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BITANGENT SURFACES AND INVOLUTIONS OF QUARTIC SURFACES

IGOR DOLGACHEV AND SHIGEYUKI KONDŌ

ABSTRACT. We study the congruence of bitangent lines of an irreducible surface in P
3 in arbitrary

characteristic, with special attention to quartic surfaces with rational double points and, in particular,

Kummer quartic surfaces.

1. INTRODUCTION

Let G1(P
3) be the Grassmannian of lines in P

3. For a point in G1(P
3), the corresponding line

in P
3 is called a ray. A surface F ⊂ G1(P

3) is called a congruence of lines. Its algebraic class [F ]
in the Chow ring A•(G1(P

3)) is determined by two numbers: the order m and the class n. The

order (resp. class) is the number of lines on F passing through a general point (resp. contained in

a general plane) in P
3. We will call the pair (m,n) the bidegree of F . The number m+ n is equal

to the degree of F in the Plücker embedding G1(P
3) →֒ P

5 (cf. [22, Chapter X, §2], [3], [12]).

A surface X in P
3 defines a congruence of lines in P

3 equal to the closure of the set of lines

that are tangent to X at two distinct points. It is classically known as the bitangent surface, and we

denote it by Bit(X). For a general X, its order and class are also classically known, and we will

reproduce the calculation in this paper with the novelty of taking care of the case of characteristic

2.

For example, it is known that, for a general surface of degree d, the bidegree of the surface

Bit(X) is equal to (12d(d − 1)(d − 2)(d − 3), 12d(d − 2)(d2 − 9)) [21, Volume 1, p. 281]. In

particular, the bidegree of the bitangent surface of a general quartic surface is equal to (12, 28).
Moreover, the surface is a smooth surface of degree 40 in P

5. It is of general type with pg = 45
and K2 = 360 [26], [29].

Although, for a general smooth quartic X, the surface Bit(X) is irreducible, for special quar-

tic surfaces, even smooth ones, it can be reducible. It is known that, if a quartic surface X is

smooth and does not contain lines, then Bit(X) is smooth [1]. However, the surface Bit(X) could

be reducible even when X is smooth but contains lines. For example, a general Cayley’s sym-

metroid quartic surface admits a smooth quartic model with reducible bitangent surface. One of its

irreducible components is a Reye congruence of bidegree (7, 3) [2], [5, 7.4].

Although admitting some mild singular points in X doesn’t change the bidegree, it may drasti-

cally change the surface Bit(X), it even may become reducible. For example, when X is realized

as the focal surface of a congruence of lines of bidegree (2, n) (the focal surface of a congruence

F of lines of order n > 1 is a surface in P
3 such that all rays of F are its bitangents, see, for ex-

ample, [22, Chapter X, §2]), the surface Bit(X) is always singular although its singular points are
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ordinary double points. In the case n = 2, the congruence of lines is a del Pezzo surface of degree

4 and the focal surface is the famous 16-nodal Kummer quartic surface X [16], and the number of

irreducible components of Bit(X) is equal to 22, six of them are of bidegree (2, 2) and 16 of them

are of bidegree (0, 1). They are planes of lines contained in one of the 16 planes intersecting X
along a double conic, a trope plane.

The paper is addressing the problem of decomposition of Bit(X) into irreducible components

for quartic surfaces over an algebraically closed field of arbitrary characteristic p. The case p = 2
and X being a Kummer quartic surface is of special importance to us. Recall that smooth curves

C of genus 2 in characteristic two are divided into three types, that is, ordinary curves, curves

of 2-rank 1 and supersingular curves. The Jacobian J(C) has four, two or one 2-torsion point(s)

accordingly. The quotient surface X = J(C)/(ι) by the negation involution ι can be embedded

in P
3 with the image isomorphic to a quartic surface, the Kummer quartic surface associated to C .

Instead of 16 nodes in the case p 6= 2, the Kummer surface X has four rational double points of

type D4, two rational double points of type D8, or an elliptic singularity of type 4©1
0,1 in the sense

of Wagreich [27]. The number of trope-planes also drops; it is equal to 4, 2 and 1. We will show

that Bit(X) consists of the following irreducible components as in Table 1.

bidegree Number

p 6= 2 (2, 2) 6

(0, 1) 16

p = 2, (1, 1) 3

ordinary (0, 1) 4

p = 2, (1, 1) 2

2-rank 1 (0, 1) 2

p = 2, (1, 1) 1

supersingular (0, 1) 1

TABLE 1. Irreducible components of Bit(X) for Kummer quartic surfaces X

Observe that (12, 28) is a multiple of the sum of the bidegrees of irreducible components of

the bitangent surfaces of ordinary Kummer surfaces in characteristic 2. We do not know any

explanation of this fact.

One reason for the dropping of the order of Bit(X) in characteristic two is explained by the

fact that the discriminant polynomial of a binary form is a square, and another is that irreducible

components of bidegree (1, 1) appear instead of bidegree (2, 2). On the other hand, the class, being

equal to the number of bitangent lines to a general plane section H of X, also drops. It is equal to

7, 4, 2, or 1 if the Hasse–Witt invariant of H is equal to 3, 2, 1, or 0, respectively [20], [24].

On the way, we discuss different kinds of involutions on quartic surfaces and their relation-

ship to Cremona transformations. For example, an irreducible component of the bitangent surface

Bit(X) with non-zero order and non-zero class defines a birational involution of X with the pairs

of tangency points of bitangent lines as its general orbits.

The plan of the paper is as follows. In Section 2, we will reproduce Salmon’s proof for the

formula of the bidegree of the bitangent surface of a general surface X of degree d in characteristic
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0 (Theorem 2.2) and show it holds also for smooth surfaces or surfaces with rational double points

(Corollary 2.5). In Section 3, we discuss the classical results about the bitangent surface of a

Kummer quartic surface in characteristic p = 0. They extend without change to the case p 6= 2.

In Section 4, we discuss birational involutions of quartic surfaces. In Section 5, we give a proof

(due to G. Kemper) of the fact that the discriminant of a binary form in the case p = 2 is a square

(Proposition 5.3). This reduces the order of congruences of bitangent lines to half. Finally, in

the last three sections 6, 7 and 8 we determine the bidegrees of congruences of bitangent lines of

Kummer quartic surfaces in characteristic two according to ordinary, 2-rank 1 and supersingular,

respectively (Theorems 6.5, 7.1, 8.1).

Throughout the paper, we assume that the base field k is an algebraically closed field of charac-

teristic p ≥ 0.

We would like to thank the referees for carefully reading the manuscript and for giving us many

useful comments.

2. GENERALITIES ON THE SURFACE OF BITANGENT LINES

Let X be a normal surface of degree d ≥ 4. We keep this assumption during the whole paper.

A line ℓ in P
3 is called a bitangent line if either it is contained in X or X cuts out in ℓ a divisor

D = 2a+ 2b+D′.

Let Bit(X) ⊂ G1(P
3) be the variety of bitangent lines. If char(k) 6= 2 we will show in this

section that each irreducible component of Bit(X) is a surface. In section 5, we extend this result

to the case where char(k) = 2. Considered as a surface in G1(P
3) it has the bidegree (m,n). Its

degree in the Plücker embedding is equal to m+ n.

Recall that G1(P
3) contains two types of planes, one is called an α-plane consisting of lines

passing through a point of P3 and other is called a β-plane consisting of lines contained in a plane

of P3.

The following fact is, of course, well known, but to be sure that it is true without assumption on

the characteristic, we supply a proof.

Proposition 2.1. An irreducible integral surface S in G1(P
3) of bidegree (m, 0) (resp. (0, n)) is

an α-plane (resp. β-plane). In particular, m = 1 (resp. n = 1).

Proof. Passing to the dual congruence of lines in the dual space of P3, it is enough to prove that

any irreducible congruence of bidegree (0, n) is a β-plane. Let ZS = {(x, ℓ) ∈ P
3 × S : x ∈ ℓ}

be the restriction of the tautological projective bundle over G1(P
3) to S. Since S is irreducible,

ZS is an irreducible 3-fold. Since m = 0, its image Y under the first projection is an irreducible

subvariety of dimension 1 or 2. Suppose dimY = 1. Then, the fibers of ZS → Y are α-planes

that sweep at least one plane, and hence S contains an α-plane. So, Y cannot be a curve. Thus, Y
is a surface. The image of the fiber of ZS → S over a point y ∈ Y in S is a curve contained in the

α-plane Ω(y) of lines through y. The corresponding rays sweep a cone with vertex at y contained

in Y . Thus, Y is a cone at each of its points. Since Y is reduced, this can happen only if Y is a

plane. So, all rays of S are contained in a plane, and hence, S is a β-plane. �
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Proposition 2.2. Assume char(k) = 0 and let X = V (F ) be a normal surface of degree d ≥ 4.

Then, Bit(X) is a congruence of lines of bidegree (m,n), with

1 ≤ m ≤ 1

2
d(d− 1)(d − 2)(d − 3), n =

1

2
d(d− 2)(d2 − 9).

Proof. We follow Salmon [21, Volume 2, p. 281]. Let q be a general point in P
3 and let ℓ = 〈q, q′〉

be the line containing q and tangent to X at some point q′ = [x0, y0, z0, w0]. Without loss of

generality, we may assume that q = [0, 0, 0, 1] and

F = wd +A1w
d−1 + · · ·+ wAd−1 +Ad,

where Ak are homogeneous forms of degree k in x, y, z.

Plugging in the parametric equation [s, t] 7→ [sv + tv′], where [v] = q, [v′] = q′, we get

f := F (sv + tv′) = (s+ tw0)
d +

d
∑

i=1

tiAi(x0, y0, z0)(s + tw0)
d−i.

By polarizing, we can rewrite it in the form

f =
∑

k+m=d

sktmPvk (F )(v′),

where Pvk(F )(v′) is the value of the totally polarized symmetric multilinear form defined by F
at (v, . . . , v, v′, . . . , v′). Geometrically, following the notation from [3, Chapter 1], the locus of

zeros of Pvk(F )(v′) with fixed v is the k-th polar Pqk(V (F )) of the hypersurface V (F ). Recall

from loc. cit. that the first polar hypersurface Pq(V (F )) is the locus of zeros of
∑

ai
∂F
∂xi

, where

q = [a0, . . . , an]. Since q′ ∈ X, we get Pv0(F )(v′) = F (v′) = 0. Moreover, because ℓ is tangent

to X at q′, we obtain Pv(F )(v′) = 0. Thus, we can rewrite

f = s2gd−2(s, t).

The line ℓ is tangent to X at some other point if and only if the binary form gd−2 of degree d− 2

gd−2(s, t) =
d−2
∑

k=0

sktd−2−kPvk+2(F )(v′)

has a multiple root.

Recall that the discriminant polynomial D(a0, . . . , an) of a binary form
∑n

i=0 ais
n−iti of degree

n is a homogenous polynomial of degree 2(n − 1). The polynomial D(a0, . . . , an) is also a bi-

homogeneous polynomial in variables a0, . . . , an of bidegree (n(n− 1), n(n− 1)) with respect to

the action of G2
m via

(a0, . . . , an) 7→ (λna0, λ
n−1µa1, . . . , λµ

n−1an−1, µ
nan).

In other terms, it is a weighted homogeneous polynomial of degree 2(n − 1) with the weights of

the ak’s equal to k.

Applying this to the discriminant of the polynomial gd−2(s, t) we obtain that its discriminant

D(Pvd(F )(v′), . . . , Pv2(F )(v′)) is a polynomial of degree 1
2(d− 2)(d− 3) in x0, y0, z0 and hence
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we obtain the locus of points q′ such that the line 〈q, q′〉 is tangent to X at two points including q′

is contained in the intersection of hypersurfaces of degrees d, d− 1, and (d− 2)(d− 3).
This implies that the expected number of bitangent lines passing through q is equal to 1

2d(d −
1)(d − 2)(d− 3).

The class n of Bit(X) is equal to the number of bitangent lines to a general plane section H of

X. Since X is normal, the hyperplane section is a smooth plane curve of degree d. Their number

is well-known classically, and it is equal to 1
2d(d− 2)(d2 − 9) (see [3, 5.5.1, formula (5.33)]).

Since char(k) = 0, the discriminants of the polynomials gd−2 are not equal to zero. This shows

that m ≥ 1.

To see that Bit(X) is a congruence of lines, i.e., each of its irreducible components is a surface,

we consider the incidence variety

M = {(q, ℓ) ∈ P
3 ×G1(P

3) : ℓ ∈ Bit(X), q ∈ ℓ}.
The fiber of the first projection consists of bitangent lines ℓ passing through q. By the above, it

consists of finitely many lines. This implies that each irreducible component of M is of dimension

3. Since the fibers of the second projections are lines, the image of each irreducible component of

M is a surface. �

We denote by Flex(X) ⊂ G1(P
3) the variety of lines in P

3 that are either contained in X or

intersect X at some point with multiplicity ≥ 3. It intersects Bit(X) at the set of lines contained

in X and the set of bitangents that intersect X at one point.

Proposition 2.3. The expected bidegree of the congruence of lines Flex(X) is equal to (m,n),
where m ≤ d(d− 1)(d− 2) and n ≤ 3d(d− 2).

Proof. Following the proof of the previous proposition, we find that the order m of Flex(X) is

equal to the degree of the reduced complete intersection X ∩ Pq(X) ∩ Pq2(X). We have m ≤
d(d− 1)(d− 2). The class n of Flex(X) is equal to the number of flex tangents in a general plane

section H of X. It is equal to the number of intersection points of a plane section H ∩X with its

Hessian curve of degree 3(d− 2). Clearly, m ≤ 3d(d − 2). �

Let prq : X → P
2 be the projection of X to a general plane. The ramification curve Rm(q)

of the projection is equal to X ∩ Pq(X). Its degree is equal to d(d − 1). Using the well-known

formula for the arithmetic genus of a complete intersection of hypersurfaces, we obtain that its

arithmetic genus is equal to 1 + 1
2d(d − 1)(2d − 5). The branch curve B(q) of prq is equal to the

projection of Rm(X), hence it is of degree d(d − 1). If Rm(q) is smooth, then it is isomorphic to

the normalization of B(q). A bitangent line containing the center of the projection is a secant line

of Rm(X), hence its projection has a singular point of B(q) with at least two different branches.

For a quartic surface, it is an ordinary node. A flex line from Flex(X) containing q is a tangent

line to Pq(X). Its projection is a singular point with at least two equal branches.

We use the following theorem due to Valentine and Viktor Kulikov [15, Theorem 0.1]:

Theorem 2.4. Assume that char(k) = 0 and X has only rational double points as singularities.

Let prq : X → P
2 be a general projection of X. Then, pr∗q(B(q)) = 2Rm(q) + C , where both

Rm(q) and C are reduced. The projection of a singular point of type An,Dn, En is a simple
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singular point of B(q) of type an, dn, en, other singular points of B(q) are ordinary nodes and

ordinary cusps. They are the projections of the bitangents lines and flex lines of X.

Corollary 2.5. Assume that char(k) = 0 and X is smooth or has only ordinary double points.

Then, the bidegrees of Bit(X) and Flex(X) are equal to (12d(d−1)(d−2)(d−3), 1
2d(d−2)(d2−9))

and (d(d − 1)(d− 2), 3d(d − 2)), respectively.

Proof. We choose q general enough such that no bitangent or flex line through q passes through a

singular point of X. The ramification curve Rm(q) of the projection prq is equal to the intersection

X ∩ Pq(X) of X with its polar with respect to q. We know that the jacobian ideal of an ordinary

double point x ∈ X is the maximal ideal mX,x. This easily implies that Pq(X) = V (
∑3

i=0 ai
∂Fd

∂xi
)

is smooth at x and, under the projection prq, the double points of Rm(q) are mapped bijectively to

ordinary double points of B(q) different from the nodes and cusps coming from bitangent and flex

lines.

Since Rm(q) is a complete intersection of degrees (d, d− 1), its arithmetic genus pa is equal to

1 + 1
2d(d − 1)(2d − 5). The projection prq defines a birational isomorphism between the curves

Rm(q) and B(q). The geometric genus g of B(q) is equal to 1
2(d(d− 1)− 1)(d(d− 1)− 2)− δ−

κ− δ0, where δ is the number of bitangent lines, κ is the number of flex lines, and δ0 is the number

of nodes of Rm(q). This gives an inequality

pa = 1 +
1

2
d(d− 1)(2d − 5)

=
1

2
(d(d− 1)− 1)(d(d − 1)− 2)− 1

2
d(d− 1)(d − 2)(d − 3)− d(d− 1)(d − 2)

≥ g ≥ 1

2
(d(d − 1)− 1)(d(d − 1)− 2)− δ − κ

that implies the inequality

(2.1) δ + κ ≥ 1

2
d(d− 1)(d − 2)(d− 3) + d(d− 1)(d − 2).

Since δ is equal to the number of bitangents of X dropped from q, we obtain δ is the order of

Bit(X). Similarly, we get that κ is the order of the Flex(X). Applying Propositions 2.2 and 2.3,

we obtain δ ≤ 1
2d(d − 1)(d − 2)(d − 3) and κ ≤ d(d − 1)(d − 2). It follows from (2.1) that

δ = 1
2d(d− 1)(d − 2)(d − 3) and κ = d(d− 1)(d− 2).

In this proof, we silently assumed that the curves Rm(q) and B(q) are irreducible. One can

treat the reducible case in a similar manner by dividing the bitangents and flex lines into subsets

corresponding to irreducible components of the curves. We leave it to the reader to finish the

proof. �

3. QUARTIC SURFACES: p 6= 2

In the special case d = 4, we expect that, for a smooth or nodal quartic surface in characteristic

zero, the bidegree (m,n) of Bit(X) is equal to (12, 28). Let S be an irreducible component of

Bit(X) and let qS : ZS → S be the restriction of the tautological line bundle q : Z → G1(P
3) to
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the congruence S. The pre-image X̃ of X under the projection pS : ZS → P
3 is a double cover of

S defined by the projection qS:

ZS

pS

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ qS

  
❆❆

❆❆
❆❆

❆❆

P
3 S.

Thus, any irreducible component S of Bit(X) with non-zero order and non-zero class defines a

birational involution of the surface X̃ with the quotient isomorphic to S. In the case when the

projection pS restricts to a birational isomorphism X̃ → X, we obtain a birational involution σS
of X. The set of fixed points of σS is equal to the pre-image of the locus of points on X such that

there exists a line intersecting X at this point with multiplicity 4.

Example 3.1. It follows from Kummer’s classification of congruences of order 2 without funda-

mental curves that the moduli space of quartic surfaces with 16 ≥ µ ≥ 11 nodes contains an

irreducible component such that a general surface from this component has reducible congruence

Bit(X). Some of the irreducible components are confocal congruences, i.e., congruences of the

same bidegree that share the same focal surface (for example, as we will explain below, the first

case in the following Table 2 is a quartic del Pezzo surface). The number of irreducible components

and their bidegree are given in Table 2 below (see [16], [25, Art. 348]).

µ bidegree Number

16 (2, 2) 6

(0, 1) 16

15 (2, 3) 6

(0, 1) 10

14 (2, 4) 4

(0, 1) 6

(4, 6) 1

13 (2, 5) 3

(0, 1) 3

(6, 10) 1

12I (2, 6) 2

(0, 1) 1

(8, 15) 1

12II (2, 6) 3

(6, 10) 1

11 (2, 7) 1

(10, 21) 1

TABLE 2. Irreducible components of Bit(X)
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The first case is a Kummer quartic surface X. It follows that X admits six involutions with

quotient isomorphic to a congruence of bidegree (2, 2). This is a quartic del Pezzo surface embed-

ded in G1(P
3) via its anti-canonical linear system. Each pair from the six congruences intersects

at four points. The branch curve has 28 = 16 + 12 ordinary nodes and 24 cusps. Its geometric

genus is equal to 3. The ramification curve Rm(q) is a curve on X of degree 12 with 16 nodes, its

geometric genus is also equal to 3.

We have already mentioned in the introduction that a Kummer surface admits 16 planes cutting

the surface along a smooth conic. Recall that a Kummer quartic surface is the quotient of the

Jacobian of a smooth curve of genus two by the inversion automorphism. The sixteen double

conics (tropes) are the images of the theta divisor and its translations by sixteen 2-torsion points.

This is a classical, well-known fact that can be found in any treatment of Kummer surfaces (see,

for example, [3, 10.3], [10]). Let us explain how to see the six irreducible components of bidegree

(2, 2). Recall that X admits a smooth model X̃ as a surface of degree 8 in P
5 (see [3, 10.3.3]).

The surface X̃ is a complete intersection of three quadrics in P
5 which is a K3 surface. One can

choose projective coordinates such that X̃ is given by the following equations:

(3.1)

6
∑

i=1

z2i =

6
∑

i=1

aiz
2
i =

6
∑

i=1

a2i z
2
i = 0,

where a1, . . . , a6 are distinct constants. The projective transformations

[z1, z2, z3, z4, z5, z6] 7→ [±z1,±z2,±z3,±z4,±z5,±z6]

induce automorphisms of X̃ which generate a 2-elementary group of order 25. The group of

such automorphisms contains a subgroup of index 2 that consists of the identity and 15 projective

involutions that restrict to symplectic automorphisms of X̃.1 They are the involutions that change

2 or 4 signs at the coordinates and non-symplectic involutions are the ones that change 1, 3 or

5 signs. The quotient surface of X̃ by a symplectic automorphism is a K3 surface with rational

double points. The remaining sixteen involutions are decomposed into two sets. One set consists

of ten involutions that change exactly three signs at the coordinates. They are fixed-point-free with

the orbit space isomorphic to an Enriques surface. Another set consists of six involutions gi that

change only one coordinate with the orbit space isomorphic to a del Pezzo surface of degree 4.

These are the involutions we are interested in.

The first quadric V (
∑

z2i ) can be identified with the Grassmannian quadric G1(P
3) written in

Klein coordinates zi corresponding to six apolar line complexes (see, for example, [3, 10.2]). It is

known that any automorphism of G1(P
3) comes from a projective collineation or correlation. The

involutions gi preserve the apolar line complexes V (zi), and, hence, come from a correlation. They

transform points to planes, and therefore, act on G1(P
3) by transforming the plane of lines through

a point (an α-plane) to the plane of lines contained in a given plane (a β-plane).

Lemma 3.2. Let gi be considered as a birational involution of X. Then, the closure of lines

spanned by the orbits of gi is an irreducible component of Bit(X).

1This means that the involution leaves invariant a non-zero regular 2-form on the surface, or, equivalently, the set of

its fixed points is non-empty and finite.
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Proof. First, we recall the relation between X, X̃ and the quadratic line complex Y = V (
∑

aiz
2
i )∩

G1(P
3) (see, e.g., [3, §10.3.3]). For a point x ∈ P

3, let Ω(x) ⊂ G1(P
3) be the α-plane consisting

of lines passing through x, and for a plane Π ⊂ P
3, denote by Ω(Π) the β-plane consisting of lines

lying on Π. The Kummer quartic surface X is the set of x ∈ P
3 such that Ω(x) ∩ Y is a singular

conic in Ω(x). The surface X̃ sits in G1(P
3) as a singular surface of the quadratic line complex,

that is, it parameterizes the lines that are singular points of the intersection of Y with α-planes. We

can identify each point x ∈ X with the α-plane Ω(x). An automorphism gi acts on X by sending

Ω(x) to Ω(Π). Let x ∈ X be a general point and let Π = Tx(X) be the embedded tangent space

of X at x. As we explained above, gi interchanges the two families {Ω(x)}x∈P3 , {Ω(Π)}Π⊂P3 of

planes, and hence,

gi(Ω(x)) = Ω(Π′), gi(Ω(Π)) = Ω(x′)

for some x′ ∈ P
3 and Π′ ⊂ P

3. Since gi acts on X as a birational automorphism, x′ ∈ X and

Π′ = Tx′(X). Since any point of Hi = V (zi) is fixed by gi,

∅ 6= Ω(x) ∩Hi = gi(Ω(x) ∩Hi) = Ω(Π′) ∩Hi,

∅ 6= Ω(Π) ∩Hi = gi(Ω(Π) ∩Hi) = Ω(x′) ∩Hi.

These imply that x ∈ Π′ and x′ ∈ Π. Since the line ℓ = 〈x, x′〉 ⊂ Π and ℓ ⊂ Π′, ℓ is tangent to X at

x and x′, that is, it is a bitangent line of X. Thus, ℓ can be identified with the pair {x, x′ = gi(x)},

that is, a point of the orbit space X̃/(gi). �

The quotient surface X̃/(gi) is given by
∑

j 6=i

(aj − ai)z
2
j =

∑

j 6=i

(a2j − a2i )z
2
j = 0,

which is a quartic del Pezzo surface D.

Also, note that the fixed locus of the involution gi is a canonical curve C of genus 5 given as

the intersection of three diagonal quadrics. The curve C has a special group of automorphisms

isomorphic to the 2-elementary group 24. It is classically known as a Humbert curve of genus 5.

The image B of C in the quartic del Pezzo surface D belongs to | − 2KD|. The curve B is the

branch curve of the double cover X̃ → D. It has the distinguished property that any of the 16 lines

on D splits into a pair of lines on X̃.

4. BIRATIONAL INVOLUTIONS OF A QUARTIC SURFACE

Let σ be a birational involution of a quartic surface X. The closure of lines spanned by orbits

of σ is an irreducible congruence S(σ) of lines. Fix a general point P ∈ P
3, the order of S(σ) is

equal to the cardinality of the set {x ∈ P
3 : P ∈ 〈x, σ(x)〉}.

Suppose that σ is the restriction of a Cremona involution T . Then, the set of points x ∈ P
3

such that P ∈ 〈x, T (x)〉 is classically called an isologue of T and P is its center. It is given by the

condition that

rank





a b c d
x0 x1 x2 x3
y0 y1 y2 y3



 < 3,
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where P = [a, b, c, d], x = [x0, x1, x2, x3], T (x) = [y0, y1, y2, y3]. It is expected to be a curve of

degree 2k + 1, where k is the algebraic degree of T [11, p. 175]. However, it also includes the

locus of fundamental points of T , as well as the closure of the locus of fixed points of T . The class

of S(σ) is expected to be equal to the degree of Π∩ T (Π)∩X for a general plane Π, which is 4k.

Let σ be a birational involution of a quartic surface. The rational map

φσ : X/(σ) 99K G1(P
3), x 7→ 〈x, σ(x)〉

is of degree 1 or 2, since a general line intersects X with multiplicity 4. There are three possible

scenarios:

(i) φσ is of degree 2;

(ii) φσ is of degree 1, a general line ℓx = 〈x, σ(x)〉 intersects X at two points and two fixed

points of σ;

(iii) φσ is of degree 1, a general line ℓx is a bitangent line of X.

In the last case, we say that σ is a bitangent involution.

Let S(σ) ⊂ G1(P
3) be the congruence of lines defined as the closure of the image of the rational

map φσ.

Example 4.1. Here, we give an example of an involution of Type (ii). Let σ be the restriction of

a projective involution T in P
3. Suppose that p 6= 2 and the fixed locus of T is the union of two

skew lines ℓ1, ℓ2. It is clear that the lines ℓx are invariant lines of T . Hence, each ℓx has two fixed

points on it, one on ℓ1 and one on ℓ2. This shows that the congruence S(σ) is of bidegree (1, 1)
isomorphic to a smooth quadric. It is known that the set Xσ of fixed points of an involution σ of

a K3 surface consists of 8 isolated fixed points if σ is a symplectic involution or it does not have

isolated fixed points if σ is an anti-symplectic involution. This implies that T intersects X either at

≤ 8 points (one can show that the equality holds since none of the lines can pass through a singular

point, however, we will not need this fact) or T is contained in X. In the former case, each line ℓx
has two fixed points, one on ℓ1 and another on ℓ2. Thus, the degree of φσ is equal to one.

In the second case, assume X is smooth and Xσ consists of two lines ℓ1 and ℓ2. Then, Y =
X/(σ) is also smooth. The cover X → Y = X/(σ) is ramified over ℓ1 + ℓ2, and its branch

curve is the union of two disjoint smooth rational curves C1, C2 with self-intersection −4. By the

adjunction formula, |−KY | = ∅, |−2KY | = {C1+C2}. Thus, |−KY | = ∅ and |−2KY | 6= ∅, i.e.,

Y is a Coble surface obtained by blowing up 10 points on a smooth quadric Q (see [5, §9.1]), the

eight intersection points of two nodal quartic curves C̄1, C̄2 of bidegree (2, 2) and the two nodes.

The pre-images of the ten exceptional curves on Y in X are ten invariant lines lying in X that

contain infinitely many orbits of σ.

Here is a concrete example: let X = V (F ), where

F = x33x0 + x33x1 + x3x
3
0 + x3x0x

2
2 + x3x

3
1 + x30x2 + x20x1x2 + x0x

3
2 + x31x2 + x1x

3
2

and σ : [x0, x1, x2, x3] 7→ [−x0,−x1, x2, x3]. The set of fixed points of σ consists of two skew

lines ℓ1 = V (x0, x1) and ℓ2 = V (x2, x3). Plugging in the parametric equation [(s − t)u0, (s −
t)u1, (s + t)u2, (s + t)u3] of a line ℓx, where x = [u0, u1, u2, u3] is not a fixed point of σ, we
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obtain the expression

(s2 − t2)(F (u0, u1, u2, u3)s
2 + 2G(u0, u1, u2, u3)st+ F (u0, u1, u2, u3)t

2),

where

G = −u30u2 − u30u3 − u20u1u2 + u0u
3
2 + u0u

2
2u3 + u0u

3
3 − u31u2 − u31u3 + u1u

3
2 + u1u

3
3.

Thus, the union of lines contained in X and intersecting the skew lines ℓ1 and ℓ2 is equal to

X ∩ V (G′), where G′ is obtained from G by replacing ui with xi.
We check (using Maple software) that if char(k) 6= 5, 643 the surfaces V (F ) and V (G′) inter-

sect transversally at 10 lines and intersect at the two lines of fixed points with multiplicity 3. This

shows that Y = X/(σ) → S(σ) = Q is the blowing down of ten (−1)-curves on the Coble surface

Y .

Example 4.2. Here is an example of a bitangent involution. We refer the reader to [2] or [5, §7.4].

Assume char(k) 6= 2. Let W be a general web of quadrics in P
3 and let D(W ) ⊂ W be the set

of singular quadrics in W , classically known as a Cayley quartic symmetric (see [2, Def. 2.1.1]).

Choose a basis {q0, q1, . . . , q3} of W and let q(λ) =
∑

i λiqi ∈ W for λ = (λi) a coordinate of W .

Here, we identify a quadric in P
3 and a symmetric 4× 4-matrix. Then, D(W ) is a quartic surface

in W ∼= P
3 defined by det(q(λ)) = 0. Another attribute of a web of quadrics is the Steinerian (or

Jacobian) surface in P
3, the locus of singular points of quadrics from W . This surface is also a

quartic surface but it lies in the original P3 but not in W (see [3, 1.1.6]).

A Reye line is a line in P
3 which is contained in a pencil from W . It is known that the set of

Reye lines forms an irreducible congruence Rey(W ) of bidegree (7, 3) [2, Prop. 3.4.2], a Reye

congruence, and each Reye line is bitangent to the Steinerian surface X of W .

The surface X admits a fixed-point-free involution σ such that S(σ) = Rey(W ). The involution

is defined by x 7→ ∩Q∈WPx(Q), where Px(Q) is the first polar of Q with pole at x.

One can also consider the surface of bitangents Bit(D(W )) of the quartic symmetroid D(W ).
The generality assumption on W implies that D(W ) does not contain lines. So, char(k) = 0,

Corollary 2.5 implies that the bidegree of Bit(D(W )) is equal to (12, 28). It follows from [5,

Theorem 7.4.7] that it is an irreducible surface with normalization isomorphic to the Reye congru-

ence Rey(W ). So, Rey(W ) admits two birational models as congruences of bidegree (7, 3) and

(12, 28).

A point of a congruence of lines is called a fundamental point (in classical terminology, a singu-

lar point) if the set of rays passing through this point contains a one-dimensional component. In our

case of the congruence Bit(X) a fundamental point must be a singular point of X. For example,

if X is a Kummer quartic, the rays through its singular point sweep a trope. It is classically known

that all rays of a congruence of lines of bidegree (m,n) with only isolated fundamental points are

tangent to the focal surface Φ of the congruence of degree 2m+ 2g − 2, where g is the genus of a

general hyperplane section of the congruence (see [25], [12], or [4]). Since m = 12, the degree is

≥ 22. However, Φ could be reducible, and X is its irreducible component. So, the existence of a

bitangent involution on X implies that the focal surface of Bit(X) is reducible.

Table 2 gives examples of families of quartic surfaces which admit bitangent involutions with

one irreducible component of order 2.
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It is clear that, if a quartic surface X admits a bitangent involution σ, then the congruence of

lines S(σ) is an irreducible component of Bit(X).

Remark 4.3. As we explained, any birational involution σ of a quartic surface X defines an irre-

ducible congruence of lines S(σ). If the order of S(σ) is equal to one, the involution σ lifts to a

birational involution T of P3. Indeed, given a general point P in P
3, there is a unique line passing

through P and spanned by an orbit of two points x, σ(x) on X. We define T (P ) to be the fourth

point on this line such that the pairs (x, σ(x)) and (P, T (P )) are harmonically conjugate.

5. QUARTIC SURFACES: p = 2

In this section, we assume that char(k) = 2. We continue to assume that X is a normal quartic

surface.

It is obvious that, in characteristic p 6= 2, the bitangent surface of a normal quartic surface X
does not contain α-planes (otherwise, the projection of X from some point is ramified at every

point). This is not anymore true over in characteristic p = 2.

A point x in P
3 is called an inseparable projection center of a normal surface X if the projection

map with the center at x is inseparable. It is clear that the set of lines passing through an inseparable

projection center is an α-plane contained in Bit(X). Conversely, if Bit(X) contains an α-plane of

lines through a point x ∈ P
3, the points x is an inseparable projection center of X.

Proposition 5.1. The set of inseparable projection centers of a normal quartic surface in charac-

teristic 2 is a finite set. Any inseparable projection center contained in X is a singular point of

X.

Proof. Since the set of points x ∈ X such that the line 〈q, x〉 is tangent at x is equal to the

intersection X ∩ Pq(X) [3, Theorem 1.1.5], a point q = [a0, a1, a2, a3] is an inseparable center of

a quartic surface X = V (F ) if and only if the polar Pq(X) = V (
∑

ai
∂F
∂xi

) = P
3. Suppose the set

of inseparable projection centers contains a curve Z of degree ≥ 2 (not necessarily irreducible).

Then, we can choose three non-collinear points on it. Choose projective coordinates such that

these points are [1, 0, 0, 0], [0, 1, 0, 0] and [0, 0, 1, 0]. Then, the partials ∂F
∂xi

= 0 for i = 0, 1, 2.

This means that F contains x0, x1, x2 in even power. But, then, it must contain x3 in even power.

Hence, F is a square. So, Z must be a line. In this case, Bit(X) contains a special hyperplane

section of the Grassmannian G1(P
3) that consists of lines intersecting Z . A general plane section

of X intersects Z and, hence, contains a curve of bitangent lines. However, a smooth quartic curve

contains only finitely many bitangents (in fact, less than or equal to 7, see below Proposition 5.8).

Thus, a general plane section of X is singular contradicting the Akizuli-Bertini theorem (see [9,

Remark 8.18.1]). This proves that the set of inseparable centers is a finite set.

Suppose q ∈ X is an inseparable projection center. Then, we may choose projective coordinates

such that q = [0, 0, 0, 1] and the equation of X can be written in form
∑

A4−k(x, y, z)w
k = 0,

where Ai is a homogeneous polynomial in x, y, z of degree i. Since q ∈ X, A0 = 0 and since

Pq(X) = 0, A1 = 0. Thus, q is a singular point. �

We can extend the proof of Proposition 2.2 to the case of characteristic 2 to obtain the following

Corollary.
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Corollary 5.2. Bit(X) is a congruence of lines, i.e., each irreducible component of Bit(X) is a

surface.

Recall that a universal binary form of degree d is a homogeneous polynomial of degree d in two

variables whose coefficients are algebraically independent over a field k..

Proposition 5.3. Assume char(k) = 2. Then, the discriminant D(d) of the universal binary form

of degree d is a square of a homogeneous polynomial of degree d− 1.

Proof. (supplied by G. Kemper) Take a univariate polynomial f = a0x
d + · · · + a1x+ ad whose

coefficients are indeterminates over the field F2. Let D = D(a0, . . . , ad) be the discriminant of

f . We know that D, as a function in roots, considered as indeterminants y1, . . . , yd is equal to the

square of P =
∏

i<j(yi − yj). Since char(k) = 2, P =
∏

i<j(yi + yj), and hence, it is invariant

under the whole symmetric group Sd (but not only under the alternating group Ad if char(k) 6= 2).

Since the Galois group of f permutes the roots ri, this means that P lies in F2[a0, . . . , ad]. So, the

discriminant of f is a square. �

Corollary 5.4. Suppose Bit(X) does not contain α-planes. Then, the order m of Bit(X) satisfies

1 ≤ m ≤ 1

4
d(d − 1)(d − 2)(d − 3).

Proof. The assumption implies that the order of Bit(X) is equal to the number of bitangents

dropped from a general point in P
3. In the proof of Theorem 2.2, by our assumption, the dis-

criminant of the binary form gd−2 is not zero, hence m ≥ 1. Now apply Proposition 5.3 and obtain

the other inequality. �

Definition 5.5. Let m(d) := 1
2d(d − 1)(d − 2)(d − 3) (resp. m(d) := 1

4d(d− 1)(d − 2)(d − 3))
for p 6= 2 (resp. p = 2). We say that a surface X is a general projection surface if the order of

Bit(X) is equal to m(d).

By Corollary 2.5, any surface in characteristic zero with ordinary double points as singularities

is a general projection surface.

In the next section, we show that it is not true anymore in characteristic 2.

In the following example of an involution σ of Type (ii) of a quartic surface in characteristic 2
all rays from the congruence of lines S(σ) are tangent to the surface.

Example 5.6. Let X = V (F ) be a quartic surface, where

F = x30x1 + x31x2 + x32x3 + x33x0.

The surface is invariant with respect to the involution

σ : [x0, x1, x2, x3] 7→ [x2, x3, x0, x1].

The set of singular points of X consists of one rational double point x0 = [1, 1, 1, 1] of type A2

and four ordinary double points [1, ζ, ζ3, ζ2], where ζ5 = 1, ζ 6= 1. The fixed locus Xσ of σ is the

line ℓ = V (x0 + x2, x1 + x3).
For any point x = [a, b, c, d] ∈ X not lying on ℓ, the line ℓx = 〈x, σ(x)〉 contains one extra

point [a+ c, b+ d, a+ c, b+ d] ∈ ℓ. The line ℓx is tangent to X at this point. So, σ is an involution

of Type (ii).
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Any invariant line on X is contained in a plane x3 = x1 + t(x0 + x2). A straightforward

computation shows that there are four invariant lines on X corresponding to the parameters t =
0,∞, e, e2, where e2 + e+ 1 = 0. Under the map φ : X/(σ) → S(σ), these lines are blown down

to points. The algebra of invariants k[x0, x1, x2, x3]
(σ) is generated by the polynomials

p0 = x0 + x2, p1 = x1 + x3, p2 = x0x2, p3 = x1x3, p4 = x0x1 + x2x3.

They satisfy the relation

p20p3 + p0p1p4 + p21p2 + p24 = 0,

and embed P
3/(σ) into P(1, 1, 2, 2, 2) as a weighted homogeneous hypersurface of degree 4 with

the double line V (p0, p1, p4). We can write

F = p4(p3 + p20) + (p2 + p21)(p0p1 + p4).

Therefore, the image of X in P
3/(σ) is the intersection of two hypersurfaces of degree 4, so it has

trivial dualizing sheaf. It is singular along the line V (p0, p1, p4). The quotient X/(σ) is isomorphic

to the normalization of this surface. Note that the polynomials pi do not generate the algebra of

invariants of the projective coordinate ring of X. In fact, x0(x
3
3 + x0x1) and x1(x

3
0 + x21x2) are

invariant modulo (F ).
The map φ : X/(σ) → S(σ) is just the projection map given by (p0, p1, p3). It shows that the

congruence of lines S(σ) is isomorphic to P(1, 1, 2). The image φ(ℓ) of the line ℓ is the singular

point [0, 0, 1] of P(1, 1, 2). The images of the four invariant lines are two nonsingular points.

Lemma 5.7. With no assumption on the characteristic, suppose Bit(X) contains a β-plane of lines

in a plane Π = V (L), where L is a linear form. Then, the equation of X can be written in the form

(5.1) Q(x, y, z, w)2 + L(x, y, z, w)F (x, y, z, w) = 0,

where Q is a quadratic form and F is a cubic form. The singular locus of X contains V (L,Q,F )∪
(V (Q) ∩ Sing(V (F ))), where Sing(V (F )) is the singular locus of V (F ). In particular, X is a

singular quartic surface.

Proof. Let C = X ∩ Π. Any line in Π is a bitangent of X. Thus, it is bitangent to C . This could

happen only if C is a double conic, reducible or not. Thus, Π is a trope-conic, and its equation can

be written as in (5.1).

Without loss of generality, we may assume that L = x is a coordinate plane. Taking the partials,

we find the singular locus contains V (x,Q, F ) ∪ (V (Q) ∩ Sing(V (F ))). �

Recall that the p-rank of a smooth curve C of genus g > 0 over an algebraically closed field of

characteristic p > 0 is the p-rank of the elementary abelian group J(C)[p] of p-torsion points of its

jacobian variety of C . It takes values in the set [0, g]. When p = 2 and C is a smooth plane quartic,

the p-rank takes values in {3, 2, 1, 0} and can be characterized by the number of bitangents of C
equal to 7, 4, 2, 1, respectively [20], [24, §3].

The proof of the following proposition can be found in [28, Proposition 1] (see also [20]).

Proposition 5.8. Let C be a smooth plane quartic curve over an algebraically closed field of

characteristic 2. Then, it is projectively equivalent to one of the curves
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(1) Q(x, y, z)2+xyz(x+y+z) = 0, Q(1, 0, 0), Q(0, 1, 0), Q(0, 0, 1), Q(1, 1, 0), Q(1, 0, 1),
Q(0, 1, 1), Q(1, 1, 1) 6= 0;

(2) Q(x, y, z)2 + xyz(y + z) = 0, Q(1, 0, 0), Q(0, 1, 0), Q(0, 0, 1), Q(0, 1, 1) 6= 0;

(3) Q(x, y, z)2 + xy(y2 + xz) = 0, Q(1, 0, 0), Q(0, 0, 1) 6= 0;

(4) Q(x, y, z)2 + x(y3 + x2z) = 0, Q(0, 0, 1) 6= 0.

One check that the number of bitangents is indeed equal to 7, 4, 2, 1, respectively. More pre-

cisely, the bitangents are

(1) V (x), V (y), V (z), V (x+ y), V (y + z), V (z + x), V (x+ y + z).

(2) V (x), V (y), V (z), V (y + z);

(3) V (x), V (y);

(4) V (x).

The loc. cit. paper of Wall also computes the automorphism group of a plane quartic in one of

the normal forms (1)-(4). This implies that the codimension of the subspace of plane quartics of

the form (1)-(4) is equal to 0, 1, 2, 3, respectively [28].

Based on Wall’s computations, the following proposition is proved in [19, Section 2].

Proposition 5.9. A smooth plane quartic curve over any field k (not necessary algebraically

closed) of characteristic 2 of p-rank less than 3 is isomorphic over K to a curve Q2 + LF , where

L is a linear form.

The next theorem shows, surprisingly for us, that, although the moduli space of non-ordinary

(i.e., of p-rank < 3) is of dimension 5 in the moduli space of all plane quartics, a general hyperplane

section of a nonsingular quartic surface is an ordinary curve.

Theorem 5.10. Let X be a normal quartic surface over an algebraically closed field of character-

istic 2 whose general hyperplane section is not an ordinary plane quartic. Then, Bit(X) contains

a β-plane, and hence, X is singular.

Proof. Let

F := {(x,Π) ∈ X × P̌
3 : x ∈ Π} ⊂ {(x,Π) ∈ P

3 × P̌
3 : x ∈ Π}

be the universal family of plane sections of X considered as the closed subset of the universal

family of planes. Passing to the generic fiber of the second projection, we obtain a plane quartic

curve CK over the field K of rational functions on P̌
3. Applying Proposition 5.9, we find that CK =

V (Q2 +LF ), where L is a linear form with coefficients in K . Applying a linear transformation of

P
3 over K , we may assume that the equation of V (L) in P

3
K is x0 = 0, where (x0, x1, x2, x3) are

coordinates in P
3
K . This implies that any line in the plane V (x0) is a bitangent line of X. Applying

Lemma 5.7, we obtain that X is singular. �
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Example 5.11. (suggested by the referee). Consider the surface X with the equation

w2(ax+ by + z)2 + x(y3 + x2z) = 0.

The surface X has a unique (non-rational) singular point [0, 0, 0, 1] and an ordinary node [0, 0, 1, 0].
The point [0, 0, 0, 1] is a unique inseparable projection center of X. In fact, take a general point

P = [x0, y0, z0, w0] in P
3. Substituting the parametric equation [x, y, z, w] = [sx0 + tu0, sy0 +

tu1, sz0+tu2, sw0+tu3], we find one bitangent line that connects P with the point [0, 0, 0, 1]. Thus,

Bit(X) contains an α-plane. On the other hand, a general hyperplane section w = αx+ βy + γz
is the case of Proposition 5.8, that is, it is a plane quartic curve with 2-rank 0. By Proposition

5.10, it contains a β-plane. Thus, Bit(X) contains the union of an α-plane and a β-plane. Further

computation shows that there is nothing else.

6. KUMMER QUARTIC SURFACES IN CHARACTERISTIC 2, ORDINARY CASE

Kummer quartic surfaces in characteristic 2 are divided into three classes according to curves

of genus 2 being ordinary, 2-rank 1, or supersingular (see, e.g., [14]). In this section, we dis-

cuss the simplest case, an ordinary Kummer quartic surface. The Kummer quartic surface X in

characteristic 2 associated with an ordinary genus 2 curve C is given by

(6.1) X = V (a(x2y2 + z2w2) + b(x2z2 + y2w2) + c(x2w2 + y2z2) + xyzw),

where a, b, c are non-zero constants. They coincide with the coefficients of the Igusa canonical

model of C [17], [18], [14]. The Kummer quartic surface X has four singular points

p1 = [1, 0, 0, 0], p2 = [0, 1, 0, 0], p3 = [0, 0, 1, 0], p4 = [0, 0, 0, 1]

all of which are rational double points of type D4 [23], [13], and X has four tropes defined by the

hyperplane sections x = 0, y = 0, z = 0, w = 0, respectively.

Applying Proposition 5.8, we find that a general hyperplane section of X is a plane quartic with

the 2-rank equal to 3. So, we expect that the class of X is equal to 7. Computing the partial

derivatives of the polynomial defining X, we find that there are no inseparable projection centers

of X. So, Bit(X) does not contain α-planes.

Lemma 6.1. Let S be the congruence of lines of bidegree (1, 1) of rays intersecting the skew lines

ℓ1 = V (x, y) and ℓ2 = V (z, w) (or V (x, z) and V (y,w), or V (x,w) and V (y, z)). Then, each

ray of S is a bitangent line of X.

Proof. It is enough to consider the first pair of skew lines. A line ℓ passing through a point q =
[x0, y0, z0, w0] not on ℓ1 or ℓ2 is the intersection of two planes 〈ℓ1, q〉 and 〈ℓ2, q〉. The parametric

equation of ℓ is

[x, y, z, w] = [sx0, sy0, tz0, tw0].

The line ℓ intersects ℓ1 at the point [0, 0, z0, w0] and intersects ℓ2 at the point [x0, y0, 0, 0]. Plugging

in these equations into (6.1), we get

(6.2) a(x20y
2
0s

4 + z20w
2
0t

4) + (b(x20z
2
0 + y20w

2
0) + c(x20w

2
0 + y20z

2
0) + x0y0z0w0)s

2t2 = 0.

This equation is a square of a quadratic equation, and hence, the assertion holds. �
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We keep the notation in the proof of Lemma 6.1. If q belongs to X, then it corresponds to [s, t] =
[1, 1], so [s, t] = [1, 1] is one of the solutions of (6.2). The second solution is [s, t] = [z0w0, x0y0].
This defines an explicit bitangent involution σ1 of X. We see that it is not defined only at the

singular points p1, . . . , p4 of X. The involution is the restriction of the Cremona involution

T1 : [x, y, z, w] 7→ [xzw, yzw, xyz, xyw]

which is equal to the composition of the standard inversion transformation T and the involution

g1 : [x, y, z, w] 7→ [y, x,w, z].

Note that g1 is induced from a translation of J(C) by a non-zero 2-torsion point. There are three

non-zero 2-torsion points on J(C) and all three bitangent involutions are the products of T and the

involutions induced from the translations.

Proposition 6.2. The surface X admits three bitangent involutions σ1, σ2, σ3. The congruence of

lines S(σi) is equal to the congruence of lines intersecting two skew lines from the previous lemma.

The fixed curve Xσi is an elliptic curve of degree 4, and it is cut out set-theoretically by the quadric

V (xy + zw).

Proof. It is enough to consider the first involution defined by the two lines ℓ1 = V (x, y) and

ℓ2 = V (z, w). We denote it by σ. We have already proved the first assertion. The fixed locus of

T1 is the quadric Q = V (xy+ zw). The quadric intersects X along a complete intersection of two

surfaces:

xy + zw = 0,

b(x2z2 + y2w2) + c(x2w2 + y2z2) + xyzw = 0.

Plugging in y = zw/x in the second equation, we find that the intersection is a quartic curve taken

with multiplicity 2. It passes through the singular points, and these points are nonsingular on the

quartic. We also check (substituting x = 1) that its projection to the plane is a smooth cubic curve.

Thus, C = Xσ is, set-theoretically, a smooth quartic elliptic curve.

Note that it is analogous to the fact that the fixed locus of any of the six bitangent involutions of

a Kummer quartic surface in characteristic different from 2 is an octic curve cut out by a quartic

surface with multiplicity 2. �

Let us now look at the birational map

φσ : Y = X/(σ) 99K S(σ) ∼= P
1 × P

1.

Recall that φσ is not defined at the singular points of X. The pencil of planes ℓ⊥1 (resp. ℓ⊥2 ) with

the base line ℓ1 (resp. ℓ2) cuts out in X a pencil of plane quartic curves. The involution σ acts

identically on the parameters of the pencil. Let

π : X̃ → X

be the minimal resolution of X. The involution σ lifts to a biregular involution σ̃ of X̃ .

Lemma 6.3. The pencils ℓ⊥1 and ℓ⊥2 define two invariant elliptic pencils |F1| and |F2| on X̃ . Each

pencil has four reducible fibers: two fibers of type D̃6 and two fibers of type Ã∗
1 (of Kodaira’s type

III).
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Proof. We consider only the pencil defined by ℓ⊥1 = V (y + tx) with parameter t ∈ P
1. We check

that, for a general parameter t, the plane quartic X ∩ V (y + tx) has two cusps at p3 and p4, hence

its geometric genus is equal to 1. The cusps are the base points of the pencil of quartics. There are

special values of the parameter t: 0,∞,
√

c/b,
√

b/c. For t = 0 (resp. t = ∞), the quartic is a

double conic, it passes through the third singular point p1 ∈ ℓ2 (resp. p2 ∈ ℓ2). The conic is one of

the four trope-conics on X, i.e. conics cut out set-theoretically by one of the trope planes:

C123 = V (
√
axy +

√
bxz +

√
cyz),

C124 = V (
√
axy +

√
byw +

√
cxw),

C134 = V (
√
azw +

√
bxz +

√
cxw),

C234 = V (
√
azw +

√
byw +

√
cyz).

Let Ei = E
(i)
0 + E

(i)
1 + E

(i)
2 + E

(i)
3 , i = 1, 2, 3, 4, be the exceptional curves over the singular

points pi of X, where E
(i)
0 is the central component. We check that the proper transform of V (y)

intersects one of the components E
(j)
i , i 6= 0, j = 1, 3, 4. The corresponding fiber of |F1| is of type

D̃6. If t = a/b, the quartic has one cusp at one of the base points and a cusp followed by infinitely

near node at another base points. The corresponding fiber of type Ã∗
1. �

Let us look at the orbit space Ỹ = X̃/(σ̃). Recall that each singular point of X is a rational

double point of type D4 with the exceptional curve E
(i)
0 + E

(i)
1 + E

(i)
2 + E

(i)
3 over pi, where E

(i)
0

is the central component. Observe that the transformation T1 blows down each conic Cijk to a

singular point:

C123 → p3, C124 → p4, C134 → p1, C234 → p2.

The involution σ̃ interchanges the proper transform C̃123 of C123 with the central component E
(3)
0 ,

and similarly for other trope conics. It acts on the corresponding reducible fiber via a symmetry of

its dual graph.

Now, we are ready to describe the birational morphism

φ̃σ : Ỹ → S(σ).

Let |f1| and |f2| be the rulings of the quadric Q = S(σ) corresponding to the family of planes

ℓ⊥1 and ℓ⊥2 . Their pre-images under X̃ → Ỹ → Q are the two elliptic pencils from Lemma

6.3. Let L
(1)
0 , L

(1)
∞ (resp. L

(2)
0 , L

(2)
∞ ) be the lines from |f1| (resp. |f2|) corresponding to the planes

V (x), V (y) ∈ ℓ⊥1 (resp. V (z), V (w) ∈ ℓ⊥2 ). Their pre-images in X̃ are the reducible fibers of type

D̃6 of |F1| (resp. |F2|). The image of the curve X̃ σ̃ in Q is a smooth curve B of bidegree (2, 2)

that passes through the vertices of the quadrangle of lines L = L
(1)
0 + L

(1)
∞ + L

(2)
0 + L

(2)
∞ .

We summarize our discussion above with the following assertion:

Proposition 6.4. The morphism φ̃σ : X̃/(σ̃) → S(σ) is the blow-up of the following eight points

on S(σ): four vertices of the quadrangle of lines L and infinitely near points to them corresponding

to the tangent direction of the curve B. The pre-images of the two fibers in |fi| corresponding to

the ramification points of the projection map B → |fi|∗ ∼= P
1 are reducible fibers of |Fi| of type

Ã∗
1.
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So far, we have found that the bitangent surface Bit(X) contains three irreducible components

of bidegree (m,n) = (1, 1). They correspond to three bitangent involutions σi. The surface also

contains four irreducible components of bidegree (0, 1) corresponding to the trope-conics Cijk.

Theorem 6.5. Let X be the Kummer quartic surface X in characteristic 2 associated with an or-

dinary curve of genus 2. Then, the surface Bit(X) is of bidegree (m,n) = (3, 7) in G1(P
3) which

consists of 7 irreducible components, three of bidegree (1, 1) corresponding to three bitangent

involutions and four of bidegree (0, 1) corresponding to four tropes.

Proof. For any plane Π containing p, the plane quartic curve X ∩ Π has bitangent lines forming

a line in G1(P
3), which implies that the plane quartic curve is a double conic. This is impossible

for a normal quartic X. As we mentioned before, Lemma 6.1, Bit(X) does not contain α-planes.

Thus it is enough to show that the class n of Bit(X) is equal to 3 + 4 = 7. This is the number of

bitangent lines contained in a general plane in P
3. We have already shown that n ≥ 7. On the other

hand, it is known that the number of bitangent lines of a smooth plane quartic in characteristic 2 is

7, 4, 2 or 1 if the Hasse-Witt invariant is equal to 3, 2, 1 or 0, respectively [24]. The assertion now

follows. �

Remark 6.6. Consider the standard inversion transformation

T : [x, y, z, w] 7→ [yzw, xzw, xyw, xyz]

of P3. The restriction of T to X̃ is a fixed-point-free involution σ with X̃/(σ) isomorphic to an

Enriques surface. Let us consider the Plücker embedding of the corresponding congruence of lines.

The six minors pij of the matrix
(

x y z w
yzw xzw xyw xyz

)

are given by

[p12, p13, p14, p23, p24, p34]

=
[

zw(x2 + y2), yw(x2 + z2), yz(x2 + w2), xw(y2 + z2), xz(y2 + w2), xy(z2 + w2)
]

,

which satisfies

p12p34 + p13p24 + p14p23 = xyzw((x+ y)(z + w) + (x+ z)(y + w) + (x+ w)(y + z))2 = 0

and the cubic equation

(6.3) p12p13p23 + p12p14p24 + p13p14p34 + p23p24p34 = 0

(see [8, (33)]).

Lemma 6.7. Let p0 = [x0, y0, z0, w0] ∈ X be a general point of the Kummer quartic surface. The

line ℓ passing through p0 and σ(p0) is not a bitangent line of X.

Proof. The following proof is suggested by a referee. By plugging the parametric equation

[x0 + ty0z0w0, y0 + tx0z0w0, z0 + tx0y0w0, w0 + tx0y0z0]

of the line ℓ into the equation (6.1) of X, we can see that the term which is linear in t is equal to

(x0 + y0 + z0 +w0)t. Since a general point does not lie in the hyperplane V (x+ y + z +w), ℓ is

not a bitangent line. �
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Let ℓ be a line passing through p0 and σ(p0). Let ℓ ∩ X = {p0, σ(p0), p′0, p′′0}. The image

of ℓ under σ is a cubic curve, and hence, p′0, p
′′
0 are not conjugate to p0, σ(p0) under the action

of σ. Thus, the map X 99K G1(P
3) sending p0 to ℓ = 〈p0, σ(p0)〉 has degree 2 onto its image.

Therefore, the Enriques surface X̃/(σ) can be embedded into G1(P
3) satisfying a cubic relation

(6.3). This suggests the following question:

Question 6.8. Is the Enriques surface X̃/(σ) a Reye congruence of bidegree (7, 3) ?

7. KUMMER QUARTIC SURFACES IN CHARACTERISTIC 2, 2-RANK 1 CASE

In this section, we discuss the case of Kummer quartic surfaces associated with curves of 2-rank

1. The Kummer quartic surface X1 associated with a curve of genus two and 2-rank 1 is given by

(7.1) X1 = V (β2x4 + α2x2z2 + x2zw + xyz2 + y2w2 + z4),

where α, β are constants with β 6= 0 [7, §3]. The surface X1 has exactly two singular points

p1 = [0, 0, 0, 1], p2 = [0, 1, 0, 0]

of type D8 [23], [13] and contains two tropes defined by the hyperplane section x = 0 and z = 0,

respectively. The two tropes meet at p1 and p2.

Consider the skew lines ℓ = V (x, y) and ℓ′ = V (z, w). In the same way as in the ordinary

case, we see that the lines meeting ℓ, ℓ′ are bitangent lines of X1. The corresponding bitangent

involution of X1 is given by the restriction of a Cremona involution

(7.2) σ1 : [x, y, z, w] 7→ [xz2, yz2, βx2z, βx2w].

Thus, Bit(X1) contains a smooth quadric surface S(σ1).
There exists another bitangent involution

(7.3) σ2 : [x, y, z, w] 7→ [x2z, x2w, xz2, yz2],

which is a composite of σ1 with a projective linear transformation

τ : [x, y, z, w] → [z, w, βx, βy].

Note that τ is induced from the translation by the non-zero 2-torsion of the Jacobian of the curve.

Now, let us consider the Plücker embeddings of the congruence of bitangent lines defined by σ2.

The six minors pij of the matrix
(

x y z w
x2z x2w xz2 yz2

)

are given by

[p12, p13, p14, p23, p24, p34]

=
[

x2(xw + yz), 0, xz(xw + yz), xz(xw + yz), (xw + yz)2, z2(xw + yz)
]

= [x2, 0, xz, xz, xw + yz, z2].

They satisfy

p13 = 0, p14 + p23 = 0, p12p34 + p14p23 = 0.

Thus, the congruence of lines S(σ2) is a quadric cone, a special linear section of the Grassmannian

quadric.



BITANGENT SURFACES AND INVOLUTIONS 21

We now conclude:

Theorem 7.1. Let X1 be the Kummer quartic surface associated with a smooth curve of genus two

and of 2-rank 1. Then, Bit(X1) is of bidegree (2, 4) in G1(P
3). It consists of two tropes and two

quadric surfaces, one is a smooth quadric S(σ1) and another is a quadric cone S(σ2).

Proof. We know that Bit(X) contains two β-planes and two irreducible components of bidegree

(1, 1). Taking the partial derivatives, we find that they are linearly independent, and hence, there

are no inseparable projection centers. So, Bit(X) does not contain α-planes. The equation of X is

of the form

Q2 + x2zw + xyz2 = 0.

Substituting w = ax+ by + cz, we obtain the equation of a general plane section q2 + x2z(ax+
by)+xyz2 = 0. It is immediate to check that it is projectively equivalent to a plane quartic of type

(2) from Proposition 5.8. Thus, its 2-rank is equal to 4, and hence, the class of Bit(X) is equal to

4. So, we have found all irreducible components of Bit(X): two β-planes and two components of

bidegree (1, 1). �

Remark 7.2. Let ℓ0 = V (x, z) be the line which is the intersection of the two trope-hyperplanes.

Then, any bitangent line defined by σ2 meets ℓ0 as follows. Let p = [x0, y0, z0, w0] ∈ P
3 be a

general point and q = σ2(p). The bitangent line 〈p, q〉 is given by

[x0(s+ tx0z0), sy0 + tx20w0, z0(s+ tx0z0), sw0 + ty0z
2
0 ]

where [s, t] ∈ P
1 is a parameter. The line 〈p, q〉 meets ℓ0 at [0, x0, 0, z0] when [s, t] = [x0z0, 1].

8. KUMMER QUARTIC SURFACES IN IN CHARACTERISTIC 2, SUPERSINGULAR CASE

In this section, we consider the supersingular case. In this case, the Kummer quartic surface X0

is given by the equation

(8.1) X0 = V (x3w + αx3y + x2yz + α2x2z2 + xy3 + y2w2 + z4),

where α is a constant [6, (5.1)], [7, §3]. The Kummer surface has one singular point p0 = [0, 0, 0, 1]
which is an elliptic singularity of type 4©1

0,1 in the sense of Wagreich [13] and contains a trope

defined by the hyperplane x = 0.

Let us consider the following Cremona involution:

(8.2) T : [x, y, z, w] 7→ [x3, x2y, αx3 + x2z + xy2, αx2y + x2w + y3].

The involution T preserves X0, and restricts to a bitangent involution σ of X0. This follows from

a direct calculation.

Let us consider the Plücker embeddings of bitangent lines. The six minors pij of the matrix
(

x y z w
x3 x2y αx3 + x2z + xy2 αx2y + x2w + y3

)

are given by

[p12, p13, p14, p23, p24, p34]

=
[

0, x2(αx2 + y2), xy(αx2 + y2), xy(αx2 + y2), y2(αx2 + y2), (xw + yz)(αx2 + y2)
]



22 IGOR DOLGACHEV AND SHIGEYUKI KONDŌ

= [0, x2, xy, xy, y2, xw + yz],

which satisfies

p12 = 0, p14 + p23 = 0, p13p24 + p14p23 = 0.

Thus, the congruence of lines S(σ) is a quadric cone.

Theorem 8.1. Let X0 be the Kummer quartic surface associated with a supersingular curve. Then,

Bit(X0) is of bidegree (1, 2) in G1(P
3) and it consists of a trope and a quadric cone.

Proof. Taking the partial derivatives, we find again that there are no inseparable projection centers.

So, Bit(X) does not contain α-planes. Since we have already found irreducible components of

Bit(X) of bidegree (0, 1) and (1, 1), it is enough to check that the 2-rank of a general plane section

is equal to 2. This can be seen directly by plugging in w = ax+ by + cz in the equation of X and

reducing the non-square part of the obtained equation to the form (3) from Proposition 5.8. �

Remark 8.2. Let ℓ0 = V (x, y). Then, any bitangent line meets ℓ0 as follows. Let p = [x0, y0, z0, w0] ∈
P
3 be a general point and q = σ(p). The bitangent line 〈p, q〉 is given by

[x0(s + tx20), y0(s + tx20), z0(s+ tx20) + tx0(αx
2
0 + y20), w0(s+ tx20) + ty0(αx

2
0 + y20)],

where [s, t] ∈ P
1 is a parameter. The line 〈p, q〉 meets ℓ0 at [0, 0, x0, y0] when [s, t] = [x20, 1].

REFERENCES

[1] P. Corvaja, F. Zucconi, Bitangents to a quartic surface and infinitesimal Torelli, J. Differential Geom., 126 (2024),

no. 3, 1097–1120.

[2] F. Cossec, Reye congruences, Trans. Amer. Math. Soc., 280 (1983), 737–751.

[3] I. Dolgachev, Classical Algebraic Geometry, Cambridge Univ. Press 2012.

[4] I. Dolgachev, 15-nodal quartic surfaces. Part I: quintic del Pezzo surfaces and congruences of lines in P
3, Recent

developments in algebraic geometry–to Miles Reid for his 70th birthday, London Math. Soc. Lecture Note Ser.,

vol. 478, Cambridge University Press, Cambridge, 2022, pp. 66–115.
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