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INTRODUCTION

A del Pezzo surface of degree 𝑑 is a smooth projective algebraic surface 𝑋 with ample anti-
canonical class−𝐾𝑋 satisfying𝐾2

𝑋
= 𝑑. It is known that 1 ⩽ 𝑑 ⩽ 9 and𝑋 ≅ ℙ2 if 𝑑 = 9. A del Pezzo

surface of degree 8 is isomorphic to a smooth quadric surface or to the blow-up of the projective
plane in one point. All other del Pezzo surfaces of degree 𝑑 ⩽ 7 are isomorphic to the blow-up of
9 − 𝑑 points in ℙ2 in general position. Any non-degenerate smooth linearly normal surface in ℙ𝑑

of degree 𝑑 ⩾ 3 is isomorphic to an anti-canonically embedded del Pezzo surface.
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The group Aut(𝑋) of automorphisms of a del Pezzo surface 𝑋 is a finite group if 𝑑 ⩽ 5 and a
smooth algebraic group of positive dimension if 𝑑 ⩾ 6.
The classification of automorphism groups of del Pezzo surfaces over an algebraically closed

field of characteristic 0 has been known for more than a hundred years. A modern exposition
and history can be found in [6]. It is used in the classification of conjugacy classes of finite sub-
groups of the Cremona group of the projective plane in [5]. The knowledge about possible groups
of automorphisms of del Pezzo surfaces over algebraically closed fields of positive characteristic
is essential for extending this classification to a positive characteristic. Partial results in this direc-
tion can be found in [7] and [8], and the classification of possible automorphism groups of cubic
and quartic del Pezzo surfaces was accomplished in [9]. For the convenience of the reader, we
recall this classification in Table A3 and Table A4 in the Appendix.
Any rational surface 𝑋 with a group 𝐺 of automorphisms of order prime to the characteristic

can be lifted to characteristic 0 together with an action of 𝐺 on the lift [15]. This reduces the clas-
sification of automorphism groups in positive characteristic 𝑝 to the classification of the groups
of automorphisms of order divisible by 𝑝, which is the main part of this paper, and also to the
analysis of pairs (𝑋, 𝐺) in characteristic 0 that admit a good reduction modulo 𝑝, see Section 4.5
and Section 5.5. The classification of the groups of automorphisms of del Pezzo surfaces of degree
larger than 4 is rather easy, see Section 3. As the classification of automorphism groups of del
Pezzo surfaces of degrees 4 and 3 was achieved in [9], we will complete the classification of auto-
morphisms of del Pezzo surfaces by concentrating on the task of classifying automorphism groups
of del Pezzo surfaces of degrees 2 and 1.
The cases of odd and even characteristic are drastically different and require different tools.

This is due to the fact that, in odd characteristic, the classification of automorphism groups of del
Pezzo surfaces of degrees 2 and 1 essentially coincideswith the classification of groups of projective
automorphisms of smooth plane quartic curves or smooth genus 4 curves of degree 6 lying on a
singular quadric. In the case of even characteristic, no such relations exist.
This is why we separate the classification into two parts. This paper deals with the case of odd

characteristic and the subsequent paper [10] will deal with the case of characteristic two. Our
main result can be summarized as follows.

Theorem. A finite group 𝐺 is realized as the automorphism group Aut(𝑋) of a del Pezzo surface 𝑋
of degree 2 (resp. 1) over an algebraically closed field 𝑘 of characteristic char(𝑘) ≠ 2 if and only if 𝐺
is listed in Table A5 (resp. Table A6) in the Appendix.

Table A5 (resp. Table A6) also gives the conjugacy classes in𝑊(𝐸7) (resp.𝑊(𝐸8)) of all elements
ofAut(𝑋) for all del Pezzo surfaces𝑋 of degree 2 (resp. degree 1). Here, we use Carter’s notation for
these conjugacy classes, see [2] and Section 2. The knowledge of these conjugacy classes is impor-
tant in order to understand the conjugacy relation between the various automorphism groups of
del Pezzo surfaces inside the Cremona group of rank 2.

1 NOTATION

We will use the following group-theoretical notations for the finite groups we encounter in the
paper. Throughout this paper, 𝑝 is a prime and 𝑞 is a power of 𝑝.

∙ 𝐶𝑛 is the cyclic group of order 𝑛.
∙ 𝔖𝑛 and𝔄𝑛 are the symmetric and alternating groups on 𝑛 letters.
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∙ 𝑄8 is the quaternion group of order 8.
∙ 𝐷2𝑛 is the dihedral group of order 2𝑛.
∙ 𝑛𝑘 = (ℤ∕𝑛ℤ)𝑘. In particular, 𝑛 = 𝑛1 = ℤ∕𝑛ℤ.
∙ GL𝑛(𝑞) = GL(𝑛, 𝔽𝑞).
∙ PGL𝑛(𝑞) = GL𝑛(𝑞)∕𝔽

∗
𝑞. Its order is 𝑁 = 𝑞

1
2
𝑛(𝑛−1)(𝑞𝑛 − 1)⋯ (𝑞2 − 1).

∙ SL𝑛(𝑞) = {g ∈ GL𝑛(𝑞) ∶ det(g) = 1}. This is a subgroup of GL𝑛(𝑞) of index (𝑞 − 1).
∙ L𝑛(𝑞) = PSL𝑛(𝑞) is the image of SL𝑛(𝑞) in PGL𝑛(𝑞). Its order is 𝑁∕(𝑞 − 1, 𝑛).
∙ For odd 𝑛, O𝑛(𝑞) is the subgroup of GL𝑛(𝑞) that preserves a non-degenerate quadratic form 𝐹.
∙ For even 𝑛, O+

𝑛 (𝑞) (resp. O
−
𝑛 (𝑞)) is the subgroup of GL𝑛(𝑞) that preserves a non-degenerate

quadratic form 𝐹 of Witt defect 0 (resp. 1).
∙ SO±

𝑛 (𝑞) is the subgroup of O
±
𝑛 (𝑞) of elements with determinant 1.

∙ PSO±
𝑛 (𝑞) is the quotient of SO

±
𝑛 (𝑞) by its center.

∙ Sp2𝑛(𝑞) is the subgroup of SL𝑞(2𝑛) preserving the standard symplectic form on 𝔽2𝑛𝑞 . Its order is
𝑞𝑛

2
(𝑞2𝑛−1 − 1)⋯ (𝑞2 − 1).

∙ PSp2𝑛(𝑞) = Sp2𝑛(𝑞)∕(±1).
∙ SU𝑛(𝑞

2) is the subgroup of SL𝑛(𝑞2) of matrices preserving the hermitian form
∑𝑛

𝑖=1 𝑥
+1
𝑖
. Its

order is 𝑞
1
2
𝑛(𝑛−1)(𝑞𝑛 − (−1)𝑛)(𝑞𝑛−1 − (−1)𝑛−1)⋯ (𝑞3 + 1)(𝑞2 − 1). We have SU2(𝑞

2) = SL2(𝑞).
∙ PSU𝑛(𝑞

2) = SU𝑛(𝑞
2)∕𝐶, where 𝐶 is a cyclic group of order (𝑞 + 1, 𝑛) of diagonal Hermitian

matrices. The simple group PSU𝑛(𝑞
2) is denoted by U𝑛(𝑞) in [3].

∙ 3(3) is the Heisenberg group of 3 × 3 upper triangular matrices with entries in 𝔽3.
∙ 𝐴.𝐵 is a group that contains a normal subgroup 𝐴 with quotient group 𝐵.
∙ 𝐴 ∶ 𝐵 is the semi-direct product 𝐴⋊ 𝐵.

2 PRELIMINARIES

2.1 The anti-canonical map

Themain references for the known facts about del Pezzo surfaces towhichwe referwithout proofs
are [4] and [6]. Throughout, we are working over an algebraically closed field of characteristic
𝑝 ≠ 2.
The linear system | − 𝐾𝑋| on a del Pezzo surface 𝑋 of degree 𝑑 is of dimension 𝑑. It is base

point–free if 𝑑 ≠ 1 and defines an embedding

𝑗 ∶ 𝑋 ↪ ℙ𝑑

if 𝑑 ⩾ 3. The image is a non-degenerate smooth surface of degree 𝑑 in ℙ𝑑. If 𝑑 = 9, the embedding
coincides with the third Veronese map 𝑋 ≅ ℙ2 ↪ ℙ9.
A del Pezzo surface of degree 𝑑 = 8 is isomorphic to a minimal ruled surface 𝐅0 or 𝐅1. In all

other cases, the image of 𝑗 is a projection of aVeronese surface froma linear span of 9 − 𝑑 points on
the surface. This classical fact, due to del Pezzo, can be restated as the fact that any del Pezzo sur-
face of degree 𝑑 ⩾ 3 is isomorphic to a smooth quadric or obtained as the blow-up of 9 − 𝑑 points
𝑝1, … , 𝑝9−𝑑 in the plane. The latter description of del Pezzo surfaces extends to del Pezzo surfaces
of the remaining degrees 𝑑 = 1 and 2. Here, the points 𝑝1, … , 𝑝9−𝑑 must be in general position.
The linear system | − 𝐾𝑋| is the proper inverse transform in the blow-up Bl𝑝1,…,𝑝9−𝑑 (ℙ

2) of the
linear system of plane cubic curves 𝐶3(𝑝1, … , 𝑝9−𝑑) passing through the points 𝑝1, … , 𝑝9−𝑑.
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For the following description of del Pezzo surfaces of degrees 1 and 2, we assume 𝑝 ≠ 2.
If 𝑑 = 2, the anti-canonical linear system | − 𝐾𝑋| is of dimension 2. It defines a finitemorphism

of degree 2

𝑓 ∶ 𝑋 → ℙ2

with branch locus a smooth quartic curve. This allows us to view 𝑋 as a hypersurface of degree 4
in the weighted projective space ℙ(1, 1, 1, 2). Its equation is

𝑥23 + 𝑓4(𝑥0, 𝑥1, 𝑥2) = 0 (1)

and its branch locus is the smooth plane quartic curve 𝐶 = 𝑉(𝑓4(𝑥0, 𝑥1, 𝑥2)).
If 𝑑 = 1, the linear system | − 𝐾𝑋| is a pencil with one base point 𝔬. The linear system | − 2𝐾𝑋|

is of dimension 3. It defines a finite morphism of degree 2

𝑓 ∶ 𝑋 → 𝑄 ⊆ ℙ3,

where 𝑄 is an irreducible quadratic cone. The cover is branched along a smooth curve of genus
4 cut out by a cubic. This allows us to consider 𝑋 as a hypersurface of degree 6 in the weighted
projective space ℙ(1, 1, 2, 3) given by the equation

𝑤2 + 𝑓6(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 0.

This equation can be rewritten in the form

𝑦2 + 𝑥3 + 𝑎2(𝑡0, 𝑡1)𝑥
2 + 𝑎4(𝑡0, 𝑡1)𝑥 + 𝑎6(𝑡0, 𝑡1) = 0, (2)

where 𝑎𝑘 is a binary form of degree 𝑘.
The double cover 𝑓 extends to a double cover

𝑓′ ∶ 𝑌 = Bl𝔬(𝑋) → 𝐅2,

where 𝐅2 = ℙ(ℙ1 ⊕ ℙ1(−2)) is a minimal rational ruled surface. In the natural basis (𝔣, 𝔢) of
Pic(𝐅2)with 𝔣2 = 0, 𝔢2 = −2, the branch curve of 𝑓′ is the union of a smoothmember of the linear
system |6𝔣 + 3𝔢| and the exceptional section identified with 𝔢. Equation (2) can be viewed as the
Weierstrassmodel of the Jacobian elliptic fibration𝑌 → ℙ1 defined by the proper transform of the
anti-canonical pencil | − 𝐾𝑋|.
2.2 Weyl groups

An automorphism of a del Pezzo surface 𝑋 of degree 𝑑 acts naturally on the Picard group Pic(𝑋)
of isomorphism classes of invertible sheaves on 𝑋, or divisor classes modulo linear equivalence.
Assume 𝑋 ≠ 𝐅0, so that 𝑋 ≅ Bl𝑝1,…,𝑝9−𝑑 (ℙ

2). The group Pic(𝑋) is a free abelian group generated
by the divisor classes 𝑒𝑖 of the exceptional curves 𝐸𝑖 over the points 𝑝𝑖 and the divisor class 𝑒0 such
that |𝑒0| defines the blowing down morphism 𝑋 → ℙ2.
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The basis (𝑒0, 𝑒1, … , 𝑒9−𝑑) is called a geometric basis of Pic(𝑋). It depends on the isomorphism
𝑋 ≅ Bl𝑝1,…,𝑝9−𝑑 (ℙ

2) since different point sets may lead to isomorphic blow-ups. If we fix one geo-
metric basis, passing to another geometric basis defines an integer matrix of rank 10 − 𝑑. The set
of all such matrices forms a subgroup𝑊 of GL10−𝑑(ℤ).
The intersection product Pic(𝑋) × Pic(𝑋) → ℤ is a symmetric bilinear form (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 on

Pic(𝑋). It equips Pic(𝑋) with the structure of a quadratic lattice. Since 𝑒2
0
= 1, 𝑒2

𝑖
= −1, 𝑖 ≠ 0, the

signature of the corresponding real quadratic space Pic(𝑋)ℝ ∶= Pic(𝑋) ⊗ ℝ is equal to (1, 9 − 𝑑).
A geometric basis is an orthonormal basis for this inner product. This shows that the group𝑊 is
a subgroup of the orthogonal group O(Pic(𝑋)) of isometries of the quadratic lattice Pic(𝑋).
The known behavior of the canonical class under a blow-up implies

−𝐾𝑋 = 3𝑒0 −

9−𝑑∑
𝑖=1

𝑒𝑖, (3)

and this formula is true for any geometric basis. This shows that 𝐾𝑋 is invariant with respect to
the action of the group𝑊, and hence𝑊 can be identified with a subgroup of the orthogonal group
O(𝐾⟂

𝑋
) of the orthogonal complement to ℤ𝐾𝑋 in Pic(𝑋). The sublattice 𝐾⟂

𝑋
⊆ Pic(𝑋) has a basis

𝛼0 = 𝑒0 − 𝑒1 − 𝑒2 − 𝑒3, 𝛼𝑖 = 𝑒𝑖 − 𝑒𝑖+1. 𝑖 = 1, … , 8 − 𝑑. (4)

Assume 𝑑 ⩽ 6. Computing the Grammatrix of this basis, we find that𝐾⟂
𝑋
is isomorphic to the root

lattice 𝖤𝑁 of rank 𝑁 = 9 − 𝑑 of a simple Lie algebra of type

𝐴2 ⊕ 𝐴1, 𝐴4, 𝐷5, 𝐸6, 𝐸7, 𝐸8,

in the cases 𝑑 = 6, 5, 4, 3, 2, 1, respectively. The basis (4) is a basis of simple roots. The subgroup
of O(𝖤𝑁) generated by the reflections in simple roots is theWeyl group𝑊(𝖤𝑁) of the root lattice.
Since any reflection in 𝛼𝑖 extends to an isometry of the lattice 𝖨1,𝑁 generated by 𝑒0, … , 𝑒9−𝑑, the
group𝑊(𝖤𝑁) can be identified with the stabilizer subgroup O(𝖨1,𝑁)𝐤𝑁 of the vector 𝐤𝑁 given in
(3). The homomorphism

O(𝖨1,𝑁)𝐤𝑁 → O(𝖤𝑁)

is injective. If 𝑁 = 7, 8, it is also surjective. If 𝑁 ≠ 7, 8, the image is a direct summand with com-
plement of order 2 generated by the symmetry of the Dynkin diagram of the root lattice 𝖤𝑁 [6,
8.2].
Returning to our geometric situation, we see that the natural homomorphism

Aut(𝑋) → O(𝐾⟂
𝑋), g ↦ g∗,

composed with an isomorphism O(𝐾⟂
𝑋
) ≅ O(𝖤9−𝑑) defines a homomorphism

𝜌 ∶ Aut(𝑋) → O(𝖤9−𝑑). (5)

Since the only automorphism of ℙ2 that fixes four points in general position is the identity, we
have the following theorem [6, Corollary 8.2.40].
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Theorem 2.1. The image of the homomorphism 𝜌 is contained in the Weyl group 𝑊(𝖤𝑁). The
homomorphism 𝜌 is injective for 𝑑 ⩽ 5.

In particular, via 𝜌, we can considerAut(𝑋) as a subgroup of𝑊(𝖤𝑁). We recall the well-known
structure of the relevant Weyl groups.

Theorem 2.2. The Weyl group of 𝐸𝑁 with 3 ⩽ 𝑁 ⩽ 8 can be described as follows:

∙ 𝑊(𝖤3) ≅ 𝔖3 × 2 of order 12,
∙ 𝑊(𝖤4) ≅ 𝔖5 of order 5!,
∙ 𝑊(𝖤5) ≅ 24 ∶ 𝔖5 of order 24 ⋅ 5!,
∙ 𝑊(𝖤6) ≅ Sp4(3).2 of order 23 ⋅ 32 ⋅ 6!,
∙ 𝑊(𝖤7) ≅ Sp6(2) × 2 of order 26 ⋅ 32 ⋅ 7!,
∙ 𝑊(𝖤8) ≅ 2.O+

8
(2) of order 27 ⋅ 33 ⋅ 5 ⋅ 8!.

In ATLAS [3], notation O+
8
(2) = GO+

8
(2) contains a normal simple subgroup O8(2) of index 2.

The group O+
8
(2) is the orthogonal group of the quadratic space 𝔽8

2
equipped with the quadratic

form 𝑥1𝑥2 + 𝑥3𝑥4 + 𝑥5𝑥6 + 𝑥7𝑥8.
It turns out that, even in arbitrary characteristic, not all cyclic subgroups of𝑊(𝖤𝑁) are realized

by automorphisms of del Pezzo surfaces for𝑁 ⩾ 3. To determine which ones are realized, we will
use the classification of conjugacy classes of elements 𝑤 of the Weyl groups. This classification
can be found in [2]. Table A1 gives the list of conjugacy classes of all Weyl groups in Carter’s
notation. According to Carter, these conjugacy classes are indexed by certain graphs that we call
Carter graphs. The subscript in the name of a Carter graph indicates the number of vertices of
this graph.
Recall that a root lattice 𝑅 is the orthogonal sum of root lattices of irreducible root systems of

types 𝐴𝑛,𝐷𝑛, 𝐸6, 𝐸7, and 𝐸8. If the name of a Carter graph is the name of a Dynkin diagram, say
associated to the orthogonal sum of irreducible root lattices 𝑅1, … , 𝑅𝑘, then an element 𝑤 of the
corresponding conjugacy class in𝑊(𝖤𝑁) preserves a sublattice of 𝖤𝑁 isomorphic to 𝑅1 ⟂ … ⟂ 𝑅𝑘.
Moreover, this𝑤 acts on each summand as theCoxeter element of𝑊(𝑅𝑖) and as the identity on the
orthogonal complement of 𝑅1 ⟂ … ⟂ 𝑅𝑘. For example, the notation 𝐴𝑖1

+⋯ + 𝐴𝑖𝑘
(we write 𝑘𝐴𝑛

if 𝑖1 = ⋯ = 𝑖𝑘 = 𝑛) for a conjugacy class of an element𝑤 ∈ 𝑊(𝖤𝑁)means that𝑤 leaves invariant
a sublattice of 𝖤𝑁 isomorphic to the orthogonal sum𝐴𝑖1

⟂ … ⟂ 𝐴𝑖𝑘
of root lattices of type𝐴𝑖𝑠

, and
it acts on each summand as an element of order 𝑖𝑠 + 1 in𝑊(𝐴𝑖𝑠

) ≅ 𝔖𝑖𝑠+1
.

The Carter graphs that contain cycles are named Γ(𝑎𝑖), where Γ is the name of a Dynkin
diagram. These graphs correspond to certain conjugacy classes in 𝑊(Γ) that do not leave any
non-trivial sublattices invariant. We refer the reader to [2, table 2] for a detailed description of
these graphs.
The characteristic polynomials given in Table A1 allow us to compute the trace tr2(𝑤) of

𝑤 ∈ 𝑊(𝖤𝑁) acting on the étale 𝑙-adic cohomology 𝐻2(𝑋,ℚ𝑙) ≅ Pic(𝑋)ℚ𝑙
. Since 𝑤 acts trivially

on 𝐻0(𝑋,ℚ𝑙) and 𝐻4(𝑋,ℚ𝑙), and 𝐻𝑖(𝑋,ℚ𝑙) = 0 for odd 𝑖, we can use the Lefschetz fixed point
formula

Lef (g∗) = 2 + tr2(𝜌(g)) = 𝑒(𝑋g ) (6)

to compute the trace from the Euler–Poincaré characteristic of the fixed locus 𝑋g of a tame
automorphism g ∈ Aut(𝑋).
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If 𝑝 divides the order of g , we could instead use Saito’s generalized Lefschetz fixed-point for-
mula [14]. However, we are able to avoid an application of this rather technical tool and compute
the traces by using geometric methods. This will allow us to determine the conjugacy classes of
wild elements 𝜌(g) ∈ 𝑊(𝖤𝑁).

Remark 2.3. The conjugacy classes in the Weyl group 𝑊(𝖤6) (resp. 𝑊(𝖤7), resp. 𝑊(𝖤8)) can be
read off from the conjugacy classes in the group 𝑆4(3) (resp. 𝑆6(2), resp. 𝑂+

8
(2)) in [3]. For exam-

ple, a translation from Carter’s notation to ATLAS notation for the group𝑊(𝖤6) can be found in
[9, table 6]. The disadvantage of using the ATLAS notation is that it is not uniform for different
Weyl groups, while the Carter graph associated to a conjugacy class does not change under an
embedding𝑊(𝖤𝑖) → 𝑊(𝖤𝑖+1).

2.3 The Geiser and Bertini involutions

It follows from the description of a del Pezzo surface of degree 2 (resp. 1) as a double cover that
Aut(𝑋) contains a central element 𝛾 (resp. 𝛽) realized by the negation of 𝑥3 in Equation (1) (resp.
of 𝑦 in Equation (2)). It is called the Geiser involution (resp. the Bertini involution) of 𝑋.
The image of 𝛾 (resp. 𝛽) under 𝜌 in (5) is the unique non-trivial central element 𝑤0 of𝑊(𝖤𝑁)

for 𝑁 = 7, 8. It is the unique element of𝑊(𝖤𝑁) of maximal length when written as the reduced
product of reflections in simple roots. It acts as −id𝖤𝑁 if 𝑁 = 7, 8.
The action of g ∈ Aut(𝑋) fixes the branch curve 𝑄 of the double cover 𝑓 pointwise. Since the

curve is embedded in ℙ2 (resp. ℙ(1, 1, 2)) by the canonical linear system, the action on 𝑄 extends
to an automorphism of ℙ2 (resp. ℙ(1, 1, 2)). This defines a homomorphism

𝜓 ∶ Aut(𝑋) → Aut(ℙ2) (resp. 𝜓 ∶ Aut(𝑋) → Aut(ℙ(1, 1, 2)).

We have

Ker(𝜓) = (𝛾) (resp. Ker(𝜓) = (𝛽)),

since 𝑄 is non-degenerate.

2.4 Wild finite subgroups of 𝐀𝐮𝐭(ℙ𝟏) and 𝐀𝐮𝐭(ℙ𝟐)

A finite subgroup of order 𝑛 of an algebraic group over a field 𝕜 of characteristic 𝑝 > 0 is called
wild (resp. tame or 𝑝-regular) if 𝑝|𝑛 (resp. (𝑛, 𝑝) = 1). An element of finite order is wild (tame) if
it generates a wild (tame) cyclic group.
The following proposition follows immediately from Theorem 2.1 and Theorem 2.2.

Proposition 2.4. Let g be a wild automorphism of order 𝑝 of a del Pezzo surface of degree 1 or 2.
Then, 𝑝 ∈ {2, 3, 5, 7}.

We will show later that 𝑝 ≠ 5, 7 (resp. 𝑝 ≠ 7) in the case of del Pezzo surfaces of degree 2 (resp.
1). It is known that there are no wild automorphisms of del Pezzo surfaces of odd order 𝑝2 [7,
Theorem 8].
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The image of a wild group 𝐺 of automorphisms of a del Pezzo surface of degree 2 under the
homomorphism 𝜓 is a wild subgroup of Aut(ℙ2). If 𝐺 is a wild group of automorphisms of a del
Pezzo surface of degree 1, then 𝐺 acts on the pencil | − 𝐾𝑋| and, if the image of a wild element of
𝐺 is non-trivial, it defines a wild subgroup of Aut(ℙ1).
It is known that any finite subgroup 𝐺 of GL𝑛(𝕜) is isomorphic to a finite subgroup of GL𝑛(𝑞)

for some 𝑞 = 𝑝𝑚. The classification of wild finite subgroups of Aut(ℙ1) ≅ PGL2(𝕜) can be found
in [17, Chapter 3, section 6]. We summarize it here for the convenience of the reader.

Theorem 2.5. Let 𝐺 be a proper wild subgroup of PGL2(𝕜). Then, 𝐺 is isomorphic to one of the
following groups.

(1) the group𝐺𝜉,𝐴 of affine transformations 𝑥 ↦ 𝜉𝑡𝑥 + 𝑎, where 𝑎 is an element of a finite subgroup
𝐴 of the additive group of 𝕜 containing 1 and 𝜉 is a root of unity such that 𝜉𝐴 = 𝐴;

(2) a dihedral group of order 2𝑛 with 𝑛 is odd if 𝑝 = 2;
(3) 𝔄5 ⊆ L2(9) if 𝑝 = 3;
(4) L2(𝑞) or PGL2(𝑞).

The classification of wild subgroups of Aut(ℙ2) ≅ PGL3(𝕜) ≅ PSL3(𝕜) is also known. It follows
from the classification of conjugacy classes of subgroups of the groups PSL3(𝑞) [1, 12]. Again, we
summarize it here for the convenience of the reader.

Theorem 2.6. Assume 𝑝 > 2. Let 𝐺 be a finite subgroup of PGL3(𝕜). Then, 𝐺 is conjugate to one of
the following groups.

(1) PGL3(𝑞) or L3(𝑞);
(2) PGU3(𝑞

2) or PSU3(𝑞
2);

(3) a group containing type (1) with 3 ∣ (𝑞 − 1) as a normal subgroup of index 3;
(4) a group containing type (2) with 3 ∣ (𝑞 + 1) as a normal subgroup of index 3;
(5) PGL2(𝑞) or L2(𝑞) with 𝑞 ≠ 3;
(6) if 𝑝 ≠ 5: L2(5) ≅ 𝔄5;
(7) if 𝑝 ≠ 7: L2(7);
(8) L2(9) ≅ 𝔄6;
(9) if 𝑝 = 5: a group containing𝔄6 of index 2;
(10) if 𝑝 = 5:𝔄7;
(11) a group containing a normal cyclic tame subgroup of index ⩽ 3;
(12) a group containing a diagonal normal subgroup𝐻 such that 𝐺∕𝐻 is isomorphic to a subgroup

of𝔖3;
(13) a group whose inverse image 𝐺̃ in SL3(𝕜) has a normal elementary abelian 𝑝-subgroup𝐻 such

that 𝐺̃∕𝐻 is a subgroup of GL2(𝑞);
(14) if 𝑝 ≠ 3: the Hessian group 32 ∶ SL2(3) of order 216 or its subgroups containing 32;
(15) if 𝑝 ≠ 3: the group 32 ∶ 𝑄8 or its subgroups containing 32.

3 DEL PEZZO SURFACES OF DEGREE ⩾ 𝟑

For the convenience of the reader, we recall here the classification of automorphism groups of del
Pezzo surfaces of degree at least 3.



AUTOMORPHISMS OF DEL PEZZO SURFACES IN ODD CHARACTERISTIC 9 of 40

3.1 Del Pezzo surfaces of degree ⩾ 𝟓

The computation of automorphism groups of del Pezzo surfaces of degree⩾ 5 is characteristic free
and can be found, for example, in [6, Chapter 8]:

3.1.1 Degree 9

If𝑑 = 9, then𝑋 ≅ ℙ2 and |𝐾𝑋| = |ℙ2(3)|. The embedding 𝜈 ∶ ℙ2 ↪ ℙ9 coincideswith aVeronese
embedding. The group of automorphisms of𝑋 coincides with the projective linear group PGL3(𝕜).

3.1.2 Degree 8

If 𝑑 = 8, then 𝑋 ≅ ℙ1 × ℙ1, or 𝑋 ≅ 𝐅1, the blow-up of one point in ℙ2.
If 𝑋 ≅ ℙ1 × ℙ1, the anti-canonical map is given by the linear system | − 𝐾𝑋| = |ℙ1×ℙ1(2, 2)|.

It coincides with the Segre–Veronese map and embeds ℙ1 × ℙ1 into ℙ8. The group Aut0(𝑋) coin-
cides with PGL2(𝕜) × PGL2(𝕜), and the quotient group Aut(𝑋)∕Aut0(𝑋) is of order 2, generated
by switching the factors of the product ℙ1 × ℙ1.
If 𝑋 ≅ 𝐅1 = Bl𝑝1(ℙ

2), the anti-canonical system is | − 𝐾𝑋| = |ℙ2(3) − 𝑝1|. The anti-canonical
linear system defines a map that embeds 𝑋 into ℙ8. Its image is equal to the projection of the
Veronese surface of degree 9 from a point lying on it. The group Aut(𝑋) is isomorphic to the
stabilizer subgroup of {𝑝1} in PGL3(𝕜) = Aut(ℙ2). It is a solvable algebraic subgroup of PGL3(𝕜)
of dimension 6.

3.1.3 Degree 7

If 𝑑 = 7, then𝑋 ≅ Bl𝑝1,𝑝2(ℙ
2) and | − 𝐾𝑋| = |ℙ2(3) − 𝑝1 − 𝑝2|. The anti-canonical linear system

defines amap that embeds𝑋 intoℙ7. The image is the projection of the Veronese surface of degree
9 from two points lying on it. The groupAut(𝑋) is isomorphic to the stabilizer subgroup of {𝑝1, 𝑝2}
in PGL3(𝕜) = Aut(ℙ2). It is a solvable algebraic subgroup of PGL3(𝕜) of dimension 4. The quotient
group Aut(𝑋)∕Aut0(𝑋) is of order 2. It is generated by a projective involution that switches the
points 𝑝1, 𝑝2.

3.1.4 Degree 6

If 𝑑 = 6, then 𝑋 ≅ Bl𝑝1,𝑝2,𝑝3(ℙ
2) and | − 𝐾𝑋| = |ℙ2(3) − 𝑝1 − 𝑝2 − 𝑝3|, where the points

𝑝1, 𝑝2, 𝑝3 are not collinear. The group Aut0(𝑋) is isomorphic to the two-dimensional
torus 𝔾2

𝑚,𝕜
. In appropriate projective coordinates where 𝑝1 = [1, 0, 0], 𝑝2 = [0, 1, 0], and 𝑝3 =

[0, 0, 1], the group Aut0(𝑋) consists of transformations (𝑥0, 𝑥1, 𝑥2) ↦ (𝜆𝑥0, 𝜇𝑥1, 𝛾𝑥2). The
quotient group is isomorphic to 𝔖3 × 2. It is generated by projective transformations,
which permute the points and the standard quadratic Cremona transformation (𝑥0, 𝑥1, 𝑥2) ↦

(𝑥1𝑥2, 𝑥0𝑥2, 𝑥0𝑥1).
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3.1.5 Degree 5

If 𝑑 = 5, then 𝑋 ≅ Bl𝑝1,𝑝2,𝑝3,𝑝4(ℙ
2) and | − 𝐾𝑋| = |ℙ2(3) − 𝑝1 − 𝑝2 − 𝑝2 − 𝑝4|. In this case,

Aut0(𝑋) = {1} and Aut0(𝑋) ≅ 𝔖5. The group is generated by its subgroups of projective trans-
formations that permute the four points and also a quadratic Cremona transformation of order 5

(𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0(𝑥2 − 𝑥1), 𝑥2(𝑥0 − 𝑥1), 𝑥0𝑥2), (7)

where we use projective coordinates such that 𝑝1, 𝑝2, 𝑝3 are as in the previous case, and
𝑝4 = [1, 1, 1].

3.2 Quartic del Pezzo surfaces

This is the first case where the classification of automorphism groups depends on the char-
acteristic 𝑝 of the ground field. We assume 𝑝 ≠ 2 and refer the reader to [10] for the case
𝑝 = 2.
A quartic del Pezzo surface 𝑋 is isomorphic to the blow-up Bl𝑝1,…,𝑝5(ℙ

2), where no three
points are collinear. The anti-canonical linear system | − 𝐾𝑋| = |ℙ2(3) − 𝑝1 − 𝑝2 − 𝑝3 − 𝑝4 −

𝑝5| embeds 𝑋 into ℙ4 as a complete intersection of two quadrics.
If 𝑝 = 0, the classification of automorphism groups can be found in [6, 8.6] and if 𝑝 ≠ 0, it was

accomplished in [9, section 3]. Since 𝑝 ≠ 2, the two quadrics can be simultaneously diagonalized
so that 𝑋 is given by equations

𝑡21 + 𝑡22 + 𝑡23 + 𝑎𝑡24 = 𝑡20 + 𝑡22 + 𝑏𝑡23 + 𝑡24 = 0, (8)

where the binary form Δ = 𝑢𝑣(𝑢 − 𝑣)(𝑢 − 𝑎𝑣)(𝑏𝑢 − 𝑣) has no multiple roots.
The automorphism group contains a normal subgroup 𝐻, isomorphic to 24 and generated by

the transformations (𝑡0, … , 𝑡4) ↦ (±𝑡0, … , ±𝑡4). The quotient groupAut(𝑋)∕𝐻 is isomorphic to the
subgroup𝐺 of PGL2(𝕜) ≅ Aut(ℙ1) that leaves the set𝑉(Δ) invariant. The classification is summa-
rized in Table A3 in the Appendix. There, the first column refers to the values of the parameters
𝑎 and 𝑏 in Equation (8) above. The conjugacy classes of elements of Aut(𝑋) can be obtained by
combining [9, table 2] and [2, table 5].

3.3 Cubic surfaces

A del Pezzo surface of degree 3 is isomorphic to the blow-up of 6 points 𝑝1, … , 𝑝6, where no three
points are collinear and not all of them lie on a conic. The anti-canonical linear system | − 𝐾𝑋| =|ℙ2(3) − 𝑝1 − 𝑝2 − 𝑝3 − 𝑝4 − 𝑝5 − 𝑝6| embeds 𝑋 into ℙ3. Its image is a cubic surface.
Aswe remarked in the introduction, the classification of automorphism groups of smooth cubic

surfaces in characteristic 0 has been known essentially since the 19th century (see themost recent
exposition in [6, 9.5]). In the case of positive characteristic, it can be found in [9]. We present the
results of this classification in Table A4 in the Appendix. Our table is obtained by translating [9,
table 7] from ATLAS to Carter notation. We also give the name of the corresponding type in [6,
table 9.6] for the convenience of the reader.
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4 DEL PEZZO SURFACES OF DEGREE 2

In this section, we are concerned with the classification of automorphism groups of del Pezzo
surfaces of degree 2. Recall from Section 2.1 that every del Pezzo surface 𝑋 of degree 2 is a dou-
ble cover of ℙ2 branched over a smooth quartic 𝐶. Moreover, we have the product decomposition
Aut(𝑋) ≅ 2 × Aut(𝐶), which follows from the corresponding decomposition of𝑊(𝖤7) (see The-
orem 2.2), so classifying automorphism groups of del Pezzo surfaces of degree 2 is equivalent to
classifying automorphism groups of smooth plane quartic curves.

4.1 List of possible groups

We know from Section 2.4 that a wild automorphism of 𝑋 can occur only if 𝑝 ∈ {3, 5, 7}. The next
lemma eliminates the cases 𝑝 = 5 and 𝑝 = 7.

Lemma 4.1. Assume that an element g of order 𝑝 acts non-trivially on a del Pezzo surface 𝑋 of
degree 2. Then, 𝑝 = 3.

Proof. Since 𝑝 is odd, g leaves invariant the plane quartic 𝐶. There are two possible Jordan
forms for a cyclic linear automorphism of ℙ2 of order 𝑝, namely, (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0 + 𝑥1, 𝑥1, 𝑥2)

and (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0 + 𝑥1, 𝑥1 + 𝑥2, 𝑥2). Since g(𝐶) = 𝐶, and the cyclic group (g) admits no
non-trivial characters, the equation of 𝐶 is g-invariant.
By [18, section 10.3], the invariant ring in the first case is

𝕜[𝑥0, 𝑥1, 𝑥2]
(g) = 𝕜[𝑁(𝑥0), 𝑥1, 𝑥2],

where 𝑁(𝑥0) = 𝑥0(𝑥0 + 𝑥1)⋯ (𝑥0 + (𝑝 − 1)𝑥1). If 𝑝 ≠ 3, the degree of 𝑁(𝑥0) is larger than 4,
hence 𝐶 is a union of lines through [1,0,0], which is absurd.
By [18, Theorem 10.5], the invariant ring in the second case is

𝕜[𝑥0, 𝑥1, 𝑥2]
(g) = 𝕜

[
𝑁(𝑥0), 𝑥

2
1 − 2𝑥0𝑥2 − 𝑥1𝑥2, 𝑥2,

{
tr
(
𝑥𝑏1𝑥

𝑐
0

)}
0⩽𝑏⩽1,0⩽𝑐⩽𝑝−1

]
,

where 𝑁(𝑥0) =
∏𝑝−1

𝑖=0
(𝑥0 + 𝑖𝑥1 +

𝑖2−𝑖

2
𝑥2) and tr(𝑥𝑏

1
𝑥𝑐
0
) =

∑𝑝−1

𝑖=0
(𝑥1 + 𝑖𝑥2)

𝑏(𝑥0 + 𝑖𝑥1 +
𝑖2−𝑖

2
𝑥2)

𝑐.
Recall that

𝑝−1∑
𝑖=0

𝑖𝑛 =

{
−1 if (𝑝 − 1) ∣ 𝑛

0 else.

Hence, if 𝑝 > 3, all the polynomials tr(𝑥𝑏
1
𝑥𝑐
0
) with 𝑏 + 𝑐 ⩽ 4 have multiplicity at least 𝑐 − 2 at

[1,0,0], so every element of

𝕜[𝑥0, 𝑥1, 𝑥2]
𝐶𝑝
4

= 𝕜
[
𝑥21 − 2𝑥0𝑥2 − 𝑥1𝑥2, 𝑥2,

{
tr
(
𝑥𝑏1𝑥

𝑐
0

)}
0⩽𝑏⩽1,0⩽𝑐⩽𝑝−1,𝑏+𝑐⩽4

]
4

defines a quartic, which is singular at [1,0,0]. Therefore, we must have 𝑝 = 3. □
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Corollary 4.2. There exists no smooth plane quartic with an automorphism of order 5.

Proof. By Lemma 4.1, this holds if 𝑝 = 5. For 𝑝 ≠ 5, we can lift the curve to characteristic 0
together with its automorphism of order 5. But in characteristic 0, there are no smooth quartics
with automorphisms of order 5, a contradiction. □

Since we also know that Aut(𝐶) does not contain automorphisms of order 𝑝2, we obtain the
following.

Corollary 4.3. Let 𝐺 be a finite group that acts faithfully on a smooth plane quartic. Then, the
following hold.

(1) The only prime divisors of |𝐺| are 2,3, and 7.
(2) If 𝐺 is wild, then 𝑝 = 3.

Proof. If 𝐺 is wild, then it contains 𝐶𝑝, so 𝑝 = 3 by Lemma 4.1. Since 𝐺 embeds into𝑊(𝐸7) via 𝜌
and the only prime divisors of |𝑊(𝐸7)| are 2,3,5, and 7 by Theorem 2.2, the same holds for |𝐺|. By
Corollary 4.2, the divisor 5 does not occur, and the claim follows. □

The restrictions |𝐺| obtained thus far allow us to show that the list of groups in Theorem 2.6
that can leave a smooth plane quartic invariant is relatively short.

Theorem 4.4. Assume 𝑝 ≠ 2. Let 𝐺 be a finite subgroup of PGL3(𝕜) that leaves invariant a smooth
plane quartic curve. Then, 𝐺 is conjugate to one of the following groups:

(1) only if 𝑝 = 3: the group PSU3(9);
(2) only if 𝑝 ≠ 7: the group L2(7);
(3) a subgroup of (𝕜×)2 ∶ 𝔖3, where (𝕜×)2 acts diagonally and𝔖3 acts via permutations;
(4) only if𝑝 = 3: a subgroup of 𝕜2 ∶ GL2(𝕜), where 𝕜2 acts as 𝑥0 ↦ 𝑥0 + 𝜆𝑥1 + 𝜇𝑥2 andGL2(𝕜) acts

linearly on 𝑥1 and 𝑥2.

Proof. In the following, we study the items in Theorem 2.6 and exclude most of them using
Corollary 4.3. Recall from Theorem 2.2 that

|𝑊(𝖤7)| = 210 ⋅ 34 ⋅ 5 ⋅ 7

and that, by Corollary 4.3, the only prime divisors of |𝐺| are 2, 3, and 7.
(1)–(5) All these groups are wild, hence 𝑝 = 3 and 𝑞 is a power of 3. Then, the only groupwhose

order divides |𝑊(𝖤7)| and which does not have 5 as a prime factor is PSU3(9).
(6)–(10) Here, all groups except L2(7) have 5 as a prime factor.
(11)-(12) The group in (11) can be diagonalized over 𝕜, so (11) becomes a special case of (12).

(13) The explicit description we give is taken from [1, section 7].
(14)–(15) Over 𝕜, (15) is a special case of (14). All these groups contain a subgroup of the form 32.

Since 𝑝 ≠ 3, we can diagonalize this subgroup. It is elementary to check that there are
no smooth quartics that are invariant under a diagonal action of 32. □
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In the following sections, we analyze these four types of groups in detail and check which of
them are realized as automorphism groups of smooth plane quartics. We will focus on the wild
groups first and treat the tame groups afterwards in Section 4.5.

4.2 The groups 𝐏𝐒𝐔𝟑(𝟗) and 𝐋𝟐(𝟕)

It is well known that, over ℂ, the Klein quartic curve defined by the equation

𝑥30𝑥1 + 𝑥31𝑥2 + 𝑥32𝑥0 = 0 (9)

is the unique (up to isomorphism) smooth plane quartic curve with group of automorphisms of
maximal possible order equal to 168. Its group of automorphisms is isomorphic to the simple group
L2(7). Less known is that it is isomorphic to two members of the pencil of plane quartic curves

𝑥4 + 𝑦4 + 𝑧4 + 𝑡(𝑥2𝑦2 + 𝑦2𝑧2 + 𝑦2𝑧2) = 0, (10)

corresponding to the parameters 𝑡 = 3

2
(−1 ±

√
−7) (see [6, 6.5.2]). The change of coordinates

realizing this isomorphism is given by

(𝑥0, 𝑥1, 𝑥2) ↦ (𝑥 + 𝑎𝑦 + 𝑏𝑧, 𝑎𝑥 + 𝑏𝑦 + 𝑧, 𝑏𝑥 + 𝑦 + 𝑎𝑧),

where 𝑎 = 1 + 𝜁7 + 𝜁27 + 𝜁3 + 𝜁57, 𝑏 = 𝜁27 + 𝜁7, and 𝜁7 is a primitive seventh root of unity [11, p. 56].
In our case, when 𝑝 = 3, we can still use this transformation and obtain an isomorphism

between the Klein curve (9) and the Fermat quartic given by the equation

𝑥40 + 𝑥41 + 𝑥42 = 0. (11)

Since automorphisms of order 7 are tame, the proof of [6, Lemma 6.5.1] shows the following.

Lemma 4.5. Let 𝐶 be a smooth plane quartic with an automorphism of order 7. Then, 𝐶 is
isomorphic to the Klein quartic

𝑥30𝑥1 + 𝑥31𝑥2 + 𝑥32𝑥0 = 0. (12)

Corollary 4.6. Let 𝐶 be a smooth plane quartic. Then, the following are equivalent:

(1) 𝐶7 ⊆ Aut(𝐶).
(2) L2(7) ⊆ Aut(𝐶).
(3) 𝐶 can be defined by the equation

𝑥30𝑥1 + 𝑥31𝑥2 + 𝑥32𝑥0 = 0.

If 𝑝 ≠ 3, then (1) – (3) are also equivalent to the following:

(4) L2(7) = Aut(𝐶).

If 𝑝 = 3, then (1) – (3) are also equivalent to the following:
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(5) PSU3(9) ⊆ Aut(𝐶).
(6) PSU3(9) = Aut(𝐶).
(7) 𝐶 can be defined by the equation

𝑥40 + 𝑥41 + 𝑥42 = 0.

In particular, for all 𝑝, the curve 𝐶 satisfying these conditions is unique and it exists if and only if
𝑝 ≠ 7.

Proof. By Lemma 4.5, we have (1) ⇒ (3). The implication (3) ⇒ (2) holds over ℂ. This yields
the corresponding implication in positive characteristic via reduction modulo 𝑝. The implication
(2) ⇒ (1) is clear. Note that the equation in (3) defines a smooth quartic if and only if 𝑝 ≠ 7.
If 𝑝 ≠ 3, then Theorem 4.4 shows that L2(7) is maximal among all subgroups of PGL3(𝕜)

preserving a smooth quartic, hence (2) ⇒ (4). The converse is clear.
If 𝑝 = 3, then, as explained above, we have (3) ⇒ (7). The Fermat quartic admits a faithful

action of 42, hence Aut(𝐶) is strictly larger than L3(7). By Theorem 4.4, this implies PSU3(9) =

Aut(𝐶). Hence, (7) ⇒ (6). The remaining implications (6) ⇒ (5) and (5) ⇒ (1) are clear. □

Remark 4.7. The Fermat quartic curve in characteristic 3 can be characterized among smooth
plane quartics by the property that it has infinitely many inflection points, or equivalently, its
Hessian is identically zero [13, Proposition 3.7].

4.3 Wild subgroups of (𝕜×)𝟐 ∶ 𝕾𝟑

In this section, we classify the wild subgroups of (𝕜×)2 ∶ 𝔖3 that leave invariant smooth plane
quartics. So, we have to classify smooth quartics that are invariant under a cyclic permutation of
coordinates in characteristic 𝑝 = 3.

Lemma 4.8. Let 𝐶 be a smooth plane quartic in characteristic 𝑝 = 3. Then, 𝐶 is invariant under
the automorphism g ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥1, 𝑥2, 𝑥0) if and only if 𝐶 is given by an equation of the form

𝑎
(
𝑥40 + 𝑥41 + 𝑥42

)
+ 𝑏

(
𝑥30𝑥1 + 𝑥31𝑥2 + 𝑥32𝑥0

)
+ 𝑐

(
𝑥0𝑥

3
1 + 𝑥1𝑥

3
2 + 𝑥2𝑥

3
0

)
+𝑑

(
𝑥20𝑥

2
1 + 𝑥21𝑥

2
2 + 𝑥22𝑥

2
0

)
+ 𝑒

(
𝑥0𝑥1𝑥

2
2 + 𝑥1𝑥2𝑥

2
0 + 𝑥2𝑥0𝑥

2
1

)
= 0

with 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ 𝕜. The element g belongs to the conjugacy class of Type 2𝐴2 in𝑊(𝖤6).

Proof. Computing the equation of 𝐶 is straightforward. To compute the conjugacy class of g , we
can argue as follows: Since 𝐶 has 28 bitangents and g has order 3, the automorphism of the del
Pezzo surface 𝑋 induced by g preserves a (−1)-curve, hence g is induced by an automorphism g ′

of a cubic surface and𝑋 is obtained by blowing up a fixed point of g ′. As g has only one fixed point
on ℙ2, the automorphism g ′ also has only one fixed point. By [9, Theorem 10.4], this implies that
the conjugacy class of g ′ is of Type 2𝐴2. □

It turns out that every smooth quartic, which is invariant under a cyclic permutation of
coordiantes, is projectively equivalent to one that is invariant under arbitrary permutations of
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coordinates. We remark that this happens in characteristic 0 as well (see [6, Proof of Theorem
6.5.2]).

Lemma 4.9. Let 𝐶 be a smooth plane quartic in characteristic 𝑝 = 3. Assume that 𝐶 is invariant
under g ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥1, 𝑥2, 𝑥0). Then, 𝐶 is invariant under a subgroup of PGL3(𝕜), which is
conjugate to the group𝔖3 of permutationmatrices. In particular,𝐶 admits an equation of the form

𝑎
(
𝑥40 + 𝑥41 + 𝑥42

)
+ 𝑏

(
𝑥30𝑥1 + 𝑥31𝑥2 + 𝑥32𝑥0 + 𝑥0𝑥

3
1 + 𝑥1𝑥

3
2 + 𝑥2𝑥

3
0

)
(13)

+𝑐
(
𝑥20𝑥

2
1 + 𝑥21𝑥

2
2 + 𝑥22𝑥

2
0

)
+ 𝑑

(
𝑥0𝑥1𝑥

2
2 + 𝑥1𝑥2𝑥

2
0 + 𝑥2𝑥0𝑥

2
1

)
= 0.

Proof. It suffices to show that the normal forms of Lemma 4.8 can be simplified to the ones in
Equation (13) via a suitable coordinate transformation. The matrices in GL3(𝕜) of the form

⎛⎜⎜⎝
1 𝛽 0

0 1 𝛽

𝛽 0 1

⎞⎟⎟⎠
with −1 ≠ 𝛽 ∈ 𝕜 commute with g , hence they act on the set of all normal forms of Lemma 4.8.
Explicit computation shows that such a substitution changes 𝑐 − 𝑏 to

𝑃(𝛽) = (𝑐 − 𝑏)𝛽4 + (𝑎 + 𝑑 + 𝑒 − 𝑐)𝛽3 + 𝑒𝛽2 + (𝑏 − 𝑎 − 𝑑 − 𝑒)𝛽 + 𝑐 − 𝑏.

Assuming 𝑏 ≠ 𝑐, the polynomial 𝑃(𝛽) is non-constant. The point [1 ∶ 1 ∶ 1] lies on 𝐶 and
is smooth, hence we have (𝑑, 𝑒) ≠ (−𝑎 − 𝑏 − 𝑐, 0) by the Jacobian criterion. This implies
that 𝑃(𝛽) has a root different from −1. Choosing such a root of 𝑃(𝛽) and applying the
corresponding transformation transforms the normal form of Lemma 4.8 into the desired
form. □

Now, the Fermat quartic (11) is a member of the family of quartics that occur in Lemma 4.9.
The following lemma gives us a criterion to detect it.

Lemma 4.10. Assume 𝑝 = 3. A smooth plane quartic 𝐶 given by an equation as in Lemma 4.9
satisfies Aut(𝐶) = PSU3(9) if and only if 𝑐 = 𝑑 = 0.

Proof. Computing the Hessian of this curve, we find that it is equal to zero if and only if 𝑐 = 𝑑 = 0.
We conclude using Remark 4.7. □

Lemma 4.11. Let 𝐶 be a smooth plane quartic in characteristic 𝑝 = 3. Assume that Aut(𝐶) is con-
jugate to a subgroup of (𝕜×)2 ∶ 𝔖3 and𝔖3 ⊊ Aut(𝐶). Then, 𝐶 can be defined by an equation of the
form

𝑥20𝑥
2
1 + 𝑥21𝑥

2
2 + 𝑥20𝑥

2
2 + 𝑎

(
𝑥40 + 𝑥41 + 𝑥42

)
= 0 (14)

with 𝑎 ∈ 𝕜 ⧵ 𝔽3. Conversely, a quartic 𝐶 defined by an equation of this form satisfies Aut(𝐶) ≅ 22 ∶

𝔖3 ≅ 𝔖4.
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Proof. We assume Aut(𝐶) ≅ 𝐻 ∶ 𝔖3, where 𝐻 is non-trivial and acts diagonally, and 𝔖3 is the
group of permutation matrices. Thus, we may assume that 𝐶 is given by an equation as in
Lemma 4.9. The polynomial 𝑥0𝑥1𝑥22 + 𝑥1𝑥2𝑥

2
0
+ 𝑥2𝑥0𝑥

2
1
is not semi-invariant under any diag-

onal automorphism, hence 𝑑 = 0. By Lemma 4.10, we have 𝑐 ≠ 0 and we can assume 𝑐 = 1

by rescaling the coordinates. A diagonal automorphism for which 𝑥2
0
𝑥2
1
+ 𝑥2

1
𝑥2
2
+ 𝑥2

2
𝑥2
0
is semi-

invariant has order 2 and since 𝐻 is non-trivial and 𝐶3 ⊆ Aut(𝐶), we deduce that 𝐻 ≅ 22. But
then the polynomial 𝑥3

0
𝑥1 + 𝑥3

1
𝑥2 + 𝑥3

2
𝑥0 + 𝑥0𝑥

3
1
+ 𝑥1𝑥

3
2
+ 𝑥2𝑥

3
0
is not 𝐻-semi-invariant, hence

𝑏 = 0. This shows that 𝐶 is given by the stated equation and 𝑎 ∉ 𝔽3 follows from the Jacobian
criterion.
It remains to show that Aut(𝐶) = 22 ∶ 𝔖3 ≅ 𝔖4. By Lemma 4.10, Corollary 4.6, and Theo-

rem 4.4, it suffices to show that Aut(𝐶) is not conjugate to a subgroup of 𝕜2 ∶ GL2(𝕜). If it were,
then it would have to act through GL2(𝕜), since 𝔖4 does not admit any non-trivial normal sub-
group of order a power of 3. In particular, the fixed locus of an element of order 3 in𝔖4 would be
a line and this is not the case in our situation. Hence, Aut(𝐶) ≅ 𝔖4. □

4.4 Wild subgroups of 𝕜𝟐 ∶ 𝐆𝐋𝟐(𝕜)

We already saw one conjugacy class of wild automorphisms in Lemma 4.8. The other conjugacy
class is studied in the following lemma.

Lemma 4.12. Let 𝐶 be a smooth plane quartic in characteristic 𝑝 = 3. Then, 𝐶 is invariant under
the automorphism g ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0 + 𝑥1, 𝑥1, 𝑥2) if and only if 𝐶 is given by an equation of the
form

𝑓1(𝑥1, 𝑥2)
(
𝑥30 − 𝑥0𝑥

2
1

)
+ 𝑓4(𝑥1, 𝑥2) = 0, (15)

with 𝑓𝑖 homogeneous of degree 𝑖. The element g belongs to the conjugacy class of type 3𝐴2.

Proof. The equation of 𝐶 follows from the structure of the invariant ring of g (see the proof of
Lemma 4.1). The closed subscheme of fixed points of g is 𝑉(𝑥1). Our automorphism leaves the
bitangent line given by the equation 𝑓1(𝑥1, 𝑥2) = 0 invariant. Since g is of order 3, it also leaves
each irreducible component of the preimage of 𝑉(𝑓1) in 𝑋 invariant. Thus, blowing down one
of the components of this preimage, we obtain an automorphism of order 3 of a cubic surface
that fixes a plane section (the preimage of 𝑉(𝑥1)) pointwise. It follows from [9, Theorem 10.4]
that this automorphism belongs to the conjugacy class 3𝐴2 in 𝑊(𝖤6). Thus, the corresponding
automorphism of 𝑋 is in the conjugacy class 3𝐴2 in𝑊(𝖤7). □

Lemma 4.13. Let 𝐺 be a wild subgroup of 𝕜2 ∶ GL2(𝕜). If 9 ∣ |𝐺| and 𝐺 preserves a smooth plane
quartic 𝐶, then 𝐶 is given by an equation of the form

𝑥2
(
𝑥30 − 𝑥0𝑥

2
2

)
+ 𝑥41 + 𝑐𝑥21𝑥

2
2 (16)

for some 𝑐 ∈ 𝕜. Any plane quartic curve 𝐶 with such an equation is smooth. If 𝑐 = 0, then Aut(𝐶) ≅
PSU3(9), and if 𝑐 ≠ 0, then Aut(𝐶) ≅ 3(3) ∶ 2.
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Proof. Since 𝐺 contains no elements of order 9 [7, Theorem 8], it must contain two commuting
elements g1, g2 of order 3 that generate a subgroup 𝐾 of order 9. Since 𝐾 preserves a bitangent, it
acts faithfully on a cubic surface, hence, by [9], it embeds into the Heisenberg group3(3). Since
𝐾 is abelian of order 9 and3(3) is a non-split extension of 32 by its center, the group 𝐾 contains
the center of 3(3), hence it contains elements of conjugacy class 3𝐴2 in 𝑊(𝖤6). By [9], there
are at most two elements of conjugacy class 3𝐴2 in an automorphism group of a cubic surface,
so the other elements of 𝐾 are of conjugacy class 2𝐴2. Back on 𝐶, this means that 𝐾 contains
automorphisms of both conjugacy classes 2𝐴2 and 3𝐴2.
Without loss of generality, we may assume that the g𝑖 are upper triangular matrices, that g1 is

of class 3𝐴2, and that g2 is of class 2𝐴2. Up to conjugation by an upper triangular matrix, we may
assume that g1 acts as 𝑥0 ↦ 𝑥0 + 𝑥1, as 𝑥1 ↦ 𝑥1 + 𝑥2, or as 𝑥0 ↦ 𝑥0 + 𝑥2. In the first two cases,
the centralizer of g1 in the group of strict upper triangular matrices consists of automorphisms of
class 3𝐴2, hence we are in the third case. Analogously to Lemma 4.12, we deduce that 𝐶 is given
by an equation of the form

𝑓1(𝑥1, 𝑥2)
(
𝑥30 − 𝑥0𝑥

2
2

)
+ 𝑓4(𝑥1, 𝑥2) = 0.

After conjugating by a suitable upper triangular matrix, we may assume that the automorphism
g2 acts as (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0 + 𝑥1, 𝑥1 + 𝜇𝑥2, 𝑥2) for some 𝜇 ≠ 0. Since 𝐶 is invariant under g2, it is
given by an equation of the form

𝑥2
(
𝑥30 − 𝑥0𝑥

2
2

)
+
(
𝑎𝑥41 + 𝑏𝑥31𝑥2 + 𝑐𝑥21𝑥

2
2 + 𝑑𝑥1𝑥

3
2 + 𝑒𝑥42

)
= 0

with 𝑎 = − 1

𝜇
, 𝜇2 + 𝑐𝜇 + 1 = 0, and 𝜇4𝑎 + 𝜇3𝑏 + 𝜇2𝑐 + 𝜇𝑑 = 0.

Now, we rescale 𝑥1 so that 𝑑 = −𝑏, use a substitution of the form 𝑥0 ↦ 𝑥0 + 𝛼𝑥1 + 𝛽𝑥2 to set
𝑏 = 𝑑 = 𝑒 = 0, and then scale 𝑎 to 1. These substitutions commute with g1, so 𝐶 is still invariant
under g1, but they change the shape of g2. However, the equation is now in the simpler form

𝑥2
(
𝑥30 − 𝑥0𝑥

2
2

)
+ 𝑥41 + 𝑐𝑥21𝑥

2
2 = 0.

Now, this equation is invariant under the substitutions (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0 + 𝜆𝑥1 + 𝜇𝑥2, 𝑥1 −

𝜆3𝑥2, 𝑥2) with 𝜆9 − 𝜆3𝑐 + 𝜆 = 0 and 𝜇3 − 𝜇 + 𝜆12 + 𝑐𝜆6 = 0. These substitutions form a group
isomorphic to 3(3). We also see that 𝐶 is invariant under the involution 𝜏 ∶ 𝑥1 ↦ −𝑥1, hence
3(3) ∶ 2 ⊆ Aut(𝐶).
It is known that a subgroup of Sp6(2) = 𝑊(𝖤7)∕⟨±id⟩ isomorphic to 3(3) ∶ 2 is conjugate to

a subgroup of 3(3) ∶ 8, which is realized as a maximal subgroup of PSU3(9) [3, p. 14]. So, if
Aut(𝐶) ≠ PSU3(9), then 3(3) is normal in Aut(𝐶) and Aut(𝐶) contains an element 𝜏′ whose
square is 𝜏. In particular, 𝜏′ acts on the fixed locus𝑉(𝑥2) of g1 and this action is non-trivial, since 𝜏
acts non-trivially on 𝑉(𝑥2). Since Aut(𝐶) fixes the point 𝑉(𝑥2) ∩ 𝐶 = [1, 0, 0], Theorem 2.5 shows
that 𝜏′ generates a subgroup of 𝕜× of order 4, which normalizes 3(3)∕⟨g1⟩ ≅ 32. Since 32 acts
on 𝑉(𝑥2) as 𝑥0 ↦ 𝑥0 + 𝜆𝑥1 with 𝜆9 − 𝜆3𝑐 + 𝜆, the automorphism 𝜏′ cannot exist if 𝑐 ≠ 0. Hence,
Aut(𝐶) ≅ 3(3) ∶ 2. □

In the following, we let 𝐺 ⊆ 𝕜2 ∶ GL2(𝕜) be a wild subgroup. By Lemma 4.13, we may assume
that its 3-Sylow subgroup 𝐻 satisfies |𝐻| = 3. There are three conjugacy classes of elements of
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order 3 in 𝕜2 ∶ GL2(𝕜), namely,

g1 ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0 + 𝑥1, 𝑥1, 𝑥2),

g2 ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0, 𝑥1 + 𝑥2, 𝑥2), and

g3 ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0 + 𝑥1, 𝑥1 + 𝑥2, 𝑥2).

In each case, the group 𝐺 is contained in the normalizer 𝑁𝑖 of g𝑖 in 𝕜2 ∶ GL2(𝕜). We have

𝑁1 =

⎧⎪⎨⎪⎩
⎛⎜⎜⎝
1 𝛼 𝛽

0 𝛾 0

0 𝛿 𝜀

⎞⎟⎟⎠ ∣ 𝛼, 𝛽, 𝛿 ∈ 𝕜, 𝜀 ∈ 𝕜×, 𝛾2 = 1

⎫⎪⎬⎪⎭,

𝑁2 =

⎧⎪⎨⎪⎩
⎛⎜⎜⎝
1 0 𝛼

0 𝛽 𝛾

0 0 𝛿

⎞⎟⎟⎠ ∣ 𝛼, 𝛾 ∈ 𝕜, 𝛿 ∈ 𝕜×, 𝛽2 = 1

⎫⎪⎬⎪⎭, and

𝑁3 =

⎧⎪⎨⎪⎩
⎛⎜⎜⎝
1 𝛼 𝛽

0 𝛾 𝛼𝛾 + 𝛾 − 1

0 0 1

⎞⎟⎟⎠ ∣ 𝛼, 𝛽 ∈ 𝕜, 𝛾2 = 1

⎫⎪⎬⎪⎭.

In each case, the centralizer of g𝑖 has index 2 and is obtained by setting 𝛾 = 1, 𝛽 = 1, or 𝛾 = 1,
respectively. The element g2 is conjugate in PGL3(𝕜) to g1 via a cyclic permutation of coordinates
and this conjugation maps 𝑁2 into 𝑁1, so we only have to study the cases where 𝐺 contains g1 or
g3.
If 𝐺 leaves a smooth quartic invariant, then |𝐺| = 2𝑛 ⋅ 3 for some 𝑛 ⩾ 0. We settled the cases

where 𝑛 = 0 in Lemma 4.12 and Lemma 4.8. If 𝑛 ⩾ 1, then 𝐺 contains an involution. So, next, we
will study involutions in 𝑁1 and 𝑁3.
Every involution in 𝑁1 satisfies (𝛾, 𝜀) ∈ {(−1, 1), (1, −1), (−1, −1)}, with 𝛽 = 0 in the first case,

𝛼 = 𝛽𝛿 in the second case, and 𝛿 = 0 in the third case. Conjugating by a suitable lower triangular
matrix in 𝑁1, we may assume 𝛿 = 0 also holds in the first two cases. Finally, conjugating by a
suitable upper triangular matrix in 𝑁1, we may assume 𝛼 = 𝛽 = 𝛿 = 0 holds in all three cases.
Thus, we have the three representatives

𝜏1 ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0, −𝑥1, 𝑥2),

𝜏2 ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0, 𝑥1, −𝑥2), and

𝜏3 ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0, −𝑥1, −𝑥2).

Lemma 4.14. Let 𝐶 be a smooth plane quartic in characteristic 𝑝 = 3. Assume that 𝐶 is invariant
under 𝐺 ⊆ 𝕜 ∶ GL2(𝕜), 𝐺 contains g1 and 9 ∤ |𝐺|. IfAut(𝐶) contains an involution, then 𝐶 is one of
the quartics of Lemma 4.13.
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Proof. In Lemma 4.12, we have determined the g1-invariant quartics. Determining the equa-
tions for the quartics, which are additionally 𝜏𝑖-invariant is straightforward. Now, it remains to
show that every 𝜏𝑖-invariant 𝐶 occurs in the family of Lemma 4.13.
Assume 𝐺 contains 𝜏1. Then, either the equation of 𝐶 is 𝜏1-anti-invariant and then 𝐶 contains

the line 𝑉(𝑥1), or 𝐶 is given by an equation of the form

𝑎𝑥2
(
𝑥30 − 𝑥0𝑥

2
1

)
+ 𝑏𝑥41 + 𝑐𝑥21𝑥

2
2 + 𝑑𝑥42 = 0.

This curve is singular at the point [𝛼, 0, 1] with 𝑎𝛼3 + 𝑑 = 0.
Assume 𝐺 contains 𝜏2. Then, either 𝐶 is reducible or given by an equation of the form

𝑎𝑥1
(
𝑥30 − 𝑥0𝑥

2
1

)
+ 𝑏𝑥41 + 𝑐𝑥21𝑥

2
2 + 𝑑𝑥42 = 0.

Rescaling coordinates, wemay assume 𝑎 = 1 and then we can use a substitution of the form 𝑥0 ↦

𝑥0 + 𝛼𝑥1 to set 𝑏 = 0. After rescaling 𝑥2 and swapping 𝑥1 and 𝑥2, we obtain the normal form of
Lemma 4.13.
Finally, assume that 𝐺 contains 𝜏3. Then, 𝑓1(𝑥1, 𝑥2)(𝑥30 − 𝑥0𝑥

2
1
) is 𝜏3-anti-invariant while

𝑓4(𝑥1, 𝑥2) is 𝜏3-invariant, so either 𝑓1 = 0 or 𝑓4 = 0. In both cases, 𝐶 is singular. □

Finally, assume that 𝐺 contains g3 and 9 ∤ |𝐺|. The unique conjugacy class of involutions in𝑁3

is represented by 𝜏 ∶ (𝑥0, 𝑥1, 𝑥2) ↦ (𝑥0, −𝑥1 + 𝑥2, 𝑥2). All elements of 𝑁3, which are not in this
conjugacy class have order 1 or 3, hence 𝐺 ⊆ 𝔖3 with equality if and only if 𝐺 is conjugate to⟨g3, 𝜏⟩, which, in turn, is conjugate in GL3(𝕜) to the group of permutation matrices. Hence, this
case is reduced to Lemma 4.9.

4.5 Tame automorphism groups of smooth plane quartics

Aswementioned in the introduction, the pair (𝑋, Aut(𝑋)) can be lifted to characteristic 0 ifAut(𝑋)
is tame. Since 𝑋 does not admit global vector fields, specialization of automorphisms is injective,
hence the lift 𝑋′ of 𝑋 to characteristic 0 has the same automorphism group as 𝑋.
In particular, this means that the list of tame groups that can be realized as automorphism

groups of del Pezzo surfaces of degree 2 in positive characteristic is contained in the list of [6,
Theorem 6.5.2]. To finish the classification of tame groups, we have to show that the equations in
this list have smooth reduction modulo 𝑝 and that the automorphism group of the reduction
cannot be larger for a general choice of parameters. In the following, we explain how to do this
for the first five groups in the list of [6, Theorem 6.5.2].

∙ L2(7): This group is tame if 𝑝 ≠ 3, 7. It is realized by the Klein quartic in every such
characteristic.

∙ 42 ∶ 𝔖3: This group is tame if 𝑝 ≠ 3. Its order is 96, so by Theorem 4.4, it is maximal
among all groups that can occur as automorphism groups of smooth plane quartics in these
characteristics. It is realized by the Fermat quartic.

∙ 4.𝔄4: This group is tame if 𝑝 ≠ 3. Since it contains an element of order 12, it does not embed
into 42 ∶ 𝔖3 or L2(7), hence it is maximal. The equation given in [6, table 6.1] is smooth if 𝑝 ≠ 3,
so this group is realized.
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TABLE 1 Wild automorphism groups of smooth plane quartics in characteristic 3.

Type 𝐀𝐮𝐭(𝑪) Order Equation # Parameters Conditions
I/II/III PSU3(9) 6048 (12) 0 –
IV 𝔖4 24 (14) 1 𝑎 ∉ 𝔽3

VIII 3(3) ∶ 𝐶2 54 (16) 1 𝑐 ≠ 0

IX 𝔖3 6 (13) 2 General
XI 𝐶3 3 (15) 2 General

∙ 𝔖4: This group is tame if 𝑝 ≠ 3. The equation given in [6, table 6.1] defines a one-dimensional
family of smooth quartics with an action of this group in any such characteristic. Since all
smooth quartics with larger automorphism group are unique, a generic choice of parameters
will yield a smooth quartic with automorphism group𝔖4.

∙ 4.22: This group is tame. Again, the equation given in [6, table 6.1] defines a one-dimensional
family of smooth plane quartics with an action of this group in any characteristic. By the above
and Table 1, all smooth quartics whose automorphism group contains 4.22 are isolated, hence
a generic member of this one-dimensional family has Aut(𝐶) = 4.22.

The other cases work similarly and are left to the reader. We conclude that all groups in the
list of [6, Theorem 6.5.2] occur as the full automorphism group of some smooth plane quartic in
characteristic 𝑝 if 𝑝 does not divide the order of the group.

4.6 Wild automorphism groups of smooth plane quartics

Here, we summarize the classification of wild groups of automorphisms of smooth plane quar-
tics by collecting the results of the previous sections. We use the notation of [6, table 6.1] for wild
groups in characteristic 𝑝 that also occur in characteristic 0. After a suitable change of coordi-
nates, Equation (16) is the reduction modulo 3 of the family of Type VIII in [6, table 6.1], hence
we call it Type VIII. The Klein quartic in characteristic 3 is the reduction modulo 3 of the three
quartics of types I, II, and III in [6, table 6.1]. With this notation, our classification of wild groups
is summarized in Table 1.

4.7 Conjugacy classes

Recall that, by Theorem 2.2, we have𝑊(𝖤7) ≅ Sp6(2) × 2, where Sp6(2) can be described as the
subgroup of orthogonal transformations of determinant 1 and where the other factor is generated
by the Geiser involution.
By [6, Lemma 6.5.1], the Jordan form in ℙ2 of an automorphism leaving a smooth quartic 𝑄

invariant uniquely determines the conjugacy classes of the two lifts g and ḡ to the del Pezzo surface
𝑋 obtained as a double cover of ℙ2 branched over 𝑄. Here, we denote by g the lift that acts on 𝖤7
with determinant 1. By Lemma 4.8 and Lemma 4.12, the correspondence between Jordan forms
and conjugacy classes also holds forwild automorphisms of order 3 and it is not hard to extend this
to the case where g is wild of higher order. We summarize the translation between Jordan forms
and pairs of conjugacy classes in Carter notation in Table A2 in the Appendix. In the table, we
give the orders of g and ḡ in the first two columns, the Jordan form of the induced automorphism
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of ℙ2 in the third column, the conjugacy classes of g and ḡ in the fourth and fifth columns, and
the traces of the actions of g and ḡ on 𝖤7 in the last two columns.
Using this dictionary, one can determine the conjugacy classes in𝑊(𝖤7) of all automorphisms

of del Pezzo surfaces of degree 2. The result is summarized in Table A5 in the Appendix. In the
table, we give the name of the relevant family of del Pezzo surfaces in the first column, following
[6, table 6.1]. In the second column, we note the characteristics in which the family occurs. The
third and fourth columns give the group Aut(𝑋) and its order. The remaining columns give the
number of elements of a given Carter conjugacy class in Aut(𝑋).

5 DEL PEZZO SURFACES OF DEGREE 1

In this section, we classify automorphism groups of del Pezzo surfaces𝑋 of degree 1. Recall that𝑋
is a double cover of the quadratic cone ℙ(1, 1, 2) ⊆ ℙ3 branched over a sextic curve 𝐶. Moreover,
we have Aut(𝑋) ≅ 2.Aut(𝐶) but, in contrast to the case of degree 2, this central extension is not
necessarily split, so the classification of automorphism groups of del Pezzo surfaces of degree 1 is
more complicated than the classification of automorphism groups of possible branch curves 𝐶.

5.1 The elliptic pencil

As we have already observed in Section 2, the blow up of the unique base point 𝔬 of a del Pezzo
surface𝑋 of degree 1 has the structure of an elliptic surface𝜋 ∶ 𝑌 → ℙ1withWeierstrass equation

𝑦2 + 𝑥3 + 𝑎2(𝑡0, 𝑡1)𝑥
2 + 𝑎4(𝑡0, 𝑡1)𝑥 + 𝑎6(𝑡0, 𝑡1) = 0.

We have

𝜋∗ℙ1(1) ≅ 𝑌(−𝐾𝑌).

Since −𝐾𝑋 is ample, the fibration has no reducible fibers.
If 𝑝 = 3, and the absolute invariant 𝑗(𝐹𝜂) of the generic fiber 𝐹𝜂 of 𝜋 (considered as an elliptic

curve over the field 𝕜(ℙ1) of rational functions on the base of the fibration) is equal to zero, wemay
assume 𝑎2 = 0. In this case, 𝑎4 ≠ 0 (otherwise 𝐹𝜂 is singular) and 𝑎6 ≠ 0 (otherwise the surface 𝑋
has singular points over 𝑉(𝑎4)).
Obviously, any g ∈ Aut(𝑋) fixes the point 𝔬 and hence lifts to an automorphism g̃ of 𝑌 that

preserves the corresponding section 𝑆. Conversely, any automorphism of 𝑌 leaving invariant the
section 𝑆 descends to 𝑋.
Thus,

Aut(𝑋) ≅ Aut𝑆(𝑌) ∶= {g ∈ Aut(𝑌) ∶ g(𝑆) = 𝑆}.

Let

𝜙 ∶ Aut(𝑋) → GL(𝑇𝔬(𝑋)) (17)
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be the natural representation in the tangent space 𝑇𝔬(𝑋) of 𝑋 at the point 𝔬. Since any tame
automorphism acts faithfully on 𝑇𝔬(𝑋), the kernel

𝐻0 ∶= Ker(𝜙)

of 𝜙 is a normal subgroup of a 𝑝-Sylow subgroup of Aut(𝑋). The projectivization of the
representation 𝜙 defines a homomorphism

𝜙̄ ∶ Aut𝑆(𝑌) → Aut(𝑆) ≅ Aut(ℙ1). (18)

We may view 𝜙̄ as the natural action of Aut(𝑋) on the base of the fibration 𝜋.
The action 𝜙̄ allows us to write Aut(𝑋) as an extension𝐻.𝑃, where

𝐻 ∶= Ker(𝜙̄) and

𝑃 ∶= 𝜙̄(Aut(𝑋)) ⊆ Aut(ℙ1).

In the following, we collect some preliminary restrictions on the groups𝐻 and 𝑃.
The group 𝑃 is a subgroup of PGL2(𝕜), so we can use the classification of finite subgroups of

PGL2(𝕜) to study it. The classification of finite tame subgroups of PGL2(𝕜) coincides with the
well-known classification of finite subgroups of PGL2(ℂ): The finite subgroups of PGL2(ℂ) are
exactly the polyhedral groups, that is, the groups 𝐶𝑛, 𝐷𝑛,𝔄4,𝔖4, and 𝔄5. The classification of
wild subgroups of PGL2(𝕜) is contained in Theorem 2.5.
The group𝐻 is an extension𝐻0 ∶ 𝐶𝑛, where𝐶𝑛 is a cyclic subgroup of order 𝑛 prime to 𝑝. Since

𝑝 is odd, 𝐶𝑛 contains the Bertini involution, so 2 ∣ 𝑛. We can also describe𝐻 as the automorphism
group of the generic fiber 𝐹𝜂 of the elliptic fibration. The structure of this group is well known
(see, e.g., [16, Appendix A]) and we have the following normal forms:

Lemma 5.1. Let𝑋 be a del Pezzo surface of degree 1, let 𝐹𝜂 be the generic fiber of the anti-canonical
pencil | − 𝐾𝑋| with 𝑗-invariant 𝑗 ∶= 𝑗(𝐹𝜂), and let𝐻 and𝐻0 be as above.

(i) If 𝑗 ∉ {0, 1728}, then𝐻0 = {1} and𝐻 = 𝐶2.
(ii) If 𝑝 ≠ 3 and 𝑗 = 1728, then𝐻0 = {1},𝐻 = 𝐶4, and 𝑋 admits the equation

𝑦2 + 𝑥3 + 𝑎4𝑥 = 0.

(iii) If 𝑝 ≠ 3 and 𝑗 = 0, then𝐻0 = {1},𝐻 = 𝐶6, and 𝑋 admits the equation

𝑦2 + 𝑥3 + 𝑎6 = 0.

(iv) If 𝑝 = 3 and 𝑗 = 0, then 𝐻0 ⊆ 𝐶3 and 𝐻 is 𝐶2 or 𝐶6. Moreover, 𝐻0 = 𝐶3 if and only if 𝑎4 is a
square.

Proof. The first three cases are well known, and 𝐻 acts as (𝑥, 𝑦, 𝑡0, 𝑡1) ↦ (𝑢2𝑥, 𝑢3𝑦, 𝑡0, 𝑡1), where
𝑢𝑛 = 1 with 𝑛 = 2, 4, 6, respectively.
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In Case (iv), the automorphism group of the geometric generic fiber of𝜋 is the non-trivial semi-
direct product 𝐶3 ∶ 𝐶4. To show that𝐻0 ∈ {1, 𝐶3} and𝐻∕𝐻0 = 𝐶2, it thus suffices to show that no
automorphism of order 4 can descend to 𝐹𝜂. Assume that 𝐹𝜂 admits an automorphism of order 4.
Its fixed locus on 𝑋 is a 2-torsion section of the elliptic pencil 𝜋 ∶ 𝑌 → ℙ1, which, after a suitable
change of the 𝑥-coordinate, we may assume to be given by 𝑥 = 𝑦 = 0. In other words, 𝑋 admits a
Weierstrass equation of the form

𝑦2 + 𝑥3 + 𝑎4𝑥 = 0.

This equation is singular over the roots of 𝑎4, so 𝑋 is not a del Pezzo surface.
By [16, Appendix A, Proposition 1.2], the 𝕜(ℙ1)-linear substitutions that preserve Equation (2)

are of the form

(𝑥, 𝑦, 𝑡0, 𝑡1) ↦
(
𝑢2𝑥 + 𝑟2, 𝑢

3𝑦, 𝑡0, 𝑡1
)
,

where 𝑢4 = 1 and

𝑟32 + 𝑟2𝑎4 + (1 − 𝑢2)𝑎6 = 0.

Since𝐻∕𝐻0 = 𝐶2, every element of𝐻 satisfies 𝑢2 = 1, so 𝑟3
2
+ 𝑎4𝑟2 = 0. A non-zero 𝑟2 solving this

equation exists if and only if 𝑎4 is a square. Hence,𝐻0 = 𝐶3 if and only if 𝑎4 is a square. □

5.2 List of possible groups

The following lemma shows that wild automorphism groups of del Pezzo surfaces of degree 1 in
odd characteristic can only exist if 𝑝 = 3, 5.

Lemma 5.2. Assume 𝐶𝑝 acts faithfully on a del Pezzo surface 𝑋 of degree 1. Then, 𝑝 = 3 or 𝑝 = 5.

Proof. By Theorem 2.2, the prime divisors of the order of𝑊(𝖤8) are 2,3,5, and 7. So, it suffices to
exclude 𝑝 = 7. An automorphism g of order 7 acts on the set of 120 tritangent planes preserving
one of them. It fixes each of the (−1)-curves in the preimage pair. Blowing one of them down, we
obtain that g descends to a wild automorphism of a del Pezzo surface of degree 2. However, by
Corollary 4.6, we know that there are no wild automorphisms of order 7 on del Pezzo surfaces of
degree 2. □

As in the case of degree 2, the restrictions obtained so far allow us to give a preliminary list of
possible automorphism groups of del Pezzo surfaces of degree 1.

Corollary 5.3. Let 𝐺 be a finite group acting faithfully on a del Pezzo surface 𝑋 of degree 1. Then,
one of the following holds.

(1) 𝐺 is tame and 𝐺 ≅ 𝐻 ∶ 𝑃, where𝐻 is cyclic and 𝑃 is a polyhedral group.
(2) 𝐺 is wild, 𝑝 = 5, and 𝐺 ≅ 𝐻 ∶ 𝑃, where𝐻 is tame and cyclic, and

𝑃 ∈ {5𝑛 ∶ 𝐶𝑚, L2(5
𝑛), PGL2(5

𝑛)}
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for some 𝑛 ⩾ 1 and (5,𝑚) = 1.
(3) 𝐺 is wild, 𝑝 = 3, and 𝐺 ≅ 𝐻 ∶ 𝑃, where𝐻 is cyclic, and

𝑃 ∈ {3𝑛 ∶ 𝐶𝑚,𝐷𝑚,𝔄5, L2(3
𝑛), PGL2(3

𝑛)}

for some 𝑛 ⩾ 1 and (3,𝑚) = 1.

Proof. By Lemma 5.1, we have 𝐺 ≅ 𝐻 ∶ 𝑃, where𝐻 is a cyclic group and 𝑃 ⊆ PGL2(𝕜).
If 𝐺 is tame, then it lifts to characteristic 0, so 𝑃 embeds into PGL2(ℂ), hence it is a polyhedral

group. If 𝐺 is wild, then 𝑝 = 3, 5 by Lemma 5.2. The description of the possible 𝑃 follows from
Theorem 2.5. □

In the following sections, we first classify the wild automorphism groups of del Pezzo surfaces
of degree 1 in characteristics 5 and 3. Afterwards, we study the tame automorphism groups using
the approach of Section 4.5 in Section 5.5.

5.3 Wild automorphism groups in characteristic 5

In this section, we classify wild automorphism groups of del Pezzo surfaces of degree 1 in
characteristic 𝑝 = 5.

Theorem 5.4. Let 𝑋 be a del Pezzo surface of degree 1 in characteristic 𝑝 = 5. Assume 𝐺 = Aut(𝑋)

is wild. Then, one of the following cases occurs.

(i) 𝐺 ≅ 2.𝐷10 and 𝑋 is given by

𝑦2 + 𝑥3 + 𝑐𝑡40𝑥 + 𝑡0𝑡1(𝑡
4
1 − 𝑡40) = 0 with 𝑐 ≠ 0. (19)

(ii) 𝐺 ≅ 𝐶6. PGL2(5) ≅ 3 × (2. PSL2(5).2) ≅ 3 × (SU2(25).2)

𝑦2 + 𝑥3 + 𝑡0𝑡1(𝑡
4
1 − 𝑡40) = 0. (20)

Proof. Let g be a wild automorphism of order 5. Since g ∉ 𝐻 = Ker(𝜙̄) by Lemma 5.1, it acts non-
trivially on the base of the elliptic fibration. As g has one fixed point in ℙ1, we may assume this
point to be [0,1], and that g acts by (𝑡0, 𝑡1) ↦ (𝑡0, 𝑡0 + 𝑡1). The roots of 𝑎4 coincide with the roots of
the 𝑗-invariant, hence they are preserved by g . But 𝑎4 has degree 4, so 𝑎4 = 𝑐1𝑡

4
0
for some 𝑐1 ∈ 𝕜.

Then, the discriminant of the elliptic fibration is given by Δ = 4𝑎3
4
+ 27𝑎2

6
, so 𝑎6 is preserved by g

as well and 𝑡2
0
∤ 𝑎6, for otherwise Δ would vanish with multiplicity at least 3 at [0,1] and the fiber

over this point would be reducible. Thus, choosing coordinates such that 𝑎6 has a root at [1,0], we
may assume

𝑎4 = 𝑐𝑡40, 𝑎6 = 𝑡0

4∏
𝑖=0

(𝑡1 + 𝑖𝑡0) = 𝑡0𝑡1(𝑡
4
1 − 𝑡40).



AUTOMORPHISMS OF DEL PEZZO SURFACES IN ODD CHARACTERISTIC 25 of 40

In other words, the surface 𝑋 admits the equation

𝑦2 + 𝑥3 + 𝑐𝑡40𝑥 + 𝑡0𝑡1(𝑡
4
1 − 𝑡40) = 0. (21)

If 𝑐 ≠ 0, then 𝑗(𝐹𝜂) ∉ {0, 1728}, hence 𝐻 ≅ 𝐶2. The group 𝑃 = 𝜙̄(Aut(𝑋)) ⊆ Aut(ℙ1) preserves
𝑉(𝑎4) = [0, 1] and the set 𝑉(𝑎6) = ℙ1(𝔽5), hence 𝑃 ⊆ 𝐶5 ∶ 𝐶4. Since 𝑐 ≠ 0, the discriminant Δ
has a double root at [0,1] and 10 simple roots. Now, 𝑃 cannot be 𝐶5 ∶ 𝐶4, since the square of
an automorphism of order 4 would fix 𝑉(𝑎4) and at least two simple roots of Δ, hence all of
ℙ1. However, 𝑃 contains an involution lifting to 𝑋 as an automorphism of order 4 given by
(𝑥, 𝑦, 𝑡0, 𝑡1) ↦ (−𝑥, 𝜆𝑦, 𝑡0, −𝑡1) with 𝜆4 = 1. Hence, in this case, Aut(𝑋) is the binary dihedral
group of order 20.
If 𝑐 = 0, then 𝑗(𝐹𝜂) = 0, hence𝐻 ≅ 𝐶6. The group 𝑃 = 𝜙̄(Aut(𝑋)) ⊆ Aut(ℙ1) preserves𝑉(𝑎6) =

ℙ1(𝔽5), hence 𝑃 ⊆ PGL2(𝔽5). Conversely, every element of GL2(𝔽5) sends 𝑎6 to 𝜆6𝑎6 for some
𝜆 ∈ 𝕜×, and composing this substitution with (𝑥, 𝑦) to (𝜆2𝑥, ±𝜆3𝑦) gives a lift of every element
of PGL2(𝔽5) to Aut(𝑋). □

5.4 Wild automorphism groups in characteristic 3

The case 𝑝 = 3 is more difficult. IfAut(𝑋) is a wild group, then so is𝐻 or 𝑃. Recall that 𝑋 is given
by an equation of the form

𝑦2 + 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6 = 0.

The discriminant Δ and 𝑗-invariant 𝑗 of the associated elliptic fibration 𝜋 are

Δ = −𝑎32𝑎6 − 𝑎22𝑎
2
4 − 𝑎34,

𝑗 =
𝑎6
2

Δ
.

We treat the cases 𝑗(𝐹𝜂) ≠ 0 and 𝑗(𝐹𝜂) = 0 separately.

Theorem 5.5. Let 𝑋 be a del Pezzo surface of degree 1 in characteristic 𝑝 = 3 such that Aut(𝑋) is
wild. Assume 𝑗(𝐹𝜂) ≠ 0. Then, 𝑋 admits one of the following two Weierstrass equations:

𝑦2 + 𝑥3 + 𝑎𝑡20𝑥
2 + 𝑡0𝑡1(𝑡

2
1 − 𝑡20)𝑥 + 𝑏𝑡60 + 𝑐𝑡40𝑡

2
1 + 𝑐𝑡20𝑡

4
1 + 𝑐𝑡61 (22)

with 𝑎, 𝑏, 𝑐 ≠ 0 and 𝑎𝑐 ≠ 1, or

𝑦2 + 𝑥3 + 𝑡20𝑥
2 + 𝑡0𝑡

3
1𝑥 + 𝑡61 + 𝑎𝑡30𝑡

3
1 + 𝑏𝑡50𝑡1 (23)

with 𝑏 ≠ 0. Moreover,

(1) if 𝑋 is given by Equation (22), then Aut(𝑋) = 𝐶6;
(2) if 𝑋 is given by Equation (23), then Aut(𝑋) = 𝐶2 × 𝐶2

3
.
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Proof. Note that 𝑗(𝐹𝜂) ≠ 0 is equivalent to 𝑎2 ≠ 0. Moreover,𝐻 = 𝐶2, so if Aut(𝑋) is wild, then 𝑃
is wild. Wemay assume that 𝑃 contains the substitution g ∶ 𝑡1 ↦ 𝑡1 + 𝑡0. Since, the roots of 𝑎2 are
the roots of the 𝑗-map, 𝑎2 is g-invariant, hence, after rescaling 𝑥, 𝑦, we may assume 𝑎2 = 𝑡2

0
. Note

that, under this assumption on 𝑎2, substitutions of the form 𝑥 ↦ 𝑥 + 𝑏2 preserve 𝑎2 and the class
𝑎4 of 𝑎4 modulo 𝑡20 .
Now, a suitable substitution in 𝑥 allows us to eliminate the monomials 𝑡4

0
, 𝑡3
0
𝑡1, and 𝑡20𝑡

2
1
in 𝑎4,

so we can write 𝑎4 = 𝑎𝑡0𝑡
3
1
+ 𝑏𝑡4

1
. As 𝑎4 is g-semi-invariant, we must have 𝑏 = 0. After scaling 𝑡0,

we may assume 𝑎4 = 𝜖𝑡0𝑡
3
1
, where 𝜖 ∈ {0, 1}, and that 𝑎2 = 𝑎𝑡2

0
for some 𝑎 ≠ 0.

Since g lifts to 𝑋 and g has odd order, there is an element of order 3 in Aut(𝑋) that induces
g . By [16, Appendix A, Proposition 1.2], this means that there exists 𝑏2 ∈ 𝕜[𝑡0, 𝑡1]2 such that the
equation of 𝑋 is preserved by (𝑦, 𝑥, 𝑡0, 𝑡1) ↦ (𝑦, 𝑥 + 𝑏2, 𝑡0, 𝑡1 + 𝑡0). This 𝑏2 satisfies

𝑎4(𝑡0, 𝑡1) = 𝑎4(𝑡0, 𝑡1 + 𝑡0) − 𝑎𝑏2𝑡
2
0, (24)

𝑎6(𝑡0, 𝑡1) = 𝑏32 + 𝑎𝑡20𝑏
2
2 + 𝑎4(𝑡0, 𝑡1 + 𝑡0)𝑏2 + 𝑎6(𝑡0, 𝑡1 + 𝑡0). (25)

If 𝜖 = 0, Equation (24) shows that 𝑏2 = 0 and comparing the coefficients of 𝑡2
0
𝑡4
1
in Equation (25)

shows that 𝑎6 does not contain the monomial 𝑡0𝑡51 . Computing the partial derivatives, we see that
this implies that 𝑋 is singular over [0,1].
Thus, we have 𝜖 = 1. The substitution 𝑥 ↦ 𝑥 + 𝑎−1𝑡0𝑡1 transforms 𝑎4 to 𝑡0𝑡

3
1
− 𝑡0𝑡

3
1
, thereby

making it g-invariant. With this choice of 𝑎4, Equation (24) yields 𝑏2 = 0. We write 𝑎6 =

𝑏𝑡6
0
+ 𝑐𝑡5

0
𝑡1 + 𝑑𝑡4

0
𝑡2
1
+ 𝑒𝑡3

0
𝑡3
1
+ 𝑓𝑡2

0
𝑡4
1
+ g𝑡0𝑡

5
1
+ ℎ𝑡6

1
. Comparing coefficients of the monomials in

Equation (25) above, we find

(𝑒, 𝑓, g , ℎ) = (−𝑐, 𝑑, 0, 𝑑).

We obtain the normal form

𝑦2 + 𝑥3 + 𝑎𝑡20𝑥
2 + 𝑡0𝑡1(𝑡

2
1 − 𝑡20)𝑥 + 𝑏𝑡60 + 𝑐(𝑡50𝑡1 − 𝑡30𝑡

3
1) + 𝑑(𝑡40𝑡

2
1 + 𝑡20𝑡

4
1 + 𝑡61).

If 𝑎𝑑 ≠ 1, a substitution of the form (𝑡1, 𝑥) ↦ (𝑡1 + 𝜆𝑡0, 𝑥 + 𝑎−1(𝜆3 − 𝜆)) can be used to set 𝑐 =
0. This yields Equation (22) after renaming 𝑑 to 𝑐. Computing the partial derivatives, we see that
Equation (22) defines a smooth surface if and only if 𝑏, 𝑐 ≠ 0 and 𝑎𝑐 ≠ 1. Moreover, note that 𝑎 ≠ 0

is equivalent to 𝑗(𝐹𝜂) ≠ 0. The discriminant of this equation is

Δ = 𝑡30(−𝑎
3𝑏𝑡90 + (𝑎2 − 𝑎3𝑐)𝑡70𝑡

2
1 + 𝑡60𝑡

3
1 + (𝑎2 − 𝑎3𝑐)𝑡50𝑡

4
1 + (𝑎2 − 𝑎3𝑐)𝑡30𝑡

6
1 + 𝑡91).

To compute Aut(𝑋), note that the associated elliptic fibration 𝜋 has a unique cuspidal fiber over
[0,1], so every element of 𝑃 acts as ℎ ∶ 𝑡1 ↦ 𝐴𝑡1 + 𝐵𝑡0. Comparing what happens to the coeffi-
cients of 𝑥3, 𝑡0𝑥2, and 𝑡0𝑡

3
1
𝑥 under such a substitution, we deduce that 𝐴 = 1. In particular, Δ

must be ℎ-invariant. The coefficient of 𝑡6
0
𝑡6
1
in ℎ∗Δ − Δ is (𝐵 − 𝐵3)(𝑎2 − 𝑎3𝑐). Since 𝑎2 − 𝑎3𝑐 ≠ 0,

this shows that 𝐵3 = 𝐵, hence ℎ is a multiple of g , so Aut(𝑋) = 𝐶6.
If 𝑎𝑑 = 1, we can apply a substitution of the form

(𝑡1, 𝑥) ↦ (𝑡1 + 𝜆𝑡0, 𝑥 − 𝑎−1𝑡0𝑡1 + 𝑎−1(𝜆3 − 𝜆)𝑡20)

for a suitable 𝜆 and then rescale 𝑡0 and 𝑡1 to obtain Equation (23). Note that the rescaling of 𝑡0 and
𝑡1 does not necessarily preserve our description of g . To calculateAut(𝑋), we use that, by the same
argument as in the previous paragraph, every element of 𝑃 acts as ℎ ∶ 𝑡1 ↦ 𝑡1 + 𝐵𝑡0. Analogously
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to Equation (25), the condition that an automorphism with 𝐴 = 1 lifts to 𝑋 is that there exists
𝑏2 ∈ 𝕜[𝑡0, 𝑡1]2 such that

𝑎4(𝑡0, 𝑡1) = 𝑎4(𝑡0, 𝑡1 + 𝐵𝑡0) − 𝑏2𝑡
2
0,

𝑎6(𝑡0, 𝑡1) = 𝑏32 + 𝑡20𝑏
2
2 + 𝑎4(𝑡0, 𝑡1 + 𝐵𝑡0)𝑏2 + 𝑎6(𝑡0, 𝑡1 + 𝐵𝑡0).

The first equation yields 𝑏2 = 𝐵3𝑡2
0
. The only non-trivial condition in the second equation is for

the coefficient of 𝑡6
0
, where we get

0 = 𝐵9 + 𝑎𝐵3 + 𝑏𝐵.

Since 𝑏 ≠ 0, this equation has exactly nine solutions, hence 𝑃 = 𝐶2
3
and Aut(𝑋) = 𝐶2 × 𝐶2

3
. □

Theorem 5.6. Let 𝑋 be a del Pezzo surface of degree 1 in characteristic 𝑝 = 3 such that Aut(𝑋) is
wild. Assume 𝑗(𝐹𝜂) = 0.

(1) If𝐻 is tame, then𝐻 = 𝐶2 and 𝑋 admits a Weierstrass equation of the form

𝑦2 + 𝑥3 + 𝑡0𝑡1(𝑡
2
1 − 𝑡20)𝑥 + 𝑎𝑡60 + 𝑏𝑡40𝑡

2
1 + 𝑏𝑡20𝑡

4
1 + 𝑏𝑡61 = 0 (26)

with 𝑎, 𝑏 ≠ 0, 𝑏 + 𝑐 ≠ 0. Moreover,
(a) if 𝑎 ≠ 𝑏, then 𝑃 = 𝐶3 and Aut(𝑋) = 𝐶6;
(b) if 𝑎 = 𝑏, then 𝑃 = L2(3) and Aut(𝑋) = SL2(3).

(2) If𝐻 is wild and 𝜋 has two singular fibers, then𝐻 = 𝐶6 and 𝑋 admits a Weierstrass equation of
the form

𝑦2 + 𝑥3 − 𝑡20𝑡
2
1𝑥 + 𝑎𝑡50𝑡1 + 𝑏𝑡40𝑡

2
1 + 𝑐𝑡20𝑡

4
1 + 𝑡0𝑡

5
1 = 0 (27)

with 𝑎 ≠ 0. Moreover,
(a) if 𝑏, 𝑐 ≠ 0, and 𝑎2𝑐4 ≠ 𝑏4, then 𝑃 = {1} and Aut(𝑋) = 𝐶6;
(b) if 𝑏, 𝑐 ≠ 0 and 𝑎2𝑐4 = 𝑏4, then 𝑃 = 𝐶2 and Aut(𝑋) = 𝐶2 × 𝐶6;
(c) if 𝑏 = 𝑐 = 0, then 𝑃 = 𝐶4 ∶ 𝐶2 ≅ 𝐷8 and Aut(𝑋) = 𝐶6.𝐷8.

(3) If 𝐻 is wild and 𝜋 has one singular fiber, then 𝐻 = 𝐶6 and 𝑋 admits a Weierstrass equation of
the form

𝑦2 + 𝑥3 − 𝑡40𝑥 + 𝑎𝑡50𝑡1 + 𝑏𝑡40𝑡
2
1 + 𝑡0𝑡

5
1 = 0. (28)

Moreover,
(a) if 𝑏 ≠ 0, then 𝑃 = {1} and Aut(𝑋) = 𝐶6;
(b) if 𝑏 = 0 and 𝑎 ≠ 0, then 𝑃 = 𝐶2 and Aut(𝑋) = 2.𝐷6;
(c) if 𝑎 = 𝑏 = 0, then 𝑃 = 𝐶10 and Aut(𝑋) = 𝐶6.𝐶10.

Proof. Recall that 𝑗(𝐹𝜂) = 0 implies that 𝑋 admits a Weierstrass equation of the form

𝑦2 + 𝑥3 + 𝑎4𝑥 + 𝑎6 = 0.

Case 1. 𝐻 is tame.
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Since Aut(𝑋) is wild and 𝐻 = 𝐶2 by Lemma 5.1, the group 𝑃 is wild. We may assume that 𝑃
contains the substitution g ∶ 𝑡1 ↦ 𝑡1 + 𝑡0. The ring of invariants 𝕜[𝑡0, 𝑡1](g) is generated by 𝑡0 and
𝑡1(𝑡

2
1
− 𝑡2

0
). Since Δ = −𝑎3

4
, g preserves the set of roots of 𝑎4 and since g is wild, it has only one

fixed point on ℙ1. On the other hand, by Lemma 5.1, 𝑎4 is not a square. So, 𝑎4 has four distinct
roots, and wemay assume that [0,1] and [1,0] are among them, so that 𝑎4 = 𝑡0𝑡1(𝑡

2
1
− 𝑡2

0
) and, after

simplifying,

𝑎6 = 𝑎𝑡60 + 𝑏𝑡40𝑡
2
1 + 𝑐𝑡20𝑡

4
1 + 𝑑𝑡61.

Since g lifts to 𝑋, there exists 𝑏2 = 𝛼𝑡2
0
+ 𝛽𝑡0𝑡1 + 𝛾𝑡2

1
∈ 𝕜[𝑡0, 𝑡1]2 such that

𝑏32 + 𝑎4(𝑡0, 𝑡0 + 𝑡1)𝑏2 + 𝑎6(𝑡0, 𝑡0 + 𝑡1) = 𝑎6(𝑡0, 𝑡1).

Comparing the coefficients, we obtain

𝛼 = 𝛽 = 𝛾 = 𝑏 + 𝑐 + 𝑑 = 0

and

𝑏 = 𝑐 = 𝑑.

This yields the normal form in the theorem. Taking partial derivatives, we find that theWeierstrass
surface 𝑋 is smooth if and only if 𝑎, 𝑏 ≠ 0.
It remains to determine the full group 𝑃. Since 𝑃 acts faithfully on the set of four roots of Δ =

−𝑎3
4
, Theorem 2.5 shows that

𝑃 ∈ {𝐶3, 3 ∶ 𝐶2, 3 ∶ 𝐶4, L2(3), PGL2(𝔽3)}. (29)

If𝑃 ∈ {3 ∶ 𝐶2, 3 ∶ 𝐶4, PGL2(𝔽3)}, then𝑃 contains an involution that normalizes the subgroup gen-
erated by g and such that conjugation by this involutionmaps g to g−1. Without loss of generality,
we may assume that this involution is (𝑡0, 𝑡1) ↦ (𝑡0, −𝑡1). Then, an explicit computation shows
that such an involution never lifts to 𝑋.
If 𝑃 = L2(3), then 𝑃 contains the involution 𝜏 ∶ (𝑡0, 𝑡1) ↦ (−𝑡1, 𝑡0). Note that 𝑎4(−𝑡1, 𝑡0) =

𝑎4(𝑡0, 𝑡1). This 𝜏 lifts to 𝑋 if and only if there exists 𝑏2 = 𝛼𝑡2
0
+ 𝛽𝑡0𝑡1 + 𝛾𝑡2

1
∈ 𝕜[𝑡0, 𝑡1]2 such that

𝑏32 + 𝑎4(𝑡0, 𝑡1)𝑏2 + 𝑎6(−𝑡1, 𝑡0) = 𝑎6(𝑡0, 𝑡1).

Comparing coefficients, we see that 𝑏2 = 0, hence 𝜏 lifts to 𝑋 if and only if 𝑎6(−𝑡1, 𝑡0) = 𝑎6(𝑡0, 𝑡1).
This holds if and only if 𝑎 = 𝑏. We also see that, under this assumption, the natural SL2(3)-action
on 𝑡0 and 𝑡1 lifts to the surface 𝑋, and the center of SL2(3) acts as the Bertini involution.

Case 2. 𝐻 is wild, 𝑎4 has more than one root.

Since 𝐻 is wild, Lemma 5.1 shows that 𝑎4 is a square. Since it has more than one root, we may
assume 𝑎4 = −𝑡2

0
𝑡2
1
. A suitable substitution in 𝑥 allows us to describe 𝑋 by an equation of the

following form:

𝑦2 + 𝑥3 − 𝑡20𝑡
2
1𝑥 + 𝑎𝑡50𝑡1 + 𝑏𝑡40𝑡

2
1 + 𝑐𝑡20𝑡

4
1 + 𝑑𝑡0𝑡

5
1 = 0.
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As in the previous case, computing the partial derivatives, we find that 𝑎, 𝑑 ≠ 0, so we can rescale
𝑑 to 1. By Lemma 5.1, we have 𝐻 = 𝐶6. It remains to determine 𝑃.
After replacing elements of g by scalar multiples, we may assume g∗(𝑎4) = 𝑎4 for every g ∈ 𝑃.

Note that such a g either acts diagonally or anti-diagonally, hence g∗(𝑎6) does not contain the
monomials 𝑡6

0
, 𝑡3
0
𝑡3
1
, and 𝑡6

1
. The condition that g can be lifted to an automorphism of 𝑋 is that

there exists 𝑏2 = 𝑠1𝑡
2
0
+ 𝑠2𝑡0𝑡1 + 𝑠3𝑡

2
1
such that

𝑏32 + 𝑎4𝑏2 + g∗(𝑎6) = ∓𝑎6. (30)

Comparing the coefficient of 𝑡6
0
, 𝑡3
0
𝑡3
1
, and 𝑡6

1
, we find that 𝑏2 = 𝑠𝑡0𝑡1 with 𝑠(𝑠2 − 1) = 0.

Now, assume first that g acts as (𝑡0, 𝑡1) ↦ (𝛼𝑡0, 𝛼
−1𝑡1) with 𝛼2 ≠ 1. Comparing the coefficients

in Equation (30), we obtain

(𝛼4 ± 1)𝑎 = (𝛼2 ± 1)𝑏 = (𝛼−2 ± 1)𝑐 = 𝛼−4 ± 1 = 0,

where the choice of sign is compatible with Equation (30). If 𝑏 ≠ 0 or 𝑐 ≠ 0, then 𝛼2 = −1 and the
sign on the right-hand side of Equation (30) is a minus, so that 𝛼−4 + 1 = 0 cannot hold. Hence,
g can exist only if 𝑏 = 𝑐 = 0. In this case, the unique condition for the liftability of g is 𝛼8 = 1, so
the group of such g determines a cyclic subgroup of order 4 in PGL2(𝕜). Moreover, note that if g
has order 4, then every lift of g to 𝑋 with 𝑏2 = 0 has order 8.
Next, assume that g acts as (𝑡0, 𝑡1) ↦ (𝛼𝑡1, 𝛼

−1𝑡0). Equation (30) becomes

(𝑎𝛼4 ± 1) = (𝑏𝛼2 ± 𝑐) = (𝑐𝛼−2 ± 𝑏) = (𝛼−4 ± 𝑎) = 0.

Thus, 𝑎2 = 𝛼−8. If 𝑏 ≠ 0, then 𝑐 ≠ 0. Moreover, these equations admit a solution if and only if
𝑎2𝑐4 = 𝑏4. Note that in this case the involution g lifts to an involution of 𝑋.
In summary, if (𝑏, 𝑐) ≠ (0, 0) and 𝑎2𝑐4 ≠ 𝑏4, then 𝑃 is trivial, so Aut(𝑋) = 𝐻 = 𝐶6. If (𝑏, 𝑐) ≠

(0, 0) and 𝑎2𝑐4 = 𝑏4, then 𝑃 = 𝐶2 and 𝐻 = 𝐶6. It is obvious that a generator of 𝑃 commutes
with a generator of 𝐻, so Aut(𝑋) = 𝐻 × 𝑃 = 𝐶6 × 𝐶2. If (𝑏, 𝑐) = (0, 0), then Aut(𝑋) is a non-split
extension of 𝑃 ≅ 𝐶4 ∶ 𝐶2 by𝐻 ≅ 𝐶6.

Case 3. 𝐻 is wild, 𝑎4 has exactly one root.

Since 𝐻 is wild, Lemma 5.1 shows that 𝑎4 is a square. Since it has exactly one root, we may
assume 𝑎4 = −𝑡4

0
. Since 𝑋 is smooth, we must have 𝑡2

0
∤ 𝑎6. A suitable substitution in 𝑥 allows us

to describe 𝑋 via an equation of the following form:

𝑦2 + 𝑥3 − 𝑡40𝑥 + 𝑎𝑡50𝑡1 + 𝑏𝑡40𝑡
2
1 + 𝑐𝑡20𝑡

4
1 + 𝑡0𝑡

5
1.

Taking partial derivatives, we see that 𝑋 is always smooth. Using a substitution of the form 𝑡1 ↦

𝑡1 + 𝜆𝑡0, 𝑥 ↦ 𝑥 + 𝛼𝑡2
0
+ 𝛽𝑡0𝑡1, wemay assume additionally that 𝑐 = 0. By Lemma 5.1, we have𝐻 =

𝐶6. It remains to determine 𝑃.
Since 𝑃 preserves the unique root of 𝑎4, we may assume that 𝑃 consists of transformations of

the form (𝑡0, 𝑡1) ↦ (𝑡0, 𝐴𝑡0 + 𝐵𝑡1). In order for this transformation to lift to 𝑋, there must exist
𝑏2 = 𝛼𝑡2

0
+ 𝛽𝑡0𝑡1 + 𝛾𝑡2

1
such that

𝑏32 + 𝑎4𝑏2 + 𝑎6(𝑡0, 𝐴𝑡0 + 𝐵𝑡1) = ±𝑎6(𝑡0, 𝑡1). (31)
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Comparing the coefficients of 𝑡2
0
𝑡4
1
, we see that 𝐴 = 0. Comparing the coefficients of 𝑡6

0
, 𝑡3
0
𝑡3
1
, and

𝑡6
1
, we find that 𝛽 = 𝛾 = 0 and 𝛼3 − 𝛼 = 0. Then, Condition (31) becomes

𝑎(𝐵 ∓ 1) = 𝑏(𝐵2 ∓ 1) = 𝐵5 ∓ 1 = 0.

If 𝐵 = 1, then the transformation is the identity. If 𝐵 = −1, then 𝑏 = 0 and, conversely, if 𝑏 = 0,
the transformation with 𝐵 = −1 lifts to𝑋 (as an automorphism of order 4). If 𝐵 is a primitive fifth
root of unity, then 𝑎 = 𝑏 = 0 and again, the transformation lifts to 𝑋 under these conditions. □

5.5 Tame automorphism groups

We showed in Section 4.5 that all automorphism groups of del Pezzo surfaces of degree 2 in char-
acteristic 0 appear as the tame automorphism groups of del Pezzo surfaces of degree 2 in positive
characteristic. It turns out that this is not true anymore for del Pezzo surfaces of degree 1. If
𝑝 = 3, 5, some of these tame groups appear only as proper subgroups of the full groups of auto-
morphisms. If 𝑝 = 3, the reason is that in their equations the coefficient 𝑎2 is equal to zero and
hence the 𝑗-invariant of the general member of the elliptic pencil vanishes. This implies that the
group𝐻0 becomes a group of order 3 and the full group of automorphisms is larger.
We go through the list of automorphismgroups of del Pezzo surfaces of degree 1 in characteristic

0 given in [6, table 8.14] and find those of them that are tame in some characteristic 𝑝 > 0.

∙ 3 × (SL2(3) ∶ 2): This group is tame if 𝑝 ≠ 3. By Corollary 5.3, it is maximal among tame auto-
morphism groups of del Pezzo surfaces of degree 1. For a suitable choice of coordinates, the
unique surface with an action of this group is given by the equation

𝑦2 + 𝑥3 + 𝑡0𝑡1(𝑡
4
0 − 𝑡41) = 0.

If 𝑝 = 5, this equation defines the surface of Theorem 5.4(ii), hence its automorphism group is
larger and thus the tame group 3 × (SL2(3) ∶ 2) does not occur.

∙ 3 × (2.𝐷12): This group is tame if 𝑝 ≠ 3 and it is maximal among tame automorphism groups of
del Pezzo surfaces of degree 1. The unique surface with an action of this group is given by the
equation

𝑦2 + 𝑥3 + 𝑡60 + 𝑡61 = 0.

If 𝑝 = 5, this surface is projectively equivalent to the one of the previous case, so, again, its
automorphism group is larger. Hence, the group 3 × (2.𝐷12) does not occur if 𝑝 = 5.

∙ 6 × 𝐷6: This group is tame if 𝑝 ≠ 3. The equation given in [6, table 8.14] defines a one-
dimensional family of smooth del Pezzo surfaces with an action of this group if 𝑝 ≠ 3. Since
the del Pezzo surfaces with a larger automorphism group are unique by [6, table 8.14] and
Theorem 5.4, a generic member of this family has automorphism group isomorphic to 6 × 𝐷6.

∙ 30: This group is tame if 𝑝 ≠ 3, 5 and it is maximal among all possible automorphism groups.
The equation given in [6, table 8.14] defines a surface with an action of this group in
characteristic 𝑝 ≠ 3, 5.

∙ SL2(3), 2.𝐷12, and 2 × 12: These groups are tame if 𝑝 ≠ 3 and the equations given in [6, table
8.14] with general parameters define surfaces with this automorphism group if 𝑝 ≠ 3.
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∙ 3 × 𝐷8: This group is tame if 𝑝 ≠ 3. It appears in the list [5, pp. 519, 520], but it is missing in [5,
table 8] and [6, table 8.14]. It is realized by the surfaces with Weierstrass equation

𝑦2 + 𝑥3 + 𝑡0𝑡1(𝑡
4
0 + 𝑎𝑡20𝑡

2
1 + 𝑡41)

for a general choice of 𝑎. This group occurs in every characteristic 𝑝 ≠ 3. We denote it by M in
Table A6.

∙ 20: This group is tame if 𝑝 ≠ 5. If 𝑝 ≠ 3, 5, the equation given in [6, table 8.14] defines a surface
with this automorphism group, since it is maximal among tame automorphism groups.
If 𝑝 = 3, this group does not occur. Indeed, its generator must act by the formula

(𝑡0, 𝑡1, 𝑥, 𝑦) ↦ (𝑡0, 𝜁10𝑡1, −𝑥, 𝜁4𝑦) as in the case of characteristic 0, where 𝜁𝑛 is a primitive 𝑛-th
root of unity. This easily implies that its equation 𝑦2 + 𝑥3 + 𝑎2𝑥

2 + 𝑎4𝑥 + 𝑎6 = 0 in charac-
teristic 3 has the coefficient 𝑎2 = 0, hence the 𝑗-invariant 𝑗(𝐹𝜂) of the generic fiber of the
elliptic fibration vanishes. But this increases the size of the subgroup𝐻 and the automorphism
group becomes larger. It follows from Theorem 5.6 that the surface is from Case (3)(c) and the
automorphism group is 𝐶6.𝐶10.

∙ 𝐷16: This group is tame. If 𝑝 ≠ 3, the equation given in [6, table 8.14] defines a one-dimensional
family of surfaces on which this group acts. Since all surfaces whose automorphism group
strictly contains 𝐷16 are unique, the generic member 𝑋 of this family has Aut(𝑋) ≅ 𝐷16.
The same argument as in the previous case shows that the equation of the surface 𝑋 in

characteristic 3 whose automorphism group contains 𝐷16 has coefficient 𝑎2 equal to zero. This
increases the size of the subgroup 𝐻 of Aut(𝑋). The surface is from Case 2(c) in Theorem 5.6.
Its group of automorphism group is 𝐶6.𝐷8.

∙ 𝐷12 and 2 × 6: These groups are tame if 𝑝 ≠ 3 and the equations given in [6, table 8.14] with
general parameters define surfaces with this automorphism group if 𝑝 ≠ 3.

∙ 10: This group is tame if 𝑝 ≠ 5. If 𝑝 ≠ 3, 5, the equation given in [6, table 8.14] defines a
one-dimensional family of surfaces on which this group acts. Since the surfaces whose auto-
morphism groups strictly contain 𝐶10 are unique, the generic member 𝑋 of this family realizes
the group 𝐶10.
If 𝑝 = 3, the equation

𝑦2 + 𝑥3 + 𝑡20𝑥
2 + 𝑎𝑡0(𝑡

5
1 + 𝑡50) = 0

defines a one-dimensional family of surfaces with an action of 𝐶10 given by (𝑡0, 𝑡1, 𝑥, 𝑦) ↦

(𝑡0, 𝜁5𝑡1, 𝑥, −𝑦).
∙ 𝑄8, 2 × 4, and 𝐷8: These groups are tame and the equations given in [6, table 8.14] with general
parameters define surfaces with these automorphism groups.

∙ 6: This group is tame if 𝑝 ≠ 3 and the equations given in [6, table 8.14] with general parameters
define surfaces with this automorphism group.

∙ 4 and 22: These groups are tame. The equations given in [6, table 8.14] define two at least four-
dimensional families of surfaces with an action of this group. Since the surfaces with larger
automorphism group depend on less than three parameters, even in the wild case, a general
member of these families will have the desired automorphism group.

∙ 2: This is the general case that occurs in every characteristic.
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5.6 Wild automorphism groups

Here, we summarize the classification of wild groups of automorphisms of del Pezzo surfaces of
degree 1 by collecting the results of the previous sections. We use the notation of [6, table 8.14] for
wild groups in characteristic 𝑝 that also occur in characteristic 0. Let us explain our notation for
the remaining cases:
The surfaces in Equation (19) are reductions modulo 5 of the surfaces of Type XIII in [6, table

8.14] after a suitable change of coordinates, hence we call them Type XIII. Similarly, the surface
given by Equation (20) is the reduction modulo 5 of the surfaces of Types I, II, and IV in [6, table
8.14].
As for characteristic 𝑝 = 3, consider first the surfaces given by Equation (23). Recall that they

have automorphism group 2 × 32. Since all the wild automorphisms of order 3 in this group fix a
cuspidal curve on 𝑋, they are either of conjugacy class 4𝐴2 or they arise from a del Pezzo surface
𝑌 of degree 2 given by Equation (15) and then they are of conjugacy class 3𝐴2. Now, comparing
eigenvalues of the commuting automorphisms of order 3 on 𝖤8, one checks that the existence of
an automorphism of class 4𝐴2 would force some other automorphism to be of type 𝐴2 or 2𝐴2.
Hence, all elements in 𝐶2

3
are of conjugacy class 3𝐴2. The surfaces in Equation (22) together with

their wild automorphisms are generalizations of Equation (23) and the surfaces in Equation (26)
are specializations of Equation (22), so all the wild automorphisms in these families are of class
3𝐴2. We call the surfaces given by Equations (22) and (26) with 𝑎 ≠ 𝑏 Type XVIII, as in [6, table
8,14]. Equation (23) has no analogue in characteristic 0, but it is a specialization of Type XVIII, so
we call it XVIII’. A general equation of Type V in [6, table 8.14] is smooth in characteristic 3, hence
it defines a del Pezzo surface with an action of SL2(3) in characteristic 3. Therefore, we call the
surfaces given by Equation (26) with 𝑎 = 𝑏 Type V as well.
The wild automorphisms of order 3 of the surfaces defined by Equations (27) fix the base of

the elliptic fibration and act with a unique fixed point on a general fiber, hence they do not leave
invariant any (−1)-curve on𝑋. Therefore, theymust be of conjugacy class 4𝐴2. Hence, the general
surface defined by these equations is the characteristic 3 analogue of Type XVII of [6, table 8.14].
The subfamily with 𝑎2𝑐4 − 𝑏4 = 0 has automorphism group 2 × 6 with 𝐶3 acting trivially on the
base of the elliptic fibration, so we call them Type XI. The surfaces given by Equation (27) with
𝑏 = 𝑐 = 0 are reductions modulo 3 of the surfaces of Type IX in [6, table 8.14] and, after a suitable
transformation, also of those of Type M.
The general surface given by Equation (28) admits awild automorphism of conjugacy class 4𝐴2,

by the same argument as in the previous paragraph, so we denote these surfaces by XVII as well.
The subfamily with 𝑏 = 0 and 𝑎 ≠ 0 has no analogue in characteristic 0, but they lift together with
the action of𝐶4, sowe denote thembyXIX’. The surface given byEquation (28)with𝑎 = 𝑏 = 0 lifts
to characteristic 0 together with the action of𝐶20, hence it is a reductionmodulo 3 of the surface of
Type VIII in [6, table 8.14]. After a suitable change of coordinates, Type IV [6, table 8.14] reduces
to this surface as well, hence we name it Type IV/VIII. With this notation, our classification of
wild groups is summarized in Table 2.

5.7 Conjugacy classes

As in the case of degree 2, the conjugacy classes of a tame automorphism g of a del Pezzo sur-
face can be determined using the Lefschetz fixed point formula. The conjugacy classes of wild
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TABLE 2 Wild automorphism groups of del Pezzo surfaces of degree 1.

𝒑 Type 𝐀𝐮𝐭(𝑸) Order Equation # Parameters Conditions
5 XIII 2.𝐷10 20 (19) 1 𝑐 ≠ 0

5 I/II/IV 6. PGL2(5) 720 (20) 0
3 XVIII 𝐶6 6 (22) 3
3 XVIII 𝐶6 6 (26) 2 𝑎 ≠ 𝑏

3 XVIII’ 2 × 32 18 (23) 2
3 XVII 𝐶6 6 (27) 3 𝑏, 𝑐, 𝑎2𝑐4 − 𝑏4 ≠ 0

3 XVII 𝐶6 6 (28) 2 𝑏 ≠ 0

3 XI 𝐶2 × 𝐶6 12 (27) 2 𝑏, 𝑐 ≠ 0, 𝑎2𝑐4 − 𝑏4 = 0

3 XIX’ 2.𝐷6 12 (28) 1 𝑏 = 0, 𝑎 ≠ 0

3 V SL2(3) 24 (26) 1 𝑎 = 𝑏 = 𝑐

3 IX/M 𝐶6.𝐷8 48 (27) 1 𝑏 = 𝑐 = 0

3 IV/VIII 𝐶6.𝐶10 60 (28) 0 𝑎 = 𝑏 = 0

automorphisms can be determined using the description in the previous section of the corre-
sponding del Pezzo surfaces as reductionsmodulo 𝑝 of certain del Pezzo surfaces in characteristic
0, where the automorphism is tame. For the surfaces of Type XIX’ and XVIII’ that have no ana-
logue in characteristic 0, we determined the conjugacy classes of thewild automorphisms of order
3 in the previous section. The remaining automorphisms of these surface are obtained by com-
posing with the Bertini involution, and the conjugacy classes of these compositions can be easily
determined using Table A1.
We give the classification of all conjugacy classes that can occur in Table A6. In that table, we

give the name of the relevant family of del Pezzo surfaces in the first column, following [6, table
8.14]. In the second column, we note the characteristics in which the family occurs. The third and
fourth columns give the group Aut(𝑋) and its order. The remaining columns give the number of
elements of a given Carter conjugacy class in Aut(𝑋).

Remark 5.7. As a concluding remark, we note that, while there are no conjugacy classes in the
Weyl groups𝑊(𝖤𝑁) that are realized in characteristic 𝑝 but not in characteristic 0, the tables in
the Appendix show that there are certain conjugacy classes that occur in characteristic 0 but do
not occur in characteristic 𝑝 if 𝑝 ∈ {3, 5, 7}.
If 𝑝 = 7, the conjugacy classes 𝐴6 and 𝐸7(𝑎1) do not occur, because the Klein quartic becomes

singular in characteristic 7.
If 𝑝 = 5, the conjugacy classes 𝐴4 and 𝐸8(𝑎2) do not occur. In characteristic 0, the Clebsch

cubic surface is the unique del Pezzo surface realizing the conjugacy class 𝐴4, and this surface
becomes singular in characteristic 5. The conjugacy class of type 𝐸8(𝑎2) can only occur on del
Pezzo surfaces of degree 1, where it acts as an automorphism of order 10 on the base of the elliptic
pencil. Since PGL2(𝕜) contains no element of order 10 if 𝑝 = 5, this explains why 𝐸8(𝑎2) does
not occur.
If 𝑝 = 3, the conjugacy classes 𝐴2,𝐴2 + 𝐴1, 𝐴2 + 2𝐴1, 𝐴5 + 𝐴2 + 𝐴1, 𝐷4, 𝐷4 + 𝐴2, 2𝐷4, 𝐷5(𝑎1),

𝐸6 + 𝐴1, 𝐸6(𝑎1), 𝐸7, and 𝐸8(𝑎1) do not occur in any degree and there are a couple of conjugacy
classes that are not realized in all the degrees that they are realized in characteristic 0. This is a
consequence of several phenomena: First, as above, certain special del Pezzo surfaces in charac-
teristic 0 become singular in characteristic 3. Second, the group PGL2(𝕜) contains no elements of
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order 𝑛𝑝 with (𝑝, 𝑛) = 1 and 𝑛 ⩾ 2. Third, there are no wild automorphisms of order 𝑝2 on del
Pezzo surfaces in any degree by [7, Theorem 8]. And finally, the fixed locus of an automorphism
g of order 3 on a del Pezzo surface 𝑋 in characteristic 3 tends to be smaller and in a more special
position than in characteristic 0, making it harder to produce blow-ups of 𝑋 to which g lifts and
which are still del Pezzo surfaces.

APPENDIX

TABLE A1 Carter graphs and characteristic polynomials.

Graph Order Characteristic polynomial
𝐴𝑘 𝑘 + 1 𝑡𝑘 + 𝑡𝑘−1 +⋯ + 1

𝐷𝑘 2𝑘 − 2 (𝑡𝑘−1 + 1)(𝑡 + 1)

𝐷𝑘(𝑎1) l.c.m(2𝑘 − 4, 4) (𝑡𝑘−2 + 1)(𝑡2 + 1)

𝐷𝑘(𝑎2) l.c.m(2𝑘 − 6, 6) (𝑡𝑘−3 + 1)(𝑡3 + 1)

⋮ ⋮ ⋮

𝐷𝑘(𝑎 𝑘

2
−1) Even 𝑘 (𝑡

𝑘

2 + 1)2

𝐸6 12 (𝑡4 − 𝑡2 + 1)(𝑡2 + 𝑡 + 1)

𝐸6(𝑎1) 9 𝑡6 + 𝑡3 + 1

𝐸6(𝑎2) 6 (𝑡2 − 𝑡 + 1)2(𝑡2 + 𝑡 + 1)

𝐸7 18 (𝑡6 − 𝑡3 + 1)(𝑡 + 1)

𝐸7(𝑎1) 14 𝑡7 + 1

𝐸7(𝑎2) 12 (𝑡4 − 𝑡2 + 1)(𝑡3 + 1)

𝐸7(𝑎3) 30 (𝑡5 + 1)(𝑡2 − 𝑡 + 1)

𝐸7(𝑎4) 6 (𝑡2 − 𝑡 + 1)2(𝑡3 + 1)

𝐸8 30 𝑡8 + 𝑡7 − 𝑡5 − 𝑡4 − 𝑡3 + 𝑡 + 1

𝐸8(𝑎1) 24 𝑡8 − 𝑡4 + 1

𝐸8(𝑎2) 20 𝑡8 − 𝑡6 + 𝑡4 − 𝑡2 + 1

𝐸8(𝑎3) 12 (𝑡4 − 𝑡2 + 1)2

𝐸8(𝑎4) 18 (𝑡6 − 𝑡3 + 1)(𝑡2 − 𝑡 + 1)

𝐸8(𝑎5) 15 𝑡8 − 𝑡7 + 𝑡5 − 𝑡4 + 𝑡3 − 𝑡 + 1

𝐸8(𝑎6) 10 (𝑡4 − 𝑡3 + 𝑡2 − 𝑡 + 1)2

𝐸8(𝑎7) 12 (𝑡4 − 𝑡2 + 1)(𝑡2 − 𝑡 + 1)2

𝐸8(𝑎8) 6 (𝑡2 − 𝑡 + 1)4
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