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INTEGRAL QUADRATIC FORMS:

APPLICATIONS TO ALGEBRAIC GEOMETRY

[after V.Nikulin]

by Igor Dolgachev
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Séminaire BOURBAKI

35e année, 1982/83, n° 611 Juin 1983

As is well-known,integral quadratic forms appear in topology as

the intersection forms on the middle-dimensional homology of manifolds
of dimension 4k . In algebraic geometry they also appear as the inter-
section forms on the group of middle-dimensional algebraic cycles on
a nonsingular algebraic variety of dimension 2k. In particular, the

automorphism group of an algebraic variety is represented naturally by
orthogonal transformations of integral quadratic forms. This simple
observation was one of the motivations for V.Nikulin in his work on

the arithmetic of integral quadratic forms and arithmetic crystallo-
graphic groups [30-35] . The purpose of this talk is to give an account
of a part of this work and some of its applications to surface singu-
larities and automorphisms of algebraic K3-surfaces. For lack of time

we leave completely the part of Nikulin’s work which concerns the

topology of real algebraic varieties[30,32,35] . We refer to[8,10,25,
26,29,42]for other closely related works which are not mentioned here.

1. The arithmetic of integral quadratic forms.

The classical problems in the theory of quadratic forms are the

problem of classification and the problem of representation of one
form by another. In the case of quadratic forms over algebraic number
fields they were solved in the works of H.Minkowski, H.Hasse,M.Kneser,
M.Eichler and others. In the case of unimodular indefinite integral
forms they are solved by results of J.Milnor. Developping the techni-
que of discriminant forms introduced in works of M.Kneser,C.T.C.Wall,
A.Durfee and others ( see [12]), V.Nikulin solves the above problems
for non-unimodular indefinite integral quadratic forms.



1.1. Notation and definitions.

An integral symmetric bilinear form ( or a lattice ) of rank r is a

free Z-module S of rank r together with a symmetric bilinear form
S x S ~ ~ , (x,x’) -~ x.x’ . Tensoring by R we obtain the real bilinear
form Sll associated to S . All the usual terminology for the latter

applies to S. Thus, we may speak about the signature sign(S) =
= (t+,t-,t~), positive or negative definite, semi-definite,indefinite,

non-degenerate lattices. If S is a non-degenerate lattice, we write

sign(S) = (t+,t-) . An indefinite lattice of signature (l,t_) or

(t+,l) is called a hyperbolic lattice.

A homomorphism of lattices f:S ~ S’ is a homomorphism of the abelian

groups such that f(x).f(y) = x.y for all x,yES . An injective (resp.
bijective) homomorphism of latticies is called an embedding (resp.
an isometr ) .The group of isometries of a lattice S into itself

is denoted by 0(S) and is called the orthogonal group of S . An

embedding i:S ~ S’ is called primitive if S’/i(S) is a free group. A

sublattice of a lattice S is a subgroup of S equipped with the induced
bilinear form. A sublattice S’ of a lattice S is called primitive if

the identity map S’~ S is a primitive embedding. Two embeddings
i:S -~ S’ and i’:S "~ S’ are called isomorphic if there exists an

isometry uEO(S’) such that i’ = uoi . We say that a lattice S’

represents a lattice S if there exists an embedding i:S ~ S’. Two

lattices are called isomorphic if there exists an isometry from one

to another.

By S-.@ S2 we denote the orthogonal sum of two lattices defined in
the standard way. We write Sn for the orthogonal sum of n copies of

a lattice S . The orthogonal complement of a sublattice S of a

lattice S’ is defined in the usual way and is denoted by (S)~, .
If e - {el,...,er} is a I-basis of a lattice S, then the matrix

G(e) = (ei e.) is called the Gram matrix of S with respect to e . It

is clear that the structure of a lattice is determined by the Gram

matrix with respect to some basis .

For every integer m we denote by S(m) the lattice obtained from a

lattice S by multiplying the values of its bilinear form by m .

A lattice S is called even if x2:= x.x is even for all x from S .
In this case the map a quadratic form on S, i.e. a map

Q:S -+ I such that i) Q(nx) = n2Q(x) for all nE~ and xES and ii) the

map S x S + I , (x,y)+ ~(Q(x+y)-Q(x)-Q(y)) is the symmetric bilinear



form on S .

By A ,D ,E we denote the even negative definite lattices defined by
the Gram matrix equal to (-l)x the Cartan matrix of the root

system of type A ,D ,E respectively ( [7], Chap.VI) . By U we denote

the indefinite lattice of rank 2 defined by the Gram matrix (~ 10 1)
(called the hyperbolic plane). For any integer n we denote by n>

the lattice Ze , where e2 - n .

1.2. Discriminant forms.

*

Let S be a lattice and S = HomZ(S,Z) be the dual abelian group. We
denote by is the homomorphism of abelian groups * S ~ S given by

iS(x)(y) - x~y for every x,yES . The cokernel is denoted by

DS and is called the discriminant group of S . This group is finite if

and only if S is non-degenerate. In the latter case its order is

equal to !det(G(e~))) I for any basis e of S . A lattice S is called

unimodular if DS is trivial and p-elementary if DS is a p-elementary
abelian group. By 1(A) we denote the minimal number of generators of

an abelian group A of finite type, we put l(S) = l(DS) .
Let DS be the discriminant group of a non-degenerate lattice S . The

bilinear form of S extends naturally to a O-valued symmetric bilinear

form on S and induces a symmetric bilinear form bS:DS x DS + O/Z . O
If S is even, then bs is the symmetric bilinear form associated to the

quadratic form /2Z defined by x2+2Z . The
latter means that qS(na) = n qS(a) for all and bS(a,a’) -
= 2(qS(a+a’)-qS(a)-qS(a’)) for all a,a’EDS, where 2:~/2Z -~ ~/Z is

the natural isomorphism. We call the pair (DS,bS) ( resp. 

the discriminant bilinear (resp.quadratic) form of S .

More generally, one can define a finite symmetric bilinear (resp.
a finite quadratic) form as a pair (A,b) (resp. (A,q)) consisting of
a finite abelian group A and a symmetric bilinear form b:A x A + 

(resp. a quadratic form q:A + ~/2Z) . One extends to this case most

of the notion introduced for lattices. In particular, we may speak
about the orthogonal group 0(A) of a finite symmetric bilinear form

(every finite quadratic form (A,q) is considered as a finite symmetric
bilinear form (A,b), where b is associated to q). We define the

homomorphism of groups a: 0(S) -~ O(DS) by putting a(~) - S,
where 4* denotes the transpose of 4 . We also define the orthogonal
sum of finite symmetric bilinear forms and check that



1.3. Some earlier results.

The following results about unimodular lattices are well-known (see

[43] ) :

Proposition(1.3.1)(J.Milnor [23]). 1 ) A non-even unimodular

for any signature (t ,t ) and is isomorphic to the

lattice «1» 
t 
+ ffi t 

+ 

(  1 >) + @ (-1>)t- .
2) An even unimodular lattice 06 (t+,t-) exists if and only

if t+-t- ~ 0(mod 8); if indefinite, it is determined by signature

uniquely up to an 

It follows immediately from these results that an embedding (necessa-

ry primitive) of an (even) indefinite unimodular lattice of signature

(t+,t-) into a lattice of the same type with signature (t+,t’) exists
and is uniquely determined up to an isomorphism provided t+ > t+
and t’ > t .
We also mention the following result about primitive embeddings of

an even non-unimodular lattice into a unimodular lattice:

Proposition (1.3.2)(D.James[19]). A primitive embedding 06 an even

non-degenerate lattice 06 signature ( x+, x- I into an, even unimodular

lattice 06 signature (l+,l-) exists if t++t- ~ min{l+,l-} . Moreover,

~.~ then the embedding ~.~ unique up to an

To generalize these results Nikulin uses the technique of discrimi-

nant bilinear and quadratic forms. We recall the following results

which can be found ( or deduced from ) in [12] :

Proposition (1.3.3). 1) Two non-degenerate (resp. even non-degenerate)

S1 and S 2 hav e isomorphic bilinear discriminant forms (resp.

quadratic discriminant forms I if and onty if S1 1 0 S2 0 L2 for

unimodular (resp. even unimodular) lattices L1 and L2 .
2 ) For every finite symmetric bilinear form ( A, b I quadratic form

(A,q)) there exists a lattice an even S such that

(A,b) lA,qll.

3) The signature and the discriminat quadratic form determine unique-

.~y the genu 06 an even 

Recall that two lattices Sl and S2 belong to the same genus if

sign(Sl) = sign(S2) and their p-adic completions Sl 0 Z and



(S2)p - s 2 a Zp are isomorphic (as X -bilinear forms) for all primes

p . It is known that the genus determines the isomorphism class of

S~ = S 0 Q and contains only finitely many isomorphism classes of

lattices.

Most of the proofs of the results from the next section are based
on the method of passing to the p-adic completions and use the
classification of p-adic lattices [15], finite quadratic forms [12,30]
and the relation DS ( with the obvious generalization of
the definitions to give it sense). It should be said that these

methods allowed the experts (e.g. M.Kneser and C.T.C.Wall) to obtain

the results below in many special situations. We owe to Nikulin the
nice and simple way for expressing this technique in the general case.

1.4. Nikulin’s results. 
’

To simplify the exposition we restrict ourselves only to the case of
even non-degenerate lattices and state the results not always in their
full generality, as proven in [30].
We begin with the classification problem: Given two non-negative

integers t+ and t- and a finite quadratic form A , we want to find out
whether there exists an even non-degenerate lattice S with sign(S) =
= (t+,t_) and A . Using Proposition (1.3.3) we can define the
index ind(A) of A as the element of 1/81 equal to t+ - t’ mod 8 ,

where S’ is an even lattice with the signature (t’,t’) and A .

Thus, we have a necessary condition: t - t- =ind(A) (mod 8) .

Another obvious necessary condition is rk(S) = t + t: ~_ 1(A) .

THEOREM ( 1. 4.1 ) ( Existence ) . An even S I = I
and A providing the following conditions are satisfied:

~+ - t = ind(A) (mod ~);
+ t- > ~IA) .

A stronger result ([30],Thm. 1.10.1) replaces (ii) by the non~strict

inequality but adds two more local conditions.
To prove the theorem Nikulin applies Proposition (1.3.3) to find a

lattice S’ with DS, = A and t+-t+ _ t -t (mod 8) , rk(S’) > rk(S)
( sign(S’) = (t+,t’)). Using the classification of finite quadratic
forms he finds the p-adic completions S’ and then possible p-adic
completions of S . Finally, the lattice S is reconstructed by the
theory of Minkowski-Hasse (see[43)).



THEOREM (1.4.2)(Uniqueness).An even S ~.~ 

by and discriminant quadratic form uniquely up to

an provided rk(S) ~ l(S) + 2 .

If l(S) = 0 , i.e. S is unimodular, this follows from Prposition
(1.3.1) . If 1(S) ~ 0 , then rk(S) > 3 and the result follows from a

result of M.Kneser[20]interpreted in the language of discriminant

quadratic forms.

COROLLARY (1.4.3). . Let S be an even with

rk(S) ~ l(S) + 3. Then S ~ S’ ~ U for some lattice S’. Moreover, lj the

above then the S’ is determined uniquely

up to an 

Before stating Nikulin’s results about primitive embeddings of even

lattices,we have to make the following simple remarks .

Let S be an even non-degenerate sublattice of an even non-degenerate
lattice S’ . Suppose that rk(S) = rk(S’) . The inclusions Sd S’c

S show that the group , 
= S’/S is a subgroup of of DS

and the restriction of the quadratic form qS to HS,S’ is identical

zero . Conversely, if H is an isotropic subgroup of DS (i.e. qsl H =0),
then it can be lifted to a subgroup S’ of S" such that the O-valued

symmetric bilinear form on S induces a structure of an even

non-degenerate lattice on S’ containing S as a sublattice . In this

way we obtain

Lemma (1.4.4) . . The correspondence S’ , a 

between the set of non-degenerate containing S as

ce ob ,i.ndex and xhe set of isotropic subgroups of DS.Moreover,
under this correspondence p , and

qs’ = °

Now, let i:S + L be a primitive embedding of an even non-degenerate

lattice S into an even unimodular lattice L . We identify the lattice

S with its image i(S) . Let K = (S)~ . Then L contains S@K as a sub-
lattice of finite index. The composition of the bijection iL:L + L
and the restriction map L + K defines an isomorphism 

Similarly, we construct an isomorphism DS and obtain in
this way an isomorphism DK. By Lemma (1.4.4), the graph of

this isomorphism in is an isotropic subgroup. This

shows that -qS Thus, we get



Lemma (1.4.5). A embedding 06 an even 

S into an even unimodular lattice L with (S)IL isomorphic to
a K 1. given by an PK that

qKo03B3= -qS . Two such isomorphisms 03B3 and 03B3’ define isomorphic

embeddings if and only if thene that 03B3o03C6 = ’Y’ .

It follows immediately from this lemma that a primitive embedding
of an even non-degenerate lattice S of signature (t+,t-) into an even

unimodular lattice L of signature (1+,1_) exists if and only if there

exists an even non-degenerate lattice K of signature (1+-t+,l--t-)
with Applying Theorem (1.4.1) we obtain

THEOREM (1.4.6) (Primitive embeddings). A primitive embedding of an

even non-degenenate S 06 signature (t+,t-) I into an euen

unimodular lattice L 06 signature (l+,l-) exists provided l+~t+,
~- ~ t , >.~(S) .

The second part of Lemma (1.4.5) implies that a primitive embedding
of S into L is uniquely determined up to an isomorphism if the

signature (1+-t+,l--t-) and the quadratic form determines

uniquely the isomorphism class of a lattice K and the canonical

homomorphism a: is surjective. The next result gives a

class of lattices for which the latter is true.

Proposition (1.4.7). Let S be an even Suppose
that l(S) + 2 . Then the homomorphism O(S)~O(DS) is surjective.

Applying this result, we obtain

THEOREM (1.4.8) (Uniqueness of a primitive embedding).Let L be

a primitive embedding 06 an even non-degenenate S 06

(~t+,~-I into an even non-degenenate L 06 

(l+,l-) . It is unique up to an automorphism 06 L pnovided the
conditions ane 

(~) I ~~ ~ ~+~_ ~ t_; i
(~)~~fL)-~~(~) ~ + 2 .

We leave aside the generalizations of the above results to the

case of a primitive embedding into a non-unimodular lattice ( see[301,
15° ) .



1.5. 2-elementary lattices.

Recall that a lattice S is called 2-elementary if its discriminant

group ( clearly a = 1(S)) . We will consider only even

2-elementary lattices . We introduce the invarint 8S of S by

putting 3 = 0 if qS takes values in Z/2Z ~ Q/21 and 3c == 1 otherwise.

The importance of 2-elementary lattices will be clear later (see

also [35j). Partly it is based on the notion of an involution of a

lattice. Let L be an even unimodular lattice and t:L + L be its invo-

lution, i.e. an isometry of order 2 in 0(L) . We define the

sublattices of L:

It is clear that these sublattices are primitive sublattices of L

and that each of them is the orthogonal complement to another.

Proposition( 1.5.1). The L‘ and L‘ are even 

Conversely, for every primitive 2-elementary sublattice S ab

an even unimodular lattice L theJte a unique involution i of

L such that S = Land = L, . .

This is a simple corollary of Lemma (1.4.5).

THEOREM (1.5.2)(Classification of 2-elementary lattices). The genus

06 an even 2-elementary lattice is determined by the invariants 8S,
and 16 S is indefinite, then the genus consists 06 one

An even 2-elementary lattice S with the invariants

8 S =3 . , l(S) - .2 and = i ~.~ and ~.~ xhe

following conditions are satisfied ( we assume that b = 0 an 1 and

l,t+,t- are nonnegative integers):
1 ) ~+ + ~_ ~ ~ ; ;

2) t+ + ~- + ,~ _ 0 ( mod 2 ) ;

3 ) x+ - x- _ 0 ( mod 4 ) ~.~ 3=0;

4) 8 - 0 , x+ - ~- _ 0 (mod 8) ~.~ l = 0 ; 1

5) t+ - x- _ 1 ( mod 8 ) I = 1 ;

6) 3 = 0 ~.~ a = 2 , t+ - x- _ 4 ( mod 8 ) ; ;

~ ) ~+ - x- _ 0 ( mod 8 ) ~.~ 8 = 0 and .2 = t + + t .

This theorem is deduced from the classification of finite quadratic
forms on 2-elementary abelian groups and Proposition (1.3.5).



2. Crystallographic groups in Lobachevsky spaces.

2.1. Discrete reflection groups and convex polyhedra.

Let El’n be a real (n+1)-dimensional vector space equipped with an

inner product x.x’ of signature (l,n) . The subset V = 

is a disjoint union of two open convex cones. We choose one of them

and denote it by V+ . Let ~n be the subset of the real

projective space ~n(g) . If n > 2 , then In admits a natural structure

of a Riemann manifold of constant negative curvature and is called

the n-dimensional Lobachevsky space ( or the n-dimensional hyperbolic

space). Its group of motions is identified with the subgroup
of the orthogonal group 0(El’n) consisting of all isometries

of which leave V+ invariant. Obviously, 
For every eEEl’n with e2  0 the set

is a non-empty subset of En . The Riemannian structure of En induces
a structure of a (n-1)-dimensional Lobachevsky space on He ( if n ~ 2

we still call En the Lobachevsky space) . We call He a hyperplane in
L . We will always assume that e is normalized in such a way that

e2 = -2 . If H is a hyperplane in both H and H , , , then the

dihedral angle a(H ,H ,) is defined by putting =

- 2 e.e’ . A convex polyhedron in ~n is a subset of En of the form

for some set of vectors e. with e2 - -2 . We will always
assume that the set defining P cannot be decreased. The

hyperplanes H are called the facets of P . Let H e. be the natural

extension of He, to a hyperplane in pn(K) and P be the convex
polyhedron in ~ bounded by the hyperplanes H e. . Then P is

of finite volume with respect to the Riemannian metrtc in En if and
only if P is contained in the closure in of En in Moreover,
P is compact if and only if If P is of finite volume, then

the set of its facets H 
e. 

is finite and we can define the Gram

matrix of P by putting ~

A reflection with respect to a hyperplane H ( or a vector eEEl’n
with e = -2) is a motion of ~n given by the formula:



Every polyhedron P definesa subgroup F(P) of generated

by the reflections with respect to the facets of P . The group f(P)

is a discrete subgroup of the Lie group if and only if all

the dihedral angles of P are of the form /r/m , where m is an integer

~_2 . Conversely, for any discrete subgroup r of generated

by reflections, the union of the hyperplanes defining all reflections

from r divide Ln into a union of convex polyhedra. Each of them,

say p(r), is a fundamental domain for r in Ln and r( P ( r) ) =F. If

( He,) .... is the set of facets of P(D, then the pair (r,{ se,} is

a Coxeter system [7,46] . 

A convex polyhedron P in ~n is called a crystallographic polyhedron
if it is of finite volume and r(P) is a discrete subgroup of 

A discrete subgroup of generated by reflections is called a

crystallographic group if P(r) is of finite volume.

PROBLEM. all crystallographic polyhedra in In , or, equivalently,

all crystallographic subgroups on 0(E1,n)+ .
It is known that for any discrete arithmetic subgroup of 0+(El’n)

its fundamental domain in ]Ln is of finite volume [6] . Thus, any

discrete arithmetic subgroup of generated by reflections is

a crystallographic group . We notice the following striking result

due to E.Vinberg [47]:

THEOREM (2.1.1). Let r be a crystallographic group in In . Suppose

that n > 30 . Then not arithmetic and P(r) is not compact.

Many examples of crystallographic groups were constructed by various

geometers (F.Lanner,V.Makarov,E.Vinberg,E.Andreev,H.-C. im Hof are

some of them ). No examples of such groups are known for n >19 .

2.2. Arithmetic crystallographic groups.

Let P be a crystallographic polyhedron in ]Ln and G(P) be its Gram

matrix. Assume that r(P) is an arithmetic subgroup of Then

all the cyclic products b.. m 
= 

ai 1 i ’ 2 " ’’ai m i 1 
are real algebr-

aic integers [45]. In particular, all the entries aij of G(P) are real

algebraic integers . Let K =(!)({ b.. } ) be the extension 

generated by all the products b. 1 mand K = (!)({ a .}) be the

extension of Q generated by all the entries of G(P) . The extension

K/K is a Galois extension, its Galois group G is a 2-elementary

abelian group. Let ) be the ring of integers of K and S be the



(~-submodule of E ’~ spanned by the vectors e. defining the facets of
P ( we assume for simplicity that they span E~’~ ). The inner

product on E ’ induces a symmetric bilinear form on S . The Galois

group G acts on S by acting on 9 and sending the e!s to j~e.. The

group F(P) is a subgroup of finite index of the group 0(S,G) of

G-isometries of S . Moreover, F(P) is generated by the G-reflections

s~ . The triple (K,K’,S) is called the lattice of P (or F(P)). Two

arithmetic crystallographic groups are called equivalent if they have
the same fields K and K, and their lattices are G-isomorphic.

THEOREM(2.2.1) (V.Nikulint’33,34]). For a fixed N =[K:$j the number
of equivalence classes of arithmetic crystallographic groups in In
(n. ~ 2) is finite . Moreover, there exists a. number N. such that for
n > 9 are no arithmetic crytallographic groups with [K:q]>N0.

Notice that P is always compact then S

is a non-degenerate even hyperbolic lattice and F(P) is a subgroup
of finite index of 0(S) generated by reflections , e.~S
Let F denote the set of isomorphism classes of non-degenerate

even hyperbolic lattices of rank r such that the subgroup W(S) of

0(S) generated by all reflections , e~S (the reflection group - of

S),is of finite index in 0(S) . We put F~m = and F = 

Since 0(S) is an arithmetic subgroup of the group O(SR) , the

group W(S) and any its subgroup of finite index generated by
reflections is an arithmetic crystallographic group if and only if
S~F . The following result of V.Nikulin lists the set F~:
THEOREM (2.2.2). T~ ~ T~~ ~~ ~~d
consists of all 2-elementary lattices S with rk(S)+l(S) ~ 18 except

~e. S = ~OE~(2) , S = U 0 A 8 E ~
and the following non-2-elementary lattices:

~4)eA~, 6>@A/. 2~>@ ~ ~ = ~3.4) . (~ 5);

~(4)eP~. f o~ 6) ;

~@A~A~, ~A~ ( o~ ~~~~ 7 );

~@A~, U@A~, ~A~@A~ ~@A~ ~A~A~ ~A~P~ ( ~ ~~~ ~);

~@A~E~ ~@E~ ~A~E~ ( o~ ~~ 9~~~ ~d M ).

Notice that F consists of lattices representing the lattice 0>or
the lattice -2> . The set F~ is finite by Theorem (2.2.1) , however
it is not known yet . The set F4 was found by E.Vinberg (unpublished).
It consists of 14 lattices. We refer to[48] for the problem of



classifying odd unimodular lattices whose orthogonal group contains

a crystallographic subgroup.

Example (2.2.3). Let S = T 
_ , , 

the lattice spanned by vectors e. ,
i = 1,...,p+q+r-2, with e2 - -2 and e..e. = 1 or 0 depending on

whether the vertices vi in the following graph are joint by an edge
or not:

It is easy to check that T is a hyperbolic lattice if and only
if p +q +r  1 .The order of its discriminant group is equal to

|pqr-pq-pr-qr| and 1(T )3 . We leave it as an exercise to verify
that T if and only if (p,q,r) is one of the following 9 trip-
les : (2,3,7), (2,3,8),(2,3,9),(2,3,10),(2,4,5),(2,4,6),(3,3,4),
(3,3,5),(3,3,6) . Notice that the group generated by the reflections

s 
e. 

is crystallographic only for the three triples (2,3,7),(2,4,5)

and (3,3,4) ( see [7], Chap.V , ,~ 4 , Exer.13 ).

The proof of Theorem (2.2.2) requires a lot of hard work and is

very ingeneous. Very roughly, it proceeds as follows. First, one

separates the class F’of lattices S such that S ~ U9K , where K is

an even negative definite non-2-elementary lattice. It is proved that

such S belongs to F if and only if for every representation as above

the sublattice of K spanned by vectors v with v2 - -2 is of finite

index in K. Using the results of § 1, one classifies Next,one

consisders 2-elementary lattices S . It is proved that if such S

belongs to F, then 20 . In particular, such S can be

realized as the Picard lattice on a K3-surface ( see below, § 4) .

Then , applying Proposition (1.5.1) and the Global Torelli Theorem

for K3-surfaces one studies the fixed-point set of the involution on

a K3-surface defined by the lattice S . The analysis of this set

allows to classify all 2-elementary lattices from F. Finally, one

considers the lattices S which are neither 2-elementary nor belonging

to F’. The corresponding list of such lattices was found earlier by



E.Vinberg.

3. Applications to surface singularities.

3.1. The Milnor lattices.

Let (X,x) be an isolated n-dimensional complex singularity, i.e. a t

germ of a n-dimensional complex space X at its isolated singular
point x . We choose the representative X in the class of contractible
Stein spaces. A smoothing of (X,x) is a flat holomorphic map 
of a contractible Stein space Y of dimension n+1 onto the unit disk

A such that X = f (0) and f is of maximal rank outside the point x .
A singularity (X,x) is called smoothable if there exists a smoothing
of it . For example, every complete intersection singularity (i.e.
X can be chosen as a closed subvariety of given by k equations)
is obviously smoothable.
Let be a smoothing of (X,x), Y t = f -1 (t), If t ~ 0,
then Yt is a complex Stein manifold of dimension n . The intersection

pairing defines an integral bilinear form on M = Hn(Yt) ( if not

stated otherwise, all the homology and the cohomology are considered
with the coefficients in I). This form is symmetric (resp. alternate)
if n is even (resp.odd) . By the universal coefficient formula
Tors(M) = 0 (because Y t is a Stein manifold).Thus,
if n is even, M has a structure of a lattice. We will call this

lattice the Milnor lattice of the smoothing f of (X,x). Obviously,
its isomorphism class is independent of a choice of t ~ 0 .
From now on we assume that (X,x) is -a surface singularity, i.e.

n = 2 . Also we assume that (X,x) is a normal singularity, i.e. X

is a normal analytic surface. Recall that a resolution of (X,x) is

a proper bimeromorphic map p:X-~ X of a complex manifold X which
maps X-p 1(x) isomorphically onto X-{x} . We can always assume that
E = p (x) is a union of nonsingular curves on X intersecting each
other transversally. We define the genus p (X,x) of (X,x) by
putting p (X,x) - where OX is the structure sheaf of
X . Let cl(X) be the first Chern class of X considered as an element
of H (X) and let b.(E) be the Betti numbers of the 2-complex E .
Finally, recall that (X,x) is called a Gorenstein singularity if

~ there exists a nowhere vanishing holomorphic 2-form on X -{x} . In
this case cl(X) can be represented as a linear integral combination



of the classes of irreducible components E. of E in H2(X) .
The coefficients n. can be easily found by using the adjunction
formula c-.(X)’[E.] = (E.) + 2 - 2g(E.) and the non-degeneracy of the

matrix A = ((E.-E.)) . Here E. considered as 2-cycles on X and g(E.)
denotes the genus of Ei .
The next result allows to compute the signature of the Milnor

lattice of a Gorenstein surface singularity:

THEOREM (X, x) be a smoothable surface

and be the signature of

Moreover, if (X,x) is a then

Notice that these formulas are applicable to any complete intersec-

tion singularity, since they are known to be Gorenstein. In this

latter case the formulas are due to A.Durfee [13]. In particular, we

can apply these formulas to the Milnor lattice of an isolated criti-

cal point of an analytic function in three variables as defined in

[24] . .

Proposition (3.1.2). The Milnor lattice of a smoothing of a Gorenstein

~.~ an 

The proof is simple. One extends a non-vanishing holomorphic 2-form

on X -{x} to a similar form on Y . Then the assertion easily follows
from Wu’s formula ( cf. [1], Chap.IX, §3 ).

By Proposition (1.3.3) , the genus of the Milnor lattice M of a

smoothing of a Gorenstein singularity is determined by its signature
and the discriminant quadratic form qM , where M 

= M/Ker(iM) .
Due to E.Looijenga and J.Wahl (unpublished) the latter can be

computed via a resolution of (X,x). First of all, by embedding Y

into [N and replacing it by a sufficiently small ball centered at x ,

we may asume that Yt has the same ( up to a diffeomorphism) boundary

sYt for all In particular, we may identify 6Yt with 6X . Let

be the exact sequence of the pair By duality, 
- and H3(Y ) - 0 ( because Y~ is a Stein space).
Let ( )tors denote the torsion part of an abelian group. The group



is identified with the dual group )* - M*
*

and the first map in (*) induces the canonical map iM:M + M ( we

assume that t ~ 0 ). It is known that Hl(Yt)tors(see [44] ).
Passing to the torsion parts in (*), we obtain a complex:

,

where the first map is injective. Now, the finite group Hl(sYt)tors
has a natural symmetric bilinear form , the linking form of sYt .

Proposition (3.1.3). 1 ) The is an isotropic subgroup ;
2) Ken(S) - (Im(a))1 H1 (~~~)xa~c,.6 ;

3) The oecond map in (*) induces an isomorphism of finite symmetric
bilinear forms DM ~ Ker(03B2)/Im(03B1) .

Notice that in the case of complete intersection singularities we

always have = 0 . Hence, H2(Yt)tors = 0 and we obtain an
isomorphism of finite symmetric bilinear forms DM and .

The linking form on can be computed via
a resolution of (X,x). First of all, we identify the group H2(X)
with the free abelian group R spanned by the classes of the irredu-
cible components of E . The canonical map iR:R + R* = H2(X) is given
by the resolution matrix A . We identify the groups H.(sX) with the
groups H.(X-E) . Then the kernel of the canonical map

H1(03B4X) ~ H1(X) ~ Hl(E) is the torsion part H1(aX)tors . The composi-
tion of the duality map and the boundary map 

composi-

H2 (X, 8X) -~ defines a map R -~ ° It is not

difficult to verify ( cf . ~27~ ) that this map induces an isomorphism
°

Proposition (3.1.4). The induces an isomorphism
between the discriminant bilinear form pR - R / R and the 

. if ( X, x ) is a the

map q:R ~ I, 

2/22 . The associated bilinear form of q is xhe discriminant

60Am bR . The homogeneous pant induces via the

and ( 3.1.3 ) the quadratic form qM .
Notice that the lattice R is not an even lattice even for Gorenstein

singularities ( in general case ).

Applying Proposition (3.1.3) and Theorem (3.1.1) , we obtain a

necessary condition for smoothability of a Gorenstein singularity:



This allows to construct many examples of non-smoothable Gorenstein

singularities.

Proposition (3.1.5). Let (X,x) be an even-dimensional

hypersurface singularity . Then the properties are tnue:

(I) M ~.~ panned by vectono u with v2 = -2;

~.~ M ~.~ then M = on E ;
M then M =  0> 

(iv) if M = is indefinite, then M contains 0> ~ E6 .

The first three assertions are well-known (see [2D. The forth follows

from the fact that every non-simple and non-parabolic critical point
is adjacent to the parabolic point with M =  0> Q) E 6 ( see [ 3 ~ .

It follows from the above proposition that for a hypersurface
singularitry (X,x) with indefinite M we always have rk(M) > 1(M) + 5 .

Applying Corollary (1.4.3) and Theorem (1.4.7) , we obtain:

THEOREM (3.1.6) (V.Nikulin) . The M 06 an 

hypersurface even-dimensional singularity is determined uniquely by
and the discriminant form PM . 16 t+ > 1 and

t - > i , then M ~ U 8 M’ for a unique M’ .

It follows from (3.1.1), (3.1.3) and (3.1.4) that the Milnor

lattice of a hypersurface surface singularity is uniquely determined

by the resolution data .

3.2. Smoothing of triangle and cusp singularities.

Recall that a singularity (X,x) is called quasi-homogeneous if one

can choose X as a closed subvariety of (E 
T 

given by weighted homoge-
neous equations . A quasi-homogeneous surface singularity (X,x) is

called a triangle singularity D p,q,r 
if there exists a resolution

of (X,x) such that the exceptional curve E is a union of 4 nonsingular

rational curves E. with E6 = -1 , Eî = -p , E~ = -q , E~ = -r ,
EO.E. = 1 (i - 1,2,3) , Ei.Ej - 0 for i ~ j ~ 0 . Here p,q, and rare

natural numbers with l/p + 1/q + 1/r  1 .

It is known [9] that for any such triple the singularity 
exists and is uniquely defined . The construction of triangle

singularities is reminded in [22] . There are exactly 22 triples

(p,q,r) for which Dp,q,r is a complete intersection singularity [9,



41,49).For all of them p + q + r  15 .
Let (X,x) be a One can find a (E -equivariant

compactification X of X such that X - X is a union of p + q + r - 2
nonsingular curves intersecting each other according to the diagram
T from Example (2.2.3). A smoothing.f:Y + a of (X,x) is called

good if it can be extended to a flat proper map f:Y -~- o such that

f 1 ( 0 ) - X and f induces an isomorphism Y - Y = (X-X)xA (over o ) .
It can be shown that all nonsingular fibres Yt of a good smoothing
are algebraic K3-surfaces (see[41D. In particular, the irreducible

components of the curve X - X span the sublattice of the lattice

L = H 2 (X) = ( see §4) isomorphic to the lattice T from

(2.2.3) . 
° 

THEOREM (3.2.1)(E.Looijenga [22]) . Let L = U3 ~ E82 . Suppose that
there exists a primitive embedding T L. Then there exists a

good smoothing 06 the triangle P 

This is an improvement of an earlier result of H.Pinkham [41]. In

fact, a more general result of E.Looijenga assumes something less
than the primitivity of an embedding T L . The proof is
based on the surjectivity of the period mapping for K3-surfaces and
the technique of deformations of quasi-homogeneous singularities
(cf. [38] ) .

Obviously, the condition p + q + r  22 is necessary for the

existence of a good smoothing of a D p,q,r -singularity ( we use that
the sublattice of algebraic 2-cycles on a K3-surface is of rank  20).
The necessary condition of smoothability from 3.1 shows that the same
is true for any smoothing (cf.[50]), -

THEOREM (3.2.2). The and 

 22 and (2, 1 0 , 1 0 ) .
For (p,q,r)  21 this immediately follows from the previous theorem

and Nikulin’s results (cf.[22]). A more careful application of
Nikulin’s results allows to do the same for the triples (p,q,r)
with p + q + r = 22 but (p, q , r) 1= (2,6,14),(2,10,10) and (6,6,10) ([40)).
Furthermore H.Pinkham shows in [40]that Theorem(3.2.1) ( in its

general form ) allows to prove the smoothability of D2 6 14 and
D6,6,10 ’ By other methods he proves that has’no smoothings
at all. 

’ ’

Now let us turn to cusp singularities. A surface singularity (X,x)
is called a cusp singularity if there exists a resolution of (X,x)



such that the exceptional curve E is a union of nonsingular rational

curves Ei , i = l,...,r 2 2 , with El.E2 = ... = Er. El = 1

and 0 otherwise for r ? 2 , and El intexsects E2 transversally
at two points for r = 2 . An example of a cusp singularity is a

hypersurface singularity : zp + zq + z3 + 0 , where

1.

It is known that every cusp singularity is a Gorenstein singularity.
Let E be the curve obtained from E by blowing down the components of

E which are exceptional curves of the first kind on X . The number

-(E ~E ) is called the degree of (X,x) . The number of irreducible

components of E is called the length of (X,x). We denote them by d

and £ respectively . One checks immediately that cl(X) = E and hence:

Also, it is easy to verify that p g (X,x) = 1 ( a cusp singularity is

a so-called minimal elliptic singularity). Then , as it follows

simply from 3.1, we obtain that any smoothable cusp singularity
satisfies the inequality d .~ + 9 ( cf . [51] ) . In[21] E.Looijenga
conjectures that the converse is true provided that the exceptional
curve of a resolution of the dual cusp ( see the next section) lies

on a rational surface and represents its first Chern class. He also

proves that the latter condition is necessary for smoothability. In

the case .2 13 this conjecture has been verified by the combined

methods of [16]and [17]. In this case there exists a rational surface

V with cI (V) = E’ , where E’ is a curve isomorphic to the excep-
tional curve E of a resolution of (X,x) itself ( with the same

intersection matrix of the irreducible components). Let L be the

sublattice of H2(V) spanned by the irreducible components of E . By

direct computions one verifies that its orthogonal complement R in

H2(V) is isomorphic to the lattice Tp,q,r for some (p,q,r) .

THEOREM Sapper that R adm~.~~ an

embedding ( not necessary primitive) into the lattice U2 ~ E82 and th e.

on the embedding is not contained In the image On the lattice

R’ corresponding to another cusp singularity with l  3 . Then (X,x)

We will explain in the next section why the condition on the dual

cusp from Looijenga’s conjecture implies the existence of the

embedding of R . By explicit computations based on Nikulin’s results

in §1 it is verified that all cusp singularities with .~ 3, d~ .~ + 9

satisfy the assumptions of (3.2.3) except the cases (-E~,...,-E~.) =



= (4,11),(7,8),(2,4,12),(2,8,8),(3,3,12),(3,4,11),(3,7,8),(4,4,10);

(4,6,8),(4,7,7),(5,5,8),(2,5,11),(4,5,9). Then it is checked which

cusps from this list are smoothable. This is done by the methods of
’ 

[16] or [17]. It turns out that all of them are non-smoothable except
the last two cases.

3.3. The strange duality.

Let (p,q,r) be one of the following 14 triples:(2,3,7),(2,3,8),
(2,3,9),(2,4,5),(2,4,6),(2,4,7),(2,5,5),(2,5,6),(3,3,4),(3,3,5),
(3,3,6),(3,4,4),(3,4,5),(4,4,4). The corresponding triangle D 

p,q,r 
-

-singularities are the only hypersurface triangle singularities
and can be realized as the zero level sets of the 14 exceptional
unimodal critical points of Arnold [3] . The Milnor lattice M

of these singularities was computed by A.Gabrielov[18]. It turns out

that M = U9T ,,, , where (p’,q’,r’) is another one of the
p ,q ,r

14 triples above. The correspondence (p,q,r) -~ (p’,q’,r’) is an

involutive map . This obsevation was due to V.Arnold, who called it
the strange duality[4]. The following explanation of this duality was
found by H.Pinkham[37]and independently by V.Nikulin and myself [11].
Let be a good smoothing of a hypersurface singularity D

( which always exists). As was explained before the lattice T 
p,q,r

can be embedded into the lattice L = E8 by identifying the
lattter lattice with the lattice H2(Yt) and the former one with the

sublattice spanned by the irreducible components of the curve C =
= Yt-Yt (t I 0 ). The Milnor lattice M p,q,r is realized as the

lattice H2(Yt) . Since ~~l(Yt) - 0 by Milnor’s result [24], the

embedding -~ L is primitive and (T p,q,r L is isomorphic to
Mp~q~r . . By Theorem (3.1.6) there exists a unique lattice M’ p,q,r
such that M p,q,r = 

. Computing the signature of and
its discriminant quadratic form ( which must be isomorphic to
DT (-i)), we find that they are the same as ones computed for

p,q,r
the lattice T,,,. Applying Theorem (1.4.2), we find that the
lattices M’ and T , , , are isomorphic. This explains the
duality though the reason of the existence of an isomorphism

remains mysterious.

Now let us turn to the cusp duality. As was observed by I.Nakamura
[28](and independently by E.Looijenga, W.Neumann and J.Wahl) the

exceptional curve E of a resolution of any cusp singularity (X,x)



is isomorphic to a curve on a certain Inoue-Hirzebruch surface F ( a

compact analytic surface with no meromorphic nonconstant functions
with the first Betti number equal to 1 and the second one is positi-
ve ). At the same time the surface F contains another curve disjoint
from the first which is isomorphic to the exceptional curve E’ of a

resolution of another cusp singularity (X’,x’) ( all the isomorphisms
preserve the intersection matrices of the irreducible components of

the curves). In [39] H.Pinkham gives a lattice-theoretical interpreta-
tion of this duality under the assumption that the dual cusps "sit
on a rational surface" . The latter means that the both curves E

and E’ can be realized as the curves lying on rational surfaces V

and V’ respectively and represent the first Chern class of these

surfaces. Let R (resp. R’) be the orthogonal complements of the

lattice S (resp. S’) spanned by the irreducible components of E

(resp. E’) in the lattice H2(V) ( resp. 

THEOREM (3.3.1). Sapper ~. that the S and S’ are primitive in
and thene a embedding

oj R Into the such that the orthogonal complement of
the image is isomorphic to R’ .

It follows from this theorem that, if S is primitive in 

then the existence of a primitive embedding of R = (S).. V into
is a necessary condition for smoothing of (X,x)2 We notice

. that the primitivity assumption is satisfied if the length of a

cusp singularity is at most 5 .

4. Automorphisms of K3-surf aces .

4.1. The period mapping.

By a K3-surface we will always mean an algebraic K3-surface, i.e.

a nonsingular projective surface F with 0 , c~(F) = 0 .
The base field is assumed to be the field of complex numbers (C .

The following facts are standard (see, for example, [1], Chap.IX):

’" L = U3 

H~(F,(E) = where H2’~ - for some nowhere

vanishing holomorphic 2-form m on F .

Let us fix an isomorphism ~:L -~ H2(F) . The pair (F,~) is called

a marked K3-surface. The Hodge structure on F defines the line



~*(HZ’~) in L"- L ~.~ , , where ~,p denotes the map induced by the
transpose map d * :H2(F) *- H 2 (F) ~ L 

* 
after tensoring with (C . We

consider this line as a point in the projective space =

-~ 21 (~) . The Hodge relations > 0 and 0 show that

belongs to the set

*

Here we consider L as a lattice isomorphic to the lattice L ( by
*

means of the isomorphism i-r ) and extend the product to 

The set D is an open subset of a 20-dimensional complex quadric
*

hypersurface in and has a natural structure of a symmetric

homogeneous space isomorphic to the coset space
SO(2)XSO(1,19)’SO(3,19) .
Let SF denote the Picard group of F considered as the sublattice

of H2(F) spanned by algebraic cycles. Let TF be its orthogonal
complement in H2(F) , the transcendental lattice of F . By Hodge
Index theorem

sign(SF) = sign(TF) = (2,20-rk(Sp)) .
The number rk(SF) is denoted by p(F) ( the Picard number of F).

Since the value of w on any algebraic cycle is zero, P(F,~) lies
* *

in the subspace of Conversely, if P(F,03C6) lies in

the subspace for certain sublattice K of L , then

vanishes at for every yEK . By Lefschetz this implies that KCSF.
Let M be a primitive sublattice of L of signature (l,rk(M)-l) . A

marked K3-surface (F,03C6) is called a marked K3-surface of type M if

~(M)c SF . If M - ~ a) and ~(a) is the class of an ample divisor, then

a marked K3-surface of type M is called a marked polarized K3-surface
of type a and degree a . As was explained before , for any marked

K3-surface (F,03C6) of type M the point P(F,03C6) belongs to the subset

DM = of D . This subset is a disjoint union of two

copies of a bounded symmetric domain isomorphic to the coset space
SO(2)xS0(1,19-r)° B SO(2,19-r+1)° , where r = rk(M) and ( )° denotes
the connected component of the identity. The following fundamental
result is due to I.Piatetsky-Shapiro and I.Shafarevich[36]:

THEOREM (4.1.1) (Global Torelli Theorem). Let (F,;) and (F’,~’) be

two marked polaAized K3-surfaces 06 the dame type . Then P(F,03C6) =

= P( F’ , ~’ ) ~.~ and only ~.~ thene a unique ~~-: F -~ F’

such that f* 03C6 = 03C6’ .



The next result is also fundamental and is due to various people
(see the talk of A.Beauville in the same collection ):

THEOREM(4.1.1)(Surjectivity of the period mapping ). Let M be a

On the L I = 

Then for any point thene a manlzed K3-surface (F,03C6) I On

type M ouch that P(F,~) - x .

Since for every lattice M’ strictly containing M of the same type
of signature the subset DM, is a proper closed subset of DM , we see
that there exists a dense subset of DM whose points correspond to
marked K3-surfaces of type M with M .

Applying Nikulin’s results from §1, we obtain that the following
lattices can be realized as the lattices SF : any lattice of signature

(l,r-l) with r  10 , any lattice from the set F (§2, 2.2 ), the

lattices T 
p,q,r 

with p + q + r ~ 22 , 1/p + 1/r + l/r  1 , (p,q,r) ~
~ (2,6,14),(6,6,10),(2,10,10) (§3, 3.2 ).

4.2. Automorphisms.

Let F be a K3-surface and We say that o preserves the

period of F if P(F,~) - for some marked K3-surface (F,~) .

It is clear that this condition implies that o(Sp)C SF . If we also

assume that ~ maps the class of an ample divisor on F to the class

of an ample divisor, then Theorem (4.1.1) would imply that ~ = g*
for a unique automorphism g of F . Applying the Riemann-Roch theorem

we find that this condition on o is equivalent to the condition that

o leaves the set of the classes of effective divisors invariant.

Thus, we get

THEOREM (4.2.2) . Let be the representa-

tion On the automorphism gnoup On F defined by g ~ g* . Then P is

injective and image consists On the 06 which pre-
the period of F and the set On the classes On 

Now let be the Lobachevsky space associated to the space 

and the half VF of the cone

which contains the class of an ample divisor on F . We assume that

p >1 , otherwise everything that follows trivializes. Let



and be the subset of RF consisting of the classes of nonsingular
rational curves on F . Let WF be the reflection group of the

subgroup of 0(Sp) generated by all reflections s , eER . Let PF
be one of the fundamental polyhedra of WF which contains the class of
an ample divisor ( see §2, 2.1). Let He be a facet of PF . It follows

from the Riemann-Roch theorem on F that e is thè class of an effective

divisor . Considering the irreducible components of e, we easily get

In particular, we see that WF = W; , the subgroup of generated
by all reflections s , where e belongs to R; .
Let 0(SF)+ - be the subgroup of of index 2 which

preserves the half-cone VF . Let A(F) be the subgroup of of

the elements which leave the polyhedron PF invariant. As was explained
above,A(F) can be characterized as the subgroup of 0(SF) of the

elements which preserve the set of the classes of effective divisors.

It is immediately checked that WF is a normal subgroup of and

Let a: 0(DS ) be the homomorphism defined in §1,1.2 . It
F

follows from its definition that {id} . Let

be the induced homomorphism. It is clear that the image of
the homomorphism r:Aut(F) + preserves the set of the classes

of effective divisors . By restriction we define the homomorphism

THEOREM (4.2.3)([36]). 1 I a gnoup;

2) I contains the oubgnoup .

The first assertion follows from the fact that every group of

projective automorphisms of F is finite ( because F does not have

nontrivial holomorphic vector fields, see [1], Chap.IX). To obtain

the second one, we notice that every can be extended to an

isometry of H2(F) which acts as a on SF and as the identity map on

TF . In particular, it preserves the period of F and we can apply
Theorem (4.2.2).



COROLLARY (4.2.4).!~ p(F) = ? , the. n I p(F) > 7 ,

the.n the. 

(~) 

(ii) WF is a subgroup of finite index 

a group in I03C1-1 ;

Pp ii o~ volume. 

(u) 

To get more information on Aut(F) we consider the homomorphism

induced by the representation r . It follows from Theorem (4.2.3) that

the map rsx rt : Aut(F) + A(F)x 0(Tp) is injective . By integrating
along trancendental cycles we get an embedding . Thus, r is
determined by the character x:Aut(F) ~ C given by g*(03C9) = 

.

Since rs(Ker(rt)) contains Ker(a) , x factors through a finite group .

In particular, the image of x is a finite cyclic group of order n .

THEOREM (4.2.5)(V.Nikulin[31,32]).1}03C6(n)|rk(TF) , where 03C6 is the Euler

(ii) I and a prime p divides #Ker(rs) then SF is a

(iii) for generic F with SF ~ M ( In the of the period domain

I contains Ken(a) as a subgroup of Index  2 and n  2.

Assume now that SF is a 2-elementary lattice. Then Theorem(4.2.2)

together with Proposition (1.5.1) imply that there exists a unique
involution T of F such that ids and -idT . Moreover,
it follows from the uniqueness of T that p T belongs to theFcenter of
Aut(F). Let F = F/(T) be the quotient surface. It follows from the

classification of surfaces that F is a rational surface or an

Enriques surface (also F is nonsingular because.T (w) = -w and,hence,

T does not have isolated fixed points ). In the both cases the

projection F ~’ F is a double cover corresponding to the invertible

sheaf w F -1 and a section of w F -2 . . Clearly

Applying Theorem(4.2.5) , we get a description of Aut(F) , where F is

a "generic" Enriques surface or a "generic" rational surface with

non-empty anti-bicanonical system. We refer to [5] for an independent
proof of this result in the case of Enriques surfaces.



Finally, we notice that Nikulin finds all finite abelian groups
which can be realized as subgroups of Ker(rt) for some K3-surface F

[31]. His work was extended to the case of non-abelian groups by
D.Morrison and S.Mukai (unpiblished).
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