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A complex ball uniformization of the moduli
space of cubic surfaces via periods of K3 surfaces

By I Dolgachev at Ann Arbor, B. van Geemen at Milano, and S. Kondo at Nagoya

Abstract. In this paper we show that the moduli space of nodal cubic surfaces is iso-
morphic to a quotient of a 4-dimensional complex ball by an arithmetic subgroup of the
unitary group. This complex ball uniformization uses the periods of certain K3 surfaces
which are naturally associated to cubic surfaces. A similar uniformization is given for dif-
ferent covers of the moduli space corresponding to geometric markings of the Picard group
or a choice of a line on the surface. We also give a detailed description of the boundary com-
ponents corresponding to singular surfaces.
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1. Introduction

There are two main approaches to the construction of moduli spaces in algebraic
geometry. One uses geometric invariant theory which allows one to construct the moduli
space as a quotient of an open subset of an appropriate Hilbert scheme, the other one uses
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period maps to construct the moduli space as a quotient of an open subset of a Hermitian
symmetric homogeneous domain by a discrete subgroup of its group of holomorphic auto-
morphisms. Both approaches suggest a way to compactify the moduli space. In the alge-
braic approach one adds the equivalence classes of semi-stable points. In the transcendental
approach one considers the whole domain together with its boundary.

There are several remarkable cases where both approaches work. Comparing the con-
structions gives a beautiful interplay between the algebraic theory of invariants and the
theory of automorphic functions. The historically first example of such an interplay is of
course the moduli space of elliptic curves which, on one hand, is the quotient of the space
of binary forms of degree 4 by the group SL(2) and, on the other hand, is a natural quo-
tient of the upper half-plane by the modular group. Similarly, binary forms of degree 5, 6, 8
and 12 give the moduli spaces of Del Pezzo surfaces of degree 4, and hyperelliptic curves of
genus 2, 3 and 5, respectively. Using the theory of hypergeometric functions one can show
that the corresponding domains are complex balls of dimension 2, 3, 5 and 9, respectively.
Increasing the number of variables by one, one finds the ternary cubic forms which leads
again to the moduli space of elliptic curves, the forms of degree 4 corresponding to the
moduli space of non-hyperelliptic curves of genus 3 (in this case the domain is the Siegel
upper half space of degree 3) and the forms of degree 6 corresponding to K3 surfaces with
degree 2 polarization (the domain is of type IV in Cartan’s classification).

Using domains of type IV one can also give a uniformization of the moduli space of
cubic and quartic forms in 4 variables. The case of forms of degree 3 (cubic surfaces) was
treated in the work of K. Matsumoto, T. Sasaki and M. Yoshida [MSY], and degree 4 (K3
surfaces with degree 4 polarization) much earlier by J. Shah [Sha]. Although cubic surfaces
do not admit non-zero holomorphic 2-forms, so that the periods are not defined, there are
identifications of this moduli space with other moduli spaces for which the period map is
defined. In [MSY] one uses the moduli space of K3 surfaces which have a certain primitive
sublattice of rank 16 in the Picard group. Such a surface can be realized as a double cover
of P2 branched along the union of 6 lines in a general position. The blow-up of the dual set
of 6 points in P2 is a nonsingular cubic surface. Recent work of D. Allcock, J. Carlson and
D. Toledo [ACT] gives a different uniformization of the moduli space of cubic surfaces
where the domain of type IV is replaced by a complex ball. This ball quotient is the moduli
space of principally polarized abelian varieties of dimension 5 with complex multiplication
in the Eisenstein ring Z[(3]. Each such variety can be realized as the intermediate Jacobian
of the triple cyclic cover of P branched over a nonsingular cubic surface. Independently
this construction was found by the second author and B. Hunt. Subsequently, Allcock and
Freitag [AF] found modular forms on the ball quotient which embed it into a nine dimen-
sional projective space. Freitag [F] later proved that the ideal of the image is defined by
cubic polynomials and that the quotient ring is the full ring of modular forms. The image
variety turns out to be isomorphic to a compactification of the moduli space of marked
cubic surfaces.

A similar approach works for Del Pezzo surfaces of degree 2 and 1 which can be real-
ized as surfaces of degree 4 and 6 in weighted projective spaces P(1,1,1,3) and P(1,1,2,3),
respectively (see also [HL] for another approach to a complex ball uniformization of the
moduli space of Del Pezzo surfaces of degree 1). All of this is based on the existence of an
embedding of a complex ball into a Siegel domain. It is also known that a complex ball can
be embedded into a type IV domain. For example a moduli space of lattice polarized K3
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surfaces admitting an automorphism of order 3 or 4 which acts non-trivially on the lattice
of transcendental cycles is parametrized by an arithmetical quotient of an open subset of a
complex ball. This observation was used by the third author [Kol] and independently by
the second author (unpublished) to construct a complex ball uniformization of the moduli
space of Del Pezzo surfaces of degree 2. This moduli space is isomorphic to the moduli
space of non-hyperelliptic curves of genus 3 via the map which associates to a Del Pezzo
surface the fixed curve of the Geizer involution. The K3 surface associated to such a surface
is its double cover branched along this fixed curve. In [Ko2]| a similar description of the
moduli spaces of curves of genus 4 and of Del Pezzo surfaces of degree 1 is given.

In this paper we give a similar construction for the moduli space of cubic surfaces. To
each stable cubic surface S we associate a K3 surface Xg with an automorphism of order 3.
Its periods are parametrized by a complex 4-ball and we do in fact recover most of the re-
sults from [ACT]. Our construction is also closely related to the work of K. Matsumoto
and T. Terasoma [MT] who associate to a line on a cubic surface a certain curve C of genus
10 which admits an involution ¢ with two fixed points such that the Prym(C, o) is isomor-
phic to the intermediate Jacobian of the triple cover of P* branched along the cubic sur-
face. The curve C also admits an automorphism 7 of order 6 such that ¢ = 7. The K3 sur-
face associated to the cubic is the minimal nonsingular model of the quotient (C x E)/{t),
where E is an elliptic curve with an automorphism of order 6. The branching of the map
C — C/{z) = P! is very special, we have 7 branch points, 5 of which have ramification
index (3,3) and two have index (6). According to Deligne-Mostow [DM] the moduli space
of such covers is isomorphic to an open subset of a complex ball quotient 4/I". We identify
this moduli space with the moduli space of K3 surfaces Xs and interprete the monodromy
group I' in terms of the orthogonal group of the lattice of transcendental cycles on the K3
surfaces. We also give an interpretation of a compactification of the ball quotient in terms
of K3 surfaces.

Here is the review of the contents of the paper. In section 2 we study stable cubic sur-
faces. Since these have at most nodes as singularities we refer to them as nodal cubic sur-
faces. We define markings of nodal cubic surfaces and we introduce the moduli space of
marked nodal cubic surfaces .#,. . The Weyl group W(Es) acts on .#,. , (the action can
be described by planar Cremona transformations) and the quotient variety is .#ycub, the
moduli space of stable cubic surfaces. It has a natural compactification .# .y, the moduli
space of semi-stable cubic surfaces, which is obtained by adding one point. The moduli
space ./, admits also a natural compactification .#/" , which is obtained by adding 40
points. It admits a W(Es)-equivariant embedding into P?. We discuss different construc-
tions of the moduli space .#" .

For a nodal cubic surface and a line on it we define in section 3 a pair of binary forms,
of degree 2 and 5, modulo the action of SL(2). Using this, we prove that the moduli space

of cubic surfaces together with a choice of a line on it is a rational variety.

In section 4 we define a K3 surface X ; associated to a nodal cubic surface S together
with the choice of a line / on S. The surface X ; admits a natural elliptic fibration as well
as an automorphism of order three. We show that this K3 surface depends only on S (and
not on the choice of /) by defining a K3 surface Xs;,,, where / and m are skew lines on
S, which can be seen to be isomorphic to both Xs ; and X ,,. We write X for the (isomor-
phism class of such a) K3 surface associated to (S,/). We relate X to the K3 surface asso-
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ciated to a cubic fourfold with a plane, to the cubic threefold V" associated to S by Allcock,
Carlson and Toledo and to the ‘Matsumoto-Terasoma curve’ C.

In section 5 we show that the Picard lattice of a generic X is isomorphic to the
lattice M = U ®A®5 The lattice of transcendental cycles is isomorphic to the lattice
T=4(-1)® A®4 This follows from the fact that the elliptic fibration on the generic Xy
has 5 singular ﬁbres of type IV and 2 fibres of type II and some lattice theoretic consider-
ations. We also compute the Picard lattices of the K3 surfaces associated to general nodal
cubic surfaces.

In section 6 we study the moduli space of M-polarized K3 surfaces
(X,¢: M — Pic(X)). If ¢(M) = Pic(X), an M-polarization ¢ is equivalent to the data
which consists of an elliptic fibration with a unique section, an order on the 5 reducible
fibres of type IV or I3, and an order on the set of irreducible components of each fibre
which do not meet the section. An M-polarization on the K3 surface X associated to a
smooth cubic surface S is equivalent to a marking on S, that is, an order on the set of 27
lines (or, equivalently, a choice of an ordered set of six skew lines). The M-polarized K3
surfaces (X, ¢) are distinguished from general M-polarized K3 surfaces by the property
that there exists an automorphism ¢ of order 3 which is the identity on ¢(M) and, for
smooth S, coincides with some explicitly described isometry p on the orthogonal comple-
ment of ¢(M) in H?*(Xs,Z). The isometry p fixes the period H>°(Xs) of Xs so that the
image of the period map of the surfaces Xy lies in the fixed locus of a certain automorphism
of order 3 on the period space of M-polarized K3 surfaces. This fixed locus turns out to be
isomorphic to a 4-dimensional complex ball 4. In this way we construct the moduli space
A3, of (M, p)-polarized K3 surfaces as a quotient of %. The Weyl group W(Eg) acts
naturally on #'3} by changing the polarizations.

In section 7 we establish a natural W(Eg)-equivariant isomorphism from the moduli
space of marked nonsingular cubic surfaces .#[, onto an open subset 437}, \A’” of
A3} ,- The moduli space of isomorphism classes of pairs (S, /) of cubic surfaces together
with a choice of a line is isomorphic to the quotient of 37, \A™ by a subgroup of W(E)
isomorphic to W(Ds). In this way we obtain an 1nterpretat10n of a line on a general cubic
surface S as a choice, up to automorphisms of Xy, of an elliptic pencil with 5 fibres of type
IV on the associated K3 surface X.

In section 8 we study in detail the geometry of the discriminant locus A™. We show
that each point [(X,#)] € A” admits an automorphism ¢ of order 3 such that H(X,Z)"
contains ¢(M) @ R, where R is spanned by all (—2)-vectors in ¢(M)" n Pic(X). The lattice
R is isomorphic to r (< 4) copies of the root lattice A,. The polarization ¢ defines an elliptic
fibration on X and we describe its possible singular fibres. We also prove that A™ consists
of 36 irreducible components on which W(Es) acts transitively. The cubic surfaces with
Eckardt points define another divisor in '3 , and we prove that it consists of 45 irre-
ducible components permuted transitively by W(EG) Finally we show that the Satake-
Baily-Borel compactification of #'3};  contains 40 cusps, again transitively permuted by

W(Es). This agrees with the results obtained in [ACT].

In section 9 we show that the W(Es)-equivariant isomorphism from .#[;, onto
A'3% \A" can be extended to an equivariant isomorphism from the moduli space of
marked nodal cubics #y, to A3} .. We also show that the quotient 73y} /W(Ds)
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and the moduli space of nodal cubic surfaces together with a choice of a line
ML =M™ JW(Ds) are isomorphic. Moreover, the latter space is naturally isomorphic
to the GIT-quotient P;(25,1,1)/Ss x S, = (P')"//SL(2) x (g), where the linearization of
SL(2) is defined by weighting the first five factors with weight 2 and the last two factors
with weight 1. Here S5 acts by permutation of the first five factors and .S, acts by permuta-

tions of the last two factors.

The configuration space P;(2°,1,1)/(g) = (P')"//SL(2) x (g) occurs in the work of
Deligne and Mostow [DM] and we show that the group I' is isogenous to the reflection
group IT acting on % which is generated by the reflection group IT’ of the hypergeometric
function defined by the multi-valued form

o=z -1z -a)z-a)z-a)z—a)] " dz

and an involution g. Moreover, we match the types of degeneration of the elliptic fibration
corresponding to the polarization and the type of degeneration of a stable point set through
this morphism.

Finally, in section 10, we compare the Hodge structure on the K3 surface Xg with the
principally polarized Hodge structure on H'(P, Z), where P is the intermediate Jacobian of
a cubic threefold associated to the cubic surface S.

2. Nodal cubic surfaces

2.1. Nodal cubics and points in P2. A nodal cubic surface is a surface of degree 3 in
P3 which has at most ordinary double points as singularities. Let S = P? be a nodal cubic
surface with a node P = (0,0,0, 1). Then its equation is of the form:

(2.1) F>(xo0, x1,x2)x3 + F3(x0, X1, x2) = 0,

where the F; are homogeneous of degree i and F>» = 0 defines a smooth conic. Projection
from P is a birational isomorphism S --» P? with inverse given by:

P? > S, x = (x0,x1,%2) — (Fa2(x)x0, F>(x)x1, Fa(x)x2, —F3(x)).

It is a rational map given by the linear system of cubics through B = (F, = 0) n (F5 =0).
The inverse image of a point in B is a line on S. There are at most two nodes on a line in .S
which implies that each point in B has multiplicity at most 2. In particular, S has at most 4
nodes. It also follows easily from considering equation (2.1) that other nodes of S appear
only when the cubic defined by F3 is simply tangent to the conic defined by F,. Equiva-
lently, S can be obtained as the blow-up 6 points on a conic, where among the points there
could be infinitely near points of order at most 2.

Let S be a nodal cubic surface and let S — S be the desingularization of S. The fibre
over a node is a (—2)-curve, i.e. a smooth rational curve with selfintersection —2. The ra-
tional map S --» P? defines a morphism 7 : S — P? which is the composition of birational
morphisms

n:8=8y— S — - — S =P?,
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where each 7; : Si_1 — S;,i = 1,...,6, is the blow-down of an exceptional curve of the first
kind (a (—1)-curve for short).

Let E! S; be the exceptional curve of 7; and put E; = (mi—10---om ) (E]). Let ¢
be the divisor class of E; and let ¢y be the divisor class of the pre-image of a line / = P2
under 7. The classes ey, e, . . ., e¢ form an orthonormal basis in

H*(S,7) = Pic(S) = Zey ® Zey @ - -- ® Zes

in the sense that e% =l e=-1,i%0, (ei,e;) =0, i # j. The canonical class Kg of S is
equal to —3ep +e; + -+ + .

The anti-canonical map S — P* maps S onto S and contracts the (—2)-curves to
nodes. In particular, K is orthogonal to the class of each (—2)-curve. Such a class is, up
to sign, one of the following 36 classes:

(2.2) ei—ej, ey —e—e —ep, 2e—e—ey—--— e,

with 1 £i<j<k=<6. Let p;=n(E)) € P2. Then ¢; — ej, i > j, is effective if and only if
pi and p; coincide, ey — e; — ¢; — ¢ 1s effective if and only if the points p;, p; and p; are
on a line and 2ey — e; — ey — - -+ — ¢4 1s effective if and only if the six points py,..., ps are
on a conic.

2.2. Geometric markings. A minimal resolution of a nodal cubic surface is a Del
Pezzo surface of degree 3. In this paper a Del Pezzo surface of degree d is a smooth sur-
face X with —Ky nef and K3 = d > 0. For d = 3, the anti-canonical linear system |—Ky|
maps X birationally to a surface of degree d in P¢ with at most rational double points as
singularities. Notice that we do not assume that — Ky is ample, in that case one should call
X a Fano surface. It is known that a Del Pezzo surface admits a birational morphism
7: X — P?asin 2.1. A choice of such 7 and its decomposition 7 = 7g_4 0 - - - o 7y is called
a geometric marking of X. Two geometric markings X = Xy — X1 — - — Xg_4 = P2
and X' = X — X] — -+ — Xj_, = P? are called isomorphic if there exist isomorphisms
¢ Xi— X/, i=0,...,9—d,suchthat ;. , 0 ¢; = ¢;, omy1,i=0,...,9—d - L.

2.3. Lattice markings. The Picard lattice of a Del Pezzo surface X of degree d is
isomorphic to

Lioqg=<1>@® (1)

the standard odd unimodular hyperbolic lattice with the standard orthonormal basis
(€o,...,e9 4). Let k = —3ey+e; + -+ e9_4. Let k* be the orthogonal complement of
Zk in I 9_4. Assume d < 6. Then the sublattice k* is isomorphic to Ey_,, where Ey_y
is the root lattice Ey_4 if d =1,2,3, the root lattice Ds if d =4, the root lattice A4
if d =25, and the root lattice A, + A; if d = 6, spanned by vectors ey — e — e; — e3,
el —ey,...,e9_q11 —ey_q. A lattice marking of a Del Pezzo surface X is an isometry

¢: 1 94— Pic(X), such that@(k)= Ky.
In particular, the restriction of ¢ to k* is an isometry k- — K.

A geometric marking defines a lattice marking by ¢(e;) = ¢; with ¢; as in 2.1.
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Let W(X) be the subgroup of the orthogonal group of Pic(X) generated by reflec-
tions in the classes of the (—2)-curves on X. Two lattice markings ¢, ¢ : I 9_4 — Pic(X)
are called equivalent if there exists an element ¢ € W(X) such that ¢ = g o ¢'.

The proof of the following result can be found in [Lo].

2.4. Proposition. Let X be a Del Pezzo surface. Then there is a natural bijection be-
tween the isomorphism classes of geometric markings and equivalence classes of lattice mark-
ings on X.

2.5. The moduli space of marked smooth cubics. We denote by .#, the moduli
space of marked smooth cubic surfaces. Its points correspond to isomorphism classes of
pairs (S, ¢), where S is a smooth cubic surface and ¢ is a lattice marking of S. There is an

isomorphism:

M= ((P?)° = A)/SL(3),  (S,¢) — (p1,..-, Pe),

where the p; € P? are the images of the lines with classes ¢(e;) € Pic(S) in the blow-down
P2 of S and A is the set of 6-tuples of points where either two points coincide, or three are
on a line or all six are on a conic. The inverse image of a 6-tuple consists of the surface S
obtained by blowing up the points p; and the marking is defined by putting ¢(e;) equal to
the class of the exceptional divisor over p;.

2.6. The Cremona action on .#_;. The Weyl group W(Ey) is the subgroup of O(/; ¢)
which fixes the element k € I} 6. It acts naturally on .Z_, by composing a lattice marking
with (the inverse of ) an isometry in W(Ej):

W(Es) — Aut(.4™,), o [(S,¢) — (S,¢oa 1))

Equivalently, W(Es) acts via the Cremona action on 6 ordered points in P? (see [DO)).
From now on we will simply identify W(Es) with its image in Aut(.Z,).

m

The quotient of .4, by W(Es) is the moduli space of smooth cubic surfaces .#cyp.
Let peus be this quotient map:

Pcub - M — ﬂmb/W(Eé) = ﬂcub-

cub cul

2.7. The GIT compactification. Geometric Invariant Theory provides a natural
compactification of the moduli space of cubic surfaces .#yp:

M = P(HO (P, € (3)))*/SLEA).
The stable points in P(H°(P?, 0p:(3))) are the nodal cubic surfaces. Points in

e = P(H (P, 0p3(3)))°//SL(4)
are thus isomorphism classes of nodal cubic surfaces. The strictly semi-stable points all map

to one point in .#.,. The corresponding minimal closed orbit is the orbit of the cubic sur-
face with equation
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(2.3) w? 4 xpz = 0.

The complement of this point in %y, is denoted by .#ycup, the moduli space of nodal cubic
surfaces.

The explicit computation of invariants of cubic quaternary forms, due to A. Cayley
and G. Salmon [Sal] (see a modern account in [Be]), gives an isomorphism

(2.4) Moy = P(1,2,3,4,5).

The moduli space of nonsingular surfaces is isomorphic to the complement of a hypersur-
face of degree 4 defined by the discriminant. In particular, .#.,y is affine.

2.8. Moduli of marked nodal cubics. We can construct the moduli space of marked
nodal cubic surfaces as follows. Let C(.#”,) be the field of rational functions of ., . It is
an extension, with Galois group W(Es), of C(.AMcuy) = C(AMeup). Now we define % o to be
the normalisation of .# in the field C(.Z2,).

By its definition, .#, is a normal projective variety and, since ., is smooth (see
sections 2.9 and 2.10), we have
cub = (le?
the complement of ./, will be called the boundary of

cu
group W(Es) acts on .7, with quotient .#cy:

cub

By construction, the Weyl

cub

pcub : %cub - 'ﬂCUb - ‘%céb/w(Eé)
and p.,, = peup on the subvariety .47, . Finally we define the moduli space of marked
nodal cubic surfaces to be:

ﬂmub _p ](ﬂncub)-

This moduli space is the complement of a finite set of points, called the cusps, in .4, and
the cusps are all in one W(Ej)-orbit.

Despite its abstract definition, the variety .#", is rather well-known. Below we pres-
ent some other constructions of it, and we show that the points in ., correspond to iso-
morphism classes of marked nodal cubic surfaces. We do not know whether .Z , is the
(coarse) moduli space of some functor.

2.9. Naruki’s model. In [Nar], Naruki constructs a smooth, projective compactifica-
tion of the moduli space . which he calls the cross-ratio variety. Its boundary contains
40 disjoint divisors which can be blown down to 40 singular points of a normal variety 4.
At each singular point ./ is locally isomorphic to a cone over a Segre embedding of (PI)S.
Naruki also shows that the action of W(Es) on .Z%;, (= /") extends to a biregular action
on ./~ with quotient A" /W (Eg) = .. Using the universal property of the normalization
in a field extension and Zariski’s Main Theorem (see [Mu], I1I1.9, Proposition 1) we obtain

an isomorphism
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bt N = M.

From Naruki’s description of .17, see also [CvG], one obtains that the forty singular
points of /" map to the cusps of .#”, . Moreover, the boundary of .Z_, consists of 36 di-
visors, each of which is isomorphic to the Segre cubic threefold %3, best seen as a sub-

variety of P>
(2.5) S S xi=0, Y.x}=0.

The group W(Es) acts transitively on the set of 36 boundary divisors. The stabilizer of each
of the 36 divisors is isomorphic to the permutation group Sg which acts on %3 by permut-
ing the coordinates. Also notice that there is an isomorphism ([DO])

(2.6) Sy = (P //SL(2).
Again, the action of Sg on 5 is the natural one.

2.10. A GIT model. Since the interpretation of .4"\Sing(./") as the moduli space
of marked nodal cubic surfaces is not obvious in Naruki’s construction we sketch another
model of ./ ., where this interpretation is more apparent. First we recall the explicit con-

struction of the GIT-quotient X = (P?)®//SL(3) given in [DO]. The graded ring of invari-
ants

. . SL(3)
R 690<H0<(P2>6’ @njapz(n))>

is generated by elements 7y, t, 2, t3, 4 of degree 1 and one element 75 of degree
2. Here 7; is the i-th projection from ([P’z)6. The relation between the generators is
t§+F4(ZO,t1,t2,t3,t4) =0, where F; is a homogeneous polynomial of degree 4. Thus
X is isomorphic to a hypersurface of degree 4 in the weighted projective space
P =P(1,1,1,1,1,2). Note that the involution #5s — —fs corresponds to the association (or
the Gale transform) of the point sets (see [DO]). Its locus of fixed points is isomorphic to
the quartic hypersurface V'(F;) in P* and parametrizes the self-associated point sets, i.e.
point sets lying on a conic.

The quartic 3-fold V(F,;) in P* has 15 double lines /; corresponding to minimal
semi-stable orbits of point sets (p1,...,ps) Where p; = p;. Three lines l;, Iy, I, where
{1,2,3,4,5,6} = {i, j} u{k,[} U {m,n}, intersect at one point Py s ms. It represents the
orbit of the point set p; = p;, px = pi, pm = pn. It follows from the explicit equation of Fy
that its local equation at Py 17, is given by w2 + 212523 = 0, where w = z; = z; = 0 is the
local equation of one of the 3 double lines meeting at the point. This implies that X is given
locally at the point P; y; ., = (Py k1,mn, 0) by the equation uv + xyz = 0.

Let Z be the singular locus of X and .77 its sheaf of ideals. One considers the linear
system |Zz(3)| = R3. A. Coble [Co] gives explicitly 40 elements of |.#z(3)| which span a
PV ~ P° and shows that the birational action of W(Es) on X induces a linear action on V.
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We construct the moduli space of marked cubic surfaces as the image Y of X under the
rational map given by the linear system P V.

First we blow up the ambient space P at the points Pl; Kl mn Let Ejj ki, mn = P* be the
exceptional divisor at the point Py, .. The proper inverse transform X; of X intersects
each Ej j1 mn along the union of two hyperplanes Hjj i/, mn, Hl; Kl mn corresponding to the
tangent cone of the singular point. The proper inverse transforms of the lines /; are double
curves C; on Xj. Each of the curves Cj;, Ci, Cyy intersects Ejj i mn at a point. The three
points span the plane Il x,mn = Hyjkt,mn O Hy gy - Next we blow up the 15 singular
curves Cy, to get a variety X;. The proper inverse transform of the linear system PV in X,
has base locus equal to the union of the proper transforms l:lij, k,mn Of the planes ITj i1y
Each surface Il k/,my is isomorphic to the blow-up of 3 points on the plane. The proper
transforms of the lines joining three pairs of points are double curves of X;,. Next we blow
up the surfaces l:Ii,; kl,mn to get a nonsingular variety X3. Now the proper inverse transforms
of the hyperplanes Hj; i/, ymn, H,; Kl mn become separated and the proper inverse transform of
the linear system P}V has no base points.

Let Y < P? be the image of X3 under this linear system. Observe first that Y is a
compactification of the geometric quotient .#”, = U/SL(3), where U = (P?)® — A as in
2.5.

Next we shall see its complement. First of all we have 20 divisors Dj; in X represent-
ing 6-tuples of points where p;, p;, pi are collinear. The sum of the two divisors D{jk and
D, ., where {i, j,k} v {l,m,n} ={1,...,6},is defined by a linear function L = Ly, € R
(see [DO]). The corresponding hyperplane V(L) cuts out the quartic V'(F4) along a non-
singular quadric Qjx = Qjun. The quadric contains 6 double lines /;, li, ik, Ly, ln, lnn. Let
Djj. be the proper inverse transforms of Di’/.k in Y. Let D;; be the proper inverse transforms
in X3 of the pre-images of the curves Cj; in X>. We have 15 such divisors. Finally, let D,
be the proper inverse transform of V(ts) = V(F,) in Y. It is easy to see that under the
map X3 — Y the proper inverse transforms of the quadrics Q; are blown down to points
Cijke = Cin- AlSO 1€t € k1, mns €; 4y E the images in Y of the hyperplanes Hy i mns Hjj 11 -
Altogether we have 40 points which we call the cusps. The forty cusps is the set of singular
points of the variety Y. So, we see that the complement of the image of U/SL(3) in Y is
equal to the union of 36 divisors Dy, D, D.

The Weyl group W(Es) acts on Y interchanging the boundary divisors. This makes
them all isomorphic to each other. This is easy to check. The restriction of the linear
system PV to the quartic V' (F4) is the map given by the partials of Fy. It maps V(Fy)
to the dual variety known to be isomorphic to the Segre cubic %3 = P*. This shows that
Dy = 9.

One can check that the variety Y is a normal proper W(Ejg)-variety containing the

W (Ejg)-variety .4y, as an open subset. Thus there is a birational morphism f : Y — .Z[, .
We claim that f is an isomorphism. Let E be an irreducible component of the exceptional
locus of f. It is contained in one of the 36 boundary divisors D. However D =~ %; has

Pic(D) = Z. Nothing can be blown down on D. Thus we obtain that

(2.7) Y ="

cub*
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2.11. Remark. In [ACT], .Z(, is identified with an open subset of a smooth ball
quotient. In [AF] Allcock and Freitag show, using modular forms constructed via a Bor-
cherds lift, that this ball quotient embeds into a P° and that the closure of its image is iso-
morphic to the Satake compactification of the ball quotient, the boundary consists of 40
singular points. Freitag [F] proved that ideal of the image of the ball quotient is generated

by explicitly given cubics and that it is a normal variety.

Coble, in [Co], defines a rational map (P?)® — P° which is SL(3)-invariant and
hence factors over .#.u. It is easily seen to be a birational isomorphism between .Z[;,
and its image. This map is moreover equivariant with respect to the Cremona action
of W(Eg). See also [Y] where in particular the restriction to a boundary divisor is
worked out. It is easy to verify that the image of .Z[, lies in the subvariety defined by the
cubics.

In [vG2] the corresponding rational functions on Naruki’s variety 4" = .#", are ex-
plicitly identified, and also the 40 functions used by Coble are given.

Matsumoto and Terasoma [MT] showed how to get this embedding via an embed-
ding of the complex ball into the Siegel space (of genus 5) followed by a map to P° given
by explicitly determined theta constants.

2.12. Boundary divisors. Since a node of S corresponds to a (—2)-curve in Ké, the
36 boundary divisors are parametrized by the 36 positive simple roots of Es. Let o be
one of the 36 positive roots (see (2.2)). To each o we assign the divisor D, in .4}, we
write:

Dy if a=e —ej,
D, =< Dy if a=ey—e —e —e,
Dy fa=2e —e —er —e3 —e4 —e5— e.

Each D, parametrizes marked nodal cubic surfaces (S, ¢) for which ¢(«) is effective. The
isomorphism between D, and the Segre cubic %3 becomes apparent and the isomorphism
(2.6) is the natural isomorphism between Dy and (P')®//SL(2). Of course all divisors D,
are mutually isomorphic, being permuted by the action of W(Eg).

If ¢() is effective and r, denotes the reflection in W(Eg) defined by the root o, then
the lattice marked nodal cubic surfaces (S, ¢) and (S, ¢ o r,) are equivalent. This suggests
that in the Cremona action of W(E¢) on .., the reflection r, acts identically on D,. This
is in fact the case ([Nar], p. 22).

The Segre cubic has 10 nodes p;; for example, pips=(1:1:—-1:—-1:1:-1),
corresponding to the minimal orbit of sixtuples (pi,...,ps) of points on P! such that
D1 = Pi = Dj, Pi = Pm = pu. Identifying %3 with Dy, the nodes of .#3 are the cusps of
A", lying on Dy.

The image p(D) of a boundary divisor in .#.y, is the locus of singular cubic sur-
faces. It is defined by the vanishing of the discriminant invariant on the space of cubic
surfaces, which is of degree 32 in the coefficients of the cubic form. In the isomorphism
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(2.4) it corresponds to the hyperplane defined by the unknown with weight 4. Thus p(D)
is isomorphic to P(1,2,3,5). On the other hand, if we identify D with the Segre cubic
93, and the stabilizer of D in W(Es) with the permutation group Se (see the next sub-
section), we see that P(1,2,3,5) must be isomorphic to ¥3/Se. This is easy to see: the
group S acts on &3 given by equations (2.5) by permuting the coordinates. This easily
implies that the subring of invariants of the homogeneous coordinate ring of %3 is gen-
erated by elementary symmetric polynomials of degree 2, 4, 5, 6 and hence
S3/Se = P(2,4,5,6) ~ P(1,2,3,5).

2.13. Moduli of r-nodal cubics. The irreducible components of the locus of marked
nodal cubics with r nodes are parametrized by unordered subsets of r orthogonal roots (up
to sign) in Es. We denote by D,, , the intersection of the divisors D, ,..., D, corre-
sponding to r orthogonal roots a4, ..., .

The stabilizer in W(Eg) of such a locus Dy, , is the product of the subgroup of
order 27, generated by the corresponding r roots (this subgroup acts trivially on the com-
ponent), the permutations on r roots aj, ..., o, (= S,) and the subgroup generated by reflec-
tions in the roots orthogonal to the r simple roots. The stabilizer modulo the subgroup of
order 2" is the group of permutations of geometric markings on S.

In case r = 1, the 30 roots e; — ¢; are all orthogonal to the root o = 2eg —e; — -+ — eg,
so we see that Z/27 x W(As) =~ Z/27 x Se acts on D,. Thus we recover the fact that
W(4s5) = S acts on a boundary divisor.

In case r =2, there are 12 roots ¢; —¢; (3 < i,j < 6) orthogonal to the two roots
o =2ey)—e; — -+ —eg and oy = e; — ep. Together with «;, o, they generate the root sub-
lattice A7 @ A3 of Eg. So the subgroup of W(Es) leaving this sublattice invariant is iso-
morphic to (Z/ZZ)2 - Sy x W(A3) ~ (Z/ZZ)2 -S> x Sy and it acts on Dy, 4,.

In case r=3, there are two roots +(es —eg) orthogonal to the three roots
o =2e)—e — - —eg, 0 =e; — ey and o3 = e3 — e4. Together with o, o, o3 they gen-
erate a root system of type A%. So (Z/27)* - S3 x Z/2Z acts on D, ,, ..

In case r = 4, there are no roots orthogonal to the four roots «; = 2¢9 —e; — -+ — e,
o) = e — ey, a3 = e3 —eq and oy = e5 — eg. SO (Z/2Z)4 - Sy acts on Dy, 4,.

2.14. Lines on a nodal cubic surface. A nonsingular cubic surface contains 27
lines. They represent the classes eg —e¢; —¢;, 1 Si<j=<6, ¢, 2e0—e; —---—es+e;,
i=1,...,6.

Assume now that S has a node so. Projecting from sy, we see that S admits a ge-
ometric marking 7 : § — P2 such that the images p; of the E; (as in 2.1) lie on an irreduc-
ible conic C. If S has no more nodes, the six points p; are distinct. If there is one more
node, we may assume without loss of generality that p, is infinitely near to p; (i.e.
E, =E; + C, where C is a (—2)-curve and the point p, corresponds to the tangent
direction of C at p;). If S has three nodes we can further assume that p, is infinitely
near to p; with the similar tangency condition. Finally if S has 4 nodes we can fur-
ther assume that pg is infinitely near to ps. From this we easily deduce the following
facts.
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If S has one node, there are 21 lines on S. Six of them contain the node, and are rep-
resented by the exceptional curves E; = ¢(e;), where ¢ is the lattice marking corresponding
to the geometric marking. We will simply omit ¢ in what follows. The remaining 15 lines
have the classes ey — ¢; — e;. The (—2)-curve C has class o; = 2ep — (e] + - - - + e¢) and the
classes e; + a1 = s, (e;) also represent the lines on the node. So the lines on the nodes are
limits of pairs of lines on a smooth cubic surface.

If S has 2 nodes, there are 16 lines on S. The (—2)-curves are
o =20 — (e1 + -+ +e) and e; — e;, the orbits on the set of classes of 27 lines of the
group generated by s, and s,, correspond to the lines on S. One line connects the two
nodes and represents the orbit {e;,e; = €] + o2, e + a1, e + o1 }. There are 4 lines passing
through the node sy which represent the orbits {e;,e; + o1}, i = 3,4,5,6. Another 4 lines
pass through the second node. They represent the orbits {ey — e, —e;,e0 — €1 — ¢;},
i=3,4,5,6. The remaining 7 lines do not contain nodes. They represent orbits with one
element, given by the classes eg —e; —e;, 3<i < j <6 and ¢y — e; — es.

If S has 3 nodes, there are 12 lines. There are 3 lines connecting pairs of nodes.
They represent the classes e, es, ¢g —e; — e3. There are 6 lines each containing one
node. They represent the classes es, es, g — €] — e;, ¢g — e3 — ¢;, i = 5,6. The remaining
3 lines do not contain nodes. They represent the classes ey — ey —er, ey — e3 — ey,
ey — e5 — €q.

If S has 4 nodes there are 9 lines. Six of them connect the six pairs of nodes.
They represent the classes e, e3, es, ¢g — e1 — e3, g — e] — es, eg — €3 — es. The remaining
three lines do not contain nodes and represent the classes ey — e} — ez, ey — e3 — ey,
eyp — €5 — €¢.

2.15. Pencils of conics. A conic on a nodal cubic surface S is cut out by a plane. The
residual component of the plane section is a line. The pencil of planes through this line de-
fines a pencil of conics. Thus the number of pencils of conics is equal to the number of lines.
The preimage of the pencil on S is a conic bundle, i.e. a morphism f : S — P! with general
fibre isomorphic to P!. A standard computation shows that singular fibres of f are of the
following three types:

Type I: F = E| + E,, where E), E; are two (—1)-curves and E - E; = 1.

Type II: F=E +E,+ R, where E;, E, are (—1)-curves, R is a (—2)-curve,
E -E»=0E -R=E, R=1.

Type HI: F = Ry + Ry +2E, where R;, R, are (—2)-curves, E is a (—1)-curve,
R -Rh=0,R-E=Ry-E=1.

The number of singular fibres is equal to 5 if we count the fibres of type II and III
with multiplicity 2.

The pre-image of the line / corresponding to the pencil defines a bisection B of f.
There are three possible cases:

No nodes on /: B is irreducible.
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One node on /: B= By + R, where By is a (—1)-curve, R is a (—2)-curve, By - R = 1.
Each component of B is a section of f.

Two nodes on I: B= By + R + Ry, where By is a (—1)-curve, R;, R, are (—2)-curves,
By - Ry = By - R, = 1. The components R; and R, are sections of /. The component By is
contained in a fibre.

Let pi,..., ps € P! be the points such that the fibre f~!(p;) is singular. We assign
to each point p; the rnultlphclty m; equal to 2 if the fibre is of type I and equal to 4 other-
wise. The divisor D = Zmlp, will be called the discriminant of the conic pencil. Let

s=1
Ps+1, Psio € P! be the points such that the bisection B ramifies over these points. If B is

reducible, we assume that p;.; = psi2 = ¢, where B has a singular point over ¢g. The di-
visor T = psi1 + ps2 Will be called the bisection branch divisor. Let us write the divisor

D+T= Z m;p; + psi1 + Psio as Z n;pi, where s’ < s+ 2. We order the points in such a
i=1 i=1

way that n;y = n, = --- = ny. The vector t = (ny,...,ny) will be called the type vector of

the conic pencil.

Table 1 below lists all possible type vectors. Also we indicate the total number
r of nodes on S, the number e of Eckardt points on / (i.e. points where three lines
meet).

The column “Kodaira fibres” will be explained later in section 4.3.
2.16. Types of lines. Let / be a line defining the pencil of conics.
Case 1), 2), 3) in Table 1: / is any line.

Case 4): / is one of 6 lines containing the node.

Case 5), 6), 7): [ is one of 15 lines not passing through the node.
Case 8): / is one of 8 lines through exactly one node.

Case 8*): / is the unique line containing two nodes.

Case 9), 11): / is one of 6 lines not containing a node and not meeting the line of
type 8%).

Case 10), 12): / is the unique line not containing a node and meeting the line of
type 8%).

Case 13): / is one of 6 lines passing exactly through one node.

Case 13*): / is one of 3 lines passing through two nodes.
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Case 14, 15): / is one of 3 lines not containing a node.

Case 16): / is one of 6 lines passing through two nodes.

Case 17): / is one of 3 lines not containing a node.

t

1) (2222211)
2) (322221)
3) (33222)
4) (222222)
5) (422211)
6) (43221)
7) (4332)
8) (42222)
8%) (42222)
9) (44211)
10) (52221)
11) (4431)
12) (5322)
13) (4422)
13%) (4422)
14) (5421)
15) (543)
16) (444)
17) (552)

3.1. The forms (F,, Fs).

singular fibres
51

51

51

51

I1, 31
I1, 31
11, 31
I1, 31
51
211, 1
I11, 31
201, 1
111, 31
20L 1
I1, 31
1L 11, 1
L, 1L 1
200 1
2011, 1

Kodaira fibres
51V, 211

I, 41V, 11

215, 31V

61V

IV*, 31V, 211
IV* 15, 21V, 11
v+, 21, IV
IV*, 41V

IV*, 4IV
2IV* 1V, 211
IT*, 31V, II
2IVH Ig, 11
1, I;, 21V
2IV*, 21V
2IV*, 21V

I, IV, IV, 11
I, IV, 1§
3IV*

20T, IV

Table 1. Pencils of conics

3. Cubic surfaces and 2+ 5 points on the line

N

PR WLWWWWPRNPDPRDPDNDNYIPR, PR =R —,OOO

113

SO P OO0~ P OO0~ OO —ON

Let S be a nodal cubic surface and let / be a line on S. Con-

sider the pencil of conics through the line /, cf. section 2.15. Let D = > m;p; be its discrim-

i=1

inant divisor and let T = p,, + psi» be the bisection branch diViso;. Let Fs(xo,x;) be a
homogeneous form of degree 5 defining D and let F>(xy, x;) be a homogeneous form of de-

gree 2 defining 7.

It follows from section 2.15 that the following properties are satisfied:

(i) F % 0.

(i) Fs has at most double roots.

(iii) F> and F5 do not have common multiple roots.

A pair of binary forms (Fs, F>) satisfying properties (i)—(iii) will be called a stable pair.
Let V/(d) be the space of binary forms of degree d. A pair of nonzero binary forms (Fs, F>)
defines a point in P(V(5)) x P(V(2)).
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3.2. Proposition. A4 pair of nonzero binary forms (Fs, F>) is stable if and only if it is a
stable point with respect to the diagonal action of SL(2) and the linearization defined by the
invertible sheaf Up(y (s))(2) X Op(y(2))(1). The strictly semistable points all map to one point
in the quotient, the corresponding unique minimal closed orbit is the one of a pair (L3 L3, L3)
with Ly, L, nonproportional linear forms.

Proof.  This easily follows from the Hilbert-Mumford numerical criterion of stability
and is left to the reader. []

3.3. Line marked cubic surfaces. Let (S,¢) be a nodal cubic surface with a geo-
metric marking ¢ on its minimal resolution and let / be a line on S with divisor class
#(eg). The stabilizer of eg in W(Es) is isomorphic to the Weyl group W(Ds). The quotient
space

%1

ncub T

ﬂrﬁub/w(DS)

is the moduli space of isomorphism classes of pairs (S,/), where S is a nodal cubic surface
and / is a line on it.

To a pair (S, /) we associate the binary forms F,, Fs as in 3.1. It is easy to see that this
can be defined for families of (S,/) and therefore we have a morphism
(1) My — (P(VD) x P(V(5))°/SLQ),  (S,1) = [(F, Fy)],

where (P(7(2)) x P(¥(5)))" is the open subset corresponding to stable pairs of binary
forms.

34. Lemma. Let f: X — Y be a birational surjective morphism with finite fibres.
Assume that X and Y admit normal projective completions X and Y with zero-dimensional
complements. Then f extends to an isomorphism f : X — Y.

Proof. Let 0X = X\X, 0Y = Y\Y, these are finite sets. Let ' = X x ¥ be the
graph of f and let I be its closure in X x Y. Obviously

MNCcX xdYuoX x Y.

Moreover, since X and Y are normal and hence irreducible, I' does not contain X x {yo},
for any yoedY, nor {xo} x Y, for any xo€ dX. In particular, the first projection
p:T — X is an isomorphism over an open subset of X and has finite, non-empty, fibres
over X. By Zariski’s Main Theorem ([Mu], II1.9, Proposition 1), p is an isomorphism
over X. Thus p~!(X) = ' = I is the graph of the composition X — Y — Y.

Now we show that the projection ¢ : I’ — Y is birational, surjective with finite fibres.
The map ¢ is a birational isomorphism since I is the graph of the birational isomorphism f’
and the complement of the set {y e Y : (xo,y) € I for some xo € X} contains a non-
empty open subset of Y. The surjectivity is trivial since ¢(I') = Y and ¢(T) is closed in Y.
Let ye Y and let (x,y)el. If xe X, then (x, y) € p~'(X), which is the graph of f so
y = f(x). Else (x,y) € 0X x {y} which is a finite set. Thus for y e Y the fiber ¢~!(y) is
finite. As p~!(X) is the graph of f, a point (x, yo) € I with yo € dY has x € 0X, hence
also ¢~ '(y) is finite.
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We conclude, again by Zariski’s Main Theorem, that ¢ is an isomorphism. Thus T is
the graph of a morphism g = pog~! : ¥ — X such that g o f is the inclusion X < X. Since
f(X) =Y we get g(Y) = X. By interchanging the role of /" and g, we find that p is also an
isomorphism. Hence ¢ is an isomorphism. []

35. Let
My = M/ W(Ds).

ncub
It is easy to see that W(Ds) acts transitively on the set of 40 cusps. For example, it follows
easily from the well-known description of maximal subgroups of W(Ej) of index 40. Thus
A . is a normal one-point compactification of e/%rllcub. The corresponding point in .#ycup
is represented by the cubic surface (2.3). It has three lines permuted by the automorphism

group of the cubic.

We also know from Proposition 3.2 that the target space in (3.1) admits a one-point
normal compactification isomorphic to the GIT-quotient P(¥(5)) *//SL(2).

3.6. Theorem. The morphism (3.1) extends to an isomorphism
(3.2) My — (P(V(2)) x B(V(5)))"//SL(2).

Proof. Applying Lemma 3.4 it is enough to check that the map (3.1) satisfies the as-
sumption of the lemma. Assume that (S,/) is a nonsingular surface. Let us show how to
reconstruct (S, /) from the SL(2)-orbit of a pair (Fs, F»). We view the zeroes of the binary
forms as the tangent directions at a fixed point p € P? and identify them with the pencil of
lines through p. Given (F,, Fs), fix a conic Q not containing p such that the lines through p
defined by F; are tangents of Q. Then a choice of 5 points py, ..., ps on the intersection of
the lines defined by Fs with the conic, no two lying on the same line, defines uniquely (up to
isomorphism) a cubic surface S with a line / corresponding to the conic. It is isomorphic to
the blow-up of P? at the points pi,..., ps, p. Let p! be the point on Q such that p;, p!, p
are collinear. Let us show that replacing p; with p! leads to an isomorphic pair (S’,/’).

Note that replacing (pi, ..., ps) with (p],..., p:;) leads to the same surface because
the points (pi,..., ps, p) and (pi,..., pt, p) are projectively equivalent. This can be easily
seen by choosing projective coordinates such that p = (0,0,1) and Q = V(xox; — x3). Then
pi = (1,a?,a;) and p! = (1,a?, —a;).

Now it is enough to show that fixing a pair {p;, p;} and interchanging pi — p;
for k #1i,j defines an isomorphic surface. Choose coordinates so that p = (0,0,1),
pi =(1,0,0), p; = (0,1,0). The equation of the conic Q through the points py,..., ps is,
after scaling the coordinates,

24xy+alx+y)z=0, a=+0

(use that the lines (p, p;> and {p, p;» are not tangent to Q). The Cremona transformation
T : (x,y,z)+— (xz, yz,xy) with base points at p, p;, p; maps the conic Q to itself. A general
line / through p is mapped to itself. As T is a non-trivial involution on such a line, it maps
pi to py if k & i, j. The cubic surface obtained by blowing up the three points which are the
images under 7" of the lines {p;, p;>, {p, p;> and <{p, p;)> and the images of the three other
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Pk 1s a cubic surface isomorphic to S. The images of the lines are (0,0,1) = p, (0,1,0) = p;
and (1,0,0) = p; respectively, the images of the other three p; are the p;, so we get the
result.

Thus we know that (3.1) is one-to-one on the open subset U equal to the pre-image of
My under the projection %rllcub — Meup- The complement is the quotient of the union of

the 36 boundary divisors in .#[;, by the action of W(Ds). It is easy to see that W(Ds) has
two orbits on the set of 36 positive roots in Eg of cardinality 16 and 20. Thus the comple-
ment is the union of two irreducible divisors D; and D, each isomorphic to a finite quotient
of the Segre cubic S3 minus its set of singular points (belonging to the boundary of .Z[; in
AM). Tt is immediately checked that the map (3.1) is not constant on Dy and D,. On the
other hand, being a finite quotient of a hypersurface in P* (minus a finite set of points), the
varieties D; and D, have Picard group of rank 1, hence no curves blow down on these va-
rieties. This shows that no positive-dimensional subvariety on the source space of the map

(3.1) is mapped to a point. Hence the map has finite fibres.

It remains to show the surjectivity of (3.1). Any stable pair of binary forms (Fs, F>)
defines the divisor D + T as in section 2.15 by reading off the zeroes of the forms. The type
vector of this divisor can be found in Table 1. It corresponds to a pencil of conics defined
by a line on a cubic surface of type listed in section 2.16. The image of the corresponding
pair (S,/) is the orbit of (Fs, F>). [

3.7. Since the variety (P(V(2)) x P(¥(5)))°/SL(2) is obviously birationally iso-
morphic to the quotient P(V(5)) */C* (by fixing first a binary form of degree 2), we obtain
the following:

3.8. Corollary. The moduli space ,/%Club is isomorphic to an open subset of a toric va-
riety. In particular, it is rational.

3.9. Remark. It follows from the isomorphism (2.4) that the moduli space of cubic
surfaces is rational. However, as far as we know, the rationality of the space .#! , was not
known. Note also that the moduli space .#! , is birationally isomorphic to the universal
surface over the moduli space of Del Pezzo surfaces of degree 4.

4. The K3 surface associated to a cubic surface

4.1. In the previous section we associated a pair of binary forms (F», Fs) to a nodal
cubic surface S with a line /. We now use these binary forms to define a K3 surface Xg ;.

We will show that X ; depends only on the nodal cubic S and that the lines on a ge-
neric S correspond to certain ‘standard’ elliptic fibrations (cf. section 6.20, Corollary 7.6).
Finally we relate X, to S using a cubic fourfold.

4.2. Definition. Let S be a nodal cubic surface and let / be a line on S. Let F>(xo, x1)
be a homogeneous form of degree 2 and let F5(xo, x;) be a homogeneous form of degree 5
associated to (5,/) as in 3.1.

To the pair (S, /) we associate a surface X ; which is a nonsingular minimal model of
the double plane with the branch divisor
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3
(4.1) W: x; (Fz()(o,xl)xz + F5(xo,x1)) =0.

It is easy to check that the properties (i)—(iii) in 3.1 are equivalent to the property that
any singular point of the curve W is analytically equivalent to a singularity f(x, y) =0
such that the surface singularity z% + f(x, y) = 0 is a double rational point. This implies
that X ; is a K3 surface. The multiplication of x, by a primitive cube root of unity induces
an automorphism of Xg ; of order 3.

4.3. The elliptic fibration. Consider the pencil of lines
L(Zo, 11): t1xo—tox; =0

in P? passing through the point (0,0, 1). Since a general line L(Z, x) intersects W at four
nonsingular points, we obtain that the pre-image of the pencil of lines on X ; is an elliptic
pencil. Thus we have an elliptic fibration

f:ﬁ:XSJ—>[|3’1.

The singular fibres correspond to lines L(#y, ¢;) such that Fs(zy, ;) = 0 or F5(ty,¢;) = 0. The
proper transform of W in the blow-up V' = F; of the point (0,0,1) is a curve W in the
linear system |6f + 4e¢|, where e is the exceptional section and f is a fibre. The pre-image s
of the line x, = 0 is a component of W. It is a section with the divisor class f + e. The pre-
image of a line corresponding to a zero (xo,x;) of Fs is a fibre of ¥ — P! over (xo,x)
which intersects B = W — s with multiplicity 3 at a point where B intersects s. A line corre-
sponding to a zero of F is a fibre which intersects B with multiplicity 3 at a point where B
intersects e. The surface Xy ; is isomorphic to a minimal resolution of the double cover of V'
branched along W.

Now it is easy to describe the singular fibres of the elliptic fibration f : X5 ; — P
For example, in the case when Fs and F> have no multiple roots and have no common
roots, the fibres over the zeroes of F, are cuspidal cubics. The fibres over the zeroes of Fj
are reducible of type IV in Kodaira’s notation. If />, has a common zero with Fs, the fibre
of V' — P! becomes an irreducible component of B. The corresponding fibre of f is of type
I;. If F> has a double root which is not a root of Fs, then B acquires a cusp. Instead of
two irreducible fibres of f we obtain one reducible fibre of type IV. If Fs5 has a double
root which is not a root of F,, then B acquires a cusp at the curve s. The corresponding
fibre of f is of type IV*. It is not difficult to describe the fibres in all possible cases. Their
Kodaira types are given in Table 1. Note that the irreducible singular fibres correspond to
zeroes of F, which are not zeroes of Fs. Observe also that the pre-image of s in Xg; is a
section s of the elliptic fibration. The pre-image of e is a bisection b. If B acquires a cusp
at the exceptional section e or has a fibre component, then b splits in two disjoint sections.

4.4. Let!/ be a line on a nodal cubic surface S, and let m be another line disjoint
from /. Consider the rational map @ : [ x m -—» S defined by taking the third intersection
point of the line through the points (p,q) € / x m with S. We denote by L and M the irre-
ducible curves in / x m which map onto the lines / and m in S respectively under ©.

4.5. Lemma. The rational map ® extends to an isomorphism from the blow-up Z of
I x m along L ~ M, which is a set of 5 points (including infinitely near points) to a minimal
resolution S of S. The curves L and M have bi-degree (2,1) and (1,2) respectively.
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Proof. This is just a straightforward computation. Choose coordinates on P* such
that m: xo = x; = 0 and / : x; = x3 = 0 so that the equation of S is given by

1 I
(4.2) 22 Ayj(oe2, x3)xix; +2 3 Bi(x2, x3)x; = 0,

i,j=0 i=0

where A;, B; are homogeneous forms of degree 1 and 2, respectively. Let
p = (ap,a1,0,0)el, ¢ =1(0,0,a,a3) e m. The line !’ spanned by p, ¢ has parametric
equation (xo, X1, X2, Xx3) = (sao, say, tas, taz). Plugging it in equation (4.2), we obtain

1 1
st <s > Ajlar, az)aa; + 2ty Bi(az,a3)a,~> =0.
i j=0 i=0

Thus the rational map @ is given by the formula

(43) ®(paq) = (Ma()aMalaLa2aLa3)7

where

(4.4) M(p,q) = —2ZI: Bi(as,a3)a;, L(p,q) = ZI: A,-j(az,a3)al»aj.

i=0 i,j=0

It is easy to see that the base locus Z of the linear system of divisors of bi-degree (3, 3)
defining @ is the complete intersection of the divisor M = 0 of bi-degree (1,2) and L =0
of bi-degree (2,1). Local computations show that Z is reduced and consists of 5 points if
and only if S is smooth. The rational map @ is obviously birational, and defines a bira-
tional morphism ®' : Z — S of the blow-up Z of / x m along L n M. It is clear that the
proper images under @ of the divisors L = 0 and M = 0 are the lines / and m, respectively.
Comparing the Betti numbers of Z and S, we see that they are equal. Thus @' defines an
isomorphism from Z to S. [

4.6. Remark. Assume S is nonsingular. Then we obtain that S is isomorphic to the
blow-up of 5 distinct points in P! x P!. The map S — P! x P! is the blowing down of 5
disjoint lines intersecting the lines / and m. This is of course well-known. Take any two
skew lines on S. It is known that there are exactly five skew lines on .S which intersect /,
m. The easiest way to see it is to complete /, m to a set of six skew lines ny =/, n, = m,
ns,...,ns, then consider the blow-down 7 : S — P? of these lines to points pi,..., pe in
the plane. The five skew lines are the proper inverse transforms of the line spanned by pi,
p> and the four conics C; passing through all p;’s except p; with 3 <7 < 6. Blowing down
the five lines, we obtain P' x P!. The images of the lines /, m are the curves of bi-degree
(2,1) and (1,2). The blowing down morphism S — P! x P! which inverts ® is the Carte-
sian product of the linear projections from the lines / and m.

4.7. The surface Xs ;. The divisor W =L+ M on [ xm= P! x P! is of bi-
degree (3,3). Let us consider the cyclic triple cover Y — / x m branched along W’'. It
has singular points over the singular locus of W'. If L intersects M transversally, ¥ has 5
double rational points of type 4,. Let X5, ,, be a nonsingular minimal model of Y.



Dolgachev, Geemen and Konda, A complex ball uniformization 119
4.8. Lemma. Let

f:fl,m:XS,l,m —mxp!

be the composition of the blow down map Xs ; ,, — Y, the triple covering Y — | x m and the
second projection | x m — m. Then f is an elliptic fibration with a section whose Weierstrass
form is given by

(4.5) V2 4+ x> 4 Fs(to,11)* Fa(to, 1) = 0,

where the binary forms F,(to, t1) and Fs(ty, t) coincide with the binary forms F, and Fs asso-
ciated to (S,1) in section 3.1.

Proof. For any general point (fy,#,) € P!, the fibre of f over this point is isomor-
phic to a plane cubic curve with the equation

(4.6)
x3 + (Bo(to, t1)xo -+ By (to, 11)x1) (Aoo(to, 11) x5 + 2401 (t0, 11)x0x1 + A1 (10, 11)x7) = 0.

The cubic curve has an obvious automorphism of order 3 defined by multiplying x, by the
third roots of unity. As is well-known such a cubic can be reduced by a projective transfor-
mation to the Weierstrass form

Vi 4+ x>+ b =0.

The coefficient 4 is the value of a certain SL(3)-invariant 7 on the space of homogeneous
polynomials of degree 3 in 3 variables. Using the explicit formula for 7 (see [Sa2], p. 192), a
direct computation shows that

(4.7) b= Fs(to, 1) Fa(to, 11),

where
Fs = By(to, 11) > A11(to, 1) + B (to, 11)* Aoo(to, t1) — 2401 (t0, 1) Bo (0. 11)Bi (t0. 11),
P = Aoo(to, 1) A1 (to, 1) — Aoi (to, 11)".

Let t1x; — tox3 = 0 be the pencil of planes through the line / : x, = x3 = 0. Using the equa-
tion (4.2) of S we find that the pencil of conics defined by the line / has the equation

(4.8)
Aoo(to, l])xé + 240 (Zo, l1)X0X1 + A]l(lo, tl)X% + ZB()(I(), l])XzX() + 2B (to, l])szl =0.

Its discriminant is equal to

Ao Ao Bo
(49) det| Agy A1 By | = —F5(l0, ll).
By, B 0

The restriction of the member of the pencil corresponding to the parameters (7, 7;) to the
line / is given by the binary form
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(4.10) Aoo(l‘o, tl)xé + 2A01(lo, Z1)XOX1 + All(t(), tl)x% =0.

The discriminant of this binary form is equal to

Ap A
(4.11) det(Az(l) A?i)ze(to,tl).

If / does not contain nodes, the equation (4.10) defines a base-point free pencil of divisors of
degree 2 on /, and we see that F>» = 0 describes the locus of points in the parameter space of
the pencil of conics where the bisection / ramifies. If / contains a node, we may assume that
its coordinates are (1,0,0,0). Then 4;; = 0 and we get a pencil of divisors of degree 1 on
[ with one base point. The discriminant is equal to —A42, and describes one point with mul-
tiplicity 1 corresponding to the singular point of the bisection B defined by /. Finally, if
[ contains two nodes, we may assume that 4;; = Ago = 0. Then the pencil (4.10) cuts out
the fixed divisor with equation Ao (o, #;)xox; = 0. It is equal to zero when Ay (%, 1) = 0.
These points correspond to fibre components of the bisection B of the conic bundle. The
discriminant is again — Ao (¢, 11)2. O

4.9. Theorem. Let S be a nodal cubic surface and let | be a line on S. Then the iso-
morphism class of the K3 surface Xs ; associated to a pair (S, 1) is independent on the choice
of the line .

Proof.  We compare the elliptic fibration f; on Xg ; obtained from the pencil of lines
through the singular point (0,0, 1) of the branch curve W and the elliptic fibration f; ,, on
the triple cover X ; ,,, where m is a line disjoint from /. The fibre of f; corresponding to a
general line #,xy — fox; = 0, with 7y = 1, passing through the point (0,0, 1) is birationally
isomorphic to the curve

22+ g (FBa(1,0)x3 + F5(1,01)x5) = 0.

After the change of variables y = Fsz/xoxg, x = Fsxo/x, we reduce this equation to the
Weierstrass form (4.5) from Lemma 4.8. This shows that the surfaces Xs; and Xs ; , have
isomorphic elliptic pencils. Hence Xs ; =~ X ; ,,. Switching the roles of / and m, we see that
Xs 1= Xg . It is easy to see that if two lines /, m on S are not skew, then there exists a
third line » which is disjoint from / and m, so again Xs; =~ X5, = Xs ,,. We conclude
that X ; does not depend on a choice of a line /. [

4.10. Definition. Let S be a nodal cubic surface. A K3 surface associated to S is a
K3 surface X isomorphic to the surface Xy ; associated to a pair (S, /), where / is a line on
S defined in section 4.2 or the surface X ; ,, associated to a triple (S,/,m), where /, m is a
pair of skew lines on S defined in 4.7.

As a corollary of the results above and those of the previous section we have:

4.11. Corollary. The moduli space <ﬂr11cub is isomorphic to the moduli space of elliptic
K3 surfaces with the Weierstrass form

(4.12) V2 + X% + Fs(t0,11)* Fa(t0,11) = 0,

where (Fs, F>) is a stable pair of binary forms of degrees 5 and 2.
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4.12. Cubic fourfolds. Let us give another proof of the independence of the K3 sur-
face X ; on the choice of the line /. Although it is more geometric, it requires to go beyond
the theory of algebraic surfaces. We assume that S = V/(F) is a nonsingular surface. Con-
sider the cubic fourfold V' defined by the equation

(413) F(X(),X17X2,X3) + X4X5(X4 + X5) =0.

It is well-known (see [Voi]) that the projection from a plane I1 contained in a nonsingular
cubic fourfold defines a structure of a quadric bundle on the blow-up V'’ along the plane.
The discriminant curve of the quadric bundle is a plane sextic, and the double cover of the
plane branched over this sextic is a K3 surface X (V/,I1). It parametrizes the pairs (Q,r),
where Q is a fibre of the quadric bundle and r is a ruling of lines on it. Suppose we have
another plane IT' in V' disjoint from I1. It intersects each fibre Q of the quadric bundle at
a point x, and the choice of the ruling r on Q picks up a line on V intersecting both planes
IT and IT'. This gives an isomorphism from the K3-surface X (V,II) and the surface
X (V,I1,I1") parametrizing lines in V intersecting IT and IT’. Reversing the roles of IT and
IT" we see that

(4.14) X(V,I0) =~ X(V, 1) = X(V,I1,IT').

4.13. Proposition. Let!: Ly =1L, =0, m: M, = M, = 0 be disjoint lines on a non-
singular cubic surface S = V(F) < P3 and I1, I be two disjoint planes on the cubic fourfold
(4.13) given by the equations Ly = Ly = x4 =0 and M} = M, = xs = 0. Then the K3 sur-
Sace X (V,11) is isomorphic to the K3 surface X ;.

Proof. We may assume that/: x; = x3 = 0and m : xo = x; = 0. Write the equation
(4.13) in the form similar to (4.2)

1 1
(4.15) > Aj(x2, x3)x:x5 + 2> Bi(x2, x3)x;: + X4x§ + xsxi =0.
ij=0 i=0

Let tixy—tox3=1trx3 —tox4=0 be the net of 3-planes through the plane
IT: x, = x3 = x4 = 0. The corresponding quadric bundle is given by

1 1
Z A,’j(l(), tl)x,-xj +2 Z B,‘([(), [1))61')62 + lzxg + l%)Csz =0.
i7=0 i=0

Computing the discriminant of the quadric Q(#, t1, ;) we find, using (4.9) and (4.11), that
the discriminant curve of the quadric bundle is given by the equation

lz(l;Fz(l(), Z1) + 4F5(lo, tl)) =0.

After scaling the unknowns we obtain the equation of the branch curve of the K3 surface
X ; from (4.1). Thus the K3 surfaces X (V/,I1) and X ; are isomorphic. []

Since for any two lines /;, /, on a nonsingular cubic surface there exists a line m dis-
joint from /; and L, Proposition 4.13 and the isomorphism (4.14) show that the surfaces
Xs 1, and Xg j, are isomorphic. This gives another proof of Theorem 4.9 in the case when
S is a nonsingular surface. Similar proof can be given in the case of a nodal cubic.
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4.14. Remark. The lattice of transcendental cycles of X and that of the cubic four-
fold Y are isomorphic. In fact, the blow-up Y’ of Y along the union of two disjoint planes
is isomorphic to the blow-up of P? x P? along the K3 surface X =~ Xi . This gives an iso-
morphism of Hodge structures

HYY',Z) ~ HYP? x P2, Z) ® H*(X,Z)(-1).

This isomorphism is compatible with the cup-product such that the two summands
become orthogonal. Here H?*(X,Z)(—1) is identified with ¢-zn*(H?(X,Z)), where
n: Y — P? x P? is the natural morphism of the blow-up and & is a cohomology class
from H?(Y', Z) which cuts out the tautological class of the exceptional divisor isomorphic
to the projectivization of the normal bundle of X. This implies that the sublattice consisting
of algebraic cycles in H*(Y’, Z) is isomorphic to H*(P? x P?,Z) ® Pic(X)[—1]. Passing to
the orthogonal complements we get the result.

4.15. Cubic threefolds. We relate the K3 surface Xg to the Matsumoto-Terasoma
curve associated to (S,/). Given a smooth cubic surface S in P3, we define, following
[ACT], the cubic threefold ¥ = P* to be the triple cover of P* branched along S. So if

S: F(Xo,xl,XQ,)Q) = 0,
then

V. F(xo,x1,Xx2,x3) + xf{ =0.

Note that S = V' (the points of ¥ with x4 = 0), hence a line / = S defines a line, also de-
noted by /, in V. The projection of a cubic threefold away from a line in P* defines the
structure of a conic bundle on the blow-up of V" along the line. The associated discriminant
curve in P? is a plane quintic. A straightforward computation shows that the discriminant
curve is a plane quintic with the equation

w'. Fs(l(), fl) + l;Fz(lo, Il) = 0,
where the F; are as in 3.1, so W' is a component of W.

4.16. Remark. Each smooth point 7 of the plane quintic W' defines two lines (the
components of the singular conic in the fibre of ¥V — P2 over 7). Thus there is a natural
double cover C' — W’. This double cover was studied by Matsumoto and Terasoma in
[MT], the corresponding double cover C — W' of the normalizations of these curves is
ramified in two points, which are identified in C’. The curve C is isomorphic to the affine
curve ([MT], (3.1)):

U3 - xf(xz) = 07

where f is a polynomial of degree 5. The Prym variety of the double cover C — W' is a 5-
dimensional principally polarized abelian variety which is isomorphic to the intermediate
Jacobian variety P of the cubic threefold V' (cf. [MT]). The Matsumoto-Terasoma curve
C has the following property.

4.17. Proposition. Let f: Xg; — P! be the elliptic fibration as in the subsection 4.3.
The pull-back of Xs,; along the base change C — P!, (v,x) — x, is birationally equivalent to
the product C x E where E is the elliptic curve with j =0: E =~ C/(Z + Z{3).
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Proof. In [MT] it is proved that W = C/1 where 1 is the (Clemens-Griffiths) in-
volution 7 : (v, x) + (—v, —x). Therefore the quotient curve is given by 33 = u?f (1) where
u=x? and y = xv. This curve is birationally equivalent to W’. In fact, choosing co-
ordinates such that F>(yo, 1) = yoy1 the equation of W' is y3yoy1 + Fs(yo, »1), hence
y3y1 + Fs(1, 1) is an affine equation. Putting v = —y1y2, u = y; we find the birational iso-
morphism with f(u) = Fs(1,u).

The function field of Xg; is defined by 52 = yoyi + Fs(yo, y1). The elliptic fi-
bration is given by the rational function = y;/y,. Rewriting the equation we get:
(s/y0)* =1+ y3Fs(1,1), equivalently, since Fs5(1,7) = f(¢):

Y2 =X 41 () (X =ypof(1), Y = 5f(1) /o).

Since on C we have v® = 1f(¢)* we can write this as (sf(t)/yov3)2 = (yof(t)/vz)3 +1,
which is the equation Y2 = X3 + 1 of the curve E. []

4.18. Remark. According to Donagi and Smith [DS], the Prym map %¢ — .o/s has
degree 27 with the Galois group W(Es). Identifying the branch points on I and the ram-
ification points on C, we obtain the admissible double cover C' — W' in %¢. Thus we
get 27 ‘natural’ pre-images of P under the Prym map. However, the Prym map has 2-
dimensional fibre over the intermediate Jacobian of a cubic threefold, in fact any line in
the threefold defines an admissible double cover in Z.

5. The Picard lattice

In this section we compute the Picard lattice Pic(Xs) = H?(Xs,Z) of the K3 surface
Xy associated to a nodal cubic surface and its orthogonal complement, the lattice of trans-
cendental cycles Ty, := Pic(Xs)".

5.1. Lattices. Recall the following two lattices:

0 1 -2 1
— 2 _ 2
U_<Z’<l 0)), A2—<Z,<1 _2>>.
The second cohomology group H?(X,Z7) equipped with the quadratic form defined

by the cup-product is an even unimodular lattice of signature (3,19). It is isomorphic to
the K3 lattice

_ 3 @2
L=U® @E®,

where Eg = 7% with the quadratic form defined by the opposite of the Cartan matrix of the
root system of type FEg. In general, A4,,, D,, E; denote the root lattices of the simple root
systems of the corresponding symbol (with the Cartan matrix multiplied by —1).

For any lattice M we denote by M (n) the lattice M with the quadratic form multi-
plied by n. Let M be a nondegenerate even lattice. The dual abelian group M * contains M
as a subgroup of finite index, the quotient group D(M) = M*/M is called the discriminant
group of M. It is equipped with a quadratic form
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q:D(M) — Q/27Z, q(m*+ M) =1t>(tm*,tm") + 27,

where ¢ € Z is such that tm* € M. We use the notation O(M) (resp. O(D)) to denote the
group of automorphisms of M (resp. D(M)) preserving the quadratic form. If M is a prim-
itive sublattice of a unimodular lattice there is a natural isomorphism D(M) =~ D(M™1).

5.2. Lattices M(¢) and T(¢). Recall that a choice of a line on a nodal cubic surface
S defines an elliptic pencil f : X5 — P!. Its type is determined by the type vector ¢ of the
conic bundle on S corresponding to /, cf. 2.15. We call it the type vector of (S,/) and the
type vector of the elliptic fibration. We will explain later that for any possible type vector
t there exists a pair (S,/) of type ¢ such that the Picard lattice of the K3 surface X is of
rank 12 + 2r + 2e, where r is the number of nodes on S and e is the number of Eckardt
points on /. We denote by M (t) the smallest primitive sublattice of H*(Xs,Z) containing
the sections and components of fibres of the elliptic fibration defined by the line /. Note that
Pic(Xs) =~ M(t). We will compute the lattice M(¢) and its orthogonal complement 7'(¢) in
H*(Xs,2).

5.3. Proposition. Assume that the Mordell-Weil group MW () is finite. Then the lat-
tices M(t) and T (t) are as in Table 2.

t M(t) T(t)
1) (2222211) U@ AP Ay(—1) @ AP*
2) (322221) U® D, @AY Ay(-2) ® AP}
3) (33222) U® DY @ 49? Ar(—1) @ A4,(2)®?
4) (222222) U®E;® AP Ay(—1) @ AP}
5) (422211) U®E;® AP’ Ar(—1) @ AP}
6) (43221) U®Dy®Es® AP Ax(-2) ® AP?
7) (4332) U®DY* @ Es® A Ay(—=2) @ 45(2)
8) (42222) UDEP*® 4, Ar(—1) @ AP?
9) (44211) UDED*® 4, Ay(—1) @ 49?
10) (52221) U®E; @AY Ay(—1) @ AP?
11) (4431) U®ES*® Dy Ar(—2) @ 4,
12) (5322) UDE®Dy® AP Ay (=2) @ A4,
13) (4422) UDEs®Es® A A>(—1) ® 4,
14) (5421) U®Es @ Es @ 4> Ax(=1) @ 4,
15) (543) U@ Es ® Es ® Dy Ay(=2)
16) (444) UDEP*® 4, Ay(—1)
17) (552) UDED® A4, Ay(—1)

Table 2. The Picard lattices

Proof. We will consider only the first two cases. Let f : Xg — P! be the elliptic fi-
bration of type # = (2222211) with Picard lattice Pic(Xs) =~ M (z). It follows from 4.3 that
it has 5 reducible fibres of type IV and a section s defined by the line x, = 0. It also has 2
irreducible cuspidal fibres. We will use the Shioda-Tate formula [Shi]:

(5.1) #MW)>-D(M(1)) = d ... dk,
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where MW is the Mordell-Weil group and di, ..., d; are the discriminants of the lattices
generated by components of reducible fibres not intersecting the zero section. It follows
from (5.1) that the Mordell-Weil group MW is a torsion group of order 3’. Since the fibra-
tion has a cuspidal fibre, which has trivial torsion group, MW is trivial. Thus f has a unique
section s. Now we use (5.1) again and find that the discriminant of M is equal to 3°. Since
M = M(t) obviously contains the sublattice U @ 45 > of the same rank and discriminant
(it is spanned by the class of a fibre, the section, and irreducible components of reducible
fibres), it must coincide with it. The discriminant group is then easy to compute. Let g7 be
the discriminant form of 7', then g7 = —¢qa ([N1], Prop. 1.6.1). We can easily see that 7'
and A>(—1) @ A3 have the same discriminant form. It now follows from Nikulin [N1], Cor.
1.13.3 that T = A,(—1) @ 43.

Assume that the fibration is of type (322221). The product d, .. .dj is equal to 223%.
The Shioda-Tate formula gives that either #MW = 1, 3, or 32, or 6. Since this fibration also
has a cuspidal fibre (i.e. of type II), which has trivial torsion group, MW is trivial. So, the
Shioda-Tate formula tells us that D(M(t)) is of order 223%. The remaining arguments are
similar to the previous case. [

5.4. The lattices M, T. We set
M:=U®AP, T:=A4(-1)@® AP

Since their discriminant groups are isomorphic and the quadratic forms are the negative of
each other, they are orthogonal complements of each other in the unimodular lattice L (see
[N1]). We set

D=D(M)=D(T).
These lattices correspond to the type ¢t = (2222211).

5.5. An automorphism & of order 3. As in section 4.7, we choose two skew lines on
a nodal cubic surface S and consider the associated K3 surface X = Xg = Xs; ,,. Recall
that it is obtained as a minimal resolution of the triple cyclic cover ¥ of P! x P! branched
along the union of two divisors L and M of bidegree (1,2) and (2, 1). It is easy to describe
the set of fixed points of the automorphism ¢ of X defined by the triple cover. We do it only
in the case when S is a nonsingular surface. Let ¢y, ..., gs be the intersection points of L
and M. The cubic surface S is obtained by blowing up the points ¢;. The surface S is non-
singular if and and only if no two points lie on a ruling, and no four points lie on a plane
section. An Eckardt point on the line / corresponds to a ruling which is tangent to L at
some point g;.

Assume that there are no Eckardt points on /. Consider the elliptic fibration on
f: X — P! corresponding to the projection P! x P! — P! such that L is a section. Its re-
ducible singular fibres correspond to the ruling passing through the points ¢;. Each fibre is
of type IV. Two components are the exceptional curves of the resolution X — Y of a sin-
gular point of type A,. The third component is the proper transform of the ruling passing
through the corresponding point ¢;. The bisection b intersects the latter component and one
of the first two components. The section s intersects the other component coming from the
resolution of singularities. The set of fixed points of ¢ is equal to the union of the section s,
the bisection b and the singular points of the reducible fibres.
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In the case when / contains one Eckardt point, the elliptic fibration acquires one re-
ducible fibre of type I;. Other reducible fibres are of type IV. The bisection b intersects the
multiple component Ej of this fibre. The section s intersects a reduced component E;. The
fixed points of the involution ¢ is the union of the section s, the bisection b, the point
Ey n Ej, and the singular points of fibres of type IV. If / has two Eckardt points, we have
two reducible fibres of type IV and the set of fixed points is described similarly to the pre-
vious case.

5.6. The involution 7. Let / : X — P! be the elliptic fibration with a section s as in
section 5.5. Let 7 be the involution of X defined by the inversion x — —x of each fibre.
Then 7 switches the two components of each singular fibre of type IV which do not meet s
and preserves each component of any singular fibre of type 1.

If f has five singular fibres of type IV and two singular fibres of type II, then the fixed
locus of 7 is the union of s and a smooth curve C of genus 5 which passes through the sin-
gular point of each singular fibre. If /" has four singular fibres of type IV, one of type I; and
one of type II, then the fixed locus of 7 is the union of s, the multiple component of the fibre
of type I; and a smooth curve of genus 3. If /" has three singular fibres of type IV and two
fibres of type I, then the fixed locus of 7 is the union of s, two multiple components of
singular fibres of type I; and a smooth elliptic curve.

5.7. Remark. The automorphism group of the K3 surface X is infinite. For exam-
ple, consider the divisor consisting of the 2-section and the two components of a reducible
singular fibre of f not meeting the section. It defines an elliptic fibration on X with a sec-
tion which has two reducible singular fibres, one is of type I3 and another of type I;. This
elliptic fibration has a Mordell-Weil group of rank 4. Considering translations by the sec-
tions of infinite order we see that Aut(X) is an infinite group.

5.8. Lemma. Assume S is nonsingular. Then
H*(X,7)° <Pic(X), H*X,2)" =M.
The automorphism o acts trivially on the discriminant lattice D(H?*(X, Z)”*) >~ D(M).

Proof- Consider the elliptic fibration on X defined in 4.3. From 5.5 we know the
description of fixed points of o. Assume first that all reducible fibres are of type IV. Let
P be the sublattice of Pic(X) spanned by the divisor classes of a fibre, of the section s
and of the irreducible components of fibres which do not intersect s. It is immediate that
P =~ M and o acts identically on P. The fixed locus X7 of the automorphism ¢ consists
of 5 isolated fixed points (the singular points of the reducible fibres) and two smooth
rational curves (the section s and the bisection b). Applying the Lefschetz fixed point for-
mula we obtain that the trace of ¢* on H?(X,Z) is equal to 7. Thus the trace of ¢* on P*
is equal to 7 — 12 = —5. This easily implies that the characteristic polynomial of ¢* on
P+ ® Cisequal to (2 + ¢+ 1)5 . Therefore P+ ® C does not contain non-zero ¢*-invariant
elements, so H?(X, Z)G* = P =~ M. Since ¢* acts trivially on P =~ M, it also acts trivially
on D(P) =~ D(M).

Suppose now that f contains a fibre F = 2Ey + E| + E» + E3 + Ej of type I;. Assume
that E| intersects the section s. Then the divisor classes £y + E, + E3 + E4 and Ej are o-
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invariant and span a lattice of type 4,. We define the lattice P similar to the above by using
this contribution from a fibre of type I;;. The remaining arguments are the same. []

6. The moduli space of K3 surfaces associated to a cubic surface

6.1. We first recall the basic facts about moduli of K3 surfaces. In the subsections
before 6.5, M will be any even non-degenerate sublattice of signature (1, 7).

6.2. Markings. We recall the definition of an M-polarization of a projective
K3 surface X (see [Do]). Fix a connected component V(M)" of the cone
VIM)={xe M ® R: (x,x) > 0}. Let

AM) = {deM:(5,0) = —2}.

For any 6 € A(M) let Hs = {xe V(M)" : (x,6) = 0}. Choose a connected component
C(M)" of the complement of the union of hyperplanes Hj, 5 € A(M), in V(M)". Let

AM)T ={5e A(M) : +(x,0) > 0,Yxe C(M)*}.
We have A(M) = A" (M) ITA~(M).

Now we define an M-polarization of X as a primitive lattice embedding
¢ : M — Pic(X) such that C(X)" n¢(M @ R) = ¢(C(M)"), where C(X)™ is the cone in
Pic(X) ® R spanned by the pseudo-ample (i.e. nef and big) divisor classes of X.

Note that the closure of C(X)" is the nef cone C(X). The closure C(M) of C(M)" is
the subset of the closure of ¥(M)" which consists of vectors v such that (v,5) = 0 for any
d e A(M)". The polarization ¢ embeds C(X) N ¢(M ® R) in ¢(C(M)). Forany s e A(M)*
the image ¢(d) is a divisor class R with R?> = —2. For any v e C(M) the image #(v) is a
pseudo-ample divisor D with D? = 0. Since R - D = (6,v) > 0, it follows from Riemann-
Roch that R is effective. Note that R is not necessarily the divisor class of an irreducible
curve (a (—2)-curve).

The polarization is called ample if ¢(C(M)") N Pic(X)" =+ 0, where Pic(X)" is the
ample cone of X. It is easy to see that a polarization ¢ is ample if and only if the orthogonal
complement of ¢(M) in Pic(X) does not contain the divisor classes of (—2)-curves. In par-
ticular, any polarization with ¢(M) = Pic(X) is ample.

A pair (X, ¢), where ¢ is an M-polarization (resp. an ample M -polarization), is called
an M-polarized K3 surface (resp. ample M-polarized K3 surface). Two M-polarized K3 sur-
faces (X, ¢) and (X', ¢') are called isomorphic if there exists an isomorphism f : X — X'
such that ¢ = f* o ¢'.

6.3. Moduli of M-polarized K3 surfaces. It is known (see [Do]) that there exists
a coarse moduli space .#k3 y of isomorphism classes of M-polarized K3 surfaces. Let us
assume that M admits an embedding into the K3 lattice L = U®? @ Egaz which is unique
up to isometry. Fix such an embedding. Let T be the orthogonal complement of M in L.
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Any M-polarization ¢ of a K3 surface X extends to an isometry ¢:L— H*X,Z) (a
cohomology marking of X'). Extending ¢ C-linearly, we get a one dimensional subspace

¢~ (H*"(X)) = T ® C which is called the period of (X, §).

M c L

a s

Pic(X) —— H*(X,Z)

The moduli space .#k3,y is isomorphic to the quotient &y /I'y, where %) is the
union of two copies of a Hermitian symmetric domain of type IV corresponding to the
inner product vector space 7 ® R of signature (2,20 — ), &, is a subset of the projective
space P(7 ® C). The group Iy, is the subgroup of the orthogonal group O(L) of L which
leaves M pointwise fixed. It is also isomorphic to the subgroup of O(7') which acts identi-
cally on the discriminant group D(7) = T*/T.

The isomorphism classes of ample M-polarized K3 surfaces are parametrized by an
open subset of .#k3 y whose complement is the image in .#k3 ys of the union of hypersur-
faces in &, defined by lines in 7 ® C orthogonal to vectors r € T with r? = —2.

6.4. The group W(M). For any d € A(M) we can define a reflection s5 € O(M)
associated to 6 by s5:v— v+ (v,0)0. Let W(M) be the subgroup of O(M) generated
by all s5’s. The set C(M) is a fundamental domain for W(M) in the closure of V' (M)".
Thus for any v e M with v> = 0 there exists a w e W(M) such that (w(v),d) = 0, for any
SeAM)".

Let (X, ¢) be an M-polarized K3 surface. Then for any ve M with v> = 0 there
is a we W(M) such that ¢(w(v)) € C(M). In particular, for any given embedding
¢ M — Pic(X), there is a w e W(M) such that C(X)" n¢(M ® R) <= (o w)(C(M)"),
i.e., ¢ ow is an M-polarization.

6.5. Fixing V(M)" and A(M)*. The lattice M from 5.4 has a unique (up to an
isometry) primitive embedding in the K3 lattice L [N1] and we identify M with a primitive
sublattice of L from now on. We fix a basis in U formed by two isotropic vectors fi, f> with
(fi,/2) =1 and a simple root basis ri, r, in A4y, ie., (r)> = (r2)* = =2 with (r1,12) = 1.
We define a basis of M by taking fi, f> in U and ry, r; in each copy of A,.

We define V(M)" by requiring that f; + f> € V(M)". We define A(M)" as follows.
Firstly, (—2)-vectors v with (f; + f2,v) > 0 belong to it. Secondly, if (f; + f>,v) = 0, then
ve A(M)" if and only if it is a nonnegative combination of f» — f; and the r;’s in each
copy of A,.

6.6. Automorphisms of L. Let p, be the isometry of 4, defined by
po(rl) =, po(r2) = —r —nr.
Obviously p, is of order 3, has no non-zero fixed vectors and acts trivially on

D(A4y) = (A42)*/4,. Let p be the isometry of T = Ay(—1) ® AY* defined by p = (p,)®°.
Then p is of order 3, has no non-zero fixed vectors and acts trivially on D(7"). Thus the
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isometry (1,7,p) of M @ T can be extended to the one of the K3 lattice L (Nikulin [N1],
Corollary 1.5.2). For simplicity we denote this isometry of L by the same letter p.

6.7. Period domains. The period domain for M-polarized K3 surfaces is
Iy ={weP(T®;C): (w,w)=0,(w,d) > 0}.

Note that &, has two connected components so it is not a domain in the strict meaning of
this notion. Let p be the isometry of T defined in 6.6. Let

TRC=V.®V.

be the decomposition of 7T"® C into the two 5-dimensional eigenspaces of p with eigen-
values (3 = /3 and (3, respectively. Since

(@,0) = (p(w), p(w)) = (0, o),
we see that (o, w) = 0 for all w € V., and similarly for V_. Let
B={weP(V,): (w,0) >0} =2y nP(V,).

In a suitable basis of V; we have (w,®) = xoX9 — (x1X] + - + xaX4). Thus, if (0, @) > 0,
then xy &+ 0 and we can normalize xy = 1, hence % is a 4-dimensional complex ball:

%g{x:(xl,...,X4)eC4:le-)_ci< 1}.

The 4-ball is a bounded symmetric domain of type I 4.

6.8. Discrete groups. We define the following four groups using the notation from
6.6:

Iy ={g€O(L) : g(m) =m,Yme M},
[,={geO(L):gop=pog},
I, ={9eO(T):gop=pogj,

Tv,, = Ker (I, — O(D)).

6.9. The Hermitian module. The isometry p of T gives T the structure of a free
module A of rank 5 over the ring of Eisenstein integers Z[(3]: for any a + b{5 € Z[{5] and
any x € T we have

(a+bCs) - x = (al +bp)(x).

If r;, r} is the simple root basis of the i-th copy of 4, with p(r;) = r], then {5r; = r/ and any
element in this 4, can be written as r = zr; with z = a + b3 € Z[(3]. Note that

22 = (a+b&)(a+bi") = a® —ab+b* = —(r,r)/2.

Therefore the quadratic form on 7 is twice the real part of the Z[(3]-valued Hermitian form
H, of signature (1,4), on the Eisenstein lattice 7 with

H(z,w) = zoWy — (z1W] + - - - + z474).
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The group T, is the unitary group U(T) of T considered as a Hermitian lattice over the
ring of Eisenstein integers (see [ACT], [AF]).

6.10. The discriminant group. The residue field Z[(3]/v/—3Z[(5] is isomorphic to
F; and {3 maps to 1mod3. Thus ¥V = A/v/—3A acquires a natural structure of a 5-
dimensional vector space over [F3; equipped with a non-degenerate quadratic form. We
show that the discriminant group D(7') is isomorphic to V. Define a Z-linear homomor-
phism

(6.1) h:A—T* hix)=(x+2p(x))/3,
where we identify A with T as a Z-module. Then
h(V=3x) = h((1 +283)x) = (1 +2p)°x/3 = —xe T.
This shows that / factors through an isomorphism
V =A/V=3A—-D(T)=T*/T.

The basis (ry,...,rs) of A (as Z[(3]-module) is an orthonormal basis with respect to H.
Since h(r;)* = (r; + 2r{)2/9 = —2/3, (h(r;),h(r;)) =0, i % j, we obtain that

In particular, if we identify D(7") with V, then the quadratic form on D(T) is obtained
from the quadratic form on V' by multiplying it by —2/3.

If Q is the root lattice of type Eg, then Q/3Q inherits a non-degenerate quadratic form
such that Q/3Q is isomorphic to V' as quadratic spaces over F;. This defines an isomor-
phism of groups

(6.2) W(Es) =~ SO(V),

O(D(T)) =O(V) = {1,—1} x SO(V).
All of this is well-known and can be found, for example, in [Bo], Chapter 6, §4, exercise 2.

6.11. Proposition. Each of the natural maps

fp —-TI,— O(D(T))
is surjective. In particular,

T,/Tu, = O(D(T)) = {+1} x W(Eq).

Moreover, any isometry in I'ys , can be extended to an isometry of L which acts trivially on
M defining an injective homomorphism of groups

FMJ) — FM.
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Proof.  For the surjectivity of the map I, — O(D(T)) see [ACT], Lemma 4.5. It is
proven in Nikulin [N1], Theorem 1.14.2 that the natural map O(M) — O(D(M)) is surjec-
tive. By Corollary 1.5.2 of loc. cit. this implies that the map I', — T, is surjective. The in-
clusion I'y;,, — I'y follows from (Nikulin [N1], Corollary 1.5.2). [

6.12. Definition. An (ample) (M, p)-polarized K3 surface is an (ample) M-polarized
K3 surface (X, ¢) such that there is an extension ¢ : L — H?*(X,Z) of ¢ which satisfies

¢ (H* (X)) es (cP(T®UC)).

Two (M, p)-polarized K3 surfaces (X, ¢) and (X', ¢’') are said to be isomorphic if there is

a
an isomorphism f : X — X’ suchthat¢ = f*o ¢’ and ¢! o /* 0 ¢’ € O(L) commutes with
peO(L).

6.13. Lemma. Let (X,¢) be an ample (M, p)-polarized K3 surface. Then X has an
automorphism o of order 3 such that c* = ¢ o po ¢~ for an extension ¢ : L — H*(X,Z) of
¢. In particular, o acts trivially on $(M) (< Pic(X)).

Proof. Choosing q§ as in the definition of (M, p)-polarization, the period of X is fixed
by p. Since (X, ¢) is amply polarized, Pic(X) n M+ contains no (—2)-vectors. Moreover,
the M-polarization of X is ample and p acts trivially on M. Therefore X has an automor-

phism ¢ with 6* = ¢o po ¢~" (cf. [Na], Theorem 3.10). [

6.14. The moduli spaces #3}; , and #"3),,. We know from section 6.3 that the
moduli space of M-polarized K3 surfaces is isomorphic to &/I'y,. The isometry p acts nat-
urally on T¢ as is described in 6.7 and induces an automorphism of order 3 of the domain
Iy < P(Tg). It defines the union of two balls B4 = 2, N P(V4). Complex conjugation
switches the two balls #.. Obviously the group I, is the stabilizer subgroup of # = %, in
I'y. We set

%3/?/1,/):%/1—‘]‘/1-,/)7 95/3114,):93/1",)

The element —/ € T, acts trivially on P(7 ® C) and thus on %, and —/ maps to
—1€O(D). Thus O(D)/{£1} = W(Ee) acts on #'3}; , and there is a natural map:

M . %3;‘7}1”{) — (/'{/3M’/, = J{/3Z}1p/W(E6)

For re L, let r* be the hyperplane in P(V,) of lines orthogonal to r, and let H(r) be its
intersection with 4. The discriminant locus is the subset # < 2 defined by:

A =UH(r),
p
where r varies over the set of all (—2)-vectors in 7= M*. The image of # in 43} , (resp.
A 3u,,) Will be denoted by A™ (resp. A).
It follows from Lemma 6.13 that the quasi-projective variety "3} \A" is the coarse

moduli space of ample (M, p)-polarized K3 surfaces. We will refer to #° 3]’{}7 , as the moduli
space of (M, p)-polarized K3 surfaces.
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6.15. Remark. If [(X,¢)],[(X’,¢")] € A3}, are in the same fibre of 7y, then the
K3 surfaces X and X' are isomorphic. This follows from the surjectivity of the map
f'p — T, and the Torelli Theorem for K3 surfaces. Let « € O(D(M)). As we already no-
ticed in the proof of Proposition 6.11, we can lift « to an isometry a of M. Composing it
with some element of W(M) which acts identically on D(M), we may assume that & leaves
A(M)" invariant. Now o acts on [(X,¢)] € A5, by (X, )] = [(X, 4o & ")]. This de-
scribes the action of O(D(M)) on %3}, . If $(M) = Pic(X), then O(D(M)) acts transi-
tively on the polarizations of X. Thus we can interpret a general point of .#73,, , as the
isomorphism class of a K3 surface which admits an ample (M, p)-polarization.

6.16. Recall that the subspaces V, and V_ (see 6.7) are defined over Q({3) where
{5 is a primitive cube root of unity. Let K be the extension field of Q({) obtained by adjoin-
ing all primitive 6/-th roots of unity for which the value of the Euler function satisfies
@(6]) < 10 = rank(7'). The only possible values of / are as follows: / = 1,2, 3,4,5. We con-
sider the union ¥~ of hyperplanes of P(V) defined over K. A non-singular cubic surface S
is called generic if the period of the associated K3 surface X is contained in the comple-
ment of #". For example, a cubic surface with an Eckardt point is not generic (we shall
show in 8.9 that the period of Xy is contained in the hyperplane orthogonal to some vector
reT).

6.17. Lemma. Assume that S is a generic cubic surface and let Xs be the associated
K3 surface. Then the image of the natural map

Aut(Xs) — O(T)

is a cyclic group of order 6 generated by t and o ( for t, g, see 5.5, 5.6). In particular the
image of the natural map

Aut(Xs) — O(D(T))
is {+1}.

Proof. The proof is similar to the one given in [BP], Lemma 2.9. It is well-known
that the image G in O(T) is a cyclic group (cf. [N3], Theorem 3.1). Let m be the order of
G. If g € Aut(Xs) is a generator of G, then g*wy = {,, - wxy where wy is a nowhere van-
ishing holomorphic 2-form on X = Xy and (,, is a primitive m-th root of unity. Since
T*wy = —wy and c*wy = {zwy, m is divisible by 6. Since g* is defined over Q, the eigen-
spaces of g* are defined over Q((,,). If m > 6, then an eigenspace is a non-trivial subspace
of V. This contradicts the assumption of genericity of S. ¢* acts trivially on D(7") and ¢*
acts as —1. Hence the second assertion follows. [

6.18. Corollary. The map my 2 A3} , — A 3u,, is a Galois cover with the Galois
group isomorphic to W (Eg).

Proof. As we explained in 6.14 the group O(D(T))/{#1} = W(Es) acts on A3,
with quotient isomorphic to #'3,, ,. The isotropy subgroup of [(X, ¢)] is isomorphic to the
image of Aut(X) in D(¢(M )t )/{£1}. By the previous lemma it is trivial for a generic sur-
face X. [

6.19. Nef divisors. Let (X, ¢) be an ample M-polarized K3 surface. Then X has an
automorphism ¢ of order 3 (6.13). For any v € M with v> = 0 there is a w € W(M) such
that ¢(w(v)) € C(M). If ¢(w(v)) is not nef, then there is a smooth rational curve R with
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-Vectors R =r+ 1" where
-2, r? —2/3 or —4/3.

(R, ¢(w(v))) < 0. Since ¢(M)" Plc( ) does not contal 2)
(_ R+0(R) +0*(R)* = -6.

(-
reM*, reT* and r2 <0, (r')* <0. Since r2 +() R
Since ¢ is an automorphism, (R,o(R)) = 0. Hence ( =
Thus r> = —2/3. Then r defines a reflection

S x = x4 3(xr)r

which acts trivially on 7. Obviously (R, ¢(s,(w(v)))) > 0. If necessary, by using these re-
flections successively, we may assume that ¢(w(v)) € C(X), i.e., ¢(w(v)) is nef. In particu-
lar, any primitive isotropic vector f in M defines, uniquely, a nef divisor in Pic(X). As is
well-known a primitive nef divisor F with F? = 0 defines an elliptic fibration with the co-
homology class of a fibre equal to F ([PS], §3, Cor. 3).

6.20. Elliptic fibrations. Let (X, ¢) be an ample M-polarized K3 surface. With the
definitions from 6.5, we have f; € C(M) and f; is obviously isotropic and primitive. There-
fore, ¢(f1) € Pic(X) defines an elliptic fibration on V' (cf. 6.19) which we denote by

Dy: X — P!

and we call it the standard elliptic fibration. Since ¢(f, — f1) - ¢(f1) = (f» — fi, f1) = 1, the
divisor class ¢(f> — f1) is an effective class with D> = —2. Let D be the effective represen-
tative of this class written as a sum »_ n;R;, where R; are irreducible curves. Since D inter-
sects any fibre F with multiplicity 1, we see that one of the components R;, say Ry, is a
section of the fibration. We also have n; = 1 and R; - F = 0 for i > 1. By the Hodge Index
Theorem, R? < 0 for i > 1. By the adjunction formula, all R;’s are (—2)-curves and the
R/’s, i & 1, are contained in fibres of the fibration. This easily implies that R; is determined
uniquely by ¢(f> — f1). We shall denote the section corresponding to R; by s. We remark
that R; is obtained from D by applying suitable reflections corresponding to R; (i > 1).
Thus, up to isometries, we may assume that the classes f; and f; — f; define an elliptic fi-
bration @y with a section s.

The images under ¢ of the simple root bases {r;,r/}, i=1,...,5, of each copy of A,
are effective divisor classes R;, R/ on X which are orthogonal to F and to the section 5. As
above we can show that each such divisor class is a sum of (—2)-curves contained in a fibre.
Thus X has at least 10 smooth rational curves contained in fibres of ®y.

6.21. Lemma. Let (X, ) be an ample (M, p)-polarized K3 surface, let o be an auto-
morphism of order three as in 6.13 and let ®4 be the standard elliptic fibration on X .

Then o preserves @4 and fixes pointwisely its section s and a smooth bisection b. More-
over, the types of singular fibres of ®4 are one of the following:

(ILILIV,IV,IV,IV,1V), (ILIV,IV,IV,IV,1}), (IV,IV,IV,I;,1;).
In each case the fibration has exactly 5 reducible fibres.
Proof. Let X be the fixed locus of the automorphism . Since ¢ can be locally lin-

earized, X7 is a smooth closed subset of X. It is easy to see that the trace of p in its action
on L =~ H*(X,Z7) is equal to 7. Applying the Lefschetz fixed point formula, we obtain that
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the Euler characteristic of X7 is equal to 9. Since ¢ acts identically on ¢(M), it preserves
the section s and the divisor class of a fibre of ®,. Let us show that ¢ fixes the section s
pointwisely, or, equivalently, leaves invariant each fibre of ®,4. Assuming otherwise, we ob-
tain that X is contained in fibres of ®,4. Thus any irreducible one-dimensional component
of X7 has the Euler characteristic equal to 0 (if it is nonsingular fibre) or 2 (if it is a com-
ponent of a reducible fibre), the smoothness of the fixed point set excludes nodal cubics. Let
[ be the number of irreducible one-dimensional components of X7 different from a fibre,
and let k be the number of isolated fixed points. Then 2/ + k = (X ?) = 9. Since o has ex-
actly two fixed points on s, it leaves invariant the two fibres F}, F, passing through these
points. Obviously the curves R;, R! (see 6.20) are contained in the union F; U F. In partic-
ular, the number of irreducible components of the divisor F; + F; is greater than or equal
to 12. Since a Dynkin diagram of type ADE admits a non-trivial automorphism of order 3
only in the case D4, the automorphism ¢ acts identically on the set of irreducible compo-
nents of a fibre F; unless it is of type I;. Note that either F} or F; is not of type I;; because
F| + F> has at least 12 components. Assume that both of the F;’s are not of this type. We
apply the Lefschetz fixed point formula to the cell complex F;. Let n; be the number of ir-
reducible components of F;. The Lefschetz number of g|F; is equal to n; if F; is of type I,
and to n; + 1 otherwise. Let /; be the number of one-dimensional rational components of
X ? contained in F; and let k; be the number of isolated fixed points of ¢ contained in F;.
We have 2/; + k; = n;, hence 9 =2/ +k =2l + ki + 2L + ky = n; +ny, 2 12, a contradic-
tion. Assume that one of the fibres, say Fj is of type I;. Then 2L +ky =2my =212 -5=17.
The automorphism ¢ has a fixed point on the non-multiple component E of F; which is
intersected by s. The multiple component E, of F; is o-invariant. If ¢ is the identity on
Ey, then /1, k; =1, and 2/} + k; = 3. If o does not act identically on Ej, it has 2 fixed
points on it. In both cases it is easy to see that 2/} + k; = 3 again. Thus we get

20+ ki + 2L+ ky =23+ m, =3+ 7 =10, again a contradiction.

Now we know that o preserves every fibre of @y, so that the general fibre has a non-
trivial automorphism of order 3 over the function field of the base. This implies that the j-
function of the fibration is constant 0. In particular, the singular fibres must be of type II,
IV, IV*, 1I*, 1. Each nonsingular fibre has exactly 3 fixed points of o, one lies on the sec-
tion s, and the pairs of others lie on a bisection b (which could be the union of two sec-
tions). The bisection b is a part of X“ and hence smooth.

Let 7 : X' — X be the blow-up of the 0-dimensional part of X°. We know that ¢ is
not symplectic (i.e. does not leave invariant a non-zero holomorphic 2-form on X). This
easily shows that it lifts to an automorphism ¢’ of X’ with X' purely one-dimensional.
Let X' be the quotient surface X’/(c’). It is a smooth surface. Let C be a smooth rational
curve on X such that ¢(C) = C but ¢|C is not the identity. Then ¢ has two fixed points p, ¢
on C. If p, q are isolated fixed points of ¢ on X, then the proper inverse transform C’ on X’
has self-intersection —4. Since C’ is equal to the pre-image of some curve on X’ and —4 is
not divisible by 3, we get a contradiction. Similarly, if p, ¢ belong to the one-dimensional
part of X7, we get C’> = —2 and again a contradiction. Thus, one fixed point is an isolated
fixed point of ¢ and another one belongs to the one-dimensional part of X°.

As we have already observed before, ¢ acts identically on the set of irreducible com-
ponents of any fibre, unless it is of type I;. In the case of I, o preserves the multiple com-
ponent E and permutes the three simple components E;, E,, E; not meeting the section.
Notice that any o-invariant irreducible component of a fibre not intersecting the section s
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must belong to ¢(M) N ¢(U)" = ¢(A4 3). The fixed part of Dy = {E, E\, E», E3) under ¢* is
(E,E + E| + E» + E3) = A,. Since Eg and Eg can not be embedded into A3, singular fibres
of type IV*, II* do not appear.

Using that the Euler characteristics of the fibres add up to 24, it remains to show that
we have exactly 5 redu01ble fibres. Since a fibre of type I; or IV contributes one copy of 4,
in 43 = ¢(M) ~ ¢(U)™, there must be five of them. The lemma is now proven. []

7. A complex ball uniformization

7.1. From K3’s to cubics. We are going to construct a map

G: %35{}71)\Am — M,
where ./, is the moduli space of marked smooth cubic surfaces, i.e., smooth cubic sur-
faces with an ordered set of six skew lines Ly, ..., L.

Let [(X, ¢)] € #°3}; \A™ be an ample (M, p)-polarized K3 surface. We use the nota-
tion of Lemma 6.21 and its proof. For simplicity we consider the case where ®,4 has two
singular fibres of type II and five singular fibres of type IV. The construction for the other
two cases is similar. It follows from the proof of Lemma 6.21 that on each reducible fibre
¢ has one fixed point, the point of intersection of the three components. The bisection b
intersects two components, and the section s intersects the third one. Let X’ be the blow-
up of the five isolated fixed points of ¢ as in the proof of the lemma. The quotient X’ of X’
by the action of ¢ is a smooth rational surface and the images of the components of the
fibers of type IV are (—1)-curves in X'. The polarization ¢ gives an ordering of the 2 com-
ponents in each fibre which meet the bisection b, and we blow down the first one in each of
the 5 fibres as well as the component in the fibre which meets the section. The result is a
smooth rational surface S which has (—1)-curves Ly, ..., Ls the images of the remaining
components in the type IV fibres (these are numbered by the polarization ¢) as well as the
(—1)-curve m which is the image of the section s. These six curves do not intersect and thus
can be blown down to get a smooth rational surface with b, = 1, hence this surface must be
P2. Therefore S is a cubic surface and the six (—1)-curves define a marking on S. It is easy
to see that this marked cubic surface S depends only on the isomorphism class of (X, ¢).
We may now define:

G: [(X,¢)] (a4 (S,Ll,...,Ls,Lé :m)

Note that the 2-section C maps to a line / in S which is skew with m and does meet
Ly,...,Ls. By the uniqueness of the triple cover (Theorem 4.9) we have that X' = X/,
and, by construction (see 6.13) o* = = dopog! for some extension ¢ : L — H*(X,Z7) of ¢.

7.2. Theorem. The map G defines a W(Eg)-equivariant isomorphism

G: A3 \A" S A

cub*

Proof. We first construct the inverse map

G 1 - W

cub

— A3y ,\A"



136 Dolgachev, Geemen and Konda, A complex ball uniformization

Given (S,Li,...,L¢) € Hly,, let m=Ls and let / be the (unique) line which meets
Li,...,Ls but not m (if we blow down the L; to points x; € P2, / maps to the conic on
Xlyono ,X5).

Let X7, be the K3 surface associated to (S,/,m) and let f : X}, — P! be the elliptic
fibration from subsection 4.3. We define a polarization ¢, ,, : M — Pic(X} ) as in the proof
of Lemma 5.8 by fixing an order on the set of reducible fibres and the order on the set of
components of fibres of type IV which do not intersect the section s. Thus ¢( f1) is the class
of a fibre of f and ¢(f2) is the sum of the class of a fibre and the class of the section (see
6.20). The image of r| in the i-th copy of 4, = M is the first component of the i-th fibre if it
is of type IV, and it is the divisor class E + E; + E, + Ej3 if the i-th fibre is of type I (see
the notation in the proof of Lemma 6.21).

The K3 surface X;,, is a triple cyclic covering of § with an automorphism o.
We proved in Lemma 5.8 that ¢* acts identically on ¢(M) and has the trace —5 on
¢(M)*. This implies that ¢* has no eigenvectors in ¢(M)" ® @, and hence ¢p(M)" is a
free module of rank 5 over the ring of Eisenstein integers Z[(3]. In particular, the maps
o* glue to a locally constant map on the local system with fibers H?(X ,,Z). The con-
struction of the map G is such that if (S’, L{,...,Lg) = G(X,¢) for some (X,¢), then
p=¢'oas op where ¢: L — HZ(X,m,Z) is a cohomology marking of X such that
¢IM = ¢ and ¢(T) = $(M)*. As o* is locally constant we conclude that there is an ex-
tens10n ¢, m Of the polarization ¢,, such that p= ¢,moo' oqﬁ, m- This shows that
G'(S,Ly,...,Le)] := [(Xi.m, #)] belongs to # 3% S\AT "It is obvious that G~! is the
inverse of G.

We remark that the above construction of X; ,, can be done as a family, and hence
G~!is analytic. Let (<, %1, ..., %) be an analytic family of marked smooth cubic surfaces
over the base Y. Then by taking the triple cover and taking the resolution of singularities,
we have an analytic family of K3 surfaces Z over Y. The covering transformation of
Z — & induces an automorphism g, of each member X; ,, , (y € Y) of the family Z and
defines an isometry ¢, : L — H?(Xn,y,Z) with ¢! 0 g} 0 ¢, = p which depends analyti-
cally on y. Thus we have an analytic family of ample (M, p)-polarized K3 surfaces over Y.

We show that G~! is W(Eg)-equivariant, then G = (G~! )71 is obviously equivariant
as well. The group W(Ej) acts on /% in the standard way via symmetries of the set of
lines and W(E6) = Gal( My, M) Let p: Gal( My, [ Moww) — Aut(A35; \A™) be the
action defined via the isomorphism G~!, obviously u is injective. Let S € .#.yp,, the main
result of the section 3 (Theorem 4.9) was that X; ,, is independent of the choice of the lines
I, m in S, hence u(g) is a covering transformation of 433 \A" — #"3) ,\A for any
g € W(Eg). Thus we have an injection:

u: W(Es) = Gal( MLy, | Mewy) — Gal(A 3} p/,%/SM »)-
Since Gal(A#3}; /A 3m,p) = W(Es) (see 6.18), u is an isomorphism. [
7.3.  The moduli space of cubic surfaces .# . is the quotient of .#., by W(Es). Let

W(Es), =« W(Es) = Aut(P1c( )) be the subgroup which fixes the class of a hne lon S.Itis
well-known that W(Es), = W(Ds), which is the semi-direct product of (Z/2)* and Ss.
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The action of S5 = W(Ds) on a marking (L, ..., Ls =) of a cubic surface is by per-
muting the first 5 lines. The group W(Ds) is generated by these permutations and an ele-
ment ¢»3 of order two which acts as the standard Cremona transformation on P? defined
by the points p;, p» and p3 where 7 : S — P2 is the blow down of the L; and p; = n(L;).
Thus ¢j»3 maps L; to L], the strict transform of the line on p, and p3, and it fixes L4, Ls
and Lg. It also permutes the 2 - 5 lines on S which meet /. Let /; be the line which maps to
the line through p; and pg and let m; be the conic through all 6 points except p;. Then c¢j23
fixes the /; and m; except for permuting /; < ms and [s < my. This implies that an element
in W(Ds) permutes the indices and exchanges an even number of /; with an even number
of m;.

7.4. Recall from Proposition 6.11 that
I,/Tm,, =O(D) = W(Es) x {£1}

acts on the discriminant lattice D = D(T) = F;. The subgroup of O(D) which consists
of isometries preserving an unordered basis (up to signs) of D( T) is isomorphic to
W(Ds) X {+1} This provides us with a natural copy of W(Ds) in I[,,/T ,. Let Ty, , be
the inverse image in I, of this subgroup. The group F]’w acts on A3y by changmg the
polarizations without changmg the standard elliptic ﬁbratlon defined by the polarization.
Since W(Ds) is a maximal subgroup of W(Es) we see that any w e W(Eg)\W(Ds) does
not preserve the isomorphism class of the standard elliptic fibration. This implies the fol-
lowing corollaries:

7.5. Corollary. Let Moy be the moduli space of cubic surfaces. There are isomor-
phisms

(@\JIF)/FM/, = ,[3Mp\A =~ Meub-

Let !

ub be the moduli space of cubic surfaces with a line. There are isomorphisms

(B\A) [Ty, = (H35; \A")/W(Ds) = Mgy,

cu

as well as a birational isomorphism
ATy, ~ .M,
where Ty,  is the inverse image of W(Es), x {+1} = W(Eg) x {1} =T,/Ty, in T,.

7.6. Corollary. Assume that S is a generic cubic surface. Then Xs has exactly 27
(= the index of W(Ds) in W(Es)) non-isomorphic standard elliptic fibrations.

8. The geometry of the discriminant locus

8.1. Here we will give a geometric interpretation of the points in %37 , belonging
to the discriminant locus A”'. We know that each such point represents the isomorphism
class of a non-amply M-polarized K3 surface (X,¢). For such a surface there is a (—2)-
vector r in ¢(M)" A Pic(X). This implies that p (cf. 6.6) can not be represented by an
automorphism of X. Let R be the sublattice of Pic(X) generated by all (—2)-vectors in
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¢(M)" A Pic(X). Then R is a negative definite lattice generated by (—2)-vectors, i.e., a root
lattice. Hence R is an orthogonal direct sum

R=Ri® --®R,

where R; is an indecomposable root lattices of type 4,,, D,, Ei. Obviously p preserves R.
Since p has no non-zero fixed vectors in R, p preserves each R;. Thus R; is an indecompos-
able root lattice with an isometry of order 3 without non-zero fixed vectors. In the follow-
ing we shall show that R; =~ 4, and r < 4 (see 8.7).

8.2. Lemma. R; =~ A, for any i.

Proof. First of all, note that the rank of R; is even because it has an isometry of
order 3 without non-zero fixed vectors. Since the rank of Pic(X) < 20, R; is isometric to
Asp, Dy, Eg or Eg (n <4). Let K be a primitive sublattice of H*(X,Z) generated by M
and R. Let /(K) be the minimal number of generators of the 3-elementary subgroup of
K*/K. Then K*/K =~ (K*+)"/K* and I(K) = I(K') < rank(K"). Using this observation
and the fact /(M) =5, we can easily see that R is isometric to Dy, A2®" (1=n=<4)or
Es. (For example if R = Eg, then K = M @ Eg and /(K) = 5. This contradicts the fact
[(K+) < rank(K*) = 2.) Next we shall show that R is not isometric to Dy. In this case
K = M @ D, and the elliptic fibration defined by an M -polarization has five singular fibres
of type IV and one of type I;. This contradicts the fact that the Euler number of K3 surface
is 24. By the same argument, the case R = E4 does not occur. []

8.3. We remark that all R; are 3-elementary, i.e., R /R; = (Z/ 37)' for some non-
negative integer / and p acts trivially on R;/R;.

Let
T = (p(M)DR)", S=(T")" (cHX,2)).

Thus S is the smallest primitive sublattice of H?(X, Z) containing ¢(M) @ R. By definition,
the lattice 7’ N Pic(X) contains no (—2)-vectors.

8.4. Lemma. Let (X,¢) be an (M, p)-polarized K3 surface. Let S, R, T' be as above.
Then S, T' are 3-elementary lattices, and p acts trwzally on (T’ )"/ T'. Moreover X has an
automorphism &' of order three such that S = H*(X,Z)"°

Proof.  We have a chain of lattices:
JM)®RcS<S < (p(M)®R)"

and S*/S = (S*/(¢(M)@®R))/(S/(#(M)D®R)). Since M and R are 3-clementary,
S s a 3—elementary lattice, ie., S*/S=(Z/3Z)'. Since p acts trivially on
(f(M)®R)"/(p(M)®R) = ¢(M)"/$(M) @ R*/R, p acts trivially on S*/S. Since T" is
the orthogonal complement of S in unimodular lattice H*(X,Z), T' is 3-elementary and
p acts trivially on (7')"/T’ (see Nikulin [N1], Proposition 1.6.1). Hence the isometry
(1s,p|T') can be extended to an isometry p’ of H?*(X,Z) (Nikulin [N1], Corollary 1.5.2).
Then p’ is represented by an automorphism ¢’ of X (see [Na], Theorem 3.1). []

The following fact was first observed by Vorontsov [Vor].
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8.5. Lemma. We keep the same assumption as in Lemma 8.4. Define a non-negative
integer [(T") by: (T")")T' = (2/32)""". Then

rank(7") = 2I(T").
Proof. Let xe T'. Since

(x,0'(x)) = (p'(x),(p)7(x)) = (p'(x), —x — p'(x)),

we get 2(x,p(x)) = —(x,x). Hence x and p'(x) generate a sublattice A,(m), where
m = (x,x). From this we can find a sublattice K = A(m;) @ - -- @ Aaz(my) of T’ of finite
index. Moreover we have (T')"/T' = ((T')"/K)/(T'/K). If m; is not divisible by 3, the
contribution from A4, (m;) to /(T”) is at most 1. In case m; is divisible by 3, the fixed part
under p’ in Ay(m;)"/A2(m;) is Z/37Z. Since p acts trivially on (77)*/T’, the contribution
from A,(m;) is at most 1. This implies the assertion. []

8.6. Lemma. We keep the same notation as in Lemma 8.4. Then R =~ Az@’ and
I(S)y=5-r.

Proof. Let
R=R &® DR

be the orthogonal decomposition of R into indecomposable root lattices R;. We know that
R; is isomorphic to 4, (Lemma 8.2). Obviously R /R; is Z/3Z. Since

S*/S = (S*/(#(M) @ R))/(S/(#(M) ® R)),

we have [(T')=1(S) = (I(M)+r) —2r=5—r. On the other hand, it follows from
Lemma 8.5 that 10 — 2r = rank(7") = 2/(T'). Hence /(S) =5—r. [

Let us summarize the previous lemmas by stating the following:

8.7. Theorem. Let (X,$)e A3} ,. Then X admits an automorphism o' of order 3
such that H*(X,7)"" )" =S, the smallest primitive sublattice of Pic(X) which contains (M)
and the sublattice R generated by all (—2)-vectors in $(M)" ~ Pic(X). The sublattices ¢(M)
and R are orthogonal to each other and the lattice R is isomorphic to r (< 4) copies of the
lattice Ay. The number r will be called the degeneracy rank of (X, ).

The degeneracy rank of (X,¢) is equal to the number of nodes of the associated
nodal cubic surface (see 2.15). This is easy to see from Table 2 by computing the quotient
of M(t) by M = U@ ASBS and comparing the result with the value of r in Table 1. The
next theorem generalizes Lemma 6.21.

8.8. Theorem. Let [(X, )] € A3y ,. Then the M-polarization ¢ of X defines an el-
liptic fibration. Its singular fibres are given in the column Kodaira fibres of Table 1 from
above. The Picard lattice Sy and its lattice of transcendental cycles Ty can be found in the
corresponding rows of Table 2 (under the assumption in Proposition 5.3). The degeneracy
rank is given in the column r in Table 1.
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Proof. By the same arguments as in 6.19, 6.20, the M-polarization on X defines an
elliptic fibration with a section. The proof of the assertion about possible combinations of
singular fibres is very similar to the proof of Lemma 6.21 and is omitted. The description of
the transcendental lattice follows from the following easy facts:

9Es = =G4y, day(-1) = —q4ys 44 D4, = qay(-1) ® q4>(-1)>  9ax(-2) = 94Ds D 9.4,
and Theorem 1.14.2 from [N1]. [

8.9. The Eckardt locus. Let [(X,¢)] € #73}; \A". We know that the correspond-
ing marked cubic surface (S, Ly,..., L¢) has an Eckardt point on the unique line / inter-
secting Ly,...,Ls if and only if the standard elliptic fibration ®; on (X, ¢) has a fibre
of type Ij. In that case ¢(M) # Pic(X), but for general S with such property, the or-
thogonal complement ¢(M )éc(x) of ¢(M) in Pic(X) is isomorphic to A>(2). In fact if
F =2Ey+ E| + - -- + E4 is the fibre of type I; and E; meets the section, then ¢(M);C(X) is
spanned by E; — E, and E; — Ej.

The involution 7 (cf. 5.6) defined by the elliptic fibration also acts on ¢(M), via 1 = t*,
in a different way. If all fibres are of type IV, then the action of 7 on ¢(M) = U @ A5 per-
mutes the simple root basis in each copy of 4,. Let N = ¢(M)' be the sublattice of the in-
variant elements, then

N=U® 4;.

However, if one of the fibres is of type I, then ¢(M)' = U @ 4, ® A}. The orthogonal
complement of ¢(N) in ¢(M)" is spanned by the class of the divisor E; + E, + E3. Also
r = [Ei] € $(N); but not in ¢(M).

For any (—2)-vector r € N*\T < L consider the hyperplane r* in P(V,) of lines or-
thogonal to r. Let H(r), be the intersection of this hyperplane with the ball # < P(V,). Let
A, be the union of the hyperplanes H(r),. If an ample (M, p)-marked surface (¥, ¢) has a
fibre of type I in its standard elliptic fibration @, then its period belongs to #,. Let A"
(resp. in A,) be the image of /#, in A3} , (resp. in #"3) ). In this notation we have

8.10. Theorem. Under the isomorphism Mew = K 3p,,\A, the image of the locus of
smooth cubic surfaces with Eckardt points (the Eckardt locus) is mapped to A\(A N A,).

8.11. It is well-known that any nonsingular cubic surface admits 45 tritangent
planes, i.e. planes which intersect the surface along the union of three lines. A marking of
a cubic surface defines an order on the set of tritangent planes. Let &; be the locus of points
in .4, corresponding to marked cubic surfaces which contain an Eckardt point in the i-th
tritangent plane. The Weyl group W(Es) acts on .4, and permutes the loci &;’s transi-
tively. Let (S,L;,...,Ls) be a marked cubic surface and let M; be the line on S which
meets L; and L3 for i = 1,2,3 but none of the other L;. The M, lie in a tritangent plane
and they meet in a point if and only if the points pi, ..., ps € P? obtained by blowing down
the L; are such that the three lines {p;, p;+3) (the images of the M;), intersect at some point g.
Let &; be the corresponding component of the Eckardt locus in .. Its pre-image Z in
([|3’2)6 consists of 6-tuples of points (py, ..., ps) such that the lines {p;, p;+3>, i = 1,2, 3 inter-
sect. Assigning the intersection point ¢ to the 6-tuple defines a surjective map from Z to P2
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whose fibres, as is easy to see, are irreducible and of the same dimension. This shows that Z,
and hence & is irreducible. The image of each &; in .#y, is then an irreducible hypersurface.

The irreducibility of the Eckardt locus in 8.15 follows also from our ball uniformiza-
tion of .#.yp. We follow the proof given in [AF].

8.12. Lemma. Let D=T*/T be the discriminant group of T as in 5.1 and
lett N =M' The group W(Es) =O(D)/{£1} acts transitively on the subsets of
(D —{0})/{£1} of vectors of the same norm. There are three such subsets.

(i) The set of vectors of norm 0 has 40 elements. Each non-zero isotropic vector is re-
presented by (e + 2p(e)) /3, where e € T is a primitive isotropic vector.

(i) The set of vectors of norm —2/3 has 36 elements. Each (—2/3)-vector is repre-
sented by a vector (r+2p(r))/3 in T* withre T, r* = =2 and (r,p(r)) = 1.

(i) The set of vectors of norm —4/3 has 45 elements. Each (—4/3)-vector in D(T) is
represented by r" where r = r' + 1" € N*\T is a (=2)-vector and ', " is the projection of r
into (N* " M)*, T* respectively.

Proof. If we consider 7 as a free Hermitian module A over Z[(3] (see 6.9), then
[ACT], [AF] define an isotropic vector, a short vector and a long vector as a vector with
Hermitian square equal to 0, —1, —2, respectively. The images of these vectors in 7* with
respect to the isomorphism 4 : A — T* (6.1) are vectors with square 0, —2/3, —4/3, re-
spectively. It is proven in [AF], Proposition 2.1 that there are exactly three I',-orbits of
the images of these vectors in D(7'). Their cardinality is 40, 36 and 45, respectively. This
gives three orbits of O(D(T)) in D(T) of the same cardinality. The assertions (i) and
(i1) follow from the explicit formula for the isomorphism % (6.1). To prove (iii), we con-
sider an ample (M, p)-polarized K3 surface X whose standard elliptic fibration acquires
fibres of type Ij. Let ¢ : L — H?*(X,Z) be a cohomology marking with ¢|M = ¢. In the
notation of 8. 9 we may assume that the image of the first copy of A, of M in
Pic(X) is spanned by Ey and Ej+ Ei + E» + E5. Let r= ¢ !([E)]). Then re N*\T

1 1 -
and r' = 3 (r+p(r) + p*(r)) = §¢_1(E1 + Ey+ E3) e (M A N*)*. We easily check that
2= -2/3. Thenr" =r—r' e T* and (r”)2 =-4/3. O

8.13. Moduli interpretation. Consider the three I',-orbits of vectors from 7*:

1)

(e+2p(e)), where e is a primitive isotropic vector in T’

W = W =

(2)

(r+2p(r)), where ris a (—2)-vector in T (this corresponds to a short root in A);

(3) r” equal to the projection of a (—2)-vector r € N*\T (this corresponds to a long
root in A).

Each vector v € T* defines a hyperplane v+ in P(V/,) of lines orthogonal to v. So, we have
three I',-orbits of such hyperplanes corresponding to vectors from the above list. It is shown
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in [AF] that there is a bijective correspondence between the I'y/ ,-orbits of these vectors and
their images in D(T"). Thus each I',-orbit consists of 40, 36, 45 I'y;, ,-orbits, respectively.

8.14. The boundary divisors. We know that the discriminant # is equal to the
union of hyperplanes H(r) = r+ n %, where r is a (—2)-vector from T. For any xe€ V,,
we can easily see that (r,x) =0 if and only if (r+ 2p(r),x) = 0. This shows that the
hyperplane corresponding to a vector of type (2) in 8.13 is one of the hyperplanes H(r).
Thus the discriminant locus A™ in #"3};  consists of 36 hypersurfaces A7' (o« € D/{£1}
with norm —2/3) which are permuted transitively by W(Es). The discriminant locus A
in A3y, is irreducible. It is well-known that the stabilizer of each A} in W(Es) is
Gy = S¢ x 227 (see 2.12).

Take a generic point in H(r). Then the corresponding K3 surface has 4,(—1) ® A? 3
as its transcendental lattice (see the cases 4), 5) in Table 2). The automorphism ¢’ in Theo-
rem 8.7 defines a hermitian lattice structure on 4,(—1) @ A2®3 of signature (1, 3) over the
Eisenstein integers as in 6.9. Then A™ is the quotient of H(r) by the stabilizer subgroup of
rin I’y ,. It is known that A™ is isomorphic to the smooth locus of the Segre cubic .3 (cf.
[Hu], Chap. 3, 3.2.3). Its Satake-Baily-Borel compactification is obtained by adding 10
cusps and isomorphic to ¥3.

Now we fix an orthogonal basis {«;} of D such that gr(«;) = —4/3. This defines an
isomorphism of quadratic forms

D~F

where the quadratic form ¢ on [F35 is given by

Recall that the stabilizer of a basis of D in W(Eg) is W(Ds) ~ (Z /2Z)4 - Ss.

Then there are 36 (—2/3)-vectors in D which are divided into two orbits of W(Ds).
One consists of 16 vectors containing (1,1, 1,1, 1) and another consists of 20 vectors con-
taining (1,1,0,0,0). The stabilizer in W(Ds) of (1,1,1,1,1) is Ss, and that of (1,1,0,0,0)
is (2/22)* - (S, x S3). Note that the sum of indices of these groups in Gj is 12 + 15 = 27.
The orbit of cardinality 20 corresponds to markings such that the marked line does not
contain the node. For example, if the line corresponds to e¢s under a geometric marking
defined by (ey,...,e), then the effective class corresponding to the node could be either
oftypee; —ej, 1 Si<j<borey—e —e —e, 1 <i<j<k<b.

8.15. Eckardt loci. If v is of type (3) in 8.13 the hyperplane vt N % is equal to the
hyperplane #(r), defined in 8.9. Thus we obtain that the image of the Eckardt locus A"
in "3} , consists of 45 irreducible hypersurfaces. The Eckardt locus A, in 43, is irre-
ducible. This shows that the Eckardt locus in .#,y is irreducible (as promised).

8.16. Cusps. For a non-zero isotropic vector e in T we define a totally isotropic sub-
lattice
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I(e) :=<e,ple)y (= T).

Then % (P(I(¢) ® C)) is a cusp of # (i.e. a rational boundary component), and any
cusp of # corresponding to a parabolic subgroup of I, is obtained in this manner.
Thus we obtain that the Satake-Baily-Borel compactification of #73y; = %/Ty,, (resp.
A3y, =2A/T,) is obtained by adding 40 cusps (resp. one cusp). As in the case of
(—2/3)-vectors, we can see that W(Ds) acts on 40 cusps transitively, and hence the
Satake-Baily-Borel compactification of '3y} | /W(Ds) is obtained by adding one cusp.

9. Extension of the isomorphism to the boundary
In this section we will extend the W(Es)-equivariant isomorphism

G: A3 \A" —

cub
from Theorem 7.2 to a W(Es)-equivariant isomorphism

%317(1/1,/) = r}:éub'

It follows from Lemma 6.21 that for any [(X,¢)] € #73}; \A" the standard elliptic fibra-
tion defined by the polarization ¢ has the Weierstrass model as in Corollary 4.11. Let [(S, /)]
be the isomorphism class of a nonsingular cubic surface together with a line corresponding
to the pair (Fs, F>) under isomorphism (3.2). It follows from the construction of the map G
that the image of G([(X, 4)]) under the canonical projection .#% — M2 /W (Ds) = M2y,
is equal to [(S,/)]. Applying Theorem 8.8 and using Table 1 we see that the standard elliptic
fibration on any (X, ¢) defined by a point in '3} , has Weierstrass model (4.12), where
(Fs, F») is a stable pair of binary forms. Using the isomorphism (3.2), the pair (Fs, F>) de-
fines a point [(S,/)] € .#],,. Obviously this can be done in families, so this gives a mor-
phism 733 , — } . Which obviously factors through the map

(9.1) [ A3y JW(Ds) — A,

ncub*

By the above this map extends the isomorphism G modulo W(Ds).

9.1. Theorem. The map (9.1) extends to an isomorphism of compactifications:

f_ : %ir&p/w(l)5) - '%_rllcub'

Here the compactification of the target space is the Satake-Baily-Borel compactification of
A3, /W (Ds) (see 8.16) and the compactification of the source space is from the proof of
Theorem 3.6.

Proof. We will apply Lemma 3.4. By 8.16 both compactifications are one-point
compactifications. Since f extends an isomorphism f, it is a birational morphism. The
map is obviously surjective since we can always choose a structure of an M-polarization
on the elliptic surface defined by the Weierstrass model from (4.12). It remains to check
the last assumption from Lemma 3.4, i.e. the finiteness of fibres. For this we argue as in
the proof of Theorem 3.6. It follows from 8.14 that the complement 43} S\A 3%, con-
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sists of 36 divisors isomorphic to the Segre cubic hypersurface. Thus the complement
,%731’{} o/ W(Ds)\#'33; ,/W(Ds) consists of two irreducible divisors isomorphic to a finite
quotient of the Segre cubic (minus a finite set of points). Now we can finish as in the proof
of Theorem 3.6. []

9.2. Theorem. The isomorphism A3y \A" = My, extends to a W(Eg)-equivariant
isomorphism
A3y, = My

ncub*

Passing to the quotients it defines an isomorphism
«%/.3M,p =~ Mocub-

Proof.  The isomorphism 43y} /W(Ds) = 4,/ W(Ds) constructed in Theorem

9.1 lifts to a W(Es)-equivariant isomorphism 43y} = .. In fact, this is true for open

Zariski subsets defined by nonsingular cubic surfaces, hence each of the varieties is the nor-

malization of the quotient in the field of rational functions C(#3}; ) = C(A,y,).- Now

we have an isomorphism o of varieties which defines a birational isomorphism of W (Es)-
varieties. Obviously, it is an isomorphism of W (Eg)-varieties (for each g € W(Eg) the maps
g oo and o o g coincide on an open Zariski subset, hence coincide everywhere). []

9.3. Corollary. The isomorphism

(%\%)/FM./) = rﬂcub
from Corollary 7.5 extends to an isomorphism
B/TUwm p = Mncub-
9.4. Remark. As in the proof of Theorem 9.1 (also see (3.2)) , the isomorphism
A 331,/ W(Ds) = My,

extends to the isomorphism of their compactifications. The geometric meaning is as follows.

The strictly semistable cubic surface defined by

(9.2) X; - XXX, =0
(cf. [ACT], (4.6)) has three double rational points of type A, and has only three lines
which lie in one Aut(S)-orbit. This defines three planes in the cubic fourfold X defined by
X3 + X} + X3 — XoX1 X2 = 0 (one such plane is IT: X> = X3 = X4 + X5 = 0) and projec-
tion away from such a plane defines a quadric bundle structure on X. The discriminant
curve is easily computed and is a sextic given by

(93) Zg(L1(Z(), 11)3L2(lo, 11)2 + l;Lz(lo, 11)2) =0,

where L, L, are independent linear forms.
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It follows from Proposition 3.2 that the pair (Fs, F>) = (L7 L3, L}) represents a semi-
stable but not stable point in P(¥(5)) x P(¥(2)) whose orbit is closed in the set of
semi-stable points. The corresponding point in ([FD(V(S)) X [P’(V(2)))SS //SL(2) compacti-
fies (P(V(5)) x P(¥(2)))"/SL(2). Thus we see that .#;,, admits a one-point compactifi-
cation corresponding to the surface (9.2) together with its unique (up to automorphism)
line.

The sextic curve (9.3) appears as a semistable sextic in Shah [Sha], Theorem 2.4,
Group II, (2). The double cover X of P? branched along this sextic is a Type II degenera-
tion of K3 surfaces, i.e. corresponding to a point on an 1-dimensional rational boundary
component of the period domain of polarized K3 surfaces of degree 2 (= a bounded sym-
metric domain of type IV and of dimension 19). The 1-dimensional rational boundary com-
ponents of a bounded symmetric domain of type IV bijectively correspond to the set of to-
tally isotropic primitive sublattices of rank 2 of its underlying lattice of signature (2,r). In
our situation, p-invariant totally isotropic primitive sublattices of rank 2 of 7 correspond to
the set of cusps of 4. Thus X corresponds to the boundary of the Satake-Baily-Borel com-
pactification of 37} | /W(Ds).

9.5. Configurations of 7 points in P'. Recall from Theorem 3.6 that we have a nat-
ural isomorphism
Moy = (P(V(5)) x P(V(2))/SL(2),

where (P(V(5)) x [IJ’(V(2)))/ is the open subset corresponding to stable pairs of binary
forms (Fs, F5). Consider the product (P;)’ as the product (P!)> x (P')*. We have an iso-
morphism

Y (PH/Ss xS, — P(V(5)) x P(V(2)).

Let p: (PY) — P(V(5)) x P(¥(2)) be the composition of the quotient map and i and

&L = p*(Op(y(s))(2) R Opray (1)) = éﬂ Op1(2) ® (Opi (1) K Opi(1)).

Since the stability is preserved under the action of finite groups, we see that semi-stable
(stable) points in P(V(5)) x P(V(2)) with respect to the action of SL(2) and the linea-
rization defined by the invertible sheaf Up(y(s))(2) X Up(y(1))(1) correspond to semi-stable
(stable) points in ([Pﬁ) with respect to the d1agonal act10n of SL(2) and the linearization
defined by the line bundle .. Let

Pi(2°,1,1) = (P1)")"/SL(2).
We have
(P(V(5)) x P(V(2)))"/SL(2) = P;(2°,1,1)/Ss5 x Sh.

We know that ﬂfwub W’”ub/W(D5) The group W(Ds) is equal to the semi-direct

product (Z/27)* = Ss. Here Ss is the subgroup of W(Ds) which acts on markings on non-
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singular surfaces by permuting the divisor classes ey, ..., es. It stabilizes the divisor class
2¢) — ey} — -+ —es of a line /. The subgroup H = (Z /2Z)4 is generated by the conjugates
of the product of two commuting reflections Se,—e,—¢,—¢; © Se;—e,- Let I/ be the lines repre-
senting the classes e) — ¢; — es. Then H acts by switching even numbers of /s with [’s.
The proof of Theorem 3.6 shows that the map .4}, — (P(Vs) x [P’(Vz))/ /SL(2) induces
an Ss-equivariant isomorphism

MM JH = Pi(2°,1,1)/8,.

9.6. Monodromy groups. According to Deligne and Mostow [DM], the variety
P1(2°,1,1) is isomorphic to the quotient of a complex 4 ball by a reflection subgroup IT’
corresponding to hypergeometric function defined by the multi-valued form

o=:""E-Dz—a)z-a)z-a)z—a) " d

They also show that IT" and S, generate a reflection subgroup IT such that the ball quo-
tient is isomorphic to P;(2°,1,1)/S,. As shown in 4.17, X is the minimal model of a
quotient (C x E)/(Z/6Z). This correspondence gives us an isogeny between our group I,
and IT.

10. Half twists

10.1. To a smooth cubic surface S one can associate a principally polarized Hodge
structure of rank 10 and weight 1, it is H'(P, Z) where P is the intermediate Jacobian of the
cubic threefold V' (cf. 4.15) associated to S. In [ACT], see also [MT], it is shown that this
Hodge structure, with its automorphism of order three, determines S.

The automorphism of order three defines the structure of a free Z[{]-module on
H'(P, 7). 1t defines eigenspaces H'-*(P), and H'°(P); of dimension 4 and 1 respectively.
This allows one to define a weight two Hodge structure W, with Hodge numbers (1,8, 1),
and with the same underlying lattice W = H'(P, Z) as follows:

WZ,O — H1,0<P)Z’ Wl’l — HLO(P)X @HOA,I(P)_ W0.2 —_ H0°1(P)

7 x

in fact it is easy to check that W79 = W&». The automorphism of order three of H'(P, Z)
preserves this decomposition, hence also W has an automorphism of order three. The po-
larization E on H'(P,Z) defines a Q[¢3]-valued Hermitian form H on H'(P,Z) ~ Z[(;)°
(cf. [ACT]) with imaginary part E. The real part Q of H is a polarization of W. The lattice
(W, Q) is of type A5 @ A»(—1). The polarized Hodge structure (W, Q) is the (negative)
half twist of (H'(P,Z),E) ([vG1)).

10.2. The lattice (W, Q) = ASBA' @ A>(—1) has a unique (up to an isometry) embed-
ding in the K3 lattice L and the automorphism of order three on W extends to an automor-
phism of order three on the K3 lattice. The polarized Hodge structure (W, Q) is invariant
under this automorphism and defines a K3 surface with an automorphism of order three.
So the half twist of H'(P,Z) provides a purely Hodge theoretic approach to the K3 sur-
faces which were constructed as triple covers of cubic surfaces in this paper.



[ACT]
[AF]
(BP]
(B1]
(B2]
(Be]

[Bo]
[Co

[CvG]
[DM]
[Do]
[DO]
[DS]
[F]
[vG1]
(vG2]
[HL]

[Hu]
[Kol]

[Ko2]

[Lo]
[MSY]

[MT]
[Mos]
[Mul
[Nal
[Na]
[N1]
[N2]
N3]
[Ps]
[Sal]
[Sa2]

[Sha]
[Shi]
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