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Abstract.

We survey some old and new results about finite subgroups of the
Cremona group Cr2(k) of birational automorphisms of the projective
plane over a field k.
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§1. Introduction

The Cremona group Crn(k) of degree n over a field k is the group
of birational automorphisms of Pn

k . In algebraic terms,

Crn(k) = Autk(k(t1, . . . , tn)).

In this article I will survey some old and new results on classification of
conjugacy classes of finite subgroups of Cr2(k). Recall that in the case
n = 1, we have

Cr1(k) ∼= Aut(P1
k) ∼= PGL2(k).
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The classification of finite subgroups of PGL2(k) is well-known. If k
is algebraically closed of characteristic zero, then each such group is
isomorphic to either a cyclic group Cn, or a dihedral group Dn of order
2n, or the tetrahedron group T , or the octahedron group O, or the
icosahedron group I. There is only one conjugacy class for each group
in Cr1(k). If char(k) = p > 0, then G is isomorphic to a subgroup of
PGL2(Fq) for some q = ps.

In this survey we will be concerned with the case n = 2. We will
consider three essentially different cases:

• k is the field of complex numbers C;
• k is an arbitrary field of characteristic prime to the order |G|

of G;
• k is algebraically closed of characteristic p dividing the order

of G.
Although in the first case the classification is ‘almost’ complete, in the
remaining cases it is very far from being complete.

This work arises from collaboration with my old, now deceased,
friend and colleague Vasya Iskovskikh. His help and guidance is hard to
overestimate.

§2. General facts

2.1. G-varieties
Let G be a finite subgroup of Crn(k). We say that a rational variety

X regularizes G if there exists a birational isomorphism φ : X− → Pn

such that φ−1 ◦ G ◦ φ is a subgroup of automorphisms of X .

Lemma 1. Each finite subgroup of Crn(k) can be regularized.

Proof. First we find an open subset U of Pn on which G acts bireg-
ularly. For example, we may take U = ∩g∈Gdom(g), where dom(g)
denotes the largest open subset on which g : Pn− → Pn is defined.
Then we consider the orbit space V = U/G, take some compactification
V̄ of V and let X ′ to be the normalization of V̄ in the field of rational
functions of U . The group G is the Galois group of the cover X ′ → V̄
and acts biregularly on X ′. Q.E.D.

Assume that k is of characteristic zero (resp. n = 2). Then a G-
variety X admits a G-equivariant resolution of singularities [1] (resp.
[23]). Thus we can regularize the action on a nonsingular variety X .

Definition 2. Let G be a finite group. A G-variety X is a pair
(X, ρ), where X is a projective algebraic variety over k and ρ : G →
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Aut(X) is an injective homomorphism of groups. A rational map of
G-varieties f : (X, ρ) → (Y, ρ′) is a rational map f : X− → Y together
with a group automorphism φ : G → G such that, for any g ∈ G,

f ◦ ρ(g) ◦ f−1 = ρ′(φ(g)).

A birational isomorphism of G-varieties is an invertible rational map of
G-varieties.

For any G-variety (X, ρ), we choose a birational isomorphism φ :
X → Pn and, for any g ∈ G, we let ι(g) = φ◦ρ(g)◦φ−1. This defines an
injective homomorphism from G to Crn(k). The previous lemma easily
implies the following.

Theorem 3. There is a natural bijective correspondence between
birational isomorphism classes of rational G-varieties and conjugacy
classes of subgroups of Crn(k) isomorphic to G.

Definition 4. A minimal G-variety is a G-variety (X, ρ) such that
any birational morphism of G-surfaces (X, ρ) → (X ′, ρ′) is an isomor-
phism. A group G of automorphisms of a rational variety X is called a
minimal group of automorphisms if the pair (X, ρ) is minimal.

So our goal is to classify minimal G-varieties (X, ρ) up to birational
isomorphism of G-varieties. For this we need an analog of the theory of
minimal models in a G-equivariant setting. If k is algebraically closed
of characteristic zero we can equivariantly resolve singularities of (X, G)
and then run the equivariant version of Mori’s program in dimension
3 [22] (and arbitrary dimension when such program will be fully es-
tablished). We obtain that G regularizes on a minimal G-variety with
GQ-factorial terminal singularities (nonsingular if n = 2). Since X is
rational, we obtain that X is a G-equivariant minimal Mori’s fibration
f : X → Z, where dimZ < dimX , the Weil divisor −KX is relatively
ample and the relative G-invariant Picard number ρG

X/Z is equal to 1.
If n = 2, then X is a nonsingular Fano variety (a Del Pezzo surface)

with Pic(X)G ∼= Z or Z = P1 and f : X → Z is a conic bundle with
Pic(X)G ∼= Z2. One can also run the Mori program not assuming that
the field k is algebraically closed (see [11]).

From now on we restrict ourselves with the case n = 2. There are
a few classification results in the cases n > 2. However, recently all
simple and p-elementary subgroups of Cr3(C) have been classified by
Yuri Prokhorov [28], [29].
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2.2. Lift to characteristic 0
A finite subgroup G of Crn(k) is called wild if its order is divisible

by the characteristic of k. It is called tame otherwise. The following
result belongs to J.-P. Serre [33]

Theorem 5. Let G be a finite tame subgroup of Cr2(k). Then
there exists a field K of characteristic 0 such that G is isomorphic to a
subgroup of Cr2(K).

The proof is based on the following result.

Proposition 6. Let G be a finite group of automorphisms of a pro-
jective smooth geometrically connected variety X over a field k. Suppose
the following conditions are satisfied.

• |G| is prime to char(k);
• H2(X,OX) = 0;
• H2(X,ΘX) = 0, where ΘX is the tangent sheaf of X.

Let A be a complete noetherian ring with residue field k. Then there
exists a smooth projective scheme XA over A on which G acts over A
and the special fibre is G-isomorphic to X.

We apply this proposition by taking X to be a rational surface over
k and A to be the ring of Witt vectors with residue field k. It is easy
to see that all conditions of the Proposition are satisfied. Let K be
the field of fractions of A. It follows from the rationality criterion for
surfaces that the general fibre XK is a geometrically rational surface, i.e.
becomes rational when we replace K by its algebraic closure K̄. This
proves the assertion of the theorem.

Note that, even if k is algebraically closed, the lifts of two non-
conjugate subgroups of Cr2(k), may be conjugate in Cr2(K̄).

§3. The case k = C

Let k be an algebraically closed field of characteristic 0. Without
loss of generality, we may assume that k = C. In this section we survey
results obtained in [11] and [3], [4]. We refer for the very old history of
the problem to [11].

3.1. Conic bundles
We start with minimal groups acting on a conic bundle. Let π :

S → P1 be a conic bundle with t singular fibres over points in a finite
set Σ ⊂ P1. Each singular fibre Fx, x ∈ Σ, is the bouquet of two P1’s.

Assume first that t = 0, i.e. S = Fn is a minimal ruled surface. Since
G acts minimally, n (= 1. We identify Fn with the weighted projective
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plane P(1, 1, n). If n (= 0, an automorphism is given by the formula

(t0, t1, t2) )→ (at0 + bt1, ct0 + dt1, et2 + fn(t0, t1)),

where fn is a homogeneous polynomial of degree n. The following propo-
sition is easy to prove.

Proposition 7. Let S = Fn, n (= 0. We have

Aut(Fn) ∼= Cn+1 ! (GL2(C)/µn),

where GL2(C)/µn acts on Cn+1 by means of its natural linear represen-
tation in the space of binary forms of degree n. Moreover,

GL(2)/µn
∼=

{
C∗ ! PSL(2), if n is even,

C∗ ! SL(2), if n is odd.

Using this proposition, it is not hard to list all finite subgroups which
may act on Fn.

Next we assume that π : S → P1 is a conic bundle with t > 0 of
singular fibres. The Picard group of S is freely generated by the divisor
classes of a section E of π, the class F of a fibre, and the classes of t
components of singular fibres, no two in the same fibre. The next lemma
follows easily from the intersection theory on S.

Lemma 8. Let E and E′ be two sections with negative self-intersec-
tion −n. Let r be the number of components of singular fibres which
intersect both E and E′. Then t − r is even and

2E · E′ = t − 2n − r.

In particular,
t ≥ 2n + r.

Since a conic bundle S is isomorphic to a blowup of a minimal ruled
surface, it always contains a section E with negative self-intersection
−n. If n ≥ 2, we obviously get t ≥ 4. If n = 1, since (S, G) is minimal,
there exists g ∈ G such that g(E) (= E and E ∩ g(E) (= ∅. Applying the
previous lemma we get

t ≥ 4.

Let G → Aut(P1) be the natural action of G on the base of the
conic fibration. Let Ḡ be the image of G in Aut(P1) and K be the
kernel. The group K is isomorphic to a subgroup of Aut(Sη), where Sη
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is a general fibre of π isomorphic to the projective line over the field of
rational functions of the base of the fibration.

Suppose G acts faithfully on the Picard group Pic(S). Then the
subgroup K acts non-trivially on the subgroup of Pic(S) generated by
the components of fibres of the conic fibration. This implies that K is
isomorphic to a subgroup of the group 2t := (Z/2Z)t. Since PGL2(C)
does not contain subgroups isomorphic to 2t for t > 2 we obtain that
K ∼= 2 or 22.

Theorem 9. Assume that G acts faithfully on Pic(S). Then the
subgroup K is isomorphic to either Z/2Z or (Z/2Z)2. In the first case
a generator of K fixes pointwise an irreducible smooth bisection C of φ
and switches the components in m ≤ t fibres over the branch points of
the g1

2 on C defined by the projection π. The curve C is a curve of genus
g = (m− 2)/2. In the second case, each nontrivial element gi of K fixes
pointwise an irreducible smooth bisection Ci. The set Σ is partitioned
in 3 subsets Σ1,Σ2,Σ3 such that the set of ramification points of the
projection φ : Ci → P1 is equal to Σj + Σk, i (= j (= k.

In [11] we investigate possible extensions 1 → K → G → Ḡ → 1.
Next we assume that G acts on Pic(S) with a non-trivial kernel G0.

A conic bundle that admits such an action is called an exceptional conic
bundle. All such conic bundles can be explicitly described. Here we give
only one possible construction of an exceptional conic bundle. Other
constructions can be found in [11].

Let us consider a quasi-smooth hypersurface Y of degree 2g + 2 in
weighted projective space P = P(1, 1, g + 1, g + 1) given by an equation

(1) p2g+2(t0, t1) + t2t3 = 0,

where p2g+2(t0, t1) is a homogeneous polynomial of degree 2g + 2 with-
out multiple roots. The surface is a double cover of P(1, 1, g + 1) (the
cone over a Veronese curve of degree g + 1) branched over the curve
isomorphic to the curve p2g+2(t0, t1) + t22 = 0. The preimages of the
singular point of P(1, 1, g + 1) with coordinates [0, 0, 1] is a pair of sin-
gular points of Y with coordinates [0, 0, 1, 0] and [0, 0, 0, 1]. The sin-
gularities are locally isomorphic to the singular points of a cone of the
Veronese surface of degree g + 1. Let S be a minimal resolution of
Y . The preimages of the singular points are disjoint smooth ratio-
nal curves E and E′ with self-intersection −(g + 1). The projection
P(1, 1, g + 1, g + 1) → P1, [t0, t1, t2, t3] )→ [t0, t1] lifts to a conic bundle
on S with sections E, E′. The pencil λt2 + µt3 = 0 cuts out a pencil of
curves on Y which lifts to a pencil of bisections of the conic bundle S
with 2g + 2 base points [t0, t1, 0, 0], where p2g+2(t0, t1) = 0.
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The following proposition describes the automorphism group of an
exceptional conic bundle. We denote by Yg an exceptional conic bundle
given by equation (1). Since we are interested only in minimal groups
we assume that g ≥ 1.

Proposition 10. The group of automorphisms of an exceptional
conic bundle (1) is isomorphic to an extension N.P , where P is the
subgroup of PGL2(C) leaving the set of zeroes of p2g+2(t0, t1) invariant
and N ∼= C∗ !2 is a group of matrices with determinant ±1 leaving t2t3
invariant. Moreover, the extension splits and defines an isomorphism

Aut(Yg) ∼= N × P

if and only if g is odd, or g is even and P is either a cyclic group or a
dihedral group D4k+2.

3.2. De Jonquières transformations
A Cremona transformation T of the plane which is defined by a

linear system L of plane curves of degree d which pass through a point
q with multiplicity d − 1 and points p1, . . . , p2d−2 with multiplicity 1 is
called a De Jonquières transformation. One can show that there exists
a curve Γ of degree d − 1 with singular point at q of multiplicity d − 2
and passing through the points p1, . . . , p2d−2. If we choose q = [0, 0, 1],
then Γ can be given by the equation

a(t0, t1, t2) = t2ad−2(t0, t1) + ad−1(t0, t1) = 0,

where as(t0, t1) denotes a binary form of degree s. Let

b(t0, t1, t2) = t2bd−1(t0, t1) + bd(t0, t1) = 0

define a curve from L which does not belong to the pencil formed by
Γ+&, where & is a line through q. Then the transformation T with homa-
loidal net L is equal to the composition φ ◦ T0, where φ is a projective
automorphism and T0 is given by the formula

(2) T0 : [t0, t1, t2] → [t0a(t0, t1, t2), t1a(t0, t1, t2), b(t0, t1, t2)].

It easy to see that T transforms the pencil of lines through the point q to
the pencil of lines through the point φ(q). Assume φ(q) = q, for example,
if T is of finite order, then in affine coordinates x = t1/t0, y = t2/t0, the
transformation T can be given by the formula

(3) T : (x, y) )→
(α1x + α2

α3x + α4
,
r1(x)y + r2(x)
r3(x)y + r4(x)

)
,
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where ri(x) are certain rational functions in x. All such transformations
form a subgroup of Cr2(k), called a De Jonquières subgroup. It depends
on the choice of generators, x, y of the field of rational functions k(P2)
of P2. Any Cremona transformation leaving a pencil of rational curves
invariant belongs to a De Jonquières subgroup.

Consider the transformation T0, where bd−1(t0, t1) = −ad−1(t0, t1).
Then one checks that T 2

0 is the identity. Its set of fixed points is a plane
curve of degree d

Hd : t22ad−2(t0, t1) + 2t2ad−1(t0, t1) + bd(t0, t1) = 0.

It has a singular point of multiplicity d− 2 at q and passes through the
points p1, . . . , p2d−2. Its normalization is a curve of genus g = d − 2.
Let S → P2 be the blow-up of the points q, p1, . . . , p2d−2. The pencil
of lines through the point q defines a conic bundle structure on S. Its
singular fibres are the full pre-images of lines 〈q, pi〉. The transformation
T0 lifts to S and interchanges the exceptional curve E at the point q with
the proper inverse transform of the curve Γ. Its fixed locus on S is the
proper inverse transform of the curve Hd.

Theorem 11. Let G be a finite subgroup of Cr2(k). The following
properties are equivalent:

(i) G leaves invariant a pencil of rational curves;
(ii) G belongs to a De Jonquières subgroup of Cr2(k);
(iii) G can be regularized by a group of automorphisms of a conic

bundle.
More can be said about cyclic groups. A De Jonquières transforma-

tion of order 2 is called a De Jonquières involution. The transformation
T0 from (2) with bd−1(t0, t1) = −ad−1(t0, t1) is an example of a De
Jonquières involution. In affine coordinates it can be given by

T0 : (x, y) )→ (x,
f(x)

y
),

where f(x) is a polynomial of degree 2g +1 with no multiple roots. The
fixed locus of T0 is birationally isomorphic to the curve y2 − f(x) = 0.

The proof of the following result can be found in [4].
Theorem 12. Let g be an element of a De Jonquières group of finite

order. Assume that g is not conjugate to a projective automorphism.
Then g is of even order 2n and, up to a conjugate,

gn : (x, y) )→ (x,
F (xn)

y
)

for some polynomial F (x) with no multiple roots.
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3.3. Automorphism groups of Del Pezzo surfaces
Let S be a Del Pezzo surface of degree d = K2

S . We start with the
case d = 9, i.e. S = P2. The classification of conjugacy classes of finite
subgroups of Aut(P2) ∼= PGL3(k) is known since the beginning of the
20th century.

Recall some standard terminology from the theory of linear groups.
Let G be a subgroup of the general linear group GL(V ) of a vector
space V over a field k. The group G is called intransitive if the repre-
sentation of G in V contains an invariant non-zero subspace. Otherwise
it is called transitive. A transitive group G is called imprimitive if it
contains a proper intransitive normal subgroup G′. In this case, if G
is tame, V decomposes into a direct sum of G′-invariant proper sub-
spaces, and elements from G permute them. A group is primitive if it
is neither intransitive, nor imprimitive. We reserve this terminology for
finite subgroups of PGL(V ) keeping in mind that each such group can
be represented by a subgroup of GL(V ).

We restrict ourselves with transitive subgroups, since intransitive
groups are easy to classify.

Theorem 13. Let G be a transitive imprimitive finite subgroup of
PGL3(C). Then G is conjugate to one of the following groups

• G ∼= n2 ! 3 generated by transformations

[εnt0, t1, t2], [t0, εnt1, t2], [t2, t0, t1];

• G ∼= n2 ! S3 generated by transformations

[εnt0, t1, t2], [t0, εnt1, t2], [t0, t2, t1], [t2, t0, t1];

• G = Gn,k,s
∼= (n× n

k ) ! 3, where k > 1, k|n and s2 − s + 1 = 0
mod k. It is generated by transformations

[εn/kt0, t1, t2], [εs
nt0, εnt1, t2], [t2, t0, t1].

• G 0 (n × n
3 ) ! S3 generated by transformations

[εn/3t0, t1, t2], [ε2nt0, εnt1, t2], [t0, t2, t1], [t1, t0, t2].

Here we denote by [l1(t), . . . , ln(t)], where li(t) are linear forms in
variables t0, . . . , tn, the projective transformation [t0, . . . , tn] )→ [l1(t), . . . ,
ln(t)]. The next theorem is a well-known result of Blichfeldt [5].

Theorem 14. Any primitive finite subgroup G of PGL3(C) is con-
jugate to one of the following groups.
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(1) The icosahedral group I ∼= A5. It leaves invariant a nonsingu-
lar conic.

(2) The Hessian group of order 216 isomorphic to 32 !SL2(F3). It
is realized as the group of automorphisms of the Hesse pencil
of cubics

x3 + y3 + z3 + txyz = 0.

(3) The Klein group of order 168 isomorphic to L2(7) (realized
as the full group of automorphisms of the Klein quartic x3y +
y3z + z3x = 0).

(4) The Valentiner group of order 360 isomorphic to A6. It can be
realized as the full group of automorphisms of the nonsingular
plane sextic

10x3y3 + 9zx5 + y5 − 45x2y2z2 − 135xyz4 + 27z6 = 0.

(5) Subgroups of order 36 and 72 of the Hessian group.

A Del Pezzo surface of degree d = 8 is isomorphic to either F0 or F1.
The second surface is not G-minimal. We have Aut(F0) ∼= PGL2(k) 1 2.
All finite subgroups of this group are easy to find using the following
Goursat Lemma.

Lemma 15. Let G be a finite subgroup of the product A×B of two
groups A and B. Let p1 : A × B → A, p2 : A × B → B be the projection
homomorphisms. Let Gi = pi(G), Hi = Ker(pj |G), i (= j = 1, 2. Then
Hi is a normal subgroup in Gi. The map φ : G1/H1 → G2/H2 defined
by φ(aH1) = p2(a)H2 is an isomorphism, and

G = G1 ×D G2,

where D = G1/H1,α : G1 → D is the projection map to the quotient,
and β is the composition of the projection G2 → G2/H2 and φ−1.

We refer to [11] for a complete list.
A Del Pezzo surface of degree d ≤ 7 is isomorphic to the blow-up of

9 − d distinct points in P2 such that no three are on a line, no six are
on a conic, and, if d = 1, no plane cubic passes through the points with
one of them being a singular point. A Del Pezzo surface of degree d = 7
is not G-minimal, since the proper inverse image of the line through the
two points is a G-invariant exceptional curve.

From now on we assume that d ≤ 6. Recall that the orthogonal
complement RS of the canonical class KS in Pic(S) equipped with the
intersection form is isomorphic to a root quadratic lattice Qd of type
A2⊕A1 (d = 6), A4 (d = 5), D5 (d = 4), E6 (d = 3), E7 (d = 2), E8 (d =
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1). The subgroup of isometries of RS generated by reflections in divisor
classes R with R2 = −2 is denoted by W (S). It is isomorphic to the
Weyl group W (Qd) of the lattice Qd. It coincides with the whole group
of isometries for d = 1, 2 and its index is equal to 2 in other cases. The
natural representation of Aut(S) in O(Pic(S)) defines a homomorphism

ρ : Aut(S) → W (RS).

Let π : S → P2 be the blow-up morphism of N = 9 − d points
p1, . . . , pN . Let Ei = π−1(pi) and ei = [Ei] ∈ Pic(S) be the divisor
class of Ei. Let e0 be the divisor class of the pre-image of a line in
P2. The classes (e0, e1, . . . , eN) form a basis of Pic(S) which we call a
geometric basis. It is an orthonormal basis in the sense that it defines
an isomorphism of lattices Pic(S) → I1,N , where I1,N is the quadratic
lattice defined by the diagonal matrix [1,−1, . . . ,−1]. The vectors

α1 = e0 − e1 − e2 − e3,αi = ei−1 − ei, i = 2, . . . , N

form a basis of the lattice RS . Its intersection matrix is equal to the
negative of the Cartan matrix with the Dynkin diagram of the corre-
sponding type. The Weyl group W (RS) is generated by reflections in
the vectors αi.

si : x )→ x + (x,αi)αi.

Proposition 16. The homomorphism ρ is injective if d < 6. If
d = 6, the homomorphism ρ is surjective and its kernel is a connected
algebraic group isomorphic to the two-dimensional torus C∗2. It acts on
S via its natural action on the projective plane.

If d = 6, we have

W (Q6) = W (A2 ⊕ A1) ∼= S3 × 2 ∼= D12,

where D12 is the dihedral group of order 12.
The reflection s1 is realized by the lift of the standard quadratic

transformation τ : [t0, t1, t2] )→ [t1t2, t0t2, t0t1] of P2. The reflection
s2(resp. s3) is realized by the projective transformations [t0, t1, t2] )→
[t1, t0, t2] (resp. [t0, t1, t2] )→ [t0, t2, t1]). This shows that W (Q6) =
〈s1〉×〈s2, s3〉 = 2×S3. The normalizer N(T ) of T = Ker(ρ) in PGL3(k)
is generated by T and s2, s3.

Let G be a minimal finite subgroup of Aut(S). Obviously, ρ(G)
contains s1 and s2s3 since otherwise G leaves invariant α1 or one of
the vectors 2α1 + α2, or α1 + 2α2. This shows that G ∩ N(T ) is an
imprimitive subgroup of PGL3(C). This gives
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Theorem 17. Let G be a minimal subgroup of a Del Pezzo surface
of degree 6. Then

G = H.〈s1〉,

where H is an imprimitive finite subgroup of PGL3(C).

Note that one of the groups from the theorem is the group 22 !S3
∼=

S4. Its action on S given by the equation

x0y0z0 − x1y1z1 = 0

in (P1)3 is given in [2].
Next we assume that S is a Del Pezzo surface of degree d = 5.
In this case S is isomorphic to the blowup of the reference points

p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1], p4 = [1, 1, 1]. The lattice Q5

is of type A4 and WS
∼= S5 is the permutation group of degree 5. The

homomorphism
ρ : Aut(S) → S5

is an isomorphism.
One of the ways to see the isomorphism Aut(S) ∼= S5 is to use

a well-known isomorphism between S and the moduli space M0,5
∼=

(P1)5//SL2(C). The group S5 acts by permuting the factors.

Theorem 18. Let (S, G) be a minimal Del Pezzo surface of degree
d = 5. Then G = S5, A5, 5 ! 4, 5 ! 2, or 5.

Proof. The group S5 acts on Q5
∼= Z4 by means of its standard

irreducible 4-dimensional representation (view Z4 as a subgroup of Z5

of vectors with coordinates added up to zero and consider the represen-
tation of S5 by switching the coordinates). It is known that a maximal
proper subgroup of S5 is equal (up to a conjugation) to one of three
subgroups S4, D12, A5, 5 ! 4. A maximal subgroup of A5 is either 5× 2
or S3 or D10. It is easy to see that the groups S4 and D12 have invariant
elements in the lattice Q5. It is known that an element of order 5 in S5

is a cyclic permutation, and hence has no invariant vectors. Thus any
subgroup G of S5 containing an element of order 5 defines a minimal
surface (S, G). So, if (S, G) is minimal, G must be equal to one of the
groups from the assertion of the theorem. Q.E.D.

Let S be a Del Pezzo surface of degree 4. It is well-known that S is
isomorphic to a nonsingular surface of degree 4 in P4 given by equations

(4) F1 =
4∑

i=0

t2i = 0, F2 =
4∑

i=0

ait
2
i = 0,
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where all ai’s are distinct.
The Weyl group W (Q4) ∼= W (D5) is isomorphic to the group 24 !

S5. The normal subgroup 24 is generated as a normal subgroup by
the element s1s5. It is realized by automorphisms of S which act in
P4 by multiplying the coordinates by ±1. The subgroup of the Weyl
group isomorphic to S5 acts on Pic(S) by permuting the divisor classes
e1, . . . , e5 of 5 skew lines and leaving the class e0 fixed.

The group Aut(S) could be larger than 24. Its image H in S5 is iso-
morphic to a subgroup of PGL2(C) leaving the set of 5 points p1, . . . , pk

invariant. Since there is a unique conic through these points, H is a
subgroup of PGL2(C) leaving an effective divisor of degree 5 invariant.
It follows that H is one of the following groups 2, 3, 4, 5, S3, D10. The
corresponding surfaces are projectively equivalent to the following sur-
faces

2 : x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = x2

0 + ax2
1 − x2

2 − ax2
3 = 0, a (= −1, 0, 1,

4 : x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = x2

0 + ix2
1 − x2

2 − ix2
3 = 0,

S3 : x2
0 + ε3x

2
1 + ε23x

2
2 + x2

3 = x2
0 + ε23x

2
1 + ε3x

2
2 + x2

4 = 0,

D10 :
4∑

i=0

εi
5x

2
i =

4∑

i=0

ε4−i
5 x2

i = 0

The analysis of all minimal finite subgroup of Aut(S) is rather te-
dious and non-trivial. We only give the final result (see [11]).

Aut(S) Subgroups
24 24, 23, 22

24 ! 2 2 × 4, D8, L16, 24 ! 2
24 ! 4 8, 22 ! 8, 24 ! 4,
24 ! S3 22 × 3, 2 × A4, 24 ! 3, 24 ! S3,
24 ! D10 24 ! D10, 24 ! 5

Table 1. Minimal subgroups of automorphisms of a Del
Pezzo surface of degree 4.

Here L16 is a solvable group of order 16 with generators a, b, c and
defining relations a4 = b2 = c2 = [c, a]b = [a, b] = [b, c] = 1. Note that
we did not include subgroups occurring in the previous rows.

Now let us consider the case of cubic surfaces. The groups of au-
tomorphisms of nonsingular cubic surfaces were essentially known in
the 19th century ([20], [38]). A general cubic surface does not admit
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non-trivial automorphisms. There are 11 classes of cubic surfaces with
non-trivial automorphisms. They are reproduced in the following table.

Type Order Structure F (t0, t1, t2, t3) Parameters
I 648 33 : S4 t30 + t31 + t32 + t33
II 120 S5 t20t1 + t0t22 + t2t23 + t3t21
III 108 H3(3) : 4 t30 + t31 + t32 + t33 + 6at1t2t3 20a3 + 8a6 = 1
IV 54 H3(3) : 2 t30 + t31 + t32 + t33 + 6at1t2t3 a − a4 (= 0,

8a3 (= −1,
20a3 + 8a6 (= 1

V 24 S4 t30 + t0(t21 + t22 + t23) 9a3 (= 8a
+at1t2t3 8a3 (= −1,

VI 12 S3 × 2 t32 + t33 + at2t3(t0 + t1) + t30 + t31 a (= 0
VII 8 8 t23t2 + t22t1 + t30 + t0t21
VIII 6 S3 t32 + t33 + at2t3(t0 + bt1) + t30 + t31 a (= 0, b (= 0, 1
IX 4 4 t23t2 + t22t1 + t30 + t0t21 + at31 a (= 0
X 4 22 t20(t1 + t2 + at3) + t31 + t32

+t33 + 6bt1t2t3 8b3 (= −1
XI 2 2 t31 + t32 + t33 + 6at1t2t3 b3, c3 (= 1

+t20(t1 + bt2 + ct3) b3 (= c3

8a3 (= −1,
Table 2. Groups of automorphisms of cubic surfaces.

A proof can be found in [14] and [11].
The important tool is the classification of conjugacy classes of el-

ements of finite order in the Weyl groups. According to [7] they are
indexed by certain graphs. We call them Carter graphs. One writes
each element w ∈ W as the product of two involutions w1w2, where
each involution is the product of reflections with respect to orthogonal
roots. Let R1,R2 be the corresponding sets of such roots. Then the
graph has vertices identified with elements of the set R1 ∪R2 and two
vertices α,β are joined by an edge if and only if (α,β) (= 0. A Carter
graph with no cycles is a Dynkin diagram. The subscript in the notation
of a Carter graph indicates the number of vertices. It is also equal to
the difference between the rank of the root lattice Q and the rank of its
fixed sublattice Q(w).

Note that the same conjugacy classes may correspond to different
graphs (e.g. D3 and A3, or 2A3 + A1 and D4(a1) + 3A1).

The Carter graph determines the characteristic polynomial of w.
In particular, it gives the trace Tr2(g) of g∗ on the cohomology space
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Graph Order Characteristic polynomial
Ak k + 1 tk + tk−1 + · · · + 1
Dk 2k − 2 (tk−1 + 1)(t + 1)
Dk(a1) l.c.m(2k − 4, 4) (tk−2 + 1)(t2 + 1)
Dk(a2) l.c.m(2k − 6, 6) (tk−3 + 1)(t3 + 1)
...

...
...

Dk(a k
2−1) even k (t k

2 + 1)2

E6 12 (t4 − t2 + 1)(t2 + t + 1)
E6(a1) 9 t6 + t3 + 1
E6(a2) 6 (t2 − t + 1)2(t2 + t + 1)
E7 18 (t6 − t3 + 1)(t + 1)
E7(a1) 14 t7 + 1
E7(a2) 12 (t4 − t2 + 1)(t3 + 1)
E7(a3) 30 (t5 + 1)(t2 − t + 1)
E7(a4) 6 (t2 − t + 1)2(t3 + 1)
E8 30 t8 + t7 − t5 − t4 − t3 + t + 1
E8(a1) 24 t8 − t4 + 1
E8(a2) 20 t8 − t6 + t4 − t2 + 1
E8(a3) 12 (t4 − t2 + 1)2

E8(a4) 18 (t6 − t3 + 1)(t2 − t + 1)
E8(a5) 15 t8 − t7 + t5 − t4 + t3 − t + 1
E8(a6) 10 (t4 − t3 + t2 − t + 1)2

E8(a7) 12 (t4 − t2 + 1)(t2 − t + 1)2

E8(a8) 6 (t2 − t + 1)4

Table 3. Carter graphs and characteristic polynomials.

H2(S, C) ∼= Pic(S)⊗C. The latter should be compared with the Euler–
Poincaré characteristic of the fixed locus Sg of g by applying the Lef-
schetz fixed-point formula.

(5) Tr2(g) = s − 2 +
∑

i∈I

(2 − 2gi),

where Sg the disjoint union of smooth curves Ri, i ∈ I, of genus gi and
s isolated fixed points.
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To determine whether a finite subgroup G of Aut(S) is minimal, we
use the well-known formula from the character theory of finite groups

rank Pic(S)G =
1

#G

∑

g∈G

Tr2(g).

The tables for conjugacy classes of elements from the Weyl group WS

give the values of the trace on the lattice RS = K⊥
S . Thus the group is

minimal if and only if the sum of the traces add up to 0.
We first give the list of minimal cyclic groups of automorphisms.

Proposition 19. The following conjugacy classes define minimal
cyclic groups of automorphisms of a cubic surface S.

• 3A2 of order 3,
• E6(a2) of order 6,
• A5 + A1 of order 6,
• E6(a1) of order 9,
• E6 of order 12.

A very tedious computation gives the final classification of minimal
finite subgroups of automorphisms of cubic surfaces.

Surface Type Subgroups
I S4, S3, S3 × 2, S3 × 3, 32 ! 2, 32 ! 22,
II H3(3) ! 2, H3(3), 33 ! 2, 33 ! 22, 33 ! 3,

33 ! S3, 33 ! D8, 33 ! S4,
33 ! 4, 33, 32, 32 × 2, 9, 6 (2), 3.

II S5, S4.
III H3(3) ! 4, H3(3) ! 2, H3(3),

S3 × 3, S3, 32, 12, 6, 3.
IV H3(3) ! 2, H3(3), S3, 3 × S3, 32, 6, 3.
V S4, S3.
VI 6, S3 × 2, S3.
VIII S3.

Table 4. Minimal subgroups of automorphisms of cubic sur-
faces.

Here H3(3) is the Heisenberg group of order 27 isomorphic to the
group of unipotent upper-triangular matrices of size 3×3 over the finite
field F3. Note that there could be more than one conjugacy class of
isomorphic groups. The number of these classes can be found in [11].
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Next we consider the case of Del Pezzo surfaces of degree 2. It is
known that the linear system |− KS | defines a double cover f : S → P2

branched along a nonsingular plane curve B of degree 4. This implies
that the group of automorphisms of S is mapped isomorphically onto
the group Aut(B) with kernel of order 2 generated by the deck transfor-
mation γ of the cover. The automorphism γ of the rational surface S is
conjugate in the Cremona group to the Geiser birational involution of
the plane. The automorphism group of a plane quartic curve have been
also determined in the 19th century. A modern proof can be found in
[13].

It is known that the center of the Weyl group W (Q2) = W (E7)
is generated by an element w0 which acts on Q2 as the negative of
the identity. Its conjugacy class is of type A7

1. The quotient group
W (E7)′ = W (E7)/〈w0〉 is isomorphic to the simple group Sp(6, F2).
The extension 2.Sp(6, F2) splits by the subgroup W (E7)+ equal to the
kernel of the determinant homomorphism det : W (E7) → {±1}. Thus
we have

W (E7) = W (E7)+ × 〈w0〉.

Let H be a subgroup of W (E7)′. Denote by H+ its lift to an iso-
morphic subgroup of W+. Any other isomorphic lift of H is defined by
a nontrivial homomorphism α : H → 〈w0〉 ∼= 2. Its elements are the
products hα(h), h ∈ H+. We denote such a lift by Hα. Thus all lifts are
parameterized by the group Hom(H, 〈w0〉) and H+ corresponds to the
trivial homomorphism. Note that wHαw−1 = (w′Hw′−1)α, where w′ is
the image of w in W (E7)′. In particular, two lifts of the same group are
never conjugate.

It is convenient to view a Del Pezzo surface of degree 2 as a hyper-
surface in the weighted projective space P(1, 1, 1, 2) given by an equation
of degree 4

(6) t23 + F4(t0, t1, t2) = 0.

The automorphism of the cover is the Geiser involution γ = [t0, t1, t2,−t3].
For any divisor class D on S we have D + γ∗

0(D) ∈ | − mKS| for some
integer m. This easily implies that γ∗ acts as the minus identity in Q2.
Its image in the Weyl group W (E7) is the generator w0 of its center.
Thus the Geiser involution is the geometric realization of w0.

Let ρ : Aut(S) → W (E7) be the natural injective homomorphism
corresponding to a choice of a geometric basis in Pic(S). Denote by
Aut(S)+ the full preimage of W (E7)+. Since W (E7)+ is a normal
subgroup, this definition is independent of a choice of a geometric ba-
sis. Under the restriction homomorphism Aut(S) → Aut(B), the group
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Aut(S)+ is mapped isomorphically to Aut(B) and we obtain

Aut(S)+ ∼= Aut(S)/〈γ〉 ∼= Aut(B).

From now on we will identify any subgroup G of Aut(B) with a subgroup
of Aut(S) which we call the even lift of G. Under the homomorphism
ρ : Aut(S) → W (E7) all elements of G define even conjugacy classes,
i.e. the conjugacy classes of elements from W (E7)+. It is immediate to
see that a conjugacy class is even if and only if the sum of the subscripts
in its Carter graph is even. An isomorphic lift of a subgroup G to a
subgroup of Aut(S) corresponding to some nontrivial homomorphism
G → 〈γ〉 (or, equivalently to a subgroup of index 2 of G) will be called
an odd lift of G.

The odd and even lifts of the same group are never conjugate, two
minimal lifts are conjugate in Aut(S) if and only if the groups are con-
jugate in Aut(B). Two odd lifts of G are conjugate if and only if they
correspond to conjugate subgroups of index 2 (inside of the normalizer
of G in Aut(B)).

Lemma 20. Let G be a subgroup of Aut(B) and H be its subgroup
of index 2. Assume H is a minimal subgroup of Aut(S) (i.e. its even
lift is such a subgroup). Then G is minimal in its even lift and its odd
lift corresponding to H. Conversely, if G is minimal in both lifts, then
H is a minimal subgroup.

Since γ generates a minimal subgroup of automorphisms of S, any
group containing γ is minimal. So, we classify first subgroups of Aut(B)
which admit minimal lifts. These will be all minimal subgroups of
Aut(S) which do not contain the Geiser involution γ. The remaining
minimal groups will be of the form 〈γ〉 × G̃, where G̃ is any lift of a
subgroup G of Aut(B). Obviously, the product does not depend on the
parity of the lift.

We first give the list of minimal cyclic groups.
(1) Order 2 (A7

1) (The Geiser involution) g = [t0, t1, t2,−t3]

F = t23 + F4(t0, t1, t2).

(2) Order 4 (2A3 + A1) g = [t0, t1, it2, t3]

F = t23 + t42 + L4(t0, t1).

(3) Order 6 (E7(a4)) g = [t0, t1, ε3t2,−t3]

F = t23 + t32L1(t0, t1) + L4(t0, t1).
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(4) Order 6 (A5 + A2) g = [t0,−t1, ε3t2,−t3]

F = t23 + t40 + t41 + t0t
3
2 + at20t

2
1.

(5) Order 6 (D6(a2) + A1) g = [t0, ε3x1, ε23x2,−x3]

F = t23 + t0(t30 + t31 + t32) + t1t2(αt20 + βt1t2).

(6) Order 12 (E7(a2)) g = [t0, ε4t1, ε3t2, t3]

F = t23 + t40 + t41 + t0t
3
2, (t0, t1, t2, t3).

(7) Order 14 (E7(a1)) g = [t0, ε4t1, ε3t2, t3]

F = t23 + t30t1 + t31t2 + t32t0.

(8) Order 18 (E7) g = [t0, ε3t1, ε29t2,−t3]

F = t23 + t40 + t0t
3
1 + t32t1.

Using the information about cyclic groups of automorphisms of plane
quartics, it is not hard to get the classification of possible automorphism
groups (see [13]). It is given in Table 5.

Here AS16 is a solvable group of order 16 with generators a.b, c and
defining relations a4 = b2 = c2 = [a, b] = [c, b]a−2 = [c, a] = 1 .

Let us describe minimal subgroups of automorphisms of a Del Pezzo
surface of degree 2.

To summarize our investigation we give two lists. In the first one we
list all groups which do not contain the Geiser involution γ. We indicate
by + or − the types of their lifts.

All other minimal groups are of the form 〈γ〉×G, where G is one of
the lifts of a subgroup of Aut(B). In the second list we give only groups
2 × G, where G does not admit a minimal lift. All other groups are of
the form 2 × G, where G is given in Table 6.

Here M16 is a group of order 16 defined by generators a, b with
relations a8 = b2 = [a, b]a4 = 1. Note that some isomorphic groups
may not be conjugate in Cr2(k). We compute the number of conjugacy
classes in [11].

Theorem 21. Let G be a minimal group of automorphisms of a
Del Pezzo surface of degree 2. Then G is either equal to a minimal lift
of a subgroup from Table 6 or equal to γ × G′, where G′ is either from
the table or one of the following groups of automorphisms of the branch
quartic curve B

(1) Type I: 7 : 3, A4, S3, 7, 4, 3, 2.
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Type Order Structure Equation Parameters
I 336 2 × PSL2(F7) t23 + t30t1 + t31t2 + t32t0

II 192 2 × (42 : S3) t23 + t40 + t41 + t42
III 96 2 × 4.A4 t23 + t42 + t40 + at20t21 + t41 a2 = −12
IV 48 2 × S4 t23 + t42 + t41 + t40 a (= −1±

√
−7

2

+at20t21 + t20t22 + t21t22
V 32 2 × AS16 t23 + t42 + t40 + at20t21 + t41 a2 (= 0,−12, 4, 36
VI 18 18 t23 + t40 + t0t31 + t1t32
VII 16 2 × D8 t23 + t42 + t40 + t41 a, b (= 0

+at20t21 + bt22t0t1

VIII 12 2 × 6 t23 + t32t0 + t40 + t41 + at20t21
IX 12 2 × S3 t23 + t42 + at22t0t1

+t0(t32 + t30) + bt20t21
X 8 23 t23 + t42 + t41 + t40 distinct a, b, c (= 0

+at22t20 + bt21t22 + ct20t21
XI 6 6 t23 + t32t0 + L4(t0, t1)
XII 4 22 t23 + t42

+t22L2(t0, t1) + L4(t0, t1)
XIII 2 2 t23 + F4(t0, t1, t2)

Table 5. Groups of automorphisms of Del Pezzo surfaces of
degree 2.

(2) Type II: 22, S3, 8, 4, 3, 2.
(3) Type III: 22, 4, 2.
(4) Type IV: S3, 22, 3, 2.
(5) Type V: 22, 2.
(6) Type VI: 9, 3.
(7) Type VII: 22, 4, 2
(8) Type VIII: 3.
(9) Type IX: S3, 3, 2.

(10) Type X: 22, 2.
(11) Type XI: 3.
(12) Type XII: {1}.

Let S be a Del Pezzo surface of degree 1. The linear system |−2KS|
defines a finite map of degree 2 onto a quadric cone Q in P3. Its branch
locus is a nonsingular curve B of genus 4 cut out by a cubic surface.
Recall that a singular quadric is isomorphic to the weighted projective
space P(1, 1, 2). A curve of genus 4 of degree 6 cut out in Q by a cubic
surface is given by equation F (t0, t1, t2) of degree 6. After change of
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Type of S Group Lift
I L2(7), S4, D8 +

II 42 ! S3, S4, D8 × 4, AS16 +,-
42 ! 3, A4, M16, D8 +

42, 2 × 4, 4 -
III 4A4, AS16 +,-

D8, D8 ! 3 +
12, 6, 2× 4, 4 -

IV S4, D8 +
V AS16 +,-

D8 +
2 × 4, 4 -

VII D8 +
VIII 6 -

Table 6. Minimal groups of automorphisms not containing
γ.

coordinates it can be given by an equation t32 + a(t0, t1)t2 + b(t0, t1) =
0, where a(t0, t1) and b(t0, t1) are binary forms of degree 4 and 6 (or
identically zero). The double cover of Q branched along such curve is
isomorphic to a hypersurface of degree 6 in P(1, 1, 2, 3)

(7) t23 + t32 + a(t0, t1)t2 + b(t0, t1) = 0.

The vertex of Q has coordinates [0, 0, 1] and its preimage in the cover
consist of one point [0, 0, 1, a], where a2 +1 = 0 (note that [0, 0, 1, a] and
[0, 0, 1,−a] represent the same point on P(1, 1, 2, 3)). This is the base-
point of | − KS |. The members of | − KS | are isomorphic to genus 1
curves with equations y2 + x3 + a(t0, t1)x + b(t0, t1) = 0. The locus
of zeros of ∆ = 4a3 + 27b2 is the set of points in P1 such that the
corresponding genus 1 curve is singular. It consists of a simple roots
and b double roots. The zeros of a are either common zeros with b and
∆, or represent nonsingular elliptic curves isomorphic to an anharmonic
plane cubic curve. The zeros of b are either common zeros with a and ∆,
or represent nonsingular elliptic curves isomorphic to a harmonic plane
cubic curve.

Observe that no common root of a and b is a multiple root of b since
otherwise the surface is singular.

Since the ramification curve of the cover S → Q (identified with the
branch curve B) is obviously invariant with respect to Aut(S), we have
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a natural surjective homomorphism

(8) Aut(S) → Aut(B).

Its kernel is generated by the deck involution β which is called the Bertini
involution. It defines the Bertini involution in Cr(2). The Bertini in-
volution is the analog of the Geiser involution for Del Pezzo surfaces
of degree 2. The same argument as above shows that β acts in RS as
the minus identity map. Under the homomorphism Aut(S) → W (E8)
defined by a choice of a geometric basis, the image of β is the elements
w0 generating the center of W (E8). This time w0 is an even element, i.e.
belongs to W (E8)+. The quotient group W (E8)+/〈w0〉 is isomorphic to
the simple group O+(8, F2).

Since Q is a unique quadric cone containing B, the group Aut(B) is a
subgroup of Aut(Q). Consider the natural homomorphism r : Aut(S) →
Aut(P1) which is the composition of (8) and the natural homomorphism
Aut(B) → Aut(P1). Let G be a subgroup of Aut(S) and P be its im-
age in Aut(P1). We assume that elements from G act on the variables
t0, t1 by linear transformations with determinant 1. The polynomials
a(t0, t1) and b(t0, t1) are the relative invariants of the binary group
P̄ = 2.P . They are polynomials in the known basic relative invari-
ants (Gründformen). Each relative invariant p(t0, t1) defines a character
χ : P̄ → C∗ via g∗(p) = χ(g)p. Let χ4,χ6 be the corresponding charac-
ters of P̄ defined by the binary forms a, b. Let χ2,χ3 be the characters
of G defined by the action on the variables t2, t3. Assume that a (= 0.
Then

χ4χ2 = χ6 = χ3
3 = χ2

3.

If g ∈ G ∩ Ker(r) \ {1}, then g acts on the variables t0, t1 by either
the identity or the minus identity. Thus χ4(g) = χ6(g) = 1 and we
must have χ2(g) = χ3(g)2 = 1. This shows that g = [t0, t1, t3,−t3] =
[−t0,−t1, t2,−t3] = β. If a = 0, then we must have only χ2(g)3 =
χ3(g)2 = 1.

Using these arguments it is easy to list all possible automorphism
groups of the curve B, and then describe their lifts to Aut(S) similarly
to the case of Del Pezzo surfaces of degree 2. We state the results.

Table 7 gives the list of the full automorphism groups of Del Pezzo
surfaces of degree 1.

Here Q8 denotes the quaternion group of order 8.

The following is the list of cyclic minimal groups 〈g〉 of automor-
phisms of Del Pezzo surfaces V (F ) of degree 1.

(1) Order 2
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Type Order Structure F4 F6 Parameters
I 144 3 × (T : 2) 0 t0t1(t40 − t41)
II 72 3 × 2D12 0 t60 + t61
III 36 6 × D6 0 t60 + at30t31 + t61 a (= 0
IV 30 30 0 t0(t50 + t51)
V 24 T a(t40 + αt20t21 + t41) t0t1(t40 − t41) α = 2

√
−3

VI 24 2D12 at20t21 t60 + t61 a (= 0
VII 24 2 × 12 t40 t61
VIII 20 20 t40 t0t51
IX 16 D16 at20t21 t0t1(t40 + t41) a (= 0
X 12 D12 t20t21 t60 + at30t31 + t61 a (= 0
XI 12 2 × 6 0 G3(t20, t21)
XII 12 2 × 6 t40 at60 + t61 a (= 0
XIII 10 10 t40 t0(at50 + t51) a (= 0
XIV 8 Q8 t40 + t41 + at20t21 bt0t1(t40 − t41) a (= 2

√
−3

XV 8 2 × 4 at40 + t41 t20(bt40 + ct41)
XVI 8 D8 t40 + t41 + at20t21 t0t1(b(t40 + t41) b (= 0

+ct20t21)
XVII 6 6 0 F6(t0, t1)
XVIII 6 6 t0(at30 + bt31) ct60 + dt30t31 + t61
XIX 4 4 G2(t20, t21 t0t1F2(t20, t21)
XX 4 22 G2(t20, t21 G3(t20, t21)
XXI 2 2 F4(t0, t1) F6(t0, t1)

Table 7. Groups of automorphisms of Del Pezzo surfaces of
degree 1.

• A8
1 (the Bertini involution) g = [t0, t1, t2,−t3]

F = t23 + t32 + a(t0, t1)t2 + b(t0, t1),

(2) Order 3
• 4A2 g = [t0, t1, ε3t2, t3]

F = t23 + t32 + b(t0, t1),

(3) Order 4
• 2D4(a1) g = [t0,−t1,−t2,±it3]

F = t23 + t32 + (at40 + bt20t
2
1 + ct41)t2 + t0t1(dt40 + et41),

(4) Order 5
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• 2A4 g = [t0, ε5t1, t2, t3]

F = t23 + t32 + at40t2 + t0(bt50 + t51),

(5) Order 6
• E6(a2) + A2 g = [t0,−t1, ε3t2, t3]

F = t23 + t32 + G3(t20, t
2
1),

• E7(a4) + A1 g = [t0, ε3t1, t2,−t3]

F = t23 + t32 + (t40 + at0t
3
1)t2 + bt60 + ct30t

3
1 + dt61,

• 2D4 g = [ε6t0, ε−1
6 t1, t2, t3]

F = t23 + t32 + at20t
2
1t2 + bt60 + ct30t

3
1 + et61,

• E8(a8) g = [t0, t1, ε3t2,−t3]

F = t23 + t32 + F6(t0, t1),

• A5 + A2 + A1 g = [t0, ε6t1, t2, t3]

F = t23 + t32 + at40t2 + t60 + bt61,

(6) Order 8
• D8(a3) g = [it0, t1,−it2,±ε8t3]

F = t23 + t32 + at20t
2
1t2 + t0t1(t40 + t41),

(7) Order 10
• E8(a6) g = [t0, ε5t1, t2,−t3]

F = t23 + t32 + at40t2 + t0(bt50 + t51),

(8) Order 12
• E8(a3) g = [−t0, t1, ε6t2, it3]

F = t23 + t32 + t0t1(t40 + at20t
2
1 + t41),

(9) Order 15
• E8(a5) g = [t0, ε5t1, ε3t2, t3]

F = t23 + t32 + t0(t50 + t51),

(10) Order 20
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• E8(a2) g = [t0, ε10t1,−t2, it3]

F = t23 + t32 + at40t2 + t0t
5
1,

(11) Order 24
• E8(a1) g = [it0, t1, ε12t2, ε8t3]

F = t23 + t32 + t0t1(t40 + t41),

(12) Order 30
• E8 g = [t0, ε5t1, ε3t2,−t3]

F = t23 + t32 + t0(t50 + t51).

To list all minimal subgroups of Aut(S) is very easy. We know that
any subgroup in Ker(r) contains one of the elements α,β,αβ which are
all minimal of types 8A1, 4A2, E8(a8). So, a subgroup is not minimal
only if its image P in Aut(B) can be lifted isomorphically to Aut(S).

We use the following lemma.

Lemma 22. Let P ⊂ Aut(P1) and G ⊂ Aut(S) be contained in
r−1(P ). Then G is a minimal group unless G = P̃ ∼= P and G is a
non-minimal cyclic group or non-minimal dihedral group D6.

Here is the list of minimal groups of automorphisms of a Del Pezzo
surface of degree 1.

Type I. P ∼= S4.

• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈β〉 ∼= 2;
• P = 2: 4, 12;
• P = 2: 4, 12;
• P = 3: 32, 3 × 6;
• P = 22: Q8, Q8 × 3;
• P = 22: D8, D8 × 3;
• P = 4: 8, 8 × 3;
• P = D8: D16, D8 × 3;
• P = D6: D6 × 2, D6 × 3, D6 × 6;
• P = A4: T , T × 3;
• P = S4: T : 2, 3 × (T : 2).

Type II: P = D12.
• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈β〉 ∼= 2;
• P = 2: 4, 12;
• P = 2: 22, 22 × 3, 6;
• P = 3: 32, 32 × 2;
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• P = 22: Q8, Q8 × 3;
• P = 6: 2 × 6,
• P = D6: 2 × D6, D6 × 3, D6 × 6;
• P = D12: 2D12, 3 × 2D12.

Type IV: P = 5
• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈β〉 ∼= 2;
• P = 5: 5, 10, 15, 30;

Type VII: P ∼= 12.
• P = 2: 22.
• P = 3: 6;
• P = 4: 2 × 4;
• P = 6: 2 × 6;
• P = 12: 2 × 12.

Type VIII: P ∼= 10.
• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈β〉 ∼= 2;
• P = 2: 22.
• P = 5: 10;
• P = 10: 20.

Type XV: P ∼= 4.
• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈β〉 ∼= 2;
• P = 2: 22.
• P = 4: 2 × 4.

3.4. Elementary links
We will be dealing with minimal Del Pezzo G-surfaces or minimal

conic bundles G-surfaces. In the G-equivariant version of the Mori the-
ory they are interpreted as extremal contractions φ : S → C, where
C = pt is a point in the first case and C ∼= P1 in the second case. They
are also two-dimensional analogs of rational Mori G-fibrations.

A birational G-map between Mori fibrations are diagrams

(9) S

φ

!!

χ ""!!! S′

φ′

!!
C C′

which in general do not commute with the fibrations. These maps are
decomposed into elementary links. These links are divided into the four
following types.

• Links of type I:
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They are commutative diagrams of the form

(10) S

φ

!!

Z = S′

φ′

!!

σ##

C = pt C′ = P1.
α##

Here σ : Z → S is the blowup of a G-orbit, S is a minimal Del Pezzo
surface, φ′ : S′ → P1 is a minimal conic bundle G-fibration, α is the
constant map. For example, the blowup of a G-fixed point on P2 defines
a minimal conic G-bundle φ′ : F1 → P1 with a G-invariant exceptional
section.

• Links of type II:
They are commutative diagrams of the form

(11) S

φ

!!

Z
σ## τ "" S′

φ′

!!
C = C′.

Here σ : Z → S, τ : Z → S′ are the blowups of G-orbits such that
rank Pic(Z)G = rank Pic(S)G + 1 = rank Pic(S′)G + 1, C = C′ is either
a point or P1. An example of a link of type II is the Geiser (or Bertini)
involution of P2, where one blows up 7 (or 8) points in general position
which form one G-orbit. Another frequently used link of type II is an
elementary transformation of minimal ruled surfaces and conic bundles.

• Links of type III:
These are the birational maps which are the inverses of links of type I.

• Links of type IV:
They exist when S has two different structures of G-equivariant conic
bundles. The link is the exchange of the two conic bundle structures

(12) S

φ

!!

= S′

φ′

!!
C C′.

One uses these links to relate elementary links with respect to one conic
fibration to elementary links with respect to another conic fibration. Of-
ten the change of the conic bundle structures is realized via an involution
in Aut(S), for example, the switch of the factors of S = P1×P1 (see the
following classification of elementary links).
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Theorem 23. Let f : S− → S′ be a birational map of minimal
G-surfaces. Then χ is equal to a composition of elementary links.

The proof of this theorem is the same as in the arithmetic case
considered in [17], Theorem 2.5.

To start a link, one has to blow-up base points of maximal multiplic-
ity of a linear system defining the birational map. To do it equivariantly,
we blow up the orbits of points of maximal multiplicity. One uses the
following

Lemma 24. Let S a G-minimal Del Pezzo surface of degree d and
H = | − aKS −

∑
miκi| be a linear system defining a birational G-

equivariant map σ : S− → S′. Here κi are the G-orbits of base points
of H and a ∈ 1

2Z. Then ∑
#κi < d.

It follows from this lemma and Theorem 23 that σ is an isomorphism
if G has no orbits of points of cardinality less than d. For example, this
obviously happens if d = 1. So any minimal group of automorphisms of
a Del Pezzo surface of degree 1 cannot be conjugate to a minimal group
of automorphisms of another Del Pezzo surface or a conic bundle. It is
superrigid in the sense of the following definition.

Definition 25. A minimal Del Pezzo G-surface is called superrigid
(resp. rigid) if any birational G-map χ : S− → S′ is a G-isomorphism
(resp. there exists a birational G-automorphism α : S− → S such that
χ ◦ α is a G-isomorphism).

A minimal conic bundle φ : S → P1 is called superrigid (resp. rigid)
if for any birational G-map χ : S− → S′, where φ′ : S′ → P1 is a
minimal conic bundle, there exists an isomorphism δ : P1 → P1 such
that the following diagram is commutative

(13) S

φ

!!

χ ""!!! S′

φ′

!!
P1 δ "" P1

(resp. there exists a birational G-automorphism α : S− → S′ such that
the diagram is commutative after we replace χ with χ ◦ α).

3.5. Final classification
Let S be a minimal G-surface S and d = K2

S. We will classify
all birational isomorphism classes of (S, G) according to the increasing
parameter d. Since the number of singular fibres of a minimal conic
bundle is at least 4, we have d ≤ 4 for conic bundles.
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• d ≤ 0.
In this case, Iskovskikh’s classification of elementary links shows

that S is a superrigid conic bundle with k = 8 − d singular fibres. The
number k is a birational invariant.

Also observe that if φ : S → P1 is an exceptional conic bundle and
G0 = Ker(G → O(Pic(S)) is non-trivial, then no links of type II is
possible. Thus the conjugacy class of G is uniquely determined by the
isomorphism class of S.

• d = 1, S is a Del Pezzo surface.
The surface S is superrigid. Hence the conjugacy class of G is de-

termined uniquely by its conjugacy class in Aut(S). All such conjugacy
classes have been listed.

• d = 1, S is a conic bundle.
Let φ : S → P1 be a minimal conic bundle on S. It has t = 7 singular

fibres. If −KS is ample, i.e. S is a (non-minimal) Del Pezzo surface,
then the center of Aut(S) contains the Bertini involution β. We know
that β acts as −1 on RS , thus β does not act identically on Pic(S)G,
hence β (∈ G. Since t is odd, the conic bundle is not exceptional, so
we cam apply Theorem 9. It follows that G must contain a subgroup
isomorphic to 22, adding β we get that S is a minimal Del Pezzo 23-
surface of degree 1. However, the classification shows that there are no
such surfaces.

Thus −KS is not ample. It follows from classification of elementary
links that the structure of a conic bundle on S is unique. Any other conic
bundle birationally G-isomorphic to S is obtained from S by elementary
transformations with G-invariant set of centers.

• d = 2, S is a Del Pezzo surface.
By Lemma 24, S is superrigid unless G has a fixed point on S. If

σ : S− → S′ is a birational G-map, then the unique maximal base point
of the linear system defining σ does not lie on a (−1)-curve. We can
apply an elementary link S ← Z → S′ of type II which together with the
projections S → P2 resolves the Bertini involution. These links together
with the G-automorphisms (including the Geiser involution) generate
the group of birational G-automorphisms of S (see [17], Theorem 4.6).
Thus the surface is rigid. The conjugacy class of G in Cr(2) is determined
uniquely by the conjugacy class of G in Aut(S). All such conjugacy
classes have been listed.

• d = 2, φ : S → P1 is a conic bundle.
If −KS is ample, then φ is not an exceptional conic bundle. The center
of Aut(S) contains the Geiser involution γ. Since γ acts non-trivially
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on Pic(S)G = Z2, we see that γ (∈ G. Applying γ we obtain another
conic bundle structure. In other words, γ defines an elementary link
of type IV. Using the factorization theorem we show that the group of
birational G-automorphisms of S is generated by links of type II, the
Geiser involution, and G-automorphisms (see [17], [18], Theorem 4.9).
Thus φ : S → P1 is a rigid conic bundle.

If S is not a Del Pezzo surface, φ could be an exceptional conic
bundle with g = 2. In any case the group G is determined in Proposition
10. It is not known whether S can be mapped to a conic bundle with
−KS ample.

One can show that any conic bundle with d ≥ 3 is a non-minimal
Del Pezzo surface, unless d = 4 and S is an exceptional conic bundle.
In the latter case, the group G can be found in Proposition 10. It is not
known whether it is birationally G-isomorphic to a Del Pezzo surface.

• d = 3, S is a minimal Del Pezzo surface.
The classification of elementary links shows that S is rigid. The

conjugacy class of G in Cr(2) is determined by the conjugacy class of G
in Aut(S).

• d = 3, S is a minimal conic bundle.
Since k = 5 is odd, G has 3 commuting involutions, the fixed-point locus
of one of them must be a rational 2-section of the conic bundle. It is
easy to see that it is a (−1)-curve C from the divisor class −KS − f .
The other two fixed-point curves are of genus 2. The group G leaves the
curve C invariant. Thus blowing it down, we obtain a minimal Del Pezzo
G-surface S′ of degree 4. The group G contains a subgroup isomorphic
to 22. Thus G can be found in the list of minimal groups of degree 4
Del Pezzo surfaces with a fixed point. For example, the group 22 has 4
fixed points.

• d = 4, S is a minimal Del Pezzo surface.
If SG = ∅, then S admits only self-links of type II, so it is rigid

or superrigid. The conjugacy class of G in Cr(2) is determined by the
conjugacy class of G in Aut(S). If x is a fixed point of G, then we can
apply a link of type I, to get a minimal conic bundle with d = 3. So,
all groups with SG (= ∅ are conjugate to groups of de Jonquières type
realized on a conic bundle S ∈ C5.

• d = 4, S is a minimal conic bundle.
Since k = 4, then either S is an exceptional conic bundle with g = 1,

or S is a Del Pezzo surface with two sections with self-intersection −1
intersecting at one point. In the latter case, S is obtained by regular-
izing a de Jonquéres involution. They are minimal if and only if the
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kernel of the map G → PGL2(C) contains an involution not contained
in G0 = Ker(G) → O(Pic(S)). If G0 is not trivial, then no elementary
transformation is possible. So, S is not birationally isomorphic to a Del
Pezzo surface.

• d = 5, S is a Del Pezzo surface, G ∼= 5.
Let us show that (S, G) is birationally isomorphic to (P2, G). Since

rational surfaces are simply-connected, G has a fixed point x on S. The
anti-canonical model of S is a surface of degree 5 in P5. Let P be the
tangent plane of S at x. The projection from P defines a birational G-
equivariant map S− → P2 given by the linear system of anti-canonical
curves with double point at x. It is an elementary link of type II.

• d = 5, S is a Del Pezzo surface, G ∼= 5 ! 2, 5 ! 4.
The cyclic subgroup of order 5 of G has two fixed points on S. This

immediately follows from the Lefschetz fixed-point formula. Since it is
normal in G, the groups G has an orbit κ with #κ = 2. Using an
elementary link of type II with S′ = F0, we obtain that G is conjugate
to a group acting on F0.

• d = 5, S is a Del Pezzo surface, G ∼= A5, S5.
It is clear that SG = ∅ since otherwise G admits a faithful 2-

dimensional linear representation. It is known that it does not exist.
Since A5 has no index 2 subgroups G does not admit orbits κ with
#κ = 2. The same is obviously true for G = S5. It follows from the
classification of links that (S, G) is superrigid.

• d = 6.
One of the groups from this case, namely G ∼= 2×S3 was considered in
[18], [19]. It is proved there that (S, G) is not birationally isomorphic to
(P2, G) but birationally isomorphic to minimal (F0, G).

• d = 8.
In this case S = F0 or Fn, n > 1. In the first case (S, G) is birationally
isomorphic to (P2, G) if SG (= ∅ (via the projection from the fixed point).
This implies that the subgroup G′ of G belonging to the connected com-
ponent of the identity of Aut(F0) is an extension of cyclic groups. One
can show that this implies that G′ is an abelian group of transformations
(x, y) )→ (εa

nkx, εb
mky), where a = sb mod k for some s coprime to k. If

G (= G′, then we must have m = n = 1 and s = ±1 mod k.
If FG

0 = ∅ and Pic(F0)G ∼= Z, then the classification of links shows
that links of type II with d = d′ = 7, 6, 5, d = 3, d′ = 1 map F0 to F0

or to minimal Del Pezzo surfaces of degrees 5 or 6. These cases have
been already considered. If rank Pic(S)G = 2, then any birational G-
map S− → S′ is composed of elementary transformations with respect
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to one of the conic bundle fibrations. They do not change K2
S and do

not give rise a fixed points. So, G is not conjugate to any subgroup of
Aut(P2).

Assume n > 1. Then G = A.B, where A ∼= n acts identically on the
base of the fibration and B ⊂ PGL2(C). The subgroup B fixes pointwise
two disjoint sections, one of them is the exceptional one. Let us consider
different cases corresponding to possible groups B.

B ∼= n. In this case B has two fixed points on the base, hence G has
2 fixed points on the non-exceptional section. Performing an elementary
transformation with center at one of these points we descend G to a
subgroup of Fn−1. Proceeding in this way, we arrive to the case n = 1,
and then obtain that G is a group of automorphisms of P2.

B ∼= Dn. In this case B has an orbit of cardinality 2 in P1. A
similar argument shows that G has an orbit of cardinality 2 on the non-
exceptional section. Applying the product of the elementary transfor-
mations at these points we descend G to a subgroup of automorphisms
of Fn−2. Proceeding in this way we obtain that G is a conjugate to a
subgroup of Aut(P2) or of Aut(F0). In the latter case it does not have
fixed points, and hence is not conjugate to a linear subgroup of Cr(2).

B ∼= T . The group B has an orbit of cardinality 4 on the non-
exceptional section. A similar argument shows that G is conjugate to
a group of automorphisms of F2,F0, or P2. Now suppose we arrive at
F2. The group T has an orbit O1 of length 6 on the exceptional section
and an orbit O2 of length 6 on a non-exceptional section. Make the
elementary operations at O1 to get a surface that has a section C with
C2 = −8 and a disjoint section Z with Z2 = 8. Now we take two orbits
of cardinality 4 on Z and make the corresponding elementary operations
to arrive at F0.

B ∼= O. Using orbits of cardinality 6 we first educe to the case
S = P2,Fn, n = 0, 2, 3. Suppose S = F3. Using an orbit of cardinality 8
on the exceptional section we get a surface admitting a section C with
C2 = −11 and a disjoint section Z with Z2 = 11. Now using two orbits
of cardinality 6 on Z, we arrive at F1, and then at P2. If S = F2, we
do the same by using first an orbit of cardinality 6 on the exceptional
section, and then an orbit of cardinality 8 to arrive at F0.

B ∼= I. A similar argument shows that G is conjugate to a subgroup
of group of automorphisms of Aut(P2), or Aut(F0), or Aut(F2).1

• d = 9.

1The argument in the last three cases is due to I. Cheltsov.
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In this case S = P2 and G is a finite subgroup of PGL3(C). The methods
of the representation theory allows us to classify them up to conjugacy
in the group PGL3(C). However, some of non-conjugate groups can be
still conjugate inside the Cremona group.

For example all cyclic subgroups of PGL3(C) of the same order n are
conjugate in Cr2(C). Any element g of order n in PGL3(C) is conjugate
to a transformation g given in affine coordinates by the formula (x, y) )→
(εnx, εa

ny). Let T be given by the formula (x, y) )→ (x, xa/y). Let
g′ : (x, y) )→ (ε−1

n x, y). We have

g′ ◦ T ◦ g : (x, y) )→ (εnx, εa
ny) )→ (εnx, xa/y) )→ (x, xa/y) = T.

This shows that g′ and g are conjugate.
We do not know whether any two isomorphic non-conjugate sub-

groups of PGL3(C) are conjugate in Cr2(C).

§4. Cyclic tame subgroups of Cr2(k), where k is a perfect field

In this section we survey the results from [12], [32] and [31].

4.1. Elements of finite order in reductive algebraic groups
If the base field k is algebraically closed, then any cyclic tame group

can be realized as a group of projective transformations. Also, it fol-
lows from the classification that any cyclic group of prime order & > 5
is conjugate to a group of projective transformations. Both of these
statements are not true anymore if k is not algebraically closed.

For any integer N and a prime number & prime to char(k) we denote
by ν((N) the largest n such that &n divides N . For any finite group A
we set ν((A) to be equal to ν((|A|). Let t( = [k(ζ() : k], m( = sup{d ≥
1 : ζ(d ∈ k(ζ()}, where ζ( generales ν((k̄).

For example, when k = Q, we have t( = &−1 and m( = 1. If k = Fq,
then t( is equal to the order of q in F∗

( and m( = ν((q(−1 − 1).
The following is a special case of Theorem 6 from [31].

Theorem 26. Let A be a finite subgroup of PGLn+1(k). For any
& > 2,

ν((A) ≤
∑

2≤s≤n+1,t!|s

(m( + ν((s)),

(if the index set is empty, ν((A) = 0).

Corollary 27. Assume t( ≥ n + 2. Then PGLn+1(k) does not
contain elements of prime order &.
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For example, if k is of characteristic zero and m((k) = {1} (e.g.
k = Q), then t( = &− 1 and we get

n ≥ &− 2,

if PGLn+1(k) contains an element of order &. In particular, PGLn+1(k)
contains an element of order 7 only if n ≥ 5.

On the other hand, if k = F2 and & = 7, then t( = 3 and it is
known that PGL3(k) is isomorphic to a simple group of order 168 and
it contains an element of order 7.

The next result of Serre [31], Theorems 4 and 4’, concerns elements
of finite order in an algebraic k-torus. Note that any 2-dimensional k-
torus is known to be rational over k [37], hence any its element defines
an element in Cr2(k).

Theorem 28. Let T be an algebraic k-torus and A be a finite sub-
group of T (k). Then

ν((A) ≤ m(

[dimT

φ(t()

]
,

where φ is the Euler function. Assume m( < ∞ (e.g. k is finitely
generated over its prime subfield). For any n ≥ 1 there exists an n-
dimensional k-torus T and a finite subgroup A of T (k) such that ν((A) =
m(

[
dim T
φ(t!)

]
.

Corollary 29. A two-dimensional k-torus T with T (k) containing
an element of prime order & > 2 exists if and only if t( takes values in
the set {1, 2, 3, 4, 6}.

Proof. In fact, the set {1, 2, 3, 4, 6} is the set of positive integers t(
such that φ(t() ≤ 2. If φ(t() > 2, Serre’s bound implies that no such
torus exists. If φ(t() = 2, Serre’s construction from above exhibits such
a torus. If φ(t() = 1, i.e. t( = 1 or 2, we can take T = G2

m,k in the first
case and T = Rk(ζ!)/k(Gm) in the second case. Q.E.D.

4.2. Elements of order ≥ 7
Looking at the table of conjugacy classes of elements in the Weyl

groups, we notice that an element of order > 7 does not exist in these
groups, and an element g of order 7 exists only in the Weyl groups
W (E7) and W (E8). When k is algebraically closed, we checked that no
such element is minimal. If d = 2 this can be shown directly as follows.
It is known that, over the algebraic closure k̄, S contains 576 sets of
7 disjoint (−1)-curves. An element g of order 7 acts on this set and
has a fixed element because 566 ≡ 2 mod 7. Blowing this invariant set
down, we see that g arises from a projective automorphism. If k (= k̄
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this argument does not work since one may not be able to blow down
the seven disjoint curves over the ground field. Nevertheless, we prove
that if this happens, the surface S must be a k-minimal rational surface.
Then we use the following fundamental result from arithmetic of rational
surfaces.

Theorem 30. A minimal geometrically rational surface X over a
perfect field k is k-rational if and only if the following two conditions are
satisfied:

(i) X(k) (= ∅;
(ii) d = K2

X ≥ 5.

This result is a culmination of several results due to V. Iskovskikh
and Yu. Manin. Its modern proof based on the theory of elementary
links can be found in [17], §4, p. 642.

A similar argument works in the case d = 1. Thus, an element of
order & ≥ 7 may act minimally either on a Del Pezzo surface of degree
d ≥ 6 or on a conic bundle. In the latter case, by using Corollary 27, we
obtain that t( ≤ 2. More precisely, we prove the following.

Proposition 31. Assume & ≥ 5 and σ acts minimally as an au-
tomorphism of a k-rational conic bundle X. Then t( ≤ 2 and σ is
conjugate in Cr2(k) to an element defined by a rational point on a 2-
dimensional algebraic k-torus.

Recall that a Del Pezzo surface S of degree 6 over an algebraically
closed field is obtained by blowing up 3 non-collinear points in the plane.
It contains an open subset T isomorphic to a 2-dimensional torus which
acts on S extending the action on itself by translations. In other word,
S has a structure of a toric surface. The complement of T is the hexagon
of (−1)-curves. There is a unique toric surface D with Picard number
4 defined over Z, and Sk̄

∼= Dk̄. Since the set of all (−1)-curves on
Sk̄ is defined over k, its complement U in S becomes isomorphic to a
torus over k̄. This implies that U is a torsor (= principally homogeneous
space) over a two-dimensional k-torus T (see [24], Chapter IV, Theorem
8.6). Since S is rational, S(k) (= ∅ and hence U(k) (= ∅ ([21], Proposition
4). This shows that U is an algebraic k-torus. Thus S is a toric surface
over k.

Proposition 32. Assume a cyclic group G = 〈σ〉 of prime order
& ≥ 5 acts minimally on a k-rational Del Pezzo surface S of degree 6.
Let T be the complement of the union of (−1)-curves on S that acts on
X via its structure of a toric surface over k. Then σ is defined via the
action by an element σ̃ ∈ T (k). The torus T splits over k(ζ() with cyclic
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Galois group 〈γ〉 of order 6 and t( = 6. The G-surface (S, G) is unique
up to k-isomorphism.

Similarly, we deal with Del Pezzo surfaces of degree d > 6,

Proposition 33. Assume that σ of prime order & ≥ 7 acts mini-
mally on a k-rational Del Pezzo surface X of degree d. Then one of the
following cases occurs:

(i) d = 6, t( = 6;
(ii) d = 8, t( = 4 or t( = 2;
(iii) d = 9, t( ≤ 3.

In all cases X has a structure of a toric surface and σ belongs to T (k),
where T is an open subset of X isomorphic to a k-torus.

Summing up, we get the following main result of [12].

Theorem 34. Let k be a perfect field of characteristic p ≥ 0. Then
Cr2(k) contains an element of prime order & > 5 not equal to p if and
only if there exists a 2-dimensional algebraic k-torus T such that T (k)
contains an element of order &.

Assume char k = 0. We assume also that
(*) k ∩ Q(ζ() = Q.

Thus
t( = &− 1.

Assume & ≥ 7. By Proposition 31, σ cannot act minimally on a conic
bundle. By Proposition 33, σ can only act minimally on a Del Pezzo
surface X of degree 6 in which case & = 7. By Proposition 32, X is a
unique (up to isomorphism) toric surface T over k split over E = k(ζ7).
The Galois group Γ acts on TE via the subgroup H ⊂ Aut(Σ) isomorphic
to the cyclic group of order 6. The action of H on TE is Γ-equivariant,
and hence admits a descent to an action of H on X . The 7-torsion
subgroup T (k)[7] of T (k) is H-invariant. Hence H acts on the cyclic
group 〈σ〉 of order 7 by automorphisms. This shows that all non-trivial
powers of σ are conjugate in Cr2(k).

This proves the following.

Theorem 35. Assume (*) is satisfied. Then Cr2(k) does not con-
tain elements of prime order > 7 and all elements of order 7 are conju-
gate.

It follows from the proof of Proposition 33 that an element of order
& = 5 can be realized as an automorphism of a Del Pezzo surface of
degree 8 defined over Q. One can also show that it can be realized as a
minimal automorphism of a Del Pezzo surface of degree 5 over Q.
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In the case when k is finitely generated over its prime field, J.-P.
Serre gives a bound for the order of any finite group in Cr2(k) [32].

Theorem 36. Assume k is finitely generated over its prime sub-
field. Then finite tame subgroups of Cr(k) of order prime to char(k)
have bounded order. Let M(k) be the least common multiple of their
orders. Then

(i) If k = Q, we have M(k) = 120960 = 27.33.5.7.
(ii) If k is finite with q elements, we have:

M(k) =

{
3(q4 − 1)(q6 − 1) if q ≡ 4 or 7 mod 9
(q4 − 1)(q6 − 1) otherwise.

§5. Wild cyclic groups

Here we assume that the ground field k is of characteristic p > 0
and study wild subgroups of Cr2(k).

5.1. Conic bundles
Let G = 〈σ〉 be a cyclic subgroup of Crn(k) of order psm, where

(p, m) = 1. Assuming that we know the classification of tame cyclic
subgroups (for example when k is algebraically closed and n = 2), we
are interested only in wild cyclic p-groups. An example of a wild cyclic
group of order pn in Crn(k) is easy to give (see [33]). We consider the
additive group Wn(k) of Witt vectors of length n. It is an affine space
An

k with a group law containing a cyclic subgroup of order pn. The latter
acts on Wn(k) by translation, and hence embeds in Aut(An

k ) ⊂ Crn(k).

Conjecture 37. Crn(k) does not contains elements of order ps with
s > n.

In [14] we prove this conjecture for n = 2.
Let us sketch a proof. It is enough to assume that k is algebraically

closed. First we consider the case when G regularizes on a conic bundle.

Lemma 38. Let σ be an element of order ps in Aut(Pr
k). Then

s < 1 + logp(r + 1).

Proof. Let A ∈ GLr+1(k) represent σ and Aps
= cIr+1 for some

constant c. Multiplying A by c
1

ps we may assume that Aps
= Ir+1 but

Aps−1 (= Ir+1. Since k∗ does not contain non-trivial p-th roots of unity,
we can reduce A to the Jordan form with 1 at the diagonal. Obviously
Aps−1

= Ir+1 + (A − Ir+1)ps−1
. Since, for any Jordan block-matrix J

with zeros at the diagonal, we have Jr+1 = 0, we get ps−1 < r + 1. The
assertion follows. Q.E.D.
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Corollary 39. Let f : X → P1
k be a conic bundle and σ be an

automorphism of X of order ps preserving the conic bundle. Then s ≤ 2.

Proof. Let ḡ be the image of σ in the automorphism group of the
base of the fibration. By the previous lemma σ̄p = 1. Thus σp acts
identically on the base and hence acts on the general fibre of f . By
Tsen’s Theorem, the latter is isomorphic to the projective line over the
function field of the base. Applying the lemma again we obtain that
σp2

= 1. Q.E.D.

This checks the theorem in the case of a conic bundle. A closer look
at elements of order p2 gives the following.

Theorem 40. Let σ be a minimal automorphism of order p2 of a
conic bundle X → P1

k. Then p = 2.

5.2. Del Pezzo surfaces
Next we consider the case when G regularizes on a Del Pezzo surface.

Theorem 41. A Del Pezzo surface of degree d ≥ 4 does not contain
elements of order p3. An automorphism of order p2 not conjugate to a
projective automorphism in Cr2(k) exists only if p = 2. It is minimally
realized on X = P1

k × P1
k or on a Del Pezzo surface of degree 4.

Here the cases d ≥ 6 are easy and the cases d = 4, 5 are treated by
using the representation of automorphisms in the Weyl group.

Consider the case d = 3. Again looking at the Weyl group, we
immediately check the conjecture in this case. Moreover, we obtain that
a minimal element of order p2 exists only if p = 3. The following nice
argument due to J.-P. Serre excludes this case.

It follows from the classification of conjugacy classes of elements
of W (E6) that the trace of σ in its action in K⊥

X is equal to 0. Thus
the Lefschetz number of σ in in the &-adic cohomology of X is equal to
3. This implies that σ has a fixed point x0. Since σ acts trivially on
|− KX − x0| ∼= P2

k, we obtain that it acts trivially on |− KX | ∼= P3
k.

We have proved the following.

Theorem 42. A cubic surface does not admit minimal automor-
phisms of order ps with s > 1.

In the case of Del Pezzo surfaces of degree 2, the structure of the
Weyl group W (E7) shows that there are no elements of order p3 unless
p = 2 and s = 3. The following argument of Serre excludes this case
(our original proof is a little more complicated). We use that W (E7) =
W (E7)+×〈w0〉, where w0 generates the center of W (E7). In the faithful
representation ρ : Aut(X) → W (E7), the image of the Geiser involution
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γ is equal to w0. This implies that a subgroup G of order 8 of Aut(X) is
isomorphic to a subgroup of A×〈γ〉, where A is isomorphic to a subgroup
of Aut(P2

k). Since the latter has no elements of order 8, we are done.

The case of Del Pezzo surfaces of degree 1 is the most difficult and
interesting case.

Theorem 43. A Del Pezzo surface of degree 1 may admit an auto-
morphism of order ps only if p = 2 and s = 2.

We refer for the conceptual proof to [14]. A computational proof of
this result was also given by J.-P. Serre.

As we have seen in the previous sections, an element of order p2

not conjugate to a projective transformation exists only for p = 2. It
can be realized as a minimal automorphism of a conic bundle, or a
Del Pezzo surfaces of degree 1 or 4. Del Pezzo surfaces of degree 1
are super-rigid, i.e. a minimal automorphism of such a surface could
be conjugate only to a minimal automorphism of the same surface. A
minimal automorphism of a Del Pezzo surface of degree 4 is conjugate
to a minimal automorphism of a conic bundle with 5 singular fibres (see
[11], §8).

Thus we have proved the following.

Theorem 44. An element of order p2 not conjugate to a projective
transformation exists only if p = 2. An element of order 4 is conjugate
to either a projective transformation, or a transformation realized by a
minimal automorphism of a conic bundle or of a Del Pezzo surface of
degree 1.

For the completeness sake let us add that elements of order p not
conjugate to a projective transformations occur for any p. They can
be realized as automorphisms of conic bundles, and if p = 2, 3, 5 as
automorphisms of Del Pezzo surfaces.

§6. Wild simple groups

We use the notation from [9]. Thus Ln(q) denotes PSLn(Fq), Un(q)
denotes PSUn(Fq2), PGUn(q) denotes PUn(q2). The group Ln(q) is
a subgroup of index (q − 1, n) of PGLn(Fq) and the group Un(q) is
a subgroup of index (q + 1, n) of PUn(q). We will assume that k is
algebraically closed of characteristic p > 0.

6.1. Projective linear groups
Let us first recall the classification of finite subgroups of Cr1(k) =

PGL2(k) and PGL3(k).
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First let us make some remarks. In the wild case, a primitive group
may arise from a reducible linear representation, i.e. a representation
that admits an invariant proper subspace which does not split as a sum-
mand. So the right analog of a primitive group is an irreducible group,
a group arising from an irreducible linear representation. If a group G
is simple, then it is either an irreducible group or is isomorphic to an
irreducible subgroup in lower dimension. We will also use that an irre-
ducible subgroup of PGLn(k) is conjugate to a subgroup of PGLn(Fq)
for some finite subfield Fq of k [39].

A proof of the following result can be found in [36], Chapter 3,
Theorem 6.17.

Theorem 45. Let G be a proper wild subgroup of PGL2(k). Then
G is isomorphic to one of the following groups

(i) the group Gξ,A of affine transformations x )→ ξtx + a, where a
belongs to a finite subgroup A of the additive group of k con-
taining 1 and ξ is a root of unity such that ξA = A.

(ii) p = 2 and G is a dihedral group of order 2n, where n is odd.
(iii) p = 3 and G ∼= L2(5) ⊂ L2(9).
(iv) L2(q) or PGL2(Fq) for some q = pr.

The proof of the next result can be found in [16].

Theorem 46. Assume p = 2. Let G be a finite irreducible subgroup
of PGL3(k). Then G is conjugate to one of the following groups.

(i) L3(2s) or PGL3(2s) for some s (the groups are equal if s is
odd);

(ii) U3(2s) or PGU3(2s) for some s (the groups are equal if s is
even);

(iii) A6 ⊂ L3(4);
(iv) 32 ! 4 ⊂ PGU3(2).

Note that some of these groups are familiar from the case when
k = C. We have L3(2) ∼= L2(7) is the Klein group of order 168, PU3(F4)
is the Hessian group of order 216 and U3(2) = 32 : Q8 is its subgroup of
index 3. Note that in characteristic 2, A5 is realized as primitive group
but leaves a point invariant (the intersection of tangents to an invariant
conic).

The proof of the next theorem can be found in [6], [25].

Theorem 47. Assume p > 2. Let G be a finite irreducible subgroup
of PGL3(k) which does not leave a point or a line invariant. Then G is
conjugate to one of the following groups.

(i) L3(ps) or PGL3(ps) for some s (the groups are equal if 3|ps−1);
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(ii) U3(ps) or PGU3(ps) for some s (the groups are equal if 3|ps +
1);

(iii) The Hessian group of order 216 and its subgroups of order 72
and 36;

(iv) SO3(ps) ∼= L2(ps);
(iv) L2(7) (isomorphic to O3(7) if p = 7);
(v) A6;
(vi) S6 if p = 5;
(vii) A7 if p = 5.

Note that A5 is realized in characteristic 5 as the group SO3(5).

6.2. Conic bundles
Let G be a wild subgroup of Cr2(k) minimally realized as a group of

automorphisms of a conic bundle. We assume that it has t > 0 singular
fibres. By Lemma 8 which applies in our case, we get t ≥ 4.

Lemma 48. Let GK be the kernel of the action of G on the base of
the conic bundle. Then GK contains an element of order 2. If p (= 2 it
switches the irreducible components of some singular fibre.

Proof. In the complex case this is Lemma 5.6 from [11]. The proof
extends to the wild case if p (= 2. Assume p = 2. Since G acts minimally,
there exists g ∈ G which switches two components R and R′ of some
singular fibre. If the order of g is an odd number 2m + 1, then g2m

and g2m+1 fix the components, hence g fixes the components. Thus the
order g is even. Replacing g by some odd power, we may assume that
the order of g is equal to 2a for some a > 0. Assume a > 1. Since
PGL2(k) does not contain elements of order 2a, the element ga−1 ∈ GK

and satisfies the assertion of the theorem. If a = 1, applying Theorem
2.4 from [27], we obtain that the point q is not an isolated fixed point.
This implies that there exists a curve of fixed points passing through
q. Since g switches the components of the fibre, this curve is mapped
surjectively to the base of the fibration. This immediately implies that
g ∈ GK . Q.E.D.

Assume p (= 2. Applying Theorem 40, we find that either Ḡ or
K is a tame group. If K is tame, then we have a complete analog
of the description of G in the tame case, except the group Ḡ is given
by Theorem 45. Assume K is wild. If K is in case (iii) or (iv) from
Theorem 45, then it is simple, and hence the natural homomorphism
K → 2t, where t is the number of singular fibres, is the identity. This
shows that K acts trivially on the Picard group. Let g0 be a nontrivial
element from K of order divisible by p and E be a section of the conic
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bundle with negative self-intersection. Then g0 fixes E and hence has
a fixed point on each component of singular fibre. Since a wild element
has only one fixed point on P1 and the singular point of the fibre is
obviously fixed, we get a contradiction.

Assume K is as in case (i) of Theorem 45. Then, the kernel of the
homomorphism K → 2t is a wild group. By the above, this leads to
contradiction.

Assume p = 2. By Lemma 48, K is a wild group. By the above,
the kernel of the homomorphism K → Pic(S) is a tame group. This
implies that either it is trivial, or S is an exceptional conic bundle. The
automorphism group of an exceptional conic bundle can be described
similarly to the tame case. If S is not exceptional, then K must be
a subgroup of 2t isomorphic to a subgroup of k. Note that this case
includes the example of a De Jonquières involution (x, y) → (x, F (x)/y)
which makes sense over any field.

Next we consider the case when the conic bundle is a minimal ruled
surface Fn. Proposition 7 has a similar statement where C is replaced
by k. However, a wild group may have nontrivial intersection with the
kernel of the homomorphism Aut(Fn) → Aut(P1). A simple wild group
must be isomorphic to a subgroup of Aut(P1).

6.3. Del Pezzo surfaces
Next we assume that G is a wild group of automorphisms of a Del

Pezzo surface. Consider first the following two examples.

Example 49. Assume p = 2 and let S be the Fermat cubic

t30 + t31 + t32 + t33 = 0.

We consider the left-hand-side F as a hermitian form over the finite
field F4. Then the unitary group PGU4(2) ∼= U4(2) acts faithfully
on the surface. It is known that PU4(2) is isomorphic to the simple
subgroup W (E6)′ of index 2 of the Weyl group W (E6). I claim that
Aut(S) ∼= PU4(2). Suppose that Aut(S) ∼= W (E6). Choose a double-six
(&1, . . . , &6), (&′1, . . . , &′6) of lines on S. Let σ ∈ W (S) ∼= W (E6) which
acts by sending [&i] to [&′i]. If we choose the first six lines to define a
geometric marking (e0, e1, . . . , e6) on S, then σ is represented in W (E6)
by the reflection in the vector 2e0 − e1 − . . . − e6. Any of the 15 lines
with the divisor class e0−ei−ej is invariant with respect to σ. Suppose
there exists g ∈ Aut(S) such that g∗ = σ. Then g has a fixed point on
each of the 15 lines. Since no more than three lines pass through one
point, we have ≥ 9 fixed points of g on S. Looking at the Jordan form of
a matrix representing g acting in P3 we see that g has a plane section of
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fixed points in S. This plane intersects each line &i. Since g(&i) = &′i and
& and &′i are skew, we get a contradiction. Obviously, Aut(S) ∼= W (E6)′
is a minimal subgroup of automorphisms.

Example 50. Let p = 3 and S be a Del Pezzo surface of degree 2
with equation

t40 + t41 + t42 + t23 = 0.

Then the polynomial H : t40 + t41 + t42 can be considered as a hermitian
form over F9. The group of its automorphisms is the simple group
U3(3) ∼= PGU3(3) of order 25.33.7. It is isomorphic to a subgroup of
index 4 of a maximal subgroup of W (E7) of index 240.

Together with the Geiser involution t3 )→ −t3 we obtain a subgroup
of Aut(S) isomorphic to U3(3) × 2. Let us show that this is the whole
group. It suffices to show that the automorphism group of the quartic
curve H = 0 is isomorphic to U3(3). We have an upper bound B(g, p) for
the automorphism group of a curve of genus g ≥ 2 over an algebraically
closed field of characteristic p > 0. If 2g + 1 > p > g + 1, or p > 2g + 1
we have the Hurwitz bound B(g, p) = 84(g − 1) (see [30]). If p ≤ g + 1
we have the bound (see [35])

(14) B(g, p) =
16p2g4

(p − 1)3 + p − 1
( 2g

p − 1
+ 1

)
.

This gives B(3, 3) = 6048 = #U3(3). The subgroup U3(3) admits a
unique lift to a subgroup of Aut(S). It is known to contain an element of
order 12. It follows from Table 3.3 that its conjugacy class is minimal of
type E7(a2). Thus U3(3) is realized as a minimal subgroup of a Del Pezzo
surface of degree 2. Since it is rigid (note that the theory of elementary
links applies without change to the case of positive characteristic), it is
not conjugate in Cr2(k) to a group of linear transformations.

The previous examples show that there are new conjugacy classes
of finite subgroups in Cr2(k) which are not realized in the case of char-
acteristic 0.

Theorem 51. Let G be a simple non-abelian wild subgroup of Cr2(k).
(i) If G is conjugate to a group of projective transformations, then

it is isomorphic to one of the following groups

L2(pm)(pm (= 2, 3), U3(pm), A6, S6(p = 5), A7(p = 5).

(ii) If G is not conjugate to a linear group, then it is isomorphic
to one of the following groups:

L2(pm)(pm (= 2, 3), A5, L2(7)(p (= 2), U(3, 3), U4(2).
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Moreover, the groups L2(pm)(pm (= 2, 3) are realized as minimal sub-
groups of a minimal ruled surface, the groups U3(3), L2(7) are realized
as minimal subgroups of a Del Pezzo surface of degree 2 in characteris-
tic p = 3 and the latter group also when p = 7, the group A5 is realized
as a minimal subgroup of Del Pezzo surface of degree 4 (p = 2) and a
Del Pezzo surface of degree 1 (p = 5), the group U4(2) is realized as a
minimal subgroup of a cubic surface in characteristic p = 2.

Proof. Suppose G is minimally regularized on a conic bundle π :
S → P1 with t > 0 singular fibres. Then the homomorphism G →
Aut(P1) is either injective or trivial. Assume that it is injective. Since
G is minimal, the G-orbit of any component of a singular fibre does
not consist of disjoint curves. Thus there exists an element g ∈ G
of necessarily even order switching two components R and R′ of some
singular fibre. Replacing g by some power we may assume that its order
is 2r > 1. Obviously it fixes the intersection point R ∩ R′. If p = 2, an
element of order 2r acts identically on the tangent space at a fixed point
(because GL2(k) has no elements of order 2r, r > 1). Thus it cannot
switch the components. This shows that G cannot be minimal in the
case p = 2. If p > 2, the proof of Lemma 5.6 from [11] applies in our
case and shows that K cannot be trivial. So, we see that G = K and
hence G admits a non-trivial homomorphism G → 2t, contradicting the
simplicity assumption.

If t = 0, i.e. S is a minimal ruled surface, then G embeds in the group
of automorphisms of the base, hence is isomorphic to L2(pm), pm (= 2, 3.
Since it has no fixed point on P1, it cannot be conjugate to a linear
group.

Next we assume that S is a Del Pezzo surface of degree d. If S = P2,
applying Theorems 46 and 47, we obtain the groups from our list. If
S = P1 × P1, then G, being simple, does not switch the factors, and
hence leaves invariant Pic(S). This contradicts the minimality of (S, G).

If d = 6, G is mapped isomorphically to a subgroup of W (A2+A1) ∼=
D6. So this case does not occur.

If d = 5, G is a subgroup of W (A4) ∼= S5. Thus G ∼= A5. This case
is realized in all characteristics. The group contains a minimal element
of order 5, so it is minimal. We know that from the theory of elementary
links this group is not conjugate to a linear group.

If d = 4, G is mapped isomorphically to a subgroup S5 of W (D5).
The only simple subgroup is A5. Comparing the characters of elements
of W (D5) acting on the root lattice of type D5 isomorphic to K⊥

S we
learn that the representation of A5 on K⊥

S is not irreducible. Thus A5
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cannot act minimally on S. It acts leaving a set of 5 skew lines invariant,
and hence is conjugate to a subgroup of Aut(P2).

If d = 3, G is isomorphic to a simple subgroup of W (E6), hence,
it must be isomorphic to U4(2) or one of its subgroups A6 or A5 (see
[9]). The first group is conjugate to a subgroup of a maximal subgroup
of W (E6) isomorphic to S6. The latter group is not minimal, it leaves
a set of 6 skew lines invariant. The group A5 is also non-minimal since
it has no irreducible representations of dimension 6 = dimK⊥

S . As we
have seen in Example 49 the group U4(2) is realized in the case p = 2.

If d = 2, G is isomorphic to a simple subgroup of W (E7). Using [9]
we find that it must be isomorphic to one of the following groups

U3(3), L2(7), L2(8), U4(2), Am, 5 ≤ m ≤ 8.

It is known that | − KS | defines a degree 2 separable finite map S →
P2 ramified over a nonsingular plane quartic curve if p > 2 (see [10]).
This implies that the group G is isomorphic to a subgroup of PGL3(k).
Comparing our list with the list from Theorem 47, we find that the
groups A8 and U4(2) are not realized. Any of the groups A5, A6, A7 has
no irreducible 7-dimensional representation, so it can not be minimally
realized. As we saw in Example 50 the group U3(3) is realized. The
group L2(7) is realized as a minimal wild group in characteristic 3 and 7.
In characteristic 3 it is realized as a subgroup of U3(3). In characteristic
7 we use that L2(7) ∼= O3(7) and occurs as the automorphism group of
the Klein plane quartic [15]. It can be lifted to a minimal automorphism
group of a Del Pezzo surface of degree 2.

Assume p = 2. The equation of S in P(1, 1, 1, 2) is

t23 + a2(t0, t1, t2)t3 + a4(t0, t1, t2) = 0.

The conic B : a2(t0, t1, t2) = 0 is the branch curve of the cover. The
group G is isomorphic to a subgroup of Aut(P2) leaving the conic B
invariant. If B is not smooth, then G leaves each component of B
invariant and becomes isomorphic to a subgroup of a solvable group,
hence it is not simple. Thus B is smooth and G is isomorphic to a
subgroup of the projective orthogonal group PO(3). The group has a
fixed point q in the plane where all tangents to the conic meet. Thus,
acting on the pencil of lines through this point, it becomes isomorphic
to a subgroup of PGL2(k). Applying Theorem 45 and the classification
of subgroups of W (E7), we find that G ∼= L2(8) or L2(4) ∼= A5. The
latter group does not admit an irreducible 7-dimensional representation
so cannot act minimally on S. Let us show that L2(8) also cannot occur.
The pre-image of the pencil of lines through q on S is a pencil of elliptic
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curves with two base points q′ and q′′ which are mapped to q under the
map S → P2. Blowing them up we obtain an elliptic surface f : X → P1.
The group G acts on the base of the fibration leaving invariant a set of
≤ 12 points corresponding to singular fibres. The set of these points
is the locus of zeros of a binary homogeneous form of degree d ≤ 12.
Now we use that the algebra of invariants k[T1, . . . , tTn]SLn(Fq) is freely
generated by polynomials of degrees qn−1

q−1 and qn − qi, i = 1, . . . , n − 1
(see [26]).2 Taking q = 8 and n = 2 we see that the degrees of these
polynomials are larger than 12. This contradiction proves the assertion.

Finally let S be a Del Pezzo surface of degree 1. As we have ex-
plained in the previous section G is mapped to the automorphism group
of the base of the corresponding elliptic fibration leaving invariant the
set of points corresponding to singular fibres. Since the general fibre
does not admit a simple non-abelian group of automorphisms we see
that G is isomorphic to a subgroup of PGL2(k) in its action on the base.
Applying Theorem 45 we obtain that G ∼= L2(q) for some q = ps or
G ∼= A5. The latter case is excluded for the same reason as in the case
d = 2. We also know from the previous case that the algebra of L2(q)-
invariant binary forms is generated by two polynomials of degrees q + 1
and q(q − 1).

Assume p > 3. Then equation (15) shows that G leaves invariant
polynomials of degree 6. This implies that q = p = 5. Also coefficient
a4 in the equation must be equal to zero (since it is also invariant). The
locus of zeros of the invariant of degree q + 1 is of course the set of
points in P1(Fq). So the equation of a Del Pezzo surface S of degree 1
in characteristic 5 with Aut(S) ∼= L2(5) ∼= A5 is

z2 + x3 + t0t1(t0 + t1)(t0 + 2t1)(t0 + 3t1)(t0 + 4t1) = 0.

Assume p = 3. Then q = 3 and the group L2(3) is not simple. For
completeness sake, or for the future use, we mention that the surface
must be given by a unique equation of the form

(15) y2 + x3 + a4(t0, t1)x + a6(t0, t1) = 0, a4 (= 0,

where a4 and a6 are the Dickson invariants.
Assume p = 2. Then the Weierstrass equation of an rational elliptic

surface in characteristic 2 must be of the form

(16) y2 + xy + x3 + a2(t0, t1)x2 + a6(t0, t1) = 0, a6 (= 0,

2Usually this theorem is stated in the case k = Fq, however the polynomials
define a system of parameters over k and the product of their degrees is equal
to the order of SLn(q), so they freely generate the algebra of invariants over k.
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or

(17) y2 + a3(t0, t1)y + x3 + a4(t0, t1)x + a6(t0, t1) = 0, a3 (= 0.

This implies that q = 2 and hence the group is L2(2) ∼= S3 is not
simple. Q.E.D.
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