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Chilean configuration of conics, lines and points

IGOR DOLGACHEV, ANTONIO LAFACE, ULF PERSSON

AND GIANCARLO URZÚA

Abstract. Using the theory of rational elliptic fibrations, we construct and dis-
cuss a one parameter family of configurations of 12 conics and 9 points in the
projective plane that realizes an abstract configuration .126; 98/. This is anal-
ogous to the famous Hesse configuration of 12 lines and 9 points forming an
abstract configuration .123; 94/. We also show that any Halphen elliptic fibration
of index 2 with four triangular singular fibers arises from such configuration of
conics.

Mathematics Subject Classification (2020): 14H50 (primary); 14N20, 14C17,
14D06 (secondary).

1. Introduction

The famous Hesse configuration .123; 94/ of 12 lines and 9 points, with 3 points
on each line and 4 lines through each point, can be geometrically realized by the
Hesse pencil of cubic curves

x
3 C y

3 C z
3 C txyz D 0

with 9 base points and 4 reducible members each consisting of three lines. Each
line contains three base points, and each base point is on four reducible mem-
bers. By blowing up the base points, we obtain a rational elliptic surface with four
reducible fibers of type I3 in Kodaira’s notation for singular fibers of elliptic fi-
brations on algebraic surfaces. A pencil of cubic curves is the first in the series of
Halphen pencils of plane curves whose general member is of degree 3m with nine

Antonio Laface was supported by the FONDECYT regular grant 1190777. Part of this
work was done during a visit of Ulf Persson to the Department of Mathematics at the Uni-
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m-multiple points (including infinitely near points). The number m is called the
index of the Halphen pencil.

In this paper we give an explicit construction and a complete discussion of an
Halphen pencil of index 2 that contains exactly four reducible members, each is
the union of three smooth conics. Each of these 12 conics contains 6 base points
and each base point lies on 8 of these conics, forming an abstract configuration
.126; 98/ which is analogous to the Hesse configuration. Even more surprising is
that one can find the dual Hesse configuration .94; 123/ of 9 lines and 12 points
embedded in our configuration of conics. It consists of the 12 singular points of the
reducible members of the Halphen pencil and 12 lines that are analogous to the 9

harmonic polar lines in the Hesse configuration.
The paper originates from a question of Piotr Pokora who asked one of the

authors about an interesting configuration of conics in the plane. In [22] Pokora
and T. Szemberg proved that our configuration of conics gives an example of a free
arrangement of conics. Independently, and about the same time, the construction
of the configuration of conics .126; 98/ was given by D. Koher, X. Roulleau and
A. Sarti [18] who used it for constructing a configuration of 12 disjoint smooth
rational curves on a generalized Kummer surface obtained as the double cover of
the projective plane ramified over the dual of a smooth cubic curve. The 12 conics
are conics through a set of six cusps among the nine cusps of the dual curve (see
Proposition 5.1). In [23], motivated by computation of the Harbourne constant of a
configuration of curves on a rational surface (see section 8 in our paper), Roulleau
studied the conic configuration .126; 98/ as an example of a conic configurations
related to the duals of a plane algebraic curve.

The present construction arose from discussions during the fourth Latin Amer-
ican School on Algebraic Geometry and its Applications (ELGA IV) held on De-
cember 2019 in Talca, Chile. This explains the name for our configuration of con-
ics.

We work over any algebraically closed field of characteristic different from 2

and 3.
The paper is organized as follows. In Section 2, we discuss Halphen pencils

and, in particular, provide structure theorems for .�1/-curves on rational elliptic
surfaces coming from such pencils. Starting from this point we focus on rational
elliptic surfaces whose Jacobian surface is the Hesse surface. The definition of the
latter surface is given in Section 3. Section 4 is devoted to the explicit construction
of Chilean surfaces: a one-parameter family of rational elliptic surfaces of index
two whose Jacobian is the Hesse surface. In Section 5, we show that any such ratio-
nal elliptic surface is a Chilean surface. Section 6 introduces a double plane model
for elliptic surfaces of index two which allows one to describe their .�1/-curves.
Such description is given in the same section for the Chilean surfaces. Section 7
deals with rational elliptic surfaces of higher index whose Jacobian surface is the
Hesse surface. Finally, in Section 8, we discuss some few properties and applica-
tions such as log Chern numbers for configurations of lines and conics which are
naturally associated to our Halphen pencils.
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2. Halphen pencils

Let �F C�G D 0 be any pencil of plane curves whose general fiber is birationally
isomorphic to an elliptic curve, a smooth projective curve of genus 1. It defines a
rational map

� W P2 99K P1
; .x0 W x1 W x2/ 7! .F.x0; x1; x2/ W G.x0; x1; x2//: (2.1)

Let ⇡ W X ! P2 be a resolution of base points of the pencil. We have the following
commutative diagram

X

⇡

~~

f 0

  
P2 � // P1

;

where f
0 is an elliptic fibration. The birational morphism ⇡ admits a factorization

⇡ W X D XN
⇡N�! XN �1

⇡N �1�! � � � ⇡2�! X1
⇡1�! X0 D P2

; (2.2)

where each morphism ⇡i W Xi ! Xi�1 is the blow-up of one point xi 2 Xi�1.
For any i � j , let ⇡i;j WD ⇡j ı � � � ı ⇡i W Xi ! Xj �1. A point xi 2 Xi with
⇡.xi / D xj 2 Xj �1 is called infinitely near to xj (of order i � j ). The points
⇡i;1.xi / 2 P2

; i D 1; : : : ; N; are the intersection points of two general members of
the pencil. Their number could be less than N .

The points ⇡i;2.xi / 2 X1, i D 2; : : : ; N , are the intersection points of the
proper transforms of two general members of the pencil in X1, and so on, until the
proper transforms of the members of the pencil on X has no intersection points
and hence we obtain a morphism f

0 W X ! P1 whose general fiber is birationally
isomorphic to the general member of the pencil. Since X is smooth, a general
fiber F of f being birationally isomorphic to an elliptic curve must be smooth,
and hence F is an elliptic curve. Let � W X ! S be a birational morphism to
a relatively minimal model of the fibration f

0 W X ! P1. By definition, f
0 is a

composition of � with a morphism f W S ! P1 whose fibers do not contain .�1/-
curves, smooth rational curves with self-intersection �1. Let F be a general fiber
of f . Let D be a divisor on S with OS .D/ ä OS .KS /. Restricting D to the
general fiber S⌘ we obtain a divisor linearly equivalent to zero on S⌘ . Replacing it
by a linearly equivalent divisor we obtain that the restriction of D to S⌘ is the zero
divisor, i.e. the support of D is contained in fibers of f .

We use the well-known fact that the restriction of the intersection form of
divisor classes on S to the subgroup generated by irreducible components of a
fiber is semi-negative definite with the radical generated over Q by F itself [3,
Proposition VIII.3]. This implies that any irreducible component ‚ of a reducible
fiber has negative self-intersection, hence we obtain ‚

2  �2, and, by adjunction
formula, ‚ �KS � 0. Since ‚ is a part of F , we obtain ‚ �KS D 0. Since KS has
a representative contained in fibers, we obtain that

F D �mKS (2.3)
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for some rational number m. Intersecting both sides with the divisor class of a
.�1/-curve E on S , we get that m D F � E is a positive integer. Let ⇡

0 W S ! V

be a birational morphism to a minimal rational surface V . It follows from (2.3) that
S has no smooth rational curves with self-intersection less than �2. This easily
implies that we can choose V to be P2. Let us take X in (2.2) to be our surface S .

Let Ei D ⇡
⇤
N;i .⇡

�1
i .xi //; i D 1; : : : ; 9. Then e0 WD ⇡

⇤
.line/; ei WD Ei form a

basis in the Picard group Pic.X/ of divisor classes on X satisfying e
2
0 D 1; e

2
i D

�1; ei � ej D 0; i ¤ j . It is called a geometric basis. The well-known behavior of
the canonical class under the blow-up at a point gives

KS D �3e0 C e1 C � � �C eN : (2.4)

Since K
2
S D 0, formula (2.4) shows that N D 9. Thus we obtain a commutative

diagram of rational maps

X

f 0

~~

//

⇡
✏✏

� // S

⇡ 0
✏✏

f

!!
P1 P2oo T // P2 // P1

:

The birational map T transforms our original pencil to a pencil of elliptic curves
with 9 base points y1; : : : ; y9 with some of them may be infinitely near points.
The existence of such transformation T was first proven by E. Bertini in 1877 [4]
(a modern proof following the arguments from above was first given in [7]). Its
proper transform on S belongs to the linear system j �mKS j. Applying formulas
(2.4) and (2.3), we obtain that a general member F of the elliptic pencil on S

satisfies F ⇠ mF0. Thus its image in the plane is a curve F3m D 0 of degree 3m

with m-multiple points at y1; : : : ; y9. The pencil can be written in the form

�F3m C �G
m
3 D 0: (2.5)

It is called an Halphen pencil (of index m) in honor of G. Halphen who was the
first to give a detailed discussion of the properties of such pencils [15]. Of course,
if m D 1, this is a pencil of plane cubics. Note that, if m > 1, one of the fibers of f

is of the form F D mF0 (because F ⇠ �mKS ). It is called the m-multiple fiber of
the elliptic fibration. Obviously there is only one multiple fiber since otherwise we
can take F3m to be equal to F

m=s
3s for some s dividing m and obtain that a general

member of the pencil is reducible.

Lemma 2.1. Let f W S ! P1 be a relatively minimal elliptic fibration on a ra-
tional surface S defined by an Halphen pencil of index m with a fiber F D mF0.
Let .e0; e1; : : : ; e9/ be the geometric basis on S defined by a birational morphism
⇡ W S ! P2. Then OF0

.�KS / D OF0
.3e0 � e1 � � � � � e9/ has order m in

the Picard group Pic.F0/. Moreover, if mF0 is a multiple fiber with m prime to
the characteristic p D char.k/ of k .respectively divisible by p/, then F0 is of
Kodaira’s type In .respectively of other types and m D p/.
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Proof. We have already used that OF .KS / ä OF for a general fiber F of the
fibration. Since we can find a fiber F disjoint from F0, we obtain

OF0
.F / ä OF0

.�mKS / ä OF0
.�KS /

˝m ä OF0
:

This shows that the order of OF0
.�KS / in Pic.F0/ divides m. Suppose it is equal

to k < m. Since jlF0j C .m � l/F0 ⇢ jmF0j for any l < m and jmF0j is an
irreducible pencil, we have h

0
.lF0/ D 1. Applying Riemann-Roch, we deduce

from this that h
1
.lF0/ D 0. Then the exact sequence

0! OS ..k � 1/F0/! OS .kF0/! OF0
.kF0/ ä OF0

! 0

shows that there exists a section s of OS .kF0/ whose divisor of zeros D is an
element of the linear system jkF0j that is disjoint from kF0. This shows that kF0

moves in a pencil generated by D and kF0, contradicting equality h
0
.kF0/ D 1

from above.
The last assertion follows from the fact that the m-torsion subgroup Pic.F0/

is non-trivial only in the cases from the assertion from the lemma [6, Chapter 4,
Section 1].

Remark 2.2. We used here that S is a rational elliptic surface. In general, an
elliptic surface may have multiple fibers mF0 such that OF0

.F0/ is of order strictly
dividing m and even could be equal to 1. Such fibers are called wild and occur only
if char.k/ divides m. Any elliptic surface X with H

1
.X;OX / D 0, as in our case,

has no wild multiple fibers.

Assume that F0 is a smooth elliptic curve, and let fG3 D 0g be its image in the
plane. Then one can interpret the assertion of the previous lemma by saying that
choosing a group law on the plane cubic G3 D 0, the base points y1; : : : ; y9 add up
to a m-torsion point. This follows from the linear equivalence m.y1C � � �C y9/ ⇠
3mh, where h is the divisor class of the intersection of the cubic with a general line
in the plane. This makes sense even when some of the points are infinitely near.

Conversely, choose 9 distinct points y1; : : : ; y9 on a smooth plane cubic C

such that the divisor class of y1 C � � �C y9 � 3h is of order m in the Picard group.
Choose an inflection point q with the tangent line fL D 0g to be the zero point
in the group law on C W fG3 D 0g. Then the points yi taken with multiplicity m

add up to zero. Let F3m be a homogeneous polynomial such that the restriction
of the rational function F3m=L

3m to C is a rational function � with div.�/ D
m.y1C � � �Cy9/�3mq. The choice of F3m is not unique and one can choose P3m

such that the points y1; : : : ; y9 are points on the curve F3m D 0 of multiplicities
m [8, Lemma 4.4]. The pencil f�F3mC�G

m
3 D 0g is an Halphen pencil of index m.

Let F⌘ be the generic fiber of an elliptic fibration considered as an elliptic
curve over the field K D k.t/ of rational functions on P1. A rational point of
F⌘.L/ over a finite extension L=K defines, by passing to its Zariski closure on S ,
an irreducible curve such that the restriction of f to it is a finite cover of degree
equal to d D ŒL W Kç. We call such a curve a d -section. In particular, a rational
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point in F⌘.K/ defines a section of the fibration, and conversely any section arises
in this way from a rational point on F⌘ .

Suppose f W S ! P1 is a rational elliptic surface arising from an Halphen
pencil of index m. Since one of the fibers is of the form F D mF0, intersecting a
d -section with F , we obtain that m divides d . On other hand, any .�1/-curve E

on S satisfies E � F D �mE �KS D m, hence it defines an m-section.
Suppose m > 1, then F⌘.K/ D ;. The Jacobian variety Jac.F⌘/ parametrizes

the divisor classes of degree 0 on F⌘ . It is an elliptic curve with the group law
defined by the addition of the divisor classes. It becomes isomorphic to F⌘ over a
field extension L of K such that F⌘.L/ ¤ ;. The curve F⌘ is a torsor (= principal
homogenous space) over Jac.F⌘/. This means that there is an action morphism
a W Jac.F⌘/ ⇥ F⌘ ! F⌘ over K such that the morphism .a; p2/ W Jac.F⌘/ ⇥ F⌘ !
F⌘ ⇥ F⌘ , where p2 is the second projection map, is an isomorphism. The theory
of minimal models of algebraic surfaces allows one to find a relatively minimal
elliptic fibration j W J ! P1 with the generic fiber J⌘ isomorphic to Jac.F⌘/. It
is called the Jacobian fibration of f . One can show that the isomorphism class
of a non-trivial torsor F⌘ of J⌘ realized as the generic fiber of a rational elliptic
surface is uniquely determined by a choice of the data .x0; ⌧/ that consists of a
point x0 2 P1 and a m-torsion class ⌧ in the connected component of the identity of
the Picard scheme of the fiber Jx0

of j over the point x0 [6, Chapter 4, Section 8].
The corresponding fiber of f W S ! P1 over x0 is the m-multiple fiber mF0. All
other fibers of f are isomorphic to fibers of j . We refer to Remark 5.5 where this
construction is made very explicit for Halphen surfaces of index 2.

Thus we obtain that to any Halphen pencil of index m > 1 given by (2.5) one
can associate an Halphen pencil of index 1 where one of the members is isogenous
of degree m to the cubic curve fG3 D 0g. All other members are birationally
isomorphic to the members of the Halphen pencil.

Remark 2.3. Over the complex numbers Kodaira introduced a highly transcen-
dental transformation (a so called logarithmic transformation, see [2]) that for any
(positive) integer m makes any smooth fiber (or more generally any so called semi-
stable fiber In) into a fiber with multiplicity m while leaving the complements
biholomorphic (but not birational in general). In particular, other fibers are left un-
scathed, however it causes havoc among transversal divisors. As the transform has
an inverse, this is the ‘only’ way multiple fibers occur. There is also the inverse
transformation that coincides, in the category of algebraic surfaces, with taking the
Jacobian fibration. One can prove, using the formula for the canonical class of
an elliptic surfaces that Halphen surface are the only ones that are remain of the
same birational type as their Jacobian surface. This is a unique situation, which
accounts for its particular allure. In particular we note that any configuration of
degenerate fibers that occur in a cubic pencil (m D 1) also occur for any m > 1

amd conversely (with the obvious caveat); but their projective realizations are of
course very different. To make those explicit has provided an intriguing challenge
for some of the authors, the elaboration of a specific instance resulted in the present
paper.
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We begin with the following well-known lemma. We provide a proof for the
sake of completeness.

Lemma 2.4. Let S be a smooth rational surface with nef anticanonical divisor
�KS . Then any divisor E such that E

2 D E �KS D �1 which has non-negative
intersection with all the .�2/-curves of S is linearly equivalent to a .�1/-curve.

Proof. Assume E satisfies the hypothesis of the theorem. By Riemann-Roch E

is linearly equivalent to an effective divisor. Without loss of generality, we can
assume E itself to be effective. Since �KS is nef it has non-negative intersection
with any irreducible curve and, by adjunction, the only curves which have inter-
section 0 with �KS are the .�2/-curves. It follows that E D E

0 C R, where E
0

is a .�1/-curve and R is a non-negative sum of .�2/-curves. From E
2 D �1 we

deduce E
0 � R C .E

0 C R/ � R D 0. Since E
0 � R � 0, and E

0 being irreducible
and not contained in R, we deduce that 0  E � R D .E

0 C R/ � R  0. Thus
E

0 � R D R
2 D 0. Since R is in K

?
S , which is a negative-semidefinite lattice, we

conclude that R ⇠ nKS for some n 2 Z. The equation .E
0 C nKS /

2 D �1 forces
n D 0, so that E D E

0.

Proposition 2.5. Let S be a rational elliptic surface which is relatively minimal,
that is, there are no .�1/-curves in the fibers of the elliptic fibration S ! P1.
Assume F0 2 j �KS j is smooth. Then the kernel of the restriction map

res W Pic.S/! Pic.F0/

contains the subgroup ƒ generated by the classes of the .�2/-curves of S . More-
over if ⇡ is extremal, that is ƒ has rank 9, then ƒ D ker.res/.

Proof. The first statement is clear because any .�2/-curve is disjoint from F0. For
the second statement see [17, Theorem IV.5].

We now delve into the description of the set Exc.S/ of .�1/-curves on S . For
a similar approach see [17]. Recall that the normal bundle OF0

.F0/ ä OF0
.�KS /

is of order m in the Picard group of F0. We denote it by res.F0/. Let pts0 be the
subset of F0 which consists of points cut out by all the .�1/-curves of S as well as
their translates by any element of the subgroup of Pic.F0/ generated by res.F0/.

Proposition 2.6. The action of K
?
S =ƒ on F0 by translations induces a transitive

action of the same group on pts0. If ƒ D ker.res/, then the action is free.

Proof. Let q 2 pts0. By the definition of pts0, there is a translate p of q by a
multiple of res.F0/ which is cut out by a .�1/-curve E. Given ŒDç 2 K

?
S the

divisor ECD has intersection �1 with KS , so that .ECD/
2 is an odd integer by

the genus formula. Then there exists an integer r such that .ECDC rF0/
2 D �1.

By Riemann-Roch the divisor E CD C rF0 is linearly equivalent to an effective
divisor L. Write L D H C R, where H contains all the irreducible components
which are not contracted by ⇡ , while R contains the contracted ones, so that ŒRç 2
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ƒ C hF0i. By the definition of H it follows that it has non-negative intersection
with any .�2/-curve of S . Since H �F0 D 1, it follows that H

2 is an odd integer by
the genus formula. Then there exists an integer s such that .H C sF0/

2 D �1. By
Lemma 2.4 the divisor HCsF0 is linearly equivalent to a .�1/-curve E

0. The class
of the difference E

0 � .E CD/ ⇠ H C sF0 � .H CR� rF0/ is in ƒC hF0i. So,
if we denote by p

0 the intersection point of E
0 with F0, the class of the difference

p C res.D/ � p
0 is a multiple of res.F0/. As a consequence p

00 ⇠ p C res.D/

is in pts0. This shows that K
?
S acts on pts0. Since K

?
S contains the classes of

differences of .�1/-curves and the class of F0, the action is transitive. This proves
the first statement. The second statement is clear.

Let M be a negative definite irreducible root lattice of type An; Dn; En, and
˛1; : : : ; ˛n be its basis of simple roots. Let QM be its extension to an affine root
lattice by adding a root ˛0 such that the radical f of QM is generated by f D ˛0 C
˛max, where ˛max D

Pn
iD1 mi˛i is the maximal root with respect to the basis of

simple roots.
We extend this definition to the case when the lattice M is the orthogonal sum

M1 ˚ � � �˚Mk of irreducible root lattices by taking the lattice QM with the radical
of rank one such the quotient by the radical is M .

Fix an integer valued linear function l on QM and consider the convex subset
in QMR defined by

…M .l/ WD
˚
x 2 QMR W x � ˛i  l.˛i /; i D 0; : : : ; n

 
:

For any ˛i , we have f�˛i is a positive root (i.e. a positive integer linear combination
of simple roots). This implies that, for any x 2 …M .l/, �x � ˛i D x � .f � ˛i / 
l.f � ˛i /; hence x � ˛i � l.f � ˛i / is bounded from below by ai D l.f � ˛i /.
On the other hand, by definition, x � ˛i is bounded from above. Let ˛

⇤
1 ; : : : ; ˛

⇤
n

be the dual basis of .˛1; : : : ; ˛n/ in M
_ (the fundamental weights). Then we can

write any vector x 2 …M .l/ as x D x0f C
Pn

iD1 xi˛
⇤
i and obtain, by taking the

intersection with ˛i , that ai  xi  l.˛i / and
Pn

iD1 mixi  l.˛0/. Obviously,
…M .l/ is preserved under translations by the radical spanned by f. So, its image
N…M .l/ D …M .l/=Rf in the quotient MR of QMR by this subspace is a bounded

compact rational polyhedron in MR. Its intersection with the lattice M consists of
all roots ˛ satisfying ˛ �˛i  l.˛i /; i D 1; : : : ; n. Since the polyhedron is compact,
this set is finite. Note that in the case l ⌘ 0, N…M .l/ is the image of the fundamental
chamber corresponding to the root basis .˛0; : : : ; ˛n/ in MR.

We apply this to our situation when the lattice QM arises as the lattice ƒ gener-
ated by .�2/-curves on S and ŒF0ç (the last vector is not needed if F0 is reducible).
Its radical is the vector ŒF0ç and the quotient by hF0i is a root lattice of finite type.
Any divisor class D in Pic.S/, via the intersection product, defines a function l

on QM as above. Copying the definition of the convex set …M .l/ we introduce the
following definition.
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Definition 2.7. Given D 2 Pic.S/ define the following tropical Riemann-Roch
space:

L
trop

.D/ WD fR 2 ƒ W .D CR/ � C � 0 for any .�2/-curve C of Sg:
The above definition is due to the fact that L

trop
.D/ behaves like a Riemann-

Roch space with respect to the following tropical sum: if R DP
i aiRi and R

0 DP
i biRi are in L

trop
.D/ then their tropical sum R ˚ R

0 WD P
i maxfai ; bigRi is

in L
trop

.D/.
The next proposition follows from the above discussion.

Proposition 2.8. The set L
trop

.D/=hmKS i is finite for any D 2 Pic.S/.

Proposition 2.9. Let E 2 Exc.S/ and let p WD res.E/ be its intersection point
with F0. Then the assignment R 7! E C R � 1

2 .2E � R C R
2
/F0 induces an

injection

� W Ltrop
.E/=hmKS i !

˚
E

0 2 Exc.S/ W res.E 0 �E/ 2 hres.F0/i
 
:

If ƒ D ker.res/, then � is a bijection.

Proof. First of all observe that if R 2 L
trop

.E/ then D WD E C R � 1
2 .2E � R C

R
2
/F0 has non-negative intersection with all the .�2/-curves of S and D

2 D D �
KS D �1. Then D is linearly equivalent to a .�1/-curve E

0 of S , by Lemma 2.4.
Observe that E

0 intersects F0 at a point p
0 such that p

0 � p 2 hres.F0/i. Then �

is well defined. We now show that � is injective. Let R; R
0 2 L

trop
.D/ be such

that �.R/ D �.R
0
/. Then R � R

0 is linearly equivalent to an integer multiple of
F0 ⇠ �KS . This must be a multiple of mKS because it lies in ƒ, which proves the
statement. Assume now that ƒ D ker.res/. To prove the surjectivity of �, let E

0
be a .�1/-curve of S such that res.E 0 � E/ D n res.F0/ for some integer n. Then
E

0 � E ⇠ nF0 C R with R 2 ker.res/ D ƒ. In particular, E C R C nF0 ⇠ E
0

has non-negative intersection with all the .�2/-curves of S and the same holds for
E CR, so that R 2 L

trop
.E/.

Remark 2.10. The surface S is acted by the group of ⌘-rational points of Pic0
.F⌘/,

where F⌘ is the generic fiber. This group is the homomorphic image of K
?
S via the

pullback of the restriction map to the generic fiber. The kernel consists of the
classes of vertical divisors ƒC hF0i. Thus K

?
S =ƒC hF0i acts on S . The map

res W Exc.S/! pts0

is equivariant with respect to the above action. If ƒ D ker.res/ then the action is
free on the codomain and the latter is subdivided into m orbits where m is as usual
the index of the rational elliptic surface. In particular, if ƒ has rank 9, then Exc.S/

is finite. To prove this observe first that pts0 is finite, being the union of a finite
number of orbits for the action of a finite group. By Proposition 2.5 the equality
ƒ D ker.res/ holds. Thus, by Proposition 2.9, the number of elements of Exc.S/

which contain a given point q 2 pts0 is in bijection with L
trop

.E/=hmKS i, where
E is a .�1/-curve which contains q. The latter set is finite by Proposition 2.8.
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Let X be a Jacobian elliptic surface. A choice of a section E defines a group
law on the generic fiber F⌘ and hence the negation involution a 7! �a. This
involution extends to a biregular involution of the surface which is the lift of the
Bertini involution on the weak del Pezzo surface of degree 1 obtained by blowing
down the section E. Its fixed locus consists of the union of E and a 3-section of
the fibration (which might be reducible).

There is an analogue of this involution on any Halphen surface X of index 2.
Any .�1/-curve defines a 2-section of the elliptic fibration, and as such it defines
a point x⌘ of degree 2 on its generic fiber F⌘ . The linear system jx⌘j defines a
separable degree 2 map F⌘ ! P1

⌘ over the generic point ⌘ of the base. Its deck
transformation defines an involution on F⌘ defined over ⌘. The minimality of the
fibration allows us to extend it to a biregular involution of the surface X , which we
call the Bertini involution and denote it by ˇE . The scheme of the fixed points of
this involution on F⌘ is a reduced effective divisor of degree 4. Its closure BE in
X is a curve that intersects each fiber with multiplicity 4 (the curve E is invariant
but not pointwise fixed!). It intersects transversally each smooth fiber.

Proposition 2.11. The action of ˇ
⇤
E is trivial on L

trop
.E/.

Proof. Observe that any .�1/-curve E
0 which has the same restriction of E to the

generic fiber is preserved by ˇE . Indeed the divisors cut out by E and E
0 on a

general fiber are linearly equivalent and so each of them is mapped to itself by ˇE .
Now, for any R 2 L

trop
.E/, adding to the divisor E C R some multiple of F0, we

obtain a divisor D 2 L
trop

.E/ with D � KS D D
2 D �1. Applying Lemma 2.4,

we obtain that D is linearly equivalent to a .�1/-curve E
0 as above. The statement

follows.

3. The Hesse pencil

The Hesse pencil is the pencil of plane cubic curves of the form

H�W� W
˚
�.x

3 C y
3 C z

3
/C �xyz D 0

 
:

It has 9 base points x1; : : : ; x9 with coordinates .0 W 1 W �✏/; .1 W 0 W �✏/; .1 W
�✏ W 0/, where ✏

3 D 1. It has 4 singular fibers, whose equations are given by
(see [1], [11, 3.1.3] for this and other information about the Hesse pencil):

H0W1 W fxyz D 0g;
H1W�3 W f.x C y C z/.x C ✏y C ✏

2
z/.x C ✏

2
y C ✏z/ D 0g;

H1W�3✏ W f.x C ✏y C z/.x C ✏
2
y C ✏

2
z/.x C y C ✏z/ D 0g;

H1W�3✏2 W f.x C ✏
2
y C z/.x C ✏y C ✏z/.x C y C ✏z/ D 0g:

Each base point is an inflection point of a smooth member of the pencil. Each line
contains 3 base points, and each base point lies on 4 lines. The nine points and 12
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lines form the abstract Hesse configuration .94; 123/. All nonsingular members of
the pencil have an inflection point at each base point. The polar conic of a general
member of the pencil with pole at a base point xi is equal to the union of the tangent
line and another line `i that does not depend on the choice of a nonsingular member
of the pencil. It is called a harmonic polar line of the pencil. Each line `i intersects
a general member with multiplicity 3. It passes through one of the singular points
of a singular member and intersects the opposite side of the triangle at one point.
The 12 singular points of the four triangles and 9 harmonic polar lines form an
abstract configuration .123; 94/ dual to the Hesse configuration.

The blow-up ⇡ W S ! P2 of the base points x1; : : : ; x9 is a rational elliptic
surface f W S ! P1 of index 1. The exceptional curves Ei D ⇡

�1
.xi / are sections

of the fibration. As we remarked earlier, they correspond to rational points of the
elliptic curve F⌘ over the field K D k.t/ of rational functions on the base P1 of
the fibration. Fixing one base point, say x1, and the corresponding section E1, and
hence a rational point on F⌘ , we equip F⌘ with a group law. It defines a group law
on any nonsingular fiber F with the zero point F \ E1. It also defines a group
law of a one-dimensional commutative algebraic group on the set of nonsingular
points of each fiber. The group of rational points on F⌘ is a finitely generated
Abelian group, called the Mordell-Weil group of the elliptic surface. Any element
of this group defines a translation automorphism of F⌘ that extends to a biregular
automorphisms of S . In our case the 9 sections generate the Mordell-Weil group
isomorphic to .Z=3Z/

˚2.

Definition 3.1. An Halphen pencil of Hesse type is an Halphen pencil defining a
rational elliptic surface (Halphen surface of Hesse type) with the Jacobian fibration
isomorphic to the elliptic fibration defined by the Hesse pencil.

Note that the correspondence between relatively minimal rational elliptic sur-
faces and Halphen pencils of index m is far from being bijective since it depends on
a choice of a birational morphism ⇡ W S ! P2. Two Halphen pencils correspond-
ing to the same elliptic surface are the images of its elliptic fibration with respect
to different birational morphisms from the surface to the plane. It follows that they
differ by a Cremona transformation of the plane.

4. The Chilean configuration of conics

Our goal in this section is to give an explicit construction of an Halphen pencil
of Hesse type and index 2 such that its four singular members are unions of three
conics.

Although we know that there exists a rational elliptic surface of index 2 with
the Jacobian surface defined by the Hesse pencil, it is not obvious that we can find
a morphism ⇡ W S ! P2 such that the images of the singular fibers are the unions
of three conics (other possibility is the union of two lines and a plane quartic).

To do so we first fix a nonsingular plane cubic C W fG3 D 0g. Then we
choose 9 distinct points such that they can be partitioned in 4 different ways in three
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subsets .xi ; xj ; xk/ of 3 points such that .xi C xj C xk � h/ ⇠ 0. In this way we
have 12 triples. Note that the base points on each line component xC ✏y C ✏

2
z D

0 of a singular member of the Hesse pencil add up to 0 in the group law on a
fixed nonsingular member of the pencil with the zero point defined by a choice
of one of the base points xi . We can parameterize the set of line components
of each reducible fiber by F3 in such a way that each section is represented by
a vector .a1; a2; a3; a4/ indicating which component of a fiber it intersects. This
identifies the set of sections with the plane F2

3 embedded in F4
3 in such a way that

the difference of two vectors has only one zero coordinate [20]. For example, we
may assume that

x1 (0,0,0,0) x4 (1,1,0,2) x7 (2,2,0,1)
x2 (0,1,2,1) x5 (1,2,2,0) x8 (2,1,1,0)
x3 (0,2,1,2) x6 (1,0,1,1) x9 (2,0,2,2)

Now we identify the 12 line components of reducible fibers with lines in the finite
affine plane F2

3. Three points lie on a line if and only if the sum of the corresponding
4-vectors is equal to 0. This gives a finite projective geometry realization of the
Hesse configuration. Note that 3 points in a line add up to zero in the group law
on a nonsingular member F D Ft of the pencil with the zero point equal to x1.
The four lines containing the origin x1 are given by the first column of the previous
table, the first row, the diagonal, and x1; x6; x8.

We can order the coordinates of the nine base points of the Hesse pencil as
follows:

x1 D .0 W 1 W �1/; x2 D .0 W 1 W �✏/; x3 D
�
0 W 1 W �✏

2
�
;

x4 D .1 W 0 W �1/; x5 D
�
1 W 0 W �✏

2
�
; x6 D .1 W 0 W �✏/; (4.1)

x7 D .1 W �1 W 0/; x8 D .1 W �✏ W 0/; x9 D
�
1 W �✏

2 W 0
�
;

where ✏ is a primitive 3rd root of unity.
Let F Œ3ç be the group of 3-torsion points on the curve F with the point x1 as

the zero element. Then the lines of the Hesse configuration that contain x1 contain
3 points which form a cyclic subgroup of F Œ3ç. Each line in the same member of
the pencil is identified with a coset with respect to this subgroup.

Now fix a non-trivial 2-torsion ⌧ point on F . Consider 9 points yi equal to
xi C ⌧ in the group law. Then each of the 12 cosets define a set of 3 points on F

added up to ⌧ in the group law. We have partitioned the 9 points in 12 different
ways as the union of three triples of points added up to ⌧ in the group law. Take
two cosets Hi ; Hj with no common elements. Then their union defines a set of
6 points whose sum in the group law is equal to zero. Take 3 cosets Hi ; Hj ; Hk

defining a singular fiber of the Hesse pencil. Adding up ⌧ , we obtain 3 disjoint sets
Hi C ⌧; Hj C ⌧; HkC ⌧ of triples on F that add up to ⌧ . It follows that there exists
a conic that intersects F at 6 points from two of these sets. The sum of these three
conics pass through 9 points of the Halphen pencil with multiplicity 2 at each point.
This defines a singular fiber of the Halphen pencil equal to the union of 3 conics.



CHILEAN CONFIGURATION OF CONICS, LINES AND POINTS 889

We have 4 singular fibers, hence 12 conics. Each base point defines a 2-section of
the elliptic fibration that intersects 2 components of a singular fiber.

This means that each base point lies on 8 conics, two from each fiber. More-
over, each conic passes through 6 points, hence we have constructed the Chilean
configuration .128; 96/ of 12 conics and 9 points in the plane.

Remark 4.1. F Œ3ç is clearly isomorphic to the affine plane over the prime field
F3 which can be completed to the projective plane, with the line at infinity dis-
tinguished. Components of reducible fibers corresponding to ’finite’ lines in the
projective plane, two components belong to the same fiber if and only if they are
parallel (meaning cosets of the same cyclic subgroup), i.e. meeting at the line at
infinity, whose points hence correspond to the reducible fibers, each given by the
pencil of lines through the points. Points will correspond to sections, and we see
how two components can only share one section and each section will intersect ex-
actly one component of each fiber. Note that with a proper choice of zero, lines in
the finite projective planes correspond to bona fide lines in the complex setting, but
for the combinatorial codification this is not important. In fact, by a slight abuse
of notation, we can refer to the same finite plane when we are talking about the
translated points in the index two setting. Then three points on a line, does no
longer mean that they are literally on a line. This extended use will turn out to be
useful further down. Thus any two parallel lines in the new interpretation can be
associated to a conic component of the Halphen pencil.

We conclude the section with some observation of the automorphism group of
S . First of all, any birational automorphism that preserves the fibration is a bireg-
ular automorphism. This follows from the relative minimality assumption since
neither horizontal nor vertical curve can be blow down. An automorphism of S pre-
serves the pencil but may act non-trivially on it. The subgroup of automorphisms
that act trivially on the base (which could be called vertical) is easy to describe. It
is mapped to the group of automorphisms of the Jacobian fibration with the kernel
equal to the group of translations of S by the elements of the Mordell-Weil group
of the Jacobian fibration. The group of automorphisms of the Jacobian fibration is
the group of automorphisms of its generic fiber defined over the field of rational
functions of the base. It is the semi-direct product of the group of Mordell-Weil
group (defined when we fix a section) and the group of automorphisms fixing a sec-
tion. The latter depends on the j -invariant of the elliptic curve but always contains
the Bertini involution. When m D 2, as we explained in Section 2, we have similar
involutions, the Bertini involutions ˇE . We refer for the study of automorphism
groups of Halphen surfaces to [12].

Recall that the Hesse group G216 is one of maximal finite groups of projective
transformations of the plane. It can be realized as the group of automorphisms of
the Hesse pencil of cubic curves, or equivalently, as the group of automorphisms of
a rational Halphen surface of Hesse type and of index 1 (see [1] or [11]). The group
G216 has a normal subgroup H isomorphic to .Z=3Z/

2 and the quotient is isomor-
phic to the binary octahedral group 2:A4 which is isomorphic to SL.2;F3/. The



890 IGOR DOLGACHEV, ANTONIO LAFACE, ULF PERSSON AND GIANCARLO URZÚA

pre-image of the central subgroup of SL.2;F3/ under the quotient map is the sub-
group G18 isomorphic to the semi-direct product .Z=3Z/

2o.Z=2Z/ ä Z=3ZoS3:

It consists of automorphisms generated by translation and any of the nine Bertini in-
volutions defined by the negation automorphism of a general fiber when we fix the
structure of group on it by fixing one of the sections. The projection to G168 ! A4

corresponds to the action on the base of the elliptic fibration as the octahedral group
of automorphisms of P1.

Corollary 4.2. The automorphism group of an Halphen surface of index 2 of Hesse
type is isomorphic to the subgroup G18 of the Hesse group G216 of projective trans-
formations of P2. Its normal subgroup of order 9 consists of translation automor-
phisms by elements of the Mordell-Weil group of the Jacobian fibration. Its nine
involutions are the Bertini transformations.

Proof. An ordered set E of .�1/-curves that are blown down to the set of base
points of an Halphen pencil that gives rise to a Chilean configuration of conics
defines a geometric basis .e0; e1; : : : ; e9/ of Pic.S/. By Corollary 6.7, e1C � � �Ce9

is invariant with respect to the action of Aut.S/ on Pic.S/, and since KS D 3e0 �
.e1 C � � � C e9/ is obviously invariant too, we obtain that the divisor class e0 is
invariant. This shows that any g 2 Aut.S/ descends to an automorphism T of
P2 under the blowing down morphism ⇡ W S ! P2 defined by the linear system
je0j. Thus we can identify Aut.S/ with a group of projective transformations of P2.
Composing any g 2 Aut.S/ with the translation automorphism ta for some element
of the Mordell-Weil group, we may assume that g fixes a .�1/-curve E1 2 E . Then
it commutes with the Bertini involution ˇE1

, descends to the del Pezzo surface D

obtained by blowing down E1, and hence fixes the point s
0 on the image of F0 on

D equal to the unique base point of the anti-canonical linear system j � KDj. We
identify this point with a point on F0. Thus T fixes 4 points on the image NF0 of F0

in the plane, the images of s
0
; s D E1 \ F0; and the images of the fixed points of

ˇE1
on F0.
Since a projective transformation cannot pointwise fix a cubic curve, g

2 has
four fixed points on F0 and hence is either identity or coincides with an involution
of F0 with four fixed points. Since ˇE1

fixes the same points on F0, g
2 D ˇE1

. It
follows that g has two fixed points on E1, one is s and an another is s0 D F1\E1,
where F1 is some other fiber. Since E1 intersects F1 with multiplicity 2, it must
be tangent to F1 at the fixed point s0. This is obviously impossible since the blow-
up of s0 would have a fixed point with three different tangent directions defined
by F1; E1 and the exceptional curve, hence acts identity at the tangent space of
the surface at this point is hence identity (because we assume that characteristic is
different from 2). Thus g coincides with ˇE1

and this proves the assertion.

Remark 4.3. The same proof works for degenerate Chilean configuration when
2F0 is a double fiber. In fact, it is even easier. The group of automorphisms con-
tains G18 and leaves invariant a triangle of lines in the plane. This means that the
group G of automorphisms is an imprimitive linear group, i.e. it contains a normal
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subgroup that arises from a reducible linear representation. It follows from Blich-
feldt’s classification of finite groups of automorphisms of the projective plane (the
complete list can be found in [9, 4.2]) that this group coincides with G18.

5. Explicit formulas and uniqueness

We take the harmonic polar line `1 with respect to the point x7 D .1 W �1 W 0/. It
has the equation x � y D 0. It intersects the nonsingular cubics H1Wt at three 2-
torsion points .1 W 1 W a/, where a is a root of the cubic equation X

3C tXC2 D 0.
This gives us 9 base points of the Halphen pencil of Hesse type and index 2:

p1 D .a W 1 W 1/; p2 D
�
✏a W ✏2 W 1

�
; p3 D

�
✏

2
a W ✏ W 1

�
;

p4 D .1 W a W 1/; p5 D
�
✏ W ✏2

a W 1
�
; p6 D

�
✏

2 W ✏a W 1
�
;

p7 D .1 W 1 W a/; p8 D
�
✏ W ✏2 W a

�
; p9 D

�
✏

2 W ✏ W a
�
:

Given the nine base points it is easy to compute the classes of the .�2/-curves of S .
These are all the conics through six of the nine points whose sum is zero. The strict
transforms of these conics are the irreducible components of the four reducible
fibers of type I3 of the following pencil of plane sextics:

x
3
y

3 C x
3
z

3 C y
3
z

3 � 1

a

�
x

4
yz C xy

4
z C xyz

4
�

C 1 � a
3

a2
x

2
y

2
z

2 C �

✓
x

3 C y
3 C z

3 � a
3 C 2

a
xyz

◆2

D 0:

(5.1)

Recall that for any smooth plane cubic curve C ⇢ P2, the dual curve C
⇤ is a plane

sextic in the dual plane LP2 with 9 cusps. If one considers a plane cubic F3 ⇢ LP2

passing through these cusps, we can define a pencil of plane sextic curves spanned
by C

⇤ and F
2
3 . It is an example of an Halphen pencil of index 2. We say that this

pencil is generated by the dual plane cubic C
⇤.

Recall from [11, 3.2] that the Caylean of a plane cubic is the locus of lines
hp; qi that are line components of reducible polar conics.

Proposition 5.1. The Halphen pencil of Hesse type in equation (5.1) is generated
by C

⇤, where C D fu3 C v
3 C w

3 � 3auvw D 0g, and the multiple fiber is the
Caylean of C .

Proof. We can rewrite equation (5.1) as:

�
xy � az

2
��

xz � ay
2
��

yz � ax
2
�
C �

�
a
�
x

3 C y
3 C z

3
�
�

�
a

3 C 2
�
xyz

�2D0:



892 IGOR DOLGACHEV, ANTONIO LAFACE, ULF PERSSON AND GIANCARLO URZÚA

The pencil contains a unique sextic with nine cusps. Its equation is the following:

x
6 C y

6 C z
6 C

�
4a

3 � 2
��

x
3
y

3 C x
3
z

3 C y
3
z

3
�

� 6a
2
�
x

4
yz C xy

4
z C xyz

4
�
� 3a

�
a

3 � 4
�
x

2
y

2
z

2 D 0:

Its dual is the plane cubic C , whose equation in dual coordinates u; v; w is

u
3 C v

3 C w
3 � 3auvw D 0

(see [11, 3.2.3]). The equation of the Caylean of this curve is [11, (3.27)]

x
3 C y

3 C z
3 � 2C a

3

a
xyz D 0:

Since t D �2Ca3

a , we see that the cubic

x
3 C y

3 C z
3 C txyz D 0

coincides with the Caylean of the cubic C and our pencil coincides with the pencil
generated by the dual C

⇤ of C .

The following is a nice corollary previously observed by D. Testa

Corollary 5.2. A smooth plane cubic can be uniquely reconstructed from the nine
cusps of its dual sextic.

In fact, the Halphen pencil with the nine cusps as its set of its base points contains
a unique irreducible member with 9 cusps, its dual is the plane cubic.

Remark 5.3. We are not writing here the values of � ¤ 0;1 which correspond
to the special fibers because these values �1; �2 are nasty. One can check that their
cross ratio R satisfies the equation R

2�RC1 D 0 that means that the double cover
of P1 branched over 0;1; �1; �2 is an elliptic curve with the absolute invariant j

equal to zero as it happens in the case of the Jacobian fibration. It is known that the
invariant of binary quartics a0u

4Ca1u
3
vCa2u

2
v

2Ca3uv
3Ca4v

4 that vanishes
on the set of quartics whose zeroes are four points on P1 with such cross-ratio
(equianharmonic quartics) is equal to S D a0a4 � 3a1a3C 4a

2
2. When we fix the

zeroes 0 and1 corresponding to vanishing of the coefficients a0; a4, we see that
the set of unordered pairs f�1; �2g 2 .P1

/
.2/ ä P2 is a conic �3a1a3 � 4a

2
2 D 0.

We have to throw away four points from this conic corresponding to �1; �2 2
f0;1g or �1 D �2. This should be compared with Remark 5.5 below where
we show that the parameter t of our Halphen pencils of Hesse type take value in
P1 nf4 pointsg. This shows that the map that assigns to a parameter t the unordered
pair f�1; �2g is bijective.
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The classes of the .�2/-curves of the surface S expressed in a geometric basis
by the columns of the following matrix

0
BBBBBBBBBBBBB@

2 2 2 2 2 2 2 2 2 2 2 2

�1 �1 0 �1 �1 0 �1 �1 0 �1 0 �1

�1 �1 0 �1 0 �1 �1 0 �1 �1 �1 0

�1 �1 0 0 �1 �1 0 �1 �1 0 �1 �1

�1 0 �1 �1 �1 0 �1 0 �1 0 �1 �1

�1 0 �1 �1 0 �1 0 �1 �1 �1 0 �1

�1 0 �1 0 �1 �1 �1 �1 0 �1 �1 0

0 �1 �1 �1 �1 0 0 �1 �1 �1 �1 0

0 �1 �1 �1 0 �1 �1 �1 0 0 �1 �1

0 �1 �1 0 �1 �1 �1 0 �1 �1 0 �1

1
CCCCCCCCCCCCCA

: (5.2)

For example, the first column exhibits a conic passing through the first six points
p1; : : : ; p6. The reducible fibers are the sums of columns .1; 2; 3/; .4; 5; 6/; .7; 8; 9/

and .10; 11; 12/. The defining polynomials for the above 12 conics are the follow-
ing:

xy � az
2
;

xz � ay
2
;

yz � ax
2
;

x
2 C .✏aC ✏/xy C ✏

2
y

2 C .✏
2
aC ✏

2
/xz C .aC 1/yz C ✏z

2
;

x
2 C .✏

2
aC ✏

2
/xy C ✏y

2 C .✏aC ✏/xz C .aC 1/yz C ✏
2
z

2
;

x
2 C .aC 1/xy C y

2 C .aC 1/xz C .aC 1/yz C z
2
;

x
2 C .✏aC 1/xy C y

2 C .✏
2
aC ✏/xz C .✏

2
aC ✏/yz C ✏

2
z

2
;

x
2 C .✏

2
aC ✏/xy C ✏

2
y

2 C .✏aC 1/xz C .✏
2
aC ✏/yz C z

2
;

x
2 C .aC ✏

2
/xy C ✏y

2 C .aC ✏
2
/xz C .✏

2
aC ✏/yz C ✏z

2
;

x
2 C .✏aC ✏

2
/xy C ✏y

2 C .✏
2
aC 1/xz C .✏aC ✏

2
/yz C z

2
;

x
2 C .aC ✏/xy C ✏

2
y

2 C .aC ✏/xz C .✏aC ✏
2
/yz C ✏

2
z

2
;

x
2 C .✏

2
aC 1/xy C y

2 C .✏aC ✏
2
/xz C .✏aC ✏

2
/yz C ✏z

2
:

Remark 5.4. When we choose the parameter t to be 1 or satisfy t
3 C 27 D 0,

the cubic curve fx3 C y
3 C z

3 C txyz D 0g becomes the union of three lines.
The corresponding cubic equation X

3 C tX C 2 D 0 has two roots, one of them
is a double root. In the case of the root of multiplicity 1, we get a pencil of sextics
with the corresponding 9 distinct base points p1; : : : ; p9 as above, which lie on the
triangle H�W�. We call the corresponding configuration of 9 conics and 3 lines the
degenerated Chilean configuration. In the construction of the pencil as a torsor of
the Jacobian fibration, the first parameter corresponds to one choice of a non-trivial
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2-torsion element of the connected component of the Picard scheme of the singular
fiber isomorphic to the multiplicative group Gm.

The pencil corresponding to the double root a of X
3CtXC2 D 0 is a pencil of

elliptic curves with 3 triple points x1; x2; x3 (specialization of the nine pi ’s above)
and 9 simple infinitely near points x

.1/
i � xi ; x

.2/
i � xi ; x

.3/
i � xi ; i D 1; 2; 3,

where � indicates an infinitely near point of order 1. For example, if we take
t D �3, then the multiple root a is equal to 1 and the pencil is given by equation

�
x

2 � yz
��

z
2 � xy

��
y

2 � xz
�
C �

�
x

3 C y
3 C z

3 � 3xyz
�2 D 0:

Each of the conics in the fiber over � D 0 passes through three base points
x1; x2; x3, and they intersect each other transversally at one of points .1 W 0 W
0/; .0 W 1 W 0/; .0 W 0 W 1/. The base points are also the singular points of the cu-
bic that enter with multiplicity 2. If we apply a quadratic Cremona transformation
with fundamental points at the base points, the pencil is transformed to an Halphen
pencil of Hesse type of index 1. In fact, one can prove that the Halphen surfaces of
Hesse type from the pencil in (5.1) have four degenerations (one for each triangle
and corresponding double root a) into a singular surface with three singularities,
which has an elliptic fibration with four I3 fibers such that at the 3 vertices of one of
them we have cyclic quotient singularities of type 1=4.1; 1/ (i.e. germ at .0; 0/ of
the quotient of C2 by .x; y/ 7! .ix; iy/). The construction of the singular surface
is the following. Take the Jacobian Hesse fibration, and consider one of the four
I3 fibers (this is chosen by the degeneration), blow-up the 3 nodes and contract
the 3 proper transforms from this I3 fiber. Hence we have that Halphen surfaces
of Hesse type degenerate into a singular model of their Jacobian fibration. This
degeneration is in fact a Q-Gorenstein smoothing, this is, the canonical class of the
corresponding 3-fold is Q-Cartier.

Roughly speaking, the way one constructs the degeneration is by going back-
wards. We take the Hesse surface, and construct the singular surface described
above. One can prove that this surface has no local-to-global obstructions to de-
form (e.g., as in [21, Section 4]). In fact, this is also true after contracting three
pairs of .�2/-curves from the rest of the I3 fibers (one can use [21, Theorem 4.4]).
So we do contract them as well, and consider a Q-Gorenstein degeneration keeping
these three A2 singularities and producing a new A2 singularity from the singular
fiber of type I3. The later is possible because we can reduce that deformation to a
deformation of 1=12.1; 5/ which has a 1 parameter deformation into an A2 singu-
larity (see, e.g., [14, Proposition 2.3]). It can be proved that the general fiber is an
Halphen surface of index 2 keeping an elliptic fibration from the one in the Hesse
surface, and since we have four A2 singularities with no two in one fiber, we have
no more room for other Halphen surface than the Halphen surface of Hesse type.
Now since we know that there is just one family of them, this corresponds to the
Chilean elliptic pencil. This phenomenon may be general, it could happen for any
Jacobian fibration with a fiber of type In: Any Halphen surface of index m can
Q-Gorenstein degenerate to a singular model of its Jacobian.

We call the Halphen pencil corresponding to the choice of a reducible fiber Ft

and the non-multiple root of X
3 C tX � 2 D 0 the degenerate Halphen pencil of



CHILEAN CONFIGURATION OF CONICS, LINES AND POINTS 895

Hesse type. It can be obtained from an Halphen pencil that defines the degenerated
Chilean configuration.

Remark 5.5. We already know from explicit formulas that a Chilean configura-
tions of conics depends on one parameter. We will prove later in Proposition 6.3
that there is only one Chilean pencil (up to projective equivalence) that gives rise to
an Halphen surface of index 2 of Hesse type. Thus the moduli space of Chilean con-
figurations (including degenerate ones) is the same as the moduli space of Halphen
surfaces of index 2 of Hesse type. To describe it more precisely, we have to invoke
the theory of torsors of Jacobian elliptic surfaces (see [6, Chapter 4]). In the case
when the Jacobian elliptic surface j W J ! P1 is rational it gives that the isomor-
phism class of a torsor of index m is determined uniquely by the data that consists
of points x1; : : : ; xk on the base and non-trivial mi -torsion points in the connected
group of the Picard variety Pic.Jxi

/ of the fibers Jxi
. The corresponding torsor is

an elliptic fibration with mi -multiple fibers over the points xi . In the special case
when all mi are equal to 2, so that the index of the torsor is equal to 2, one can
make it more explicit by considering the Weierstrass model of the Jacobian fibra-
tion. This defines a degree 2 map from J to the minimal ruled surface F2 whose
branch divisor is the union of the special section E with E

2 D �2 and a curve B

disjoint from E from the linear system j6f C 3ej, where f is the divisor class of
the ruling and e is the divisor class of E. A choice of a nonsingular point bi on B

defines a point xi on the base and a non-trivial 2-torsion element in PicJxi
. Thus

the variety of torsors of index 2 with fixed number of double fibers is isomorphic to
the symmetric product .B

]
/
.k/, where B

] is the set of smooth points of B . Apply-
ing this to our situation we find that the pre-image of B on J is a 3-section of the
elliptic fibration that intersects each singular fiber at one of its singular points. Its
image in the plane is a harmonic polar line. Thus the moduli space can be identified
with a harmonic polar line minus four singular points of the singular fibers lying
on it.

One can also apply the quadratic twist construction of the torsor. Fix a section
and consider the Weierstrass model as above. The image of the harmonic polar line
on it is a curve of arithmetic genus four with four cusps. Choose a twisted cubic K

on F2 (i.e an irreducible curve from the linear system j3f C ej) that passes through
the four cusps and passes through some simple point b of B . Since dim j3f C ej D
5, we can do it. The curve K intersects the exceptional section E at one point b

0.
The pre-image of K on J is a smooth rational 2-section R that is tangent to

a fiber at a point Qb and passes through the point Qb0 on the proper transform of E,
the zero section of j W J ! P1. Let X ! J be the double cover of J ramified
over the two fibers at t D j. Qb/ and t

0 D j. Qb0
/. It follows from the formula for the

canonical class of a double cover that its canonical class is trivial. For simplicity,
we assume that Jt and Jt 0 are smooth. This implies that X is a smooth K3 surface
(otherwise we have to replace X by its minimal resolution). The pre-image of R

in X splits into two sections RC and R� intersecting at two points transversally,
one point over Qb0 where it intersects the pre-image O of the zero section. Now we
define an involution ⌧ on X that is the composition of the deck transformation of
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the double cover X ! J and the translation ◆O by O, where we take RC as the
zero section. The involution ⌧ acts identically on Xt 0 and acts as a translation by a
2-torsion point on Xt . The quotient is our surface S .

Lemma 5.6. Let S be an Halphen surface of Hesse type of index 2. Assume that
the half-fiber is not one of the four triangles. Then S contains a .�1/-curve which
intersects eight .�2/-curves.

Proof. Let E be a .�1/-curve of S . If E intersects all the four triangles in two
sides there is nothing to prove. Assume this is not the case and let T1; : : : ; Tk , with
1  k  4, be the triangles which are intersected by E at just one side and let
R

.1/
i ; R

.2/
i be the two curves in Ti which are disjoint from E. Let

E
0 WD E �

kX
iD1

⇣
R

.1/
i CR

.2/
i

⌘
C kF0:

Observe that E
02 D E

0 �KS D �1, so that by Riemann-Roch E
0 is linearly equiv-

alent to an effective divisor which, with abuse of notation, we will denote by the
same letter. Moreover, E

0 has non-negative intersection with any of the twelve
.�2/-curves of S . By Lemma 2.4, E

0 is a .�1/-curve in S . Finally E
0 intersects

each triangle along two sided as desired.

The next theorem is a uniqueness result. It shows that, up to projective equiva-
lence, the family of Chilean configurations from Equation 5.1 represents all Halphen
pencils of Hesse type of index 2.

Theorem 5.7. Let S be an Halphen surface of index 2 whose Jacobian is the Hesse
surface. Assume that the half-fiber is not one of the four triangles. Then, S is a
Chilean surface, this is, it comes from a Chilean configuration via the pencil in
Equation (5.1).

Proof. Let E be a .�1/-curve as in Lemma 5.6, let R
.1/
i ; R

.2/
i be the two sides of

the triangle Ti which are intersected by E and let R
.0/
i the remaining side. Observe

that we are free to (re)label the four singular fibers as well as the components in
each such fiber as we wish. Let ƒ ✓ K

?
S be the sublattice spanned by the classes

of the .�2/-curves, as before. Let � 2 Aut.S/ be such that �.E/ ¤ E. Observe
that �.E/ and E do not have the same intersection product with any .�2/-curve
of S . Indeed, if this were the case, the class of �.E/ � E would be proportional
to F0, but the only divisor of the form E C nF0 with self-intersection �1 is E,
a contradiction. The .�2/-classes generate K

?
S over the rationals and �.E/ � E

belongs to this space, so that there exists rational numbers aij such that

�.E/ �E ⇠
4X

iD1

⇣
ai0R

.0/
i C ai1R

.1/
i C ai2R

.2/
i

⌘
:
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Let i 2 f1; 2; 3; 4g be the index of a singular fiber, where E and �.E/ have different
intersection numbers with the three irreducible components. After possibly switch-
ing the labels of R

.1/
i and R

.2/
i , we can assume �.E/ � R.0/

i D 1, �.E/ � R.1/
i D 0,

and �.E/ � R.2/
i D 1. These equations imply ai0 D �1

3 C n; ai1 D 1
3 C n, and

ai2 D n, where n 2 Z. In other words, the class of the Q-divisor

1

3

⇣
R

.1/
i �R

.0/
i

⌘

must appear in �.E/ � E. Since the above divisor has self-intersection �2=3, the
difference �.E/ � E must contain exactly the sum of three such divisors, whose
self-intersection is �2. Moreover, we can assume without loss of generality that
the sum is supported at the last three singular fibers, so we can write

D0111 WD
1

3

⇣
R

.1/
2 �R

.0/
2 CR

.1/
3 �R

.0/
3 CR

.1/
4 �R

.0/
4

⌘
:

Here the notation D0111 means that the divisor is supported at the first three sin-
gular fibers, and in each such fiber we are taking R

.1/
i � R

.0/
i instead of R

.2/
i �

R
.0/
i . We showed that the class of D0111 is in Pic.S/, but the sublattice ƒ C
hD0111; F0i=hF0i ✓ KS=hF0i is still not unimodular, so that another class has to
be added to get the full lattice KS . Acting with another automorphism ⌧ which
comes from the Jacobian action, we get a .�1/-curve ⌧.E/ distinct from E and
�.E/. Reasoning as above with ⌧.E/ � E one concludes that the new class to be
added is again the sum of three divisors of type 1

3 .R
.a/
i � R

.0/
i /, where a 2 f1; 2g.

Moreover the new class must have integer intersection product with D0111. Re-
calling that R

.0/
i ; R

.1/
i ; R

.2/
i are the three components of a fiber of type I3, we get

1
3 .R

.1/
i � R

.0/
i / � 1

3 .R
.2/
i � R

.0/
i / D 1

9 .1 � 1 � 1 � 2/ D �1
3 . Thus the only

possibilities for the new class are D0222, Da012, Da021, Da210, Da120, Da201,
Da102, where a 2 f1; 2g. The first possibility cannot occur because D0222 ⇠
2F0 � R

.0/
2 � R

.0/
3 � R

.0/
4 � D0111 is already in ƒ C hF0; D0111i. Without loss

of generality, we can relabel the last three fibers and relabel the components in the
first fiber, because these operations leave D0111 unaltered. In this way, we can
assume the second divisor to be

D1012 WD
1

3

⇣
R

.2/
1 �R

.0/
1 CR

.1/
3 �R

.0/
3 CR

2
4 �R

.0/
4

⌘
:

Observe that D0111 �D1012 D �1 and each of the two divisors has intersection 1

with E. The class of each of the following divisors is in the Picard group, because
it is a linear combination with integer coefficients of .�2/-curves, F0, E, D0111

and D1201

E1 WD E E2 ⇠ E CD0222 E3 ⇠ E CD0111

E4 ⇠ E CD2021 E5 ⇠ E CD2210 E6 ⇠ E CD2102

E7 ⇠ E CD1012 E8 ⇠ E CD1201 E9 ⇠ E CD1120:
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Each such divisor has non negative intersection with any .�2/-curve, it has self-
intersection �1 and intersection �1 with KS , so it is linearly equivalent to a .�1/-
curve by Lemma 2.4. Moreover, Ei � Ej D 0 for any i ¤ j . The orthogonal
complement of the classes of these nine .�1/-curves is generated by the class of

H WD 3E C 3F0 �
4X

iD1

R
.0/
i ;

which has self-intersection 1 and intersection product 2 with any .�2/-curve of
the surface. Thus all the .�2/-curves are conics in the plane model defined by
H . To conclude we recall that, according to Proposition 2.6, the subset pts0 ✓
F0 of points cut out by the .�1/-curves of S is acted freely and transitively by
K

?
S =ƒ ' Z=3Z ˚ Z=6Z. Of these 18 points, we already know the nine base

points p1; : : : ; p9 cut out by the above disjoint exceptional curves of S . Moreover
res.H/ D 3 res.E/C res.F0/, because res.F0/ has order two, so that xi ⇠ pi C
res.F0/ is an inflection point of the plane cubic F0 in the model defined by H . This
is exactly how the Chilean configuration is constructed in Section 4.

We will give another proof of the uniqueness of the Chilean pencil in Propo-
sition 6.6.

Remark 5.8. The set of nine .�1/-curves constructed in Theorem 5.7 is invariant
for any automorphism of the surface. Indeed let E be the .�1/-curve in the proof
of the theorem. Any automorphism maps E to a .�1/-curve E

0 which intersects
any singular fiber at two curves. Then, by the same argument in the proof of the
theorem, the difference E

0 � E must be linearly equivalent to one of the divisors
D0222; D0111; D2021; D2210; D2102; D1012; D1201; D1120.

Remark 5.9. It follows from the Borel-de Siebenthal-Dynkin algorithm for em-
bedding of root lattices that, in our case, the embedding ƒ0 WD ƒ=hF0i ,!
K

?
S =hKS i ä E8 is unique modulo the action of the Weyl group W.E8/. By [19,

Lemma 2.5] the embeddings of ƒ into K
?
S ' QE8 which are compatible with the

embedding ƒ0 ! E8 are in bijection with the elements of the group Ext1Z.E8=ƒ0;

Z=2Z/ ' Ext1Z..Z=3Z/
2
;Z=2Z/, which is trivial. This provides another proof of

the fact that the classes of D0111 and D1012 are in Pic.S/.

The base points of the Halphen pencil in (5.1) define nine disjoint .�1/-curves
on S . However, there are more .�1/-curves on Halphen surfaces of higher index.

Proposition 5.10. The number of .�1/-curves on the rational elliptic surface cor-
responding to the Halphen pencil of Hesse type of index 2 in .5:1/ is equal to 144.
The set of .�1/-curves consists of the following subsets:

✏ 9 exceptional curves;
✏ 36 proper transforms of lines through two base points;
✏ 54 proper transforms of conics through five base points;
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✏ 36 proper transforms of cubics with a double point at one of the base points and
six simple base points;
✏ Proper transforms of 9 quartics with one triple point and passing through other

8 points.

The set of these 2-sections is freely acted by the Mordell-Weil group of the Jacobian
fibrations isomorphic to .Z=3Z/

˚2 with 16 orbits represented by the columns of the
following matrices

0
BBBBBBBBBBBBB@

0 2 2 2 2 2 2 4

0 �1 �1 �1 0 0 0 �1

0 �1 0 0 �1 �1 0 �1

0 0 �1 0 �1 0 �1 �1

0 �1 0 0 �1 �1 0 �1

0 �1 �1 �1 0 0 0 �1

0 0 �1 0 �1 0 �1 �1

0 0 0 �1 0 �1 �1 �1

0 0 0 �1 0 �1 �1 �1

1 �1 �1 �1 �1 �1 �1 �3

1
CCCCCCCCCCCCCA

0
BBBBBBBBBBBBB@

1 1 1 1 3 3 3 3

�1 0 0 0 �1 �1 �1 0

0 �1 0 0 �1 �1 0 �1

0 0 �1 0 �1 0 �1 �1

0 �1 0 0 �1 �1 0 �1

�1 0 0 0 �1 �1 �1 0

0 0 �1 0 �1 0 �1 �1

0 0 0 �1 0 �1 �1 �1

0 0 0 �1 0 �1 �1 �1

0 0 0 0 �2 �2 �2 �2

1
CCCCCCCCCCCCCA

:

The curves in the first matrix restrict to the point p9 2 F0 while the curves in the
second matrix restrict to the inflection point x9 2 F0.1

Proof. Recall that by Proposition 2.9 the subset of Exc.S/ which intersects F0 at
p or p C res.F0/ is in bijection with L

trop
.E/=h2KS i, where E is any such .�1/-

curve. We know by Section 2 that this set is the set of integer points of a polytope
in ƒQ=h2KS i which we are now going to describe. According to Proposition 2.6
the restriction map induces a surjection

Exc.S/! pts0

which is equivariant with respect to the free action of K
?
S =ƒC hF0i ' .Z=3Z/

2.
The set pts0 consists of two orbits under this action: the set of flexes fx1; : : : ; x9g
and their translates with respect to the 2-torsion class fp1; : : : ; p9g which are cut
out by the exceptional divisors of the Chilean model. Denote by E one such ex-
ceptional divisor, by R

.1/
i ; R

.2/
i the two sides of the i -triangle which are intersected

by E and by R
.0/
i the side which is not intersected. Then, up to multiples of 2F0 ⇠

R
.0/
i CR

.1/
i CR

.2/
i , the only linear combination D WD ECa0R

.0/
i Ca1R

.1/
i Ca2R

.2/
i

which has non-negative intersection with all the three .�2/-curves is E � R
.0/
i .

To prove this observe that, after possibly adding an integer multiple of 2F0 we
can assume a2 D 0. Then the three inequalities D � R.0/

i � 0, D � R.1/
i � �1,

D � R.2/
i � �1 become �2a0 C a1 � 0, a0 � 2a1 � �1, a0 C a1 � �1, whose

solution set is the triangle in the below picture.

1 The first row gives the degrees (ai ) of the curves ai H C
P9

j D1 aij ej , and the remaining nine
the multiplicity at the points pj .
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x

y

.�1; 0/

� � 1
3 ; � 2

3

�

�
1
3 ; 2

3

�

Figure 5.1.

The only integer points in the triangle are .0; 0/ and .�1; 0/, which correspond
to the divisors E and E � R

.0/
i respectively. Thus a set of representatives for

L
trop

.E/=h2F0i consists of all the sums �P
I R

.0/
i , where I is any subset of

f1; : : : ; 4g. As a consequence we can write down explicitly all the curves which
intersect F0 at x9 or at p9, these are the following 16 curves:

E �
X
i2I

R
.0/
i C jI jF0;

where I varies along the subsets of f1; 2; 3; 4g and jI j is its cardinality. Observe
that in our case we can take E D E9, so that E \ F0 D fp9g. When I has even
cardinality we get the first set of eight curves which intersect F0 at p9. When I has
odd cardinality we get the second set of eight curves which intersect F0 at the flex
x9. By Proposition 2.6 we deduce that the number of .�1/-curves of S is 8 � 18 D
144. To describe the remaining .�1/-curves one can use the action of the group
of ⌘-rational points of Pic0

.F⌘/. This group, isomorphic to K
?
S =ƒ C h2F0i '

.Z=3Z/
2 acts by translations by 3-torsion classes on F0. Computing the action on

fp1; : : : ; p9g the nine points are permuted by the elements of the following group

h.195/.276/.384/; .186/.294/.375/i:

The statement follows.

Remark 5.11. The set Exc.S/ is equipped with the following non-geometric invo-
lution which preserves each fiber of the map res W Exc.S/! pts0. The involution
is

E �
X
i2I

R
.0/
i C jI jF0 7! E �

X
i2I c

R
.0/
i C jI cjF0;

where I
c is the complement of I in f1; 2; 3; 4g. Observe that the two curves have

intersection number �1 C jI j C jI cj D 3 and their sum is the divisor 2E �P4
iD1 R

.0/
i C 4F0.

Remark 5.12. To determine the classes of the .�1/-curves in X one can proceed
as in [19] (see also [17]). The classes of the .�2/-curves span a sublattice ƒ ✓ K

?
S
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of rank 9 of Pic.S/. Thus using the perfect pairing given by the intersection form
on the Picard group we deduce that the polyhedra

ÅS WDconvex hull.E2Pic.S/ W E �KS D �1 and E �C �0 for any .�2/-curve C /

has dimension 9 and it decomposes as the following Minkowski sum ÅS D ÅC
Q �KS , where Å is a polytope of dimension 8. It turns out that the .�1/-curves of
S are in bijection with the integer points of Å. Indeed clearly a .�1/-curve of S

has integer intersection with all the .�2/-curves and thus it gives an integer point of
Å. On the other hand an integer point of Å can be lifted to an affine line contained
in ÅS . This line has the form E C nKS and there is only one integer value of n

such that the self-intersection of E C nKS is �1. By Riemann-Roch the class is
effective and since it has non-negative intersection with all the .�2/-curves of S

one concludes that it is irreducible. One checks with a computer that Å has 144

integer points.

In the next section we will give a proof of Proposition 5.10 that does not rely
on any computer computation.

Remark 5.13. Since all nine exceptional curves of ⇡ W S ! P2 form one orbit
with respect to the Mordell-Weyl group of the Jacobian fibration, the restriction of
f W S ! P1 to each of them is a double cover of the base P1 branched over the
same pair of points. The fiber of f over one of the points is the double fiber and
the image under ⇡ of the fiber over the other point is a 9-cuspidal sextic which we
discussed in Proposition 5.1.

6. A double plane model of SSS

Let S be an Halphen surface of index 2 of Hesse type. We do not assume that
it comes from a Chilean configuration. We denote the half-fiber by F0 and the
general fiber by F . It has also four reducible fibers F1; : : : ; F4 of type I3. Fix
a .�1/-curve E0 on S and let �E0

W S ! S
0 be its blow-down morphism. The

surface S
0 is a weak del Pezzo surface of degree 1. For example, if E0 is chosen to

be the exceptional curve over one of the base points of the Halphen pencil, then S
0

is the blow-up of the remaining base points. It is well known and well documented
[11, Section 8.8.2] that the anti-canonical linear system j � KS 0 j is a pencil with
one base point s

0 and the anti-bicanonical linear system j � 2KS 0 j defines a degree
2 map

�
0 W S 0 99K Q ⇢ P3

;

where Q is a singular quadric with vertex v0 D �
0
.s

0
/. The deck transformation of

�
0 defines a biregular involution ˇ, known as the Bertini involution of S

0.
The branch curve B

0 of �
0 is cut out by a cubic surface in P3. If we project Q

to P2 from a point q 62 B
0, we obtain a double plane model of S

0 with branch curve
a plane sextic W with a triple point q1 and a triple infinitely near point q

.1/
1 � q1.
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The image of q is a line L that intersects W at q1 with multiplicity 6. However,
if we project from a point q 2 B

0, then the branch curve W of the double plane
model is the union of a quintic curve W0 with double points at q1; q

.1/
1 and the line

L that intersects W0 at q1 with multiplicity 4 and intersects W0 with multiplicity 1
at some point q2.

We denote the composition S ! S
0 99K Q 99K P2 by � W S 99K P2. It

defines a double plane model of S .
Since KS D �

⇤
E0

.KS 0/ C E0 and j � KS j D fF0g, we see that the point s
0

lies on the half-fiber F0. Let s D E0 \ F0. Since the birational lift of the Bertini
involution ˇ leaves invariant KS and �

⇤
E0

.KS 0/, it leaves invariant E0 and hence
fixes the point s. Thus the image q 2 Q of s belongs to B

0. Then we project from
q to obtain that the branch curve W of � is the union of a plane quintic W0 and the
line L as above.

The map � is given by the linear system j� 2KS CE0j. It blows down E0 to
the point q2 and the image of s

0 is the point q1. It also blows down the irreducible
components of the fibers F1; : : : ; F4 to singular points of W0. If E0 intersects two
components of Fi , it blows down the remaining component to an ordinary node
of W0. If E0 intersects one component with multiplicity 2, then it blows down
the remaining two components to an ordinary cusp. Thus W0 has four additional
double points y1; : : : ; y4.

The map � is a rational map of degree 2 with indeterminacy point s. Let
�s;s0 W QS ! S be the blow-up of the points s; s

0 and ⌧ W X ! P2 be the blow-up of
the points q1; q

.1/
1 ; q2; y1; : : : ; y4. We have a commutative diagram

QS
�s;s0
✏✏

Q� // X

⌧
✏✏

S
� // P2

;

where the top arrow is a finite map of degree 2. The lift ˇE0
of the Bertini invo-

lution generates the Galois group G of the map Q�. The locus of fixed point QSˇE0

consists of the union of the exceptional curves Es0 ; Es and a smooth curve B . The
map Q� ı ⌧ W QS ! P2 is given by the linear system jF C NE0j, where we identify
the divisor class of a general fiber F of f with its pull-back on X and use a bar to
denote the proper transform.

Let Eq1
D ⌧

⇤
.q1/ be the exceptional configuration over q1. It is equal to the

sum of the exceptional curve E
q.1/

1
over q

.1/
1 and a .�2/-curve Rq1

. We have

Q�⇤
.Rq1

/ D 2Es0 ;

Q�⇤
. NL/ D 2Es;

Q�⇤
⇣
E

q.1/
1

⌘
D NF0;

Q�⇤
. NW0/ D 2B:
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The elliptic pencil on S is equal to the pre-image of the pencil of lines through q2.
The double fiber is clearly mapped to the line L. The following picture summarizes
the construction of the double plane model of S .

✏

✏

F0
E0

s

s
0

NE0

NF0

Es

Es0

 �
�s;s0

S QS

NB NB

X

Q��!

Eq2

NW0

Rq1

NL

E
q.1/

1

LL
q1 q2
✏ ✏

P2�!�!
⌧

W0

Figure 6.1.

Remark 6.1. If we blow-up the point s
0 on S

0 we obtain a Jacobian rational elliptic
surface QS 0 with the section equal to the exceptional curve over s

0. Following [16],
the birational transformation h W S 99K QS 0 is called an Halphen transform. It
replaces an index 2 elliptic fibration f W S ! P1 with a Jacobian elliptic fibration
f

0 W QS 0 ! P1. Note that the elliptic fibration f
0 is not, in general, isomorphic to

the Jacobian fibration of f W S ! P1 although it is defined by the same data that
consists of a choice of a fiber on f

0 and a non-trivial 2-torsion element in its Picard
group (in our case defined by Oh.F0/.s � s

0
/). Note that the elliptic pencil on QS 0 is

the pre-image of the pencil of lines through the point q1.

Remark 6.2. In the case of a degenerate configuration where 2F0 is a reducible
fiber, we obtain a similar double plane model. The difference only is that the singu-
lar point q1 of the quintic is not a tacnode anymore but a double cusp and the line
L intersects the quintic at this point with multiplicity 2. Its proper transform on S

is a component of the double fiber which intersects E1. The other two components
are mapped to the curve E

q.1/
1

that splits in the cover.

Recall that we have proved in Lemma 5.6 that there exists a .�1/-curve E0

which intersects two irreducible components of each reducible fiber of S . In Theo-
rem 5.7 we proved the existence of eight .�1/-curves in S which together with E0

form a set of nine disjoint .�1/-curves which can be blow-down to P2 so that the
images of the reducible fibers is a Chilean configuration. Let us see this from the
double cover.

Let Ci be a conic through q1; q
.1/
1 and three points yj ; j ¤ i . It does not

intersect the branch curve and its proper transform NCi on X is a .�1/-curve. So it
splits in the cover Q� W QS ! X into two disjoint .�1/-curves that are disjoint from
the exceptional divisor of QS ! S . Thus, the proper transform of Ci is the union of
two disjoint .�1/-curves EiCE�i . Since the curves NCi are disjoint and do not pass
through q2, we obtain a set of nine disjoint .�1/-curves E0; Ei ; E�i that define a
birational morphism ⇡ W S ! P2.

Proposition 6.3. Every .�1/-curve E0 can be included into a set E.E0/ of nine dis-
joint .�2/-curves E0; E1; E�1; : : : ; E4; E�4 such that the Bertini involution ˇE0
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sends Ei to E�i and leaves invariant E0. Moreover, if yi is an ordinary node, the
image of the fiber Fi is the union of three conics. If yi is a cusp, then the image of
Fi is the union of a quartic and two lines.

Proof. Only the last assertion has not been proven yet. For simplicity of notation
we assume that yi D y1. Suppose y1 is a node. The curve E1 intersects R

.1/
1 and

R
.2/
1 . Then each conic Ci ; i ¤ 1; passes through y1 and hence E˙i intersects R

.0/
1

and R
.1/
1 (or R

.1/
1 ). The curve E˙1 intersects either R

.1/
0 or R

.2/
0 with multiplic-

ity 1 or intersects one of these curves with multiplicity 2. In the first case each
component R

.k/
0 intersects six curves from E.E0/ and hence its image under the

blowing down morphism is a conic. In the second case, R
.1/
0 intersects four curves

E0; E2; E3; E4 with multiplicity 1 and one curve E1 with multiplicity 2. The self-
intersection of its image under ⇡ is equal to �2C 4C 4 D 6, a contradiction. This
proves the assertion in the case when yi is a node.

Suppose y1 is a cusp. The curve E1 intersects R
.0/
1 with multiplicity 2. Each

conic Ci ; i ¤ 1; passes through y1 and hence E˙i intersects both R
.1/
1 and R

.2/
1 .

Each curve E˙1 intersects R
.0/
1 with multiplicity 2. Thus R

.˙1/
1 intersects 3 curves

from E.E0/ and the curve R
.0/
1 intersects 6 curves from E.E// with multiplicity 1

and three curves from this set with multiplicity 2. This implies that the image of
R

.˙1/
1 is a line and the image of R

.˙1/
1 has self-intersection �2C 6C 12 D 16, i.e.

it is a quartic. This proves the assertion in the case when yi is cusp.

Let E.E0/ denote the set of nine disjoint .�1/-curves including E0 obtained
by the construction from Proposition 6.3.

Definition 6.4. A set of nine disjoint .�1/-curves on S is called a Chilean set of
exceptional curves if the image of the elliptic pencil under a birational map that
blows down these curves is an Halphen pencil whose reducible members consist of
three conics.

Corollary 6.5. Suppose E0 intersects eight irreducible components of reducible
fibers .the existence of such curve follows from Lemma 5:6/. Then E.E0/ is a
Chilean set of exceptional curves and the branch curve of the double plane model
does not have cusps.

Proof. Since E0 does not intersect any component R
.k/
i with multiplicity 2, it

follows from the proof of the previous proposition that all singular points yi are
nodes.

Proposition 6.6. There is only one Chilean set of exceptional curves on S .

Proof. Let E1 and E2 be two Chilean sets of exceptional curves. Let †iD
P

E2Ei
E.

Since each R
.k/
i intersects six curves from E1 and E2, we obtain †i � R.k/

i D 6.
Thus †1 �†2 belongs to the orthogonal complement of the sublattice Picfib.S/ of



CHILEAN CONFIGURATION OF CONICS, LINES AND POINTS 905

Pic.S/ spanned by the components of fibers. Since Picfib.S/ is a lattice of rank 9

with radical spanned by ŒF0ç, its orthogonal complement is equal to ZŒF0ç. This
shows that †1 � †2 ⇠ nF0. Then .†1 � †2/

2 D �9 � 2.9n � 9/ � 9 D 0 and
so n D 0. Therefore †1 ⇠ †2, but now we intersect with each E 2 E1 to get that
†1 D †2.

Corollary 6.7. The Chilean set E of exceptional curves forms one orbit with re-
spect to the action of Aut.S/.

Proof. By the uniqueness of E , it is invariant with respect to any automorphism
of S . The group Aut.S/ contains as a subgroup H the Mordell-Weil group of
j.f / isomorphic to .Z=3Z/

2. It acts simply transitively on the set, because it acts
transitively on the set of nine sections of j.f /. This can be seen by using that H

permutes cyclically components of each singular fiber and hence cannot fix any of
the curves from E .

Let us now fix a Chilean set fE1; : : : ; E9g of .�1/-curves. We would like
to find the set Exc.S/ of .�1/-curves on S in terms the proper transforms under
� W S 99K P2 of some curves C in the plane. We already know that the curves
E2; : : : ; E9 come from conics passing through three of the double points of the
branch quintic curve and passing through q1 and its infinitely near point q

.1/
1 . We

fix E1 that intersects F0 at a nonsingular point s. We also have another point s
0

such that OF0
.s � s

0
/ ä res.F0/. Let Exc0.S/ be the subset of Exc.S/ of .�1/-

curves passing either through s or s
0. It coincides with the set res�1

.pts0/ defined
in Section 2. By Propositions 2.5 and 2.9, it coincides with L

trop
.E1/=.mKS /.

By Proposition 2.11, the Bertini involution ˇE1
acts trivially on it. Thus all curves

from the set Exc0.S/ are invariant with respect to ˇE1
. In other words, their images

in the plane under the map � do not split in the cover.
We write as D 1 if s 2 E and as0 D 1 if s

0 2 E.
Let E be any .�1/-curve invariant with respect to ˇE1

. Let R
.0/
i ; R

.1/
i ; R

.2/
i ; iD

1;2;3;4; be the components of singular fibers indexed as in the proof of Lemma 5.6,

i.e. we assume that E1 does not intersect R
.0/
i . Since the group Pic.S/

ˇ⇤
E1

Q of
rational divisor classes invariant with respect to ˇ

⇤
E1

is freely generated by the
divisor classes of E1; F0 and R

.0/
1 ; : : : ; R

.i/
4 we can write

E ⇠ k0E1 �
4X

iD1

kiR
.0/
i C kF0

for some rational coefficients. Let

n WD E �E1:

Intersecting both sides with F0, we find k0 D 1. Intersecting both sides with E1

we find k D nC 1. Since E is invariant, it either intersects both R
.1/
i and R

.2/
i , or
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intersects R
.0/
i with multiplicity 2. Intersecting with R

.0/
i , we find that ki D 0 in

the former case and ki D 1 in the latter case.
Let vC D

P4
iD1 ki be the number of nodes yi lying on C . The equality

�1 D E
2 D E

2
1 C 2.nC 1/ � 2

P4
iD1 ki D �1C 2.nC 1/ � 2vC gives

nC 1 D vC :

The curve C passes through vC nodes, passes through q1 if as0 D 1 and passes
through q2 with multiplicity n� as . Since the proper transform NE of E on QS is the
pre-image of a curve on X , NE2 must be even (and this confirms that asC as0 D 1),
and since blowing only one of points on E, we have NE2 D �2, and hence the
proper transform NC on X has self-intersection equal to �1. Since NC intersects the
exceptional curve Es over q2 with multiplicity 1

2 .n � as/, this gives

deg.C /
2 D vC C as0 C 1

4
.n � as/

2 � 1:

Now we can list all possible C :

(i) n D 0; vC D 1; n D 1; q1 2 C; q2 62 C; deg.C / D 1;
(ii) n D 1; vC D 2; as D 1; q1; q2 62 C; deg.C / D 1;

(iii) n D 2; vC D 3; as0 D 1; q1; q2 2 C; deg.C / D 2;
(iv) n D 3; vC D 4; as D 1; q1 2 C; q2 62 C; deg.C / D 2.

In another words, C is either a line passing through q2 and one node (case (i)),
or a line passing through two nodes (case (ii)), or a conic passing passing through
q1; q2 and three points yi (case (iii)), or a conic passing through q2 and all points
yi (case (iv)).

Let .e0; e1; : : : ; e9/ be the geometric basis corresponding to the base points
of the Chilean Halphen pencil. We take the double model corresponding to E1.
Then the divisor class of a .�1/-curve E is de0 �

P9
iD1 miei . We have m1 D

E � E1 D n. Since E2; : : : ; E9 are the split pre-images of the conics through
three nodes and q1; q

.1/
1 , we can group them in pairs and redenoting them by

E2; E�2; E3; E�3; E4; E�4. We assume that �.Ei C E�i / is the conic passing
through all points yi except yi . Intersecting C D �.E/ with one of the curves, we
find the divisor class of ŒEç to be equal to

ŒEç D

8̂
ˆ̂<
ˆ̂̂:

e0 � ei � e�i in case (i)
2e0 � e1 � ei � e�i � ej � e�j in case (ii)
3e0 � 2e1 �

P
j ¤i .ej C e�j / in case (iii)

4e0 � 3e1 �
P

.ei C e�i / in case (iv):

As we see that, together with E1 there are 16 such curves as expected from our
general theory.
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Since each Ei\ˇE1
.Ei / D ; for i ¤ 1, the branch curve B does not intersect

such Ei . It intersects E1 with multiplicity 1. This gives

ŒBç D e0 � e1: (6.1)

In other words, the image of B in the plane is a line passing through x1.
To find the rest of 144�16 curves, we use that the translation group acts simply

transitively on the set of curves E1; Ei ; E�i . Thus it leaves the class
P9

iD1 ei

invariant, and hence leaves invariant the class e0 that defines the blowing down
⇡ W S ! P2. This means that the group of translations descend to a group of
projective transformations of the plane. Using the explicit formulas for the base
points of the Chilean pencil from Section 5, we find that the group is generated by
transformations .x W y W z/ 7! .z W y W x/ and .x W yI z/ 7! .x W ✏y W ✏2

z/. Now
the rest of the curves are obtained by applying these transformations to the 16 that
has been already found. The following table gives the result, and it also gives the
images of .�1/-curves under �.

Table 6.1. The classes of the 144 .�1/-curves on S .

deg...CCC /// nnn vvvCCC uuuCCC aaasss aaas0 deg...⇡⇡⇡...EEE////// split class #
0 0 0 0 0 0 0 no e1 1

1 0 1 0 0 1 1 no e0 � ei � e�i 4

1 1 2 0 1 0 2 no 2e0 � e1 � ei � e�i � ej � e�j 6

2 2 3 0 0 1 3 no 3e0 � 2e1 �
P

j ¤i .ej C e�j / 4

2 3 4 0 1 0 4 no 4e0 � 3e1 �
P

.ei C e�i / 1

2 0 3 0 0 0 0 yes e˙i 8

2 0 2 0 0 0 1 yes e0 � e˙i � e˙j 24

2 0 1 0 0 0 2 yes 2e0 � ei � e�i � e˙j � e˙k � e⌥l 24

2 0 0 0 0 0 3 yes 3e0 � 2e˙i �
P

j ¤i .ej C e�j / 8

3 1 3 1 0 0 1 yes e0 � e1 � e˙i 8

3 1 2 1 0 0 2 yes 2e0 � e1 � ei � e�i � e˙j � e⌥k 24

3 1 1 1 0 0 3 yes 3e0 � e1 � ei � e�i � 2e˙j � e⌥j � e˙k � e˙l 24

3 1 0 1 0 0 4 yes 4e0 � e1 � 3e˙i � e⌥i �
P

j ¤i .ej C e�j / 8

Here uC denotes the number of double points of C among y1; : : : ; y4. We see that
all 144 exceptional curves are accounted for.

Remark 6.8. An explicit computer computation gives the equation of the branch
quintic curve W0:

x
3
y

2 C2✏x
2
y

3 C ✏
2
xy

4 C 2✏
2
x

3
yz C .2a

3 C 4/x
2
y

2
z C 2✏a

3
xy

3
z

C2✏
2
.2a

3 � 1/y
4
z C ✏.�4a

3 C 1/x
3
z

2 C ✏
2
.�10a

3 C 4/x
2
yz

2

C.a
6�12a

3�4/xy
2
z

2C4✏.a
3 � 2/y

3
z

2C.�4✏a
6 � 16ea

3 C 2e/x
2
z

3

�8✏
2
.5a

3 C 1/xyz
3 C .2a

6 � 32a
3 � 16/y

2
z

3

C.�16✏a
6 � 16ea

3 � 4e/xz
4 � 8✏

2
.5a

3C2/yz
4C.�16✏a

6 � 8✏/z
5D0:

Now consider the blow-up of the base points of the Halphen pencil defining
a Chilean configuration. Fix one of the exceptional curves Ei , and consider the
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double plane model �i W S 99K P2 defined by Ei . Using (6.1), we find that the
branch curve Bi of �i is represented in the geometric basis by e0 � ei . So the
image of Bi under the blowing down map ⇡ W S ! P2 is a line `i passing through
the base point xi . Since Bi intersects each reducible fiber at one of its singular point
and intersects the component opposite to this point with multiplicity 2, we see that
`i passes through the intersection points of four conics in the Chilean configuration
that contain the base point xi . This defines a configuration of 9 lines and 12 points
isomorphic to the dual Hesse configuration .94; 123/.

We have proved the following.

Theorem 6.9. A Chilean configuration of 12 conics defines 9 lines `i and 12 in-
tersection points of conics isomorphic to the dual Hesse configuration .94; 123/.

Remark 6.10. Note that the Hesse pencil is defined over F4 if we assume that the
characteristic is equal to 2. Its set of 12 line components of fibers, 9 harmonic
polars and the set of 9 base points and 12 singular points of fibers is equal to the
set of 21 lines and 21 points in P2

.F4/. The specific of characteristic 2 is that each
harmonic polar line passes through the corresponding base point. This is similar
to what we have in the case of the Chilean pencil. The union of 21 lines and 21
points form a symmetric configuration .215/. Let X be the blow-up of all 21 points.
It admits an inseparable finite map of degree 2 isomorphic to a supersingular K3
surface with Artin invariant 1 [10]. It is a minimal resolution of the double plane

w
2 C xyz

�
x

3 C y
3 C z

3
�
D 0:

The Chilean pencil is defined over any non-trivial extension K D F4.a/ of the
finite field F4 and defines a configuration of 21 points, 12 conics and 9 lines over
K. There is no degenerate configuration in this case because the multiplicative
group of NK does not have elements of order 2. We again blow-up the 21 points,
and consider the double plane

w
2 C F.x; y; z/ D 0;

where F.x; y; z/ is any smooth irreducible non-multiple member of the pencil.
The double cover has 21 ordinary double points defined over K, and its minimal
resolution is a supersingular K3 surface. Our 1-dimensional family of such surfaces
is one of the three irreducible components of the moduli space of supersingular
K3 surfaces with Artin invariant � equal to 2 studied by I. Shimada [24]. Each
family is isomorphic to the affine line with one point deleted. The closures of
these families contain one common point that corresponds to the supersingular K3
surface with the Artin invariant 1. The three families are distinguished by a certain
9-dimensional linear code in F21

2 . Our family has the weight polynomial

W.t/ D 1C 9t
5 C 102t

8 C 144t
9 C 144t

12 C 102t
13 C 9z

16 C z
21

:

The code is generated by 9 words of weight 5 representing our harmonic polar lines
Bi and 66 words of weight 8 represented by our 54 conics and 12 conic components
of reducible fibers.
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Remark 6.11. An inspection of the list Exc.S/ of 144 .�1/-curves from Proposi-
tion 5.10 suggests a certain involution on this set that interchanges the exceptional
curves Ei with quartics, lines with cubics and pairs conics. An explanation of
this duality is the following. Given a .�1/-curve E we consider the correspond-
ing double plane and its ramification curve B on S . We have E � B D 1, so that
.F C B � E/

2 D �1 and KS � .F C B � E/ D �1. It is easy to see that, for any
.�2/-curve R, we have either R � .F CB �E/ � 0 (if R intersects E, then it also
intersects B). Applying Lemma 2.4, we see that F C B � E ⇠ E

0, where E
0 is a

.�1/-curve. This defines an involution on the set Exc.S/. The inspection of Table
6.1 confirms that it matches the curves as above.

Remark 6.12. Any five points determine a conic, but we want to exclude the 12

conics which are part of reducible fibers. Such forbidden sets of fives corresponds
to removing one point of the six of such on each component conic, thus the number
of allowed sets of fives are given by

�9
5

�
� 6 � 12 D 54. Examples of such sets are

those given by the union of two non-parallel lines in our affine space of nine points.
The number of such sets can easily be determined to be 54 (12 �.12�3/=2 or 9 �

�4
2

�
)

thus all our allowable sets are of this type. This makes the duality I ! I
0 explicit.

Given I with special point p (the intersection of the lines) then choose I
0 as the

two residual line through p (there are 4 lines through each point).

Remark 6.13. It is known that two .�1/-curves on a weak del Pezzo surface of
degree d intersect with multiplicity  3 (2 if d D 2 and 1 if d � 3 because in
the latter case they become lines in the anti-canonical model). An Halphen surface
is obtained by blowing up one point from a weak del Pezzo surface of degree 1.
We observed that in our case two .�1/-curves intersect with multiplicity  3. This
raises the question:What is the maximal intersection number of two .�1/-curves on
an Halphen surface with extremal Jacobian fibration?

7. Higher indices

Let m be a positive integer which is not a multiple of 3 and let Sm be an elliptic
Halphen surface of index m whose Jacobian is the Hesse surface. Such surface
can be constructed as in the case m D 2 by blowing-up the plane at the nine points
p1; : : : ; p9, where pi WD xiC⌘ and ⌘ is an m-torsion point of the curve of equation
x

3 C y
3 C z

3 C txyz D 0. We say that the points pi ; pj ; pk are Hesse-collinear
if xi ; xj ; xk are collinear. We consider two cases.

(1) If m D 3k C 1, then there are 12 irreducible plane curves, each of degree m

with three Hesse-collinear points of multiplicity k C 1 and the remaining six
points of multiplicity k;

(2) If m D 3k C 2, then there are 12 irreducible plane curves, each of degree
m with three Hesse-collinear points of multiplicity k and the remaining six
points of multiplicity k C 1.
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In both cases one can verify the existence of the curves by checking that the points
with the given multiplicities sum to 0 in the group law of the cubic. The irreducibil-
ity is a consequence of the fact that a curve of self-intersection �2 on a relatively
minimal elliptic surface can only be the sum of irreducible .�2/-curves, but we
cannot have more than 12 of them.

Here are some m-torsion loci with respect to the point x7 D .1 W �1 W 0/. 2

When m D 4 the locus is cut out by

xy
3 � y

4 � txy
2
z � xz

3 � 2yz
3 D 0:

When m D 5 the locus is cut out by

2x
2
y

6 � xy
7 C 2y

8 � x
2
y

3
z

3 � xy
4
z

3 C 5y
5
z

3 � x
2
z

6 C 2xyz
6 C 2y

2
z

6

C t
�
�x

2
y

5
z C 3xy

6
z � y

7
z C x

2
y

2
z

4 C 3xy
3
z

4 C yz
7
�

C t
2
�
x

2
y

4
z

2 � xy
5
z

2 C xy
2
z

5
�
D 0:

To construct elliptic surfaces of index 3 whose Jacobian is the Hesse surface we
proceed as follows. Let ⇡ W Z=9Z˚Z=3Z! Z=3Z˚Z=3Z be the homomorphism
induced by the projection on the first coordinate. Let ˇE0

be a set-theoretic section
of ⇡ such that the sum of all the elements in its image generates the kernel of ⇡ .
An example of such a ˇE0

is given by the columns of the following matrix

✓
0 0 0 1 4 1 5 5 5

0 1 2 0 1 2 0 1 2

◆
;

where the first coordinate of each vector is in Z=9Z while the second is in Z=3Z.
Choose nine points p1; : : : ; p9 on a smooth plane cubic C in such a way that p1 is
a flex of C and the class of pi �p1 is given by the i -th column of the above matrix.
The blow-up of P2 at the nine points is an elliptic surface of index 3 whose Jaco-
bian is the Hesse surface and whose .�2/-classes are the columns of the following
matrix 0

BBBBBBBBBBBBB@

1 4 4 1 4 4 1 4 4 1 4 4

�1 �1 �1 �1 �1 �1 0 �2 �1 0 �2 �1

�1 �1 �1 0 �2 �1 �1 �1 �1 0 �1 �2

�1 �1 �1 0 �1 �2 0 �1 �2 �1 �1 �1

0 �2 �1 0 �1 �2 0 �2 �1 0 �1 �2

0 �2 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1

0 �2 �1 0 �2 �1 0 �1 �2 0 �2 �1

0 �1 �2 0 �2 �1 0 �2 �1 �1 �1 �1

0 �1 �2 0 �1 �2 �1 �1 �1 0 �2 �1

0 �1 �2 �1 �1 �1 0 �1 �2 0 �1 �2

1
CCCCCCCCCCCCCA

:

2 We have computed these loci with Magma moving to a Weierstraß model of the elliptic curve
and calculating the m-torsion subscheme there.
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The 9-torsion points with respect to the point x7 D .1 W �1 W 0/ are cut out by the
following cubics:

xy
2 C ✏x

2
z C ✏

2
yz

2
; xy

2 C ✏
2
x

2
z C ✏yz

2
;

xy
2 C x

2
z C yz

2
; x

2
y C ✏

2
y

2
z C ✏xz

2
;

x
2
y C ✏y

2
z C ✏

2
xz

2
; x

2
y C y

2
z C xz

2
;

3x
3 C .✏ C 2/txyz � 3✏

2
z

3
; 3x

3 C .�✏ C 1/txyz � 3✏z
3
:

8. Applications

In this section, we exhibit some nice properties of the Chilean configuration.
A simple crossings configuration of curves on a surface Z is a collection of

nonsingular irreducible curves A D fC1; : : : ; Cd g such that Ci ; Cj are transversal
for all i ¤ j . For n � 2, an n-point of A is a point which belongs to exactly
n curves in A. Let � W Y ! Z be the blow-up of all n-points with n � 3.
Then D WD �

⇤
.A/red is a simple normal crossings divisor, and we define the log

Chern numbers Nc2
1 ; Nc2 of .Z; A/ as the Chern numbers of �

1
Y log.D/. We have

(see [25, Section 4])

Nc2
1 D c

2
1.Z/ �

dX
iD1

C
2
i C

X
n�2

.3n � 4/tn C 4

dX
iD1

.g.Ci / � 1/

Nc2 D c2.Z/C
X
n�2

.n � 1/tn C 2

dX
iD1

.g.Ci / � 1/;

where tn is the number of n-points. The highest the log Chern slope Nc2
1= Nc2 is,

the more special the configuration is. As the Chilean configuration of 12 conics
is simple crossings with t2 D 12, t8 D 9, and tn D 0 else, we have Nc2

1 D 117,
Nc2 D 54, and so Nc2

1= Nc2 D 13=6 D 2:1N6. The Hesse configuration of 12 lines has
Nc2
1= Nc2 D 2:5.

We recall that log Chern slopes do have constraints. As a general example,
let us consider a simple crossings arrangement of plane curves fC1; : : : ; Cd g withTd

iD1 Ci D ;. It is a divisible arrangement as defined in [25, Section 4] (see
[25, Example 4.3]), and so by [25, Theorem 6.1], if Nc2 ¤ 0, we can compare
Nc2
1= Nc2 with the Chern slope of a smooth complex projective surface. Typically these

surfaces are not ruled, and so we can use the Bogomolov-Miyaoka-Yau inequality
for complex algebraic surfaces to show that Nc2

1  3 Nc2. See [13] for a systematic
study of log Chern slopes for configurations of lines. In that case, we have the
combinatorial (independent of the field of definition) inequalities Nc2  Nc2

1  3 Nc2

(up to trivial configurations). For complex configurations of lines, the inequalities
improve to the sharp Nc2  Nc2

1  8=3 Nc2, where the upper bound is achieved if
and only if the configuration is the dual Hesse configuration. It is easy to prove
(combinatorially) that Œ1; 2Œ has no limit points for log Chern slopes over any fixed
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field. In [13] it is proved that log Chern slopes are dense in Œ2; 2:5ç over C, and it
is conjectured that there are no limit points in ç2:5; 2:N6ç. In positive characteristic,
it is proved that they are dense in Œ2; 3ç.

There are at least four special configurations after we add the degenerated
Chilean configuration, and the dual Hesse configuration into the picture.

(A0) The degenerated Chilean configuration is a simple crossings configuration of
9 conics and 3 lines. We have t2 D 12 and t7 D 9, and so Nc2

1 D 99, Nc2 D 45,
and Nc2

1= Nc2 D 11=5 D 2:2. Thus when we go from the Chilean configuration
to the degenerated Chilean configuration, the log Chern slope jumps up;

(A1) Consider the configuration A1 consisting of the 12 irreducible conics of the
Chilean configuration, and the 9 lines of the dual Hesse configuration. Then
A1 has t2 D 6 ⇥ 3 ⇥ 4 D 72, t5 D 12, t8 D 9, tn D 0 else. Therefore
Nc2
1 D 324, Nc2 D 144, and Nc2

1= Nc2 D 9=4 D 2:25;
(A2) Consider instead the configuration A2 formed by one of the four degenerated

Chilean configurations of 9 conics and 3 lines together with the 9 lines in
the dual Hesse configuration. Then A2 has t2 D 6 ⇥ 3 ⇥ 3 D 54, t5 D 12,
t7 D 9, tn D 0 else. Therefore Nc2

1 D 270, Nc2 D 117, and Nc2
1= Nc2 D 30=13 D

2:307692;
(A3) This is just putting together the Hesse configuration of 12 lines with the dual

Hesse configuration of 9 lines as appear in the Chilean configurations. Then
we have t2 D 9 ⇥ 4 D 36, t4 D 9, t5 D 12, tn D 0 else. A nice observation
is that the 9⇥ 4 2-points are the 9⇥ 4 base points of the degenerated Chilean
arrangements. We have Nc2

1 D 180, Nc2 D 72, and Nc2
1= Nc2 D 5=2 D 2:5.

Another application is suggested by Anatoly Libgober. Let C be the union of 12
conics from the Chilean configuration.

Proposition 8.1. The fundamental group ⇡1.U / of the complement U D P2 n C
fits in the exact sequence

F19 ! ⇡1.U /! F3 ! 1;

where Fk denote the free group with k generators.

Proof. The restriction of the Halphen pencil to U defines a morphism U ! P1 n
f4 pointsg. Its fibers are isomorphic to plane sextic curves with 9 nodes deleted.
Passing to the normalization we obtain that the fiber is isomorphic to an elliptic
curve with 18 points deleted. Its fundamental group is isomorphic to the free group
F19. The exact sequence from the assertion is the exact sequence for fundamental
groups of smooth fibrations.

We refer to [5] for the discussion of the problem of classification of configu-
ration of curves on a simply connected algebraic surface that admits a surjection to
a free non-commutative group.
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Another application of our configuration can be found in [22]. Recall that a
plane curve C is called free if the logarithmic tangent sheaf ‚

1
.log C / is locally

free, or, equivalently, the Jacobian sheaf of C has projective dimension 2.
It is well-known that the union of 12 lines from the Hesse configuration, being

a special case of an arrangement of reflection hyperplanes of a complex reflection
group, is a free divisor.

The following proposition is proved in [22, Proposition 1 and 2];

Proposition 8.2. The union of 12 conics from the Chilean configuration as well as
the union of 12 conics and 9 lines from the embedded dual Hesse configuration are
free divisors in the projective plane.

Another interesting attribute of a reducible curve C on a rational surface is the
Harbourne constant H.C / defined by

H.C / D C
2 �P

x2X multx.C /
2

s
;

where multx.C / is the multiplicity of a singular point x 2 C and s is the number
of such points. It is conjectured that H.C / � �4:5 for curves over C.

In our case we may consider the union C of nine 2-sections Ei and four
reducible fibers of the elliptic fibration on S . We have C

2 D �9 C 9:16 D
15:9 D 135 and we have 84 D 8:9 C 12 points of multiplicity 2, so H.C / DP

x2X multx.C /
2 D �3 C 17

28 . On the other hand, if we take the degenerate
Chilean configuration, we obtain C

2 D �9C14:9 D 117 and
P

x2X multx.C /
2 D

7:9C 12 D 75 that gives H.C / D �3C 14
25 , that is slightly less.
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[10] I. V. DOLGACHEV and S. KONDŌ, A supersingular K3 surface in characteristic 2 and the
Leech lattice, Int. Math. Res. Not. 1 (2003), 1–23.

[11] I. V. DOLGACHEV, “Classical Algebraic Geometry: A Modern View”, Cambridge Univer-
sity Press, Cambridge, 2012.

[12] I. V. DOLGACHEV and G. MARTIN, Automorphism groups of rational elliptic and quasi-
elliptic surfaces in all characteristics, Adv. Math. 400 (2022), paper n. 108274.
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