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We classify the automorphism groups of del Pezzo surfaces of degrees 1 and 2 over an algebraically closed
field of characteristic 2. This finishes the classification of automorphism groups of del Pezzo surfaces in
all characteristics.
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Introduction

This is a continuation of our paper [Dolgachev and Martin 2024], where we finished the classification of
the automorphism groups of del Pezzo surfaces over an algebraically closed field of positive characteristic
p ̸= 2. In this paper, we treat the remaining case when the characteristic equals 2.

As we explained in the Introduction to [loc. cit.], the remaining part of the classification concerns
del Pezzo surfaces of degrees 1 and 2. The cases of odd and even positive characteristic are drastically
different since, in the latter case, the anticanonical map (resp. the antibicanonical map) is a separable Artin–
Schreier cover of degree 2 but not a Kummer cover as in the cases of odd characteristic. So, no plane quartic
curves (and no canonical genus-4 curves with vanishing theta characteristic) appear as branch curves.

Instead, in characteristic 2, the branch curve B of the anticanonical (resp. antibicanonical) map is not
necessarily smooth plane conic (resp. a cubic in P3). The ramification curve R is a purely inseparable
cover of B. Theorems 3.4 and 5.6 give normal forms for del Pezzo surfaces of degree 2 and 1 depending
on the singularities of R and B.

Although plane quartics and canonical curves of genus 4 disappear in characteristic 2, their familiar
attributes, like 28 bitangent lines or 120 tritangent planes, persist. We call them fake bitangents and fake
tritangent planes. They are defined to be lines in the plane (resp. planes in the 3-dimensional space) that
split under the anticanonical (resp. antibicanonical) map.
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It is well known that the blow-up of the anticanonical base point on a del Pezzo surface of degree 1
yields a rational elliptic surface with only irreducible fibers and, conversely, the contraction of a section of a
rational elliptic surface with only irreducible fibers yields a del Pezzo surface of degree 1. Thus, the normal
forms of Theorem 5.6 also give normal forms for all rational elliptic surfaces with only irreducible fibers.

Quite surprisingly, in characteristic 2, also every del Pezzo surface of degree 2 has a canonically
associated rational elliptic surface. This surface is obtained by blowing up the base points of the preimage
of the pencil of lines through the strange point of the branch locus B. We study the properties of this
strange fibration in Section 3.4.

Using these geometric observations, we classify the automorphism groups of all del Pezzo surfaces of
degree 2 and 1 in characteristic 2. The following result is proved in Theorems 4.3 and 6.8.

Theorem. A finite group G is realized as the automorphism group Aut(X) of a del Pezzo surface X of
degree 1 or 2 over an algebraically closed field k of characteristic char(k) = 2 if and only if G is listed in,
respectively, Table 9 (page 760) or Table 4 (page 736).

Table 4 (resp. Table 9) also gives the conjugacy classes in W (E7) (resp. W (E8)) of all elements of
Aut(X) for all del Pezzo surfaces X of degree 2 (resp. degree 1). We refer to [Dolgachev and Martin
2024] for a general discussion of the history of the problem and its relationship to the classification of
conjugacy classes of finite subgroups of the planar Cremona group. Also, the reader finds there some
general facts about del Pezzo surfaces, e.g., the relationship with the Weyl groups of roots systems and
some classification results from group theory.

1. Notation

We recall the notation for some finite groups we will encounter in this article. Throughout, p is a prime
number, and q is a power of p. Unless stated otherwise, k denotes an algebraically closed field of
characteristic 2.

• Cn is the cyclic group of order n.

• Sn and An are the symmetric and alternating groups on n letters.

• Q8 is the quaternion group of order 8.

• D2n is the dihedral group of order 2n.

• nk
= (Z/nZ)k. In particular, n = n1

= Z/nZ.

• p1+2n
± is the extra special group. For odd p the sign + (−) defines a group of exponent p (p2). For

p = 2, the sign distinguishes the type of the quadratic forms on 22n
= F2n

2 defined by the extension.

• GLn(q) = GL(n, Fq).

• PGLn(q) = GLn(q)/F∗
q . Its order is N = q1/2n(n−1)(qn

− 1) · · · (q2
− 1).

• SLn(q) = {g ∈ GLn(q) : det(g) = 1}. This is a subgroup of GLn(q) of index (q − 1).

• Ln(q) = PSLn(q) is the image of SLn(q) in PGLn(q). Its order is N/(q − 1, n).
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• For odd n, On(q) is the subgroup of GLn(q) that preserves a nondegenerate quadratic form F.

• For even n, O+
n (q) (resp. O−

n (q)) is the subgroup of GLn(q) that preserves a nondegenerate quadratic
form F of Witt defect 0 (resp. 1).

• SO±

n (q) is the subgroup of O±
n (q) of elements with determinant 1.

• PSO±

n (q) is the quotient of SO±

n (q) by its center.

• Sp2n(q) is the subgroup of SLq(2n) preserving the standard symplectic form on F2n
q . Its order is

qn2
(q2n−1

− 1) · · · (q2
− 1).

• Sp2n(q) = Sp2n(q)/(±1).

• SUn(q2) is the subgroup of SLn(q2) of matrices preserving the hermitian form
∑n

i=1 xq+1
i . Its order is

q(1/2)n(n−1)(qn
− (−1)n)(qn−1

− (−1)n−1) · · · (q3
+ 1)(q2

− 1). We have SU2(q2) = SL2(q).

• PSUn(q2) = SUn(q2)/C, where C is a cyclic group of order (q +1, n) of diagonal Hermitian matrices.
The simple group PSUn(q2) is denoted by Un(q) in [Conway et al. 1985].

• H3(3) is the Heisenberg group of 3 × 3 upper triangular matrices with entries in F3.

• A.B is a group that contains a normal subgroup A with quotient group B.

• A : B is the semidirect product A⋊ B.

2. Del Pezzo surfaces of degree ≥ 3

For the convenience of the reader, we first recall the classification of automorphism groups of del Pezzo
surfaces of degree at least 3.

2.1. Degree ≥ 5. For del Pezzo surfaces of degree at least 5, the description of Aut(X) is characteristic-
free. We refer the reader to [Dolgachev and Martin 2024, Section 3; Dolgachev 2012] for details.

2.2. Quartic del Pezzo surfaces. Starting from degree 4, the classification of automorphism groups
depends on the characteristic. As in the other characteristics, a quartic del Pezzo surface X is a blow-
up of five points in P2 no three of which are colinear. Moreover, the anticanonical linear system
|−K X | = |OP2(3)− p1 − p2 − p3 − p4 − p5| embeds X into P4 as a complete intersection of two quadrics.

Since p = 2, these quadrics cannot be diagonalized. Instead, as shown in [Dolgachev and Duncan
2019], one can choose the normal forms

(ab + b + 1)t2
2 + at2

3 + t2t3 + t3t4 = bt2
1 + (ab + a + 1)t2

2 + t1t3 + t2t4 = 0, (1)

where a, b are parameters such that the binary form 1 = uv(u +v)(u +av)(bu +v) has five distinct roots.
As in the case p ̸= 2, the automorphism group Aut(X) contains a normal subgroup H isomorphic to 24,

and the quotient G = Aut(X)/H is isomorphic to a subgroup of S5. The classification is summarized in
Table 1 on the next page. The first column refers to the values of the parameters a and b in (1) above.
The conjugacy classes of elements of Aut(X) can be obtained by combining [Dolgachev and Duncan
2019, Table 2] and [Carter 1972, Table 5].
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name Aut(X) order id 2A1 4A1 A2 A2+2A1 A3 A3+A1 A4 D4 D4(a1) D5

(φ,φ) 24
:A5 960 1 70 5 80 80 120 384 160 60

(ζ3,ζ3) (same as (φ,φ))
(i, i) (does not exist)
(a,a) 24

: 22 64 1 22 5 24 12
general 24 16 1 10 5

Table 1. Automorphism groups of quartic del Pezzo surfaces; see Section 2.2.

2.3. Cubic surfaces. The classification of automorphism groups of cubic surfaces in characteristic 2 was
achieved in [Dolgachev and Duncan 2019, Table 7]. For the convenience of the reader, we recall it here:

name Aut(X) order id 2A1 4A1 A2 A2+2A1 2A2 3A2 A3+A1 A4 A5+A1 D4 D4(a1) D5 E6 E6(a1) E6(a2)

I / 3C PSU4(2) 25920 1 270 45 240 2160 480 80 3240 5184 1440 1440 540 4320 5760 720
II / 5A (same as V)

III / 12A (same as I)
IV / 3A H3(3) : 2 54 1 9 24 2 18
V / 4B 23

:S4 192 1 30 13 32 72 32 12
VI / 6E (same as V)
VII / 8A (does not exist)

VIII / 3D S3 6 1 3 2
IX / 4A (same as V)
X / 2B 24 16 1 10 5
XI / 2A 2 2 1 1
XII / 1A 1 1 1

3. Del Pezzo surfaces of degree 2

3.1. The anticanonical map. We start by describing the geometry of del Pezzo surfaces of degree d = 2
over an algebraically closed field k of characteristic p = 2. We refer to [Demazure 1980] for the basic facts
from the theory of del Pezzo surfaces over fields of any characteristic. It is known that the anticanonical
linear system |−K X | has no base points and defines a finite morphism f : X → P2 of degree 2.

If p ̸= 2, the map f is automatically separable and its branch curve is a smooth plane quartic. So any
automorphism of X induces an automorphism of the quartic, and, conversely, any automorphism of the
quartic can be lifted to two automorphisms of X that differ by the deck transformation, classically called
the Geiser involution.

If p = 2, the structure of f , being a morphism of degree 2, is more complicated. Nevertheless, as a
first step, we observe that f is still always separable.

Proposition 3.1. The anticanonical linear system |−K X | defines a finite separable morphism f : X → P2

of degree 2.

Proof. Assume that f is not separable. Then, since deg( f ) = 2, f is purely inseparable. Hence, f is a
homeomorphism in the étale topology, which is absurd since H 2

ét(X, Zℓ) has rank 8 (because X is the
blow-up of seven points in the plane), while H 2

ét(P
2, Zℓ) has rank 1. □
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Let
R(X, −K X ) =

∞⊕
n=0

H 0(X,OX (−nK X ))

be the graded anticanonical ring of X . By the Riemann–Roch theorem, dimk R(X, −K X )1 = 3 and
dimk R(X, −K X )2 = 7. One can show that R(X, −K X ) is generated by R(X, −K X )1 and one element
from R(X, −K X )2 that does not belong to the symmetric square of R(X, −K X )1. Let x, y, z be elements
of R(X, −K X )1 and w ∈ R(X, −K X )2, which together generate R(X, −K X ). Then, the relation between
the generators is of the form

w2
+ A(x, y, z)w + B(x, y, z) = 0, (2)

where A and B are homogeneous forms of degree 2 and 4, respectively. In particular, via (2), we can
view X as a surface of degree 4 in the weighted projective space P(1, 1, 1, 2), and the anticanonical map
is the projection of this surface onto the x-, y-, z-coordinates.

If p ̸= 2, we can complete the square, get rid of A, and obtain the standard equation of a del Pezzo
surface of degree 2. The curve V (B(x, y, z)) is the smooth plane quartic we mentioned in the Introduction.
The Geiser involution just negates w.

In our case, when p = 2, we cannot get rid of A, for otherwise the map would become inseparable.
Also, the coefficient B is not uniquely determined, since replacing w with w + Q for any quadratic
form Q changes B to B + AQ + Q2, without changing the isomorphism class of the surface. Taking
Q = A, we obtain the analog of the Geiser involution, so we keep the name for this involution.

The nonuniqueness of B becomes more natural if we take the following different point of view: By
[Ekedahl 1988, Proposition 1.11], the double cover f is a torsor under a group scheme αL,s of order 2
over P2, defined by the exact sequence of fppf-sheaves

0 → αL,s → L φ
−→ L⊗2

→ 0

for some line bundle L and a global section s. The homomorphism of sheaves φ is locally given
by a 7→ a2

U + aU sU , so s cuts out the branch locus of f . By [loc. cit., Proposition 1.7], we have
ωX ∼= f ∗(OP2(−3)⊗L−1); hence L ∼= OP2(2) and s = A. The αL,s-torsor corresponding to f is defined
by a cohomology class in H 1

fppf(P
2, αL,s). Since H 1

fppf(P
2,L) = H 1(P2,L) = 0, we have

H 1
fppf(P

2, αL,s) ∼= H 0(P2,L⊗2)/℘ (H 0(P2,L)),

where ℘ = H 0(φ). The ternary form B is a representative of this space, and hence it is defined only up to
a transformation of the form B 7→ B + Q2

+ AQ, where Q is a quadratic form in x, y, z.
By writing the equation of X locally as w2

U + aU wU + bU , and taking partial derivatives, we see
that the differentials wU daU + dbU restricted to V (A) glue together to define a global section α of
�1

P2 ⊗L⊗2
⊗OV (A). This section vanishes if and only if X is singular. So, in our case, when X is assumed

to be smooth, we obtain the following.
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Proposition 3.2. In (2), the equations A = 0, wAx + Bx = 0, wAy + By = 0, wAz + Bz = 0 have no
common solutions.

3.2. Normal forms. Recall that X is given by an equation of the form w2
+ Aw + B = 0, where A is a

quadratic ternary form and B is quartic ternary form. We say that V (A) is the branch curve of the cover,
and its preimage R = f −1(V (A)) under the anticanonical map f : X → P2 will be called the ramification
curve.

Remark 3.3. We use the notation A2n for singularities of curves whose formal completion is isomorphic
to the unibranched singularity y2

+ x2n+1
= 0. If n = 1, this is an ordinary cusp singularity. These are

exactly the curve singularities that can occur on reduced purely inseparable double covers of smooth
curves in characteristic 2. Indeed, after passing to formal completions, such a double cover is given by an
equation of the form y2

+ uxm, where u ∈ k[[x]] is a unit. Now, we can apply a substitution of the form
y 7→ y + f for a suitable power series f to assume that m is odd and then replace x by λx , where λ is an
m-th root of u−1, which exists by Hensel’s lemma. In other words, the singularity defined by y2

+ uxm is
of type A2n , where 2n + 1 is the smallest odd power of x that occurs in uxm.

The following theorem gives normal forms for the cover f : X → P2. In total, we obtain six normal
forms, corresponding to the six possible combinations of singularities of V (A) and R.

Theorem 3.4. Every del Pezzo surface of degree 2 in characteristic 2 is isomorphic to a quartic surface
in P(1, 1, 1, 2) given by an equation of the form

w2
+ A(x, y, z)w + B(x, y, z),

where (A, B) is one of the forms shown in Table 2. The parameters satisfy the following conditions:

(1a) λ ̸= 0, λ2
+ a + b + c + d + e ̸= 0, b2

+ a ̸= 0, d2
+ e ̸= 0.

(1b) b2
+ a ̸= 0, d2

+ e ̸= 0.

(1c) d2
+ e ̸= 0.

(2a) a ̸= 0, b ̸= 0.

(2b) a ̸= 0.

(3) None.

In terms of these normal forms, the singularities of the irreducible components of Rred are as follows:

(1a) Three A2-singularities, over [0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1].

(1b) An A4-singularity over [0 : 0 : 1] and an A2-singularity over [0 : 1 : 0].

(1c) An A6-singularity over [0 : 0 : 1].

(2a) Two A2-singularities, over [1 : 0 : 0] and [0 : 1 : 0].

(2b) Two A2-singularities, over [1 : 0 : 0] and [0 : 0 : 1].

(3) An A2-singularity over [0 : 0 : 1].
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name A B B1 B0 # of parameters

(1a) x2
+yz x B1+B0 λyz(y+z) ay4

+by3z+cy2z2
+dyz3

+ez4 6
(1b) x2

+yz x B1+B0 y2z ay4
+by3z+cy2z2

+dyz3
+ez4 5

(1c) x2
+yz x B1+B0 y3 by3z+cy2z2

+dyz3
+ez4 4

(2a) xy B1+B2
0 xz3

+yz3 ax2
+by2

+cz2
+dxz+eyz 5

(2b) xy B1+B2
0 xz3

+y3z ax2
+cz2

+dxz+eyz 4
(3) x2 x B1+B0 z3

+ayz2 y3z+by2z2
+cz4 3

Table 2. Forms of (A, B) in Theorem 3.4.

Proof. Since f : X → P2 is separable, A is nonzero. Hence, up to projective equivalence, there are
three possibilities for A, corresponding to (1), (2), and (3). Now, we study those cases separately. The
conditions on the parameters will follow from Proposition 3.2 by computing partial derivatives, a task
which we will leave to the reader.

(1) A = x2
+ yz. Applying a substitution of the form w 7→ w+ Q for a suitable quadratic form Q allows

us to assume that B = x B1 + B0 for homogeneous forms B0 and B1 in y and z.
Let x = uv, y = u2, z = v2 define the Veronese isomorphism between V (A) and P1. Substituting

in B, we get that R is isomorphic to the double cover of P1 given by the equation

w2
+ uvB1(u2, v2) + B0(u2, v2) = 0.

By taking the partials, we find that R is singular exactly over the roots of B1.
After applying a suitable substitution that preserves A, we can move these roots to special positions.

Note that the substitution w 7→ w + Q of the first paragraph does not change the position of these
singularities, so we can still assume that B = x B1 + B0.

If the roots are distinct, we get case (a), if there are two distinct roots, we get case (b), and if there is
only a single root, we get case (c). Note that in cases (b) and (c), the substitution y 7→ λy, z 7→ λ−1z
preserves the location of the roots and scales B1, which is why we can assume that x B1 occurs with
coefficient 1. Finally, in case (c), we can apply a substitution of the form z 7→ z +λ2 y, x 7→ x +λy for a
suitable λ to assume that B0(1, 0) = 0.

(2) A = xy. After applying a substitution of the form w 7→ w + Q for a suitable quadratic form Q, we
may assume that B does not contain monomials divisible by xy. This allows us to write

B = (a1x3
+ a2 y3)z + (a3x + a4 y)z3

+ B0(x, y, z)2.

Note that the preimages R1 and R2 of V (x) and V (y) on X are members of |−K X |; hence they must be
reduced.

Restricted to V (x), the equation becomes w2
+ a2 y3z + a4 yz3, so R1 is singular over [0 :

√
a4 :

√
a2].

Similarly, R2 is singular over [
√

a3 : 0 :
√

a1]. Note that these points must be distinct, for otherwise X is
singular over [0 : 0 : 1] by Proposition 3.2.
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If these two points are distinct and different from [0 : 0 : 1], we can apply a suitable substitution that
preserves A to move them to [0 : 1 : 0] and [1 : 0 : 0]. Then, we can repeat the substitution of the first
paragraph and, after rescaling, arrive at case (a).

If the two points are distinct and one of them is [0 : 0 : 1], we can assume without loss of generality that
the other one lies on V (y) and move it to [1 : 0 : 0]. After repeating the substitution of the first paragraph
and rescaling, we may assume that B1 is as in case (b). Finally, after applying a substitution of the form
z 7→ z + λy, w 7→ w + λz2

+ λ2 yz + λ3 y2 for a suitable λ, we may assume that B0(0, 1, 0) = 0.

(3) A = x2. Applying a substitution of the form w 7→ w + Q for a suitable quadratic form Q allows us
to assume that B = x B1 + B0 for homogeneous forms B0 and B1 in y and z.

Let R′ be the preimage of V (x). As in case (2), since R′
∈ |−K X |, R′ must be reduced. Restricted

to V (x), the double cover becomes
w2

+ B0(y, z) = 0;

hence R′ is singular over the common zero of B0,y and B0,z . We can assume that this zero lies at [0 : 0 : 1],
that is, that yz3 does not occur in B0 and y3z occurs with nonzero coefficient. After rescaling, we may
assume that y3z occurs with coefficient 1.

Applying a substitution of the form z 7→ z +λ1x +λ2 y, y 7→ y +λ3x for suitable λi and repeating the
substitution of the first paragraph, we can eliminate the monomials y3 and y2z in B1 and the monomial y4

in B0. Computing partials, we see that X is singular if and only if B1(0, 1) = 0. Hence, after rescaling,
we may assume that B is as claimed. □

3.3. Fake bitangents and odd theta characteristics. It is known that a del Pezzo surface X of degree 2
contains 56 (−1)-curves (see [Dolgachev 2012, Section 8.7], where the proof is characteristic-free). They
come in pairs Ei + E ′

i ∈ |−K X |, with Ei · E ′

i = 2. The Geiser involution γ switches the two curves in a
pair. The image of each pair under any birational morphism π : X → P2 given by the blow-up of seven
points p1, . . . , p7 ∈ P2 is either the union of a line through two points pi , p j and the conic through the
remaining five points, or a cubic passing through p1, . . . , p7 with a double point at some pi (and one
curve of the pair is contracted by π ). The image of Ei + E ′

i under the anticanonical map f is a line ℓ.
If p ̸= 2, each of the resulting 28 lines is a bitangent line to the branch quartic curve and, conversely,

every bitangent to the branch quartic gives rise to a pair of (−1)-curves. A bitangent line intersects the
branch curve at two points, not necessarily distinct, whose sum is an odd theta characteristic of the curve.
It is known that the number of odd theta characteristics on a smooth curve of genus 3 is equal to 28.

For arbitrary p, we still have the following.

Lemma 3.5. The preimage f −1(ℓ) of a line ℓ is a sum of two (−1)-curves if and only if f −1(ℓ) is
reducible.

Proof. Since f has degree 2 and ℓ is integral, the curve f −1(ℓ) is reducible if and only if it has
two irreducible components L1 and L2. These components satisfy L1 + L2 ∈ |−K X |. Since L i maps
birationally to ℓ, we have pa(L i ) = 0; hence L1.L2 = 2 by adjunction. We have L2

1 = L2
2, because the
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two curves are interchanged by the covering involution, so the equality

2 = K 2
X = (L1 + L2)

2
= L2

1 + L2
2 + 2L1.L2

implies that L i is a (−1)-curve. The converse is clear. □

So, even if p = 2, we have 28 splitting lines, which we call fake bitangent lines in analogy with the
situation in the other characteristics. For the rest of this section, we assume p = 2. Since the anticanonical
map is étale outside the branch curve V (A), the intersection Ei ∩ E ′

i lies on the ramification curve R. Let
L = OR(Ei ) ∼= OR(E ′

i ). It is an invertible sheaf on R of degree 2. We have

L⊗2 ∼= OR(Ei + E ′

i )
∼= OR(−K X ).

Since B ∈ |OP2(2)|, we have R ∈ |−2K X |. By the adjunction formula

ωR ∼= OR(−2K X + K X ) ∼= L⊗2.

Invertible sheaves L on R that satisfy this property are called invertible theta characteristics. They are
called even, odd, or vanishing according to whether their space of global sections is even-dimensional,
odd-dimensional, or at least 2-dimensional, respectively. We note that, on singular curves, there can be
theta characteristics which are not invertible; see [Barth 1977; Beauville 1977]. In the following, we will
only discuss invertible theta characteristics, so we drop the “invertible” from the notation.

Let 2(R) be the set of isomorphism classes of theta characteristics on R and let J (R) be the identity
component of the Picard scheme of R, also called the generalized Jacobian of R.

Lemma 3.6. The generalized Jacobian J (R) of R is isomorphic to G3
a .

Proof. Since R is of arithmetic genus 3, J (R) is a commutative group scheme of dimension 3. As
Rred has only unibranched singularities, [Bosch et al. 1990, Propositions 5 and 9] shows that J (R) is
unipotent. Finally, we have a factorization of the absolute Frobenius F : R → V (A) → R. Note that
J (V (A)) is trivial, even if V (A) is nonreduced, since H 1(V (A),OV (A)) = 0. Since F∗ is multiplication
by p on J (R), we obtain that J (R) is p-torsion, and hence isomorphic to G3

a . □

In particular, J (R)(k) is an infinite 2-torsion group and it acts on 2(R) via tensor products. It is easy
to check that 2(R) is a torsor under J (R)(k) via this action. This already shows that the problem of
finding (fake) bitangents using theta characteristics on R in characteristic 2 is much more subtle than it is
in the other characteristics. Let us give an example that further illustrates this point.

Example 3.7. Assume that V (A) is a smooth conic.
Consider π : R → V (A) −→∼ P1. We have π∗OP1(2) = ( f |R)∗OV (A)(1) = (ωX )|R , so L := π∗OP1(1)

is a theta characteristic on R. Moreover, we have h0(R, π∗OP1(1)) = 2, so L is a vanishing theta
characteristic. In fact, this is the unique vanishing theta characteristic on R: Indeed, let L′ be another
vanishing theta characteristic. Then, the Riemann–Roch formula yields

h0(R,L⊗L′) − h0(R, ωR ⊗L−1
⊗L′−1) = 2.
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Since h0(R,L) ≥ 2 and h0(R,L′) ≥ 2, we have h0(R,L ⊗ L′) ≥ 3, so h0(R, ωR ⊗ L−1
⊗ L′−1) ̸= 0.

Since R is integral and ωR ⊗L−1
⊗L′−1 has degree 0, this implies that L ∼= L′.

Next, let ℓ be any line in P2 such that f −1(ℓ) meets R in two distinct smooth points. Then,
f −1(ℓ ∩ V (A))red defines an effective theta characteristic L on R. By the previous paragraph, we
have h0(R,L) = 1; hence all the infinitely many theta characteristics arising in this way are odd. It
would be interesting to find an abstract characterization of the fake bitangent lines among the odd theta
characteristics of R.

Nevertheless, we can find explicit equations of fake bitangent lines using the following result.

Lemma 3.8. Let C → P1 be an Artin–Schreier double cover given by an equation of the form

w2
+ f (u, v)w + g(u, v) = 0,

where f and g are homogeneous polynomials of degree n and 2n, respectively, and f ̸= 0. Then,
C is reducible if and only if there exists a homogeneous polynomial h of degree n with g(u, v) =

f (u, v)h(u, v)+ h(u, v)2.

Proof. If there exists an h as in the assertion, then w2
+ f w+ g = (w+ f +h)(w+h), so C is obviously

reducible.
Conversely, assume that C is reducible. Then, C has exactly two irreducible components and these

components are interchanged by the substitution w 7→ w+ f . In other words, we can write w2
+ f w+g =

h′(h′
+ f ), where h′ is a weighted homogeneous polynomial of degree n. This is only possible if

h′ is of the form h′
= w + h for some h homogeneous of degree n in the variables u and v. Then,

w2
+ f w + g = (w + h)(w + h + f ) = w2

+ f w + h2
+ f h; hence g = f h + h2, as claimed. □

Finally, for later use, we record some simple restrictions on the possible positions of fake bitangent
lines with respect to the singularities of R.

Proposition 3.9. Let ℓ be a fake bitangent line that passes through the image P of a singular point of an
irreducible component of Rred. Then, V (A) is smooth and ℓ is tangent to V (A) at P.

Proof. Write f −1(ℓ) = L1 + L2. Since Rred is singular at f −1(P), L i and R have intersection multiplicity
at least 2 in f −1(P). Since R ∈ |−2K X | and L1 + L2 ∈ |−K X |, we have (L1 + L2).R = 2K 2

X = 4; hence
L1+L2 and R meet only in f −1(P). Therefore, their images in P2 meet only in P. If V (A) is smooth, this
implies that ℓ is tangent to V (A) in P. If V (A) is the union of two lines, this implies that ℓ passes through
their intersection. However, in this case, L i and R have intersection multiplicity at least 3 in f −1(P),
which is absurd. Finally, if V (A) is a double line, then Rred ∈ |−K X | and 2 = K 2

X = (L1 + L2).Rred ≥ 4,
a contradiction. □

Remark 3.10. We note there are del Pezzo surfaces for which fake bitangents satisfying the properties of
Proposition 3.9 exist. See Proposition 5.10 for a classification in terms of the normal forms of Theorem 3.4.
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3.4. Strange elliptic fibrations. To each del Pezzo surface X of degree 2 in characteristic 2 with branch
locus V (A) of the anticanonical map f : X → P2, there is a naturally associated point PX in P2: if V (A)

is smooth, we let PX be the strange point of V (A), if V (A) is the union of two lines, we let PX be their
intersection, and if V (A) is a double line, we let PX be the image of the singular point of f −1(V (A))red.
We call PX the strange point of X and note that the action of Aut(X) fixes PX .

The pencil P of lines through PX is Aut(X)-invariant as well. Its preimage C in X is an Aut(X)-
invariant pencil of curves of arithmetic genus 1 with two base points if V (A) is smooth and with one
base point of multiplicity 2 if V (A) is singular. We let π : Y → X be the blow-up of the two (possibly
infinitely near) base points of C. Then, C defines a relatively minimal genus-1 fibration φ : Y → P1. Since
the map X → P2 is separable and a general line in the pencil is not contained in V (A), its preimage on Y
is a smooth elliptic curve. Thus, the genus-1 fibration is an elliptic fibration. We call it the strange elliptic
fibration associated to X .

By construction, the group Aut(X) lifts to a subgroup of Aut(Y ) and we will use this in Proposition 4.2
to find restrictions on the possible structure of Aut(X). To make the most of this connection, we will now
describe the singular fibers of the elliptic fibration φ : Y → P1. We employ Kodaira’s notation: we say
that a fiber isomorphic to an irreducible cuspidal cubic curve is of type II, a fiber that consists of two
smooth rational curves intersecting nontransversally at one point is of type III, and a fiber that consists of
three smooth rational curves intersecting at one point is of type IV.

We use the normal forms of Theorem 3.4, so that A = x2
+ yz, xy, or x2 and PX = [1 : 0 : 0] in the

first case and PX = [0 : 0 : 1] in the other two cases. In the first case, we let ℓ[t0:t1] be the line V (t0 y + t1z)
and in the other two cases, we let ℓ[t0:t1] be the line V (t0x + t1 y). The fiber of φ corresponding to ℓ[t0:t1]

is denoted by F[t0:t1].

Proposition 3.11. The generic fiber of the strange elliptic fibration associated to X is a supersingular
elliptic curve. Its singular fibers are of type II, III, or IV and its Mordell–Weil group is torsion-free. Namely:

(1) If A = x2
+ yz, then the following hold:

• The fiber F[t0:t1] is smooth if and only if t0 y + t1z ∤ B1.

• The fiber F[t0:t1] is of type III if ℓ[t0:t1] is a fake bitangent and of type II otherwise.

• The line ℓ[1:0] is a fake bitangent if and only if e = 0.

• The line ℓ[0:1] is a fake bitangent if and only if a = 0.

• The line ℓ[1:1] is a fake bitangent if and only if a + b + c + d + e = 0.

(2a) If A = xy and B1 = xz3
+ yz3, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] ̸= [1 : 0], [0 : 1], [1 : 1].

• F[1:0] and F[0:1] are of type II.

• F[1:1] is of type IV if ℓ[1:1] is a fake bitangent and of type III otherwise.

• The curve ℓ[1:1] is a fake bitangent if and only if c = d2
+ e2.
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(2b) If A = xy and B1 = xz3
+ y3z, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] ̸= [1 : 0], [0 : 1].

• The curve F[0:1] is of type II.

• The curve F[1:0] is of type III.

(3) If A = x2, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] ̸= [1 : 0].

• The curve F[1:0] is of type III.

Proof. We study each case separately.

(1) In this case, A = x2
+ yz.

First, consider ℓ[1:t] = V (y + t z). Plugging y = t z into the equation of X , we obtain

w2
+ (x2

+ t z2)w + x B1(t z, z) + (at4
+ bt3

+ ct2
+ dt + e)z4,

with B1(t z, z) ∈ {λt (t +1)z3, t2z3, t3z3
}. If y + t z ∤ B1, then B1(t z, z) ̸= 0, so taking partials with respect

to x and w shows that a singular point must satisfy x = z = 0, which is absurd. If y + t z | B1, then
B1(t z, z) = 0 and F[1:t] is singular over [t : t : 1]. Similarly, one checks that F[0:1] is singular.

The equation
w2

+ (x2
+ t z2)w + x B1(t z, z) + (at4

+ bt3
+ ct2

+ d + e)z4

shows that F[1:t] is a double cover of P1 branched over a single point. Hence, if F[1:t] is smooth, then it is
supersingular, and if it is singular and irreducible, it is a cuspidal cubic.

Finally, consider the curve F[1:0] given by

w2
+ x2w + ez4.

By Lemma 3.8, it is clear that F[1:0] is reducible if and only if e = 0. The calculation for F[1:1] and F[0:1]

is similar.

(2a) In this case, A = xy and B1 = xz3
+ yz3.

First, consider ℓ[1:t] = V (x + t y) with t ̸= 0, 1. Plugging x = t y into the equation of X , we obtain

w2
+ t y2w + (t + 1)yz3

+ B0(t y, y, z)2.

Then, taking partials shows that F[1:t] is smooth. Since it is a double cover of P1 branched over a single
point, it is supersingular.

Next, consider F[1:1], whose image in X is given by

w2
+ y2w + ((a + b)y2

+ (d + e)yz + cz2)2.

This curve is singular over [0 : 0 : 1], so F[1:1] has one irreducible component contracted by Y → X . By
Lemma 3.8, the image of F[1:1] in X is reducible if and only if c = d2

+ e2.
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Finally, the curves F[1:0] and F[0:1] are isomorphic to their images in X and these images are irreducible
and cuspidal by Theorem 3.4.

(2b) In this case, A = xy and B1 = xz3
+ y3z.

First, consider ℓ[1:t] = V (x + t y) with t ̸= 0. Plugging x = t y into the equation of X , we obtain

w2
+ t y2w + t yz3

+ y3z + B0(t y, y, z)2.

As in the previous cases, taking partials shows that F[1:t] is smooth and supersingular.
The curve F[0:1] is isomorphic to its image in X , since f −1(ℓ[0:1]) is smooth over the point [0 : 0 : 1].

Hence, F[0:1] is of type II. On the other hand, the curve F[1:0] is of type III, since its image in X has
multiplicity 2 over [0 : 0 : 1].

(3) In this case A = x2.
First, consider ℓ[t :1] = V (t x + y). Plugging y = t x into the equation of X , we obtain

w2
+ x2w + xz3

+ (bt2
+ at)x2z2

+ cz4.

Then, taking partials shows that F[t :1] is smooth. Since it is a double cover of P1 branched over a single
point, it is supersingular.

The curve F[1:0] is of type III, by the same argument as in the previous case.

The Mordell–Weil group of the fibration is torsion-free by [Oguiso and Shioda 1991, Main Theorem],
since the lattice spanned by fiber components is of rank at most 4 in each case. □

Remark 3.12. The classification of singular fibers of rational elliptic surfaces with a section in character-
istic 2 can be found in [Lang 2000]. Lang shows that in the cases where the general fiber is a supersingular
elliptic curve, the number of singular fibers is at most 3, which agrees with what we observed in the case
of strange elliptic fibrations. Proposition 3.11 shows that the singular fibers that occur on strange genus-1
fibrations are of type 9A, 9B, 10A, 10B, 10C or 11 in Lang’s terminology.

4. Automorphism groups of del Pezzo surfaces of degree 2

4.1. Preliminaries. Recall once more from Section 3.1 that a del Pezzo surface X of degree 2 is a surface
of degree 4 in P(1, 1, 1, 2) given by an equation of the form

w2
+ A(x, y, z)w + B(x, y, z) = 0.

Since this is the anticanonical model of X and ω−n
X admits a natural Aut(X)-linearization for all n, we

obtain that Aut(X) is isomorphic to the subgroup of Aut(P(1, 1, 1, 2)) of automorphisms that preserve X .
The structure of the group Aut(P(1, 1, 1, 2)) is well known. The vector space k[x, y, z]2 of quadratic

forms is a normal subgroup of Aut(P(1, 1, 1, 2)) that acts via (x, y, z, w) 7→ (x, y, z, w + Q). The
quotient by this subgroup is the group of transformations that change (x, y, z) linearly and multiply w

by a scalar. Since the transformation (x, y, z, w) 7→ (λx, λy, λz, λ2w) is the identity, this quotient is
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isomorphic to GL3(k)/µ2(k). Since we are in characteristic 2, the subgroup µ2(k) is trivial. This gives
an isomorphism

Aut(P(1, 1, 1, 2)) ∼= k[x, y, z]2 : GL3(k).

We denote elements of this group by (Q, g)∈k[x, y, z]2×GL3(k) where the semidirect product structure is

(Q, g) ◦ (Q′, g′) = (g∗(Q′) + Q, gg′).

Using this description of Aut(P(1, 1, 1, 2)), it is straightforward to calculate the subgroup of automor-
phisms preserving X . We obtain

Aut(X) ∼= {(Q, g) : g∗(A) = A, g∗(B) = B + AQ + Q2
}.

The kernel of the homomorphism
Aut(X) → GL3(k), (Q, g) 7→ g

is generated by the Geiser involution γ . We let G(X) be the image of Aut(X) in GL3(k).

Lemma 4.1. The homomorphism G(X) → GL3(k) → PGL3(k) is injective.

Proof. Let g ∈ G(X) be in the kernel of this homomorphism. Then, g = λI3 for some λ ∈ k×. On the
other hand, by definition of G(X), we have g∗(A) = A. Since A has degree 2, this implies λ2

= 1. Hence,
λ = 1. □

We recall from [Dolgachev and Martin 2024, Section 1] that a choice of a blow-up X → P2 of seven
points defines an injective homomorphism

ρ : Aut(X) → W (E7). (3)

The image of the Geiser involution is equal to −idE7 . It is known that W (E7) = ⟨−idE7⟩× W (E7)
+, where

W (E7)
+

⊆ W (E7) is the kernel of the determinant map.
In particular, to determine Aut(X), it suffices to determine G(X) and both groups are isomorphic to

subgroups of W (E7) via ρ. This puts severe restrictions on the possible structure of G(X). Finally, we
can use the strange genus-1 fibrations of the previous section to get information on G(X).

Proposition 4.2. Let φ : Y → P1 be the strange elliptic fibration associated to X. Choose an exceptional
curve E of Y → X as the zero section of φ and let C be the second exceptional curve. Then, there is a
homomorphism ϕ : Aut(X) → Aut(Y ) that satisfies the following properties:

(1) ϕ is injective.

(2) ϕ(γ ) preserves every fiber of φ.

(3) If V (A) is smooth, then C is a section of φ. We have ϕ(γ ) = tC ◦ ι, where ι is the negation
automorphism and tC is translation by C.

(4) If V (A) is singular, then C is a component of a reducible fiber of φ. We have ϕ(γ ) = ι and ϕ factors
through the stabilizer of the pair (E, C).
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Proof. The surface Y is obtained by blowing up X at two points that are uniquely determined by V (A), and
hence is stable under the action of Aut(X). This shows existence and injectivity of the homomorphism ϕ.
The fibration φ is induced by the pencil of lines in P2 through the strange point of X . Since γ preserves
these lines, it preserves the fibers of φ.

If V (A) is smooth, then E and C are interchanged by ϕ(γ ). The automorphism t−C ◦ ϕ(γ ) ◦ ι maps
E to E and −C to −C . It is well known that every fixed point of a nontrivial automorphism of an
elliptic curve is a torsion point. On the other hand, by Proposition 3.11, φ has no torsion sections, so
t−C ◦ ϕ(γ ) ◦ ι = id, which yields claim (3).

If V (A) is singular, then C is a (−2)-curve which meets E ; hence it is the identity component of
a reducible fiber of φ. Since ϕ(γ ) is an involution that preserves E , we have ϕ(γ ) = ι and we obtain
claim (4). □

4.2. Classification.

Theorem 4.3. Every del Pezzo surface of degree 2 in characteristic 2 such that, in the decomposition
Aut(X) ∼= 2 × G(X), the group G(X) is nontrivial is isomorphic to a surface of degree 4 in P(1, 1, 1, 2)

given by an equation of the form
w2

+ Aw + B,

where (A, B, G(X)) is one of the forms shown in Table 3. The parameters satisfy the following conditions:

(1ai) λ ̸= 0, λ2
+ c ̸= 0, b2

+ a ̸= 0, (b, c) ̸= (λ, a).

(1aii) λ ̸= 0, λ2
+ a ̸= 0.

(1ci) e ̸= 0.

(2ai) a ̸= 0, (c, d) ̸= (0, 0).

(2aii) a ̸= 0, b ̸= 0, a ̸= b.

(2aiii) a ̸= 0.

(3i) c ̸= 0.

(3ii) None.

Proof. We use the normal forms of Theorem 3.4 and the description of Aut(X) and G(X) given in the
beginning of the current section. We go through the cases of Theorem 4.3.

(1a) Here, X is given by an equation of the form

w2
+ (x2

+ yz)w + λxyz(y + z) + B0,

with
B0 = ay4

+ by3z + cy2z2
+ dyz3

+ ez4

and the cusps lie over [0 : 1 : 0], [0 : 0 : 1], and [1 : 1 : 1]. Let (Q, g) ∈ Aut(X) be an automorphism of X .
Then, g preserves the three points lying under the cusps. Moreover, if g fixes the three cusps, then it fixes
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name A B B1 B0 G(X) # of parameters

(1ai) x2
+yz x B1+B0 λyz(y+z) ay4

+by3z+cy2z2
+byz3

+az4 2 4
(1aii) x2

+yz x B1+B0 λyz(y+z) ay4
+λy3z+ay2z2

+λyz3
+az4 S3 2

(1ci) x2
+yz x B1+B0 y3 by3z+cy2z2

+ez4 23 3
(2ai) xy B1+B2

0 xz3
+yz3 ax2

+ay2
+cz2

+dxz+dyz 2 3
(2aii) xy B1+B2

0 xz3
+yz3 ax2

+by2 3 2
(2aiii) xy B1+B2

0 xz3
+yz3 ax2

+ay2 6 1
(3i) x2 x B1+B0 z3 y3z+cz4 3 1
(3ii) x2 x B1+B0 z3 y3z 9 0

Table 3. Forms of (A, B, G(X)) in Theorem 4.3.

V (A) pointwise; hence g is trivial in PGL3(k), so, by Lemma 4.1, g is the identity and (Q, g) coincides
with the Geiser involution. Hence, G(X) acts faithfully on {[0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]}.

Note that G(X) contains an involution if and only if X admits an equation where this involution is
given by y ↔ z. This involution is in G(X) if and only if there exists a quadratic form Q such that

Q2
+ (x2

+ yz)Q = g∗B0 + B0. (4)

Since Q2
+(x2

+yz)Q contains a nonzero monomial divisible by x2 as soon as it is nonzero and g∗B0+B0

does not contain such a monomial, we must have Q ∈ {0, x2
+ yz} and (4) holds if and only if a = e and

b = d , as claimed.
Next, note that G(X) contains an automorphism g of order 3 if and only if g is given by x 7→ x + z,

y 7→ z, z 7→ y + z and there exists a quadratic form Q such that

Q2
+ (x2

+ yz)Q = λyz2(y + z) + g∗B0 + B0. (5)

By the same argument as in the previous paragraph, we have Q ∈ {0, x2
+ yz} and (5) holds if and only if

a = c = e and b = d = λ. In particular, note that these conditions imply the conditions of the previous
paragraph in this case; hence G(X) = S3.

(1b) In this case, V (A) is smooth and R has two nonisomorphic singularities. Then, g ∈ G(X) must fix
the images of them on V (A). Since an automorphism of order 2 of P1 has only one fixed point, we may
assume that the order of g is odd. By Proposition 3.9, the line ℓ through the images of the singularities
is not a fake bitangent. Its preimage E in X is an integral curve of arithmetic genus 1 and the Geiser
involution has two fixed points on E . Hence, either E is smooth and ordinary, or nodal. In both cases,
there is no nontrivial automorphism of odd order that commutes with the involution; hence g fixes ℓ

pointwise. Since g also fixes the strange point P on V (A) and the projection from P is inseparable,
g fixes V (A) pointwise; hence g is the identity. We conclude that G(X) = {1}.

(1c) Here, X is given by an equation of the form

w2
+ (x2

+ yz)w + xy3
+ B0,
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with
B0 = by3z + cy2z2

+ dyz3
+ ez4.

The singularity of R lies over [0 : 0 : 1]. An element g ∈ G(X) of odd order has at least two fixed points
on V (A) and then the same argument as in the previous case shows that g is the identity. Therefore,
G(X) is a 2-group that acts on V (A) ∼= P1 with a fixed point. In particular, G(X) is isomorphic to a
subgroup of Ga(k), and hence is isomorphic to 2n for some n ≥ 0.

We may assume that g acts as x 7→ x + αy, y 7→ y, z 7→ z + α2 y. Then g lifts to Aut(X) if and only
if there exists a quadratic form Q such that

(x2
+ yz)Q + Q2

= αy4
+ g∗(B0) + B0.

Since the right-hand side does not contain a monomial divisible by x2, we get, as in the previous cases,
Q = x2

+ yz or Q = 0. Comparing coefficients yields the system of equations

dα2
= 0,

dα4
= 0,

eα8
+ dα6

+ cα4
+ bα2

+ α = 0.

So, if d ̸= 0, then α = 0 and G(X) is trivial. If d = 0, there are eight possibilities for α, one for each root
of ex8

+ cx4
+ bx2

+ x . All the roots are distinct since the derivative of this polynomial is 1. Here, we
also use that e ̸= 0 by Theorem 3.4. Thus G(X) ∼= 23.

(2a) Here, X is given by an equation of the form

w2
+ xyw + xz3

+ yz3
+ B2

0 ,

with
B0 = ax2

+ by2
+ cz2

+ dxz + eyz.

The singularities of the irreducible components of R lie over [1 : 0 : 0] and [0 : 1 : 0]. Let (Q, g) ∈ Aut(X).
Then, g preserves these two points and the intersection of V (x) and V (y). Moreover, by Propositions 4.2
and 3.11, g preserves the line V (x + y).

Assume that g has odd order. Then, g preserves the three lines V (x), V (y), and V (x + y); hence it is
of the form (x, y, z) 7→ (x, y, αz). The quadratic form Q satisfies

Q2
+ xyQ = g∗(B1 + B2

0 ) + B1 + B2
0 .

The right-hand side does not contain monomials divisible by xy; hence Q ∈ {0, xy}. Now, g∗B1 + B1 = 0
implies that α3

= 1, and if α ̸= 1, then g∗B2
0 + B2

0 = 0 holds if and only if c = d = e = 0.
Assume that g has order a power of 2. If g does not swap the points [1 : 0 : 0] and [0 : 1 : 0], then it

acts diagonally; hence it is the identity. Therefore, we may assume that g swaps these two points and
g2

= id. Hence, g acts as x ↔ y. The quadratic form Q satisfies

Q2
+ xyQ = g∗(B1 + B2

0 ) + B1 + B2
0 ,

and hence a = b and d = e.
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(2b) Here, X is given by an equation of the form

w2
+ xyw + xz3

+ y3z + B2
0 ,

with

B0 = ax2
+ cz2

+ dxz + eyz

and the singularities of the irreducible components of R map to [1 :0 :0] and [0 :0 :1]. Let (Q, g)∈Aut(X).
If g has odd order, then there is a g-invariant line ℓ through [1 : 0 : 0] and we may assume that ℓ ̸⊆ V (A).

By the same argument as in case (1b), ℓ is fixed pointwise. Then, every line through [0 : 0 : 1] is g-invariant.
Since g∗ A = A, this means that g acts as (x, y, z) 7→ (x, y, αz). An automorphism of this form satisfies
g∗B1 = B1 if and only if α = 1, so g is trivial.

If g has order a power of 2, then by Proposition 3.11, ϕ((Q, g)) ∈ Aut(Y ) preserves the two singular
fibers of φ : Y → P1; hence ϕ((Q, g)) acts trivially on the base of φ. The 2-Sylow subgroup of
automorphisms of the geometric generic fiber of φ is the quaternion group Q8 and ϕ((Q, g)) commutes
with the unique involution ϕ(γ ) in Q8. This implies that (Q, g) ∈ ⟨γ ⟩, so g is trivial.

(3) If V (A) is a double line, then X is given by an equation of the form

w2
+ x2w + x B1 + B0,

with B1 = z3
+ ayz2 and B0 = y3z + by2z2

+ cz4. The singularity of Rred lies over [0 : 0 : 1]. Let
(Q, g) ∈ Aut(X). Then, g is of the form

(x, y, z) 7→ (x, αx + βy, γ x + δy + ϵz),

with β, ϵ ̸= 0 and Q satisfies the equation

Q2
+ x2 Q = x(g∗B1 + B1) + g∗B0 + B0. (6)

The monomials y3z, xz3, xyz2, xy2z and xy3 do not appear on the left-hand side; hence their
coefficients on the right-hand side must be zero. This yields the conditions

ϵ = β−3, δ = a(β + β6),

β9
= 1, α = a2(1 + β),

γ = a3(1 + β2).

So, the order of g is equal to the order of β in k×; hence it is equal to 1, 3 or 9. Now, we calculate that if
β3

= 1, then g3 acts as

(x, y, z) 7→ (x, y, a3(β + β2)x + z).

Hence, if a ̸= 0, then g is the identity.
So, assume that a = 0, so that, in particular, α = δ = γ = 0. Equation (6) becomes

Q2
+ x2 Q = (ϵ3

+ 1)xz3
+ (β3ϵ + 1)y3z + b(β2ϵ2

+ 1)y2z2
+ c(ϵ4

+ 1)z4.
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On the left-hand side, the coefficients of z4 and y2z2 are the squares of the coefficients of x2z2 and x2 yz,
respectively. Since the latter monomials do not appear on the right-hand side, the coefficients of the
former monomials must vanish. Therefore, we get the four conditions

ϵ3
+ 1 = 0, b(β2ϵ2

+ 1) = 0,

β3ϵ + 1 = 0, c(ϵ4
+ 1) = 0,

Hence, if b ̸= 0, then β = ϵ = 1, so G(X) is trivial. If b = 0 and c ̸= 0, then ϵ = 1 and β3
= 1, and so

G(X) ∼= C3. If b = c = 0, then ϵ = β−3 and β9
= 1; hence G(X) ∼= C9. □

Remark 4.4. With our choice of normal form in Theorem 4.3, the map g 7→ (0, g) defines an explicit
section of the surjection Aut(X) → G(X) in every case.

Remark 4.5. The group 24 that appears in Theorem 4.3 occurs as a group of automorphisms of a del Pezzo
surface of degree 4 in all characteristics [Dolgachev and Duncan 2019]. In characteristic 0, there is a
unique conjugacy class of subgroups isomorphic to 24 in the Cremona group. One can prove, using the
theory of birational links, that in characteristic 2, the two subgroups of Crk(2) are not conjugate.

Remark 4.6. The fact that 2 and 3 are the only primes that divide the order of Aut(X) can be proven
without the classification. It is known that 2, 3, 5, and 7 are the only primes that divide the order of
W (E7). To exclude the primes 5 and 7, one can use the Lefschetz fixed-point formula and the known
traces of elements of W (E7) acting on the root lattice of type E7 to get a contradiction with the possible
structure of the set of fixed points of an element of the group G(X).

4.3. Conjugacy classes and comparison with the classification in characteristic 0. In this section, we
determine the conjugacy classes in W (E7) of the elements of the groups that occur in Theorem 4.3 and,
whenever possible, compare the surfaces in Theorem 4.3 with their counterparts in characteristic 0 (see
[Dolgachev 2012, Table 8.9]). To do this, we use the following result.

Lemma 4.7. Let X be a del Pezzo surface of degree 2 in characteristic 2. Let X ′ be a geometric generic
fiber of a lift of X to characteristic 0 and let sp : Aut(X ′) → Aut(X) be the specialization map. Then, sp
is injective and preserves conjugacy classes.

Proof. Let X → S be a lift of X with geometric generic fiber X ′. The map sp sends an automorphism
g ∈ Aut(X ′) to the special fiber of the closure of g considered as a point of the relative automorphism
scheme AutX/S . To see that this is well-defined, we have to explain why AutX/S is proper over S.

By passing to the anticanonical model of X in PS(1, 1, 1, 2), the scheme AutX/S is identified with the
stabilizer of X under the action of AutPS(1,1,1,2) on the space Hd P2,S of smooth quartic hypersurfaces in
PS(1, 1, 1, 2). To check that this stabilizer is proper, it suffices to show that the shear map

(G3
a : GL3) ×Hd P2 → Hd P2 ×Hd P2,

(Q, g, w2
+ Aw + B) 7→ (w2

+ Aw + B, w2
+ (g∗ A + 2Q)w + g∗B + g∗ AQ + Q2),
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is a proper morphism of schemes over Spec Z. For this, it suffices to check that the individual shear
maps for the G3

a-action and the GL3-action are proper. We check this using the valuative criterion. So,
let R be an arbitrary discrete valuation ring with field of fractions K and let F = w2

+ Aw + B and
F ′

= w2
+ A′w + B ′ be equations of smooth quartics in PR(1, 1, 1, 2) with A, A′

∈ R[x, y, z]2 and
B, B ′

∈ R[x, y, z]4.
Given Q ∈ K [x, y, z]2 sending F to F ′, we have the two conditions

A + 2Q − A′
= 0,

B + AQ + Q2
− B ′

= 0.

Comparing the valuations of the coefficients of Q2 and AQ+B−B ′ in the second equation shows that Q ∈

R[x, y, z]2. This proves the valuative criterion of properness for the shear map of the G3
a-action on Hd P2.

Given g ∈ GL3(K ) sending F to F ′, we have the two conditions

g∗ A = A′, g∗B = B ′.

Replacing g by its Smith normal form, we may assume that g acts as

x 7→ π ex x, y 7→ π ey y, z 7→ π ez z,

where π is a uniformizer of R. Thus, if a monomial x i y j zk appears in A or B with unit coefficient, then
iex + jey + kez = 0. We leave it to the reader to check that, because of the smoothness of F and F ′

modulo π , there are enough such monomials to check that ex = ey = ez , that is, that g ∈ GL3(R). This
is the valuative criterion of properness for the shear map of the GL3-action on Hd P2.

Since H 0(X, TX ) = 0, the scheme AutX/S is discrete; hence the specialization map is injective. As
H 1(X,OX ) = H 2(X,OX ), the relative Picard scheme PicX/S is constant over S. Now, specialization of
line bundles is sp-equivariant and compatible with the intersection pairing; hence sp preserves conjugacy
classes. □

Remark 4.8. It would be interesting to determine all integers a1, . . . , an and d such that the action of
AutP(a1,...,an) on the space Hd of smooth hypersurfaces of degree d in P(a1, . . . , an) is proper. This would
be a generalization of [Katz and Sarnak 1999, Proposition 11.8.2] to the weighted case.

By Theorem 4.3, we have |Aut(X)| ≤ 18, so types I, . . . , V and of [Dolgachev 2012, Table 8.9] do not
have a reduction modulo 2 which is a del Pezzo surface. Similarly, type VII of that table has no analog in
characteristic 2.

The surface of type (3ii) of Theorem 4.3 is a reduction modulo 2 of the surface of type VI in [Dolgachev
2012, Table 8.9]. Hence, we call this surface type VI. Since the conjugacy classes of elements of Aut(X)

are the same as the ones of the lift, the entry for type VI in Table 4 is the same as the one in [Dolgachev
and Martin 2024, Table 7].
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The equations of the surfaces of type (2aiii) of Theorem 4.3 define smooth surfaces in characteristic 0
and the automorphisms x ↔ y and z 7→ ζ3z make sense in characteristic 0. Hence, these surfaces lift to char-
acteristic 0 as del Pezzo surfaces with an action of 2×6. As explained above, del Pezzo surfaces of degree
2 with an automorphism group of order bigger than 18 do not have a smooth reduction modulo 2; hence
these lifts are of type VIII [Dolgachev 2012, Table 8.9], so we also call the surfaces of type (2aiii) type VIII.
As in the previous case, the conjugacy classes are the same as in [Dolgachev and Martin 2024, Table 7].

As for the surfaces of type (1aii), we rewrite their equations using the substitution x 7→ x + y + z as

w2
+ (x2

+ y2
+ z2

− yz)w + λxyz(z − y) + a(y2
+ z2

− yz)2.

This equation defines a lift of X to characteristic 0 and the Aut(X)-action lifts as well, since it is generated
by the Geiser involution γ : w 7→ −w, the involution y ↔ z and the automorphism g of order 3 given by

x 7→ −x, y 7→ z, z 7→ z − y.

Hence, all surfaces of type (1aii) are reductions modulo 2 of surfaces of type IX in [Dolgachev 2012,
Table 8.9]. In particular, we can read off the conjugacy classes of elements of Aut(X) from [Dolgachev
and Martin 2024, Table 7].

The surfaces of type (1ci) are the characteristic-2 analogs of type X from [Dolgachev 2012, Table 8.9].
We claim that every involution on a surface X of type (1ci) which is different from the Geiser involution
is of conjugacy class 3A1/4A1. It suffices to check this for the surface given by

w2
+ (x2

+ yz)w + xy3
+ z4,

where G(X) acts as gα : x 7→ x+αy, z 7→α2x+z, with α8
=α. After using the substitution z 7→αx+y+z,

y 7→ α6x + α6 y, the equation of X becomes

w2
+ (x2

+ xy + y2
+ α6(y + x)z + α4(x2

+ y2))w + α4(x3 y + x2 y2
+ xy3) + α3(x4

+ y4
+ z4)

and the involution gα acts as x ↔ y. Then, the above equation makes sense in characteristic 0 and defines
a lift of X together with the involution gα. In particular, by [Dolgachev and Martin 2024, Table 7], the
conjugacy class of gα is 3A1 or 4A1.

The equations of types (2aii) and (3i) make sense in characteristic 0, where they define a lift of the
surface together with the C3-action. These lifts must be of type XI from [Dolgachev 2012, Table 8.9].

Similarly, the equations of types (1ai) and (2ai) define lifts to characteristic 0 together with the
C2-action. Hence, these lifts are of type XII from [Dolgachev 2012, Table 8.9].

We summarize the classification of automorphism groups of del Pezzo surfaces of degree 2 in Table 4.
In the first column, we give the name of the corresponding family, both in the notation of Theorem 4.3
and in the notation of [Dolgachev 2012, Table 8.9]. The second and third columns give the group Aut(X)

and its size. In the remaining columns, we list the number of elements of a given Carter conjugacy class
in Aut(X).
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name Aut(X) order id 3A1 4A1 7A1 2A2 3A2 2A3 2A3+A1 A5+A2 A6 D4(a1) D4(a1)+A1

I–V (do not exist)
VI / (3ii) 18 18 1 1 2
VII (does not exist)
VIII / (2aiii) 2×6 12 1 1 1 1 2 2
IX / (1aii) 2×S3 12 1 3 3 1 2
X / (1ci) 24 16 1 7 7 1
XI / (2aii), (3i) 6 6 1 1 2
XII / (1ai), (2ai) 22 4 1 1 1 1
XIII 2 2 1 1

name Aut(X) order D5 D5+A1 D6(a2)+A1 E6 E6(a1) E6(a2) E7 E7(a1) E7(a2) E7(a4)

I–V (do not exist)
VI / (3ii) 18 18 6 6 2
VII (does not exist)
VIII / (2aiii) 2×6 12 2 2
IX / (1aii) 2×S3 12 2
X / (1ci) 24 16
XI / (2aii), (3i) 6 6 2
XII / (1ai), (2ai) 22 4
XIII 2 2

Table 4. Automorphism groups of del Pezzo surfaces of degree 2.

5. Del Pezzo surfaces of degree 1

5.1. The antibicanonical map. As in the case of degree 2, we start by describing the geometry of
del Pezzo surfaces of degree d = 1 and we refer to [Demazure 1980] for characteristic-free facts on
del Pezzo surfaces. Recall that the antibicanonical system |−2K X | defines a finite morphism f : X → Q
onto a quadratic cone Q ⊆ P3. As in degree 2, it turns out that this map is always separable, even in
characteristic 2.

Proposition 5.1. The antibicanonical linear system |−2K X | defines a finite separable morphism f :

X → Q of degree 2.

Proof. If f is not separable, then p = 2 and f is purely inseparable. But then f is a homeomorphism in
the étale topology. This is impossible, since H 2

ét(X, Zℓ) has rank 9 (because X is the blow-up of eight
points in the plane), while H 2

ét(Q, Zℓ) has rank 1. □

Let

R(X, −K X ) =

∞⊕
n=0

H 0(X,OX (−nK X ))

be the graded anticanonical ring of X . By the Riemann–Roch theorem, we have

dimk R(X, −K X )1 = 2,

dimk R(X, −K X )2 = 4,

dimk R(X, −K X )3 = 7.
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Thus, we can choose u, v from R(X, −K X )1, x ∈ R(X, −K X )2\S2(R(X, −K X )1), and y ∈ R(X, −K X )3\

S3(R(X, −K X )1)+R(X, −K X )1⊗R(X, −K X )2 and obtain the following relation between the generators:

y2
+ y(a1x + a3) + x3

+ a2x2
+ a4x + a6 = 0, (7)

where ak denotes a binary form of degree k in u and v. In particular, via (7), we can view X as a surface
of degree 6 in the weighted projective space P(1, 1, 2, 3), the anticanonical map is the projection of this
surface onto the u-, v-coordinates, and the antibicanonical map is the projection onto the u2-, uv-, v2-,
x-coordinates.

If p ̸= 2, we can replace y with y +
1
2(a1x + a3) to assume that a1 = a3 = 0. The surface X is a

double cover of a quadratic cone Q ∼= P(1, 1, 2). The branch curve B = V (x3
+ a2x2

+ a4x + a6) is a
curve of degree 6 not passing through the vertex of Q. It is a smooth curve of genus 4 with a vanishing
theta characteristic g1

3 defined by the ruling of Q. If we blow up the vertex of Q, we obtain a surface
isomorphic to the rational minimal ruled surface F2. The preimage of the curve B is a curve in the linear
system |6f+ 3e|, where f and e are the standard generators of Pic(F2), with f2 = 0 and e2

= −2. The
curve B is its canonical model in P3.

In our case, when the characteristic p = 2, the analog of B is the curve V (a1x +a3) in Q. In particular,
Proposition 5.1 tells us that a1x +a3 ̸= 0 and there is no way of removing these terms. Moreover, the curve
B always passes through the vertex of Q and its strict transform on F2 is in |3f| if a1 = 0 and in |3f+ e|

if a1 ̸= 0. The analog of the involution y 7→ −y, classically called the Bertini involution, is the involution
β defined by replacing y with y + a1x + a3. As in the classical case, we call this β Bertini involution.

By calculating the partial derivatives in (7), the smoothness of X yields the following restrictions on
the ai :

Proposition 5.2. In (7), the smoothness of X is equivalent to the condition that the equations

a1x + a3 = 0,

x2
+ a1 y + a4 = 0,

a1,u xy + a3,u y + a2,u x2
+ a4,u x + a6,u = 0,

a1,vxy + a3,v y + a2,vx2
+ a4,vx + a6,v = 0,

with ai,u := ∂ai/∂u and ai,v := ∂ai/∂v have no common solutions on X.

5.2. Normal forms. In this section, we find normal forms for del Pezzo surfaces of degree 1 in character-
istic 2. In total, we will have 14 different normal forms, corresponding to the 14 possible combinations of
singularities of the ramification curve R and the branch curve B. First, we simplify the equations of the
branch curve.

Lemma 5.3. Let X be a del Pezzo surface of degree 1 given by (7). Then, after a suitable change of
coordinates, we may assume that the equation a1x + a3 of B is one of the following:

(1) ux + v3; (2) ux ; (3) uv(u + v); (4) u2v; (5) u3.
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Proof. If a1 ̸= 0, we may assume that a1 = u after applying a linear substitution in u and v. Then, a
substitution of the form x 7→ x + b2 for a suitable binary form b2 of degree 2 in u and v allows us to set
a3 = λv3. Then, rescaling v, we can assume λ ∈ {0, 1}.

If a1 = 0, we get three cases according to the number of distinct roots of a3. The equation can be
normalized by applying a linear substitution in u and v to get cases (3), (4), and (5). □

If we consider P(1, 1, 2) as a quadratic cone Q in P3, these five normal forms for a1x +a3 correspond
to the cases where B is a twisted cubic, a union of a line and a conic, a union of three lines, a union of a
double line and a simple line, or a triple line, respectively. Later, we will use automorphisms of P(1, 1, 2)

that preserve the equation of B and the form of (7) in order to move the images of the singular points of
R to special positions. In the following lemma, we describe this group of automorphisms.

Lemma 5.4. Let H ⊆ Aut(k[u, v, x]) ⊆ Aut(k[u, v, x, y]) be the subgroup of automorphisms that
preserve a1x +a3, act on x as x 7→ x +b2 for some binary quadratic form b2 in u and v, and that map (7)
to one of the same form, with possibly different a2, a4, and a6. Then, H consists of substitutions of the form

u 7→ αu + βv, v 7→ γ u + δv, x 7→ x + b2,

where α, β, γ, δ ∈ k such that αδ + βγ ̸= 0, and:

(1) If a1x+a3 =ux+v3, then α =1, β =0, δ3
=1, b2 =γ 3u2

+γ 2δuv+γ δ2v2. In particular, H ∼=k+
:3.

(2) If a1x + a3 = ux , then α = 1, β = b2 = 0. In particular, H ∼= k+
: k×.

(3) If a1x +a3 = uv(u+v), then αγ (α+γ ) = βδ(β+δ) = 0, α2δ+βγ 2
= αδ2

+β2γ = 1. In particular,
H ∼= k[u, v]2 : (3 ×S3).

(4) If a1x + a3 = u2v, then β = γ = 0, δ = α−2. In particular, H ∼= k[u, v]2 : k×.

(5) If a1x + a3 = u3, then β = 0, α3
= 1. In particular, H ∼= k[u, v]2 : (k : k×

× 3).

For the convenience of the reader, we record the effect of a general substitution on the remaining ai

in (7). The proof is a straightforward calculation.

Lemma 5.5. A substitution of the form

u 7→ αu + βv, x 7→ x + b2,

v 7→ γ u + δv, y 7→ y + b1x + b3,

where α, β, γ, δ ∈ k and bi ∈ k[u, v]i such that αδ + βγ ̸= 0, changes the coefficients (a2, a4, a6) in (7)
as follows:

a2 7→ σ ∗a2 + σ ∗a1b1 + b2
1 + b2,

a4 7→ σ ∗a4 + σ ∗a3b1 + σ ∗a1b1b2 + σ ∗a1b3 + b2
2,

a6 7→ σ ∗a6 + σ ∗a4b2 + σ ∗a3b3 + σ ∗a2b2
2 + σ ∗a1b2b3 + b2

3 + b3
2,

where σ ∗ai := ai (αu + βv, γ u + δv).

Now, we are ready to describe the normal forms for del Pezzo surfaces of degree 1.
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name a1x+a3 a2 a4 a6 # of parameters

(1a) ux+v3 av2 bu4
+cu2v2

+dv4 eu6
+ f u4v2

+gu2v4
+hv6 8

(1b) ux+v3 av2 cu2v2
+dv4 eu6

+ f u4v2
+gu2v4

+hv6 7
(1c) ux+v3 av2 dv4 eu6

+ f u4v2
+gu2v4

+hv6 6
(1d) ux+v3 av2 cu2v2 eu6

+ f u4v2
+gu2v4

+hv6 6
(1e) ux+v3 av2 0 eu6

+ f u4v2
+gu2v4

+hv6 5
(2a) ux av2 v4 bu6

+du4v2
+eu3v3

+ f u2v4
+guv5

+hv6 7
(2b) ux av2 v4 bu6

+du4v2
+ f u2v4

+guv5
+hv6 6

(2c) ux av2 v4 bu6
+du4v2

+eu3v3
+ f u2v4

+hv6 6
(2d) ux av2 v4 cu5v+du4v2

+ f u2v4
+hv6 5

(2e) ux av2 0 bu6
+du4v2

+eu3v3
+ f u2v4

+euv5
+hv6 6

(2f) ux av2 0 bu6
+du4v2

+ f u2v4
+uv5

+hv6 5
(3) uv(u+v) auv bu3v+(b+c)u2v2

+cuv3 du5v+eu3v3
+ f uv5 6

(4) u2v 0 au3v+bu2v2
+cuv3 du5v+eu3v3

+uv5 5
(5) u3 0 au3v+bu2v2

+cuv3 uv5
+dv6 4

Table 5. Forms of (a1, a2, a3, a4, a6) in Theorem 5.6.

Theorem 5.6. Every del Pezzo surface of degree 1 in characteristic 2 is isomorphic to a surface of
degree 6 in P(1, 1, 2, 3) given by an equation of the form

y2
+ y(a1(u, v)x + a3(u, v))+ x3

+ a2(u, v)x2
+ a4(u, v)x + a6(u, v) = 0, (8)

where (a1, a2, a3, a4, a6) is one of the forms shown in Table 5. Moreover, the parameters satisfy the
conditions summarized in Table 6, where

1 := a4
3 + a3

1a3
3 + a4

1(a
2
4 + a1a3a4 + a2a2

3 + a2
1a6).

In Table 6, we also describe the singularities of the irreducible components of the reduction Rred of the
ramification curve R.

Remark 5.7. The conditions on the parameters that guarantee the smoothness of X are equivalent to the
conditions that (8) is the Weierstrass equation of an elliptic fibration with only irreducible fibers. We will
study this fibration later in Section 5.4. The homogeneous polynomial 1 appearing in Theorem 5.6 is the
discriminant of this fibration.

Proof of Theorem 5.6. By Lemma 5.3, there are, up to choice of coordinates, five possible equations for B.
We will now give normal forms in each case.

(1) a1x + a3 = ux + v3. Here, the ramification curve R is given by the two equations

ux + v3
= 0,

y2
+ x3

+ a2x2
+ a4x + a6 = 0.
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name conditions on the parameters singularities of the irreducible components of Rred

(1a) 1 has only simple roots
A2 over [1 : v : v3

] with v8
+ dv6

+ cv4
+ bv2

= 0
v8

+ dv6
+ cv4

+ bv2 has four distinct roots

(1b) 1 has only simple roots, c, d ̸= 0 A4 over [1 : 0 : 0]

2A2 over [1 : v : v3
] with v4

+ dv2
+ c = 0

(1c) 1 has only simple roots, d ̸= 0 A6 over [1 : 0 : 0]

A2 over [1 : d1/2
: d3/2

]

(1d) 1 has only simple roots, c ̸= 0 2A4 over [1 : 0 : 0] and [1 : c1/4
: c3/4

]

(1e) e ̸= 0 A8 over [1 : 0 : 0]

(2a) u−41 has only simple roots, e, g, (g2
+ a + h) ̸= 0 3A2 over [0 : 1 : 1], [1 : 0 : 0] and [g1/2

: e1/2
: 0]

(2b) b, g, (g2
+ a + h) ̸= 0 A4 over [1 : 0 : 0]

A2 over [0 : 1 : 1]

(2c) b, e, (a + h) ̸= 0 3A2 over [0 : 1 : 1], [1 : 0 : 0] and [0 : 1 : 0]

(2d) c, (a + h) ̸= 0 A4 over [0 : 1 : 0]

A2 over [0 : 1 : 1]

(2e) u−61 has only simple roots, e ̸= 0 3A2 over [0 : 1 : 0], [1 : 0 : 0] and [1 : 1 : 0]

(2f) u−61 has only simple roots A4 over [1 : 0 : 0]

A2 over [0 : 1 : 0]

(3) d, f ̸= 0, (d + e + f ) ̸∈ {0, 1} 3A2 over [1 : 0 : 0], [0 : 1 : 0] and [1 : 1 : 0]

(4) d ̸= 0 2A2 over [1.0 : 0] and [0 : 1 : 0]

(5) − A2 over [0 : 1 : 0]

Table 6. Conditions for the parameters in Theorem 5.6.

One checks that the curve R is smooth at the points with u = 0. On the affine chart u = 1, it is given in
A2 by the single equation

y2
+ v9

+ a2(1, v)v6
+ a4(1, v)v3

+ a6(1, v),

so it has singularities over the roots of the derivative F ′ of F :=v9
+a2(1, v)v6

+a4(1, v)v3
+a6(1, v). After

applying an element of H in Lemma 5.4, we may assume that 0 is the root of highest multiplicity of F ′.
Now, substitutions as in Lemma 5.5 that fix u, v, and x do not change the location of the points that lie

under singularities of R and thus, by Lemma 5.5, we can assume that a2 = av2, a4 = bu4
+ cu2v2

+ dv4,
a6 = eu6

+ f u4v2
+ gu2v4

+ hv6. With this notation, the polynomial F ′ becomes v8
+ dv6

+ cv4
+ bv2

and the conditions of Proposition 5.2 boil down to v8
+ dv6

+ cv4
+ bv2 and

1(1, v) = v12
+ v9

+ (d2
+ a)v8

+ dv7
+ hv6

+ cv5
+ (c2

+ g)v4
+ bv3

+ f v2
+ b2

+ e
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not having a common solution. The former is the derivative of the latter; hence we want that the latter
has only simple zeroes.

Now, if F ′ has four distinct roots, we are in case (a). If F ′ has less than four distinct roots, we may
assume b = 0. If F ′ has exactly three roots, then we are in case (b). If b = 0, the polynomial F ′ has
exactly two roots if and only if either c = 0 and d ̸= 0, which is case (c), or d = 0 and c ̸= 0, which is
case (d). Finally, F ′ has a single root if and only if b = c = d = 0, which is case (e).

(2) a1x +a3 = ux . Here, the ramification curve has two components R1 and R2. The curve R1 is given by

u = 0,

y2
+ x3

+ a2x2
+ a4x + a6 = 0.

This curve has a unique singularity, which is of type A2 and located over [0 : 1 : a4(0, 1)1/2
]. Rescaling v,

we may assume that a4(0, 1) ∈ {0, 1}.
The curve R2 is given by

x = 0,

y2
+ a6 = 0.

This curve has singularities over the points [u : v : 0], where the derivatives of a6 by u and v both vanish.
First, assume that a4(0, 1) = 1 and one of the singularities of R2 does not lie over [0 : 1 : 0]. Then, using

a substitution in v as in Lemma 5.4, we can assume that one of them lies over [1 : 0 : 0]. Substitutions
as in Lemma 5.5 which fix u, v, and x do not change the location of these points and, after applying one
of them, we may assume that a2 = av2, a4 = v4, and a6 = bu6

+ du4v2
+ eu3v3

+ f u2v4
+ guv5

+ hv6.
If e, g ̸= 0, this is case (a), if e = 0 and g ̸= 0, this is case (b), and if e ̸= 0 and g = 0, this is case (c).
The conditions of Proposition 5.2 boil down to 1(1, v) = v8

+ hv6
+ gv5

+ f v4
+ ev3

+ dv2
+ b having

only simple roots and g2
̸= a + h. In particular, (e, g) ̸= (0, 0).

If a4(0, 1) = 1, R2 has a unique singularity, and this singularity lies over [0 : 1 : 0], then the only
odd monomial in a6 is u5v. A substitution of the form v 7→ v + µu and substitutions as in the previous
paragraph allow us to assume that a2 = av2, a4 = v4, and a6 = cu5v + du4v2

+ f u2v4
+ hv6. The

conditions of Proposition 5.2 become a + h ̸= 0 and c ̸= 0. This is case (d).
If a4(0, 1) = 0, then Proposition 5.2 implies that R2 is smooth over [0 : 1 : 0]. Hence, we can assume

that one of the singularities of R2 lies over [1 : 0 : 0]. Using a substitution as in Lemma 5.5 which fixes
u, v and x , we may assume that a2 = av2, a4 = 0, and a6 = bu6

+du4v2
+ eu3v3

+ f u2v4
+ guv5

+ hv6.
Since R2 is smooth over [0 : 1 : 0], we have g ̸= 0. If e ̸= 0, we can scale v so that g = e. This is case (e).
If e = 0, we scale v so that g = 1. This is case (f).

(3) a1x + a3 = uv(u + v). The curve B has the three irreducible components B1, B2, and B3, given by
V (u), V (v), and V (u + v), respectively. The corresponding components R1, R2, and R3 of R are given
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by
y2

+ x3
+ a2(0, v)x2

+ a4(0, v)x + a6(0, v),

y2
+ x3

+ a2(u, 0)x2
+ a4(u, 0)x + a6(u, 0),

y2
+ x3

+ a2(u, u)x2
+ a4(u, u)x + a6(u, u),

respectively. The singular points of R1, R2, and R3 lie over [0 : 1 : a4(0, 1)1/2
], [1 : 0 : a4(1, 0)1/2

], and
[1 : 1 : a4(1, 1)1/2

], respectively.
A substitution as in Lemma 5.4 which fixes u and v allows us to set a4(0, 1) = a4(1, 0) = a4(1, 1) = 0,

that is, that a4 = bu3v + (b + c)u2v2
+ cuv3 for some b, c ∈ k. Then, a substitution as in Lemma 5.5

which fixes u, v, and x allows us to set a2 = auv and a6 = du5v + eu3v3
+ f uv5. The conditions of

Proposition 5.2 become d ̸= 0, f ̸= 0 and d + e + f ̸∈ {0, 1}.

(4) a1x + a3 = u2v. The curve B has two irreducible components B1 and B2, given by V (u) and V (v),
respectively. The corresponding components R1 and R2 of R are given by

y2
+ x3

+ a2(0, v)x2
+ a4(0, v)x + a6(0, v),

y2
+ x3

+ a2(u, 0)x2
+ a4(u, 0)x + a6(u, 0),

respectively. The singular points of R1 and R2 lie over [0 : 1 : a4(0, 1)1/2
] and [1 : 0 : a4(1, 0)1/2

],
respectively.

A substitution as in Lemma 5.5, which fixes u and v, allows us to set a4(0, 1) = a4(1, 0) and gives that
a2 is a square. Then, a substitution with b2 = b3 = 0 allows us to eliminate a2. Finally, a substitution
with b1 = b2 = 0 allows us to assume that a6 contains no squares. If we write a6 = du5v + eu3v3

+ f uv5,
then the conditions of Proposition 5.2 becomes d ̸= 0 and f ̸= 0, and we can rescale f to 1.

(5) a1x + a3 = u3. The curve R is given by

y2
+ x3

+ a2(0, v)x2
+ a4(0, v)x + a6(0, v)

and it is singular over [0 : 1 : a4(0, 1)1/2
].

We apply the same substitutions as in the previous case to remove a2. Then, we apply a substitution as
in Lemma 5.5 with b2 = b2

1 to remove the v4-term in a4. Next, using a substitution that fixes u, v, and x
with b1 = 0, we eliminate the squares in a6, write a6 = du5v + eu3v3

+ f uv5, and rescale f to 1. After
that, a substitution of the form v 7→ v+λu, and eliminating the square again, allows us to set d = 0. Next,
a substitution as in Lemma 5.5 which fixes u and v, with b1 = λu, b2 = λ2u2, and b3 = µu3 for suitable λ

and µ allows us to eliminate the u4-term in a4 without changing a6. Finally, we apply a substitution with
b3 = ev3 and rename the parameters to assume that a6 = uv5

+ dv6. The conditions of Proposition 5.2
are fulfilled for every choice of parameters. □

5.3. Fake tritangent planes and odd theta characteristics. It is known that a del Pezzo surface X of
degree 1 contains 240 (−1)-curves (see [Dolgachev 2012, Section 8.7], where the proof is characteristic-
free). They come in pairs Ei + E ′

i ∈ |−2K X | with Ei · E ′

i = 3. The Bertini involution β swaps the two
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curves in a pair. The image of Ei + E ′

i under the antibicanonical map f is a plane section of Q not
passing through the vertex.

If p ̸= 2, each of the resulting 120 planes is a tritangent plane to the branch sextic curve and, conversely,
every tritangent plane to the branch sextic gives rise to a pair of (−1)-curves Ei +E ′

i with Ei +E ′

i ∈|−2K X |.
A tritangent plane intersects the branch curve in twice a positive divisor of degree 3. This divisor is an
odd theta characteristic of the curve. It is known that the number of odd theta characteristics on a smooth
curve of genus 4 is equal to 120.

For arbitrary p, we still have the following.

Lemma 5.8. The preimage f −1(C) of an integral conic C = V (x + b2) is a sum of two (−1)-curves if
and only if it is reducible.

Proof. Since f has degree 2 and C is integral, the curve f −1(C) is reducible if and only if it has two
irreducible components L1 and L2. These components satisfy L1 + L2 ∈ |−2K X |, L1 · L2 = 3, and
L2

1 = L2
2. Via adjunction, this easily implies that L1 and L2 are (−1)-curves. The converse is clear. □

So, even if p = 2, we have 120 splitting conics and we call the corresponding planes in P3 fake
tritangent planes in analogy with the situation in the other characteristics. For the rest of this section, we
assume p = 2.

Since the antibicanonical map is étale outside the branch curve V (A), the intersection Ei ∩ E ′

i lies on
the ramification curve R. Let L = OR(Ei ) ∼= OR(E ′

i ). It is an invertible sheaf on C of degree 2. We have

L⊗2 ∼= OR(Ei + E ′

i )
∼= OR(−2K X ).

Since B ∈ |OP(1,1,2)(3)|, we have R ∈ |−3K X |. By the adjunction formula, we have

ωR ∼= OR(−3K X + K X ) ∼= L⊗2.

As in the case of degree 2, invertible sheaves on R that satisfy this property are called invertible theta
characteristics. Let 2(R) be the set of isomorphism classes of such invertible theta characteristics on R
and let J (R) be the generalized Jacobian of R. As in Lemma 3.6, one can prove that J (R) is a product
of additive groups.

Lemma 5.9. The generalized Jacobian J (R) of R is isomorphic to G4
a .

Thus, as in degree 2, finding fake tritangent planes using theta characteristics on R is subtle in
characteristic 2. We refer to Example 3.7 for an example in degree 2 that further illustrates this point and
leave it to the reader to find a similar example in degree 1.

5.4. Rational elliptic surfaces. Equation (7) can also serve as the Weierstrass equation of the rational
surface with a genus-1 fibration φ : Y → P1 obtained by blowing up the base point p0 of |−K X |. Since X
is a del Pezzo surface, all members of |−K X | are irreducible; hence so are all fibers of φ. The discriminant
of φ is

1 = a4
3 + a3

1a3
3 + a4

1(a
2
4 + a1a3a4 + a2a2

3 + a2
1a6).
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The singular fibers of φ lie over the zeroes of 1. Moreover, the Bertini involution, which is given by
β : y 7→ y + (a1x + a3), induces the inversion on the group structure of each fiber. In particular, for
[u0 : v0] ∈ P1, if a1(u0, v0)x +a3(u0, v0) = 0, the corresponding fiber F of φ is cuspidal, if a1(u0, v0) = 0
and a3(u0, v0) ̸= 0, then F is smooth and supersingular, and in the other cases, F is either nodal, or
smooth and ordinary, according to whether 1(u0, v0) is zero or not. Applying these observations to the
normal forms of Theorem 5.6, we obtain the following information on φ.

Proposition 5.10. Let X be a del Pezzo surface of degree 1 given by one of the normal forms in Theorem 5.6.
Then, the associated genus-1 fibration φ is elliptic and all its fibers are irreducible. The discriminant 1

and the singular fibers of φ are given in Table 7.

Remark 5.11. As in Remark 3.12, we point out the connection to Lang’s classification of singular fibers
on rational elliptic surfaces: our normal forms for del Pezzo surfaces of degree 1 yield normal forms for
all rational elliptic surfaces with a section in characteristic 2 whose fibers are all are irreducible.

name 1 nodal fibers over the cuspidal fibers over

(1a) v12
+u3v9

+(d2
+a)u4v8

+du5v7
+hu6v6

+cu7v5
12 roots of 1 –

+(c2
+g)u8v4

+bu9v3
+ f u10v2

+(b2
+e)u12

(1b) v12
+u3v9

+(d2
+a)u4v8

+du5v7
+hu6v6

+cu7v5
12 roots of 1 –

+(c2
+g)u8v4

+ f u10v2
+eu12

(1c) v12
+u3v9

+(d2
+a)u4v8

+du5v7
+hu6v6

12 roots of 1 –
+gu8v4

+ f u10v2
+eu12

(1d) v12
+u3v9

+au4v8
+hu6v6

+cu7v5
12 roots of 1 –

+(c2
+g)u8v4

+ f u10v2
+eu12

(1e) v12
+u3v9

+au4v8
+hu6v6

+gu8v4
+ f u10v2

+eu12 12 roots of 1 –

(2a) u4(v8
+u2(bu6

+du4v2
+eu3v3

+ f u2v4
+gsv5

+hv6)) 8 roots of u−41 [0 : 1]

(2b) u4(v8
+u2(bu6

+du4v2
+ f u2v4

+gsv5
+hv6)) 8 roots of u−41 [0 : 1]

(2c) u4(v8
+u2(bu6

+du4v2
+eu3v3

+ f u2v4
+hv6)) 8 roots of u−41 [0 : 1]

(2d) u4(v8
+u2(cu5v+du4v2

+ f u2v4
+hv6)) 8 roots of u−41 [0 : 1]

(2e) u6(bu6
+du4v2

+eu3v3
+ f u2v4

+euv5
+hv6)

If h ̸= 0 : 6 roots of u−61
[0 : 1]

if h = 0 : 5 roots of u−71

(2f) u6(bu6
+du4v2

+ f u2v4
+uv5

+hv6)
if h ̸= 0 : 6 roots of u−61

[0 : 1]
if h = 0 : 5 roots of u−71

(3) u4v4(u+v)4 – [1 : 0], [0 : 1], [1 : 1]

(4) u8v4 – [1 : 0], [0 : 1]

(5) u12 – [0 : 1]

Table 7. The discriminant 1 and the singular fibers of φ for Proposition 5.10.
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6. Automorphism groups of del Pezzo surfaces of degree 1

This section consists of three parts. In the first part, we collect various restrictions on the group G(X) =

Aut(X)/⟨β⟩ arising from the geometry of X . In the second part, we give an explicit description of
Aut(X) in terms of (7) and use it to classify all surfaces where G(X) is nontrivial and to determine the
group Aut(X) in every case. In the third part, we compare our classification with the classification in
characteristic 0 from [Dolgachev 2012, Table 8.14] and use this to determine the conjugacy classes of all
elements in Aut(X) (see Table 9 on page 760). Throughout, we assume p = 2.

6.1. Restrictions on G(X). Since the elliptic fibration φ : Y → P1 associated to X is obtained by blowing
up the base point of |−K X |, we can identify Aut(X) with the subgroup of Aut(Y ) preserving a chosen
section. Let r : Aut(X) → Aut(P1) be the natural homomorphism defined by the action of Aut(X) on the
coordinates [u : v] of the base of φ. Since φ is the unique relatively minimal smooth proper model of
its generic fiber Fη, the kernel K = Ker(r) is isomorphic to the group of automorphisms of the elliptic
curve Fη. In particular, K contains the Bertini involution β and it can contain more automorphisms only
if the j-invariant of Fη is equal to 0 = 1728, in which case K is a subgroup of Q8 : 3 ∼= SL2(F3).

Let P be the image of r . Evidently, P is a finite subgroup of Aut(P1) that leaves invariant the set S1

of points p = [ui : vi ] corresponding to the singular fibers. It also leaves invariant the set S2 of the
projections of singular points of the irreducible components of the ramification curve R.

The following proposition shows what kind of groups can be expected to occur for P. We use the
known classification of finite subgroups of Aut(P1) ∼= PGL2(k) ∼= SL2(k) [Dolgachev and Martin 2024,
Theorem 2.5].

Proposition 6.1. The group P is isomorphic to Gξ,A or D2n .

Proof. Since SL2(2) ∼= S3 ∼= D6, it suffices to show that SL2(Fq) ̸⊆ P for q = 2m and m ≥ 2. Since
the set S2 has cardinality at most 4 and P preserves S2, every homogeneous polynomial F with simple
roots along S2 is P-semi-invariant of degree at most 4. On the other hand, by [Neusel and Smith 2002,
Theorem 6.1.8], the ring k[u, v]

SL2(Fq ) is generated over Fq by the Dickson polynomials L and d2,1

of degrees q + 1 and q2
− q, respectively. If SL2(q) ⊆ P, then F is also a semi-invariant polynomial

for SL2(q) and if q ̸= 2, then SL2(Fq) is simple, so F ∈ k[u, v]
SL2(q)

= k[L, d2,1]. Hence, q = 2, as
claimed. □

We recall from [Dolgachev and Martin 2024, Section 1.3] that the image of the Bertini involution β

under the injective homomorphism ρ : Aut(X) → W (E8) is equal to −idE8 . However, in contrast to the
situation in degree 2, the extension W (E8) → W (E8)/(−idE8)

∼= O+

8 (2) does not split. The semidirect
product W (E8) = 2. GO+

8 (2) corresponds to a nontrivial homomorphism O+

8 (2) → C2, whose kernel is a
simple group O8(2), where we use the ATLAS notation.

Therefore, in order to determine Aut(X), it is not enough to determine the image G(X) of the
homomorphism Aut(X) → Aut(X)/⟨β⟩, and thus the calculation of Aut(X) is more complicated than in
the case of del Pezzo surfaces of degree 2.
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Let us summarize the restrictions on Aut(X) and G(X) that we have collected by now.

Theorem 6.2. Let X be a del Pezzo surface of degree 1 in characteristic 2. Let G(X) be the image of
the homomorphism Aut(X) → Aut(P(1, 1, 2)), let K be the kernel of the homomorphism r : Aut(X) →

Aut(P1), let P be the image of r , and let φ : Y → P1 be the elliptic fibration associated to X. Then, the
following hold:

(i) Aut(X) is a central extension of G(X) by ⟨β⟩ ∼= C2.

(ii) Aut(X) is an extension of P by K .

(iii) Aut(X) is a subgroup of W (E8).

(iv) G(X) is a subgroup of O+

8 (2).

(v) K is the automorphism group of the generic fiber of φ.

(vi) P is isomorphic to Gξ,A or D2n .

(vii) P preserves the set S1 of points lying under singular fibers of φ. Moreover, it preserves the
decomposition of S1 into subsets corresponding to isomorphic fibers.

(viii) P preserves the set S2 of points lying under the singularities of R. Moreover, it preserves the
decomposition of S2 into subsets of isomorphic singularities.

(ix) The j-function of φ is P-invariant.

This yields the following preliminary restrictions on Aut(X) and G(X).

Corollary 6.3. Let X be a del Pezzo surface of degree 1 in characteristic 2 given by one of the normal
forms in Theorem 5.6.

(i) In case (1), G(X) is a subgroup of A4.

(ii) In cases (2a), (2b), (2c), and (2d), G(X) is a subgroup of 23.

(iii) In cases (2e) and (2f), G(X) is a subgroup of C5 or C2.

(iv) In case (3), K is a subgroup of SL2(3) and P is a subgroup of S3.

(v) In case (4), K is a subgroup of SL2(3) and P is cyclic of order 1, 3, 5, 7, 9, or 15.

(vi) In case (5) K is a subgroup of SL2(3) and P ∼= Gξ,A, where ξ is a primitive n-th root of unity with
n ∈ {1, 3, 5, 7, 9, 15}.

Proof. In case (1), the generic fiber of φ is ordinary; hence K = ⟨β⟩ and G(X) ∼= P. The fibration φ has
12 nodal fibers; hence the j-function has 12 poles, so |P| | 12. Since P is isomorphic to Gξ,A or D2n

with n odd, this implies that P is isomorphic to a subgroup of A4.
In cases (2a)–(2f), we also have K = ⟨β⟩ and G(X) ∼= P. In cases (2a), (2b), (2c), and (2d), the

fibration φ has eight nodal fibers; hence |P| | 8. This implies that P is elementary abelian of order 1, 2, 4
or 8. In cases (2e) and (2f), the fibration φ has five or six nodal fibers. If it has five nodal fibers, then
|P| | 5; hence P is a subgroup of C5. If it has six nodal fibers, then P is either a subgroup of C2 or
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isomorphic to the dihedral group D6. In the latter case, P acts without fixed point on P1, which is
impossible, since φ admits a unique cuspidal fiber.

In case (3), we have K ⊆ SL2(3), since the generic fiber of φ is supersingular. Since φ has three
singular fibers, P is isomorphic to a subgroup of S3.

In case (4), we also have K ⊆ SL2(3). Since one of the components of R is reduced and the other is
not, P acts trivially on S2, hence with two fixed points on P1. So, P is cyclic of odd order. Moreover, P
is a subgroup of O+

8 (2). In particular, P admits a faithful representation of dimension at most 8. Hence,
if we denote Euler’s totient function by ϕ, then ϕ(|P|) ≤ 8. Thus, P is of order 1, 3, 5, 7, 9 or 15.

In case (5), we have K ⊆ SL2(3) and the action of P on P1 fixes the point lying under the unique
singular fiber of φ; hence P ∼= Gξ,A. The order of ξ can be bounded by the same argument as in the
previous paragraph. □

In particular, we get upper bounds on the size of Aut(X) in every case. Further information on the
2-groups that can occur in case (5) can be obtained using the following remark.

Remark 6.4. Since the maximal powers of 2 that divide |W (E8)| and |W (D8)| are both 214, and since
W (D8) is a subgroup of W (E8), the 2-Sylow subgroups P in W (E8) are isomorphic to the 2-Sylow
subgroups in W (D8) = 27

: S8. Hence, P is isomorphic to 27
: (S8)2, where 27 acts on Z8 by an even

number of sign changes and (S8)2 is a 2-Sylow subgroup of S8 acting as permutations on Z8. The group
(S8)2 is isomorphic to the symmetry group of a binary tree of depth 3, considered as a subgroup of S8

via the permutation it induces on the leaves of the tree. An equivalent description is as the wreath product
D8 ≀ C2, where D8 × D8 is a subgroup of S4 ×S4 ⊂ S8. The Bertini involution β corresponds to the
element (−1, id) that changes all signs. The 2-groups that can occur in Corollary 6.3 are isomorphic to
subgroups of P.

In the following example, we apply this remark to give an explicit description of the group 21+6
+ , which

will occur in our classification.

Example 6.5. With notation as in the previous remark, let G ⊆ P be a subgroup containing β such that
G/⟨β⟩ is an elementary abelian 2-group and such that β ∈ Q8 ⊆ G. Then, each element of G is of the
form (σ, τ ), where ord(τ ) ≤ 2 and either τ preserves the set of coordinates whose sign is changed by σ

and then (σ, τ ) has order 1 or 2, or τ swaps this set with the set of coordinates whose sign is not changed
and then (σ, τ ) has order 4. In particular, in the latter case, τ has cycle type (2, 2, 2, 2). Since Q8 ⊆ G, the
image of G → (S8)2 contains a subgroup H of order 4 generated by involutions of cycle type (2, 2, 2, 2).
The centralizer C of H is of order 8 and its nontrivial elements are involutions of cycle type (2, 2, 2, 2).
The kernel of G → (S8)2 consists of sign changes σ that are compatible with all τ ∈ H in the sense that
(σ, τ )2

∈ ⟨β⟩. One checks that the group N of all such compatible sign changes has order 16 and that all
elements of N are also compatible with C . Then, G is a subgroup of the resulting extension M of C by N.

We have M/⟨β⟩ = 26. This is a quadratic space over F2 with the quadratic form q : M/⟨β⟩ → ⟨β⟩

defined as q(x) = x̃2, where x̃ is a lift of x to M. The subspace N/⟨β⟩ is totally isotropic of dimension 3
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and the description of M in the previous paragraph shows that q is nondegenerate. Hence, by [Aschbacher
2000, (23.10)], M is isomorphic to the extra-special 2-group of 21+6

+ .

6.2. Classification. Recall that X is a hypersurface of degree 6 in P(1, 1, 2, 3) given by (7). An auto-
morphism of P(1, 1, 2, 3) is induced by a substitution of the form

u 7→ αu + βv, x 7→ ϵx + b2,

v 7→ γ u + δv y 7→ ζ y + b1x + b3,

where α, β, γ, δ, ϵ, ζ ∈ k, bi ∈ k[u, v]i , and αδ +βγ, ϵ, ζ ̸= 0. The substitutions that induce the identity
on P(1, 1, 2, 3) are the ones with β, γ, b1, b2, b3 = 0 and γ = α, ϵ = α2, ζ = α3.

Since X is anticanonically embedded into P(1, 1, 2, 3), all automorphisms of X are induced by
the substitutions as above that map (7) to a multiple of itself. Clearly, we can represent every such
automorphism by a substitution with ζ = 1. Then, the substitution does not change the coefficient of y2

in (7); hence ϵ3
= 1. Therefore, we may assume ϵ = 1 as well. In particular, using Lemma 5.5, we obtain

the following description of Aut(X), where we write σ for the substitution

u 7→ αu + βv,

v 7→ γ u + δv,

and σ ∗ai := ai (αu + βv, γ u + δv).

Lemma 6.6. Let X be a del Pezzo surface of degree 1 given by (7). Then, Aut(X) can be identified with
the group of 4-tuples (b1, b2, b3, σ ), where bi ∈ k[u, v]i and σ ∈ GL2(k) such that

σ ∗a1 + a1 = 0,

σ ∗a2 + a2 = a1b1 + b2
1 + b2,

σ ∗a3 + a3 = a1b2,

σ ∗a4 + a4 = a3b1 + a1b3 + b2
2,

σ ∗a6 + a6 = a4b2 + +a3(b3 + b1b2) + a2b2
2 + a1(b2b3 + b1b2

2) + b2
3 + b3

2 + b2
1b2

2

and where the composition is given by

(b1, b2, b3, σ ) ◦ (b′

1, b′

2, b′

3, σ
′) = (σ ′∗b1 + b′

1, σ
′∗b2 + b′

2, σ
′∗b3 + b′

3 + σ ′∗b1b′

2, σ ◦ σ ′)

In particular, there is a homomorphism Aut(X) → H ⊆ Aut(P(1, 1, 2)), where H is the group from
Lemma 5.4.

Lemma 6.7. The kernel of the homomorphism Aut(X) → H is generated by the Bertini involution.

Proof. Let (b1, b2, b3, σ ) be in the kernel. Then, σ = id and b2 = 0. The conditions σ ∗a2 = a2 +a1b1 +b2
1,

σ ∗a4 = a4 +a3b1 +a1b3, and σ ∗a6 = a6 +a3b3 +b2
3 show that (b1, b3) ∈ {(0, 0), (a1, a3)}, so we recover

our explicit description of the Bertini involution. □

Now, we use the normal forms of Theorem 5.6 to classify all del Pezzo surfaces X of degree 1 with
nontrivial G(X).



Automorphisms of del Pezzo surfaces in characteristic 2 749

name a1x+a3 a2 a4 a6 G(X) Aut(X) # of
parameters

(1ai) ux+v3 av2 bu4
+(b+1)u2v2 eu6

+ f u4v2
+(a+b+b2

+ f )u2v4
+bv6 2 4 4

(1aii) ux+v3 0 bu4 eu6
+hv6 3 6 3

(1aiii) ux+v3 av2 u4 eu6
+au4v2

+v6 22 Q8 2
(1aiv) ux+v3 0 u4 eu6

+v6 A4 SL2(3) 1
(1di) ux+v3 av2 u2v2 eu6

+ f u4v2
+(a+ f )u2v4 2 4 3

(1ei) ux+v3 0 0 eu6
+hv6 3 6 2

(2ai) ux av2 v4 bu6
+(e f g−1

+e3/2g−1/2
+e3g−3)u4v2

+eu3v3
+ f u2v4

+guv5
+e−1/2g3/2v6 2 22 5

(2di) ux av2 v4 cu5v+du4v2
+ f u2v4 23 24 4

(2ei) ux av2 0 bu6
+(e+ f )u4v2

+eu3v3
+ f u2v4

+euv5
+ev6 2 22 4

(2fi) ux 0 0 bu6
+uv5 5 10 1

(3i) uv(u+v) auv bu3v+buv3 du5v+eu3v3
+duv5 2 22 4

(3ii) uv(u+v) auv a1/2u3v+a1/2uv3 (e+e1/2)u5v+eu3v3
+(e+e1/2)uv5 S3 2×S3 2

(3iii) uv(u+v) 0 0 du5v+eu3v3
+duv5 6 2×6 2

(3iv) uv(u+v) 0 bu3v+ζ3bu2v2
+ζ 2

3 buv3 (e+e1/2)u5v+eu3v3
+(e+e1/2)uv5 3 6 2

(3v) uv(u+v) 0 0 (e+e1/2)u5v+eu3v3
+(e+e1/2)uv5 3×S3 6×S3 1

(4i) u2v 0 0 du5v+eu3v3
+uv5 3 6 2

(5i) u3 0 au3v+bu2v2 uv5
+dv6 26 21+6

+ 3
(5ii) u3 0 0 uv5

+dv6 26
: 3 21+6

+ : 3 1
(5iii) u3 0 0 uv5 26

: 15 21+6
+ : 15 0

Table 8. Forms of (a1, a2, a3, a4, a6, G(X), Aut(X)) in Theorem 6.8.

Theorem 6.8. Every del Pezzo surface of degree 1 in characteristic 2 such that G(X) is nontrivial is
isomorphic to a surface of degree 6 in P(1, 1, 2, 3) given by an equation of the form

y2
+ (a1x + a3)y + x3

+ a2x2
+ a4x + a6,

where (a1, a2, a3, a4, a6, G(X), Aut(X)) is one of the forms in Table 8.
Here, S3, D8, Q8, and 21+6

+ , denote the symmetric group on three letters, the dihedral group of order 8,
the quaternion group, and the even extra-special group of order 128, respectively. In each case, the
parameters have to satisfy the conditions of Theorem 5.6 and the obvious genericity conditions that keep
them from specializing to other subcases.

Proof. We use the normal forms of Theorem 5.6 and let H be the group of Lemma 5.4. By Lemma 6.6,
we have G(X) ⊆ H . We apply Lemma 6.6 to calculate Aut(X).

(1a) Let (b2, σ ) ∈ H . If (b2, σ ) ∈ G(X), then σ permutes the roots of the polynomial F ′
:= v8

+ dv6
+

cv4
+ bv2, since these are determined by the singularities of R. We have

σ ∗F ′
= δ2v8

+ dv6
+ δ(γ 2d + c)v4

+ δ2(γ 4d + b)v2
+ γ 8

+ γ 6d + γ 4c + γ 2b.

If d ̸= 0, this is a multiple of F ′ if and only if δ = 1 and γ = 0; hence σ is the identity and G(X) is trivial.
If d = 0, it is a multiple of F ′ if and only if

γ 8
+ γ 4c + γ 2b = 0 (9)

and δ = 1 or c = 0.
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So, assume first that c ̸= 0 and δ = 1. If (b2, σ ) ∈ G(X), then there exist polynomials b1 and b3 such
that σ ∗a2 = a2 + a1b1 + b2

1 + b2 and σ ∗a4 = a4 + a3b1 + a1b3 + b2
2. In our case, this means

0 = γ 2au2
+ ub1 + b2

1 + γ 3u2
+ γ 2uv + γ v2,

0 = γ 2cu4
+ v3b1 + ub3 + γ 6u4

+ γ 4u2v2
+ γ 2v4

;

hence b1 = λu + γ 2t with λ2
+ λ = γ 2a + γ 3 and γ 4

= γ , and b3 = (γ 2c + γ 3)u3
+ γ uv2

+ λv3. If
γ ̸= 0, then γ 4

= γ implies γ 3
= 1. Modifying the equation of X by an element of H , we may assume

that γ = 1. Plugging this into (9), we obtain c = b + 1. Hence, b1 = λu + v with λ2
+ λ = a and

b3 = bu3
+ uv2

+ v3. Plugging this into the equation for σ ∗a6 and comparing coefficients in Lemma 6.6,
we obtain the conditions h = b and g = a + b + b2

+ f . Since γ is uniquely determined by (9), we have
G(X) ∼= C2. The square of any lift of a nontrivial element of G(X) to Aut(X) is the Bertini involution;
hence Aut(X) ∼= C4.

Next, assume that c = 0. If (b2, σ ) ∈ G(X), then there exist polynomials b1 and b3 such that
σ ∗a2 = a2 + a1b1 + b2

1 + b2 and σ ∗a4 = a4 + a3b1 + a1b3 + b2
2. In our case, this means

0 = γ 2au2
+ (1 + δ2)av2

+ ub1 + b2
1 + γ 3u2

+ γ 2δuv + γ δ2v2,

0 = v3b1 + ub3 + γ 6u4
+ γ 4δ2u2v2

+ γ 2δ4v4
;

hence b1 =λu+γ 2δv with λ2
+λ=γ 2a+γ 3 and γ 4

+γ = (1+δ)a, as well as b3 =γ 6u3
+γ 4δ2uv2

+λv3.
First, assume that δ ̸= 1. Then, σ has order 3; hence if (b2, σ ) ∈ G(X), then it fixes one of the four

roots of F ′. After conjugating by a suitable element of H and repeating the substitutions we used in
Theorem 5.6, we may assume that (b2, σ ) fixes [1 : 0 : 0]. This implies that γ = 0; hence (1 + δ)a = 0
implies a = 0. Now, we plug everything into the equation for σ ∗a6 and compare coefficients to obtain the
conditions f = g = 0.

If δ = 1, then γ 4
+γ = 0. Hence, if (b2, σ ) is nontrivial, then γ 3

= 1. Modifying the equation of X by
an element of H , we may assume γ = 1, that is, that (b2, σ ) maps [1 : 0 : 0] to [1 : 1 : 1]. Then, (9) implies
b = 1. Plugging into the equation for σ ∗a6 and comparing coefficients yields g = f + a and h = 1. The
square of both lifts of (b2, σ ) to Aut(X) is the Bertini involution; hence the subgroup generated by these
lifts is isomorphic to C4.

Suppose next that G(X) contains two distinct nontrivial automorphisms with δ = 1. Then, we can
assume that one of them acts as in the previous paragraph, so b = h = 1 and g = f + a. The other one
satisfies γ ̸= 1. Plugging this into the equation for σ ∗a6 and comparing coefficients yields f = a. As in
the previous paragraph, the square of all lifts of these automorphisms is the Bertini involution; hence they
generate a subgroup isomorphic to the quaternion group Q8.

Finally, Corollary 6.3 shows that G(X) acts on the four singular points of R through A4, so if G(X)

contains a nontrivial automorphism with δ = 1 and a nontrivial automorphism with δ ̸= 1, then G(X)∼= A4.
In particular, the previous two paragraphs show that b = h = 1 and g = 0 and f = a, while the above
paragraph for δ ̸= 1 shows a = f = g = 0. In this case, Aut(X) ∼= SL2(3).
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(1b) and (1c) In these cases, the singularity of R over [1 : 0 : 0] is not isomorphic to the other singularities
of R; hence G(X) is a subgroup of C3 acting through the subgroup of H with γ = 0. In particular, G(X)

fixes the points [1 : 0 : 0] and [0 : 1 : 0]. Since the number of singular points of R that lie over points
different from [1 : 0 : 0] and [0 : 1 : 0] is not divisible by 3, G(X) fixes all of them; hence G(X) is trivial.

(1d) In this case, R has singularities over [1 : 0 : 0] and [1 : c1/4
: c3/4

]. An element of H that fixes both
of these points is trivial, and the unique one that swaps the two points is of the form (b2, σ ), where σ

acts as v 7→ v + c1/4u and b2 = c3/4u2
+ c1/2uv + c1/4v2. If such an element lies in G(X), then there

exist polynomials b1 and b3 such that

0 = (ac1/2
+ c3/4)u2

+ ub1 + b2
1 + c1/2uv + c1/4v2,

0 = v3b1 + ub3 + cu2v2
+ c1/2v4

;

hence b1 = λu + c1/2v with λ2
+λ = ac1/2

+ c3/4 and c4
= c, and b3 = λv3

+ cuv2. By Theorem 5.6 we
have c ̸= 0; hence we can apply an element of H to assume that c = 1. Plugging this into the equation
for σ ∗a6 and comparing coefficients in Lemma 6.6, we obtain the conditions h = 0 and g = a + f . The
square of this automorphism (b1, b2, b3, σ ) is the Bertini involution; hence Aut(X) ∼= C4 in this case.

(1e) In this case, we have G(X) ⊆ C3, since G(X) fixes [1 : 0 : 0]. Nontrivial elements of H that fix
[1 : 0 : 0] are of the form (0, σ ), where σ acts as v 7→ δv with δ3

= 1 and δ ̸= 1. Such an automorphism
lifts to X if and only if there exist polynomials b1 and b3 such that

(1 + δ2)av2
= ub1 + b2

1,

0 = v3b1 + ub3,

(1 + δ2) f u4v2
+ (1 + δ)gu2v4

= v3b3 + b2
3.

The first equation implies a = 0 and b1 = λu with λ2
+ λ = 0 and then the second equation implies that

also b3 = λv3. Finally, the third equation shows f = g = 0.

(2a) Here, G(X) ⊆ H fixes the point [0 : 1 : 1]. Moreover, if G(X) fixes the images of the other two
singularities, then, by our description of H , G(X) is trivial. Hence, G(X) ⊆ C2 with equality if and only
if G(X) contains the involution (0, σ ), where σ acts as v 7→ v + e1/2g−1/2u.

If this involution is in G(X), then there exist polynomials b1 and b3 such that

aeg−1u2
= ub1 + b2

1,

e2g−2u4
= ub3;

hence b1 = λu with λ2
+ λ = aeg−1, and b3 = e2g−2u3. Plugging this into the equation for σ ∗a6 and

comparing coefficients in Lemma 6.6, we obtain the conditions

0 = e4
+ he3g + f e2g2

+ deg3,

0 = e1/2(g3/2
+ he1/2).
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Since e ̸= 0 by Theorem 5.6, we have h = e−1/2g3/2 and d = e f g−1
+ e3/2g−1/2

+ e3g−3. Note that both
lifts of (0, σ ) have order 2; hence Aut(X) ∼= 22.

(2b) and (2c) Here, G(X) ⊆ H fixes [0 : 1 : 1] and [1 : 0 : 0], since these are the points that lie under the
singularities of the irreducible components of R, but not under the intersection of the two components
R1 and R2. By our description of H in Lemma 5.4, this implies that G(X) is trivial.

(2d) In this case, G(X) fixes [0 : 1 : 1], but we get no other restrictions from the position of the singularities
of R. Therefore, an element of G(X) ⊆ H is of the form (0, σ ) where σ acts as v 7→ v + γ u for some
γ ∈ k. Such an element is in G(X) if and only if there exist polynomials b1 and b3 such that

aγ 2u2
= ub1 + b2

1,

γ 4u4
= ub3,

(cγ + dγ 2
+ f γ 4

+ hγ 6)u6
+ hγ 4u4v2

+ hγ 2u2v4
= b2

3.

Such b1 and b3 exist if and only if h = 0 and γ 8
+ hγ 6

+ f γ 4
+ dγ 2

+ cγ = 0, and then b1 = λu with
λ2

+λ = aγ 2, and b3 = γ 4u3. By Theorem 5.6, we have c ̸= 0; hence, as soon as h = 0, there are exactly
eight choices for γ . This shows G(X) ∼= 23. Every lift of every nontrivial element in G(X) has order 2;
hence Aut(X) ∼= 24.

(2e) Here, the elements of G(X) ⊆ H fix [0 : 1 : 0] and preserve the pair {[1 : 0 : 0], [1 : 1 : 0]}. Using
our description of γ , it is clear that an element of H that fixes all of these three points is the identity. An
element that swaps [1 : 0 : 0] and [1 : 1 : 0] is of the form (0, σ ), where σ acts as v 7→ v + u. Such an
element is in G(X) if and only if there exist polynomials b1 and b3 such that

au2
= ub1 + b2

1,

0 = ub3,

(d + f + h)u6
+ (e + h)u4v2

+ (e + h)u2v4
= b2

3;

hence if and only if h = e and d = e + f , and then b1 = λu with λ2
+ λ = a and b3 = 0. The square of

the lift of this automorphism to Aut(X) is the identity; hence Aut(X) ∼= 22.

(2f) In this case, G(X) ⊆ H fixes [1 : 0 : 0] and [0 : 1 : 0]. Hence, by our description of H in Lemma 5.4,
every element in G(X) is of the form (0, σ ), where σ acts as v 7→ δv for some δ ∈ k×. A nontrivial
element of this form is in G(X) if and only if there exist b1 and b3 such that

a(1 + δ2)v2
= ub1 + b2

1,

0 = ub3,

d(1 + δ2)u4v2
+ f (1 + δ4)u2v4

+ (1 + δ5)uv5
+ h(1 + δ6) = b2

3.

Hence, we always have b1 = b3 = 0 and δ5
= 1. Since δ ̸= 1 by assumption, we deduce that (0, σ ) lifts

if and only if a = d = f = h = 0.
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(3) Here, the group G(X) ⊆ H fixes [1 : 0 : 0], [0 : 1 : 0], and [1 : 1 : 0]. Hence, every element of G(X)

is of the form (0, σ ) and σ satisfies the conditions of Lemma 5.4 (3).
First, assume that σ has even order and interchanges two components of B. Without loss of generality,

we may assume that σ swaps u and v. Then, (0, σ ) lifts to X if and only if there exist b1 and b3 such that

0 = b2
1,

(b + c)(u3v + uv3) = uv(u + v)b1,

(d + f )(u5v + uv5) = uv(u + v)b3 + b2
3.

This holds if and only if b = c, and then b1 = 0, as well as b3 = λuv(u + v) with λ2
+ λ = 0 and d = f .

The square of both lifts of (0, σ ) is the identity; hence they generate a group isomorphic to 22.
Next, assume that σ is nontrivial and preserves the three components of B. Then, it acts as u 7→ αu,

v 7→ αv, where α3
= 1, α ̸= 1. This automorphism lifts to X if and only if there exist polynomials b1

and b3 such that

a(1 + α−1)uv = b2
1,

(1 + α)(bu3v + (b + c)u2v2
+ cuv3) = uv(u + v)b1,

0 = uv(u + v)b3 + b2
3;

hence if and only if a = b = c = 0.
Finally, assume that σ has odd order and interchanges components of B. Without loss of generality,

we may assume that σ acts as u 7→ βv, v 7→ β(u + v) with β3
= 1. This lifts to X if and only if there

exist b1 and b3 such that
a(1 + β2)uv + aβ2v2

= b2
1,

(b + βc)u3v + (b + c + βb)u2v2
+ (c + β(b + c))uv3

= uv(u + v)b1,

(d + f )u5v + f u4v2
+ eu2v4

+ (d + e)uv5
+ (d + e + f )v6

= uv(u + v)b3 + b2
3.

The third equation implies f =d and d =e+e1/2 and then b3 =λu2v+λuv2
+e1/2v3, where λ2

+λ=e+e1/2.
If β = 1, the first equation implies b1 = a1/2v and the second equation implies b = c = a1/2. If β ̸= 1,
the first equation implies b1 = a = 0 and the second equation implies b = βc.

(4) In this case, the group G(X) ⊆ H fixes [1 : 0 : 0] and [0 : 1 : 0]; hence every element of G(X) is of
the form (b2, σ ), with b2 = λuv for some λ ∈ k and where σ acts as u 7→ αu, v 7→ α−2v with α ∈ k×.

If such an automorphism lifts to X , then the condition σ ∗a2 = a2 + b2
1 + b2 forces b2 = b2

1; hence
b1 = b2 = 0. The other conditions of Lemma 6.6 become

a(1 + α)u3v + b(1 + α−2)u2v2
+ c(1 + α−5)uv3

= 0,

d(1 + α3)u5v + e(1 + α−3)u3v3
+ f (1 + α−9)uv5

= u2vb3 + b2
3.

Since d ̸= 0, the second equation implies α3
= 1. Hence, if σ is nontrivial, then (0, σ ) lifts to X if and

only if a = b = c = 0.
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(5) Here, G(X) ⊆ H fixes [0 : 1 : 0]; hence every element of G(X) is of the form (b2, σ ), with
b2 = λu2

+µuv for some λ, µ ∈ k and where σ acts as u 7→ αu, v 7→ γ u+δv, with α3
= 1, γ ∈ k, δ ∈ k×.

If such an automorphism lifts to X , then there exists b1 with b2
1 + b2 = 0; hence µ = 0 and b1 = λ1/2u.

Comparing coefficients in the equation for σ ∗a4, we obtain

λ2
+ λ1/2

+ aγ + bα2γ 2
+ cαγ 3

= 0, (10)

a + aδ + cαδγ 2
= 0, (11)

b + bα2δ2
+ cαδ2γ = 0, (12)

c + cαδ3
= 0. (13)

The automorphism lifts to X if and only if, additionally, there exists a b3 = λ0u3
+λ1u2v +λ2uv2

+λ3v
3

satisfying the conditions

λ2
0+λ0 = λ3

+(aγ+bα2γ 2
+cαγ 3)λ+αγ 5

+dγ 6,

λ1 = (aδ+cαδγ 2)λ+αδγ 4,

λ2
1+λ2 = (bα2δ2

+cαδ2γ )λ+dδ2γ 4,

λ3 = cαδ3λ, (14)

λ2
2 = αδ4γ+dδ4γ 2,

0 = 1+αδ5, (15)

λ2
3 = d+dδ6. (16)

Equation (15) shows that α = δ−5. In particular, as α3
= 1, we have δ15

= 1.
First, assume that δ = 1; hence α = 1. Then, (16) shows that λ3 = 0. Equation (14) shows cλ = 0 and

(11) shows cγ = 0. Hence, if c ̸= 0, then (b2, σ ) is the identity, so we assume c = 0 in the following.
Let Ga,b,d be the group of lifts of such automorphisms to X . By the description above, these Ga,b,d

form a family Ga,b,d of finite group schemes over Spec k[a, b, d] cut out in Spec k[a, b, d, λ, λ0, γ ] by
the equations

F1 := λ4
+ λ + a2γ 2

+ b2γ 4
= 0, (17)

F2 := a4λ4
+ b2λ2

+ γ + dγ 2
+ d2γ 8

+ γ 16
= 0, (18)

F3 := λ2
0 + λ0 + λ3

+ (aγ + bγ 2)λ + γ 5
+ dγ 6

= 0.

In the following, we show that all geometric fibers of Ga,b,d → Spec k[a, b, d] are reduced of length 128.
In particular, Ga,b,d is étale over Spec k[a, b, d]; hence all the Ga,b,d are isomorphic and we will show
afterwards that Ga,b,d ∼= 21+6

+ .

• If a ̸= 0 and b ̸= a2, we argue as follows: The condition a8 F2
1 + F2

2 +b4/a4 F2 = 0 yields the following
expression for λ:

(a12
+b6)λ2

= b4γ+(a4
+b4d)γ 2

+(a4d2
+b4d2

+a16)γ 4
+(a12b4

+b4d2)γ 8
+(a4d4

+b4)γ 16
+a4γ 32.
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By our assumptions, we can divide by (a12
+b6) and we obtain an expression of λ2 in terms of γ . Plugging

this back into (18), we obtain a polynomial F in γ of the form F =
∑5

i=0 ciγ
2i

of degree 64 with

c0 = 0, c1 =
a12

a12 + b6 , c5 =
a8

(a12 + b6)2 .

Since a ̸= 0, both c1 and c5 are nonzero, so ∂γ F = 1 and F has only simple roots. Hence, there are
exactly 64 choices for γ such that (b2, σ ) lifts and λ is uniquely determined by γ . In particular, Ga,b,d

has order 128 and it acts on the base of the associated elliptic fibration through 26.

• If a ̸= 0 and b = a2, we argue as follows: The condition a8 F2
1 + F2

2 + a4 F2 = 0 becomes

0 = a8γ + (a4
+ a8d)γ 2

+ (a4d2
+ a8d2

+ a16)γ 4
+ (a20

+ a8d2)γ 8
+ (a4d4

+ a8)γ 16
+ a4γ 32

=: F.

Note that, since a ̸= 0, F1 = F2 = 0 holds if and only if F2 = F = 0. There are 32 choices for γ with
F(γ ) = 0 and for each choice of γ , there are exactly two choices for λ such that F2(γ, λ) = 0. As in the
previous case, Ga,b,d has order 128, but in this case, it acts on the base of the associated elliptic fibration
through 25.

• Next, assume that a = 0 and b ̸= 0. We can immediately solve (18) for λ and obtain

b2λ2
= γ + dγ 2

+ d2γ 8
+ γ 16.

Plugging this into the square of (17), we obtain a polynomial F in γ of the form F =
∑5

i=0 ciγ
2i

of
degree 64 with

c0 = 0, c1 = b−2, c5 = b−8.

Hence, there are 64 choices for γ such that (b2, σ ) lifts and λ is uniquely determined by γ . Therefore,
Ga,b,d has order 128 and acts on the base of the associated elliptic fibration through 26.

• Now, assume that a = b = 0. The equations simplify to

λ4
+ λ = 0, λ2

0 + λ0 = λ3
+ γ 5

+ dγ 6, λ1 = γ 4,

λ2 = dγ 4
+ γ 8, γ + dγ 2

+ d2γ 8
+ γ 16

= 0. λ3 = 0,

Hence, there are 16 choices for γ and 4 choices for λ. Hence, Ga,b,d has order 128 and it acts on the
base of the associated elliptic fibration through 24.

It remains to determine the group Ga,b,d . By the last bullet point, the subgroup of G0,0,0 of automor-
phisms that act trivially on the base of the associated elliptic fibration has order 8. Thus, by Corollary 6.3,
it is isomorphic to Q8. Hence, every Ga,b,d contains a quaternion group Q8 with β ∈ Q8. On the other
hand, in the cases where a ̸= 0, b ̸= a2, we have seen that Ga,b,d/⟨β⟩ ∼= 26. Hence, by Example 6.5, we
have Ga,b,d ∼= 21+6

+ .
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Next, assume that δ ̸= 1, δ3
= 1. Then, (11), (12), and (13) show that a = b = c = 0. The remaining

equations become

λ4
+ λ = 0, λ2

0 + λ0 = λ3
+ δγ 5

+ dγ 6, λ1 = δ2γ 4,

λ2 = dδ2γ 4
+ δγ 8, δ2γ 16

+ d2δγ 8
+ dδγ 2

+ δ2γ = 0. λ3 = 0,

We see that if γ = λ = 0, then (b2, σ ) admits a lift to X as an automorphism g of order 3. For a fixed γ ,
there are at most 128 possible choices of (γ, λ). All of them are obtained by composing g with an element
of G0,0,d ; hence all choices are realized.

Finally, assume that δ ̸= 1, δ5
= α = 1. As in the previous paragraph, we have a = b = c = 0. But

in this case, (16) yields the condition d = 0.
So, in summary, if c ̸= 0, then G(X) is trivial and if c = 0, then Aut(X) admits a unique 2-Sylow

subgroup isomorphic to 21+6
+ . If a, b, or c is nonzero, this is the full automorphism group. If a = b = c = 0

and d ̸= 0, then Aut(X)/21+6
+

∼= C3 and if a = b = c = d = 0, then Aut(X)/21+6
+

∼= C15. □

Remark 6.9. The largest order of an automorphism group of a del Pezzo surface of degree 1 over
the complex numbers is equal to 144 and the surface with such a group of automorphisms is unique
[Dolgachev 2012]. In our case, the maximal order is equal to 1920 = 27

· 15 and the surface with such
an automorphism group is also unique. We also see the occurrence of the group G = 24 in case (5). It
is obtained as the preimage in 21+6

+ of a maximal isotropic subspace of F6
2. Since del Pezzo surfaces

of degree 1 are super-rigid (see [Dolgachev and Iskovskikh 2009, Definition 7.10, Corollary 7.11]) and
the corresponding G-surface is minimal, this group is not conjugate in the Cremona group of P2 to the
isomorphic subgroup of the group of automorphisms of del Pezzo surfaces of degree 4 or 2 that appeared
in [Dolgachev and Duncan 2019; Dolgachev and Martin 2024].

6.3. Conjugacy classes and comparison with the classification in characteristic 0. In this section, we
determine the conjugacy classes in W (E8) of the elements of the groups that occur in Theorem 6.8 and,
whenever possible, compare the surfaces in Theorem 6.8 with their counterparts in characteristic 0 (see
[Dolgachev 2012, Table 8.14]).

For a del Pezzo surface X of degree 1, we denoted by NX and PX the kernel and image of the morphism
Aut(X) → Aut(P1) induced by the action of Aut(X) on the base of the associated elliptic pencil.

Lemma 6.10. Let g be a nontrivial element of NX . Then, the conjugacy class of g is either 8A1, 4A2,
2D4(a1), or E8(a8).

Proof. Since g acts trivially on the base of the pencil, it cannot preserve any (−1)-curve on X . Then, the
lemma follows from the classification of conjugacy classes in W (E8) (see, e.g., [Dolgachev and Martin
2024, Table 3]), by checking which of them fix no (−1)-class in E8. □

Corollary 6.11. Let X be a del Pezzo surface of degree 1 in characteristic 2. Let X ′ be a geometric
generic fiber of a lift of X to characteristic 0 and let sp : Aut(X ′) → Aut(X) be the specialization map.

(1) sp is injective and preserves conjugacy classes.
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(2) sp induces morphisms NX ′ → NX and PX ′ → PX .

(3) The kernel H of PX ′ → PX is an elementary 2-group and if g is an element of Aut(X ′) that maps to
a nontrivial element of H , then the conjugacy class of g is 2D4(a1).

Proof. The proof of claim (1), including the existence of sp, is analogous to Lemma 4.7.
The existence of the morphisms in claim (2) is clear, as, for a given lift X → S, the groups that appear

can be defined as fibers of kernel and image of the homomorphism of S-group schemes AutX/S → AutP1
S/S

that describes the action of AutX/S on the anticanonical system.
For claim (3), recall that sp preserves conjugacy classes by claim (1). Therefore, by Lemma 6.10, all

nontrivial elements of H are represented by elements g of Aut(X ′) of conjugacy class 8A1, 4A2, 2D4(a1),
or E8(a8). If g is of class 8A1, then it is the Bertini involution; hence g ∈ NX ′ . If g is of class 4A2, then
it has negative trace on E8, so, by the Lefschetz fixed-point formula, it must act trivially on the base of
the elliptic pencil. Hence, g ∈ NX ′ . If g is of class E8(a8), then, by what we just proved, g2 and g3 are
in NX ′ ; hence g ∈ NX ′ . Thus, g must be of conjugacy class 2D4(a1). Then, g2 is the Bertini involution,
so H is 2-elementary. □

By Theorem 6.8, |Aut(X)| ≤ 36 or |Aut(X)| ∈ {128, 384, 1920}, so types I and II [Dolgachev 2012,
Table 8.14] do not have a reduction modulo 2 which is a del Pezzo surface.

The surfaces of type VI, VII, IX, XII, and XV from that table admit an automorphism of order 2n with
n > 1 acting faithfully on P1, which is impossible in characteristic 2, so by Corollary 6.11 they do not
have good reduction mod 2.

The equation of the surfaces of type (3v) in Theorem 6.8 can be rewritten as

y2
+ uv(u − v)y + x3

+ a(u2
− uv + v2)3

+ bu2v2(u − v)2

for certain a, b ∈ k. This equation makes sense in characteristic 0, and it is stable under the S3-action
generated by (u, v, x, y) 7→ (v, u, x, −y) and (u, v, x, y) 7→ (u −v, −u, x, −y), as well as the C3-action
(u, v, x, y) 7→ (u, v, ζ3x, y), where ζ3 is a primitive third root of unity. Hence, the automorphism group
of has order at least 36; thus it is isomorphic to 6 ×S3. Thus, surfaces of type (3v) are reductions mod 2
of the surfaces of type III from [Dolgachev 2012, Table 8.14]. In particular, we can read off the conjugacy
classes from [Dolgachev and Martin 2024, Table 8].

The equation of type (5iii) makes sense in characteristic 0, where it is isomorphic to

y2
+ x3

+ u(u5
+ v5),

which is the equation of type IV in [Dolgachev 2012, Table 8.14].
The equation of the surfaces of type (3ii) in Theorem 6.8 can be rewritten as

y2
+ uv(u − v)y + x3

+ c(u2
− uv + v2)x2

+ a(u2
− uv + v2)3

+ bu2v2(u − v)2

for certain a, b, c ∈ k. Similar to the case of type (3v) above, these equations are stable under a S3-action,
both in characteristic 0 and in characteristic 2. In characteristic 0, these equations can be simplified to the
normal forms of type X from [Dolgachev 2012, Table 8.14].
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The equation of the surfaces of type (3iii) makes sense in characteristic 0, where it defines a lift of X
together with the action of Aut(X). Both X and the lift admit an automorphism of order 6 that acts
trivially on the base of the elliptic pencil. Hence, these surfaces are reductions mod 2 of the surfaces of
type XI from [Dolgachev 2012, Table 8.14].

The equations of the surfaces of type (2fi) in Theorem 6.8 define a 1-dimensional family of surfaces in
characteristic 0 with an action of C10. These lifts must be of type XIII [Dolgachev 2012, Table 8.14].

The equations of the surfaces of type (4i) in Theorem 6.8 define a 2-dimensional family of surfaces in
characteristic 0 with an action of C6 that is trivial on the base of the elliptic pencil. Hence, these lifts are
of type XVII [Dolgachev 2012, Table 8.14].

Next, consider the equations

y2
+ (aux + bu3

+ cv3)y + x3
+ (du4

+ euv3)x + f u6
+ gu3v3

+ hv6,

where a, b, c, d, e, f, g, h are parameters. In characteristic 0, we can simplify this equation to the normal
form of type XVIII from [Dolgachev 2012, Table 8.14]. In characteristic 2, these equations cover three of
the families of Theorem 6.8: If a, c ̸= 0, we can simplify the equation to the normal form for type (1aii)
which, in turn, specializes to type (1ei) for special values of the parameters. If a = 0 but b, c ̸= 0, we can
simplify the equation to

y2
+ (u3

+ v3)y + x3
+ euv3x + f u6.

This is an alternative normal form for our surfaces of type (3iv).
Finally, consider the equations

y2
+ (a(u + v)x + b(u + v)3

+ cuv(u + v))y + x3
+ (d(u + v)4

+ euv(u + v)2
+ f u2v2)x

+ (g(u + v)6
+ huv(u + v)4

+ iu2v2(u + v)2
+ ju3v3).

In characteristic 0, we can simplify this equation to the normal form of type XX from [Dolgachev 2012,
Table 8.14]. In characteristic 2, these equations cover four of the families of Theorem 6.8:

If a ̸= 0, we can simplify the equation to

y2
+ (u + v)xy + x3

+ cuvx2
+ du2v2x + g(u + v)6

+ huv(u + v)4
+ iu2v2(u + v)2

+ ju3v3.

If d, j ̸= 0, we can rescale one of them to 1 and obtain an alternative normal form for type (2ai). If d ̸= 0
and j = 0, we obtain a normal form for type (2ei). If j ̸= 0 and d = 0, we obtain an alternative normal
form for type (2di). Note that d = j = 0 would lead to a singular surface. Since the family of type (2di)
occurs as a reduction mod 2 of certain surfaces of type XX from [Dolgachev 2012, Table 8.14], we call
them type XX′.

If a = 0 and c ̸= 0, we can simplify the equation to

y2
+ (b(u + v)3

+ uv(u + v))y + x3
+ (euv(u + v)2

+ f u2v2)x + (g(u + v)6
+ ju3v3).

This defines a 4-dimensional family of surfaces with 22-action (one parameter is redundant). By
Theorem 6.8, the corresponding surfaces must be of type (3i).
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The surfaces in the families (1ai), (1aiii), (1aiv), (1di), (5i), (5ii), and (5iii) admit an automorphism of
order 4 and it turns out that writing down integral equations for such automorphisms similar to the ones
above is hard. So, instead, to determine the conjugacy classes of the automorphisms of this family and to
compare with the classification in characteristic 0, we will use the following observation.

Lemma 6.12. Let g be an automorphism of a del Pezzo surface of degree 1. Let m := ord(g) and let n be
the order of the induced automorphism of P1. Assume that m is even. Then, the conjugacy class 0 of g in
W (E8) is one of the following:

(1) If (m, n) = (2, 1), then 0 = 8A1.

(2) If (m, n) = (2, 2), then 0 = 4A1.

(3) If m = 4, then 0 = 2D4(a1).

(4) If (m, n) = (6, 1), then 0 = E8(a8).

(5) If (m, n) = (6, 2), then 0 = E6(a2) + A2.

(6) If (m, n) = (6, 3) and g2 is of class 3A2, then 0 = E7(a4) + A1.

(7) If (m, n) = (6, 3) and g2 is of class 2A2, then 0 = 2D4.

(8) If m = 10, then 0 = E8(a6).

(9) If m = 12, then 0 = E8(a3).

(10) If m = 20, then 0 = E8(a2).

(11) If m = 30, then 0 = E8.

Proof. By Theorem 6.8, we know that the only possible values for m and n are the ones in the statement.
In case (1), g is the Bertini involution; hence 0 = 8A1. In case (2), we may assume that g acts as

u ↔ v. Then, we proved in this section that g lifts to characteristic 0, so by [Dolgachev and Martin 2024,
Table 8], 0 = 4A1. In case (3), g2 is the Bertini involution, because PGL2(k) does not contain elements of
order 4, and it is known (see [loc. cit., Table 3]) that the only conjugacy class of automorphisms of order 4
whose square is the Bertini involution is 2D4(a1). In cases (8) and (11), gm/2 is the Bertini involution
and g2 lifts to characteristic 0; hence g lifts to characteristic 0 and we can read off the conjugacy class 0

from [loc. cit., Table 8]. Then, we deduce case (10) from case (8). In case (9), g2 must be of type E8(a8),
since PGL2(k) does not contain any elements of order 4 or 6. Then, from [loc. cit., Table 3], we see
that 0 = E8(a3). Finally, cases (4), (5), (6), and (7) follow from [loc. cit., Table 3] by comparing the
conjugacy classes of g2 and g3. □

Now, we can complete Table 9 by using the description of Aut(X) in Theorem 6.8. We observe that
the conjugacy classes for types (1ai) and (1di) are the same as for type XIX from [Dolgachev 2012, Table
8.14], the conjugacy classes for type (1aiii) are the same as for type XIV from [loc. cit., Table 8.14], and
the conjugacy classes for type (1aiv) are the same as for type V from [loc. cit., Table 8.14]. The only
groups in Theorem 6.8 that contain D8 are 21+6

+ , 21+6
+ : 3, and 21+6

+ : 15, and the only group that contains an
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automorphism of order 20 is 21+6
+ : 15. Hence, if the types XVI, M, and VIII from [loc. cit., Table 8.14] and

[Dolgachev and Martin 2024, Table 8] have good reduction modulo 2, then they must reduce to our types
(5i) and (5ii), respectively. In each of these cases, we determine the conjugacy classes using Lemma 6.12.

We summarize the classification of automorphism groups of del Pezzo surfaces of degree 1 in Table 9.
In the first column, we give the name of the corresponding family, both in the notation of Theorem 4.3 and
in the notation of [Dolgachev 2012, Table 8.14]. The second and third columns give the group Aut(X)

and its size. In the remaining columns, we list the number of elements of a given Carter conjugacy class
in Aut(X).
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