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A complex ball uniformization of the moduli
space of cubic surfaces via periods of K3 surfaces
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Abstract. In this paper we show that the moduli space of nodal cubic surfaces is iso-
morphic to a quotient of a 4-dimensional complex ball by an arithmetic subgroup of the
unitary group. This complex ball uniformization uses the periods of certain K3 surfaces
which are naturally associated to cubic surfaces. A similar uniformization is given for dif-
ferent covers of the moduli space corresponding to geometric markings of the Picard group
or a choice of a line on the surface. We also give a detailed description of the boundary com-
ponents corresponding to singular surfaces.
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1. Introduction

There are two main approaches to the construction of moduli spaces in algebraic
geometry. One uses geometric invariant theory which allows one to construct the moduli
space as a quotient of an open subset of an appropriate Hilbert scheme, the other one uses
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period maps to construct the moduli space as a quotient of an open subset of a Hermitian
symmetric homogeneous domain by a discrete subgroup of its group of holomorphic auto-
morphisms. Both approaches suggest a way to compactify the moduli space. In the alge-
braic approach one adds the equivalence classes of semi-stable points. In the transcendental
approach one considers the whole domain together with its boundary.

There are several remarkable cases where both approaches work. Comparing the con-
structions gives a beautiful interplay between the algebraic theory of invariants and the
theory of automorphic functions. The historically first example of such an interplay is of
course the moduli space of elliptic curves which, on one hand, is the quotient of the space
of binary forms of degree 4 by the group SLð2Þ and, on the other hand, is a natural quo-
tient of the upper half-plane by the modular group. Similarly, binary forms of degree 5, 6, 8
and 12 give the moduli spaces of Del Pezzo surfaces of degree 4, and hyperelliptic curves of
genus 2, 3 and 5, respectively. Using the theory of hypergeometric functions one can show
that the corresponding domains are complex balls of dimension 2, 3, 5 and 9, respectively.
Increasing the number of variables by one, one finds the ternary cubic forms which leads
again to the moduli space of elliptic curves, the forms of degree 4 corresponding to the
moduli space of non-hyperelliptic curves of genus 3 (in this case the domain is the Siegel
upper half space of degree 3) and the forms of degree 6 corresponding to K3 surfaces with
degree 2 polarization (the domain is of type IV in Cartan’s classification).

Using domains of type IV one can also give a uniformization of the moduli space of
cubic and quartic forms in 4 variables. The case of forms of degree 3 (cubic surfaces) was
treated in the work of K. Matsumoto, T. Sasaki and M. Yoshida [MSY], and degree 4 (K3
surfaces with degree 4 polarization) much earlier by J. Shah [Sha]. Although cubic surfaces
do not admit non-zero holomorphic 2-forms, so that the periods are not defined, there are
identifications of this moduli space with other moduli spaces for which the period map is
defined. In [MSY] one uses the moduli space of K3 surfaces which have a certain primitive
sublattice of rank 16 in the Picard group. Such a surface can be realized as a double cover
of P2 branched along the union of 6 lines in a general position. The blow-up of the dual set
of 6 points in P2 is a nonsingular cubic surface. Recent work of D. Allcock, J. Carlson and
D. Toledo [ACT] gives a di¤erent uniformization of the moduli space of cubic surfaces
where the domain of type IV is replaced by a complex ball. This ball quotient is the moduli
space of principally polarized abelian varieties of dimension 5 with complex multiplication
in the Eisenstein ring Z½z3&. Each such variety can be realized as the intermediate Jacobian
of the triple cyclic cover of P3 branched over a nonsingular cubic surface. Independently
this construction was found by the second author and B. Hunt. Subsequently, Allcock and
Freitag [AF] found modular forms on the ball quotient which embed it into a nine dimen-
sional projective space. Freitag [F] later proved that the ideal of the image is defined by
cubic polynomials and that the quotient ring is the full ring of modular forms. The image
variety turns out to be isomorphic to a compactification of the moduli space of marked
cubic surfaces.

A similar approach works for Del Pezzo surfaces of degree 2 and 1 which can be real-
ized as surfaces of degree 4 and 6 in weighted projective spaces Pð1; 1; 1; 3Þ and Pð1; 1; 2; 3Þ,
respectively (see also [HL] for another approach to a complex ball uniformization of the
moduli space of Del Pezzo surfaces of degree 1). All of this is based on the existence of an
embedding of a complex ball into a Siegel domain. It is also known that a complex ball can
be embedded into a type IV domain. For example a moduli space of lattice polarized K3
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surfaces admitting an automorphism of order 3 or 4 which acts non-trivially on the lattice
of transcendental cycles is parametrized by an arithmetical quotient of an open subset of a
complex ball. This observation was used by the third author [Ko1] and independently by
the second author (unpublished) to construct a complex ball uniformization of the moduli
space of Del Pezzo surfaces of degree 2. This moduli space is isomorphic to the moduli
space of non-hyperelliptic curves of genus 3 via the map which associates to a Del Pezzo
surface the fixed curve of the Geizer involution. The K3 surface associated to such a surface
is its double cover branched along this fixed curve. In [Ko2] a similar description of the
moduli spaces of curves of genus 4 and of Del Pezzo surfaces of degree 1 is given.

In this paper we give a similar construction for the moduli space of cubic surfaces. To
each stable cubic surface S we associate a K3 surface XS with an automorphism of order 3.
Its periods are parametrized by a complex 4-ball and we do in fact recover most of the re-
sults from [ACT]. Our construction is also closely related to the work of K. Matsumoto
and T. Terasoma [MT] who associate to a line on a cubic surface a certain curve C of genus
10 which admits an involution s with two fixed points such that the PrymðC; sÞ is isomor-
phic to the intermediate Jacobian of the triple cover of P3 branched along the cubic sur-
face. The curve C also admits an automorphism t of order 6 such that s ¼ t3. The K3 sur-
face associated to the cubic is the minimal nonsingular model of the quotient ðC ( EÞ=hti,
where E is an elliptic curve with an automorphism of order 6. The branching of the map
C ! C=htiGP1 is very special, we have 7 branch points, 5 of which have ramification
index ð3; 3Þ and two have index (6). According to Deligne-Mostow [DM] the moduli space
of such covers is isomorphic to an open subset of a complex ball quotient B=G. We identify
this moduli space with the moduli space of K3 surfaces XS and interprete the monodromy
group G in terms of the orthogonal group of the lattice of transcendental cycles on the K3
surfaces. We also give an interpretation of a compactification of the ball quotient in terms
of K3 surfaces.

Here is the review of the contents of the paper. In section 2 we study stable cubic sur-
faces. Since these have at most nodes as singularities we refer to them as nodal cubic sur-
faces. We define markings of nodal cubic surfaces and we introduce the moduli space of
marked nodal cubic surfaces Mm

ncub. The Weyl group WðE6Þ acts on Mm
ncub (the action can

be described by planar Cremona transformations) and the quotient variety is Mncub, the
moduli space of stable cubic surfaces. It has a natural compactification Mncub, the moduli
space of semi-stable cubic surfaces, which is obtained by adding one point. The moduli
space Mm

ncub admits also a natural compactification Mm
ncub which is obtained by adding 40

points. It admits a WðE6Þ-equivariant embedding into P9. We discuss di¤erent construc-
tions of the moduli space Mm

ncub.

For a nodal cubic surface and a line on it we define in section 3 a pair of binary forms,
of degree 2 and 5, modulo the action of SLð2Þ. Using this, we prove that the moduli space
of cubic surfaces together with a choice of a line on it is a rational variety.

In section 4 we define a K3 surface XS; l associated to a nodal cubic surface S together
with the choice of a line l on S. The surface XS; l admits a natural elliptic fibration as well
as an automorphism of order three. We show that this K3 surface depends only on S (and
not on the choice of l ) by defining a K3 surface XS; l;m, where l and m are skew lines on
S, which can be seen to be isomorphic to both XS; l and XS;m. We write XS for the (isomor-
phism class of such a) K3 surface associated to ðS; lÞ. We relate XS to the K3 surface asso-
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ciated to a cubic fourfold with a plane, to the cubic threefold V associated to S by Allcock,
Carlson and Toledo and to the ‘Matsumoto-Terasoma curve’ C.

In section 5 we show that the Picard lattice of a generic XS is isomorphic to the
lattice M ¼ U lAl5

2 . The lattice of transcendental cycles is isomorphic to the lattice
T ¼ A2ð)1ÞlAl4

2 . This follows from the fact that the elliptic fibration on the generic XS

has 5 singular fibres of type IV and 2 fibres of type II and some lattice theoretic consider-
ations. We also compute the Picard lattices of the K3 surfaces associated to general nodal
cubic surfaces.

In section 6 we study the moduli space of M-polarized K3 surfaces
ðX ; f : M ! PicðXÞÞ. If fðMÞ ¼ PicðXÞ, an M-polarization f is equivalent to the data
which consists of an elliptic fibration with a unique section, an order on the 5 reducible
fibres of type IV or I3, and an order on the set of irreducible components of each fibre
which do not meet the section. An M-polarization on the K3 surface XS associated to a
smooth cubic surface S is equivalent to a marking on S, that is, an order on the set of 27
lines (or, equivalently, a choice of an ordered set of six skew lines). The M-polarized K3
surfaces ðXS; fÞ are distinguished from general M-polarized K3 surfaces by the property
that there exists an automorphism s of order 3 which is the identity on fðMÞ and, for
smooth S, coincides with some explicitly described isometry r on the orthogonal comple-
ment of fðMÞ in H 2ðXS;ZÞ. The isometry r fixes the period H 2;0ðXSÞ of XS so that the
image of the period map of the surfaces XS lies in the fixed locus of a certain automorphism
of order 3 on the period space of M-polarized K3 surfaces. This fixed locus turns out to be
isomorphic to a 4-dimensional complex ball B. In this way we construct the moduli space
K3m

M;r of ðM; rÞ-polarized K3 surfaces as a quotient of B. The Weyl group WðE6Þ acts
naturally on K3m

M;r by changing the polarizations.

In section 7 we establish a natural WðE6Þ-equivariant isomorphism from the moduli
space of marked nonsingular cubic surfaces Mm

cub onto an open subset K3m
M;rnD

m of
K3m

M;r. The moduli space of isomorphism classes of pairs ðS; lÞ of cubic surfaces together
with a choice of a line is isomorphic to the quotient of K3m

M;rnD
m by a subgroup of WðE6Þ

isomorphic to WðD5Þ. In this way we obtain an interpretation of a line on a general cubic
surface S as a choice, up to automorphisms of XS, of an elliptic pencil with 5 fibres of type
IV on the associated K3 surface XS.

In section 8 we study in detail the geometry of the discriminant locus Dm. We show
that each point ½ðX ; fÞ& A Dm admits an automorphism s of order 3 such that H 2ðX ;ZÞs

*

contains fðMÞlR, where R is spanned by all ð)2Þ-vectors in fðMÞ? XPicðX Þ. The lattice
R is isomorphic to r ðe 4Þ copies of the root lattice A2. The polarization f defines an elliptic
fibration on X and we describe its possible singular fibres. We also prove that Dm consists
of 36 irreducible components on which WðE6Þ acts transitively. The cubic surfaces with
Eckardt points define another divisor in K3m

M;r and we prove that it consists of 45 irre-
ducible components permuted transitively by WðE6Þ. Finally we show that the Satake-
Baily-Borel compactification of K3m

M;r contains 40 cusps, again transitively permuted by
WðE6Þ. This agrees with the results obtained in [ACT].

In section 9 we show that the WðE6Þ-equivariant isomorphism from Mm
cub onto

K3m
M;rnD

m can be extended to an equivariant isomorphism from the moduli space of
marked nodal cubics Mm

ncub to K3m
M;r. We also show that the quotient K3m

M;r=WðD5Þ
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and the moduli space of nodal cubic surfaces together with a choice of a line
M l

ncub ¼ Mm
ncub=WðD5Þ are isomorphic. Moreover, the latter space is naturally isomorphic

to the GIT-quotient P1ð25; 1; 1Þ=S5 ( S2 ¼ ðP1Þ7==SLð2Þ ( ðgÞ, where the linearization of
SLð2Þ is defined by weighting the first five factors with weight 2 and the last two factors
with weight 1. Here S5 acts by permutation of the first five factors and S2 acts by permuta-
tions of the last two factors.

The configuration space P1ð25; 1; 1Þ=ðgÞ ¼ ðP1Þ7==SLð2Þ ( ðgÞ occurs in the work of
Deligne and Mostow [DM] and we show that the group G is isogenous to the reflection
group P acting on B which is generated by the reflection group P 0 of the hypergeometric
function defined by the multi-valued form

o ¼ z)1=6½ðz ) 1Þðz ) a1Þðz ) a2Þðz ) a3Þðz ) a4Þ&)1=3 dz

and an involution g. Moreover, we match the types of degeneration of the elliptic fibration
corresponding to the polarization and the type of degeneration of a stable point set through
this morphism.

Finally, in section 10, we compare the Hodge structure on the K3 surface XS with the
principally polarized Hodge structure on H 1ðP;ZÞ, where P is the intermediate Jacobian of
a cubic threefold associated to the cubic surface S.

2. Nodal cubic surfaces

2.1. Nodal cubics and points in P2. A nodal cubic surface is a surface of degree 3 in
P3 which has at most ordinary double points as singularities. Let S HP3 be a nodal cubic
surface with a node P ¼ ð0; 0; 0; 1Þ. Then its equation is of the form:

F2ðx0; x1; x2Þx3 þ F3ðx0; x1; x2Þ ¼ 0;ð2:1Þ

where the Fi are homogeneous of degree i and F2 ¼ 0 defines a smooth conic. Projection
from P is a birational isomorphism S a P2 with inverse given by:

P2 a S; x ¼ ðx0; x1; x2Þ 7!
!
F2ðxÞx0;F2ðxÞx1;F2ðxÞx2;)F3ðxÞ

"
:

It is a rational map given by the linear system of cubics through B ¼ ðF2 ¼ 0ÞX ðF3 ¼ 0Þ.
The inverse image of a point in B is a line on S. There are at most two nodes on a line in S
which implies that each point in B has multiplicity at most 2. In particular, S has at most 4
nodes. It also follows easily from considering equation (2.1) that other nodes of S appear
only when the cubic defined by F3 is simply tangent to the conic defined by F2. Equiva-
lently, S can be obtained as the blow-up 6 points on a conic, where among the points there
could be infinitely near points of order at most 2.

Let S be a nodal cubic surface and let ~SS ! S be the desingularization of S. The fibre
over a node is a ð)2Þ-curve, i.e. a smooth rational curve with selfintersection )2. The ra-
tional map S a P2 defines a morphism p : ~SS ! P2 which is the composition of birational
morphisms

p : ~SS ¼ ~SS0 ! ~SS1 ! ! ! ! ! ~SS6 ¼ P2;
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where each pi : ~SSi)1 ! ~SSi, i ¼ 1; . . . ; 6, is the blow-down of an exceptional curve of the first
kind (a ð)1Þ-curve for short).

Let E 0
i H ~SSi be the exceptional curve of pi and put Ei ¼ ðpi)1 + ! ! ! + p1Þ*ðE 0

i Þ. Let ei

be the divisor class of Ei and let e0 be the divisor class of the pre-image of a line l HP2

under p. The classes e0; e1; . . . ; e6 form an orthonormal basis in

H 2ð ~SS;ZÞ ¼ Picð ~SSÞ ¼ Ze0 lZe1 l ! ! !lZe6

in the sense that e2
0 ¼ 1, e2

i ¼ )1, i3 0, ðei; ejÞ ¼ 0, i3 j. The canonical class K ~SS of ~SS is
equal to )3e0 þ e1 þ ! ! ! þ e6.

The anti-canonical map ~SS ! P3 maps ~SS onto S and contracts the ð)2Þ-curves to
nodes. In particular, K ~SS is orthogonal to the class of each ð)2Þ-curve. Such a class is, up
to sign, one of the following 36 classes:

ei ) ej; e0 ) ei ) ej ) ek; 2e0 ) e1 ) e2 ) ! ! ! ) e6;ð2:2Þ

with 1e i < j < k e 6. Let pi ¼ pðEiÞ A P2. Then ei ) ej, i > j, is e¤ective if and only if
pi and pj coincide, e0 ) ei ) ej ) ek is e¤ective if and only if the points pi, pj and pk are
on a line and 2e0 ) e1 ) e2 ) ! ! ! ) e6 is e¤ective if and only if the six points p1; . . . ; p6 are
on a conic.

2.2. Geometric markings. A minimal resolution of a nodal cubic surface is a Del
Pezzo surface of degree 3. In this paper a Del Pezzo surface of degree d is a smooth sur-
face X with )KX nef and K 2

X ¼ d > 0. For d f 3, the anti-canonical linear system j)KX j
maps X birationally to a surface of degree d in Pd with at most rational double points as
singularities. Notice that we do not assume that )KX is ample, in that case one should call
X a Fano surface. It is known that a Del Pezzo surface admits a birational morphism
p : X ! P2 as in 2.1. A choice of such p and its decomposition p ¼ p9)d + ! ! ! + p1 is called
a geometric marking of X . Two geometric markings X ¼ X0 ! X1 ! ! ! ! ! X9)d ¼ P2

and X 0 ¼ X 0
0 ! X 0

1 ! ! ! ! ! X 0
9)d ¼ P2 are called isomorphic if there exist isomorphisms

fi : Xi ! X 0
i , i ¼ 0; . . . ; 9 ) d, such that p 0

iþ1 + fi ¼ fiþ1 + piþ1, i ¼ 0; . . . ; 9 ) d ) 1.

2.3. Lattice markings. The Picard lattice of a Del Pezzo surface X of degree d is
isomorphic to

I1;9)d ¼ h1ilh)1i9)d ;

the standard odd unimodular hyperbolic lattice with the standard orthonormal basis
ðe0; . . . ; e9)dÞ. Let k ¼ )3e0 þ e1 þ ! ! ! þ e9)d . Let k? be the orthogonal complement of
Zk in I1;9)d . Assume d e 6. Then the sublattice k? is isomorphic to E9)d , where E9)d

is the root lattice E9)d if d ¼ 1; 2; 3, the root lattice D5 if d ¼ 4, the root lattice A4

if d ¼ 5, and the root lattice A2 þ A1 if d ¼ 6, spanned by vectors e0 ) e1 ) e2 ) e3,
e1 ) e2; . . . ; e9)dþ1 ) e9)d : A lattice marking of a Del Pezzo surface X is an isometry

f : I1;9)d ! PicðX Þ; such that fðkÞ ¼ KX :

In particular, the restriction of f to k? is an isometry k? ! K?
X .

A geometric marking defines a lattice marking by fðeiÞ ¼ ei with ei as in 2.1.
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Let WðXÞ be the subgroup of the orthogonal group of PicðX Þ generated by reflec-
tions in the classes of the ð)2Þ-curves on X . Two lattice markings f; f 0 : I1;9)d ! PicðXÞ
are called equivalent if there exists an element s A WðXÞ such that f ¼ s + f 0.

The proof of the following result can be found in [Lo].

2.4. Proposition. Let X be a Del Pezzo surface. Then there is a natural bijection be-
tween the isomorphism classes of geometric markings and equivalence classes of lattice mark-
ings on X .

2.5. The moduli space of marked smooth cubics. We denote by Mm
cub the moduli

space of marked smooth cubic surfaces. Its points correspond to isomorphism classes of
pairs ðS; fÞ, where S is a smooth cubic surface and f is a lattice marking of S. There is an
isomorphism:

Mm
cub G

!
ðP2Þ6 ) D

"
=SLð3Þ; ðS; fÞ 7! ðp1; . . . ; p6Þ;

where the pi A P2 are the images of the lines with classes fðeiÞ A PicðSÞ in the blow-down
P2 of S and D is the set of 6-tuples of points where either two points coincide, or three are
on a line or all six are on a conic. The inverse image of a 6-tuple consists of the surface S
obtained by blowing up the points pi and the marking is defined by putting fðeiÞ equal to
the class of the exceptional divisor over pi.

2.6. The Cremona action on M m
cub. The Weyl group WðE6Þ is the subgroup of OðI1;6Þ

which fixes the element k A I1;6. It acts naturally on Mm
cub by composing a lattice marking

with (the inverse of ) an isometry in WðE6Þ:

WðE6Þ ! AutðMm
cubÞ; s 7! ½ðS; fÞ 7! ðS; f + s)1Þ&:

Equivalently, WðE6Þ acts via the Cremona action on 6 ordered points in P2 (see [DO]).
From now on we will simply identify WðE6Þ with its image in AutðMm

cubÞ.

The quotient of Mm
cub by WðE6Þ is the moduli space of smooth cubic surfaces Mcub.

Let pcub be this quotient map:

pcub : Mm
cub ! Mm

cub=WðE6ÞGMcub:

2.7. The GIT compactification. Geometric Invariant Theory provides a natural
compactification of the moduli space of cubic surfaces Mcub:

Mcub ¼ P
!
H 0
!
P3;OP3ð3Þ

""ss
==SLð4Þ:

The stable points in P
!
H 0
!
P3;OP3ð3Þ

""
are the nodal cubic surfaces. Points in

Mncub ¼ P
!
H 0
!
P3;OP3ð3Þ

""s
==SLð4Þ

are thus isomorphism classes of nodal cubic surfaces. The strictly semi-stable points all map
to one point in Mcub. The corresponding minimal closed orbit is the orbit of the cubic sur-
face with equation
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w3 þ xyz ¼ 0:ð2:3Þ

The complement of this point in Mcub is denoted by Mncub, the moduli space of nodal cubic
surfaces.

The explicit computation of invariants of cubic quaternary forms, due to A. Cayley
and G. Salmon [Sa1] (see a modern account in [Be]), gives an isomorphism

Mcub GPð1; 2; 3; 4; 5Þ:ð2:4Þ

The moduli space of nonsingular surfaces is isomorphic to the complement of a hypersur-
face of degree 4 defined by the discriminant. In particular, Mcub is a‰ne.

2.8. Moduli of marked nodal cubics. We can construct the moduli space of marked
nodal cubic surfaces as follows. Let CðMm

cubÞ be the field of rational functions of Mm
cub. It is

an extension, with Galois group WðE6Þ, of CðMcubÞ ¼ CðMcubÞ. Now we define Mm
cub to be

the normalisation of Mcub in the field CðMm
cubÞ.

By its definition, Mm
cub is a normal projective variety and, since Mm

cub is smooth (see
sections 2.9 and 2.10), we have

Mm
cub ,! Mm

cub;

the complement of Mm
cub will be called the boundary of Mm

cub. By construction, the Weyl
group WðE6Þ acts on Mm

cub with quotient Mcub:

pcub : Mm
cub ! Mcub ¼ Mm

cub=WðE6Þ

and pcub ¼ pcub on the subvariety Mm
cub. Finally we define the moduli space of marked

nodal cubic surfaces to be:

Mm
ncub :¼ p)1ðMncubÞ:

This moduli space is the complement of a finite set of points, called the cusps, in Mm
cub and

the cusps are all in one WðE6Þ-orbit.

Despite its abstract definition, the variety Mm
cub is rather well-known. Below we pres-

ent some other constructions of it, and we show that the points in Mm
ncub correspond to iso-

morphism classes of marked nodal cubic surfaces. We do not know whether Mm
ncub is the

(coarse) moduli space of some functor.

2.9. Naruki’s model. In [Nar], Naruki constructs a smooth, projective compactifica-
tion of the moduli space Mm

cub which he calls the cross-ratio variety. Its boundary contains
40 disjoint divisors which can be blown down to 40 singular points of a normal variety N.
At each singular point N is locally isomorphic to a cone over a Segre embedding of ðP1Þ3.
Naruki also shows that the action of WðE6Þ on Mm

cub ðHNÞ extends to a biregular action
on N with quotient N=WðE6Þ ¼ Mcub. Using the universal property of the normalization
in a field extension and Zariski’s Main Theorem (see [Mu], III.9, Proposition 1) we obtain
an isomorphism
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fN : N !@ Mm
cub:

From Naruki’s description of N, see also [CvG], one obtains that the forty singular
points of N map to the cusps of Mm

cub. Moreover, the boundary of Mm
cub consists of 36 di-

visors, each of which is isomorphic to the Segre cubic threefold S3, best seen as a sub-
variety of P5:

S3:
P6

i¼1
xi ¼ 0;

P6

i¼1
x3

i ¼ 0:ð2:5Þ

The group WðE6Þ acts transitively on the set of 36 boundary divisors. The stabilizer of each
of the 36 divisors is isomorphic to the permutation group S6 which acts on S3 by permut-
ing the coordinates. Also notice that there is an isomorphism ([DO])

S3 G ðP1Þ6==SLð2Þ:ð2:6Þ

Again, the action of S6 on S3 is the natural one.

2.10. A GIT model. Since the interpretation of NnSingðNÞ as the moduli space
of marked nodal cubic surfaces is not obvious in Naruki’s construction we sketch another
model of Mm

ncub, where this interpretation is more apparent. First we recall the explicit con-
struction of the GIT-quotient X ¼ ðP2Þ6==SLð3Þ given in [DO]. The graded ring of invari-
ants

R ¼
Ly

n¼0

 

H 0

#
ðP2Þ6;

N6

i¼1
p*

i OP2ðnÞ
$!SLð3Þ

is generated by elements t0, t1, t2, t3, t4 of degree 1 and one element t5 of degree
2. Here pi is the i-th projection from ðP2Þ6. The relation between the generators is
t2
5 þ F4ðt0; t1; t2; t3; t4Þ ¼ 0, where F4 is a homogeneous polynomial of degree 4. Thus

X is isomorphic to a hypersurface of degree 4 in the weighted projective space
P ¼ Pð1; 1; 1; 1; 1; 2Þ. Note that the involution t5 7! )t5 corresponds to the association (or
the Gale transform) of the point sets (see [DO]). Its locus of fixed points is isomorphic to
the quartic hypersurface VðF4Þ in P4 and parametrizes the self-associated point sets, i.e.
point sets lying on a conic.

The quartic 3-fold VðF4Þ in P4 has 15 double lines lij corresponding to minimal
semi-stable orbits of point sets ðp1; . . . ; p6Þ where pi ¼ pj. Three lines lij, lkl, lmn, where
f1; 2; 3; 4; 5; 6g ¼ fi; jgW fk; lgW fm; ng, intersect at one point Pij;kl;mn. It represents the
orbit of the point set pi ¼ pj, pk ¼ pl , pm ¼ pn. It follows from the explicit equation of F4

that its local equation at Pij;kl;mn is given by w2 þ z1z2z3 ¼ 0, where w ¼ zi ¼ zj ¼ 0 is the
local equation of one of the 3 double lines meeting at the point. This implies that X is given
locally at the point P 0

ij;kl;mn ¼ ðPij;kl;mn; 0Þ by the equation uv þ xyz ¼ 0.

Let Z be the singular locus of X and IZ its sheaf of ideals. One considers the linear
system jIZð3ÞjHR3. A. Coble [Co] gives explicitly 40 elements of jIZð3Þj which span a
PV GP9 and shows that the birational action of WðE6Þ on X induces a linear action on V .
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We construct the moduli space of marked cubic surfaces as the image Y of X under the
rational map given by the linear system PV .

First we blow up the ambient space P at the points P 0
ij;kl;mn. Let Eij;kl;mn GP4 be the

exceptional divisor at the point P 0
ij;kl;mn. The proper inverse transform X1 of X intersects

each Eij;kl;mn along the union of two hyperplanes Hij;kl;mn, H 0
ij;kl;mn corresponding to the

tangent cone of the singular point. The proper inverse transforms of the lines lij are double
curves Cij on X1. Each of the curves Cij, Ckl , Cmn intersects Eij;kl;mn at a point. The three
points span the plane Pij;kl;mn ¼ Hij;kl;mn XH 0

ij;kl;mn. Next we blow up the 15 singular
curves Cab to get a variety X2. The proper inverse transform of the linear system PV in X2

has base locus equal to the union of the proper transforms Pij;kl;mn of the planes Pij;kl;mn.
Each surface Pij;kl;mn is isomorphic to the blow-up of 3 points on the plane. The proper
transforms of the lines joining three pairs of points are double curves of X2. Next we blow
up the surfaces Pij;kl;mn to get a nonsingular variety X3. Now the proper inverse transforms
of the hyperplanes Hij;kl;mn, H 0

ij;kl;mn become separated and the proper inverse transform of
the linear system PV has no base points.

Let Y HP9 be the image of X3 under this linear system. Observe first that Y is a
compactification of the geometric quotient Mm

cub ¼ U=SLð3Þ, where U ¼ ðP2Þ6 ) D as in
2.5.

Next we shall see its complement. First of all we have 20 divisors D 0
ijk in X represent-

ing 6-tuples of points where pi, pj, pk are collinear. The sum of the two divisors D 0
ijk and

D 0
lmn, where fi; j; kgW fl;m; ng ¼ f1; . . . ; 6g, is defined by a linear function Lijk ¼ Llmn A R1

(see [DO]). The corresponding hyperplane VðLijkÞ cuts out the quartic VðF4Þ along a non-
singular quadric Qijk ¼ Qlmn. The quadric contains 6 double lines lij, lik, ljk, llm, lln, lmn. Let
Dijk be the proper inverse transforms of D 0

ijk in Y . Let Dij be the proper inverse transforms
in X3 of the pre-images of the curves Cij in X2. We have 15 such divisors. Finally, let D0

be the proper inverse transform of Vðt5ÞGVðF4Þ in Y . It is easy to see that under the
map X3 ! Y the proper inverse transforms of the quadrics Qijk are blown down to points
cijk ¼ clmn. Also let cij;kl;mn, c 0

ij;kl;mn be the images in Y of the hyperplanes Hij;kl;mn, H 0
ij;kl;mn.

Altogether we have 40 points which we call the cusps. The forty cusps is the set of singular
points of the variety Y . So, we see that the complement of the image of U=SLð3Þ in Y is
equal to the union of 36 divisors Dijk, Dij, D0.

The Weyl group WðE6Þ acts on Y interchanging the boundary divisors. This makes
them all isomorphic to each other. This is easy to check. The restriction of the linear
system PV to the quartic VðF4Þ is the map given by the partials of F4. It maps VðF4Þ
to the dual variety known to be isomorphic to the Segre cubic S3 HP4. This shows that
D0 GS3.

One can check that the variety Y is a normal proper WðE6Þ-variety containing the
WðE6Þ-variety Mm

cub as an open subset. Thus there is a birational morphism f : Y ! Mm
cub.

We claim that f is an isomorphism. Let E be an irreducible component of the exceptional
locus of f . It is contained in one of the 36 boundary divisors D. However DGS3 has
PicðDÞGZ. Nothing can be blown down on D. Thus we obtain that

Y GMm
cub:ð2:7Þ
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2.11. Remark. In [ACT], Mm
cub is identified with an open subset of a smooth ball

quotient. In [AF] Allcock and Freitag show, using modular forms constructed via a Bor-
cherds lift, that this ball quotient embeds into a P9 and that the closure of its image is iso-
morphic to the Satake compactification of the ball quotient, the boundary consists of 40
singular points. Freitag [F] proved that ideal of the image of the ball quotient is generated
by explicitly given cubics and that it is a normal variety.

Coble, in [Co], defines a rational map ðP2Þ6 ! P9 which is SLð3Þ-invariant and
hence factors over Mcub. It is easily seen to be a birational isomorphism between Mm

cub

and its image. This map is moreover equivariant with respect to the Cremona action
of WðE6Þ. See also [Y] where in particular the restriction to a boundary divisor is
worked out. It is easy to verify that the image of Mm

cub lies in the subvariety defined by the
cubics.

In [vG2] the corresponding rational functions on Naruki’s variety NGMm
cub are ex-

plicitly identified, and also the 40 functions used by Coble are given.

Matsumoto and Terasoma [MT] showed how to get this embedding via an embed-
ding of the complex ball into the Siegel space (of genus 5) followed by a map to P9 given
by explicitly determined theta constants.

2.12. Boundary divisors. Since a node of S corresponds to a ð)2Þ-curve in K?
~SS

, the
36 boundary divisors are parametrized by the 36 positive simple roots of E6. Let a be
one of the 36 positive roots (see (2.2)). To each a we assign the divisor Da in Mm

ncub, we
write:

Da ¼
Dij if a ¼ ei ) ej;

Dijk if a ¼ e0 ) ei ) ej ) ek;

D0 if a ¼ 2e0 ) e1 ) e2 ) e3 ) e4 ) e5 ) e6:

8
<

:

Each Da parametrizes marked nodal cubic surfaces ðS; fÞ for which fðaÞ is e¤ective. The
isomorphism between Da and the Segre cubic S3 becomes apparent and the isomorphism
(2.6) is the natural isomorphism between D0 and ðP1Þ6==SLð2Þ. Of course all divisors Da

are mutually isomorphic, being permuted by the action of WðE6Þ.

If fðaÞ is e¤ective and ra denotes the reflection in WðE6Þ defined by the root a, then
the lattice marked nodal cubic surfaces ðS; fÞ and ðS; f + raÞ are equivalent. This suggests
that in the Cremona action of WðE6Þ on Mm

ncub the reflection ra acts identically on Da. This
is in fact the case ([Nar], p. 22).

The Segre cubic has 10 nodes p1ij, for example, p125 ¼ ð1 : 1 : )1 : )1 : 1 : )1Þ,
corresponding to the minimal orbit of sixtuples ðp1; . . . ; p6Þ of points on P1 such that
p1 ¼ pi ¼ pj, pl ¼ pm ¼ pn. Identifying S3 with D0, the nodes of S3 are the cusps of
Mm

cub lying on D0.

The image pðDÞ of a boundary divisor in Mcub is the locus of singular cubic sur-
faces. It is defined by the vanishing of the discriminant invariant on the space of cubic
surfaces, which is of degree 32 in the coe‰cients of the cubic form. In the isomorphism
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(2.4) it corresponds to the hyperplane defined by the unknown with weight 4. Thus pðDÞ
is isomorphic to Pð1; 2; 3; 5Þ. On the other hand, if we identify D with the Segre cubic
S3, and the stabilizer of D in WðE6Þ with the permutation group S6 (see the next sub-
section), we see that Pð1; 2; 3; 5Þ must be isomorphic to S3=S6. This is easy to see: the
group S6 acts on S3 given by equations (2.5) by permuting the coordinates. This easily
implies that the subring of invariants of the homogeneous coordinate ring of S3 is gen-
erated by elementary symmetric polynomials of degree 2, 4, 5, 6 and hence
S3=S6 GPð2; 4; 5; 6ÞGPð1; 2; 3; 5Þ.

2.13. Moduli of r-nodal cubics. The irreducible components of the locus of marked
nodal cubics with r nodes are parametrized by unordered subsets of r orthogonal roots (up
to sign) in E6. We denote by Da1;...;ar

the intersection of the divisors Da1 ; . . . ;Dar
corre-

sponding to r orthogonal roots a1; . . . ; ar.

The stabilizer in WðE6Þ of such a locus Da1;...;ar
is the product of the subgroup of

order 2r, generated by the corresponding r roots (this subgroup acts trivially on the com-
ponent), the permutations on r roots a1; . . . ; ar ðGSrÞ and the subgroup generated by reflec-
tions in the roots orthogonal to the r simple roots. The stabilizer modulo the subgroup of
order 2r is the group of permutations of geometric markings on S.

In case r ¼ 1, the 30 roots ei ) ej are all orthogonal to the root a ¼ 2e0 ) e1 ) ! ! ! ) e6,
so we see that Z=2Z( WðA5ÞGZ=2Z( S6 acts on Da. Thus we recover the fact that
WðA5ÞGS6 acts on a boundary divisor.

In case r ¼ 2, there are 12 roots ei ) ej ð3e i; j e 6Þ orthogonal to the two roots
a1 ¼ 2e0 ) e1 ) ! ! ! ) e6 and a2 ¼ e1 ) e2. Together with a1, a2 they generate the root sub-
lattice A2

1 lA3 of E6. So the subgroup of WðE6Þ leaving this sublattice invariant is iso-
morphic to ðZ=2ZÞ2 ! S2 ( WðA3ÞF ðZ=2ZÞ2 ! S2 ( S4 and it acts on Da1;a2 .

In case r ¼ 3, there are two roots Gðe5 ) e6Þ orthogonal to the three roots
a1 ¼ 2e0 ) e1 ) ! ! ! ) e6, a2 ¼ e1 ) e2 and a3 ¼ e3 ) e4. Together with a1, a2, a3 they gen-
erate a root system of type A4

1. So ðZ=2ZÞ3 ! S3 ( Z=2Z acts on Da1;a2;a3 .

In case r ¼ 4, there are no roots orthogonal to the four roots a1 ¼ 2e0 ) e1 ) ! ! ! ) e6,
a2 ¼ e1 ) e2, a3 ¼ e3 ) e4 and a4 ¼ e5 ) e6. So ðZ=2ZÞ4 ! S4 acts on Da1;...;a4 .

2.14. Lines on a nodal cubic surface. A nonsingular cubic surface contains 27
lines. They represent the classes e0 ) ei ) ej, 1e i < j e 6, ei, 2e0 ) e1 ) ! ! ! ) e6 þ ei,
i ¼ 1; . . . ; 6.

Assume now that S has a node s0. Projecting from s0, we see that ~SS admits a ge-
ometric marking p : ~SS ! P2 such that the images pi of the Ei (as in 2.1) lie on an irreduc-
ible conic C. If S has no more nodes, the six points pi are distinct. If there is one more
node, we may assume without loss of generality that p2 is infinitely near to p1 (i.e.
E2 ¼ E1 þ C, where C is a ð)2Þ-curve and the point p2 corresponds to the tangent
direction of C at p1). If S has three nodes we can further assume that p4 is infinitely
near to p3 with the similar tangency condition. Finally if S has 4 nodes we can fur-
ther assume that p6 is infinitely near to p5. From this we easily deduce the following
facts.
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If S has one node, there are 21 lines on S. Six of them contain the node, and are rep-
resented by the exceptional curves Ei ¼ fðeiÞ, where f is the lattice marking corresponding
to the geometric marking. We will simply omit f in what follows. The remaining 15 lines
have the classes e0 ) ei ) ej. The ð)2Þ-curve C has class a1 ¼ 2e0 ) ðe1 þ ! ! ! þ e6Þ and the
classes ei þ a1 ¼ sa1ðeiÞ also represent the lines on the node. So the lines on the nodes are
limits of pairs of lines on a smooth cubic surface.

If S has 2 nodes, there are 16 lines on S. The ð)2Þ-curves are
a1 ¼ 2e0 ) ðe1 þ ! ! ! þ e6Þ and e2 ) e1, the orbits on the set of classes of 27 lines of the
group generated by sa1 and sa2 correspond to the lines on S. One line connects the two
nodes and represents the orbit fe1; e2 ¼ e1 þ a2; e1 þ a1; e2 þ a1g. There are 4 lines passing
through the node s0 which represent the orbits fei; ei þ a1g, i ¼ 3; 4; 5; 6. Another 4 lines
pass through the second node. They represent the orbits fe0 ) e2 ) ei; e0 ) e1 ) eig,
i ¼ 3; 4; 5; 6. The remaining 7 lines do not contain nodes. They represent orbits with one
element, given by the classes e0 ) ei ) ej, 3e i < j e 6 and e0 ) e1 ) e2.

If S has 3 nodes, there are 12 lines. There are 3 lines connecting pairs of nodes.
They represent the classes e1, e3, e0 ) e1 ) e3. There are 6 lines each containing one
node. They represent the classes e5, e6, e0 ) e1 ) ei, e0 ) e3 ) ei, i ¼ 5; 6. The remaining
3 lines do not contain nodes. They represent the classes e0 ) e1 ) e2, e0 ) e3 ) e4,
e0 ) e5 ) e6.

If S has 4 nodes there are 9 lines. Six of them connect the six pairs of nodes.
They represent the classes e1, e3, e5, e0 ) e1 ) e3, e0 ) e1 ) e5, e0 ) e3 ) e5. The remaining
three lines do not contain nodes and represent the classes e0 ) e1 ) e2, e0 ) e3 ) e4,
e0 ) e5 ) e6.

2.15. Pencils of conics. A conic on a nodal cubic surface S is cut out by a plane. The
residual component of the plane section is a line. The pencil of planes through this line de-
fines a pencil of conics. Thus the number of pencils of conics is equal to the number of lines.
The preimage of the pencil on ~SS is a conic bundle, i.e. a morphism f : ~SS ! P1 with general
fibre isomorphic to P1. A standard computation shows that singular fibres of f are of the
following three types:

Type I: F ¼ E1 þ E2, where E1, E2 are two ð)1Þ-curves and E1 ! E2 ¼ 1.

Type II: F ¼ E1 þ E2 þ R, where E1, E2 are ð)1Þ-curves, R is a ð)2Þ-curve,
E1 ! E2 ¼ 0, E1 ! R ¼ E2 ! R ¼ 1.

Type III: F ¼ R1 þ R2 þ 2E, where R1, R2 are ð)2Þ-curves, E is a ð)1Þ-curve,
R1 ! R2 ¼ 0, R1 ! E ¼ R2 ! E ¼ 1.

The number of singular fibres is equal to 5 if we count the fibres of type II and III
with multiplicity 2.

The pre-image of the line l corresponding to the pencil defines a bisection B of f .
There are three possible cases:

No nodes on l: B is irreducible.
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One node on l: B ¼ B0 þ R, where B0 is a ð)1Þ-curve, R is a ð)2Þ-curve, B0 ! R ¼ 1.
Each component of B is a section of f .

Two nodes on l: B ¼ B0 þ R1 þ R2, where B0 is a ð)1Þ-curve, R1, R2 are ð)2Þ-curves,
B0 ! R1 ¼ B0 ! R2 ¼ 1. The components R1 and R2 are sections of f . The component B0 is
contained in a fibre.

Let p1; . . . ; ps A P1 be the points such that the fibre f )1ðpiÞ is singular. We assign
to each point pi the multiplicity mi equal to 2 if the fibre is of type I and equal to 4 other-

wise. The divisor D ¼
Ps

s¼1
mi pi will be called the discriminant of the conic pencil. Let

psþ1; psþ2 A P1 be the points such that the bisection B ramifies over these points. If B is
reducible, we assume that psþ1 ¼ psþ2 ¼ q, where B has a singular point over q. The di-
visor T ¼ psþ1 þ psþ2 will be called the bisection branch divisor. Let us write the divisor

D þ T ¼
Ps

i¼1
mi pi þ psþ1 þ psþ2 as

Ps 0

i¼1
ni pi, where s 0e s þ 2. We order the points in such a

way that n1 f n2 f ! ! !f ns 0 . The vector t ¼ ðn1; . . . ; ns 0Þ will be called the type vector of
the conic pencil.

Table 1 below lists all possible type vectors. Also we indicate the total number
r of nodes on S, the number e of Eckardt points on l (i.e. points where three lines
meet).

The column ‘‘Kodaira fibres’’ will be explained later in section 4.3.

2.16. Types of lines. Let l be a line defining the pencil of conics.

Case 1), 2), 3) in Table 1: l is any line.

Case 4): l is one of 6 lines containing the node.

Case 5), 6), 7): l is one of 15 lines not passing through the node.

Case 8): l is one of 8 lines through exactly one node.

Case 8*): l is the unique line containing two nodes.

Case 9), 11): l is one of 6 lines not containing a node and not meeting the line of
type 8*).

Case 10), 12): l is the unique line not containing a node and meeting the line of
type 8*).

Case 13): l is one of 6 lines passing exactly through one node.

Case 13*): l is one of 3 lines passing through two nodes.
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Case 14, 15): l is one of 3 lines not containing a node.

Case 16): l is one of 6 lines passing through two nodes.

Case 17): l is one of 3 lines not containing a node.

3. Cubic surfaces and 2B5 points on the line

3.1. The forms (F2, F5). Let S be a nodal cubic surface and let l be a line on S. Con-

sider the pencil of conics through the line l, cf. section 2.15. Let D ¼
Ps

i¼1
mi pi be its discrim-

inant divisor and let T ¼ psþ1 þ psþ2 be the bisection branch divisor. Let F5ðx0; x1Þ be a
homogeneous form of degree 5 defining D and let F2ðx0; x1Þ be a homogeneous form of de-
gree 2 defining T .

It follows from section 2.15 that the following properties are satisfied:

(i) F2 3 0.

(ii) F5 has at most double roots.

(iii) F2 and F5 do not have common multiple roots.

A pair of binary forms ðF5;F2Þ satisfying properties (i)–(iii) will be called a stable pair.
Let VðdÞ be the space of binary forms of degree d. A pair of nonzero binary forms ðF5;F2Þ
defines a point in P

!
Vð5Þ

"
( P

!
Vð2Þ

"
.

t singular fibres Kodaira fibres r e
1) (2222211) 5I 5IV, 2II 0 0
2) (322221) 5I I*0, 4IV, II 0 1
3) (33222) 5I 2I*0, 3IV 0 2
4) (222222) 5I 6IV 1 0
5) (422211) II, 3I IV*, 3IV, 2II 1 0
6) (43221) II, 3I IV*, I*0, 2IV, II 1 1
7) (4332) II, 3I IV*, 2I*0, IV 1 2
8) (42222) II, 3I IV*, 4IV 2 0
8*) (42222) 5I IV*, 4IV 2 0
9) (44211) 2II, I 2IV*, IV, 2II 2 0
10) (52221) III, 3I II*, 3IV, II 2 0
11) (4431) 2II, I 2IV*, I*0, II 2 1
12) (5322) III, 3I II*, I*0, 2IV 2 1
13) (4422) 2II, I 2IV*, 2IV 3 0
13*) (4422) II, 3I 2IV*, 2IV 3 0
14) (5421) III, II, I II*, IV*, IV, II 3 0
15) (543) III, II, I II*, IV*, I*0 3 1
16) (444) 2II, I 3IV* 4 0
17) (552) 2III, I 2II*, IV 4 0

Table 1. Pencils of conics
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3.2. Proposition. A pair of nonzero binary forms ðF5;F2Þ is stable if and only if it is a
stable point with respect to the diagonal action of SLð2Þ and the linearization defined by the
invertible sheaf OPðVð5ÞÞð2Þr(OPðVð2ÞÞð1Þ. The strictly semistable points all map to one point
in the quotient, the corresponding unique minimal closed orbit is the one of a pair ðL3

1L2
2;L

2
2Þ

with L1, L2 nonproportional linear forms.

Proof. This easily follows from the Hilbert-Mumford numerical criterion of stability
and is left to the reader. r

3.3. Line marked cubic surfaces. Let ðS; fÞ be a nodal cubic surface with a geo-
metric marking f on its minimal resolution and let l be a line on S with divisor class
fðe6Þ. The stabilizer of e6 in WðE6Þ is isomorphic to the Weyl group WðD5Þ. The quotient
space

M l
ncub ¼ Mm

ncub=WðD5Þ

is the moduli space of isomorphism classes of pairs ðS; lÞ, where S is a nodal cubic surface
and l is a line on it.

To a pair ðS; lÞ we associate the binary forms F2, F5 as in 3.1. It is easy to see that this
can be defined for families of ðS; lÞ and therefore we have a morphism

M l
ncub !

!
P
!
Vð2Þ

"
( P

!
Vð5Þ

""s
=SLð2Þ; ðS; lÞ 7! ½ðF2;F5Þ&;ð3:1Þ

where
!
P
!
Vð2Þ

"
( P

!
Vð5Þ

""s
is the open subset corresponding to stable pairs of binary

forms.

3.4. Lemma. Let f : X ! Y be a birational surjective morphism with finite fibres.
Assume that X and Y admit normal projective completions X and Y with zero-dimensional
complements. Then f extends to an isomorphism f : X ! Y .

Proof. Let qX ¼ XnX , qY ¼ YnY , these are finite sets. Let GHX ( Y be the
graph of f and let G be its closure in X ( Y . Obviously

GnGHX ( qY W qX ( Y :

Moreover, since X and Y are normal and hence irreducible, G does not contain X ( fy0g,
for any y0 A qY , nor fx0g( Y , for any x0 A qX . In particular, the first projection
p : G ! X is an isomorphism over an open subset of X and has finite, non-empty, fibres
over X . By Zariski’s Main Theorem ([Mu], III.9, Proposition 1), p is an isomorphism
over X . Thus p)1ðX Þ ¼ GHG is the graph of the composition X ! Y ! Y .

Now we show that the projection q : G ! Y is birational, surjective with finite fibres.
The map q is a birational isomorphism since G is the graph of the birational isomorphism f
and the complement of the set fy A Y : ðx0; yÞ A G for some x0 A qXg contains a non-
empty open subset of Y . The surjectivity is trivial since qðGÞ ¼ Y and qðGÞ is closed in Y .
Let y A Y and let ðx; yÞ A G. If x A X , then ðx; yÞ A p)1ðX Þ, which is the graph of f so
y ¼ f ðxÞ. Else ðx; yÞ A qX ( fyg which is a finite set. Thus for y A Y the fiber q)1ðyÞ is
finite. As p)1ðX Þ is the graph of f , a point ðx; y0Þ A G with y0 A qY has x A qX , hence
also q)1ðy0Þ is finite.
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We conclude, again by Zariski’s Main Theorem, that q is an isomorphism. Thus G is
the graph of a morphism g ¼ p + q)1 : Y ! X such that g + f is the inclusion X HX . Since
f ðXÞ ¼ Y we get gðYÞ ¼ X . By interchanging the role of f and g, we find that p is also an
isomorphism. Hence g is an isomorphism. r

3.5. Let

M l
ncub ¼ Mm

ncub=WðD5Þ:

It is easy to see that WðD5Þ acts transitively on the set of 40 cusps. For example, it follows
easily from the well-known description of maximal subgroups of WðE6Þ of index 40. Thus
M l

ncub is a normal one-point compactification of M l
ncub. The corresponding point in Mncub

is represented by the cubic surface (2.3). It has three lines permuted by the automorphism
group of the cubic.

We also know from Proposition 3.2 that the target space in (3.1) admits a one-point
normal compactification isomorphic to the GIT-quotient P

!
Vð5Þ

"ss
==SLð2Þ.

3.6. Theorem. The morphism (3.1) extends to an isomorphism

M l
ncub !

!
P
!
Vð2Þ

"
( P

!
Vð5Þ

""ss
==SLð2Þ:ð3:2Þ

Proof. Applying Lemma 3.4 it is enough to check that the map (3.1) satisfies the as-
sumption of the lemma. Assume that ðS; lÞ is a nonsingular surface. Let us show how to
reconstruct ðS; lÞ from the SLð2Þ-orbit of a pair ðF5;F2Þ. We view the zeroes of the binary
forms as the tangent directions at a fixed point p A P2 and identify them with the pencil of
lines through p. Given ðF2;F5Þ, fix a conic Q not containing p such that the lines through p
defined by F2 are tangents of Q. Then a choice of 5 points p1; . . . ; p5 on the intersection of
the lines defined by F5 with the conic, no two lying on the same line, defines uniquely (up to
isomorphism) a cubic surface S with a line l corresponding to the conic. It is isomorphic to
the blow-up of P2 at the points p1; . . . ; p5, p. Let p 0

i be the point on Q such that pi, p 0
i , p

are collinear. Let us show that replacing pi with p 0
i leads to an isomorphic pair ðS 0; l 0Þ.

Note that replacing ðp1; . . . ; p5Þ with ðp 0
1; . . . ; p 0

5Þ leads to the same surface because
the points ðp1; . . . ; p5; pÞ and ðp 0

1; . . . ; p 0
5; pÞ are projectively equivalent. This can be easily

seen by choosing projective coordinates such that p ¼ ð0; 0; 1Þ and Q ¼ Vðx0x1 ) x2
2Þ. Then

pi ¼ ð1; a2
i ; aiÞ and p 0

i ¼ ð1; a2
i ;)aiÞ.

Now it is enough to show that fixing a pair fpi; pjg and interchanging pk 7! p 0
k

for k 3 i; j defines an isomorphic surface. Choose coordinates so that p ¼ ð0; 0; 1Þ,
pi ¼ ð1; 0; 0Þ, pj ¼ ð0; 1; 0Þ. The equation of the conic Q through the points p1; . . . ; p5 is,
after scaling the coordinates,

z2 þ xy þ aðx þ yÞz ¼ 0; a3 0

(use that the lines hp; pii and hp; pji are not tangent to Q). The Cremona transformation
T : ðx; y; zÞ 7! ðxz; yz; xyÞ with base points at p, pi, pj maps the conic Q to itself. A general
line l through p is mapped to itself. As T is a non-trivial involution on such a line, it maps
pk to p 0

k if k 3 i; j. The cubic surface obtained by blowing up the three points which are the
images under T of the lines hpi; pji, hp; pji and hp; pii and the images of the three other
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pk is a cubic surface isomorphic to S. The images of the lines are ð0; 0; 1Þ ¼ p, ð0; 1; 0Þ ¼ pj

and ð1; 0; 0Þ ¼ pi respectively, the images of the other three pk are the p 0
k, so we get the

result.

Thus we know that (3.1) is one-to-one on the open subset U equal to the pre-image of
Mcub under the projection M l

ncub ! Mcub. The complement is the quotient of the union of
the 36 boundary divisors in Mm

cub by the action of WðD5Þ. It is easy to see that WðD5Þ has
two orbits on the set of 36 positive roots in E6 of cardinality 16 and 20. Thus the comple-
ment is the union of two irreducible divisors D1 and D2 each isomorphic to a finite quotient
of the Segre cubic S3 minus its set of singular points (belonging to the boundary of Mm

cub in
Mm

cub). It is immediately checked that the map (3.1) is not constant on D1 and D2. On the
other hand, being a finite quotient of a hypersurface in P4 (minus a finite set of points), the
varieties D1 and D2 have Picard group of rank 1, hence no curves blow down on these va-
rieties. This shows that no positive-dimensional subvariety on the source space of the map
(3.1) is mapped to a point. Hence the map has finite fibres.

It remains to show the surjectivity of (3.1). Any stable pair of binary forms ðF5;F2Þ
defines the divisor D þ T as in section 2.15 by reading o¤ the zeroes of the forms. The type
vector of this divisor can be found in Table 1. It corresponds to a pencil of conics defined
by a line on a cubic surface of type listed in section 2.16. The image of the corresponding
pair ðS; lÞ is the orbit of ðF5;F2Þ. r

3.7. Since the variety
!
P
!
Vð2Þ

"
( P

!
Vð5Þ

""s
=SLð2Þ is obviously birationally iso-

morphic to the quotient P
!
Vð5Þ

"s
=C* (by fixing first a binary form of degree 2), we obtain

the following:

3.8. Corollary. The moduli space M l
cub is isomorphic to an open subset of a toric va-

riety. In particular, it is rational.

3.9. Remark. It follows from the isomorphism (2.4) that the moduli space of cubic
surfaces is rational. However, as far as we know, the rationality of the space M l

cub was not
known. Note also that the moduli space M l

cub is birationally isomorphic to the universal
surface over the moduli space of Del Pezzo surfaces of degree 4.

4. The K3 surface associated to a cubic surface

4.1. In the previous section we associated a pair of binary forms ðF2;F5Þ to a nodal
cubic surface S with a line l. We now use these binary forms to define a K3 surface XS; l .

We will show that XS; l depends only on the nodal cubic S and that the lines on a ge-
neric S correspond to certain ‘standard’ elliptic fibrations (cf. section 6.20, Corollary 7.6).
Finally we relate XS; l to S using a cubic fourfold.

4.2. Definition. Let S be a nodal cubic surface and let l be a line on S. Let F2ðx0; x1Þ
be a homogeneous form of degree 2 and let F5ðx0; x1Þ be a homogeneous form of degree 5
associated to ðS; lÞ as in 3.1.

To the pair ðS; lÞ we associate a surface XS; l which is a nonsingular minimal model of
the double plane with the branch divisor
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W : x2

!
F2ðx0; x1Þx3

2 þ F5ðx0; x1Þ
"
¼ 0:ð4:1Þ

It is easy to check that the properties (i)–(iii) in 3.1 are equivalent to the property that
any singular point of the curve W is analytically equivalent to a singularity f ðx; yÞ ¼ 0
such that the surface singularity z2 þ f ðx; yÞ ¼ 0 is a double rational point. This implies
that XS; l is a K3 surface. The multiplication of x2 by a primitive cube root of unity induces
an automorphism of XS; l of order 3.

4.3. The elliptic fibration. Consider the pencil of lines

Lðt0; t1Þ: t1x0 ) t0x1 ¼ 0

in P2 passing through the point ð0; 0; 1Þ. Since a general line Lðl; mÞ intersects W at four
nonsingular points, we obtain that the pre-image of the pencil of lines on XS; l is an elliptic
pencil. Thus we have an elliptic fibration

f ¼ fl : XS; l ! P1:

The singular fibres correspond to lines Lðt0; t1Þ such that F5ðt0; t1Þ ¼ 0 or F2ðt0; t1Þ ¼ 0. The
proper transform of W in the blow-up V GF1 of the point ð0; 0; 1Þ is a curve W in the
linear system j6f þ 4ej, where e is the exceptional section and f is a fibre. The pre-image s
of the line x2 ¼ 0 is a component of W . It is a section with the divisor class f þ e. The pre-
image of a line corresponding to a zero ðx0; x1Þ of F5 is a fibre of V ! P1 over ðx0; x1Þ
which intersects B ¼ W ) s with multiplicity 3 at a point where B intersects s. A line corre-
sponding to a zero of F2 is a fibre which intersects B with multiplicity 3 at a point where B
intersects e. The surface XS; l is isomorphic to a minimal resolution of the double cover of V
branched along W .

Now it is easy to describe the singular fibres of the elliptic fibration f : XS; l ! P1.
For example, in the case when F5 and F2 have no multiple roots and have no common
roots, the fibres over the zeroes of F2 are cuspidal cubics. The fibres over the zeroes of F5

are reducible of type IV in Kodaira’s notation. If F2 has a common zero with F5, the fibre
of V ! P1 becomes an irreducible component of B. The corresponding fibre of f is of type
I*0. If F2 has a double root which is not a root of F5, then B acquires a cusp. Instead of
two irreducible fibres of f we obtain one reducible fibre of type IV. If F5 has a double
root which is not a root of F2, then B acquires a cusp at the curve s. The corresponding
fibre of f is of type IV*. It is not di‰cult to describe the fibres in all possible cases. Their
Kodaira types are given in Table 1. Note that the irreducible singular fibres correspond to
zeroes of F2 which are not zeroes of F5. Observe also that the pre-image of s in XS; l is a
section s of the elliptic fibration. The pre-image of e is a bisection b. If B acquires a cusp
at the exceptional section e or has a fibre component, then b splits in two disjoint sections.

4.4. Let l be a line on a nodal cubic surface S, and let m be another line disjoint
from l. Consider the rational map F : l ( m a S defined by taking the third intersection
point of the line through the points ðp; qÞ A l ( m with S. We denote by L and M the irre-
ducible curves in l ( m which map onto the lines l and m in S respectively under F.

4.5. Lemma. The rational map F extends to an isomorphism from the blow-up Z of
l ( m along LXM, which is a set of 5 points (including infinitely near points) to a minimal
resolution ~SS of S. The curves L and M have bi-degree ð2; 1Þ and ð1; 2Þ respectively.
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Proof. This is just a straightforward computation. Choose coordinates on P3 such
that m : x0 ¼ x1 ¼ 0 and l : x2 ¼ x3 ¼ 0 so that the equation of S is given by

P1

i; j¼0
Aijðx2; x3Þxixj þ 2

P1

i¼0
Biðx2; x3Þxi ¼ 0;ð4:2Þ

where Aij, Bi are homogeneous forms of degree 1 and 2, respectively. Let
p ¼ ða0; a1; 0; 0Þ A l, q ¼ ð0; 0; a2; a3Þ A m. The line l 0 spanned by p, q has parametric
equation ðx0; x1; x2; x3Þ ¼ ðsa0; sa1; ta2; ta3Þ. Plugging it in equation (4.2), we obtain

st

#
s
P1

i; j¼0
Aijða2; a3Þaiaj þ 2t

P1

i¼0
Biða2; a3Þai

$
¼ 0:

Thus the rational map F is given by the formula

Fðp; qÞ ¼ ðMa0;Ma1;La2;La3Þ;ð4:3Þ

where

Mðp; qÞ ¼ )2
P1

i¼0
Biða2; a3Þai; Lðp; qÞ ¼

P1

i; j¼0
Aijða2; a3Þaiaj:ð4:4Þ

It is easy to see that the base locus Z of the linear system of divisors of bi-degree ð3; 3Þ
defining F is the complete intersection of the divisor M ¼ 0 of bi-degree ð1; 2Þ and L ¼ 0
of bi-degree ð2; 1Þ. Local computations show that Z is reduced and consists of 5 points if
and only if S is smooth. The rational map F is obviously birational, and defines a bira-
tional morphism F 0 : Z ! S of the blow-up Z of l ( m along LXM. It is clear that the
proper images under F of the divisors L ¼ 0 and M ¼ 0 are the lines l and m, respectively.
Comparing the Betti numbers of Z and ~SS, we see that they are equal. Thus F 0 defines an
isomorphism from Z to ~SS. r

4.6. Remark. Assume S is nonsingular. Then we obtain that S is isomorphic to the
blow-up of 5 distinct points in P1 ( P1. The map S ! P1 ( P1 is the blowing down of 5
disjoint lines intersecting the lines l and m. This is of course well-known. Take any two
skew lines on S. It is known that there are exactly five skew lines on S which intersect l,
m. The easiest way to see it is to complete l, m to a set of six skew lines n1 ¼ l, n2 ¼ m,
n3; . . . ; n6, then consider the blow-down p : S ! P2 of these lines to points p1; . . . ; p6 in
the plane. The five skew lines are the proper inverse transforms of the line spanned by p1,
p2 and the four conics Ci passing through all pj’s except pi with 3e ie 6. Blowing down
the five lines, we obtain P1 ( P1. The images of the lines l, m are the curves of bi-degree
ð2; 1Þ and ð1; 2Þ. The blowing down morphism S ! P1 ( P1 which inverts F is the Carte-
sian product of the linear projections from the lines l and m.

4.7. The surface XS, l,m. The divisor W 0 ¼ L þ M on l ( m ¼ P1 ( P1 is of bi-
degree ð3; 3Þ. Let us consider the cyclic triple cover Y ! l ( m branched along W 0. It
has singular points over the singular locus of W 0. If L intersects M transversally, Y has 5
double rational points of type A2. Let XS; l;m be a nonsingular minimal model of Y .

118 Dolgachev, Geemen and Kondō, A complex ball uniformization
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4.8. Lemma. Let

f ¼ fl;m : XS; l;m ! mGP1

be the composition of the blow down map XS; l;m ! Y , the triple covering Y ! l ( m and the
second projection l ( m ! m. Then f is an elliptic fibration with a section whose Weierstrass
form is given by

y2 þ x3 þ F5ðt0; t1Þ2F2ðt0; t1Þ ¼ 0;ð4:5Þ

where the binary forms F2ðt0; t1Þ and F5ðt0; t1Þ coincide with the binary forms F2 and F5 asso-
ciated to ðS; lÞ in section 3.1.

Proof. For any general point ðt0; t1Þ A P1, the fibre of f over this point is isomor-
phic to a plane cubic curve with the equation

ð4:6Þ
x3

2 þ
!
B0ðt0; t1Þx0 þ B1ðt0; t1Þx1

"!
A00ðt0; t1Þx2

0 þ 2A01ðt0; t1Þx0x1 þ A11ðt0; t1Þx2
1

"
¼ 0:

The cubic curve has an obvious automorphism of order 3 defined by multiplying x2 by the
third roots of unity. As is well-known such a cubic can be reduced by a projective transfor-
mation to the Weierstrass form

y2t þ x3 þ bt3 ¼ 0:

The coe‰cient b is the value of a certain SLð3Þ-invariant T on the space of homogeneous
polynomials of degree 3 in 3 variables. Using the explicit formula for T (see [Sa2], p. 192), a
direct computation shows that

b ¼ F5ðt0; t1Þ2F2ðt0; t1Þ;ð4:7Þ

where

F5 ¼ B0ðt0; t1Þ2A11ðt0; t1Þ þ B1ðt0; t1Þ2A00ðt0; t1Þ ) 2A01ðt0; t1ÞB0ðt0; t1ÞB1ðt0; t1Þ;

F2 ¼ A00ðt0; t1ÞA11ðt0; t1Þ ) A01ðt0; t1Þ2:

Let t1x2 ) t0x3 ¼ 0 be the pencil of planes through the line l : x2 ¼ x3 ¼ 0. Using the equa-
tion (4.2) of S we find that the pencil of conics defined by the line l has the equation

ð4:8Þ
A00ðt0; t1Þx2

0 þ 2A01ðt0; t1Þx0x1 þ A11ðt0; t1Þx2
1 þ 2B0ðt0; t1Þx2x0 þ 2B1ðt0; t1Þx2x1 ¼ 0:

Its discriminant is equal to

det

A00 A01 B0

A01 A11 B1

B0 B1 0

0

B@

1

CA¼ )F5ðt0; t1Þ:ð4:9Þ

The restriction of the member of the pencil corresponding to the parameters ðt0; t1Þ to the
line l is given by the binary form
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A00ðt0; t1Þx2
0 þ 2A01ðt0; t1Þx0x1 þ A11ðt0; t1Þx2

1 ¼ 0:ð4:10Þ

The discriminant of this binary form is equal to

det
A00 A01

A01 A11

# $
¼ F2ðt0; t1Þ:ð4:11Þ

If l does not contain nodes, the equation (4.10) defines a base-point free pencil of divisors of
degree 2 on l, and we see that F2 ¼ 0 describes the locus of points in the parameter space of
the pencil of conics where the bisection l ramifies. If l contains a node, we may assume that
its coordinates are ð1; 0; 0; 0Þ. Then A11 ¼ 0 and we get a pencil of divisors of degree 1 on
l with one base point. The discriminant is equal to )A2

01 and describes one point with mul-
tiplicity 1 corresponding to the singular point of the bisection B defined by l. Finally, if
l contains two nodes, we may assume that A11 ¼ A00 ¼ 0. Then the pencil (4.10) cuts out
the fixed divisor with equation A01ðt0; t1Þx0x1 ¼ 0. It is equal to zero when A01ðt0; t1Þ ¼ 0.
These points correspond to fibre components of the bisection B of the conic bundle. The
discriminant is again )A01ðt0; t1Þ2. r

4.9. Theorem. Let S be a nodal cubic surface and let l be a line on S. Then the iso-
morphism class of the K3 surface XS; l associated to a pair ðS; lÞ is independent on the choice
of the line l.

Proof. We compare the elliptic fibration fl on XS; l obtained from the pencil of lines
through the singular point ð0; 0; 1Þ of the branch curve W and the elliptic fibration fl;m on
the triple cover XS; l;m, where m is a line disjoint from l. The fibre of fl corresponding to a
general line t1x0 ) t0x1 ¼ 0, with t0 ¼ 1, passing through the point ð0; 0; 1Þ is birationally
isomorphic to the curve

z2 þ x2x2
0

!
F2ð1; t1Þx3

2 þ F5ð1; t1Þx3
0

"
¼ 0:

After the change of variables y ¼ F5z=x0x2
2, x ¼ F5x0=x2 we reduce this equation to the

Weierstrass form (4.5) from Lemma 4.8. This shows that the surfaces XS; l and XS; l;m have
isomorphic elliptic pencils. Hence XS; l GXS; l;m. Switching the roles of l and m, we see that
XS; l GXS;m. It is easy to see that if two lines l, m on S are not skew, then there exists a
third line n which is disjoint from l and m, so again XS; l GXS;n GXS;m. We conclude
that XS; l does not depend on a choice of a line l. r

4.10. Definition. Let S be a nodal cubic surface. A K3 surface associated to S is a
K3 surface XS isomorphic to the surface XS; l associated to a pair ðS; lÞ, where l is a line on
S defined in section 4.2 or the surface XS; l;m associated to a triple ðS; l;mÞ, where l, m is a
pair of skew lines on S defined in 4.7.

As a corollary of the results above and those of the previous section we have:

4.11. Corollary. The moduli space M l
ncub is isomorphic to the moduli space of elliptic

K3 surfaces with the Weierstrass form

y2 þ x3 þ F5ðt0; t1Þ2F2ðt0; t1Þ ¼ 0;ð4:12Þ

where ðF5;F2Þ is a stable pair of binary forms of degrees 5 and 2.
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4.12. Cubic fourfolds. Let us give another proof of the independence of the K3 sur-
face XS; l on the choice of the line l. Although it is more geometric, it requires to go beyond
the theory of algebraic surfaces. We assume that S ¼ VðFÞ is a nonsingular surface. Con-
sider the cubic fourfold V defined by the equation

Fðx0; x1; x2; x3Þ þ x4x5ðx4 þ x5Þ ¼ 0:ð4:13Þ

It is well-known (see [Voi]) that the projection from a plane P contained in a nonsingular
cubic fourfold defines a structure of a quadric bundle on the blow-up V 0 along the plane.
The discriminant curve of the quadric bundle is a plane sextic, and the double cover of the
plane branched over this sextic is a K3 surface X ðV ;PÞ. It parametrizes the pairs ðQ; rÞ,
where Q is a fibre of the quadric bundle and r is a ruling of lines on it. Suppose we have
another plane P 0 in V disjoint from P. It intersects each fibre Q of the quadric bundle at
a point x, and the choice of the ruling r on Q picks up a line on V intersecting both planes
P and P 0. This gives an isomorphism from the K3-surface X ðV ;PÞ and the surface
X ðV ;P;P 0Þ parametrizing lines in V intersecting P and P 0. Reversing the roles of P and
P 0 we see that

X ðV ;PÞGXðV ;P 0ÞGXðV ;P;P 0Þ:ð4:14Þ

4.13. Proposition. Let l : L1 ¼ L2 ¼ 0, m : M1 ¼ M2 ¼ 0 be disjoint lines on a non-
singular cubic surface S ¼ VðFÞHP3 and P, P 0 be two disjoint planes on the cubic fourfold
(4.13) given by the equations L1 ¼ L2 ¼ x4 ¼ 0 and M1 ¼ M2 ¼ x5 ¼ 0. Then the K3 sur-
face XðV ;PÞ is isomorphic to the K3 surface XS; l .

Proof. We may assume that l : x2 ¼ x3 ¼ 0 and m : x0 ¼ x1 ¼ 0. Write the equation
(4.13) in the form similar to (4.2)

P1

i; j¼0
Aijðx2; x3Þxixj þ 2

P1

i¼0
Biðx2; x3Þxi þ x4x2

5 þ x5x2
4 ¼ 0:ð4:15Þ

Let t1x2 ) t0x3 ¼ t2x3 ) t0x4 ¼ 0 be the net of 3-planes through the plane
P : x2 ¼ x3 ¼ x4 ¼ 0. The corresponding quadric bundle is given by

P1

i; j¼0
Aijðt0; t1Þxixj þ 2

P1

i¼0
Biðt0; t1Þxix2 þ t2x2

5 þ t2
2x2x5 ¼ 0:

Computing the discriminant of the quadric Qðt0; t1; t2Þ we find, using (4.9) and (4.11), that
the discriminant curve of the quadric bundle is given by the equation

t2

!
t3
2F2ðt0; t1Þ þ 4F5ðt0; t1Þ

"
¼ 0:

After scaling the unknowns we obtain the equation of the branch curve of the K3 surface
XS; l from (4.1). Thus the K3 surfaces X ðV ;PÞ and XS; l are isomorphic. r

Since for any two lines l1, l2 on a nonsingular cubic surface there exists a line m dis-
joint from l1 and l2, Proposition 4.13 and the isomorphism (4.14) show that the surfaces
XS; l1 and XS; l2 are isomorphic. This gives another proof of Theorem 4.9 in the case when
S is a nonsingular surface. Similar proof can be given in the case of a nodal cubic.
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4.14. Remark. The lattice of transcendental cycles of XS and that of the cubic four-
fold Y are isomorphic. In fact, the blow-up Y 0 of Y along the union of two disjoint planes
is isomorphic to the blow-up of P2 ( P2 along the K3 surface X GXl;m. This gives an iso-
morphism of Hodge structures

H 4ðY 0;ZÞGH 4ðP2 ( P2;ZÞlH 2ðX ;ZÞð)1Þ:

This isomorphism is compatible with the cup-product such that the two summands
become orthogonal. Here H 2ðX ;ZÞð)1Þ is identified with x ! p*!H 2ðX ;ZÞ

"
, where

p : Y 0 ! P2 ( P2 is the natural morphism of the blow-up and x is a cohomology class
from H 2ðY 0;ZÞ which cuts out the tautological class of the exceptional divisor isomorphic
to the projectivization of the normal bundle of X . This implies that the sublattice consisting
of algebraic cycles in H 4ðY 0;ZÞ is isomorphic to H 4ðP2 ( P2;ZÞlPicðXÞ½)1&. Passing to
the orthogonal complements we get the result.

4.15. Cubic threefolds. We relate the K3 surface XS to the Matsumoto-Terasoma
curve associated to ðS; lÞ. Given a smooth cubic surface S in P3, we define, following
[ACT], the cubic threefold V HP4 to be the triple cover of P3 branched along S. So if

S: Fðx0; x1; x2; x3Þ ¼ 0;

then

V : Fðx0; x1; x2; x3Þ þ x3
4 ¼ 0:

Note that S HV (the points of V with x4 ¼ 0), hence a line l HS defines a line, also de-
noted by l, in V . The projection of a cubic threefold away from a line in P4 defines the
structure of a conic bundle on the blow-up of V along the line. The associated discriminant
curve in P2 is a plane quintic. A straightforward computation shows that the discriminant
curve is a plane quintic with the equation

W 0: F5ðt0; t1Þ þ t3
2F2ðt0; t1Þ ¼ 0;

where the Fi are as in 3.1, so W 0 is a component of W .

4.16. Remark. Each smooth point t of the plane quintic W 0 defines two lines (the
components of the singular conic in the fibre of V ! P2 over t). Thus there is a natural
double cover C 0 ! W 0. This double cover was studied by Matsumoto and Terasoma in
[MT], the corresponding double cover C ! W 0 of the normalizations of these curves is
ramified in two points, which are identified in C 0. The curve C is isomorphic to the a‰ne
curve ([MT], (3.1)):

v3 ) xf ðx2Þ ¼ 0;

where f is a polynomial of degree 5. The Prym variety of the double cover C ! W 0 is a 5-
dimensional principally polarized abelian variety which is isomorphic to the intermediate
Jacobian variety P of the cubic threefold V (cf. [MT]). The Matsumoto-Terasoma curve
C has the following property.

4.17. Proposition. Let f : XS; l ! P1 be the elliptic fibration as in the subsection 4.3.
The pull-back of XS; l along the base change C ! P1, ðv; xÞ 7! x, is birationally equivalent to
the product C ( E where E is the elliptic curve with j ¼ 0: E GC=ðZþ Zz3Þ.
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Proof. In [MT] it is proved that W ¼ C=i where i is the (Clemens-Gri‰ths) in-
volution i : ðv; xÞ 7! ð)v;)xÞ. Therefore the quotient curve is given by y3 ¼ u2f ðuÞ where
u ¼ x2 and y ¼ xv. This curve is birationally equivalent to W 0. In fact, choosing co-
ordinates such that F2ðy0; y1Þ ¼ y0y1 the equation of W 0 is y3

2 y0y1 þ F5ðy0; y1Þ, hence
y3

2y1 þ F5ð1; y1Þ is an a‰ne equation. Putting v ¼ )y1y2, u ¼ y1 we find the birational iso-
morphism with f ðuÞ ¼ F5ð1; uÞ.

The function field of XS; l is defined by s2 ¼ y0y1 þ F5ðy0; y1Þ. The elliptic fi-
bration is given by the rational function t ¼ y1=y0. Rewriting the equation we get:
ðs=y0Þ2 ¼ t þ y3

0F5ð1; tÞ, equivalently, since F5ð1; tÞ ¼ f ðtÞ:

Y 2 ¼ X 3 þ tf ðtÞ2 ðX ¼ y0 f ðtÞ;Y ¼ sf ðtÞ=y0Þ:

Since on C we have v6 ¼ tf ðtÞ2 we can write this as
!
sf ðtÞ=y0v3

"2 ¼
!

y0 f ðtÞ=v2
"3 þ 1,

which is the equation Y 2 ¼ X 3 þ 1 of the curve E. r

4.18. Remark. According to Donagi and Smith [DS], the Prym map R6 ! A5 has
degree 27 with the Galois group WðE6Þ. Identifying the branch points on W and the ram-
ification points on C, we obtain the admissible double cover C 0 ! W 0 in R6. Thus we
get 27 ‘natural’ pre-images of P under the Prym map. However, the Prym map has 2-
dimensional fibre over the intermediate Jacobian of a cubic threefold, in fact any line in
the threefold defines an admissible double cover in R6.

5. The Picard lattice

In this section we compute the Picard lattice PicðXSÞHH 2ðXS;ZÞ of the K3 surface
XS associated to a nodal cubic surface and its orthogonal complement, the lattice of trans-
cendental cycles TXS

:¼ PicðXSÞ?.

5.1. Lattices. Recall the following two lattices:

U ¼ Z2;
0 1

1 0

# $ !

; A2 ¼ Z2;
)2 1

1 )2

# $ !

:

The second cohomology group H 2ðX ;ZÞ equipped with the quadratic form defined
by the cup-product is an even unimodular lattice of signature ð3; 19Þ. It is isomorphic to
the K3 lattice

L ¼ Ul3 lEl2
8 ;

where E8 ¼ Z8 with the quadratic form defined by the opposite of the Cartan matrix of the
root system of type E8. In general, Am, Dn, Ek denote the root lattices of the simple root
systems of the corresponding symbol (with the Cartan matrix multiplied by )1).

For any lattice M we denote by MðnÞ the lattice M with the quadratic form multi-
plied by n. Let M be a nondegenerate even lattice. The dual abelian group M * contains M
as a subgroup of finite index, the quotient group DðMÞ ¼ M *=M is called the discriminant
group of M. It is equipped with a quadratic form
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q : DðMÞ ! Q=2Z; qðm* þ MÞ ¼ t)2ðtm*; tm*Þ þ 2Z;

where t A Z is such that tm* A M. We use the notation OðMÞ (resp. OðDÞ) to denote the
group of automorphisms of M (resp. DðMÞ) preserving the quadratic form. If M is a prim-
itive sublattice of a unimodular lattice there is a natural isomorphism DðMÞGDðM?Þ.

5.2. Lattices M(t) and T(t). Recall that a choice of a line on a nodal cubic surface
S defines an elliptic pencil f : XS ! P1. Its type is determined by the type vector t of the
conic bundle on S corresponding to l, cf. 2.15. We call it the type vector of ðS; lÞ and the
type vector of the elliptic fibration. We will explain later that for any possible type vector
t there exists a pair ðS; lÞ of type t such that the Picard lattice of the K3 surface XS is of
rank 12 þ 2r þ 2e, where r is the number of nodes on S and e is the number of Eckardt
points on l. We denote by MðtÞ the smallest primitive sublattice of H 2ðXS;ZÞ containing
the sections and components of fibres of the elliptic fibration defined by the line l. Note that
PicðXSÞGMðtÞ. We will compute the lattice MðtÞ and its orthogonal complement TðtÞ in
H 2ðXS;ZÞ.

5.3. Proposition. Assume that the Mordell-Weil group MWð f Þ is finite. Then the lat-
tices MðtÞ and TðtÞ are as in Table 2.

Proof. We will consider only the first two cases. Let f : XS ! P1 be the elliptic fi-
bration of type t ¼ ð2222211Þ with Picard lattice PicðXSÞGMðtÞ. It follows from 4.3 that
it has 5 reducible fibres of type IV and a section s defined by the line x2 ¼ 0. It also has 2
irreducible cuspidal fibres. We will use the Shioda-Tate formula [Shi]:

ðKMWÞ2 ! D
!
MðtÞ

"
¼ d1 . . . dk;ð5:1Þ

t MðtÞ TðtÞ
1) (2222211) U lAl5

2 A2ð)1ÞlAl4
2

2) (322221) U lD4 lAl4
2 A2ð)2ÞlAl3

2
3) (33222) U lDl2

4 lAl3
2 A2ð)1ÞlA2ð2Þl2

4) (222222) U lE6 lAl3
2 A2ð)1ÞlAl3

2

5) (422211) U lE6 lAl3
2 A2ð)1ÞlAl3

2

6) (43221) U lD4 lE6 lAl2
2 A2ð)2ÞlAl2

2
7) (4332) U lDl2

4 lE6 lA2 A2ð)2ÞlA2ð2Þ
8) (42222) U lEl2

6 lA2 A2ð)1ÞlAl2
2

9) (44211) U lEl2
6 lA2 A2ð)1ÞlAl2

2

10) (52221) U lE8 lAl3
2 A2ð)1ÞlAl2

2
11) (4431) U lEl2

6 lD4 A2ð)2ÞlA2

12) (5322) U lE8 lD4 lAl2
2 A2ð)2ÞlA2

13) (4422) U lE8 lE6 lA2 A2ð)1ÞlA2

14) (5421) U lE8 lE6 lA2 A2ð)1ÞlA2

15) (543) U lE8 lE6 lD4 A2ð)2Þ
16) (444) U lEl2

8 lA2 A2ð)1Þ
17) (552) U lEl2

8 lA2 A2ð)1Þ

Table 2. The Picard lattices
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where MW is the Mordell-Weil group and d1; . . . ; dk are the discriminants of the lattices
generated by components of reducible fibres not intersecting the zero section. It follows
from (5.1) that the Mordell-Weil group MW is a torsion group of order 3 l . Since the fibra-
tion has a cuspidal fibre, which has trivial torsion group, MW is trivial. Thus f has a unique
section s. Now we use (5.1) again and find that the discriminant of M is equal to 35. Since
M ¼ MðtÞ obviously contains the sublattice U lAl5

2 of the same rank and discriminant
(it is spanned by the class of a fibre, the section, and irreducible components of reducible
fibres), it must coincide with it. The discriminant group is then easy to compute. Let qT be
the discriminant form of T , then qT ¼ )qM ([N1], Prop. 1.6.1). We can easily see that T
and A2ð)1ÞlA4

2 have the same discriminant form. It now follows from Nikulin [N1], Cor.
1.13.3 that T GA2ð)1ÞlA4

2.

Assume that the fibration is of type ð322221Þ. The product d1 . . . dk is equal to 2234.
The Shioda-Tate formula gives that eitherKMW ¼ 1; 3, or 32, or 6. Since this fibration also
has a cuspidal fibre (i.e. of type II), which has trivial torsion group, MW is trivial. So, the
Shioda-Tate formula tells us that D

!
MðtÞ

"
is of order 2234. The remaining arguments are

similar to the previous case. r

5.4. The lattices M , T. We set

M :¼ U lAl5
2 ; T :¼ A2ð)1ÞlAl4

2 :

Since their discriminant groups are isomorphic and the quadratic forms are the negative of
each other, they are orthogonal complements of each other in the unimodular lattice L (see
[N1]). We set

D ¼ DðMÞGDðTÞ:

These lattices correspond to the type t ¼ ð2222211Þ.

5.5. An automorphism s of order 3. As in section 4.7, we choose two skew lines on
a nodal cubic surface S and consider the associated K3 surface X ¼ XS GXS; l;m. Recall
that it is obtained as a minimal resolution of the triple cyclic cover Y of P1 ( P1 branched
along the union of two divisors L and M of bidegree ð1; 2Þ and ð2; 1Þ. It is easy to describe
the set of fixed points of the automorphism s of X defined by the triple cover. We do it only
in the case when S is a nonsingular surface. Let q1; . . . ; q5 be the intersection points of L
and M. The cubic surface S is obtained by blowing up the points qi. The surface S is non-
singular if and and only if no two points lie on a ruling, and no four points lie on a plane
section. An Eckardt point on the line l corresponds to a ruling which is tangent to L at
some point qi.

Assume that there are no Eckardt points on l. Consider the elliptic fibration on
f : X ! P1 corresponding to the projection P1 ( P1 ! P1 such that L is a section. Its re-
ducible singular fibres correspond to the ruling passing through the points qi. Each fibre is
of type IV. Two components are the exceptional curves of the resolution X ! Y of a sin-
gular point of type A2. The third component is the proper transform of the ruling passing
through the corresponding point qi. The bisection b intersects the latter component and one
of the first two components. The section s intersects the other component coming from the
resolution of singularities. The set of fixed points of s is equal to the union of the section s,
the bisection b and the singular points of the reducible fibres.
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In the case when l contains one Eckardt point, the elliptic fibration acquires one re-
ducible fibre of type I*0. Other reducible fibres are of type IV. The bisection b intersects the
multiple component E0 of this fibre. The section s intersects a reduced component E1. The
fixed points of the involution s is the union of the section s, the bisection b, the point
E0 XE1, and the singular points of fibres of type IV. If l has two Eckardt points, we have
two reducible fibres of type IV and the set of fixed points is described similarly to the pre-
vious case.

5.6. The involution t. Let f : X ! P1 be the elliptic fibration with a section s as in
section 5.5. Let t be the involution of X defined by the inversion x 7! )x of each fibre.
Then t switches the two components of each singular fibre of type IV which do not meet s
and preserves each component of any singular fibre of type I*0.

If f has five singular fibres of type IV and two singular fibres of type II, then the fixed
locus of t is the union of s and a smooth curve C of genus 5 which passes through the sin-
gular point of each singular fibre. If f has four singular fibres of type IV, one of type I*0 and
one of type II, then the fixed locus of t is the union of s, the multiple component of the fibre
of type I*0 and a smooth curve of genus 3. If f has three singular fibres of type IV and two
fibres of type I*0, then the fixed locus of t is the union of s, two multiple components of
singular fibres of type I*0 and a smooth elliptic curve.

5.7. Remark. The automorphism group of the K3 surface X is infinite. For exam-
ple, consider the divisor consisting of the 2-section and the two components of a reducible
singular fibre of f not meeting the section. It defines an elliptic fibration on X with a sec-
tion which has two reducible singular fibres, one is of type I3 and another of type I*0. This
elliptic fibration has a Mordell-Weil group of rank 4. Considering translations by the sec-
tions of infinite order we see that AutðX Þ is an infinite group.

5.8. Lemma. Assume S is nonsingular. Then

H 2ðX ;ZÞs
*
HPicðXÞ; H 2ðX ;ZÞs

*
GM:

The automorphism s acts trivially on the discriminant lattice D
!
H 2ðX ;ZÞs

*"
GDðMÞ.

Proof. Consider the elliptic fibration on X defined in 4.3. From 5.5 we know the
description of fixed points of s. Assume first that all reducible fibres are of type IV. Let
P be the sublattice of PicðXÞ spanned by the divisor classes of a fibre, of the section s
and of the irreducible components of fibres which do not intersect s. It is immediate that
PGM and s acts identically on P. The fixed locus X s of the automorphism s consists
of 5 isolated fixed points (the singular points of the reducible fibres) and two smooth
rational curves (the section s and the bisection b). Applying the Lefschetz fixed point for-
mula we obtain that the trace of s* on H 2ðX ;ZÞ is equal to 7. Thus the trace of s* on P?

is equal to 7 ) 12 ¼ )5. This easily implies that the characteristic polynomial of s* on
P?nC is equal to ðt2 þ t þ 1Þ5. Therefore P? nC does not contain non-zero s*-invariant
elements, so H 2ðX ;ZÞs

*
¼ PGM. Since s* acts trivially on PGM, it also acts trivially

on DðPÞGDðMÞ.

Suppose now that f contains a fibre F ¼ 2E0 þ E1 þ E2 þ E3 þ E4 of type I*0. Assume
that E1 intersects the section s. Then the divisor classes E0 þ E2 þ E3 þ E4 and E0 are s-
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invariant and span a lattice of type A2. We define the lattice P similar to the above by using
this contribution from a fibre of type I*0. The remaining arguments are the same. r

6. The moduli space of K3 surfaces associated to a cubic surface

6.1. We first recall the basic facts about moduli of K3 surfaces. In the subsections
before 6.5, M will be any even non-degenerate sublattice of signature ð1; tÞ.

6.2. Markings. We recall the definition of an M-polarization of a projective
K3 surface X (see [Do]). Fix a connected component VðMÞþ of the cone
VðMÞ ¼ fx A M nR : ðx; xÞ > 0g. Let

DðMÞ ¼ fd A M : ðd; dÞ ¼ )2g:

For any d A DðMÞ let Hd ¼ fx A VðMÞþ : ðx; dÞ ¼ 0g. Choose a connected component
CðMÞþ of the complement of the union of hyperplanes Hd, d A DðMÞ; in VðMÞþ. Let

DðMÞG ¼ fd A DðMÞ :Gðx; dÞ > 0; Ex A CðMÞþg:

We have DðMÞ ¼ DþðMÞq D)ðMÞ.

Now we define an M-polarization of X as a primitive lattice embedding
f : M ! PicðXÞ such that CðX Þþ XfðM nRÞH f

!
CðMÞþ

"
, where CðXÞþ is the cone in

PicðX ÞnR spanned by the pseudo-ample (i.e. nef and big) divisor classes of X .

Note that the closure of CðX Þþ is the nef cone CðXÞ. The closure CðMÞ of CðMÞþ is
the subset of the closure of VðMÞþ which consists of vectors v such that ðv; dÞf 0 for any
d A DðMÞþ. The polarization f embeds CðXÞX fðM nRÞ in f

!
CðMÞ

"
. For any d A DðMÞþ

the image fðdÞ is a divisor class R with R2 ¼ )2. For any v A CðMÞ the image fðvÞ is a
pseudo-ample divisor D with D2 f 0. Since R ! D ¼ ðd; vÞ > 0, it follows from Riemann-
Roch that R is e¤ective. Note that R is not necessarily the divisor class of an irreducible
curve (a ð)2Þ-curve).

The polarization is called ample if f
!
CðMÞþ

"
XPicðX Þþ 3j, where PicðXÞþ is the

ample cone of X . It is easy to see that a polarization f is ample if and only if the orthogonal
complement of fðMÞ in PicðXÞ does not contain the divisor classes of ð)2Þ-curves. In par-
ticular, any polarization with fðMÞ ¼ PicðXÞ is ample.

A pair ðX ; fÞ, where f is an M-polarization (resp. an ample M-polarization), is called
an M-polarized K3 surface (resp. ample M-polarized K3 surface). Two M-polarized K3 sur-
faces ðX ; fÞ and ðX 0; f 0Þ are called isomorphic if there exists an isomorphism f : X ! X 0

such that f ¼ f * + f 0.

6.3. Moduli of M-polarized K3 surfaces. It is known (see [Do]) that there exists
a coarse moduli space MK3;M of isomorphism classes of M-polarized K3 surfaces. Let us
assume that M admits an embedding into the K3 lattice L ¼ Ul3 lEl2

8 which is unique
up to isometry. Fix such an embedding. Let T be the orthogonal complement of M in L.
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Any M-polarization f of a K3 surface X extends to an isometry ~ff : L ! H 2ðX ;ZÞ (a
cohomology marking of X ). Extending ~ff C-linearly, we get a one dimensional subspace
~ff)1
!
H 2;0ðXÞ

"
HT nC which is called the period of ðX ; ~ffÞ.

M H L

f

???y

???y ~ff

PicðXÞ H%%%! H 2ðX ;ZÞ

The moduli space MK3;M is isomorphic to the quotient DM=GM , where DM is the
union of two copies of a Hermitian symmetric domain of type IV corresponding to the
inner product vector space T nR of signature ð2; 20 ) tÞ, DM is a subset of the projective
space PðT nCÞ. The group GM is the subgroup of the orthogonal group OðLÞ of L which
leaves M pointwise fixed. It is also isomorphic to the subgroup of OðTÞ which acts identi-
cally on the discriminant group DðTÞ ¼ T *=T .

The isomorphism classes of ample M-polarized K3 surfaces are parametrized by an
open subset of MK3;M whose complement is the image in MK3;M of the union of hypersur-
faces in DM defined by lines in T nC orthogonal to vectors r A T with r2 ¼ )2.

6.4. The group W(M ). For any d A DðMÞ we can define a reflection sd A OðMÞ
associated to d by sd : v 7! v þ ðv; dÞd. Let WðMÞ be the subgroup of OðMÞ generated
by all sd’s. The set CðMÞ is a fundamental domain for WðMÞ in the closure of VðMÞþ.
Thus for any v A M with v2 f 0 there exists a w A WðMÞ such that

!
wðvÞ; d

"
f 0, for any

d A DðMÞþ.

Let ðX ; fÞ be an M-polarized K3 surface. Then for any v A M with v2 f 0 there
is a w A WðMÞ such that f

!
wðvÞ

"
A CðMÞ. In particular, for any given embedding

f : M ! PicðXÞ, there is a w A WðMÞ such that CðXÞþ X fðM nRÞH ðf + wÞ
!
CðMÞþ

"
,

i.e., f + w is an M-polarization.

6.5. Fixing V(M )B and D(M )B. The lattice M from 5.4 has a unique (up to an
isometry) primitive embedding in the K3 lattice L [N1] and we identify M with a primitive
sublattice of L from now on. We fix a basis in U formed by two isotropic vectors f1, f2 with
ð f1; f2Þ ¼ 1 and a simple root basis r1, r2 in A2, i.e., ðr1Þ2 ¼ ðr2Þ2 ¼ )2 with ðr1; r2Þ ¼ 1.
We define a basis of M by taking f1, f2 in U and r1, r2 in each copy of A2.

We define VðMÞþ by requiring that f1 þ f2 A VðMÞþ. We define DðMÞþ as follows.
Firstly, ð)2Þ-vectors v with ð f1 þ f2; vÞ > 0 belong to it. Secondly, if ð f1 þ f2; vÞ ¼ 0, then
v A DðMÞþ if and only if it is a nonnegative combination of f2 ) f1 and the ri’s in each
copy of A2.

6.6. Automorphisms of L. Let ro be the isometry of A2 defined by

roðr1Þ ¼ r2; roðr2Þ ¼ )r1 ) r2:

Obviously ro is of order 3, has no non-zero fixed vectors and acts trivially on
DðA2Þ ¼ ðA2Þ*=A2. Let r be the isometry of T ¼ A2ð)1ÞlAl4

2 defined by r ¼ ðroÞ
l5.

Then r is of order 3, has no non-zero fixed vectors and acts trivially on DðTÞ. Thus the
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isometry ð1M ; rÞ of M lT can be extended to the one of the K3 lattice L (Nikulin [N1],
Corollary 1.5.2). For simplicity we denote this isometry of L by the same letter r.

6.7. Period domains. The period domain for M-polarized K3 surfaces is

DM ¼ fo A PðT nZ CÞ : ðo;oÞ ¼ 0; ðo;oÞ > 0g:

Note that DM has two connected components so it is not a domain in the strict meaning of
this notion. Let r be the isometry of T defined in 6.6. Let

T nC ¼ Vþ lV)

be the decomposition of T nC into the two 5-dimensional eigenspaces of r with eigen-
values z3 ¼ e2pi=3 and z)1

3 , respectively. Since

ðo;oÞ ¼
!
rðoÞ; rðoÞ

"
¼ z2ðo;oÞ;

we see that ðo;oÞ ¼ 0 for all o A Vþ, and similarly for V). Let

B ¼ fo A PðVþÞ : ðo;oÞ > 0g ¼ DM XPðVþÞ:

In a suitable basis of Vþ we have ðo;oÞ ¼ x0x0 ) ðx1x1 þ ! ! ! þ x4x4Þ. Thus, if ðo;oÞ > 0,
then x0 3 0 and we can normalize x0 ¼ 1, hence B is a 4-dimensional complex ball:

BG
n

x ¼ ðx1; . . . ; x4Þ A C4 :
P

i
xixi < 1

o
:

The 4-ball is a bounded symmetric domain of type I1;4.

6.8. Discrete groups. We define the following four groups using the notation from
6.6:

GM ¼ fg A OðLÞ : gðmÞ ¼ m; Em A Mg;

~GGr ¼ fg A OðLÞ : g + r ¼ r + gg;

Gr ¼ fg A OðTÞ : g + r ¼ r + gg;

GM;r ¼ Ker
!
Gr ! OðDÞ

"
:

6.9. The Hermitian module. The isometry r of T gives T the structure of a free
module L of rank 5 over the ring of Eisenstein integers Z½z3&: for any a þ bz3 A Z½z3& and
any x A T we have

ða þ bz3Þ ! x ¼ ða1T þ brÞðxÞ:

If ri, r 0i is the simple root basis of the i-th copy of A2 with rðriÞ ¼ r 0i , then z3ri ¼ r 0i and any
element in this A2 can be written as r ¼ zri with z ¼ a þ bz3 A Z½z3&. Note that

zz ¼ ða þ bz3Þða þ bz)1
3 Þ ¼ a2 ) ab þ b2 ¼ )ðr; rÞ=2:

Therefore the quadratic form on T is twice the real part of the Z½z3&-valued Hermitian form
H, of signature ð1; 4Þ, on the Eisenstein lattice T with

Hðz;wÞ ¼ z0w0 ) ðz1w1 þ ! ! ! þ z4w4Þ:
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The group Gr is the unitary group UðTÞ of T considered as a Hermitian lattice over the
ring of Eisenstein integers (see [ACT], [AF]).

6.10. The discriminant group. The residue field Z½z3&=
ffiffiffiffiffiffiffi
)3

p
Z½z3& is isomorphic to

F3 and z3 maps to 1 mod 3. Thus V ¼ L=
ffiffiffiffiffiffiffi
)3

p
L acquires a natural structure of a 5-

dimensional vector space over F3 equipped with a non-degenerate quadratic form. We
show that the discriminant group DðTÞ is isomorphic to V . Define a Z-linear homomor-
phism

h : L ! T *; hðxÞ ¼
!
x þ 2rðxÞ

"
=3;ð6:1Þ

where we identify L with T as a Z-module. Then

hð
ffiffiffiffiffiffiffi
)3

p
xÞ ¼ h

!
ð1 þ 2z3Þx

"
¼ ð1 þ 2rÞ2x=3 ¼ )x A T :

This shows that h factors through an isomorphism

V ¼ L=
ffiffiffiffiffiffiffi
)3

p
L ! DðTÞ ¼ T *=T :

The basis ðr1; . . . ; r5Þ of L (as Z½z3&-module) is an orthonormal basis with respect to H.
Since hðriÞ2 ¼ ðri þ 2r 0i Þ

2=9 ¼ )2=3,
!
hðriÞ; hðrjÞ

"
¼ 0, i3 j, we obtain that

hðxÞ2 ¼ ) 2

3
x2:

In particular, if we identify DðTÞ with V , then the quadratic form on DðTÞ is obtained
from the quadratic form on V by multiplying it by )2=3.

If Q is the root lattice of type E6, then Q=3Q inherits a non-degenerate quadratic form
such that Q=3Q is isomorphic to V as quadratic spaces over F3. This defines an isomor-
phism of groups

WðE6ÞG SOðVÞ;ð6:2Þ

O
!
DðTÞ

"
GOðVÞG f1;)1g( SOðVÞ:

All of this is well-known and can be found, for example, in [Bo], Chapter 6, §4, exercise 2.

6.11. Proposition. Each of the natural maps

~GGr ! Gr ! O
!
DðTÞ

"

is surjective. In particular,

Gr=GM;r GO
!
DðTÞ

"
G fG1g( WðE6Þ:

Moreover, any isometry in GM;r can be extended to an isometry of L which acts trivially on
M defining an injective homomorphism of groups

GM;r ,! GM :
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Proof. For the surjectivity of the map Gr ! O
!
DðTÞ

"
see [ACT], Lemma 4.5. It is

proven in Nikulin [N1], Theorem 1.14.2 that the natural map OðMÞ ! O
!
DðMÞ

"
is surjec-

tive. By Corollary 1.5.2 of loc. cit. this implies that the map ~GGr ! Gr is surjective. The in-
clusion GM;r ! GM follows from (Nikulin [N1], Corollary 1.5.2). r

6.12. Definition. An (ample) ðM; rÞ-polarized K3 surface is an (ample) M-polarized
K3 surface ðX ; fÞ such that there is an extension ~ff : L ! H 2ðX ;ZÞ of f which satisfies

~ff)1
!
H 2;0ðXÞ

"
A B ðHPðT nCÞÞ:

Two ðM; rÞ-polarized K3 surfaces ðX ; fÞ and ðX 0; f 0Þ are said to be isomorphic if there is
an isomorphism f : X ! X 0 such that f ¼ f * + f 0 and ~ff)1 + f * + ~ff 0 A OðLÞ commutes with
r A OðLÞ.

6.13. Lemma. Let ðX ; fÞ be an ample ðM; rÞ-polarized K3 surface. Then X has an

automorphism s of order 3 such that s* ¼ ~ff + r + ~ff)1 for an extension ~ff : L ! H 2ðX ;ZÞ of
f. In particular, s acts trivially on fðMÞ ðHPicðXÞÞ.

Proof. Choosing ~ff as in the definition of ðM; rÞ-polarization, the period of X is fixed
by r. Since ðX ; fÞ is amply polarized, PicðX ÞXM? contains no ð)2Þ-vectors. Moreover,
the M-polarization of X is ample and r acts trivially on M. Therefore X has an automor-
phism s with s* ¼ ~ff + r + ~ff)1 (cf. [Na], Theorem 3.10). r

6.14. The moduli spaces K3m
M ,r and K3M ,r. We know from section 6.3 that the

moduli space of M-polarized K3 surfaces is isomorphic to D=GM . The isometry r acts nat-
urally on TC as is described in 6.7 and induces an automorphism of order 3 of the domain
DM HPðTCÞ. It defines the union of two balls BG¼ DM XPðVGÞ. Complex conjugation
switches the two balls BG. Obviously the group Gr is the stabilizer subgroup of B ¼ Bþ in
GM . We set

K3m
M;r ¼ B=GM;r; K3M;r ¼ B=Gr:

The element )I A Gr acts trivially on PðT nCÞ and thus on B, and )I maps to
)1 A OðDÞ. Thus OðDÞ=fG1gGWðE6Þ acts on K3m

M;r and there is a natural map:

pM : K3m
M;r ! K3M;r GK3m

M;r=WðE6Þ:

For r A L, let r? be the hyperplane in PðVþÞ of lines orthogonal to r, and let HðrÞ be its
intersection with B. The discriminant locus is the subset HHB defined by:

H ¼
S
r

HðrÞ;

where r varies over the set of all ð)2Þ-vectors in T ¼ M?. The image of H in K3m
M;r (resp.

K3M;r) will be denoted by Dm (resp. D).

It follows from Lemma 6.13 that the quasi-projective variety K3m
M;rnD

m is the coarse
moduli space of ample ðM; rÞ-polarized K3 surfaces. We will refer to K3m

M;r as the moduli
space of ðM; rÞ-polarized K3 surfaces.
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6.15. Remark. If ½ðX ; fÞ&; ½ðX 0; f 0Þ& A K3m
M;r are in the same fibre of pM , then the

K3 surfaces X and X 0 are isomorphic. This follows from the surjectivity of the map
~GGr ! Gr and the Torelli Theorem for K3 surfaces. Let a A O

!
DðMÞ

"
. As we already no-

ticed in the proof of Proposition 6.11, we can lift a to an isometry ~aa of M. Composing it
with some element of WðMÞ which acts identically on DðMÞ, we may assume that ~aa leaves
DðMÞþ invariant. Now a acts on ½ðX ; fÞ& A K3m

M;r by ½ðX ; fÞ& 7! ½ðX ; f + ~aa)1Þ&. This de-
scribes the action of O

!
DðMÞ

"
on K3m

M;r. If fðMÞ ¼ PicðX Þ, then O
!
DðMÞ

"
acts transi-

tively on the polarizations of X . Thus we can interpret a general point of K3M;r as the
isomorphism class of a K3 surface which admits an ample ðM; rÞ-polarization.

6.16. Recall that the subspaces Vþ and V) (see 6.7) are defined over Qðz3Þ where
z3 is a primitive cube root of unity. Let K be the extension field of QðzÞ obtained by adjoin-
ing all primitive 6l-th roots of unity for which the value of the Euler function satisfies
jð6lÞe 10 ¼ rankðTÞ. The only possible values of l are as follows: l ¼ 1; 2; 3; 4; 5. We con-
sider the union W of hyperplanes of PðVþÞ defined over K . A non-singular cubic surface S
is called generic if the period of the associated K3 surface XS is contained in the comple-
ment of W. For example, a cubic surface with an Eckardt point is not generic (we shall
show in 8.9 that the period of XS is contained in the hyperplane orthogonal to some vector
r A T).

6.17. Lemma. Assume that S is a generic cubic surface and let XS be the associated
K3 surface. Then the image of the natural map

AutðXSÞ ! OðTÞ

is a cyclic group of order 6 generated by t and s ( for t, s, see 5.5, 5.6). In particular the
image of the natural map

AutðXSÞ ! O
!
DðTÞ

"

is fG1g.

Proof. The proof is similar to the one given in [BP], Lemma 2.9. It is well-known
that the image G in OðTÞ is a cyclic group (cf. [N3], Theorem 3.1). Let m be the order of
G. If g A AutðXSÞ is a generator of G, then g*oX ¼ zm ! oX where oX is a nowhere van-
ishing holomorphic 2-form on X ¼ XS and zm is a primitive m-th root of unity. Since
t*oX ¼ )oX and s*oX ¼ z3oX , m is divisible by 6. Since g* is defined over Q, the eigen-
spaces of g* are defined over QðzmÞ. If m > 6, then an eigenspace is a non-trivial subspace
of Vþ. This contradicts the assumption of genericity of S. s* acts trivially on DðTÞ and t*

acts as )1. Hence the second assertion follows. r

6.18. Corollary. The map pM : K3m
M;r ! K3M;r is a Galois cover with the Galois

group isomorphic to WðE6Þ.

Proof. As we explained in 6.14 the group O
!
DðTÞ

"
=fG1gGWðE6Þ acts on K3m

M;r

with quotient isomorphic to K3M;r. The isotropy subgroup of ½ðX ; fÞ& is isomorphic to the
image of AutðXÞ in D

!
fðMÞ?

"
=fG1g. By the previous lemma it is trivial for a generic sur-

face X . r

6.19. Nef divisors. Let ðX ; fÞ be an ample M-polarized K3 surface. Then X has an
automorphism s of order 3 (6.13). For any v A M with v2 f 0 there is a w A WðMÞ such
that f

!
wðvÞ

"
A CðMÞ. If f

!
wðvÞ

"
is not nef, then there is a smooth rational curve R with
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!
R; f

!
wðvÞ

""
< 0. Since fðMÞ?XPicðXÞ does not contain ð)2Þ-vectors, R ¼ r þ r 0 where

r A M *, r 0 A T * and r2 < 0, ðr 0Þ2 < 0. Since r2 þ ðr 0Þ2 ¼ R2 ¼ )2, r2 ¼ )2=3 or )4=3.
Since s is an automorphism,

!
R; sðRÞ

"
f 0. Hence ð3rÞ2 ¼

!
R þ sðRÞ þ s2ðRÞ

"2
f)6.

Thus r2 ¼ )2=3. Then r defines a reflection

sr : x 7! x þ 3ðx; rÞr

which acts trivially on T . Obviously
!
R; f

!
sr

!
wðvÞ

"""
> 0. If necessary, by using these re-

flections successively, we may assume that f
!
wðvÞ

"
A CðXÞ, i.e., f

!
wðvÞ

"
is nef. In particu-

lar, any primitive isotropic vector f in M defines, uniquely, a nef divisor in PicðX Þ. As is
well-known a primitive nef divisor F with F 2 ¼ 0 defines an elliptic fibration with the co-
homology class of a fibre equal to F ([PS], §3, Cor. 3).

6.20. Elliptic fibrations. Let ðX ; fÞ be an ample M-polarized K3 surface. With the
definitions from 6.5, we have f1 A CðMÞ and f1 is obviously isotropic and primitive. There-
fore, fð f1Þ A PicðX Þ defines an elliptic fibration on V (cf. 6.19) which we denote by

Ff : X ! P1

and we call it the standard elliptic fibration. Since fð f2 ) f1Þ ! fð f1Þ ¼ ð f2 ) f1; f1Þ ¼ 1, the
divisor class fð f2 ) f1Þ is an e¤ective class with D2 ¼ )2. Let D be the e¤ective represen-
tative of this class written as a sum

P
niRi, where Ri are irreducible curves. Since D inter-

sects any fibre F with multiplicity 1, we see that one of the components Ri, say R1, is a
section of the fibration. We also have n1 ¼ 1 and Ri ! F ¼ 0 for i > 1. By the Hodge Index
Theorem, R2

i < 0 for i > 1. By the adjunction formula, all Ri’s are ð)2Þ-curves and the
Ri’s, i3 1, are contained in fibres of the fibration. This easily implies that R1 is determined
uniquely by fð f2 ) f1Þ. We shall denote the section corresponding to R1 by s. We remark
that R1 is obtained from D by applying suitable reflections corresponding to Ri ði > 1Þ.
Thus, up to isometries, we may assume that the classes f1 and f2 ) f1 define an elliptic fi-
bration Ff with a section s.

The images under f of the simple root bases fri; r 0ig, i ¼ 1; . . . ; 5, of each copy of A2

are e¤ective divisor classes Ri, R 0
i on X which are orthogonal to F and to the section s. As

above we can show that each such divisor class is a sum of ð)2Þ-curves contained in a fibre.
Thus X has at least 10 smooth rational curves contained in fibres of Ff.

6.21. Lemma. Let ðX ; fÞ be an ample ðM; rÞ-polarized K3 surface, let s be an auto-
morphism of order three as in 6.13 and let Ff be the standard elliptic fibration on X .

Then s preserves Ff and fixes pointwisely its section s and a smooth bisection b. More-
over, the types of singular fibres of Ff are one of the following:

ðII; II; IV; IV; IV; IV; IVÞ; ðII; IV; IV; IV; IV; I*0Þ; ðIV; IV; IV; I*0; I
*
0Þ:

In each case the fibration has exactly 5 reducible fibres.

Proof. Let X s be the fixed locus of the automorphism s. Since s can be locally lin-
earized, X s is a smooth closed subset of X . It is easy to see that the trace of r in its action
on LGH 2ðX ;ZÞ is equal to 7. Applying the Lefschetz fixed point formula, we obtain that
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the Euler characteristic of X s is equal to 9. Since s acts identically on fðMÞ, it preserves
the section s and the divisor class of a fibre of Ff. Let us show that s fixes the section s
pointwisely, or, equivalently, leaves invariant each fibre of Ff. Assuming otherwise, we ob-
tain that X s is contained in fibres of Ff. Thus any irreducible one-dimensional component
of X s has the Euler characteristic equal to 0 (if it is nonsingular fibre) or 2 (if it is a com-
ponent of a reducible fibre), the smoothness of the fixed point set excludes nodal cubics. Let
l be the number of irreducible one-dimensional components of X s di¤erent from a fibre,
and let k be the number of isolated fixed points. Then 2l þ k ¼ wðX sÞ ¼ 9. Since s has ex-
actly two fixed points on s, it leaves invariant the two fibres F1, F2 passing through these
points. Obviously the curves Ri, R 0

i (see 6.20) are contained in the union F1 WF2. In partic-
ular, the number of irreducible components of the divisor F1 þ F2 is greater than or equal
to 12. Since a Dynkin diagram of type ADE admits a non-trivial automorphism of order 3
only in the case D4, the automorphism s acts identically on the set of irreducible compo-
nents of a fibre Fi unless it is of type I*0. Note that either F1 or F2 is not of type I*0 because
F1 þ F2 has at least 12 components. Assume that both of the Fi’s are not of this type. We
apply the Lefschetz fixed point formula to the cell complex Fi. Let ni be the number of ir-
reducible components of Fi. The Lefschetz number of sjFi is equal to ni if Fi is of type In

and to ni þ 1 otherwise. Let li be the number of one-dimensional rational components of
X s contained in Fi and let ki be the number of isolated fixed points of s contained in Fi.
We have 2li þ ki f ni, hence 9 ¼ 2l þ k f 2l1 þ k1 þ 2l2 þ k2 f n1 þ n2 f 12, a contradic-
tion. Assume that one of the fibres, say F1 is of type I*0. Then 2l2 þ k2 f n2 f 12 ) 5 ¼ 7.
The automorphism s has a fixed point on the non-multiple component E of F1 which is
intersected by s. The multiple component E0 of F1 is s-invariant. If s is the identity on
E0, then l1; k1 f 1, and 2l1 þ k1 f 3. If s does not act identically on E0, it has 2 fixed
points on it. In both cases it is easy to see that 2l1 þ k1 f 3 again. Thus we get
2l1 þ k1 þ 2l2 þ k2 f 3 þ n2 f 3 þ 7 ¼ 10, again a contradiction.

Now we know that s preserves every fibre of Ff, so that the general fibre has a non-
trivial automorphism of order 3 over the function field of the base. This implies that the j-
function of the fibration is constant 0. In particular, the singular fibres must be of type II,
IV, IV*, II*, I*0. Each nonsingular fibre has exactly 3 fixed points of s, one lies on the sec-
tion s, and the pairs of others lie on a bisection b (which could be the union of two sec-
tions). The bisection b is a part of X s and hence smooth.

Let p : X 0 ! X be the blow-up of the 0-dimensional part of X s. We know that s is
not symplectic (i.e. does not leave invariant a non-zero holomorphic 2-form on X ). This
easily shows that it lifts to an automorphism s 0 of X 0 with X 0s 0

purely one-dimensional.
Let X 0 be the quotient surface X 0=ðs 0Þ. It is a smooth surface. Let C be a smooth rational
curve on X such that sðCÞ ¼ C but sjC is not the identity. Then s has two fixed points p, q
on C. If p, q are isolated fixed points of s on X , then the proper inverse transform C 0 on X 0

has self-intersection )4. Since C 0 is equal to the pre-image of some curve on X 0 and )4 is
not divisible by 3, we get a contradiction. Similarly, if p, q belong to the one-dimensional
part of X s, we get C 02 ¼ )2 and again a contradiction. Thus, one fixed point is an isolated
fixed point of s and another one belongs to the one-dimensional part of X s.

As we have already observed before, s acts identically on the set of irreducible com-
ponents of any fibre, unless it is of type I*0. In the case of I*0, s preserves the multiple com-
ponent E and permutes the three simple components E1, E2, E3 not meeting the section.
Notice that any s-invariant irreducible component of a fibre not intersecting the section s
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must belong to fðMÞXfðUÞ? ¼ fðA5
2Þ. The fixed part of D4 ¼ hE;E1;E2;E3i under s* is

hE;E þ E1 þ E2 þ E3iGA2. Since E6 and E8 can not be embedded into A5
2 , singular fibres

of type IV*, II* do not appear.

Using that the Euler characteristics of the fibres add up to 24, it remains to show that
we have exactly 5 reducible fibres. Since a fibre of type I*0 or IV contributes one copy of A2

in A5
2 G fðMÞX fðUÞ?, there must be five of them. The lemma is now proven. r

7. A complex ball uniformization

7.1. From K3’s to cubics. We are going to construct a map

G : K3m
M;rnD

m ! Mm
cub;

where Mm
cub is the moduli space of marked smooth cubic surfaces, i.e., smooth cubic sur-

faces with an ordered set of six skew lines L1; . . . ;L6.

Let ½ðX ; fÞ& A K3m
M;rnD

m be an ample ðM; rÞ-polarized K3 surface. We use the nota-
tion of Lemma 6.21 and its proof. For simplicity we consider the case where Ff has two
singular fibres of type II and five singular fibres of type IV. The construction for the other
two cases is similar. It follows from the proof of Lemma 6.21 that on each reducible fibre
s has one fixed point, the point of intersection of the three components. The bisection b
intersects two components, and the section s intersects the third one. Let X 0 be the blow-
up of the five isolated fixed points of s as in the proof of the lemma. The quotient X 0 of X 0

by the action of s is a smooth rational surface and the images of the components of the
fibers of type IV are ð)1Þ-curves in X 0. The polarization f gives an ordering of the 2 com-
ponents in each fibre which meet the bisection b, and we blow down the first one in each of
the 5 fibres as well as the component in the fibre which meets the section. The result is a
smooth rational surface S which has ð)1Þ-curves L1; . . . ;L5 the images of the remaining
components in the type IV fibres (these are numbered by the polarization f) as well as the
ð)1Þ-curve m which is the image of the section s. These six curves do not intersect and thus
can be blown down to get a smooth rational surface with b2 ¼ 1, hence this surface must be
P2. Therefore S is a cubic surface and the six ð)1Þ-curves define a marking on S. It is easy
to see that this marked cubic surface S depends only on the isomorphism class of ðX ; fÞ.
We may now define:

G : ½ðX ; fÞ& 7! ðS;L1; . . . ;L5;L6 ¼ mÞ:

Note that the 2-section C maps to a line l in S which is skew with m and does meet
L1; . . . ;L5. By the uniqueness of the triple cover (Theorem 4.9) we have that X GXS; l;m

and, by construction (see 6.13) s* ¼ ~ff + r + ~ff)1 for some extension ~ff : L ! H 2ðX ;ZÞ of f.

7.2. Theorem. The map G defines a WðE6Þ-equivariant isomorphism

G : K3m
M;rnD

m !G Mm
cub:

Proof. We first construct the inverse map

G)1 : Mm
cub ! K3m

M;rnD
m:
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Given ðS;L1; . . . ;L6Þ A Mm
cub, let m ¼ L6 and let l be the (unique) line which meets

L1; . . . ;L5 but not m (if we blow down the Li to points xi A P2, l maps to the conic on
x1; . . . ; x5).

Let Xl;m be the K3 surface associated to ðS; l;mÞ and let f : Xl;m ! P1 be the elliptic
fibration from subsection 4.3. We define a polarization fl;m : M ! PicðXl;mÞ as in the proof
of Lemma 5.8 by fixing an order on the set of reducible fibres and the order on the set of
components of fibres of type IV which do not intersect the section s. Thus fð f1Þ is the class
of a fibre of f and fð f2Þ is the sum of the class of a fibre and the class of the section (see
6.20). The image of r1 in the i-th copy of A2 HM is the first component of the i-th fibre if it
is of type IV, and it is the divisor class E þ E1 þ E2 þ E3 if the i-th fibre is of type I*0 (see
the notation in the proof of Lemma 6.21).

The K3 surface Xl;m is a triple cyclic covering of S with an automorphism s.
We proved in Lemma 5.8 that s* acts identically on fðMÞ and has the trace )5 on
fðMÞ?. This implies that s* has no eigenvectors in fðMÞ?nQ, and hence fðMÞ? is a
free module of rank 5 over the ring of Eisenstein integers Z½z3&. In particular, the maps
s* glue to a locally constant map on the local system with fibers H 2ðXl;m;ZÞ. The con-
struction of the map G is such that if ðS 0;L 0

1; . . . ;L
0
6Þ ¼ GðX ; fÞ for some ðX ; fÞ, then

r ¼ ~ff)1 + s*
S 0 + ~ff where ~ff : L ! H 2ðXl;m;ZÞ is a cohomology marking of X such that

~ffjM ¼ f and ~ffðTÞ ¼ fðMÞ?. As s* is locally constant we conclude that there is an ex-
tension ~ffl;m of the polarization fl;m such that r ¼ ~ff)1

l;m + s* + ~ffl;m. This shows that
G)1½ðS;L1; . . . ;L6Þ& :¼ ½ðXl;m; fÞ& belongs to K3m

M;rnD
m. It is obvious that G)1 is the

inverse of G.

We remark that the above construction of Xl;m can be done as a family, and hence
G)1 is analytic. Let ðS;L1; . . . ;L6Þ be an analytic family of marked smooth cubic surfaces
over the base Y . Then by taking the triple cover and taking the resolution of singularities,
we have an analytic family of K3 surfaces X over Y . The covering transformation of
X ! S induces an automorphism sy of each member Xl;m;y ðy A YÞ of the family X and
defines an isometry fy : L ! H 2ðXl;m;y;ZÞ with f)1

y + s*
y + fy ¼ r which depends analyti-

cally on y. Thus we have an analytic family of ample ðM; rÞ-polarized K3 surfaces over Y .

We show that G)1 is WðE6Þ-equivariant, then G ¼ ðG)1Þ)1 is obviously equivariant
as well. The group WðE6Þ acts on Mm

cub in the standard way via symmetries of the set of
lines and WðE6Þ ¼ GalðMm

cub=McubÞ. Let m : GalðMm
cub=McubÞ ! AutðK3m

M;rnD
mÞ be the

action defined via the isomorphism G)1, obviously m is injective. Let S A Mcub, the main
result of the section 3 (Theorem 4.9) was that Xl;m is independent of the choice of the lines
l, m in S, hence mðgÞ is a covering transformation of K3m

M;rnD
m ! K3M;rnD for any

g A WðE6Þ. Thus we have an injection:

m : WðE6ÞGGalðMm
cub=McubÞ ! GalðK3m

M;r=K3M;rÞ:

Since GalðK3m
M;r=K3M;rÞGWðE6Þ (see 6.18), m is an isomorphism. r

7.3. The moduli space of cubic surfaces Mcub is the quotient of Mm
cub by WðE6Þ. Let

WðE6Þl HWðE6ÞHAut
!
PicðSÞ

"
be the subgroup which fixes the class of a line l on S. It is

well-known that WðE6Þl GWðD5Þ, which is the semi-direct product of ðZ=2Þ4 and S5.
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The action of S5 HWðD5Þ on a marking ðL1; . . . ;L6 ¼ lÞ of a cubic surface is by per-
muting the first 5 lines. The group WðD5Þ is generated by these permutations and an ele-
ment c123 of order two which acts as the standard Cremona transformation on P2 defined
by the points p1, p2 and p3 where p : S ! P2 is the blow down of the Li and pi ¼ pðLiÞ.
Thus c123 maps L1 to L 0

1, the strict transform of the line on p2 and p3, and it fixes L4, L5

and L6. It also permutes the 2 ! 5 lines on S which meet l. Let li be the line which maps to
the line through pi and p6 and let mi be the conic through all 6 points except pi. Then c123

fixes the li and mi except for permuting l4 $ m5 and l5 $ m4. This implies that an element
in WðD5Þ permutes the indices and exchanges an even number of li with an even number
of mi.

7.4. Recall from Proposition 6.11 that

Gr=GM;r GOðDÞGWðE6Þ ( fG1g

acts on the discriminant lattice D ¼ DðTÞG F5
3. The subgroup of OðDÞ which consists

of isometries preserving an unordered basis (up to signs) of DðTÞ is isomorphic to
WðD5Þ ( fG1g. This provides us with a natural copy of WðD5Þ in Gr=GM;r. Let G 0

M;r be
the inverse image in Gr of this subgroup. The group G 0

M;r acts on K3m
M;r by changing the

polarizations without changing the standard elliptic fibration defined by the polarization.
Since WðD5Þ is a maximal subgroup of WðE6Þ we see that any w A WðE6ÞnWðD5Þ does
not preserve the isomorphism class of the standard elliptic fibration. This implies the fol-
lowing corollaries:

7.5. Corollary. Let Mcub be the moduli space of cubic surfaces. There are isomor-
phisms

ðBnHÞ=GM;r GK3M;rnDGMcub:

Let M l
cub be the moduli space of cubic surfaces with a line. There are isomorphisms

ðBnHÞ=G 0
M;r G ðK3m

M;rnD
mÞ=WðD5ÞGM l

cub

as well as a birational isomorphism

B=G 0
M;r FM l

cub

where G 0
M;r is the inverse image of WðE6Þl ( fG1gHWðE6Þ ( fG1gGGr=GM;r in Gr.

7.6. Corollary. Assume that S is a generic cubic surface. Then XS has exactly 27
(¼ the index of WðD5Þ in WðE6Þ) non-isomorphic standard elliptic fibrations.

8. The geometry of the discriminant locus

8.1. Here we will give a geometric interpretation of the points in K3m
M;r belonging

to the discriminant locus Dm. We know that each such point represents the isomorphism
class of a non-amply M-polarized K3 surface ðX ; fÞ. For such a surface there is a ð)2Þ-
vector r in fðMÞ?XPicðXÞ. This implies that r (cf. 6.6) can not be represented by an
automorphism of X . Let R be the sublattice of PicðXÞ generated by all ð)2Þ-vectors in
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fðMÞ? XPicðX Þ. Then R is a negative definite lattice generated by ð)2Þ-vectors, i.e., a root
lattice. Hence R is an orthogonal direct sum

R ¼ R1 l ! ! !lRr;

where Ri is an indecomposable root lattices of type Am, Dn, Ek. Obviously r preserves R.
Since r has no non-zero fixed vectors in R, r preserves each Ri. Thus Ri is an indecompos-
able root lattice with an isometry of order 3 without non-zero fixed vectors. In the follow-
ing we shall show that Ri GA2 and re 4 (see 8.7).

8.2. Lemma. Ri GA2 for any i.

Proof. First of all, note that the rank of Ri is even because it has an isometry of
order 3 without non-zero fixed vectors. Since the rank of PicðXÞe 20, Ri is isometric to
A2n, D2n, E6 or E8 ðne 4Þ. Let K be a primitive sublattice of H 2ðX ;ZÞ generated by M
and R. Let lðKÞ be the minimal number of generators of the 3-elementary subgroup of
K *=K . Then K *=K G ðK?Þ*=K? and lðKÞ ¼ lðK?Þe rankðK?Þ. Using this observation
and the fact lðMÞ ¼ 5, we can easily see that R is isometric to D4, Aln

2 ð1e ne 4Þ or
E6. (For example if R ¼ E8, then K ¼ M lE8 and lðKÞ ¼ 5. This contradicts the fact
lðK?Þe rankðK?Þ ¼ 2.) Next we shall show that R is not isometric to D4. In this case
K ¼ M lD4 and the elliptic fibration defined by an M-polarization has five singular fibres
of type IV and one of type I*0. This contradicts the fact that the Euler number of K3 surface
is 24. By the same argument, the case R ¼ E6 does not occur. r

8.3. We remark that all Ri are 3-elementary, i.e., R*
i =Ri G ðZ=3ZÞ l for some non-

negative integer l and r acts trivially on R*
i =Ri.

Let

T 0 ¼
!
fðMÞlR

"?
; S ¼ ðT 0Þ? ðHH 2ðX ;ZÞÞ:

Thus S is the smallest primitive sublattice of H 2ðX ;ZÞ containing fðMÞlR. By definition,
the lattice T 0XPicðXÞ contains no ð)2Þ-vectors.

8.4. Lemma. Let ðX ; fÞ be an ðM; rÞ-polarized K3 surface. Let S, R, T 0 be as above.
Then S, T 0 are 3-elementary lattices, and r acts trivially on ðT 0Þ*=T 0. Moreover X has an

automorphism s 0 of order three such that S ¼ H 2ðX ;ZÞðs
0Þ* .

Proof. We have a chain of lattices:

fðMÞlRHS HS * H
!
fðMÞlR

"*

and S *=S G
!
S *=

!
fðMÞlR

""
=
!
S=
!
fðMÞlR

""
. Since M and R are 3-elementary,

S is a 3-elementary lattice, i.e., S *=S G ðZ=3ZÞ l . Since r acts trivially on!
fðMÞlR

"*
=
!
fðMÞlR

"
G fðMÞ*=fðMÞlR*=R, r acts trivially on S *=S. Since T 0 is

the orthogonal complement of S in unimodular lattice H 2ðX ;ZÞ, T 0 is 3-elementary and
r acts trivially on ðT 0Þ*=T 0 (see Nikulin [N1], Proposition 1.6.1). Hence the isometry
ð1S; rjT 0Þ can be extended to an isometry r 0 of H 2ðX ;ZÞ (Nikulin [N1], Corollary 1.5.2).
Then r 0 is represented by an automorphism s 0 of X (see [Na], Theorem 3.1). r

The following fact was first observed by Vorontsov [Vor].

138 Dolgachev, Geemen and Kondō, A complex ball uniformization

Brought to you by | University of Michigan
Authenticated | 141.213.236.110
Download Date | 7/5/13 4:43 PM



8.5. Lemma. We keep the same assumption as in Lemma 8.4. Define a non-negative
integer lðT 0Þ by: ðT 0Þ*=T 0 G ðZ=3ZÞ lðT 0Þ. Then

rankðT 0Þf 2lðT 0Þ:

Proof. Let x A T 0. Since

!
x; r 0ðxÞ

"
¼
!
r 0ðxÞ; ðr 0Þ2ðxÞ

"
¼
!
r 0ðxÞ;)x ) r 0ðxÞ

"
;

we get 2
!
x; rðxÞ

"
¼ )ðx; xÞ. Hence x and r 0ðxÞ generate a sublattice A2ðmÞ, where

m ¼ ðx; xÞ. From this we can find a sublattice K ¼ A2ðm1Þl ! ! !lA2ðmkÞ of T 0 of finite
index. Moreover we have ðT 0Þ*=T 0G

!
ðT 0Þ*=K

"
=ðT 0=KÞ. If mi is not divisible by 3, the

contribution from A2ðmiÞ to lðT 0Þ is at most 1. In case mi is divisible by 3, the fixed part
under r 0 in A2ðmiÞ*=A2ðmiÞ is Z=3Z. Since r acts trivially on ðT 0Þ*=T 0, the contribution
from A2ðmiÞ is at most 1. This implies the assertion. r

8.6. Lemma. We keep the same notation as in Lemma 8.4. Then RGAlr
2 and

lðSÞ ¼ 5 ) r.

Proof. Let

R ¼ R1 l ! ! !lRr

be the orthogonal decomposition of R into indecomposable root lattices Ri. We know that
Ri is isomorphic to A2 (Lemma 8.2). Obviously R*

i =Ri is Z=3Z. Since

S *=S G
!
S *=

!
fðMÞlR

""
=
!
S=
!
fðMÞlR

""
;

we have lðT 0Þ ¼ lðSÞf
!
lðMÞ þ r

"
) 2r ¼ 5 ) r. On the other hand, it follows from

Lemma 8.5 that 10 ) 2rf rankðT 0Þf 2lðT 0Þ. Hence lðSÞ ¼ 5 ) r. r

Let us summarize the previous lemmas by stating the following:

8.7. Theorem. Let ðX ; fÞ A K3m
M;r. Then X admits an automorphism s 0 of order 3

such that H 2ðX ;ZÞðs
0Þ* ¼ S, the smallest primitive sublattice of PicðX Þ which contains fðMÞ

and the sublattice R generated by all ð)2Þ-vectors in fðMÞ?XPicðXÞ. The sublattices fðMÞ
and R are orthogonal to each other and the lattice R is isomorphic to r ðe 4Þ copies of the
lattice A2. The number r will be called the degeneracy rank of ðX ; fÞ.

The degeneracy rank of ðX ; fÞ is equal to the number of nodes of the associated
nodal cubic surface (see 2.15). This is easy to see from Table 2 by computing the quotient
of MðtÞ by M ¼ U lAl5

2 and comparing the result with the value of r in Table 1. The
next theorem generalizes Lemma 6.21.

8.8. Theorem. Let ½ðX ; fÞ& A K3m
M;r. Then the M-polarization f of X defines an el-

liptic fibration. Its singular fibres are given in the column Kodaira fibres of Table 1 from
above. The Picard lattice SX and its lattice of transcendental cycles TX can be found in the
corresponding rows of Table 2 (under the assumption in Proposition 5.3). The degeneracy
rank is given in the column r in Table 1.
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Proof. By the same arguments as in 6.19, 6.20, the M-polarization on X defines an
elliptic fibration with a section. The proof of the assertion about possible combinations of
singular fibres is very similar to the proof of Lemma 6.21 and is omitted. The description of
the transcendental lattice follows from the following easy facts:

qE6 ¼ )qA2 ; qA2ð)1Þ ¼ )qA2 ; qA2 l qA2 ¼ qA2ð)1Þ l qA2ð)1Þ; qA2ð)2Þ ¼ qD4 l qA2

and Theorem 1.14.2 from [N1]. r

8.9. The Eckardt locus. Let ½ðX ; fÞ& A K3m
M;rnD

m. We know that the correspond-
ing marked cubic surface ðS;L1; . . . ;L6Þ has an Eckardt point on the unique line l inter-
secting L1; . . . ;L5 if and only if the standard elliptic fibration Ff on ðX ; fÞ has a fibre
of type I*0. In that case fðMÞ3PicðXÞ, but for general S with such property, the or-
thogonal complement fðMÞ?PicðXÞ of fðMÞ in PicðXÞ is isomorphic to A2ð2Þ. In fact if
F ¼ 2E0 þ E1 þ ! ! ! þ E4 is the fibre of type I*0 and E4 meets the section, then fðMÞ?PicðX Þ is
spanned by E1 ) E2 and E2 ) E3.

The involution t (cf. 5.6) defined by the elliptic fibration also acts on fðMÞ, via i ¼ t*,
in a di¤erent way. If all fibres are of type IV, then the action of i on fðMÞGU lA5

2 per-
mutes the simple root basis in each copy of A2. Let N ¼ fðMÞ i be the sublattice of the in-
variant elements, then

N GU lA5
1 :

However, if one of the fibres is of type I*0, then fðMÞ iGU lA2 lA4
1. The orthogonal

complement of fðNÞ in fðMÞ i is spanned by the class of the divisor E1 þ E2 þ E3. Also
r ¼ ½E1& A fðNÞ?L but not in fðMÞ.

For any ð)2Þ-vector r A N?nT HL consider the hyperplane r? in PðVþÞ of lines or-
thogonal to r. Let HðrÞi be the intersection of this hyperplane with the ball BHPðVþÞ. Let
Hi be the union of the hyperplanes HðrÞi. If an ample ðM; rÞ-marked surface ðV ; fÞ has a
fibre of type I*0 in its standard elliptic fibration Ff, then its period belongs to Hi. Let Dm

i

(resp. in Di) be the image of Hi in K3m
M;r (resp. in K3M;r). In this notation we have

8.10. Theorem. Under the isomorphism Mcub GK3M;rnD, the image of the locus of
smooth cubic surfaces with Eckardt points (the Eckardt locus) is mapped to DinðDXDiÞ.

8.11. It is well-known that any nonsingular cubic surface admits 45 tritangent
planes, i.e. planes which intersect the surface along the union of three lines. A marking of
a cubic surface defines an order on the set of tritangent planes. Let Ei be the locus of points
in Mm

cub corresponding to marked cubic surfaces which contain an Eckardt point in the i-th
tritangent plane. The Weyl group WðE6Þ acts on Mm

cub and permutes the loci Ei’s transi-
tively. Let ðS;L1; . . . ;L6Þ be a marked cubic surface and let Mi be the line on S which
meets Li and Liþ3 for i ¼ 1; 2; 3 but none of the other Lj. The Mi lie in a tritangent plane
and they meet in a point if and only if the points p1; . . . ; p6 A P2 obtained by blowing down
the Li are such that the three lines hpi; piþ3i (the images of the Mi), intersect at some point q.
Let Ej be the corresponding component of the Eckardt locus in Mm

cub. Its pre-image Z in
ðP2Þ6 consists of 6-tuples of points ðp1; . . . ; p6Þ such that the lines hpi; piþ3i, i ¼ 1; 2; 3 inter-
sect. Assigning the intersection point q to the 6-tuple defines a surjective map from Z to P2
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whose fibres, as is easy to see, are irreducible and of the same dimension. This shows that Z,
and hence Ej is irreducible. The image of each Ei in Mcub is then an irreducible hypersurface.

The irreducibility of the Eckardt locus in 8.15 follows also from our ball uniformiza-
tion of Mcub. We follow the proof given in [AF].

8.12. Lemma. Let D ¼ T *=T be the discriminant group of T as in 5.1 and
let N ¼ M i. The group WðE6Þ ¼ OðDÞ=fG1g acts transitively on the subsets of
ðD ) f0gÞ=fG1g of vectors of the same norm. There are three such subsets.

(i) The set of vectors of norm 0 has 40 elements. Each non-zero isotropic vector is re-
presented by

!
e þ 2rðeÞ

"
=3, where e A T is a primitive isotropic vector.

(ii) The set of vectors of norm )2=3 has 36 elements. Each ð)2=3Þ-vector is repre-
sented by a vector

!
r þ 2rðrÞ

"
=3 in T * with r A T , r2 ¼ )2 and

!
r; rðrÞ

"
¼ 1.

(iii) The set of vectors of norm )4=3 has 45 elements. Each ð)4=3Þ-vector in DðTÞ is
represented by r 00 where r ¼ r 0 þ r 00 A N?nT is a ð)2Þ-vector and r 0, r 00 is the projection of r
into ðN?XMÞ*, T * respectively.

Proof. If we consider T as a free Hermitian module L over Z½z3& (see 6.9), then
[ACT], [AF] define an isotropic vector, a short vector and a long vector as a vector with
Hermitian square equal to 0, )1, )2, respectively. The images of these vectors in T * with
respect to the isomorphism h : L ! T * (6.1) are vectors with square 0, )2=3, )4=3, re-
spectively. It is proven in [AF], Proposition 2.1 that there are exactly three Gr-orbits of
the images of these vectors in DðTÞ. Their cardinality is 40, 36 and 45, respectively. This
gives three orbits of O

!
DðTÞ

"
in DðTÞ of the same cardinality. The assertions (i) and

(ii) follow from the explicit formula for the isomorphism h (6.1). To prove (iii), we con-
sider an ample ðM; rÞ-polarized K3 surface X whose standard elliptic fibration acquires
fibres of type I*0. Let ~ff : L ! H 2ðX ;ZÞ be a cohomology marking with ~ffjM ¼ f. In the
notation of 8.9, we may assume that the image of the first copy of A2 of M in
PicðX Þ is spanned by E0 and E0 þ E1 þ E2 þ E3. Let r ¼ ~ff)1ð½E1&Þ. Then r A N?nT

and r 0 ¼ 1

3

!
r þ rðrÞ þ r2ðrÞ

"
¼ 1

3
~ff)1ðE1 þ E2 þ E3Þ A ðM XN?Þ*. We easily check that

r 02 ¼ )2=3. Then r 00 ¼ r ) r 0 A T * and ðr 00Þ2 ¼ )4=3. r

8.13. Moduli interpretation. Consider the three Gr-orbits of vectors from T *:

(1)
1

3

!
e þ 2rðeÞ

"
, where e is a primitive isotropic vector in T ;

(2)
1

3

!
r þ 2rðrÞ

"
, where r is a ð)2Þ-vector in T (this corresponds to a short root in L);

(3) r 00 equal to the projection of a ð)2Þ-vector r A N?nT (this corresponds to a long
root in L).

Each vector v A T * defines a hyperplane v? in PðVþÞ of lines orthogonal to v. So, we have
three Gr-orbits of such hyperplanes corresponding to vectors from the above list. It is shown
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in [AF] that there is a bijective correspondence between the GM;r-orbits of these vectors and
their images in DðTÞ. Thus each Gr-orbit consists of 40, 36, 45 GM;r-orbits, respectively.

8.14. The boundary divisors. We know that the discriminant H is equal to the
union of hyperplanes HðrÞ ¼ r?XB, where r is a ð)2Þ-vector from T . For any x A Vþ,
we can easily see that ðr; xÞ ¼ 0 if and only if

!
r þ 2rðrÞ; x

"
¼ 0. This shows that the

hyperplane corresponding to a vector of type (2) in 8.13 is one of the hyperplanes HðrÞ.
Thus the discriminant locus Dm in K3m

M;r consists of 36 hypersurfaces Dm
a (a A D=fG1g

with norm )2=3) which are permuted transitively by WðE6Þ. The discriminant locus D
in K3M;r is irreducible. It is well-known that the stabilizer of each Dm

a in WðE6Þ is
G1 ¼ S6 ( Z=2Z (see 2.12).

Take a generic point in HðrÞ. Then the corresponding K3 surface has A2ð)1ÞlAl3
2

as its transcendental lattice (see the cases 4), 5) in Table 2). The automorphism s 0 in Theo-
rem 8.7 defines a hermitian lattice structure on A2ð)1ÞlAl3

2 of signature ð1; 3Þ over the
Eisenstein integers as in 6.9. Then Dm is the quotient of HðrÞ by the stabilizer subgroup of
r in GM;r. It is known that Dm is isomorphic to the smooth locus of the Segre cubic S3 (cf.
[Hu], Chap. 3, 3.2.3). Its Satake-Baily-Borel compactification is obtained by adding 10
cusps and isomorphic to S3.

Now we fix an orthogonal basis faig of D such that qTðaiÞ ¼ )4=3. This defines an
isomorphism of quadratic forms

DF F5
3

where the quadratic form q on F5
3 is given by

qð0; . . . ; 0; 1; 0; . . . ; 0Þ ¼ ) 4

3
:

Recall that the stabilizer of a basis of D in WðE6Þ is WðD5ÞF ðZ=2ZÞ4 ! S5.

Then there are 36 ð)2=3Þ-vectors in D which are divided into two orbits of WðD5Þ.
One consists of 16 vectors containing ð1; 1; 1; 1; 1Þ and another consists of 20 vectors con-
taining ð1; 1; 0; 0; 0Þ. The stabilizer in WðD5Þ of ð1; 1; 1; 1; 1Þ is S5, and that of ð1; 1; 0; 0; 0Þ
is ðZ=2ZÞ3 ! ðS2 ( S3Þ. Note that the sum of indices of these groups in G1 is 12 þ 15 ¼ 27.
The orbit of cardinality 20 corresponds to markings such that the marked line does not
contain the node. For example, if the line corresponds to e6 under a geometric marking
defined by ðe1; . . . ; e6Þ, then the e¤ective class corresponding to the node could be either
of type ei ) ej, 1e i < j < 6 or e0 ) ei ) ej ) ek, 1e i < j < k < 6.

8.15. Eckardt loci. If v is of type (3) in 8.13 the hyperplane v?XB is equal to the
hyperplane HðrÞi defined in 8.9. Thus we obtain that the image of the Eckardt locus Dm

i

in K3m
M;r consists of 45 irreducible hypersurfaces. The Eckardt locus Di in K3M;r is irre-

ducible. This shows that the Eckardt locus in Mcub is irreducible (as promised).

8.16. Cusps. For a non-zero isotropic vector e in T we define a totally isotropic sub-
lattice
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IðeÞ :¼ he; rðeÞi ðHTÞ:

Then BX
!
P
!
IðeÞnC

""
is a cusp of B (i.e. a rational boundary component), and any

cusp of B corresponding to a parabolic subgroup of Gr is obtained in this manner.
Thus we obtain that the Satake-Baily-Borel compactification of K3m

M;r ¼ B=GM;r (resp.
K3M;r ¼ B=Gr) is obtained by adding 40 cusps (resp. one cusp). As in the case of
ð)2=3Þ-vectors, we can see that WðD5Þ acts on 40 cusps transitively, and hence the
Satake-Baily-Borel compactification of K3m

M;r=WðD5Þ is obtained by adding one cusp.

9. Extension of the isomorphism to the boundary

In this section we will extend the WðE6Þ-equivariant isomorphism

G : K3m
M;rnD

m ! Mm
cub

from Theorem 7.2 to a WðE6Þ-equivariant isomorphism

K3m
M;r GMm

ncub:

It follows from Lemma 6.21 that for any ½ðX ; fÞ& A K3m
M;rnD

m the standard elliptic fibra-
tion defined by the polarization f has the Weierstrass model as in Corollary 4.11. Let ½ðS; lÞ&
be the isomorphism class of a nonsingular cubic surface together with a line corresponding
to the pair ðF5;F2Þ under isomorphism (3.2). It follows from the construction of the map G
that the image of G

!
½ðX ; fÞ&

"
under the canonical projection Mm

cub ! Mm
cub=WðD5Þ ¼ M l

cub

is equal to ½ðS; lÞ&. Applying Theorem 8.8 and using Table 1 we see that the standard elliptic
fibration on any ðX ; fÞ defined by a point in K3m

M;r has Weierstrass model (4.12), where
ðF5;F2Þ is a stable pair of binary forms. Using the isomorphism (3.2), the pair ðF5;F2Þ de-
fines a point ½ðS; lÞ& A M l

ncub. Obviously this can be done in families, so this gives a mor-
phism K3m

M;r ! M l
ncub which obviously factors through the map

f : K3m
M;r=WðD5Þ ! M l

ncub:ð9:1Þ

By the above this map extends the isomorphism G modulo WðD5Þ.

9.1. Theorem. The map (9.1) extends to an isomorphism of compactifications:

f : K3m
M;r=WðD5Þ ! M l

ncub:

Here the compactification of the target space is the Satake-Baily-Borel compactification of
K3m

M;r=WðD5Þ (see 8.16) and the compactification of the source space is from the proof of
Theorem 3.6.

Proof. We will apply Lemma 3.4. By 8.16 both compactifications are one-point
compactifications. Since f extends an isomorphism f , it is a birational morphism. The
map is obviously surjective since we can always choose a structure of an M-polarization
on the elliptic surface defined by the Weierstrass model from (4.12). It remains to check
the last assumption from Lemma 3.4, i.e. the finiteness of fibres. For this we argue as in
the proof of Theorem 3.6. It follows from 8.14 that the complement K3m

M;rnK3m
M;r con-
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sists of 36 divisors isomorphic to the Segre cubic hypersurface. Thus the complement
K3m

M;r=WðD5ÞnK3m
M;r=WðD5Þ consists of two irreducible divisors isomorphic to a finite

quotient of the Segre cubic (minus a finite set of points). Now we can finish as in the proof
of Theorem 3.6. r

9.2. Theorem. The isomorphism K3m
M;rnD

m GMm
cub extends to a WðE6Þ-equivariant

isomorphism

K3m
M;r GMm

ncub:

Passing to the quotients it defines an isomorphism

K3M;r GMncub:

Proof. The isomorphism K3m
M;r=WðD5ÞGMm

ncub=WðD5Þ constructed in Theorem
9.1 lifts to a WðE6Þ-equivariant isomorphism K3m

M;r GMm
ncub. In fact, this is true for open

Zariski subsets defined by nonsingular cubic surfaces, hence each of the varieties is the nor-
malization of the quotient in the field of rational functions CðK3m

M;rÞ ¼ CðMm
ncubÞ. Now

we have an isomorphism a of varieties which defines a birational isomorphism of WðE6Þ-
varieties. Obviously, it is an isomorphism of WðE6Þ-varieties (for each g A WðE6Þ the maps
g + a and a + g coincide on an open Zariski subset, hence coincide everywhere). r

9.3. Corollary. The isomorphism

ðBnHÞ=GM;rGMcub

from Corollary 7.5 extends to an isomorphism

B=GM;r GMncub:

9.4. Remark. As in the proof of Theorem 9.1 (also see (3.2)) , the isomorphism

K3m
M;r=WðD5Þ !

G
M l

ncub

extends to the isomorphism of their compactifications. The geometric meaning is as follows.

The strictly semistable cubic surface defined by

X 3
3 ) X0X1X2 ¼ 0ð9:2Þ

(cf. [ACT], (4.6)) has three double rational points of type A2 and has only three lines
which lie in one AutðSÞ-orbit. This defines three planes in the cubic fourfold X defined by
X 3

5 þ X 3
4 þ X 3

3 ) X0X1X2 ¼ 0 (one such plane is P: X2 ¼ X3 ¼ X4 þ X5 ¼ 0) and projec-
tion away from such a plane defines a quadric bundle structure on X . The discriminant
curve is easily computed and is a sextic given by

t2

!
L1ðt0; t1Þ3L2ðt0; t1Þ2 þ t3

2L2ðt0; t1Þ2" ¼ 0;ð9:3Þ

where L1, L2 are independent linear forms.
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It follows from Proposition 3.2 that the pair ðF5;F2Þ ¼ ðL3
1L2

2;L
2
2Þ represents a semi-

stable but not stable point in P
!
Vð5Þ

"
( P

!
Vð2Þ

"
whose orbit is closed in the set of

semi-stable points. The corresponding point in
!
P
!
Vð5Þ

"
( P

!
Vð2Þ

""ss
==SLð2Þ compacti-

fies
!
P
!
Vð5Þ

"
( P

!
Vð2Þ

""s
=SLð2Þ. Thus we see that M l

ncub admits a one-point compactifi-
cation corresponding to the surface (9.2) together with its unique (up to automorphism)
line.

The sextic curve (9.3) appears as a semistable sextic in Shah [Sha], Theorem 2.4,
Group II, (2). The double cover X of P2 branched along this sextic is a Type II degenera-
tion of K3 surfaces, i.e. corresponding to a point on an 1-dimensional rational boundary
component of the period domain of polarized K3 surfaces of degree 2 (¼ a bounded sym-
metric domain of type IV and of dimension 19). The 1-dimensional rational boundary com-
ponents of a bounded symmetric domain of type IV bijectively correspond to the set of to-
tally isotropic primitive sublattices of rank 2 of its underlying lattice of signature ð2; rÞ. In
our situation, r-invariant totally isotropic primitive sublattices of rank 2 of T correspond to
the set of cusps of B. Thus X corresponds to the boundary of the Satake-Baily-Borel com-
pactification of K3m

M;r=WðD5Þ.

9.5. Configurations of 7 points in P1. Recall from Theorem 3.6 that we have a nat-
ural isomorphism

M l
ncub G

!
P
!
Vð5Þ

"
( P

!
Vð2Þ

""s
=SLð2Þ;

where
!
P
!
Vð5Þ

"
( P

!
Vð2Þ

"" 0
is the open subset corresponding to stable pairs of binary

forms ðF5;F2Þ. Consider the product ðP1Þ7 as the product ðP1Þ5 ( ðP1Þ2. We have an iso-
morphism

c : ðP1Þ7=S5 ( S2 ! P
!
Vð5Þ

"
( P

!
Vð2Þ

"
:

Let p : ðP1Þ7 ! P
!
Vð5Þ

"
( P

!
Vð2Þ

"
be the composition of the quotient map and c and

L ¼ p*!OPðVð5ÞÞð2Þr(OPðVð2ÞÞð1Þ
"
Gr(5

i¼1
OP1ð2Þn

!
OP1ð1Þr(OP1ð1Þ

"
:

Since the stability is preserved under the action of finite groups, we see that semi-stable
(stable) points in P

!
Vð5Þ

"
( P

!
Vð2Þ

"
with respect to the action of SLð2Þ and the linea-

rization defined by the invertible sheaf OPðVð5ÞÞð2Þr(OPðVð1ÞÞð1Þ correspond to semi-stable
(stable) points in ðP1Þ7 with respect to the diagonal action of SLð2Þ and the linearization
defined by the line bundle L. Let

P1ð25; 1; 1Þ ¼
!
ðP1Þ7"s

=SLð2Þ:

We have

!
P
!
Vð5Þ

"
( P

!
Vð2Þ

""s
=SLð2ÞGP1ð25; 1; 1Þ=S5 ( S2:

We know that M l
ncub ¼ Mm

ncub=WðD5Þ. The group WðD5Þ is equal to the semi-direct
product ðZ=2ZÞ4 yS5. Here S5 is the subgroup of WðD5Þ which acts on markings on non-
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singular surfaces by permuting the divisor classes e1; . . . ; e5: It stabilizes the divisor class
2e0 ) e1 ) ! ! ! ) e5 of a line l. The subgroup H ¼ ðZ=2ZÞ4 is generated by the conjugates
of the product of two commuting reflections se0)e1)e2)e6 + se1)e2 . Let l 0i be the lines repre-
senting the classes e0 ) ei ) e6. Then H acts by switching even numbers of li’s with l 0i ’s.
The proof of Theorem 3.6 shows that the map M l

ncub !
!
PðV5Þ ( PðV2Þ

" 0
=SLð2Þ induces

an S5-equivariant isomorphism

Mm
ncub=H GP1ð25; 1; 1Þ=S2:

9.6. Monodromy groups. According to Deligne and Mostow [DM], the variety
P1ð25; 1; 1Þ is isomorphic to the quotient of a complex 4 ball by a reflection subgroup P 0

corresponding to hypergeometric function defined by the multi-valued form

o ¼ z)1=6½ðz ) 1Þðz ) a1Þðz ) a2Þðz ) a3Þðz ) a4Þ&)1=3 dz:

They also show that P 0 and S2 generate a reflection subgroup P such that the ball quo-
tient is isomorphic to P1ð25; 1; 1Þ=S2. As shown in 4.17, X is the minimal model of a
quotient ðC ( EÞ=ðZ=6ZÞ: This correspondence gives us an isogeny between our group Gr

and P.

10. Half twists

10.1. To a smooth cubic surface S one can associate a principally polarized Hodge
structure of rank 10 and weight 1, it is H 1ðP;ZÞ where P is the intermediate Jacobian of the
cubic threefold V (cf. 4.15) associated to S. In [ACT], see also [MT], it is shown that this
Hodge structure, with its automorphism of order three, determines S.

The automorphism of order three defines the structure of a free Z½z&-module on
H 1ðP;ZÞ. It defines eigenspaces H 1;0ðPÞw and H 1;0ðPÞw of dimension 4 and 1 respectively.
This allows one to define a weight two Hodge structure W , with Hodge numbers ð1; 8; 1Þ,
and with the same underlying lattice W ¼ H 1ðP;ZÞ as follows:

W 2;0 ¼ H 1;0ðPÞw; W 1;1 ¼ H 1;0ðPÞw lH 0;1ðPÞw; W 0;2 ¼ H 0;1ðPÞw;

in fact it is easy to check that W p;q ¼ W q;p. The automorphism of order three of H 1ðP;ZÞ
preserves this decomposition, hence also W has an automorphism of order three. The po-
larization E on H 1ðP;ZÞ defines a Q½z3&-valued Hermitian form H on H 1ðP;ZÞGZ½z3&5
(cf. [ACT]) with imaginary part E. The real part Q of H is a polarization of W . The lattice
ðW ;QÞ is of type A4

2 lA2ð)1Þ. The polarized Hodge structure ðW ;QÞ is the (negative)
half twist of

!
H 1ðP;ZÞ;E

"
([vG1]).

10.2. The lattice ðW ;QÞGAl4
2 lA2ð)1Þ has a unique (up to an isometry) embed-

ding in the K3 lattice L and the automorphism of order three on W extends to an automor-
phism of order three on the K3 lattice. The polarized Hodge structure ðW ;QÞ is invariant
under this automorphism and defines a K3 surface with an automorphism of order three.
So the half twist of H 1ðP;ZÞ provides a purely Hodge theoretic approach to the K3 sur-
faces which were constructed as triple covers of cubic surfaces in this paper.
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[DS] R. Donagi, R. C. Smith, The structure of the Prym map, Acta Math. 146 (1981), 25–102.
[F] E. Freitag, A graded algebra related to cubic surfaces, Kyushu J. Math. 56 (2002), 299–312.
[vG1] B. van Geemen, Half twists of Hodge structures of CM-type, J. Math. Soc. Japan 53 (2001), 813–833.
[vG2] B. van Geemen, A linear system on Naruki’s moduli space of marked cubic surfaces, Internat. J. Math. 13

(2002), no. 2, 183–208.
[HL] G. Heckman, E. Looijenga, The moduli space of rational elliptic surfaces, Algebraic Geometry 2000, Azu-

mino, Adv. Stud. Pure Math. 36 (2002), 185–248.
[Hu] B. Hunt, The geometry of some special arithmetic quotients, Springer Lect. Notes Math. 1637 (1996).
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[Ko2] S. Kondō, The moduli space of curves of genus 4 and Deligne-Mostow’s complex reflection groups, Alge-

braic Geometry 2000, Azumino, Adv. Stud. Pure Math. 36 (2002), 383–400.
[Lo] E. Looijenga, Rational surfaces with an anticanonical cycle, Ann. Math. 114 (1981), 267–322.
[MSY] K. Matsumoto, T. Sasaki, M. Yoshida, The monodromy of the period map of a 4-parameter family of K3-

surfaces and the hypergeometric function of type ð3; 6Þ, Internat. J. Math. 3 (1992), 1–164.
[MT] K. Matsumoto, T. Terasoma, Theta constants associated to cubic threefolds, J. Alg. Geom. 3 (2003),

741–775.
[Mos] G. W. Mostow, On discontinuous actions of monodromy groups on the complex n-ball, J. A. M. S. 1

(1988), 555–586.
[Mu] D. Mumford, The red book of varieties and schemes, Springer-Verlag, 1988.
[Na] Y. Namikawa, Periods of Enriques surfaces, Math. Ann. 270 (1985), 201–222.
[Nar] I. Naruki, Cross ratio variety as a moduli space of cubic surfaces (Appendix by E. Looijenga), Proc.

London Math. Soc. 45 (1982), 1–30.
[N1] V. V. Nikulin, Integral symmetric bilinear forms and its applications, Math. USSR Izv. 14 (1980),

103–167.
[N2] V. V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups

generated by 2-reflections, J. Sov. Math. 22 (1983), 1401–1475.
[N3] V. V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of type K3, Moscow Math. Soc. 38

(1980), 71–137.
[PS] I. Piatetski-Shapiro, I. R. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Math. USSR

Izv. 5 (1971), 547–587.
[Sa1] G. Salmon, A Treatise on the Analytic Geometry of Three Dimensions, Longmans and Green, 1912–1915;

reprinted by Chelsea Publ. Co., 1965.
[Sa2] G. Salmon, A Treatise on the Higher Plane Curves, Hodges, Foster and Figgis, Dublin 1879; reprinted by

Chelsea Publ. Co., 1960.
[Sha] J. Shah, A complete moduli space for K3 surfaces of degree 2, Ann. Math. 112 (1980), 485–510.
[Shi] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59.
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[Voi] C. Voisin, Théorème de Torelli pour les cubiques de P5, Invent. Math. 86 (1986), 577–601.
[Vor] S. P. Vorontsov, Automorphisms of even lattices that arise in connection with automorphisms of algebraic

K3 surfaces, Vest. Mosk. Univ. Math. 38 (1983), 19–21.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
e-mail: idolga@umich.edu
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