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Introduction 

1. Notations. Let F be a complex algebraic surface. We will use 

.the following Standard notations: 

OF : the structure sheaf of F . 
 OF(^) : the invertible sheaf associated with a divisor D on F . 
% = - cl(F) : minus the' first Chern class of F or a 

canonical divisor on F . 

uF = 0 " 1 : the canonical- sheaf of F . 
I KP 

i hi (D) : the dimension of the space H (F.OF(D) ) . 
0 2 

p (F) = h (KF) = h (OF) ; the geometric genus of F . 
9 

1 1 
q(F) = h (5) = h (OF) : the irregularity of F . 
5 : the self-intersection index of 5? 
ci) 2 p .(F) = $, + 1, where F' is a minimal model of a non- 

rational surface F ; the linear genus of F . 
c2(F) : the topological Euler-Poincare characteristic of F . 

2 P,(F) = -q(~) + p (F) =.  1/12 (% + c2(F) ) - 1 : the arithmetical 
9 

genus. 

0 
P,(F) = h (nK$ : the n-genus of F . 



NS(F) : the Neron-Severi group of F ,  the quotient of the 

Picard group Pic@') by the subgroup of divisors 

algebraically equivalent to zero (= Pic iF) if q = 0). 

If not stated otherwise F nil1 be always assumed to be non-singular 

and projective. 

2. Historical. It is easily proved that for a rational suxface F 

(that is birationally equivalent to the projective plane l F L )  the 

invariants q(F) and p ?F) are zero. The interest to non-rational 
g 

surfaces with vanishing ,q and p was born in 1896 when Castelnuovo 
g 

had established the necessary and sufficient col~ditions for a surface to 

he rational. Clebsh had proved earlier that a aurve of genus 0 is ratj.onal 

The question whether a surface with q = = O is rational was a 
pg 

nat;lral problem. In 1101 Castelnuovo had shown that the answer is nega- 

tive in general proving that one must add also the condition P2 = 0 

and constructing an example of a non-rational surface with q = p = 0 . 
g 

In the same paper he also exhibited other examples of such surfaces due 

to Enriques. The latter were of particular destiny, as it turned cut 

later they play a special role in the general classification of algebraic 

surfaces representing one of the four classes of surfaces with vanishing 

Kodaira dimension (see Ill, [ 6 ] )  . Both examples of Enriques and 
Castelnuovo belong to the class of elliptic surfaces, that is they contain 

a pencil of elliptic curves. In particular, we have for these 



(1) surfaces p = 1 . Later Enriques gave another construction of his 
surfaces and also presented other non-rational surfaces with q = p = 0 

g 

[17'1 . They were also elliptic s&aces. 
The first examples of surfaces of general type.with q = pq = 0 

appeared only in 1931-32 when Godeaux had constructed a surface with 

q =. p '= 0 ,and p") = 2 [I81 and Campedelli had constructed (Dl) a 
9 

surface wLth p(')= 3 . Later Godeaux constructed some other examples 
with p(') = 4 1201. 

3, Modern develop!=. The new interest to the surfaces under the 

title is related to the general problem of the existence of surfaces 

wieh given topological invariants which became of the main concern after 

the period of the reconstruction of Enriques* classification results had 

happii? 'ended. The particular interest to the surfaces with p(l)= 2 

and 3 (numerical Godeaux and Campedelli surfaces) Is due to Bombieri's 

paper [4] where for ail other surfaces it was settled the question of the 

birationality of the 3-canonical map (t3K . Now due to works of 
Bomhieri-Catanese (5,111, Miyaoka [32] and Victor Kulikov (non-published) 

we know that + is birational for these surfaces, but I do not include 
3K 

the corresponding proofs in this survey refering to the paper of Catanese 

in these proceedings. 

In Chapter 11, I expose in more detailsthe results of my paper 1141 

which deals with elliptic surfaces with q = p = 0 . The theory of 
g 

Y 
~odaira-~~~-~afarevir allows to classify all such surfaces. 

In Chapter 111, we study more interesting case of surfaces of the 

general type. ~ l l  such surfaces are divided into nine classes corresponding 



(1) - t o  t h e  poss ib le  values of  p - 2, 3 , . .  ., 10 . To d is t inguish  t h e  

surfaces with t h e  same p ' l )  one may consider t h e  group Tors(F) o r  more 

general ly  t h e  whole fundamental group s (F) . It can be shown (see 
1 

Chapter 111, 56) t h a t  t h e r e  a r e  only a. f i n i t e  number of possible  ?r 
lVS 

f o r  surfaces of t h e  same c l a s s ,  and hence one may ask about some e x p l i c i t  

es t imate o f  t h e  order  o f '  Tors(F) . Unfortunately, t h i s  is  known only 

f o r  t h e  cases  p ' l )  = 2 (Bombieri) and 3 (Beauville,Reid) and only i n  

t h e  f i r s t  case t h i s  est imate i s  t h e  b e s t  possible .  Moreover, we do n o t  

know whether the c l a s s e s  with p ( l ) =  8 and 10 a r e  empty* . =he examples 

of  surfaces with 4 5 p ( l ) (  7 a r e  due t o  Burniat [7,81 . We present  

here a new versior? of  h i s  construct ion (171, [37] )  which enables 

us  t o  c a l c u l a t e  Tors(F) f o r  such surfaces.  The examples of  surfaces 

with p(l)= 9 a r e  due t o  Xuga [293 and Beauville 131 . 

4 .  Acknow1edgemer.t~. This work owes very much t o  many people with - 
whoin I had a coilversation on t h e  sub jec t  a t  d i f f e r e n t  per iods of  my 

l i f e .  It would be impossible t o  mention them a l l .  I am espec ia l ly  

indepted t o  Miles Reid and Fabrizio Catanese whose c r i t i c a l  remarks were 

very valuable. It  is a l s o  a g r e a t  pleasure t o  thank C.I.M.E. and M.I.T. 

f o r  t h e i r  support during the  preparat ion of  t h i s  paper. 

* see. Epilogue. 



CHAPTER I. CLASSICAL EXAMPLES. 

5 1 .  The a r i q u e s  surface.  

Let IP3 be '  t h e  p ro jec t ive  3-space with homogeneous coordinates 

x i , , i  z.0,  ..., 3 . Consider t h e  coordinat,e te t rahedron T : x x x x = 0 0 1 2 3  

and le t  4 be a surface i n  p3 which passes twice ly  through, the  edges 

Ei (i = 1,. . . , , 6 )  of T ' ,  t h a t  is, has E i  a s  its ordinary double l i n e s .  We 

a l s o  assume ' t b + t  X has, no 'o ther  s ingula r  po in t s  ou ts ide  T and o ther  

common m i n t s  with T . Since t h e  sec t ion  of  F by a coordinate plane is  the  

double reducible  cubic curve, we s e e ' t h a t  F must be of  order  6 . More 

e x p l i b i t l y  we may consider F ' a s , g i v e n ' b y  t h e  equation: 

Let ' F  ' be. t h e  ,noa ia l iza t ion  of X . Then F is a-non-singular surface: 

To s e e  it one has t o  look l o c a l l y  a t  the  normalization of t h e  a f f i n e  coordi? 

3 
n a t e  cross  : xyz = 0 i n  A . Here t h e  normalization w i l l  be j u s t  t h e  d i s -  

j o i n t  union:of t h r e e  planes, the  inverse image of t h e  s ingula r  l o c i  w i l l  be 

t h e  union of s i x  l i d e s  ly ing  by p a i r s  i n  these  planes. Two l i n e s  in each ' 

of t h e  planes correspond t o  t h e  two a x i s  l y i n g - i n  t h e  same coordinate plane. 

The inverse image of ' t h e  o r i g i n  w i l l  be t h e  t h r e e  points, .  each of them is 

t h e  in te rsec t ion  po in t  of  t h e  two l i n e s  i n  one of  t h e  planes. So, l o c a l l y  

t h e  p i c t u r e  is as .fol lows:  



Let p : '  F + X be the projection. Then the local analysis above shows 

that for any edge E. of the tetrahedron T we have 

1 I 

where Ci and Ci are non-singular rational curves meeting each other 

transversally at two points arising from the two pinch-points of X lying 

on each of the edges. 

Ci and C do not meet if 
j Ei 

and E are not incident, otherwise 
j 

Ci and C meet transversally at one point, 
3 

C. n C. n C = $3 for distinct i, j, k . 
1 3 k  

NOW we use the classical formula for the canonical sheaf of the 

normalization of a surface of degree n in P~ : 

where H is the inverse image of a plane section of X and A is the 

conductor divisor (= the annulator of the sheaf p (0 /O  ) (see Mumford's 
X F X  

appendix to Chapter I11 of [43])  . In our case we easily find that 

where C = C + ... + C6 . 1 



7 

The global sections of wF correspond to quadrics in B- 

passing through the edges of the tetrahedron T . Since by trivial 
reasons such 'quadrics do not exist we have 

Next, taking for 2H the inverse image of the union of two faces of 

the tetrahedrqn, we obtain that 

where Ci is the common edge of these faces, and C is the 
j 

opposite edge. 

Taking for 4H the inverse image of the union of all faces 

(= the tetrahedron T f we get 

Thus we have 

and hence F is non-rational. 

,Since K is numerically equivalent to zero, we have 



By the adjunction formula we get 

Thus, Ci is a reducible curve of arithmetical genus 1 . Since 
2Ci % 2C and C does not meet C we infer that the linear: 

j i j 
system [2C. I contains a pencil of curves of arithmetical genus 1 
Since there are no base points of 2Ci we obtain by BertJni's 

theorem that almost all curves form this penci2,are non-Singular 

elliptic curves. Note also'that this pencil ctmtains t m  degenerate 

durves, 2Ci and 2C 
j .  

NOW ,we may use the formula expressing ,'cZ(F) in termsof the 

Euler-Poincare characteristic of degenerate cumes of the elliptic 

pencil (see 111, Ch. IV) : 

where ,BI are all singular curves of'the pencil. Since 

we deduce that 

2 
Since i$ = 0 we Get by the Noether formula 12(I - q ( F ) )  = c2(Fl > 0 . 
This obviously implies that q(~j = 0 . 



32.. The Godeaux surface. 

Consider the projective involution o. of I!?% of order 5 given 

in coordinates by the formula: 

C being a prjmitive 5-th root of unity. This invdiution acts freely 

outside the vertices of the coordinate tetrahedron, Let F' be a 

non-singular quintic which is invariant under a m d  does not pass 

through these vertices. For example, we may take Tmr F 1  a quintic 

with .the equation: 

(For a general surface F' with the properties almm one has ta add 

2 2 
to the left side 8 invariant monomials xOx2x3,.-J . Let G be the 

cyclic group of order 5 generated 5y (3 , acting *mly on F' . 
Consider the quotient F = F1/G , the projection p : F' + F is a 

finite non-ramified map of non-singular surfaces, 

Lemma. Let p : F' -> F be a finite non-ramifiedmp of degree n . 
Ther. 



X Proof. The first relation easily follows from the equality p (w ) = w - F F" 

since p is smooth and finite. The second one follows from the 

Noether formula and the relation c (F') = n c2(F) , which can be 2 

proved either by topological arguments or using the equality 

1 9 being the sheaf of 1-differentials, and standard properties ofs- 

Chern classes. 

2 Since we have for F', KF, = 5, pa(Fr) = 4 we get from the 

lemma 

Since, obviously, q(F) 5 q(F') , we obtain 

Next, note that F is minimal, that is there we no exce~tional 

.curves of the first kind lying on it. Indeed, the inverse image of 

such curve under, .p would be the disjoint union of five exceptional 

carves of the,first kind on F" . However, F' is minimal. From 

the minimality of P and the fact 5 2 1 it fallows that F is 

of,general type. Another way to show ?his is to use the property of 

H 
ample sheaves: p (aF) is ample implies % is ample. 

Since F' .is simply-connected we obtain that the map p is the 

universal covering. In particular, Tors (F) = T~(F) = 2/52 . 



93.  The Campedelli surface. 

  his is a double ramified covering of the projective plane IP 
2 

branched along some curve of -the 10-th degree ( more ~recisely it is a 

minimal non-singular model of such covering). 

Let W be the following reducible curve of the ~o-th degree 

where Ci are non-singular conics and D is a nan-singulhr 

quartic with the following properties: 



To see that such configuration of curves exists one' may take for 
C2 

and C3 ewo concentric circles lying in the complement to the line at 

infinity, the points P5 and P6 will be the two cyclic points. 

The existence of a quartic D touching the conics Ci easily' 

follows from the consideration of the net XC C +PC C + vC2C3 = 0 . 
1 2  1 3  

Lemma 1. Let X be a non-singular surface and W a reduced curve 

on it.. Suppose that there exists a divisor D on X such .that. 

W s'2D , then there is a double covering 

branched exactly along W . Moreover, Y is normal and non-singular 

over the complement to the sihgular focus of W . 
Proof. Assume firstly that W is non-singular. Let F be the line - 
bundle corresponding to the divisor D and IU.) a coordinate covering 

3 

of X such that F I U is trivial and W is given by the local 
j 

equation {c ;. 0) on Uj . Let gij be a system of transition 
j 

on ui n O and we may consider functions for F , then ci = g..~ 
11 j 5 

2 
the subvariety Y of F given by the equations x = c , where 

j j 

xj is a fibre coordinate of F I U It is obviously checked that 
j' 

the projection '. Y .+X satisfies the properties stated in the lemma. 

If W is sikgular we apply the arguments above to X replaced 

by X' = X - S and W by W' = W - S , where S is the singular 

locus of W . Then it suffices to take for Y the normalization of 

X in the double covering Y' -+ X' constructed as above. 



Remark. The sheaf L = OX(D) can be character ized a s  t h e  subsheaf 

of an t i invar ian t  sec t ions  of t h e  d i r e c t  image f,(Oy) . I f  q(X) = 0 

then t h i s  sheaf is determined uniquely by W (s ince they d i f f e r  

by an element of  order 2 i n  Pic(X)) . This shows.that i n  t h i s  

case any double covering with p roper t i es  from lemma 1 can be 

obtained by the  construction of the lemma. 

~ p i l ~ i n g  t h i s  lemma t o  t h e  plane IP2 and t h e  10-th degree 

curve W we may c o n s t r w t  a double coveripg Y of IP2 branched 

along W . This surface has s i x  s ingula r  po in t s  ly ing  over the  po in t s  

Pi . The Campedelli surface F w i l l  be ob t i ined  a s  t h e  minimal 

non-singular model of  Y . 

Let p : X + lP2 be  the  minimal reso lv~t ion  of s i n g u l a r i t i e s  of 

t h e  curve W . The proper transform of W is  given by 

where L is a l i n e  on IP2 , 

2 12 ' 
with Si = - 2 ,  Si = -1 . 

Now we apply t h e  lemma t o  the surface X and t h e  non-singular 

curve 



and consider the corresponding double,covering r : F' + X . To 
compute the canonical class 5, we use the following: 

Lemma 2. Let g : V' + V be the double covering of non-singular 

- 
surfaces branched along the curve W , gf(W) 25 for some. divisor D 

on V' . Then 

Proof. First, note that our double covering can be obtained by 

the constructi0:1 from lemma 1 . In fact, consider the splitting 

into invariant .md anti-invariarit pieces. Then clearly L 82 

is contained in the invariant piece that is in 0 Thus v -  
(7 -Algebra g (0 ,) is the quotient algebra of the symmetric algebra v x v 

@2 
Syonr(L) = Qv B L B L~~ B, . . . by the Ideal generated by L - J, where 
j is an ideal :;heaf i n  Ov . Taking the spectrums we get that 
V' = Spec(g (0 , ) )  .,is isomorphic to the closed subscheme of the 

x v 
-Y 

line bundle J? - V(L) = Spec(Synm(L)) . Looking locally we easily 
identify J with the,sheaf OV(-W) and obtain that V' is 

constructed with the help of a divisor D corresponding to F in 

the same way as in lemma '1 . 
Now, the formula for K ,,, can be proved very simply. In 

notations of lemma 1 we consider a 2-form w on V in local 

coordinates c and some other function -t Then we use the 
j j '  



relation dc.Adt. = 2x dx hdt to obtain that (.gX(w)) = gx( (w) ) + 
I j j j  

+ (xj = 0) (the brackets ( ) dei-lotes the divisor of a 2-'form). 

This pkovds the lemma. 

~hus, we have 

Asstlme that D t IKF, I , then we see fro3 above that D .= rx(~') 

for some 

The latter linear system is equal to the inverse transform of the 

system of conics on 3P2 passing through a l l  points Pi . To show 
that the latter does not exist we argue as follows. Taking for 

P1 and P2 the two cyclic infinite points (1, Pi, 0) we get the 

equations for C1 and C2 i n  the form: 

and the equation for Cj on the form: 



The points P3, P4, P5, P6 will have the coorciinates (+a, 0, 11, 

( 0 ,  fb, 1) respectively. Now let C be a conic with an equation 

which passes through the points Pl,. . . , P6 . Since it passes through 
PI and P2 we may assume that a3 = 0 and a = a2 = 1 . Since 

it passes through P3 and Pg we get the equations 

which give a4 = 0 and a = -a 
6 

. Similarly we get a = 0 5 

and a = -b 6 
. This contradiction shows that C does not exist. 

~ h u s  $ , = P I  and P'(F') = 0 .  
g 

-1 
Since r is branched along Si, i = 1 ,... , 6 and p (ci), 

i' = 1, 2, 3 , we see that 

- 
for some curves Si and Ei  on F' . Also, we notice that 

- 2 1 x  2 1 2  1 
S. =$r (S.) ) =-(2s) =-(-4) =-I , 

4 i , 4  



This shows that z are exceptional curves of the 1st kind. 
i 

L e t  a : F 1  + F be the blowing down of all % . We will show 
that F is a minimal model of F' . We have 

since 

This shows that 



If E is an exceptional curve of the 1st kind on F , then 
- 

(E I$) = -1 and hence E must coincide with one of the curves C. or 
- 
Si . However, neither of them is an exceptional curve, because 

To compute < we use that 

It remains to noirice that F is a surface of general type, since it is 

minimal and has positive < . In particular, we have q(F) 5 p (F) = 0 
4 

(see Chap. 3, 51, .lemma 3) . ~ l s o  note that 2% is determined by 

the net of quartjcs .XC1C2 f pC1C3 + vc2C3 and is of dimension 2 . 
.We also have the following obvious torsion divisoxs of order 

2on F :  

It is immediately checked that 



and 

Th'is shows that 

1t.will be shown ip Chapter 111, 93 that, i n  fact,  we have the 

equality 

Tors (F) = (Z/2Z)'  . 
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CHAPTER 2. ELLIPTIC SURFACES. 

1. Generalities. 

A projective non-singulur surface X is called elliptic if there 

exists a morphism f : ,X -t B onto a non-singular curve B whose 

general fibre X is a smooth curve of genus 1 . Such f is called 

an elliptic fibration on X . From general properties of morphisms 
of schemes we infer that almost all fibres are non-singular elliptic 

curves over the ground fieid k (as everywhere in this paper we 

assume that k = C or algebraically closed of characteristic 0 ) . 
A n  elliptic surface X is called minimal if there exist an elliptic 

fibration withoat exceptional curves of the 1st kind in its fibres ( 

(such fibration will be called minimal). 

Let f : X + B be an elliptic fibration on an elliptic surface 

L and Xb a fibre over a point b 6 B . Consider )6 as a positive 

divisor on X , then according to Kodaira [261 it is one of the following 

types : 

mLO : Xb = mE , m 2 1 , where Eo is a non-singular elliptic curve; 0 
1 

m 1 : 5 = mEo, m k  1 , where Eo 
is a rational curve with a node; 

1 
m 2 : 5 = mE + mE1, r n l  1 , where 

0 
Eo and El are non-singular 

rational curves meeting transversally at two points; 

1 
m b : % = mEo $...+ m 2 1, where Ei are rational non-singular 

curves with E. fl E . n  Ek = pl for distinct i, j, and k and 
1 3  

(EiEi+l) = 1, i = O,.. ., b - 1,  assuming Eb = Eo (b, 3) . 
11 : Xb = Eo , a rational curve with a cusp; 



111 : X = E + El, where Eo and E are non-singular rational 
b 0 .I 

curves with simple contact at one point; 

IV : X = E' + E + E2, where Ei are non-singular rational curves 
b 0 1  

fransversally meeting each other at one point p = E nE f l  E 0 1 2' 
X 

Ig3: X = E + E + E + ~g + 2E4+br where all Ei are non-singular 
b 0 1 2  

rational curves transversally interesecting as shown on the 

picture 

1 1 ~  : Xb = E + 2E + 3E + 4E + 5E C 2E5 + 433 + 3E7 + 6E8, where 
0 1 2 3 4  6 

E~ 
are non-singular rational curves interesecting as shown on 

the &ture 



11? : = E + 2E + 3E + E3 + 2E4 + 3E5 + 2E6 + 4E7, where Ei 
0 1 2  

are non-singular rational curves and the picture is 

1vX : % = E + 2E + E +' 2E + E' + 2E + 3E6, where 0 1, 2 3 4 5 .  
Ei are 

rational non-singular curves and the picture is 

A singular fibre of type mlb , b 2 0 , m 2 2 , is called 

multiple of multiplicity m . 
Let f : X + B be an elliptic fibration, then its general 

fibre X is a sooth curve of genus 1 over the field K of rational 
rl 

functions of B and it is an abelian varlety over K -if and only if 

it has a K-rational point. In geometric terns the latter is equivalent 



to the existence of a global section s : B -+ X of the morphism f . 

Consider the jacobian variety J of X. , this is again a n 
smooth culxe over K of genus l'with a rational point over K . 
For any 'extension K1/K such that X has a k'-rational pint 

there exists a na'tural. isomorphism of K'-curves X Q K' r J 5  K' . 
rl K K 

Accordihg' to general properties 'of birational transformations of 

two-dimensional schemes there exists the unique minimal elliptic, 

,fibration j'. : A -+ B such that A = J . This surface is called 
rl 

the jacbbian shzface of ithe elliptic surface X . ,Since j has a 

section,'all singular fibres of j are non-multiple. 

Proposition 1. For any b e B such that Xb is a non-multiple 

fibre the fibrations f : X + B and,j : A + B are isomorphic 

over the henselization Zb of the local ring 0 . 
Brb 

Proof. Let -- zb : %(b) + spec-Gb be the restriction of f over 

ijb , and jb : i\(b) -+ Spec Zb the same ior j . Since Zb is 

smooth at some point of a component of multiplicity 1, there exists 

a section' of %. . This implies that the general fibre :(b),, is 

an abelian curve over the fraction field f$, of ijb . From this we 
infer easily that W(b) = z(b),, and hence in virtue of the uniqueness 

rl 

of the minimal models we get %(b) " %(b) . 

proposition 2. Let b e B such that Xb is a multiple fibre of 

type mlb . Then the fibre % of j :.A -+ B is of type 1% 

Proof. Let B' -+ B be a  overing of B ramified at some point - 
b' E B' over h with the ramification index equal to m . 



Let f;, : X1(b') + Spec OB,,b,.. be the restriction of the base 

change map Xx B' -t B' over the local ring 
B 

OB,,b, . Denote by 
- - - 
X'(bl) the normalization of X' (b') and let f;, : X'(bl) +- Spec 0 B',bl 

be the composite map. 

Let x c X be a double point of the fibre Xb . Then 'formally 
2 

at x the map f : X + B is isomorphic to the map A + A1 given 

m 
by t = (xy) . This shows that X1(b') formally at the point x' 

m 3 
lying over x is isomorphic to the hypersurface tm = (xy) in. A . 
Taking the normalization we observe that there are exactly m points 

xi, . . . , r' c X' (b') lying over x1 and formally at'each x k  5 (b') m 

is given by the equation t = xy . Looking qlobally we infer that 
- 

the fibre X(bV), is of type l1mb . 

Performing the same base change for j : A + B and'resolving 

the singulariti5s of the obtaiped surface A S ( b ' ) ,  we will get the 

scheme over 0 with the closed fibre, o£ type l1mb (Proposition 1). 
B1,b' 

Checking case case we'find that it can be only if the fibre of j 

1 
over b is of type 1 b . 

Let j ,: A + B be a minimal elliptic fibration with a global 

section, W(j) be the set of all minimal elliptic fibrations over 

B for which j ser,ves as the jacobian fibration. For any f : X + B 

from W(j) the general fibre XK is a principal homogeneous space 

(p.h.s) for AK over the field K of rational functions on B . 
As it is well known the set of all p.h.s. for AK 

forms the Galois 

1 
cohomology group H (K, Ax) . In virtue oftheexistence and uniqueness 

.1 
of minimal models for A the map Wj) + H (K, AK) is bijective. 

K 



To compute A ) we argue as follows ( € 3 4 ,  38, 411). 
K 

Let i : = Spec K-B be the inclusion of the general point. 

Identify,AK with the etale sheaf which it represents arid let 

A =  i . X  - .X K ' 
The sheaf 5 is representable by'the commutative group 

scheme over B which is obtained by throwing out all points of the 

surface 'A where f is non-smooth (the Neron model of" +?. . The 
Leray spectral sequence for i gives the exact cohomology sequence: 

For any closed point b a B we have 

where ijb is the fraction field of'the henselization 5 of the 
Bib 

local ring oBSb , $ = yKi$, . TO compute H'(%,%~ it 

suffices to comgute for ail n the subgroup 
1 .H (%, A%) of the 

elements killed by muLtiplication by n (since H' is always 

periodical). Using the Kummer exact sequence 

we get 



Now, since coincides with its Picard variety 
0 

we have 
pic 

where jb : %(b) + Spec 5 is the strict localization of the morphism 
B ~b 

j over b . Since Spec 6 is cohomoloqical.ly trivial 
B,b 

where ib : specQ+ spec8 is the inclusion of the general point. 
B,b 

It remains to add that 

where % = 2 in case % is of type , db = 1 in case 

1 % is of,type 1 1, 1 2  1, d = 0 in the remaining cases. b 

Let f : X -+ B be the elliptic fibration representing an 

i 
eleinent x e H (K, A k ) ' .  Then we interprete the composite map 

as follows. The general fibre of the strict localization : z(b) + 

+ spec 8 represents a p.h.s. over the field % and, 
B,b 



1 
hence, an element of H (" Also, it can be checked that 

qb(X) equals.the class of the normal sheaf of the reduced fibre 

0 $ in the Picard group Pic(X ) , whose torsion part is identified 
b 

1 1 1 - 0  
witb .It (ri, A = lim H (%,1.1,) = lim H (srpn) 

..Kb. --5- f 

From this observation we immediately obtain the followihg 

1 
Proposition 3.  For any x 6 H (K, A,& IJ (x) # 0 if and only if the - b 

fibre Xb of,the corresponding elliptic fibration is multiple. 

The multiplicity of K equaIs.'the order of +,,(x) in H'(%, A... ) . 
% 

The last assertion follows from the proof of Proposition 2. 

1 
Now we shall compute the kernel H (B,&) . of the map (so called 

the Tate-Shafarevich group of AK) .. First, we have the following 
exact sequence: 

which comes froa the identification of A with its Picard 
K 

0 1 
variety %= Ker ( (R jxbm)K, + l 1 (see the details in 1241 ) . 

K 

Since j has a global section, the exact cohomology sequence gives 

the isomorphism 

Next, considering the Leray s--~ectral sequence for j and G and 
m, A 

1 
using that Rij G = H (BIG = 0 , i > 1 we get 

x m m 



I n  v i r t u e  of b i r a t i o n a l  invariance of  Br (1241) we obta in  

Proposi t ion 4. Assume t h a t  A is a r a t i o n a l  surface,  then 

without mult iple  

isomorphic t o  A . 
2 

group H (B,$. 

In  p a r t i c u l a r ,  any ninimal e l l i p t i c  sur face  

f i b e r s  whose jacobian surface A i s  r a t i o n a l  is  

The l a s t  th ing  t o  do is  t o  inves t iga te  t h e  

Let $ be the  subsheaf of A which is representable  by t h e  connected 

component of  t h e  u n i t  of the  group scheme c , ( e q u a l  t o  t h e  surface A 

minus a l l  i r reduc ib le  components of  ' the  f i b e r s  which do not  meet some 

f ixed  sec t ion  of  j and a l s o  minus s ingula r  p o i n t s  of  i r reduc ib le  

f i b e r s )  . We have t h e  "Kummer exact  sequence" 

which g ives  t h e  exact  sequence 

1 0  2 0 2 0 
H (B, $ 1  - - H  (B,,& ) j n H  (B ,  & )  - + O .  

The quot ien t  sheaf ,A/&0 has f i n i t e  support,  hence 

Applying the, global  d u a l i t y  theorem 1121, we g e t  

2 0 0 ^O 
H (B,,A, ) = Hom(H (B,& ) , Z/nZ) . 



The dual sheaf 8 coincides with A in virtue of the auto- 
n- n- 

duality of the jacobian variety 
AK . Now we use the following. 

e. Suppose that q(A) = 0 . Then 

0 0 Proof. Any element of the group H,(B,,E) represents a sectiog. 

.of j of ordeb dividing n which meets the same irreducible component 

of a fiber as the fixed zero section. Moreover, any two such sections 

do not meek each other, since for any point b 8 E the reduction 

homomorphism A,(%) -t .%(kf is an isomorphism on the subgroup of 

points of finite order. The latter follows, for example, from the 

0 0 
equality H (S~ec r)B,b: A&) = H (k, A which is a particular case n- b 

of some general property of &ale cohomology ( I121 ) . Suppose that 
H'(B, <) # 0 , and let S be a section from this group different 

from the zero sxtion SO . Then 

where F; is a divisor supported in some fiber Fi of j . 
Since S and So meet the same component of fibers we get immed- 

e 
iately that ,F! e = 0 for each component of Fi . Applying the main A 
lemma below we get that F; = Fi and hence 



where F is any fiber fuse that since ' q(A)  = 0 we have B = P 1 

and hence all fibers'are linearly equivalent). Now from the computation 

of KA (see again below) we get for any section (S  . K 1 = -1 + p (A) < 0 . 
A '3 

1 2 since S = P we get S = -2 + 1 - p (A) = -1 - p g ( A )  < 0 .. 
9 

However 

This contradiction proves the lemma. 

From this lemma we get the following. 

Proposition 5. Suppose that q(A) = 0 . Then the map 

is surjective. In particular, for any finite set of closed points 

bll...,br E B scch'that the fiber 
1 %i is of type 1 hi (is1 r; 

h > 0 )  and any collection of positive numbers 
i y,.. . ,m there 

exists a ninimal elliptic fibration f : X - + B  whose jacobian 

fibration equals j and whose fibers- % are of typ. mi1hi . 
i 

i=ll'.i.,r . 
Now we shall compute the canonical class 5 of an elliptic 

surface X . We restrict ourselves for the simplicity to the case 
of regular surfaces X k.e. we assume that q(X) = 0) . For the 
general case we refer to [6] or [27]  . In particular, we may assume 
that the base B of any elliptic fibration f : X +  B is the 

projective line z'. 



Main lemma. ([6]). Let C = In C be an effective divisor on a 
i i 

surface X with each Ei irreducible. Assume that 

(Ci,D) j 0 , all i 

and.that D is connected. 

2 Then every divisor Z = xmici satisfies Z g 0 and equality 

2 
hclds if and Wly if D = 0 and Z = r D  , r Q.. 

Proof. Write xi = mi/ni and consider the equality 

2 z = l x  x n n (CiWC.) i j i j  3 

Jf equality holds everywhere, then we have either xi = x or 
j 

(C.C ) = 0 for all i;j ; since D is connected the last possiblity 
2. j 

does not occur. Hence xi is constant, that means that mi = m i ,  

r € Q  

Theorem. Let 5 : X + P' be an elliptic fibration of an elliptic 

surface X with q(X) = 0 . Then 

e r e  I is any fibre of f , Fi = m FO all multiple fibres of 
i i 

multiplicity m. . 
L 



Proof. For any non-singular fibre ]6 we have - 

Taking a sufficiently large number of distinct "generaln points 

bl,...,b and considering the exact sequence 

we get 

If D is a divisor in the linear system above, we have 

(D-F) = 0 , for any fibre F . 

This implies that we can write 

5 Q, (sum of fibfes) + r , 

wnere r g 0 is contained in a union of fibres and does not contain 

fibres of f . Let r0 be a connected component of r contained in 

the fibre Xb . If Xb = In E then i i 

and 



2 
This shows that (Eil < 0 if Xb is reducible, that implies that 

(Kx:XEi) = 2g(Ei) - 2 - ( ~ f )  = 0 , since Ei cannot be an exceptional 

curve of the 1st kind. Hence, we have (KXEi) = 0 . 

Thus, if Xb is reducible, then 

[Po- Ei) = 0 , all componenks Ei of 3 . 

Applying the main lemma we get that r = xXb , rf i  Q . 0 

So, we have proved that 

0 q( % nF + l a i ~ i  , u (a. < m 
1 i 

and it remains to show that n = pg(Z) - 1, and a i = m  - 1 ,  
i 

For this we note, firstly, that the divisor 1a.p' is the fixed 
i i 

part of the linear system 
KX . Indeed, any rational function belonging 

0 to the space If :X,O (K 1)  must be constant on the general fibre of f , 
X X 

and hence, it is induced by a rational function on IP' . But then it: 
0 

is either regular on the divisor Fi , or has the pole of order multiple 
0 

to mi at F. 
1 -  

Thus we have 

that proves 'the assertion about n . 
Next, by Riernann-Fach 



and t h i s  shows t h a t  

(using again the  arguments above1 . This, obvioulsy, implies ' that  

a + l a m  i i '  

Corollary 1. For any minimal el1, ipt ic  surface X 

Furthermore, i f  q(X) = 0 , then the  plurigenils 

Proof. The f i r s t  asser t ion  follows eas i l y  f r o m  the  proof of t he  

theorem. Indeed, we have provea without assungtion q(X) = 0 t h a t  

KX 
is numerically equivalent t o  a ra t ional  l i nea r  combination of 

f ibres .  

TO prove the second assereion, we use t h a t  

where 0 a a mi . Again, using the arguments of the proof of the i 

theorem, we ge t  t h a t  iaiF:i equals the  fixed part of lnICxl . 
This, of c0urse;proves the assert ion.  



Corollary 2. (1131). An elliptic surface with q = p = 0 is rational 
g 

if and only if its minimal elliptic fibration contains at most one 

multiple 'fibre. 

In fact, P (X) = 0 implies that the number of multiple fibres 
2 

r ( 1 . In another direction the assertion follows immediately. 

Corollary, 3. (~odeaux). Suppose that q(X) = p (X) = 0 . Then -- 9 

where Fbi , i = I,..., r , are all multiple fibres. 

Next, we want to compare the numerical invariants of an el3iptic 

surface and its jacobian surface, 

Proposition 6. Let f : X + B be an elliptic fibration. Denote 

by EP(Z) the topological ~uler~~oincare characteristic (in case 

k # C , the field of complex numbers, we consider 1-adic etale 

cohomology) . Then 

For the proof we refer to 111, Ch. 4 (k = C) or [12] (arbitrary k) . 
Note that we use here the assumption char(k) = 0 . In the general 
case there is some additional term depending on the wild ramification. 

Corollary. Let X be a minimal elliptic surface, -. A its jacobian 

surface. Then 



The first equality follows fr~~propositions 1 and 2 , the 

second one follows from the first and the Noether formula. 

Proposition 7. Let f : X + B be an elliptic fibration. Suppose 

that for some fiber Xb the reduced curve is singular. 

Then 

Proof. The hypothesis implies that under the Albanese map alb: X + Alb(X) 

the fiber 
Xb 

goes to a point (since all of its components are rational 

curves). This shows that in the canonical commutative diagram 

alb 
X Alb(X) 

$ is a finite surjective map and -hence dim Aib(X) = dim J ( B )  = genus(B) . 
Corollary. Suppose that the jacobian fibratio? j : 4 -+ B has a 

singular fiber. Then for any elliptic surface X with the jacobian 

surface equal to A we have 

:orollary. Let X be an elliptic surface with q = p = 0 . Then 
g 

its jacobian surface is rational. Conversely, any elliptic surface.with 

rational jacobian surface has q = p = 0 . 
9 



Thus .all elliptic surfaces with q = p = 0 are obtained from 
9 

rational jacobian elliptic surfaces by choice of some fibres of type 

1 .  
1 h and Some element of finite order of the Picard group of each of 

these, fibres. 

All rational elliptic surfaces can be described with the help of 

so called Halphen pencils on the projective plane ([131) . These 
are the p'encils of curves of degree 3m with 9 multiple points of 

multiplicity m lying on a cubic. The case m = 1 corresponds 

to jacobian surfaces. 

To find a place in the above classificatjon of elliptic surfaces 

with q = p = o for the Enriques surfaces cc,nstructed in Chapter 1 
g 

we note that for such surfaces P2 = 1 . In virtue of the fir& 
corollary to the theorem in 51 we get the following relation for 

the multiplicities m of multiple fibres 
i 

This, of course, can occur only in the case 

Applying the, formula for the canonical class of elliptic surfaces 

we see that, on the contrary, for any minimal elliptic surface X 

with. q = p = 0 and two multiple fibres of multiplicity 2 we have 
9 

2% = 0 . Notice also that the following result holds: 



Theorem ( ~ n r i q u e s ) .  Any a lgebra ic  sur face  X with q = p = 0 and 
g 

2K = 0 i s  an e l l i p t i c  surface. 
X 

The proof is too long t o  reproduce here (see I l l ,  Ch. 9, and 

a l s o  161). 

There is a l s o  a theorem (again due t o  Enriques) which s t a t e s  

t h a t  any surface with q = p = 0 , 2K = 0 has a s e x t i c  surface a s  
g 

its b i r a t i o n a l  model. Again t h e  proof is too  long t o  be reproduced 

here ( see  111, Ch. 9 and a l s o  121). The p a r t i c u l a r  form of t h i s  

s e x t i c  passing through t h e  edges of  a te thraedron corresponds t o  

a p a r t i c u l a r  Enriques surface.  



2. Torsion. 

In .this section we shall prove that any finite abelian group 

can be realized as the torsion group of an elliptic surface w.ith 

q = p  = O .  
g 

Lemma. Suppose that D is a torsion divisor on an elliptic minimal 

surface X w j ' h  q = 0 . Then D is linearly equivalent to a 

rational lineak combination of fibres of some elliptic fibration on X . 
2 0 

Proof. Since h (K + D) = h ('-Dl = 0, by Rien,ann-Roch we get -. X 

Let D' f IKX +DI . Since D' does not intersect a general fibre 

of any elliptic fibration (because 
K~ 

does riot), it equals some 

linear combination of components of 'fibres. boreover, D' does not 

intersect any component (because K does not). Applying the main 
X 

lemma from 51 we get thpt D' is a rational linear combination 

of fibres. Thus, D' - Ij( % D is also a rational linear combination 

of fibres. 

Theorem. Let f : X + B be a minim& elliptic fibration with 

q(X) = 0 . Let F- = m F 
0 

bi 
i biI i = l,!.., r be all'its multiple 

fibres. Then 

r '4 Tors (Pic (X) ) = Ker ( $ Z/m, J Z/m) , 

- 
where m =  m l... mr, $(al1...,a ) )  = mod m , mi =m/mi  . 

r i i 



Proof. Using the lemma we may write any torsion divisor D in the 

form 

where 0 5 ai < mi, F any non-multiple fibre. 

Intersecting the both sides with some transversal curve C we 

obtain 

and hence 

%&is shows that 1 is uniquely determined by ai and, moorewer, 

Now we know (see the proof of the theorem in 51) that the divisor 

F is in the fixed part of any linear system contnining it. 

Hence the coefficients ai are determined uniquely by the divisor 

class of D . This shows that the map 

is injective. 



Now for any (al, ..., a ) satisfying condition ( x )  the divisor 

has zero intersection with any transversal curve and any component 

of fibres. This shows that D is numerically equivalent to zero, 

and, hence, D is a torsion divisor. This proves the surjectivity 

of a . 
Corollary 1. kn notations above 

Corollary 2. For any finite abelian group G there exists an 

elliptic surfac~? with q = p = 0 such that 
g 

Prcof. Applyincj Proposition 4 we may find such an elliptic 'surface -. 

with multiple fibres of any prescribed multiplicities. 

Let - 

be the primary decomposition of G . Consider a surface X with 

the following collection of multiplicities: 



Then applying the theorem we easily see that 

Corollary 3-  (1141) . There exists an elliptic surface with q = p = 0 
3 

which is not a rational surface and has no torsion divisors. 

Just take a surface with multiple.£ibres of coprime multiplicities 

And apply Corollary 1 and Corollary 2 to the theorem of 31 . 



§3.  ~undknental group. 

Here following to Kodaira [281' and Iithaka I251 we shall compute 

the,fundamental group of an elliptic surface, over the field.of 

complek numbers. 

Let f : X + B be an elliptic fibration. 
I 

Lema.1. Let U c B be an open set such that the restriction 

fU : XU + U of f over U has no multiple fibres. Choose a 

point p 6 X lying in a non-singular fibre. Then the following 
0 u 

exact sequence holds 

proof. Consider the inclusion map XU an6 the projection 

map fU : X a U and the correspondent homororphisms of fundanlefital 
U 

groups. Then the image of Tr (X ,p is clearly contained in the 
1 E(pO) 0 

in the kernel of the second homomorphism, and we have to show that it 

coincides with the kernel and the second homomrphism is surjective. 

Restricted over sufficiently small U the map f is a differentiable 

2-torus fibre bundle, and the corresponding sequence is the exact homo- 

topy sequence. This obviously proves.the surjectivity of the second 

h~~1;~mxphism. 

Let y be a loop with the origin at po . Let XU be a singular 
0 

fibre of fU , there exists a local section D + s, D beinga 
0 -0 

small disc centered at f(po) (since X is not a multiple fibre): 
u 

0 



Assuming t h a t  y goes t o  zero under ?x 
it allows t o  deform y t o  

a loop on X keeping t h e  point  po & y f ixed.  This proves 
f (pol 

t h e  lemma. 

Next, l e t  Dlr. . . ,D be some open d i s c s  around t h e  p c i n t s  r 

bl, ..., b f o r  which the f i b r e  5: is mult iple  of  m u l t i p l i c i t y  . m  i 
I 

Assume t h a t  over the punctured d i s c s  of  D; t h e  morphism f i s  

smooth. Let U = B - D l -  ...- D X = f - l ( I J ) ,  V . = ~ " ( D ~ ) ,  r '  u 
V" = f-'(~:) . 
i 

We s h a l l  apply van Kampen's theorem t o  compute a (x) . 
1 

Let 

6, 0 be some loops on or ig ina ted  a t  po which 

generates  11 (*f(p0) Po) 

tll..-,t2 be t h e  loops on B s t a r t i n g  a t  f (po)  and 

going arount? tlie po in t s  bl, . . . ,br ; 

al, ..., a g ;  bl, ..., b another loop m i g i n a t e d  a t  £(pol 
!I 

which together  with ti generate 

al(U; ; 

Denote by ti, a f ,  b; some loops on XU ly ing  over t., a., bi 
1 1  

with- the  o r i g i n  a t  po . lhen asstuning t h a t  a bi a r e  chosen a s  the  

canonical generators  of n ( U ;  £(pol) , we g e t  the  following. 
1 

Lemma 2. The group nl(XU; pol is  generated by 6,  0 ,  ti ,..., t '  r 1  

a , . a , b , . . , b g  (g  = genus of  B) with t h e  following b a s i c  
9 

r e l a t i o n s :  



(ii) the group ( 6, a) generated by 6, a is normal in 

nl(XU ; p0) i 

(iii) aq.ya*-lbi-l* *a*b,a ,-lb.-lt, 
1 1  1 g g g  g l.--t: e 16, a) : 

(iv) some relation between 6 and a (may be trivial) . 

This follows immediately from Lemma 1 and the known structure of 

Choose 'some points p., i = 1 ,..., r lying over D: and 

X X some loops iji, ui in the fibre X generating n (X 
f (pi) 1 f(pi) 'Pi) - 

Let Ti be a 14,op going around bi and passing through f (pi) , 
'' - - 

ti some loop on V' lying over t. which passes through p 
i i '  

X  x -  
Lemma 3. The gnmp nl(v:, pi) is generated by  IS^, ai, tf with 

the following basic relations: 

X X -  x x  
(i) diai - a 6 i 

X X 
(ii) 6: and ai generate a normal subgroup in n1 (Vi ; pi) ; 

(iii) i-r 6 ' = 6yFi ; i i 
h. 

X 1 x- 1 
(iv) yiu: = tji ai ti , if '5 is of type m h 

i i i '  

Proof. ?+plying Lerma 1 we will prove the first assertion and find -- 
the first two relations. To obtain another pair of relations we will 

use the following description of V: which is due to Kodaira [27] . 
There exists an unramified covering F +.vX whose covering transformation 

i 

group is a cyclic group of order mi . The space F is represented 



in the form 

where in the first case r is the discontinuous group of analytic 

automorphisms 

m m m. 
( j ( z  i, is a holomorphic function of z with Im j ( z  ') > 0 ) . 
In the second case r is the infinite cyclic group of analytic 

x n automorphisms of D.xC g'enerated by the automorphism 

Identifying the universal covering space of D: with the upper 

half plane H = {T I I ~ ( T )  3 0 and the covering map with the 

exponential map T -+ exp(2~ i .c )  , we get that in the both cases 

the universal, covering space of V: is equal to HxC and the 

covering transformation group H may be described as follows: 

I£' hi = 0 then 7 consists of analytic automoprhisms 
t 



If hi > 0 , then 7 consists  of analytic automoIphisms 

Identifying i n  the usual way the loops originated at pi w i t h  

covering transformations, we may assume t h a t  

ti corresponds t o  the  element of with (1, n2, nJ = (1, 0, 0 )  , 

Si corresponds t o  the element of 7 w i t h  (nl, e2, n ) = (0' 1' 01 , 
3 

ai corresponds t o  the element of 7 with (I$, n2, n3) = (0 ,  0, 1) . 

The re la t ions  fiii) and (iv) are irerified aow immediately. 

To use van Kampen's theorem we consider homom~rphisms 

w h i c h  correspon9 t o  the  natural  inclusions v W w x  and t o  a choice i 

of so= paths cdnnecting the points pi asd po . and a l so  the 

na tu ra l  surjections 

Applying the same arguments a s  i n  the  proof of Proposition 2 from 

91 we may assume tha t  the cyclic covering F of < can he prolonged 

t o  an e l l i p t i c  f ibrat ion over Di , tha cycle a w e r i n g  of Di of  

degree rn , w i t h  f ib re  of type over the arigin. This eas i ly  

implies that 



Moreover, 'if hi > 0 we get that  

Collecting everything together we obtain: 

Theorem. The fundamental group r (X) is generaced by le t te rs  
1 

6, a, al,-.., ag, bl, ..., bg, tl, -.,t . 
. r 

The basic relations are 

ii) ( 6 ,  o} is a normal subgroup , 

V) some relation between 6 and 0 (may be t r ivial)  . 

Corollary. L e t  f : X + 3P1 be an e l l i p t i c  fibration. Then r l ( X )  

is abelian i f  and only if it has at hst 2 multiple fibres.. 

In fact,  r l ( X )  has as  its quotient the group G t 3 ,  ..., m 1 r 

given by generators tl, ..., t and relations 
f 

These groups are well known in the theory of automorphic functions. 

Namely, there e d t  natural representations of these groups as a 



discrete subgroup of the automrphism group of one of the three 

1 standard planes: the Riemannian lp (5)  , the Euclidean 5 , 

and the Lobachevsky H = { z  c @ 1 Im(z) > 0) . W e  have (see [301) that  

each of these cases corresponds t o  the sign of the number 

We have the case 

pL (IT) i f f  e > 0 and i f f  G(q,. . . ,m ) is  f in i te ;  r 

6: . i f f  e = 0 and i f f  G(ml, ..., m ) is  non-commutative r 

nilpotent; 

H i f f  e < 0 and i f f  G(ml, ..., m ) is inf ini te  

non-nilpotent . 

Thus, vl(X) csn be abelian only in the case e > 0 . In t h i s  case, 

G b 1 8  m2' mj) .is a f i n i t e  subgroup of ~ ~ ( 2 , @ ) / { + 1 )  , that  is the 

rotation group of some regular polyhedron (r = 3) o r  a cyclic group 

(r = 2) . This, of course, proves the corollary. 

Corollary. (1141) . Let  X be an e l l i p t i c  surface with' q = p = 0 , 
9 

which admits an e l l i p t i c  fibratioil f : X + PL w i t h  exactly two multiple 

f ibres  of coprime multiplicity. Then. X is a simply connected non- 

rational surface. 

In fact ,  its fundamental #oup being abelian has t o  coincide w i t h  

the homology group H1(X.,Z) . Since q[X) = 0 , H ~ ( X ~ )  = Tors(i11(X,7&) . 
It remains t o  apply Corollary 1 of 52 . 



Remark. In I143 the argument that lrl(X) is abelian was not 

correct. So, i n  fact,  it was proven there only that there exist 

non-rational surfaces with q = = 0 with no torsion divisors. 
Pg 

This was the original question of F. Severi. 



CHAPTER 111. SURFACES OF GENERAL TYPE 

51. Some useful lemmas. 

Lemma 1. Let X be a scheme and T is a finite subgroup of the 

Picard group Pic(X) . Then there exists a finite etale Galois covering 
t : X + X uniquely determined by the properties T = Ker(Pic(X) f=Pic(XT)) 

T 

and the Galois group of f is isomp~hic to the' character group ChartT) , 

Proof. For any E t T let OX(E) be the corresponding invertible sheaf. 

The locally free sileaf L = +3 0 (€1 has a natural structure of an 
&tT X 

0 -Algebra corresp~nding to the isomorphisms 0 (E) 5 Ox(€') -+ OX(€+€') . X - X 

Put XT = Spec(L) . Then the projection f : X + X is finiteand 
T 

flat. It is also etale, since det(L1 = 0 (€1 = OX . The group 
E6T X 

G = Char(T) acts naturally on XT multiplying each summand OX(€) by 

G ~ ( € 1  , x c G . Clearly, the invariant subalgebra L = OX , hence 
f" 

rp/G = X and f ?.s a Galois covering. Assume that L E Ker(Pic(X) - 
Pic (XT) ) . Then ?(L) = OX and fxfXc~) =,. f (0 ) = L P3 OX(€) = 

T X~ 
= f (0 = E$TOX(f:) . This implies that L 5 OX(&) = 0 (El) for some 

X~ X 

E' c T and hence 1 = OX(& - E') € T . The inclusion T C Ker is 

obvious. 

To prove the uniqueness note that for any finite Galois covering 

f : X' -t X with the Galois group G we have 

This immediately follows from the'Hochshild-Serre spectral sequence or 

from direct considerations. 



Now f (0 ,) must split into eigen subsheaves corresponding to 
x X 

characters of G 

Let L X  be the invertible sheaf corresponding to a character in virtue 

of the above identification of Char(G) with the subgroup of Pic(X) . 
Then L being lifted onto Xf is trivial, thus it is embedded into 

X 
f (0 ,) and is ismorphic to one of its suwnands (namely, f K ( O  ,) ) - x X X x  

This shows that X' = Spec(f (0 ,)) is isomorphic to XT constructed 
x X 

above. 

Corollary. In the above notations 

i i 
B (X .O = E:TH (XI Ox(€)) 

X~ 

More generally, for any locally free sheaf L on X we have 

proof. We have - 



It remains t o  applytheLeray spectral  sequence which dzgenerates 

because f is  f in i te .  

Lemma 2. (Bombieri 141). Let F be a swrfac'e of general type 

with q(F) = 0 ,  m = Tors(F) the order of the torsion group. 

Then 

1 2  
PJFI 5 

and 

i f  there exis t  a f i n i t e  abelian unramified covering of F of irreg- 

u lar i ty  a t  l eas t  one. 

- 
Proof. Let f : F -t F be the covering corresponding t o  the torsion 

group Tors(F) i n  virtue of Lemma 1. By the lemma of 52, Chapter 1 

-we know tha t  

Now apply the following c lass ic  Noether theorem (see 141. Th. 9) : 

a@ consider separately the two i)ossible cases: 

a) q(i?) ;)> 0 : Then pic (F) contains a finite subgroup of 

any order n . Let P(n) + be the corresponding e t a l e  covering. 



W e  have 

1 2  P ~ ( F ( ~ ) )  = n (1 + pa@)) + q(F(n)) - 15 z n  K- F + 2 , 

dividing by n and letting n +  w we get 

Now dividing by m we obtain 

b) q(F) = 0 : Then 

and it suffices t o  divide both sides by m . 
Lemma 3. Let F be a surface of general t y p .  'Ihen 

Proof. By Noether's formula 

2 
Since 5 > 0 and cZ(P) > 0 (otherwise, F worrld be ruled, 141, 

Th. 13) we get the inequality. 



Lemma 4. Let F be a surface of general type and D be a divisor 

numerically equivalent to mKF , m 2 1 . Then 

1 .  
A (F, OF(D+KF)) = O .  

Proof. This immediately follows from the following Ramanujam's 

form of Kodaira's Vanishing theoren (C. Ramanujam,. 3. Indian 

Math. Soc., 38 (1974) , 121-124) : Let X be a complete non-singular 

2 surface, L and invertible sheaf on X such that (cl(L) ) > 0 and 

i 
( C  (L) C) 2 0 for any curve on X . Then E (X, L-l) = 0 for 1 

i = 0 , 1 .  

Corollary. The m-th plurigenus Pm of a surface of general type 

F is given by 

in particular 

Use Reimann-Roch and Lemma 4 applied to D = (m - 1)s . 
Lemma 5. Let f : X + Y be a double covering of non-singular 

surfaces branched along a reduced curve W C Y  . Then 



Proof. The subsheaf Oy is naturally identified with the subsheaf 

of f,(O invariant under sheet-interchange. Since the ckaracter- 
X 

istic is assumed to be zero (or at least prime to 2 ) ,  this sheaf is 

a direct summand of &(OX) , the complement being a sheaf 'L of 

anti-invariant sections. The sheaf L" is obviously a subsheaf 

of the invariant subsheaf, that is oy . thus iB2z 3 f& some Ideal 

sheaf J C Oy . This shows that X is isomorphic to the subscheme 

l?)n of the vector bundle v(L) = S ~ ~ C ( ~ @ ~ L  ) defined by the ideal 

(ia2 - 1) . Now, the local arguments of the proof of  emm ma 2, Ch. 1, 

53 show that :; = 0 (-W) and a = f*(ay k3 L-l) . 
Y X 

Corollary. Let F be an invertible sheaf.on Y.. Then 



52. Numerical Godeaux surfaces. 

By this we mean any surface of general type F with 

In virtue of Lemma 3 and corollary to Lemma 4 of gl we get moreover 

that 

1 
qfF) = 0 and P,(F) = - 2 m(m - 1) + 1 . 

We will distinguish these surfaces by the value of its torsion 

group TorsCF) . First of all, by Lemma 2 of 1-we have the 

following. 

Proposition 1. If m = Tors(F) then 

For any abelian unramified covering F' + F we have 

Bmposition 2. (Bombieri). There are no numerical Godeaux surfaces 

with Tors(F) = 6 . 
Proof. Assume that Tors(F) = Z/2Z cB 2/32 . Then there exists an - 
unramified covering 'F' + F of order 2 with Tors (F') Z/3Z . 



~y the lemma of Chapter 1, 92 we have 

p 1  = 3 and -q(F1l + p (F') = 1 . 
9 

By proposition 1 q(F') 0 and hence we obtain a surface with 

(1)- 
p - 3, pg = 1, q = 0 and tke torsion group %G/B . Bowever 
this contradicts Theorem 15 of 141 . 
Remark. Since the previous proof is a simple application of 

Theorem 15 of 141, which in its turn is provad using other non- 

trivial. results of [43, it is better to give an independent proof. 

As suggested by Miles Reid we can argue as follows. 

Let Y ba the covering of X corresponding to the group of 

torsion of ordx 6. Then p (Y) - 5, < = 6 = 2p (1) - 4 . 
9 g 

Now we will us+ 

Lema (E. Horikawa). Let Y be a surface of general type with 

2 (5) = 2pg(Y) - 4 . There 151 is an irreducible linear system whose 

general member is a hyperelliptic curve. 

Proof. Suppose that 

where F is a fixed part. Assuem that I c ~  is composed of a 

pencil, say C a[Co] , where a > 1 and [%I is an irreducible 

pencil. Then p (Y) a. + 1 and the equality holds if fCOl is linear 
9 

0 
(i-e. dimR (Y, O(Co)f  = 2 ) . We have K O F  2 0 , therefore 

I' 
2 2 5 2 5 P and since C: / O we get 5 c0 2 2 , because 4 2 2 . 



Hence 

and we have a contradiction. Thus we may assume that I c I  is not 

composed of a pencil. 

Now the analysis of the proof of Noether's inequality 

1 2  p (Y) 5 - K + 2 (see [ 4 ] ,  p. 209) shows that in the case of the 
g 2 Y 

equality 151 is an irreducible non-singular curve C of genus 

2 
y =  (5) + l .  

Now the exact sequence 

0 
shows that dim H (C, OC( K C)) = pg(Y)  - 1 . Let D denotes the 

Y 

restriction of 0 1 ~ ~ 1  on C . Then 2D % KC and 2 dim H (C, OC(D)) = 

2 = 2p (Y) - 2 = % + 2 = deg D + 2 . Now by a classical Clifford's 
9 

theorem on special divisors it follnws that C is hyperelliptic 

(see, for example, H. Martens. J. &ine Angen. Math. 233, (1968), 

89-400). 

After we have proven the lemma the arcjument is very simple. 

If is an automorphism of the covering Y + X then a acts 

freely on Y and hence on a general member C of 1 ~ ~ 1  . But this 
is obviously impossible (any automorphism of a hyperelliptic curve 

has a fixed p i n t ) .  . 



Lemma. lReid 1391). Let F be a minimal numerical Godeaux surface. 

Then 

(i) For any non-zero g c  Tors(F) there exists a unique 

positive divisor D t 1% + g1 ; 
9 

(ill if g # g w  then D and D have no common 
9 9' 

components; 

(iii) if g, 9' and gn are distinct non-zero elements of 

Tors(F) then D 
9. Dg' 

and D do not meet. 
9" 

Proof. xi) By Riemann-Roch - 

By Serrets duality. h2($ t g) =fh 0 (-g) = 0 , since g # 0 .. By 
1 h e  e a n  hl($ + g) - h (-4 = 0 in virtue of tE.2 

corollary to Lemma 1, 51 and Proposition 1 . 
(ii) If one of D Qr D is irreducible the result is 

9 9' 

obvious. Suppose that 

is the decomposition into irreducible components with C and C' 

chosen so that (D C )  = (q C') = 1 (recall that (D = $1 = 

If C = C' then D = D' , because there are no relations 
between fundamental curves (that is, curves with no intersection 

with 5) other than equality ( 141, Prop. 1) . 



Let. E be the comon part of D  and D' ,. then E~ < 0 

and even, since it is a positive combination of fundamental curves. 

2  
Thus ( D - E I 2 = D 2  - 2(D-E) + E ~ =  1 + E  5-1. But 

(D - E ) ~  = (D - E) (D' - E) 
must be non-negative, since D - E  and D' - E have no common 
components. 

2  
(iii) Since 5 = 1 each two D  and D , g # g' meet 

4 9' 

transversally at a non-singular point for both curves. The fact 

that three distinct D  D  and D meet at a point is equiv- 
9' g' g" 

alent to the fact that 0 (D - D ,) being restricted on D is 
F 9  g g" 

isomorphic to the structure sheaf of D  
9" ' 

Write the exact 

sequence 

and the corresponding cohomology sequence 

Since D - D is a non-zero torsion divisor, the first term is 
4 ¶ '  

I 
zero. By duality, the third term is equal to h (51 for some 

torsion divisor. That is also zero (see the proof of (i)) . This 
contradicts the non-triviality of the middle term. 

Propasition 3. (Bombieri-Catanese, Reid). There are no numerical 

Godeaux surfaces with Tors(F) = 2/22 8 2/22 . 
Proof. Let F be such a surface. Then we have the three distinct - 



non-zero torsion divisors of order 2.. L e t  D, Dg and D" be the 

three  divisors constructed i n  Reid's lemma. men  .r;he divisors 

2D, 2DS and 2D" belbng t o  the  l inear  system 1-1 and by the 

property ( i i i )  they cannot be members of a pencil.?. Thus, dim 12$[ 2 2 

However, we know t ha t  P CF) = dim I2al + l = 2 . .?&is cont-adiction 2 

proves the  asse-don. 

Remark. The proof of Bambieri-Catanese 157 uses other more el&orate 

arguments. The p m f  frem I 3 2 J . i ~  not conplete. Thus, we have the 

following possible cases: 

,We know examples af surfaces with 9;/52 (the Godeaax surfaces of 

I 52, e p t e r  I) . Let us show t ha t  these a re  essent ia l ly  a l l  e-amples 

of such surfaces. The proof. &low is Clce t o  Miles %id [391. 

Let be the unramified covering of order 5 corresponding t o  

the  torsion group Tors(F) . Then by the ccarollarj t o  I R r  l of 

51 we have 

0 
We know form Reid's lemma fi) t ha t  h (K + g) = 1. g # 0 . Let  

x ,x ,x ,x be non-zero elements corresponding to t h e  four non-zsro 
1 2 3 4  

0 - 
elements of TcrsfF) . We may consider them as elements of 31 (F, %Il$)j 

generating this space. Since by Reid's lemma the  x 's have no conmn 1 
3 

zero an F , therefore on they define a morphisra f : F + H) . 



Since d = 5 and the degree of f must divide 5 we get that f 
F 

is birational onto a surface F' of degree 5 . This quintic F' 

must be a normal surface, since the arithmetic genus of its hyperplane 

sections coincides with the genus of its inverse images (=canonical 

- 
divisors) on F . Thus F' coincides with the canonical model of 

f and as such has only double rational points as singularities. 

- 
The group G = Char(Tors(Ff) = 2/52 acting on F acts by 

0 -  functoriality on the canonical model F' = Pr~j(~_$&i (F, O$mE$) 

i multiplying x .  by some 5 (6 a 5th root of unity). Thus F 

is "almostn the quotient of a quintic by 2/52 . More exactly, the 
canonical model of F is isomorphic to such quotient. 

We refer to 1111 and [321 for the study of pluricanonical maps 

of numerical Godearn surfaces. Also in 1321 it can be found the 

facts concernbg the moduli space of surfaces with Tors = 2/52 . 
Surfaces with Tors(F) = Z/4Z (Reid-Miyaoke) . 

To construct such surfaces we will pull ourselves by.shoe-strings. 

Assume that such surface F exists. As for the Godeaux surfaces we 

0 :2 consider the elements x e H (F,OF(KF + gi)) , where i g1 * g2 g1 # 

3 2 g3 = g1 are non-zero elements of Tors(F) . Then x1x3 and x2 

0 
fork a basis for H (F,0F(2KF + g2) ) (their linear independence 

follows from Reid's lemma) . Let ,yl and yj be sections of 

0 0 
H (F,OF (2KF + gl)) and H (F,0F(2% + g3) ) respectively such that 

(x2x3,y1) and (x1x2*y3) form bases. 

Proposition. (Reid). The above elements xi, yi generate the 

0 -  w 0 
pluricanonical ring A(F) = $ H (F,c+(~K-) = H (F,O~(~% + 9)) m=o P F m=o 

gt Tors 



of the surface which is the unramified covering of F correspond- 

ing to the torsion.grpup Tors(F) . There are two basic relations 
of degree 8 between these generators. 

Proof. The monomials - 

However, by the corollary to %emma 4, 91 we find that 

Thus there is a linear dependence between these 8 monomidls, which 

we will write 

In the same way the 8 monomials, 

0 and h (4% + g2) = 7 . Hence we have the second relation 

Both these relations of degree 4 considering xi,yi 
as elements of 

* 0 -  
the graded canoni3al ring A @  = S O H  (F,O$%-) - 



kext, let 

be the quotient polynomial ring. Grade B by the condition deg(Xi) = 1, 

deg(Y.1 = 2 , then we have the morphism of graded algebras 

The proposition is equivalent to the assertion that $ is an 

isomorphism. 

NOW, the ~oincare' function (compare 115 1 ) 

4 2 
PB(t) = 1 dim B ti = ) (l+t2) * i 3 2 2 * -  (1-t) (1-t ) (1-t) 

In xirtue of the formula for P. this coincides with 
1 

i - (t) = 1pi(F> t . 
'A(F) 

~hus; it suffices to check that $ is injective. 



ff $ is not injective then the image of the rational map 

w i l l  be a proper closed subscheme of V . 

Let j be the e e d d i n g  v-z7 corresponding t o  the surjection 
Q - 

~ 1 ~ ~ 1  -P B ' ~ )  = iE3B2i , a : P * M the canonical m a p  of I onto its 

canonical model M . The composition 

is  easily t o  be seen coincides with the 2-canonical map 

In virtue of Reid's le- ¶J is regular (see the analogous 
%- 

argment i n  the previous case of the Godeaux surfaces), thus 

is also regular. This shows that $ is i n  fact  a morphism. 
2T 

Let = Q (F) , By om assumption, is a proper closed 
2%- 

subscheme of V . Since V spans a' its degree is a t  least 6 . 
Since ( 2 % ~ ~  = 16 and 151 has no fired part it implies that  

V is  a surface and deg V = 8 or  16 . Horecver,. in the f i r s t  case, 

Q defines a 2-sheet covering 
2T 

and in the second case g is a birational morphism. Since deg j ( V )  = 16 



(this follpws from the equality of the Poincare functions for ~ ( 3  
- 

and B) we get that in.the second case V = V . SO, we may assume 
- 

that B2= is a 2-sheeted covering onto its image V . Let C r 
F 

be a non-singular curve, the map gl-C equals the canonical map of C 

and since it is %sheeted C must be a hyperelliptic curve and g I c 
its hyperelliptic involution. Now, notice that the canonical map 

Q also factors through and hence through g . Then % cuts 
5 1 

out on C a ,  g4 which is composed with hyperelliptic 1 
92 ' 

This implies that K F ~ ~  is not a complete linear system. But the 

letter contradicl:~ the vanishing of i - ? ( ~ ,  . 
Corollary. Let F be a numcrical Godeaux surface with Tors(F) = Z/& , 
- 
F its unramified covering corresponding to the torsion group. ''Then 

the canonical model M of F is isomorphic to a weighted complete 

intersection V4,4(1,1,1,212). The action of the group Char(Z/rlZ) = p4 

on M is induced by the action of this group on the weighted projective 

space IP (1,1,1,2,2) which multiplies the first three coordinates by 

5 ,  5*, 53 accordingly and the fourth and the fifth coordinate by 

GI 5' accordingly (5 a primZtive 4-th root of 1) . The canonical 
model M of F is obtained by dividing M by this action. 

This corollary prompts to us the way to construct F . For this 
one may take a non-singular F = V (1,1,1,2,2) invariant under the 

414 

above action on P(1,1,1,2,2) and not containing the fixed point of 

this action. Using the general properties of weighted complete 

intersection (which are quite analogous to the ones of usual non- 

singular complete intersections) we find (see, for example, 1151): 



Dividing F by the free action of v4 we get the surface F with 

Notice also that we have n (F) = 0 and thus 
1 

An explicit exanple of V4,q(1,1,1,2,2) with the properties above: 

For a more general example see 1321 . 
Surfaces with Tors(F) = Z/32. 

Here the same method of Miles Reid shows that the covering $- 

of such surface F is embedable into the weighted projective space 

P (1!1,2,2,2,3,3), unfortunately, not as a complete intersection. 

There are not any explicit constructions of ithe example in I391 

does not work) and, thus, the question of the existence of such surfaces 

F is still open* . 
* see Epilogue. 



Surfaces with Tors(F) = 2/22 (Campedelli-Kulikovdort). 

The main idea here belongs to Campedelli, who proposed to construct 

a surface with p(ll = 2 as a double plane branched along a 10th order 

3 curve with 5 triple points of type x + y6 = 0 and an ordinary 4-ple 

point. Unfortunately, his construction of such a curve is false (see 

below). Victor Kulikov (non-published) proposed to modify the Campedelli 

curve, taking the union of two conics and two cubics such that one of 

the cubics has a double point, both conics pass through this point and 

touch both the cubics at other points. Oort gave an explicit construction 

pf this configuration ( [353) : Let W = C1 u Z2 L) Dl C) D2 , where 

It is easily checked that 



where 

the point P6 is an ordinary double point of D2 , and the combination 

of the points above is considered as a divisor on any non-singular curve 

taking part in the intersection. 

Let F be the minimal non-singular model of the double plane 

branched along the curve W . 

'Assertion 1: 



Proof. This is s imi la r  t o  t h e  proof used a t  t h e  construct ion of  t h e  

c l a s s i c a l  Campedelli surface from Chapter 1, 93 . 
Let  p : X + IP2 be- t h e  minimal reso lu t ion  o f  s ingula r  po in t s  

of t h e  branch curve W . Then the s t r i c t  inverse transform of W 

where L is  a l i n e  on 3P2 , 

2 2 2 
with S. = -2 , 1 L i 5 ; 5 .  = -1 , i = 6, 7; 5' = -2, 9;' = -1 . i 

Let r : I?' + X be  t h e  double covering of  X branched along t h e  

-1 5 
d i v i s o r  p (W) + 1 si , then 

.i=1 

Assume t h a t  D r IK ; 1, then w e  see from above and coro l la ry  
F 5 

to Lemma 5. 51 t h a t  D = r * ( ~ ' )  , where D1 t I~~'(L) - 1 S; - S; - s61 
i=l 

and hence equa ls  t h e  proper inverse image y d e r  p o f  a conic passing 



througll the points Pl, . . . , P6 . However, obviously these points are 
not situated on a conic. This shows that I Kp , I  = j3 and thus 

-1 Since r is branched along Si, i=l,.. .,5 and p (ci) , i=1,2, 

we see that 

E*(s.) 1. = 2Zi) , rx(p-l(~i>) = 2 3  

for some curves Si and ??' on Fs . Also, we have 
i 

- 2 1 x  2 1 2  1 
Si = $r . (Si) ) = z(2S. j = -$-4) = -1 

- 2 1 t - 1  2 1 - 1  2 1 
C; = ~ ( r  (P (Cif) ) = q(2(~ (Ci)) 1 = ~ t - 8 )  = -2 . 

- 
This shows that S are exceptional cunVes of the 1st kind. Let i 

6 : F' + F be the blowing dor-m of a11 si . Xe will show that F is 

the minimal model of F' . We h a w  

a d  hence 



Assuming that E is an exceptional curve of the 1st kind on F , 

we get that (E* 2%) = -2 and hence E coincides with one of the 

- - - 
curves C. , S; or - S" However, we sew above that F~ = F;~ = -2 

5 '  i 
X - 2 2 and also zi2 = r (s;) + 1 = 2 si2 + 1 = -4 + 1 = -3 , S; = r = -2. 

Now 

and the assertion is proven. 

Assertion 2. 

Proof. In the proof of Assertion 1 we have found already a torsion 

divisor of order 2, this is 

In virtue of the analysis of the torsion of numerical Godeaux surfaces 

we know that Tors(F) = 2/22 or 2/42 . Let us exclude the secand 
possiblilty. 

Assume that g is a torsion divisor of order 4 Consider the 

involution 6 of F corresponding to its rational projection onto 

le2 . If 6r (g) % g , then 2g % .O , . since there are no torsion 
2 divisors on P . Thus, 6n(g) r\, -g , because 6. defines an auto- 

morphism of the torsion group 2/42 . Let D be the unique curve 
g 

from I $ + gl . Then 



The bicanonical system 1 2 5 1  is a pencil, generated by the two 

curves 

and 

- 
We see that 12$1 has the fixed component, namely S; , which has 

to be contained in both D and D . However, by Reid's lemma 
9 -9 

the curves D and D- has no common compnents. This contradiction 
9 S 

proves the assertion. 

Remark. Campedelli proposed to construct the branch curve W as the 

union of.3 conics Cl, C2, Cj. and a quartic D such that C1 and 

C2 are bitangent to Cg , touch each other at a point, D has a 

node at one of the two ordinary intersection points of Cl an8 C2 , 

passes through the five contact points of the conics with the same 

tangent direction (see 191) . 
The arguments similar to the one used above show that the bicanonical 

system of the corresponding double plane is equal to the inverse image 

of the pencil of quartics on IP2 touching D at the pints of cpntact 

with C1 U C2 U Cj and having a node at the node of 2 , Considering 

the two curves from this pencil C1+ C2 and D we k r l l  find two 



torsion divisors of order 2. This contradicts Proposition 3. Thus 

the Campedelli construction does not exist. 

Surfaces with Tors(F) = 0 . 
There are no examples of such surfaces. Maybe it is worth to 

consider a version of the example above with the branch curve W 

equal to the union of two conics and two cubics forming the following 

configuration (Kulikov): 

where C1 and C2 are co~ics, and D D cubics. 
1' 2- 

Arguing as above we would show that the bicanonical system is 

equal to the inverse image of the pencil of quartics passing through 

P1,...,P5 with the same tangent direction as W and having a node 

at P6 . It is seen that there are no' members of this pencil composed 

of components of W . This easily proves that .there are no torsion 
elements of order 2 . 

Of course, the existence of thts configuration is not easy to 

justify. 



3. Numerical Campedelli surfaces. 

These are surfaces with p = 0 and pC1'= 3 . They are 
g 

distinguished by the order m of its torsion gorup. It was proved by 

Beauville I31 and Reid that m 5 10 . Here we exhibit examples of 

numerical Campedelli surfaces with m = 2, 4, 7 and 8 . There are- 

no examples of such surfaces with other possible value of m*, 

moreover there are no examples of numerical Campedelli surfaces 

with Tors (F) = 2/42 . 
a) Sldsgi~al- camnedel&i-sggage=. For -them we already 

know (Chapter 1, 53) that  Tors(F) 3 (z/2z)3 . We w i l l  prove now 

that  we have the equality. 

- 
Proposition (Miyaoke 1321, Reid 1391 ) . Let r : F + F be the unram- 

i f i ed  covering of the classical  Campedelli surface corresponding t o  

the subgroup T = (Z/22) of the torsion group Tors (F) . Then the 

canonical system F$ defines the birational morphism of onto the 

intersection of 4 quadrics i n  a6 . 
Proof. We know (Chpater 111, 81) t h a t  

Let us show that  

0 since h 0 ( 2 9  = 3 , we get that h (s+g) 5 2 . If xs have the 

equality, then 1 2 ~ ~ 1  is composed of the pencil -1 . 

* see Epilogue. 



Considering the restriction of /KF + P I  onto zl , we see that 
- 

this pencil has a base point on S1 . This shows that 12$1 has 

also this point as its base point. However, the curves 

2 z  + 2-d + 2 S  + 2 S  and 2-d + 2 c  + 2z5 + 2z6 from 125-1 intersect 
3 2 3 4  1 3  - 

S at two distinct points. This contradiction proves the needed 
1 

assertion. 

Denote the lements of T by 000, 100, 110, 010, 001, 011..101, 

and 111 . Let 

be non-zero sections. 

0 - 
Clearly, rx(xi) = yi, i=O,. . . ,6 , generate H (F,%(%)) . All 

2 0 0 
squares x belong to H (F,O (2  1)  and, since h (2KF) = 3 , there 

i F KF 
must be 4  relations among them. This shws that there are 4 relations 

2 
between yi in H~(~%(K$ 1 . Now we can find explicitly these 
relations. We know that the bicanonical system 1251 is represented, 

by the net of quartics 

(in notation of Ch. I, 53). Up to a permutation we easily find that. 

2 x,, corresponds to C C 
.1 2 

X 
2 a 
2 " '2'3 

X 
2 n 

3 " '1'3 



2 2 x4 corresponds to C 
1 2  

2 
X I 

5 * c2x; 

X 
2 n 
6 " C& 

i rn D 

where (resp.R2, resp. t3) is the line through the points P5 

and P6 (resp. Pg and P4 a resp. p1 an6 P2 ) . 
This gives the following relations among y i 

for some non-zero constants a, b ,..., g, h . 
Thus we obtain that the canonical image aK(F) is contained in - 

the complete intersection V of t+he four quadrics given above. It 

is easily checked that V ' has only isolated singular points (in fact 

24 double ordinary points) and hence being a complete intersection is 

an irreducible surface. This implies that @j$) = V if only 
. - 

dim @E(F) = 2 - Assume that @-(p) is a curve. Then its normalization 
K 

1 
X is isomorphic to the projective line P (since g(F) = 0 in view 

of the corollary to Lemma 1, Ch. 111, 51 and the remark above concluding 

0 
that h ($ + E) = 1 for any E E T) . Clearly the group T = (2/2) 

3 

7 
acts faithfully on P = P($(F,o-( ) ) and hence on the image Ci(F1 . F % 

1 
this shows that T is isomorphic to a subgroup of Aut(lP ) , but this 

is impossible. 



Thua we obtain that 

is a complete intersection of four quadrics. 

Remark. Computing the Poincare function of the canonical ring 

A@) = % HO(i)-'0-( -)) we see that it coincides with the Poincare m=O F %  
w O -  m 

fkction of its subring ,g;H (F,o$K$) . This shows that these 
rings are isomorphic and V is the canonical node1 of . In 
particular V has exactly 24 double ordinary points corresponding 

- - - 
to the inverse images of the three (-2)-curves on F : C1, C2 and 

C3 . 
Also we get that the canonical model of F is the quotient of V by 

the group ( Z / 2 )  . In this way it is easily to get the moduli space 
of the classical Campedelli surfaces. It is a unirational variety of 

dimension 6 (look at the coefficients of the four equations of V 

above). See the details in [32J. 

Corollary.. Let F be a classical Campedelli surface. Then 

In fact, the surface F obtained as the unradfied covering of 

3 
F corresponding to the subgroup (Z/2Z) C TorstF) is simply-connected 

(because it is isomoprhic to a minimal resolution of double rational 

points of a complete intersection). 

b) -GodGodeau~'-s~rfa~eg. These surf aces were constructed by 

Godeaux as the quotients of suitable intersections of four quadrics 

in lP6 by cyclic group of order 8 acting freely ( 1201) . 



Consider four quadrics given by the equations: 

where a generator of 6 = Z/& ac t s  on the intersection X of.these 

quadrics by the formulas: 

2 3 4 5 6  
(xo'x1'~2tx3,x4.x5x6) - (xOIsx1,1; x2,c X 3 4  X4,5 X5'5 x6) 

'where 6 = exp(2 i/8) . 
The same argument as  i n  the case of c lass ical  Godeaux surfaces 

,shows tha t  the quotient X/G is  a numerical Campedelli surface with 

Tors (Pic ( X / G )  = nl (X/G) = Z/EZ . 

C )  -GodGode&u~-$&dds~r~a~e=. These are a lso  quotients of the 

intersection of four quadrics by other groups of order 8 ([391).  

First, consider the group G = (Z /2Z)  . Define the action of G on 

6 
3e - by the formulas: 



It is clear that for any fixed point (i.e. a Mint with non-trivial 

isotropy subgroup) at least three of its coordinates must be zero. This 

shows that G acts freely on the surface given by the equations 

2 2 2 
pixi = P.x. = Ic.k2 - d.x. = o , 

1 1  l i - 1 1 1  

where all minors of maximal order of the matrix 

are non-zero. 

Second, consider the group G = 2/22 @ X / 4 Z  . Let gl = (1,O) , 

g2 = (0.1) be its generators. Define the action of G on lP6 by 

ni/2 
the formulas ( = e ) : 

Now .notice that any fixed point is £ixed either under gl or 

2 under g2 . Thus, the set of the fixed point in P6 with respect 

to the action of G is the set 

This shows that the surface X given by the equations 



2 2 2 
a O x O + a l x 2 + a x  + a x x  + a x x  = O  

2 5  3 1 3  4 4 6  

2 2 2 
b x .  + b x  + b 2 x 5 + b x x  + b x x  = O  

0 0  1 2  3 1 3  4 4 6  

2 2 2 
COXl + C1X3 + C2X6 + C3X0X5 + 9 x2 = 0 

4 4 

2 2 2 s x + a x + d2x6 + d3x0x5 + a4X: = o 
0 1  1 3  

is eas i ly  can be chosen not passing through F . Since it is obviously 

Ginvar iant  we may consider the  quotient X/G , which is a numerical 

Campedelli surface with 

n1 IX;/G) = Z / Z  @ 2/42 . 

The l a s t  example i s  more in teres t ing  1401 . Let Q = (21, +i, +j, +k) 

be the  quaternion group. Consider tis action on P6 by the formulas: 

sin& g2 = -I fo r  a l l  g f. 1 , any fixed point  is fixed by -1 . 
This shows t h a t  the  s e t  of fixed w i n t s  

Now, the  surface X given by the equations: 



c x x  + c x x  + c x x  = o  
0 0 2  1 3 6  2 4 5  

2 2 2 2 2 2 2  d x  + d x  + d x  + d  (x+x+x+x) = O  
0 0  1 1  2 2  3 3 4 5 6 

is G-invariant and obviously can be chosen to be non-singular and 

not passing thro,ugh F . Taking the quotient V = X/G we obtain 

a numerical Campedelli surface with 

sl(v) = Q8 , Tors (V) = 2/22 $ 2/22 . 
d) gu~f~c~s-w~t& zo~s-=-ZL7Z . It: is proven by Godeaux 1211 

and Reid 1391 that if such surface F exists then the canonical model 
- 
F of its covering corresponding to the torsion group is given by seven 

cubical equaticms in . More precisely, it is shown by Reid that 
the surface X c P' given by the equations 

- 
is a very good candidate to be such surface P . It is certainly 
invariant with respect to the involution 6 of IP 

5 

where 5 = exp(2+/7) . Also, this involution acts freely on X . 



- 
It has the same Hilbert  polynomial a s  F . The only thing tha t  has 

t o  be proven is  that---X is non-singular and canonically embeded. 

e) -CamCamp=dgl~i~ob_r~-&u~i~o~ ~rf~c~sA The history here is 

the same a s  i n  the  case of similar  surfaces with p(')= 2 . - Kulikov 

proposed t o  modify the c l a s s i ca l  Campedelli surface replacing the branch 

curve W by another curve a l so  of the 10th order. More precisely, the 

new W is  constructed a s  the union W = E U F U C LJ D , where .E and 

P are non-singular cubics, C and D a r e  conics, which in tersec t  each 

other accordinc: t o  the following picture: 

E/ 

Oort gave the  exp l i c i t  equations ( in  af f ine  coordinates): 

The same arguments a s  i n  the case of a l l  other double planes 

considered above show tha t  the bicanonical system of the surface 



equals the inverse image of the linear system of quartics passing 

through Pi with the same tangent direction as W . Also, in the 
same manner it can be shown that the minimal nor?-singular model of 

the corresponding double plane is a numerical Campedelli suyface. 

The curves C IJ D , C u 2~ , D U 2L' , where L (resp. L') is the 

line given by the equation x + 1 = 0 (resp. x - 3 = 0 )  determine 

the bicanonical Sivisors effectively divisible by 2 . Thus, they 
define three torsion divisors of order 2, whose sum is, in fact, 

linearly equivalent to zero. This shows that 

Tors (F) 3 ( 2 / 2 ~ ) ~  . 

It is easy to see that there are no more torsion divisors ~f 

order 2 . Applying Beauville's estimate of #Tors we get that 

Unfortunately, I cannot see h w  to exclude the second possibility. 

But it is conjectured that it can be done. 

Remark. We have two different constructions of surfaces with Tors = 

(2/2Z)3 , these are the classicla Campedelli surfaces and the Godeaux- 

Reid surfaces. It is easy to see (using the proposition from this 

section) that the Godeaux-Reid surface is a deformation of the 

classical Campedelli surface (see the.details in 1361) . 



4. Budat's surfaces 

These. surfaces were constructed in [7,8] as certain (2,2)-covers 

of the projective plane. The linear genus p(l) takes value '3, 4, 

5, 6, and 7 for them. Later this construction was reproduced in a 

modern way by C. Peters I371 . Here I give some other version of 
* 

this construction which allows to compute the torsion group. 

First, we consider a minimal rational elliptic surface V +  3P 1 

with two exceptional fibres F = 2E + E + E + E3 + E4 and 
0 0 1 2  

n F' = 2E' + E' 9- E' + E' + Ei of type lo (see Ch. 11, 91). We 0 0 1 2 3  

also suppose that there exist 4 sections S1, S2, S3, S4 noninter- 

secting each other with the properties: 

To construct such a surface V one may consider the ruled 

surface P2 , that is a IF1 -bundle over P' with a section so 

2 
for which (so) = -2 , an elliptic pencil on it generated by the 

curves 2s0 + R1 + fi2 + R3 + g4 and 2s , s being any section 

nonintersecting so and Ri any four distinct fibres of F2 . 
The minimal resolution of the base points of this pencil s nRi 

provides the needed elliptic surface V . 
Next, let F1 and F2 be any two distinct non-singular fibres 

of V , consider the pencil P generatedby the divisors F1+2S +E +E' 3. 3 3 

and F~+~s~+E~+E: . It is easily seen that P has 2 base points 

* 
See Epilogue 



of multiplicity 2, namely, Q1 = Flfl S4 Q2 = F2 I2 S3 . Moreover, 
F1 (resp. F )-touches non-singular curves of the pencil at Q 2 1 

(resp. Q ~ )  . 
Let Dl and D2 be two curves of p without common components. 

Consider the following five possible cases (it will be shown later 

that all of them can be realized) : 

A) Di are both non-singular; 

B) Dl = E + D; , where Di is non-singular, 
1 D2 as in A) ; 

C) D~ as in B), D2 = E i  + D; , where Di is non-singular; 

D) D = E + E' + D; , where 1 1  2 Di is non-singular, D2 as in C) ; 

E) Dl as in D), D = E t E' + Di , where D; is non-singular. 
2 2 1 

The following ?roperties are easily checked: 

2 
(Di) = 4 , (Dis) = -(DiF) = -2 (F any fibre) , 

D; touches Di at Q1 and Q~ , (D; - DI) = 4 , 
2 

Di does not meet any of E or E' 
j j ' 

(Dl *El = 2 , where E denotes any other irreducible 

component of D i '  

The Burniat surfaces will be constructed as minimal non-singular 

models of the double covering of V branched along the curve W , 

where in each of the cases A)-E) the curve W is as follows: 

A). W = 

Bl W = 



The following pictures represent in cases A) and D) : 

(the thick curves denote the components of W ) . 
To get a minimal non-singular model of this dozlble covering we 

proceed as in the case of the classical Campedelli surfaces. Let 

u : V' + V be the birational morphia which blows up the curves 

Ri and R i  at the points Qi (i-1.2) , where we assrne that 

Then the divisor 

is 2-divisible and non-singular. Thus we may form a double covering 

r : X' + B' branched along this divisor which will be a non-singular 

model of X . 



where 

B = rX(px(E1 + E;) , in case A) t 

= rx(px()) , in case B) , 

= 0 , in case C) , 
3E 

= -r (pXf~i) ) , in ease D) , 

x x = -r (p (E2 + El) ) , in case E) . 

x 
Now notice that p (Ri) are exceptional curves of the 1st kind taken 

X x 
with multiplicity 2 . The same is true also for r (p (Ei)) or 

K 
rX(px(E;)) if r is branched along p (Ei) or px(q) . Let 
g : X' + X be the blowing down these exceptional curves. Put 

- 
D .= O~(~~($(D) ) ) for any divisor D on V , a d  also i = 0 x frx(~i) ) . 
Then, we get 



where 

, i n  cases A ) ,  Bf , C) , 
, i n  case D) , 

-E2 - E; , i n  case E) 

Since 

- 
F 'L 2E % 2E; 

0 
, i n  case A) , 

2E + 'L 2E;) 
0 

, i n  case B) , 

2E + E 1. 2E' + Ei 
1 0  

, in case C) , 

2Z0 +.EL 'L 2E; + Ei + Ei , i n  case D) , 

2z + z + E 'L 2 3  + zi + E; , i n  case E) , 
0 1 2  0 

and 



This implies 

2 1 
a) 5 = a((2Kx) = 6 , in case A) , 

= 5 , in case B) , 

= 4 , in case C) , 
= 3 , in case D) , 
= 2 ,  in case E) . 

b) X is non-rational (since 2 5  is positive) . 
C) X is a minimal model (since for any exceptional curve of 

the 1st kind C (2K.f) < 0 and this implies that C is 

"I 
- - 

one of the curves Po , Fo , Ei or Ef , but it is easily 
checked that neither of them is an exceptional curve 0-f the 

1st kind). 

It remains to show that 

For simplicity we will prove it only in the case A) . In other cases 
the proof is similar. 

Suppose that 1KX[ # $ . Then taking its inverse transform on X' 

we get 

This implies that 



This means t h a t  t h e r e  e x i s t s  a posi t i i re  d i v i s o r  

which passes  through t h e  p o i n t s  Q1 and Q2 . 
Now n o t i c e  t h a t  

2 
moreover, D = 0 , and ( D I % )  = -2 . If dim I D [  > 1 then f o r  t h e  

moving p a r t  ID' 1 of I D !  we must have ( D ~ ~ )  > 0 . ~ h u s  ID[ 
has  some f i x e d  p a r t  which c l e a r l y  c o n s i s t s  of  com-ponents of  

4 4 
Eo + El0 + -1 Ei + .I E; (s ince I E  + E i  + 2Sll is an urreducible  

1=2 1=2 1 

p e n c i l  o f  r a t i o n a l  curves) . However, it can be seen t h a t  adding any 

n 
of these  compaents t o  El + Ei + 2S1 does n c ~ t  increase  t h e  s e l f -  

i n t e r s e c t i o n  index. This shows t h a t  [ E  + IS* + 2 s .  / is, i n  f a c t ,  
1 1  1 

equal  t o  t h e  moving p a r t  o f  ID1 . Thus, s ince  the f ixed  p a r t  of  D 

does no t  contain t h e  p o i n t s  Q1 and Q2 , w e  have t o  show t h a t  t h e r e  

a r e  no curves i n  [E + Ei + 2s11 passing ttxough Q1 and Q2 . 
1 

B u t t h i s  is easy, because t h e  only curve l i n e a r l y  equivalent  t o  

El + E' + 2S1 passing thrugh Q1 is t h e  curve E3 + E' + 2S3 
.1 3 

whibh does no t  pass  through Qi . 
The only t h i n g  hanging on us  is t h e  proof of  t h e  exis tence o f  

t h e  cases  A)-E) . Of course, f o r  A) it is easy, s ince  t h e  general  

member o f  t h e  penc i l  P is non-singular. To cons t ruc t  o ther  cases  we 

use a represen ta t ion  of  V a s  a double plane which comes from t h e  

inversion involu t ion  o f  t h e g e n e r a l e l l i p t i c  f i b r e  o f  V . Dividing 

V by this involut ion we g e t  t h e  sur face  Z obtained from t h e  quardic  



p1 x JP1 by blowing up 8 points ,  t h e  four  of  them PI, PI, PI, P4 

a r e  s i t u a t e d  on a f i b r e  F o f  t h e  f i r s t  project ion,  and o ther  4 , 

Pi, Pa, Pi, P i  on a f i b r e  F' # F o f  t h e  same project ion.  The 

branch locus of  t h e  p ro jec t ion  V -t Z equals  t h e  union of  t h e  proper 

inverse transforms' onto Z of  t h e  curves F , F' , and four  f i b r e s  

N1, N2, Nj, N4 of the  second project ion,  each o f  them Ni passing 

through Pi and P' These N correspond t o  t h e  sec t ions  
i '  i Si on 

V , LO, LA 
correspond t o  t h e  curves Eo, E;) , and t h e  l i n e s  blown up 

from t h e  p o i n t s  Pi , Pi correspond t o  t h e  curves Ei , Ei . Consider 

t h e  r a t i o n a l  mag Z -+ P2 which is t h e  composition o f  t h e  b.ldwing down 

Z -t p1 X lP1 and t h e  l i n e a r  project ion of  t h e  quadric  onto JP2 with 

cen te r  a t  some po in t  ly ing  ou ts ide  t h e  branch locus o f  V + Z + ,pl % I?' 

Then t h e  image of t h e  branch locus w i l l  be equal  t o  t h e  union o f  s i x  

l i n e s ,  two of  them passing through some p o i n t  Al , say bo, R;) , and 

four  of  them passing .through o ther  po in t  A # A1 , say nl, n2, n3, n 
2 4 '  

The penc i l  of e l l i p t i c  curves on V is  obtained from t h e  penc i l  of 

l i n e s  through Al , t h e  curves F1 and F2 correspond t o  some l i n e s  

ml and m2 througil . Let B~ = m n %I , B = m2 n R4 . The 
1 2 

penc i l  P on V corresponds t o  t h e  penc i l  of  conics  passing through 

All A2, B1 and B2 . To g e t  the  case B) we j u s t  t ake  f o r  Dl a 

coni; from this penc i l  passing through t h e  po in t  go n nL ; i n  t h e  

case C) we take Dl a s  in  B) , and f o r  D2 t ake  a conic from t h i s  

p e n c i l  passing through t h e  po in t  2;) II nl . To g e t  t h e  case D) we 

t a k e  f o r  
Dl 

a conic from t h e  penc i l  passing through t h e  po in t s  

E0 fl n1 and " ;, n2 ( t h a t  can be done .only f o r  some s p e c i a l  choice 

of  t h e  l i n e s ) ,  and D2 a s  i n  C ) .  Final ly,  t o  g e t  t h e  case E) we take 



for Dl the same conic a s  in D ) ,  and for  D2 the conic passing 

through the points ll. n2 and $6 n nl (also take some special 
0 

choice of the l ines) . 
Now we w i l l  compute the torsion of Burniat's surfaces. Obviously, 

we have the following torsion divisors of order 2: 

- - - 6 -  - - -  
Case A): g l = E o -  E; , g2 = Eo - F 1 -  5 , g 3 = E o -  F2 - R2 , 

- - - A h -  

g4 = S2 - S3 - R2 # g5 = D2 - F1 - S3 
n - 4 -  -- - 

CaseC): g l z F 1 + q - F 2 - R 2  , g 2 = S 2 - S 3 - R 2 ,  

- - - - 
g 3 G  2 - S 4 - R p g 4 = $ + l - E ; -  s3 

A - A ,  

Case D): g l = F  + R 1 -  F2 - R 2 ,  g 2 = S 3 +  R2 - S4 - RL , 
1 

A  - - 
g 3 = D i + r ( l + I ( 2 -  S2 - Eo v 

A - .  A - - - - -  
Case E): gl = F1 + 3 - F2 - I(2 , g2 = S + R2 - Sq - R1 . 

3 

We w i l l  show that ,  i n  fac t ,  these divisors generate the whole 

torsion group. 

-. L e t  2Tors(X) denote the subgroup of elements of order 2 i n  

Tors(X) . Then 

Tors (X) = 2Tors(~)  . 



Proof. Let 6: X +X be the involution of the second order induced by the 

rational double projection of X onto V . Then 6 induces an automorphism of 
Tors (X) of order 2 6": Tors(X) +Tors (X) . 
For any g (Tors(X) the divisor g~X(g) is invariant with rkspect to 6 

and hence being taken twicely comes from a torsion divisor on V. Since V 

is rational, we get that the latter is linearly equivalently to zero. Thus 

@ Replacing g by 2g we,\that Tors (X) # qTors (x) implies the existence 

s 
of a non-trivial torsion divrsor g such that g +d (g)%O. 

Let D be an effective divisor from the linear system Is+g1 , 9 

where g as above . Then 

Using the computation of 2 5  on the page 90 we get that there exists a 

curve 

C c I Fo + FA + 4S1 + 2E1 + 2Ei + F I 

( E i s  a linear combination of other Ei ,Ei ) sach that 

D~ +t?(og) =pcrX(pxccrrr . 



Since pX(~) splits under the covering r : X' -+ V' , it must 
-1 touch the branch curve W' = p (WI + RV1 + R; . Counting the inter- 

-1 section indices we easily find that px(~) touches the curves p (F~) 

and p-l(~~) at one point P1 and Pa respectively. and touches the 

-1 -1 
curves p (Dl) (or p (D;) and p-l(~ 1 (or p-l(~*)) at two 2 2 

points Pj, Pi and P4, Pi respectively. Also, it does not touch 

the components Ei or E; of Wv . 
low notice that both W' and FJ"(C) are invariant with respect 

to the automorphism h of V' induced by the inversion automorphism 

of the elliptic pencil. This shows that the points P1 and P2 

are fixed under h (and hence are situated on one of the sections 

- 1 
p (Si l l  , and the points P3 and Pi (resp. P4, Pi ) are conjugate 

with respect to h . Using this we observe that any curve C' % pK(~f 

which passes through P1 and P2 and touchcs pX(c) at Pq and P4 

will necessarily touch pX(~) at all 6 points Plr P2, Fj, Pi, P4, Pi . 
X 

Since dim [p (C) I = dim (251 = 6 we always can choose such C' . 
fi 

Considering r (C'). we get the contradiction in view of the fol.lowing: 

Suhlenuna. Let F be a non-singular projective surface with q(F) = 0 , 

Dl and D2 effective divisors such that D - D2 is a non-trivial 

torsion divisor. Then for any D I D1+D2 1 with no common component 

with bl + D2 there exists a point P C F such that (D. Dl)p f (D. D2fp 

Proof. Assume the contrary, let D  ID^ + D21 which does not 

satisfy the assertion of the lemma. Consider the linear pencil generated 

by the divisors D and Dl + D2 . Resolving its base points we get a 
morphism f : Fv + P1 of a surface F' birationally equivalent to F 

onto p1 with a fibre containing two numerically equivalent components. 



'The main-lemma of Chapter 2, 81 shows that it is possible only in the 

case when the general fibre of f is disconnected. Moreover, in this 

case f has to factor through f' : F ' h B  , where B is a non-rational 

curve. This of course, contradicts the assumption q(F) = 9 . 
Theorem. Let X be a Burniat -face of linear genus p'l) . Then 

(1) 
Tors(X) = (z/z)' 

Proof. We already know that Tors[X) = 2Tors(X) and, even more, - 
that any torsim divisor class is invariant with respect to the 

involution induced by the projection r t X'  + 1' . Consider the 
morphism f : )! -+ Ipl which is defined by the inverse imago of the. 

elliptic pencil on V' . We have the following multiple fibres of 
this morphism: 

- - 
Case A) : 2E0, ZE;), 2B1 + 25, 2P2 + 2R2 ; 

- 
Case B): 2E1, 2g1 + 2 5 ,  282 + 2R2 ; 

Case C )  , D) , E) : 2e1 + 2R1, 2G2 + 2R2 . 

Let Torsf(X) be the subgroup of Tors(F) generated by components 

of fibres of f . Using the main lemma from Chapter 2, .§1 we see that 

and can be generated by the first three (resp. two, resp. one) divisars 

gi indicated on page 94 . 



Let X be thegeneral  f i b re  of f . The res t r ic t ion  homomorphism 
11 

Pic(X) -+ Pic (X ) induces the imbedding 
1 

r where Pic(XI1) denotes the subgroup of divisors on X which are  

invariant  with respect t o  the automorphism induced by the projection 

r : X -+ V V being the general e l l i p t i c  f ibre  on V . The 
11 11 n n 

covering r is ramified along the two points defined by the-curves 
11 

Dl (or D i )  and D2 (or Di)' . 
This shows t h a t  each D 6 Pic (X,,) can be represented by a 

. . * - - - -  
l inear  combination of the curves Dl# D2. S1t S2. S3, Sq (the l a t t e r  

four generates Pic(V,,)) . Using the re la t ions  on V 

2S1 -I, 2Sj rnodulo Ei, E; 

Di -I, 2s modulo Ei, E; 
5 

- - - 
we find tha t  each divisor 2. - S Si - S defines an element of 

1 j' j 

p c ( x  , 
11 

Now we notice tha t  the covering r : X' -+ V' is defined by the  

l i n e  bundle corresponding t o  the divisor 

I p (3F+2S1) - R i  - Ri - 3R1 - 3R2 mod. Eit E' 
j 

(see p. 8 8). This implies t h a t  

+ i4 + 2g2 modulo components of f ibres  of f . 
There is a l s o  a re la t ion  between zi 



- 
S + F2 % F + % modulo components of fibres of f 1 3 

because Si defines the 4 points of order 2 on V . 
r 

Summariz+ng we get that 2Pic(X is generated by the three 
9 

divisors 

- - - - C - 
S3 - S2 , S4 - S2 and Dl - s3 

which as it is easily checked are independent. 

The arguments above show that any element of Tors(X)(Torsf(X) 

can be represer.ted by a sum of the above divisors plus a combination 

of components of fibres of f . It is easy to find in each of the 
cases A)-E) the corresponding torsion divisors. In fact, we obtain 

that these divisors are combinations of divisors gi (i=4, 5 ,  6 in 

case A) , i=3, 4, 5 in case B), i=2, 3, 4 in case C), i=2, 3 in 
Case D), i=2 in case E)) indicated on p. 73. This proves the theorem. 

Remark. As we observed above the morphism f : X + P1 has 4 multiple 

fibres of multiplicity 2 in case A ) .  Let B + lP1 be the 2-sheeted 

covering of P1 by an elliptic curve B branched at the four points 

corresponding to the multiple fibres. The normalization. X' of the 

surface X x B is a double covering of X non-ramified outside the 
a1 - 

two points Q1 = sl n Rl and Q = g2 n R;! . Also, X being mapped 2 

onto B has the infinite fundamental group, the points 5 I 'i;i2 
lying over Q1 and Q2 are ordinary double points. This shows that 

the complement X - (Q , Q 1 has a non-ramified covering with infinite 
1 2  

fundamental group, hence X itself has infinite fundamental group. 



Another way to prove that the fundamental group of the Eurniat 

surface with p(')=- 7. is infinite is based on the corollary to Lemma 1 

of Chapter 111, 81 . Consider the surface XT corresponding to the 

torsion group T of X . Then we have 

Consider the inverse image of the pencil P onto X . The divisor 

0 A - -  

2E1 belongs to this pencil and h ( ~ D ~ + R ~ + R ~ )  = -2 . Now 

A 

2(q +fi2 + :!hD -KX) I) 2(2D1 - 5 -  2z + E  +E( + 2% + 2z2) 
1 1 0 0  

- - - 
2(F+ 2z1 - %R - 2R2 - 2F - 2z1 + E +E; + 2% + 2fi2) 'b 2(E; -To) 0 . 

1 0 

This shows that 2El + 3 + x2 + g and hence 

This, of course, implies that X and thus X has infinite fundamental 
T 

group. *I 

*) See Epilogue 



55. Surfaces with p ( l ) =  9 . 

Such surfaces were constructed by M. Kuga 1291 and A. Beauville 131. 

Kuga's construction: ---------- 

Let H = {z E. (C : Im(z) > 0} be the upper ha l f  plane. The Lie 

group IP G L(2,R) = SlL (2,m ) /k l  is ident i f ied  i n  a na tura l  way with 

i t s  group of analytic  automorphisms. 

Let r be a d iscre te  subgroup of I P G  ~ ( 2 . 1 ~ )  x P G  L(2.B) act ing 
with 

f ree ly  on H x H \=act quotient V = 11 x H / r  . By hlatsushima-Shimura 

1311 we have 

0.1 hl'O(v) = h (V) = q(V) = 0 ;  

hl.l (V) = 2p (V) + 2 . 
9 

'ilierefore, 

Next, notice t h a t  V has no exceptional curves of the f i r s t  kind 

(and more generally, no ra t ional  curves), because t he  project ion 

H x H -t H x H n  = V s p l i t s  over such curve, but  H x H does not 

contain any complete curves. 

Thus, t o  f ind the needed surfaces with p (V) = 0 and p(l) =. 9 
9 

it suff ices  t o  choose such r tha t  



By the Gauss-Bonnet formula 

1: 
c, (V) = - vol (V) ,. 

47r2 

where the volume vol(V) is computed by integration of the invariant 

volume element 

( (zl,z2) = (xl+iyl, x 2 +iy2) being the coordinates on H x H) . 
Now, let 

k = Q(&) be a real quadratic field, d the discriminant; 

A = A(k,e) be the division quatercion algebra with the center 

k and with the discriminant 6 = p1p2...p2r assumed 

to he totally indefinite (that is, A B W =  K2(R) (D M2(R) ) . 
Q 

N : A +  k be the reduced norm of A ; 

0 be the maximal order of A (unique up to conjugation if - 
the class number of k equals 11 ; 

~ ( 2 )  be the group of all units of 2 ; 

Y = Is r E(CJ : Nfg) = 1') 

Consider the natural injection i t A + A e, JR = M2 (IN@ ' M ~  (P) and the 
Q 

projection j . : 6L2(P) Xc GL2 (P) + PGL(2,lR) X pGL(2,lR) . Let r = j (i (T) . be 

a discrete subgroup of PGL(2,lR) x pG~(2,lRj ..with compact quotient 

- 
V - H X R/r I we note that l' is isomorphic to the image of r into ~ ~ / k ~  . 

According to. Simizu ( 142)) the volume vol(H x H/r) can be expressed 

through the zeta function Ck(s) of k by the formula: 



( lpl denotes t h e  norm o f  prime i d e a l  p of  k) . 

where 5 ( s )  is t h e  Riemann ze ta  funct ion and L(s,x) is  the 

Dir ich le t  L-function associated with t h e  character  . X  mod d 

n 
; i f  d l 1 mod 4 

i f  d . =  4m, m E 3 mod 4 
X(n) = 

(n2-1) /8 , i f  d = 8m1, m 1 mod 4 

The value of the Riemann z e t a  a t  2 equals  71'16 . The value L(s,X) 

a t  2 equals 

where 

a-1 
T(X) = C x ( n ) e  hrin/d , the Gauss' sum 

n=l 

~ h u s ,  we have 



Since the Gauss * sum -c (XI has absolute value 11 (X) I = d'I2 and 

v01 is positive , we get C2 = - 
4 ,  

Next, we have to be assured that the group acts freely on HxH, and hence 

HxH/r is smooth. Since the stabilizator group of any point is a finite 

subgroup of r , that can be if and only if r has no elements of finite 

order. 

Let g E r be an element of order N, 9 6  T some of its preinages 

in 7 . We have g =, 1 , and thus g 2N = I  . Then the quaternion 
aigebra A has to contain a subfield. isomorphic to the field 

Conversely! if the class number h (k) = 1 , then A> (l(e2 dlN) implies 

that has an element of order N. 

Since the maximal subfield of A has degree 2 over k , we- have 

Thus the only possible orders for N are 

Obviously, an element of order 2 in 7 defines the unit element of r 

NOW, if cb (N) = 2 (N=3,4,6) then the maximal subfield K of A coincides 



with k fe2*i/N) , if &(~)=4 then K = 9(eZTim) and k is the real 

2Ti/N 
quadratic subfield of Q(e 1 - 
Let K be a quadratic extension field of k; then the local arguments 

show that K is enbedable into A = A(,k,8) if and only if pig does 

not decompose in K. 

Now weare ready to give an explicit example. 

Example. k = Q (J2) , d = 8, 8 = p2p5 , where p2 and p5 lie over 2 and 5 

accordingly. 

We compute 

To check the smoothneSs of HxHf we observe ,that the only cyclotomic 

field containig k is Q(e ""1, and in this case p2 and p5 do not 

decompose. Thus it suffices to consider the cases 3 = 3,4,and 6 . In 
the second case K = g( d ,i) , and in the first and the third, K =QV 2 J  -3) . 
In -the both cases we easily verify that p2 and p5 do not decompose. 

Notice that other examples can be also ohtained by taking instead of 

some other discrete subgroups in 2 , for example, 

' = {gc? E (2) : N(g) is a totally positive unit of k} . 
We refer to [29] for the examples of the corresponding surfaces H e  . 
To compute the torsion group Tors(Hxk/r) we note that 

For any maximal two-sided ideal pO_ in 2 we may consider the image $( f )  

in g/p (= M (IF ) or IF , q=No~/~(p), depending on whether pte or pie). 
2 q  q 



Moreover, by the Eichler approximation theorem we have 

where U ={  aEP : NF (a) = 1) is a cyclic group of order qil . 
9 q2 q 

This innnediately shows that it is 

- 
Tors(V) = r /(tl) [J;,E 

The more detailed analysis gives 

always 

$ 1 .  

the following result:, 

Thcorem([291). There exists a subgroup I of containing fr,rl such that 

where 

qi = NkiQ(Pi) , 0 = P1. .Pr ; 

I 2 if (2) = P~P; , p2 # P; and pZ)8 ,P;~O 

a = 1 if p2(2 , (p2 I = 2 , P2)8 but other divisor of 2 dividesee 

0. otherwise 

2 if (3) = P~P; r p3 # P; and ~ ~ $ 8  , P$+O 
2 

1 if (3) p3 , p310 or p3 13 and other divisor of 3 divides 8 

0 otherwise 

Moreover, M 5 [xq if the congruence subgroup conjecture of Bass-Serre 

is true for . Also, -It M if and only if one of q i g  I mod 4 . 



In the above example we have 

T/M = Z / 3  @ 2/6 . 

Beauville' s examples ( 131 ). .These surfaces are constructed as the quotients ---------- 

V = CxD/G , where C and D are complete non-singular algebraic curves of 

genus g at least 2, G is a finite group acting freely on the product. 

To construct the quotient with the needed properties Beauville proposes 

to take for G a finite group of order (g(C) -1) (g(D) -1) acting on the both 

C and D with the rational quotients. In order to get a free action on CxD 

he puts 

where u is tin automorphism of G such that for all gtG acting 

non-freely on C U(g) acts freely on D . 
In virtue of the lemma of chap.1~52 we have 

Moreover, V does not contain any rational curves, since the projection 

CxD * V has to split over such curve and there are no rational curves on 

m.   his implies that V is a minimal model. 
It remains to prove that the irregularity q(V) = 0 . We have 

but, since C/G and D/U(G) are rational curves, the both summands are zeros. 

Example 1. C = D is the plane curve with the equation: 



x 5 + y 5 + z 5 = 0 ,  

G = (z/5) acts on C by the formulas: 

(p,q) (x,Y,~) = (SPx,5%,z) , 5 - e 2ri/5 
cr is the automorphism of G given by (1,Ol-c (1,1),(0,1)+ (1,2). 

The set of elements of G which act freely is A -1 (p,q) ,pfq) and 

G = ill'" A\IU(A) . 
Fxampl~ 2. C = I) is the curve of genus 4 given by the equation in lp3: 

x3 KY3 + z3 + t3 = 0 , xy + zt = 0 . 
G = (2/3l2 acts m C by the formulas: 

(p,d (x,y tztt) = (S~X,S-~Y ,Sqz,#-gt) 1 5 = e 
2ri/3 , 

a is the automorphism given by (1,O) +(1,1), (0,ll-t. (lt2) . 
The set of elements of G acting freeiy on C is the set A =C(p,q) ,p:q#0) 

and G = {l)" A V  U(A) 

Applying the well known Hochshild-Serre exact sequence: 

ue see that 

Tors(CxD/G) 3 G/[G,G] . 
In particular, in the above examples the torsion group is non-trivial. 



6. Concluding renarks . 
It would be very optimistic to expect the complete classification of all 

surfaces of general type with p =O.   ow ever, there are still many problems 
g 

to answer in the visible future. 

One of the most interesting from my point of view is the following: 

Problem 1. Is there a simply connected surface of general type with p =O? 
9 

Or more weak 

Problem 1'. Is there a surface of general type with p =O and trivial 
4 

torsion group? 

!Consider the class of all surfaces of general type with p =O and fixed 
9 

P2- p(l). Then there exists s number N such that the k~canonick system 

defines a birational morphism for all such surfaces([4]). Thus the set 

,of its N-canonicla models can be parametrized by an open subset of the 

tIilbert scheme corresponding to some Hilbert polynomial. since the 

latter is of finite type, this open subset consists of finite number~of 

connected components. The surfaces parametrized by a connected Wriety 

are diffeomorphic, and,in particular,have the same fundamental group. 

This argument shows that there are only finite number of possibilities 

for the fundamental group of a surface. In particular, the order of the 

(1) torsion group is bounded by a constant depending only on p . 
Problem 2. Find a bound for the ordeir of the torsion group of surfaces 

with the fixed p") (as always of general type and with p =O) . 
9 

We remind that it is done in the cases of numerical Godeaux and 

Carnpedelli surfaces. 

Consider the class of all surfaces with the fixed value 



the torsion group T. Denote it by F4 (a,T). 

Problem 3. Can M(~,T) be parametrized by a comected variety? In 

particular, are the elements of !d(a,~) diffeomorphic to each other? 

For the start it would be very interesting to knrinr the answer at least 

in the cases M(2,Z/2), M(2,Z/3) and M(3,2/262/2) , Recall that in the 

last case we know two (and possibly even three) dizferent constructions of 

surfaces from this class. In some cases the znswer is positive (e-g. 

fA(2,&/4), M(~,z/:/!,), fd(3,abelian of order 8 ) ) .  

) We still do not know if all possible values of p('' are realized . 
Problem 4. Are there surfaces with p(')= 8 and 10 ? 

There is much hope to solve the following 

Problem 5. Find all possible torsion groups of numerical Godeaux and 

Campedelli,surfaces. * 1 

The validity of the following assertion is observed in all known 

examples : 

Problem 6. Prove that the fundamental group is Snfinite in the case 

2 7  and finite otherwise. 
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EPILOGUE 

After this work has been almost done the author was informed in many new 

results. 

1. Numerical Godeaux surfaces with Tors = E/3 have been constructed by 

Miles Reid [45]. The construction is very delicate. 

2. The final version of Peters' preprint 1371 has been published [44].It 

can be found there the result about the torsion of Burniat's surfaces(the 

proof is not complete). Also it is proven'there that the fundamental group 

is ipfinite in case p(1)=7. Phis result is also refered to M.Reid. 

3+ F.Oort and C.Peters also have proven that the torsion of Campedelli- 

-0ort-Xulikov surfaces with p("-2 is equal to 2/2 (1511). 

4.~.'Inoue has constructed surfaces with p(1)4 and also calculated the 

fundamental group for Burniat's surfaces ( [46 ] ) .  

5. ~ . ~ e i d  has cmiputed the canonical ring of numerical Godeaux surfaces 

with Tors=Z/2 ( I461 ) . 
6. %.Reid has proven that # Torss9 for numerical Campedelli surfaces. He 

conjecixres that 9 can be replaced by 8 and the surfaces with thetqrsion 

group of-order 8 are the Godeaix-Reid surfaces .Another conjecture: 

# Tors < 30 for surfaces with p(11=4 (1471). 

7.-Using the nonarchimedean unifomization theory D.Mumford has construced 

a surface with p(l)=10 ( I48 1 ) . 
8.-Wng people have discovered independently a surface with Tors =Z/5 and 

p(')=3 ([46]). As it was explained to me by Fabrizio Catanese it can be 



3 constructed in the foloowing way. Let F be a quintic surface in P which 

is invariant under an involution of order 5 and posseses 20 ordinary double 

points.Also assume that there exisad a quartic surface 3 tangent to F along 

a curve C which passes through these double points and smooth at them. The 

existence of such surfaces F and B is proven in Blow up F at these 20 

Souble points to the surface F , then the sum of the twenty exceptional 

-2-curves on is linearly equivalent to the strict inverse transform 

of C taken twicely. Let ! be the double covering of branched at those 

curves, V the blowing down of the strict trnasfoms of the branch 

2 locus. Then it can be easily shown that 5 = 10, pg(W) = 4 . The Z/5-action 
on F extends to a free action on V and the quotient defines the needed 

surface X. By Reid's result (see 6.) we get Tors(X) = Z/5 . Moreover, 
the surface ? can be realized as a noh-singular compactification of 

a quotient of the upper half planes by a discrete gronp of Hilbert's type 

([SO]), this implies that t is simply connected, and hence the fundamental 

group of X is 2 /5  . 
9. C.Peters conjectures that-for any double plane of gene~al type kith 

pq=o the torsion group consists of elements of order 2 (1443 '1  . 
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