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Abstract. We compute the automorphism group of the affine surfaces with the coordi-
nate ring isomorphic to a cluster algebra of rank 2.

1. Introduction

1.1. Definition of C(a, b)

A cluster algebra C(a, b) of rank 2 is a subring of the field of rational functions
Q(y1, y2) generated by elements yn, n ∈ Z, defined inductively by the relations

yn−1yn+1 =

{
yan + 1 if n is even,

ybn + 1 otherwise
(1)

(see [5]). Here a, b are fixed positive integers. The elements yn are called cluster
variables and the pairs yn, yn+1 are called clusters. It follows from [2, Cor. 1.21]
that any four consecutive cluster variables, say y1, y2, y3, y4, generate C(a, b) as a
Z-algebra and the relations are defining relations. Thus

C(a, b) ' Z[y1, y2, y3, y4]/(y1y3 − ya2 − 1, y2y4 − yb3 − 1).

In the general context of cluster algebras, the algebra C(a, b) corresponds to a
skew-symmetrizable seed matrix

(
0 a
−b 0

)
.

DOI: 10.1007/S
∗Supported by the Swiss National Science Foundation Grant “Birational Geometry”

PP00P2 128422 /1.

Received November 25, 2013. Accepted May 5, 2014.

Corresponding Author: J. Blanc, e-mail: jeremy.blanc@unibas.ch.
2010 Mathematics Subject Classification. 13F60, 14R20, 14E07.

00031-014-9289-2

Vol. 20, No. 1, 2015, pp. –201

Published online November 20, 2014.
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If a = b, it can be also defined by the quiver with two vertices and a arrows from
the first one to the second one. Note that one can also consider the case a = b = 0
when the algebra C(0, 0) is the algebra of Laurent polynomials in two variables.
We omit this well-known case.

The cluster algebra C(a, b) is called of finite type if the number of cluster vari-
ables is finite. This happens if and only if ab ≤ 3 (this follows from [4, Thm. 6.1]).
In this case, we have the periodicity

yn = ym ⇐⇒ n ≡ m mod h+ 2,

where h = 3, 4, 6 if ab = 1, 2, 3, respectively. The algebra C(a, b) is called of type
A2,B2,G2 if ab = 1, 2, 3, respectively (the remaining type A1 × A1 of a finite root
system of rank 2 corresponds to the case (a, b) = (0, 0)). In this paper we compute
the group of automorphisms of the cluster algebra C(a, b).

1.2. The cluster automorphisms σp

As observed in [5], the transformations {σp}p∈Z of C(a, b) defined by

σp : yn 7→ y2p−n

preserve the relations (1) and define automorphisms of C(a, b) for arbitrary param-
eters a, b.

For example, σ2, σ3 send y1, y2, y3, y4 respectively to y0, y1, y2, y3 and y2, y3, y4,
y5, confirming that {y0, y1, y2, y3} and {y2, y3, y4, y5} are also sets of generators.

Using the identities yb1 + 1 = yb1(y
b
3 + 1)− (y1y3 − 1)

∑b−1

i=0
(y1y3)

i and ya4 + 1 =

ya4 (y
a
2 + 1)− (y2y4 − 1)

∑a−1

i=0
(y2y4)

i, we obtain the equalities

y0 =
yb1 + 1

y2
= yb1y4 − ya−1

2

b−1∑

i=0

(y1y3)
i,

y5 =
ya4 + 1

y3
= ya4y1 − yb−1

3

b−1∑

i=0

(y2y4)
i.

Hence, σ2, σ3 ∈ Aut(C(a, b)) correspond respectively to the following automor-
phisms of Spec C(a, b) (we again write σi the dual geometric action induced by σi,
and will in fact only work with this latter):

σ2 : (y1, y2, y3, y4) 7→

(
y3, y2, y1, y

b
1y4 − ya−1

2

b−1∑

i=0

(y1y3)
i

)
,

σ3 : (y1, y2, y3, y4) 7→

(
ya4y1 − yb−1

3

b−1∑

i=0

(y2y4)
i, y4, y3, y2

)
.

It is immediately checked that σ2, σ3 satisfy σ2
2 = σ2

3 = 1 and generate a finite
dihedral group D2n of order 2n or infinite dihedral group D∞ ' Z/2Z ? Z/2Z '
Z o Z/2Z. The periodicity of the set of cluster variables easily implies that

n =





10, ab = 1,

6, ab = 2,

8, ab = 3,

∞, ab > 3.
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AUTOMORPHISMS OF CLUSTER ALGEBRAS OF RANK 2

1.3. The results

Our description of the group Aut(C(a, b)) ' Aut(Spec C(a, b)) is given by the
description of Aut(Spec C(a, b)⊗ Q) with geometric tools, and by observing that
the generators of the automorphism groups are defined over Z, hence both groups
are equal.

In fact, we will precisely describe the group structure of the group

Aut(Spec C(a, b)⊗ k)

for any field k of characteristic 0 or characteristic prime to ab. This is the group
of automorphisms of the affine surface over k

X(a, b) = Spec C(a, b)⊗ k.

Theorem 1. The group

µa,b := {(µ, ν) ∈ k∗ | µa = νb = 1} ⊂ k∗2

acts on X(a, b) as

(y1, y2, y3, y4) 7→ (ν−1y1, µy2, νy3, µ
−1y4).

If a = b, then there is a group Ha,a ⊂ Aut(X(a, b)) of order 2, acting on X(a, b)
via

σ5/2 : (y1, y2, y3, y4) 7→ (y4, y3, y2, y1).

The group Aut(X(a, b)) is isomorphic to





〈σ2, σ3〉 ' D10 if (a, b) = (1, 1),

〈σ2, σ3〉 × µ2,1 ' D6 × µ2,1 ' D12 if (a, b) = (2, 1),

〈σ2, σ3〉n µ3,1 ' D8 n µ3,1 if (a, b) = (3, 1),

(〈σ2, σ3〉n µa,a)oHa,a ' (D∞ n µa,a)o Z/2Z if a = b ≥ 2,

〈σ2, σ3〉n µa,b ' D∞ n µa,b if a 6= b, ab ≥ 4.

Note that µa,b is isomorphic to Z/aZ × Z/bZ if k is algebraically closed, but
is smaller in general. The group µa,b is the diagonalizable commutative algebraic
group with the group of characters isomorphic to the abelian group N correspond-
ing to the seed skew-symmetrizable matrix defining a cluster algebra. It is always
a part of its automorphism group and corresponds to its grading by the group N .2

The proof of Theorem 1 is given by five propositions. More precisely, Proposi-
tion 4.5 gives the cases X(a, 1), a ≥ 4, Propositions 5.2, 5.5, 5.7 give respectively
the cases A2, B2, G2, which correspond to X(1, 1), X(2, 1), X(3, 1), and the general
case X(a, b) with a, b ≥ 2 is done in Proposition 6.4.

An automorphism of the Z-algebra C(a, b) is called a cluster automorphism if it
sends each cluster to a cluster (see [1]). Examples of such automorphisms are the
automorphisms σp. It follows from Theorem 1 that the group of cluster automor-

2We owe this remark to Greg Muller.
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phisms of C(a, b) is generated by σ2 and σ3, except when a = b 6= 1, in which
case σ5/2 ∈ Ha,a is a cluster automorphism not generated by σ2, σ3. In the case
(a, b) = (1, 1), we have σ5/2 = σ2σ3σ2σ3σ2 (see Remark 5.3).

We thank Sergey Fomin and Greg Muller for coaching the second author in the
rudiments of the theory of cluster algebras. Thanks also to the referees for their
constructive remarks that helped to improve the text.

2. Compactifications with a pentagon

In the sequel, all algebraic varieties are defined over a field k of characteristic
zero or of characteristic p with ab 6≡ 0 (mod p).

Proposition 2.1. The surface X(a, b) admits a smooth compactification X(a, b)
that is isomorphic to the blow-up of P2 at the points

{[1 : 0 : ξ] | ξb + 1 = 0} and {[1 : λ : 0] | λa + 1 = 0}.

The boundary is the strict transform of the union of the coordinate lines described
by the following picture (where the numbers indicate the self-intersections of the
irreducible components of the boundary):

�����������������

?????????????????
1

1− b 1− aE2 E3

E5

Moreover, the boundary divisor is an anti-canonical divisor.

Remark 2.2. In the above proposition, the points are taken in a finite Galois ex-
tension K of k (this works because ab 6= 0 in k). The blow-up map is defined
over k, because the Galois group preserves the set of blown-up points. Also, each
of the irreducible components of the boundary is defined over k. Note that the
choice of the names of the curves here could seem strange to the reader, but it was
motivated by the sequel (see Corollary 2.3).

Proof. Consider the projection map

π : X(a, b) → A2, (y1, y2, y3, y4) 7→ (y2, y3).

The preimage of a point (y2, y3) corresponds to points (y1, y2, y3, y4) where y1y3 =
ya2 + 1 and y2y4 = yb3 + 1. In particular π restricts to an isomorphism U → V ,
where U and V are the open subsets of X(a, b) and A2 = Spec (k[y2, y3]) given by
y2y3 6= 0. However, each point of the set

∆ = {(0, ξ) | ξb + 1 = 0} ∪ {(λ, 0) | λa + 1 = 0} ⊂ A2

has a preimage which is isomorphic to an affine line. Let η : Z → A2 be the blow-up
of A2 at points from ∆. It remains to show that ϕ = η−1 ◦π is an open embedding
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AUTOMORPHISMS OF CLUSTER ALGEBRAS OF RANK 2

of X(a, b) into Z, whose restriction is an isomorphism X(a, b) → Z \ (E2 ∪ E3),
where E2, E3 are respectively the strict transforms of the lines of equation y2 = 0
and y3 = 0.

We first restrict ourselves to the open subsets U2 ⊂ X(a, b) and V2 ⊂ A2 where
y2 6= 0. The restriction of η is then the blow-up of the ideal (ya2 + 1, y3), that we
can write as

η−1(V2) = {((y2, y3), [u : v]) ∈ V2 × P1 | y3v = (ya2 + 1)u},

where η corresponds to the projection on the first factor. The map η−1 ◦ π sends
thus (y1, y2, y3, y4) to ((y2, y3), [y1 : 1]). As the curve v = 0 corresponds to E3,
we obtain an isomorphism U2 → η−1(V2) \E3. Exchanging coordinates y2, y3, we
obtain the same result when y3 6= 0. Since (y2, y3) 6= (0, 0) on X(a, b), this gives
the result.

Since the anti-canonical class of P2 is represented by the union of the coordinate
lines, the strict transform of this divisor at its simple points is the anti-canonical
divisor of the blow-up. �

Corollary 2.3. The surface X(a, b) admits a smooth compactification Z(a, b) with
an anticanonical boundary described by the following picture:

														

−a
E3

UUUU
UUUU

UUUU
UU −1

E4

−1E5

iiii
iiii

iiii
ii

−1

E1

55555555555555

−b
E2

Moreover, Z(a, b) is obtained by blowing-up the points

{[1 : 0 : ξ] | ξb + 1 = 0}, {[1 : λ : 0] | λa + 1 = 0}, [0 : 1 : 0], [0 : 0 : 1]

of P2.

Proof. It suffices to blow-up the two points E5 ∩ E3 and E5 ∩ E2 from the com-
pactification of Proposition 2.1, which correspond to [0 : 1 : 0] and [0 : 0 : 1].
�

Remark 2.4. The boundary B = Z(a, b)\X(a, b) being anti-canonical, every curve
C ⊂ Z(a, b) that is not contained in B intersects the anti-canonical divisor −K
non-negatively. If C is an irreducible curve of B, then C2 + CK = −2, which
implies that C(−K) = C2+2. This shows that Z(a, b) is a weak Del Pezzo surface
(−KX is big and nef) if and only if a, b ≤ 2.

Remark 2.5. If a ≥ 2 and b ≥ 2, another natural normal compactification of the
surface X(a, b) is a complete intersection Y (a, b) of two surfaces

x1x3 − xa
2 − xa

0 = x2x4 − xb
3 − xb

0 = 0

5
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of degrees a and b in the weighted projective space P(1, a− 1, 1, 1, b− 1). The sur-
face is singular at the point [0, 1, 0, 0, 0] and [0, 0, 0, 0, 1]. Via the projection to the
coordinates x0, x2, x3, it admits a birational map onto P2. In general, the compact-
ification Y (a, b) is related to the compactification X(a, b) in a rather complicated
way by a sequence of blow-ups at singular points and then blow-downs. For ex-
ample, when a = b, it is enough to resolve the singular points which are quotient
singularities of type (1/a)(1, 1), and then blow down the strict transform of the
line x0 = x2 = x3 = 0.

3. Birational maps between n-gons pairs

Definition 3.1. Let Y be a smooth projective surface, and let n ≥ 2 be an integer.
An n-gon on Y is a divisor B = E1 + · · · + En, where the Ei are curves of Y
isomorphic to P1, such that

Ei · Ej =

{
1 if |i− j| ∈ {1, n− 1},
0 if |i− j| ∈ {2, . . . , n− 2}.

The pair (Y,B) will be called an n-gon pair. The type of B (or of the pair
(Y,B)) is the sequence (E2

1 , . . . , E
2
n), which is an n-uple of integers, defined up to

cyclic permutation and reversion.
We say that the n-gon B (or the pair (Y,B)) is standard if n ≥ 3, and if there

is an ordering of the Ei such that (E1)
2 = (E2)

2 = 0, E1 ·E2 = 1 and (Ei)
2 ≤ −2

for i ≥ 3.

Example 3.2. Corollary 2.3 gives examples of pentagons (n-gons with n = 5)
which are not standard. In the sequel, we will use this example to provide either
quadrangles or triangles, in a standard form.

Definition 3.3. Let (Y,B) be an n-gon pair and (Y ′, B′) be an m-gon pair. A
birational map f : Y 99K Y ′ is called a birational map of pairs if it restricts to an
isomorphism Y \ B → Y ′ \ B′. If the map f is regular (resp. biregular), we will
moreover say that f is a birational morphism of pairs (respectively an isomorphism
of pairs).

Example 3.4. Let (Y,B) be an n-gon pair of type (0, 0,−a,−b1, . . . ,−bn−3).
Blowing-up the intersection point of the first two curves and contracting the

strict transform of the second curve, we obtain an n-gon of type (−1, 0,−a +
1,−b1, . . . ,−bn−3).

Blowing-up again the intersection of the first two curves and contracting the
strict transform of the second curve, we obtain an n-gon of type (−2, 0,−a +
2,−b1, . . . ,−bn−3).

After a−1 steps, we obtain a birational map of pairs (Y,B) 99K (Y ′, B′), where
(Y ′, B′) is an n-gon pair of type (−a, 0, 0,−b1, . . . ,−bn−3):

6
6
6jjjj

jjjj
jj−a

0

TTTT
TTTT

TT

0

�
�

�
•

99K

6
6
6jjjj

jjjj
jj−a+1

0

TTTT
TTTT

TT

−1

�
�

�
•

99K 99K. . .

6
6
6jjjj

jjjj
jj−1

0

TTTT
TTTT

TT

−a+1

�
�

�
•

99K

6
6
6jjjj

jjjj
jj0

0

TTTT
TTTT

TT

−a

�
�

�
•
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Definition 3.5. The birational maps f : Y 99K Y ′ as in Example 3.4 will be called
fibered modifications.

Remark 3.6. In Example 3.4, if Y is a rational surface, then the linear system
associated to the second (0)-curves3 of B and B′ induce morphisms π : Y → P1

and π′ : Y ′ → P1 with general fibre isomorphic to P1. There exists then an auto-
morphism θ of P1 such that the following diagram commutes:

Y

π

��

f //___ Y ′

π′

��
P1 θ // P1.

Note that the restriction of π and π′ on the surfaces Y \ B and Y ′ \ B′ yield
fibrations with general fibres isomorphic to A1 \ {0}. Hence, f restricts to an
isomorphism of fibered surfaces Y \ B → Y ′ \ B′. This explains why we call f a
fibered modification.

Proposition 3.7. Let (Y,B) be a standard n-gon pair, and let (Y ′, B′) be a stan-
dard m-gon pair.

Any birational map of pairs f : (Y,B) 99K (Y ′, B′) decomposes into

f = fk ◦ · · · ◦ f1,

where each fi : (Yi, Bi) 99K (Yi+1, Bi+1) is either an isomorphism of pairs or a
fibered modification (and where Y0 = Y, Yk = Y ′, B0 = B,Bk = B′).

In particular, m = n.

Proof. We can assume that f is not an isomorphism. Let us take a minimal
resolution

Z

π

��~~
~~
~~
~~ η

  A
AA

AA
AA

Y
f //_______ Y ′

of f . The fact that f is a birational map of pairs (X,B) 99K (X ′, B′) implies that
the base-points of f and f−1 are in B and B′ and that the restrictions of π and
η yield isomorphisms Z \ BZ → Y \ B and Z \ BZ → X ′ \ B′, for some divisor
BZ on Z. Since B and B′ are cycles, there is one cycle in BZ , plus a priori some
branches, which are then contracted by η and π. By the minimality condition,
this implies that BZ is in fact a cycle. In particular, the indeterminacy points of
f and f−1 are singular points of B and B′, respectively.

Let us observe that η contracts exactly one (−1)-curve. Firstly, the map η is

3For any integer m, an (m)-curve is a smooth rational curve with self-intersection
equal to m.

7
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not an isomorphism because f is not an isomorphism and because there is no
(−1)-curve on B′. Secondly, if η contracts at least two (−1)-curves, these are the
strict transforms of the two (0)-curves of B. Hence the intersection point of these
curves is blown-up by π and the exceptional divisor of the point is sent by f onto
a curve of self-intersection ≥ 1 of B′. However, B′ does not contain such curves.

The same argument for f−1 implies that π also contracts exactly one (−1)-curve.
Hence, f has a unique proper indeterminacy point q, and π is a tower-resolution,
namely a sequence of blow-ups such that each point blown-up belongs to the ex-
ceptional curve of the previous point. In other words, π is the blow-up of a chain
of infinitely near points xr � xr−1 � · · · � x1 = q. The (−1)-curve contracted by
η is the strict transform of one (0)-curve E of B. Hence, q is a singular point of
B, lying on E. Note that q is the intersection point of E with the other (0)-curve
F , since otherwise F would be sent by f onto a curve of self-intersection ≥ 1.

We denote by (0, 0,−a,−b1, . . . ,−bn−3) the type of B, where F and E corre-
spond to the first and second curve, respectively. Blowing-up q and contracting
the strict transform of E, we obtain a birational map θ1 : (Y,B) 99K (Y1, B1),
where B1 is an n-gon of type (−1, 0,−a + 1,−b1, . . . ,−bn−3). The map ϕ1 =
f ◦ θ−1

1 : (Y1, B1) 99K (Y ′, B′) has one indeterminacy point less than f (including
in the counting all infinitely near points). Moreover, the fact that the minimal
resolution π of f is a tower-resolution implies that ϕ1 has a unique proper (i.e.,
not infinitely near) indeterminacy point q1, which is the intersection of the first
two curves. We write π1 : Z1 → Y1 the minimal resolution of ϕ1, which is again a
tower-resolution, and denote by η1 : Z1 → Y ′ the birational morphism ϕ1 ◦ π1.

Since B1 contains exactly one curve of self-intersection ≥ −1, η1 contracts only
one (−1)-curve, which is the strict transform of the (0)-curve of B1. Blowing-
up q1 and contracting the strict transform of the (0)-curve, we obtain a bira-
tional map θ2 : (Y1, B1) 99K (Y2, B2), where B2 is an n-gon of type (−2, 0,−a +
2,−b1, . . . ,−bn−3). After a− 1 steps, we obtain a pair (Ya−1, Ba−1), where Ba−1

is an n-gon of type (−a + 1, 0,−1,−b1, . . . ,−bn−3) on a smooth projective sur-
face Ya−1, and the birational map ϕa−1 = f ◦ (θa−1 ◦ · · · ◦ θ1)

−1 has a − 1 in-
determinacy points less than f . The unique indeterminacy point of ϕa−1 is the
intersection point qa−1 of the first two curves, but now the unique (−1)-curve
contracted by ηa−1 is the strict transform of either the second or the third curve.
Blowing-up qa−1 and contracting anyway the strict transform of the (0)-curve,
we obtain a birational map θa : Ya−1 99K Ya such that ϕa = ϕa−1 ◦ (θa)

−1 =
f ◦ (θa ◦ · · · ◦ θ1)

−1 : (Ya, Ba) 99K (Y ′, B′) has either a − 1 or a indeterminacy
points less than ϕ. Since θa ◦ · · · ◦ θ1 is a fibered modification, the result follows
by induction on the number of indeterminacy points. �

4. Compactifications of X(a, 1) with a triangle

The case of X(a, 1) is a bit different from the general case of X(a, b) with
a, b ≥ 2, since the curve E2 ⊂ Z(a, 1) has self-intersection −1. Denote by
η : (Z(a, 1), BZ) → (T (a, 1), BT ) the birational morphism of pairs which contracts
the curves E2 and E4. The boundary BT of X(a, 1) in T (a, 1) consists of a triangle
η(E1) + η(E3) + η(E5) = E1 + E3 + E5 of type (0,−(a− 2), 0).

8
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−a TTTT
TTTT

TT −1

−1

jjjj
jjjj

jj

−1

555555555
−1

E3

E4

E5

E1

E2

−→
η

qqqqqqqqqqqqqq

−(a−2)

E3 0E5
MMMMMMMMMMMMMM0

E1

If a ≥ 4, the triangle is a standard triangle, so the automorphisms of X(a, 1)
can be described with the help of Proposition 3.7. The special cases where a ≤ 3
will then be described separately. The following lemma allows us to view T (a, 1)
as a blow-up of points in P1 × P1.

Lemma 4.1. The smooth projective surface T (a, 1) is the blow-up π′ : T (a, 1) →
P1 × P1 of the following a points

{([ξ : 1], [ξ : 1]) | ξa + 1 = 0}

and the boundary T (a, 1) \ X(a, 1) consists of the strict transform of the curves
π′(E1) = P1 × [0 : 1], π′(E5) = [1 : 0]× P1 and of the diagonal π′(E3).

???????????????????

2
π′(E3)

π′(E5)

0

0 π′(E1)

•
•

•
··· ←−

π′

???????????????????

−(a−2)
E3

E5
0

0 E1

Moreover, the restriction of π′ to the affine surface X(a, 1) is given by

(y1, y2, y3, y4) 7→ ([y2 : 1], [1 : y4]).

Remark 4.2. As in Proposition 2.1, the points blown-up belong to a finite Galois
extension of k so not necessarily to k, but the morphism π′ is in any case defined
over k.

Proof. Recall that the birational morphism π : Z(a, 1) → P2 of Corollary 2.3 is the
blow-up of the a+ 3 points

[1 : 0 : −1], {[1 : λ : 0] | λa + 1 = 0}, [0 : 1 : 0], [0 : 0 : 1].

The birational morphism η : Z(a, 1) → T (a, 1) contracts the curves E2, E4, which
are respectively the strict transform of the second coordinate line π(E2) and the
exceptional divisor of [0 : 1 : 0]. Hence, denoting by κ : P2

99K P1×P1 the blow-up
of [0 : 0 : 1], [1 : 0 : −1] followed by the contraction of the strict transform of
π(E2), the map π′ = κπη−1 : T (a, 1) → P1 × P1 is the blow-up of the a points
{κ([1 : λ : 0]) | λa + 1 = 0}. Explicitely, we can choose κ to be given by

[x0 : x1 : x2] 99K ([x1 : x0], [x1 : x0 + x2]),

which implies that {κ([1 : ξ : 0]) | ξa +1 = 0} = {([ξ : 1], [ξ : 1]) | ξa +1 = 0}. The
restriction of π : Z(a, 1) → P2 being (y1, y2, y3, y4) 7→ (1 : y2 : y3) (see the proof of
Proposition 2.1), the restriction of π′ to X(a, 1) is

(y1, y2, y3, y4) 7→ κ([1 : y2 : y3]) = ([y2 : 1], [y2 : y3 + 1]) = ([y2 : 1], [1 : y4]). �

9



JÉRÉMY BLANC, IGOR DOLGACHEV

Lemma 4.3. The action of the group Aut(T (a, 1), BT ) of automorphisms of the
pair (T (a, 1), BT ) on the set {E1, E3, E5} induces a split exact sequence

1 → µa,1 → Aut(T (a, 1), BT ) → Ra → 1,

where µa,1 ' {µ ∈ k∗ | µa = 1} acts on X(a, 1) via

(y1, y2, y3, y4) 7→ (y1, µy2, y3, µ
−1y4),

and where

Ra =

{
〈σ2, σ3〉 ' S3 if a = 2,
〈σ2〉 ' Z/2Z if a 6= 2.

Proof. Denote by µa,1 the kernel of the action of Aut(T (a, 1), BT ) on the set
{E1, E3, E5}. Let us observe that the set of a curves contracted by π′ is invariant
by µa,1. Indeed, the image by µa,1 of one of the curves is an irreducible curve, not
intersecting E1 and E5. The image of this curve by π′ does not intersect the two
fibres π′(E1) = P1 × [0 : 1], π′(E5) = [1 : 0]× P1, so it is a point.

The group µa,1 is then the lift of automorphisms of P1×P1 which leave invariant
the three curves π′(E1), π

′(E3), π
′(E5) and which preserve the set {([ξ : 1], [ξ : 1]) |

ξa + 1 = 0}. This group is isomorphic to {µ ∈ k∗ | µa = 1}, acts on P1 × P1 via

([u1 : u2], [v1 : v2]) 7→ ([µu1 : u2], [µv1 : v2]),

and then on X(a, 1) = Spec k[y1, y2, y3, y4]/(y1y3 − ya2 − 1, y2y4 − y3 − 1) via

(y1, y2, y3, y4) 7→ (y1, µy2, y3, µ
−1y4).

It coincides then with the group µa,1 already defined in the introduction.
The explicit description of π′ : T (a, 1) → P1 × P1 given in Lemma 4.1 shows

that the automorphism

([u1 : u2], [v1 : v2]) 7→ ([v2 : v1], [u2 : u1])

of P1 × P1 lifts to an automorphism of T (a, 1) which preserves the boundary,
exchanging the two (0)-curves and preserving the (−a)-curve. In affine coordinates,
this gives the following automorphism of X(a, 1) ⊂ A4

(y1, y2, y3, y4) 7→

(
ya4 + 1

y2y4 − 1
, y4, y3, y2

)
=

(
y1y

a
4 −

a−1∑

i=0

(y2y4)
i, y4, y3, y2

)
,

which corresponds to the automorphism σ3. If a 6= 2, then this element generates
the image of the action, since the three curves E1, E3, E5 have self-intersection
0, 2− a, 0, respectively.

If a = 2, then π′ blows-up the two points ([ξ : 1], [ξ : 1]), where ξ2 + 1 = 0,
which are the two indeterminacy points of the birational involution

([u1 : u2], [v1 : v2]) 7→ ([u1 : u2], [u1v2 − u2v1 : u1v1 + u2v2])

of P1×P1. The lift of the involution gives an automorphism of B(a, 1), which fixes
E5 and exchanges the two curves E1 and E3. This involution yields the automor-
phism of order 2 of X(2, 1), given by

σ2 : (y1, y2, y3, y4) 7→ (y3, y2, y1, y1y4 − y2). �

10
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If a ≥ 4, we can decompose any automorphism of X(a, 1) into a sequence of
isomorphisms of pairs and fibered modifications (Proposition 3.7). A priori, the
fibered modification could go from one pair to a different one, but we will show
that in the case of X(a, 1), we can only consider fibered modifications T (a, 1) 99K
T (a, 1), hence each of them can be seen as a unique automorphism of X(a, 1), up
to automorphisms of the pair X(a, 1) ⊂ T (a, 1) (and these latter automorphisms
have been described in Lemma 4.3).

Example 4.4. The following birational involution of P1 × P1

f : ([u1 : u2], [v1 : v2]) 799K ([u1 : u2], [u
a−2
2 (u1v2 − u2v1) : u

a−1
1 v1 + ua−1

2 v2])

is not defined only at ([1 : 0], [0 : 1]) and at {([ξ : 1], [ξ : 1]) | ξa+1 = 0}. It follows

from the explicit description that the lift of f is a birational map f̂ = (π′)−1fπ′

of T (a, 1) which restricts to an automorphism of T (a, 1)\E5, and which exchanges
E1 and E3.

The map f̂ is therefore a fibered modification if a 6= 2 and an isomorphism if
a = 2. Moreover, f̂ restricts to an automorphism of X(a, 1), that we will show to
be equal to σ2.

To compute this, we use the map X(a, 1) → P1 × P1 given by (y1, y2, y3, y4) 7→
([y2 : 1], [1 : y4]). The composition with f yields

([y2 : 1], [1 : y4]) 799K ([y2 : 1], [(y2y4 − 1) : ya−1

2 + y4]) = ([y2 : 1], [1 : y1y4 − ya−1

2 ]).

Hence, y3 = y2y4 − 1 is exchanged with y2(y1y4 − ya−1

2 )− 1 = y1. The involutive
automorphism of X(a, 1) is thus given by

σ2 : (y1, y2, y3, y4) 7→ (y3, y2, y1, y1y4 − ya−1

2 ).

Proposition 4.5. If a ≥ 4, then Aut(X(a, 1))=µa,1o〈σ2, σ3〉. Moreover, 〈σ2, σ3〉
= 〈σ2〉 ? 〈σ3〉 ' Z/2Z ? Z/2Z ' Z o Z/2Z is an infinite dihedral group and µa,1 is
a finite cyclic group.

Proof. Because a ≥ 4, the pair (T (a, 1), BT ) is standard. According to Proposi-
tion 3.7, every automorphism of X(a, 1) decomposes into fibered modification and
isomorphisms of pairs. Each fibered modification is equal to σ2, up to isomorphism
of pairs (Example 4.4), and each automorphism of the pair (T (a, 1), BT ) is gener-
ated by σ3 and µa,1 (Lemma 4.3). Hence, Aut(X(a, 1)) is generated by µa,1, σ2

and σ3. To achieve the proof, it remains to observe that σ2σ3 is of infinite order.
The map σ2σ3 and its inverse have both a unique proper indeterminacy point, and
these two points are different. Proceeding by induction, we obtain that (σ2σ3)

n

has again a unique proper indeterminacy point for any n ≥ 1, always being the
proper indeterminacy point of σ2σ3. �

5. Cluster algebras of types A2,B2,G2

By contrast to the case a ≥ 4, we will see that the group of automorphisms of
X(a, 1) with a = 1, 2, 3 is finite, and is in fact contained in the group of automor-
phisms of a symmetric n-gon (Y (a, 1), BY ) that we define now.

(1) The pair (Y (1, 1), BY ) = (Z(1, 1), BZ) is a pentagon of five (−1)-curves:

11
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−1 TTTT
TTTT

TT −1

−1

jjjj
jjjj

jj

−1

555555555
−1

E3

E4

E5

E1

E2

(2) The pair (Y (2, 1), BY ) = (T (2, 1), BT ) is a triangle of three (0)-curves:

qqqqqqqqqqqqqq

0

E5 0E3
MMMMMMMMMMMMMM0

E1

(3) The pair (Y (3, 1), BY ) is obtained by blowing-up the point E1 ∩ E5 in
(T (3, 1), BT ), and is a square of four (−1)-curves. We denote by E ′

i the
strict transform of Ei and by E ′

7 the exceptional curve produced, and obtain
the following diagram:

???????????????????

−1
E3

E5
0

0 E1
•

←−

������������

−1
E ′

5
??

??
??

??
??

??

−1
E ′

3

��
��
��
��
��
��

−1
E ′

1

????????????
−1

E ′

7

Lemma 5.1. For a = 1, 2, 3, every automorphism of X(a, 1) extends to an auto-
morphism of the pair (Y (a, 1), BY ).

Proof. Suppose for contradiction the existence of a birational map

f : (Y (a, 1), BY ) 99K (Y (a, 1), BY )

which is not an automorphism of pairs. Recall that the type of BY is

(−1,−1,−1,−1,−1), (0, 0, 0) or (−1,−1,−1,−1).

Let us take a minimal resolution

Z

π

||xx
xx
xx
xx
x

η

""F
FF

FF
FF

FF

Y (a, 1)
f //_______ Y (a, 1)

of f . As observed in Proposition 3.7, it follows from the minimality condition that
the preimage BZ of B under π is equal to the preimage of B under η and consists
of a cycle of smooth rational curves. In particular, the indeterminacy points of f
and f−1 are singular points of B.

12
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Since f is not an isomorphism, π and η contract at least one (−1)-curve.

If η contracts at least two (−1)-curves, these are sent by π onto two curves of
E1, E2 ⊂ B of self-intersection ≥ −1. If E1, E2 are (−1)-curves of B, π does not
blow-up any point of these two disjoint curves. There is one irreducible curve of B
touching these two curves, which is thus sent by f onto a curve of self-intersection
≥ 0; this is impossible. If E1 and E2 are (0)-curves, then π blows-up the point of
intersection, but no other point. This is impossible since the boundary obtained
would have only two curves.

The only remaining case is when η contracts exactly one (−1)-curve, and by
symmetry we can also assume that π also contracts one (−1)-curve, which implies
that f has exactly one proper indeterminacy point. If B is a triangle, we observe
that the image of the (0)-curve not touching the indeterminacy point is a curve
of self-intersection ≥ 1, which is impossible. The remaining case is when B only
contains (−1)-curves, and so the (−1)-curve contracted by η is the strict transform
by π of a (−1)-curve E of B. No point of E is then blown-up by π. Since f has
only one proper indeterminacy point, there is a (−1)-curve E ′ of B which touches
E and which does not contain any indeterminacy point. Its image by f is a curve
of self-intersection ≥ 0, which is impossible. �

Proposition 5.2 (Case A2). The group Aut(X(1, 1)) is a dihedral group D10 of
order 10 generated by the cluster transformations σ2, σ3, which act on the pentagon
(E1, . . . , E5) via the following actions:

σ2 :

									

E3 TTTT
TTTT

TT E4

E5

jjjj
jjjj

jj

E1

555555555
E2 ��

DD�����

BB

����
��
��
��
�

σ3 :

									

E3 TTTT
TTTT

TT E4

E5

jjjj
jjjj

jj

E1

555555555
E2 ��

[[777777777

YY

��4
44

44

(σ2σ3)
3 :

									

E3 TTTT
TTTT

TT E4

E5

jjjj
jjjj

jj

E1

555555555
E2

iiSSSSS

OO
55kkkkk

��5
55
55

��		
		
	

Remark 5.3. The natural automorphism σ5/2 : (y1, y2, y3, y4) 7→ (y4, y3, y2, y1) of
X(1, 1) corresponds to the permutation E1 ↔ E4, E2 ↔ E3 and is thus equal to
σ2σ3σ2σ3σ2.

Proof. According to Lemma 5.1, we have Aut(X(1, 1)) = Aut(Y (1, 1), BY ). Recall
that Y (1, 1) = Z(1, 1) → T (1, 1) contracts E2 and E4. By Lemma 4.1, σ2 extends
to an automorphism of (T (1, 1), BT ) which exchanges E1 and E5 and which fixes E3.
Hence, the corresponding automorphism of Y (1, 1) corresponds to the permutation
E1 ↔ E5, E2 ↔ E4. The action of σ3 is given in Example 4.4. Since it exchanges
E1 and E3, it corresponds to the permutation E1 ↔ E3, E4 ↔ E5.

Observe that σ2σ3 acts as E1 → E3 → E5 → E2 → E4, which implies that
(σ2σ3)

3 is the permutation E1 → E2 → E3 → E4 → E5. Since both σ2 and σ3

conjugate (σ2σ3)
3 to its inverse, the group generated by σ2, σ3 admits a surjective

homomorphism to D10.

Let us observe that Y (1, 1) is a del Pezzo surface of degree 5, a fact which
directly follows from the description of π : Y (1, 1) = Z(1, 1) → P1 × P1 (see also
Remark 5.4 for another argument).

13
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It follows from the classification of automorphism groups of del Pezzo surfaces
that Aut(Y (1, 1)) ⊂ S5, and equality holds if k is algebraically closed. The group
S5 is the group of symmetries of the union of ten (−1)-curves on Y (1, 1) whose
intersection graph is the Petersen graph (see [3]):

•

•6666666666666

•ii
iiii

iiii
iii

•

•
��
��
��
��
��
��
�

•

•U
UUUU

UUUU
UUUU

•�������������

•

•UUUUUUUUUU

•
66

66
66

66
66

6
•

•�
��
��
��
��
��

iiiiiiiiiiii

������
HH

HH
HH

vvvvvv
******

In the anti-canonical model, these (−1) curves are the 10 lines on the surface.
The boundary B consists of five (−1)-curves forming a subgraph of the Petersen
graph isomorphic to a pentagon. There are 12 such subgraphs, and the stabilizer
group of each one is isomorphic to D10. This shows that Aut(X(1, 1)) is contained
in D10, and hence coincides with it. �

Remark 5.4. Note that, expressing y2 in terms of y1 and y3, we obtain that X(1, 1)
admits a natural compactification in P3 isomorphic to a cubic surface X with
equation

x1x2x3 − x2
0x4 − x2x

2
0 − x3

0 = 0.

The boundary x0 = 0 consists of three coplanar lines and the surface has two of the
intersection points as ordinary double points. The intersection points of these lines
are singular points of the cubic surface. The points [0 : 1 : 0 : 0] and [0 : 0 : 1 : 0]
are ordinary double points and the point [0 : 0 : 1 : 0] is a double rational point
of type A2. Let X ′ → X be a minimal resolution of singularities. The pre-image
of the boundary is a 7-gon of type (−1,−2,−2,−1,−2,−1,−2). By blowing down
the first and fourth curve, we obtain a smooth compactification Y (1, 1) with the
boundary equal to a pentagon of (−1)-curves. Since X ′ is a weak del Pezzo surface
of degree 3, the surface Y (1, 1) is a del Pezzo surface of degree 5.

Proposition 5.5 (Case B2). The group Aut(X(2, 1)) is isomorphic to S3×µ2,1 '
D12. The group S3 is generated by σ2 and σ3, and µ2,1 by the automorphism
(y1, y2, y3, y4) 7→ (y1,−y2, y3,−y4), which fixes the three curves E1, E3, E5. The
actions of σ2 and σ3 on the triangle are the following:

σ2 :

qqqqqqqqqqqqqq

E5

E3
MMMMMMMMMMMMMME1

��

OO
σ3 :

qqqqqqqqqqqqqq

E5

E3
MMMMMMMMMMMMMME1

xx
88rrrr
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Proof. According to Lemma 5.1,

Aut(X(2, 1)) = Aut(Y (2, 1), BY ) = Aut(T (2, 1), BT ).

The action of σ2 and σ3 on the triangle are given in Lemma 4.3 and Example 4.4.
One can moreover check that σ2 and σ3 generate a group isomorphic to S3. By
Lemma 4.3, we have a split exact sequence

1 → µ2,1 → Aut(X(1, 2)) → S3 → 1.

We can then easily check that σ2, σ3 commute with µ2,1. Hence, Aut(X(1, 2)) is
isomorphic to S3 × µ2,1. In particular, µ2,1 ' Z/2Z and Aut(X(1, 2)) ' S3 ×
Z/2Z = D12. �

Remark 5.6. Similarly to the previous case, the surfaceX(2, 1) admits a compacti-
fication X isomorphic to a cubic surface

x1x2x3 − x2
0x4 − x2

2x0 − x3
0 = 0.

The boundary x0 = 0 consists of three coplanar lines. The surface has 2 singular
points of types A2 and A1. We leave to the reader to find a birational isomorphism
fromX to our compactification Y (2, 1). The surface Y (2, 1) is a del Pezzo surface of
degree 6. This latter observation also follows from the description of the morphism
Y (2, 1) = T (2, 1) → P1 × P1, which is the blow-up of two general points.

Proposition 5.7 (Case G2). The group Aut(X(3, 1)) is isomorphic to µ3,1oD8.
It is generated by the group of cluster automorphisms D8 generated by σ2 and σ3,
and by µ3,1 ' {µ ∈ k∗ | µ3 = 1}, acting on X(3, 1) via

(y1, y2, y3, y4) 7→ (y1, µy2, y3, µ
−1y4),

and fixing the four curves E ′

1, E
′

3, E
′

5, E
′

7. The actions of σ2 and σ3 on the square
are the following:

σ2 :

������������

E ′

5

??
??

??
??

??
??

E ′

3

��
��
��
��
��
��

E ′

1

????????????
E ′

7

__

��?
??

??
??

σ3 :

������������

E ′

5

??
??

??
??

??
??

E ′

3

��
��
��
��
��
��

E ′

1

????????????
E ′

7

OO

��

OO

��
σ2σ3 :

������������

E ′

5

??
??

??
??

??
??

E ′

3

��
��
��
��
��
��

E ′

1

????????????
E ′

7

OOoo

�� //

Proof. According to Lemma 5.1, we have Aut(X(3, 1)) = Aut(Y (3, 1), BY ). There
is thus an action of X(3, 1) on the set {E ′

1, E
′

3, E
′

5, E
′

7}. The kernel corresponds to
automorphisms of (T (3, 1), BT ) acting trivially on the triangle and is thus equal
to µa,3 by Lemma 4.3. We obtain an exact sequence

1 → µa,3 → Aut(X(3, 1)) → G → 1,

where G is a subgroup of the dihedral group D8. By Lemma 4.3, σ2 exchanges E1
and E5, so corresponds to the transposition E ′

1 ↔ E ′

5. The map σ3 exchanges E1
and E3 (see Example 4.4), so corresponds to the permutation E ′

1 ↔ E ′

3, E
′

5 ↔ E ′

7.
The map σ2σ3 corresponds thus to the permutation E ′

1 → E ′

3 → E ′

5 → E ′

7, so
the map Aut(X(3, 1)) induces a surjective morphism 〈σ2, σ3〉 → D8. The explicit
formulas for σ2, σ3 imply that it is injective. �
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Remark 5.8. As in the previous two cases, X(3, 1) admits a compactification X
isomorphic to a cubic surface

x1x2x3 − x2
0x4 − x2

3 − x3
0 = 0.

The boundary consists of the union of the line ` : x0 = x2 = 0 and the conic
C : x0 = x1x3 − x2

2 = 0. The points [0 : 1 : 0 : 0] and [0 : 0 : 1 : 0] are singular.
The first point is an ordinary node, the second one is of type A2.

Let X ′ → X be a minimal resolution of singularities. The preimage of the
boundary is a pentagon of type (−1,−2, 0,−2,−2). After we blow up the point
E2 ∩ E3, and then blow down the curves E1, E5, we obtain a del Pezzo surface of
degree 4 containing X(3, 1) with the boundary B equal to a quadrangle of four
(−1)-curves. This is our compactification Y (3, 1). It is known that a del Pezzo
surface of degree 4 contains 16 lines in its anti-canonical embedding in P4. There
are 40 quadrangles among them, and the Weyl group of type W (D5) of order 2

4.5!
acts transitively on this set with the stabilizer isomorphic to the group S3oD8 of
order 48, the normalizer of the subgroup S3 of S5. Our group of automorphisms
of X(3, 1) is a subgroup of this group of index 2.

6. Compactifications of X(a, b) with a, b ≥ 2, with a square

Let us now study the general caseX(a, b) with a, b ≥ 2 (other cases were treated
in Sections 4 and 5). The only (−1)-curves of the pair Z(a, b) are then E4, E5, E1.
Denote by η : (Z(a, b), BZ) → (S(a, b), BS) the birational morphism of pairs which
contracts the curve E5. The boundary BS of X(a, b) in S(a, b) consists of a square
η(E1)+η(E2)+η(E3)+η(E4) = E ′

1+E ′

2+E ′

3+E ′

4 of type (0,−(b−1),−(a−1), 0).

									

−a TTTT
TTTT

TT −1

−1

jjjj
jjjj

jj

−1

555555555
−b

E3

E4

E5

E1

E2

−→

������������

−(a−1)
E ′

3
??

??
??

??
??

??

0
E ′

4

��
��
��
��
��
��

0
E ′

1

????????????
−(b−1)

E ′

2

Since the square is standard (because a, b ≥ 2), we can apply Proposition 3.7
to describe the automorphism group of X(a, b). The description of S(a, b) is given
by Corollary 2.3:

Lemma 6.1. The smooth projective surface S(a, b) is the blow-up π′ : S(a, b) →
P1 × P1 of the a+ b points

{([ξ : 1], [0 : 1]) | ξa + 1 = 0}, {([0 : 1], [ξ : 1]) | ξb + 1 = 0},

and the boundary S(a, b) \ X(a, b) consists of the strict transform of the curves
π′(E ′

1) = P1 × [0 : 1], π′(E ′

2) = [0 : 1]× P1, π′(E ′

3) = P1 × [0 : 1] and π′(E ′

4) = [1 :
0]× P1.
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0
π′(E ′

4)

0π′(E ′

3)

π′(E ′

2)

0

0 π′(E ′

1)

•••···

•
•

•
··· ←−

π′

0
E ′

4

−aE ′

3

E ′

2

−b

0 E ′

1

Moreover, the restriction of π′ to the affine surface X(a, b) is given by

(y1, y2, y3, y4) 7→ ([y2 : 1], [y3 : 1]).

Proof. Recall that the birational morphism π : Z(a, 1) → P2 of Corollary 2.3 is the
blow-up of the a+ b+ 2 points

{[1 : 0 : ξ] | ξb + 1 = 0}, {[1 : λ : 0] | λa + 1 = 0}, [0 : 1 : 0], [0 : 0 : 1].

Composing π with the birational map κ : P2
99K P1 × P1 given by

[x0 : x1 : x2] 99K ([x1 : x0], [x2 : x0]),

which blows-up [0 : 1 : 0], [0 : 0 : 1] and contracts π(E5), we obtain π′, which is
the blow-up of

{κ([1 : 0 : ξ]) | ξb + 1 = 0}, {κ([1 : λ : 0]) | λa + 1 = 0}.

The restriction of π : Z(a, b) → P2 being (y1, y2, y3, y4) 7→ (1 : y2 : y3) (see the
proof of Proposition 2.1), the restriction of π′ to X(a, b) is

(y1, y2, y3, y4) 7→ κ([1 : y2 : y3]) = ([y2 : 1], [y3 : 1]). �

Lemma 6.2. The action of the group Aut(S(a, b), BS) of automorphisms of the
pair (S(a, b), BS) on the set {E ′

1, E
′

2, E
′

3, E
′

4} gives a split exact sequence

1 → µa,b → Aut(S(a, b), BS) → Ha,b → 1,

where µa,b ' {(µ, ν) ∈ (k∗)2 | µa = νb = 1}, and Ha,b is trivial if a 6= b and
isomorphic to Z/2Z if a = b.

The group µa,b acts on X(a, b) via

(y1, y2, y3, y4) 7→ (ν−1y1, µy2, νy3, µ
−1y4).

The group Ha,a corresponds to the subgroup of Aut(X(a, a)) generated by

(y1, y2, y3, y4) 7→ (y4, y3, y2, y1).
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Proof. Denote by µa,b the kernel of the action of Aut(S(a, b), BS) on the set
{E ′

1, E
′

2, E
′

3, E
′

4}. Let us observe that the set of a curves contracted by π′ and
touching E3 is invariant by µa,b. Indeed, the image by µa,b of one of the curves
is an irreducible curve, not intersecting E ′

1 and E ′

2. The image of this curve by
π′ does not intersect the two fibres π′(E ′

1) = P1 × [0 : 1], π′(E ′

2) = [0 : 1] × P1,
so is a point. The same argument works for the b curves contracted by π′ and
touching E ′

2.
The group µa,b is then the lift of automorphisms of P1×P1 which leave invariant

the four curves π′(E ′

i), i = 1, . . . , 4 and which preserve the sets {([ξ : 1], [0 :
1]) | ξa + 1 = 0}, {([0 : 1], [ξ : 1]) | ξb + 1 = 0}. This group is isomorphic to
{(µ, ν) ∈ (k∗)2 | µa = νb = 1}, it acts on P1 × P1 via

([u1 : u2], [v1 : v2]) 7→ ([µu1 : u2], [νv1 : v2]),

and then on X(a, b) = Spec k[y1, y2, y3, y4]/(y1y3 − ya2 − 1, y2y4 − yb3 − 1) via

(y1, y2, y3, y4) 7→ (ν−1y1, µy2, νy3, µ
−1y4).

If a 6= b, the action on the set of four curves of BS is trivial, because the
self-intersections have to be preserved.

If a = b, the explicit description of π′ : S(a, 1) → P1 × P1 given in Lemma 6.1
shows that the automorphism

([u1 : u2], [v1 : v2]) 7→ ([v1 : v2], [u1 : u2])

of P1 × P1 lifts to an automorphism of T (a, 1) which preserves the boundary,
exchanging the two (0)-curves and the two (−a)-curves. In affine coordinates, this
gives the following automorphism of X(a, 1) ⊂ A4:

(y1, y2, y3, y4) 7→ (y4, y3, y2, y1) . �

Example 6.3. The following birational involution of P1 × P1

f : ([u1 : u2], [v1 : v2]) 799K ([u1 : u2], [(u
a
1 + ua

2)v2 : v1u
a
2 ])

is not defined only at ([1 : 0], [1 : 0]) and at {([ξ : 1], [0 : 1]) | ξa + 1 = 0}. On the
open subset U ⊂ P1 × P1 where u2 = 1, we obtain the birational map

([x : 1], [v1 : v2]) 99K ([x : 1], [(xa + 1)v2 : v1])

whose base-points are {([ξ : 1], [0 : 1]) | ξa + 1 = 0}. Hence, the blow-up Û → U

of these points conjugates f to an automorphism of Û . Since f preserves the set
{([0 : 1], [ξ : 1]) | ξb + 1 = 0}, which is the set of remaining points blown-up by

π′, the map π′ conjugates f to a birational map f̂ = (π′)−1fπ′ of S(a, b) which
restricts to an automorphism of S(a, b) \ E ′

4 = (π′)−1(U), and which exchanges E ′

1

and E ′

3.
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Since a 6= 0, the map f̂ is not an isomorphism, and is thus a fibered modifica-
tion (S(a, b), BS) 99K (S(a, b), BS). Moreover, f̂ restricts to an automorphism of
X(a, b), that we will show to be equal to σ2.

To compute this, we use the map X(a, b) → P1 × P1 given by (y1, y2, y3, y4) 7→
([y2 : 1], [y3 : 1]). The composition with f yields

([y2 : 1], [y3 : 1]) 799K ([y2 : 1], [(ya2 + 1) : y3]) = ([y2 : 1], [y1 : 1]).

Hence, y3 is exchanged with y1. The involutive automorphism of X(a, 1) is thus
given by

σ2 : (y1, y2, y3, y4) 7→

(
y3, y2, y1, y

b
1y4 − ya−1

2

b−1∑

i=0

(y1y3)
i

)
.

Similarly, the birational involution of P1 × P1

([u1 : u2], [v1 : v2]) 799K ([(vb1 + vb2)u2 : u1v
b
2], [v1 : v2])

yields a fibered modification (S(a, b), BS) 99K (S(a, b), BS) which restricts to an
automorphism of S(a, b) \ E ′

1 and to the automorphism σ3 of X(a, b).
In particular, if ψ : (S(a, b), BS) 99K (Y ′, B′) is a fibered modification, there is

an isomorphism τ : (Y ′, B′) → (S(a, b), BS) such that τψ restricts to σ2 or σ3 on
X(a, b) = S(a, b) \BS .

Proposition 6.4. If a, b ≥ 2, then Aut(X(a, b)) = (µa,b o 〈σ2, σ3〉)oHa,b, where
µa,b and Ha,b are as in Lemma 6.2.

Moreover, 〈σ2, σ3〉 = 〈σ2〉 ? 〈σ3〉 ' Z/2Z ? Z/2Z ' Z o Z/2Z is an infinite
dihedral group, µa,b is a finite abelian group, Ha,b is trivial if a 6= b and/or order
2 if a = b.

Proof. Because a, b ≥ 2, the pair (S(a, b), BS) is standard. According to Proposi-
tion 3.7, every automorphism of X(a, b) decomposes into fibered modification and
isomorphisms of pairs. Each fibered modification is equal to σ2 or σ3, up to iso-
morphism of pairs (Example 6.3), and each automorphism of the pair (S(a, b), BS)
is generated by µa,b and Ha,b (Lemma 6.2). Hence, Aut(X(a, b)) is generated by
µa,b, Ha,b, σ2 and σ3.

In the case where Ha,b is not trivial, i.e., when a = b, we observe that the
involution normalises µa,b (sending (µ, ν) onto (ν, µ)) and also 〈σ2, σ3〉 (exchanging
σ2 and σ3). To achieve the proof, it remains to observe that σ2σ3 is of infinite
order. This of course follows from characterizations of cluster algebras C(a, b) with
finitely many clusters: they must be of types A2,B2, or G2 [5]. However, we can
give an independent proof. It is exactly the same as the proof of Proposition 4.5:
the map σ2σ3 and its inverse have both a unique proper indeterminacy point, and
these two points are different. Proceeding by induction, we obtain that (σ2σ3)

n

has again a unique proper indeterminacy point for any n ≥ 1, always being the
proper indeterminacy point of σ2 ◦ σ3. �
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7. Isomorphisms between two surfaces

We finish this note with the following result.

Proposition 7.1. Let a, b, c, d ≥ 1. The surfaces X(a, b) and X(c, d) are isomor-
phic if and only if (a, b) = (c, d) or (a, b) = (d, c).

Proof. If (a, b) = (d, c), the isomorphism is given by (y1, y2, y3, y4) 7→(y4, y3, y2, y1).
Suppose now that X(a, b) is isomorphic to X(c, d). The automorphism groups

of X(a, b) and Y (c, d) being isomorphic, the only cases to consider are when ab ≥ 4
and cd ≥ 4 (by Theorem 1).

We take a compactification (Y1, B1) of X(a, b) by a standard square of type
(0, 0,−a,−b) (see Section 6 and in particular Lemma 6.1), and a compactification
(Y2, B2) of X(c, d) by a standard square of type (0, 0,−c,−d). The isomorphism
X(a, b) → X(c, d) decomposes into fibered modification and isomorphisms of pairs
(Proposition 3.7). These maps do not affect the type of the boundary (which is
defined up to permutations), so (a, b) = (c, d) or (a, b) = (d, c). �

References

[1] I. Assem, R. Schiffler, V. Shramchenko, Cluster automorphisms, Proc. Lond. Math.
Soc. (3) 104 (2012), 1271–1302.

[2] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras. III. Upper bounds and
double Bruhat cells, Duke Math. J. 126 (2005), 1–52.

[3] I. V. Dolgachev, Classical Algebraic Geometry: a Modern View, Cambridge Univer-
sity Press, Cambridge, 2012.

[4] S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15
(2002), 497–529.

[5] P. Sherman, A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras
of finite and affine types, Mosc. Math. J. 4 (2004), 947–974.

20


