→ o∗τ ∀τ ∈ H. (5.19)

where the bijection o∗�(C \ R) ∼= M(o) is defined in (5.17). We claim that this is a bijection. In
order to check the surjectiveness, recall that since o is maximal, it follows from Remark 5.7(iii) that
there is u ∈ o∗ with Nm(u) = −1. It follows that the the matrix ΦR(u) ∈ GL(2,R) has determinant
−1. This implies that if τ ′ is a complex number with negative real part then there is τ ∈ H such that
ΦR(u)(τ) = τ ′. This implies that o∗τ ′ is the image of o1τ , which proves the surjectiveness of the
map (5.19). On the other hand, the injectiveness of (5.19) is equivalent to the following assertion.

If τ1, τ2 ∈ H lie in the same o∗-orbit then they belong to the same o1-orbit. Let us check it. Indeed,
suppose that there is w ∈ o∗ such that the matrix M = ΦR(w) ∈ GL(2,R) satisfies M(τ1) = τ2.
Since both τ1 and τ2 lie in the upper half-plane, det(M) > 0. Since

det(M) = Nm(w) ∈ {1,−1},

we get Nm(w) = 1, i.e., w ∈ o1. This implies that τ1 and τ2 lie the same o1-orbit, which implies
the injectiveness. This ends the proof of the bijectiveness of (5.19).

Our next step is to construct principal polarizations on all abelian surfaces Aτ (τ ∈ H) that corre-
spond to Λ = o. Recall (Remark 5.7(iii)) that there is µ ∈ H such that

µ ∈ o, µ2 = −D(o) (5.20)

is a negative integer. In light of Proposition 2.26, replacing if necessary ρ by −ρ, we may and will
assume that

E(xη, , x) = Eµ(xηx, x) = Btr(µxη, x) = tr(µxηx) > 0 ∀η ∈ X (HR), x ∈ HR \ {0}. (5.21)

Recall (Lemma 5.9) that if we put
ρ :=

µ

D(o)
∈ H

then
Qρ2 =

−1

D(o)
< 0,

and the alternating pairing 1
D(o)Eρ : o× o→ Z is unimodular. Clearly, the Hermitian form .

Hρ,τ =
1

D(o)
Hρ,τ

defined in (5.18)is positive. In light of Remark 5.12, it is a principal polarization onA(τ). It follows
from the definition of ρ (in terms of µ) that

ρ−1x̄ρ = µ−1x̄µ ∀x ∈ H.
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Now Remark 5.11 implies that that the Rosati involution H attached to the polarization Hρ,τ coin-
cides with the map

x 7→ x∗ = ρ−1x̄ρ = µ−1x̄;

in addition, o is stable under this anti-involution, in light of (5.14).

Definition 5.3. A PEL-structure consists of a data S = (H, o,Φ, ρ), where

1. H =
(
a,b
Q

)
is a totally indefinite quaternion algebra over Q,

2. o is a maximal order in H ,

3. Φ is an injective Q-algebra homomorphism H ↪→ Mat2(R),

4. µ ∈ o such that µ2 = −D(o) and (5.21) holds.

A choice of a PEL-structure and τ ∈ H defines a map

φτ : HR → C2, x 7→ Φ(x) ·
(
τ
1

)
. (5.22)

and a complex torus (actually, an abelian surface)

Aτ := C2/Λτ .

If we put ρ := µ/D(o), then the symplectic form Eρ(x, y) defines a principal polarization with the
symplectic form

Eρ(φτ (x), φτ (y)) = tr(ρxȳ).

The left action of o on o defines an embedding of

ι : o ↪→ End(Aτ ),

and the corresponding Rosati involution on End(Aτ ) leaves invariant (the image of) o and its re-
striction to o coincides with the map

u 7→ u∗ = µ−1ūµ = ρ−1ūρ ∀u ∈ o.

Recall that to each τ ∈ H corresponds the principally polarized abelian surface

Aτ = C2/Λτ ∼= HR(η)/Λ.

One should expect that such a correspondence arises from a certain “equivariant” holomorphic map
H → H2. We are going to construct such a map, following (up to some point) a construction of
Hashimoto [67, Sect. 3, 4]. First, let us consider the symplectic group attached to Eρ that is a
subgroup of the group of automorphisms AutR(HR) of the R-vector space HR. Namely,

Sp(HR, Eρ) := {u ∈ AutR(HR) | Eρ(ux, uy) = Eρ(x, y) ∀x, y ∈ HR}.
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Similarly, let us define its Z-form. Let us put

Λ := o

and consider

Sp(Λ, Eρ) := {u ∈ AutZ(Λ) | Eρ(ux, uy) = Eρ(x, y) ∀x, y ∈ Λ}.

Clearly, one may view AutZ(Λ) as the certain subgroup of AutR(HR) and

Sp(Λ, Eρ) = Sp(HR, Eρ) ∩ AutZ(Λ).

On the other hand, if we consider the subgroup

H1
R = {u ∈ HR | Nm(x) = 1} ⊂ H∗R

then there is the natural group embedding

H1
R ↪→ AutR(HR), u 7→ {x 7→ xū} ∀u ∈ H1

R, x ∈ HR,

whose image lies in Sp(HR, Eρ). Indeed, we have

Eρ(xū, yū) = tr(ρ(xūyū) = tr(ρxūuȳ) = tr(ρxNm(u)ȳ) = tr(ρxȳ) = Eρ(x, y) ∀x, y ∈ HR.

This gives us the injective group homomorphism

Ψ : H1
R ↪→ Sp(HR, ρ), u 7→ {x 7→ xū} ∀u ∈ H1

R, x ∈ HR, (5.23)

which is obviously a homomorphism of real Lie groups. Now, (5.8) implies that

Ψ
(
H1
R
)
∩ Sp(Λ, Eρ) = Ψ(o1). (5.24)

Now let us consider the set

Y(HR, ρ) = {w ∈ Sp(HR, ρ) | w2 = −1} ⊂ Sp(HR, ρ) ⊂ AutR(HR).

Then Ψ gives rise to the embedding

X (HR)→ Y(HR, ρ), η 7→ Ψ(η).

In addition, this embedding is H1
R-equivariant, namely,

Ψ(uηu−1) = Ψ(u)Ψ(η)Ψ(u)−1 ∀u ∈ H1
R, η ∈ X (HR).

Recall that the isomorphism ΦR : HR ∼= Mat2(R) gives rise to the bijection

X (HR)→ X (Mat2(R)), η 7→ ΦR(η).

In light of (5.17), this gives us the H1
R-equivariant embedding

o1�H ∼=M(o) = o1�X (HR) =

o1�X (Mat2(R))→ Sp(o, Eρ)�Y(HR)

(here the injectiveness follows from (5.24)).

This construction was motivated by [67, Sect. 3, 4] where it was done in more explicit way as
follows.
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Proposition 5.13. Let o be a maximal order in H , and u1, u2, u3, u4 be a basis of o such that the
period matrix of Aτ with respect to (ω1 = φτ (u1), . . . , ω4 = φτ (u4)) is equal to (Zτ D), where
Zτ ∈ H2. Then, there exists a homomorphism of real Lie groups groups

Ψ : SL(2,R)→ Sp(4,R)

such that, for any g ∈ SL2(R), the following diagram is commutative:

H
τ 7→Zτ //

g

��

H2

Ψ(g)
��

H
τ 7→Zτ // H2

We apply this by restricting the diagram to the subgroup Γ = Φ(o∗1) ⊂ SL(2,R), where

o∗1 = {u ∈ o : Nm(u) = 1}.

We obtain a homomorphism Γ→ Sp(4,Z) which defines a holomorphic embedding

AS = Γ\H ↪→ A2 = Sp(4,Z)\H2. (5.25)

The orbit space AS is the moduli space of fake elliptic curves defined by the PEL-data S.

The group Γ is a discrete subgroup of PSL2(R) that is cocompact, i.e. the quotient Γ\H is a
compact Riemann surface. Such a quotient is called a Shimura curve [8, 175]. Conversely, any
point on the curve Γ\H defines a polarized abelian surface with endomorphism algebra containing
a subring isomorphic to o.

The curve Γ\H is the coarse moduli space of such abelian surfaces.
Remark 5.14. The moduli space of elliptic curves (with some level structure) is the orbit space Γ\H
for a (non-compact) arithmetical discrete subgroup of SL(2,R), This gives a reason for naming
abelian surfaces of QM-type fake elliptic curves.

Note that H =
(
a,b
Q

)
contains totally real, and totally imaginary quadratic extensions K ofQ. By

permuting I,J,K, we may assume that a > 0, b < 0. Then, K = Q(
√
a) is a totally real field, and

K = Q(
√
b) is a totally imaginary field.

Suppose that o∆ is an order in the field Q(
√

∆) with positive discriminant ∆, which is contained
in H . Assume that o∆ ⊂ o, and the involution ∗ acts identically on o∆. Then, a period Zτ satisfies
Humbert’s singular relation with discriminant ∆, and the image of the isomorphism class of Aτ
in A2 belongs to the Humber surface H∆. If there are different fields K ⊂ H with this property,
then the locus of the fake elliptic curves AS is contained in the intersection of the corresponding
Humbert surfaces.

LetK ⊂ H be a totally imaginary quadratic field, andR be an order inK that embeds in the order
o of H . We assume that it is maximal with this property. There is a unique τ ∈ H which is fixed
by K, the orbit of τ modulo SL(2,Z) represents an elliptic curve E with complex multiplication
by o. The corresponding point in the Shimura curve Γ\H is called a CM-point. The image of R in
End(A) preserves the principal polarization and the abelian variety Aτ becomes isomorphic to the
self-product E ×E. Each Shimura curve has infinitely many CM-points corresponding to different
embeddings of totally imaginary quadratic fields into H .
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5.3 Examples of Fake Elliptic Curves

Let us give some examples of fake elliptic curves. We choose E in the PEL-data S to define a
principal polarization, so that the abelian surface Aτ is isomorphic to the Jacobian variety of a
curve of genus 2.

Example 5.15. (see [66]) Let H =
(−6,2
Q
)
. Let

u1 = 1, u2 = 1
2(I + J), u3 = 1

2(I− J), u4 = 1
2(2 + 2J + K).

We check that u1, . . . , u4 generate an order in H . We compute

(tr(uiūj)) =


2 0 0 1
0 2 4 −1
0 4 2 1
1 −1 1 −2


The determinant of this matrix is equal to 62. This shows that the discriminant D is equal to 6, the
product or prime numbers, hence o spanned by u1, . . . , u4 is a maximal order. We take ρ = I and
compute the matrix of E(x, y) = tr(ρxȳ):

(tr(Iuiūj) =


0 1 1 0
−1 0 0 −1
−1 0 0 0
0 1 0 0

 .

In a new basis u′1 = u3, u
′
2 = −u4, u

′
3 = −u1, u

′
4 = u3−u2, the matrix ofR(x, y) is the standard

symplectic matrix J4 =
(

0 I2
−I2 0

)
. We define Φ : H → Mat2(R) by

I 7→
(

0 1
−6 0

)
, J 7→

(√
2 0

0 −
√

2

)
.

The period matrix Π with columns φτ (u′1), φτ (u′2), φτ (u′3), φτ (u′4) is

Π =

(
−
√

2τ
2 + 1

2 (−1
2 −

√
2

2 )τ +
√

2
4 −τ −

√
2τ

−3τ +
√

2
2

3
√

2τ
2 − 1

2 +
√

2
2 −1

√
2

)
Multiplying on the left by the inverse of the matrix with the last two columns, we get the period
point of Aτ :

Zτ =

(
τ1 τ2

τ2 τ3

)
=

(
6τ2−1

4τ
−6
√

2τ2+4τ−
√

2
8τ

−6
√

2τ2+4τ−
√

2
8τ

6τ2+4τ−1
8τ

)
∈ H2

One checks that Z satisfies two singular equations1

− τ1 + 2τ3 − 1 = 0 with ∆ = 8,

τ2 − τ3 + (τ2
2 − 2t2 − τ1τ3 + t1 = 0 with ∆ = 5.

(5.26)

1There is a small typo in [66]; one has to subtract 1 from the entries τ2, τ3 of their period matrix.
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The following is the equation of a genus 2 curve Xset whose Jacobian variety is isomorphic, as a
principally polarized abelian surface, to the surface Aτ = C2/ZτZ4 for a “general” τ (see [8]):

Xs,t : y2 − x(x4 − Px3 +Qx2 −Rx+ 1) = 0, (5.27)

where

P = −2(s+ t), R = −2(s− 1), Q =
(1 + 2t2)(11− 28t2 + 8t4)

3(1− t2)(1− 4t2)
,

and F (s, t) = 4s2t2 − s2 + t2 + 2 = 0. The curve V (F (s, t)) is the affine part of the quartic curve
B := V (4s2t2 − s2u2 + t2u2 + 2u4) with two ordinary nodes (0 : 1 : 0) and (1 : 0 : 0). The
involution σ : (s, t) 7→ (s,−t) does not change the isomorphism class of the curve Xs,t. One can
show, using the invariant of binary forms of degree 6, that involution also interchanges the branches
at singular points, so that the quotient of the curve B by the involution is isomorphic to P1. The
Shimura curve S6 := Γ\H2 is isomorphic to P1. The map B/(σ) → AS is not defined at the
point (s, t) = (1

2

√
−2,
√

2) since the curve Xs,t is singular. However, it extends to an isomorphism
B/(σ)→ AS .

Let K = Q(
√
−6) with maximal order R = Z[

√
−6]. It embeds in H , and Φ(

√
−6) = Φ(I) =(

0 1
−6 0

)
. Its fixed point in H is τ0 = i√

6
. The period point Zτ0 of the abelian surface Aτ0 is(

i√
6

−1
2 i +

√
6

4

−1
2 i +

√
6

4
1
2

)
.

The abelian variety is the Jacobian variety of a curve of genus 2 which is isomorphic to the self-
product of the elliptic curve with complex multiplication by

√
−6.

Example 5.16. (see [8]) Let H =
(2,5
Q
)
. Let o be an order in H generated by

u1 = 1, u2 = I, u3 = 1
2(I + K), u4 = 1

2(1 + J)

We take ρ = K with ρ2 = −10, and compute

(tr(uiūj) =


2 0 0 1
0 −4 −2 0
0 −2 4 0
1 0 0 −2

 .

The determinant of the matrix is equal to 102; hence o is a maximal order. We take ρ = K, and
compute

(E(ui, uj)) =
1

10
(tr(ρuiūj)) =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

Let Φ : H ↪→ Mat2(R) be the embedding defined by

Φ(I) =

(√
2 0

0 −
√

2

)
, Φ(J) =

(
0 1
5 0

)
.
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The period matrix is:

Πτ =

(
τ
√

2τ
√

2
2 (τ + 1) 1

2(τ + 1)

1 −
√

2 −
√

2
2 (5τ + 1) 1

2(5τ + 1)

)
.

Multiplying on the left by the inverse of the matrix with the last two columns, we get the period
point

Zτ =

(
1
2

√
2(5τ2−1)

5τ2+6τ+1
τ
τ+1 + 1

5τ+1
τ
τ+1 + 1

5τ+1

√
2(5τ2−1)

5τ2+6τ+1

)
∈ H2.

Let K = Q(
√
−10) with discriminant equal to −40 and maximal order Z[

√
−10]. It embeds in

o and Φ(
√
−10) = Φ(K) =

(
0
√

2
−5
√

2

)
. It fixes τ = i√

5
. There is another embedding of K in

o corresponding to the automorphism of H defined by x 7→ (3 − 2I)x. It fixes τ2 = (3 − 2
√

2)τ .
This gives two CM-points in the Shimura curve defined by the same period matrix2

Zτ1 = Zτ2 =

(√
10
6

1
3

1
3

√
10
3

)
.

The corresponding hyperelliptic curves are isomorphic to the curve with the equation:

y2 = x5 + 2
√

5x4 +
125

18
x3 + 2

√
5x2 + x.

2There is a mistake in the computation of the period matrix in [8] that causes the conclusion that the periods are
different.
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Chapter 6

K3 Surfaces and Abelian Surfaces

In the case of abelian surfaces, the associated Kummer surface admits a resolution of singularities
which is isomorphic to a K3 surface, a complex projective algebraic surface X with the canonical
class KX ∈ H2(X,Z) equal to zero and the first Betti number b1(X) also equal to zero. In this
chapter we discuss some geometrical properties of K3 surfaces arising from abelian surfaces.

6.1 Generalities about K3 Surfaces

Let X be an algebraic K3 surface. By definition, this means that X is a smooth and projective
surface with KX = −c1(X) = 0 and h1(OX) = 0. Note that there exist compact complex, but
not algebraic surfaces satisfying these conditions. They admit a structure of a Kähler manifold.
However, we will be concerned only with algebraic K3 surfaces.

Let us give a brief information about some important algebraic and topological invariants of X
(we refer to [7] or [32, §10, Chapter 0] for details).

Since c1(K) = −KX = 0, by Wu’s formula, H2(X,Z) is an even lattice with respect to the
cup-product, which is a symmetric bilinear form. By Poincaré duality, it is unimodular. Since
h1(OX) = 0, the Betti numbers b1 and b3 are equal to zero. By Noether’s formula

12(1− h1(OX) + h2(OX)) = K2
X + c2,

where the second Chern class c2 coincides with the topological Euler-Poincaré characteristic of X .
This gives us that the second Betti number b2 is equal to 22. By Hirzebruch’s signature theorem,
the signature of the cup-product on H2(X,R) is equal to (3, 19). Thus, by Milnor’s theorem on
unimodular indefinite quadratic lattices, we get an isomorphism of quadratic lattices

H2(X,Z) ∼= L := U⊕3 ⊕ E⊕2
8 ,

where U is the integral hyperbolic plane, and E8 is the E8-lattice defined by the Dynkin diagram
(3.15) in Section 3.1. The quadratic lattice L in the right-hand side is often called the K3 lattice

105
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Let
H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2 ∼= C⊕ C20 ⊕ C, (6.1)

be the Hodge decomposition of H∗(X,C). Since h2,0 = h0,2h1(OX) = 1, it h1,1(X) = 20.

The Picard group Pic(X) is isomorphic to the Néron-Severi group NS(X). The Chern class
homomorphism

c1 : Pic(X) → H2(X,Z) (6.2)

is injective and its image lies in H2(X,Z) ∩H1,1(X). This implies that the Picard number ρ(X)
satisfies

1 ≤ ρ(X) ≤ 20.

The intersection form on Pic(X) defines a structure of a quadratic lattice on Pic(X). The Chern
class homomorphism c1 respects the intersection forms on both sides and thus, identifies Pic(X)
with a sublattice ofH2(X,Z). Also, via the Poincaré Duality, it can be identified with the sublattice
of H2(X,Z) ∼= H2(X,Z)∨. It is generated by the fundamental classes of irreducible algebraic
curves in X . We denote it by SX and call it the Picard lattice.

It follows from Lefschetz’s theorem on (1, 1)-classes that the lattice embedding (6.2) is primitive
(the latter means that the quotient group has no torsion). By the Hodge Index Theory, the signature
of the quadratic space (SX)R is equal to (1, ρ(X)− 1), so SX is a primitive sublattice of H2(X,Z)
of signature (1, ρ(X)).

Let TX denote the orthogonal complement of SX in H2(X,Z). It is a primitive sublattice of
H2(X,Z), called the transcendental lattice of X . We use the Hodge decomposition (6.1). Since
the image of SX under the homomorphism c1 is contained in H2(X,Z) ∩H1,1,

(TX)C = H2,0 ⊕H1,1
0 ⊕H0,2 ∼= C22−ρ,

where H1,1
0 = (TX)C∩H1,1. Since the signature of H2(X,R) is equal to (3, 19), TX is a primitive

sublattice of H2(X,Z) of signature (2, 20− ρ(X)).

The inclusion of the one-dimensional linear space H2,0 ⊂ (TX)C defines a point p(X) in the
projective space |(TX)C| of lines in ((TX)C (or the projective space P((T∨X)C)). It is called the
period of X .

If we choose a holomorphic 2-form ω generating H2,0(X), then, considered as a linear function
on H2(X,C), its value on a 2-cycle γ is equal to the integral

∫
γ ω. If γ is equal to the fundamental

class of an irreducible curve, then
∫
γ ω = 0 (because the restriction of ω to a curve is equal to zero).

This explains why the linear function
∫
γ can be considered as a linear function on H2(X,Z)/SX ,

and hence belongs to H2,0 ⊕H0,2. Since, ω is represented by a complex differential form of type
(2, 0), it belongs to H2,0.

The cup-product on H2(X,C) corresponds, via the de Rham Theorem, to the exterior product
ω1 ∧ ω2 of 2-forms. Since ω ∈ H2,0, we get w ∧ w = 0. The cup-product is the complexification
of the intersection form on H2(X,Z), hence p(X) belongs to a quadric Q in |(TX)C defined by the
quadratic form of the transcendental quadratic lattice TX .

Also, ω ∧ ω̄ is a real differential 4-form of type (2, 2), which is proportional to the volume form
generating H4(X,R). Since its sign does not depend on a complex scalar multiple of ω, we may
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choose an orientation on the four-manifold X to assume that it is positive. Thus, we get a second
condition ω ∧ ω̄ > 0. Thus, p(X) belongs to an an open (in the usual topology) subset Q0 of Q.

Since the signature of the quadratic space (TX)R is equal to (2, 20 − ρ(X)), the Q0 is not con-
nected, it consists of two connected components, each isomorphic to a Hermitian symmetric domain
of orthogonal type (or Type IV in Cartan’s classification). To see these two components, we choose
a basis in (TX)C with coordinates t1, t2, . . . , tk, where k := rank(TX), such that DT consists of
points in |(TX)C| with projective coordinates [z1, . . . , zn] satisfying

z2
1 + z2

2 − z2
3 − · · · − z2

k = 0,

|z1|2 + |z2|2 − |z3|2 − · · · − |zk|2 > 0,

This set consists of two connected components that are distinguished by the sign of Im(t1/t2).
Another way to see this is to consider a real plane P (z) ⊂ (TX)R spanned by the imaginary and
real part of a vector z = x + iy ∈ (TX)C that represents a point [z] in the quadric Q. Then,
0 = z2 = (x + iy)2 implies x2 − y2 = x · y = 0 and z · z̄ = (x + iy) · (x − iy) > 0 implies
x2 + y2 > 0. Thus, x2 = y2 > 0 and x · y = 0 implies that P (z) is a positive definite plane in TR.
This defines a map from QN to the Grassmannian G(2, (TX)R)+ of positive definite planes in TR.
It consists of two connected components defined by a choice of orientation of the plane.

We would like to define the period map that assigns to the isomorphism class ofX its period point
p(X) ∈ Q. However, there is a problem because there is no canonical identification of the linear
spaces H(X,C) for different X , and, even more, the linear subspaces (TX)C can vary in a family
of K3 surfaces.

To solve this problem, one introduces the notions of a lattice polarization and a marking of X .
The former is a primitive embedding:

j : S ↪→ SX

of lattices, where S is a fixed even quadratic sublattice of the K3-lattice L with signature (1, ρ). The
latter is an isomorphism: of quadratic lattices

φ : L→ H2(X,Z).

We assume that the two homomorphisms are compatible in the sense that the restriction of φ to S
coincides with j. Moreover, we assume that j(S) contains an ample divisor class in SX .

Now, we repeat everything from above, replacing SX with S, and denoting by T its orthogonal
complement in L. The signature of T is equal to (2, 20− ρ).

Let QT be the quadric in |TC| defined by the quadratic form of T , and let DT = Q0
T be its open

subset defined by the condition x · x̄ > 0. It is called the period domain associated to the lattice
T . Of course, as a complex manifold, it depends only on its dimension 19 − r. It consists of
two connected components. Each connected component is a complex domain in C20−ρ of vectors
z = x+ iy with y · y > 0.

The orthogonal group of the real space TR is isomorphic to the orthogonal group O(2, 19− ρ) of
the standard inner product space R2,19−r defined by the quadratic form x2

0 + x2
1 −

∑19−ρ
i=3 x2

i . It
acts on the quadric QT leaving the subset DT invariant. The action is transitive, and the stabilizer
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subgroup isomorphic to the subgroup SO(2)× O(19− r). This defines a structure of homogenous
spaces on DT and on its connected component D0

T :

DT ∼= O(2, 19− r)/SO(2)×Ø(19− r), D0
T
∼= SO(2, 19− r)/SO(2)× SO(19− r).

Now, let (X,S, j, φ) be a marked lattice polarized K3 surface and p(X) be its period. Then, we
can assign to X a point φ−1(p) ∈ DT , called the period point (X,S, j, φ). A different choice of the
markings which restrict to the same polarization map j : M → SX does not change the orbit of p
with respect to the group

ΓS := {g ∈ O(L) : g|S = idS}.

There is a natural injective homomorphism ΓS → O(T ). To describe its image, one introduces the
notion of the discriminant group AM of an even lattice M , and its quadratic form qAM . We assume
that M is non-degenerate in sense that the natural map ι : M →M∨ = Hom(M,Z) defined by the
symmetric bilinear form on M , is injective. We set

AM : = M/ι(M), (6.3)

qAM : AM → Q/2Z, m̃+M 7→ m̃2 mod 2Z.

Here m̃ ∈ M∨ is a representative of a coset in AM , and we extend the quadratic form of M to
M∨ ⊂MQ.

An orthogonal transformation g of M extends to an orthogonal transformation of M∨ ⊂MQ that
induces an automorphism of the finite group AT that preserves the function qAM . We denote the
group of such automorphisms of AM by O(AM , qAM ). One can show that

ΓS = Ker(O(T )→ O(AT , qAT )).

Assume ρ > 1, so that the lattice Pic(X) is hyperbolic. By adjunction formula, any divisor class
D with negative self-intersection satisfies D2 = −2. By Riemann-Roch Theorem, D, or −D is
effective. If D is a curve on X representing D, then one of its irreducible components R satisfies
R2 = −2, and hence its arithmetic genus 1

2(R2 + R ·KX) + 1 is equal to zero. Thus, R ∼= P1 is
a smooth rational curve on X . Such a curve R is called a (−2)-curve. Its divisor class is unique,
therefore we can identify it with a vector in the Picard lattice Pic(X).

Now, we can consider the orbit space

MK3,S := ΓT \DT .

Thus, taking the orbit of the period of a marked lattice polarized K3 surface (X,S, φ, j) defines
a point (the period point) in MK3,S that does not depend on the marking. The orbit space is a
quasi-projective algebraic variety of dimension 20− ρ. Under some mild conditions on S, e.g. the
lattice T contains the integral hyperbolic plane U as its orthogonal complement, the orbit space is
irreducible.

We have the fundamental Global Torelli Theorem for K3 surfaces due to I. Pyatetsky-Shapiro and
I. Shafarevich:
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Theorem 6.1. Suppose two lattice polarized K3 surfaces (X,S, j) and (X ′, S, j′) define the same
period point in ΓS\DS . Then, there exists an isomorphism f : X ′ → X such that j′ = f∗ ◦ j.

Note that the period points belong to an open Zariski subsetD◦S ofDS . Let us explain this. For any
δ ∈ T with δ−2 = −2, the orthogonal complement δ⊥ contains S. If If the period of (X,S, φ, j)
belongs to Hδ, then δ must be equal to an algebraic cycle γ in X with γ2 = −2. By Riemann-Roch
Theorem on X , γ or −γ is the divisor class of an effective divisor on X . However, this contradicts
the assumption that j(S) contains an ample divisor.

Let
∆S = ∪δ∈T,δ2=−2Hδ,

where Hδ = |δ⊥| ∩DS . It follows that the period points belong to the complement D◦S = DS \∆S .
The group ΓS acts naturally on the set of vectors δ, and hence acts on the set ∆S . We set

Ma
K3,S := ΓS\D◦S .

Note that the image ΓS\∆S is a divisor in MK3,S . The number of its irreducible components
is equal to the number of orbits of ΓS on the set of vectors δ. The situation is similar to what we
had for the description of irreducible components of Humbert surfaces. One has to warn, that the
notationMK3,S is rather ambiguous since the varietyMK3,S depends on the embedding of S into
L. However, in many cases, one can show that the embedding is unique modulo the orthogonal
group of L, and hence the orbits spaces are isomorphic.

One can show that Ma
K3,S is isomorphic to the coarse moduli space of lattice S polarized K3

surfaces. To do this, one extends the notion of a lattice polarized marked K3 surface to a smooth
family X → B of K3 surfaces. We define a marking of the family to be an isomorphism of local
coefficient systems extra bracket was deleted φ : (L)B → H2(Xt,Z)t∈B , where (L)B is the trivial
local coefficient system with fiber L. It is required that, for all t ∈ B, the image of S under the
isomorphism φt : L→ H2(Xt,Z) is contained in Pic(Xt), and also contains an ample divisor class
of Xt.

A family X → B of lattice S polarized marked K3 surface defines the period map

pB : B →Ma
K3,S ,

and, using the Global Torelli Theorem, one proves that, in this way, the algebraic varietyMa
K3,S is

isomorphic to the coarse moduli spaces of lattice S polarized K3 surfaces. We refer to the details
to [42].

One can also interpret MK3,S as the moduli space of lattice polarized K3 surfaces where we
drop the assumption that j(S) contains an ample divisor, but assume only that it is a pseudo-ample
divisor. However, it is too technical to describe it here.

One can extend the notion of a hyperplane Hδ, δ
2 = −2, by assuming that δ2 = −N , where N is

any even positive integer N . Then, T ′ = δ⊥ is a sublattice of T of signature (2, 18− ρ) and D◦T ′ is
a Hermitian symmetric domain of the same type, and DT ′ is realized as a hypersurface in DT . For
any positive integer N consider

H(N) =
⋃

δ∈T,δ2=−N

Hδ.
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The group ΓT acts on the set of δ’s with δ2 = −N , and we denote by Heeg(N) the image ofH(N)
in the quotient spaceMK3,S . It is empty or a hypersurface inMK3,S . It is denoted by Heeg(S;N)
and is called the Heegner divisor in the moduli space of lattice S polarized K3 surfaces.

In Section 6.4, we will compare the Heegner divisors

Heegn(N) := Heeg(S;N), (6.4)

where S = E8 ⊕ E8 ⊕ 〈−2n〉 with the Humbert surfaces Humn(∆), where N = ∆/2n.

6.2 Nikulin K3 Surfaces

Let Kum(A) be the Kummer surface of an abelian surface A and X be its minimal resolution of
singularities obtained as the quotient of the blow-up Ã ofA at its set of 2-torsion points by the lift ι̃ of
the involution ι = [−1]A of A. The cover φ̃ : Ã→ X is a degree two cover with the branch divisor
equal to the sum R = R1 + · · ·+R16 of exceptional curves of the resolution σ : X → Kum(A).

In general, let S′ → S be a double cover of smooth surfaces branched over a curve (necessary
smooth)B on S. Let ψU = 0 be a local equation ofB in an affine open subset U , then the pre-image
of U in S′ is isomorphic to the hypersurface in V = U × C given by the equation z2

U − ψU = 0.
Thus, locally the ringO(V ) of regular functions on V is a free module of rank 2 over the ringO(U)
of functions on U generated by 1 and zU . LetO(U)zu be the submodule of rank 1. One checks that,
taking an affine cover of S, theO(U)-modulesO(U)zu are glued together to define a line bundle L
such that L⊗−2 is isomorphic to the line bundle L(B) = OS(B) associated to the curve B. It may
not have sections but its tensor square has a section with the zero divisor equal to B. In particular,
we see that the divisor class of B is divisible by 2 in the Picard group Pic(S). Conversely, if B is a
smooth curve on S such that its divisor class [B] is divisible by two in Pic(S), there exists a double
cover of smooth surfaces S′ → S with the branch divisor B. The set of isomorphism classes of
such covers is bijective to the set of square roots of [B] in Pic(S). It is a principal homogeneous
space over the group Pic(S)[2] of 2-torsion points in Pic(S).

Let us return to our example. We see that the sum R = R1 + · · · + R16 must be divisible by 2
in Pic(X̃). Since X̃ is a K3 surface, we have Tors(Pic(X̃)) = 0, hence [R] = 2[R0] for a unique
divisor class R0. Since R2 = 16(−2) = −32, we obtain R2

0 = −8. It is easy to see that the line
bundleOX̃(R0) has no sections but its tensor square has a unique section (up to a constant multiple)
vanishing on R.

Suppose we have a disjoint set of (−2)-curves E1, . . . , Ek on a K3 surface Y , we ask whether
there exists a double cover Y ′ → Y with branch divisor equal to E = E1 + · · · + Ek. Since
E2 = −2k = 4D2 for some divisor D and D2 is even, we obtain that k ∈ {4, 8, 12, 16} (it cannot
be larger since the classes [Ei] are linearly independent in H2(Y,Q) = Q22). Let f : Y ′ → Y be
the double cover with the branch divisor E and let R = R1 + · · · + Rk be the ramification divisor
on Y ′. Since f∗(Ei) = 2Ri, we have R2

i = −1. The standard Hurwitz type formula gives us that
KY ′ = f∗(KY ) + R = R. Since each Ri is an exceptional curve of the first kind, we can blow
down R to obtain a surface Y with KY = 0. It is known that a surface with trivial canonical class
is either an abelian surface or a K3 surface. Now the standard topological formula gives us that
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e(Y ′) = 2e(X) − e(R) = 48 − 2k = e(Y ) + k. This gives e(Y ) = 48 − 3k. If Y is an abelian
surface, we obtain k = 16. If Y is a K3 surface, we obtain k = 8.

Note that a theorem of V. Nikulin asserts that any disjoint sum of sixteen (−2)-curves on a K3
surface is divisible by 2 in the Picard group and hence defines a double cover birationally isomorphic
to an abelian surface A [132]. It is easy to see that it implies that X is birationally isomorphic to
Kum(A).

In the case k = 8, we have more possibilities. A set of eight disjoint (−2)-curves on a K3 surface
Y is called an even eight, if the divisor class of the sum is divisible by 2 in Pic(Y ).

Let E1, . . . , E8 be an even eight on a K3 surface Y and π : Ỹ → Y be the corresponding
double cover. Let Ē1 + · · · + Ē8 be the ramification divisor on Ỹ . We have π∗(Ei) = 2Ēi,
hence 4Ē2

i = 2E2
i = −4, hence Ē2

i = −1. Also Ēi ∼= Ei, hence Ēi ∼= P1. Thus, Ēi is an
exceptional curve of the first kind, and hence, can be blown down to a smooth point of a surface.
Let σ : Ỹ → Y ′ be the blow-down of the eight exceptional curves Ēi. As above, we obtain that
e(Ỹ ) = 2e(Y ) − e(Ē) = 48 − 16 = 32. This shows that e(Y ′) = 32 − 8 = 24. Also, we have
KỸ = σ∗(KY ) + Ē = Ē, hence KY ′ = 0. Together with the Noether formula this implies that
b1(Y ′) = 0, hence Y ′ is a K3 surface. Let τ̃ be the deck transformation of the cover σ, it descents to
an involution (= an automorphism of order 2) τ of Y ′. It has 8 fixed points, the images of the curves
Ēi on Y ′. The quotient Y ′/(τ) is a surface Ȳ with 8 ordinary double points. The rational map
π ◦ π̃ ◦ σ̃−1 : Y → Ȳ is a minimal resolution of the surface Ȳ . We have the following commutative
diagram of regular maps:

Ỹ
σ̃ //

π̃
��

Y

π
��

Y ′
σ // Ȳ

.

Thus, we obtain that each even eight on a K3 surface Y defines a K3 surface Y ′ and an involution
τ on Y ′ such that Y is isomorphic to a minimal resolution of the singular surface Y/(τ). One
can show that any involution on a K3 surface that acts identically on a holomorphic 2-form (a
symplectic involution) has eight fixed points. The group quotient Y ′/(τ) has a minimal resolution
of singularities isomorphic to a K3 surface with exceptional curves forming an even eight. A K3
surface obtained in this way is called a Nikulin K3 surface. One expects that the Picard number of
a general Nikulin surface is equal to nine, and the moduli spaces of polarized Nikulin surfaces have
dimension equal to 11.

We will be interested in Nikulin surfaces isomorphic to a nonsingular minimal model X of the
Kummer surface Kum(A).

Let E = E1 + · · · + E8 be an even eight on X . We know that E ∼ 2E0, where E2
0 = −4. Let

N be the sublattice of Pic(X) generated by E0 and E1, . . . , E8. It is a negative definite even lattice
of rank 8, called the Nikulin lattice. It contains the sublattice spanned by E1, . . . , E8 isomorphic to
〈−2〉⊕8, where 〈a〉 denotes the lattice of spanned by a vector v with v2 = a. This lattice is of index
2 in the lattice N , hence the elementary theory of finite abelian groups tells us that the discriminant
group of N is equal (Z/2Z)6. The inclusion N ↪→ SX is a primitive embedding. Thus, each
Nikulin surface must contain a primitive sublattice isomorphic to the Nikulin lattice.
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One can show that the Nikulin involution τ acts on H2(Y ′,Z) ∼= LK3 = U⊕3 ⊕ E⊕2
8 as the

identity on U⊕3 and by sending a vector in E8 to the same vector in the other copy of E8. Let
Hτ ∼= U⊕3 ⊕ E8(2) be the sublattice of invariant elements and Hτ

∼= E8(2) be the sublattice of
anti-invariant elements (i.e. τ∗(γ) = −γ).1 Note that τ acts identically on Ω2(X ′) ∼= C, since
otherwise the quotient has no regular 2-forms, so it must be a symplectic involution. Thus, for any
cycle γ ∈ Hτ , we have

0 =

∫
γ+τ∗(γ)

ω =

∫
γ
ω +

∫
τ∗(γ)

τ∗(ω) = 2

∫
γ
ω.

By Lefschetz Theorem, this implies that γ ∈ SX = H2(X,Z)alg. Since Hτ and Hτ are obviously
orthogonal to each other, we obtain

E8(2) ∼= Hτ ⊂ SX , TX ⊂ Hτ ∼= U⊕3 ⊕ E8(2).

Nikulin shows that the converse is true: if SY contains a primitive sublattice S isomorphic toE8(2),
then there exists a Nikulin involution τ on Y ′ such that S ⊂ Hτ .

Note that under the rational cover f : Y ′ → Y ′/(τ)
π−1

99K Y , we have

f∗(TY ) ∼= TY (2) ⊂ TY ′ .

Now suppose Y = K̃um(A). One can show that, under the pre-image map A 99K Y , we have
TY ∼= TA(2).

6.3 Shioda-Inose Structure

Suppose Kum(A) is a quotient of a K3 surface Y by a Nikulin involution. Then, by above, TY (2) =
TA(4) ⊂ TY . One can show that this inclusion comes from an inclusion TY ⊂ TA with quotient
(Z/2Z)α, where 0 ≤ α ≤ 4 (for any x ∈ TA we have 2x ∈ 2TA ⊂ TX ). Conversely, if there exists
a primitive embedding TY ↪→ TA with such a quotient, then Y admits a Nikulin involution with
quotient isomorphic to Kum(A). If α = 0, then we have TY ∼= TA, and, in this case we say that X
admits a Shioda-Inoue structure. Even eights with α 6= 0 were studied in [114].

Note that TA ⊂ H2(A,Z) ∼= U⊕3, hence,

TY ⊂ U3 ⊂ LK3 = U3 ⊕ E8 ⊕ E8

and, we obtain that E8⊕E8 ⊂ SY . Here we have to use some lattice theory to check that all primitive
embeddings of TY in LK3 are equivalent under orthogonal transformations of LK3. Conversely, a
theorem of D. Morrison [123] asserts that the condition that E8 ⊕ E8 primitively embeds in SX is
necessary and sufficient in order X admits a Shioda-Inose structure. We express this structure by
the triangle of rational maps

X

##

A

{{
Kum(A)

. (6.5)

1For any quadratic lattice M we denote by M(k) the quadratic lattice obtained from M by multiplying its quadratic
form by an integer k.
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Example 6.2. Suppose A has a principal polarization L0. We have (L0)2 = 2, hence

TA ⊂ 〈L0〉⊥ = U⊕ U⊕ 〈−2〉

(we embed h = c1(L0) in one copy of U = Zf +Zg with the image of h equal to f + g, where f, g
is a canonical basis of U ). Let Y be a K3 surface with TY ∼= TA. Then, TY ∼= TA ⊂ U⊕U⊕ 〈−2〉
and SY = (TY )⊥ contains (U⊕U⊕〈−2〉)⊥ = E8⊕E8. Hence Y is related to A by a Shioda-Inose
structure. Let us construct such a surface Y .

Let B be a curve on Q = P1 × P1 of bidegree (4, 4) which is the union of a curve B0 of bidegree
(3, 3) and some fibers F1 and F ′1 of the projections Q → P1. We assume that B is invariant with
respect to the involution α : (x, y) 7→ (y, x) of Q, and B0 has a cusp p at a point q ∈ F1 with local
equation u2 + v3 = 0, where u = 0 is a local equation of the fiber F1 at q.

We assume that B0 has no other singular points besides q and q′. Let π : X ′ → Q be the double
cover of Q branched along B. It is a singular surface with singularities over q and q′ = α(q) locally
given by equations z2 = u(u2 + v3). This type of singularity is known as a double rational point
of type E7. Let X be a minimal resolution of X ′. Its exceptional curve over q (resp. over q′) is
reducible and consists of 7 irreducible components which are (−2)-curves. Its intersection matrix
is equal to the Coxeter matrix of type E7 (multiplied by −1). The surface X is a K3 surface. Fix
the first projection Q → P1. The composition of the projections X → X ′ → Q → P1 gives an
elliptic fibration on X with two degenerate fibers of type II∗ and III∗ in Kodaira’s notation. We
also have 6 other irreducible singular fibers isomorphic to a nodal cubic curve. They correspond to
6 ordinary ramification points of the cover B̃0 → B0 ↪→ Q → P1 of the normalization B̃0 of B0.
The fiber of the first type lies over the fiber F1 and the fiber of type III∗ lies over the fiber F2 of
the same projection that passes through the point q′. The pre-image of F ′1 on X defines a section
S of the fibration. If we take the sublattice generated by one fiber f and the section s, we obtain
a sublattice given by a matrix

(
0 1
1 −2

)
. By changing a basis f → f + s, f → f , we reduce this

matrix to the form ( 0 1
1 0 ). Thus, this sublattice is isomorphic to U . The orthogonal complement to

U in Pic(X) contains the classes of irreducible components of fibers that are disjoint from s. We
easily find that this lattice is isomorphic to E8 ⊕ E7. Thus, we obtain a lattice embedding (in fact, a
primitive embedding)

U⊕ E8 ⊕ E7 ↪→ Pic(X).

It is easy to see that E8 primitively embeds in U ⊕ E7, thus, E8 ⊕ E8 embeds in Pic(X), and, by
Morrison, X has a Shioda-Inose structure with

TA ∼= TX ⊂ U⊕ U⊕ 〈−2〉.

Since (U⊕ U⊕ 〈−2〉)⊥H2(A,Z = 〈2〉 ⊂ NS(A), we obtain that A admits a principal polarization.

Let Q → P2 be the quotient map of Q → Q/(s). The quadric Q is a cover of P2 branched
along a conic K. Since B was invariant under the switch involution s, we see that it is equal to the
pre-image of the plane curve under this cover. The plane curve is a cuspidal cubic C plus a line `
which is tangent to the conic K and intersects C at the cusp with multiplicity 3. Assume that C
intersectsK at 6 distinct points. One can show that the double cover of P2 branched along the union
K +C + ` has a minimal resolution isomorphic to the Kummer surface Kum(A), where A ∼= J(C)
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for some curve C of genus 2. We have the following diagram of rational maps

X
π //

φ
��

P1 × P1

��
K̃um(A)

φ // P2.

One can see explicitly the even eight on Kum(A) defining the rational double cover φ : X →
Kum(A) (see [114]).

Note that the six points C ∩K define a curve C ′ of genus 2 which is in general not isomorphic to
C. This curve is birationally isomorphic to the curve B0. It comes with an additional structure. We
have 3q ∼ 2q′+a and 3q′ ∼ 2q+a′, where a+a′ ∼ KC′ . This implies 3KC′ ∼ 5q+a ∼ 5q′+a′.
There are 16 pairs (q, q′) with such property on a curve of genus 2. This implies that the Shioda-
Inose construction gives a rational self-map fromM2 toM2 of degree 16.

We see that X admits an elliptic fibration |f | with two singular fibres

f1 = 3R0 + 2R1 + 4R2 + 6R3 + 5R4 + 4R5 + 3R6 + 2R7 +R8

and
f2 = 2N0 +N1 + 2N2 + 3N3 + 4N4 + 3N5 + 2N6 +N7

of type Ẽ8 and Ẽ7. It is also has a section S. The fixed locus of τ consists of smooth rational curves
R1, R3, R5, R7, N2, N4, N6, S and a genus 2 curveW which intersectsR0, N0, N7 with multiplicity
1. The switch involution lifts to an involution σ on X that transforms the elliptic fibration defined
by the first projection Q → P1 to the elliptic fibration |f ′| defined by the second projection. Its
singular fibers are

F ′1 = 3N0 +R8 + 2S + 3N1 + 4N2 + 5N3 + 6N4 + 4N5 + 2N6

and
F ′2 = 2R0 +A+ 2R1 + 3R2 + 4R3 + 3R4 + 2R5 +R6

of type Ẽ8 and Ẽ7. The curve R7 is a section. The involution σ induces the hyperelliptic involution
on W . Its set of fixed points are 2 points on the curve R8 and 6 points on W . Also note that σ maps
the fibration |f | to the fibration |f ′|.

We have altogether 19 (−2) curves whose incidence graph is the following

• • • • • • • • • • •

•

•

•

•

•

•

•

•

R3

R4 R5 R6 R7 R8 S N1 N2 N3
N4

R0

R2

R1

A

N0

N5

N6

N7
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One can prove that these are all (−2)-curves on X .

Let p = W ∩R0, q = W ∩N0, a = W ∩N7, a
′ = W ∩A. We have 3p ∼ 2q+a and the fibration

defines a g1
3 on W spanned by the divisors 3p and 2q + a.

It is easy to see that q = σ(p), a′ = σ(a). This gives 3p ∼ 2KW − 2p+ a, hence 5p ∼ 2KW + a,
or, equivalently, 3KW ∼ 5p+ a′.

Consider the divisor class D = R0 + R1 + R2 + R3 + A + W . We have D2 = 4 and D · Ri =
0, i = 5, 6, 7, 8 and D · Ni = 0, i = 1, . . . , 6. The linear system |D| maps X to a quartic surface
in P3 and blows down the four curves Ri (resp. 11 curves Ni) as above to double rational points of
type A5 (resp. A11). 2 Its equation can be found in [23]

X(α, β, γ, δ) : y2zw− 4x3z + 3αxzw2 + βzw3 + βzw3 + γxz2w− 1
2(δz2w2 +w4) = 0. (6.6)

Hereα, β, γ, δ are complex parameters with γ, δ 6= 0. The surfacesX(α, β, γ, δ) andX(α′, β′, γ′, δ′)
are birationally isomorphic if and only if there exists a nonzero number c such that (α′, β′, γ′, δ′) =
(c2α, c3β, c5γ, c6δ). It follows thatMK3,U+E8+E7 is isomorphic to an open subset of the weighted
projective space P(2, 3, 5, 6) known to be isomorphic to a compactification of A2.

An explicit correspondence between Kummer surfaces associated to curves of genus 2 and the
Shioda-Inose K3 surfaces was given in [99], Theorem 11. Recall from Lecture 5 that a genus 2 curve
y2 = f(x) is determined by the Clebsch invariants I2, I4, I6, I10 of the binary form f(x, y). We
also recall that a K3-surface admitting an elliptic fibration with a section is birationally isomorphic
to its Weierstrass model, a surface of degree 12 in P(1, 1, 4, 6)

w2 = z3 + a(x, y)z + b(x, y),

where a(x, y) and b(x, y) are binary forms of degrees 8 and 12.

We have the following result.

Theorem 6.3. Let
y2 = f6(x, y)

be a nonsingular genus 2 curve, and I2, I4, I6, I10 be the Clebsch invariants of the binary form
f6(x, y). Then, the Shioda-Inose surface associated to Kum(J(C)) is an elliptic K3 surface with
Weierstrass equation

w2 = z3 − t40t31(t0 +
I4

12
t1)z + t50(

I2

24
t20 +

I2I4 − 3I6

108
t0t1 +

I10

4
t21). (6.7)

Let X be a K3 surface admitting a Shioda-Inose structure with the corresponding rational map
of degree 2 X 99K Kum(A). A theorem of Shouhei Ma [109] asserts that a minimal resolution Y
of Kum(X) admits a Nikulin involution τ such that a minimal resolution of Y/(τ) is isomorphic
to X . We say that Kum(A) is sandwiched between X . A geometric realization of the sandwich
structure can be often seen as follows. One finds an elliptic fibration π : X → P1 on X such that
the Mordell-Weil group of its sections contains a non-zero 2-torsion section S so that the translation

2A singular point of type Ak is a surface singularity locally isomorphic to the singularity u2 + uk+1 = 0.
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automorphism tS defines a Nikulin involution with quotient birationally isomorphic to Kum(A).
Let β be the involution of X that induces the involution [−1]E on each smooth fiber of the elliptic
fibration. The fixed locus of β consists of some irreducible components of fibers and a horizontal
divisor S0 + S + T , where S0 is the zero section and T is a 2-section. The intersection of S + T
with a smooth fiber coincides with the set of non-trivial 2-torsion points. The curve T is invariant
with respect to β and its image on Kum(A) defines a 2-torsion section T̄ on the image of the elliptic
fibration on X to Kum(A). The Nikulin involution defined by the translation tT̄ has the quotient
birationally isomorphic to X . To see this one should restrict the action of tS on the generic fiber Eη
of π and observe that the composition of tT̄ ◦ tS is the map Eη → Eη/Eη[2] ∼= Eη.

In the previous example, the Nikulin involution is defined by the translation tS , where S is a
2-torsion section of the elliptic fibration with singular fiber F of type D̃14 equal to

F = R0 +R2 + 2(R3 + · · ·+R8 + S +N1 +N2 +N3 +N4) +N0 +N5.

We may take S0 to be equal to R1 and S to be equal to N6. The curve T coincides with W .

Remark 6.4. In this and the previous chapters, we compared properties of abelian surfaces with the
properties of the associated Kummer or Shioda-Inose K3 surfaces. There is also a connection to
cubic surfaces in P3. Recall that a nonsingular cubic surface in P3 is isomorphic to the blow-up of 6
points in the plane, no three of which are on a line, and not all of them are on a conic. The birational
map is given by the linear system of plane cubics through the six points. When we allow the six
points to lie on a conic, the cubic becomes singular, the image of the conic is its ordinary double
point. A set of 6 distinct points on a conic defines a genus 2 curve C, and the Kummer surface
Kum(J(C)) has a double plane model with the branch curve equal to the union of the tangents to
the conic at the six points. It would be interesting to find an explicit realization of the Humbert
surface Hum(∆) inside of the moduli spaceMcub of cubic surfaces. We have already remarked that
Hum(4) is realized as the locus of cubic surfaces with an Eckardt point. There is also another way
to relate jacobians of curves of genus 2 with cubic surfaces. The Hessian surface H(F ) of a general
cubic surface F is a quartic surface with 10 nodes (see [41]). Its minimal resolution is a K3 surface.
It is known that there is a divisor inMcub such that the Hessian surface of a general surface from
this divisor is birationally isomorphic to a Kummer surface of a curve of genus 2 [70]. It is defined
by vanishing of the invariant I8I24 + 8I32 of degree 32 of cubic surfaces (see [33], 6.6). Which
properties of Kummer surfaces are special properties of Hessians of cubic surfaces? One answer
in this direction is given in [134] where it is proven that J(C) ∈ Hum(5) implies that the Hessian
quartic surface admits an additional ordinary double point.

It is known that every K3 surface X with ρ(X) = 19 admits a Shioda-Inose structure (see [123]).
Let TX be the transcendental lattice of X . Suppose TX contains a direct summand isomorphic to
the hyperbolic plane U . Then, TX ∼= Tn := U ⊕ 〈−2n〉, where 2n is the discriminant of TX . Let
Mn = (Tn)⊥LK3

∼= U⊕2⊕ E⊕2
8 ⊕ 〈2n〉. The moduli spaceMK3,Mn is isomorphic to a non-compact

modular curve Γ+
0 \H (see [42]). The loc.cit. paper contains a construction of K3 surfaces from this

moduli space for some small n. The corresponding abelian surfaces are isogenous to the product of
two isogenous elliptic curves.

Suppose TX ∼= T does not contain an isotropic vector. Then, the moduli spaceMK3,T⊥ is known
to be a compact Shimura curve. The corresponding abelian surfaces are fake elliptic curves. In
general, they are simple abelian surfaces. We refer to K. Hashimoto [68] and A. Sarti [145], [146]
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for description of some of these transcendental lattices and the families of the corresponding K3
surfaces.

6.4 Humbert Surfaces and Heegner Divisors

Let is explain an exceptional isomorphism between two Hermitian spaces of dimension 3, the Siegel
space H2 and a type IV domain associated to a 3-dimensional quadric. Recall that H2 is isomorphic
to an open subset of the Grassmannian G(2, 4) := G(2,C4) represented by complex 2× 4-matrices
of the form [τD], where τ is symmetric and Im(τ) > 0. In the Plücker embedding G(2, 4) ↪→ P5,
the Grassmannian becomes isomorphic to a nonsingular quadric, the Klein quadric given by the
Plücker equation

p12p34 − p13p24 + p14p24 = 0. (6.8)

We will see that the open subset H2 coincides with a Hermitian symmetric space of orthogonal type,
which we used to construct the coarse moduli space of lattice polarized K3 surfaces. We will also
see that the modular group Sp(JD,Z) is isomorphic to the group ΓT acting onDTn , where the lattice
Tn is determined by D = diag[1, n], namely

Tn ∼= U⊕ U⊕ 〈−2n〉.

The cohomology group H1(A,Z) is a free abelian group H of rank 4 and H2(A,Z) ∼=
∧2 H. The

group H2(A,Z) is a quadratic lattice with respect to the natural pairing

2∧
H1(A,Z)×

2∧
H1(A,Z)→

4∧
H1(A,Z) ∼= H4(A,Z) ∼= Z,

where we fix an isomorphism H4(A,Z) =
∧4 Z4 → Z, called an orientation on H. The quadratic

lattice H2(A,Z) is a unimodular even lattice of signature (3, 3). It is isomorphic to the orthogonal
sum U⊕3 of three hyperbolic planes U .

A choice of a basis (e1, e2, e3, e4) in H1(A,Z) ∼= Z4 defines a basis e1 ∧ · · · ∧ e4 of
∧4 H, hence

an orientation on H. We fix this choice.

We can choose a basis (γ1, . . . , γ4) of H1(A,Z) and a basis (ω1, ω2) of Ω1(A) such that

ω1 = (z1, z2, 1, 0), ω2 = (z2, z3, 0, n).

Here τ = ( z1 z2z2 z3 ) ,D = diag[1, n]. In the Plücker embedding the plane spanned by ω1, ω2 is the
point

p = ω1 ∧ ω2 = (z1z3 − z2
2)w1 − z2(w2 − nw5)− nz1w3 − z3w4 + nw6,

where
(w1, . . . , w6) = (e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4).

is the corresponding basis in
∧2 H. Let

(f1, g1, f2, g2, k) := (−w1, w6,−w3, w4, nw5 + w2).
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We see that f2
i = g2

i = 0, fi · gi = 1 and

h0 = w2 − nw5, h2
0 = 2n.

We can rewrite
p = (z2

2 − z1z3)f1 + ng1 + nz1f2 + z3g2 + z2k,

and check that
p ∈ (Zh0)⊥, p2 = 0.

Thus, p defines a point [p] in the quadric QTn = Q ∩ P((Tn)C). One checks that the condition
Im(τ) > 0 translates into the condition that [p] belongs to one of the two connected components of
Q0
Tn

, which we fix and denote it by D0
Tn

.3

Note that the matrix of the quadratic form in the basis (f1, g1, f2, g2, e) is equal to
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 −2n

 .

So, this confirms that the lattice 〈2n〉⊥ in H2(A,Z) ∼= U ⊕U ⊕U is isomorphic to U ⊕U ⊕〈−2n〉.

Let L0 be a polarization on A of degree 2n with h0 = c1(L) ∈ H2(A,Z). We have h2
0 = 2n.

Choose a basis (e1, . . . , e4) of H and let

(w1, . . . , w6) = (e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4)

be the corresponding basis in
∧2 H. The intersection form is defined by the exterior product and the

choice of an orientation. The matrix in this basis is equal to
0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

 .

In the dual basis (p12, p13, p14, p23, p24, p34), the quadratic form is equal to

q = 2(p12p34 − p13p24 + p14p24). (6.9)

The equation q = 0 is the Plücker equation (6.8). It is known that the Grassmannian contains
two families of planes corresponding to lines through a fixed point or lines in a fixed plane. Any
automorphism ofG(2, 4) preserving each of the families, originates from a projective automorphism
of |HC| by taking the wedge square of the corresponding linear map. There is also an integral version

3If we write zi = xi +
√
−1yi, then the condition Im(z1) > 0 chooses a connected component and the condition

y1y3− y2
2 > 0 makes sure that the point lies on the open subset Q0

Tn
of the quadric and hence defines the period point of

a marked polarized K3 surface.
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of this isomorphism. The integral analog of plane in G(2,HC) is a maximal isotropic sublattice F
of rank 3 in

∧2 H.4 The homomorphism

σ : GL(H)0 → GL(
2∧
H), φ 7→ φ ∧ φ,

has the image equal to the index 2 subgroup O0(
∧2 H) of the orthogonal group O(

∧2 H) of the
lattice

∧2 H. It consists of isometries preserving a family of maximal isotropic sublattices (see [9],
Lemma 4).

Let h′0 be a primitive vector with h′0
2 = 2n. It follows from Lemma 6.7 below that there exists an

isometry σ :
∧2 H →

∧2 H that sends h′0 to h0. Replacing (w1, . . . , w6) with (φ(w1), . . . , φ(w6))
we may assume that

h0 = w2 − nw5.

Let O(Tn) denote the orthogonal group of the lattice Tn. Let ATn = T∨n /Tn be the discriminant
group equipped with the quadratic map (6.3). Let O(Tn)] be the kernel of the natural homomor-
phism r : O(Tn)→ O(ATn , qATn ). We know from Chapter 8 that the orbit space

O(Tn)]\DTn ∼= Or0(Tn)]\D0
Tn

is isomorphic to the coarse moduli space MK3,Mn of pairs (X, j), where j is a fixed primitive
embedding of the latticeMn = T⊥n into Pic(X) (or, equivalently, a primitive embedding TX ↪→ Tn)
(with some additional technical conditions formulated in terms of the Picard lattice Pic(X) of X
(see [42])).

In our case, ATn = Z/2nZ and the value of the discriminant quadratic form at its generator
is equal to − 1

2n mod 2Z. The group O(G(Tn)) is isomorphic to the group (Z/2Z)p(n), where
p(n) is the number of distinct prime factors of n and the homomorphism r : O(Tn) → O(ATn) is
surjective (see [147], Lemma 3.6.1).

Recall that we have defined earlier a surjective homomorphism σ : SL(H) → O0(
∧2 H), where

O0(
∧2 H) is a subgroup of index 2 of O(

∧2 H). Consider h0 as an element of
∧2 H∨ =

∧2 H1(A,Z)∨.
Then, the stabilizer subgroup of h0 in O(

∧2 H)0 is equal to the image under σ of the subgroup
of SL(H) that preserves the symplectic form h0. It is isomorphic to the group Sp(JD,Z), where
D = diag[1, n]. This gives an isomorphism

Sp(JD,Z)/(±1) ∼= O0(

2∧
H)h0

∼= O0(Tn)]. (6.10)

The latter isomorphism comes from the interpretation of the group O(Tn)] as a subgroup of Tn of
isometries that lift to an isometry of

∧2 H leaving h0 invariant. Note that the subgroup Sp(JD,Z)
is conjugate to a subgroup Γn of Sp(4,Q) by the conjugation map g 7→ R−1gR, where R is the
diagonal matrix diag(1, 1, 1, n) ( [76], p. 11).

Let us record the previous information in the following:

4A sublattice of a lattice is called isotropic if the restriction of the quadratic form to the sublattice is identically zero.
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Theorem 6.5. There is an isomorphism of coarse moduli spaces

A2,n
∼=MK3,Mn .

Example 6.6. Consider the abelian surface A = E ×E, where E is an elliptic curve with complex
multiplication by o = Z + Zω, ω =

√
−5 from Example 3.12. Let us compute its lattice TA. We

have Ends(A) = {M ∈ Mat2(o) : tM̄ = M}. As a Z-module, it has a basis formed by matrices(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
,

(
0 ω
ω̄ 0

)
. (6.11)

Under the isomorphism NS(A) → End(A) induced by the principal polarization on A = E × E,
the first three matrices correspond to the divisors E1 = E × {0}, E1 = {0} × E and the class
∆−E1−E2. The last matrix corresponds to some divisor D. Consider the basis (γ1, γ2, γ3, γ4) =
(ωe1, e1, ωe2, e2) of the lattice Λ. The reducible principal polarization H0 is given in the basis
(e1, e2) by the matrix y−1I2, where y = Im(ω) =

√
5. The corresponding symplectic form is

defined by h0 = γ∗1 ∧γ∗2 +γ∗3 ∧γ∗4 . The Hermitian forms corresponding to the four endomorphisms
(6.11) are obtained by multiplying these matrices by y−1. We give the alternating forms defining
the first Chern class in terms of the dual basis (γ∗1 , . . . , γ

∗
4).

γ∗1 ∧ γ∗2 , γ∗3 ∧ γ∗4 , γ∗1 ∧ γ∗4 − γ∗2 ∧ γ∗3 , 5γ∗1 ∧ γ∗3 + γ∗2 ∧ γ∗4 .

To find the intersection matrix, we choose the volume form

h0 ∧ h0 = γ∗1 ∧ γ∗2 ∧ γ∗3 ∧ γ∗4

and compute the exterior products. The result is the intersection matrix
0 1 0 0
1 0 0 0
0 0 −2 0
0 0 0 −10

 .

The transcendental lattice is a rank 2 positive lattice isomorphic to 〈2〉 ⊕ 〈10〉.

Let us see the meaning of the singular equation (4.1) in terms of the period [p] of a K3-surface.
Consider the vector

δ = ef1 + dg1 + cf2 + ag2 +
b

2n
k ∈ T ∗n ⊂ T (d)Q, (6.12)

Using the singular equation (4.1), we have

p · δ = naz1 + bz2 + cz3 + d(z2
2 − z1z3) + nk = 0.

Finally, we get

δ2 = − b
2

2n
+ 2(ac+ ed) = −∆

2n
. (6.13)

We obtain that Ends(A) 6= Z if and only if the period of the corresponding K3 surface lies on a
hyperplane Hδ := δ⊥ = P((Cδ)⊥) ∩ DT .

We use the following result from the theory of quadratic lattices (see [147], Propositiuon 3.7.3).
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Lemma 6.7. Let L be an even lattice such that it contains U ⊕ U as a primitive sublattice. Let
v, w ∈ L∨ be two primitive vectors with v2 = w2. Then, there exists σ ∈ O(L) such that σ(v) = w
if and only if the images of v, w in L∨/L coincide.

We apply this to our case where L = Tn = U ⊕ U ⊕ 〈−2n〉, where 〈−2n〉 is generated by a
vector e with e2 = −2n. We have L∨/L ∼= Z/2nZ and the generator e∗ = 1

2ne + L. We have
e∗2 = (2ne∗)2/2n = −1/2n. Let x = re∗, then x2 = −r2/2n. Thus, x2 is determined by r2

mod 4n. Suppose we have a singular equation defined by the vector δ from (6.12). So we obtain
that the number of orbits of hyperplanes Hδ with −2nδ2 = ∆ with respect to the group O0(T (d))∗

is equal to
µ(∆;n) := #{r ∈ Z/2nZ : ∆ ≡ r2 mod 4n}. (6.14)

This number 5 is equal to the number of irreducible components of the Humbert surface Hum(∆;D)
in A2,n. In particular, the Humbert surface A2,n(∆) is irreducible if n = 1. If n = 2, we get two
components corresponding to r = 1, r = 3 mod 4 and ∆ ≡ 1 mod 8. For n = 3 we have four
irreducible components corresponding to r = 1, 2, 4, 5 mod 6 and ∆ ≡ 1, 4 mod 12.

Applying Proposition 6.5, we obtain a proof of Humbert’s Lemma 4.1. In fact, assume that ∆ ≡ 0
mod 4. We write ∆ = 4m and choose δ = mf3−f4 and obtain the singular equationmz1−z3 = 0.
If ∆ = 4m+1, we choose δ = f2−f5+2(f3−mf4) to obtain the singular equationmz1−z′2−z′3 =
0.

The divisors in the moduli spaces of lattice polarized K3 surfaces defined by requiring that the
periods belong to the orthogonal complement of some vector with negative norm are called the
Heegner divisors. The following theorem follows from the previous discussion.

Theorem 6.8. Under the isomorphismA2,n
∼=MK3,Tn , the image of the Humbert surface Humn(∆)

is equal to the Heegner divisor Heegn(δ), where

δ = −∆

2n
.

Let A belongs to Humn(∆). Let o∆ be the ring of integers in the real quadratic field with a
fixed basis such that it can be identified with the algebra (4.5), where b = 0, 1. Let o∆(n) be the
corresponding quadratic lattice. We know that it is isomorphic to the sublattice 〈L0, L∆ of NS(A)
from (4.8). Let TA be the lattice of transcendental cycles of A. It is contained in the orthogonal
complement of o∆(n) in U ⊕ U ⊕ U . It is a lattice of signature (2, 1) with discriminant group
(together with the discriminant quadratic form) isomorphic to the discriminant group of o∆(−n).
Let X be an Inose-Shioda K3-surface with TA ∼= TX . Then, its Néron-Severi lattice is isomorphic
to the orthogonal complement of TA in E⊕2

8 ⊕ U⊕3. Its discriminant lattice is isomorphic to the
discriminant lattice of o∆(n). An example of such a lattice is the lattice E⊕2

8 ⊕ o∆(n). It follows
from [133], Corollary 1.13.3 that the isomorphism class of a quadratic lattice with such discriminant
group consists of one element. Thus, we obtain

Theorem 6.9. There is an isomorphism of coarse moduli spaces

Humn(∆) ∼=MK3,S∆
,

5If we write ∆ = Df2, where D is square-free, then this number is equal to the number of SL(2,Z)-nonequivalent
primitive representations of n by all binary quadratic forms of discriminant D.
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where
S∆ = E8 ⊕ E8 ⊕ o∆(n).

Recall that Humn(∆) may consist of several irreducible components. They correspond to different
embedding of the lattice S∆ in NS(X).

Example 6.10. Let n = 1. We have

Hum(1) ∼= Heeg(−1/2) ∼=MK3,E8⊕E8⊕o1 ,

where o1 is defined by the matrix ( 2 1
1 0 ). Obviously, it is isomorphic to U . Thus

Hum(1) ∼=MK3,E8⊕E8⊕U.

These lattice polarized K3 surfaces contain an elliptic pencil with a section and two reducible fibers
of type Ẽ8 (of type II∗ in Kodaira’s notation). These surfaces are studied in [22], [80], [161], [99].
The surface admits a birational model isomorphic to the quartic surface

y2zw − 4x3z + 3axzw2 − 12(z2w2 + w4) + bzw3 = 0.

The equation is a special case of equation (6.6). It admits a birational model isomorphic to the
double cover of P2 branched along the union of a cuspidal cubic C, the cuspidal line L and the
union of two lines intersecting at a point on L. Note that the Heegner divisor Heeg(−1/2) is equal
to an irreducible component of the discriminant in MK3,T⊥1

corresponding to non-ample lattice
polarized K3 surfaces.

Example 6.11. Similarly, we get that o4
∼= 〈2〉 ⊕ 〈−2〉, hence

Hum(4) ∼=MK3,E8⊕E8⊕〈2〉⊕〈−2〉.

Note that,
E8 ⊕ E8 ⊕ 〈2〉 ⊕ 〈−2〉 ∼= U⊕ E8 ⊕ E7 ⊕ 〈−2〉.

A K3 surface polarized with this lattice admits an elliptic fibration with a section and four singular
fibers of Kodaira’s types I2, III

∗, II∗, I1. These surfaces define the second irreducible component
of the discriminant.

In our example, the Weierstrass equation of the genus 2 curve could be chosen to be in the form

y2 = x3 − t40t31(
3f − e2

3
t1 − t0) + t50t

5
1(fgt21 −

54g + 9ef − 2e3

27
t0t1 +

3g + ef

3f
t20) = 0,

where e, f, g are some constants (see [99]). Two such collections of scalars (e, f, g) and (e′, f ′, g′)
define isomorphic surfaces if and only if there exists λ 6= 0 such that (e′, f ′, g′) = (λ2eλ4f, λ6g).
This shows that the moduli space of such surfaces is isomorphic to the weighted projective plane
P(1, 2, 3). Thus, Hum(4) ∼= P(1, 2, 3) that confirms Corollary 4.12.

Comparing with Kumar’s Theorem 6.3, we obtain that this surface is the Shioda-Inose surface
associated with the Kummer surface of the Jacobian of the curve y2 = f6(x, y) with Clebsch
invariants

(I2, I4, I6, I10) = (8(3s+ r)/r,−4(3r − 1),−4(6rs− 8s+ 5r2 − 2r)/r, 4rs),
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where r = f/e2, s = g/e3 (see [100], 3.2). One can plug in these values of the invariants in the
formula (4.15) to obtain that I15 = 0 to agree with Example 4.3.

One can find in [100] a similar explicit description of the Humbert surfaces of discriminants k2

for k ≤ 11.

Example 6.12. Let us look at the Humbert surface Hum2(1) ⊂ A2,2. Then, δ2 = −1/4 and we
have 2 components corresponding to δ∗ = 1, 3 mod 4. In the former case, we may represent δ
by a generator 1

4e, where e ∈ T2 generates 〈−4〉. Then, δ⊥ ∼= U2, so Heeg2(1) ∼= MK3,U⊕U as
in the case of n = 1. In the latter case we may represent δ by 1

4(3e + 4f − 4g) ∈ T ∗2 . We have
δ⊥ ∼= U ⊕ 〈f + g, 2e + 3f + 3g〉 ∼= U ⊕ 〈2〉 ⊕ 〈−2〉. So, we obtain that the second irreducible
component of Hum2(1) is isomorphic toMK3,M , where M ∼= U ⊕E7 ⊕ 〈−2〉. It is isomorphic to
an irreducible component of the discriminant variety inMK3,T⊥1

. Thus, we obtain that the Humbert
surface Hum2(1) is isomorphic to the discriminant ofMK3,M1 .

Example 6.13. The lattice o5 could be defined by the matrix
(

2 1
1 −2

)
. We have

Hum(5) ∼= Heeg(−5/2) ∼=MK3,E⊕2
8 ⊕o5

.

The Humbert surface Hum(5) admits a compactification Hum(5) isomorphic to the symmetric
Hilbert surface for the field Q(

√
5). It has been explicitly constructed by F. Hirzebruch [71] (see

also [92]). The ring of Hilbert modular forms (whose projective spectrum is isomorphic to Hum(5))
is generated by four forms A,B,C,D of weights 2, 6, 10, 15 with a relation of degree 30

−144D2 − 1728B5 + 720AB3C − 80A2BC2 + 64A3(5B2 −AC)2 + C3 = 0.

According to F. Klein [89], II, 4,§3, this ring is isomorphic to the ring of invariants of the icosahe-
dron group A5 acing in its irreducible 3-dimensional linear representation. The projective spectrum
is isomorphic to the weighted projective plane P(1, 3, 5). The surface Hum(5) is isomorphic to the
complement of one point [1, 0, 0]. The symmetric Hilbert modular surface corresponding to a princi-
pal congruence subgroup of the Hilbert modular group associated to the ring of integers o inQ(

√
5)

and the principal ideal a generated by
√

5 has a natural action by the group o/a ∼= A5. According
to F. Hirzebruch [73], it is A5-equivariantly isomorphic to P2. So this explains the isomorphism
Hum(5) ∼= P2/A5.

The projective representation of A5 in P2 has a minimal 0-dimensional orbit that consists of 6
points, called the fundamental points. The blow-up of the plane at these points is isomorphic to
the Clebsch diagonal surface C with automorphism group isomorphic to S5 (see [41], 9.5.4). The
Hilbert modular surface corresponding to the pair (o, a) is isomorphic to the double cover of P2

branched along the curve of degree 10 defined by the invariant of degree 10. It has 6 singular points,
the pre-images of the fundamental points under the cover. Its minimal resolution is isomorphic to
the blow-up of C at its 10 Eckardt points.
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Chapter 7

The Igusa quartic threefold

The moduli space of principally polarized abelian surfaces together with a 2-level structure admits
a compactification isomorphic to a degree four hypersurface in P4. It coincides with the classically
known Castelnuovo hypersurface, defined as being the dual hypersurface to the Segre cubic primal,
a compactification of the moduli space of genus two curves with an ordered set of its Weierstrass
points. The moduli space of bielliptic genus two curves has an explicit realization as a surface in
the Igusa quartic. In this chapter, we will discuss this beautiful geometry.

7.1 Modular Forms

Let us recall some definitions and known facts about modular forms on the Siegel half-space Hg.

A holomorphic function Φ : Hg → C is called a Siegel modular form of weight w with respect
to a discrete group Γ ⊂ Sp(2g,R) of automorphisms of Hg if it satisfies the following functional
equation

Φ((Aτ +B)(Cτ +D)−1) = det(Cτ +D)wΦ(τ), σ =

(
A B
C D

)
∈ Γ.

Let Mk(g,Γ) denote the complex linear space of such forms. The multiplication of functions defines
the graded algebra over C

M(g; Γ) =

∞⊕
k=0

Mk(g,Γ).

It is called the algebra of Siegel modular forms.zeros

For example, when Γ = Sp(4,Z), the even part M(g; Γ)(2) of this algebra is freely generated by
four forms E4, E6, χ10, χ12 of weights indicated by the subscripts. The whole algebra is generated
by M(g; Γ)(2) and a cuspidal form χ35 of weight 35 [78].

Here
Ew(τ) =

∑
(C,D)

det(Cτ +D)−w

125
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is an Eisenstein series, where the summation is taken over all representatives of all inequivalent
block-rows of elements of Sp(4,Z) with respect to left multiplication by matrices from SL(2,Z).
The other forms are expressed in terms of the Eisenstein series

χ10 = E4E6 − E10, χ12 = 3272E3
4 + 50E2

6 − 691E12

(see [77, p. 195]). Thus, we may also say that the graded ring M(g; Γ)(2) is generated by the
Eisenstein series of degrees 4, 6, 10, and 12.

Another way to define modular forms is by using theta constants. A theta function with charac-
teristic (m,m′) is a holomorphic function on Hg defined by the infinite series

θ [ m
m′ ] (z; τ) =

∑
r∈Zg

e2πi( 1
n
m+r)·τ ·t( 1

n
m+r)+2(z+

1
2m
′)·( 1

2m+r)),

where (m,m′) ∈ (Z/nZ)g × (Z/nZ)g, z ∈ Cg (we identify in matrix multiplication a row vector
with a column vector). The corresponding theta constant θ [ m

m′ ] (τ) is the value of this function
at (0; τ). One assumes here that m ·m′ = 0, otherwise the constant is equal to zero. The main
property of theta constants is the following functional equation ( [79, pages 176 and 182]):

θ [σ · [ m
m′ ]] (σ · τ) = κ(σ)e2πiφ(m,m′)(σ) det(Cτ +D)

1
2 θ [ m

m′ ] , (7.1)

where σ =
(
A B
C D

)
∈ Sp(2g,Z), and

σ · [ m
m′ ] = ((m,m′) · σ−1 + 1

2(C · tD)0(A · tB)0),

φ(m,m′)(σ) = −1
2(m · tD ·B · tm− 2m · tB · C · tm′ + m′ · tC ·A ·m′)

+1
2(m · tD −m′ · t(A · tB)0,

κ(σ)8 = 1.

where ()0 denotes the vector of diagonal elements of a square matrix. Let

Γ = Γg(n) := {
(
A B
C D

)
∈ Sp(2g,Z) : B ≡ C ≡ 0 mod n,A ≡ D ≡ Ig mod n}.

Then, σ · [ m
m′ ] = [ m

m′ ] , φ(m,m′) = 0, and we obtain

θ [ m
m′ ] (σ · τ) = κ(σ)θ [ m

m′ ] (τ),

and κ(σ)2 = e
gn
2
πi. If gn ≡ 0 mod 4, we get κ(σ) = 1, hence, θ [ m

m′ ] (τ)2 is a modular form of
weight 1.

A level n-structure on a polarized abelian variety A is a symplectic isomorphism

φ : (Z/nZ)2g, JD)→ H1(A,Z/nZ),

where H1(A,Z/nZ) is equipped with the symplectic form Im(H)|Λ×Λ taken modulo n. Here, H is
the positive definite hermitian form of type D that defines a polarization on A (see Section 1.2).

The moduli space of abelian varieties with level n and polarization of type D is denoted by
Ag,D(n). We have

Ag,D(n) ∼= Sp(JD,Z) ∩ Γg(n)\Hg.
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If D = Ig, we set Ag,D(n) = Ag(n).

Let C : y2 = f2g+2(x0, x1) be an equation of a hyperelliptic curve of genus g. It is known that a
choice of an order on the zeros of the binary form f6 is equivalent to an isomorphism of symplectic
spaces F2g

2 → J(C)[2]. This defines a point in Ag(2). For g = 2, we have the following Rosenhain
formula expressing the zeros of f6(x0, x1) in terms of theta constants. We order the zeros of f6 to
assume that they are (0, 1), (1, 0), (1, 1), (1, λ), (1, µ), (1, γ). Then

λ =
θ [ 0 0

0 0 ]
2
θ [ 0 0

1 0 ]
2

θ [ 0 0
1 1 ]

2
θ [ 0 0

0 1 ]
2 , µ =

θ [ 0 0
1 0 ]

2
θ [ 1 1

1 0 ]
2

θ [ 0 0
0 1 ]

2
θ [ 1 1

1 1 ]
2 , γ =

θ [ 0 0
0 0 ]

2
θ [ 1 1

1 0 ]
2

θ [ 0 0
1 1 ]

2
θ [ 1 1

1 1 ]
2 . (7.2)

Let V (2g+2) be the linear space of binary forms of degree 2g+2, the group SL(2) acts naturally on
the vector space V (6) and we denote by Inv(2g+2) the ring of invariants S•(V (2g+2)∗)SL(2). The
relationship between the graded algebra of modular forms M(g; Sp(2g,Z)) and the graded algebra
of polynomial invariants Inv(2, 2g + 2) is given by the following theorem of Igusa [78], Theorem
4:

Theorem 7.1. Suppose g = 2, 4 or g is odd. There exists a ring homomorphism

ρ : M(g; Γ2(1))→ Inv(2g + 2)

such that ρ(M(g; Sp(2g,Z)w) ⊂ Inv(2g + 2)1
2wg

. If g = 2, the homomorphism defines an isomor-

phism of the fields of fractions.

For example, assume g = 1. Then, it is known that M(1; Sp(2,Z)) is generated by the Eisenstein
series g4, g6 (the coefficients of the Weierstrass equation) and the ring of invariants is generated by
the invariants of degree 2 and 3.

We have (again up to multiplicative constants):

ρ(E4) = I4, ρ(E6) = I2I4 − 3I6, ρ(χ10) = I10,

ρ(χ12) = I2I10, ρ(χ35) = I2
10I15,

where we use the notation for the Clebsch invariants of binary sextics from Chapter 5 (see [15], [78,
p. 848]).

Note that I10 is equal to the discriminant of a binary sextic. Thus, χ10 does not vanish on the
jacobian locus ofA2. It vanishes on the locusAdecom

2 of decomposable abelian varietiesE×E′ with
decomposable principal polarization. We see that the divisor of zeros of χ35 is equal to 2Adecom

2 +
Hum(4).

Let P2g+2
1 be the GIT-quotient of (P1)2g+2 by the group PGL(2) with respect to the linearization

defined by the invertible sheaf L = O�6
P1 (see [39]). Its points are minimal closed orbits of ordered

sets of points (p1, . . . , p2g=2 on P1 with no more than g + 1 points coincide. We have

P2g+2
1 = Proj R2g+2

1 ,

where

R2g+2
1 =

∞⊕
n=0

H0((P1)2g+2,L⊗n)SL(2).
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The permutation group S2g+2 acts on (P1)2g+2, and via this action, acts on the ring R2g+2
1 . The

ring of invariants is isomorphic to the graded ring Inv(2, 2g + 2). Thus, we obtain

S2g+2
1 := Proj Inv(2, 2g + 2) ∼= P2g+2

1 /S2g+2.

By taking the double cover ramified along an unordered set of 2g + 2 points on P1, we can identify
the hyperelliptic locusHg inMg with an open subset of S2g+2

1 of orbits of unordered sets of 2g+ 2

distinct points. The pre-image of this open subset in P2g+2
1 can be identified with the moduli space

Hg(2) of hyperelliptic curves together with a 2-level on its Jacobian variety. The group S2g+2 is a
subgroup of Sp(2g + 2,F2) that acts onH2g+2

g via changing the 2-level structure.

7.2 The Segre Cubic Primal and the Castelnuovo-Richmond quartic

From now on we assume that g = 2. By computing explicitly the algebra of invariants R6
1 one

finds that it is generated by the subspace (R6
1)1 = H0((P1)6,L)SL(2) of dimension 4 with a defining

cubic relation that defines an S6-equivariant isomorphism between P6
1 and the Segre cubic primal,

a cubic 3-fold in P5 given by equations

5∑
i=0

ti =
5∑
i=0

t3i = 0

in P5. The group S6 acts by permuting the variables. The Segre cubic is characterized among all
cubic threefolds with at most ordinary nodes as singularities by the property that it has maximal
number of nodes equal to 10. The singular points is the S6-orbit of the point [1, 1, 1,−1,−1,−1].
It also has 15 planes forming the S6-orbit of the plane t0 + t1 = t2 + t3 = t4 + t5 = 0. Each
plane contains 4 singular points and each singular point is contained in 6 planes. The smooth part
S ′3 of S3 parameterizes orbits of ordered sets of points with no more than two points coincide. As is
explained in [41, 9.4.4], the intersection of each plane with S ′3 parameterizes the sets of points with
two equal points. The singular points represent the minimal closed orbits of sets of points where
three points coincide.

The discriminant invariant I10 of binary forms of degree 6 is a SL(2)-invariant homogeneous
polynomials in the coefficients of degree 10. If we write it in terms of roots as the product of
bracket functions (ij)2, i < j, we obtain a S6-invariant section from (R6

1)10. In the coordinates ti
in P4, it is defined by a hypersurface of degree 10. Its divisor of zeros on S3 is a surface of degree
30 equal to the union D of 15 planes of S3 taken with multiplicity 2.

It is a remarkable fact that the dual hypersurface of the Segre cubic primal S3 is isomorphic to
Proj M(g; Γ2(2)), a compactification A2(2) of the moduli space A2(2) of abelian surfaces with
a 2-level structure. In fact, according to J. Igusa [78], the ring of modular forms M(g; Γ2(2)) is
generated by fourth powers of 10 theta constants θ [ m

m′ ] (τ) generating the 5-dimensional space of
modular forms of weight 2. The generators satisfy an S6-invariant quartic relation such that, in
appropriate choice of a basis, defines an isomorphism between A2(2) and the quartic 3-fold I4

defined by the following equations in P5:

σ1 = σ2
2 − 4σ4 = 0,
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where σk denote the k-th power-sums symmetric polynomials in variables xi (see [78], [167]). The
group Sp(4,Z)/Γ2(2) ∼= S6 acts on I4 by permuting the unknowns.

We have
H0(I4,OI4(n)) ∼= M(2,Γ2(2)2n).

Considered as a hypersurface in P4, the quartic I4 of degree 4 in P4 was classically known as
the dual hypersurface of the Segre cubic primal. It was called the Castelnuovo quartic, but nowa-
days, because of the moduli interpretation, it is called the Igusa quartic (in [41] it is called the
Castelnuovo-Richmond quartic). The duality map

Φ : S3 99K I4 (7.3)

is given by the polar quadrics of S3 defined by linear combinations of partial derivatives of the
equation of S3 in P4

F3 = t30 + t31 + t32 + t33 − (t0 + t1 + t2 + t3 + t4)3 = 0.

Let Pi = 1
3
∂F3
∂ti

= 3t2i − 3L2, where L = t0 + t1 + t2 + t3 + t4. If we put

Qi = Pi −
1

3
(P0 + P1 + P2 + P3), i = 0, . . . , 4, (7.4)

Q5 = −(t1 + · · ·+ t4), (7.5)

than we observe that the action of the group S6 on the variables t0, . . . , t4 defines the action on the
polynomials Q0, . . . , Q5 by permuting the set {0, . . . , 5}. The usual Plücker formula implies that
the dual of S3 is a quartic hypersurface (see [41], 1.2.3). Thus, the image of Φ is equal to a quartic
3-fold given by the equations σ1 = σ2

2 + λσ4 = 0 in variables x0, . . . , x5. Observe that

xi − xj = Qi −Qj = t2i − t2j , 0 ≤ i, j ≤ 5. (7.6)

This shows that the image of the plane t0 + t1 = t2 + t3 = t4 + t5 = 0 in S3 is equal to the line
x0−x1 = x2−x3 = x4−x5 = x0 + · · ·+x5 = 0. After plugging in these relations in the equation
of the dual hypersurface, we find that λ = −4. This gives us an equation of the Igusa quartic.

We also check that the 15 lines on I4 equal to the images of the 15 planes under the map Φ are the
double lines. Also each line contains 3 points, and each point lies on three lines.

Via the moduli interpretation, the restriction of the map Φ to the complement of the 15 planes
should be viewed as the Torelli map that assigns to a hyperelliptic curve of genus two with an
ordered set of Weierstrass points its Jacobian variety with a 2-level structure defined by the ordering
of the Weierstrass points.

The map Φ extends to a resolution of singularities of S3 with exceptional divisors isomorphic to
quadrics. They are mapped isomorphically to 10 quadrics contained in I4, taken with multiplicity 2
that are cut out by 10 hyperplanes. The intersection of the 10 quadrics with the open subset A2(2)
is the locus of abelian surfaces with a 2-level structure that are isomorphic to the product of two
elliptic curves. To find the equations of the quadrics, we use the following fact about the duality
map. Suppose X is a hypersurface of degree d with an isolated ordinary point x0 of multiplicity
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d− 1. Choose coordinates such that x0 = [1, 0, . . . , 0], so that the equation of X can be written in
the form

F = x0Fd(x1, . . . , xn) + Fd(x1, . . . , xn) = 0.

Then, the dual map is not defined at x0, but the image of the exceptional divisor under the lift
of the duality map to the blow-up of x0 is equal to the hyperplane in the dual projective space
corresponding to the partial derivative ∂F

∂x0
= Fd(x1, . . . , xn). Applying this to our case, by taking

the singular point [1, 1, 1,−1,−1,−1] of S3, we obtain that the image of the exceptional divisor is
cut out by the hyperplane x0 + x1 + x2 = 0. Plugging in this equation in the equation of I4, we
easily obtain

(x0x1 + x0x2 + x1x2 + x3x4 + x3x5 + x4x5)2 = 0. (7.7)

This shows that the hyperplane cuts out I4 along a quadric surface taken with multiplicity 2.

7.3 The Humbert Surfaces in the Igusa Quartic

Now, we are ready to see an invariant-theoretical interpretation of Igusa modular forms χ10, χ12, χ35

when they are considered as modular forms with respect to the congruence subgroup Γ2(2).

Let Hum(∆;n) denote the set-theoretical pre-image of the Humbert surface Hum(∆) under the
cover A2(n)→ A2.

Considered as SL(2)-invariant sections of the line bundle L on (P1)6, the functions ti − tj are
expressed in terms of the bracket functions (up to a constant multiple) by the formula

ti − tj = [ab, cd, ef ], (7.8)

where [ab, cd, ef ] = (ad)(cf)(be)− (bc)(df)(fa) vanish on the orbits of point sets inH2(2) ⊂ P 6
1

representing bielliptic curves ( [41], Proposition 9.4.9 and (9.44)). The sums ti + tj are expressed
in terms of the bracket functions by the formula

ti + tj = (ab)(cd)(ef) ∈ (R6
1)1. (7.9)

They vanish only on the union D of the 15 planes. Formulas (7.6) show that the pre-image of the
hyperplane sections xi − xj = 0 of I4 in S3 is equal to the union of a plane and an irreducible
component of the locus representing bielliptic curves.

Let us consider the S6-invariant polynomial

D =
∏

0≤i<j<k≤5

(xi + xj + xk). (7.10)

Since σ1 = 0 on I4, when restricted to I4, it becomes a square of a section sD of OI4(10). The
divisor of zeros of sD is equal to the union of 10 quadric surfaces representing Hum(1; 2) taken
with multiplicity 2. The subgroup of S6 stabilizing each irreducible component is isomorphic to
H = S3 × S3. It acts on the quadric Q defined by equation (7.7) via permuting (0, 1, 2) and
(3, 4, 5). The ring of invariant polynomials for the action of S3 × S3 on C[x0, . . . , x5] is gener-
ated by σ1, σ2, σ3, σ1, σ2, σ3, where σi (σ′i) is an elementary symmetric polynomial in x0, x1, x2
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(x3, x4, x5). This easily implies that the quotient Q/H is isomorphic to P(2, 3, 3). This is a com-
pactification of Hum(1). The boundary is equal to the union of two lines z1 = 0 and z2 = 0
intersecting at the unique singular point of P(2, 3, 3).

The pre-image of the section sD under the map Φ is a S6-invariant section of L⊗20 that vanishes
on the union of 15 planes with multiplicity 4 (since the pre-image of each xi + xj + xk is a polar
quadric of a singular point that vanishes on 6 planes containing the point). As we remarked earlier,
the discriminant invariant I10 vanishes on the same set with multiplicity 2. This shows that

Φ∗(sD) = I2
10.

Recall that the divisor of zeros of sD on I4 is the union of 10 quadric surfaces taken with multiplicity
2. Applying Theorem 7.1, we find that χ10, considered as a modular form with respect to Γ2(2)
vanishes on the union of the ten quadrics with multiplicity 1. If we consider χ10 as a section of
OI4(5), we get the equality (up to a scalar factor) of sections of O10

I4

χ2
10 = sD.

It is known that
χ10 = ∆2

5,

where
∆5 :=

∏
[ m
m′ ]

θ [ m
m′ ] (τ)2.

However, ∆5 does not represent a modular form, it is a modular form up to a non-trivial character
taking values ±1.

Let
H =

∏
0≤i<j≤5

(xi − xj). (7.11)

The square H2 is a S6-invariant polynomial, the discriminant of a general equation of degree 6
with roots x0, . . . , x5. Let sH be the corresponding section of OI4(30). It follows from (7.8) and
(7.9) that the divisor of zeros of sH is equal to the closure Hum(4; 2) of the surface Hum(4; 2)
in A2(2). It consists of 15 irreducible components cut out by the hyperplanes xi − xj = 0. It
is easy to see from the formulas that each such component is isomorphic to the Steiner quartic
surface in P3 with three concurrent non-coplanar double lines (see [41], p. 70). The boundary
Hum(4; 2) \ Hum(4; 2) consists of the union of the three lines. The group S6 permutes the 15
components with stabilizer subgroup isomorphic to S4. The normal subgroup of S4 generated by
the products of two commuting transpositions acts identically on the component. Thus, we obtain

Hum(4) ∼= Hum(4; 2)/S3.

It is known that the equation of a Steiner quartic surface can be reduced to the form

t0t1t2t3 + t21t
2
2 + t21t

2
3 + t22t

2
3 = t0s3 + (s2

2 − 2s3s1),

where si are elementary symmetric functions in t1, t2, t3. The group S3 acts by permuting the
variables t1, t2, t3. This shows that Hum(4) is isomorphic to a hypersurface of degree 4 in the
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weighted projective space P(1, 1, 2, 3) given by the equation z3(z0 − 2z1) + z2
2 = 0. The union of

the three singular lines in Hum(4; 2) has the equation t1t2t3 = 0. Its image in Hum(4) is given by
the equation z3 = 0. The complement is isomorphic to the affine plane C2.

The pre-image of SH under the map Φ is a SL(2)-invariant section of L60 which is invariant with
respect to S6. It vanishes on the union of the locus of bielliptic curves with multiplicity 2 and on
the union of 15 planes with multiplicity 6. We know that the invariant I15 vanishes on the locus of
bielliptic curves and the discriminant invariant I10 vanishes on the union of planes with multiplicity
2. This implies that

Φ∗(sH) = I3
10I

2
15.

Comparing with Theorem 7.1, we find that

χ2
35 = χ10sH .

Taking the square root we obtain

χ35 = ∆5 ·
∏

0≤i<j≤5

(xi − xj)

As we saw before, this gives the irreducible component of (see [167], (8.3)). Note that each factor
is not a modular form, but the product is.

Let us now see the surface Hum(5; 2). We refer for the proofs to [167], 8.4. The surface Hum(5; 2)
consists of 6 irreducible componentsHi, i = 0, . . . , 5. Each componentHi is given by an additional
equation

2(
∑
j 6=i

xj)
2 −

∑
j 6=i

x2
j = 0.

It contains 5 of the 15 triple points of I4 no two of which are on a double line. For example, H5

contains the points [1, 1, 1, 1,−2.−2], [1, 1, 1,−2, 1,−2], . . . , [−2, 1, 1, 1, 1,−2]. The complement
to these five points is Hum(5; 2). The plane Πijk spanned by three points is contained in one of the
hyperplanes xi + xj + xk = 0. For example, the first three points in above are contained in
x2 + x3 + x5 = 0. Thus, the intersection of Πijk ∩Hum(5; 2) is a conic contained in one of the 10
quadric surfaces cut out by a hyperplane xi + xj + xk = 0.

Consider the following divisor in A2(2)

G∆ =
∑

d≥1,d2|∆

v(∆/d2)2Hum(∆/v2; 2),

where v(k)2 = 1
2 if k = 1 and 1 otherwise.

Theorem 7.2. The divisor G∆ is the divisor of zeros of a Siegel modular form g∆ of weight
−60H(2,∆).

Here the number H(2,∆) is defined as the coefficient of the infinite series

∞∑
k=0

H(2, 4k)e2πi4kz +
∞∑
k=0

H(2, 4k + 1)e2πi(4k+1)z
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equal to the Fourier expansion of a certain modular form in one variable of weight 5/2 with re-
spect to the group Γ0(4). Its first 8 nonzero coefficients H(2, N) are given by −120H(2, N) =
10, 70, 48, 120, 250, 240, 240 for N = 1, 4, 5, 8, 9, 12, 13, respectively. For example, we have
G4 = 1

2Hum(1; 2) + Hum(4; 2) is the divisor of the image of χ35 in M(2,Γ(2)). The coefficient
1/2 is explained by the fact that the map A2(2)→ A2 is ramified along H1.

If ∆ = 1, the modular form g1 with respect Γ2(2) is the discriminant ∆5, a square root of χ10.
One can construct a modular form on H2 that vanishes exactly on a Humber surface Hum(∆) for
every Θ (see [166]).



134 CHAPTER 7. THE IGUSA QUARTIC THREEFOLD



Chapter 8

The Jacobian variety of curves of genus
3

A principally polarized abelian surface not isomorphic to the product of abelian varieties of smaller
dimension is realized as the Jacobian variety of a nonsingular curve of genus 3. In this chapter, we
will discuss endomorphisms of the Jacobian varieties of curves of genus 3.

8.1 Bielliptic Curves of Genus Three

Let A be an abelian surface with primitive polarization L0 of degree 2. We have (L2
0) = 4 and

h0(L0) = 2. We assume that |L0| has no fixed components (this could happen only if L0
∼=

OA(E+2F ), whereE,F are elliptic curves). Then, |L0| has four simple base points and its general
member is a smooth curve C of genus 3. Translating C by some point in A, we may assume that C
is symmetric in the sense that it is invariant with respect to the involution ι = [−1]A. This implies
that all members of the pencil |L0| are invariant with respect to ι. The base points are among fixed
points of ι : C → C. It follows from the Riemann–Hurwitz’s formula that there are no more fixed
points, and the quotient C/(ι) is an elliptic curve. A smooth projective curve is called bielliptic if
it admits a degree 2 cover of an elliptic curve. Conversely, suppose π : C → E is a degree 2 cover
of an elliptic curve by a smooth curve of genus 3. Then, A = J(C)/π∗E is an abelian surface.
Choose a point c0 ∈ C and consider the composition τ : C → A of the Abel-Jacobi embedding
ic0 : C ↪→ J(C) and the projection J(C) → A. It follows from [6], Proposition (1.8) that this
composition is a closed embedding. By the adjunction formula, τ(C)2 = 4 and L0 = OA(τ(C))
defines a primitive polarization of degree 2 on A.

Note that one can also consider the Prym variety Prym(C/E) defined to be the connected compo-
nent of the kernel of the norm map J(C) → E. It is proven in loc. cit., Proposition (1.12) that it is
the dual abelian surface Â.

Counting constants, we expect that bielliptic curves of genus 3 depend on 4 moduli, i.e. they form
a subvariety of codimension 2 inM3. Since a general curve has at most one bielliptic involution,

135
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we see that the locus of bielliptic curves is birationally isomorphic to a P1-bundle over A2,2. In
particular, it is a rational variety (see for another proof of this fact in [5]).

Let C be a canonical curve of genus 3 over C with a bielliptic involution σ : C → C. In its
canonical plane model, σ is induced by a projective involution σ̃ whose set of fixed points consists
of a point x0 and a line `0. The intersection `0 ∩ C are the fixed points of σ on C.

Theorem 8.1 (S. Kowalevskaya [98]). The point x0 is the intersection point of four distinct bitan-
gents of C. Conversely, if a plane quartic has four bitangents intersecting at a point x0, then there
exists a bielliptic involution σ of C such that the projective involution σ̃ has x0 as its isolated fixed
point.

Proof. Choose the projective coordinates such that σ̃ is defined by the formula (x, y, z) 7→ (x, y,−z).
The isolated fixed point is x0 = (0, 0, 1) and the line of fixed points is z = 0. Since C is invariant
with respect to σ̃, the equation of C can be written in the form

f(x, y, z) = z4 − 2a2(x, y)z2 + a4(x, y) = (z2 − a2(x, y))2 + (a4(x, y)− a2(x, y)2) = 0. (8.1)

Here, V (a4(x, y) − a2(x, y)2) is the union of four lines `1, . . . , `4 passing through the point x0 =
(0, 0, 1). Each line αix− βiyi = 0 is tangent to C at two points p±i = (βi, αi,±

√
a2(βi, αi). Note

that the four lines are distinct; otherwise the curve has a singular point at some point ((βi, αi,±
√
a2(βi, αi).

Also note that, if a2(βi, αi) = 0, then the point p+
i = p−i is the undulation point, i.e. a point of

tangency contact of order 4. The locus of quartic curves with an undulation point is hypersurface in
the projective space of plane quartic curves. It is contained in the locus of zeros of the undulation
invariant I60 of degree 60 (see [27] and [139]).

Conversely, suppose that four bitangents `1, . . . , `4 intersect at a point x0. By Proposition 6.1.4
from [41], any three of the lines form a syzygetic triad of bitangents, i.e., the corresponding six
tangency points lie on a conic. This implies that all eight tangency points lie on a conic. Choose
coordinates so that x0 = (0, 0, 1). Let `i : li = 0 and B2(x, y, z) = 0 be the equation of the conic
K passing through the eight tangency points. Then, the curves V (B2

2) and V (l1 · · · l4) cut out the
same divisor onC, hence the equation ofC can be written in the form F = B2

2 +l1l2l3l4 = 0, where
`i = V (li) and B2 = a0z

2 + 2a1(x, y)z + a2(x, y). If a1 6= 0, we replace z with a0z + a1(x, y)
to assume that a1(x, y) = 0. Now the equation of C is reduced to the form (8.1). The involution
(x, y, z) 7→ (x, y,−z) is the bielliptic involution of C.

Here is another characterization of bielliptic quartic curves.

Theorem 8.2. A genius three curve C is bielliptic if and only if the following conditions are satis-
fied:

(i) There exists a line ` intersecting C at four distinct points p1, . . . , p4 such that the tangent
lines `i at the points pi intersect at one point p0.

(ii) Let Pp0(C) be the cubic polar of C with respect to the point p0 and let Q be the conic
component of Pp0(C) (note that the line ` from above is a line component of Pp0(C)). Then,
` is the polar line of Q with respect to p0.
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Proof. Suppose C is bielliptic. Applying the previous theorem, we may assume that it is given by
equation (8.1). The polar cubic Px0(C) has the equation q = z(z2 − a2(x, y)) = 0. It is the union
of the line `0 = V (z) and the conic Q = V (z2 − a2(x, y)). The line `0 intersects C at the points
(βi, αi, 0), where a4(βi, αi) = 0. By the main property of polars, Px0(C) intersects C at the points
p such that the tangent line of C at p contains the point x0. Thus, the tangent lines of C at the
intersection points of `0 with C pass through the point x0. This verifies the first property.

Let us check the second one. Using the equation, we compute the line polar Px3
0
(C) = V ( ∂

3

∂z3 (F ))
of C. It coincides with the line `0. On other hand.

Px3
0
(C) = Px2

0
(Px0(C)) = Px2

0
(qz) = Px0(q + Px0(q)z) = 2Px0(q) + Px2

0
(q)z = z

(where we identify the polar curves with the corresponding partial derivatives). This implies that
V (Px0(q)) = V (z) = `0. This checks property (ii).

Let us prove the converse. Choose projective coordinates to assume that ` = V (z) and the inter-
section point of the four tangent lines is x0 = (0, 0, 1). The cubic polar Px0(C) must contain the
line component equal to `. Write the equation of C in the form

a0z
4 + a1(x, y)z3 + a2(x, y)z2 + a3(x, y)z + a4(x, y) = 0.

We get
Px0(C) = V (4a0z

3 + 3a1(x, y)z2 + a2(x, y)z + a3(x, y)),

Px2
0
(C) = V (12a0z

2 + 6a1(x, y)z + a2(x, y)), Px3
0
(C) = 24a0z + 6a1(x, y)

Since z divides the equation of the cubic polar, we obtain that a3(x, y) = 0. If a0 = 0, then x0 ∈ C
and the line polar Px3

0
(C) vanishes at x0. However, this polar line coincides with the tangent line

of C at x0. This implies that C is singular at x0. So, we may assume that a0 6= 0. Thus, the first
condition implies that C can be written in the form

z4 + a1(x, y)z3 + a2(x, y)z2 + a4(x, y) = 0.

Now, as in the first part of the proof, we obtain that a1(x, y) = 0 if and only if condition (ii) is
satisfied. Thus, C can be written in the form (8.1), and hence it is a bielliptic curve.

For any general line `, let `1, . . . , `4 be the tangents of C at the points C ∩ `. Let `i ∩ C =
2ai + ci + di. adding up, we see that

∑
(ci + di) ∼ 4KC − 2

∑
ai ∼ 4KC − 2KC = 2KC . This

shows that there exists a conic S(`) that cuts out on C the divisor
∑

(ci + di) of degree 8. This
conic is called the satellite conic of ` (see [26]). The map S : P2 99K P5, ` 7→ S(`) is given by
polynomials of degree 10 whose coefficients are polynomials in coefficients of C of degree 7. Since
2` + S(`) and T = `1 + · · · + `4 cut out on C the same divisor, we obtain that the equation of C
can be written in the form

F = l1 · · · l4 + l2q = 0,

where `i = V (li), ` = V (l), and S(`) = V (q).

Assume that ` has the property

(*) the four tangents `i intersect at a common point x`.
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Choose the coordinates such that x0 = (0, 0, 1) and l = z. Then, the equation of C is of the form

F = z2(a0z
2 + a1(x, y)z + a2(x, y)) + a4(x, y) = 0.

It is a bielliptic curve if and only if a1(x, y) = 0. This is equivalent to that Px0(S(`)) = `. Thus,
we obtain

Theorem 8.3. Suppose a line ` satisfies the property (*) from above. Then, C is a bielliptic curve if
and only if the polar line of the satellite conic S(`) with respect to the point x` coincides with `.

Let ` be a line satisfying (*). The polar cubic of Px`(C) passes through C ∩ `, hence it contains
` as an irreducible component. In particular, Px`(C) is singular. Recall that the locus of points
x ∈ P2 such that Px(C) is a singular cubic is the Steinerian curve St(C) [41], 1.1.6. If C is a
general enough, the degree of St(C) is equal to 12 and it has 24 cusps and 21 nodes. The cusps
correspond to points such that the polar cubic is cuspidal, the nodes correspond to points such that
the polar cubic is reducible. The line components define the set of 21 lines satisfying property (*).
In [26], the 21 lines are described as singular points of multiplicity 4 of the curve of degree 24 in
the dual plane parameterizing lines ` such that the tangents to C at three intersection points of C
and ` are concurrent.

According to [27], the equation of the satellite conic S(`) is equal to

SC7,2,10 + lC7,1,9 + l2C7,0,8 = 0,

where Ca,b,c ∈ Sa(S4(V ∨)∨) ⊗ Sb(V ) ⊗ Sc(V ∨) is a commitant of degree a in coefficients of C,
of degree b in coordinates in the plane and the degree c in the dual coordinates. Thus, the vanishing
of a1(x, y) from above is equivalent to the vanishing of the commitant C7,1,9. The loc. cit. paper of
Cohen gives an explicit equation of C7,1,9.

Theorem 8.4. C is bielliptic if and only if C7,1,9, considered as a map P(V ) 99K P(V ∨) has one
of the 21 lines corresponding to the nodes of St(C) as its indeterminacy point. The rational map is
given by polynomials of degree 9 with polynomial coefficients in coefficients of C of degree 7.

Next we assume that C is a hyperelliptic curve of genus 3. It is given by an equation in P(1, 1, 4)

z2 − f8(x, y) = 0,

where f8 is a binary form of degree 8 without multiple zeros. Any involution ofC different from the
hyperelliptic involution ιh : (x, y, z) 7→ (x, y,−z) defines an involution of P1. After choosing an
appropriate coordinates (x, y), it can be written in the form (x, y) 7→ (x,−y). In these coordinates,
the binary octic, being invariant, must be of the form f8 = g4(x2, y2), where g4(u, v) is a binary
quartic. Since f8 has no multiple roots, the fixed point 0,∞ are not among its zeros (otherwise f8

is divisible by x or y and cannot be written in the form g4(x2, y2)).

The involution ιb : (x, y, z) 7→ (x,−y, z) has four fixed points (0, 1,±1 and (1, 0,±1). The
quotient is an elliptic curve with equation w2 = g4(u, v). The involution ιh ◦ ιe : (x, y, z) 7→
(x,−y,−z) has no fixed points. The quotient is a curve D of genus 2. I believe that Prym(C/D) ∼=
E.
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We have already explained in Section 7.1 that an order on the set of zeros of f8 is equivalent
to a 2-level structure on J(C). Let A3(2) be the moduli space of principally polarized abelian 3-
folds with level 2-structure and let Hyp3 in be the hypersurface in A3 of Jacobians of hyperelliptic
curves of genus 3. Its pre-image in A3(2) splits in 36 = [Sp(8,F2) : S8] irreducible components
permuted by Sp(8,F2). One of this components H3(2)0 corresponds to a special symplectic basis
in H1(C,Z) defined by the Weierstrass points of C. It is isomorphic to the GIT-quotient P8

1 of the
variety of 8 distinct ordered 8 points in P1 modulo the group SL(2) (see Section 7.3). An involution
(x, y) 7→ (x,−y) divides the set of zeros of f8 into four orbits that belong to the same g1

2 on P1.
As we know from Example 4.3, the condition is that the four binary forms defining these orbits are
linearly dependent. Let π : P8

1 → P6
1 be the map of the GIT-quotients defined by the projection

(p1, . . . , p8) 7→ (p1, . . . , p6). The pre-image of a set of points corresponding to 3 pairs of points
defining a bielliptic curve of genus 2 is isomorphic to P1 × P1.

Let us identify the points (p1, . . . , p8) with the images in P2 under the Veronese map P1 → P2.
The four pairs (pi, pi+1) define a bielliptic curve of genus 3 if and only the lines 〈pi, pi+1〉 intersect
at one point. Thus, the locusHypbiel

3 (2)0 of bielliptic curves inHyp3(2)0 is projected to the variety
Mbiel

2 of bielliptic curves of genus two with a 2-level structure in its Jacobian. The fibers are
isomorphic to the pre-image of a line under the map P1 × P1 → (P1)(2) ∼= P2. They are conic
in P1 × P1 ⊂ P3. We know from the previous chapter that the GIT-compactification P6

1 of Y6

is isomorphic to the Segre cubic primal S3. We also know from Section 7.3 that the condition
that six points define a bielliptic curve is that the product of the differences xi − xj is equal to
zero. It consists of 15 irreducible components transitively permuted under S6. Each irreducible
component is isomorphic to a hyperplane section of S3. It is isomorphic to a cubic surface. This
shows that Hypbiel

3 (2)0 consists of 15 irreducible components each isomorphic to a conic fibration
over a rational surface. It implies that Hypbiel

3 is birationally isomorphic to each such component
and hence is a rational variety. An algebraic proof of this fact can be found in [110].

Remark 8.5. Let tf4(x, y, z) + g2(x, y, z)2 = 0 be a pencil of plane quartics, where V (f4) is a
nonsingular quartic curve and V (g2) is a nonsingular conic. For each t corresponding to a smooth
quartic, we have 28 bitangents. When t goes to zero, these bitangents go to 28 chords connecting
8 intersection points V (f4) ∩ V (g2) (see [21], 5.3). This relates the Kowalevskaya’s Theorem with
the previous characterization of hyperelliptic bielliptic curves of genus 3.

8.2 Plane Quartic Curves and the Heegner Divisors

Let C = V (f4(x, y, z)) be a nonsingular plane quartic. The quartic surfaceX given by the equation

w4 + f4(x, y, z) = 0

is a nonsingular K3 surface. It admits an automorphism σ of order 4, a generator of the group of
deck transformations of the cover. The surface X can be also viewed as the double cover of the del
Pezzo surface S of degree 2 given by the equation

u2 + f4(x, y, z) = 0.

Since S is isomorphic to the blow-up of 7 points in the plane, Pic(S) ∼= I1,7, the standard odd
unimodular hyperbolic lattice. This easily implies that Pic(X) ∼= S := 〈2〉 ⊕ 〈−2〉⊕7. Using
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Nikulin’s results [133], one can show that

TX ∼= T := 〈2〉⊕2 ⊕D⊕3
4 .

The automorphism σ acts on TX and equips it with a structure of a quadratic lattice L of rank 7 over
the ring of Gaussian integers Z[i]. It is isomorphic to the lattice T where i =

√
−1 acts preserving

each direct summand and equal to the direct sum of the operators given by the following matrices

J1 =

(
0 1
−1 0

)
, J2 =


0 1 0 0
−1 0 0 0
1 0 1 1
−1 1 2 1

 .

Using this action, one equips the 14-dimensional linear space LR with a structure of a complex
linear space V of dimension 7. Let

B6 := {[z] = [z0, . . . , z6] ∈ |V | : z2
1+· · ·+z7 < z2

0 , z0 6= 0} ∼= {(z1, . . . , z6) ∈ C6 : z2
1+· · ·+z6 < 1}.

It is a complex ball of dimension 6. The moduli spaceMK3,S,φ of lattice S polarized K3 surfaces
together with an isomorphism φ : T → L of Z[i]-lattices is isomorphic to the orbit space

Γ\B6,

where Γ is a certain arithmetic group acting discretely on the ball (see [95]). For any primitive
vector δ ∈ L∨ ⊂ V ∨ one defines a hyperplane

Hδ = {z ∈ |V | : δ(z) = 0} ∩ B6.

The image of the union of Hδ with fixed r = δ2 = −2n inMK3,S,φ is denoted by Heeg(n) and is
called the Heegner divisor.

Let Λ(δ) = 〈δ, σ∗(δ)〉. One checks that Λ(δ) ∼= 〈−2n〉⊕2. It is clear that Hδ = Hσ∗(δ), os that
Hδ is described by a primitive embedding of Λδ in L. Suppose that the period point of X belongs
to Hδ. Then, S ⊕ Λδ primitively embeds in Pic(X), so that means that X acquires two additional
linearly independent cycles. All vectors δ with fixed δ2 = −2n are divided into two types according
to whether 1

2δ belongs to L∨ or not (types 1 and 2, respectively). They exists for any n and any type
( [3], Proposition 3.4). We denote by Heeg(n)i the image of the union of hyperplanes H(δ) with
δ2 = −2n and δ is of type i = 1, 2.

For example, Heeg(1) consists of two irreducible components Heeg(1)1 and Heeg(1)2. They
parameterize, accordingly, the nodal quartic curves and the locus of hyperelliptic curves.

An irreducible plane curve D is called a splitting curve (cf. [3], Definition 4.4) if under the cover
X → P2 its pre-image splits in the union of four irreducible components. For example, a line
intersecting W = V (f4) at one point is a splitting line. The main result of Artebani’s paper is the
following.

Theorem 8.6 (M. Artebani [3]). If X belongs to Heeg(n)i, n > 1, then the quartic C = V (f4)
admits a rational splitting curve of minimal degree 2(n − 1) if i = 1 and degree n − 2 if i = 2.
Moreover, C admits a splitting curve of odd degree if and only if X belongs to some Heeg(n)2.
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Here are examples:

• Heeg(3)2 is the locus of quartics admitting a hyperflex (i.e. a line intersecting the quartic at
one point).

• Heeg(2)1 is the locus of quartics admitting a splitting conic.

Note that Heeg(3)2 is given by vanishing of an invariant of degree 60 on the projective space
of quartics (see [27], [139]). We do not know whether it corresponds to the zero divisor of some
automorphic form on the ball E6. However, S. Kondō [97] constructs such automorphic forms for
the Heegner divisors Heeg(1)1 and Heeg(1)2.

Remark 8.7. Every C admits a splitting curve of degree 4. To see this, take D to be defined by the
equation l4 +f4(x, y, z) = 0, where l is a linear form. Then, D intersects C at four points V (l)∩C.
The pre-image of D on X splits in four plane sections w4 + l4 = 0. However, this obviously does
not give rise to a Heegner divisor, see [3], Remark 4.11.

Suppose A = J(C) for some curve C of genus 3. It is easy to see from the description of moduli
spaces of abelian varieties with the given type of endomorphisms that the condition that End(A) 6=
Z is not divisorial. However, it is interesting to investigate whether one can express this condition
as the intersection of Heegner divisors.

8.3 Del Pezzo Surfaces and Plane Quartic Curves

In this section, following [184], we describe how to use Del Pezzo surfaces of degree 2, in order to
construct plane quartics C such that the endomorphism ring of End(C) of their jacobian J(C) is
isomorphic to Z.

Let us remind some basic facts about del Pezzo surfaces, referring for the proofs to [41, Chapter
8]. Recall that a del Pezzo surface X of degree d is a smooth projective surface with ample anti-
canonical divisor −KX . The number d = K2

X takes possible values in {1, . . . , 9}. A del Pezzo
surface of degree d ≥ 3 is isomorphic to a surface of degree d in Pd, embedded by the linear system
| −KX |.

If d = 2, the linear system | −KX | maps a del Pezzo surface of degree 2 to the projective plane
P2. The map

φ|−KX | : X → P2

is a finite map of degree 2 ramified along a smooth plane quartic curve C. The linear system
| − KX | on a del Pezzo surface of degree 1 is a pencil with one base point. However, the linear
system |−2KX | defines a finite map of degree 2 onto a quadratic cone Q ⊂ P3. It is ramified along
a smooth intersection of Q with a cubic surface in P3.

Any del Pezzo surface is a rational surface. Except the case when d = 8 and X is isomorphic to a
smooth quadric in P3, there is a birational morphism

π : X → P2 (8.2)
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that defines an isomorphism X ∼= BlP(P2) from X to the blow-up of the point set P of 9−d points
p1, . . . , p9−d in P2. The points must be in a general position in the following precise sense: no three
points are collinear, no six points lie on a conic, and no cubic curves pass through the set P and is
singular at one of the points. The last condition is void if d 6= 1.

Assume thatX is not isomorphic to a smooth quadric. Let Pic(X) be the Picard group ofX . Since
X is a rational surface, it is a free abelian group isomorphic to the Néron-Severi group NS(X).
The blowing-up structure (8.2) defines a basis (e0, e1, . . . , e9−d), where e0 is the divisor class of
the pre-image π∗(`) of a line in P2, and ei is the divisor class of the exceptional curve Ei over
pi ∈ P . It is a (−1)-curve on X , i.e. a smooth rational curve E with E2 = E · KX = −1.
Since the linear system |E| consists only of E, we will identify E with its divisor class. We have
e2

0 = 1, e2
i = −1, ei ·ej = 0, if i 6= j. In particular, (e0, e1, . . . , e9−d) is an orthonormal basis of the

hyperbolic quadratic lattice NS(X). It defines an isomorphism of lattices NS(X) → I1,9−d, where
I1,9−d is the standard odd unimodular quadratic lattice of signature (1, 9− d).

The known behavior of the canonical class under the blow-up a point on a smooth surface gives

KX = −3e0 + e1 + · · ·+ e9−d.

Let e0, e1, . . . , e9−d be the standard orthogonal basis in I1,9−d satisfying e2
0 = 1, e2

i = −1. A
choice of an isomorphism of lattices

φ : I1,9−d → NS(X) (8.3)

satisfying
φ(k9−d) = KX ,

is called a geometric marking of X . It is clear that a geometric basis of NS(X) defines a geometric
marking of X .

The converse is also true. We use that −KX is ample, hence X has no (−2)-curves (i.e. smooth
rational curvesR withR2 = −1, R ·KX = 0). Then, the assertion follows from [41, Lemma 8.2.2].

Let O(I1,9−d)k9−d be the subgroup of the orthogonal group O(I1,9−d) that fixes the vector k9−d.
It is mapped to a subgroup O(E9−d)

′ of the orthogonal group O(E9−d), where E9−d = k⊥9−d. The
subgroup O(E9−d)

′ contains the subgroup W9−d generated by reflections

sαi : v 7→ v + (v ·αi)αi.

It coincides with the whole group O(E9−d) if d = 1, 2 and its index is equal 2 otherwise. For d ≤ 5,
the quadratic lattice E9−d is isomorphic to the root lattice of a root system of type E9−d, and the
group W9−d is isomorphic to the Weyl group of the root system.

In fact, we can fix a basis in E9−d formed by the vectors

α0 = e0 − e1 − e2 − e3, α1 = e1 − e2, . . . , α6 = e8−d − e9−d.

If d ≤ 5, the Gram matrix of this basis can be described by the diagram

• • • • • •

•

α1 α2 α3 α4 α7−d α8−d

α0

. . . (8.4)
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in the same way, as it was explained earlier in the case d = 1 (see (3.15)). This diagram coincides
with the Dynkin diagram of the root system of type E9−d. The symmetry of the diagram is an
involution in O(E9−d) which does not belong to the image of O(I1,9−d)k9−d in O(E9−d).

Fixing a geometric marking (8.3), we obtain a homomorphism

ρ : Aut(X)→W9−d ⊂ O(E9−d).

It is known to be injective for d ≤ 5 [41, Corollary 8.2.40]. In particular, if d = 2 (resp. d = 1), the
deck transformation γ (resp. β) of the double cover φ : X → P2, known as the Geiser involution
(resp. the Bertini involution), defines an element in W (E7) (resp. W (E8)). It is equal to the minus
identity isometry w0 in the Weil group.

It follows from above that any birational morphism π : X → P2 is determined (up to a projective
transformation of the plane) by a linear system |φ(e0)|, where φ is a geometric marking of X . The
vector e0, considered as a linear function on the sublattice E9−d = k9−d coincides with the vector
ω0 from the dual basis basis (ω0, . . . ,ω8−d) of the basis (α0, . . . ,α8−d) of E9−d. It is known
that the Weyl group acts transitively on bases described by the Dynkin diagram (8.4). This shows
that the number of non-projectively equivalent birational morphisms π : X → P2 is equal to the
cardinality of the orbit of e0. Its stabilizer is the subgroup of W (E9−d) generated by reflections
in vectors α1, . . . ,α9−d. It is isomorphic to the symmetric group S9−d (the reflections sαi go to
transpositions (ii+ 1)).

Known orders of the Weyl groups allow one to find the number of possible projective equivalence
classes of birational morphisms π : X → P2.

For example, in the case d = 2, the number is equal to 576. Thus, there are 576 non-projectively
equivalent subsets P of seven points in general position which isomorphic to del Pezzo surfaces
BlP(P2).

Remark 8.8. The group W9−d acts on geometric markings via its action on I1,9−d. This defines a
homomorphism

cr2,9−d : W9−d → Bir(P 9−d
2 ),

where genP 9−d
2 ⊂ (P2)9−d)//PGL3 is the GIT-quotient of the of the open subset of (P2)9−d of

ordered 9−d points in P2 in the general position. (see [41, Chapter VI]). In this action, the stabilizer
subgroup of the orbit of a set P of 9− d points is isomorphic to the group of automorphisms of X .
The Geiser and Bertini involutions generate the kernels of cr2,7 and cr2,8, respectively.

In this section, we will be interested only in the case d = 2. Denote by L the linear system of plane
cubics with base locus equal to P = {p1, . . . , p7}. Since P is in general position, all its members
are irreducible curves. The proper transform of L in X = BlP(P2) is equal to the anti-canonical
linear system | − KX |. The base locus of any pencil contained in L consists of two points p, q
(maybe equal), the residual points of the intersection of two different members of the pencil. It
defines a line 〈p, q〉 (if p = q, the line is the tangent line at p of all smooth cubics from the pencil).
This allows us, via the projective duality, to identify L with the source plane of the anti-canonical
map f : P2 99K P2, and the dual plane L∗ with its target plane.

Thus, the linear system L defines a rational map f : L 99K L∗. The regular maps π : X → L and



144 CHAPTER 8. THE JACOBIAN VARIETY OF CURVES OF GENUS 3

φ|−KX | : X → L∗ make the following diagram commutative:

X
π

{{

φ|−KX |

$$
L ∼= P2 f // P̌2 ∼= L∗

Recall that φ is a finite morphism of degree 2 with branch curve C of degree 4, and π is a birational
morphism of the blowing up the closed subset P of L = P2.

Note that, via identification of the source P2 with L, each point pi ∈ P can be identified with the
cubic curve Fi in L with double point pi. Its proper transform E′i in X is a (−1)-curve, such that
its image under the Geiser involution is the exceptional curve Ei of π. The intersection Ei ∩ E′i
consists of two points. The image φ(Ei + E′i) is a bitangent line `i of C with the tangency points
φ(Ei ∩ E′i).

The seven bitangents `1, . . . , `7 form an Aronhold set of bitangents [41, 6.3.3]. As is well known,
there is a bijective correspondence between 28 bitangents and odd theta characteristics ϑ of C, the
effective divisor classes with 2ϑ = KC . An Aronhold set is defined by the property, that any three
pairs of tangency points of bitangents from the set are not contained in a conic.

The proof of the fact that the images of E1, . . . , E7 under the map φ form an Aronhold set given
in [41, 6.3.3] contains a mistake. So, we reprove it in the following:

Lemma 8.9. The seven bitangents `1, . . . , `7 form an Aronhold set of bitangents.

Proof. Let Ei ∩ E′i = {ai, bi}and a′i, b
′
i ∈ P2 be their images under the map φ. Since π−1(`i) =

Ei + E′i, the ramification curve R of π passes through ai, bi. Suppose the tangency points a′ib
′
i lie

on a conic K. Let a, b be the residual pair of points in the intersection K ∩ B. Then, a + b ∈
|2KC −

∑3
i=1(a′i + b′i)| Since 2(a′i + b′i) ∈ |KC |, we obtain that a + b ∈ |KC |, hence a, b are the

tangency points of some bitangent ` of C. The pre-image of ` in X splits into two (−1)-curves
E + γ(E). We have

2 = 2` · `i = (E + E′) · (Ei + E′i) = E + γ(E)) · (Ei + γ(Ei)) = 2(E · Ei) + 2(E′ · Ei).

Replacing E with γ(E), and reordering the set {E1, . . . , E7}, if needed, we may assume that E ·
Ei = 1, i = 1, . . . , k, and E · Ei = 0, i > k, where k ≤ 3. But then, E = ae0 − e1 − · · · − ek,
and E2 = −1 = a2 − k. Since 0 < k ≤ 3, a2 cannot be a square, this contradiction proves the
lemma.

It is known that there is a bijective correspondence between ordered Aronhold sets of bitangents
and standard symplectic bases in J(C)[2]. Both sets consist of 288 elements. Let is explain this
correspondence. We identify a bitangent with an odd theta characteristic. An ordered Aronhold set
ϑ1, . . . , ϑ7 of odd theta characteristics can be extended by adding one even theta characteristics θev
such that the ordered set of 8 theta characteristics (ϑ1, . . . , ϑ7, ϑev) becomes a fundamental set of
theta characteristics (see [41, 5.4.3]). The set εi = ϑi + ϑev is a normal set of 2-torsion points in
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J(C), i.e. it satisfies ω(εi, εj) = 1, i 6= j, where ω is the Weil pairing. The symplectic basis is
(u1, u2, u3, . . . , u6), where

ui = ε1 + · · ·+ ε2i+2 + ε2i+1, ui+3 = ε1 + · · ·+ ε2i+2 + ε2i+2, i = 1, 2, 3.

The Weil group W (E7) acts transitively on geometric markings, and via this action, it acts tran-
sitively on the set of symplectic bases of J(C)[2]. Fixing one geometric marking, we obtain a
homomorphism

αP : W (E7)→ O(J(C)[2], ω) ∼= Sp(6,F2).

Its kernel is equal to the subgroup (w0) corresponding to the Geiser involutions γ. Comparing the
orders of the groups, we find that α defines an isomorphism W (E7)/(w0) ∼= Sp(6,F2).

Remark 8.10. The even theta characteristic ϑev appears naturally in the geometry of del Pezzo
surfaces of degree 2. For any even theta characteristic ϑ, the linear system |KC + ϑ| consists of
divisors d of degree 6 on C such that 2d is cut out by a plane cubic. This defines an algebraic (non-
linear) 3-dimensional system of contact cubics of C [41, 6.3.1]. Our theta characteristic ϑev defines
an algebraic system of cubics that contains the images of lines in P2 under the anti-canonical map
f : P2 99K P2. The pre-image of f(`) is equal to ` + `′, where `′ is a curve of degree 8 with triple
points at the points pi. The linear system of such curves defines a Cremona transformation of the
plane, also called the Geiser involution. The sextic π(R) is a projection to the plane of a curve of
degree 6 in P3 equal to the image of C under the map given by the linear system |KC + θev|.

We already observed that, a choice of a geometric marking on X defines a surjective homomor-
phism from the Weil group W7 to the group Sp(6,F2) ∼= Aut(J(C([2], ω). We can do better, and
find a natural (i.e. independent of a choice of a geometric marking) surjective homomorphism

Φ : NS(X)0/2NS(X)0 → J(C)[2]

whose kernel is equal to the radical of the quadratic form of NS(X)0/2NS(X)0 induced by the
intersection form on NS(X).

We identify the branch quartic curve C ⊂ P2 of the anti-canonical map φ|−KX | : X → P2 with
its ramification curve R ⊂ X . For any D ∈ NS(X)0 = K⊥X , the divisor class D̄ := D ∩R belongs
to J(C). Here we identify D ∩R with the divisor class c1(OX(D)⊗OR).

Lemma 8.11. For any D ∈ 2NS(X)0,
D̄ = 0.

Proof. Let γ be the Geiser involution of X . We know that, for any D ∈ NS(X), we have D ∩R =
γ(D) ∩R. Since γ acts as −idNS(X)0

, we get, for D ∈ NS(X)0,

D ∩R = γ(D) ∩R.

This implies the assertion of the lemma.

It follows from the lemma that the homomorphism NS(X)0 → J(C), D 7→ D∩R. factors through
a homomorphism

Φ : NS(X)0/2NS(X)0 → J(C)[2].
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Let M be the Gram matrix of the basis (α1, . . . ,α7) of the quadratic lattice E7. It is well known,
and can be easily confirmed by explicit computation, that the reduction of M modulo 2 defines a
symmetric bilinear form on E7/2E7

∼= F7
2 with radical generated by the vector r = α0 + α4 + α6

modulo 2E7. The reduced matrix is the matrix of the symmetric form associated with a quadratic
form on E7/2E7. We skip the verification that the homomorphism Φ is compatible with the Weil
pairing on J(C)[2] (see [44, Chapter IX,§1, Lemma 2]).

Let NS(X)00
∼= Z6 be the sublattice of NS(X)0 spanned by α1, . . . ,α6. Its pre-image under the

homomorphism I1,7 → NS(X) is equal to {
∑7

i=1 aiei ∈ I1,7 : a1 + · · · + a7 = 0}. It follows that
the image NS(X)00 of NS(X)00 in NS(X)0/2NS(X)0 does not contain the radical F2r, hence it is
mapped isomorphically onto J(C)[2].

Note that the stabilizer of W (E7) of the sublattice NS(X)00 of NS(X) is equal to the subgroup
of W (E7) generated by reflections sα1 , . . . , sα6 . It is isomorphic to the permutation group S7. It
acts on NS(X)00

∼= F6
2 as the direct summand of the permutation representation of S7 on F7

2. By
definition of NS(X)00, there is an isomorphism of S7-modules

NS(X)00
∼= (FP2 )0,

where (FP2 )0 = {
∑7

i=1 aipi, a1 + · · ·+ a7 = 0}.

This gives the following:

Proposition 8.12. There is a natural isomorphism of S7 modules

Φ : (FP2 )0 ∼= J(C)[2]

that is compatible with the symplectic structure on the source and the target,

Remark 8.13. It follows from the previous discussion that there is a natural isomorphism between
the orbit space U7

2 of PGL3 acting on the open subset gen(P2)7 ⊂ (P2)7 of ordered 7-tuples of points
in the general position and the moduli space M3,can(2) of canonical curves of genus 3 with a 2-
level structure on its jacobian. This beautiful fact was proven by Bert van Geemen in an unpublished
manuscript.

Now, after we recalled some basic known facts about del Pezzo surfaces, let us return to our task:
to construct smooth quartic curves C with End(J(C)) ∼= Z.

Let f(t) =
∑7

i=0 cit
i ∈ K[t] be an irreducible polynomial of degree 7 over K and α1, . . . , α7 be

its roots in K̄. We write Pf for the set of seven points (1 : αi : α3
i ) in P2.

Using the standard linear change of the variable t′ = t + c6
7c7

, we may assume that c6 = 0
(without changing the Galois group of the polynomial f(t)). This is equivalent to the assumption
α1 + . . .+ α7 = 0.

Lemma 8.14. Assume αi + αj + αk 6= 0, for any three αi, αj , αk. Then, the points pi := (1 : αi :
α3
i ) ∈ P2 are in a general position.

Proof. We have to show that no three of the points from Pf are collinear, and no six points lie on
a conic. Let vi = (1, αi, α

3
i ) ∈ C3 represent pi ∈ P2. Three points pi, pj , pk lie on a line if and
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and only if the determinant (ijk), where we assume that i < j < k, of the matrix with columns
vi, vj , vk is equal to zero. Computing this determinant, we find that it is equal to −(αi − αj)(αj −
αk)(α2 − α3)(αi + αj + αk). Our assumption implies that no three points are on a line.

Assume that six points are on a conic. Without loss of generality, we may assume that these points
are p1, . . . , p6. It is classically known (see, for example, [24, p. 136, (9)]) that six points lie on a
conic if and only if

(123)(145)(246)(356)− (124)(135)(236)(456) = 0

To prove this, one replaces v6 with the vector of coordinates v = (x, y, z) so that the left-hand side
becomes a quadratic form in x, y, z. Then, replacing v with vi, i = 1, . . . , v6, we check that the
quadratic form vanishes on v1, . . . , v6. Evaluating this expression, we find that it is equal to

∏
1≤i<j≤6

(αi − αj)
6∑
i=1

αi.

Since we assumed that α1 + · · ·+ α7 = 0, we see that the expression is not equal to zero.

Corollary 8.15. Assume that the Galois group Gal(f(t)) of f(t) over K is a 3-transitive subgroup.
Then, the points pi = (1 : αi : α3

i ) are in a general position.

Proof. By assumption, Gal(f(t)) acts transitively on the sums of three roots. Thus, if the assump-
tion of Lemma 8.14 is not satisfied, then all sums of three roots are equal to zero. Thus, we find that
the sum of seven roots is equal to zero, in contradiction to our earlier assumption on the polynomial
f(t).

Remark 8.16. Following [184, Proof of Lemma 1.3], let us give another proof of Corollary 8.15
that is based on elementary properties of polynomials in one variable. We will use a notation
(x : y : z) for homogeneous coordinates on P2. Suppose that here are three distinct points in Pf
that lie on a line, say, ax + by + cz = 0 where a, b, c are three complex numbers and at least one
of them is not zero. This means that there are three distinct roots α1, α2, α3 ∈ K̄ of f such that all
aα3

i + bαi + c = 0 for all i = 1, 2, 3. It follows that the polynomial ct3 + bt + a ∈ C[t] is not
identically zero and has three distinct roots α1, α2, α3. This implies that c 6= 0 and

ct3 + bt+ a = c(t− α1)(t− α2)(t− α3).

It follows that
α1 + α2 + α3 = 0.

Let us denote the remaining roots of f by α4, α5, α6, α7. Since Gal(K) acts 3-transitively on the
roots of f , there exists σ ∈ Gal(K) such that

σ(α1) = α4, σ(α2) = α2, σ(α3) = α3

and therefore
α2 + α3 + α4 = σ(α2 + α3 + α1) = σ(0) = 0.
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This implies that α1 = α4, which is not the case. The obtained contradiction proves that no three
points of Pf lie on one line. Suppose that six points of Pf lie on one conic. Let

a6z
2 + a4yz + a3xz + a2y

2 + a1xy + a0x
2 = 0

be an equation of the conic. Then not all the coefficients ai do vanish and there are six distinct roots
of f , say, α1, · · · , α6, such that

a0α
6
k +

4∑
i=0

aiα
i
k = 0 ∀i = 1, . . . , 6.

This implies that the polynomial a6t
6 +

∑4
i=0 ait

i is not identically zero and has 6 distinct roots
α1, · · ·α6. It follows that a6 6= 0 and

a6t
6 +

4∑
i=0

ait
i = a6

6∏
i=1

(t− αi).

This implies that
∑6

i=1 αi = 0. Since the sum of all roots of f lies in K, the remaining seventh root
of f lies in K. This contradicts to the irreducibility of f . The obtained contradiction proves that no
six points of Pf lie on one conic. (Notice that we did not assume that c6 = 0.)

Let the blowup X(f) = BlP(P2) be the corresponding del Pezzo surface of degree 2. Since Pf ,
considered as closed subscheme of P2, is defined over K, the surface is defined over K. Also, since
the map φ : X(f)→ P2 is given by the anti-canonical linear system, it is defined over K.

Let L = | −KX |, considered as the linear system of plane cubic curves with base locus Pf . It is
equal to the projective space Hf , where is the K̄-vector space of cubic ternary forms in K[x, y, z]
vanishing at seven points (1, αi, α

3
i ).

The following lemma (see [184, Sect. 3]) gives an explicit map φ : X → P2 that confirms that it
can be defined over K:

Lemma 8.17. The following cubic forms form a basis of Hf :

U = xz2 − y3,

V = c7x
2y + c6x

2z + c5xy
2 + c4xyz + c3xz

2 + c2y
2z + c1yz

2 + c0z
3,

U = x3 − (d6x
2z + d5xy

2 + d4xyz + d3xz
2 + d2y

2z + d1yz
2 + d0z

3),

where r(t) =
∑7

i=0 dit
i is the remainder of the division of t9 by f(t).

Proof. The cubic form U obviously vanishes on Pf . The x-degree of u is 1. Taking into account
that the degree 7 polynomial f(t) =

∑7
i=0 cit

i ∈ K[t] coincides with

c7(t3)2 + c5t
3t2 + c4t

3t+ c3t
3 + c2t

2 + c1t+ c0,

we conclude that the cubic form

V := c7x
2y + c5xy

2 + c4xyz + c3xz
2 + c2y

2z + c1yz
2 + c0z

3
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vanishes on Pf . Since deg(f) = 7, the coefficient c7 6= 0. Hence, the x-degree of v is 2. In order
to find a third vanishing form (and get the basis), let us define a polynomial r(t) ∈ K[t] as the
(non-zero) remainder with respect to division by f(t):

t9 − r(t) ∈ f(t)K[t], deg(r) < deg(f) = 7.

We have

r(t) =
6∑
i=0

dit
i ∈ K[t].

Hence, if α is a root of f(x) then

0 = α9−h(α) = α9−
6∑
i=0

diα
i = (α3)3−

(
d6(α3)2 + d5(α3)α2 + d4(α3)α+ d3(α3) + d2α

2 + d1α+ d0

)
.

This implies that the cubic form

W := x3 −
(
d6x

2z + d5xy
2 + d4xyz + d3xz

2 + d2y
2z + d1yz

2 + d0z
3
)

vanishes on Pf . The x-degree of w is 3. Since the forms U, V,W have x-degree 1,2,3 respectively,
they are linearly independent over K̄ and therefore constitute a basis of 3-dimensional HPf .

Remark 8.18. The anti-canonical map f : P2 99K P2 arises from the polynomial map of affine
spaces A3 → A3 defined by the polynomials U, V,W . It follows that the image π(R) of the
ramification curve of φ : X → P2 is a plane sextic given by the determinantal equation:∣∣∣∣∣∣

Ux Uy Uz
Vx Vy Vz
Wx Wy Wz

∣∣∣∣∣∣ = 0.

Remark 8.19. Recall that our quartic curve lies in the dual plane | − KX |∗ of | − KX | and seven
points lie in | − KX |. We considered seven points (1 : αi : α2

i ) lying on a cuspidal cubic K =
V (xz − y2). That are nonsingular points on K. After we identify the set of nonsingular points on
K with C, we may identify the set of ordered seven nonsingular points on K with the vector space
C7. Furthermore, one can identify this vector space with the Cartan algebra h of the exceptional
Lie algebra of type E7 in such a way that the action of the Weyl group W (E7) on h corresponds
to the action of this group on the set of geometric markings of del Pezzo surfaces. In this way, one
proves that the moduli space of geometrically marked del Pezzo surfaces of degree two together
with a choice of a cuspidal anti-canonical divisor is isomorphic to the open subset P(h)◦ = h◦/C∗
of P(h), where h◦ is the open Zariski subset of regular elements in the Cartan algebra [28]. It is
known that a general set of seven points in the plane is contained in precisely 24 cuspidal cubic
curves. Thus, the forgetting map of the moduli space of geometrically marked del Pezzo surfaces
of degree 2 together with a choice of a cuspidal anti-canonical divisor is a degree 24 finite cover
of the moduli space of geometrically marked del Pezzo surfaces of degree 2, and a finite cover of
degree 24#W (E7) of the moduli space of del Pezzo surfaces of degree 2, or the moduli space of
non-hyperelliptic curves of genus 3.
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The absolute Galois group Gal(K) = Gal(K̄/K) acts naturally on P2(K̄). Let f(x) ∈ K[x] be
with roots α1, . . . , α7 that add to zero, and Pf ⊂ P2(K̄) be as above.

By construction of Pf , Gal(K) permutes elements of Pf , i.e., one may view Pf as an effective
0-cycle in P2 that is defined over K.

The following assertion was proven in [184].

Theorem 8.20. Let C(f) be the branch curve of the anti-canonical map X(f)→ P2. Assume that
the Galois group Gal(f) of the polynomial f(t) contains A7. Then,

End(J(C(f))) ∼= Z.

Proof. By Corollary 8.15, the seven points pi = (1 : αi : α3
i ) are in the general position, so that the

del Pezzo surface X(f) and the quartic curve C(f)) are defined.

The Galois action on the set Rf of roots of f(t) gives rise to the Gal(K)-module
(
FRf2

)0
(see

Section 2.3.)

It follows from Theorem 2.21 that the Gal(f)-module
(
FPf2

)0
is very simple. Since Gal(K) acts

on
(
FPf2

)0
through its quotient Gal(f) ⊂ Perm(Pf ), the Gal(K)-module

(
FPf2

)0
is also very

simple. Now, it follows from Proposition 8.12 that the Gal(K)-module J(C(f))[2] is very simple
as well. Applying Theorem 2.15 to X = J(C(f)) and ` = 2, we conclude that End(J(C(f))) =
Z.

Remark 8.21. Mutatis mutandis, we can repeat most (but not all) of the arguments, by considering
the del Pezzo surface X(f) of degree 1 isomorphic to the blowup of the set Pf of 8 points (1 : αi :
α3
i ), where α1, . . . , α8 are roots of an irreducible degree 8 polynomial f(t) with the Galois group

containing A8. The branch curve of the bi-anticanonical map φ|−KX | is a canonical curve C(f)
lying on a singular quadric Q in P3. It differs from a general canonical curve of genus 4 (lying on a
smooth quadric) by the condition that J(C(f)) has a vanishing even theta characteristic. However,

the corresponding Galois module J(C(f))[2] is isomorphic not to
(
FPf2

)0
but to FPf2 [185, Lemma

4.6]. In particular, it is not very simple and even not simple). Still, it is possible to prove that
End(J(C(f))) is either Z or an order in a quadratic field [185, Th. 4.7]. (In particular, J(C(f)) is a
simple abelian fourfold.)



Chapter 9

Hodge Structures and Shimura Varieties

In this chapter, we will discuss the moduli spaces of abelian varieties with the same type of the
endomorphism algebra. The most convenient tool for the description of these moduli space used the
theory of Hodge structure which we remind here.

9.1 Real forms of complex semi-simple algebraic groups

In the following, we will be using the theory of real forms of complex algebraic groups. Let us
remind some basic construction of this theory. First, we start with real forms of complex finite-
dimensional Lie algebras g. We denote by gR the real Lie algebra obtained from g by restriction
of scalars. By definition, a real form of g is a real Lie subalgebra b of gR such that there exists an
isomorphism α : bC ∼= g of complex Lie algebras. The conjugation automorphism x+ iy 7→ x− iy
of bC defines, via α, an anti-involution θ of g, i.e. θ is an involution of gR that satisfies θ(λz) =
λ̄θ(z), for any z ∈ g and any λ ∈ C. Conversely, any such involution θ defines a real form b of
g by setting b = gθ := {z ∈ g : θ(z) = z}. It is easy to check that this construction defines a
bijection between the set of isomorphism classes of real forms of g and the set of conjugacy classes
of anti-involutions of g.

A real Lie algebra b is called compact if it admits a positive definite bilinear B form that is
invariant with respect to the adjoint representation (i.e., B([x, y], z) = B(x, [y, z]) for any x, y, z ∈
b).

An example of an invariant bilinear form on b is provided by the Killing form defined byB(x, y) =
Tr(ad(x) ◦ ad(y)), where

ad(x) : b→ b, y 7→ [x, y]

is the adjoint representation of b. This form is non-degenerate if and only if b is semi-simple. Since
any invariant bilinear form on a semi-simple Lie algebra is a scalar multiple of the (non-degenerate)
Killing form, we see that the Killing form on a simple compact Lie algebra is definite (in fact,
negative definite). This implies that a real Lie algebra is compact if and only if its Killing form
is negative definite. Every semi-simple complex Lie algebra admits a unique, up to isomorphism,

151
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compact real form. The corresponding involution is called a Cartan involution.

Example 9.1. Let g = sl2(C) generated over C by the matrices

h =
(

1 0
0 −1

)
, e = ( 0 1

0 0 ) , f = ( 0 0
1 0 ) .

It admits a non-compact real from sl2(R) generated by the same matrices over R and a compact real
form su2 generated by the matrices(

i 0
0 −i

)
, e =

(
0 1
−1 0

)
, f =

(
0 i
i 0

)
.

The corresponding anti-involutions sl2(C) are defined by A 7→ Ā and A 7→ −tĀ, respectively.

The similar formulae define the anti-involutions on sln(C) with a non-compact real form sln(R)
and a compact real form sun. Note that any commutative Lie algebra is obviously compact. The
Lie algebra gln(C) has a compact form un.

The notions of a real form and a Cartan involution extends to algebraic groups. An algebraic
group defined over R is a real form of a complex algebraic group G if HC ∼= G. According to
the general nonsense about Galois cohomology, the group H is determined uniquely by an element
of H1(Gal(C/R),Aut(G(C)) defined by an automorphism α of G(C) such that α−1 = ᾱ. The
group H is reconstructed from this automorphism as an algebraic group with the group H(K) of
K-points equal to Gα(K) := {g ∈ GR(K) : α(g) = ḡ}, where GR := ResC/RG is the Weil
restriction of scalars functor on the category of complex algebraic groups which admits a natural
action of Gal(C/R) via the conjugation isomorphism K ⊗R C → K ⊗R C. The involution α as
above is called the Cartan involution of G. There is a natural bijection between the set of real forms
of G and the conjugacy classes of Cartan involutions. The Lie algebra of the real Lie group H(R)
is a real form of the complex Lie algebra of the complex Lie group G(C) and the converse is true if
one additionally assumes that GR is generated by H and its connected component of the identity.

A real algebraic groupH is called compact if the real Lie groupH(R) is compact. The Lie algebra
Lie(H(R)) of H(R) is compact, a positive definite invariant symmetric form can be obtained by
integral average over H(R) of any positive symmetric bilinear form on Lie(H(R)). Every semi-
simple complex algebraic group admits a unique, up to isomorphism, compact real form. The
involutive automorphism α of G that defines a compact real form is called a Cartan involution.

Example 9.2. The complex multiplicative group G = Gm,C has two non-isomorphic real forms:
a non-compact form Gm,R and a compact form U(1) which we introduced earlier. The first one
corresponds to the involution z 7→ z̄, the second one corresponds to the involution z 7→ z−1.

The group SUn is a compact form of SLn,C defined by the Cartan involution A 7→ tA−1. A
non-compact form is isomorphic to either SLn,R, or SUp,n−p, or, if n = 2m, to the group SLm(H)
defined by the involutions A 7→ A, or A 7→ Ip,n−p

tAI−1
p,n−p, or A 7→ Jn

tAJ−1
n , where Ip,n−p =(

Ip 0
0 −In−p

)
and Jn is the matrix of the standard symplectic form on R2m. The group SUp,n−p

consists of complex matrices with determinant 1 preserving the Hermitian form |z1|2 + · · ·+ |zp|2−
|zp+1|2−· · ·−|zn|2. The group SLm(H) consists of matrices of determinant 1 preserving a structure
on C2m of a module of rank m over the algebra of quaternionsH (by viewing (z1, . . . , z2m) ∈ C2m

as a vector (z1 + zm+1j, . . . , zm + z2mj) ∈ Hm).
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9.2 Polarized Hodge Structures

Let V be a finite-dimensional vector space over R. A Hodge structure on V is a direct sum decom-
position

VC =
⊕
p,q∈Z

V p,q (9.1)

such that V p,q = V q,p. We say that the Hodge structure is of weight n if V p,q = 0 for p+ q 6= n. .

A Hodeg structure of weight n defines a decreasing filtration

VC = F 0 ⊃ F 1 ⊃ · · · ⊃ F p ⊃ {0}

where F p = ⊕p′≥pV p′,q, p = 0, . . . , n. It is called the Hodge filtration. It satisfies

VC = F p ⊕ Fn−p+1

and recovers the Hodge structure since

V p,q = F p ∩ F q.

A polarized Hodge structure consists of a Hodge structure on V and a non-degenerate bilinear
form Q : V × V → R satisfying the following properties

(i) the conjugation map VC → VC maps induces an isomorphism V̄ p,n−p ∼= V n−p,p;

(ii) Q(a, b) = (−1)nQ(b, a);

(iii QC(V p,q, V p′,q′) = 0, p′ 6= n− p;

(iv) ip−qQC(x, x̄) > 0 if x ∈ V p,n−p, x 6= 0.

A rational (integral) polarized Hodge structure of weight n is defined by an additional choice
of a Q-vector space LQ (a lattice L of rank equal to dimV ) such that V = LR = LQ ⊗Q R
(V = LR = L⊗ R) and Q is obtained from a Q-bilinear form (Z-bilinear form)

QQ : LQ × LQ → Q (QZ : L× L→ Z) (9.2)

after tensoring with R.

One can define the category of rational polarized Hodge structures by taking for morphisms linear
maps defined over Q that preserve the Hodge filtrations and are compatible with the bilinear forms.
One also put Hodge structure on the tensor product V ⊗W by setting

(V ⊗W )p,q =
⊕

r+r′=p,s+s′=q

V r,s ⊗W r′,s′ .

and on the dual space by setting F p(V ∨) = (V/F−p)∨ = (F−p)⊥. In this way, the standard
pairing V ⊗ V ∨ → R, where R = R0,0 becomes a morphism of Hodge structures. In particular,
(V ∨)p,q = V −p,−q.
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Example 9.3. Define the Hodge structure Z(m) of weight −2m on V = R by setting VC =
V −m,−m with the polarization form Q(x, y) = xy. It has an integral structure with respect to the
lattice Z in R. Let (V p,q) be a Hodge structure of weight n on a vector space V . Then, V (m) :=
(V p,q)⊗Z(m) is isomorphic to the Hodge structure (′V p,q) of weight n−2m on V with V (m)p,q =
V p−m,q−m. If (V p,q) admits an integral structure defined by a lattice L in V , then (V p,q(m)) admits
an integral structure with L(m) = L⊗Z Z ∼= L and Q′ = Q. Note that, in particular,

V (m)0,0 = V m,m.

The bilinear form Q defines an isomorphism V p,q → (V n−p,p)∨ = (V ∨)p−n,−p = V ∨(n)p,q.
Thus, we may view the polarization Q as a non-degenerate bilinear form of Hodge structures of
weights n

V × V → R(−n),

or as a tensor q ∈ (V ∨ ⊗ V ∨)(−n) of type (0, 0).

Example 9.4. Let (V, J) be a complex structure on a real vector space V and VC = Vi ⊕ V−i be
the eigensubspace decomposition with respect to J . Putting V −1,0 = Vi, V

0,−1 defines a Hodge
structure on W of weight −1. If Q is a symplectic form on V such that the complex structure is
polarizable with respect to E, then the Hodge structure becomes Q-polarizable. The converse is
also true, a Q-polarizable Hodge structure of weight −1 defines a Q-polarizable Hodge structure
on V . Thus, the first homology space H1(A,R) of an abelian variety acquires a polarizable Hodge
structure of weight −1. The dual space H1(A,R) acquires the dual Hodge structure of weight 1.

Example 9.5. Let X be any nonsingular complex algebraic variety of dimension n and h0 ∈
H2(X,Z) be the cohomology class of an ample divisor on X . The cup product c 7→ c ∪ h0 de-
fines a Q-linear map L : Hk(X,Q) → Hk+2(X,Q) and, by the Hard Lefschetz Theorem, for
every positive k ≤ n,

Ln−k : Hk(X,Q)→ H2n−k(X,Q)

is an isomorphism. One defines the primitive cohomology by setting

Hk(X,Q)prim = Ker(Ln−k+1 : Hk(X,Q)→ H2n+2−k).

The primitive cohomology Hk(X,Q)prim admit a Hodge decomposition of weight k

Hk(X,C)prim =
⊕

p+q=k,p,q≥0

Hp,q(X),

which is polarizable with respect to the bilinear form

Q(ψ, η) = (−1)k(k−1)/2

∫
X
hn−k0 ∧ ψ ∧ η.

Note that in the case when X is a polarized abelian variety this agrees with the definition on the
Hodge structure on H1(A,Q) = H1(A,Q)prim. We have

hn−1
0 ∈ H2n−2(A,Q) ∼= H2(A,Q) =

2∧
H1(A,Q)∗
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and we can consider the integral in the above as the value of the corresponding symplectic form on
ψ, η ∈ H1(A,Q).

Let f : X → S be a smooth projective morphism of complex manifolds. Then, it defines a
variation of rational Hodge structures (Hn(Xs,Q)prim, H

p,q(Xs)). We refer for the details to any
exposition of the Hodge Theory on algebraic varieties (e.g. [171]).

Let M be a connected smooth complex manifold and V be a complex local coefficient system on
M , i.e. locally constant sheaf sheaf (in the usual topology) of finite-dimensional real vector spaces
onM . Suppose it is equipped with a decreasing filtration (Fp) such that it defines a Hodge filtration
on each fiber Vt of V .

Let V := V ⊗OM be the associated locally free sheaf of OM -modules, where OM is the sheaf of
holomorphic functions on M . We require that the sheaves Fp generate locally free submodules Fp
of V (or, in terms of vector bundles, holomorphic subbundles of the holomorphic vector bundle V).
Let

∆ : V → V ⊗ Ω1
M

be the flat connection defined by differentiation of local trivializations of V (it globalizes because
the transition matrices have constant entries). We require that the following transversality condition
is satisfied

∆(Fp) ⊂ Fp−1 ⊗ Ω1
M .

In the case when M is simply connected, V can be globally trivialized, and we can restate this
condition in a simpler way. We consider the map

φ : M → G(fp, V ), x 7→ Fpx

to the Grassmannian of subspaces of V of dimension equal to dimFps (which does not depend on
s ∈ M ). The map is holomorphic and the image of the differential map of the tangent spaces of
complex manifolds

dφx : T hol
M,x → T hol

G(fp,V ),Fpx = Hom(Fpx , V/Fpx),

Following P. Deligne [37], one can reformulate the definition of a Hodge structure in the following
way. Let

S = ResC/R(Gm,C)

be the algebraic group over R obtained by Weil’s restriction of scalars. It represents the functor
K → (C⊗R K)∗. It is easy to see that

S = Spec R[X,Y, T ]/((X2 + Y 2)T − 1).

For any algebra K over R, we have a natural bijection

S(K) = {
(
a b
−b 0

)
: a2 + b2 6= 0} ⊂ GL2(K).

In particular, we have a natural isomorphisms of groups

S(R)→ C∗,
(
a b
−b 0

)
→ a+ bi
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and
S(C)→ (C∗)2,

(
a b
−b 0

)
→ (a+ bi, a− bi).

Under these isomorphism S(R) embeds in S(C) via z 7→ (z, z̄). Also there is an isomorphism of
complex algebraic groups

SC → S⊗R C ∼= G2
m,C
∼= Spec(C[Z, Z̄, T/(ZZ̄T − 1)).

The last isomorphism is of course defined by Z = X + iY, Z̄ = X − iY . The group Gm,R(C)
embeds in S(C) diagonally z 7→ (z, z). Let

U(1) = Spec R[U, V ]/(U2 + V 2 − 1)

be the real algebraic group with U(1)(R) ∼= U(1) = {z ∈ C : |z| = 1} and U(C) ∼= C∗. It is
obviously a subgroup of S isomorphic to the kernel of the norm homomorphism

Nm : S→ Gm,R,
(
a b
−b a

)
7→ a2 + b2.

Also it is isomorphic to the quotient S/Gm,R via the homomorphism (z1, z2) 7→ z1/z̄2.

Let ρ : S → GL(V ) be a homomorphism of real algebraic groups (a faithful real linear repre-
sentation). It defines a complex linear representation ρC : S(C) → GL(VC). Restricting it to the
subgroup S(R), we obtain an eigensubspace decomposition

VC = ⊕V p,q, V p,q = {v ∈ VC : ρC(z1, z2) · v = z−p1 z̄−q2 v}. (9.3)

Obviously, V p,q = V q,p, so V n := ⊕p+q=nV p,q is a Hodge structure on V n of weight n. Any
z ∈ S(R) acts on V p,q by multiplication v 7→ z−pz̄−q. In particular, any element in Gm,R(R) ⊂
S(R) acts by scalar multiplication v 7→ λ−(p+q)v, and hence belongs to the center of GL(V ). So,
the action of Gm,R decomposes V into the direct sum of eigensubspaces V n with eigencharacter
λ 7→ λ−n each of which is equipped with a Hodge structure of weight n.

Let i =
√
−1 be considered as an element of S(R) and let C = ρ(i). It is clear that C acts as iq−p

on Hp,q and C2 acts on V n as the multiplication by (−1)n. To get a polarized Hodge structure on
V n we require that the exists a bilinear form Q : V × V → R such that

Q(C(x), C(y)) = Q(x, y); (9.4)

this implies that

Q(x, y) = (−1)nQ(y, x) if x, y ∈ V n, and Q(C(x), x) > 0 if x 6= 0. (9.5)

It is immediately checked that all properties of a polarized Hodge structure are satisfied. Con-
versely, a polarized Hodge structure on V defines a representation ρ : S→ GL(V ) as above.

Definition 9.1. Let (V, ρ : S → GLR(V ), LQ) be a rational Hodge structure (of weight n). Let
MQ be a Q-vector subspace of LQ and W = MQ ⊗Q R the corresponding real vector subspace of
V . Let ρ′ : S → GLR(W ) be the homomorphism of real algebraic groups that corresponds to the
restriction of ρ to W . We say that (W,ρ′ : S → GLR(W ),MQ) is a rational Hodge substructure
of (V,LQ) (of weight n) if W is S-invariant. If this is the case, then (W,ρ′ : S → GLR(W ),MQ)
becomes a rational Hodge structure of (V,LQ) (of weight n) with

W p,q = V p,q ∩WC.
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Remark 9.6. Let (V, ρ, LQ) be a rational Hodge structure of weight n with a polarization Q. Let
(W,ρ′,MQ) be its rational Hodge substructure. Then, the restriction of Q

Q′ = Q|W×W : W ×W → R, x, y 7→ Q(x, y)

is a polarization on (W,MQ). Indeed, all the properties of polarizations are obviously hold for Q′
except the non-degeneracy. In order to check the non-degeneracy of Q′, notice that W is C = ρ(i)-
invariant and if we put C ′ = ρ′(i) ∈ AutR(W ), then

C ′(x) = C(x) ∀x ∈W

and therefore
Q′(C ′x), x) = Q(C(x), x) > 0 ∀x ∈W.

This implies that Q′ is nondegenerate and therefore is a polarization on (W,MQ). Clearly, the
restriction of Q′ to LQ × LQ) is a nondegenerare Q-bilinear form with values in Q.

Let W⊥ be the orthogonal complement of W in V with respect to Q. The S-semi-invariance of
Q implies that W⊥ is S-invariant. We write ρ′⊥ : S → GLR(W⊥) for the corresponding homo-
morphism of real algebraic groups. The nondegeneracy of Q and its restriction Q′ to W imply
that V = W ⊕W⊥; in addition, the restriction Q′⊥ of Q to M⊥Q is nondegenerate. Similarly, if
we write M⊥Q for the orthogonal complement of MQ in LQ then LQ = MQ ⊕M⊥Q ; in addition,
W⊥ = M⊥Q ⊗Q R. Thus, (W⊥, ρ′⊥,M⊥Q ) becomes a rational Hodge structure of weight n with
polarization Q′⊥.

In other words, the polarized rational Hodge structure (V, ρ, LQ, Q) is a direct sum of polarized
rational Hodge structures (W,ρ′,MQ, Q

′) and (W⊥, ρ′⊥,M⊥Q , Q
′⊥).

9.3 The Mumford-Tate Group

Let (V, ρ : S→ GLR(V ), LQ) be a rational Hodge structure. Its Mumford-Tate group MT(LQ, ρ) is
defined to be the smallest algebraic subgroup G of GL(LQ) defined overQ such thatG(R) contains
ρ(S(R)). Similarly, the special Mumford-Tate group (also called the Hodge group) Hdg(LQ, ρ)
is defined to be the smallest algebraic subgroup H of GL(LQ) defined over Q such that H(U(1))
contains ρ(S(R)).

Remark 9.7. Clearly, both MT(LQ, ρ) and Hdg(LQ, ρ) are connected linear algebraic groups over
Q. AQ-vector subspaceMQ ofLQ is MT(LQ, ρ)-invariant if and only if it is Hdg(LQ, ρ) -invariant,
which means thatW = MQ⊗R gives rise to a rational Hodge substructure of V as in Definition 9.1.
Both groups are reductive if the Hodge structure is polarizable. Indeed, the reductiveness means that
each invariant subspace admits an invariant complement, whose existence is guaranteed, in light of
Remark 9.6.

Let G be a reductive algebraic group over Q and (ID: Change the letter?)

h : S→ GR
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be an injective homomorphism. For any faithful linear representation σ : G → GL(V ) of G in
a Q-vector space V , the composition ρ = σ ◦ h : S → GL(VR) defines a Hodge structure on V .
Suppose V admits a polarization Q which is invariant with respect to the representation σ. Let
θ = h(i) ∈ G so that Q satisfies the symmetry and positivity conditions with respect to C = σ(θ).
Suppose G acts on V via σ leaving Q invariant. Then, h(i) ∈ G(R) is an element, whose square is
mapped via σ to −idV . It follows that h(i)2 belongs to the center of G(R) and even to the center
of G(C). It is known that the conjugation automorphism Ad(h(i)) of GC is a Cartan involution if
and only if there exists a (equivalently, any) faithful linear representation σ : G(R) → GL(V ) that
preserves a bilinear form Q which is symmetric and positive with respect to C = σ(h(i)). Also the
condition that G leaves the polarization on V invariant implies that G is a reductive group (see [37],
Proposition 1.1.14).

Let D be a connected component of the conjugacy class of a homomorphism h0 : S → GR of
algebraic groups over R. We say that the pair (G,D) is a Shimura data if the following properties
hold:

(S1) For any h ∈ D, h(Gm,R) belongs to the center Z of GC and the induced action of U(1) on
Lie(Gad)C is via the characters z, 1, z̄;

(S2) Ad(h(i)) is a Cartan involution θ on Gad
C := GC/Z;

(S3) Gad has no Q-factors on which the projection of h is trivial.

Let σ : GR → GL(V ) be a faithful linear representation of G as above. For any h ∈ X , consider
the composition ρh = σ ◦ h : S → GL(V ). It follows from the condition (S1) that the grading
V = ⊕n∈ZV n defined by the action of Gm,R on V does not depend on h. The condition (S2)
implies that G is a reductive algebraic group and that the stabilizer subgroup K0 of h0 is a maximal
compact subgroupK ofG(R). The image h(U(1)) of (S/Gm,R(R) is a subgroup ofK0. Let D be a
connected component of X = G(R)/K0. For any point x ∈ D, the group U(1) acts on the tangent
space TDx and defines a complex structure. In this way, D becomes equipped with a structure of a
hermitian symmetric space. Condition (S3) implies that D is of non-compact type.

Fix a representation ρ : GR → GL(V ) and assume that it is defined overQ and preserves a bilinear
for Q on V . So we obtain a variation of Hodge structures on V parameterized by X = G(R)/K0.

Example 9.8. Let (V, J) be a complex structure on a real vector space V and VC = Vi ⊕ V−i be
the eigensubspace decomposition with respect to J . Putting V −1,0 = Vi, V

0,−1 defines a Hodge
structure on W of weight −1. If Q is a symplectic form on V such that the complex structure is
polarizable with respect to Q, then the Hodge structure becomes Q-polarizable. The converse is
also true, a Q-polarizable Hodge structure of weight−1 defines a Q-polarizable Hodge structure on
V . Thus, the homology space H1(A,R) of an abelian variety acquires a polarizable Hodge structure
of weight −1.

Let G = CSp(V ;Q) ∼= CSp(2n) be the reductive group over Q whose set of K-points is equal
to the set of linear maps f : V → V such that Q(f(x), f(y)) = λQ(x, y) for some λ ∈ K∗.
Its center is isomorphic to Gm and the quotient Gad is a simple algebraic group Sp(V ;Q) of Q-
isometries of V . Let h : S → G be defined by sending a + bi ∈ S(R) to aI2n + bJ . Then, the
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stabilizer of h(S) in Gad(R) consists of matrices X =
(
A B
C D

)
∈ Sp(2n,R) such that X−1JX = J .

The fact that X ∈ Sp(2n,R) means that A = D and B = −C. The second condition means that
tBA− tAB = 0 and tAA+ tBB = In. The mapX 7→

(
A B
−B A

)
→ A+iB defines an isomorphism

from the stabilizer subgroup to the unitary group U(n) of complex matrices Z such that tZ̄Z = In.
Thus

D ∼= Hn ∼= U(n)\Sp(2n,R).

The Q-polarized Hodge structures on V of weight −1 correspond to the natural representation of
G in V . This means that z ∈ S(R) acts on V −1,0 by x 7→ zx and on V 0,−1 by x 7→ z̄x. This implies
that it acts on the real vector spaceV by v 7→ zv.

We may also consider other linear representations of G, for example
∧k V preserving the bilinear

form
∧kQ. They define polarized Hodge structures on

∧k V of weight−k. We could also consider
the dual representation V ∨ and the dual symplectic form Q−1 (where Q is considered as an invert-
ible linear map V → V ∨). The Hodge structure on V ∨ is of weight 1. We can view it as a Hodge
structure on cohomology H1(A,R) of an abelian variety Cg/Λ, where Q(Λ× Λ) ⊂ Z. The Hodge
structure on the exterior product

∧k V ∨ is the Hodge structure on the cohomology Hk(A,R). Its
Hodge decomposition is ⊕ki=0H

k−i,i, where

hk−i,i = dimHk−i,i =

(
g

i

)2

.

One can also introduce other objects of the category of Hodge structures. For example, suppose
g = 2k + 1 > 1 is odd. The polarization class h ∈ H2(A,R) defined by Q belongs to the piece
H1,1(A) of the Hodge structure. Consider the linear map

Φ : H1(A,R)→ H2k+1(A,R), x 7→ x ∧ h∧k.

The quotient Hodge structureH2k+1(A,R)/Im(Φ) is of weight g and has the Hodge decomposition
as in (9.3) with

hg−i,i =

{(
g
i

)2 if i 6= 1, g − 1,

g2 − g otherwise.

We do not know whether there exists an algebraic variety whose Hodge structure on cohomology is
naturally isomorphic to this Hodge structure.

Let D be a connected component of X = G(R)/K regarded as a symmetric domain. The con-
nected component of the group of holomorphic automorphisms of D is isomorphic to a connected
component G(R)+ of the identity of G(R). A subgroup Γ of G(Q) (a reductive algebraic group
over Q) is called a congruence subgroup if there exists a linear faithful representation G ↪→ GLn
over Q such that the image of Γ contains a subgroup of finite index

Γ(N) = G(Q) ∩ {g ∈ GLn(Z) : g ≡ In mod N}.

A subgroup of G(Q) is called arithmetic if it is commensurable with Γ(1) (i.e. contains a subgroup
of finite index in both of them). It is known that any arithmetic subgroup Γ acts discretely on D
and the quotient Γ\D has a structure of a quasi-projective algebraic variety. A connected Shimura
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variety Sho(G,D) is the inverse system of locally symmetric spaces Γ\D where Γ runs the set of
torsion-free arithmetic subgroups of Gad(Q) whose pre-image in G(Q) is a congruence subgroup.

Let Af be the ring of finite adèles of Q, i.e. the subring of the product of the fields of p-adic
numbersQp where all components except finitely many belong to the ring of integer p-adic numbers
Zp. We use the p-adic topology on Qp in which a base of open subsets of 0 is formed by the
fractional ideals pνZp, where ν ∈ Z. For example, any element x ∈ Qp contains an open compact
neighborhood of the form {y ∈ Qp : y−x ∈ pnZp}. This topology makeQp a locally compact field.
One equips Af with a topology whose base of open sets consist of subsets of the form

∏
p∈S Up ×∏

p 6∈S Zp, where S is a finite set of prime numbers and Up is an open subset of Qp. This topology,
called the adéle topology. It is stronger than the product topology on Af . For an algebraic group G
overQ one definesG(Af ) to be the subgroup of the product of groupsG(Qp) where all components
except finitely many belong to G(Zp). For example, when G = Gm,Q, we obtain the group of
idèles A∗f . There is a canonical injection G(Q) → G(Af ) defined by the homomorphisms Q →
Qp. One can show that, for any compact subgroup K of G(Af ) the intersection G(Q) ∩ K is
a congruence subgroup of G(Q) ( [117], Proposition 4.1). It follows that the induced topology
on G(Q) is a topology defined by a basis of open subsets equal to congruence subgroups. The
Strong Approximation Theorem asserts that G(Q) is dense in G(Af ) if G is a semi-simple simply-
connected with G(R) of non-compact type.

The adèlic definition of the Shimura variety is based on an isomorphism

Γ\D ∼= G(Q)\D×G(Af )/K,

where K is a compact open subgroup of G(Af ) such that K ∩G(Q) = Γ, acting on G(Af ) on the
right and G(Q) acts on the product D×G(Af ) diagonally on the left so that

q · (x, a) · k = (qx, qak), q ∈ G(Q), x ∈ D, a ∈ G(Af ), k ∈ K.

In this way Sho(G,D) becomes the inductive limit of G(Q)\D×G(Af )/K, where K runs the set
of open compact subgroups of G(Q).

Let B be a semi-simple Q-algebra with positive anti-involution b 7→ b′ and let (V,Q) be a sym-
plectic space that is a faithful (B,′ )-module. This means that the B-module V is faithful and

Q(bx, y) = Q(x, b′y) ∀b ∈ B;x, y ∈ V.

Then, one considers a reductiveQ-subgroupG of CSp(V,Q) that acts on V preserving the structure
of a (B, ; )-module. Then, there exists a homomorphism h : S→ G(R) such that h(z̄) = h(z)′ and
Q(h(i)x, y) is a positive symmetric bilinear form. The conjugacy class of such h defines a Shimura
data (G,X) that is mapped to the modular Shimura data (CSp(V,Q),Hg). When the algebra B is
simple and the involution is the identity on the center, one says tha Shimura variety is of PLE-type.

Let (G,D) be a Shimura data and h ∈ X and (V, h) be a Hodge structure defined by h. The
Mumford-Tate group MT(h) is defined to be the smallest algebraic subgroup H of G defined over
Q such that GR contains h(S). Let σ : G → GL(V ) be a faithful linear representation defined
over Q. We denote the image of ρ = σ ◦ h of MT(h) in GL(V ) by MT(σ, h) (or MT(V, h) if no
confusion arises). It is called the Mumford-Tate group of the Hodge structure on V defined by ρ. It
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follows from the definition that the group MT(D, h) is the connected reductive group over Q equal
to the Q-closure of h(S) in GC.

One can also define the Hodge group or special Mumford-Tate group by considering the restriction
map h′ : U(1)→ Gad and setting Hg(h) to be the smallest algebraic subgroup H over Q of G such
that HR contains h′(U(1)). The groups MT(D, h) and Hg(D, h) × Gm,Q are isogenous algebraic
groups over Q. Similarly, one defines the subgroup Hg(V, h) of GL(V ) which is contained in
SL(V ).

For any nonnegative integers a and b, let T a,b = V ⊗ai ⊗ V ∗⊗bi be the tensor product space
equipped with the tensor product Hodge structure of weight a − b. A rational vector t ∈ ⊕iT ai,bi
is of type (0, 0) if and only if it is invariant with respect to MT(V, h). In fact, if t is of type (0, 0),
then h(S) leaves it invariant, hence the smallest algebraic subgroup that leaves it invariant must
contain MT(V, h). Conversely, if t is invariant with respect to the Mumford-Tate group, then it is in
particular invariant with respect to h(S), hence it is of type (0, 0).

Since morphisms V → V preserving the Hodge structure correspond to tensors in V ⊗ V ∨ of
type (0, 0), we obtain another equivalent definition of the Mumford-Tate group MT(V, h), it is the
smallest algebraic Q-subgroup of GL(V ) such that

End(V, h) = End(V )MT(V,h).

More generally, if T is a subspace of the tensor algebra T (V ) ⊗ T (V ∨) with the inherited Hodge
structure, then MT(V ) acts in T and any Q-subspace W of T is a Hodge substructure if and only
if it is invariant under MT(V ). In particular, if (V ′, h′) is a Hodge substructure of (V, h), then
MT(V ′, h′) coincides with the image of MT(V, h) in GL(V ′). In particular, MT(V ′, h′) is isomor-
phic to a quotient of MT(V, h).

In the case of the Hodge structure on cohomology of an algebraic variety X , we may consider
Cartesian product Xd so that, by Künneth formula, their cohomology are isomorphic to the direct
sums of tensor productsHa1(X,Q)⊗· · ·⊗Had(X,Q). The cocycles of type (p, p) can be viewed as
vectors of type (0, 0) in the tensor product with Q[r] for some r, where Q[r] is the one-dimensional
space equipped with a Hodge structure of type (−r,−r). Such classes are called Hodge classes (by
Hodge’s Conjecture they must be algebraic classes). Thus, in this situation, the special Mumford-
Tate group is the smallest algebraic subgroup of GL(H∗(X,Q) that leaves invariant Hodge classes.

Example 9.9. Let A be an abelian variety and V = H1(A,Q) with the Hodge structure of weight
−1. The set of Hodge classes in End(V ) = V ∨ ⊗ V is equal to the set EndQ(A). Hence

EndQ(A) = End(V )MT(V ).

Using the notion of the Mumford-Tate group one can characterize abelian varieties of CM-type by
the property that its Mumford-Tate group is commutative of the Hodge structure on its cohomology
H∗(X,Q) is commutative. It is conjectured that any complex projective algebraic variety with
commutative Mumford-Tate group can be defined over a field of algebraic numbers [152]. Besides
abelian varieties (Shimura - Taniyama [155]), this conjecture is known to be true for K3 surfaces
[152].
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In the next section, we will characterize abelian varieties of CM-type by the property that its
Mumford-Tate group of is commutative A smooth projective algebraic variety is called of CM-type
if the Mumford-Tate group of the Hodge structure on its cohomology H∗(X,Q) is commutative. It
is conjectured that such a variety can be defined over a field of algebraic numbers [152].

Example 9.10. Let A be an abelian variety with polarization skew-symmetric form Q. Let D =
EndQ(A) and CSpD(V,Q) := CSp(V,Q)D. Since this group is a Q-group containing h(S), we
have

MT(A) ⊂ CSpD(V,Q). (9.6)

When A is an elliptic curve, we get Sp(2) ∼= SL(2) and CSp(V,Q) ∼= GL2,Q. If D = Q, then
MT(A) = GL2,Q. If D = Q(

√
−d), then MT(A) is conjugate to a subgroup of GL2,Q with the

group of K-points equal to a subgroup of GL2(K) of matrices of the form
( x y
−dy x

)
, x, y ∈ K. The

Hodge group Hdg(A) is defined by an additional condition that x2 + dy2 = 1.

Suppose A is a simple abelian surface. Then, we have the equality in (9.6). If D = Q, then
MT(A) ∼= CSp4,Q. If D = Q(

√
d) is a real quadratic field, then MT(A) is a subgroup of

ResD/QGL2,D whose group of K-points is equal to {g ∈ GL2(D ⊗Q K) : det(g) ∈ K∗}. If
D is an indefinite quaternion algebra, then MT(A) is the group of unites of the opposite algebra
D, i.e. MT(A)(K) = (Dop ⊗Q K)∗. Finally, if D is a CM-field, then MT(A) is a subgroup of
ResD/QGm,D with MT(A)(K) = {x ∈ (D ⊗K)∗ : xx̄ ∈ K∗}. Note that, when dimA ≥ 4, the
group MT(A) could be a proper subgroup of CSpD(V,Q). For example, this happens in Mumford’s
example 11.1 of an abelian variety of dimension 4.

Example 9.11. Let X be a K3-surface that admits a non-symplectic automorphism σ of order m
that acts identically on Pic(X). All such K3 surfaces have been classified in [94] and [172]. It is
known that φ(m) divides the rank of the transcendental lattice TX . All possible values of m are
known. Assume that m = φ(m). Then, m ∈ {12, 28, 36, 42, 44, 66} if TX is unimodular and
m ∈ {3, 5, 7, 9, 11, 13, 17, 19, 25, 27} otherwise. There is only one isomorphism class of such a
surface. Their lattices TX are computed in [107].

The cyclotomic fieldQ(ζm) acts on (TX)Q and hence equips it with a structure of a one-dimensional
vector space over Q(ζm). The proof of the previous proposition extends to this case and shows
that the Mumford-Tate group of the Hodge structure on (TX)Q induced by the Hodge structure on
H∗(X,Q) is of CM-type.

Example 9.12. Let
X1
m : xm0 + xm1 + xm2 = 0

be the Fermat curve of degree m > 2. For any pair (r, s) with 1 ≤ r, s, r + s ≤ m− 1, let

n = m/g.c.d.(m, r, s).

Let 〈a〉 denote the unique representative of a mod m between 0 and m − 1 and let Hr,s be the
subset of (Z/nZ)∗ of elements h such that

〈rs〉, 〈hr〉 ≤ m− 1.

It is easy to see thatHr,s coincides with the set of representatives of the subgroup {±1} of (Z/nZ)∗.
Let us fix the standard isomorphism

φ : (Z/nZ)∗ → Gal(Q(ζn)/Q), h→ σh : ζn → ζhn .
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Define a lattice Λr,s in Cφ(n)/2 to be the span of the vectors

σh(ω1, . . . , ωφ(n)), h ∈ Hr,s,

where (ω1, . . . , ωφ(n)) is a basis of the ring of integers Z[ζn]. Since Hr,s = hH〈hr〉,〈hs〉 for any
h ∈ Hr,s, we obtain Λr,s = Λ〈hr〉,〈hs〉. We say that the two pairs (r, s) and (r′, s′) related in this
way are equivalent. Let Ar,s = Cφ(n)/2/Λr,s. There is an isogeny∏

{r,s}

Ar,s → J(X1
m), (9.7)

where the product is taken over equivalence classes of pairs (r, s) as above [93]. Note that each
variety Ar,s is of dimension φ(n)/2 and has multiplication by Q(ζn), hence it is of CM-type. This
implies that J(C) is of CM-type.

For example, take m = p to be prime. Then, n = p, we have p − 2 equivalence classes of pairs
(r, s) and obtain that J(C) is isogenous to the product of p − 2 copies of an abelian variety of
dimension 1

2(p− 1) with complex multiplication by ζp.

Note that not all factors Jr,s are simple abelian varieties, also some of the factors could be isomor-
phic. This is investigated in [93].

Example 9.13 (T. Katsura, T. Shioda [87]). Let Xr
m denote the Fermat hypersurface of degree m

and dimension r:
xm0 + · · ·+ xmr+1 = 0.

We will show that it is of CM-type. The assertion is true for r = 1, since we already know that the
Jacobian variety of the Fermat curve is of CM-type. Let us consider the following rational map

Xr
m ×Xs

m 99K X
r+s
m ,

defined by (
[x0, . . . , xr+1], [y0, . . . , ys+1]

)
7→ [z0, . . . , zr+s+1],

where
zi = xiys+1, i = 0, . . . , r, zr+1+j = ε2mxr+1yj , j = 0, . . . , s,

and ε2m = eπi/m. It is clear that the map is dominant and its set Zr,sm of indeterminacy points
consists of the product V (xr+1)× V (ys+1) ∼= Xr−1

m ×Xs−1
m . After we blow up Zr,sm , we obtain a

morphism f : Y r,s
m → Xr+s

m . Let Y0 (resp. Y∞) be the proper inverse transform ofXr
m×V (ys+1) ∼=

Xr
m ×Xs−1

m (resp. V (xr+1)×Xs
m
∼= Xr−1

m ×Xs
m). The restriction morphism

f̃ : U r,sm := Y r,s
m \ (Y0 ∪ Y∞)→ Xr+s

m \Xr−1
m ∪Xs−1

m

is a finite morphism. It is an étale map outside of the pre-image of the divisorB = V (zm0 +· · ·+zmr ).

The group µm of mth roots of unity acts on Xr
m ×Xs

m by multiplying the last coordinate in each
factor by a root from µm. The locus of fixed points is the subvariety Zr,sm . The extended action
of µm to the blow-up Y r,s

m has the locus of fixed points equal to the smooth exceptional divisor of
the blow-up. This implies that the quotient X̃r+s

m = Zr,sm /µm is a nonsingular variety. The map
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f̃ : Zr,sm → Xr+s
m factors as the composition of the quotient morphism p : Zr,sm → X̃r+s

m and the
blow-up φ : X̃r+s

m → Xr+s
m of f(Y0 ∪ Y∞) = Xs−1

m ∪Xr−1
m in Xr+s

m .

Zr+sm

��

/µm //

f̃

%%

X̃r+s
m

��

Pr ×Xs−1
m ∪Xr−1

m × Ps−1

��

? _oo

Xr−1
m ×Xs−1

m
� � // Xr

m ×Xs
m

f // Xr+s
m Xs−1

m ∪Xr−1
m

? _oo

For example, take m = 3, r = s = 1, so that we have a map E × E 99K X of the self-product
of the Fermat plane cubic onto the Fermat cubic surface X2

3 . The open subset U r,sm is equal to the
complement of three fibers E1, E2, E3 and E′1, E

′
2, E

′
3 of each projection E×E → E. The set Z1,1

3

is the union of 9 intersection points pij = Ei ∩ Ej . The curves Ei, E′j are blown down to 6 points
qi, q

′
i on X2

3 lying on two lines ` : z0 = z1 = 0 and `′ : z2 = z3 = 0. The images of the exceptional
curves Rij over pij are the 9 lines on the cubic surface that join a point on one line to a point on
another one. The rational map E × E is given by the linear subsystem |

∑
Ei +

∑
E′i −

∑
pij | of

curves in the complete linear system |
∑
Ei +

∑
E′i| that pass through the points pij . The inverse

transform of this linear system on the blow-up Y 1,1
3 is the complete linear 3-dimensional system

|D̃| with D̃2 = 9. It defines a morphism of degree 3 onto the cubic surface X2
3 . The morphism

f̃ : Y 1,1
3 → X2

3 factors through a finite Galois map Y 1,1
3 → X̃2

3 of degree 3 and the blow-up
X̃2

3 → X2
3 of the six points qi, q′i. The branch divisor of the first map is the disjoint union of nine

smooth rational curvesRij with self-intersection equal to−3. They are the proper inverse transform
of the 9 lines 〈qi, q′j〉 on the cubic surface X2

3 to the blow-up X̃2
3 .

Note that one can show that the existence of 9 lines and 6 points on a cubic surface forming a
configuration (63, 92) characterizes the Fermat cubic surface.

Applying inductively the construction, we obtain a rational map

(X1
m)r 99K Xr

m

of the self-product of the Fermat plane curve X1
m to the Fermat hypersurface Xr

m.

We have already observed that the Mumford-Tate group of a Hodge substructure is isomorphic to
a quotient of the Mumford-Tate group of the Hodge structure. The following lemmas (see [140],
Lemma 7.1.4, Lemma 7.1.5) allow us to conclude that the Fermat hypersurface Xr

m is of CM-type.

Lemma 9.14. Let (V, h) and (V ′, h′) be nonzero rational polarized Hodge structures. Then, MT(V⊗Q
V ′, h⊗ h′) is commutative if and only MT(V, h) and MT(V ′, h′) are commutative.

Lemma 9.15. Let Y be the blow-up of a smooth varietyX along a smooth subvarietyZ of codimen-
sion 2. Then, the Mumford-Tate group of Hk(Y,Q) is commutative if and only if the Mumford-Tate
groups of Hk(X,Q) and of Hk−2(Z,Q) are commutative.

From the previous example we know that all Fermat curves J(X1
m) are of CM-type (see [93]).

Applying this to Katsura-Shioda construction, we obtain that a Fermat hypersurface Xn
m has com-

mutative Mumford-Tate group of Hn(Xn
m,Q) (and hence for all other cohomology since it is a

hypersurface).
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Remark 9.16. A generalization of a Fermat hypersurface is a Delsarte hypersurface defined to be a
hypersurface in Pr+1 given by a homogeneous polynomial of degree m equal to the sum of r + 2
monomials xaj00 · · ·xajr+1

r+1 , j = 0, . . . , r + 1, such that the matrix A = (aij) is nondegenerate and
all its rows add up to m. One also assumes that each columns contains at least one zero entry. An
example of a Delsarte surface is a surface

x0x
m−1
1 + x1x

m−1
2 + xm−1

2 + xm3 = 0.

Let A∗ be the adjugate matrix of the matrix A, i.e. AA∗ = det(A)Ir+2. Let δ be the greatest
common divisor of the entries a∗ij of A∗, and d = det(A)/δ so that B = dA−1 = δ−1A∗ is an
integral matrix. One constructs a dominant rational map from the Fermat hypersurface Xr

d to a
Delsarte hypersurface of degree d defined by the formulas

(x0, . . . , xr+1)→ (

r+1∏
j=0

y
b0j
j , . . . ,

r+1∏
j=0

y
br+1j

j ),

where B = (bij).

One can use this to prove that Delsarte hypersurfaces are of CM-type. Finally note that one can
also consider a weighted homogenous version of a Delsarte hypersurface by giving the weights to
the unknowns xi. They are finitely covered covered by Delsarte polynomials. One uses this method
in [107] to prove that some K3 surfaces are of CM-type.

Remark 9.17. One can generalize the constriction from Example 9.13 as follows. Let F (x0, . . . , xr)
be a weighted homogeneous polynomial of degree d with weights q0, . . . , qr and G(y0, . . . , ys) be
a weighted homogeneous polynomial of degree m with weightes q′0, . . . , q

′
s. Consider the hypersur-

facesX = V (F+xmr+1), Y = V (G+yms+1) and Z = V (F (z0, . . . , zr)+G(zr+1, . . . , zr+s)) in the
weighted projective spaces P(q0, . . . , qr, 1),P(q′0, . . . , q

′
s, 1) and P(q0, . . . , qr, q

′
r+1, . . . , q

′
r+s+1),

respectively. Then, the rational map
X × Y 99K Z,

given by the same formula as in Example 9.13 is a dominant map of finite degree defined over the
complement of V (xr+1)× V (ys+1. In particular, any smooth surface of degree m in P3 defined by
an equation f(x, y) + g(z, w) = 0 can be finitely rationally covered by the product of two smooth
plane curves of degree m.

Example 9.18 ( [176]). Let X be an algebraic K3 surface. Let Hdg(X) and MT(X) be the Hodge
group and the Mumford-Tate group of the rational Hodge structure on H2(X,Q). It fixes algebraic
cycles and preserves the intersection form on the lattice of transcendental cycles TX , hence

Hdg(X) ⊂ SO(TX,Q).

Let C be the Weil operator on TX,R, it acts as −1 on {(x, x̄) ∈ H2,0(X) ⊕H0,2(X)} and as 1 on
H1,1(X) ∩ TX,R. Thus, the form (x, y) 7→ 〈x,Cy〉 is a positive definite symmetric form on TX,R.
This defines a polarized rational Hodge structure on TX,Q. This implies that MT(X) and Hdg(X)
are reductive algebraic groups overQ. Consider V = TX,Q as a linearQ-representation of Hdg(X).
Then, it is an irreducible representation (it is true for any surface with pg = 1) ( [176], Theorem
1.4.1). Let

EX = EndHdg(X)(V ).
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Since V is a simple Hdg(X)-module, EX is a division algebra. In fact, it is a commutative field,
a totally real field or an imaginary quadratic extension of a totally real field E0. To show that it
is commutative one considers a natural non-trivial homomorphism EX → End(H2,0(X)). Since
it sends 1 to 1, it an injective homomorphism, hence EX is commutative. The assertion about the
structure of the field EX follows from the existence of a positive anti-involution x 7→ x′ on EX
defined by the taking the adjoint operator with respect to the bilinar form 〈x, y〉 = (x,Cy)X .

For any x, y ∈ EX , consider the linear function EX → Q defined by e 7→ (ex, y)X . Since the
bilinear form (a, b) 7→ trEX/Q(ab) is non-degenerate, there exists αx,y ∈ EX such that (ex, y) =
trEX/Q(eαx,y). Define a bilinear form by setting

Φ : V × V → EX , (x, y) 7→ αx,y.

Since (ex, y)X = (x, e′y)X = (e′y, x)X , we obtain that Φ(x, y) = Φ(y, x)′. Also, it is easy to see
that Φ(ex, y) = eΦ(x, y). In particular, if EX is a totally real field (resp. a CM-field), then Φ is a
symmetric (resp. Hermitian) bilinear form on the EX -vector space V . Since HdgX commutes with
E and preserves the intersection form on X , we see that HdgX preserves Φ.

The main result of [176] is the following.

HdgX = SO(TX,Q,Φ),

if EX is a totally real field, and
HdgX = U(TX,Q,Φ),

otherwise. In the former (resp. the latter case) the dimension of the Hodge group is equal to t2X−tX
2

(resp. tX4 , where tX = rankTX = 22− ρ(X).

For example, when EX = Q, HdgX ∼= SO(TX,Q).

9.4 Abelian Varieties of CM-Type

We have already discussed elliptic curves with complex multiplication. In this section, as promised,
we extend it to higher dimension.

Let us start with an example. Suppose A admits an automorphism g of order m. Let Φm(x) be
the cyclotomic polynomial, a minimal polynomial of the cyclotomic field Q(ζm). Then,

Q(ζm) ∼= Q[x]/(Φm(x)) ↪→ EndQ(A), x 7→ g.

The Galois group of Q(ζm)/Q is isomorphic to the group of invertible elements in the ring Z/mZ
and its order is equal to the value φ(m) of the Euler function. Let m = p be an odd prime,
the field Q(ζpk) is a cyclic extension of Q. It is a quadratic extension of a totally real subfield
Q(η), η = ζpk + ζp−k , by a complex number ζpk . If p = 2 and k > 2, then Q(ζpk) = Q(η,

√
−1)

and the Galois group is the direct product of two cyclic groups of orders 2k−2 and 2.

A cyclotomic field is an example of a CM-field, an imaginary quadratic extension K of a totally
real field K0. This means that K = K0(α), where ρ(α2) < 0 for all embeddings ρ : K ↪→
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C. Equivalently, a CM-field K can be characterized by the property that there exists a non-trivial
automorphism ι ofK (called the conjugation) that commutes with any embedding ρ : K ↪→ C. The
Galois closure of a CM-field in any larger field is known to be a CM-field.

Recall that in Chapter 3 we have defined an abelian variety of CM -type by the property

[EndQ(A) : Q]red = 2 dimA.

Suppose A is a simple abelian variety of CM-type. Then, R = EndQ(A) is a division algebra
and its center is of degree e over Q, hence [R : Q]red = en = 2 dimA for some n. We use the
classification of possible types of R from Section 2.5. If R is of type II or III, then 2e must divide
dimA, and this obviously impossible in our case. If R is of type I, then R is a totally real field with
e|g. Since n = 1 in this is again impossible. This leaves us with type IV, and its definition shows
that R is a CM-field with K0 to be a totally real field of degree e0 = dimA over Q.

One defines a CM-algebra to be a finite product of CM-fields. A not necessary simple, abelian
variety A is of CM-type if it is isogenous to a product of simple abelian varieties of CM-type, hence
EndQ(A) contains a CM-algebra of dimension 2 dimA, but necessary coincides with it.

We say that a simple abelian variety has a complex multiplication if its endomorphism ring EndQ(A)
is of the fourth type, i.e the Rosati involution acts non-trivially on the center of K. In this case
e = 2e0 and e0d

2|g. If, additionally, e0 = g, then A is of CM-type. Obviously, abelian varieties
of CM-type admit real multiplication by a field of degree g. In particular, in the case g = 2, their
isomorphism classes are points in the Humbert surface.

Example 9.19. Suppose a simple abelian variety A admits an automorphism of prime order p > 2.
Then, e0 ≤ g, hence the degree 1

2(p − 1) of the real subfield of Q(ζp) is less than or equal to g,
hence p ≤ 2g + 1. For example, a simple abelian surface does not have automorphisms of prime
order > 5. An example of an abelian variety of dimension g admitting an automorphism of order
p = 2g + 1 is the Jacobian of the hyperelliptic curve

Cp : y2 = xp − 1. (9.8)

The Jacobian of the curve C5 defines one of the 19 isomorphism classes of principally polarized
abelian surfaces of CM-type defined over Q (see [130], [173]). The corresponding CM-fields are

Q(

√
−(2 +

√
2)), Q(

√
−(5 + 2

√
5)), Q(

√
−(13 + 2

√
13)), Q(

√
−(29 + 2

√
29)),

Q(

√
−(37 + 6

√
37)), Q(

√
−(53 + 2

√
53)), Q(

√
−(61 + 6

√
61)), Q(

√
−5(2 +

√
2)),

Q(

√
−(5 +

√
5)), Q(

√
−13(5 + 2

√
5)), Q(

√
−17(5 + 2

√
5)), Q(

√
−(13 + 3

√
13)),

Q(

√
−5(13 + 2

√
13)).

The field Q(
√
−(5 + 2

√
5)) is equal to Q(ζ5) and corresponds to the curve C5. Note that the

Shioda-Inose K3 surface associated to this curve admits a non-symplectic automorphism of order 5.
The surface admits an elliptic fibration with two reducible fibers of types Ẽ8 and Ẽ7 with Weierstrass
equation

y2 = x3 + t3x− t7 = 0
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[94]. Note that the rank of the Mordell-Weil group of this fibration is equal to 1 (and not 0 as was in
the case of Example 6.2). The surface can be also given by the following equation in the weighted
projective space P(5, 7, 8, 20)

x8 + xy5 + z5 + w2 = 0.

The group of order 5 acts by (x, y, z, w) 7→ (x, y, ζ5z, w). The Picard lattice is isomorphic to
E⊕2

8 ⊕
(−2 1

1 2

)
(see [10], [107]). Finally, note that the isomorphism class of the associated abelian

surface belongs to the Humbert surface Hum(5).

More generally, for any prime p and 0 < a < p, the Jacobian of the normalization of the curve

yp = xa(xp
e−1 − 1), (9.9)

is a simple abelian variety of dimension pe−1(p− 1)/2 with complex multiplication by Q(ζpe) [2].

Another series of examples of simple abelian varieties with automorphisms of prime (odd) order
p is provided by the following construction. Let K be a subfield of C, let n ≥ 5 an integer, and
f(x) ∈ K[x] a degree n irreducible polynomial over K, whose Galois group over K is either Sn

or An. Let Jf,p be the jacobian of the normalization of the curve

yp = f(x).

Then, Jf,p is a simple abelian variety, whose endomorphism ring is the pth cyclotomic ring Z[ζp]
[179, 182] and therefore its automorphism group is a cyclic group of order 2p. (The proof is based
on Theorem 2.21 applied to ` = p and R= the n-element set of roots of f(x).) As for dim(Jf,p), it
equals (n− 1)(p− 1)/2 if p does not divide n and (n− 2)(p− 1)/2 if it does.

Let R be a CM-algebra and ι : R → R be an automorphism that induces the conjugation on
each CM-field component. The set of Q-homomorphisms a CM-algebra R to C consists of pairs
(ρ, ι◦ρ). A choice of one element in each pair gives a set Φ of homomorphisms and the pair (R,Φ)
is called a CM-type of R. One can construct an abelian variety of CM-type as follows. Let (R,Φ)
be a CM-type. Choose a lattice L in R, i.e. a free Z-submodule of R of rank equal to [R : Q]. Let
o = {x ∈ R : x · L ⊂ L}. This is an order in R. We have a natural pairing

R× Φ→ C, (r, ρ) 7→ ρ(r).

It defines an isomorphism

RR → CΦ ∼= C
1
2 [R:Q].

The image of L is a lattice Λ in CΦ, we set A = CΦ/Λ. Let o = {x ∈ R : x · L ⊂ LK}. This is
an order in R, and o ⊂ End(A) so that R ⊂ EndQ(A). To define a polarization we consider the
following bilinear form on R

E : R×R→ Q, (x, y) 7→ TrR/Q(αxȳ),

where α ∈ R∗ satisfies

(i) ᾱ = −α,
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(ii) Im(ρ(α) > 0 for all ρ ∈ Φ.

One can always find such α. It follows from (i) that E is a skew-symmetric bilinear form. Also it
implies

E(x, y) =
∑
ρ∈Φ

TrC/R(ρ(αxȳ)) = ρ(α)(xȳ − x̄y),

hence,
E(ix, iy) =

∑
ρ∈Φ

TrC/R(ρ(αixīy)) = E(x, y),

and, using (i) and (ii),

E(ix, y) =
∑
ρ∈Φ

TrC/R(ρ(αixȳ)) = iρ(α)(xȳ + x̄y) > 0,

Thus, E defines a polarization on A. Its type is equal to the discriminant of the bilinear form E
restricted to the lattice L.

Abelian varieties of CM-type do not vary in families. They are isolated points in Ag,n. However,
less restrictive condition that the endomorphism algebra is of type IV, allows one to construct the
moduli space. We refer to [106], Chapter 9 for the general theory. Note that in this case the
Hermitian symmetric spaces of unitary type appear.

Proposition 9.20. An abelian variety A is of CM–type if and only if the Mumford-Tate group of the
Hodge structure on V = H1(A,Q) is commutative (hence isomorphic to Grm over C).

Proof. Suppose A is of CM-type. Let R be the CM -algebra acting on V . Its center is a Q-
subalgebra K of dimension 2 dimA = dimV , so that V is a vector space of dimension 1 over
K. The action of K ⊗Q R on V commutes with the complex structure, hence C is contained in the
centralizer of K ⊗Q R in EndR(V ) and hence coincides with it. This shows that the Mumford-Tate
group is a subgroup of the torus C∗ considered as an algebraic group ResK/QGm,K over Q.

Conversely, assume that MT(V ) ⊂ GL(V ) is a torus T . Let R be the subalgebra of EndQ(V ) of
endomorphisms that are endomorphisms of the MT(V )-module V . Since MT(V ) contains C∗ =
S(R) that acts on V by v 7→ zv, z ∈ C∗, we see that R is isomorphic to a sublalgebra of EndQ(A).
SinceG = MT(V ) is a diagonalizable commutative algebraic group, we have [R : Q]red = dimQ V .
In fact, we have decomposition of V into eigenspaces V = ⊕χ∈X (G)Vχ, henceR =

∏
χ EndQ(Vχ).

This implies that the reduced degree of R over Q is equal to
∑

χ dimQ Vχ = dimQ V . Thus,
EndQ(A) contains a central algebra of reduced degree equal to dimA. This algebra is a CM-
algebra, and hence A is of CM-type.
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Chapter 10

Endomorphisms of Jacobian Varieties

In this chapter, we will discuss the endomorphism algebra of the Jacobian variety of an algebraic
curve C of genus g > 1. In particular, we introduce some tools that help to decide whether C is
general in the sense that End(J(C)) ∼= Z.

10.1 Correspondences on a Smooth Projective Algebraic Curve

Let C be a nonsingular projective curve of genus g > 1. We are interested in a question when
End(J(C)) 6= Z. Of course, easy examples are curves admitting a non-trivial group of automor-
phisms or admitting a degree d cover to a curve of lower genus g′ > 0. In the latter case, the Jacobia
variety is not simple. We also saw in the previous chapters many examples of curves of genus 2
with real or complex multiplication with simple Jacobian.

Let L be a line bundle on the product C × C. For any point x ∈ C, let L(x) = i∗x(L) ∈ Pic(C),
where ix : C → C × C be the closed embedding map c 7→ (x, c). We will prefer to switch from
line bundles. Extending this map by linearity, we obtain a homomorphism

uL : J(C)→ J(C),

where J(C) is identified, via the Abel-Jacobi map, with the group of divisor classes of degree 0 on
C. Let T be the subgroup of Pic(C × C) generated by line bundles of the form p∗1(M), p∗2(M),
where pi : C × C → C are the two projections. It is easy to see that uL = 0 for any L ∈ T .
Applying the Seesaw Theorem ( [41], Appendix), one shows that any L with uL = 0 belongs to T .

Thus, we obtain an injective homomorphism of abelian groups

u : Corr(C) := NS(C × C)/T → End(J(C)), L 7→ uL.

An element of the group Corr(C) is called a correspondence on C.

Remark 10.1. One can interpret this homomorphism as follows. First, via the inclusion C ↪→ J(C)
we identify H1(C,Z) with H1(J(C),Z). This is compatible with the Hodge structures on H1(C,C)

171



172 CHAPTER 10. ENDOMORPHISMS OF JACOBIAN VARIETIES

and H1(J(C),C). Using the principal polarization, we can identify J(C) with the dual abelian
varietyH0,1(C,C)/H1(C,Z). The Küneth Formula and the Poicaré Duality, give a homomorphism

H2(C × C,Z) ∼= H1(C,Z)⊗H1(C,Z) ∼= End(H1(C,Z))

Using the Hodge decomposition, we obtain a map

NS(C × C) = H1,1(C) ∩H2(C × C,Z)→ H1,0(C)⊗H0,1(C) ∼= End(H0,1(C)).

This defines a rational and algebraic representation of the endomorphism φL, where c1(L) ∈
H1,1(C × C) ∩H2(C × C,Z).

Let us use divisor classes on C × C instead of line bundles, so, for example, we write uD instead
of uL. Since the sum F1 + F2 of two fibers of the projections C × C → C is an ample divisor on
the surface C×C, adding some multiple of it, we may assume that a correspondence is represented
by an effective divisor. Also, replacing some positive multiple D by a linearly equivalent divisor,
we may assume that a correspondence is represented by a divisor of the form 1

rZ, where Z is an
irreducible curve. One may consider Z as a map C → C(d1), x 7→ Z ∩ {x} × C, where d1 is the
degree of the projection p1 : Z → C. Similarly, Z defines a map C → C(d2), x 7→ Z ∩ C × {x},
where d2 is the degree of the projection p2 : Z → C. The switch of the factors automorphism
C × C → C × C is an involution D → D′ on Corr(C). Note that the numbers (d1, d2) can be
defined for any divisor class on C ×C, but are not well-defined for correspondences. However, the
following number

t(D) = d1 + d2 − (D,∆), (10.1)

where ∆ is the diagonal, is a well-defined linear function on Corr(C). We have

t(D) = tr((uD)r).

To prove this, we apply the Lefschetz fixed-point formula for correspondences (see [57], Example
16.1.15) that gives

(D,∆) = tr(u∗D|H0(C,Q)) + tr(u∗D|H2(C,Q))− tr(u∗D|H1(C,Q)).

It is easy to see that d1 = tr(u∗D|H0(C,Q)), d2 = tr(u∗D|H2(C,Q)) and tr(u∗D|H1(C,Q)) =
tr(u∗D|H1(J(C),Q)) = tr((uD))r).

One defines the inverse of the map u as follows. Recall that J(C) comes with a natural principal
polarization defined by the class in NS(J(C)) of a theta divisor Θ, the image of the symmetric
product C(g−1) in J(C) under the Abel-Jacobi map. As a divisor this image depends on a choice of
points (p1, . . . , pg−1) on C. One can always choose a theta divisor Θ to be symmetric, i.e. satisfy
[−1]∗J(C)(Θ) = Θ. It is still not defined uniquely. One can show that there exists a divisor class ϑ of
degree g − 1 satisfying 2ϑ = KC (a theta characteristic) such that

Θ + ϑ := {ϑ+D,D ∈ J(C)} = {effective divisor classes on C of degree g − 1}.

Fix a symmetric theta divisor Θ and embedding ιc : C ↪→ J(C) via the Abel-Jacobi map defined
by a choice of a point c ∈ C. For any u ∈ End(J(C)), consider the map

du : C × C → J(C), (x, y) 7→ u(ιc(x))− ιc(y),



10.1. CORRESPONDENCES ON A SMOOTH PROJECTIVE ALGEBRAIC CURVE 173

and define
β(u) = d∗u(Θ) mod T.

In other terms, let Θu = {(a, b) ∈ J(C)× J(C) : u(a)− b ∈ Θ}, then β(u) = (ιc × ιc)∗(Θu). It is
clear that choosing different c, replaces the image of C × C in J(C)× J(C) by a translate by some
point in the abelian variety J(C)× J(C), hence replaces β(u) by an algebraically equivalent divisor
on C × C.

We refer to [106, Chapter 11, §5], for the proof of the fact that β is the inverse of u making an
isomorphism

u : Corr(C) ∼= End(J(C)). (10.2)

Note that β gives a natural section of NS(C×C)→ Corr(C), we can call the corresponding divisor
class β(u) ∈ NS(C × C) a canonical correspondence associated to u. Fixing ϑ and a point c ∈ C,
we can even choose a representative of β(u) in Div(C × C). Note that

d1(β(u)) = (C,Θ), d2(β(u)) = (u(C),Θ).

It is known that (C,Θ) = g [106, 11.2.2].

In fact, the isomorphism (10.2) is an isomorphism of rings, where the ring structure is defined by
the composition of correspondences

D♦D′ = (p13)∗(p
∗
12(D) · p∗23),

where pij : C×C×C → C×C are the natural projections. One easily checks that the multiplication
law is well-defined on Corr(C). The homomorphism u becomes an isomorphism of rings.

Next we define a symmetric bilinear form on Corr(C) by setting

σ(D,D′) = d1d
′
2 + d′1d2 − (D,D′).

Obviously, the radical of the form contains the subgroup of divisors algebraically equivalent to zero.
It also contains the subgroup T . Thus, it defines a symmetric bilinear form on the group Corr(C).
The Castelnuovo inequality asserts that the corresponding quadratic form

σ(D) := σ(D,D) = 2d1d2 − (D,D) (10.3)

is positive definite. An exercise in [65, p. 368] sketches a proof.

Note that our trace function (10.1) can be expressed in terms of the symmetric form σ

t(D) = σ(D,∆).

Let D → D′ be the involution on Corr(C) defined by the switch of the factors of C × C. Under
the isomorphism (10.2), it corresponds to the Rosati involution f 7→ f ′ [106], 11.5.3. Considering
effective correspondences D1, D2 as multi-valued maps C → C, one checks that

d1(D1♦D
′
2) = n1(D1)n2(D2), n2(D1♦D

′
2) = n2(D1)n1(D2), (D1, D2) = (D1♦D

′
2,∆).

(cf. [57], Chapter 16, Examples 16.3.3 and 16.3.4). This implies that

σ(D1, D2) = n1(D1♦D
′
2) + n2(D1♦D

′
2)− (D1♦D

′
2,∆) = tr(α(D1♦D

′
2)).



174 CHAPTER 10. ENDOMORPHISMS OF JACOBIAN VARIETIES

Thus, the symmetric bilinear form σ(D1, D2) coincides, under the isomorphism α, with the sym-
metric form tr(fφ′) on End(J(C)).

It is known that, under the isomorphism u, the symmetric form becomes the symmetric form
Tr(φψ′) defined by the Rosati involution. Note that, taking D to be the diagonal ∆ in C × C, we
obtain that σ(D) = 2− (2− 2g) = 2g and φ(∆) = idJ(C), so the formulas agree.

Note, that, applying the adjunction formula, we have D2 = 2pa(D)− 2− (2g − 2)(d1 + d2), so
we may rewrite (10.3) in the form

σ(D) = 2d1d2 + (2g − 2)(d1 + d2)− 2pa(D) + 2. (10.4)

A correspondence D ∈ Corr(C) such that uD = [−ν]J(C) is called a correspondence with valence
ν. In this case, it can be represented by a curve Z in C × C with the class [C] in H2(C × C,Z)
equal to

(d1 + ν)[C × {x}] + (d2 + ν)[{x} × C]− ν[∆]

So, End(J(C)) 6= Z if and only if C admits a correspondence without valence. Many classical
enumerative problems are solved by constructing correspondence with valence and applying the
Brill-Noether formula that expresses the valence in terms of the number (D,∆) of united points of
the correspondence.

(D,∆) = d1d2 − 2νg,

where g is the genus of C (see [41], Corollary 5.5.2).

A correspondence D is called symmetric if D′ = D. It follows from above that the subgroup
Corr(C)s of symmetric correspondences is isomorphic to the group of symmetric endomorphisms
of J(C), and hence to the Néron-Severi group NS(J(C)). Note that a canonical representative
D = β(u) of a symmetric endomorphism umust satisfy d1 = d2 = g, hence (D,∆) = 2g−t(D) =
2g − tr(ur).

An example of a symmetric correspondence with valence −1 on a curve of genus g is the Scorza
correspondenceRθ with d1 = d2 = (g, g) defined by a choice of a non-effective theta characteristic
ϑ (see [41], 5.5). It is equal

βθ(idJ(C)) = {(x, y) ∈ C × C : x− y ∈ Θθ}.

Note that it does not depend on a choice of an embedding of C in J(C).

Example 10.2. Let f : C → C ′ be a finite map of curves. It defines a correspondence

Γ(f) = C ×X C = {(x, y) : f(x) = f(y)}.

It follows from the definition that u(Γ(f)) maps a divisor class d =
∑
xi ∈ Pic(C)0 to the divisor

class
∑
f∗(f(xi)) ∈ Pic0(C). Obviously, it is equal to f∗(Nm(d)), where Nm : J(C) → J(C ′) is

the norm map and f∗ : J(C) → J(C ′) is the pull-back map. Since the norm map is surjective, we
obtain that the image of the endomorphism u = φ(Γ(f)) is equal to f∗(J(C ′)). Thus, if g(C ′) > 0,
the endomorphism u coincides with the norm map of the abelian subvariety f∗(J(C ′)) of J(C).
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Example 10.3. Let f : C → C be an automorphism of C and D = Γf be its graph. Then,
d1(D) = d2(D) = 1 and pa(D) = g. Applying (10.4), we get σ(Γf ) = σ(∆) = 2−(2−2g) = 2g.
Let ν = (Γf ,∆) be the number of fixed points of f . Thus, σ(Γf ,∆) = 2− (Γf ,∆) = 2− ν. Since
the quadratic form σ is positive definite, we have

σ(Γf )σ(∆)− σ(Γf ,∆)2 = 4g2 − (2− ν)2 = (2g − 2 + ν)(2g + 2− ν) > 0,

unless Γf = m∆ in Corr(C). If g = 1, the inequality holds only if ν = 0 or ν = 4, i.e. f is a
translation by a point or the quotient by (f) is P1. If g > 1, the latter happens only if ν = 2g + 2.
Since the eigenvalues of f∗ : H1(C,C)→ H1(C,C) are roots of unity, we have |tr(f∗)| ≤ 2g. The
Lefschetz fixed-point formula gives us that ν = 2− tr(f∗) ≤ 2 + 2g with the equality taking place
if and only if f∗ = −id. This happens only if f is an involution with quotient isomorphic to P1,
hence C is a hyperelliptic curve and f is its hyperelliptic involution.

Observe that the graph of an automorphism f is symmetric if and only if f = f−1, i.e. f is an
involution. Thus, if f is of order > 2, the corresponding automorphism of J(C) is not symmetric.
For example, it can never define a real multiplication of J(C).

Example 10.4 (I. Shimada [160]). Let f : C → C ′ be a finite cover of curves and let G be its
Galois group. The Galois theory of finite covers provides us with a finite map φ : X → C such that
the composition f ◦φ : X → C ′ is a Galois cover with the Galois group G and C ∼= X/H for some
subgroup H of C. We assume that H is not a normal subgroup, or, equivalently, the cover f is not
a Galois cover. Let g ∈ G be such that H ′ = gHg−1 6= H . Then, the map g : X → X induces
an isomorphism αg : C = X/H → X/H ′, hence defines a map (φ, αg) : X → C × C. Let S be
the correspondence defined by the image of this map. It consists of points (φ(x), φ(g(x)), x ∈ X .
The curve S is birationally isomorphic to X , it is isomorphic to X if no element of the double coset
HgH has a fixed point on X . We have d1(S) = d2(S) = d = [H : H ′ ∩H] and S is symmetric if
and only if g is an involution.

We have

(S,∆) =
∑
h∈H

Xhg,

where Xhg denotes the set of fixed points of hg. Thus

t(uS) = 2d− (S,∆) = 2[H : H ′ ∩H]−
∑
h∈H

Xhg. (10.5)

suppose uS = [m]J(C) for somem ∈ Z. Then, t(uS) = 2gm, so we can construct a correspondence
without valence if the right-hand side of (10.5) is not a multiple of 2g. For example, suppose f is
an unramified cover, so that its Galois closure is unramified too. Then, H acts without fixed points.
Hence, if #H < 2g, we obtain 0 < t(uS) < 2g, so we get a non-trivial endomorphism.

In the case C ′ = P1, Shimada gives another criterion when uS has no valence:the Galois group
acts 2-transitively on fibers of C → C ′.
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10.2 Hyperelliptic Jacobians

The aim of this section is to construct explicitly a plenty of hyperelliptic curves C of genus g > 1,
whose jacobian J(C) has endomorphism ring End(J(C)) = Z. The idea is to look for curves
defined over a field K such that the Galois module J(C)[2] is very simple and apply Theorem 2.15.

Let K be a finitely generated subfield of C and f(x) ∈ K[x] be a degree n = 2g + 1 monic
polynomial without repeated roots. We write Rf for the n-element set of roots of f(x) in K̄. We
have

f(x) =
∏
α∈Rf

(x− α) ∈ K̄[x] ⊂ C[x].

We writeK(Rf ) for the subfield of K̄ obtained by adjoining toK all elements of Rf . By definition,
K(Rf ) is the splitting field of f(x), which is a finite Galois extension of K, and

Rf ⊂ K(Rf ) ⊂ K̄ ⊂ C.

The Galois group Gal(f/K) of f(x) over K is the Galois group Gal(K(Rf )/K) of the field ex-
tension K(Rf )/K. Since f(x) has coefficients in K, the Galois group Gal(K(Rf )/K permutes
elements of Rf , which gives rise to the group embedding

Gal(f/K) = Gal(K(Rf )/K) ↪→ Perm(Rf ) ∼= Sn

where Perm(Rf ) is the group of all permutations of the n-element set Rf and Sn is the group of
permutations on n letters. We write Alt(Rf ) for the only index 2 subgroup of Perm(Rf ) ∼= Sn,
which is isomorphic to the alternating group An. We will apply constructions of Section, 2.3 to

n = 2g + 1, R = Rf , G = Gal(f/K)

and the faithful G = Gal(f/K)-module
(
FRf2

)0
of F2-dimension n − 1 = 2g. Notice that the

action of Gal(K) on Rf factors through the natural surjection

Gal(K)� Gal(K(Rf )/K) = Gal(f/K), (10.6)

which allows us to consider
(
FRf2

)0
as the Gal(K)-module.

Remark 10.5. In light of Remark 2.14(0), the surjectivity of (10.6) implies that
(
FRf2

)0
is very

simple as the Gal(f/K)-module if and only if it is very simple as the Gal(K)-module. In light of

Theorem 2.21(ii) to R = Rf and G = Gal(f/K), the Gal(K)-module
(
FRf2

)0
is very simple if

Gal(f/K) = n or An. (Recall that g ≥ 2 and therefore n = 2g + 1 ≥ 5.)

Let Cf be the irreducible smooth projective curve, that is, the smooth projective model of the
smooth plane affine curve

C̃f : y2 = f(x).

It is a genus g curve that is defined over K, whose field of rational functions is the field of fractions
of the ring K[x, y]/(y2 − f(x)). Its set of complex points Cf (C) is the union of C̃f (C) and one
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point, denoted by ∞. It is defined over K, and it is the only pole of rational functions x and y.
More precisely,∞ is a double pole of x and a pole of order 2g + 1 of y. The (2g + 1)-element set
of points

Wα = (α, 0) ∈ C̃f (K̄) ⊂ Cf (K̄) ⊂ Cf (C), (α ∈ Rf )

is the set of zeros of y; all of them are simple. In addition, each Wα is the only zero of the rational
function x− α, and this zero is double. Hence, the divisor of each rational function x− α on Cf is
equal to 2(Wα)− 2(∞), while the divisor of y is( ∑

α∈Rf

(Wα)
)
− (2g + 1)(∞) =

∑
α∈Rf

(Wα)− (∞).

This implies that the linear equivalence class of each divisor (Wα)− (∞) has order 2 in the Picard
group of Cf . In addition, the (2g+ 2)-element set of all Weierstrass points of Cf consists of∞ and
all Wα.

There is a hyperelliptic biregular involution ι : Cf → Cf such that

ι∗x = x, ι∗y = −y;

in particular, the subfield of ι-invariant rational functions on Cf coincides with C(x); the C-
subspace of ι-antiinvariant rational functions on Cf coincides with y · C(x). On the other hand,
the set of fixed points of ι consists of∞, and all Wα, i.e., coincides with the set of all Weierstrass
points of Cf . (See [128] for details.)

Lemma 10.6. Let D be a divisor on C with support in {Wαα ∈ Rf}, i.e.,

D =
∑
α∈Rf

mα(Wα), all mα ∈ Z,
∑
α∈Rf

mα = 0.

Then,D is principal if and only ifD is divisible by 2 in the group of divisors onC, i.e., allmα ∈ 2·Z.

This lemma gives us the following description of the Galois module Pic0(Cf )[2] of points of order
(dividing) 2 on the Picard group of Cf that is actually contained in [128], see also [189, p. 103].

Claim 10.7. The Gal(K)-modules
(
FRf2

)0
and J(Cf )[2] are canonically isomorphic.

Proof of Claim 10.7 modulo Lemma 10.6. Let us consider the Gal(K)-module ZRf of Z-valued
functions on Rf and its submodule(

ZRf
)0

= {φ̃ : Rf → Z |
∑
α∈Rf

φ̃(α) = 0}.

Clearly,
(
ZRf

)0 is a freeZ-module of rank n−1 = (2g+1)−1 = 2g and its quotient
(
ZRf

)0
/2
(
ZRf

)0
is a vector space over F2 of dimension 2g. Let us consider the homomorphism of Gal(K)-modules

Ψ̃ :
(
ZRf

)0
→ J(Cf )[2]
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that assigns to a function φ̃ : Rf → Z the linear equivalence class of the divisor∑
α∈Rf

φ̃(α)(Wα) =
∑
α∈Rf

φ̃(α) ((Wα)− (∞)) .

By Lemma 10.6, the kernel of Ψ̃ coincides with 2 ·
(
ZRf

)0. Hence, Ψ̃ induces the injective homo-
morphisms if Gal(K)-modules

Ψ :
(
ZRf

)0
/2
(
ZRf

)0
↪→ J(Cf )[2].

Since the source and the target of Ψ have the same F2-dimension (namely, 2g), Ψ is an isomorphism
of Gal(K)-modules. To finish the proof, we need to produce an isomorphism of Gal(K)-modules(
ZRf

)0
/2
(
ZRf

)0 and
(
FRf2

)0
, which is straightforward. Indeed, let us consider the homomor-

phism of Gal(K)-modules

Φ̃ :
(
ZRf

)0
→
(
FRf2

)0
, φ̃ 7→ φ = φ̃ mod 2.

Clearly, the kernel of Φ̃ coincides with 2 ·
(
ZRf

)0. Hence Φ̃ induces an injective homomorphism of
Gal(K)-modules

Φ :
(
ZRf

)0
/2
(
ZRf

)0
↪→
(
FRf2

)0
.

Since the source and the target of Φ have the same F2-dimension (namely, 2g), Φ is an isomorphism
of Gal(K)-modules. This ends the proof of the claim.

Proof of Lemma 10.6. Let
D =

∑
α∈Rf

mα(Wα) (10.7)

be a degree 0 divisor on C. In particular,

0 = deg(D) =
∑
α∈Rf

mα.

Suppose that all the integers mα are even, i.e., mα = 2dα for some integers dα and∑
α∈Rf

2dα =
∑
α∈Rf

mα = 0.

This implies that

D =
∑
α∈Rf

mα(Wα)− 0(∞) =

∑
α∈Rf

2dα(Wα)

−
∑
α∈Rf

2dα

 (∞) =

∑
α∈Rf

dα (2(Wα)− 2(∞)) =
∑
α∈Rf

dαdiv(x− α) = div

 ∏
α∈Rf

(x− α)dα


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is a principal divisor. Conversely, suppose that D is a principal divisor, i.e., there is a nonzero ration
function f ∈ C(C) such that D = div(f). Since D is ι-invariant, ι∗f = c · f for some nonzero
c ∈ C. Since ι is an involution,

f = (ι2)∗f = ι∗(ι∗f) = ι∗(c · f) = c · ι∗(f) = c · (c · f) = c2 · f,

and therefore, c2 = 1, that is, either c = 1 or c = −1. Therefore, f is either ι-invariant (i.e., lies in
C(x)) or is ι-antiinvariant (i.e., lies in y · C(x)).

• Suppose that our nonzero f ∈ C(x). This means that

f = µ
∏
β∈C

(x− β)eβ ; µ ∈ C∗, eβ ∈ Z,

where eβ = 0 for all but finitely many β ∈ C. Since div(f) = D, all the poles and zeros of
f lie in {Wα | α ∈ Rf}. It follows that eβ = 0 for all β 6∈ Rf . This implies that

f = µ
∏
α∈Rf

(x− α)eα ,

and therefore,

D = div(f) =
∑
α∈Rf

eαdiv(x− α) =
∑
α∈Rf

eα (2(Wα)− 2(∞)) =

2

∑
α∈Rf

eα(Wα)

− 2

∑
α∈Rf

eα

 (∞).

In light of (10.7), ∑
α∈Rf

eα = 0, mα = 2eα ∈ 2Z ∀α ∈ Rf ,

and we are done.

• Now, suppose that our nonzero f ∈ y · C(x), i.e,

f = y · h(x) where h(x) = µ
∏
β∈C

(x− β)eβ ; µ ∈ C∗, eβ ∈ Z,

where eβ = 0 for all but finitely many β ∈ C. Notice that y has a pole of odd order n = 2g+1
at∞. On the other hand, each x − β has a pole of order 2 at∞. This implies that f has a
zero of pole (of odd order) at∞, which contradicts (10.7). This ends the proof.

Corollary 10.8. If the Gal(f/K)-module
(
FRf2

)0
is very simple, then End(J(Cf )) = Z. In partic-

ular, J(Cf ) is a simple abelian variety.
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Proof. It follows from Claim 10.7 combined with Remark 10.5 that the Gal(K)-module J(Cf )[2]
is very simple. Now the desired result follows from Theorem 2.15 applied to X = J(Cf ) and
` = 2.

Combining Corollary 10.8 with Remark 10.5, we obtain the following assertion:

Theorem 10.9. Suppose that g ≥ 2 is an integer, K is a finitely generated subfield of C, and
f(x) ∈ K[x] a monic polynomial of degree n = 2g + 1 without repeated roots. Suppose that
Gal(f/K) = Sn or An. Then, End(J(Cf )) = Z. In particular, J(Cf ) is a simple abelian variety.

Remark 10.10. Theorem 10.9 remains valid even if we do not assume that K is finitely generated
and f(x) is monic.

10.3 Abelian Varieties with Non-trivial Automorphism Group

Let G be a finite group acting faithfully on an abelian variety A = V/Λ of dimension g. Then, G
acts linearly on the complex linear space V leaving the lattice Λ invariant. Let Z[G] be the group
ring of G over Z. The action of G on A defines a structure of Z[G]-module on Λ and on its dual
lattice Λ∨. After tensoring with C, the linear representation (Λ∨)C decomposes into the direct sum
of complex linear g-dimensional representations H1,0(A,C)⊕H0,1(A,C) with characters χ and χ̄
such that χ+ χ̄ is defined over Q. IDIs χ real?

Let Q[G] be the group algebra of G over Q. By Theorem of Maschke, Q[G] is a semi-simple
algebra. It contains a finite number of idempotents e1, . . . , er from the center Z(G) of G such that
e2
i = ei, 1 = e1 + · · ·+ er, and Q[G] ∼= ⊕ri=1Q[G]i, where Q[G]i = eiQ[G] is a simple Q-lagebra.

Any direct factor Q[G]i is isomorphic to a matrix algebra Mni(D) over some division algebra
Di. Every finite-dimensional Q-linear representation of G splits into a direct sum of irreducible
representations, each defining an irreducible module over Q[G]i.

In particular, ΛQ splits into the direct sum of irreducible representations of G. Let eW be the
central idempotent corresponding to an irreducible rational representation W contained in ΛQ. Let
n be the smallest integer such that ρ(neW ) ∈ End(A). Then, the image of neW is an abelian
subvariety AW of J(C). We have

AW ∼= VW /ΛW ,

where VW = ρa(eW ) and ΛW = Im(ρr(eW )) ∩ Λ. Here, the intersection is taken in ΛQ. If the
inclusion ΛW → Λ is given by a matrix P , then the type of the polarization of JW is equal to
the type of the symplectic form defined by the matrix tPJP , where JD is the symplectic matrix
defining a polarization on A.

An abelian variety A with a faithful G-action is called G-simple if it does not contain proper
G-invariant abelian subvarieties. Similar to the case when G = {1}, one constructs an isogeny

A1 × · · · ×Ak → A,

where Ai are G-simple abelian varieties (see [106], 13.6). The varieties Ai are called isotypical
components of A. Each isotypical component is G-isomorphic to a subvariety of AW for some W .
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For example, if G = {1, g} is of order 2, then A decomposes into a g-invariant and g-anti-invariant
parts corresponding to the idempotents 1

2(1 + g) and 1
2(1− g).

Let L0 be an ample line bundle on A that defines a polarization φL0 : A→ Â. The action of G on
V ∨ and Λ∨ defines a faithful action on Â. Viewing Â as the Picard variety of A, the action is the
natural action L 7→ g∗(L). The homomorphism φL0 is a G-equivariant homomorphism if and only
if L0 admits a G-linearization, i.e. the Hermitian form H : V × V → C defining L is G-invariant
with respect to the diagonal action of G on V × V .

The action of G on A defines a homomorphism

ρ : Q[G]→ EndQ(A).

It is injective on any simple direct summand Q[G]i. In particular, End(A) 6= Z if G 6= {1}.

Example 10.11. Suppose C is a nonsingular projective curve of genus g > 1 and let G be a
subgroup of its group of automorphisms. Then, G acts faithfully on the Jacobian variety J(C)
preserving its principal polarization. Conversely, by the Torelli Theorem, if C is hyperelliptic,
G acts faithfully on J(C) and preserves the natural principal polarization on the Jacobian variety,
then the action of G on J(C) arises from the action on C. This follows from a variant of Torelli’s
Theorem [118, §12, Th. 12.1], which was proven by A. Weil [174]. If C is not hyperelliptic then
it is not necessarily true, because multiplication by −1 on J(C) respects the polarization but is not
induced by any automorphism of C.

Example 10.12. Assume G is a finite abelian group. First, we decompose G into the direct sum of
cyclic groups Gi of orders mi. Then, Q[G] ∼=

∏
iQ[Gi]. Assume G = (g) is cyclic of order m

generated by g. Then,
Q[G] ∼=

∏
d|m

Q[t]/(Φd(t)),

where Φd(t) is an irreducible cyclotomic polynomial of degree φ(d). Each direct factor is a cyclo-
tomic field of degree φ(m) over Q. It is generated by the central idempotent fd = φd(g), where
φd(t) ∈ (Φd(t)) and 1 =

∑
d|m φi(t). For example, if m = 3, we may take f1 = 1

3(1 − g)(2 + g)

and f3 = 1
3(1 + g + g2).

The groupG acts on each summandQi ∼= Q(ζd) considered as a linear space overQ of dimension
φ(d). This is an irreducible rational representation of G. Of course, considered as a complex
representation it splits into the direct sum of one-dimensional representations.

LetG be a finite irreducible subgroup of a finite-dimensional complex linear space V . This means
that the induced complex linear representation of G in V is irreducible, which may be restated as
follows.

Let CG (respectively QG) be the C-vector subspace (respectively the Q-vector subspace) of
EndC(V ) generated by

G ⊂ AutC(V ) ⊂ EndC(V ).

Since G is a multiplicative subgroup of EndC(V ), CG is a C-subalgebra (respectfully QG is a
Q-algebra) of the C-algebra EndC(V ). By definition,

QG ⊂ CG ⊂ EndC(V ).
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Now the irreducibility of G implies that

CG = EndC(V )

(see, for instance, [149, Sect. 6.2]). On the other hand, the Q-algebra QG is obviously isomorphic
to the quotient of the semi-simple group algebra Q[G] and therefore is also semi-simple.

Let us look at the center ZG of QG. The semi-simplicity of the Q-algebra QG implies that ZG
is either a number field or is isomorphic to a direct sum of number fields. Since CG = EndC(V )
consists of C-linear combinations of G ⊂ QG, we have the inclusion ZG ⊂ C · idV ∼= C, because
the latter is the center of EndC(V ). This implies that ZG has no zero divisors and therefore is a
(number) field. It follows that the semisimple Q-algebra QG is actually simple and therefore is
isomorphic to ∼= Mr(D) for some division algebra D with center ZG.

Let χG,V be the character of the representation of G in V . Then, ZG coincides with the subfield
Q(χG,V ) ⊂ C generated by the values of the character. Let SG,V be the Schur index of χG,V defined
to be the minimum of degrees [K : Q] of extension K/Q(χG,V ) over which the representation is
defined. Equivalently, SG,V is the square root of the ZG-dimension of D. It is a classical result of
R. Brauer and Speiser [54, Cor. 2.4 on p. 277] that SG,V = 1 or 2 if χV,G is a real character.

The condition that irreducible G leaves a lattice Λ ⊂ V invariant imposes some strict conditions
on the Schur index.

Given an irreducible finite subgroup G ⊂ GL(V ) one may ask whether V contains a G-invariant
lattice Λ such that V/Λ is an abelian variety.

The following theorem is proven in [138, Theorem 2.6].

Theorem 10.13. The following properties are equivalent:

(i) There is a nonzero G-invariant lattice in V .

(ii) Either SG,V = 1 and Q(χG,V ) = Q or an imaginary quadratic extension of Q, or SG,V = 2
and Q(χG,V ) = Q.

(iii)

Theorem 10.14. Let Λ be a G-invariant lattice of rank 2g in V .

(i) Suppose SG,V = 1. Then, the complex torus V/Λ is an abelian variety V/Λ is isogenous to
the self-product of an elliptic curve. In addition, if ZG is an imaginary quadratic field, then
V/Λ is isomorphic to a product of mutually isogenous elliptic curves with complex multipli-
cation.

(ii) Suppose that SG,V = 2 and χG,V is a rational character, i.e., ZG = Q. Then, g is even and
there exists a quaternion algebra H over Q such that Q[G] ∼= Mg/2(H).

Example 10.15. (See also [138, Example 3.2]. 1)

1In loc. cit. one should read PSL2(Fq) instead of SL2(Fq) and add the assumption q ≥ 7.
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Suppose that p is a prime that is congruent to 3 modulo 4 and r is a positive integer such that

q = p2r−1 ≥ 7.

Clearly, q is also congruent to 3 modulo 4. Let G = PSL2(Fq), which is a finite simple non-
abelian group. It is known that the Schur index of every irreducible character of G is equal to 1.
( [82, Corollary on p. 4], see also [54, Theorem 6.2]).

It follows from the character table of G (which can be found in [45, Sect. 38]) that G admits two
complex-conjugate irreducible faithful representations G ↪→ AutC(V ) with characters η1 and η2 of
dimension 1

2(q − 1) defined over an imaginary quadratic field

Q(ηk) = Q(
√
−q) = Q(

√
−p).

By Theorem 10.13, V admits a PSL2(Fq)-invariant sublattice Λ of rank q − 1 such that V/G is an
abelian variety of dimension (q − 1)/2, which is isomorphic to the product of mutually isogenous
elliptic curves with complex multiplication by Q(

√
−p).

For example, take q = 7. Then, G = PSL2(F7) is the Klein group of order 168 which can be
realized as the group of automorphisms of the Klein curveX of genus 3 isomorphic to a plane curve
given by equation

x3y + y3z + z3x = 0.

The abelian variety V/Λ is realized as the Jacobian variety of X . It is known that the quotients of
the Klein curve by subgroups of G of order 2, 3 and 4 are elliptic curves and the quotients by other
non-trivial subgroups are rational curves. The fact that the elliptic quotients of the Jacobian variety
of X have complex multiplication by Q(

√
−7) can be found in [48] and [85].

In another special case, where we take q = 11. The group PSL2(11) acts faithfully on a Klein
cubic hypersurface X in P4 given by equation

x2y + y2z + z2w + w2z = 0.

It also acts on its intermediate Jacobian variety J(X) which is a principally polarized abelian variety
of dimension 5. The period matrix of J(X) was computed in [141]. It confirms that J(X) is isoge-
nous to the product of five copies of an elliptic curve with complex multiplication by Q(

√
−11).

Example 10.16. Let f : C → P1 be a cover of nonsingular curves with cyclic Galois group G of
order m. Let B = {p1, . . . , pr+1} be the set of its branch points, and let ei be the ramification index
of a ramification point lying over pi, so that we have m/ei ramification points over pi. We assume
that the genus of C is larger than 0, this implies that r ≥ 3. Let U = P1 \ B and γ1, . . . , γr+1 be
standard generators of the fundamental group π1(U) satisfying the relation γ1 · · · γr+1 = 1. The
cover defines a surjective homomorphism τ : π1(U) → Z/mZ. Let χ(γi) = ai mod m. Since
τ(γeii ) = 1, we must have eiai ≡ 0 mod m and

∑
ai ≡ 0 mod m. Since τ is surjective,

(a1, . . . , ar+1) = 1 mod m.

Let ēi be the images of the unit vectors in Zr+1 in (Z/mZ)r+1 and ē = ē1 + · · · + ēr+1. We can
factor τ through a surjective homomorphisms

σ : π1(U)→ Am,r := (Z/mZ)r+1/(ē),
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that sends γj to ēj . Let X → C be the Galois cover corresponding to the homomorphism σ. Its
Galois group is equal to H = Ker(σ).

Let
H1(X,C) = ⊕χH1(X,C)χ

be the decomposition of H1(C,C) into direct sum of eigensubspaces with characters χ ∈ Hom(Ad,r, µm).
We have

H1(C,C) ∼= H1(X,C)H = ⊕χ,χ|H=1H1(X,C)χ. (10.8)

The group X of characters whose restriction to H is the identity is a cyclic group generated by the
character χµ that sends ēj ∈ Am,r to e2πiaj/m. Here we use µ to denote the vector

µ = (
a1

m
, . . . ,

ar+1

m
).

It satisfies the condition that |µ| = µ1 + · · · + µr+1 ∈ Z. Any other character in X is a power
χnµ, n = 0, . . . ,m− 1. It corresponds to the vector

µn := (
(na1)

m
, . . . ,

(nar+1)

m
),

where the round brackets denote the remainder of the number for the division by m. We set

dn = |µn| := 1

m

r+1∑
i=1

(nai).

The curve X is easy to describe by equations. For convenience, let us choose projective coordi-
nates on P1 such that

pi = [1, xi], pr+1 = [0, 1]

and consider a linear embedding

α : P1 → Pr, [t0, t1] 7→ [x1t0 − t1, . . . , xrt0 − t1, t0].

Let rm : Pr → Pr be the cover given by raising the coordinates in mth power. Then, X is isomor-
phic to the pull-back of the cover s to C, i.e. we have a commutative diagram

X

φ
��

// Pr

s
��

C
α // Pr

It follows that X is isomorphic to the complete intersection of Fermat hypersurfaces

Fi =

r∑
i=0

αijy
m
i = 0, j = 1, . . . , r − 1,

where M = (αij) is a matrix of size (r − 1)× 2 and rank r − 1 satisfying(
1 1 . . . 1 0
x1 x2 . . . xr 1

)
·M = 0.
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The curve C is explicitly computed by using the action of Am,r on X . It is birationally isomorphic
to the curve

ym = (x− x1)a1 · · · (x− xr)ar , (10.9)

where ei = m/(m, ai) with ar+1 ≡ −(a1 + · · · + ar) mod m.2 Note that, for any k prime to
m, the curve (10.9) is isomorphic to the curve with the same branch points but with (a1, . . . , ar)
replaced by (ka1, . . . , kar) mod m.

Applying the Riemann–Hurwitz formula, we obtain that the genus of C is equal to

g = 1 +
m(r − 1)−

∑r+1
i=1 (m, ai)

2
. (10.10)

We have
H1(C,C)χnµ = H1,0(C)χnµ ⊕H

0,1(C)χnµ ,

and the well known formula due to Hurwitz and Chevalley-Weil gives:

dimH1,0(C)χnµ = dn, dimH1,0(C)χnµ = dm−n, n = 1, . . . ,m− 1, (10.11)

and H1(C,C)1 = {0}. There are many proofs of this formula. For example, one computes the
cohomology H1(X,C) as a representation of AN,r (see [165]):

H1(X,C) ∼= C[T0, . . . , Tr, λ1, . . . , λr−1]/J,

where J is the ideal generated by partial derivatives in yj and λk of the equation F (y, λ) =∑r−1
i=1 λiFi. Here each coset of a monomial ys00 · · · ysrr is an eigenvector of AN,r with eigenvalue

−r +
∑r

j=0 sj/N.
3

The case |µ| = 2 is special since it gives a one-dimensional part H1,0(C)χµ of H1,0(C) that
allows one to construct an eigenperiod map for curves C with varying (x1, . . . , xr) with values in a
complex ball. For some spacialµ one relates this period map with the period map of certain families
of K3 surfaces (see [40]).

The cyclic group G acts on C and hence acts on its Jacobian variety J(C). For example, if m = p
is prime, we get

g = 1
2(r − 1)(p− 1),

and taking r = 2, i.e. a cover with 3 branch points, we obtain that g = 1
2(p − 1) and J(C)

has multiplication by the CM-field Q(ζp). This agrees with Belyi’s Theorem that any cover of P1

ramified over 3 points is defined over Q̄ [11].

Suppose m′|m, then the surjective homomorphism of cyclic group Gm = (Z/mZ) → Gm′ =
(Z/m′Z) defines a Galois cover C → C ′ with the cyclic Galois group of order m/m′. It is easy to
see that

C ′ : ym
′

= (x− x1)ā1 · · · (x− xr)ār , (10.12)

where 0 ≤ āi < m′, ai ≡ āi mod m′.

2One can also view C as the normalization of the cover defined by a line bundle L = OP1( 1
m

∑r+1
i=1 aixi) on P1 and

a section of L⊗m with the divisor of zeros equal to
∑r+1
i=1 aixi.

3This method extends to a similar computation for cyclic covers of projective spaces branched over an arrangement
of hyperplanes, see [40].
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Chapter 11

Special Families of Abelian Varieties

In this chapter, we will study families of abelian varieties that contain a dense Zariski subset of
abelian varieties with complex multiplication.

11.1 Families of Abelian Varieties with a Fixed Hodge Group

Let f : A → T be a smooth family of polarized abelian varieties over a smooth manifold T . This
means that there exists a relatively line bundle L on A such that its restriction to each fiber defines
a polarization of type D that does not depend on t ∈ T . The family is called special if it contains
a dense set of points t ∈ T such that the fiber At is of CM type. For example, a constant family
A = A× T → T is special if A is of CM-type.

Similarly, using the variation of polarized rational Hodge structures one can define a special family
of families of polarized algebraic varieties.

Passing to the universal cover of S we obtain a family X̃ → T̃ such that we can identify the lattice
Λt̃ = H1(At̃,Z)) with a fixed lattice Λ = Z2g so that the cohomology H1(At̃,R) can be identified
with W = ΛR. We can also fix the symplectic form E on Λ. The E-polarized complex structure
on ΛR defined by the complex structure on At̃ defines a point in the Grassmannian G(g,ΛC)E , and
gives rise to the (marked) period map

p̃ : T̃ → G(g,ΛC)E ∼= Hg.

Its composition with the projection to Ag defines the period map

p : T → Ag.

Fix a connected algebraic group GQ defined over Q and a faithful homomorphism

ρ : GQ → Sp(W,E)Q,

187
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where Sp(W,E)Q is the algebraic group over Q whose points in a Q-algebra K is the group of
linear transformations of the symplectic form (WK , EK). In particular, ρ defines a homomorphism

ρR : GQ(R)→ Sp(W,E)Q(R) = Sp(W,E) ∼= Sp(2g, JD).

We also fix an arithmetic subgroup Γ of GQ such that ρ(Γ) leaves Λ ⊂W invariant. A E-polarized
complex structure on W is determined by a homomorphism

φ : U(1)→ Sp(W,E)

that sends eiθ to the multiplication by eiθ in W . It can be viewed as the restriction of the unique
hφ : S → Sp(W,E)Q by passing to real points and restricting h to the subgroup of S1 of S such
that S1(R) = U(1) ⊂ C∗. We fix one complex structure φ0 and consider the orbit of φ0 under
the action of ρ(G), g 7→ ρ(g)φ0ρ(g)−1. The orbit is a homogeneous space GR/K0

R, where KR is
the connected component of the stabilizer of φ0. It can be shown that the orbit defines a family of
polarized abelian varieties

X (G,Γ, ρ, φ0)→ T = Γ\GR/K0
R. (11.1)

The base of the family is a Hermitian symmetric domain if the following condition is satisfies:

ρ(G(R)) is normalized by φ0(U(1)). (11.2)

Let MT(hφ) ⊂ CSp(W,E)Q be the Mumford-Tate group and Hg(φ) ⊂ Sp(W,E) be the Hodge
group. In above take G = Hg(φ0) to obtain a family X (Hg(φ0),Γ, ρ, φ0) of fixed Hodge type. For
example, if φ0 defines an abelian variety of CM type, then Hg(φ0) is commutative, hence it must
coincide with the centralizer subgroup of φ0, hence G = K, and the orbit consists of one point.
Now, one shows that any family of Hodge type contains an abelian variety of CM-type (a CM-point
in the base of the family). The idea is simple (see [126]): any G as above contains a maximal torus
defined over Q. One takes a maximal torus T of the stabilizer subgroup K of φ0, then for some
g ∈ G, its conjugate gTg−1 must be contained in a maximal torus T ′ of G defined over Q, then
Hg(gφ0g

−1) must be contained in T ′, hence must be commutative. Thus, the point gφ0g
−1 defines

a CM-point. In fact, we have a dense set of CM-points since GQ(Q) is a dense subset of GQ(R), so
we take the GQ(Q)-orbit of a CM-point to a get a dense subset of CM-points.

Thus, we see that families of Hodge type are examples of special families. Note that the converse
is true, namely a family (11.1) with a CM-point is isomorphic to a family of Hodge type.

Example 11.1. In dimension ≤ 3 all Hodge families are determined by Hodge classes that define
special endomorphisms of the abelian variety. The following is an example of Mumford [126] of a
Hodge family not determined by a special property of endomorphism algebra of its members.

Let K/K0 be a finite extension of fields of characteristic 0 of degree n and D be a central simple
algebra over K. Recall that isomorphism classes of central simple algebras over a field F form
a group, the Brauer group of this field. It is isomorphic to H2(Gal(F̄ /F ), F̄ ∗). The extension
L/K gives rise to the natural homomorphism of group cohomology Cor : Br(K) → Br(K0)
that assigns to D the isomorphism class of the algebra CorK/K0

(D) constructed as follows. Let
σ1, . . . , σn : L → K̄ be the set of distinct K0-embeddings of K into its algebraic closure, then the
Galois group of K acts naturally on the tensor product E = ⊗(D ⊗σi K̄) and CorK/K0

(D) is the
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subalgebra of invariants for this action. An element d of the tensor product can be written in the
form

d =
∑

ai1...inσ1(ei1)⊗ · · ·σn(ein),

where e1, . . . , er2 is a basis of D over K and ai1...in ∈ K. An element τ of the Galois group acts
by sending d to

τ(d) =
∑

τ(ai1...in)στ(1)(ei1)⊗ · · ·στ(n)(ein),

where στ(i) := τ ◦ σi. By choosing a normal basis of L over K, one sees that CorK/K0
is a central

simple algebra of degree r2n over K and CorK/K0
⊗K K̄ ∼= E. It comes equipped with the norm

homomorphism
Nm : D∗ → CorK/K0

(D)∗ (11.3)

that sends an invertible element d ∈ D∗ to the tensor product (d ⊗ 1) ⊗ · · · (d ⊗ 1) ∈ E which is
obviously invariant with respect to the action of the Galois group.

For example, if D = K, we obtain CorK/K0
(K) = K0 and the norm homomorphism is the usual

norm map for field extensions.

In Mumford’s example, one takes K to be a totally real cubic extension of K0 = Q and D be a
quaternion division algebra over K. One chooses the extension and D in such a way that

CorK/K0
(D) ∼= Mat8(Q), D ⊗Q R ∼= K⊕K⊕Mat2(R),

where K = H((−1,−1
Q )) is the standard quaternion algebra over Q. The norm map becomes a

natural homomorphism D∗ → GL(8,Q).

Let GQ be an algebraic group over Q such that its set of F -points is equal to {x ∈ D ⊗Q F )∗ :
xx′ = 1}, where x 7→ x′ is the standard involution of D. For example, GQ(Q) = D∗1 = {x ∈ D∗ :
xx′ = 1}. and

GQ(R) = K∗1 ×K∗1 × SL(2,R) ∼= SU(2)× SU(2)× SL(2,R).

The group SU(2)×SU(2) embeds naturally in SU(4) and hence acts on C4 preserving the standard
Hermitian form on C4. Thus, it preserves its real part that gives an embedding SU(2) × SU(2) ↪→
SO(4). The group SO(4) × SL(2,R) acts naturally on the tensor product W = R4 ⊗ R2 ∼= R8

preserving the skew-symmetric form A, the tensor product of the standard symmetric bilinear form
on R4 and the standard symplectic form on R2. This gives rise to a real linear representation
ρ : GQ(R) → Sp(W,A) ∼= Sp(8,R) that can be shown to correspond to the norm homomorphism
(11.3).

Let Λ be a lattice in R8 and Γ be an arithmetic subgroup of GQ that preserves this lattice. Also, let

φ0 : U(1)→ SU(2)× SU(2)× SL(2,R) ⊂ Sp(W,A), eiθ 7→ (I2, I2,
(

cos θ sin θ
− sin θ cos θ

)
).

It is clear that ρ(G(R)) is normalized by φ0(U(1)) and hence we obtain the data (GQ,Γ, ρ, φ0) from
(11.1) satisfying (11.2). This allows us to construct a Kuga family

X (GQ,Γ, ρ, φ0)→ Γ\GR/K0
R
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of abelian 4-folds, where the base is a compact Shimura curve. The abelian varieties in the family
correspond to ρ(g)φ0ρ(g)−1 : U(1) → Sp(V,A). Obviously, the Hodge group H containing the
image of ρ(g)φ0ρ(g)−1 cannot be a proper subgroup of G for all g. Hence, the Hodge group of a
general member coincides withGQ. On the other hand, since the representation ρ is irreducible over
C, we obtain, for any point where the Hodge group coincides with GQ, the corresponding abelian
variety does not have non-trivial endomorphisms.

11.2 The André-Oort Conjecture

The André-Oort Conjecture asserts that any special family is a pull-back of some family of Hodge
type. We refer to [122] for a more precise and a general definition of this conjecture.

Note that a marked family X̃ → T̃ as above defines a family of the Mumford-Tate groups MTt̃ of
the Mumford-Tate groups of fibers. This gives a stratification of T by the type of the Mumford-Tate
group of fibers. Since the Mumford-Tate group is determined by the set of Hodge tensors that it
fixes, the loci of points with fixed Mumford-Tate group are called the Hodge loci. Among them
are, of course, the loci of abelian varieties with some special algebra of endomorphisms (since any
endomorphism give rise to a Hodge class on the self-product of the variety).

Let f : C → T be a smooth family of projective curves of genus g ≥ 2. It defines a smooth family
of Jacobian varieties J → T of fibers of f . One asks whether such a family can be a special family
of principally polarized abelian varieties. The current conjecture is that it is possible only if g ≤ 7
(the modified Oort Conjecture). In fact, a modified Coleman Conjecture asserts that, for g > 7, the
locus of Jacobians in A} contains only a finitely many CM-points.

We refer for the discussion of these conjectures to excellent surveys [121] and [122]. We only
discuss one example.

Example 11.2. Fix a finite group G and consider families f : C → T of curves together with a
faithful homomorphism ρ : G → Aut(C/T ). We call such a G-family of curves. For example a
family of curves (10.9) can be considered as such a family where the base T is the open subset of
(P1 \ {∞}r that consists of distinct points. Under the map T →Mg, the image is a subvariety of
Mg of dimension r − 2. Similarly, one defines a G-family of polarized abelian varieties.

In general, the local deformation theory of the pair (C,G) tells us that the local dimension of the
moduli space of pairs (C,G) is a smooth variety of dimension dim H1(C, TC)G = H0(C,K⊗2

C )G.
Note that the linear space H1(C, TC) can be naturally identified with the tangent space of the local
deformation space of C. The tangent space of the local deformation space for a polarized abelian
variety A = V/Λ is naturally isomorphic to the tangent space of the corresponding point V ∈
G(g,ΛC)E . The tangent space of the Grassmannian G(g,ΛC) at the point V is naturally isomorphic
to Hom(V,ΛC/V ). If V happens to be a Lagrangian subspace with respect to a symplectic form
E, then we can identify ΛC/V with V ∨ and one can show that the tangent space of G(g,ΛC)E at
V is isomorphic to the symmetric square of S2(V ∨) ⊂ Hom(V, V ∨) = V ∨ ⊗ V ∨. In our case,
V = H−1,0(A) ∼= Ω1(A)∗, and the tangent space becomes naturally isomorphic to the linear space
of quadratic forms on Ω1)(A). In this way, one proves that the moduli space of abelian varieties
with a fixed action of a finite group G has local dimension equal to dim(S2(Ω1(A))∗)G.
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AG-family of principally polarized varieties is a special case of a family of Hodge type. So, it is a
special family of principally polarized varieties. Thus, a G-family of Jacobian varieties is special if
its dimension is equal to dim(S2(Ω1(A))∗)G, where A = J(C) is a general member of the family.
These dimensions can be computed by using a formula of Hurwitz and Chevalley-Weil (10.11). We
have

dimS2(Ω1(J(C))∗)G = dimS2(Ω1(C)∗)G = dimS2(H0,1(C))G

Since we know the characters of G in its representation on H0,1(C), we easily find

dimS2(Ω1(J(C))∗)G =

m1∑
n=1

dndm−n +

{
dk(dk + 1)/2 if ,m = 2k is even
0 otherwise.

The following is the Table from [121] that gives a list of 20 triples (m, r, (a1, . . . , ar) defining
families of cyclic covers such that its image S in Ag under the Torelli map coincides with the locus
of abelian varieties with a cyclic group action that contains S. It is proven by J. Rohde in [140] that
the list is complete.

g m (a1, . . . , ar+1) g m (a1, . . . , ar+1)

(1) 1 2 (1, 1, 1, 1) (11) 4 5 (1, 3, 3, 3)

(2) 2 2 (1, 1, 1, 1, 1, 1) (12) 4 6 (1, 1, 1, 3)

(3) 2 3 (1, 1, 2, 2) (13) 4 6 (1, 1, 2, 2)

(4) 2 4 (1, 2, 2, 3) (14) 4 6 (2, 2, 2, 3, 3)

(5) 2 6 (2, 3, 3, 4) (15) 5 8 (2, 4, 5, 5)

(6) 3 3 (1, 1, 1, 1, 2) (16) 6 5 (2, 2, 2, 2, 2)

(7) 3 4 (1, 1, 1, 1) (17) 6 7 (2, 4, 4, 4)

(8) 3 4 (1, 1, 2, 2, 2) (18) 6 10 (3, 5, 6, 6)

(9) 3 6 (1, 3, 4, 4) (19) 7 9 (3, 5, 5, 5)

(10) 4 3 (1, 1, 1, 1, 1, 1) (20) 7 12 (4, 6, 7, 7)

Remark 11.3. The case (16) is especially nice. Consider a general curve C from the family as a
plane quintic

t52 = (t1 − x1t0)(t1 − x2t0)(t1 − x3t0)(t1 − x4t0)(t1 − x5t0).

Let L be the line t2 = 0 that intersects it at 5 distinct points. Now let X ′ be the double cover of P2

branched along the union C ∪ L:

X : t23 + t52 + f5(t0, t1) = 0.

After we blow-up its 5 singular points from L ∩ C, we obtain a K3 surface X whose group of
automorphisms contains a non-symplectic automorphism g of order 5. The moduli space of such
K3 surfaces was studied in [97]. It is isomorphic to the moduli space of cyclic covers of type
(16). Both spaces are naturally isomorphic to the quotient of an open subset of a 2-dimensional
ball by an arithmetic hypergeometric reflection group of type (2

5 ,
2
5 ,

2
5 ,

2
5 ,

2
5). Kondo shows that a

surface X as above is a quotient of the product D×C by a cyclic group of automorphisms of order
5. The curve D is isomorphic to the genus 2 curve with an automorphism of order 5. Under the



192 CHAPTER 11. SPECIAL FAMILIES OF ABELIAN VARIETIES

rational projection D×C 99K X , the transcendental lattice TX ⊗Q, considered as a 3-dimensional
vector space over Q(ζ5) becomes isomorphic to a direct summand of the rational Hodge structure
on H1(D,Q)⊗H1(C,Q) ∼= Q(ζ5)12. So, our family of K3 surfaces is a special family.

Another example of the appearance of an isomorphic moduli space of K3 surfaces is the case (6)
from the list. Here we consider a family of K3 surfaces birationally isomorphic to the double cover
of P2 branched along the union of a nonsingular plane quartic curve C with equation

z3x+ f4(x, y) = 0

and the lines L : z = 0 and M : x = 0. The double cover has five ordinary singular points over the
points in L ∩ C and L ∩M , and one singular point of type E6 over the point [0, 0, 1]. The pencil
of lines through the point [0, 0, 1] lifted to the cover defines a pencil of elliptic curves with four
reducible fibers of type IV and one reducible fiber of type Ẽ6 = IV ∗. There are no more singular
fibers. After the base change to the degree 3 cover C → P1, as in the case (6), ramified over the five
points corresponding to the singular fibers, the elliptic fibration becomes isomorphic to the trivial
fibration E × C → C. Here, E is an elliptic curve with complex multiplication by Q(ζ3). The
transcendental lattice is isomorphic to U(3) ⊕ U(3) ⊕ Inv2. It is a free module over Z[ζ3]. The
surface is birationally isomorphic to the quotient C ×E/(σ), where σ is an automorphism of order
3. It has 15 fixed points over the points x1, . . . , x4,∞ ∈ C. The action at a point over xi is locally
given by (z1, z2) 7→ (ζ3z1, ζ3z2) that gives rise a quotient singularity of type 1

3(1, 1). The action at
a point over ∞ is locally given by (z1, z2) 7→ (ζ3z1, ζ

2
3z2) that gives rise a singular point of type

A2.

Note that, under transcendental lattice of C × E → X is isomorphic as a Z[ζ3]-module to the
tensor product H1(C,Z) ⊗ H1(E,Z) ∼= Z[ζ3]6. Under the cover C × E → X , the transcendental
lattice of X become a direct summand of Z[ζ3]6. This implies that the family of K3’s is special,
since for all CM-point in the family of curves C, the Hodge structure on the transcendental part of
the corresponding K3 is also of CM-type. An example of a CM-point in the family is the curve
C : z3x = x4 + y4 which is isomorphic to the curve

z4 + x4 − 2
√
−3x2y2 + y4 = 0

with automorphism group of order 48 isomorphic to 4.A4 (type III from Table 6.1. in [41]). The
corresponding K3 surface is isomorphic to the surface

w2 = (x2 − (i+ 1)x2y2 − iy2)(z4 + x4 − 2
√
−3x2y2 + y4).

Note that the moduli space of K3 surfaces birationally isomorphic to the double plane

w2 + xz(z3x+ f4(x, y)) = 0

is a closed subvariety of one of the three irreducible components of the moduli space of K3 sur-
faces with a non-symplectic automorphism of order 3. Our component is of dimension 9 and its
general member has the lattice of invariant algebraic cycles isomorphic to U . It is a quotient of a
9-dimensional ball and our family is the quotient of a 2-dimensional subball.

Also we may consider the case (17). The curve is isomorphic to the plane curve of degree 7

z7 = x4y(x− y)(x− ay).
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Applying the Cremona transformation [x, y, z] 7→ [z2, xy, xz] we transform this curve to a curve of
degree 6

x6 = yz(z2 − xy)(z2 − axy).

The curve has one triple point [0, 1, 0] and one double point infinitely near to the triple point. So,
its genus is equal to 6, as it should be. Now we can consider the double cover of the plane branched
along this sextic curve

w2 + x6 + yz(z2 − xy)(z2 − axy) = 0.

The cyclic group (ζ7) acts by [x, y, z, w] 7→ [ζ2
7x, y, ζ7z, ζ

6
7w]. Its minimal resolution is a K3

surface with a non-symplectic automorphism of order 7. The pencil of lines in the plane through
the point [0, 1, 0] defines an elliptic pencil on X with two reducible fibers of type I∗0 = D̃4 and
IV , and 12 singular fibers of type I1. The transcendental lattice is of rank 14, so that the Hodge
structure (TX)Q is a 2-dimensional linear space over the field Q(ζ7). This shows that the moduli
space of such surfaces is a modular curve Γ\H embedded in the moduli space of lattice polarized
K3 surfaces.

Finally, we refer to [108] for some recent advance on the existence of special families of Jaco-
bian varieties. This is based on the characterizations of families f : X → T of abelian varieties
achieving the Arakelov’s bound for the slope of the sheaf f∗Ω1

X/T . In particular, the authors prove
the non-existence of special families of hyperelliptic Jacobians of genus g ≥ 8. Special families of
hyperelliptic curves of genus 3 and curves of genus 4 were constructed in [62], [63] and in [108].

Special family of abelian varieties must define a geodesic subvariety in Ag. A recent paper [29]
studies totally geodesic submanifolds of Ag that are contained in the Jacobian locus.



194 CHAPTER 11. SPECIAL FAMILIES OF ABELIAN VARIETIES



Bibliography

[1] M. Alsina, P. Bayer, Quaternion Orders, Quadratic Forms, and Shimura Curves. CRM Mono-
graph Series 22, American Mathematical Society, Providence, RI, 2004

[2] N. Aoki, Hodge cycles on CM abelian varieties of Fermat type. Comment. Math. Univ. St.
Paul. 51 (2002), 99–130.

[3] M. Artebani, Heegner divisors in the moduli space of genus three curves, Trans. Amer. Math.
Soc. 360 (2008), 1581–1599.

[4] R. Auffarth, Elliptic curves on abelian varieties, Ph. D. Thesis, Pontifica Universidad
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[107] R. Livné, M. Schütt, N. Yui, The modularity of K3 surfaces with non-symplectic group ac-
tions. Math. Ann. 348 (2010), 333–355.

[108] X. Lu, K. Zuo, The Oort conjecture on Shimura curves in the Torelli locus of curves. J. Math.
Pures Appl. (9) 123 (2019), 41-–77.

[109] S. Ma, On K3 surfaces which dominate Kummer surfaces. Proc. Amer. Math. Soc. 141
(2013), 131–137.

[110] K. Magaard, T. Shaska, H. Völklein, Genus 2 curves that admit a degree 5 map to an elliptic
curve. Forum Math. 21 (2009), 547–566.

[111] Yu. I. Manin, The Mordell-Weil Theorem. Appendix to [127].

[112] Yu.I. Manin, Cubic forms, 2nd edition. North Holland, Amsterdam, 1986.

[113] C. McMullen, Dynamics of SL2(R) over moduli space in genus two. Ann. of Math. (2) 165
(2007), 397–456

[114] A. Mehran, Double covers of Kummer surfaces. Manuscripta Math. 123 (2007), 205–235.

[115] A. Mehran, Kummer surfaces associated to (1,2)-polarized abelian surfaces. Nagoya Math.
J. 202 (2011), 127–143.

[116] J. Milne, Complex multiplication, http://www.jmilne.org/math/CourseNotes/cm.html.

[117] J. Milne, Notes on Shimura varieties, http://www.jmilne.org/math/xnotes/svh.pdf

[118] J. Milne, Jacobian varieties, Arithmetic geometry. Papers from the conference held at the
University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984. Edited by Gary
Cornell and Joseph H. Silverman. Springer-Verlag, New York, 1986

[119] J. Milne, Elliptic curves. Second edition. World Scientific Publishing Co. Pte. Ltd., Hacken-
sack, NJ, [2021], ©2021

[120] J. Milnor, D. Husemoller, Symmetric bilinear forms. Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 73. Springer-Verlag, New York-Heidelberg, 1973



202 BIBLIOGRAPHY

[121] B. Moonen, Special subvarieties arising from families of cyclic covers of the projective line.
Doc. Math. 15 (2010), 793–819.

[122] B. Moonen, F. Oort, The Torelli locus and special subvarieties, Handbook of moduli. Vol. II,
549–594, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA, 2013.

[123] D. Morrison, On K3 surfaces with large Picard number. Invent. Math. 75 (1984), 105–121.

[124] B. Mortimer, The modular permutation representations of of the known doubly transitive
oermutation groups. Proc. London Math. Soc. (3) 41 (1980), 1–20.

[125] S. Mukai, On the moduli space of bundles on K3 surfaces. I. Vector bundles on algebraic
varieties (Bombay, 1984), 341–413, Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund.
Res., Bombay, 1987.

[126] D. Mumford, A note of Shimura’s paper ”Discontinuous groups and abelian varieties”.
Math. Ann. 181 (1969), 345–351.

[127] D. Mumford, Abelian varieties, 2nd edition. Oxford University Press, 1974.

[128] D. Mumford, Tata Lectures on Theta II. Progress in Math. vol. 43 Birkhäuser, Boston, 1984.
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53; reprinted in ÖEvres II [1957a], Springer-Verlag, New York Heidelberg Berlin, 1980.



BIBLIOGRAPHY 205

[175] What is a good roadmap for learning Shimura curves?
https://mathoverflow.net/questions/11219/what-is-a-good-roadmap-for-learning-shimura-
curves .

[176] Yu. G. Zarhin, Hodge groups of K3 surfaces. J. Reine Angew. Math. 341 (1983), 193–220.

[177] Yu. G. Zarhin, A.N. Parshin, Finiteness problems in Diophantine Geometry. In: ”Eight pa-
pers translated from the Russian”, AMS Translations, Series 2, Vol. 143; arXiv:0912.4325
[math.NT].

[178] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication. Math. Research Let-
ters 7 (2000), 123–132.

[179] Yu. G. Zarhin, Cyclic covers, their jacobians and endomorphisms. J. reine angew. Math. 544
(2002), 91–110.

[180] Yu. G. Zarhin, Hyperelliptic jacobians and modular representations. In: Moduli of abelian
varieties (C. Faber, G. van der Geer, R Oort, eds.), pp. 473–490, Progress in Math., Vol. 195,
Birkhauser, Basel-Boston-Berlin, 2001.

[181] Yu. G. Zarhin, Homomorphisms of hyperelliptic jacobians. Proceedings of the Steklov Insti-
tute of Mathematics 241 (2003), 90–104.

[182] Yu. G. Zarhin, The endomorphism rings of jacobians of cyclic covers of the projective line.
Math. Proc. Cambridge Philos. Soc. 136 (2004), 257–267.

[183] Yu. G. Zarhin, Very simple representations: Variations on a theme of Clifford. In: Progress
in Galois Theory, Springer Science, 2005.

[184] Yu. G. Zarhin, Del Pezzo surfaces of Degree 2 and jacobians without Complex multiplication.
Amer. Math. Soc. Transl. (2) 218 (2006), 67–75; arXiv:math/0405156 [math.AG].

[185] Yu. G. Zarhin, Del Pezzo surfaces of Degree 1 and Jacobians. Math. Annalen 340 (2008),
407–435; arXiv:math/0605592 [math.AG].

[186] Yu. G. Zarhin, Isogeny classes of abelian varieties over function fields. Proc. Lond. Math.
Soc. (3) 96 (2008), 312–334.

[187] Yu. G. Zarhin, Endomorphisms of abelian varieties, cyclotomic extensions, and Lie algebras.
Sb. Math. 201 (2010), 1801–1810.

[188] Yu. G. Zarhin, Complex tori, theta groups and their Jordan properties. Proceedings of the
Steklov Institute of Mathematics 307 (2019), 22–50.

[189] Yu. G. Zarhin, Halves of points of an odd degree hyperelliptic curve in its jacobian. In: Inte-
grable Systems and Algebraic Geometry (R. Donagi, T. Shaska, eds.). Cambridge University
Press: LMS Lecture Notes Series, Volume 2: Algebraic Geometry, 2020, pp. 102–118.

[190] Yu. G. Zarhin, On matrices of endomorphisms of abelian varieties. Math. Research Reports
1 (2020), 55–68.



206 BIBLIOGRAPHY

[191] Yu. G. Zarhin, Non-isogenous elliptic curves and hyperelliptic jacobians. Math. Research
Letters 30 (2023), no. 1, 267–294.

[192] Yuri Zarhin, Answer to “A possible gap in Faltings note to prove the Tate
conjecture for finitely generated field over Q”. URL (version: 2022-09-06):
https://mathoverflow.net/q/429849

[193] Yu. G. Zarhin, Superelliptic jacobians and central simple representations. arXiv:2305.12022
[math.NT].



Index

2-level, 69
Colemanconjecture, 190
Comessatisurface, 80
CM-algebra, 167
CM-field, 167
CM-type, 161, 162, 168

abelian surface, 56
of quaternion type, 83
QM-surface, 83

abelian variety, 5, 9
E8-variety, 56
CM-type, 42
G-simple, 180
simple, 41
singular, 43

absolute Galois group, 12
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