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1. Notations.

Introduction

Let F be a complex algebraic surface. We will use

the following ¢tandard notations:

OF : the structure sheaf of F .

0F (D)

b

Wp

. the invertible sheaf associated with a divisor D on

—»cl(F) : minus the first Chern class of F or a

canonical divisor on F .

= OF(KF) : the canonical sheaf of F .

h;(D) : the dimension of the space Hl(F,OF(D)) .

0
=h
pg(F) (X,

F) = hz(OF) ; the geometric genus of F .

1

q(F) = hl(KF) =h (OF) : the irregularity of F .

2 -
KF H
(1)

the self-intersection index of KF .

2

p (F) = KF' + 1, where P' is a minimal model of a non-

¢2(F)

pa(F)

Pn(F)

rational surface F ; the linear genus of F .
the topological Euler-Poincare characteristic of F .

-a(F) + p_(F) =1/12(k% + ¢,(F)) - 1 : the arithmetical

genus.

ho(nKF) : the n-genus of F .
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NS(F) : the Neron-Severi group of F , the quotient of the
Picard group Pic(F} by the subgroup of divisors

algebraically equivalent to zeroc (= Pic{F) if q = 0).

Tors(F) = Tors(NS(F)) = Tors(Hl(F,Z))

If not stated otherwise F will be always assumed to be non-singular

and projective.

2. Historical. It is easily proved that for a rational surface F

(that is birationally equivalent to the projective plane Pz) the
invariants q(F) and pg(F) are zero. The interest to non-rational
surfaces with vanishing gq and pg was born in 1896 when Castelnuovo

had established the necessary and sufficient conditions for a surface to
be rational. Clebsh had proved earlier that a curve of genus 0 is ratjonal.
The question whether a surface with q = pg = 0 1is rational was a

natural problem. In [10] Castelnuovo had shown that the answer is nega-
tive in general proving that one must add also the condition P2 =0

and constructing an example of a non-rational surface with gq = pg =0 .
In the same paéer he also exhibited other examples of such surfaces due

to Enriques. The latter were of particglar destiny, as it turned out
later they play a special role in the general classification of algebraic
surfaces represehtinq one of the four classes of surfaces with vanishing
Kodaira dimension (see [1], t6]) . Both examples of Enriques and
Castelnuovo belong to the class of elliptic surfaces, that is they contain

a pencil of elliptie curves. In particular, we have for these
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surfaces p(l) =1 . Later Enriques gave another construction of his

surfaces and also presented other non-rational surfaces with q = pg =0

[17] . They were also elliptic suffaces.

The first examples of surfaces of general type with q = pg =0

appeared only in 1931-32 when Godeaux had constructed a surface with

(1)

gq=p =0 and p = 2 [18] and Campedelli had constructed ([2]) a
g .

surface with p(1)= 3 . Later Godeaux constructed some other examples

with p(l) =3 [20].

3. Modern development. The new interest to the surfaces under the

title is related to the general problem of the existence of surfaces
with given topological invariants which became of the main concern after
the period of the reconstruction of Enriques' classification results had

w_ .,

happilY'ended. The particular interest to the surfaces with p
and 3 (numerical Godeaux and Campedelli surfaces) is due to Bombieri's
paper [4] where for ali other surfaces it was settled the question of the
birationality of the 3-canonical map QBK . Now due to works of
Bombieri-Catanese [5,II], Miyaoka [32] and Victoxr Kulikov (non-published)
we knqw that ¢3K is birational for these surfaces, but I do not include

the corresponding proofs in this survey refering to the paper of Catanese

in these proceedings.

In Chapter II, I expose in more detailsthe results of my paper [14]
which deals with elliptic surfaces with q = pg = 0 . The theory of
v
Kodaira—Ogg—SafareviZ allows to classify all such surfaces.

In Chapter III, we study more interesting case of surfaces of the

general type. All such surfaces are divided into nine classes corresponding
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(1)

to the possible values of p "= 2, 3,..., 10 . To distinguish the

(1)

surfaces with the same p one may consider the group Tors(F) or more
generally the whole fundamental group wl(F) . It can be shown (see

Chapter III, §6) that there are only a finite number of possible nl’s

for surfaces of the same class, and hence one may ask about some explicit

estimate of the order of Tors(F) . Unfortunately, this is known only

for the cases p(l) = 2 (Bombieri) and 3 (Beauville, Reid) and only in

the first case this estimate is the best possible. Moreover, we do not

(1)

* -
know whether the classes with p “'= 8 and 10 are empty . The examples

of surfaces with 4 < p(l)

< 7 are due to Burniat [7,8] . We present
here a new version of his construction ([7]1, [37]) which enables
us to calculate Tors(F) for such surfaces. The examples of surfaces

with p(l)= 9 are due to Xuga [29] and Beauville [3] .

4. Acknowledgemerts. This work owes very much to many people with

whom I had a conversation on the subject at different periods of my
life. It would be impossible to mention them all. I am especially
indepted to Miles Reid and Fabrizio Catanese whose critical remarks were
very valugble. It is also a great pleasure to thank C.I.M.E. and M.I.T.

for their support during the preparation of this paper.

* gee. Epilogue.
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CHAPTER I. CLASSICAL EXAMPLES.

§1. The Enriques surface.

Let P3 be the projective 3-space with homogeneous coordinates
xi,,i =‘0;...,3 . Consider the coordinate tetrahedron T : xoxlxzx3 =0
and let X be a surface in P3 which passes twicely through. the edges
Ei (i = 1,;..,v6) of T, that is, has Ei‘ as its ordinary double lines. Ve
élso assume that X has, no other singular points outside T and other
common points with T . Sincé tﬁe section of F by a coordinate plane is the

double reducible cubic. curve, we see’thaﬁ F must be of order 6 . More

explicitly we may consider F 'as given'by the equation:

2

(xoxlxz) (X, X.X ) + (xox X )2 + (x.%x X‘) + x X x.x_(x +x 2+x 2+x ) =0

071 3 23 1723 012370 "1 2 73

Let F be the nornalization of X . Then F is a non-singular surface.

To see it one has to look locally at the normalization of the affine coordi-
nate cross': xyz =0 in A; . Here the normalization will be just the dis-
idint union of three planes, the inverse image of the singular loci will be
‘the union of six lines lying by pairs in these planes. Two lines in each |
of the planes correspond to the two axis lying.in the same coordinate plane.
The inverse image of the origin will be the three points,_each of them is
the intersection point of the two lines in one of the planes. So, locally

the picture is as follows:
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Let p :" F > X be the projection. Then the local analysis above shows

that for any edge Ei of the tetrahedron T we have

1] n
where Ci and Ci are non-singular rational curves meeting each other

transversally at two points arising from the two pinch-points of X 1lying

on each of the edges.

Ci and Cj do not meet if Ei and Ej are not incident, otherwise

Ci and Cj meet transversally at one point}

Ci{W Cj n Ck = g for distinct i, j, k .

Now we use the classical formula for the canonical sheaf of the

normalization of a surface of degree n in P3:

W, = OF((n—4)H-A)) :

where H is the inverse image of a plane section of X and A is the
conductor divisor (= the annulator of the sheaf px(OF/OX) (see Mumford's
appendix to Chapter III of [43]) . In our case we easily find that

W, = OF(ZH -q |,

where C=C, + ... + C_ .



105

. . 3
The global sections of wp correspond to quadrics in P
passing through the edges of the tetrahedron T . Since by trivial

reasons such'quadrics do not exist we have
0
pg(F) =h (2H-C) =0 .

Next, tak}ng for 2H the inverse ihage of the union of two faces of

the tetrahedron, we obtain that
KF n2H-Cn CH+C, -C, -CnC, -C, ,
1 J 1 J

where Ci is the common edge of these faces, and Cj is the

opposite edge.

Taking for 4H the inverse image of the union of all faces

(= the tetrahedron T) we get
- 2 - .
2KF A 4H 2C Ci 2Cj LVN1]
Thus we have
p () = 1%(0) =1
2 F

and hence F is non-rational.

Since K_ 1is numerically equivalent to zero, we have

C, = CiK = Ci(Ci - Cj) =0, 1i+1,...,6.
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By the adjunction formula we get

Ho(Cj, 0. ) = Ho(Cj, 0.).=¢.
J J

Thus, Ci is a feducible curve of arithmetical genus 1 . Since
Zci Lv 2Cj and Ci does not meet Cj we infer that the linear.-
~ system [2Ci| contains a pencil of curves of arithmetical genus 1
Since there are no base points of ZCi we obtain by Bertini's
theorem that almost all curves form this pencil are non-singular
elliptic curves. Note also that this pencil contains two degenerate

curves, 2c; and 2cj .

Now we may use the formula expressing jc?(F) in terms of the
Euler-Poincare characteristic of degenerate curves of the elliptic

pencil (see [1], Ch. IV):
c,(F) = gx‘(si)

where ‘B, are all singular curves of ‘the pencil. Since

1
x(2¢c;) = x(2cj) = x(qi) =1
we deduce that

cz(F) >0 .

Since K; = @ we det by the Noether formula 12(I - g(F)) = cz(F) >0.

This obviously implies that q(Fi =0 .
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§2. The Godeaux surface.

. . . 3 .
Consider the projective involution ¢ of of order 5 given
in coordinates by the formula:

{ X)) —> (x X 2x 3 )
Xgr¥yr¥yr¥y Hori¥y L ¥yt g .

{ being a primitive 5-th root of unity. This inwclution acts freeiy
outside the vertices of the coordinate tetrahedron. Let F' be a
non-singular quintic which is invariant under g amd does not pass
through these vertices. For example, we may take for F' a quintic
with -the equation:

aoxg + alxi + a2xg + a3x§ =0 .
(For a general surface F' with the properties abwve one has to add
to the left side 8 invariant monomials xox;xg,..-D . Let G be the
cyclic group of order 5 generated by ¢ , acting fzeely on F' .
Consider the quotient F = F'/G , the projection p : F' -+ F is a

finité non-ramified map of non-singular surfaces.

Lemma. Let p : FP' + F' be a finite non-ramified mzp of degree n .

Then

1+ pa(F') =n (1+p(F) .
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Proof. The first relation easily follows from the equality px(mF) =
since p 1is smooth and finite. The second one follows from the
Noether formula and the relation cz(F') =n c2(F) . which can be

proved either by topological arguments or using the equality

% .1 . o1
p (® F) =@ P

1 . o as .
? being the sheaf of 1-differentials, and standard properties of*-

Chern classes.

Since we have for F', K;, =5, pa(F') = 4 wve get from the

lemma

Since, obviously, q(F) ﬁ,q(F'f , we obtain
(F} =0
Pg

Next, note that F is minimal, that is there are no exceptional
curves of the first kind lying on it. Indeed, the inverse image of
such curve under, ,p would be the disjoint union of five exceptional
curves of the first kind on F'" . However, F' is minimal. From
the minimality of F and the fact K;.Z 1 it follows that F is
of general type. Another way to show this is to use the property of

ample sheaves: px(mF) is ample implies wg is ample.

Since F' .is simply-connected we obtain that the map p is the

universal covering. In particular, Tors(F) = ﬂl(F) =Z/52 .
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§3. The Campedelli surface.

, 2
This is a double ramified covering of the projective plane I

branched along some curve of _the IO-th degree ( more precisely it is a

minimal non-singular model of such covering).

Let W be the following reducible curve of the 10-th degree

W=CuUC,ycuD ,

where Ci are non-singular conics and D is a non-singulear

quartic with the following properties:

Cl N C2 = 2Pl + 2P2; Cl 8] C3 = 2?3 + 2P4; C2 N C3 = 2P5 + 2P6

o
D

O
]

Z(Pl + P2 + P

3 4’ 2

+P,); bDNC =2(1>1+p2

+ PS + P6)

D NCy=2(, +P, +P

+ .
Pe),

5
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To see that such configuration of curves exists one may take for C2

and C3 two concentric circles lying in the complement to the line at

infinity, the points P5 and P6 will be the two cyclic points.
The existence of a quartic D touching the conics ci easily-

follows from the consideration of the net )\Clc2 + uclc3 + vc2C3 =0 .

Lemma 1. Let X be a non-singular surface and W a reduced curve
on it. Suppose that there exists a divisor D on X such that,

WA 2D , then there is a double covering
f:Y>X

branched exactly along W . Moreover, Y is normal and non-singular

over the complement to the singular focus of W .

Proof. Assume firstly that W is non-singular. Let F be the line
bundle corresponding to the divisor D and {Uj) a coordinate covering
of X such that F ]Uj is trivial and W is given by the local
equation {qj'= 0} on Ui . Let gij be a system of transition
functions for F ', then c, = g?.c. on U, N U, and we may consider
L B | i J
, . . . ' . 2
the subvariety. ¥ of F given by the equations xj = cj , where

%, is.a fibre coordinate of F IUj . It is obviously checked that

the projection ¥ + X satisfies the properties stated in the lemma.

If W is singular we apply the arguments above to X replaced
by X*=X-S and W by W'=W- S, where S is the singular
locus of W . Then it suffices to take for Y the normalization of

X in the double covering Y¥Y' + X' constructed as above.



Remark. The sheaf [ = OX(D) can be characterized as the subsheaf
of antiinvariant sections of the direct image f*(oY) . If g(xX) =0
then this sheaf is determined uniquely by W (since they differ

by an element of order 2 in Pic(X)) . This shows.that in this

case any double covering with properties from lemma 1 can be

obtained by the construction 6f the lemma.

Apélying this lemma to the plane ZIP2 and the 10-th degree
curve W we may construct a double covering Y of Pz branched
along W . This surface has six singular points lying over the points
Pi . The Campedelli surface F will be obtzined as the minimal

non-singular model of Y .

2 c . . . -
Let p: X P be the minimal resolution of singularities of

the curve W . The proper transform of W is given by
6 6
phw) o ptaon) -3 s -67s!
. i . i
i=1 i=1
. . 2
where L is a line on P  ,

p’l(pi) =s; +8/,.1i=1,...,6

with Si =-2, 8 = -1,

Now we apply the lemma to the surface X and the non-singular.
curve

-l 6
p (W) + [s,
i=1 *
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and consider the corresponding double covering r : F' -+ X . To

compute the canonical class KF' we use the following:

Lemma 2. Let g : V' > V be the double covering of non-singular

ol

surfaces branched along the curve W , g*(W) 2D for some, divisor

on V' . Then

K,i v gxu\,) +D .

Proof. First, note that our double covering can be obtained by
the constructior from lemma 1 . In fact, consider the splitting
9,0, =0, 0L

into invariant and anti-invariant pieces. Then clearly ng

is contained in the invariant piece that is in OV . Thus

ov—Algebra gx(uv.) is the quotient algebra of the symmetric algebra
Symm{[} = Ov [ I} L82 ® ... by the Ideal generated by L82 -~ J, where
J is an ideal sheaf in Ov . Taking the spectrums we get that

AR Spec(gx(ov,)) is isomorphic to the closed subscheme of the

line bundle F = V(I) = Spec(Symm(L)) . Looking locally we easily
identify J with the sheaf ov(—w) and obtain that V' is
constructed with the help of a divisor D corresponding to F in

the same way as in lemma 1 .

Now, the formula for K v can be proved very simply. 1In
notations of lemma 1 we consider a 2-form w on V in local

coordinates cj and some other function -tj . Then we use the
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relation dejAdt, = 2xdx.Adt; to obtain that (g®m) = gt m) +
+ {xj = 0} (the brackets ( ) dehotes the divisor of a 2-form).
This provés the lemma.
Thus, we have
6 6 6 6

. ®, ' 1l = ® '
Kpo Vv xr (=3p7(L) + J S, + 2] s) + 5 (10p @ -2)s, -6]s;
i=1 i=1 i=1 i=1

6
~vorfeeptin) - Y s .

Assume that D ¢ ]K .l , then we see from above that D .= rx(D')

for some

. 6
p* e [2p(r) - § si| .
i=1
The latter linear system is equal to the inverse transform of the
system of conics on Pz passing through all points Pi . To show
that the latter does not exist we argue as follows. Taking for
Pl and P2 the two cyclic infinite points (1, #i, 0) we get the

equations for C1 and C2 in the form:

and the equation for C3 on the form:

2 2

X

1 2 2

3 + - XO =0.
a

>

o’
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The points P_, P

3 4’ PS, P will have the coordinates (+a, 0, 1),

6

(0, +tb, 1) respectively. Now let C be a conic with an equation

2 2 2
alxl + azx2 + a3xlx2 + a4x1x0 + aSX2X0 + aexo =0

which passes through the points P_,...,P

1 6 °

Pl and P2 we may assume that a3 = 0 and al = a2 =1 . Since

it passes through Py and P4 we get the equations

+ + =
a a4 a6 o]
. . 2 o s
which give a4 = 0 and a6 = -a . Similarly we get a5 =0
and a, = —bz . This contradiction shows that C does not exist.

6

Thus K, = g and pé(p') =0 .

Since r is branched along s;, i=1,..., 6 and pul(ci),

i"=1, 2, 3, we see that

1
N
o)

el

% .= ®, -1
r (si) = 2 Si PR S § <) (Ci))

for some curves Si and Ci on F' . Also, we notice that

-2 1, = 2, l_ 2, }__ -

i = Z{r (Si) ) = 4(28i) = 4( 4) 1,
=2 1,.x -1 2 1 -1 20 _ gy = -
Ci = 4(r (p (Ci)) ) = 4(2(p (Ci?) ) 4( 8) 2.

Since it passes through



This shows that 5; are exceptional curves of the lst kind.
Let ¢ : F' > F be the blowing down of all g; . We will show

that F 1is a minimal model of F' . We have

R 6
) ¥ ®x
2Ky, v r(4pT (L) - 2.2 SR
i=1
o~ 1 =y ' [ 2 ry =y Py
v 2C + 2C) + 257+ 28} + ('z S, +5 +5))
i#5,6
=1 o ' ] 2 ey =y o
v 2Cy + 2CY + 28} + 25, + ) S; + 5, +5,)
i#3,4
~ 1 ~t 0 ' = -y Py
Y 2C2+2C3+235+2SG+2(,Z S, + Sg + 5)
i#1,2
since
-1 ® ' [\
p(c)vp(aw) -2] st~} s
i#5,6 i5%5,6
p ey votfen - 2] si- ¥,
i#3,4 i3,4 *
p'l(c3) ~opien) -2 ) HE 7 s!
i=1,2 iz1,2

This shows that
21(F'\: 2Cl + 2C2 + ZSl + 282 N
N 2C2 + 2C3 + 283 + 254 N

'\:2C1+ 2C3+ ZSS + 256 ’

where C, = ¢ (C!), S5, = 0 (8!) .
i ® i i Txi
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If E is an exceptional curve of the lst kind on F , then

(E KF) = -1 and hence E must coincide with one of the curves Ei or

Si . However, neither of them is an exceptional curve, hecause

P
el

2 — —
Ko=(C +Cy+5 +5) =-2-2-1-1+8=2.

It remains to notice that F is a surface of general type, since it is
minimal and has positive x§ . In particular, we have g(F) g.pg(F) =0
(see Chap. 3, §1, .lemma 3) . Also note that ZKF is determined by

the net of gquartics AClC2 + uClC3 + \)CZC3 and is of dimension 2 .

We also have the following obvious torsion divisors of order

2on F :

te]
[
.

Ja
AR AN A

o

o

21

[Te]
N

- D, where Gx(rx(p_l(D))) =20 .

Q0
>

It is immediately checked that

g, +9,+9,=0
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and

= + 0.
9, 9, v 9, =95 9496

This shows that

Tors (F) 2 (Z/ZZ)3 .

It will be shown in Chapter III, §3 that, in fact, we have the

equality

Tors (F) = (Z/ZZ)3 .
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CHAPTER 2. ELLIPTIC SURFACES.

1. Generalities.

A projective non-singulur surface X 1is called elliptic if there
exists a morphism £ : X >+ B onto a non-singular curve B vwhose
general fibre X 1is a smooth curve of genus 1 . Such £ is called
an elliptic fibration on X . From general properties of morphisms
of schemes we infer that almost all fibres are non-singular elliptic
curves over the ground field k (as everywhere in this paper we
assume that k = € or algebraically closed of characteristic 0 ) .
An elliptic surface X 1is called minimal if there exist an elliptic
fibration withott exceptional curves of the 1lst kind in its fibres (

(such fibration will be called minimal).

Let f : X + B be an elliptic fibration on an elliptic surface

X and Xb a fibre ovar a point b ¢ B . Consider Xb as a positive

divisor on X , then according to Kodaira [26] it is one of the following

types:

mlo : Xb = mEo, m > 1 , where EO is a non-singular elliptic curve;

mll : Xb = mEO, m > 1 , where EO is a rational curve with a node;
1

, m > 1, where E and E are non-singular

m2 : Xb = mEO + mE 0 1

1

rational curves meeting transversally at two points;
mlb : Xb = mEO Feooot mEb—l' m > 1, where Ei are rational non-singular
curves with Ei n Ejfﬁ Ek = @ for distinct i, j, and k and

(E.E ) =1, i=0,..., b~ 1, assuming E

- b>3) .
iBis1 By (b2 3)

b

IT : Xb = EO , a rational curve with a cusp;
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IIT : Xb = EO + El , where EO and El are non-singular rational

curves with simple contact at one point;

IV: X =E_+E +E

b o 1 o where Ei are non-singular rational curves

transversally meeting each other at one point p = Eor}El n Ez;

B

R = + + +
1b xb EO + El E, E3 2E4+b'

where all Ei are non-singular

rational curves transversally interesecting as shown on the

picture

: = + 5 + + 4E_ +
I Xb EO + 2E1 + 3E2 + 4E3 E4 2E5 E6 3E7 + 6E8 , where

E.l are non-singular rational curves interesecting as shown on

the picture
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*
. = +
IIiI Xb EO 2E1 + 3E2 + E3 + 2E4 + 3ES + 2E6 + 4E7 . where E

are non-singular rational curves and the picture is

o
: = + 2E. + +
Iv Xb EO El~ E2 2E3 + E4 + 2E5 %V3E6 , where E, are

rational non-singular curves and the picture is

A singular fibre of type mb, b>0, m> 2, is called
multiple of multipiicity m .

et f : X> B be an elliptic fibration, then its general
fibre X is a sooth curve of genus 1 over the field K of rational
functions of B and it is an abelian variety over K -if and only if

it has a K-rational point. In geometric terms the latter is equivalent
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to the existence 6f a global section s : B - X of the morphism £ .

Consider the jacobian variety J of Xh , this is again a
smooth curve over K of genus 1 with a rational point ovér KX .
For any ‘extension K'/K such that X has a K'-rational point
there exists a natural isomorphism of K'-curves Xn @KK' = J@KK' .
According to general properties:of birational transformations of

two-dimensional schemes there exists the unigue minimal elliptic

-fibration j.: A > B such that An = J . This surface is called

the jacobian stixface of ithe ellipﬁic surface X . Since j has a

section, ‘all siagular fibres of j are non-multiple.

Proposition 1. For any b € B such that Xb is a non-multiple

fibre the fibrations f : X* B and j : A > B are isomorphic

over the henselization 6b of the local ring OB b *
’

Proof. Let f : X(b) + spec’ 3, be the restriction of f over

,5b' and Eb : A(b) - Spec 5b the same for j . Since Eb is
smooth at some point of a component of multiplicity 1, there exists

a section of Eb . This implies that the general fibre ;((b)n is

aﬁ abelian curve over the fraction field ib of 6b . From this we
infer easily that f((b)n = ﬁ(b%] and hence in virtue of the uniqueness

of the minimal models we get X(b) = A(b) .

Proposition 2. Let b € B such that Xb is a multiple fibre of

; . s oon .
type mlb . Then the fibre Ab of j :*A > B is of type lAb .

Proof. Let B' > B be a covering of B ramified at some point

b' € B' over b with the ramification index equal to m .
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Let fg, : X'(b') > Spec OB' b be the restriction of the base
’
change map X><BB' + B' over the local ring OBI bt ° Denote by
r
X'(b') the normalization of X'(b') and let Eg, : X'(b*) > Spec OB' b
!

be the composite map.

Let x € X be a double point of the fibre Xb . Then formally
at x themap f : X+ B is isomorphic to the map Az e»Al given
by t = (xy)m . This shows that X'(b') formally at the point x°'
lying over x is isomorphic to the hypersurface £ = (xy)m in A3 .
Taking the normalization we observe that there are exactly m points
xi, ey x;n e X'(b") lying over x' and formally at each x;: X' (bY)
is given by the equation t = xy . Looking clobally we infer that

the fibre i(b')0 is of type 1lmb .

Performing the same base change for j : A+ B and resolving
the singularitizs of tﬁe obtained surface A'(b') we will get the
scheme over OB',b' with the closed fibre‘of type 1lmb (Proposition 1).
Checking case by case we find that it can be only if the fibre of j

over b is of type llb .

Let j : A+ B be a minimal elliptic fibration with a global
section, W(j) be the set of all minimal elliptic fibrations over
B for which Jj serves as the jacobian fibration. For any f : X+ B

from W(j) the general fibre X_ is a principal homogeneous space

K
(p.h.s) for AK over the field K of rational functions on B .
As it is well known the set of all p.h.s. for AK forms the Galois

cohomology group Hl(K, AK) . In virtue of the existence and uniqueness

of minimal models for AK the map W{j) -+ ﬁl(K, AK) is bijective.
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To compute Hl(K, AK) we argue as follows ([34, 38, 41]).
et 1 : N = Spec K< B be the inclusion of the general point.

Identify , A

- with the etale sheaf which it represents and let

A= iﬁAk - The sheaf A 1is representable by the commutative group
scheme over B which is obtained by throwing out all points of the
surface A where f is non-smooth (the Neron model of~ AK) . The
Leray spectral sequence for i gives the exact cohomology sequence:

I
0 —>u ) — ) e,

2
; —s
1XAK) H (B,A)

For any closed point b € B we have

1, I
(R leK)b =H (Kb, Aib) P

where ib is the fraction field of the henselization 6B b of the
!
. . - 1,
local ring OB,b . Aib = AKxKKb . To compute H (Kb'Aib) it

suffices to compute for all n the subgroup nHl(ib, A, ) of the
elements killed by multiplication by n (since Hl is always

periodical). Using the Kummer exact sequence
0—> Ax —> Ay —> A~ —>0

r iy %

we get

1, _ 1l
B (Kb'Aib) =H (Kb,nAEb) .
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Now, since Ay coincides with its Picard variety PicO(A~ )

we have

A~ 1~b 1+b
n Kb = (nR ]xGm)-v = (R M )z

BT ROE

where Sb : A(b) * Spec O
’

5.b is the strict localization of the morphism

j over b . Since Spec 0
I

B b is cohomologically trivial

1~ .x 1l+b 0 ~ 1-b
1 = ; _
I (Kb,le unn) H (Spec OB, R jxun)

]

1.~
H (Kb,nARb) b’

o

1,5 1
HO(R(b), M) = 1 (A1),

where i, : Specilf-% SpecO is the inclusion of the general point.
b B,b

It remains to add that

4
Hl('Ab,un) = (z/nZ) b

where db = 2 1in case Ab is of type 110 ’ db = 1 in case

Ab is of ‘type 111, 121, db = 0 in the remaining cases.

Let £ : X+ B be the elliptic fibration representing an

element X € Hl(K, Ak)" Then we interprete the composite map
1 (0} 1 1 1 .
: i —_— i A = H A~
tpb H (K, AK) —> H (B, R lex) (R i, K)b (Kb, )

as follows. The general fibre of the stri¢t localization fb : X(b) »

+ Spec 0 represents a p.h.s. for A. over the field ib ané,

B,b
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hence, an element of Hl(ib,AKb) . Also, it can be checked that
wb(x) equals- the class of the normal sheaf of the reduced fibre
Xg in the Picard group Pic(Xg) , whose torsion part is identified
with .H-I(Kb'z}Kb)_ = _1_1_m> Hl(Ab,un) = }H; Hl(Xg,un) .

From this observation we immediately obtain the following
Proposition 3. For any x € Hl(K, AK) %D(x) # 0 if and only if the
fibre X of the corresponding elliptic fibration is multiple.

b
. e e s . . 1,~ =
The multiplicity of Xb equa}s;the order of wb(x) in H (Kb, A ) .

b

The last assertion follows from the proof of Proposition 2.

Now we shall compute the kernel Hl(B,gg .of the map (éo called

the Tate-Shafarevich group of AK) .. First, we have the following

exact sequence:
1.
0—>A—>RJjGE —8m%_ —70
- X m B

which comes fron the identification of AK with its Picard

. . 0 1, . .
variety Pic K— Ker ((R ijm%(’»-ZK) (see the details in [24]) .
Since j has a global section, the exact cohomology sequence gives

the isomorphism
1 _ .1 1,
H (B,A) = H (B,R ijm) .

Next, considering the Leray spectral sequence for 3j and Gm A and
r

using that lexc = Hl(B,\‘Gm) =0,i>1 we get
m

H'(8,2) = Br(a) = H(A,G) .



In virtue of birational invariance of Br ([24]) we obtain

Proposition 4. Assume that A 1is a rational surface, then
wea =0 .

In particular, any minimal elliptic surface without multiple

fibers whose jacobian surface A is rational is isomorphic to A .

The last thing to do is to investigate the group HZ(B,Q).
Let é? be the subsheaf of A which is representable by the connected
component of the nnit of the group scheme A (equal to the surfgce A
minus all irreducible components of the fibe;s which do not meet some

fixed section of j and also minus singular points of irreducible

fibers) . We have the "Kummer exact segquence™

which gives the exact sequence
1 0 -2 0] 2 0
H(B,é)—"H(B,né)—ﬁnH (B, A) —0 .

] .
The quotient sheaf A/A~ has finite support, hence

Applying the global duality theorem [12], we get

~0
HZ(B,DQO) = Hom(HO(B,n_A_) . 2/nz) .
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The dual sheaf né- coincides with né- in virtue of the auto-
duality of the jacobian variety AK . Now we use the following.

Lemma. Suppose that gq(A) = 0 . Then

0 0 _
H'(B, A) =0.

EEQSE; Any element of the group H?(B,néé) represents a section
of j of ordg# dividing n which meets the same irreducible component
of a fiber as Fhe fixed Zero section. Moreover, any two such sections
do not meet each other, since for any point b ¢ B the reduction
homomprphism A(Rb) +'Ab(k) 15 an isomorphism on the subgroup of
points of finite order. The latter follows, for example, from the

. ~ o] . . .
equality HO(Sgec 0 ‘A) = H (k, né» ) which is a particular case

B,b! n b

of some general property of étale cohomology ([12]). Suppose that
0 . . .

H (B, ég) # 0, and let S be a section from this group different
from the zero saction S0 . Then

- '
n(s - sp) Zmi Fl

where F; is a divisor supported in some fiber Fi of j .
Since S and S0 meet the same component of fibers we get immed-
]
iately that _Fi 8 = 0 for each componentAPf Fi - Applying the main

lemma below we get that Fi = Fi and hence

\
n(s - So) A kF
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where F 1is any fiber (use that since g(A) = 0 we have B = Pl
and hence all fibers are linearly equivalent). Now from the computation
of K, (see again below) we get for any section (S 'KA) = -1+ pg(A) <0.
Since s = P! we get Sz=-2+l—pg(A) =-1-p (3 <O ..
g
However
2 2
(n(s - sgn? = n’s? + 0% = 2rY) =0 .

This contradiction proves the lemma.

From this lemma ve get the following.

Proposition 5. Suppose that q(A) = 0 . Then the map

1 , 1,
Yp: H(K A)— @H (K, A )
X bes PR,
is surjective. In particular, for any finite set of closed points
. . 1 .
bl’f"'br ¢ B svch'that the fiber Abi is of type 1 hi (i=l,...r;
hi > 0) and any collection of positive numbers ml,...,mr there
exists a minimal elliptic fibration £ : X -+ B whose jacobian
fibration equals j and whose fibers- xb are of type milhi,
i
i=l,...,r .

Now we shall compute the canonical class KX of an elliptic
surface X . We restrict ourselves for the simplicity to the case
of regular surfaces X (i.e. we assume that q(X) = 0) . For the
general case we refer to [6] or [27] . 1In particular, we may assume

that the base B of any elliptic fibration £ : X * B 1is the

projective line Pl.
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Main lemma. ([6]). Let C = ZniCi be an effective divisor on a

surface X with each Ei irreducible. Assume that
(Ci,D) £0,all i

and. that D is connected.

Then every divisor 2 = Xmici satisfies 22 < 0 and equality

holds if and only if D° =0 and Z=1D, £ € Q.

Proof. Write X, = mi/ni and consider the eguality

2 ;
2" = inxjninj(ci- Cj)
< 0.2 2 1,.2 2
= Ixinj(c,c) + ] S(xD + xyIngn, (c;Cy)
i#3
_ 1.2
= Zx.n.(C.D) < 0.
iiit =
If equality holds everywhere, then we have either x, = xj or

(Cicj) =0 for all 1i;j; since D is connected the last possiblity
does not occur. Hence xi is constant, that means that mi = rni,
reo .

Theorem. Let £ : X + Pl be an eliiptic fibration of an elliptic
surface X with q(X) = 0 . Then

0
LS (pg(x) - 1)F + ?"‘i - DF;

where F 1is any fibre of f, Fi = miFg all multiple fibres of

multiplicity m, .
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Proof. For any non-singular fibre xb we have

(o] B w

%, %" 0, = %

Taking a sufficiently large number of distinct “general" points

bl,...,br and considering the exact sequence

—
O'—bmx MXQO(sz

r
) —™ @ O —>0
i=l 7i i=

1

we get
x
[&g'):xb];!o -
i=1 "i
If D is a divisor in the linear system above, we have
(D.F) =0, for anf fibre F .
This implies that we can write
Kx ~ (sum of fibres) + T ,

wnere T > O is contained in a union of fibres and does not contain
fibres of f . Let Po be a connected component of [ contained in

the fibre X . If X, = ZniEi then

0= (KX ) = Jn, (KE,)
and

. 2
0= _(xbsi) = j;zfinj(EjEi) + (Ei.) .
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This shows that (Ei) < 0 if Xb is reducible, that implies that
2 . s :
(KXEi) = Zg(Ei) -2 - (Ei) = 0, since E; camnot be an exceptional

curve of the 1lst kind. Hence, we have (Kin) =0

Thus, if Xb is reducible, then

. = 1
(Fo Ei) 0 , all components Ei of xb .

Applying the main lemma we get that I‘o = rxb P YO
So, we have proved that
K_ n nF + Xa.FO , U<a,<nm
X iti = i i
and it remains to show that n = pg(X) - 1, and a; =m, - 1,

For this we note, firstly, that the divisor ZaiFg is the fixed
part of the linear system Kx . Indeed, any rational function belonging
to the space HO(X,OX(KX)) must be constant on the general fibre of £ ,
and hence, it is induced by a rational function on Pl . But then it
is either regqular on the divisor Fg + or has the pole of order multiple

to m, at P, .
i i

Thus we have
p =0k = h0me) = n +1

that proves the assertion about n .

Next, by Riemann-Roch

h°u& + Fg) =l+p (0> ho(&)
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and this shows that

o (o]
=F. + 'F, M
Kx Fl (n 1)F + gaiFl , 0<% ay < mi

(using again the arguments above) . This, obvioulsy, implies that

Corollary 1. For any minimal elliptic surface X

Furthermore, if q(X) = 0, then the plurigenus

o
P (X) = n(Pg(?() - 1) + zltn(mi -/m] +1

Proof. The first assertion follows easily from the proof of the
theorem. Indeed, we have proved without assumption gq({X) = 0 that
Kx is numerically equivalent to a rational linear combination of

fibres.

To prove the second assertion, we use that

r
0
nkK_, v n(p (X) - 1})F + X n(m, - 1)F
X g =1t by

1

r xr
0
(n(p_(X) - 1) + § [n(m, - D/m,JF + ] aF ,
g i=1 i i i=1 bi

where 0 g a; <m . Again, using the arguments of the proof of the
(¢}

theorem, we get that Zain equals the fixed part of ]nKx] .
i

This, of course, proves the assertion.
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Corollary 2. ([13]). An elliptic surface with q = pg = 0 is rational
if and only if its minimal elliptic fibration contains at most one

multiple fibre.

In fact, PZ(X) = 0 implies that the number of multiple fibres

r <1 . In another direction the assertion follows immediately.

Cofollarm 3. (Godeaux). Suppose that q(X) = pg(x) = 0 . Then

o
K~ (r - 1)F ~ .z FLoo
i=1 7i

where Fb ,1i=1,..., r, are all multiple fibres.
i
Next, we want to compare the numerical invariants of an elliptic

surface and its jacobian surface.

Proposition 6. Let f : X+ B be an elliptic fibration. Denote
by EP(2) the topological Euler-Poincare characteristic (in case
k # C , the field of complex numbers, we consider l-adic etale

cohomology). Then

EP(X) = | EP(F,) .
beB

For the proof we refer to [1], Ch. 4 (k = €) or [12] (arbitrary k) .
Note that we use here the assumption char(k) = 0 . In the general

case there is some additional term depending on the wild ramification.

Corollary. Let X be a minimal elliptic surface, .. A its jacobian

surface. Then

EP(X) = EP(2) , p_(X) =p_(A) .
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The first equality follows from propositions 1 and 2 , the

second one follows from the first and the Noether formula.

Proposition 7. Let £ : X > B be an elliptic fibration. Suppose
that £ fib th i i .
al or some fiber Xb e reduced curve Xb,red is singular

Then

q(X) = genus(B) .

Proof. The hypothesis implies that under the Albanese map alb: X + Alb(X)
the fiber Xb goes to a point {since all of its components are rational
curves). This shows that in the canonical commutative diagram

alb
X —> Alb(X)

]
jac

B —-——> J(B)

P 1is a finite surjective map and hence dim Aib({X) = dim J(B) = genus(B) .

Corollary. Suppose that the jacobian fibration j : A+ B has a
singular fiber. Then for any elliptic surface X with the jacobian

surface equal to A we have

q(X) = q(a) .

:oroliarz. Let X be an elliptic surface with q = Pg = 0 . Then

its jacobian surface is rational. Conversely, any elliptic surface. with

rational jacobian surface has q = pg =0 .
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Thus ‘all elliptic surfaces with q = pg = 0 are obtained from
rational jacobian elliptic surfaces by choice of some fibres of type
1lh and some element of finite order of the Picard group of each of

these fibres.

All rational elliptic surfaces can be described with the help of
so called Halphen pencils ‘on the projective plane ([13)) . These
are the pencils of curves of degree 3m with 9 multiple points of
multiplicity m 1lying on a cubic. The case m = 1 corresponds

to jacobian surfaces.

To find a place in the above classification of elliptic surfaces
with q = pg = o for the Enriques surfaces ccnstructed in Chapter 1
we note that for such surfaces P, = 1 . 1In virtue of the first

‘corollary to the theorem in §1 -we get the following relation for

the multiplicities m of miltiple fibres

r

1
Loyt
i=1 i

This, of course, can occur only in the case

Applying the formula for the canonical class of elliptic surfaces
we see that, on the contrary, for any minimal elliptic surface X
with. q = pg = 0 and two multiple fibres of multiplicity 2 we have

2KX = 0 . Notice also that the following result holds:
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Theorem (Enriques). Any algebraic surface X with q.= pg =0 and

ZKX = 0 1is an elliptic surface.

The proof is too long to reproduce here (see [1], Ch. 9, and

also [6]).

There is also a theorem (again due to Enriques) which states
that any surface with q = pg =0, 2K =0 has a sextic surface as
its birational model. BAgain the proof is too long to be.reproduced
here (see [1], Ch. 9 and also [2])). ’The particular form of this
sextic passing through the edges of a tethraedron corresponds to

a particular Enriques surface.
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2. Torsiodn.

In this section we shall prove that any finite abelian group

can‘be realized as the torsion group of an elliptic surface with

Lemma. Suppose that D is a torsion divisor on an elliptic minimal
surface X wi*h q =0 . Then D is linearly equivalent to a

rational lineak combination of fibres of some elliptic fibration on - X .

Proof. Since hz(KX + D) = hOU—D) = 0, by Riermann-Roch we get
0
h™(K, + D) > 1+pg(x) .

Let D"€.[KX +D| . Since D' does not intersect a general fibre

of any elliptic fibration (because xx does riot), it equals some
linear combination of components of fibres. loreover, D' does not
intersect any component (because Kx does not). BApplying the main
lemma from 81 we get that D' is a rational linear combination

of fibres., Thus, D' - Kx ~ D is also a rational linear combination

of fibres.

Theorem. Let f : X > B be a minimal elliptic fibration with

q(X) =0 . Let Fﬁi = mini » 1 =1,4.., r be all its multiple

fibres. Then

v

r
Tors (Pic(X)) = Ker( & Z/mi —>» Z/m) ,
i=1

where m = myeeem ¢(al,...,at)) = Zaimi mod m , m = m/mi .
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Proof. Using the lemma we may write any torsion divisor D in the

form

where O g a; < m o, F any non-multiple fibre.

Intersecting the both sides with some transversal curve C we

obtain
r .
0=(D-C) = Ja(F+C/m - L(F+C) ,
s 1 L
i=1
and hence
X
1=i_,x_lfa-i/i .

Yhis shows that 1 is uniquely determined by a; and, moreover,
r —
(x) Z am, = 1lm=0 mod m .

Now we kxnow (see the proof of the theorem in §1) that the divisor
XaiFg . is in the fixed part of any linear system containing it.
Hence the coefficients a; are determined uniquely by the divisor

class of D . This shows that the map

a : Tors(Pic(X)) — Ker(® z/mi -+ 2/m)

D —) (al,...,ar)

is injective.
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Now for any (al,...,ar) satisfying condition (x) the divisor

has zero intersection with any transversal curve and any component
of fibres. This shows that D 'is numerically equivalent to zero,
and, hence, D 1is a torsion divisor. This proves the surjectivity

of a .

Corollary 1. In notations above

# Tors(pic(¥)) = g.c.d.(my..., m)

Corollary 2. For any finite abelian group G there exists an
elliptic surface with q = pg = 0 such that

Tors(Pic(X)) = G .

rcof. Applying Proposition 4 we may find such an elliptic ‘surface
with multiple fibres of any prescribed multiplicities.
Let -

(1) (i)
n

n .
1 © ... ® Z/Pik(l)f:

s

G = o(z/p.
s i
i=1

< «ee <

(i) (i)
S B = Petd)

be the primary decomposition of G . Consider a surface X with

the following collection of multiplicities:

(1) (1) (1) (s) (s)  _(s)
™ "e(1) k(1) l "k (s) p"k(s)
' Fs

(Pl r---:Pl Py i eeed Ps :\---:Ps ) .
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Then applying the theorem we easily see that
Tor (Ric(X)) = G .

Corollary 3. ({14]) . There exists an elliptic surface with gq = Pg = 0

which is not a rational surface and has no torsion divisors.

Just take a surface with multiple.fibres of coprime multiplicities

and apply Corollary 1 and Corollary 2 to the theorem of §1 .
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§3. Fundamental group.

Here following to Kodaira [28] and Iithaka [25] we shall compute
the fundamental group of an elliptic surface, over the field of

complex numbers.
Let f : X+ B be an elliptic fibration.
!

Lemma.l. Let U C B be an open set such that the restriction

fU : XU + U of f over U has no multiple fibres. Choose a

point P, € XU lying in a ron-singular fibre. Then the following

exact sequence holds

( —>1rl(xu,po) — nl(u,f(po)) —3 1

m, (X
1 f(po). po)

oroof. Consider the inclusion map Xf(p e XU and the projection
0

nap fU : XU + U and the correspondent homororphisms of fundamental

. 3 o i X
groups Then the image of ul( f(po)'pO

) is clearly contained in the
in the kernel of the second homomorphism, and we have to show that it
coincides with the kernel and the second homomorphism is surjective.
Restricted over sufficiently small U the map £ is a differentiable
2-torus fibre bundle, and the corresponding sequence is the exact homo-

topy seguence. This obviously proves . the surjectivity of the second

hoxomorphism.

Let Yy be a loop with the origin at Py - Let xu be a singular
(4]
fibre of fU , there exists a local section Dud+ XU ’ ?“0 being a
small disc centered at f(po) (since xu is not a multiple fibre):
0
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Assuming that Yy goes to zero

a loop on X keeping the

f(po)
the lemma.
Next, let D .,...,D be
1 r
bl""'br for which the fibre

Assume that over the punctured

smooth. Let U =B - D1 - eee
vi= oY .
i i

We shall apply van Kampen'

6, 0 be some loops on X

generates nl(x

t.,..-t

1 2

going around the points

al,...,ag; bl

Denote by ti B ai P bi
with™ the origin at Py - Then

be the loops on B starting at f(po)

,...,bg

some loops on X

under fx it allows to deform y to

point P, ¢ y fixed. This proves

some open discs around the pocints

b,

i
discs of D: the morphism f is

x =€t

is multiple of multiplicity m,

s - E—l
o) , Vi = £ (Di) '

s theorem to compute T {X) .

1

originated at P, which

fip,)

0
£lpy)’ Y

and

bl""'br H

another loop originated at f(po)
which together with ti generate

ﬂl(U; f(PO)‘ ;

i t, .1 b,
U lying over e al, i

assuming that ass bi are chosen as the

canonical generators of nl(U; f(po)) , we get the following.

Lemma 2. The group ﬂl(XU; po)

a',...a',b',...,b' (g = genus

1 g1 g

relations:

is generated by §, o, ti,.-.,t; ’

of B) with the following basic
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(i) 80 =06

(ii) the group { §, o} generated by §, ¢ is normal in
nl(xU: py)
1

(ii1) a'bra’ bt llaprat i

-1
111 11 999 g

tl...t] e {8, o}

'
1

(iv) some relation between § and ¢ (may be trivial) .

This follows immediately from Lemma 1 and the known structure of

.nl(U; f(po-)) .

Choose some points Py i=1,..., r lying over D? and

E I SN .
some loops 61( o; in the fibre Xf(p,)

i
Let ti be a 1lo0op going around b.1 and passing through f(pi)J
'

generating nl(xf(pi) :pi) .

E} some loop on Vz lying over E; which passes through Ps -

* ie ®x X —, .
Lemma 3. The group nl(Vi, pi) is generated by Gi, o, ti with

the following basic relations:

(1) Sor =06 ;
i“i
.. ® X . 4
(ii) & and o, generate a normal subgroup in 7 _(V,; p.) ;
i i 11 i
(iii) ¥.6.% = 6%, ;
i“i i’i
- % xhi x— 1
(iv) tioi = Gi o5 ti , if xbi is of type mihi .

Proof. 2pplying Lemma 1 we will prove the first assertion and find

the first two relations. To obtain another pair of relations we will

use the following description of V? which is due to Kodaira [27] .

There exists an unramified covering F +-V: whose covering transformation

group is a cyclic group of order m; - The space F 1is represented
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in the form

p=n’i‘xc/r' , if h. =0,
or

® % .
F = D.xC /T P if h >0,

where in the first case T is the discontinuous group of analytic
automorphisms

m

. sy, 1 s
(z,0) — (2,0°+ nl:a(z Ty + 1_12) s Tye oy €z

n . m, m,
(3(=z i) is a holomorphic function of 2z 1 yith Im jlz 1) >0) .

In the second case [' 1is the infinite cyclic group of analytic
automorphisms of D:xcx denerated by the automorphism

m.h, .
(z, W) —> (z, wz * 0 .

Identifying the universal covering space of D: with the upper
half plane H= {T| Im{t) > 0 } and the covering map with the
exponential map 1 -+ exp(2n it) , we get that in the both cases
the universal covering space of Vz is equal to HxC and the
covering transformation group T may be described as follows:

If h

y = 0 then T. consists of analytic automoprhisms
’

n
: L 1 .
tts Q) — ,(-r-+—-m . g+ n3J(exp(21rimit) +ny) . By, My ny € z .



If hi >0 , then T consists of analytic automorphisms

n

1 ,y
(1, 0 ™ (t+ g +n,+ n3mihi(T +-;)) .

Identifying in the usual way the loops originated at P; with

covering transformations, we may assume that

ti coxresponds to the element of

8. corresponds to the element of

g, corresponds tc the element of

T

r-jl

with (nl. n,. n3)

with (ni, n

with (ril, n

2

2

n)}

‘3

. n3)

The relations (iii) and (iv) are verified now immediately.

To use van Kampen's theorem we consider homomorphisms

%
"l(vi’ pi) > ™y (x

u* Po

).

i

1]
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(1, 0, 0}

0, 1, 0

(06, 0, 1)

which ccrresponi to the natural inclusions v:_fgx and to a choice

of some paths cdénnecting the points = and Py » and also the

natural surjections

i

k.4
. - 7 .
r, : -;rl(vi 5 Pi) -+ ul(\i,

) -

=i

Applying the same arguments as in the proof of Proposition 2 from

§1 we may assume that the cyclic covering F of Vi{ can be prolonged

+o an elliptic fibration over Bi . the cycle covering of Di of

1

degree m , with fibre of type lh over the origin.

i
implies that

m

- i
r, (8) ~ e {p(s), p(‘o'i)} .

This easily

¥

¢
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Moreover, “if hi > 0 we get that
p(Gi) =0 .

Collecting everything together we obtain:

Theorem. The fundamental group nl(x) is generated by letters
8: O, alr---: ag: bl'.“' bg: tl""’tr .

The basic relations are

ii) {8, o} 1is a normal subgroup ,
nz
iii) ti € {6:0'} wili=1l,000, x,

. -1l =1 -1 -1
N . 4 -
iv) a,ba ""b ...aqbgag A t, . ¢ {6, ad}

v} some relation between § and ¢ (may be trivial) .
1 o es . .
Corollary. Let £ : X P be an elliptic fibration. Then nl(X)

is abelian if and only if it has at most 2 multiple fibres.

In fact, nl(x) has as its quotient the group G(ml,...,mr)

given by generators tl,...,tr and relations

m m
Fot ...t =1.
r 1 T

These groups are well known in the theory of automorphic functions.

Namely, there exist natural representations of these groups as a
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discrete subgroup of the automorphism group of one of the three
standard planes: the Riemannian n>1(c) , the Euclidean € ,
and the Lobachevsky H = {z € € |Im(z) > 0} . We have (see [30]) that

each of these cases corresponds to the sign of the number

We have the case

Pl(c) iff e > 0 and iff G(ml,...,mr) is finite;

c iff e =0 and iff G(ml,...,mr) is non-commutative
nilpotent;
H iff e< 0 and iff G(ml,...,mr) is infinite

non-nilpotent .

Thus, wl(x) can be abelian only in the case e > 0 . 1In this case,
G(ml, m,, m3) is a finite subgroup of SL(2,€)/{#1} , that is the
rotation group of some regular polyhedron (r = 3} or a cyclic group

(r = 2) . This, of course, proves the cordllary.

Corollary. ([14]) . Let X be an elliptic surface with' gq = Pg =0,
which admits an elliptic fibration £ : X » Pl with exactly two multiple
fibres of coprime multiplicity. Then. X is a simply connected non-

rational surface.

In fact, its fundamental group being abelian has to coincide with
the homology group Hl(x,Z) . Since q(X) =0, Hl(XAZ) = Tors(Hl(x;z) .

It remains to apply Corollary 1 of §2 .



Remark. In [14] the argument that nl(x) is abelian was not
correct. So, in fact, it was proven there only that there exist
non-rational surfaces with g = pg = 0 with no torsion divisors.

This was the original question of F. Severi.
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CHAPTER III. SURFACES OF GENERAL TYPE

§1. Some useful lemmas.

Lerma 1. Let X be a scheme and T is a finite subgroup of the
Picard group Pic(X) . Then there exists a finite etale Galois covering
L
£ : XT -+ X uniquely determined by the properties T = Ker(Pic(X) £ Pic(XT))

and the Galois group of £ is isomorphic to the character group Char(T) .

Proof. For any g € T let Ox(e) be the corresponding invertible sheaf.

The locally free sheaf L = E?T Ox(g) has a natural structure of an

ofolgebra corresponding to the isomorphisms Ox(e) ] Ox(s') -+ Ox(s+€‘) .

Put XT = Spec([) . Then the projection £ : XT + X is finite :and

flat. It is also etale, since det(l) = eIeITox(E) = Ox . The group

G = Char(T) acts naturally on X - multiplying each summand O X(E:) by
X(e) . X € G . Clearly, the invariant subalgebra € - Oy + hence

*
XT/G =X and f s a Galois covering. Assume that ], € Ker(Pic(X) £

. ® _ 3* _ _ -
PlC(XT)) . Then £ (L) = OXT and fxf €O = fx(OXT) = E:?T 18 Ox(e)
= = : i i i = '

fx(oXT) €%TOX(E,) . This implies that L & Ox(e) Ox(e ) for some

€' € T and hence I = oX(e - €%) € T . The inclusion T CKer is

obvious.
To prove the uniqueness note that for any finite Galois covering

£ : X' * X with the Galois group G we have

3
Char (G) = Ker (Pic(X) 28 Pic(x")) .

This immediately follows from the Hochshild-Serre spectral sequence or

from direct considerations.



Now fx(ox') must split into eigen subsheaves corresponding to

characters of G

£ %) = JBonar (0 xOx )y
Let [,X be the invertible sheaf corresponding to a character in virtue
of the above identification of Char(G) with the subgroup of Pic(X) .
Then ‘LX being lifted onto X' is trivial, thus it is embedded into
fx(ox,) and is isomorphic to one of its summands (namely, fx(ox‘)x ) .
This shows that X' = Spec(fx(ox,)) is isomorphic to XT constructed

above.

Corollary. In the above notations

i i
H (XT'OXT) = a?TH (X, Ok(e))

More generally, for any locally free sheaf L on X we have
i 1
B (£ (D) = K (x,Le o, (e)) .
Proof. We have

f!l (OXT) = S?Tox(e) ’

hence for any locally free L on X

fx(f"(r,n = fx(oxT) eL= e\cg,rLs o (e .
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It remains to apply the Leray spectral sequence which degenerates

because £ is finite.

Lemma 2. (Bombieri [4]). Let F be a surface of general type

with g(F) = 0, m = Tors(F) the order of the torsion group.

Then
1. 2 3
pg(F)£2KF+;~l
and
1 .2
pg(F)_<_-2—KF—1

if there exist a finite abelian unramified covering of F of irreg-

ularity at least one.

Proof. Let £ : F - F be the covering corresponding to the torsion
group Tors(F) in virtue of Lemma 1. By the lemma of §2, Chapter 1

‘we know that

2 2

Fonk o

]

1+ pa_(_F)‘ m (1+p(F) .

Now apply the following classic Noether theorem (see {4], Th. 9):
— 1..2.
pg(l")_<_21%+2
and consider separately the two possible cases:

a) quﬁ >0 : Then Pic(F) contains a finite subgroup of

any order n . Let F(n) + F be the corresponding etale covering.
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We have
p (F(n)) =n (1 + p (M) + qF(m) - 1< 1, K—2-+ 2
g a -2 F !
dividing by n and letting n-> ® we get
= 1.2
1+ Pa(F) < K-

Now dividing by m we obtain

[N

K

TN

1+p,(F) =1+ pg(F) <

b) q(F) = 0 : Then
m

m(1l + pg(F)) =1+ pg(F) _g-z-Kz +3

and it suffices to divide both sides by m .

Lemma 3. Let F be a surface of general type. Then
q(F) < pg(f’) .
Proof. By Noether's formula
1= qF) +p (F) = o(k2 + c,(F)) .
[ 12

Since Kf, > 0 and cz(F) > 0 (otherwise, F would be ruled,

Th. 13) we get the inequality.

[41,



Lemma 4. Let F be a surface of general type and D be a divisor

numerically equivalent to mKF , m>1. Then

1,. _
H (F, OF(D+KF)) =0.

Proof. This immediately follows from the following Ramanujam's
form of Kodaira's Vanishing theorem (C. Ramanujam , J. Indian

Math. Soc., 38 (1974), 121-124) : Let X be a complete non-singular
surface, | and invertible sheaf on X such that (cl(L)z) > 0 and
(cl(L) «C) > 0 for any curve on X . Then Hi(x, L_l) = 0 for

i=o0,1.

Corollary. The m~th plurigenus Pm of a surface of general type

F is given by

1 2
pm--z—m(m—l) 1<F+1+pa(F) '
in particular
__tn
P2 =p (F) + pa(F) »

Use Reimann-Roch and Lemma 4 applied to D = (m - l)KP v

ILemma 5. lLet f : X+ Y be a double covering of non-singular

surfaces branched along a reduced cuxve WC Y . Then

(1) fulo) =o el , 1%

» = OY (-w)

(i) wy = fAla, & Y.
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Proof. The subsheaf Oy is naturally identified with the subsheaf
of f*(ox) invariant under sheet-interchange. Since the character-
istic is assumed to be zero (or at least prime to 2 ), this sheaf is
a direct summand of f*(Ox) , the complement being a sheaf 1 of
anti-invariant sections. The sheaf ng is obviously a ‘subsheaf

82, J for some Ideal

of the invariant subsheaf, that is 0Y , thus L
sheaf JC 0, - This shows that X is isomorphic to the subscheme
of the vector bundle W(l) = Spec(ngoian) defined by the ideal

(L62 - J) . Now, the local arguments of the proof of Lemma 2, Ch. 1,

. -1
= - = *
§3 show that i OY( W) and Wy £ (mY 8 L) .

Corollary. Let F be an invertible sheaf-on Y.. Then
(o]
i, £*7 = 1%y, 7)) e 80(y, Fo L) .

In particular

3n

- 0 ®n _ -n+l
Ho(xzmx y = 2oy, mzn 5Ll™ ertyw e LT

Y



§2. Numerical Godeaux surfaces.

By this we mean any surface of general type F with

pg(F) =0 and p(l%F) =2 .

In virtue of Lemma 3 and corollary to Lemma 4 of §l we get moreover

that

m(m - 1) + 1.

N b=

g(F) =0 and Pm(F) =

We will distinguish these surfaces by the value of its torsion
group Tors(F} . First of all, by Lemma 2 of 1 we have the

following.

Proposition 1. If m = Tors(F) then

For any abelian unramified covering F' » F we have

q(F*) = 0..

Proposition 2. (Bombieri). There are no numerical Godeaux surfaces

with Tors(F) = 6 .

Proof. Assume that Tors(F) = Z/2Z ® Z/3Z . Then there exists an

unramified covering 'F' > F of order 2 with Tors(F') = Z/3% .
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By the lemma of Chapter 1, §2 we have

p(l)(F') =3 and -q(F') + pg(F’) =1.

By proposition 1 gq(F') = 0 and hence we obtain a surface with

(1)
b

=3, p 1, g = 0 and the torsion group Z/3Z . However

g
this contradicts Theorem 15 of [4] .

Remark. Since the previous proof is a simple application of
Theorem 15 of [4], which in its turn is provad using other non-
trivial results of [4], it is better to give an independent proof.
As suggested by Miles Reid we can argue as follows.

Let Y b2 the covering of X correspending to the group of
torsion of ordar 6. Then pg(Y) =5, Y\i =6 = 2pg(Y) -4 .
Now we will us2
Lemma (E. Horikawa). Let Y be a surface of general type with

(K_i) =2pg(Y) - 4 . There !l’\![ is an irreducible linear system whose

general member is a hyperelliptic curve.

Proof. Suppose that
Ik | = lcl + ¢

where F is a fixed part. Assuem that |c| is composed of a
pencil, say C %V a[col , where a > 1 and ICO] is an irreducible
pencil. Then pg(Y) < a + 1 and the equality holds if ico] is linear
(i.e. dimHO(Y, O(Co)) =2 ) . We have Ky «F > 0 , therefore

gi?_a!g!'t' and since ng_o we get lg!'cozz,because &2;22.



Hence

and we have a contradiction. Thus we may assume that ]CI is not
composed of a pencil.

Now the analysis of the proof of Noether's inequality

Pg(Y)-S %-Ki + 2 (see [4], p. 209) shows that in the case of the

equality ]xyl is an irreducible non-singular curve C of genus
2

g = (KY) + 1.

Now the exact sequence
0 — OY —_— OY(KY) o Oc(Ky‘C) — 0

shows that dim HO(C, OC( Ky‘C)) = Pg(Y) -1 . Let D denotesthe
restriction of IKYI on C. Then 2D~n X, and 2 dim HO(C, OC(D)) =
= 2pg(Y) - 2= Ki + 2 =deg D+ 2 . Now by a classical Clifford's
theorem on special divisors it follows that C is hyperelliptic

(see, for example, H. Martens. J. Reine Angen. Math. 233, (1968),

89-100) .

after we have proven the lemma the argument is very simple.
If o 1is an automorphism of the covering Y + X then g acts
freely on Y and hence on a general member C of !KYI . But this
is obviously impossible (any automorphism of a hyperelliptic curve

has a fixed point)..
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Lemma. {Reid [39]). Let F be a minimal numerical Godeaux surface.

Then
(i) For any non-zero g€ Tors(F) there exists a unique
itive divi . R
positive divisor Dg € fKF q] s
(ii) if g # g' then Dg and D , have no common
components;
(1ii) if g, g' and g" are distinct non~zero elements of
Tors(F) then Dg, Dg, and D, do not meet.
Proof. (i) By Riemann-Roch

Bk, + ) = 1+l 4 9) - bR, 49 .

By Serre's duality, hz(KF + g) =fho(—g) =0, since g7 0 . By
the same reason, hl(l(P +g) = hl(-g) = 0 in virtue of tho

corollary to Lemma 1, §1 and Proposition 1 .

(ii) 1If one of Dg or Dg, is irreducible the result is

obvious. Suppose that

= = i = = LIS 1] !
D=p =cC+ Inc, 0 D Dy = C Injcy
is the decomposition into irreducible components with C and C°'
chosen so that (D-+C) = (KF *C') =1 (recall that (D- KF) =
(D". %.) = 1%2‘ =1) .
If C=C' then D= D', because there are no relations

between fundamental curves (that is, curves with no intersection

with KF) other than equality ([4], Prop. 1) .



2
Let. E be the common part of D and D' , then E < O

and even, since it is a positive combination of fundamental curves.

D2 -~ 2(D-E) + E2 =1+ E2 < -1 . But

Thus (D - E)2

[}

2
(D - E) = (D- E)(D' - E)
must be non-negative, since D~ E and D' - E have no common
components.

(iii) Since K; = 1 each two Dg and Dg' s, 9 #g' meet
transversally at a non-singular point for both curves. The fact
that three distinct Dg' Dg‘ and Dg" meet at a point is equiv-
alent to the fact that OF(Dg - Dg‘) being restricted on Dg" is

isomorphic to the structure sheaf of Dg“ . Write the exact

sequence

.0 (D -D,-D,)>0(D -D,)+>0C 0
0> 0ptPq = Pgr = g Fg g 7p_ 7~
and the corresponding cohomology sequence

o 0 1
H (F,0_ (D - D, ) H (F,0(D -D , - D, .
( OF( s s )) > H (Dg Dg..) + H ( F( g g g,))

Since Dg - Dg, is a non-zerc torsion divisor, the first term is

zero. By duality, the third term is equal to hl(g) for some
torsion divisor. That is also zero (see the proof of (i)} . This

contradicts the non-triviality of the middle term.

Proposition 3. (Bombieri-Catanese, Reid). There are no numerical

Godeaux surfaces with Tors(F) = Z/2Z © Z/2%Z .

Proof. Let F be such a surface. Then we have the three distinct
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non-zero torsion divisors of order 2., Let D, Df and D" be the

three divisors constructed in Reid®s lemma. Then the divisors

2D, 2p' and 2D™ belong to the linear system |2K?} and by the
property (iii) they cannot be members of a pencil-. Thus, dim lsz{.z 2.
However, we know that P2(F) = dim }ZKFli-l = 2 . This contradiction

proves the assertion.

Remark. The proof of Bombieri-Catanese [5] uses other more elaborate
arguments. The proof from [32] is nol complete. Thus, we have the
following possible cases:

Tors(F) = {0} ; Z/2%, Z/3%Z, 2/4Z and Z/52 .

~We know examples of surfaces with Z/5Z (the Godeaux surfaces of
§2, Chapter I) . Let us show that these are essentially all examples

of such surfaces. The proof kelow is due to Miles Rsid [239].

Let F be the unramified covering of order 5 corresponding to
the torsion group Tors{F) . Then by the corollary to Lemma 1 of
§1 we have

0, e :
H(F, Op(mk)) = H (F, O (mK, +g)) .

g?Tors
We know form Reid’s lemma (i) that ho(K +g) =1, g#0 . Ilet
xl,xz,xa,x4 be non-zerc elements corresponding to the fcur non-zero

0= N
elements of Tors(F) . We may consider them as elements of H (F, Og(xsﬁg
generating this space. Since by Reid's lemma the xi's have no common

- . 3
zero on F , therefore on P they define a morphism £ : F+ P .
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Since K%- = 5 and the degree of £ nmust divide 5 we get that £

is birational onto a surface F' of degree 5 . This quintic F'

must be a normal surface, since the arithmetic genus of its hyperplane
sections coincides with the genus of its inverse images (=canonical
divisors) on F . Thus F' cgincides with the canonical model of

F and as such has only double rational points as singularities.

The group G = Char(Tors(F)) = Z/5Z acting on F acts by
© g
s s . ' o . =
functoriality on the canonical model F Pro;(mgoﬂ (F, OE(mKF))
multiplying %, by some gl (z a 5-th root of unity). Thus F
is "almost" the quotient of a quintic by %/5% . More exactly, the

canonical model of F is isomorphic to such quotient.

We refer to [11] and [32] for the study of pluricanonical maps
of numerical Godeaux surfaces. Also in [32] it can be found the

facts concerning the moduli space of surfaces with Tors = 2/5Z .

Surfaces with Tors(F) = z/42 {Reid-Miyaoke) .

To construct such surfaces we will pull ourselves by shoe-strings.
Assume that such surface F exists. As for the Godeaux surfaces we

. 0 2
consider the elements x; € H (F,OF(KF + gi)) , where gl . g2 = gl ’
95 = gi are non-zero elements of Tors(F) . Then xlx3 and xi
form a basis for HO(F,OF(2KF + 92)) (their linear independence
follows from Reid's lemma) . Let ¥y and Y3 be sections of

(¢] 0 .

H (F,OF(2KF + gl)) and H (F'OF(ZKF + g3)) respectively such that

(x x 'yl) and (xlx ) form bases.

23 2'¥3
Proposition. (Reid). The above elements X0 ¥y generate the
. . R — ® 0,—= @ 0 (
pluricanonical ring A(F) = mQOH (F,Og(mxfé) = mgoH (F,OF mKF + qg))
geTors
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of the surface F which is the unramified covering of F correspond-
ing to the torsion group Tors(F) . There are two basic relations

of degree 8 between these generators.

Proof. The monomials

x4 x4 x4 x2x2 x2 X. X HO(F 0_(4K_))
¥ X r X X3 Xy XX eV YooY ¥ Xy 1 V3% X, ¢ Op (8K 1) .

However, by the corollary to Lemma 4, §1 we find that
no(ax) = 7 .

Thus there is a linear dependence between th:se 8 monomials, which

we will write
Eolx) i ®yuXgoyya¥3) = 0 .
In the same way the 8 monomials,

22 22 3 3.2 2 0
X)X e Xg¥p s X Rye X KouY) oY 30X XY 30X XYy € HO(F O (4K, + g,))

and h°(4l<F + 92) = 7 . Hence we have the second relation
£ (%) 0% X 0¥, 0¥,) = 0

Both these relations of degree 4 considering X, ,y; as elements of

. . = _ & 0 - .
the graded canonical ring A(F) = mgoﬂ (F,OE(mKF)) .
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Next, let

B = CIX. ,X_ ,X_ .Y ,Y

1 Xpr X3 ¥ Y51/ (£, £))

be the quotient polynomial ring. Grade B by the condition deg(Xi) =1,

deg(Yi) = 2 , then we have the morphism of graded algebras
Y : B> A(F) , Xini.,YiHyi R

The proposition is equivalent to the assertion that ¢ is an

isomorphism.

Now, the Poincaré function (compare [15])

i a-th?  _ h?

P (t) = ) dim B, t =
B i (1-t) 3 (1-t%) 2 (1-t) 3

(1+2) (i+1) ‘13 (i-2) (i-3), 1 _
= X = —+ i(i-1) + S5t

§ eig-n+atl .

In virtue of the formula for Pi(F) this coincides with
- .1

) =LpE e .

V)

Thus, it suffices to check that ¥ is injective.
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if P is not injective then the image of the rational map

¥ : M= Proj(a(F)) —» V = Proj(B)

will be a proper closed ‘subscheme of V .

. . 7
Let j be the embedding VoP corresponding to the surjection

2 @ - -
c[BZJ -+ B( - igoBZi @ : P+ M the canonical map of F onto its
canonical model M . The composition

FeaM—V—p

is easily to be seen coincides with the 2-canonical map

In virtue of Reid's lemma @ __ is regular (see the analogous

argument in the previous case of the Godeaux surfaces), thus ?2K_F_

is also regular. This shows that E is in fact a morphism.

KF(I_;) . By our assumption, V is a proper closed

subscheme of V . Since V spans P7 its degree is at least 6 .

Let J=q?’2

Since (21(1;)2 =16 and IKE‘—! has no fixed part it implies that
V is a surface and deg V=28or 16 . Morecover, in the first case,

@ defines a 2-sheet covering

5

and in the second case g is a birational morphism. Since deg j(V) = 16
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(this follows from the equality of the Poincare functions for A(F)
and B) we get that in the second case v=v. So, we may assume
that ‘Pz% is a 2-sheeted covering onto its image V. Let C e |KEI
be a non-singular curve, the map glc equals the canonical map of C

and since it is 2-sheeted C must be a hyperelliptic curve and glc

its hyperelliptic involution. Now, notice that the canonical map

¢ _ also factors through 17) and hence through g . Then K-!-; cuts
out on C a gi which is composed with hyperelliptic gé .
This implies that KEIC is not a complete linear system. But the

latter contradicts the vanishing of Hl (F, OE) .

Corollary. Let F be a numexrical Godeaux surface with Tors(F) = Z/4Z ,
F its unramified covering corresponding to the torsion group. ‘Then

the canonical model M of F is isomorphic to a weighted complete
intersection V4‘4(l,1,1,2,2) . The action of the group Char(z/4z) = ,114
on M is induced by the action of this group on the weighted projective
space P (1,1,1,2,2) which multiplies the first three coordinates by

T, 1;2, 2;3 accordingly and the fourth and the fifth coordinate by

Z, ;3 accordingly (f a primitive 4-th root of 1). The canonical

model M of F is obtained by dividing M by this action.

This corollary prompts to us the way to construct F . For this
one may take a non-singular F = V4'4(l,l,l,2,2) invariant under the
above action on P(1,1,1,2,2) and not containing the fixed point of
this action. Using the general properties of weighted complete
intersection (which are quite analogous to the ones of usual non-

singular complete intersections) we find (see, for example, [15]):
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]

q® =0, wp = 0p(4+4-1-1-1-2-2)

]

O;(l) .

=, . 0= - .0 _
Py (F) = dim H (F, 0x(1)) = 3, P,(F) = aim H (F,0;(2)) = 8 ,

W= _ = =
P (F) = PZ(F) - Pa(F) =5,

Dividing F by the free action of U, we get the surface F with
q(F) = pa(F) = pg(F) =0, p =2 .
Notice also that we have ﬂl(§5 = 0 and thus

ﬂl(F) = Tors(F) = Z/4Z .

An explicit example of vg 4(1,1,1,2,2) with the properties above:
’

4 4 4
xo + xl + x2 + x3x4 =0

x2x2 + xzx2 + 2 + 2 . o
0" T TRy T X T -

For a more general example see [32] .

Surfaces with Tors(F) = Z/32.

Here the same method of Miles Reid shows that the covering F
of such surface F is embedable into the weighted projective space
I’(1!1,2,2,2,3,3), unfortunately, not as a complete intersection.
There are not any explicit constructions of F (the example in [39]
does not work) and, thus, the question of the existence of such surfaces

F is still open* .

* see Epilogue.
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surfaces with Tors(F) = Z/22 (Campedelli-Kulikov-Oort).

The main idea here belongs to Campedelli, who proposed to construct
a surface with p(l) = 2 as a double plane branched along a 10th order
curve with 5 triple points of type x3 + y6 = 0 and an ordinary 4-ple
point. Unfortunately, his construction of such a curve is false (see
below). Victor Kulikov (non-published) proposed to modify the Campedelli
curve, taking the union of two conics and two cubics such that one of
the cubics has a double point, both conics pass through this point and

touch both the cubics at other points. Oort gave an explicit construction

of this configuration ([35]1): Iet W = C1 8] :2 U [H_U D2 , where

[ y2 + {x-t) (2x-2y-3t)

1 =0
2
C, ¥y + {(x-t) (2x+2y-3t) = 0
2 .
Dl : Yy t + x(x-t) (x-3t) =0

D. @ [(y2t + x(x-t) (x-3t)? (2t-x) +(x°-3xt+3t2) 21/t = 0

It is easily checked that

c.ND, =2pP_ + 2P, + 2P

C, ND, = 2P, + 2P, + 2P .

DlnD2=2P1+292+2P3+2P4+P7,
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where
3+/=3  3+/=3 3+/=3 3-/=3
P1= (x,y,t) = (——2—-.-5—, 1):P2= (——2——.-—2——. 1) ;
"3+/=3  3+/-3 :3-/=3 3—/=3 .
Py = (-—i-* ¢ T 1, P4 = (——5——v - _—ET.—’l) ’
P, = (1,0,1), P, = (3,0,1), P, = (0,1,0)
5 = Y e’ 6 = 21 ’ r 7 = 137 ’

the point P, 1is an ordinary double point of 02 , and the combination

6

of the points above is considered as a divisor on any non-singular curve

taking part in the intersection. 2,

let F be the minimal non-singular model of the double plane

branched along the curve W .

‘Assertion 1:

1
p()

pg(F) =0, (F} = 2.
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Proof. This is similar to the proof used at thé construction of the

classical Campedelli surface from Chapter 1, §3 .
2
Let p : X+ P be theminimal resolution of singular points

of the branch curve W . Then the strict inverse transform of W

-1 " 5 5
- - f - "o -
P (W) ~ 10p (L) 3i£1 s, 6izlsi 8sy 456 2s7 ’

where L is a line on P ,

o
)
L2
n

-1
! i = N = ! "o,
Si + Si 1 l,..., 4; p (Ps) S5 + 55 + S5 ;

ke,
—
o
~
I
n
~
.
L}
o
~
~
~

. 2 2
-1 ,1i=6,7; Si = =2, Sg =-1.

A
wm
n
]

with Sz =~-2,1<1i
Let r : F' + X be the double covering of X branched along the
5
divisor p l(W) + Z Sy then

i=1

5
4 1= -1 .
Ko v (K + 350 (p T (W) + 18y

§=1
- 7 5
Vr(p (-3L) + ]S, +2 ] Si+ 380 +
i=1 i=1
1 % * 3 8
+5r (10p (D) - 2 ) s, - 6 ] s; - 8sy - 45, - 25.)
i=1 i=1
5

N ez - s} - sz -8 .
1=1

Assume that D e [KF; | , then we see from above and corollary
5
to Lemma 5, §1 that D = r (D') , where D' IZPH(L) ) SJY. - sg - 56[
i=1

and hence equals the proper inverse image under p of a conic passing
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through the points Pl,...,P6 . However, obviously these points are

not situated on a conic. This shows that |KF,I= # and thus

Pg(F) =0.

Since r is branched along Si' i=1,...,5 and p—l(ci) , i=1,2,

we see that
® _ .= ¥, -1 -~
r (Si). 2Si) . T (p (Ci)) = 2Ci

for some curves S, and E; on F' , Also, we have

=2 _1,%,_.2 1,2 _1 _

s; = e (s = 3(2as]) = 2-4) = 1

=2_1, =, -1 2, 1, -1 201,
Ci = e N = 2 (e = F(-8) = -2 .

This shows that Si

o : F' > F be the blowing down of all 53 . We will show that F is

are exceptional curves of the lst kind. Let

the minimal model of F' . We have
2K, v g (x"(4p"(L) - 2 E s! - 282 - 28.))
K v o, lr (4P L1 T %5 T e
x, -1 s, -1 S ooy
N rT (e THIC)) + 2T p TUE)) + 2x7(sg) + A (S%).
-! _l X ¥ X "
n ax(2c1 + 2C2 + 2r (SS) + 4r (ss))
and hence
~ = o L
ZKP N 2C1 + 2C2 + 255 + 485 v

where we put

o =& Xoar =ar ®oan = gn
ax(cl =C,, ox(r (Ss)) = Ss, ox(r (Ss)) =S5 -
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Assuming that E is an exceptional curve of the 1lst kind on F ,

we get that (E 'ZKF) = -2 and hence E coincides with one of the

curves E; . Eg or Jgg . However, we saw above that Ei = E;z = =2

and also '5_;,2' = rx(s;s)z +1=2 ng +1=-4+1=-3, '532 = r”‘(sg)2 = -2.
Now

p(l) (F) = K; + 1= %(21(1‘)2 + 1= %(—8—8-12-32+32+16+16 ) +1=2

and the assertion is proven.
Assertion 2.
Toru(F) = Z/2Z .

Proof. In the proof of Assertion 1 we have found already a torsion

divisor of order 2, this is

In virtue of the analysis of the torsion of numerical Godeaux surfaces
we know that Tors(F) =Z/2Z or Z/4Z . Let us exclude the second
possibiilty.

Assume that g is a torsion divisor of order 4 . Consider the
involution § of F corresponding to its rational projection onto
Pz ., If Gx(g) ~ g, then 2g " 0 ,.since there are no torsion
divisors on P2 . Thus, &§%(g) ~ -g , because & defines an auto-

morphism of the torsion group Z/42 . Let Dg be the unique curve

from le + gl . Then

»
= 2 .
Dy + 8 (D) =D, +D_ e | 2xg |
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The bicanonical system iZKrl is a pencil generated by the two
curves

C Yol Qv L
ZC1 + 2C2 + ZS5 + 455

and

ey g o .3 *® % 4
D, + H + 57 + 25, (27(s)) ~ g, (27(2p (L) - 2 ] St - 28

- 8.)) +
2
5 1§21 7

6

+ ox(Zx(px(L) - 28y - 357 - 5) +

+ Eg + 2gx(2”(s7)) ~ ox(2x(4px(L) -

L "o
H 255 255)) a ZKF .

We see that lZKFI has the fixed component, namely §g , which has
to be contained in both Dg and D g * However, by Reid's lemma

the curves Dg and D_g has no common components. This contradiction

proves the assertion.

Remark. Campedelli proposed to construct the branch curve W as the
union of -3 conics Cl’ Cz, C3. and a quartic D such that cl and

C are bitangent to C3 ., touch each other at a point, D has a

2
node at one of the two ordinary intersection points of C1 and C2 B
passes through the five contact points of the conics with the same

tangent direction (see [9]) .

The arguments similar to the one used above show that the bicanonical
system of the corresponding double plane is equal to the inverse image
of the pencil of quartics on Pz touching D at the points of contact
with C1 9 C2 u C3 and having a node at the node of 2 . Considering

the two curves from this pencil c1+ C2 and D we will find two
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torsion divisors of order 2. This contradicts Proposition 3. Thus

the Campedelli construction does not exist.

Surfaces with Tors(F) = 0 .

There are no examples of such surfaces. Maybe it is worth to
consider a version of the example above with the branch curve W
equal to the union of two conics and two cubics forming the following

configuration (Kulikov):

where C1 and C2 are conics, and Dl,Dz—cubics.

Arguing as above we would show that the bicanonical system is
equal to the inverse image of the pencil of quartics passing through

P.oseee,P

1 5 with the same tangent direction as W and having a node

at P6 . It is seen that there are no members of this pencil composed
of components of W . This easily proves that .there are no torsion

elements of order 2 .

Of course, the existence of this configuration is not easy to

justify.
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3. Numerical Campedelli surfaces.

These are surfaces with pg =0 and p(l)-—= 3 . They are

distinguished by the order m of its torsion gorup. It was proved by
Beauville [3] and Reid that m < 10 . Here we exhibit examples of
numerical Campedelli surfaces with m = 2, 4, 7 and 8 . There are.
no examples of such surfaces with other possible value of m?*,
moreover there are no examples of numerical Campedelli surfaces

with Tors(F) = Z/4Z .

a) (Classical Campedelli surfaces. For them we already

know (Chapter 1, §3) that Tors(F) D (z/2z)3 . We will prove now

that we have the equality.

Proposition (Miyaoke [32], Reid [39]). Let r : F + F be the unram-
ified covering of the classical Campedelli surface corresponding to
the subgroup T = (z/2z)3 of the torsion group Tors(F) . Then the

canonical system K—F— defines the birational morphism of F onto the
6

intersection of 4 quadrics in P .,
Proof. We know (Chpater III, §l) that
80 (F,0=(nk=)) = @ HO(F,0_(nK_ + 9)) .
FYCF geT r "Kp

Let us show that

ho(xF+g) = dim HO(F,O Egl<F+g) =1, for all non-zexo g&€ T .

Since ho(Z:%) = 3 , we get that ho(KP+g) <2 . If we have the

equality, then \21(5‘1 is composed of the pencil +g] -

* see Epilogue.
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Considering the restriction of lKF + gl onto 5; . we see that
this pencil has a base point on Ei . This shows that lszl has
also this point as its base point. However, the curves

2C, + 2C, + 25, S C. C. S, S, i
C3 +2C, + 25, + 25, and 2C; + 2C, + 25; + 25, from IZKFI intersect

Sl at two distinct points. This contradiction proves the needed

assertion.
Denote the lements of T by 000, 100, 110, 010, 001, 011, 101,

and 111 . Let

€ HO(KF + 100), X) € Ho(xF + 010), X, € Ho(xF + 001) ,

X, € HO(KF + 011) x, € Ho(xF + 101), x

4

5 € HO(KF + 110) ,

€ HO(KF + 111)

be non-zero sections.

L s 0 —
Clearly, r (xi) =¥, i=0,...,6 , generate H (F,OF(KEQ) . All
2
squares x, belong to HO(F,O (2K_)) and, since ho(ZKF) = 3 , there
i F F
must be 4 relations among them. This shows that there are 4 relations
between yi in HO(F,OF(KE))z . Now we can find explicitly these
relations. We know that the bicanonical system [ZKFI is represented

by the net of quartics
MGG * A01Cs + A%,

{in notation of Ch. I, §3). Up to a permutation we easily find that

2

x corresponds to ?lc2
2 ) o

*2 €%
2 " L]

*3 %1%
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x: corresponds to Cllz
2 . . o2
X5 €%

AN
w
w

S
2
3
(]

where 2,1 (resp.g,z, resp. 2,3) is the line through the points PS
and P6 (resp. 93 and Pd , resp. Pl and Pz) .

This gives the following relations among ¥,

2, 2
Yy T Ayt by

2 2. 2
Yy T ¥yt g
2_ .2, .2
¥3 = ¥ 7 s
2_ .2, 2. . 2
¥y = fyy * 9y, + by,

for some non-zero constants a, b,..., g, h .

Thus we obtain that the canonical image E’E(f‘_) is contained in
the complete intersection V of the four quadrics given above. It
is easily checked that V has only isolated singular points (in fact
24 double ordinary points) and hence being a complete intersection is
an irreducible surface. This implies that ¢§(F) =V if only
dim ‘flz(;') = 2 . Assume that ‘PE(E) is a curve. Then its normalization
X 1is isomorphic to the projective line ]Pl (since g(.}.;) =0 in view
of the corollary to Lemma 1, Ch. III, 51 and the remark above concluding
that ho(l% +€) =1 for any € € T) . Clearly the group T = (2/2)3
acts faithfully on JP7= P(HO(E,OE;(@;)) and hence on the image 4‘;{-('1-:) .
this shows that T is isomorphic to a subgroup of Aut(]Pl) , but this

is impossible.
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Thus we obtain that
v = proj( 8 O (F,0-(ka)™ =
= FredinZet YR
is a complete intersection of four quadrics.

Remark. Computing the Poincare function of the canonical ring

A(F) = m§OHO(§)OE(mxiﬂ) we see that it coincides with the Poincare
function of its subring mEGHO(F}OE(KEﬂ)m . This shows that these
rings are isomorphic and V is the canonical model of F. In
particular V has exactly 24 double ordinary points corresponding

to the inverse images of the three (-2)-curves on F : Ei, Eé and Es
Also we get that the canonical model of F is the quotient of V by
the group (Z/Z)3 . In this way it is easily to get the moduli space
of the classical Campedelli surfaces. It is a unirational variety of

dimension 6 (look at the coefficients of the four equations of V

above). See the details in [32].

Corollary. Let F be a classical Campedelli surface. Then

Tors(F) = 1. (F) = (Z/ZZ)3 .

1

In fact, the surface F obtained as the unramified covering of
F corresponding to the subgroup (Z/ZZ)3 C Tors(F) is simply-connected
{because it is isomoprhic to a minimal resolution of double raticnal

points of a complete intersection}.

b) Godeaux' surfaces. These surfaces were constructed by

Godeaux as the quotients of suitable intersections of four quadrics

in Es by cyclic group of order 8 acting freely (([20]) .
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Consider four quadrics given by the equations:

2
ax X + axx_ +ax.x, +a,x_=0

1¥0%6 T 32%1%s T a3%y¥y T agX3
b.x> + bx + b +b =0
1¥0 T Po¥g t P3¥p¥e T PyX3%s T
x2 + c x2 + c.x x_ + X =0
C1%1 T C¥5 T Ca¥p¥y T Cp¥¥e T
d x2 + d 2 + d.x + 4 =0
1%2 F 9% T 93%p%g T ¥ X3 T

where a generator of G = %/8% acts on the intersection X of these

quadrics by the formulas:

2 3 4 5 &
(X rXy %y e Xge Xy  XgXe) —=> (% TX) 1T, L %30T X4 0T X5 LX)

where g = exp(2 i/8) .

The same arqument as in the case of classical Godeaux surfaces

'shows that the quotient X/G is a numerical Campedelli surface with

Tors (Pic(X/G) = nl(x/G) = Z/8Z .

c) Godeaux-Reid surfaces. These are also quotients of the

intersection of four quadrics by other groups of order 8 {[39]).
First, consider the group G = (Z/ZZ)3 . Define the action of G on

P6 . by the formulas:

9, * (xo,xl,xz,x3,x4,x5,x6) —_ (-xo,xl,xz,x3,~x4,-x5.-x6)

g9, * (xo,xl,xz,x3,x4,x5,x6) — (xo,-xl,xz,-x3.x4,~x5,-xs)

gy ¢ (XgeX 0% X0 X0 Xg0X) —> (xo.xl.-xz.—x3.-x4.x5,-x6)
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It is clear that for any fixed point (i.e. a point with non-trivial
isotropy subgroup) at least three of its coordinates must be zero. This

shows that G acts freely on the surface given by the equations

2 2 .2 2
a,x; = blxl = ZCixi = zdixi =0 ,

where all minors of maximal order of the matrix

[ 6
Cg v+ S
Ay eee d6

are non-zero.

Second, consider the group G = Z/2Z & Z/4Z . Let 9, = (1,0) ,
9, = (0,1) be its generators. Define the action of G on nﬁ by

the formulas ( g = eﬂl/z) :

9 ¢ (xo,xl,xz,x3,x4.x5,x6) —> (-xo,xl,xz,x3.—x4.—x5,-x6)

3 3
g, ¢ (xo,xl,xz,x3,x4,x5,x6) - (x R S PTIR - SN < O ST 4 x6)

Now.notice that any fixed point is fixed either under g1 or
2 . . s :
under g, - Thus, the set of the fixed point in P6 with respect

to the action of G is the set

= {xl=x2=x3=0} U {xo=x4=x5=x6=0} L}{xl X =X,= x6—0} Lj{xo = 5—0}

This shows that the surface X given by the equations
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2 2 2

ag¥ * X, Ay Fagx x, +axx, =0
2 2 2

boxo + blx2 + bzx5 + baxlx3 + b4x4x6 =0

(o] x2 + c x2 + x2 + X x_. + x2 =0

01 T CX¥3 T %6 T C3¥o¥s T Sy T
2 2 2 2

dox1 + dlx3 + d2x6 + d3xox5 + d4x4 =0

is easily can be chosen not passing through F . Since it is obviously
G-invariant we may consider the quotient X/G , which is a numerical

Campedelli surface with
‘Hl(X/G) =Z/2% ® Z/4Z .

The last example is more interesting [40] . Let Q = {#1, #i, %J, +k}

be the quaternion group. Consider tis action on P6 by the formulas:

-1 : (xo,xlrxz,xa,x4,x5,xs) —_ (xo,xl,xz,-x3,—x4,—x5,—x6)

i: (xo,xl,xz,xa,x4,x5,x6) —_ (-xo,xl,xz,x4,—x3,x6,-x5)
i (xo.X1,X2,X3:x4,x5,X6) —_> (XO'-xl'-x,zlxs’—x6'-x3'x4)

— (=X ,=X, * X_,;X_,X_3~X,,~X.)

0’ "1 2’76’75 4" 73

e

: (so,xl.xz,x3,x4.x5,xs)

Since gz = -1 for all g #1 , any fixed point is fixed by -1 .

This shows that the set of fixed points

F o= {xy=x,=%,=0} U {x,7x,=x;=%;=0} .

Now, the surface X given by the equations:

aoxox1 + alx3x4 + azxsx6 =0

boxlx2 + blx3x5 + b2x4x6 =0
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coxox2 + clxax6 + c2x4x5 =0
2 2 2 2.2 2 2
dox0 + dlx1 + dzx2 + d3(x3+x4+x5+x6) =0

is G-invariant and obviously can be chosen to be non-singular and
not passing through F . Taking the quotient V = X/G we obtain

a numerical Campedelli surface with
wl(V) = QB . Tors(V) = 2/2% & 2/22 .

d) Surfaces with Tors = 2/7% . It is proven by Godeaux [21]
and Reid [39] that if such surface F exists then the canonical model
F of its covering corresponding to the torsion group is given by seven

cubical equations in Ps . More precisely, it is shown by Reid that

the surface X C:P5 given by the equations

x2x +x2x +x2x +x Y. X —x2x —xzx —x2x -X.X,X_ =0

270 7473 7571 707173 074 172 7375 727475
—xz+x§x2+xgxs+x0x2x3—xix3—x§xl =0
—x;+xix5+x§x5-xlx5xo—x§xo-x§x3 =0
-xg+x§xl+x:x3—x2xlx4+x§x4-xix5 =0
-x:+x§x4—x§x2+x3x4 1-xgxl+xixo =0
—x§+xixo-xixl+xox4x5+x§x5+xgx2 =0
—xi+xéx3-x§xo-xsx3 2-x:x2+x§x4 =0

is a very good candidate to be such surface F . It is certainly

5
invariant with respect to the involution § of P

2 3 4 5 6
(xoix1:x2:x3:x41xs) _>(XO'C xl:C X21§ x3:C x4rC x5) .

where g = exp(27i/7) . Also, this involution acts freely on X .
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It has the same Hilbert polynomial as F . The only thing that has
to be proven is that--X is non-singular and canonically embeded.

e) Campedelli-Oort-Kulikov surfaces. The history here is

a_ 2 . " Kulikov

the same as in the case of similar surfaces with p
proposed to modify the classical Campedelli surface replacing the branch
curve W by another curve also of the 10th order. More precisely, the
new W 1is constructed as the union W=EUF UCUD , where E and

F are non-singular cubics, C and D are conics, which intersect each

other according to the following picture:

Oort gave the explicit equations (in affine coordinates):

E : y2 + x(x2 +x+2)=0

Filx+D3x-32c(x+N(p2 +x(x>+x+2)) =0
C: yz--xz +x=0

yz + 7x2 -7x=0

o

The same arguments as in the case of all other double planes

considered above show that the bicanonical system of the surface
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equals the inverse image of the linear system of quartics passing
through Pi Qith the same tangent direction as W . Also, in the
same manner it can be shown that the minimal non-singular model of
the corresponding double plane is a numerical Campedelli surface.
The curves CUD, Cy2L, DU2L' , where L (resp. L') is the
line given by the equation z + 1 =0 (resp. x - 3 = 0) determine
the bicanonical divisors effectively divisible by 2 . Thus, they
define three torsion divisors of order 2, whose sum is, in fact,

linearly equivalent to zero. This shows that
2
Tors(F) D (Z/2Z)

It is easy to see that there are no more torsion divisors qQf

order 2 . Applying Beauville's estimate of #Tors we get that
2
Tors(F) = (Z/2Z) or (z/2) & zZ/4z .

Unfortunazely, I cannot see how to exclude the second possibility.

But it is conjectured that it can be done.

Remark. We have two different constructions of surfaces with Tors =
(2/22)3 , these are the classicla Campedelli surfaces and the Godeaux-
Reid surfaces. It is easy to see (using the proposition from this
section) that the Godeaux-Reid surface is a deformation of the

classical Campedelli surface (see the 'details in [36]) .
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4. Burniat's surfaces

These surfaces were constructed in [7,8] as certain (2,2)-covers

(1)

of the projective plane. The linear genus p takes value 3, 4,

5, 6, and 7 for them. Later this construction was reproduced in a

modern way by C. Peters [37] . Here I give some other version of

*
this construction which allows to compute the torsion group.

First, we consider a minimal rational elliptic surface V -+ Pl

with two exceptional fibres Fo = 2E0 + El + E2 + E3 + E4 and

[ 1 [N 1 ' H * o)
FO 2Eo + El 4 E2 + E3 + E, of type 10 (see Ch. II, §1). We

S noninter-

also suppose that there exist 4 sections Sl' 52' S3, n

secting each other with the properties:
= N =
(SiEi) (siEi) 1,

zsi +E. +E!NV2S, + E, +E! »
i il j j 3

To construct such a surface V one may consider the ruled

surface F. , that is a ]Pl -bundle over IPl with a section s

2 0

for which (sg) = -2 , an elliptic pencil on it generated by the
curves 250 + 21 + 22 + L3 + 24 and 2s , s being any section

nonintersecting So and li any four distinct fibres of F2 .

The minimal resolution of the base points of this pencil s ()ii

provides the needed elliptic surface V .
Next, let Fl and F2 be any two distinct ncon-singular fibres

of V , consider the pencil P generated by the divisors F1+283+E3+E3

and F2+254+E4+E£ . It is easily seen that P has 2 base points

*
See Epilogue
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of multiplicity 2, namely, Ql = Fl n S4 Q2 = Fz n S3 . Moreover,

Fl (resp. Fz).touches non-singular curves of the pencil at Ql

(resp. Qz) .
Let Dl and D2 be two curves of P without common components.

Consider the following five possible cases (it will be shown later

that all of them can be realized):

a) Di are both non-singular;

B) Dl = El + Di , where Di is non-singular, D2 as in A);
: = . t : 3 - .
C) D1 as in B), D2 El + D2 . where D2 is non-singular;
D) D, =E, + E! + D!, where D! is non-singular, D, as in C);

1 1 2 1

E) Dl as in D), D

1

! 1 1 s —e
P E2 + El + D2 » where D2 is non-singular.

2

1

Thé following vroperties are easily checked:
2 _ . :
(Di) =4, (DiKV) = -(DiF) = -2 (F any fibre) ,

[ v !t o n') =
D1 touches D2 at Ql and Qz . (D1 D2) 4,

Di does not meet any of E, or ES ’

3

(Di *E) = 2 , where E denotes any other irreducible

component of Di .

The Burniat surfaces will be constructed as minimal non-singular
models of the double covering of V branched along the curve W ,

where in each of the cases A)-E) the curve W is as follows:

4 4
D,+D_+F +F_+ ) E.+ ) E! " 6F+4S +2E

— L. - T
Al W= DytD ¥ HE LByt LBy 142E F2E 28,=2E, o
i=1 i=1
4 4
=D v oa, [ -t
B) W = DI4D+F +F_+ | Eg+ ) E] v 6F+4S +2E1-2E-2E)

1r2l2 01y
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4 4
= D!4D!+F_+F _+ + : -2E_-2E’-
C) W = Di+D +F, +F, Z E, z E] v 6F+4S.-2E -2E -2E; ,
i=2 i=2
4 4
= A ¥ 1 - - L. -
D) W Dl+D2+Fl+F2+‘Z Ei+'z E; & 6F+4s,-2E -2E)-2E -2E} .,
i=3 i=2
4 4
E) W= D!+D!4F_+F_+ + ', -2E -2E'~2E_-2E! .
) 1+DAIF +F, i£3Ei iEBEi 6F+4S, ~2E ~2E;~2E,-2E}

The following pictures represent W in cases A) and D) :

E‘o %2,

o
(the thick curves denote the components of W ) .

To get a minimal non-singular model of this double covering we
proceed as in the case of the classical Campedelli surfaces. Let
g : V! > V be the birational morphism which blows up the curves

Ri and Ri at the points Qi (i=1,2) , where we assume that

2 72y _ _
(Ri) = -1, (Ri ) =-2 .

Then the divisor

_1 T L] Ed - L . L. -
P (W)+R1+R v p (W) 2R1 2R2 6Rl BR,

2 2

is 2-divisible and non-singular. Thus we may form a double covering
r : X' + B' branched along this divisor which will be a non-singular

model of X .
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To compute Ky, we use the formula of Ch. I, §2:

rxu%,) + % r“(p-l(W) + R} + R} =

lS(l

= ¥, ¥ _ N '
r(p(F)+R1+R2+2Rl+2R2)+
3'- LR - T LI -

+3r (p (W) 2R1 2R2 6R1 6R2) N

4

o % . . 3
r (-p (F) + +R2+2R1+2R2+3p(F)+

+ 2p”(sl) - px(Eé) +B - R} =Ry - 3R, - 3R,) A

4

r(p(2F+2S, —E. -E') +B - R, - R,) .

1 0 0 1
where
B = rx(px(El + Ei) , in case 1a) ,
= rx(px(Ei)) , in case B) ,
=0 + in case Q) ,
= —rx(px(Eé)) , in case D) ,

n

—rx(px(E2 + Eé)), in case E) .

Now notice that px(Ri) are exceptional curves of the lsf kind taken
with multiplicity 2 . The same is true also for rx(px(Ei)) or
rx(px(Ei)) if r is branched along px(Ei) or px(Ei) . Let

g : X' -+ X be the blowing down these exceptional curves. Put

D= ax(rx(px(D))) for any divisor D on V , and also Eﬁ = Gx(rx(Ri)) .

Then, we get

&N2F+2§I—EO—E6—‘R‘1-R2+B,
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where
-0 , in cases a), B), C) .,
B = -Eé s in case D) ,
-Eé - E’.‘) , in case E) .
Since
Fn ZEO ~ 256’ ; in case 3a) ,
ZEO + El Iy 2}56 , in case B) ,
2E +El'v2§(')+§]" , in case C) ,
250 +.E1 n ZE(‘) + E]'_ + i:_é , in case D) ,
2EO+EI+EZm2€6+Ei+Eé , in case E) ,
énd

e A — A —
LY + 2R, Vv !
P 2F R.L 2}.~‘0-f—2R2 ’

where Fo = 2?‘0 . F! = 2f! , we get

— = L om _omi _ om _ om A
2KX N 4F 4+ 4Sl ZEO 2E0 2R1 2R2 + 2B

S oS =
~ 2}:0 + 21-‘0 +4s; , 1in case a) ,

- ~ A' -— -—
"N 2F0 + ZFO + 431 + El , 3in case B) ,

A A -
n + ' 4 + + ! i
2?0 2F 451 El El s 1N case C) ?

oy B o ey Tt - @t ] vy =3 = 3
~ 2F ) + 2F) + 45, + E) + B] - Ej v 2?0 + 2?0 + 25, + 25, + E,, in case D) ,

: & B " - E - E' ' 4 2S. + 25, in case E) .
~ 2f + 2F) + 4S) + E) + E; - E, 32~2?0+2?0 25, 2 )
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This implies

2 1 2 .
a) Kx = z{(zxx) ) =6, in case 1) ,
=5, in case B) ,
=4, in case C) ,
=3, in case D) ,

=2, in case E) .
b) X is non-rational (since 2KX is positive) .

c) X is a minimal model (since for any exceptional curve of
the 1lst kind C (ZKXC) < 0 and this implies that C is
one of the curves %O ' ?6 ’ E; or E; . but it is easily

checked that neither of them is an exceptional curve of the

ist kind).

It remains to show that
(X) =0 .
pg

For simplicity we will prove it only in the case A) . 1In other cases

the proof is similar.

Suppose that [KX[ # § . Then taking its inverse transform on X'

we get

X,ox ., . * ®

r(p (2F-E~Ej+ JE. + JEI+25.) > r (R)) + r (R) .
This implies that

3 m _pt .
P (2F-E-El+ JE.+ JEI+25.) > R, + R, .
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This means that there exists a positive divisor

D e ZF-EO-E6+ZEi+ZEi+251| = }EO+E(')+ZE1+ZEi'+2sl

which passes through the points Q1 and QZ .

Now notice that
4 4
o] > |E, + B} + 25,| + |E, + B + ] E, + ] El
i=2 i=2

moreover, D2 =0, and (D -KV) =<2, If dim ]D[ > 1 then for the
moving part |D'| of |D| we must have (D‘z) >0 . Thus |D]
has some fixed part which clearly consists of components of

1 1[ is an urreducible

4 4
1] 1] 3 1]
E g+ E'g+ 'z E, + .X E} (since ]El + E! + 25
i=2 i=2
pencil of rational curves) . However, it can be seen that adding any
n N . -
of these compq@nts to El + El + 231 does not increase the self:

intersection index. This shows that lEl + Ri + ZSi[ is, in fact,

equal to the moving part of [Dl . Thus, since the fixed part of D

does not contain the points Ql and Q2 , we have to show that there
. ' :

are no curves in El + El + 251] passing through Q1 and Q2 .

But this is easy, because the only curve linearly equivalent to

E, + E' + 25, passing thrugh Q. 4is the curve E_ + E! + 25
) 1 1 3 3

1 1 3
whi¢h does not pass through 92 .

The only thing hanging on us is the proof of the existence of
the cases A)-E) . Of course, for B) it is easy, since the general
member of the pencil P is non-singular. To construct other cases we
use a representation of V as a double plane which comes from the
inversion involution of the general elliptic fibre of V ., Dividing

V by this involution we get the surface Z obtained from the quardic
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Pl X Pl by blowing up 8 points, the four of them Pl, P2, P3, P4

are situated on a fibre F of the first projection, and other 4 ,

' ] ' L]
Pl' PZ, P3, P4

branch locus of the projection V + Z equals the union of the proper

on a fibre F' # F of the same projection. The

inverse transforms onto 2Z of the curves F , F' , and four fibres

N'NZIN'N

1 of the second projection, each of them Ni passing

3 4

through Pi and Pi . These Ni correspond to the sections Si on

v, L0 Lé correspond to the curves EO' Ea , and the lines blown up
’

from the points Pi . Pi correspond to the curves Ei ' Ei . Consider

the rational map 2 *‘Pz which is the composition of the bléwing down

. . . 2 .
zZ > ]Pl X ]Pl znd the linear projection of the quadric onto P with

center at some point lying outside the branch locus of V -+ 2 +‘m1 X Pl .

Then the image of the branch locus will be equal to the union of six
lines, two of them passing through some point A1 , say 20, 26 , and

four of them passing.through other pbint A2 # Al , say nl, n2, n3, n4 .

The pencil of elliptic curves on V is obtained from the pencil of

lines through Al . the curves Fl and F2 correspond to some lines

m, and m, through A; . Let B, =m n 13 + By

pencil P on V corresponds to the pencil of conics passing through

=m, N 24 . The

To get the case B) we just take for Dl a

conic¢ from this pencil passing through the point 20 N n, in the

A, By B, and B, .

case C) we take D, as in B) , and for D, take a conic from this

1 2

pencil passing through the point 26 r\nl . To get the case D) we

take for Dl

10 n ny and 26 N, (that can be done only for some special choice

a conic from the pencil passing through the points

of the lines), and D2 as in C). Finally, to get the case E) we take
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f
or Dl

through the points 20 N-n, and 26 An

choice of the lines)

Now we will compute the torsion of Burniat's surfaces.

we have the following torsion divisors of order 2:

Case A): 9; =

Case B):

the same conic as in D), and for D

Case C): gl

Case D): 9

Case E): 9, =

-

o

1

2

Eo

— Pal —
- = - - -
Epr 958 - F) ~ R v 9y
TSy TR =5, "S53 - Ry . 9g
-% -F .q =5 -5 -R
1R 09 2 "Ry e
— — A ol _—
= S3 "Ry 95 =Dy, - F) =8
— ~ — -— pa—
PR -Fy - Ry, 9, =85, = 8-
S, -F g =By+w B -8
4 "Ry 9y =Dy R - E
+ Rl - FZ - RZ v 92 = S3 + RZ -
+R +Ry -5, - E .
- ~ — P — -
PR CFy TRy 19y =Sy Ry -

(where ck(rx(p*l(Dé))) = 20! and

2

5, =ox(r"(p‘1(si))),

the conic passing

(also take some special

We will show that, in fact, these divisors generate the whole

torsion group.

Lemma. Let

Tors (X)

2
Then

Tors (X)

Obviously,

-F, - R, ,
b -F =5
1 1 3’
=5,-5,-R
’

r

—Rl'

- R1 .

i=3, 4) .

denote the subgroup of elements of order 2 in

Tors(X) =

2

Tors (X)
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Proof. Let §: X +X be the involution of the second order induced by the
rational double projection of X onto V . Then § induces an automorphism of
Tors(X) of order 2 &*: Tors(X) +Tors(X) .

For any g € Tors(X) the divisor g+5x(g) is invariant with respect to §
and hence being taken twicely comes from a torsion divisor on V. Since V

is rational, we get that the latter is linearly equivalently to zero. Thus
% %x
2(g+6°(g)) =29+¢§ (290~ 0.

Replacing g by 2g wéxg;at Tors(X) # _Tors(X) implies the existence

2
of a non-trivial torsion divasor g such that g +5”(g)lb0.
Let Dg be an effective divisor from the linear system IKX+g| R
where g as above . Then
®
D + D D + D % D +D 2

g ¥ 8 (Pgln Dy + DyX(gyn Dy + D_g€] 2K
Using the computation of ZKX on the page 90 we get that there exists a
curve

Ce&|F_ +F' +4s, +2E
(<] (]

1 1+2£i+1§|

( E is a linear combination of other Ei ,Ei ) such that

®, N
ng+8‘(ng) =0, (£ @) .
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Since px(c) splits under the covering r : X' + V' , it must

touch the branch curve W' = p_l(w) + R'l + Ré . Counting the inter-

section indices we easily find that px(c) touches the curves p-l(Fl)

and p—l(Fz) at one point Pl and P2 respectively, and touches the
-1 -1 -1 -1

curves p (Dl) (or p (Dl) and p (Dz) (or p (Dé)) at two

points P3, Pé and P4, P& respectively. Also, it does not touch

the components Ei or E; of W' .

Now notice that both W' and p*(c) are invariant with respect
to the automorphism h of V' induced by the inversion automorphism

of the elliptic pencil. This shows that the points P1 and P2

are fixed under h (and hence are situated on one of the sections

p—llsi)) , and the points P3 and Pé {resp. P4, PA ) are conjugate

with respect to h . Using this we observe that any curve C' A& px(C)

which passes through Pl and P2 and touches p”(c) at P3 and P4

will necessarily touch px(c) at all 6 points Pl' Pz, P3, P;, P4, P; .

Since dim [px(C)l = dim {ZKXI = 6 we always can choose such C' .

Considering rx(c‘l we get the contradiction in view of the following:

Sublemma. Let F be a non-singular projective surface with q(F) = 0 ,
Dl and D2 effective divisors such that D1 - D2 is a non-trivial
torsion divisor. Then for any D [D1+D2[ with no common component

with Dl + 02

Proof. Assume the contrary, let D ¢ [Dl + 02! which does not
satisfy the assertion of the lemma. Consider the linear pencil generated
by the divisors D and Dl + D2 . Resolving its base points we get a

morphism f : F' » Ig' of a surface F' birationally equivalent to F

onto Pl with a fibre containing two numerically equivalent components.

there exists a point P € F such that (D« Dl)P # (D Dz)P .
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‘The main.lemma of Chapter 2, 81 shows that it is possible only in the
case when the general fibre of f is disconnected. Moreover, in this
case f has to factor through £f' : F'—B , where B is a non-rational
curve. This of course, contradicts the assumption q(F) =0 .

(1)

Theorem. Let X be a Burniat surface of linear genus p « Then
(1)
Tors(x) = (/2% ¢ .
Proof. We already know that Tors(X) = 2'1‘01:5(){) and, even more,

that any torsion divisor class is invariant with respect to the
involution indaced by the projection r ¢ X' > V' ., Consider the
morphism £ : X » 1?1 which is defined by the inverse image of the.
elliptic pencil on V' . We have the following multiple fibres of

this morphism:

. = = R
Case A): 2E,, 2Ej, 2?1 + 2R}, 2?2 + 2R, ;

—_— n ~
- ] -
Case B): 2E', 2?1 * 2R, 2F, + 2R, :

A A
Case C), D), E): 2F1 + 2Rl, 2F2 + 2R2 .

Let Torsf(x) be the subgroup of Tors(F) generated by components

of fibres of f . Using the main lemma from Chapter 2, ‘§1 we see that

(z/2z)3 in case A)
Torsf(x) = (Z/22)2 in case B)

Z/2Z in cases C}, D), E)

and can be generated by the first three (resp. two, resp. one) divisors

9; indicated on page 94 .
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ILet Xn be the general fibre of £ . The restriction homomorphism

Pic(X) > Pic(xq) induces the imbedding
: r
Tors(x)/Torsf(x)c+ 2Plc(Xn) ’

where Pic(xn)r denotes the subgroup of divisors on X which are
invariant with respect to the automorphism induced by the projection
rn : Xn* Vh ' Vh being the general elliptic fibre on V . The

covering rn is ramified along the two points defined by the curves

1 Ty
D1 (or Dl) and 02 (or Dz) .

This shows that each D €& Pic(x,l)r can be represented by a
. .

linear combination of the curves D_, ) . 8., S., S_, B

1+ Dyr Sy¢ Sys S50 S, (the latter

four generates Pic(Vn)) . Using the relations on V

ZSi ~ 25, modulo E,, E!
3 i’ i

D, v 25, modulo E,, E!
i 3 i i

we find that each divisor Bi - §5 . E; - 55 defines an element of

. r
2Plc(xn) '

Now we notice that the covering r : X' > V' is defined by the

line bundle corresponding to the divisor
LS - ' r - ]
P (3F+251) Rl RZ 3R1 3R2 mod. Ei' Ej
(see p. 88). This implies that
Bl + 32 ~ 2§5 modulo components of fibres of f .

There is also a relation between Ei
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1 + 2 v ES + 4 modulo components of fibres of £

because Si defines the 4 points of order 2 on V .

Summarizing we get that 2Pic(Xn)r is generated by the three

divisors

— — — — ~ —
3—52, S4*Sz,and Dl—53

which as it is easily checked are independent.

The arguments above show that any element of Tors(X)/Torsf(X)
can be represer.ted by a sum of the above divisors plus a combination
of components of fibres of £ . It is easy to find in each of the
cases A)-E) the corresponding torsion divisors. In fact, we obtain
that these divisors are combinations of divisors gi (i=4, 5, 6 in
case A) , i=3, 4, 5 in case B), i=2, 3, 4 in case C), i=2, 3 in

Case D), i=2 in case E)) indicated on p. 73. This proves the theorem.

Remark. As we observed above the morphism f : X = Eg' has 4 multiple
fibres of multiplicity 2 in case A). Let B » Pl be the 2-sheeted
covering of Pl by an elliptic curve B branched at the four points
corresponding to the multiple fibres. The normalization. X' of the
surface X X ? is a double covering of X non-ramified outside the
two points ]gl = f‘l n R, and @, = ﬁz N R, . Also, X being mapped
onto B has the infinite fundamental group, the points ai and 5%
lying over Q and 92 are ordinary double points. This shows tﬁat

the' complement X - {Ql' Qz} has a non-ramified covering with infinite

fundamental group, hence X itself has infinite fundamental group.
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Another way to prove that the fundamental group of the Burniat
surface with p(1)=.7, is infinite is based on the corollary to Lemma 1
of Chapter III, 51 . Consider the surface XT corresponding to the
torsion group T of X . Then we have

1 0
= = +g) —
gx) = b = [ (b (kg)-1)

geT geT
g#0

Consider the inverse image of the pencil P onto X . The divisor

2Dl belongs to this pencil and h0(261¥§i¥§2) =2 . Now

— — -~ ~ - — — - — —
2D, - ~ - - '
2(Rl + R, + D, KX) 2(2Dl 2F 251 + Ey + Ej + 2R, + 2R2)

—_ S - 9R - 2R - 5 - 25 —_
2(F + 281 )Rl 2R 2F S, + E

B R R n E' - E N .
2 1+t Egt Egt 2R+ 2R) Vv 2(Ey - Ej) v O

. ~ g = ,\’
This shows that 2Dl + Rl + Rz KX + g and hence

> .
q(XT) 0

This, of course, implies that XT and thus X has infinite fundamental

*)
group.

T —————— e e S

*
) See Epilogue
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_

§5. sSurfaces with p 9.

Such surfaces were constructed by M. Kuga [29] and A. Beauville [3].

Kuga's construction:

Let H={ze € : Im(z) > 0} be the upper half plane. The Lie
group PG L(2,R) = SIL (2,R)/+1 is identified in a natural way with

its group of analytic automorphisms.

Let T' be a discrete subgroup of PG L(2,R) x G L(2,R) acting
with
freely on H x H Ycompact guotient V = H x H/T . By Matsushima-Shimura

{31] we have

20wy = 2w = g =0 ;

hl'l(V)

"

2p (V) + 2.
pg
Therefore,
€ (V) =4p (V) +4, Ko =8p (V) +8
2 Pg 1 ]\, Pg .

Next, notice that V has no exceptional curves of the first kind
(and more generally, no rational curves), because the projection
HXxH->HXHT =V spiits over such curve, but H x H does not
contain any complete curves.

Thus, to find the needed surfaces with pg(V) = 0 and p(l) =9

it suffices to choose such ' that

cz(H x H/T) = 4,
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By the Gauss-Bonnet formula

1
c2(V) = ——E'VOl(V) -
4T
where the volume vol(V) is computed by integration of the invariant

volume element

a =,dxlAdy1 R dxzédy2
2 2 ’
Yy Y,

- : : s . %
((21'22) (xl+1yl, x2+1y2) being the coordinates on H H) .

Now, let

Q(Vd_) be a real quadratic field, 4 the discriminant;

=~
1}

A(k,0) be the division quaterrion algebra with the center

»
I

kX and with the discriminant 6 = PyPy- Py assumed

to be totally indefinite (that is, 2 UQJR= !42(R) o 142(R)) .
N : A* k be the reduced norm of A ;
0 be the maximal order of A (unique up to conjugation if

the class number of k equals 1);
E(0) be the group of all units of 0 ;

T = {g € E(0) : N(g)} =1}

Consider the natural injection i :A+>2A @ R = MZ(IR)@ 'MZ(JR) and the
‘ 0
projection j ': €L,(R) XEL,(R) * PEL(2,R) X PGL(2,R) . let T = FJEM) be
a discréte subgroup of PGL(2,R) X PGL(2,R) .with compact quotient

Vv =H X H/T ; we note that ' is isomorphic to the image of T into Ax/kx .

According to. Simizu ([42]) the volume vol(H x H/T) can be expressed

through the zeta function ;k(s) of k by the formula:
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voln x 1/T) = 5 &/ gn(|p,| - 1
™

(|p| denotes the norm of prime ideal p of k) .
Now
L,(s) = L(s) Lis,X) ,

where Z{s) is the Riemann zeta function and L(s,X) is the

Dirichlet L-function associated with the character "X mod 4

(5) ;if d=1 mod 4
n, ., (n-1)/2
() = (m)( b , if d=4m, m =3 mod 4
xem = n (n?-1)/8
(E')(-l) , if d=8m', m =1 mod 4
2
(3—.)(4) (n-1)/8+(n-1)/2 , if a=8m', m' = 3 mod 4

The value of the Riemann zeta at 2 equals ﬁ2/6 . The value L(s,YX)

at 2 equals
1,22
L(2,X) = 5459 T(X)Bd P
where
a-1 o
T(x) = 2 X(n)e Tin/d , the Gauss' sum
n=1
d-1

w
|

1 2.
g = 30 L mxm) .
m=1

Thus, we have

3/2 2 2
-2 m,lczm -1 =
e X B/T) = S (3 TR g ¢lpl-1)
1 1

=2 57 t(x)BdII(lp'I-l) .
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1
Since the Gauss' sum T Q) has absolute value‘T(ﬂ ]= a and

e, = _l_ﬁ vol is positive , we get
4q
e, mxi/r )= L Bg|m (] - 1)
pl®

Next, we have to be assured that the group [' acts freely on HxH, and hence

HxH/T is smooth. Since the stabilizator group of any point is a finite

subgroup of I' , that can be if and only if T has no elements of finite
order.
Let ge¢rT be an element of order N, aé‘f~ some of 1ts preimages
in T . We have g Nty , and thus g S | . Then the quaternion

aigebré A has to contain a subfield isomorphic to the field

oe™Ny 2 03 .

Conversely, if the class number h(k) =1, then A:>Q(e2“l/N) implies

that T has an element of order N.

Since the maximal subfield of A has degree 2 over k , we have
¢(ﬁ)=[Q§e2ﬂi):QJ divides 4 .
Thus the only possible orders for N are
N = 2,3,4,5,6,8,10,02 .

Obviously, an element of order 2 in T defines the unit element of T

Now, if ¢ (N) = 2 (N=3,4,6) then the maximal subfield XK of A coincides
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ZFi/N) 27i/N

with k(e , if ¢(N)=4 then K = Q(e ) and k is the real

quadratic subfield of Q(ezni/N)°
Let K be a quadratic extension field of k; then the local arguments
show that K is embedablé into A = A(k,8) if and only if p’e does
not decompcse in K.
Now we are ready to give an explicit example.
Example. k = Q(/Z)r d=28,06 = P,Pg where P, and Pg lie over 2 and 5

accordingly.

We compute

Bg

S - -1) =
1, c,(BxHL) = ——~ Bg(2-1) (25-1) = 4 .

To check the smoothness of HxHA we observe that the only cyclotomic
. i . 21/8 . .
field containig k is @(e ), and in this case P, and Pg do not
decompose. Thus it suffices to consider the cases N = 3,4,and 6 . In
the second case K = Q(y&,i), and in the first and the third, X =QQ’2¢’-3).
In the both cases we easily verify that P, and Pg do not decompose.
Notice that other examples can be also obtained by taking instead of

some other discrete subgroups in 0 , for example,

T o= {g€E(Q): N(g) is a totally positive unit of k} .

We refer to [29] for the examples of the corresponding surfaces HxH/T .
To compute the torsion group Tors(HxH/]) we note that

Tors(H2(V,2)) = B (v,2) =T /IN,01 =T /76D LT -

For any maximal two-sided ideal pO in O we may consider the image ¢(f)

in o/p (= Mz(Fq) or qu . q=Normk/Q(p), depending on whether p*e or p'e).
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Moreover, by the Eichler approximation theorem we have

SL(F) .+ P\p

@ =
q, U . Ple

where U ={ aer 2 ¢ NF /E (a) = 1} is a cyclic group of order g+l .
2" q
q

This immediately shows that it is always
Tors(v) = T /(+1) (T, T1 # 1 .
The more detailed analysis gives the following result::

Theorem([29]). There exists a subgroup M of I' containing [, '] such that

- r
o= @ 2/ & @2* @ @n®
i=1

where
q = Nk/Q(pi) + 8 =Py.cPp
2 3f (2) =pp) oy APy and By}0 e
a ={1 if pyl2, |§25 =2, p238 but other divisor of 2 divides6®

0. otherwise

2 if (3)

P,P3 s Py # Py and p3}6 , P36
1 if (3) = p§ , p;}8  or p,|[3 and other divisor of 3 divides
0 otherwise

Moreover, M = {Tiji if the congruence subgroup conjecture of Bass-Serre

is true for T . Also, -1€M if and only if one of qiE 1 mod 4 .
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In the above example we have

TmM=2/3 @z/6 .

V = CxD/G , where C and D are complete non-singular algebraic curves of
genus g at least 2, G is a finite group acting freely on the product.

To construct the quotient with the needed properties Beauville proposes
to take for G a finite group of order (g(C)-1) (g(D)-1) acting on the both
C and D with the rational quotients. In order to get a free action on CxD

he puts

g(x,y) = (g(x),0(9)(y)) , g¢G , (x,y)éecxpD ,

where ¢ is an automorphism of G such that for all géG acting
non-freely on C 0O(g) acts freely on D .

In virtue of the lemma of Chap.I,§2 we have
(M =0 ,kK =8 .
“a r

Moreover, V does not contain any rational curves, since the projection
CxD + V has to split over such curve and there are no rational curves on
CxD. This implies that V is a minimal model.

It remains to prove that the irregularity q(V) = 0 . We have

G g{G)

1 o _a G, .1
H(v,0)) =H (an.ocxn) =H (c,Oc) @H (D.OD)

but, since C/G and D/0(G) are rational curves, the both summands are zeros.

Example 1. C = D 1is the plane curve with the equation:
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x5+y5+zs=o,

G = (Z/S)2 acts on C by the formulas:
(2@ (x,y,2) = (Px,ehy,2) ,  E= M5
O is the automorphism of G given by (I,0)- (1,1),(0,1)> (1,2).
The set of elements of G which act freely is A ={(p,q),p#q} and
¢ = {1}y ayo@ .
Example 2. C = D is the curve of genus 4 given by the equation in 1P3:

x3+Ay3+z3+t3=0, xy + 2zt =0 .

G = (z/3)2 acts on C by the formulas:

(p.q) (x,y,z,t) = (prpg—py:ngvg*qt) ’ £ = e2“i/3 !

o is the automorphism given by (I,0) =+(1,1), (0,1)> (1,2) .
The set of elements of G acting freely on C is the set A ={(p,q),p+g#0}
and G = {1}y AU O(a)

Applying the well known Hochshild-Serre exact sequence:
0 -+ Hom(G,€ - Pic(cxD/G) + Pic(cxp)® » B2 (G,C)

we see that
Tors{CxD/G) D G/([G,G] .

In particular, in the above examples the torsion group is non-trivial.
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6. Concluding remarks.

It would be very optimistic to expect the complete classification of all
surfaces of general type with pg=0. However, there are still many problems
to answer in the visible future.

One of the most interesting from my point of view is the following:
Problem 1. Is there a simply connected surface of general type with pg=0?
Or more weak
Problem 1'. Is there a surface of general type with pg=0 and trivial
torsion group?

!Consider the class of all surfaces of general type with pg=0 and fixed
P2= ptl). Then there exists a number N such that the N-canonicla system
defines a birational morphism for all such surfaces{[4]). Thus the set
'of its N-canonicla models can be parametrized by an open subset of the
Hilbert scheme corresponding to some Hilbert polynomial. Since the
latter is of finite type, this open subset consists of finite number of
connected components. The surfaces parametrized by a connected variety
are diffeomorphic, and,in particular,have the same fundamental group.
This argument shows that there are only finite number of possibilities
for the fundamental group of a surface. In particular, the order of the
torsion group is bounded by a constant depending only on p(l).

Problem 2. Find a bound for the order of the torsion group of surfaces

with the fixed p(l)

{as always of general type and with pg=0).
We remind that it is done in the cases of numerical Godeaux and

Campedelli surfaces.

Consider the class of all surfaces with the fixed value
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the torsion group T. Denote it by M (a,T).

Problem 3. Can M{a,T) be parametrized by a commected variety? In

particular, are the elements of M(a,T) diffeomorphic to each other?
For the start it would be very interesting to know the answer at least

in the cases M(2,z/2), M(2,z/3) and M(3,z/2¢z/2) . Recall that in the

last case we know two (and possibly even three) different constructions of

surfaces from this class. In some cases the answer is positive (e.g.

ﬂ(z,z/4), M(2,z/5%), M(3,abelian of order 8)).

) )

*
We still do not know if all possible values of p are realized ’.

, 8 and 10 ?

Problem 4. Are there surfaces with p
There is much hope to solve the following
Problem 5. Find all possible torsion groups of mumerical Godeaux and
Campedelli‘surfaces.*)
The validity of the following assertion is observed in all known
examples:
Problem 6. Prove that the fundamental group is infinite in the case

p(l) 27 and finite otherwise.

* See Epilogue
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EPILOGUE

After this work has been almost done the author was informed in many new
results.

1. Numerical Godeaux surfaces with Tors = E/3 have been constructed by
Miles Reid [45]. The construction is very delicate.

2. The final version of Peters' preprint [27] has been published [44].It
can be found there the result about the torsion of Burniat's surfaces(the
proof is not complete). Also it is proven there that the fundamental group

(1)

is infinite in case p =~ '=7. This result is also refered to M.Reid.

3. F.Oort and C.Peters also have proven that the torsion of Campedelli-

_,

~Qort-Kulikov surfaces with p is equal to 2Z/2 ([51]).

(1)=8 and also calculated the

4,M.Inoue has constructed surfaces with p
fundamental group for Burniat's surfaces ([46]).

5. M.Reid has computed the canonical ring of numerical Godeaux surfaces
with Tors=Z/2 ([46]).

6. M.Reid has proven that ## Tors< 9 for numerical Campedelli surfaces. He
conjectures that 9 can be replaced by 8 and the surfaces with the tQrsion
group of -order 8 are the Godeaix-Reid surfaces .Another conjecture:

## Tors < 30 for surfaces with p(1)=4 ([47)).

7. Using the nonarchimedean uniformization theory D.Mumford has construced

(1)

a surface with p = '=10 ([48]).

8.-Many people have discovered independently a surface with Tors = Z/5 and

p(1)=3 ([46]). BAs it was explained to me by Fabrizio Catanese it can be
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constructed in the foloowing way. Let F be a quintic surface in P3 which

is invariant under an involution of order 5 and posseses 20 ordinary double
points.Also assume that there exists a quartic surface B tangent to F along
a curve C which passes through these double points and smooth at them. The
existence of such surfaces F and B is proven in [49]. Blow up F at these 20
double points to the surface F , then the sum of the twenty exceptional
-2-curves on F is linearly equivalent to the strict inverse transform

of C taken twicely. Let V be the double covering of F branched at those
curves, V the blowing down of the strict trnasforms of the branch
locus. Then it can be easily shown that Ké = 10, pg(v) = 4 , The 2/5-action
on F extends to a free action on V and the quotient defines the needed
surface X. By Reid's result (see 6.) we get Tors{X) = Z/5 . Moreover,
the surface V can be realized as a non-singular compactification of

a quotient of the upper half planes by a discrete group of Hilbert's type
([503), this implies that V is simply connected, and hence the fundamental

group of X is 2/5 ,

9. C.Peters conjectures that for any double plane of general type with

pg=o the torsion group consists of elements of order 2 ([441').
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