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1. INTRODUCTION

Let R4 be the moduli space of genus g curves together with a non-trivial 2-
torsion divisor class €. In this paper we shall prove that the moduli spaces Ro
and Rg3 are rational varieties. The rationality of R4 was proven by F. Catanese
[3]. He also claimed the rationality of R3 but the proof was never published. The
first published proof of rationality of R3 was given by P. Katsylo in [10]. Some
years earlier A. Del Centina and S. Recillas [5] constructed a map of degree 3
from R3 to the moduli space ME¢ of bi-elliptic curves of genus 4 and claimed
that it could be used for proving the rationality of R3 based on the rationality of
M©Ee proven by F. Bardelli and Del Centina in [1]. In an unpublished preprint of
1990 I had shown that it is indeed possible. The present paper is based on this
old preprint and also includes a proof of rationality of Re which I could not find

in the literature.

The relation between the moduli spaces R3 and ./\/l'jfe is based on an old con-
struction of P. Roth [13] and, independently, A. Coble [4]. Much later it had been
rediscovered and generalized by S. Recillas [11], and nowadays is known as the
trigonal construction. To each curve C' of genus g together with a gj it associates
a curve X of genus g + 1 together with a g and a non-trivial 2-torsion divisor
class 7. The Prym variety of the pair (X, ) is isomorphic to the Jacobian variety
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of C. When g = 3 and g} = |K¢ + €/, the associated curve X turns out to be
a canonical bi-elliptic curve of genus 4, the bi-elliptic involution 7 switches the
two g3 on X, and the 2-torsion class 7 is coming from a 2-torsion divisor class
on the elliptic quotient X /(7). To make this paper self-contained we remind the
construction following A. Coble.

The author is grateful to the referee for some valuable comments on the paper.

2. RATIONALITY OF Ro

Let C be a genus 2 curve and x1,...,xs be its six Weierstrass points. A non-
trivial 2-torsion divisor class on C' is equal to the divisor class [z; — z;] for some
i # j. The hyperelliptic series g5 defines a degree 2 map C — P! and the images
of the Weierstrass points are the zeroes of a binary form of degree 6. This defines
a birational isomorphism between the moduli space My of genus 2 curves and the
GIT-quotient P(V(6))//SL(2), where V(m) denotes the space of binary forms of
degree m. A non-trivial 2-torsion divisor class is defined by choosing a degree 2
factor of the binary sextic. Thus the moduli space R is birationally isomorphic
to the GIT-quotient (P(V'(4)) x P(V(2)))//SL(2) and the canonical projection
Ra — M3 corresponds to the multiplication map V(4) x V(2) — V(6). At this
point we may conclude by referring to Katsylo’s result on rationality of fields
of invariants of SL(2) in reducible representations [9]. However, we proceed by
giving a more explicit proof.

Let M2 (2) be the moduli space of genus 2 curves together with a 2-level struc-
ture of its Jacobian (i.e. a choice of a symplectic basis in the space of 2-torsion
points of the Jacobian). It is well-known that a 2-level structure is equivalent
to an order of the set of the Weierstrass points and hence M3(2) is birationally
isomorphic to the GIT-quotient PY = (P1)%//SL(2) (see, for example, [8]). The
forgetful map Ms(2) — M(2) corresponds to the quotient map PP — PP /S,
where the symmetric group Sg acts naturally by permuting the factors. Under
the natural isomorphism Sp(4,F2) — Sg the stabilizer of a non-trivial 2-torsion
point is conjugate to the subgroup S; x Ss of Sg. Thus we obtain a birational

isomorphism

Ry — PP /(Sy x o).



Rationality of Ry and Rs 503

It is well-known that the variety P} is isomorphic to the Segre cubic threefold V3
defined in P° by equations

5
Fy=) t;=0 Fy=>) t}=0,
] =0

where the group Sg acts by permuting the coordinates (see [8]). Let C[to, ..., ts]
be the projective coordinate ring. We have

P16 = Pl“Oj(C[to, . ,t5]/(F1,F3))S4XS2.

Here Sy x {1} acts by permuting the first 4 coordinates ¢, t1,t2,t3 and {1} x Sy
permutes the remaining coordinates. The ring Clto, ..., t5]5*52 is freely gener-
ated by the symmetric functions

3
Ua(to, t1,t2,t3) = th‘,a =1,2,3,4, us =ts+t5,us = tals.
i=0

We have
Fi=ui +us, F3=wu3—+ ug’) — 3usug.
This allows us to eliminate us and uq to obtain
(PIG)/(S4 X SQ) = PI‘Oj((C[UQ,U4,U5,U6]) = P(2?47 1’ 2)
This proves the rationality of Ro.

Remark 2.1. According to G. Salmon [14], p.203, the algebra of SL(2)-invariant
polynomials on V(2) x V' (4) is generated by 6 bi-homogeneous polynomials of bi-
degrees (0,3),(0,4),(3,0),(2,2),(1,2) and (3, 3). The square of the last invariant

is a polynomial in the remaining invariants.

Let us give another proof of rationality of Ro. Let (C,€) € Ry. Consider the
map C — [2K¢c + ¢|* =2 P? given by the linear system |2K¢ + ¢€|. Its image Y is a
plane singular quartic. It is easy to see that | K¢ + €| consists of a unique divisor,
the sum of two distinct Weierstrass points x; + x;. The divisors 3z; + z; and
x;+3x; belong to 2K ¢ +e¢. The corresponding lines in P? intersect at the singular
point of ¥ whose pre-image in C' consists of the points z;, z;. The tangent lines
at the branches of the singular point intersect Y with multiplicity 4. This allows
one to find an equation of Y in the form

t2t1ty + totitaFy (t1, ta) + Fu(ty,ta) = 0,
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where F} and Fj; are homogeneous polynomials of degree 1 and 4, respectively.
Replacing tg by an appropriate linear form tg + at; + bts, we may assume that
F1 = 0. Finally, by scaling the coordinates, we obtain that Ry is birationally
isomorphic to the quotient of V' (4) = C® by a 2-dimensional torus. It is obviously

a rational variety.

3. THE COBLE-ROTH MAP

Let K3 denote the moduli space of pairs (C, (a, —a)), where C is a curve of
genus 3 and a is a divisor class of degree 0 on C. The projection to C fibres K3
over M3z with fibres isomorphic to the Kummer varieties of curves of genus 3.
The Coble-Roth map is a rational map

cr: Kg — Ry

defined as follows. Assume that a # 0 and C is not hyperelliptic. Consider the

natural map
(3.1) ¢ | Ko+ dl X‘Kc—a| — |2K¢|, (D1, D3) — Dy + Ds.

We can choose an isomorphism |K¢ 4+ a] = P! and an isomorphism [2K¢| =
|Op2(2)| , where P? = |K¢|*. Let V3 be the determinant cubic parametrizing
reducible conics in the space of conics |Op2(2)|. Using projective coordinates
(ug,u1) and (vg,v1) on each copy of P!, we see that the map is given by a linear
system of divisors of bi-degree (1,1). Thus the pre-image X of the cubic Ds is a
divisor of bi-degree (3, 3) on P! xP1. For C general enough it is a smooth canonical
curve of genus 4. It is also isomorphic to a section of V3 by the 3-dimensional
linear space, the linear span of the image of the map ¢. As is well-known, the
cubic V3 admits a double cover ramified along its singular locus (parametrizing
the irreducible components of singular conics). The restriction of the cover to the
image of ¢ defines a non-ramified double cover of the curve X, hence a 2-torsion
divisor class n on X.

A remarkable fact is that the Coble-Roth map is birational. This is proved as
follows. Starting from a canonical curve X C P! x P! of genus 4 and a non-trivial
2-torsion divisor class 7 on X we identify the |[Kx + n|* with P2. The image of
X under this linear system |Kx + 7| is the Wirtinger sextic model of X (see [3]).
For any point a = ((ap, 1), (B0, 31)) € P! x P! one defines the polar P,(X) of X
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with respect to a by the formula:

Pa(X) = Z azﬂjﬂ =0,
. (9t2-87-j
4,7=0
where F' = F(tg,t1;70,71) is a bi-homogeneous equation of X. The set of polars
of X generates a 3-dimensional linear system in |Ox(2)|, where X is considered
to be embedded in P3 = |Kx|*. Now we can view any divisor D € |Ox(2)] as a
conic in the space P? = |Ox(Kx + ¢)|*. This defines a map:

P P! x P! — |O0p2(2)], a— P,(F).

It is given by a divisor W of type (1,1,2) on P! x P! x P2. The projection of W
to P2 is a conic bundle with the discriminant curve C of degree 4. The degree 2
cover of C parametrizing irreducible components of the fibres defines a non-trivial
2-torsion point € on C'. This defines the inverse map. We refer for the details to

a paper of S. Recillas [12].

Now let us identify Rg with the closed subvariety of K3 contained in the locus of
singular points of the fibres of K3 — Ms. For any (C,€) € R3 the corresponding
pair (X, n) € Ry is invariant with respect to the involution ¢ induced by switching
the factors in the map P! x P! — P5 defined by the map (3.1), where a = ¢,

|Kc+€| ><|Kc—|—e| —>‘2Kc|, (Dl,D2)|—>D1+D2.

The quotient X /(o) is an elliptic curve E and the 2-torsion class 7, being o-
invariant, is the pre-image of a 2-torsion divisor class on E. Let lee denote the
moduli space of pairs (X, n), where X is a genus 4 curve together with a bi-elliptic
involution o and 7 is a g-invariant non-trivial 2-torsion divisor class on X. The

Coble-Roth map defines a rational map
Rs — REe.

Let us show that it is a birational map (see also [5]). Let X be a canonical curve
of genus 4 on P! x P1. Suppose X has a bi-elliptic involution ¢ and E = X/(0) is
an elliptic curve. The involution ¢ is induced by an automorphism & of P! x P!
(since X is canonically embedded in P? and all non-singular quadrics in P? are
projectively isomorphic). Since the two gi’s of X induced by the rulings of P! x P!
are switched under o, we obtain that & switches the two families of rulings of
the quadric. This easily implies that ¢ is conjugate to the switch involution of
P! x PL. Thus we may assume that & is this involution. Then the factor X/ (o)
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can be identified with a cubic curve E in P! x P!/(5) = P2. Suppose 7 is a non-
trivial 2-torsion divisor class on X that comes from the elliptic curve E. Then
the pair (X, n) is invariant with respect to the involution &, and the associated
conic bundle W C P! x P! x P? is invariant with respect to the involution & x 1.
It follows from the construction that the two g}’s on the quartic discriminant
curve C coincide. Since they complement each other in the bi-canonical linear
system of C, each of them is equal to |K¢ + |, where 2¢ = 0. This shows that
cr~1(RY®) € R3. Thus the Coble-Roth map defines a birational isomorphism

~ b
R3 = R4€.
4. RATIONALITY OF Rg

It remains to prove the rationality of R'je. It is a triple cover of the moduli
space Mff of bi-elliptic curves of genus 4. The latter has a simple description.
Each generic X € MY is uniquely determined by the isomorphism class of the
following data: (E,L,s), where E is an elliptic curve, £ is a degree 3 invertible
sheaf on E, and s € H°(E, £%?). The isomorphism between triples (E, £, s) and
(E', L', §") is induced by the isomorphisms between E and E’. If we use L to
embed E in P2, this data is equivalent to the data (E,Q), where E is a cubic
and Q is a conic on P? that cuts out in E the divisor of zeroes of s. Here the
isomorphism is induced by a projective transformation of P?. In this way we
obtain a birational isomorphism

M =V =|0p(3)] x |0p(2)|/PGL(3),
where the group acts diagonally. Similarly, we have a birational isomorphism
(4.1) Ri 2 [Op(3)] x |Op(2)| /PGL(3),

where |Op2(3)| is the variety of pairs (E,n),E € |Op2(3)],n € 2Pic(E) \ {0}.
There is a well-known birational PGL(3)-equivariant isomorphism

Op2(3)] = |Op2(3)].

It is defined by assigning to a plane cubic the Hessian invariant of the net of polar
cubics (see [7] for details). This shows that

Ry = RY = MY

It remains to use that the right-hand space is rational [1]. Recall that MY is
isomorphic to the space of projective equivalence classes of pairs (F3, Q3), where
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F3 is a plane cubic and ()9 is a plane conic. By fixing a conic, we see that
MQEe is birationally isomorphic to the quotient P(S3(V(2)))//SL(2). The linear
representation S3(V(2)) of SL(2) decomposes as V (6) + V(2) and we may apply
Katsylo’s result [9] to conclude the rationality. In fact, Bardelli and Del Centina
prove the rationality directly by finding an appropriate subspace W of V (6)+V (2)
with stabilizer isomorphic to a subgroup H = C* x Z/2 and computing explicitly
the field of invariants of H on W.

Another possible approach to rationality of M4 (as indicated by the referee)
consists of putting the cubic F3 in the Hesse form x% + aczf + x% + txgrixe = 0.
In this way M%® becomes birationally isomorphic to the space P' x P%/G, where
G = (Z/3)? x SL(2,F3) is the Hesse group of order 216, the subgroup of PGL(3)
leaving the Hesse pencil invariant. The proof of rationality of M%® from [1] could
be based on the explicit computation of invariants of the Hesse group.

Remark 4.1. It is well-known that a non-trivial 2-torsion class ¢ on a canonical
curve C of genus 3 defines a family of everywhere tangent conics to C. This
family is a conic in the space of conics and the quartic equation of C is the
discriminant of this conic (see [4],§14 or [6], 6.2). In this way one obtains a
birational isomorphism from R3 to the space of conics in [2K¢| = P5 modulo
the group PGL(3) acting naturally on |2K¢|. Since each conic lies in a unique
plane, we have a projection R3 — G(3,6) to the Grassmannian G(3,6) of planes
in P> modulo the action of the group PGL(3) with fibres isomorphic to the 5-
dimensional space of conics in a given plane. By intersecting a plane with the
discriminant cubic V3 we obtain a birational isomorphism G(3,6)/PGL(3) and
the space Rq. This gives a fibration R3 — R with P° as fibres. The rationality
of R3 would follow if one can prove that this fibration is a projective bundle. I
do not know how to prove it. Note that this fibration is birationally isomorphic
to the fibration

Ri 2 Op2(3)] x |Op2(2)|/PGL(3) — |Op2(3)[/PGL(3) = Ry

(see (4.1)). However, the group PGL(3) acts on the first factor with non-trivial
stabilizer of a general point, so one cannot conclude that this fibration is a P°
bundle.
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