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COBLE RATIONAL SURFACES

By IGOR V. DOLGACHEV and DE-QI ZHANG

Dedicated to Professor M. Miyanishi on the occasion of his sixtieth birthday

Abstract. A Coble surface is a smooth rational projective surface such that its anti-canonical linear
system is empty while the anti-bicanonical linear system is nonempty. In this paper we shall classify
Coble surfaces and consider the finiteness problem of the number of negative rational curves on it
modulo automorphisms.

Introduction. A Coble surface is a nonsingular projective rational surface
S with empty anticanonical linear system KS but nonempty anti-bicanonical
system 2KS . A classical example of such a surface is the blow-up of 2 at 10
nodes of an irreducible rational plane curve of degree 6 with ordinary nodes as
singularities. Rational plane sextics of this kind were intensively studied by A.
Coble [Co1, Co2]. Among other things he showed that a Cremona equivalence
class of such a curve is the union of finitely many projective equivalence classes
(see [Co1], [MS]). This result can be interpreted as saying that the automorphism
group of the associated Coble surface is isomorphic to a subgroup of finite index
in the orthogonal group of the lattice MS = (KS)Pic(S). In fact, Coble shows that
for a general sextic with 10 nodes this group is isomorphic to the congruence
subgroup of level 2 of the group O(MS) 1 (see [Do2]). The latter group
is isomorphic to the Weyl group of infinite root system of type E10. A similar
answer is known for a generic Enriques surface. It was obtained much later by
V. Nikulin [Ni] and independently by W. Barth and C. Peters [BP].

The connection between classical Coble surfaces and Enriques surfaces is a
nice one: a double cover of a Coble surface branched along the proper transform
of a reduced sextic is a K3 surface which is a degeneration of the K3-cover of
an Enriques surface. More geometrically, the embedding of a Coble surface in
5 defined by the linear system of curves of degree 10 with singular points of
multiplicity 3 at the 10 nodes of the sextic is a surface of degree 10 which is a
projective degeneration of an Enriques surface in its Fano embedding in 5.

Another result of Coble is that the set of rational smooth curves with negative
self-intersection on the blow-up of ten nodes of an irreducible sextic is finite
modulo the automorphism group [Co1]. It is known that the same fact is true
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for all minimal nonrational algebraic surfaces and it is not true for any general
blow-up of 9 points in 2 . This makes some (not all, as we shall see) Coble
surfaces exceptional in this respect. In fact, this work, in which we classify all
Coble surfaces, was partially motivated by the problem of classifying all rational
surfaces with finitely many smooth rational curves of negative self-intersection
modulo automorphisms of the surface.

The classification of Coble surfaces is related to other classification problems.
To be precise, when 2KS contains a reduced divisor, the double cover branched
along this divisor is a normal K3 surface with an involution. The classification
of K3-surfaces with an involution can be found in [Zh3] extending some earlier
results of Nikulin [Ni]. In particular, a terminal Coble surface is the minimal
resolution of a rational log Enriques surface of index 2 in the sense of [Zh2, OZ]
(cf. Proposition 6.4). The latter surfaces were classified in [Zh1, Zh2].

Let us describe the main results of this paper. First of all we divide Coble
surfaces into two major classes. For a surface of the first class (elliptic type; cf.
2.9) there exists a birational morphism onto a surface Y such that the anticanonical
linear system KY has only one member, and a general member of the mobile
part of 2KY is a smooth elliptic curve. Surfaces of the second class (rational
type) admit a similar birational morphism only this time the mobile part of 2KY
consists of divisors of arithmetic genus 0 (not necessarily irreducible). We show
that Coble surfaces of elliptic type are obtained as either blow-ups of singular
points and their infinitely near points of a nonmultiple fiber on a minimal rational
elliptic surface with one multiple fiber of multiplicity 2 (Halphen type), or as
blow-downs of some disjoint sections and maybe components of one fiber of a
nonminimal rational elliptic surface with a section (Jacobian type). We also give a
construction for surfaces of rational type as blow-ups of minimal rational surfaces.
It turns out that surfaces of elliptic type always admit a birational morphism to
2. However, for any given n there are Coble surfaces of rational type which
do not admit a birational morphism to the minimal ruled surface Fn. We prove
that Coble surfaces of elliptic type are obtained by blowing up 2 with centers
at singular points of certain plane curves Γ of degree 6 (Coble sextics), but the
center of the very last blow-up may not be on Γ. We describe such sextics.

An important class of Coble surfaces X to which the original example of
Coble belongs is the one where the linear system 2KX contains a reduced
divisor. In this case X admits a double cover which is a K3-surface with at most
ordinary double points. We prove, under an appropriate condition of general-
ity, that surfaces of this kind contain only finitely many smooth rational curves
with negative intersection modulo automorphisms of the surface. We show in
Example 6.10 that this statement cannot be extended to all Coble surfaces. It
is possible that every Coble surface of rational type contains only finitely many
negative rational curves; however we could not prove it.

Finally a word about the ground field k. We assume it to be algebraically
closed, though most of the paper does not use any assumption on the charac-
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teristic. However Theorem 6.7 assumes that k = (with more efforts one can
give another proof which does not use this assumption) and we assume that k is
uncountable in Example 6.10.

Acknowledgments. This joint work was done during the second author’s visit
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the U. Mich. Department of Mathematics for its hospitality. The first author would
like to acknowledge the support and hospitality of the Mathematical Sciences
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1. Some preliminary results.

1.1. We shall consider an order on the set of Coble surfaces defined by
dominant birational morphisms f : X X. Thus we can speak about a minimal
Coble surface X (which does not admit a birational, but not biregular, morphism
onto another Coble surface) and a terminal Coble surface which is not the image
of any birational but not biregular morphism of Coble surfaces.

We shall see that there exist minimal and terminal Coble surfaces, as well
as nonminimal or nonterminal Coble surfaces (Example 2.6). It follows from
the Riemann-Roch theorem that K2

X 1 for any Coble surface. Hence a Coble
surface with K2

X = 1 is always minimal. We shall see that there are also minimal
Coble surfaces with K2

X 1 (Example 4.9).
In the next paragraphs we shall give some conditions for a Coble surface to

be minimal.

1.2. For any positive divisor D on a nonsingular projective surface V we set

pa(D) =
1
2
(D2 + KV D) + h0( D) = h1( D).(1.1)

Here the last equality follows from Riemann-Roch, applied to the divisor D+KV .

LEMMA. Assume h1( V) = h2( V) = 0, for example, V is a rational surface.
Then we have:

(1) pa(D) = h0(D + KV ); in particular, pa(D1) pa(D) if D1 D.

(2) If pa(D1) 1 (e.g., when the dual graph of D1 contains a loop), then
pa(D1 + D2) h0(D2).

Proof. We only need to show the first part of (1). It follows from considering
the exact sequence

0 V ( D) V D 0.
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Indeed, the sequence implies that H1(D, D) = H2(V , V( D)) =H0(V , (D +
KV).

1.3. The part h0( D) in (1.1) is often difficult to compute. We only cite the
following useful results which can be found for example in [Re], p. 81. Recall that
an effective divisor is called numerically k-connected, if for any decomposition
D = D1 + D2 into positive parts, we have D1 D2 k.

LEMMA.
(1) Let 0 D D. Then there is an exact sequence

0 D D ( D ) D D 0.

(2) Assume that D is numerically 1-connected. Then

h0( D) = 1.

(3) In particular, let Di 0 such that D1 +D2 is reduced and D1,D2,D1 +D2
are all numerically 1-connected. Then

pa(D1 + D2) = pa(D1) + pa(D2) + D1 D2 1.

LEMMA 1.4. Let X be a Coble surface. Then any member D of 2KX consists
of smooth rational curves and is of simple normal crossing.

Proof. If Lemma 1.4 is false, then D contains a reduced connected divisor D1
such that either D1 is irreducible with arithmetic genus 1, or D1 is a loop, or
D1 is the sum of two curves with an order 2 contact at a point, or D1 is the sum
of 3 curves sharing one point. This leads to 1 pa(D1) pa(D) = h0( KX) = 0
(Lemma 1.2), a contradiction. Hence Lemma 1.4 is true.

By an exceptional curve we shall mean a one-dimensional fiber of a birational
morphism between nonsingular projective surfaces. An irreducible exceptional
curve is a ( 1)-curve. Here by a ( n)-curve we mean a smooth rational curve
R with R2 = n 0.

LEMMA 1.5. Let : X Y be the blow-down of a ( 1)-curve E on a smooth
rational surface X to a point q on Y.

(1) Suppose that X is a Coble surface. Then for any D 2KX and any
s 1, one has

pa(D + sE) = h0( KY).

In particular, pa(D+2E) 1; Y is also a Coble surface if and only if pa(D+2E) = 0.



COBLE RATIONAL SURFACES 83

(2) Suppose that h0( KY ) = 1. Then X is a Coble surface if and only if q is
a multiplicity 2 point of a member in 2KY but q is not a point of the unique
member in KY .

(3) Suppose that Y is a Coble surface. Then X is also a Coble surface if and
only if multq(D) 2 for some D 2KY .

Proof. It follows from the projection formula and Lemma 1.2 that

h0(Y , KY) = h0(X, ( KY) + (s 1)E) = h0(X, KX + sE)
= h0(X,KX + D + sE) = pa(D + sE).

To prove the last part in (1), we first note that 2KY = ( 2KX) = ,
so that Y is a Coble surface if and only if pa(D + 2E) = 0. Also, notice that
h0( KY) 1 since otherwise we can find an anticanonical divisor on Y which
passes through the point (E). This would imply that KX = contradicting
the assumption that X is a Coble surface.

For (2) and (3), see Lemma 1.9 below.

COROLLARY 1.6. A Coble surface X is minimal if and only if, for any ( 1)-curve
E and any D 2KX ,

pa(D + 2E) = 1.

The next lemmas will be used frequently in the subsequent sections.

LEMMA 1.7. Let X be a smooth rational surface. Then we have:

(1) Suppose that L is a smooth rational curve with L2 0. Then L is base
point free and h0(Y ,L) = 2 + L2.

(2) Suppose that L is an irreducible curve with pa(L) = 1 and L2 1. Then a
general member of L is smooth and h0(Y ,L) = L2 + 1. If L2 2, then Bs L = .
If L2 = 1 then L has exactly one base point.

(3) Suppose that L is smooth elliptic with L2 = 1 and G an effective divisor,
not linearly equivalent to L, such that 2KX L + G (if h0(X, KX) 1 one
always has G L ). Let G1 be the unique component in G with L G1 = 1. Then
G1 L and L G1 = L G is the unique base point of L .

Proof. (1) follows from the exact sequence below, the induction on L2 and
the fact that the result is true when L2 = 0:

0 X X(L) 1 (L2) 0.

For (2), a similar exact sequence as in (1) shows that h0(X,L)=1+h0(L, L(L))
=1+h0(L, L( L)) + 1 pa(L) +L2 =1+L2. Here L = L is the dualizing sheaf
and we have applied the duality and the Riemann-Roch theorem for L.
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We assert that a general member of L is smooth. Take L2 1 generic points
such that the linear system of divisors from L passing through these points is
one-dimensional. By blowing up the points on L, it suffices to prove the assertion
when L2 = 1. Since the only base point of L is then simple, the assertion follows
from Bertini’s theorem.

For (3), if G0 G and G0 L , then 0 (KX + L) + (KX +G0) + (G G0)
G G0, which leads to G = G0 KX L, a contradiction. It remains to show
that L G1 is equal to the unique base point p of L . Let : Y X be the blow-up
of p with C the -exceptional curve. Then 2KY

1(L) + 1(G) C (we use
1 to denote the proper inverse transform under a birational map). Since 2KY ,
1(L), 1(G G1) can be represented by a divisor contained in fibers, we obtain

that the restriction of 1(G1) and C to a general fiber is linearly equivalent. This
is obviously impossible (since no two distinct points on an irrational curve are
linearly equivalent).

LEMMA 1.8. (M. Miyanishi) Let V 1 be a smooth rational ruled surface
with two sections s1, s2. Then there is a birational morphism : V Fd onto
a minimal ruled surface of degree d, such that (s1) (s2) = s1 s2. Moreover,
if both s2i are negative we can choose such that (s1)2 = d = 1. Finally,
(s2)2 = (s1)2 + 2(s1 s2).

Proof. Let 1: V V1 be the composition of smooth blow-downs of all
( 1)-curves in fibers disjoint from s1 and s2. Since both si are sections, we see
easily that for every singular fiber Fi on V1, s1 + Fi + s2 has the following dual
graph:

s1 ( 1) ( 2) ( 2) ( 1) s2.

Note that 1(si) 1(sj) = si sj. Now a suitable blow-down of ( 1)-curves
in fibers on V1 will give the required birational morphism . For the second
assertion, we let V1 F1 be the successive blow-down of ( 1)-curves in fibers
with exactly 1 s21 of them intersecting s1; this is possible because a minimal
ruled surface has at most one negative section. The last assertion follows by
expressing (s2) (s1) + [s1 s2 (s1)2]f , where f denotes a fiber.

LEMMA 1.9. Let X1 Xn (n 2) be a sequence of blow-ups i: Xi
Xi+1 of smooth surfaces with center pi+1 Xi+1 and exceptional curve Ei Xi.

(1) Assume that a positive divisor D belongs to 2KX1 and denote by Di+1
its direct image on Xi+1. Then each pi+1 is a singularity of Di+1. In particular, the
divisor Dn is always singular.

(2) If 2KX1 = , then there is a singular member Dn of 2KXn such
that the indeterminancy locus of the rational map Xn X1 is contained in the
singular locus of Dn.
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Proof. This follows from the fact that Di 2KXi and hence Ei Di = 2.

In view of the next result, which follows from the fact that a Coble surface
X always has K2

X 1, we only have to consider minimal Coble surfaces.
LEMMA 1.10. Suppose that X is a Coble surface. Then there is a sequence of

blow-downs X = X1 X2 Xn (n 2) such that Xn is not Coble but Xi
(i n) are all Coble and especially, Xn 1 is a minimal Coble (see Lemmas 1.5 and
1.9 for the restriction on the centers of blow- ups).

2. The elliptic case.

2.1. Let X be a Coble surface and E a ( 1)-curve with : X Y the
blow-down of E. Assume the hypothesis that pa( 2KX +2E) = 1, i.e., KY =
(on a minimal Coble surface, any ( 1)-curve satisfies this, by Lemma 1.5).

Consider the linear system

2KX + 2E = ( 2KY ).

Note that dim 2KY 0 for otherwise 2KY = 2 KY and hence KX = ,
a contradiction (cf. Lemma 2.3 below).

Write

2KX + 2E = M + P,(2.1)

where M is the mobile part, and P the fixed part. We also write

P = G +H, G =
J

i=1
giGi,

where Gi M 1 while H M = 0.
By Lemmas 1.2 and 1.5, pa(M) pa(M +P) = 1. We say that X is of elliptic

type with respect to E if pa(M) = 1, and of rational type with respect to E if
pa(M) = 0. It may happen that the same Coble surface X (even minimal one) is
of elliptic type with respect to one E1, but of rational type with respect to another
E2 (see Example 2.11). The ( 1)-curves here are used like markings to help
classify Coble surfaces.

A minimal Coble surface will be called of rational type if it is of rational
type with respect to any E.

LEMMA 2.2. Let X be a Coble surface with a ( 1)-curve E satisfying
pa( 2KX + 2E) = 1 (on a minimal Coble surface, this is always true for any
( 1)-curve, by Lemma 1.5). Then, with the above notation, we have the following:

(1) If pa(M) = 1, then a general member of M is a smooth elliptic curve, and
G M = M2.
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(2) If pa(M) = 0, then either M = kM1 (k 1) with M1 = 1 , M2
1 = 0 and

G M1 = 4, or M = 1 , M2 1 and G M = 4 +M2.
In the following, we set M1 = M, when M is irreducible.

(3) M1 +P is of simple normal crossing. P consists of ( n)-curves with n 1.
(4) Suppose that D1 + + Ds is a chain in Pred, such that L := M1 + i Di

is a loop. Then pa(M) = 0, L is a simple loop, and i D2
i 2s 1; moreover, L

is the only loop in M1 + Pred.

Proof. For (1) and (2), we have only to consider the case where a general
member of M is reducible. Then by Stein factorization and the rationality of
X (or rather the vanishing of q(X)), we have M = kM1 (k 2) with M1 an
irreducible pencil. Since pa(M1) pa(M) 1, Lemma 1.7 and the fact that
dim M1 = 1 imply that either pa(M1) = 0 and M2

1 = 0, or pa(M1) = 1 and
M2
1 1. The latter case leads to that 1 pa(M) pa(2M1) 2 (see Lemma 1.3

when M2
1 = 1), a contradiction. This proves (1) and (2); indeed the equality on

G M or G M1 is obtained by intersecting both sides of (2.1) with M1.
Next we prove (3). First P is of simple normal crossing and contains no

arithmetic genus 1 curves, for otherwise, 1 pa(M1 + P) h0(M1) 2 by
Lemma 1.2. Thus each curve in P is a ( n)-curve with n 1 because P is the
fixed part and by Lemma 1.7. If Bs M = then (3) is clear. So, in view of
Lemma 1.7, we only need to consider the case where pa(M) = 1. Then (3) can
be proved in a manner similar to (4) below.

Now we prove (4). If pa(M1) = 1 or the dual graph of L is not a simple
loop then 2 pa(L) pa(M + P) 1; if the dual graph of M1 + Pred contains
another loop, then there is a linear chain N having no common components with
L such that N L 2, which leads to 2 pa(L + N) pa(M + P) 1, again
a contradiction. As in Lemma 1.7, one sees easily that h0(L) = 1 + h0(L L)
1 + (L L) = 1 + ( L) + L2 = 1 + L2. Substituting h0(L) = h0(M1) = M2

1 + 2 and
expanding L2, we will get the inequality in (4).

LEMMA 2.3. Let X,E and notation be as in Lemma 2.2. Then we have

(1) E P = , whence E M = E P = 0,
(2) M and P are pullbacks of (M) and (P), whence a general member

M is disjoint from E, and
(3) M contains a member M with M 2E 0.

Proof. Suppose E P = . Then the linear system 2KY has the point
p = (E) as a base point. Let C be the unique divisor in KY . The divisor
2C 2KY and hence contains p. Thus p C and hence KX = . This
contradiction proves the first assertion, which, in turn, implies the rest.

In the rest of the section, we shall classify Coble surfaces X of elliptic type
with respect to E (see Theorem 2.5, 2.6, Theorem 2.8, 2.9).
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2.4. Case: pa(M) = 1 and M2 = 0. In this case, M is a pencil of elliptic
curves without base-points. It defines an elliptic fibration f : X 1 , so that E
and P are contained in fibers (Lemma 2.3). Blowing down E, we get an elliptic
fibration fY : Y 1 . Let fm: Ym

1 be its relative minimal model, i.e., Ym is
obtained from Y by blowing down exceptional curves contained in fibers of fY .

Recall that a relative minimal rational elliptic surface V is called a Halphen
surface of index n if the divisor class of its fiber is equal to nKV . Any relative
minimal rational elliptic surface is a Halphen surface of some index n. A Halphen
surface of index 1 is a Jacobian rational elliptic surface. It is characterized by the
condition that the fibration does not have multiple fibers, or equivalently, admits
a section. A Halphen surface of index n 2 has a unique multiple fiber nF1 of
multiplicity n. In this case

iKV = iF1 , 1 i n 1.(2.2)

All of this is rather well known and can be found for example in [CD],
Chapter 5, 6.

Let n be the index of fm: Ym
1 . Since KY = and by Lemma 1.9,

Y is obtained from Ym by a successive blow-ups of singular points and their
infinitely near points on one fiber F1 (the unique multiple fiber if n 2). We
know that dim 2KYm dim 2KY 1. Applying (2.2) this implies that
n 2. Moreover, if n = 2, after one blow-up the anti-bicanonical linear system
becomes of dimension 0. So, in this case, we must have Y = Ym and P = 0.

Suppose that n = 1. We claim that X is not a minimal Coble surface. Since
h0(Ym, 2KYm) = 2 while h0(Y , KY ) = 1 (Lemma 1.5), we have Y = Ym. For
simplicity, we assume that Y Ym is a single blow-down of a ( 1)-curve E1
to a point q1 on a fiber F1 (the general case is similar). Then the mobile part of
2KY is equal to the pullback of the elliptic pencil, and its fixed part is equal to

[(the proper inverse transform of F1) +(m1 2)E1], where m1 is the multiplicity
of F1 at q1. The map : X Y in 2.1 is just the blow-down of the ( 1)-curve
E to a multiplicity m ( 2) singular point of a fiber F = F1 (cf. Lemma 2.3 and
Remark 2.9 below). Moreover,

M + P = 2KY = F + (F1 + (m1 2)E1),
2KX P1 + P2, P1 := F + (m 2)E, P2 := F1 + (m1 2)E1.

Here F1,F ,E1 denote the proper inverse transforms of F1,F,E1, and F denotes
a full fiber on X by abuse of notation.

Let Cm be a section on Ym and C be its total inverse transform on X. Since we
blow up singular points of F1,F, the map X Ym is an isomorphism over Cm.
Therefore C is a ( 1)-curve. Let us check that pa( 2KX + 2C) = 0 so that after
blowing down C we get a Coble surface again. Applying the exact sequence in
Lemma 1.3 to compare pa(P1 +P2 +C) with pa(P1 +P2 + 2C) and pa(P1 +P2), we
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find that pa(P1+P2+2C) = pa(P1+P2+C) = pa(P1+P2). The latter equality follows
from the fact that h0( P1+P2 ) h0( P1+P2+S) and the application of Lemma 1.3
with D D = C. Since pa(P1 + P2) = h0(KX + P1 + P2) = 0, the claim is proved.

Summing up, we obtain:

THEOREM 2.5. Let X be a minimal Coble surface and E a ( 1)-curve on X.
Assume that the mobile part M of 2KX + 2E satisfies pa(M) = 1 and M2 = 0.
Then 2KX +2E = M and X is obtained from an Halphen surface Y of index 2 by
one blow-up of a singular point on a nonmultiple fiber F with E the exceptional
curve.

Definition, Remark, and Example 2.6. (1) A Coble surface X is of Halphen
type, or type(H), with respect to E if it is obtained as in Theorem 2.5 above. In
general, a Coble surface W is of Halphen type if there is a birational morphism
W X such that X is of Halphen type with respect to some E.

(2) From 2.4 and 2.7 below, we see that an arbitrary Coble surface X with
a ( 1)-curve E satisfying pa( 2KX + 2E) = 1, pa(M) = 1 and M2 = 0, is equal to
either X in Theorem 2.5, or X in Theorem 2.8 where q is a singular point of F
(cf. Remark 2.9).

(3) Let Y 1 be a Halphen surface and F a nonmultiple singular fiber. If
F is of type In (= Ãn 1 in other notation), then F has exactly n double points.
Blowing up one double point gives us a minimal Coble surface X because K2

X =
1. Blowing up all double points gives us a terminal (but nonminimal if n 2)

Coble surface (cf. Proposition 6.4 in 6). In particular, if n = 1, we get a Coble
surface which is both minimal and terminal. The same is true when we blow up
the unique singular point of a fiber of type II. On the other hand, if we blow
up successively points on multiple components of a nonreduced fiber, we get
examples of nonterminal Coble surfaces.

2.7. Case: pa(M) = 1 and M2 = m 1. In notation of Lemma 2.2, we have
M Gi = 1 and Gi Gj = when i = j. Thus J

i=1 gi = m by Lemma 2.2.
By Lemma 1.7, dim M = m. Fix a general member M1 of M and put

pi = M1 Gi. Blow up the points pi to get a surface X1. If gi 2, we pick
the point p(1)i on X1 lying over pi and on the proper inverse transform of M1.
Continue in this way to get a surface X obtained from X by blowing up the
points pi = p(0)i , p

(1)
i , , p(gi 1)

i , where p(s)i is infinitely near to p(s 1)
i and lies on

the proper inverse transform of M1.
Let Θ( j)

i be the proper inverse transform on X of the ( 1)-curve lying over
the point p( j 1)

i . Set Ci := Θ(gi)
i and denote by M1, Gi the proper inverse trans-

forms on X of M1, Gi. Then M1 + Ci + Θ(gi 1)
i + + Θ(1)i + Gi has the dual

graph:

(0) ( 1) ( 2) ( 2) Gi.(2.3)
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Let E be the pre-image of E on X . Since each pi is not on E (Lemma 2.3),
X X is an isomorphism over E and hence E is a ( 1)-curve. Let : X Y
be the blow-down of E to a point q. Then there is a birational morphism Y Y
such that two compositions X Y Y and X X Y are identical.
Applying Lemma 1.7 to S, which is the blow-down of C1 to the point p(g1 1)

1
followed by the blow-down of E , and L := (the image on S of M1), we obtain
h0(X ,M1) = h0(S,L) = 2.

Noting that each pi is a point of multiplicity 1 + gi 2 in M1 + J
i=1 giGi +H

( 2KX + 2E), we get

( ) ( 2KY ) = 2KX + 2E M1 + P ,(2.4)

where P is the sum of the total transform of H and the disjoint union of J
weighted linear chains Θi + giGi with Θi = (gi 1)

j=1 (gi j)Θ( j)
i .

M1 defines a Jacobian elliptic fibration with sections Ci. Since P M1 = 0
and E M1 = E M = 0 (Lemma 2.3), P ,E are contained in fibers F1,F on
X , respectively. Let Y Ymin be the smooth blow-down to a relative minimal
model. As we explained in 2.4, X is obtained from Ymin by blowing up singular
points and their infinitely near points on a fiber F1 of the elliptic fibration on
Ymin followed by blowing up a point q of another fiber F to the curve E . Let us
sum up the previous arguments by stating the following:

THEOREM 2.8. Let X be a Coble surface with a ( 1)-curve E satisfying pa( 2KX+
2E) = 1 (on a minimal Coble surface, any ( 1)-curve satisfies this). Assume that
the mobile part M of 2KX + 2E satisfies pa(M) = 1 and M2 = m 0. Then
X is obtained as follows: There exist a relative minimal Jacobian rational ellip-
tic surface Ymin with a singular fiber F1, J disjoint linear chains Θi + Gi in F1
of length gi (gi 1) with J

i=1 gi = m, and J disjoint sections Ci on Ymin so
that F1 + Ci + Θi + Gi has the dual graph (2.3). The surface X is obtained by
blowing up singular points (away from Θi) and their infinitely near points on F1
(to get Y Ymin), then blowing up a point q ( Ci) of a fiber F (= F1) on
Ymin (to get : X Y ) and finally blowing down smoothly the linear chains
Ci + Θi.

Definition and Remark 2.9. (1) Y Ymin is not identical for otherwise
h0( KX) h0( KX ) = 1. Thus M ,P in (2.4) are exactly the mobile, fixed
part of 2KX +2E . P contains (but is contained in) the proper inverse transform
(the total transform) of F1.

(2) Note that the unique member in KY contains (P ) and also the sup-
port of the full fiber on Y lying over F1 (cf. Lemma 1.9). This and h0(X , KX ) =
0 explain why q F = F1.

(3) X is a Coble surface if and only if q is a singular point of F (guaranteeing
2KX = ). If this is the case, then the X constructed as in Theorem 2.8 with

m = 1 is always a Coble surface (see 2.4 and Example 2.13); it is also minimal
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if Y Ymin is a single blow-up for then K2
X = 1. See Example 2.10 for a

situation where q has 2-dimensional freedom to choose.
(4) A Coble surface X is of Jacobian type, or type (J) with respect to E if

X is equal to either X in Theorem 2.8 with an associated E there, or to X with
E = E and q a singular point of F. In general, a Coble surface W is of Jacobian
type if there is a birational morphism W X such that X is of Jacobian type
with respect to some E; W is of elliptic type if it is either Jacobian or Halphen
type (see 2.6); W is of rational type if it is not of elliptic type (cf. Example 2.11).
We can construct a minimal Coble surface which is of Halphen type with respect
to one curve but of Jacobian type with respect to another curve.

(5) The ( 2)-chain Θi = (gi 1)
j=1 Θ( j)

i meets only Gi in F1, for otherwise M1,
Gi and one more component P1 of P will share the same point, which is absurd
by Lemma 2.2. Similarly, Gi Θi = 1. In particular, gi 6 (= 6 only when F1 is of
type II ) and gi = 0 when F1 is reduced. When F1 is not reduced, it is impossible
that gi 2 for two i say i = 1, 2, for otherwise the shortest chain in F1 linking
G1 and G2 will give rise to a chain L in P (not a trivial fact; cf. Lemma 1.9 and
(1), (2) above), and hence to a loop M1 +G1 + L +G2 in M1 + P, a contradiction
to Lemma 2.2.

Thus m = i gi 6. Indeed, otherwise m 7, F1 is of type Is (s m) and Ci
are sections intersecting different components of F1; contracting all Ci and [m 2]
components of F1, we get a smooth rational surface V with K2

V = m+[m 2] 10,
a contradiction. See Example 2.13 for the converse to Theorem 2.8.

Example 2.10. Let us give an example when m = M2 = 6 occurs. Take two
triples of nonconcurrent lines (L1,L2,L3), (L4,L5,L6). Let us denote by pij the
intersection point of the lines Li and Lj. We assume that p12 L4, p13 L5,
and p23 L6. The curves L1 + L2 + L3 and L4 + L5 + L6 span a pencil of plane
cubics with nine base points p16, p25, p34, p12, p13, p23 and infinitely near points
p12 p12, p13 p13, p23 p23 lying on the proper inverse transforms of the
lines L4,L5,L6. After we blow up the base points we obtain a Jacobian elliptic
surface with reducible fibers of type I6 (its image in 2 is the union of lines
L1,L2,L3) and of type I3 (its image in 2 is the union of lines L4,L5,L6). It has
six disjoint sections corresponding to the six base points p16, p25, p34, p12, p13, p23.
If we blow down the six sections and blow up all 6 singular points of the
fiber of type I6 (to get Y), followed by the blow-up of a singular point q (to
get a curve E) of the fiber of type I3, we obtain a minimal Coble surface
of Jacobian type with M2 = 6 and K2

X = 1. Note that we can choose q to
be any point as long as it is not on the fiber of type I6 (to make sure that

KX = ), because dim 2KX + 2E = M2 = 6 2 always implies that 2KX
= .

Example 2.11. We construct a minimal Coble surface X with two disjoint
( 1)-curves E0, E2 such that X is of elliptic type with respect to the first ( 1)-
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curve E0 (type(J) with m = g1 = 2) but of rational type with respect to the second
one E2 and fitting Case (2) with (m, k) = (0, 2) in Theorem 3.2.

Consider a minimal rational Jacobian surface V with two fibers F1,F2 of type
I0 (= D̃4). One obtains this surface as the blow-up of 9 base points of the pencil
of cubic curves spanned by the curve L1 + L2 + L3, where Li are lines concurrent
at a point q, and H1 + 2H2, where H1 is a line through q and H2 is a line not
containing q. It is easy to locate four disjoint sections Ei on V . Three of them
come by blowing up infinitely near base points to the points in H2 Li, and the
fourth one is blown up from an infinitely near base point to the point q. Let
Ci be the components of the fiber F1, intersecting Ei, and Ci the same for the
other fiber F2. Let X be the blow-up of V at two points lying on the multiple
component of F1 and one point p lying on the multiple component of F2.

Let X be the blow-down of the section E1 and the component C1. This is a
minimal Coble surface which is of elliptic type with respect to the exceptional
curve E0 blown down to p. Now observe that if we blow down the section E2
on X to get a surface Y , we can verify that 2KY = 2L + P, where L is
the pencil of smooth rational curves linearly equivalent to the image on Y of
the component C1. Another member of L entering as a component of an anti-
bicanonical effective divisor is equal to the image of C2+C2. Thus X is of rational
type with respect to E2.

Example 2.12. Here we construct examples of Coble surfaces X of Jacobian
type with respect to E so that M2 = 3 in notation of Lemma 2.2. Consider the
union of three lines Li and a conic C (we may degenerate it into the sum L4 + L5
of two distinct lines) in 2 such that C + 3

i=1 Li is of simple normal crossing.
Blowing up the 9 intersection points Li Lj, C Li, we obtain a surface Y with
isolated KY represented by the proper inverse transform of 3

i=1 Li. Also we
see that 2KY has the mobile part defined by the linear system of cubics through
the six intersection points C Li. To be precise, 2KY = M + i Li, M L+C ,
where L is the pullback of a general line and Li,C the proper inverses of Li,C.
Now let X be the blow-up of Y at a point q not on the unique member of KY ,
with E the exceptional curve. Then h0( 2KX) h0( 2KY ) 3 = 1 and X is a
minimal Coble surface of Jacobian type with respect to E.

Example 2.13. We now give examples with gi = 1, a kind of converse state-
ment to Theorem 2.8 and Remark 2.9. The same idea can be applied to get
examples with gi 2 (see also Example 2.11).

Let Ymin be a Jacobian minimal rational elliptic surface with singular fibers
F1,F. Suppose that Ci (1 i m) are m disjoint sections meeting m different
components Gi of F1. We construct a blow-up Y Ymin in the following way:
it is the minimal blow-up of singular points and their infinitely near points of F1
such that the proper inverses of Gi all become ( 4)-curves on Y . Let Y Y
be the blow-down of ( 1)-curves Ci.
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Then one can verify that KY has only one member i Gi + Δ, where Gi
is the strict transform of Gi which is a ( 3)-curve with Gi Δ = 2, where Δ is
effective and contractible to the divisor F1 i Gi and hence further to Du Val
singularities (to be precise, it is a set of a few smooth points when F1 is reduced).
We also have

2KY = M + P , P =
i

Gi + H ,

where 0 H Δ, and M is the strict transform of a general full fiber and
hence a smooth elliptic curve with (M )2 = m. Let : X Y be the blow-up of
a singular point q on the strict transform F on Y of the second fiber F. Then
X is a Coble surface with M2 = m in notation of Lemma 2.2, where M = M .
Indeed, KX = for q is not on the unique member of KY ; 2KX =
because F is a member of M with multqF 2 (Lemma 1.5).

3. The rational case.

3.1. Now we shall consider the case of a Coble surface X and a ( 1)-curve
E with pa( 2KX+2E) = 1, such that the mobile part M of 2KX+2E = M +P
satisfies pa(M) = 0. As in Lemma 2.2, write M = kM1 (k 1) with M1 = 1,
and the fixed part as P = G+H = J

i=1 giGi +H, where Gi = Gj when i = j. Write
also H = i Hi where Hi = Hj is allowed. We note that k 2 happens only when
M2
1 = 0. Set m = M2

1. Let us state the theorem classifying all Coble surfaces of
rational type with respect to E.

THEOREM 3.2. There is a birational morphism : X Ymin onto a minimal
rational surface Ymin, factoring as the blow-down : X Y of E and a morphism

y: Y Ymin, such that the direct image Γ := kM1 + J
i=1 giGi +H 2KYmin of

kM1 +G+H 2KX +2E is described as in one of the following Cases (1)–(16),
where to save notation, we use the same M1,Gi,Hi to denote their images M1,Gi,Hi
on Ymin.

In Cases (1)–(9), Ymin = 2 and hence Γ is a sextic.

(1) Γ = M1 + 2G1 +H1; (m, k) = (0, 1); G1 is a conic, M1 and H1 are distinct
lines meeting at p1; Supp Γ is of simple normal crossing.

(2) Γ = kM1 + 2G1 + 4 k
i=1 Hi; (m, k) = (0, 1), (0, 2); M1 and Hi are lines

through the same point p1; G1 is a line not through p1; Hi = Hj is allowed but
M1 = Hi.

(3) Γ = M1 + 2G1 +H1, (m, k) = (0, 1); G1 is a conic; M1 and H1 are distinct
lines intersecting G1 transversally at the same point p1 and two other points.

(4) Γ = kM1 + 6 k
i=1 Hi; (m, k) = (0, k) with (1 k 6); M1,Hi are lines

through the same point p1; Hi = Hj is allowed but M1 = Hi.
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(5) Γ = M1 + J
=1 g G ; (m, k) = (1, 1); g1 = 1, 2; 2g1 + J

j=2 gj = 5; G1

is a conic; M1 and Gj (2 j J) are J distinct lines; Sing J
=1 G is disjoint

from M1.
(6) Γ = M1 + J

i=1 giGi; (m, k) = (1, 1); J
i=1 gi = 5; M1 and Gi (1 i J)

are J + 1 distinct lines; Gi and Gj share no common points on M1 when i = j.
(7) Γ = M1 + 3G1 + G2; (m, k) = (3, 1); M1 is a conic; Gi are distinct lines;

Supp Γ is of simple normal crossing; let p1 be a common point of M1 and G2.
(8) Γ = M1 + J

i=1 giGi; (m, k) = (3, 1); g1 = 1, 2; J
i=1 gi = 4; M1 is a conic;

Gi are distinct lines; all Gj (2 j J) intersect M1 transversally at the same
point p1 and J 1 other points; G1 meets M1 at two distinct points not in M1 Gj
(j 2).

(9) Γ = M1 + 4G1; (m, k) = (4, 1); M1 is a conic; G1 is a line intersecting M1
at two distinct points.
(10) Ymin = 1 1; Γ = M1 + J

=1 g G ; (m, k) = (2, 1); g1 = 1, 2; r
i=2 gi =

J
j=r+1 gj = 3 g1; M1 and G1 are sections (of both rulings) of self-intersection 2

and intersect each other at two distinct points;Gi (2 i r) and Gj (r+1 j J)
are distinct fibers of two different rulings such that Sing J

=1 G is disjoint
from M1.
(11) Ymin = 1 1; Γ = M1+ J

=1 g G ; (m, k) = (2, 1); r
i=1 gi = J

j=r+1 gj =
3; M1 is a section (of both rulings) of self-intersection 2; Gi (1 i r) and Gj
(r+1 j J) are distinct fibers of two different rulings such thatGi Gj M1 = .
(12) Ymin = F2; Γ = M1 + J

=1 g G + hH1 (0 h 3); (m, k) = (2, 1);
g1 = 3 h; J

j=2 gj = 2h; H1 is the unique ( 2)-curve on F2; M1 and G1 are two
sections of self-intersection 2 and intersect each other at two distinct points; Gj
(2 j J) are distinct fibers not through M1 G1; when h = 0 (resp. h = 3),
there is no such Gj (resp. no such G1).

(13) Ymin = Fb (b 2); Γ = kM1 + 4G1 + 2(b+2) k
i=1 Hi; (m, k) = (0, k) with

1 k 2(b + 2); G1 is the unique ( b)-curve; M1 and Hi are fibers; Hi = Hj is
allowed but Hi = M1.
(14) Ymin = Fm 2; Γ = M1 + 3G1 + J

j=2 gjGj; (m, k) = (m, 1) with m 3;
J
j=2 gj = m + 1; Gj (2 j J) are distinct fibers not through M1 G1; G1 is the

negative section with G2
1 = (m 2); M1 is a section with M2

1 = m.
(15) Ymin = Fm 4; Γ = M1 + 3G1 + J

j=2 gjGj; (m, k) = (m, 1) with m 4;
J
j=2 gj = m 2; Gj (2 j J) are distinct fibers of a fixed ruling not through

M1 G1; G1 is a section with G2
1 = (m 4); M1 is a section with M2

1 = m and
meeting G1 at two distinct points.
(16) Ymin = Fm; Γ = M1 + 3H1 + J

i=1 giGi; (m, k) = (m, 1) with m 3;
J
i=1 gi = m + 4; H1 is the unique ( m)-curve on Ymin; M1 is a section with

M2
1 = m; Gi (1 i J) are distinct fibers.
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Remark 3.3. (1) Let 0: Y0 Ymin be the blow-up of the point p1 in
Cases (1)–(4), (7), (8); and we set 0 = id for other cases. Then constructed in the
proof factors through 0. Moreover, M1 on X is the total transform of the proper
inverse image on Y0 of M1 on Ymin. So the advantage of this classification is that
we can cook up a Coble surface by choosing the right material: (Ymin,Γ) according
to the customer’s taste, such as requests for M2

1, h0( 2KX + 2E), kM1 , G M1,
etc.

(2) i  Gi in Case (5) or (6) must be a nonreduced divisor (see Theorem 6.3
in 6). In Cases (11) and (15) with m = 4 (resp. Case (10)), y: Y 1 1

factors through the blow-up of the intersection  Gi  Gj of fibers of different
rulings for some i, j, by the argument in the proof of Theorem 3.2 for Case (10)
to deduce g1 2 (resp. by the uniqueness of a loop, if exists, in M + P on X;
see Lemma 2.2).

(3) See Examples 2.11 and 4.8 and Remark 4.9 for the realizations of Case (2)
with (m, k) = (0, 2), and Cases (13)–(16).

Let us start proving Theorem 3.2.

3.4. There are two main cases to consider (Lemma 2.2):

Case I. M = kM1 , where M1 = 1 and M2
1 = 0.

Case II. M = 1, M2 = m 1 and dim M = m + 1 (Lemma 1.7).

3.5. We begin with Case I. In notation of Lemma 2.2, we have G M1 =
J
i=1 giGi M1 = 4. Since M +G+H = 2KX +2E contains a divisor 2D, where

D KX +E = KY and the (multi-)sections Gi cannot be a component of
a divisor from M , we see that each gi is even. Thus either G = 2G1, or G = 4G1,
or G = 2G1 + 2G2.

Since E H = 0,E M1 = 0 (Lemma 2.3), E,H are all contained in fibers
of the fibration given by M1 . Applying the blow-down : X Y , we get

2KY M + (G + H). Intersecting this equality with a negative curve
C on Y , we see that either C (G + H) or C is a ( n)-curve with n = 1, 2.
Let : Y Fb be a suitable smooth blow-down of ( 1)-curves in fibers of the
fibration given by M1 . We will choose b later.

3.6. Suppose G = 2G1. Then G1 is a double section of the fibration given by
M1 . Now 1 pa(kM1+G1) h0((k 1)M1) = k implies that k = 1 (Lemma 1.2).
By 3.5 and the proof of Lemma 4.2 below, we can choose so that b = 1
(noting that K2

Y 0 8). Combining , and the blow-down F1 2 , we get a
birational morphism X 2. Clearly, Case (1) occurs; indeed, deg Γ = 6 implies
that the image on 2 of H is a line.

Suppose that G = 4G1. Then G1 is a section of the fibration given by M1 .
This time, we can choose b = (G1)2 = G2

1 1 (cf. Lemmas 1.8 and 2.2). If
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b = 1, combine , and the blow-down F1 2 of (G1) and we get X 2

fitting Case (4). If b 2, then Case (13) occurs, and k 2(b+2) by the reasoning
as in 3.14.

Suppose that G = 2(G1 + G2). Then the Gi are sections of the fibration
given by M1 . Since pa(kM1 + G1 + G2) 1 and by Lemma 1.3, we have
(k,G1 G2) = (1, 0), (2, 0), (1, 1). By Lemma 1.8, we may choose b = (G2)2 = 1
with (G1) (G2) = G1 G2. Thus Case (2) or (3) occurs.

3.7. Next we consider Case II. We have M = M1 and i giGi M = 4 +M2

(Lemma 2.2). Denote by : X m+1 a morphism given by the linear system
M (cf. Lemma 1.7). Since H M = 0 = E M = 0, the map contracts H and
factors through the blow-down : X Y of E.

Since M2 = m, the image of is a surface of degree m in m+1 . On the
other hand, a nondegenerate surface in m+1 has degree m. So is a birational
morphism onto a surface V of degree m. Such surfaces were classified by del
Pezzo. According to his classification (see for example, [Re], p. 27), V is either
2 (m = 1) or a Veronese surface V4 5 (m = 4), or a rational scroll (a, n). The
latter surface is the image of a minimal ruled surface Fn under the map given by
the linear system af + s0 , where f is the general fiber of the fixed ruling and s0
a section with s20 = n and m = 2a n, a n. Note that (k, k) is the projective
cone over a normal rational curve C k of degree k.

The following result follows easily from Lemma 2.2.

LEMMA 3.8.

(1) Gi M 2; if G1 M = 2 then Gi M = 1 and Gi G1 = for all i 2.
(2) Gi Gj 1 for i = j; if G1 G2 = 1 then Gi M = 1 and Gi (G1 +G2) =

for all i 3.

Now we shall treat possibilities of V in 3.7 one by one.

3.9. Suppose that m = 4 and V 5 is a Veronese surface. Then M is the
pullback of a conic in V , viewed as a curve in 2. Hence M Gi 2 always
holds. This, together with Lemma 3.8, implies that G = 4G1, the image (G1) is
a line in V = 2 and Case (9) occurs.

Suppose that m = 1. Then V = 2 and M is the pullback of a line. As in the
case m = 4, Lemma 3.8 implies that Case (5) or (6) occurs.

3.10. Now let us consider the remaining cases where V = (a, n). First
observe that in the case V = (m,m),m 2, the map : X V factors through
a birational morphism : X V, where  V = Fm. Now M +G+H is a subsystem
of the pullback of the linear system mf + s0 .

So, in the case V = (a, n),m 2, we have a map from X onto Fn such that
M + G + H is a subsystem of the pullback of af + s0 , with 2a n = m and
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a n. Let Gi aif + bis0 be the image of Gi, and H = hs0 the image of H,
where h 0 and h 1 only when a = n = m. Since (2n + 4) f + 4s0 2KV is
linearly equivalent to the direct image of M + i giGi + H, we obtain

J

i=1
giai + a = 2n + 4,

J

i=1
gibi + h = 3.(3.1)

In particular, 0 h 3.
From Lemma 3.8, we also obtainGi M = (aif+bis0) (af+s0) = ai+(a n)bi = 1

or 2. Moreover, sinceGi is irreducible, ai nbi, unless (ai, bi) = (0, 1). This easily
gives the following possible types:

(1) ai = 1, bi = 0;Gi M = 1;
(2) ai = 1, bi = 1, n = 0, a = 1,m = 2;Gi M = 2;
(3) ai = 2, bi = 1, n = 2, a = 2,m = 2;Gi M = 2;
(4) ai = 1, bi = 1, n = 1, a = 2,m = 3;Gi M = 2;
(5) ai = 0, bi = 1, a = n + 1,m = n + 2;Gi M = 1;
(6) ai = 0, bi = 1, a = n + 2,m = n + 4;Gi M = 2.
On the other hand, by Lemma 2.2, 4+m = i giGi M = i gi[ai + (a n)bi].

Substituting (3.1) into this, we get

(a n)[3
J

i=1
gibi] = 0.(3.2)

Hence either a = n = m and i giai = m + 4, or i gibi = 3 and h = 0.
Clearly, now we can divide into the following situations in 3.11–14.

3.11. For all 1 i J, Type 3.10 (1) occurs, i.e., ai = 1, bi = 0. Then by
(3.2) and (3.1), i gi = m + 4, a = n = m, h = 3. This fits Case (12) (m = 2) or
Case (16) (m 3) of the theorem.

In the following, we assume that for at least one i, Type 3.10 (1) does not
occur.

3.12. a = n = m. By 3.10, for each i, either Type 3.10 (1) or (3) occurs.
In view of Lemma 3.8, we may assume that G1 M1 = 2 (resp. Gi Mi = 1)
and Type 3.10 (3) (resp. (1)) occurs for i = 1 (resp. for 2 i J). Then
n = 2, 2g1 + j 2 gj = 6, g1 + h = 3. This is Case (12) with h 2.

From now on, we assume that a n + 1 and hence h = 0.

3.13. Suppose that for all i, we have Gi M = 1. We may assume that for
1 i r; r 1 (resp. r + 1 j J), Type 3.10 (5) (resp. (1)) occurs. Thus
a = n + 1,m = n + 2, r

i=1 gi = 3, J
j=r+1 gj = m + 1. If n = 0, Case (11) occurs. If
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n 1, then the uniqueness of a negative curve on Fn implies that r = 1. Hence
g1 = 3 and j 2 gj = m + 1. Case (14) occurs.

3.14. In view of Lemma 3.8, we may assume now that G1 M = 2, i.e., for
i = 1 type 3.10 (2), (4) or (6) occurs, and Gi M = 1 for all i 2. Then b1 = 1.
We may also assume that for 2 i r (r 1) (resp. r + 1 i J) type 3.10
(5) (resp. (1)) occurs. Thus g1 + r

i=2 gi = 3, g1a1 + J
j=r+1 gj + a = 2n + 4.

If type 3.10 (6) occurs when i = 1, then a = n + 2,m = n + 4; hence r = 1,
g1 = 3, j 2 gj = m 2; so Case (15) occurs.

If type 3.10 (2) occurs when i = 1, then a = 1, n = 0,m = 2, g1 + r
i=2 gi =

g1 + j r+1 gj = 3. So Case (10) occurs. We note that g1 2 for otherwise
Y 1 1 is the blow-up of points on G1 M and their immediate infinitely
near points (cf. Lemma 1.9) and G1 +M KYmin would give rise to a member
in KX (= ), a contradiction.

Suppose that type 3.10 (4) occurs when i = 1. Then a = 2, n = 1,m =
3, g1 + r

i=2 gi = 3, g1 + J
j=r+1 gj = 4. Thus, either r = 1, or r = 2 and G2 is the

unique ( 1)-curve on F1. If r = 1, then g1 = 3, g2 = 1; we blow down the ( 1)-
curve s0 and see that Case (7) occurs. If r = 2, then g1 + g2 = 3, g1 + j 3 gj = 4;
we blow down the ( 1)-curve G2 and see that Case (8) occurs. This completes
the proof of Theorem 3.2.

4. Basic surfaces.

4.1. A rational surface is called basic if it admits a birational morphism to
2 [Ha]. In the present section, we shall describe minimal Coble surfaces which
are basic surfaces.

We start with the following well-known result:

LEMMA 4.2. Let V be a rational surface. Suppose that V does not have smooth
rational curves with self-intersection 3. Then V is a basic surface unless it is
isomorphic to F0 or F2.

Proof. Let : V S be a birational morphism to a minimal rational surface
S. If S = 2 or F1, we are done. If S = Fb with b 3, then the proper inverse
transform of the negative section s0 on S is a curve on V with self-intersection

b, contradicting the assumption. If S = F2, then the same argument shows
that is an isomorphism over the negative section s0. So factors through a
map V S which is the blow-up at a point on a fiber not lying on s0. We blow
down the proper transform of this fiber on V to get a morphism V F1. The
case S = F0 is similar.

THEOREM 4.3. Any Coble surface X of elliptic type is basic.

Proof. We may assume that X is of elliptic type with respect to some E (cf.
Definition 2.9). By Remark 2.6 and Theorem 2.8, X is either one blow-up of
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a Halphen surface of index 2, or is obtained by blowing up a Jacobian elliptic
surface Ymin to get X and then blowing down linear chains of total length m 6
(Remark 2.9). A Halphen surface is a basic surface since it does not contain
smooth rational curves with self-intersection 3 (this immediately follows
from the formula for the canonical class). So, in the Halphen case X is basic. For
the Jacobian case, note that the exceptional divisors of X Ymin and X X
are disjoint. Thus there are smooth blow-downs Ymin Z and Y Z fitting the
following commutative diagram (the rectangular part):

X Y Ymin

X Y Z 2 .

Since Ymin satisfies the hypothesis of Lemma 4.2 so does Z. Therefore, there is
a smooth blow-down Z 2 because K2

Z = m+K2
Ymin 8. Theorem 4.3 follows.

4.4. Now let us assume that X is a Coble surface of rational type with respect
to a ( 1)-curve E. Write 2KX + 2E = M + P as in 2.1. By Theorem 3.2
and Remark 3.3, X is basic unless one of Cases (12)–(16) occurs. In these five
cases we have a birational morphism X Fd. If Case (13) occurs, then M = kM1
and M1 is a free pencil of rational curves. There is no upper bound for k (see
Example 4.8 below); of course if X dominates 2 , via the blow-down : X Y
of E, then k 6. If one of Cases (12), (14)–(16) in Theorem 3.2 occurs, then
M is a smooth rational curve with m = M2 2; again there is no upper bound
for m (see Remark 4.9 below); however if X dominates 2 , via , then clearly
M2 36. We can do much better. We shall start with the following:

LEMMA 4.5. Let C be an irreducible rational plane curve of degree 4 d 6.
Assume that C does not have a singular point of multiplicity d 1 and, in the
case d = 6, there is a a point of multiplicity 3. Then there exists a Cremona
transformation with fundamental points among singular points of C such that the
image of C is a curve of degree 3.

Proof. Let m1 m2 mk be the multiplicities of singular points of C
(including infinitely near points). Consider the vector (d;m1, ,mk).

Case d = 4. The possible multiplicities of singular points are (m1, ,mk) =
(2, 2, 2). We apply the standard quadratic Cremona transformation T with centers
at the singular points (or its infinitely near) to get a conic.

Case d = 5. Then (d;m1, ,mk) = (5; 3, 2, 2, 2); (5; 2, 2, 2, 2, 2, 2). In the
first case, applying T as above with centers at the first three points, we get
(d ;m1, ,mk) = (3; 2). In the second case, we use the Cremona transformation
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given by the linear system of quintics through the singular points of the curve.
We get a line.

Case d = 6. Assume C has a point of multiplicity 4. Then (d;m1, ,mk) =
(6; 4, 2, 2, 2, 2). We make a standard Cremona transformation at the first three
points. Then (d ;m1, ,mk) = (4; 2, 2, 2). Applying again the standard quadratic
Cremona transformation we get a conic.

Assume C has a point of multiplicity 3 but no points of multiplicity 4. Then
(d;m1, ,mk) = (6; 3, 3, 3, 2), (6; 3, 3, 2, 2, 2, 2), (6; 3, 2, 2, 2, 2, 2, 2, 2). Again we
make the standard quadratic Cremona transformation at the first three points. We
get (d ;m1, ,mk) = (3; 2), (4; 2, 2, 2), (5; 2, 2, 2, 2, 2, 2). In the second case we
apply again the standard quadratic Cremona transformation to get a nonsingular
conic. In the third case we apply the Cremona transformation given by quintics
through the six singular points of the curve. We get a line.

PROPOSITION 4.6. Assume that a Coble surface X admits a birational morphism
: X 2 with E a ( 1)-curve on it blown down. Suppose further that X is of

rational type with respect to E, and write 2KX + 2E = M + P as in 2.1. Then
M2 5 (the equality is realizable).

Proof. We may assume that M2 1 and hence the general member M of
M is a smooth rational curve. Let : X Y be the blow-down of E, which
is an isomorphism in a neighborhood of the divisor M + P which is disjoint
from E (Lemma 2.3). Then is the composition of and a birational morphism

Y : Y 2 . We have 2KY = (M) + (P) (Lemma 2.3).
First observe that M := (M) = Y( (M)) is a component of the sextic

D := (M + P) 2K 2 , and : M  M is a resolution of the rational curve
 M. In particular, d := deg  M 6. If  M has at worst r double singular points (this
is true when d 3), then r = (d 1)(d 2) 2 and M2 d2 4r 5.

Thus, we may assume that d = 4, 5, 6 and  M has a singular point of multiplic-
ity 3. Note that the surface Y is obtained from 2 by successive blow-ups of
singular points of effective anti-bicanonical divisors. Let T: 2 2 be a Cre-
mona transformation with fundamental points in the set Σ of indeterminancies of
the rational map 1

Y . Clearly, Sing D Σ. Composing T with Y , we get another
birational morphism Y 2 such that D is replaced with the image of D under T .

Let us show that this could be used to reduce our proof to the case when
d = deg  M 3. Consider first the case d = 6. If D =  M does not have a point
of multiplicity 5, we apply Lemma 4.5 to get a Cremona transformation T such
that the image of D is a cubic. If D has a point p of multiplicity 5, then the
indeterminacy set Σ of 1

Y consists of p and its infinitely near points. Applying
Lemma 1.9 repeatedly, we see that KY contains a member 3F + 2E0+ (an
effective divisor), where E0 is the proper inverse transform of the exceptional
curve lying over p and F is a smooth fiber of a 1-fibration whose image on 2



100 IGOR V. DOLGACHEV AND DE-QI ZHANG

is a line through p. This implies KX = , a contradiction.
Consider the case d = 5. Then the residual component of  M in D is a line L. If

all singular points of  M are of multiplicity 3, then applying the previous lemma,
we reduce  M to a curve of degree 3. If  M has a point p of multiplicity 4, we
apply the standard Cremona transformation with fundamental points at p and two
points from the set Σ L  M; for the existence of these two points, we note that the
proper inverse transform on Y of L and M should meet each other at most twice
(Lemma 2.2), while L M = 5, whence we need to blow up at least 3 points in L M
(including infinitely near). This will transform  M to a quartic with a triple point.

If  M is a quartic with a triple point p, then the residual curve in D is a conic
Q (possibly a double line 2L). We apply the standard Cremona transformation
with fundamental points at p and two points from the set Σ Q  M, which exist
by the above reasoning. This will transform  M to a cubic. Thus we have reduced
to the case d 3 and Proposition 4.6 is proved.

THEOREM 4.7. Any Coble surface X with h0( 2KX) 7 is not basic (see
Example 4.8 below for X with arbitrarily large anti-bicanonical dimension).

Proof. Let W be a Coble surface with h0( 2KW ) 7. Suppose the contrary,
i.e., that there is a birational morphismW 2. Clearly this map factors through
W X with X minimal Coble. Note also that h0( 2KX) h0( 2KW) 7.
Take any ( 1)-curve E on X blown down by the map X 2 .

Write 2KX + 2E = M + P as in 2.1. If pa(M) = 1 or pa(M) = 0
with M = kM1 and M2 = 0, then h0(X, 2KX) h0(X,M) 1 = M2 6,
or h0(X, 2KX) h0(X, kM1) 1 = k deg ( 2K 2 ) = 6 (cf. Lemma 1.7,
Remark 2.9), a contradiction, where we used the fact that E is not in the fixed
part of 2KX + 2E (Lemma 2.3).

Therefore, the hypothesis of Proposition 4.6 is satisfied and we have h0( 2KX)
h0(X,M) 1 = M2 + 1 6. This contradiction proves Theorem 4.7.

PROPOSITION 4.8. Given any integers a, b with a 4 and b 2a, there is a
Coble surface X which does not admit any birational morphism X d , where
d a 3 and which satisfies h0(X, 2KX) = a and K2

X = 4 a b.

We prove this result by constructing examples fitting Case (13) of Theo-
rem 3.2.

Example 4.9. Let n, b, t be nonnegative integers satisfying: n 3, n t, b
t + 2(n 1).

Let s0 be the negative section on S = Fb with self- intersection b and F a
fiber. Take distinct fibers F (1 b t (n 2)). Then we can write

KS = 2s0 +
r

i=1
Fi + 2

r+s

j=r+1
Fj + 3

r+s+t

k=r+s+1
Fk,
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2KS = nF + 4s0 + 2
r

i=1
Fi + 3

r+s

j=r+1
Fj + 5

r+s+t

k=r+s+1
Fk,

where we set

r = b t 2(n 1), s = n t.

Let : Y S be the composite of the blow-ups of smooth points on F s0 and
their infinitely near points such that

(Fi) = Hi + Ji, (Fj) Jj = Hj + 2Ej + 2Bj,
(Fk) Jk = Hk + 2Ek + 2Bk + 2Ck + 2Dk

have the following dual graphs:

( 1) ( 1),
( 2) ( 2) ( 1),

( 2) ( 2) ( 2) ( 2) ( 1).

Here H is the proper inverse transform of F , and Ju (u = j or u = k) is a
( 2)-curve with Ju Eu = 1.

Then KY equals

2G1 +
i

Hi +
j
(2Hj + 2Ej + Jj + Bj) +

k
(3Hk + 4Ek + 2Jk + 3Bk + 2Ck + Dk),

and 2KY = nM1 + 4G1 + H where G1 := (s0), M1 := (F). Here we set

H = 2
i

Hi +
j
(3Hj + 2Ej + Jj) +

k
(5Hk + 6Ek + 3Jk + 4Bk + 2Ck).

Let q Y be a point which either lies on F0 G1 with a smooth fiber F0 M1,
or on Ji Hi, i r. Let : X Y be the blow-up of Y at q and E the exceptional
curve. We claim:

(1) X is a Coble surface.

(2) 2KX + 2E = M + G, where M = (nM1) = n( ) (F) and
G = 4 G1 + H.

(3) h0(X,M) = n + 1 and h0(X, 2KX) = n 1.

(4) K2
X = 5 (n + t + b).
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In the following we assume that n + t 5 and q lies on a smooth fiber F0.
(5) X does not admit a birational morphism to Fd with d n + t 4. In

particular, X is not a basic surface. Moreover, all negative curves (= 1G1) are
contained in fibers.

(6) Suppose that r = 0, i.e., b = t+2(n 1). Let X Xmin be the blow-down
of the proper inverse transform of F0. Then Xmin is a minimal Coble surface.

(7) Denote by Bj (when s 0), Dk (when t 0) the proper images on Xmin
of Bj,Dk. Then both mobile parts of 2KXmin + 2Bj and 2KXmin + 2Dk are
equal to (n + 1)F with F denoting a full fiber of the induced 1-fibration on
Xmin.

For (2), we only need to show that 2KY = nM1 + 4G1 + H. To do so,
we use the fact that for an effective divisor L and irreducible divisors Ni, if
L N1 0, (L N1) N2 0, , (L v 1

i=1 Ni) Nv 0, then Ni is a partial
fixed part of L . Inductively, one can verify that 2KY contains the following
as its partial fixed part:

G1 + (Hu + Eu + Ju + Bk + Ck) + G1 + (Hu + Eu) + G1

+ (Hi + Hu + Bk + Ek + Jk + Ek + Hk) + G1 + Hi,

which is equal to 4G1+2 Hi+ (other components). Since 2KY (4G1+2 i Hi)
is a disjoint union of nM1 and a negative definite divisor contained in fibers, nM1
is the mobile part of 2KY .

For the last part of (5), we assume n 5 for simplicity. Note that 2KX
(n 2) M1 +G+2 1(F0). Suppose the contrary that C (= 1G1) is a negative
curve not contained in fibers. Then C ( 2KX) (n 2)M1 C n 2 3.
This leads to 2pa(C) 2 = C2 +C KX 1 2, a contradiction. The rest of the
Claim can now be verified with patience.

Remark 4.10. For each N = 14, 15, 16, we can construct similar Coble surfaces
X fitting Case (N) of Theorem 3.2 (as well as minimal Coble surfaceXmin obtained
as a single blow-down of X) and with arbitrarily large K2

X and h0( 2KX) but
with no birational morphism X 2 (cf. Theorem 4.7 and Lemma 5.6).

5. Coble sextics. Let X be a basic Coble surface. So there is a birational
morphism X 2 . The image of any divisor D 2KX in 2 is a member of

2K 2 , whence a plane sextic. A plane sextic which is the image of an anti-
bicanonical divisor of a basic Coble surface (which we may assume minimal)
will be called a Coble sextic. In this section we shall describe Coble sextics.

5.1. Assume that X is a minimal Coble surface of Halphen type. Then it is
obtained by blowing up a singular point of a fiber on a Halphen surface V of
index 2. We have already explained that V is a basic surface. The image on 2
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of the pencil of elliptic curves on V is an Halphen pencil of index 2 of elliptic
curves of degree 6 with 9 double base points, including infinitely near. There is
a unique plane cubic C through the base points, and the base points add up to a
nontrivial 2-torsion point on the cubic with one of the inflection points chosen
as the origin (see [CD, Do1]). Even when the cubic is a nodal curve, this makes
sense. The cubic C taken with multiplicity 2 is a member of the Halphen pencil.

A Coble sextic corresponding to X is a member of a Halphen pencil of
index 2 which has a singular point p such that a preimage on X of p is also a
singular point of a fiber dominating a member (= 2C) of the pencil on 2. The
classical Coble sextic is of this type. The Halphen pencil has 9 distinct double
base points, and an irreducible member of the pencil with an extra singular points
p is a rational sextic with 10 nodes.

5.2. Assume now that X is a minimal Coble surface of Jacobian type as
described in Theorem 2.8. We use the commutative diagram in the proof of
Theorem 4.3.

Suppose that the center q of the blow-up : X Y is a singular point
of the fiber F (this is not always true as shown in Example 2.10). Then by
Remark 2.9, X is a Coble surface and a member D of 2KX is of the form
D := F1 + F + (an effective divisor contractible by the map X Ymin), where
F1,F are the proper inverse transforms of the two distinct fibers F1,F on Ymin.
The image D on X of this D is a member of 2KX . Now the commutative
diagram in Theorem 4.3 shows that the image of D under the map X 2 is
equal to the image of F1 +F under the map Ymin 2. Thus X or rather its anti-
bicanonical divisor D, defines a Coble curve which is the union of two singular
members of a cubic pencil dominated by the elliptic fibration on Ymin.

For general q in F, as above, the sextic image Σ of M +P 2KX +2E (or
equivalently of (M+P) 2KY ) under the birational morphism X Y 2

is equal to the image of M1 + P (see (2.4)) under the map X 2 , and hence
equal to the image of F1 +F under the map Ymin 2 (cf. Remark 2.9). If either
F is smooth elliptic or both F and F1 have irreducible images on 2, such Σ
would never be realized from a Coble surface of rational type (cf. Corollary 5.5
below).

Remark 5.3. The birational morphism X 2 constructed in Theorem 4.3 is
not unique as the following example shows. Let C5 be a plane curve of degree 5
with six nodes. Let L be a line intersecting C5 at five distinct points. Let us show
that the sextic C5 +L is a Coble sextic obtained from a Coble surface of Jacobian
type. Let f : Y 2 be the blow-up of 5 nodes pi of C5 and four common points
qj of C5 and L. The surface Y has an elliptic pencil Λ spanned by the proper
transform F1 of C5 and the union F2 = L +2C2 of the proper transforms of L and
the double conic 2C2 through the points pi. The pre-image of the point q C5 L
different from qj’s is the unique base point of the pencil Λ. The curves F1 and F2
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are singular members of the pencil. The singular point of F1 is the pre-image of
the node p of C5 different from the points pi’s. The C2 is now a ( 1)-curve. Let
: X Y be the blow- up of the singular point of F1 with E1 the exceptional
curve. It is easy to see that X is a minimal Coble surface of Jacobian type with
respect to E1 and also C2 and with 2KX = C5 + L , where C5 is the proper
inverse of C5 (or F1). The image of the anti-bicanonical divisor of X in 2 , under
the map f : X 2, is equal to D6 = C5 + L with 11 nodes pi, i = 1, , 5,
qj, j = 1, , 4 and p, q.

On the other hand, following Theorem 4.3, we blow down E1, the ( 1)-
curve C2 in F2 (to get Ymin after further blowing up the base point of Λ) and
also sections and fiber components on Ymin, and get a new birational morphism
: X 2, which maps the anti-bicanonical divisor of X onto the union of two
nodal cubics (the images on this “new” 2 of C5,L ). The two different Coble
sextics on two “different” 2 derived from the same surface X are related by the
Cremona transformation of 2 defined by the two different birational morphisms
from X to 2 . It can be given by the linear system of quintics with double points
at q, pi, i = 1, , 5, if one chooses properly.

Next we consider a Coble surface X of rational type with respect to a ( 1)-
curve E on it. As in Lemma 2.2, write 2KX + 2E = M + P, M = kM1,
M1 = 1, P = G +H, G = J

i=1 giGi, H = j Hj. We note that if : X 2 is a
birational morphism, factoring as the blow-down : X Y of the curve E and
a morphism y: Y 2 , then Σ := (M + P) is a sextic plane curve and equal
to the y-image of the member (M + P) in 2KY . We shall prove:

THEOREM 5.4. Assume that X is a basic surface of rational type with E blown
down by the map onto 2 . Then there is a (possibly new) birational morphism
: X 2 with E also blown down by it, such that and the sextic Σ = (kM1 +

G +H) are equal to one of the following, where for simplicity, we employ the same
symbols M1,Gi,Hi to denote their -images M̂1, Ĝi, Ĥi in 2:

(1) and Σ are identical to , Γ in one of Cases (1)–(9) in Theorem 3.2; so
Σ is a union of lines and conics.

(2) X,E fit Case (13) of Theorem 3.2 with 1 k 6; is the blow-down
X F1 of E and all curves in fibers of the 1-fibration given by M1 so that
G1 becomes the ( 1)-curve on F1, followed by the blow- down F1 2 of G1;
Σ = kM̂1 + 6 k

j=1 Ĥj, where M̂1, Ĥj are concurrent lines, with M̂1 = Ĥj, but Ĥi = Ĥj
possible; the Hj here may be different from the Hi in Theorem 3.2.

(3) X,E fit Case (14) of Theorem 3.2 with m = 3; is the composition of
: X F1 and the blow-down F1 2 of  G1 = (G1); Σ = M̂ + J

j=2 gjĜj with
J
j=2 gj = 4, where Ĝj are lines concurrent at p and M̂ is a conic through p and

transversal to all Ĝj.
(4) X,E fit Case (15) of Theorem 3.2 with m = 5; is the composition of

: X F1 and the blow-down F1 2 of  G1; Σ = M̂+ J
j=2 gjĜj with J

j=2 gj = 3,
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where M̂ a cubic with a node at p, where Ĝj are lines through p and transversal to
both tangents of M̂ at p.

(5) The well-defined morphism is the composition of : X 2 in Case
(10), or (11), or (15) with m = 4 of Theorem 3.2, the blow-up of an intersection point
 Gi  Gj of fibers of two different rulings with exceptional divisor D and the blow-
down of the proper inverses of these two fibers (Remark 3.3); Σ = Γ̂+(gi+gj 2)D̂,
where Γ̂ is the strict transform of Γ and D̂ the image of D; so Σ is a union of lines,
conics and at most one nodal cubic (only in Case (15), and then the Σ here is the
same as the one in (4) above).

(6) X,E fit Case (12) of Theorem 3.2; there is a section C of the 1-fibration
on X induced from the one on F2, with (C)2 = 1, C (G+H) = and C M = 2;

is the blow-down X F1 of E and all curves in fibers disjoint from C followed
by the blow-down F1 2 of C; Σ = M̂ + (3 h)Ĝ1 + hĤ1, where 0 h 3, M̂
is a cubic with a node at p and Ĝ1, Ĥ1 are distinct lines not through p.

(7) X,E fit Case (13) of Theorem 3.2 with k = 1, 2; there is a section C of the
1-fibration on X given by M1 , with (C)2 = 1, C G = and C H = (2 k);
is the blow-down X F1 of E and all curves in fibers disjoint from C followed

by the blow-down F1 2 of C; Σ = kM̂1 + 4Ĝ1 + (2 k)Ĥ1, where M̂1, Ĝ1, Ĥ1
are nonconcurrent lines; the H1 here may be different from any Hi in Theorem 3.2.

COROLLARY 5.5. With the assumptions in Theorem 5.1, we have:

(1) The plane sextic Σ is a union of lines, conics and at most one nodal cubic;
moreover, if a cubic does appear in Σ then it is the image of the mobile part M of

2KX + 2E .
(2) M2 5 holds; if M2 = 5 then (4) above, or equivalently Theorem 3.2 (15)

with m = 5, occurs (actually realizable at least for (g2, , gJ) = (1, 1, 1)); see
Proposition 4.6 for an alternative direct proof.

We need the following result first.

LEMMA 5.6. X be a Coble surface of rational type with respect to a ( 1)-curve
E and with : X Y the blow-down of E. Then we have:

(1) Suppose that X fits Case (14) (resp. Case (15)) of Theorem 3.2. Then
Y = (X) is basic if and only if m = 3 (resp. m = 4, 5).

(2) If X fits Case (16), or Case (14) with k 6 (= deg ( 2K 2 )), then Y is
not basic.

Proof. Consider Theorem 3.2 (16). The others are similar (see Remark 3.3
and the proof of Lemma 4.2 for the “if” part of (1)). In the following, we shall
use M,G,H,H1 to denote their -images on Y (cf. Lemma 2.3).

Claim 5.6.1. All negative curves (= H1) on Y are contained in fibers of the
1-fibration on Y induced from the one on Ymin.
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If the claim is false for some C on Y , then C M 1 for  M =  H1 ; using
C to intersect the equality 2KY = M + G + H, we see that C is a ( 1)-curve
with (C M,C G + H) = (1, 1), (2, 0). Expressing  C = (C) a  H1 + bf with a
general fiber f on Ymin = Fm, we have b am due to the irreducibility of  C, and
get 2 C M =  C  M = b am m, a contradiction to the fact that m 3 in
Theorem 3.2 (16).

Let Y Y1 be the blow-down of all ( 1)-curves in fibers disjoint from
H1,M. Then for each singular fiber Fi (of length ni) on Y1, the dual graph of
H1 +Fi +M on Y1 is as in Lemma 1.8 with s1 = H1, s2 = M. By the claim above,
the basicness of Y would imply the existence of a blow- down Y1 F1 of
( 1)-curves in fibers such that H1 becomes the unique ( 1)-curve on F1; hence
if b1 is the self-intersection of H1 on Y1, then i ni b1 1. On the other
hand, the intersection of (the images of) M and H1 on X,Y ,Y1,Ymin are the same
by the construction of Y1 and by noting that M is the -pullback of  M on Ymin
(Remark 3.3). So b1 = b1 + 2(M H1) = M2 + i ni m + b1 1 and m 1 (cf.
the proof of Lemma 1.8 and blow down Y1 to Fb1 to see the second equality).
This contradicts the fact that m 3 in Theorem 3.2 (16). So Y is not basic.

5.7. Now we prove Theorem 5.4. In view of Lemma 5.6, we only need
to consider Cases (12) and (13) of Theorem 3.2. The former one will imply
Theorem 5.4 (6) by the argument in Lemma 5.6; indeed, all components of
(G + H) are disjoint from C and all, except (G1), (H1), contracted to points
by the map Y F1, while (G1), (H1) (resp. (M)) are mapped to section(s)
of self-intersection 1 (resp. 5) on F1 (cf. the proof of Lemma 1.8).

Consider Theorem 3.2 (13). If all negative curves (= (G1)) on Y are con-
tained in fibers, then the basicness of Y implies that Theorem 5.4 (2) occurs. Oth-
erwise, the proof of Lemma 5.6 shows the existence of a section C (= (G1)) on Y
such that C2 = 1 and (k; 1(C) M1, 1(C) G+H) = (2; 1, 0), (1; 1, 1), (1; 2, 0).
In particular, 1(C) G1 = 0 for G = 4G1 now. The first two clearly imply The-
orem 5.4 (7).

Now assume that (k; 1(C) M1, 1(C) G + H) = (1; 2, 0). We shall show
that this will imply Theorem 5.4 (2). Let Y Y1 be the blow-down of all ( 1)-
curves in fibers disjoint from the double section C. Then for each singular fiber
Fi on Y1, either C + Fi is a simple loop so that Fi has the same dual graph as
its namesake in Lemma 1.8, or Fi = 2(Ei + H(1)

i + + H(ni 2)
i ) + H(ni 1)

i + H(ni)
i

where H( j)
i has type Dni Dynkin diagram (ni = 2, 3 are possible), where Ei is

a ( 1)-curve meeting C and H1 (and also H2 when ni = 2). Now utilizing the
equality 2KY = (kM1 + G + H) and intersecting it with (inverses of) curves in
the fiber Fi, we see that the loop case of C + Fi is impossible and we have

2KY1 = M1 + 4G1 +
i

ni 2

j=1
2jH( j)

i + (ni 2)H(ni 1)
i + niH(ni)

i ,(5.1)
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where we assume that the section G1 on Y1 meets the fiber Fi at H(ni)
i . Intersecting

G1 with (5.1), one gets 2G2
1 = 3 i ni. On the other hand, the disjointness of the

section G1 with the ( 1)-double section C on Y1 implies that 4G2
1 = C2 + i ni

(cf. the proof of Lemma 1.8). From these two equalities, one deduces thatG2
1 = 1

on Y1. Hence Case (2) occurs. This proves Theorem 5.4.

6. Rational curves with negative self-intersection. In this section we shall
study ( n)-curves on a Coble surface. The goal is to see whether this set is finite,
or finite modulo automorphisms of the surface. We start with a definition:

6.1. Let X be a Coble surface. We say that X is of K3-type if 2KX
contains a reduced divisor. The reason for this definition is explained by the
following:

LEMMA 6.2. Let X be a Coble surface. Then the following properties are equiv-
alent:

(1) 2KX contains a reduced divisor.
(2) There exists a double cover X̃ X, where X̃ is a K3-surface with at most

ordinary double points as singularities.

Proof. (1) (2). Let B 2KX be a a reduced effective anti-bicanonical
divisor. Then B is of simple normal crossing (Lemma 1.4). Let X̃ be the double
cover of X corresponding to the square root of B defined by the line bundle

X( KX). By the formula for the canonical sheaf of a double cover we get
X̃ = X̃ . Since B has at worst ordinary double points, X̃ is a K3 surface with at
worst ordinary double points.

(2) (1). This follows from the formula for the canonical class of a double
cover.

THEOREM 6.3. A Coble surface of rational type with respect to some ( 1)-curve
E will never be of K3-type.

Proof. Suppose the contrary: that X is a Coble surface of rational type with
respect to a ( 1)-curve E, which is also of K3-type. So if : X Y is the
blow-down of E, then we have 2KX + 2E = M +G +H = ( 2KY ) with
pa(M) = 0 and pa( 2KX +2E) = 1. By the condition and Lemma 2.3 to the extent
that E (G + H) = , we see that G + H is reduced; in particular, the -image
Γ = M +G+H on Ymin is also reduced. By Remark 3.3 and calculating the image
of M + G + H on Y0, we see that only Cases (5), (6), (10), (11) are possible.

Assume Case (5) or (6) occurs and Γ =  M1 + i  Gi is of simple normal
crossing; the general case and Cases (10) and (11) are similar. Noting that K2

Y 0
and applying Lemma 1.9 repeatedly, we see that Y 2 is the blow-up of the
9 intersection points in i  Gi; we cannot touch points on  M1 (see Remark 3.3).
Thus Y and X are equal to their namesakes in Example 2.12. Hence X is of
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elliptic type with respect to E, a contradiction. For the general situation of Case
(6) say, we need to apply Lemma 2.2 (4) (the uniqueness of a loop, if it exists,
and the inequality there); in particular, all triple points as well as all double points
(with possibly one exception) of  Gi must be blown up; also note that there
is no quadruple point of  Gi due to the reducedness of G + H. This proves
Theorem 6.3.

There is a strong relation between Coble surfaces of K3-type and minimal
resolutions of rational log Enriques surfaces of index 2. A rational log Enriques
surface  X of index 2 is a normal rational surface with at worst quotient singular-
ities such that ( 2K X) =  X (cf. [Zh1]).

PROPOSITION 6.4.

(1) The minimal resolution X of a rational log Enriques surface  X of index 2
is a Coble surface such that h0( 2KX) = 1 and the only member D in 2KX is
a reduced divisor whose connected component is either a single ( 4)-curve or a
linear chain with the following dual graph:

( 3) ( 2) ( 2) ( 3).

The converse is also true.
(2) A terminal Coble surface has exactly one anti-bicanonical divisor D, and

D is reduced and a disjoint union of ( 4)-curves. The converse is also true.
(3) The minimal resolution X of a rational normal surface  X with at worst

type 1
4 (1, 1) singularities is a terminal Coble surface. The converse is also true.
(4) Let X be a Coble surface with a reduced divisor D 2KX . Then there

is an embedded resolution (X ,D ) of (X,D) with D the proper inverse transform
of D, such that X is a terminal Coble surface with D as the only member in

2KX .

Proof. The first part of (1) is proved in [Zh1]. For the converse, if X  X is
the contraction of D then one sees easily that  X is a rational log Enriques surface
of index 2.

We prove (2). If X is terminal Coble, then an arbitrary member D of 2KX
is reduced and smooth (Lemma 1.9) and hence a disjoint union of ( ni)-curves
Di (Lemma 1.4). Now D2

i = D Di = Di ( 2KX) implies that Di is a ( 4)-curve;
in particular, h0( 2KX) = h0(D) = 1. This proves (2) (cf. Lemma 1.9).

For the first part of (3), by the proof of (1), 2KX has exactly one member
D which is reduced and a disjoint union of ( 4)-curves. So X is a terminal Coble
surface (cf. Lemma 1.9). For the converse of (3), we let X  X be the contraction
of the unique divisor D in 2KX . Then  X satisfies the required condition.

Next we prove (4). By Lemma 1.4, D has only nodes as singularities. Let
X X be the blow-up of all nodes in D. Then we have 2KX D . This
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implies, as in (2), that D is a disjoint union of ( 4)-curves. Hence X is terminal
Coble. This completes the proof of Proposition 6.4.

Let f : X X be a birational morphism of Coble surfaces. If X is of K3-type
then so is X; indeed, if D 2KX is reduced then so is f (D ) 2KX .
In view of the above observation and Lemma 1.10, among Coble surfaces of
K3-type, minimal ones are the most interesting. Such X is of elliptic type with
respect to any ( 1)-curve E (Theorem 6.3). Suppose that M2 = 0 in notation of
Lemma 2.2. Then X is given in either Theorem 2.5 or Theorem 2.8 with X = X
and E = E .

THEOREM 6.5. Suppose X is a Coble surface with M2 = 0. If X is of Halphen
type obtained from a minimal Halphen surface Ym of index 2 by one blow-up of a
singular point on its nonmultiple fiber F, then it is of K3-type if and only if F is
of type In, II, III or IV. If X is of Jacobian type obtained as in Theorem 2.8 from
a minimal Jacobian rational elliptic surface Ymin by blowing up a singular point
from one fiber F and singular points (at least one) and their infinitely near points
on another fiber F1, then it is of K3-type if and only if each of F and F1 is of type In,
II, III, or IV.

Proof. This follows immediately from the Kodaira classification of singular
fibers.

There is an analogue of the K3-cover for Coble surfaces of elliptic type which
are not of K3-type:

THEOREM 6.6. Suppose X is a Coble surface of elliptic type with M2 = 0 in
notation of §2.1, which is not of K3-type. Then X admits a double cover X̃ which
is a nonminimal rational Jacobian elliptic surface.

Proof. We do only the case when X is of Halphen type; the Jacobian case
can be considered similarly. Then X is obtained from a minimal Halphen elliptic
surface V of index 2 by blowing up a singular point of its nonmultiple fiber F of
type = In, II, III, IV .

We check the assertion by considering different types of the fiber. Let us do
for example, the case F is of type Ib and leave the other cases to the reader.
Write F = R1 +R2 +R3 +R4 +2(R5 + Rb+5), where R1,R2 intersect R5 and R3,R4
intersect Rb+5. Then

R1 + R2 + R3 + R4 2KX 2(R5 + Rb+5),

hence there exists a double cover : Ṽ V ramified over R1 +R2 +R3 +R4. We
have

KṼ
1(R5 + Rb+5).
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If b = 0, C = 1(R5) is an elliptic curve with C2 = 4. If b = 0, C =
1(R5 + Rb+5) is a reducible curve of arithmetic genus 1. The pre-image of

a general fiber of the elliptic fibration on Ṽ splits into a disjoint union of two
elliptic curves. After a base change 1 1 of degree 2 ramified at two points,
we obtain an elliptic fibration on Ṽ with one of its fibers equal to ( (F))red =
C+ (R̃1 + R̃2 + R̃3 + R̃4), where (Ri) = 2R̃i, 1 i 4. Note that the R̃i are ( 1)-
curves on Ṽ. Blowing these four curves down, we obtain an elliptic surface V̂
with the image Ĉ of C, which is reduced and linearly equivalent to KV̂ . One
can verify that V̂ is a Jacobian Halphen surface.

Now, if X is obtained from V by blowing up a point p on R5 + + Rb+5, it
admits a double cover X̃ which is obtained from Ṽ by blowing up two (or one
if p also lies on some Ri with i 4) points on C. So X̃ is obtained from the
minimal elliptic surface V̂ by blowing up points on one fiber Ĉ.

Now we consider the finiteness problem of the number of negative curves on
a Coble surface modulo automorphisms.

THEOREM 6.7. Assume k = . Let X be a Coble surface of elliptic type. Suppose
that X is a terminal Coble surface of K3-type. Also assume that X is general in the
sense that any divisor class on the K3-cover is invariant with respect to the double
cover involution. Then the groupAut(X)has finitely many orbits in the set of negative
rational curves on X.

Proof. This follows from two well-known results about K3-surfaces. The first
one says that the group of automorphisms of any K3-surface has only finitely
many orbits in the set of smooth rational curves (see [Na, St]). The second one
says that any automorphisms of the K3-cover of X commute with the involution
(see [Ni]).

We do not know whether the same result is true for nonterminal Coble sur-
faces of K3-type. However we shall show now that it cannot be extended to
Coble surfaces not of K3-type.

LEMMA 6.8. Let A: S(A) S be the blow-up of a set A of n points on a
nonsingular projective surface S with zero irregularity. Let G(A) be the subgroup
of Aut(S(A)) consisting of automorphims which are identical on the proper inverse
transform C of a nonsingular irreducible curve C of positive genus on S which
contains A. Then the set of subsets A of C such that G(A) is not the lift of a subgroup
G(A) of Aut(S) is countable.

Proof. We use induction on n. Assume n = 1. Let EA be the exceptional curve
of A. An element g G(A) is a lift of an automorphism of S if and only if g
stabilizes EA. Suppose g(EA) = EA. The image RA in V of g(EA) intersects C at
one point a with multiplicity m + 1, where m = EA g(EA). The restriction of the
linear system RA to C is of degree m + 1, so that there are only finitely many
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points c on C which can be realized as a divisor (m+1)c from this linear system.
Here we use that the Jacobian of a curve of positive genus has only finitely many
points of given finite order. Since the set of divisor classes on a surface with
zero irregularity is countable, only a countable set of points a C may have the
property g(EA) = EA. This proves the assertion for n = 1.

If n 1, we write A = A a , where a A . The map A is equal to the
composition of the maps a: S(A) S(A ) and A : S(A ) S. It is clear that
C is equal to the proper inverse transform of a curve C on S(A ) which is also
the proper inverse transform of C. By the case n = 1, we know that the set of
points a for which elements of G(A) do not descend to automorphims of S(A ) is
countable. By induction, the set of subsets A for which elements of G(A) do not
descend further to S is countable. So, the set of all possible A for which elements
of G(A) do not descend to S is countable.

LEMMA 6.9. Let Σ be a set of 9 points in 2 and let X be the blow-up of Σ.
Denote by the set of all ( 1)- curves on X. Assume that is infinite. Then, for
any E , the image S of the map given by E E E, is an infinite set.

Proof. We have (E E)2 = 2 2E E, so it suffices to show that the set S
of possible integers m of the form m = (E E)2 is infinite. Since (E E) KX = 0,
the divisor class of E E belongs to the orthogonal complement ( KX )Pic(X).
Since K2

X = 0, the lattice L = ( KX )Pic(X) KX is negative definite. This implies
that the set of vectors in L of fixed norm is a finite set. In particular, if S is
finite, the set of cosets in L of the classes E E is finite. On the other hand,
(E E) (E E) = E E KX would imply that 0 = (E E )2 = 2 2E E
and hence E = E . So E E and E E cannot belong to the same coset modulo

KX unless E = E . This shows that the set of divisor classes of E E must be
finite, contradicting the assumption that is infinite. This contradiction proves
the lemma.

Example 6.10. Here we give an example of a minimal Coble surface of
Halphen type such that its automorphism group has infinitely many orbits on the
set of ( 1)-curves. We must assume that the ground field k is uncountable.

Let V be a Halphen surface of index 2 with a reducible fiber of type I0 . One
can explicitly construct it as follows. Take five lines Li (1 i 5) in 2 in
general linear position and consider a pencil of elliptic curves spanned by the
curve C6 = L1 +L2 +L3 +L4 +2L5 and the curve 2C3, where C3 is the cubic which
passes through 6 intersection points pij = Li Lj; i, j = 1, , 4. We assume that
the cubic C3 intersects L5 at three distinct points q1, q2, q3. Resolving the base
points of the pencil we arrive at a Halphen surface V of index 2. The image to 2

of its fiber of type I0 is the sextic C6. If we choose a point a L5 and blow up the
corresponding point on V we obtain a minimal Coble surface X of Halphen type.

Let V be the Halphen surface obtained in the same way as V but replacing
the cubic curve by a new cubic which passes through the points pij and the points
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q1, q2, a. We have a natural map f : X V which is the blow-up of the pre-
image q3 of q3 on V . When a is chosen general enough, the elliptic fibration
: V 1 has only one reducible fiber (of type I0 ). Its Jacobian fibration (a
relative minimal model of the Jacobian of the generic fiber of ) has only one
reducible fiber of type I0 and hence its Mordell-Weil group MW is infinite (of
rank 4). Since MW acts freely by translations on the set of bi-sections of , we
see that V has infinitely many ( 1)-curves (which are rational bi-sections of
). Let Ea be the exceptional curve on V blown-up from the point a. Its pre-
image, also denoted by Ea, under the map f : X V , is the exceptional curve
of the map X V . By Lemma 6.9, V has ( 1)-curves Ei with unbounded set
of integers mi = Ei Ea. The pull-backs on X, also denoted by Ei, of the curves
Ei on V , form an infinite set of ( 1)-curves (if Ei does not pass through q3) or
( 2)-curves (if Ei passes through q3) with unbounded intersection numbers with
a general fiber of the elliptic fibration on X (the pullback of the elliptic fibration
on V). Since the set of ( 1)-curves on V is countable we can always choose a
and q3 such that ( 1)-curves on V do not pass through q3. So we can assume
that all Ei’s are ( 1)-curves. Thus we have found infinitely many ( 1)-curves
Ei on X with unbounded intersection numbers with a general fiber of the elliptic
fibration on X.

Note that an automorphism g of X leaves invariant the isolated linear system
2KX = R1 + + R4 + 2R5 , where Ri denotes the proper inverse transform

of Li in X. In particular, R5 is g-stable. Let G be the kernel of the natural action
of Aut(X) on the 4-point set R1, ,R4 . Then Aut(X) G is isomorphic to a
subgroup of the symmetric group S4 in 4 letters. Now each g G fixes all
4 points Ri R5 of the rational curve R5 and hence g acts identically on R5
(there is no nontrivial automorphism of 1 which fixes more than two distinct
points). Take the double cover S V branched along the union of the curves
R1 + +R4 (see Theorem 6.6). The pre-image of R5 is an elliptic curve C on S.
Let A = a , a be the pre-image of a R5 on C. Consider the group G(A) of
automorphims of the blow-up S(A) of A which are lifts of automorphisms g G.
Recall that, since all elements of G leave the square root invariant of the divisor
class of the branch divisor, for every g G there is an element g̃ Aut(S(A))
which commutes with the involution of the double cover, and descends to an
automorphism of X. Two lifts of the same g differ by . All elements of G(A)
restrict to C as automorphims of order 2. Let G(A) be the subgroup of index
2 of G(A) consisting of elements of G(A) which act identically on C . We shall
identify this group with the group G. By Lemma 6.8, we can choose a such that
all elements of G(A) are lifts of automorphisms of S. Thus all elements of G are
lifts of automorphims of V to X. In particular, g stabilizes Ea so that the full
fiber R1 + + R4 + 2(R5 + Ea) on X is g-stable. Clearly each g G preserves
the degrees of the multi-sections Ei. Hence the number of orbits of G (and also
of Aut(X), due to the finiteness of the index of G in it) on the set of ( 1)-curves
on X is infinite.
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6.11. Next we would like to study the set of ( n)-curves (n 1) on a
Coble surface X of rational type. We still do not have a complete picture of ;
however we guess that this set is always finite. In fact, by a theorem of Nagata
([Na], Theorem 5) this is always true if X is not basic. Another special case where
it is true is when 1(X) = 2. Here 1(X) denotes the anti-Kodaira dimension.
This is the Iitaka-Kodaira dimension of the divisor KX . Obviously 1(X) 0
for Coble surfaces. It is also clear that 1(X) 1 for Coble surfaces X of elliptic
type with M2 = 0 in notation of Lemma 2.2.

We shall use the following result from [Sa]:

LEMMA. Let X be a surface with 1(X) = 2. Then X has only finitely many
curves with negative self-intersection.

6.12. Let X be a Coble surface of rational or elliptic type with respect
to a curve E and let : X Y be the blow down of E. By the definition,
( 2KY ) = M + P, where M2 0. We have 1(Y) = 2 if and only if

either M2 0, or M2 = 0 and pa(M) = 0 (noting that then P M = 4k 0, see
Lemma 2.2); if this is the case, Y contains only finitely many negative rational
curves. Unfortunately, this does not automatically imply the finiteness of for X
except in a few special cases which we list now.

LEMMA 6.13. Let f : X X be the blow-up of a point p X. Then 1(X )
1(X). The equality takes place if p is a point of multiplicity n + 1 of an effective

divisor from nKX .

Proof. The first assertion is obvious. The second assertion follows from the
fact that the anti-Kodaira dimension of a divisor D depends only on Dred.

PROPOSITION 6.14. In notation of Lemma 2.2,

(1) Assume that M 3E for some M in M and (pa(M),M2) = (1, 0). Then
1(X) = 2.
(2) If M = kM1 with k 3. Then 1(X) = 2.
(3) One has 1(X) = 2 if either pa(M) = 1 and M2 = 6, or pa(M) = 0 and

M2 4.

Proof. For (1), we consider only the case where M2 = 0 and pa(M) = 0. Then
P M1 = 4 (Lemma 2.2). Thus 1(X) = (X,M1 +P) = 2, where the first equality
follows from the observation that 2KX (M 2E) + P and the latter has the
same support as M + P ( kM1 + P). (2) is a consequence of (1).

For (3), we consider only the case pa(M) = 0. By Lemma 1.7, h0(M) = M2+2.
Hence ifM2 5, then there is a memberM in M withM 3E, or equivalently
(M ) has multiplicity 3 at the point (E) (cf. Lemma 2.3). So (3) is true in this
case. Suppose that m = M2 = 4. Then Case (9), (14), (15) or (16) in Theorem 3.2
occurs. We treat Case (15) because the others are similar. NowM is the -pullback
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of  M  G1 + (m 2)f , where f is a fiber and  G1 a section of self-intersection
(m 4) = 0 (cf. Remark 3.3). LetM be the sum of the -pullbacks of  G1  G1

and 2f 2f through the point (E) and (1) applies. One can actually show that
(3) is still true even when pa(M) = 0 and M2 = 3, unless Theorem 3.2 (14) with
m = 3 occurs.
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