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1. ln lxoduct ion,  Let S be an Enriques surface over an algebraically dosed  field k and A be a numerically 

effective divisor on S with A 2 = 10, It is known that one can always find such A with the property that the linear 

system 1A[ gives a birational map onto a surface of  degree 10 in IP 5 with at most double rational points as 

singularities. We will assume that there exists an ample A. Then S can he embedded by IAI into IP 5. A is said to be 

a Reye polarization if the image of S ties on a quadric. A is a said to be a Cavley polarization it" A+K S isa Reye 

polarization. It can be proven l e D 2 ]  that S admits a Reye polarization ff and only if it is nodal, i.e. contains 

smooth rational curves (nodalcurves). Note that every Enriques surface lying on a quadric is isomorphic to a 

Reye congruence of  lines inlP -~ (char(k) ~ 2). The Cayley polarization maps S onto a surface in IP 5 isomorphic 

to the surface of  reducible quadrics in a 5-dimensional linear system of  quadrics in IP 5. 

In this note we will study rank 2 vector bundles E on S with 

Cl(E) = A and c2(E) = 3, 

where A is an ample divisor on S with A ~ = i0. If A is a Reye polarization, we may assume that S lies in the 

Grassmann variety G(2,4) in its Plficker embedding. Then an example of such a bundle is the restriction of  the 

universal quotient bundle on G(2,4). One of the motivation for this work was to verify whether this bundle is 

stable. The formula for the dimension of  the moduli space of  stable vector bundles shows that one expects the 

existence of  at most finitely many isomorphisms classes of stable E's as above. We will see that the existence of  

at least one such E depends very much on the properly of  the polarization A. More precisely, we show that, if it 

exists, then it is unique and A is a Reye polarization. 

As an application we give a characterization of  the Cayley polarizations A by the condition that the 

variety of trisecants o f  (S,A) is three-dimensional. By other means this result was obtained by A. Conte and A. 

Verra [CV]. 

1. Fano  polar iza t ions  o f  Enr iques  surfaces .  A numerically effective (nef) divisor A on an Enriques surface 

S is called a Fano polarizationif A 2 = 10 and A.F _> 3 for every nef  divisor F with F 2 = 0. 

Proposition 1. Every Enriques surface S adndts a Fano polarizationA. The complete linear ,system [A[ defines 

a birational map S ~ IP s whose image is a surface with at most double rationalpoints as its singularities. 

PROOF. This is proven in [CD1] under the assumption that char(k) -- 0. The description of all vectors x in 

Pic(S) with x 2 = 10 is given in Corollary 2.5.7 in [CDl ] .  From this it follows that there exists a vector x with x 2 

= 10 and x . f  _> 3 for all vectors f with f2 = 0. Applying Theorem 3.2.1 from toc. cit. we find a nef  divisor A with 

A z = 10 and Aof _> 3 for all f with f2 >_ 3. This is a Fano polarization. The property of  the map given by the linear 

system IA] follows from Corollary 2 of appendix to Chapter 4 of[CD1] .  The assumption of  characteristic 0 can 

be avoided by applying a recent result from [ S - B ]  where it was shown that the Bogomolov's  criterion of  
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unstability of  rank 2 vector bundles on algebraic surfaces (cl z > 4c2) is valid in arbitrary characteristic unless 

the surface is of  general type or a quasi-elliptic o f  Kodaira dimension t.  

It follows from the previous Proposition that an ample Fano polarization defines an embedding 

S ~ IP 5 onto a surface of  degree 10 (a Fano model o f  an Enriques surface). For example, if  S does not contain 

smooth rational curves (it is called unnodal in this case), every Fano polarization is ample. Another example is a 

Reye congruence which is defined as the surface of  lines in lP ~ which are contained in a subpencil of  a fixed 

web of quadrics satisfying a certain condition of regularity. This surface is a nodal Enriques surface and its 

Plficker embedding is defined by an ample Fano polarization. One can show that, in general, an Euriqures 

surface admits an ample Fano polarization if and only if its non-degeneracy invariant d(S) (see [CD1], p. 182) 

is maximal (= 10). For every Fano polarization A the divisor A+K s is a Fano polarization which is ample if and 

only ff A is ample. Recall from the introduction that an ample Fano polarization A is said to be a Reye 

polarization if ]AI maps S onto a quadric. It can be shown [CD2] that S admits a Reye polarization if and only if 

S is nodal and d(S) -- t0. If  char(k) ~ 2 the quadric must be non-singular,  and under its identification with the 

Grassmann variety G(2,4), the image of  S is equal to the Reye congruence of  some web W of  quadrics. The 

adjoint polarization 12~+Kst of  a Reye polarization A is called a Cayley polarization. The corresponding linear 

system maps S onto the variety of reducible quadrics from the 5-dimensional  linear system of  quadrics W ± 

which is apotar to the web W (see [CD2], [Co]). 

In the following we assume that 

KS~0,  

i.e,, S is a classical Enriques surface (e.g., char(k) :~ 2), 

L e m m a  1. L e t S  b e e m b e d d e d  h~ IP 5 b y / A / ,  ~'here A is nn ;anple Fano polarization. Then  S contains  2 0 p l a n e  

cubic  curves  Fi, i = 1 ..... 20, such that 

• { 1 if Ii-j[ ~e 10' 
Fi'Fi= 0 otherwise. 

No three of  these curves have a common point. Moreover 12Fil = !2Fi+101 is a pencil of curves of  arifllmetic 

genus l for each i = 1 ..... 10, and every plane cubic" curve  on S is equM m some  F i, i = 1 ..... 20.  

PROOF. The first assertion is proven in [ebl|,  Thin. 3.3.1 (cL also [BPI). It follows from the fact that in the 

Picard lattice Num(S) one has 3/', =- fl+-.. +fro for some isotropic vectors fi with fi°fj = 1 for i ~: j. 

Suppose three curves, say FI,F 2 and F 3 intersect at one point. Then we have an exact sequence: 

0 -~ (gs(FI-F2-F?) -~ (gs(FI-F2) -~ e!lF3~ 0. 

Since (FI-F?-F3) 2 = -2 ,  and neither F~-F2-F 3, nor F i - F  2 is effective, we have 

hI(FI-F2-F3) = h ° (FI-F 2) = 0. 

Considering the exact cohomology sequence, this immediately leads to contradiction. 

It is known that every nef  divisor F with F 2 = 0 is effective and can be written as a sum of  

indecomposabte divisors with the same property. For each indecomposable F, which we call a genus 1 curve, 

12FI or IFI isa pencil. Also it is known that every pencil of genus 1 curves contains two double fibres 2F'. In 

particular, IFil = {Fi} (since AoF i is odd) but 12Fil is a pencil. LetF be a genus 1 curve, for instance a plane cubic 

curve. Intersecting both sides of  the equality 3A -- F~ + ...+F10 with F, we obtain zX.F > 3 unless F-F i -- 0 for 

some ie{1 ..... 10}. In the latter case 12FiI must contain F or 2F as its fibre. In the first case F = F i or Fi+10, in the 

second case F ~ 2Fi, and A,F = 6. 
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Coro l l a ry .  For every curve C o f  arithmetic genus I moving m a pencil 

~,C_>6. 

The equality takes place if and only if CEI2Fi[ for some i. 

Note that. in the above notation, 

Fi+mE tFi+Kst. 

Sometimes we will denote Fi+ m by Fi', where i = 1,..., 10. We denote by gi the plane containing the curve 

F i. It is easy to see, by using the previous Corollary, that dim]k-Fi-Fjl  = 0 if i C j, hence the planes ~ a n d  gj span 

a hyperplane and therefore intersect at one point. 

I,emma 2. 

rqc~S = F i. 

PROOF. The linear system ]A-Fil is cut out by hyperplanes passing through the plane rq. Therefore our 

assertion follows f rom the fact that IzX-Fil has no base points. Obviously each base point must  lie in the  plane n i. 

Assume C is a fixed component  of  [A-Fil. Then CoF i > 3, hence (A-Fi -C) .F  i = 3 - C . F  i shows that C-F i = 3, i,e. 

C is a line. So C 2 = -2 ;  A.C = 1 and (A-Fi-C) 2 = 6. By Riemann-Roch ,  dim IA-Fi-C] >_ 3 which is absurd. To 

show that IA-Fit has no isolated base points, it is enough  to verity that for every nef  divisor F with F 2 = 0 one 

has  

(A-Fi)°F 2 2. 

([CDll, Thin. 4.4.1). By Riemarm-Roch,  A-Fi -Fj i s  effective if i * j .  Thus 

(A-Fi)°F = (A-Fi-Fj)°F+F j °F _> FfF.  

If F°Fj > 1 for some j¢  i we are done. If F.Fj = 1 for all j ;e i, then 3A.F = 9+F°F i, and 

(A-Fi)°F = 3 - 3F°Fi . 

Thus,  if we are wrong,  F.F i = 3, AoF = 4. But then A-(F+F i) = 7, (F+Fi) 2 = 6, and (Aa.(F+Fi) 2 -(A-(F+Fi))-) = 

6 0 - 4 9  > 0. The latter contradicts the Hodge Index theorem. 

L e m m a  3. Let D be an effective divisor on S with D.A <_ 5. Then D e <- O. 

PROOF. By Hodge's  Index theorem: 

A2D 2 = 10D 2 -< (A,D) ~ _< 25, 

that yields D 2 _< 2. Assume  D 2 = 2. Let IDI = IMI+A, where A is the fixed part of  IDt. Since D.zX _< 5, A = I3 or 

A-M < 4. In the first case, D ~ F+F' or D - 2F+R, where F and F' are irreducible curves of  arithmetic genus  I 

([CD1], Proposition 3,6.2). By Lemma 1, A.F _> 3, hence A.D _> 6. In the second case, M.A < 4, and by Hodge's  

Index theorem, 10M 2 < 16. This implies that M z < 0, hence h°(M) = h°(D) = 1 (Corollary to Lerruna 1 ). 

2. A charac te r i za t ion  o f  R e y e  polar iza t ions .  By using vector bundles, we reprove the following result of  

F. Cossec [Co]: 

Theorem 1. In the notation above 

/A-~-Fi+id ¢ 0 
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f f  and only f f  A is a Reye polarization. 

PROOF. Note first that non-empty  IA-Fi-Fi+IOI is represented by a curve C with C.F i = 3 and C z = -2 .  Assume 

A is a Reye polarization. Then S lies on a non-s ingular  quadric. Let rq be the plane containing F i. Since a 

nonsingular quadric has two families of  rulings, and Fi.F j = Fi+I0°Fj = 1, the planes n i, ~i+10 and ~j lie in the 

same family, hence there exists a hyperplane containing any pair of  them. This hyperplane cuts out a unique 

curve in I-Fi-Fi+10+A I. Let us prove the converse. Assume h°(-Fi-Fi+~o+A) :~ 0. By Riemarm-Roch, 

h~(-Fi-Fi+10+A) = I. Let E be the non-trivial extension: 

(*) 0 ~ ~)s(Fi) ~ E --~ (gs(A-F i) --> 0 

which corresponds to a non-trivial element in the group 

Ext~((gs(A-Fi),(gs(Fi)) -- H~(®s(2Fi-A) = H~((gs(A-Fi-Fi+10) mk. 

Taking cohomotogy and using Riemann-Roch,  we obtain h°(E) = 4. Let us show that E is spanned by its 

global sections. Let SFi be a non-zero  section of Cgs(Fi). For every seH°(E) the section SFi ̂ s  is either zero, or 

vanishes on a curve Fi+D(s)eI(gs(A) I for some D(s)e[A-Fil. Since the map H°(E) --~ H°(C3s(A-Fi)) is surjective 

and IA-Fi] has no base points, we find that E is generated by its global sections outside the curve F i. Now let us 

show that the same E can be also represented as an extension 

(*-) o ~ es(F~) - ,  Z --,Gs(A-Fj) - ,  0 

for any j ;~ i, Ij-il ;~ 10. Then, repeating the argument from above we obtain that E is generated by global 

sections outside Fj. Since no three Fi's have a common point, we deduce that E is generated by its global 

sections everywhere. Tensoring (') by ¢gs(-F j) we obtain an exact sequence 

0 --,~s/F~-Fj) --, E ~ -~ ) - ,  G s ( A - F : ~ )  - ,  0 

Since Fi-Fj is not effective and (F:Fj )2  = -2,  we have h ~(Fi-Fi) = 0. Since ( a - F i - F  j ) :  = 0, we have 

h°(A - F i -F  j ) ~: 0. This shows tha h°(E(-~ )) ;~ 0, and there is a non-trivial homomorphism of' sheaves (gs(F j) -~ 

E. Let L be a saturated line subbundle of  E containing the image of  O s(F }. Assume L = C9 s(F~. Then the 

quotient sheaf E/L is torsion free, and we have an exact sequence: 

0 - ~  (gs(F~--~ E--~ 9 ~ D ) , 0  

for some 0-dimensional  subscheme Z and a divisor D. Cotmting the Chem classes of  E we find that D ~ A-F i, 

and Z = O. This gives (").  Assume now that L ¢: (gs(F }. Let (p: L -~ (gS(A-F i) be the composition of  the 

inclusion L ~ E and the projection E --~ ~s(A-Fi). If ~p is trivial, L is a subsheaf of(gs(F i) hence h°(Fi-D) and 

h°(D-F~ _> 0 which is obviously impossible. Thus ~p is non-trivial, hence L--(gs(D), where IA-Fi-DI :X G. 

Intersecting A-F i -D with A, we obtain AoD <_ 7. If the equality holds we have A-F i -D ~ O, hence L -=-¢gs(A-Fi), 

and E splits. Thus we may assume that A°D < 6. If A.D = 6, then (A-D).A < 5. By Lemma 3 and Lemma 2 we 

have h°(A-D) = 1. Using the exact sequence 

0 ---~ (gs(D) --9 E -~ 9z(A-D) ~ 0 

for some O-dimensional subscheme Z, we obtain h°(D) _> 3. But h°(D) _< h°(A-Fi) = 3, so h°(D) = h°(A-Fi), and 

A-F i -D is the fkxed part of  IA-Fil, Since the latter is base-poin t - f ree ,  we have D ~ A-F  i, hence E splits. So we 

have AoD _< 5, hence D e < O. Counting the (::hem classes of E, we get 

D-(A-D) _< c2(E) = 3. 

that implies z~°D _< 3. On the other hand ID-~I ;~O yields A.D >A.FH 3. The equality AoD = 3 gives D = Fj 

contrary the assumption, 
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3. The main result  

Defin i t ion .  The vector bundle E constructed in the proof of  the previouis theorem is called the Reye bundle. 

Obviously, q(E)  = A is the Reye polarization, and c2(E) = 3. Since E is the restriction of  the universal quotient 

bundle of G(2,4) to S, its isomorphism class is independent of the choice of F i. 

P ropos i t i on  I. Let  E be a rank 2 vector bundle on S with c 1 (E) = ~ and c2(E) = 3. Then 

h°(E) >- 4. 

PROOF. By Riemann-Roch:  

hO(E)+h°(E*(K)) = 4+h~(E). 

If  h°(E*(K)) = 0, the assertion is obvious. Assume h°(E*(K)) ~ 0. Let (gs(D) be an effective saturated line 

subbundle o f  E*(K). It defines an exact sequence 

0 -~ (gs(D)---~ E*(K) --~ 9z(D') -o  0 

for some divisor D' and an effective 0-dimensional  cycle Z. We have 

cl(E*(K)) = -A = D+D'<  0. 

Dualizing the above exact sequence and twisting it by egs(K), we get an exact sequence 

0 --~ (gs(-D'+K)-~ E --~ 9z(-D) -~ 0. 

It yields 

h°(E) _> h°(-D'+K) = h°(D+A+K) >_ h°(A) = 6. 

Def in i t ion .  A vector bundle is called regular if it has a secXion with only isolated zeroes. 

Theorem 7_ Let E be a regular rank 2 vector bundle on S with c x (E) = • and c 2 (E) = 3. 

(i) I r A  is not  Cayley or Reye,  then: 

E-~ ~s(Vi)@~s(a-F~) 

for  some i = 1 ..... 20. 

(ii) I f  A is Cayley, then E is either as in (i), or is isomorphic to one o f  the 20 non-sp l i t  extensions: 

0 --* O S ( A - F  i) ~ E ~ @S(Fi) -~ O. 

(iii) If a is Reye, then E is either as in (i), or is isomorphic to the Reye bundle given by a non-spl i t  extension: 

0 ~ (gs(F i) ~ E --~ GS(A-Fi) -~ 0. 

Moreover,  in (iii) the isomorphism class o f  E does not  depend on the choice o f  F i. 

PROOF. Let E be a regular rank 2 vector bundle as in the statement of  the theorem. By assumption, there 

exists a section of  E with only isolated zeroes. Let 
8 

0 ~ O  s ~ E  ~ 9 ~ a )  -~ 0. 

be the corresponding exact sequence. Since 

Ext1(Oz(a),eDS) ~ H~(Oz(A+K)) ~0 ,  

the cycle Z is special with respect to IA+KI, i.e. the canonical res~k.Xion map: 
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H°(fgS(A+K)) -~ H°(@z(A+K)) = k ~ 

is not surjective. This implies that 

h°(9~A+K)) = 4 

(instead of expected 3), and Z lies on the the base Iine£(Z) of Igz(A+K)I c IA+KI, In particular, £(Z) is a 

trisecant o f  S in the embedding S c IA+KI*=IP '5. Conversely, if£ is atrisecant of  S which cuts out a cycle Z of  

length 3 on S, we can reverse the argument and construct a rank 2 vector bundle E as above. 

Returning to our E, let Z be a cycle of length 3 corresponding to E and £ be the trisecant which contains 

it. Since 3A ~ Fl'+...+Fl0' , the line£ can intersect at most three Fi's. Choose F i' such that Zc~F i' = O. 

We claim that there exists a non-trivial morphism 

@s(Fi) --~E. 

For every j there is a hyperplane in [zX+KsI* = IF r 5 which contains £ and one of the planes ~' containing FJ (Fi 

and F i' are plane curves in both embeddings S c_~ IAI and S ~ ]  A+KsI). Since Fi'c~Z = O, there exists a curve in 

IA+Ks-Fi'I which contains Z. Thus 

h°(gz(A-Fi)) ¢: 0, 

Consider the exact sequence 

0 -~ (gs(-Fi) --~ E(-Fi) --~ 9z(A-Fi) --~ O. 

Since h°(Fi ') = 1, By Riemann-Roch,  tg(Cgs(-Fi) ) = h*(Fi ') = 0. This implies that the map 

H°(S,E(-Fi)) --+ H°(S,9~A-Fi) 

is bijective. Hence H°(S,E(-Fi)) ~ 0  proving our claim. 

Let L =Cgs(D) be an invertible subsheaf of  E with the maximal degree A,D. It yields the following exact 

sequence: 

0 -~ (gs(D) --o E -9 9Z(A-D) ~ 0 

By the choice of  L, D-A >_ Fi.A = 3. On the other hand, counting c2(E) from the exact sequence, we obtain 

(*) D.(A-D) + deg(Z') = c2(E) = 3. 

hence 

-D-'+deg(Z') = (3-D.A) _< 0. 

From this it follows 

D 2 ->0 

with equality holding if and only if D,A = 3, Z' = O. 

If D.A = 3. D = Fj for some j (Lemma 1 ), and we obtain the following exact sequence: 

0 --~ (9 s(F)  -~ E --, ~ S ( A - F ) - ,  0 

Thus E is either isomorphic to (9 s(F)ffK9 s (A-F)  or E is a non-trivial extension. In the latter case 

Ext'((gS(A-F},(gs(F)) ~ H'(S,(gs(2FyA)) -=- H'(S,(gs(A-FFFj')) ~0.  

By Riemann-Roch,  h°((A-FTFj')) ¢: 0. By the proof of  Theorem 1, we obtain that A is a Reye polarization, 

and E is the Reye bundle. 

Now we turn our attention to the case D-A > 3, D"- >0. Twisting the Koszul sequence for Z by (gs(-D), 

we get 
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hence  

and, by (') 

hO(gz(A-D)) :;e O, 

(A-D).& > deg(Z) = 3, 

(A-D) 2 = (A-D)oA-(A-D)-D _> 3 -3  +deg(Z') = deg(Z') -> 0. 

By Riemann-Roch,  h°(D) > 2. Lemma 3 implies D°A >_ 6. This yields 

(A-D)°A <_ 4, 

and, again by Lemma 3, 

(A-D) 2 _< 0. 

Thus we obtain (A-D) 2 = 0, hence (A-D).A = 3, deg(Z') = 0. Thus A-D = Fj for some j, and we get the exact 

sequence 

0 --~ (gS(A-F j) ~ E ~-~ Cgs(F ) --) 0. 

Again as above, either E spits or 

Ext(C9 s(F},(5 S(A-F ))  ~. H°(S,C5 S(A-2F)) ~ tt°(S,CgS(A+Ks-Fj-Fj ') ;~ 0. 

By Theorem 1, we find that A is a Cayley polarization. Since t~-(A-Fi)  I = O for all i and j, all the sheaves 

from case (ii) are non- isomorphic .  

It remains to prove the uniqueness statement for E from case (iii). In  fact, the corresponding trisecant 

cannot lie in any plane cubic F. If  it does, then F passes through the cycle Z corresponding to E, and there exists 

a divisor in IA-(A-F)I containing Z. Thus there exists a non- t r iv ia l  map (gS(A-F i) ~ E, which splits the 

extension. The proof  of  the theorem shows that for every F the subsheafCgs(F) is saatrated in E, and hence E is 

independent of the choice of F. 

The next corollary follows immediately from the previous theorem by using R iemann-Roch  and the 

vanishing theorem (see [CD 1]). 

C o r o l l a r y  1. Let E be as in the previous theorem. Then 

h°(E) = 4, h ' (E)  = h q E )  = O. 

4. Stabi l i ty .  Recall that a vector bundle E i sH-s t ab le  (resp. H-semi-stable) ,  where H is a divisor, if for every 

line subbtmdle L in E 

L-H < ½ q ( E ) - H  (resp. L,H _< ½cl(E)-H). 

Theorem 3. Let E be a rank 2 vector bundle on an Enriques surface S with q (E)  = A and ~(E)  = 3. The 

following assertions are equivalent: 

(i) E is A-semi-stable; 

(ii) E is isomorphic to the Reye bundle. 

(iii) E is A-stable. 

PROOF. (i) ~ (ii) By Proposition 1, h°(E) ;~ 0. We may assume that the zero set of any non-zero  section 
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has a l -d imens iona l  part D. Otherwise E is regular, and the semi-stabil i ty implies that case (iii) of  Theorem 2 

mus t  hold. Consider  the exact sequence 

0 -o  (gs(D) -o  E --o 9Z(A-D) --o 0. 

By semi-stabil i ty we have 

D.A <IAA2 = 5. 

From L e m m a  3 it follows 

D z < 0 .  

Count ing the C h e m  classes of  E by using the above exact sequence, we obtain 

D.(A-D) +deg(Z') = 3 

which yields 

D.A _< 3+D 2. 

Since D.A > 1 this leaves us with the cases D 2 = - 2  or D 2 = 0. 

C a s e  I. D 2 = - 2 .  Then D . A =  1, Z' = O, and D is a line in the embedding defined by IAI. We, have the exact 

sequence:  

0 --~ @s(D) --~ E --~ (gS(A-D) --~ 0, 

By I_emma 2, D does not lie in a any plane ~ unless it is a component  of  F i. This shows that D.F i _< 1 for 

every i. Since A.D = 1, there are exactly three F's with Fi.D = 1. Choose  one of them. Then (A-D-Fi)  2 = 2, and, 

by R iemann-Roch ,  h°(A-D-Fi)  > 2. Twisting the above sequence by (gs(-Fi), we obtain the cohomology exact 

sequence:  

0 --> H°(S,@s(D-Fi)) -~  H°(S,E(-Fi)) --~ H°(S,@s(A-D-Fi) --~ H~(S,(Ss(D-Fi)). 

Since (D-Fi).A < 0, the first space is zero. Since (D-Fi) 2 = -4 ,  by Riemann-Roch ,  the last space is one -  

dimensional .  This  implies that H°(S,E(-Fi)) :# O, hence E contains (gs(Fi) as a subsheaf ,  and therefore is 

represented as an extension 

0--* (Ss(Fi) --o E --~ (gS(A-Fi) --o 0. 

If the extension splits, (gs(A-Fi) will be the subbundle  o f  E with (A-Fi).A = 7 > 5. This contradicts the semi -  

stability of  E. By Theorem 2, E must  be the Reye bundle. 

C a s e  Z D 2 = O. Then D-A = 3, hence D = F i for some i. Also deg(Z')' = O, and we get the exact sequence 

as above. Applying Theorem 2, we obtain that E is the Reye bundle. 

(ii) ~ (iii). This  follows f rom the proof  of  Theorem 1 (take a destabilizing subbundle  L and  argue as in the 

proof  o f  this theorem). 

(iii) ~ (ii) Obvious.  

Examples. Here we give examples o f  non- regu la r  rank 2 vector bundles on S with ct(E) = A and ca(E) = 3. The 

first example is a decomposable bundle 

E =Gs(D)~)(gS(A-D), 

where D = FI+F2+F 3. Then 

D 2= 6, D-(A-D) = 3, (A-D) 2 = -2 ,  A-(A-D) = 1. 

If rA-Dt = O, Le. S does not  contain lines (with respect to A), then 
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H°(E) = H°((gs(D)), 

hence alt sections of  E vanish on a curve from IDI. 

The second example is an indecomposable extension: 

0 --~ (gs(D) --~ E ~ (gs(A-D) ~ 0, 

where D is as above. We assume again that S does not  contain lines, hence IA-DI = O. But this time we 

assume that A is Cayley. Then 

hl(2D-A) = dimExt*((gs(A-D),Cgs(D)) ¢: 0 

if and only if 12D-AI ;~ O (note that (2D-A) 2 = - 2  and apply Riemann-Roch).  Since 

2D-A ~ 2Fl+2F2+2F3-A = (A-2F1)+2(F2+F3+2FI-A) - (A-2FI) mod 2Pic(S) 

and A-2F l is effective with (A-2F1) 2 = -2,  12D-A[ ¢ t3 (Looijenga's lemma, see [CD2]). Thus, if A is Cayley, 

we can construct an indecomposable extension. Since h°(A-D) = 0, h°(E) =h°(~s(D)), and E is non-regular.  

Remark 1. It is easy to see that the Reye bundle is extremal, i.e, satisfies: 

E --- E(Ks), Ext°(E,E) =- Ext2(E,E) -= k, Extl(E,E) = 0. 

these c o n d m o n s .  We It is interesting to find other vector bundles on an Enriques surface satisfyng " " * refer to 

[Ku] for the study of  extremal vector bundles on K3-surfaces.  

5. An application. In fltis section we give another proof of  the following result of  A. Conte and A. Verra 

Icv]: 

Theorem 4. Let X be the subvariety o f  G(2,6) parametrizing trisecants of.an Enriques surface S o f  degree 10 in 

IP 5. Then dim X = 3 i f  A = (g s( l ) is Cayley and dim X = 2 (and consisLs o f  20 planes) otherwise 

PROOF. Let £ he a trisecant of S and Z be the corresponding cycle of  length 3. As in the proof of  Theorem 2, we 

cons~uct a vector bundle E given by an extension: 

0 -->@S -o  E -~ 9~A) --~ 0. 

If S is unnodal, E .~ Cgs(A-F)~)s(F) for some plane cubic, and Z = (A-F)~F lies in the plane containing F. 

Conversely, every line in such a plane is a trisecant. This yields that the variety X of  trisecants is equal to the 

union of 20 Schubert planes (of lines in each plane of F). 

Assume S is noda l  If  IAI does not map S into a quadric, every E as in the theorem splits and X is the 

same as in the previous case. Assume that IAI maps S into a quadric (then [A+K[ does not  map S into any 

"All stable exceptional rank 2 bundles E on an Enriques surface have been descTibed in a recent thesis o f  Hoil 
Kiln [Ki]. They satisfy c2(E) = t, cl(E) 2 = 4 t -2  and exist only for nodal Enriques surfaces (for any t?.3). Each 
such a bundle is uniquely determined by its Chem classes and can be obtained from an extension 

0 --->~F ~ E ~ (9~R) -~ 0 , 
where R is a nodal cycle, by tensoring by an invertibte sheaf. In [CV] it is shown that each generic nodal 
Enriques surface can be embedded into the Grassmannian G(2,t+l) as a congruence of  bidegree (3t-2,t). This 
allows one to define a Reye bundle E ~4th c2(E) = t, cl(E) 2 = 4 t - 2 .  It is stable and extremak We do not  know 
whether any external  stable rank 2 vector bundle on an Enriques surface is isomorphic to a Reye bundle. 
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quadric). Let E be a non-trivial bundle E as in the statement of the theorem. We know thatlP(F(E)) ~. IP 3. For 

general section s of E its zero cycle lies on a trisecant in the embedding by IA+KI. This defines a rational map 

IP 3 ~ X. Since E is unique, this map is dominant. 

Remark  2 ([CV]). Assume that A is a Cayley polarization. Then the union of trisecants of S is isomorphic tothe 

quartic hypersurface of singular quadrics in the 5-dimensional linear system of quadrics parametrized by [hi*. 

Corol lary  3. Let Sbe  an Enriques surface o f  degree 10 in IPS and C be its smooth hyperplane section. I f  A = 

C3S(1 ) is not Reye, then C is a non-trigonal curve o f  genus 6. I f  A is Reye, then C is a trigonal curve o f  genus 6 i f  

and only i f  the hyperplane is tangent to the quadIic containing S. 

PROOF. It is clear that any nonsingular curve CE[A[ is of genus 6. It is easy to see that C is not hyperelliptic 

(see [CD1]). Assume C is trigonal. Then its canonical image lies on a scroll, hence C has infinitely many (ool) 

trisecants. Note that the canonical map of C is given by [A+K[. It is known that every smooth curve with finitely 

many trisecants in its Prym-canonical embedding has at most 20 trisecants (see[Ve~. Thus in the embedding S 

IA+KI*, we can find a trisecant not lying on any of the 20 planes plane cubic curves of S. By Corollary 1 this 

happens if and only if A is Reye. Let S lie on a non-singular quadric Q and C = S n H  be its smooth hyperplane 

section, where H is a tangent hyperplane to Q at some point p~Q. The intersection Hc"O is a cone over aquadric 

in IP 3 with the vertex at p. One of the projection to tP ~ from the point p has fibres equal to the planes belonging 

to the family of planes on Q defining c2(E). This shows that the induced projection of C = H n S  to IP ~ is defined 

by a trigonal linear series on C. Thus we have an irreducible 4-dimensional family of trigonal hyperplane 

sections curves on S. The family of 0-cycles ZcSym3(S) which define a trisecant on the Cayley embedding of 

S is 3-dimensional. Each such cycle is contained in a 2-dimensional family of hyperplane sections C of Q. 

Since each trigonal curve has infinitely many "trisecant" cycles Z, the variety of trigonal hyperplane sections of 

Q is an irreducibIe variety of dimension 4. Hence it coincides with the variety of hyperplane sections HnQ,  

where H is a tangent hyperplane to Q. 

Remark 3. If Z is a zero cycle of section of E, and Cl (E) = A is C ay ley or S is unnodal, then HE ]AI containing Z 

is reducible, and equals the union of a plane cubic F and a curve from IA-FI. 

6. Congruences  of  lines. The stability of the Reye bundle implies the next Corollary. We give another 

version of its proof. 

Corol lary 4. Let E be the tautological quotient bundle on G(2,4) and E be its restriction to a Reyecongruence S 

o f  bidegree (7,3), Then E is stable. 

PROOF. It is known that S is a nodal Enriques surface embedded into IP 5 by IAI. Clearly cl(E) = [A], c2(E) = 3. It 

is easy to see that E is regular (the zero set of a generic section of E is equal to the set of rays lying in a plane of 

IP 3, which cuts out 3 points on S). By Theorem 2 (ii), E is either stable or isomorphic to the direct sum 

~gs(F)~s(A-F).  The projection E ~ Cgs(F) de~ines a section i:S ---~ IP =IP(E) such that i*((91p(1)) = (gs(F). On 

the other hand, the linear system I Cgrp(1)t defines a map IP -+ IP 3 with the property that the image of the fibre of 

tP --o S over a point seS is equal to the ray in IP 3 corresponding to seG(2,4). This shows that the composition 

S ~ IP --~ IP 3, given by I~gs(F) I is constant, i.e. all rays of s pass through one point. But then S is a Schubert 

plane of lines passing through a point. Absurd. 
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Conjectn~. Let S c G(2,4) be a nonsingular congruence o f  lines. F and E be the tautological subbundle and 

quotient bundle, respectively. Assume that S is non-degenerate, i.e. does not lie in a hyperplane section o f  

G(2,4) (with respect to the Plucker embedding). Then the restrictions o f  E and F to S are both semi-stable. 

that is, 

If this is true, applying Bogomolov's theorem, we obtain that 

m+n = cl(EIS) 2 -<4cz(ElS) = 4n, 

m+n = cl(FIS) 2 _< 4c2(FIS) = 4m, 

m<3n,  n<_3m. 

This has been observed for all known smooth non-degenerate congruences in G(2,4)* 
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