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1. Introduction

In this paper we study the existence of correspondences between K3 surfaces
X(k, m, n) with k, m, n ∈ N, Picard number 17, and transcendental lattices
T(k, m, n) ∼= U(k)⊕U(m)⊕〈−2n〉. In a fundamental paper, Mukai [Mu] showed
that correspondences between K3 surfaces exist if the transcendental lattices are
Hodge isometric over Q. This construction holds if the Picard number of the sur-
faces is greater than or equal to 11. Nikulin [N2] later improved this result, ob-
taining the lower bound 5 for the Picard number.

The aim of our work is to realize examples of K3 surfaces with transcenden-
tal lattice that are not Hodge isometric but such that a correspondence between
them already exists. This in particular implies the existence of an algebraic cycle
on the middle cohomology of the product of two surfaces arbitrarily chosen in the
constructed family.

In Sections 2 and 3 we recall some basic notions and results on lattices and cor-
respondences. In Section 4 we consider a generic genus-2 curve and we show the
existence of a correspondence between the Jacobian of the curve and a K3 surface
with isomorphic transcendental lattice. Since this construction involves a second
K3 surface whose transcendental lattice has quadratic form multiplied by 2, in
Sections 5 and 6 we generalize this first example. First, we construct K3 surfaces
“twisting” each direct summand of the transcendental lattice of the Jacobian by
natural numbers. Then we find correspondences between them using both Mukai’s
theorem and Shioda–Inose structures that translate the problem into a problem of
looking for isogenies between abelian varieties.

In this way we prove in Theorem 6.3 that all the K3 surfaces X(k, m, n) are
in correspondence to each other. Finally, in Theorem 6.5 we show the existence
of a correspondence between a general K3 surface of Picard rank 17 and a Kum-
mer surface of the same rank having transcendental lattices that are Q-Hodge
isomorphic.

In the Appendix, Igor Dolgachev realizes a geometric correspondence between
the K3 surfaces of Section 4.
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2. Preliminary Notions

2.1. Definitions. A lattice is a free Z-module L of finite rank with a Z-valued
symmetric bilinear form bL(x, y). A lattice is called even if the quadratic form as-
sociated to the bilinear form has only even values, odd otherwise. A very useful
invariant (under base change) of a lattice is its discriminant d(L), defined as the
determinant of the matrix of its bilinear form. A lattice is called nondegenerate if
the discriminant is nonzero and unimodular if the discriminant is ±1. If the lat-
tice L is nondegenerate then the pair (s+, s−), where s± denotes the multiplicity
of the eigenvalue ±1 for the quadratic form associated to L ⊗ R , is called signa-
ture of L. Finally, we call s+ + s− the rank of L and s+ − s− its index; moreover,
a lattice is indefinite if the associated quadratic form has both positive and nega-
tive values.

Given a lattice L, we can construct the lattice L(m)—that is, the Z-module L
with bilinear form bL(m)(x, y) = mbL(x, y). An isometry of lattices is an isomor-
phism preserving the bilinear form. Given a sublattice L ↪→ L′, the embedding is
primitive if L′/L is free.

2.2. Examples.

(i) The lattice 〈n〉 is a free Z-module of rank 1, Z〈e〉, whose bilinear form is
b(e, e) = n.

(ii) The hyperbolic lattice is the even, unimodular, indefinite lattice with Z-
module Z〈e1, e2〉 and bilinear associated form whose matrix is

(

0 1
1 0

)

.

(iii) The lattice E8 has Z8 as Z-module, and the matrix of the bilinear form is
the Cartan matrix of the root system of E8. It is an even, unimodular, and
positive definite lattice.

2.3. K3 and Tori Lattices. If X is a K3 surface, one can show that H 2(X, Z)

is free of rank 22 and that there is an isometry H 2(X, Z) ∼= U 3 ⊕ (E8(−1))2.

From now on we use " to denote this K3 lattice. For X a complex torus, one has
H 2(X, Z) ∼= U 3.

2.4. Hodge Structures. Let X be an abelian or K3 surface. If we consider
the Hodge decomposition of H 2(X, C) = H 2,0(X)⊕H1,1(X)⊕H 0,2(X), inside
H 2(X, Z) there are two sublattices: the Néron–Severi lattice,

NS(X) := H 2(X, Z) ∩ H1,1(X);
and the orthogonal complement of NS(X), the transcendental lattice TX, which
has a natural Hodge structure induced by the one of H 2(X, Z). The Picard num-
ber of X, denoted by ρ(X), is the rank of NS(X).

A Hodge isometry between the transcendental lattices of two K3 (or abelian)
surfaces is an isometry preserving the Hodge decomposition.

2.5. Fourier–Mukai Partners. Two abelian (or K3) surfaces X and Y are
called Fourier–Mukai partners if their derived categories of bounded complexes
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of coherent sheaves are equivalent. Mukai and Orlov have shown the following
theorem.

Theorem 2.6 [Mu; Or]. X and Y as just described are Fourier–Mukai partners
if and only if their transcendental lattices are Hodge-isometric.

3. Known Results

In this section we recall some fundamental results that will play a key role in the
sequel. First of all, that the period map is surjective for a K3 or abelian surface
makes it possible to prove the following.

Theorem 3.1 [Mo, Cor. 1.9]. Suppose T ↪→ U 3 (resp., T ↪→") is a primitive
sublattice of signature (2, 4 − ρ) (resp., (2, 20 − ρ)). Then there exists an abelian
surface (resp., algebraic K3 surface) X and an isometry TX

∼−→ T .

Definition 3.2. A K3 surface X admits a Shioda–Inose structure if there is an
involution ι on X such that ι∗(ω) = ω for every ω ∈ H 2,0(X) (ι is called a Nikulin
involution), with rational quotient map π : X !!" Y where Y is a Kummer surface,
and the map π∗ induces a Hodge isometry TX(2) ∼= TY . This gives a diagram

X

!!
!

!
!

! Z

"""
"

"
"

Y

of rational maps of degree 2, where Z is a complex torus and Y is the Kummer
surface of Z.

One can detect the existence of a Shioda–Inose structure on a K3 surface by ana-
lyzing the transcendental lattice of that surface.

Theorem 3.3 [Mo, Thm. 6.3]. Let X be an algebraic K3 surface. Then X admits
a Shioda–Inose structure if and only if there is a primitive embedding TX ↪→ U 3.

Remark 3.4. Obviously, the Shioda–Inose structure realizes a correspondence
between the K3 surface X and the abelian variety Z. This correspondence will
play a fundamental role in the development that follows.

4. Starting Problem

Let C be a generic genus-2 curve (i.e., such that its Jacobian surface has ρ(JC) =
1); JC is a principally polarized abelian variety and, if E is the principal polar-
ization, we have E 2 = 2 so then T := TJC = U 2 ⊕ 〈−2〉. Since we have obvious
primitive embeddings of T in ", by Theorem 3.1 there exists an algebraic K3
surface X1 such that TX1

∼= TJC. Moreover, by [Mu, Prop. 6.2], the number of
Fourier–Mukai partners of X1 is only one because ρ(X1) = 17; hence such a X1

is unique (up to isomorphisms).
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We now analyze the relations between the Jacobian surface and this K3 surface.
First, observe that we can construct an embedding TX1 ↪→ U 3 in the following
way: we send the first two copies of U ⊂ TX1 to the corresponding ones of U 3 and
send the element of square −2 to e3

1 − e3
2 , where {ei

j }i=1,2,3
j=1,2 is a basis of U 3. Then,

by Theorem 3.3, X1 admits a Shioda–Inose structure

X1

##
#

#
#

# Z

$$$
$

$
$

X2

and so one has TZ
∼= TX1 and thus TZ

∼= TJC. More recently, the following theo-
rem was proved by Hosono, Lian, Oguiso, and Yau.

Theorem 4.1 [HLOY2, Main Theorem 1]. Let A and B be abelian surfaces.
They are Fourier–Mukai partners if and only if Kum(A) ∼= Kum(B).

It follows that Kum(Z) ∼= Kum(JC) because Z and JC are Fourier–Mukai part-
ners. In this way we obtain a correspondence between X1, X2, and JC:

JC

%%%
%

%
%

% Z

&&&
&

&
&

& X1

'''
'

'
'

'

Kum(JC) ∼= X2 = Kum(Z).

In the Appendix, Igor Dolgachev gives a geometric realization of the correspon-
dence, between the K3 surface X1 and the Kummer surface X2, that is induced by
the Shioda–Inose structure on X1 itself.

Remark 4.2. We observe that the Hodge isometry between TJC and TZ can be
extended to a Hodge isometry between the second cohomology groups, since JC

and Z are principally polarized abelian surfaces of rank 1. From [Sh] we obtain
that Z ∼= JC.

5. Embeddings of Twisted Lattices

We want to generalize the setting of the previous section. We consider the lattice
T(k, m, n) := U(k) ⊕ U(m) ⊕ 〈−2n〉, with k, m, n ∈ N and obtained by twist-
ing the summands of T, that is equipped with the Hodge structure induced by T

itself. This is an indefinite even lattice of signature (2, 3). The aim is to prove
the existence of correspondences between K3 surfaces having transcendental lat-
tice Hodge-isometric to T(k, m, n). In order to construct such surfaces, we start
by proving the following lemma.

Lemma 5.1. The lattice T(k, m, n) is a primitive sublattice of the K3-lattice ".

Proof. First we observe that a lattice 〈−2t〉, t ∈ N, can be primitively embedded in
E8(−1) according to [N1, Thm. 1.12.4]. We denote by θt ∈ E8(−1) its generator.
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In order to construct the required primitive embedding of T(k, m, n) in ", we
consider a θk contained in the first copy of E8(−1) and a θn in the second one.
Then, if {δ1, . . . , δ5} is the standard basis of T(k, m, n), we can obtain the desired
embedding in the following way:

T(k, m, n) ↪→ U 3 ⊕ E8(−1)2;
δ1 -→ (1, k) + (0, 0) + (0, 0) + θk ,

δ2 -→ (1, 0) + (0, 0) + (0, 0),

δ3 -→ (0, 0) + (1, 0) + (0, m),

δ4 -→ (0, 0) + (0, 0) + (1, 0),

δ5 -→ θn.

Remark 5.2. Together with Theorem 3.1, this lemma implies the existence, for
any k, m, n ∈ N, of a K3 surface X(k, m, n) with a Hodge isometry between the
transcendental lattices TX(k,m,n) and T(k, m, n). Such a surface is unique (up to
isomorphisms) by [Mu, Prop. 6.2].

In order to generalize the example constructed in Section 4, we want to produce
correspondences among these K3 surfaces. Observe that, with this notation, the
surfaces of the previous section can be rewritten as X1 = X(1,1,1) and X2 =
X(2, 2, 2).

The problem of finding correspondences among K3 surfaces was investigated
by Mukai in [Mu]. His idea was to construct such correspondences starting from
Hodge isometries (over Q) between the transcendental lattices of the surfaces. This
method works if the Picard number of the surfaces is sufficiently large. Mukai’s
result is as follows.

Theorem 5.3 [Mu, Cor. 1.10]. Let X,Y be K3 surfaces with ρ(X), ρ(Y ) ≥ 11.
If ϕ : TX ⊗ Q → TY ⊗ Q is a Hodge isometry, then ϕ is induced by an algebraic
cycle.

Our K3 surfaces, unfortunately, do not satisfy the condition of Mukai’s theorem
because an isometry between T(k, m, n) and T(k ′, m′, n′) doesn’t exist, even over
Q. However, in the same article Mukai proved Oda’s conjecture (as modified by
Morrison in [Mo]), which realizes a correspondence between a K3 surface X

and an abelian surface provided that the Q-transcendental lattice TX ⊗ Q admits
an embedding in U 3 ⊗ Q. In order to construct the correspondences among the
X(k, m, n), we follow a similar approach, translating the problem into another
one involving some (abelian) surfaces that are in correspondence with the given
surfaces.

6. Abelian Surfaces and Correspondences

Motivated by the work of Morrison and Mukai, we start with the following lemma.

Lemma 6.1. There is an embedding of Q-lattices φ : T(k, m, n) ⊗ Q ↪→ U 3 ⊗ Q.
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Proof. Let {ei
1, e

i
2} (i = 1, 2, 3) be the basis of the ith copy of the hyperbolic lat-

tice U, and let {a1, b1, a2, b2, c} be the basis of T(k, m, n). We define φ as:

a1 -→ e1
1 ⊗ 1,

b1 -→ e1
2 ⊗ k,

a2 -→ e2
1 ⊗ 1,

b2 -→ e2
2 ⊗ m,

c -→ e3
1 ⊗ 1 + e3

2 ⊗ (−n).

The existence of such an embedding allows us to prove our next theorem.

Theorem 6.2. For any k, m, n ∈ N there exist abelian surfaces An and corre-
spondences

Z(k, m, n)

((

)) X(k, m, n)

An .

Proof. Let us consider the embedding φ : T(k, m, n) ⊗ Q ↪→ U 3 ⊗ Q of Lem-
ma 6.1 as well as the lattice Tn := φ(T (k, m, n) ⊗ Q) ∩ U 3 = U 2 ⊕ 〈−2n〉 with
Hodge structure induced by φ. Since Tn is a primitive sublattice of", there exists a
K3 surface Yn and a Hodge isometry TYn

∼= Tn. Consider now the basis of TX(k,m,n)

given in Lemma 6.1: the multiplication by 1/k on the sublattice Z〈b1〉 and by 1/m
on Z〈b2〉 induces a Hodge isometry TX(k,m,n) ⊗ Q ∼= TYn ⊗ Q, and Theorem 5.3
gives a correspondence Z ′(k, m, n) between X(k, m, n) and Yn.

We can define also a primitive embedding Tn
∼= TYn ↪→ U 3 that sends U 2 ⊂ Tn

to the first two copies of U in U 3 via the identity and sends the element of square
−2n to e3

1 − ne3
2 . By Theorem 3.3, the existence of such an embedding is equiv-

alent to the existence of a Shioda–Inose structure on the K3 surface Yn. Hence
there exist an abelian surface An, a Hodge isometry TAn

∼= Tn, and a correspon-
dence Z ′′

n between Yn and An. The composition of the two correspondences

Z ′(k, m, n)

**((((((((((

%%%
%%%%%%%%

Z ′′
n

++)))))))))

&&*
********

X(k, m, n) Yn An

gives the desired one.

Now, we are able to prove the following theorem.

Theorem 6.3. Let X(k, m, n), k, m, n ∈ N, be a K3 surface with transcendental
lattice Hodge-isometric to T(k, m, n). For any k ′, m′, n′ ∈ N there exist corre-
spondences



Correspondences between K3 Surfaces 273

Z
k ′,m′,n′
k,m,n

((

)) X(k, m, n)

X(k ′, m′, n′),

and every X(k, m, n) has a correspondence with the Jacobian surface JC of Sec-
tion 4.

Proof. Let Z be a principally polarized abelian surface with ρ(Z) = 1, and let
{λ1, λ2, λ3, λ4} be a symplectic basis for the lattice of Z. For any n, let Bn :=
C2/"n be the complex torus with lattice"n = Z〈λ1, nλ2, λ3, λ4〉. Then the polar-
ization E defines on each Bn a polarization of type (1, n); moreover, the abelian
surfaces Bn are all obviously isogenous to each other.

On the other hand, we know that TBn
∼= U 2 ⊕ 〈−2n〉, so every Bn is a Fourier–

Mukai partner of the surface An constructed in Theorem 6.2. This means, by
Theorem 4.1, that Kum(An) ∼= Kum(Bn), so there is a correspondence between
An and Bn. In this way we have constructed a correspondence between An and
Am for any n, m:

An

((
+
+
+ Bn

((
+
+
+

∼ )) Bm

((
+
+
+ Am

((
+
+
+

Kum(An) ∼= Kum(Bn) Kum(Bm) ∼= Kum(Am).

But Theorem 6.2 gives a correspondence between X(k, m, n) and An for any n, so
the desired Z

k ′,m′,n′
k,m,n is the composition of these correspondences. Moreover, there

is a correspondence between X(1,1,1) and JC from Section 4, so the statement
follows.

Remark 6.4. We observe that the existence of the correspondence is independent
of the chosen Hodge structure on T . However, it is necessary not to change the
structure when we “twist” the starting lattice T by (k, m, n). This allows us to ob-
tain, for any chosen Hodge structure H on T, a family of K3 surfaces XH(k, m, n)

in correspondence to each other.

Morrison [Mo, Cor. 4.4] has shown that a K3 surface K of Picard rank 17 is a
Kummer surface if and only if there is an even lattice T ′ with TK

∼= U(2)2 ⊕T ′(2).

This allows us to prove the following theorem, which generalizes Theorem 6.3.

Theorem 6.5. Let X be a general K3 surface with ρ(X) = 17 and with TX ⊗ Q
isomorphic as a Hodge structure to TK ⊗ Q, where K is a Kummer surface. Then
there is a correspondence between X and K.

Proof. LetψK = U 2(2)⊕〈−4n〉 be the polarization on TK; we show that there is a
Q-basis of TX ⊗Q in which the polarization isψX = aψK with a ∈ Q. SinceψX ∈
Sym2(TX ⊗Q)MT(TX⊗Q) (where MT denotes the Mumford–Tate group), it suffices
to show that this space has dimension 1. This is a consequence of Schur’s lemma,
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since MT(Tx ⊗ Q)(C) = SO(5)(C) and the action on the Hodge structure is irre-
ducible. Thus, we have the Hodge Q-isometries TX ⊗ Q ∼= a(U 2(2) ⊕ 〈−4n〉) ∼=
U 2 ⊕ 〈−4na1a2〉, where a = a1/a2. From the surjectivity of the period map, the
last one is a transcendental lattice of a K3 surface X(1,1, −4na1a2), which by
Mukai’s work is in correspondence with X. The statement now follows from The-
orem 6.3.
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Appendix: A Geometric Correspondence
between X1 and a Kummer Surface

Igor Dolgachev

We use the following result of V. Nikulin [2].

Theorem 1. Let X be a K3-surface with TX
∼= U 2 ⊕ 〈−2〉. Then Pic(X) has

only finitely many smooth rational curves which form the following graph.

The automorphism group of X is generated by two commuting involutions σ and
τ ; the involution σ has eight isolated fixed points; the set of fixed points of the
involution τ is the union of eight smooth rational curves and a smooth curve of
genus 2.

It follows from observing the graph that X admits an elliptic fibration |F | with
two singular fibres

F1 = 3R0 + 2R1 + 4R2 + 6R3 + 5R4 + 4R5 + 3R6 + 2R7 + R8

and
F2 = 2N0 + N1 + 2N2 + 3N3 + 4N4 + 3N5 + 2N6 + N7

of type Ẽ8 and Ẽ7, respectively. It also has a section S. The fixed locus of τ con-
sists of smooth rational curves R1, R3, R5, R7, N2, N4, N6, S and a genus-2 curve
W that intersects R0, N0, N7 with multiplicity 1. Let p = W ∩ R0, q = W ∩ N0,
and a = W ∩ N7. We have 3p ∼ 2q + a, and the fibration defines a g1

3 on W

spanned by the divisors 3p and 2q + a.

We also observe that X contains another elliptic fibration |F ′| with two reducible
fibres

F ′
1 = 3N0 + R8 + 2S + 3N1 + 4N2 + 5N3 + 6N4 + 4N5 + 2N6
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and
F ′

2 = 2R0 + A + 2R1 + 3R2 + 4R3 + 3R4 + 2R5 + R6

of type Ẽ8 and Ẽ7, respectively. The curve R7 is a section. The involution σ
switches the two fibres and induces the hyperelliptic involution on W. Its set of
fixed points are two points on the curve R8 and six points on W. Also note that σ
maps the fibration |F | to the fibration |F ′|. It is easy to see that q = σ(p). This
gives 3p ∼ 2KW − 2p + a, hence

|5p| = |2KW + a|.

Theorem 2. The linear system |F ′ + F | defines a map f : X → P1 × P1 of de-
gree 2. Its branch locus is a curve of bidegree (4, 4) that is equal to the union of
a curve B of bidegree (3, 3) and two rulings E1, E2. The curve B has two cusps
q1, q2. The cuspidal tangent at qi is equal to Ei. The automorphism τ of X is the
deck transformation of f , and the quotient X/(τ ) admits a birational morphism to
P1×P1 that resolves the singularities of the branch curve. The automorphism σ is
induced by the automorphism σ̄ of P1 × P1, which switches the factors. It leaves
the curve B invariant and switches E1 and E2.

Proof. We have (F + F ′)2 = 4, and the restriction of |F ′ + F | to a nonsingular
fibre of each fibration is a degree-2 map. This easily implies that the linear sys-
tem defines a degree-2 map f to a nonsingular quadric in P3, and the pre-images
of the rulings are the fibrations |F | and |F ′|. The map f blows down the curves
R0, R1, R2, R3, R4, R6, N0, N1, N2, N3, N4, N5, N6. Its restriction to W is a bira-
tional map defined by a 3-dimensional linear subsystem of |3p + 3q| = |3KW |.
The rest of the assertions are easy to verify.

Consider the automorphism σ̄ of P1 × P1, and let

π : P
1 × P

1 → P
1 × P

1/(σ̄) ∼= P
1

be the natural projection to the orbit space. Its locus of fixed points is the diagonal
/. The image of/ on P2 is a conic Q, and the image of W is a cuspidal cubic G.

The image of both E1 and E2 is the cuspidal tangent T of G, which is also a tan-
gent of the conic Q. The curves Q and G intersect at six points, the ramification
points of the hyperelliptic involution of W.

Theorem 3. Let f̄ : Y → Ȳ → P2 be a minimal resolution of the double cover
Ȳ of P2 branched along the union of the curves G, Q, and T . Then Y is a Kummer
surface that is birationally isomorphic to the quotient of X by σ.

Proof. We have a commutative diagram

X
f

))

/σ

((

P1 × P1

/σ̄

((

Y
f̄

))
P2.
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It follows from [1] that Y is a Kummer surface of Jac(C) for some curve C (not
isomorphic to W ).

Remark. One can reverse the construction of Theorem 2. Starting from a genus-
2 curve W together with a point p ∈ W such that |3KW − p| 0= ∅ and p is not a
Weierstrass point, we construct a 2-cuspidal model W in P1 × P1 as in the theo-
rem. Then, taking the double cover, we obtain a K3 surface X with Picard lattice
containing U ⊕E8 ⊕E7 and U 2 ⊕〈−2〉 ⊂ TX. Replacing p by the conjugate point
q under the hyperelliptic involution, we get the same surface X. As explained to
me by J. Harris, the number of pairs (p, q) as above is equal to 16. Thus we obtain
that the moduli space of K3 surfaces marked with the lattice U ⊕ E8 ⊕ E7 is iso-
morphic to a (16 : 1)-cover M′

2 of the moduli space M2 of genus-2 curves; on the
other hand, via periods this space is isomorphic to the moduli space A2 of prin-
cipally polarized abelian surfaces. This defines a birational isomorphism between
M′

2 and M2.
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