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ARRANGEMENTS OF HYPERPLANES AND VECTOR
BUNDLES ON P

I. DOLGACHEV AND M. KAPRANOV

Introduction. Let X be a smooth algebraic variety and D be a divisor with
normal crossing on X. The pair (X, D) gives rise to a natural sheaf fx(log D) of
differential 1-forms on X with logarithmic poles on D. For each point x X the
space of sections of this sheaf in a small neighborhood of x is generated over (gx,
by regular 1-forms and by forms d log f where f 0 is a local equation of an
irreducible component of D containing X. This sheaf (and its exterior powers) was
originally introduced by Deligne [De] to define a mixed Hodge structure on the
open variety X D. An important feature of the sheaf t2x(log D) is that it is locally
free, i.e., can be regarded as a vector bundle on X.

In this paper we concentrate on a very special case when X pn is a projective
space and D H1 ’"Hm is a union of hyperplanes in general position. It turns
out that the corresponding vector bundles are quite interesting from the geometric
point of view. It was shown in an earlier paper [K] of the second author that in
this case f,(log D) defines an embedding of Pn into the Grassmann variety
G(n, m 1) whose image becomes, after the Pliicker embedding, a Veronese variety
v,m-3, i.e., a variety projectively isomorphic to the image ofP under the map given
by the linear system of all hypersurfaces of degree rn- 3. In the case when the
hyperplanes osculate a rational normal curve in P", the bundle ,(log D) coincides
with the secant bundle E of Schwarzenberger [Schwl-2-]. The corresponding
Veronese variety consists in this case of chordal (n 1)-dimensional subspaces to
a rational normal curve in pm-Z.
The main result of this paper (Theorem 7.2) asserts that in the case m > 2n + 3

the arrangement of rn hyperplanes {H1, Hm} can be uniquely recon-
structed from the bundle E(Ct) f,,(log )H) unless all of its hyperplanes
osculate the same rational normal curve of degree n. To prove this we study the
variety C(t) of jumping lines for E(’). The consideration of this variety is
traditional in the theory of vector bundles on pn (see [Bar, Hu-l). In our case this
variety is of some geometric interest. For example, if n 2, i.e., we deal with rn lines
in p2, then (in the case of odd m) C(g) is a curve in the dual p2 containing
the points corresponding to lines from . The whole construction therefore gives
a canonical way to draw an algebraic curve through a collection of points in (the
dual) p2.

For 5 points pl P5 in p2 this construction gives the unique conic through p.
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For 7 points Px, P7 the construction gives a plane sextic curve for which p
are double points. A nonsingular model of this curve is isomorphic to the plane
quartic curve of genus 3 which is classically associated to 7 points via Del Pezzo
surfaces of degree 2 (see [C2] [DO]).

For an even number of lines in p2 the set of jumping lines is typically finite. In
this case, more interesting is the curve ofjumpin# lines of second kind introduced by
Hulek [Hu-I. The study of this curve will be carried out in the subsequent paper
[DK].

Let us only formulat the answer for 6 lins (considered as points p,, pe in
the dual plane). In this ease Hulek’s urw will be a sextie of gnus 4 of which p are
nodes. It is described as follows. Blow up the points p. The result is isomorphic to
a cubic surface $ in PS. Th invers images of the points p and the strict preimags
of quadries through various 5-tuples of p form a Sehlifli doubl sixer of lines on
the cubic surface. To eaeh such double sixr there is dassieally assodated a quadrie
Q in ps called the $cfiur quadric [Schur], [R] (see also [B], p. 162). It is uniquely
characterized by the property that the corresponding pairs of lines of the double
sixer are orthogonal with respect to Q. Our sextie curve in P lifted to the surfa
S becomes the intersection S c Q.

In fact, much of Hulek’s general theory of stable bundles on p2 with odd first
Chern class can be neatly reformulated in terms of (suitably generalized) Schur
quadrics. This will be done in [DKI.
Thus our approach gives a unified treatment of many classical constructions

associating a curve to a configuration of points in a projective space. It appears that
a systematic study of logarithmic bundles in other situations (like surfaces other
than p2) will provide a rich supply of concrete examples and give additional insight
into the geometry related to vector bundles.
We would like to thank L. Ein and H. Terao for useful discussions and correspon-

dence related to this work.

1. Arrangements of hyperplanes.

1.1. Let V be a complex vector space of dimension n + 1 and P" P(V) be the
projective space of lines in V. Let (H, H,) be a set (arrangement) of
hyperplanes in P". Dually it defines a set (a configuration) of m points in the dual
vector space a6" P(V*). We say that is in (linearly) general position if the
intersection of any k < n + 1 hyperplanes from X is of codimension exactly k.
Throughout this paper we shall mostly deal with arrangements in general position.

1.2. We choose a linear equation f V* for each hyperplane H of g. This
system of choices defines a linear map

The kernel of this map will be denoted by le. It consists of linear relations between
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the linear forms f. By transposing, we obtain a linear map

cz: (cm)* I. (1.1)

Assume that m > n + 2 so that Ie -: 0. After making a natural identification be-
tween the space C and its dual space (cm)* (defined by the bilinear form xyi),
we obtain from the map (1.1) m linear forms on the space le, i.e., an arrangement
ofhyperplanes in P(Ir). We denote the arrangement thus obtained by tas and refer
to it as the associated arrangement. It is clear that is in general position if and
only if the restriction of the map e to any coordinate subspace Ck in C" with
k < n + is of maximal rank. This implies that oC, is in general position if and
only iff is. In the latter case, the dimension of P(Ie) is equal to m n 2. From
now on whenever we speak about the association we assume that the arrangements
are in general position. Note that to define the map e we need a choice of order
on the set of hyperplanes from 9ft. Making this choice we automatically make a
choice of order on the set
The notion of association was introduced by A. Coble [C1]. For modern treat-

ment see [DO]. This notion was rediscovered, under the names "duality" or
"orthogonality" several times later, notably in the context of combinatorial
geometries (see [CR], 11) and hypergeometric functions (see [GG]).

Obviously the association is a self-dual operation, so (ocda) , where we make
the canonical identification between the spaces V and V**.

Let V and I be two vector spaces ofdimensions n + 1 and m n 1 respectively,
and let )ff and )if’ be two arrangements of m hyperplanes in P(V) and P(I)
respectively. We shall say that and ’ are associated if there is a projective
isomorphism P(I) P(Ie) taking A" to the associated configuration )f(,,s (matching
the ordering, if it was made). In particular, when m n + 2, we can speak about
self-associated configurations.
By duality we can speak about associated configurations of points in projective

spaces. The following proposition (equivalent to a result by A. Coble) gives a
criterion of being associated (resp. self-associated) in terms of the Segre (resp.
Veronese) embedding. We state it in terms of configurations of points.

1.3. PROPOSITION. (a) Let V, I be vector spaces of dimensions n + 1 and m n
1 respectively. Let Pi P(V), qi P(I), 1,..., m, be two configurations of rn points.
Let s(pi, qi) P(V (R) I) be the image of the pair (Pi, qi) with respect to the Segre
embedding s: P(V) x P(I) - P(V (R) I). The configurations of points (P1,..., Pro) and
(q l, q,) are associated to each other if and only if the points s(pi, qi) are projec-
tively dependent but any proper subset of them is projectively independent.

(b) Let V be a vector space of dimension n + 1 and p P(V), 1,..., 2n + 2 be
a configuration of points. Let v(pi) p(S2z) be the image of pi under the Veronese
embedding v: P(V) - p(S2V). The configuration (Pl, P2n+2) is self-associated if
and only if the points v(pi) are projectively dependent but any proper subset of them
is projectively independent.
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Proof. (b) follows from (a). For the proof of (a), see, e.g., [K].

1.4. Let g be an arrangement of m hyperplanes in P(V) and gas be the
associated arrangement in the space P(Ie). Let

Define a linear map

by the formula

tr((al, am), v) (afa (v), amfro(V)).

This map considered as an element of the tensor product lr (R) V* (R) W will be of
considerable importance in the sequel. We shall refer to it as the fundamental tensor
of the configuration ocg.

It is clear that the fundamental tensor teas (Iras)* (R) le (R) W V* (R) I (R) W
of the associated configuration gas is obtained from the fundamental tensor Te e

I (R) V* (R) W by interchanging of factors in the tensor product.
In coordinates, fixing a basis e:, e,+ in V and its dual basis in V*, let

A Ilajll<i<,+l,<j<m be the matrix whose columns are the coordinates of the
linear functions f and B Ilbll.<<m-,-,<< be a similar matrix for the asso-
ciated arrangement. We can choose B in such a way that B o A 0. Then the
coordinates of the tensor tr are given by the formula

(t)jk bikakj.

1.5. PROPOSITION. Suppose that ff is in general position. Then for any nonzero
vector v V, the linear operator te(v): Ie W defined by the fundamental tensor te,
is injective.

Proof. If (aa,..., am) e Ker(tr(v)), then af(v) 0 for all 1, m. Let J
{i: f(v)= 0}. Then for any i J we have at 0. Since g is in general position,
JI < n. Hence af 0 is a nontrivial linear relation between < n linear functions
among f. This contradicts the assumption of general position for ocg.

2. Logarithmic bundles.

2.1. Let (H,..., Hm) be an arrangement of m hyperplanes in P" P(V)
in general position. We shall define the divisor H also by acg. This divisor has
normal crossing. This means that for any point x P", its local equation can be
given by t... tk 0 where t,..., tk is a part of a system of local parameters at x.
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In this situation one can define the sheaf t2,(log f) of differential 1-forms with
logarithmic poles along vf (see [De]). It is a subsheaf of the sheaf j,fb where
U P" f and j: U P" is the embedding. If x e P" and x... tk 0 is a local
equation of the divisor f near x, as above, then the section of fl,(log f) near x
are meromorphic differential forms which can be expressed as co + ud log t
where co is a 1-form and u are functions, all regular near x. It is not difficult to see
that the sheaf t2,,(log f) is locally free of rank n (see [De]).
We shall denote the sheaf f,(log f) by E() and call it the looarithmic bundle

associated to ’. It will be the main object of study in this paper. We will not make
a distinction between vector bundles and locally free coherent sheaves of their
sections.

2.2. The sheaf E(Cf)* dual to E(rf) has a nice interpretation in terms of vector
fields. We say that a regular vector field 0 defined in some open subset U c P" is
tangent to if for any x U, the vector c0(x) lies in the intersection of the tangent
hyperplanes at x to all H containing x. (In particular, c0(x) 0 if x is a point of
n-tuple intersection.) Such fields form a coherent subsheaf Tp,(log f) in the tangent
sheaf T,,. It is easy to see by local calculations that this sheaf is isomorphic to the
dual sheaf E(cf)*.

2.3. PROPOSITION. Let e: H Pn be the embeddin# map. We have the canonical
exact sequence of sheaves on P

0 f, E(Vg’) ) at, Con, 0 (2.1)
i=1

where res is the Poincard residue morphism defined locally by the formula

axd log tx + ""+ akd log k q- bk+ dtk+ q-"’" -k b dt.

(a(x),..., ak(x), 0,..., O)

where (tx tn) is a system of local coordinates at x such that x... tk 0 is a local
equation of the divisor at x.

Proof. See [-De].

The next two propositions follow simply from the above exact sequence.

2.4. PRO’OSITION. The Chern polynomial c(E(;,’rf)) ci(E(f))t of the bundle
E(’f) is given by

c(E(gf’)) (1 ht)-m+"+x

where h is the class of a hyperplane in P". In particular, the determinant/" E(/f) is
isomorphic to the line bundle Co(m n 1)on P".
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2.5. PROPOSITION. (a) The space H(P, E(f)) has dimension m 1 and consists

of forms

2 e,d log f d log f’ e, s t2, 2 e, 0.
i=1 i=1

(b) More generally, dimH(E(f’)(k))(n+l)(k+n-1) (k+n)
(c) H(E(,)(k)) 0 for 1 < < n 2 and any k e .
Note that we can now identify the space I-I(P, E(,f)) with the space W intro-

duced in 1.4.

2.6. The logarithmic bundles can be obtained from the bundlef by applying
elementary transformations of vector bundles. These transformations were intro-
duced first in the case of vector bundles over curves by A. Tyurin IT], and their
general definition is due to Maruyama [Ml-2]. Let us recall this concept.

Let E be a rank r vector bundle over a smooth algebraic variety X and Z c X a
hypersurface. Denote by i: Z--, X the embedding. Suppose that we have chosen
some quotient bundle F of the restriction i*E. Then we have a surjective map of
sheaves E i,F on X. We define the coherent sheaf Elm. as the kernel of this
surjection. It is easy to see that it is locally free of rank r, i.e., can also be regarded
as a vector bundle. This bundle is called the elementary transformation of E along
(Z, F).
Note than when E is a line bundle and F i’E, then Elm],r is just the twisted

sheaf E(- Z).

2.7. The bundle E can be reconstructed from its elementary transformation by
applying the "inverse" elementary transformation Elm,,e. In the situation of 2.6,
the definition of Elm/ is as follows. Let E(Z) be the sheafwhose sections are sections
ofE with simple poles along Z. Then Elm,.r(E) is a subsheaf of E(Z) whose sections
after multiplying by the local equation of Z belong to Elm],r(E) Ker(E i’F}.
It is easy to see that Elm/ and Elm- are mutually inverse operations.

2.8. For any < < m let f< be the truncated arrangement (H,..., H). By
definition, f<0- and E(<o)= f,. The residue exact sequence from 2.3
induces the exact sequence

0 (e.,_) --, (.,) ,, ,,. 0.

Passing to the dual exact sequence and using the adjunction formula we find the
exact sequence

0 E(,<,)* --, E(rt’<,_)* e,, (gn(1) 0. (2.2)

Thus, by definition, we obtain the following.
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2.9. PROPOSITION. For each < m we have isomorphisms

E(<_I) Elm,,,.e,,,(E(3Ct<)),
),E(<,) Elm,.,,%tl)(E(3<,_ ).

It is the second isomorphism which will be useful for us in 5 later.

2.10. PRO’OSITION. Assume < m < n + 1. Then

Proof. Since m < n + 1, we can choose homogeneous coordinates x 1,..., xn/l
in pn P(V) such that the hyperplane H, < < m, is given by the equality x 0.
By Serre’s theorem [HI coherent sheaves on pn correspond to graded
C Ix 1,..., xn/ ]-modules (modulo finite-dimensional ones), the correspondence be-
ing given by )H(Pn, (i)). We shall describe the module corresponding
to E(,Ct). Denote this module by M’. The ring C[x:, Xn+l] will be denoted
shortly by A.
Denote by xt3/3x the Euler vector field on K By Lie and i we shall denote

the Lie derivative along and the contraction of 1-forms with .
Let 3 c V be the configuration of coordinate hyperplanes {x 0}, 1,

m. Let M be the space of all global sections of the sheaf f/,(log t) on V. It is a
graded A-module; the graded component Mr consists offorms o such that Lie co

It is clear that the space of section H(Pn, E()(p)) can be identified with the
subspace in Mr consisting of forms o9 such that ieco 0. Hence our module M’
corresponding to E() is the kernel of the homomorphism M --. A given by i.
The graded A-module M is free: it is isomorphic to A ) An-m( 1) with the basis

d log x, d log Xm, dxm+,..., dxn/, the first m elements being in degree 0, the
remaining ones in degree 1. Since ie(d log x) 1, ie(dxi) xi, we find that M’ is the
kernel of the homomorphism

Am@ An-m(-1)--.A,
m n+l

(a, an) aj + ajxs. (2.3)
j=l j=m+l

However, an element (a,, an) from the kernel of (2.3) is uniquely determined by
the components (a2 an) which may be arbitrary: we just define al to be equal
to -(E’= aj + Ej +"=m+, aSxs). This means that M is isomorphic to
A(-1)n-m+1 as a graded A-module. Hence, by Serre’s theorem, E(g)-
(pn)@(m-l) ( (pn(-- 1)n+l-m.

2.11. The logarithmic bundles can be used to define a map from the projective
space to a Grassmannian with the image isomorphic to a Veronese variety. Let us
explain this in more detail.
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+d

By a Veronese variety, we mean a subvariety in a projective space P(nn)-1 which
is projectively isomorphic to the image of the Veronese mapping

+d
pn P(V) - P(nn )-1 p(sdv). (2.4)Vn, d:

Let E be a vector space of dimension n + d and G(n, E) the Grassmannian of
n-dimensional linear subspaces in E. We shall often identify it with the
Grassmannian G(d, E*) of d-dimensional subspaces in the dual space E*. Consider
its Plficker embedding

G(n, E) P E P(nn )-. (2.5)

Note that the dimensions of the ambient spaces for the Plficker embedding and the
Veronese embedding coincide. Therefore it makes sense to speak about n-dimen-
sional Veronese varieties in the Grassmannian G(n, E). The following result, proven
in [K], shows that the logarithmic bundle E() defines an embedding of P" into a
Grassmannian whose image is a Veronese variety.

2.12. THEOREM. Let be an arrangement of m n + 2 hyperplanes in P" in
general position. Denote by W the space H(P", E()) C-. For any point x e P"
consider the subspace of W consisting of all sections vanishing at x, and let g(x) be
the dual subspace of W*. Then:

(a) the dimension of Cg(x) equals n for all x e P";
(b) the correspondence x Cg(x) is a regular embedding : P" G(n, W*);
(c) the image Cg(P") in G(n, W*) becomes, after the Plficker embedding

G(m n 1, W) P(" W*), a Veronese variety.

In particular, E() is the inverse image of the bundle * on G(n, W*) where
is the tautological subbundle over G(n, W*).

2.13. COROLLARY. Assume that m n + 2. Then E() Te,(- l) where Te. is
the tangent bundle of P".

Proof. Since dim(W)= n + l, the map Cg defines an isomorphism P"=
P(V) G(n, W*) G(1, W) P(W). In this case the tautological subbundle on
G(n, W*) is isomorphic to (1). Hence E() is isomorphic to Tv.(- 1).

2.14. Let us call a rank-n vector bundle E on P" normalized if c(E)e
{0, l, -n + 1}. If E is any rank-n vector bundle E on P" and c(E) na + b
where a e Z, b e {0,- 1, -n + l} then we denote by E,om the normalized
bundle E(-a).

In our case c(E())= m- n- 1 so the normalized bundle E,o( has the
form E()(-d + 1), where m 1 + nd + r, 0 r n 1. Its first Chern class
equals r n. The case when the first Chern class of the normalized bundle is zero,
i.e., when m = nd + 1, will play a special role for us since many results below rely
on a good theory ofjumping lines for bundles with c 0 (see [Bar]).
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3. Steiner bundles.

Vector bundles of logarithmic forms turn out to belong to a more general class
of bundles remarkable for the existence of a very simple resolution.

3.1. DEFINITION. A vector bundle E on P" P(V) is called a Steiner bundle if E
admits a resolution of the form

0 I (R) (gv,(- 1)- W(R)(_ge,EO (3.1)

where I and W are vector spaces identified with the corresponding trivial vector
bundles.

The bundles of this type were considered earlier by several people (see I-El [BS]).
The name "Steiner bundles" will be explained later in this section.
Note that applying the exact sequence of cohomology, we immediately obtain

W - H(P", E), I - H(Pn, E (R) ,,(1)). (3.2)

3.2. PROPOSITION. A vector bundle E is a Steiner bundle if and only if the
cohomology groups Hq(P, E (R) ’(p)) vanish for all q > 0 and also for q O, p > 1.
The resolution (3.1) is defined functorially in E. More precisely, the map z: I (R)
0e, 1) W (R) (ge, in this resolution is the only nontrivial differential d-l’: E-1’ -EOt, o of the Beilinson spectral sequence with the first term

E H(P", F (R) -’(-p)) (R) (_9(p)

converging to E in degree 0 and to 0 in degrees :/: O.

The proposition follows easily from considering the Beilinson spectral sequence
(see [E], Proposition 2.2).

3.3. COROLLARY. The property of being a Steiner bundle is an open property.

3.4. A map z between sheaves I (R) (ge,(- 1) and W (R) (_ge,, as in (3.1), is uniquely
determined by a tensor

e Hom(V, Hom(I, W)) V* (R) I* (R) W. (3.3)

This tensor should be such that the map is fiberwise injective.
Thus we see that the fundamental tensor tr of an arrangement of hyperplanes in

P" (see 1.4) allows one to define a coherent sheaf as the cokernel of the map

ze: I (R) (.ge,(- 1) W (R) (.0e,. (3.4)

Here the spaces I I and W are defined in 1.2 and 1.4 respectively. It turns out
that this sheaf is isomorphic to our logarithmic bundle E().
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3.5. THEOREM. Let 3( be an arrangement of m hyperplanes in general position in

P(V). Suppose that m > n + 2. Then the logarithmic bundle E() is a Steiner bundle.
The corresponding tensor is the fundamental tensor tje of the configuration .

Proof. Let v V be a nonzero vector. The fiber of the map (3.4) over the point
Cv P(V) has, in the notation of 1, the form

tr(v): I W, (at,..., am) t-- (at f(v),..., amfro(V)). (3.5)

TO prove our theorem, we shall construct, for any v, an explicit isomorphism
between Coker tr(v) and the fiber at Cv of the bundle E(JCt). Consider the map of
vector spaces

no: W E()co, (at,..., am) - _, ai(d log f/)lcv, (3.6)

where E(JCt)cv is the fiber of E(cd) at Cv. It follows from Theorem 2.12 (a) that no is
a surjection. Thus our theorem is a consequence of the following lemma.

3.6. LEMMA. We have Ker no Im t(v). In other words, a section 2id log f/,
2i 0 of the bundle E() vanishes at Cv if and only if 2i aifi(v) for some

(at am) I.
Proof. It suffices to show that Im te(v) c Ker no since the spaces in question

have the same dimension.
Let J {i: Cv n} and nj jn. A section 09 of E() vanishes at Cv if

and only if 09 is regular near Cv as a 1-form and, moreover, vanishes on the tangent
subspace to H.

Suppose that 2i af(v) where (at,..., am) Ir. Then for J we have 2i 0
since f 0 on H. Hence the form 09 2d log f is regular at Cv. Let V be
such that f() 0 for J, i.e., represents a vector tangent to H at Cv. Then the
value of e9 on this tangent vector equals

This proves the lemma and hence Theorem 3.5.

Let us mention that is possible to give an alternative proof of Theorem 3.5 by
using Proposition 3.2.

3.7. Let E be a rank-r Steiner bundle on pn given by the resolution (3.1). We
have noticed already that W H(Pn, E). It is obvious that E is generated by its
global sections. Hence we obtain a regular map 7: pn G(r, W*) that takes a point
x pn into the dual of the subspace of sections vanishing at x. This map can be
defined "synthetically" by means of the following "Grassmannian Steiner construc-
tion" [K-i.
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Let rn dim(W) + 1 so that dim(l) tn 1 r. Take rn r- 1 projective
subspaces L1,..., Lm--x in the projective space P(W*), each of codimension n + 1.
Denote by ]L[ the "star" of L, i.e., the projective space of dimension n formed by
hyperplanes in P(W*) containing L. Identify all the stars ]L[ with each other by
choosing projective isomorphisms : P" ]L[. Suppose that for any x P" the
corresponding hyperplanes k(x) are independent. Consider the locus of subspaces
in P(W*) ofcodimension m r 1 (i.e., ofdimension r 1) which are intersections
of the corresponding hyperplanes from stars ]L[, i.e., the subspaces of the form

x pn. (3.7)

This locus lies in G(n, W*). It is called the Grassmannian Steiner construction. This
is a straightforward generalization of the classical Steiner construction of rational
normal curves; see [GH], Ch. 4, 3. The following proposition shows that this
construction is equivalent to that of Steiner bundle. This explains the name.

3.8. PROPOSITION. Let X be a projective space of dimension n embedded in some
way into the Grassmannian Gn(W) of codimension-n subspaces in W, dim(W) m
1. Let Q be the rank-n bundle on G"(W), whose fiber over a subspace L c W is W/L.
Let E be the restriction of Q to x. The possibility of representing X by the
Grassmannian Steiner construction is equivalent to the fact that E is a Steiner bundle.

Proof. The choice ofm n 1 parametrized star (]Li[, i: P" P(V)- ]Li[
is equivalent to the choice of m n 1 surjective linear operators a: W* --* V*.
Namely, given such a, we associate to any hyperplane in V*, i.e., to any point of
P(V) its inverse image under a. Thus a point z 6 G"(W) corresponding to x P(V)
is Ker(ai(x)). Define a linear map A: Cm-"-I - Hom(W*, V*) by setting ai
A(ei) where el,..., e,_n_ is the standard basis of Cm-"-. Denote the space Cm-"-I

by I. This defines a tensor 6 I* (R) I4/(R) V* which, in its turn, defines a morphism
of sheaves I (R) (9,tv)(- 1) W (R) (9,(v). Our bundle E must be the cokernel of
this morphism. Indeed, dualizing, we have to show that E* is the kernel of the
dual map W*(R) tO,(v I*(R) to,tv)(1 ). This is defined by a linear map At: V
Hom(W*, I*) associated to t. The fiber of this bundle over a point Cv of P(V) is
equal to the kernel of the linear map At(v): L* - I*. The latter is dual to the point
ofX G"(W) corresponding to x. This identifies the fibers. The converse reasoning
is obvious.

3.9. PROPOSITION [E]. The rank of a nontrivial Steiner bundle on P" is greater
than or equal to n.

Proof. Let r be the rank. A Steiner bundle is given by a linear map V-
Hom(l, W) where dim(l)= dim(W)- r. Let D be the subvariety of Hom(l, W)
consisting of linear maps ofnot maximal rank. It is well known that its codimension
equals r / 1 (see [ACGH], p. 67). Therefore if V is of dimension > r + 1, every
linear map t: V Hom(I, W) will map some nonzero vector v 6 V to a matrix of
not maximal rank. This does not occur for Steiner bundles.
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Thus logarithmic bundles provide examples of Steiner bundles of maximal possi-
ble rank. In the rest of this section we shall consider only rank-n Steiner bundles on
pn.

3.10. Recall that a vector bundle E is called stable iffor any torsion-free coherent
subsheaf F c E we have

deg(F)/rk(F) < deg(E)/rk(E).

It is well known that the property of stability is preserved under tensoring with
invertible sheaves.
The following fact is a particular case of results of Bohnhorst and Spindler ([BH-I,

Theorem 2.7).

3.11. THEOREM. Any nontrivial Steiner bundle on pn is stable.

3.12. PROPOSITION. Let E be a nontrivial rank-3 Steiner bundle on p3 with
cl(E) 3k (i.e., dim(W) 3k + 3). Then the normalized bundle Enorm E(-k) is an
instanton bundle on p3; i.e., Cl(Enorm) 0 and H(P3, Eno,,(-2)) 0.

Proof. The proof follows at once from the resolution (3.1).

3.15. COROLLARY. Let 9’ be a configuration of rn hyperplanes in P in general
position with rn > n + 2. Then:

(a) the logarithmic bundle E() is stable;
(b) if n= 3 and m= 3d + 1, then the normalized bundle Eo,,(v’)=

E()(-d + 1) is an instanton bundle on p3.

Denote by M,2(a, b) the moduli space of stable rank-2 vector bundles on p2
with c a, c2 b. It is known to be an irreducible algebraic variety of dimension
4b a2 3 (see [OSS-I, Ch. 2, 4). Note that M,2(a, b) is isomorphic to the moduli
space of normalized bundles, namely to M,(0, (4b- a2)/4) for a even and to
M,(- 1, (4b a2 d- 1)/4) if a is odd.

3.16. COROLLARY. Ifa=m-3’b=(m-2)frsmem’thenthemdulispace2
M,(a, b) contains a dense Zariski open subset consistin# of Steiner bundles.

In other words, a generic stable bundle with these Chern classes is a Steiner
bundle.

Proof. The property of being a Steiner bundle is open (Corollary 3.3). The said
moduli space indeed contains Steiner bundlesthe logarithmic bundles
corresponding to configurations of m lines: they are stable by Theorem 3.11 and
have the required Chern classes by Proposition 2.2. Since the moduli space is
irreducible, we are done.

Let us reformulate the above corollary in terms of normalized bundles.
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3.17. COROLLARY. For any d > 0 each of the moduli spaces M,(0, d(d- 1)),
M,2(- 1, (d 1)2) has an open dense subset consistin# of twisted Steiner bundles.

3.18. Notice that dim M,2(3, 6) dim M,2(-1, 4) 12. On the other hand,
arrangements of 6 lines in p2 also depend on 12 parameters. We will show later that
the map E(3’) from the space of arrangements of 6 lines to the moduli space
dim M,(3, 6) is generically injective. This Will show that a generic bundle from
Me2(3, 6) is a logarithmic bundle associated to an arrangement of 6 lines in p2.

3.19. The operation of association discussed in 1 can be extended to Steiner
bundles. Namely, we can view the defining tensor (3.3) as a linear map V* (R) I* W
and consider the corresponding map

.t: V ) (_gp(1) 1) W (R) (_9pa)

of vector bundles on the projective space P(I).

3.20. PROPOSITION-DEFINITION. The map z’ is injective on all the fibers if and
only if z is. In this case the Steiner bundle Coker(z’) is said to be associated to the
Steiner bundle E Coker(z) and denoted by Eas.

Proof. The condition that z is not fiberwise injective means that there are
nonzero v V, I such that t(v (R) i) 0. The same condition is equivalent to the
fact that z’ is not fiberwise injective. This proves the "proposition" part.

The next proposition follows immediately from definitions of 1.4 and its proof is
left to the reader.

3.21. PROPOSITION. Let )ff be an arrangement of hyperplanes in P(V) in general
position and be its associated arrangement in P(I). Then there is a natural
isomorphism ofvector bundles

E(/taas)
_

(E(3Ct))as"

4. Monoids, codependence and monoidal complexes.

In this section we describe some constructions of projective geometry which will
be used in the study of logarithmic bundles, more precisely, in the description of
jumping lines for such bundles.

4.1. We shall work in projective space pn with homogeneous coordinates Xo,
xn. Projective subspaces in P will be shortly called flats. For a subset S c P let
(S) denote the fiat (projective subspace) spanned by S. In particular, for two points
p q P" the notation (p, q) means the line through p and q.

Let X be a hypersurface in a smooth algebraic variety Y and x X be a point.
We say that x is a k-tuple point of Y if the whole (k 1)st infinitesimal neighbor-
hood x-) c Y is contained in X.
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As usual, if is a line bundle on a projective variety X, we shall denote by ll
the complete linear system of divisors on X formed by zero loci of sections of
i.e., I1 P(n(X, P)).

4.2. Let Z c P" be an irreducible variety. A hypersurface X c P" of degree d is
called a Z-monoid if each point of Z is a (d 1)-tuple point of X. For example, a
Z-monoid of degree 2 is just a quadric containing Z.
We denote by Ma(Z) the projective subspace of (9,(d)l formed by all Z-monoids

of degree d.
We shall be mostly interested in the case when Z c P" is a fiat. In this case,

denoting c codim Z, we find by easy calculation that

dimMd(Z)=
c+d-2

(n-c-l)+ -1 (4.1)
d-1 d

In particular, if codim Z 2, then dim Ma(Z) =nd.

4.3. PROPOSITION. Let Z P be a flat of dimension k < n 2. Any Z-monoid
is a rational variety ruled in pk’s.

Proof. Projecting X from the subspace Z we find a rational map to pn-k-1

whose fibers are flats of dimension k. Indeed, take any (k + 1)-dimensional flat L
containing Z. Then Z is a hyperplane in L. The intersection L X is a hypersurface
of degree d in L containing d times the hyperplane Z. This means that L c X
(d 1)Z + H(L) where H(L) is some hyperplane in L. So H(L) is the fiber of the
said rational map over L, as claimed.

4.4. For any flat Z c P" we denote by ]Z[ the star of Z, i.e., the projective space
of hyperplanes containing Z (cf. 3.8). Obviously dim ]Z[ codim Z 1.
Assume that codim Z 2. There is a simple way to construct irreducible Z-

monoids of degree d by means of the classical Steiner construction. Take any point
x P" Z and any regular map

#t" ]Z[ px Ix[ p,-1

of degree d 1; i.e., a map given by a linear subsystem of (-ge,(d- 1)1. Denote by
H the unique hyperplane containing Z and x and assume that if(H) : H. Consider
the variety X(Z, x, ) which is the union of codimension-2 fiats L c (L). L ]Z[.
We claim that this is a Z-monoid of degree d containing the point x.

In fact, take a line which has no common points with Z w {x}. Then ]Z[ is
identified with by the correspondence taking H ]Z[ to the intersection point
xn H l. The map defines a degree-(d 1) map f:l defined as follows:
xn (H) l. The graph of this map Fs c x P1 x P intersects the diagonal
in d points. Therefore intersects X(Z, x, q) at d points so deg X(Z, x, q) d. To
see that X(Z, x, ) is a Z-monoid, we take any general hyperplane P containing Z.
The intersection X(Z, x, q) P is a hypersurface Y in P of degree d which set-
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theoretically is the union of Z of another hyperplane in P, the latter entering with
multiplicity 1. This implies that Z enters with multiplicity (d- 1) into Y so Z
consists of (d 1)-tuple points of X(Z, x, ).

Conversely, every Z-monoid containing a point x outside Z is equal to X(Z, x,
for some regular map of degree d from -IZI- to Ix[. This follows from the proof
of Proposition 4.3. And so we have proven the following fact.

4.5. PROPOSITION. Let Z c pn be a codimension-2 flat and x Pn Z. Then
there is a bijection between the set of irreducible Z-monoids of degree d containing x
and the set of regular maps : ]Z[ - Ix[ of degree d with the property that
((z, x>) (z, x>.

4.6. We are going to relate monoids to a property of point sets in projective
spaces which we call codependence.

Let ! (P l, P,) be an ordered r-tuple of points in P"-I and q (q, qr)
be an ordered r-tuple of points in P. We say that ! and q are d-codependent if there
is a hypersurface Y c P"- x p1 ofbi-degree (1, d) which contains the points (xi,
We say that ! and q are strongly d-codependent if there is an irreducible such
hypersurface.

4.7. PROr’OSITION. Let (A,..., A,) be an ordered r-tuple of hyperplanes in P"-I
and (q qr) be an ordered r-tuple of points in P. Let us regard each At as a point
Pt in the dual projective space ,6-. Then p (p,..., p,) and q (q,..., qr) are
d-codependent (resp. strongly d-codependent) if and only if there is a regular map
: pt

_
pn-1 of degree < d (resp. of degree exactly d) such that (qt) e At.

Proof. Suppose that p and q are strongly d-codependent. Let Y be an irreducible
hypersurface of bidegree (1, d) in /5-1 x Pt containing all (Pt, qt). Denote by
F(u, v) F(uo,..., u_; Vo, v) the bihomogeneous equation of Y. We obtain, for
any v (Vo, vt) a linear form u F(u, v) on pn-. Since Y is irreducible, this form
is nonzero and so its kernel is a hyperplane, denoted (v), in/5n-1, i.e., a point in
the initial P-t. This gives the desired map from P to P-I. The rest of the proof
is obvious.

4.8. COROLLARY. Let Z P be a codimension-2 fiat and q, pt, p, be points
in P Z. The following conditions are equivalent:

(i) There exists a Z-monoid of degree d (resp. an irreducible Z-monoid of degree
d) containing q, p

(ii) There exists a regular map : ]Z[ --. ]q[ of degree < d (resp. of degree
exactly d 1) such that p((Z, Pt)) contains the line (q,

(iii) The collection of points (q, Pt) e ]q[ - Pn- and (Z, Pt) ]Z[ - P are
(d 1)-codependent (resp. strongly (d 1)-codependent).

The proof is immediate.

4.9. PROPOSITION. For r= nd all (d-1)-codependent pairs of nd-tuples
(xt, xd, yt, yd)form a hypersurface E in (P- )a x (PI )a. Let Xto,...,
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be the homogeneous coordinates of the point xi e p,-x and let Yo, Yx be the homoge-
neous coordinates of the point y px. The equation of E is the determinant of size
nd x nd whose ith row is the followin9 vector of lenoth nd.

(xioyd- xioy-EYi, x,oy- x,Y xitya-2yit, x,,y2L "xi,. tyd-
Proof. Let Vbe the space ofpolynomials in (Xo, x,-1, Yl, Y2) homogeneous

of degree 1 in x and of degree d in yj. Then dim(V) nd. The entries of the
determinant in question are the values of nd monomials forming a basis of V on
our nd points. So the vanishing of the determinant is equivalent to the linear
dependence of the vectors given by these values, i.e., to the (d 1)-codependence of
(xi) and (y).

4.10. Let P P,a +1 be nd + 1 points in P" in general position. The monoidal
complex C(pl,..., P,a+I) is, by definition, the locus of all the codimension-2 flats
Z c P" for which there exists a Z-monoid of degree d containing p

According to the classical terminology of Pliicker, by complexes one meant
3-parametric families of lines in p3, i.e., a hypersurface in the Grassmannian G(2, 4).
As we shall see, our C(pl,..., P,a+I) is a hypersurface in the Grassmannian
G(n 1, n + 1). This explains the word "complex".
Monoidal complexes will be used in the next section to describe jumping lines of

logarithmic vector bundles.

4.11. THEOREM. Let G G(n 1, n + 1) be the Grassmannian of codimension-2
flats in P". Then:

(a) for any points Pl P,d+I P" in general position, the variety C(pl,
is either the whole G or a hypersurface in G. In the latter case this hypersurface
comes with a distinouished equation in Ptiicker coordinates, defined uniquely up
to Pliicker relations. The deoree of this equation (which may be reducible and
may contain multiple factors) equals nd(d 1)/2;

(b) any codimension-2 fiat Z containin9 one of the points p belonos to
C(pl, P,a +1) and, moreover, is a (d 1)-tuple point of it (with respect to the
scheme structure defined by the above equation).

The proof of this theorem will be organized as follows. Our first step will be to
analyze the equation of C(pl,..., P,a+I) and find its degree. The second step will
be to prove part (b) of the theorem, again by using the equation. These two steps
will be done in 4.12 and 4.13 respectively.

4.12. We shall define codimension-2 flats by pairs of linear forms whose
coefficients are put into rows of a 2 x (n + 1) matrix

A (al all
\a2o a21 a2,/
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The flat corresponding to A will be denoted by Z(A). Its Pliicker coordinates are
just 2 by 2 minors of A. A representation of a flat Z as Z(A) gives a parametrization
of the pencil ]Z[ of hyperplanes through Z, i.e., an explicit identification ]Z[ p1.
Explicitly, to a point (tl t2) p1 we associate the hyperplane given by the equation

(t alj + t2a2j)xj O.
j=o

Denote the last point Pnd +1 by q. We can choose a coordinate system in Pn in such
a way that q has coordinates (1"0"...’0). The projective space ]Pd+l[ of lines
through q is identified with p,-l. Explicitly, if p (bo:... :b) pn is another point,
then the line (q, p> has homogeneous coordinates (bl :... :b,).

Let bj, j 0, n, be the homogeneous coordinates of the point p 6 Pn; 1,
rid. The hyperplane (Z(A), pi> ]Z(A)[ has, under the above identification

]Z(A)[ p1, the homogeneous coordinates (j aljbij, j a2jbj).
Applying Corollary 4.8, we find that a flat Z(A) belongs to the variety

C(p Pn +1) if and only if the two nd-tuples of points

((bl,...,b)P-l,i=,...,nd) and ((aljbj,a2jbj)Pl,
are (d 1)-codependent. Substituting them into the determinant of Proposition 4.9,
we find an equation of matrix elements aj whose degree in these elements equals
nd(d 1) (since each entry of the determinant will have degree d in aj). The
PliJcker coordinates, being 2 by 2 minors of A, have degree 2 in aj. Hence the degree
of the equation in Pliicker coordinates equals nd(d 1)/2 as required.

4.13. Let us prove part (b) of Theorem 4.11. By symmetry it suffices to prove
that if p,a +1 Z, then Z is a (d 1)-tuple point of C(pl,..., P,a +1). Let us keep the
notations and conventions introduced in the proof of part (a); in particular, assume
that P,+I (1:0;...:0). A flat Z(A) contains Pd+l if and only if alo a20 0.

First, let us prove that such Z(A) lies in C(pl Pnd+l). By Corollary 4.8, this
means that the collections of points

(bl"...’b,.)P"-1 and (ti’si)=(axjbij’a2jbij)j=l

arc always (d- 1)-codepcndent. To show this, we construct a polynomial
F(bl,..., b., t, s) homogeneous of degree 1 in b l, b, and of degree (d 1) in t,
s such that for all we have F(bl,..., b., t, st)- O. In fact, we can construct at
least d linearly independent such polynomials, namely

Fro(b 1,..., bn, t, s)

m=,2,...,d- 1.
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The possibility of finding d- 1 such polynomials means that the kernel of the
nd x nd-matrix whose determinant, by Proposition 4.9, defines C(pl,..., Pnd+l), has
dimension > d 1. Since matrices with such properties are (d 1)-tuple points of
the variety of degenerate matrices, we find that Z(A) is a (d- 1)-tuple point of
C(pl
So we have proven all the assertions of Theorem 4.11.
Unfortunately, we do not know whether the case C(p,..., p,a+) G occurs. It

does not occur if n 2 (see Corollary 5.4). Another case when this does not occur
is as follows.

4.14. PROPOSITION. If d < 3 and n is arbitrary, then for any nd + 1 points

Pna+l P in linearly #eneral position the monoidal complex C(pl,..., Pnd+l) does
not coincide with the whole Grassmannian G.

Proof. Suppose the contrary, i.e., that for any codimension 2 flat Z there is a
Z-monoid X of degree d through Pl,..., Pa+l. If we take Z to lie in the hyperplane
H (Pl, P), then we find that any such monoid X should be the union of
H and some Z-monoid of degree d-1 through Pn+l, Pna+l. Let H’=
(P,/I, P2,). We take Z H H’. By the above, the coorresponding monoid
should be the union ofH, H’ and a Z-monoid ofdegree d 2 through the remaining
points P2n+l Pd+l. If d 2, this means that 2n + 1 generic points Pl,..., P2+1
lie on the union of two hyperplanes H w H’, which is impossible. If d 3, the above
means that n + points P2,/1, Pa,+l lie on a monoid of degree 1, i.e., on a
hyperplane, which is also impossible.

4.15. Examples in p2. Consider first the case n 2. Then each 2d + 1 points in
p2 in general position define the monoidal complex C(pl, P2a/l). It is a curve
ofdegree d(d 1) with (d 1)-tuple points at each p. Let us consider some particu-
lar cases.

(a) Let d 2. Then the curve C(pl,..., p) is just the unique conic through the
points p.

(b) Let d 3. Then C(pl,..., PT) is a curve of degree 6 and genus 3 with double
points at p. By definition, it is the locus of all possible singular points of cubics
through Pl, P7. This curve has the following (classical, see [DO]) description.

Let S - p2 be the blow-up of p2 in Pl, PT. This is a Del Pezzo surface. Its
anticanonical linear system has dimension 2 and defines a double cover S-/52 (this
/2 is different from the first one) ramified along a plane quartic curve C’ c/52. We
claim that C’ is birationally isomorphic to C(p,..., pT).

Indeed, the anticanonical linear system of p2 consists of cubic curves. The curves
of the anticanonical linear system of the blown-up surface S can be viewed, after
projection S- p2, as plane cubics through P l, PT. Denote this linear system by
Aa p2. The second projective plane/2 is the space of lines in . The projection
z associates to a point p S with projection z tr(p) p2 the set of all plane cubics
through pl, P7 which also meet p. (So this set is a line in , i.e., a pencil of cubics.)
All the cubics from this pencil also contain some ninth point p’ which is conjugate
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to p with respect to the double cover z. The map z ramifies at p when p’ p, i.e., the
cubics from have a node at z z(p).

(c) Let d 4. Then C(pl,..., P9) is a curve of degree 12 with triple points at pl,

P9. Its genus equals 28. We do not know any special geometric significance of
this curve.

4.16. Examples in p3. Let us consider the case n 3. The monoidal complex
C(p,..., Paa+) is a line complex of degree 3d(d 1)/2.

(a) For d 2, i.e., for 7 points in p2, we get the so-called Montesano complex. It
consists of lines in p3 which lie on a quadric passing through points p, PT. It
is not difficult to see that this complex (which is a threefold in G(2, 4)) is isomorphic
to a P-bundle over a Del Pezzo surface of degree 2. This latter surface is obtained
by blowing up the seven points ofp2 corresponding to pl,..., P7 6 p3 by association
(see 1.2 above). We refer to [Mo] for more details about the geometry of this
complex.

(b) Let d 3. The complex C(p,..., P9) is a complex of degree 9 consisting of
lines which appear as double lines of cubic surfaces through p, P9.

4.17. Examples in P". We consider only the case d 2, i.e., of 2n + 1 points in
pn. This case gives a complex of codimension-2 fiats which can be called the
generalized Montesano complex. We consider all quadrics in Pn through p,..., P2n+l
and pick those among them which contain a p-2, i.e., quadrics of rank < 4. The
collection of all (n- 2)-flats on all the quadrics of rank < 4 through p gives a
hypersurface in the Grassmannian G(n 1, n + 1) whose degree equals n. This is
our complex.
Note the case when all Pi lie on a rational normal curve C in P of degree n. In

this case the generalized Montesano complex will be the locus of all (n 2)-flats
intersecting the curve C. Its equation will be the Chow form of C, i.e., the resultant
oftwo indeterminate polynomials ofdegree n. This is a consequence ofthe following
easy fact.

4.18. LEMMA. Let C P" be a rational normal curve and Z a codimension-2 flat
in P". Then the two conditions are equivalent:

(i) there exists a quadric through C and Z;
(ii) C c Z :/: .
Proof. (ii) =,, (i): Let x C c Z. Let 1(-9(2)1 be the linear system of all quadrics in

pn. We consider three projective subspaces L, M, N 10(2)1 consisting respectively
of quadrics containing C, Z, and x. Then L, M N. The codimension of L in the
whole 160(2)1 is 2n + 1, and hence its codimension in N is 2n. The space M has
dimension 2n. Hence L c M - , so there exists a quadric with required properties.

(i) =,, (ii): Let Q be a quadric containing C w Z. Then C and Z are subvarieties in
Q ofcomplementary dimensions. In the case n > 3 (as well as in the case when n 3
and Q is singular) this alone implies that the intersection is nonempty. If n 3 and
Q is smooth the nonemptiness follows from the fact that C regarded as a curve on
Q P1 x P has bidegree (1, 2) or (2, 1). The case n 2 is trivial.
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5. Monoidal complexes and splitting of logarithmic bundles.

5.1. One ofthe main tools for the study of vector bundles on P" is the restriction
of bundles to projective subspaces to P", especially to lines. By Grothendieck’s
theorem any vector bundle on p1 splits into a direct sum ofline bundles ) (_9p1 (ai).

In this section we use this approach for logarithmic bundles E(f) where o’f
(H1, H,,) is an arrangement of m hyperplanes in P" in general position. Let us
write the number m in the form m nd + + r where d, r are integers and 0
n 1. Call a line in P ajumpin# line for E() (or for g, if no confusion arises) if
the restriction E()Ig is not isomorphic to (gt(d)r ) (.gz(d 1)(n-r).
Of special interest for us will be the case m nd + 1. In this case the normalized

bundle E().o,m E(ef)(-d + 1) has first Chern class 0. A line will be in this
case a jumping line for if the restriction E().orml is nontrivial, i.e., not
isomorphic to
The main result of this section is as follows.

5.2. THEOREM. Suppose m nd + 1. Let P l, P.d+l be points in 6, cor-
respondin# to hyperplanes H1 H,d+I H. For any line c P" let -I/I- be the
correspondin9 codimension-2 fiat in P". Then a line l P is a jumpin# line for
the bundle E(oUf) if and only if the flat ]/[ belongs to the monoidal complex
C(Pl, P.a+l). In particular, the locus ofjumpin# lines of E(/g) is either the whole
G(2, n + 1), or the support of a divisor in the Grassmannian G(2, n + 1) of degree
nd(d- 1)/2.

5.3. COOLLARe. Assume n 2. Then the monoidal complex C(pl, Pza+l)
(which is in this case a subvariety in the dual plane/52), does not coincide with the
whole 2.

Proof. This is a consequence of Theorems 5.2, 3.11, and of the Grauert-Miilich
theorem lOSS] which implies that the locus of jumping lines of a stable rank-2
bundle on p2 is in fact a curve.

5.4. COROLLARY. Assume that d < 3. Then for any configuration of nd + 1
hyperplanes H1, H,n+l c P" in 9eneral position the locus ofjumpin9 lines of the
bundle Enor(gt) does not coincide with the whole Grassmannian.

Proof. This follows from Proposition 4.14.

Applying Corollary 4.8, we can give an equivalent, more geometric description
of the property of a line to be jumping.

5.5. COROLLARY. Suppose m nd + 1. Let P" be a line intersectin9 the Hi in
distinct points. Then is a jumpin9 line for t if and only if there is a regular map

" - H,n+I of degree < d such that (l c Hi) H,a+l c Hi for 1,..., nd.

This reformulation is asymmetric: one of the hyperplanes, namely H,n+I, acts as
a "screen". Of course, any other Hi can be chosen for this role.

5.6. Let E be a vector bundle on P". We say that E is projectively trivial if
E (_9,.(a)b for some a Z, b Z/. In this case the projective bundle P(E) is trivial
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and, moreover, canonically trivialized. To get the trivialization we note that P(E)
P(E(- a)). If W is the space of sections ofE(- a), then E(- a) is canonically identified
with W (R) 60,,. Hence P(E) is canonicaly identified with P" x P(W). For any two
points x, x’ e P" we get the identification of fibers

We shall call this system of identifications the canonical projective connection of the
projectively trivial bundle E.

In our situation of logarithmic bundles it follows that whenever m nd + 1 and
is not a jumping line for , we get a canonical projective connection in the

restricted bundle E(Cg)l. We are going to describe this connection explicitly.
Note that the fiber of the bundle E(Cg)* T,,(log f) at any point x e P not

lying on any Hi is identified with the tangent space TxP. Therefore the fiber
P(E(*)x) is canonically identified with the projective space p-i of all lines
through x. This means that for any nonjumping line the projective connection gives
us isomorphisms which we denote

Our next result describes this identification.

5.7. PROPOSITION. Let m nd + and let be a nonjumpin9 line for f. Let
x be any point and 2 p-i be a line in P" through x. Then there is a unique
regular map tPx,: H.n+I of degree d such that d/(l c H) H.n+I c H for
each 1,..., nd and q(x) 2 c H,n +1. For any other point x’ e , the value at

2of the projective connection mapr,t,,x,: p-I p,-1 equals the line (x’, ,,(x’)) e

Now we start to prove our results. We shall begin with Theorem 5.2. We need
two lemmas.

5.8. LEMMA. A vector bundle E* on p1 of rank n and first Chern class
(-n(d 1)) does not have the form (,9(-d + 1)" if and only if H(P1, E*(d 2)) :
O.

Proof. As any bundle on p1, our E* has the form (’=o (-gt(ai) where ai
-n(d 1). The condition (al, .) :- (-(d 1), -(d 1)) is equivalent, un-
der the above constraint on the sum, to the condition "i: ai > -d + 2" which is
tantamount to H(P1, E*(d 2)) : 0.

The next lemma concerns the case when g consists of just one hyperplane H.
In this case, as we have seen in Proposition 2.10, the logarithmic bundle E(cg) is
itself projectively trivial. So the canonical projective connection on E() gives
identifications

x, x’ pn H.



654 DOLGACHEV AND KAPRANOV

5.9. LEMMA. The identification n,x,’ takes a line 2 through x to the line
2 c H, x’ through x’.

Proof. Let H C"+i be the linear hyperplane corresponding to the projective
hyperplane H P". By Proposition 2.10, we have an isomorphism E(rt)
O,,(- 1)*". We can make this statement more precise by showing the existence of
a natural isomorphism

E() H* (R) (9,,(- 1).

Denote the space C"+x shortly by V. Let x be any point of pn P(V) and let x be
the 1-dimensional subspace in V representing x. The tangent space TxP" is canoni-
cally identified with x (R) V/x. Denote by U the open set P" H. If x U, then the
map H V V/x is an isomorphism, so we get the identification TP" x* (R) H.
Correspondingly, the fiber at x of t2, becomes identified with x (R) H*, i.e., with the
fiber at x of H*(R) (_gp,(-1). We get an isomorphism of restricted bundles b:
E(Cg)lu H* (R) (ge-(- 1). Using the fact that E(oet) is isomorphic to (9,.(- 1)*n, we
can extend the isomorphism b to the whole pn. In this model for E(cg’) the fiber
p-i ofE(Ct)* at x is canonically identified with H by assigning to the line 2 through
x the point 2 H. Our lemma follows from this immediately.

5.10. Now we are ready to prove Theorem 5.2. Let us consider the bundle
Tp,(log t) as the result of successive elementary transformations starting with the
bundle Tp,(log H,a /), as in Proposition 2.9. The latter bundle is projectively trivial.
Consider a line P". We can assume that H are distinct points of I. Then the
restriction to of the bundle Tp.(log g) is the elementary transformation of
Tp.(log Hnd+l) (91(1)" with respect to points Yi l Hi and subspaces T,Hi

5.11. LEMMA. Consider on the projective line Px the vector bundle (9," (.9, (R) E
where E is an n-dimensional vector space. Let Yx,..., Y,a be distinct points of P and
A1 A,a be hyperplanes in E. We reoard Ai as a hyperplane in the fiber of our
bundle over y. Then the followin9 conditions are equivalent:

(i) The elementary transformation Elm{y, r,d},{Al A,,d}(E()0pI(1)) is not
isomorphic to (9el d + 1)".

(ii) The two nd-tuples (Ax,...,A.d) P(E)"d and (Yx,..., Y,d)(P1)"d are d-
codependent in the sense of 4.6.

Proof. Denote the elementary transformation in condition (i) by Elm.
Then, By Lemma 5.8, condition (i) is equivalent to nonvanishing of
H(Elm(E (R) (9(1))(d 2)). Let Xo, xl be homogeneous coordinates in P. A section
of Elm(E (R) (9(-1))(d- 2) is, by definition, a homogeneous polynomial s(x)=
(Xo, x) of degree d- with values in E such that (y)= At. This is exactly the
characterization of (d 1)-codependence given in Proposition 4.7.
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5.12. COROLLARY. Let J (H1,... Hnd+l be a configuration of hyperplanes
in Pn in general position. A line c P not lying in any Hi is a jumping line for ;f if
and only if the nd-tuples (H c Hd+l, Hd c Hd+) (/nd+l)d and (l H1,...,
c Hd/1) ld are (d 1)-codependent.

Proof. Let be given and suppose that does not lie in Hd+1. Let Hnd +1 be the
linear hyperplane in C+1 corresponding to
By Proposition 5.7 the restriction of Tp,(log Hnd+) to is isomorphic to Hnd+ (R)

(9(1). The restriction of the bundle E*(Yf) to is the elementary transformation
of this projcctively trivial bundle with respect to points y c H and hyperplanes
A T,H. So we can apply Lemma 5.11. An explicit projective trivialization of the
bundle Tp(log Hd+l) given in Proposition 5.7 identifies the projectivizations of
fibers at every point y Hd+ with Hnd+l. Under this identification our
hyperplancs A correspond to hyperplanes Hd+l c H Hd+i. So the assertion
follows from Lemma 5.8.

5.13. To finish the proof of Theorem 5.2, let us reformulate Corollary 5.12 in
terms of the dual space P. Hyperplanes Hi correspond to points Pi of/; the line
corresponds to a flat Z of codimension 2. The projective space Hd+1 of hyperplanes
in Hnd+l becomes the space P- of lines through Pnd+l and itself becomesPnd+

identified with the pencil ]Z[ of lines through Z. Under these identifications the
hyperplane Hd/l c Hi in Hnd/l corresponds to the line (Pd/, Pi. Now Theorem
5.2 follows from the definition of the monoidal complex and Corollary 4.8.

5.14. Proposition 5.7 now becomes just a reformulation of the fact that the
projective connection in the projectively trivial bundle E (flp (/)b is induced by
global sections of E(-a). So it is proven.

5.15. For any stable rank-r bundle E on P, there exists a Zariski open set
U G(2, n / 1) such that for l U the splitting type (al > ""> a) of Ely is
constant. A splitting type (a, a) is called generic (or rigid) if al a < 1. By the
Graucrt-Miilich theorem it is always generic if r- 2. We conjecture that the
splitting type of E(Yf) is always generic.

6. Schwarzenberger bundles.

In this secion we shall show that our logarithmic bundles generalize the construc-
tion of Schwarzenberger [Schwl-2] of vector bundles of rank n on P.

6.1. Note that the following choices are equivalent:

(i) an isomorphismP - [(gpl(n)[ ofPn with the n-fold symmetric product ofP;
(ii) a dual isomorphism/ l(gp(n)[*;
(iii) a map v: P1 --,/ [d0p(n)l* given by a complete linear system;
(iv) a rational normal curve of degree n (Veronese curve, for short) ( in/, the

image of the map in (iii);
(v) a map : p1

_
p [(gpl(n)l given by a complete linear system;

(vi) a Veronese curve C in P, the image of this map.
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Fix any of them. Then every point x P" is identified with a positive divisor Dx
of degree n on p1. Choose some m > n + 2. Let V(x) be the subspace of sections
s H(P, (.9(m 2)) whose divisor ofzeros div(s) satisfies the condition div(s) > Dx.
Denote by V(x) c H(P, (9(m- 2))* the orthogonal subspace. Its dimension is
equal to n. In this way we obtain a map

P" --. G(n, H(P, (.9(m 2))*) G(n, m 1), x V(x) (6.1)

Let S be the tautological bundle on G(n, m 1) whose fiber over a point represented
by an n-dimensional linear subspace is this subspace. The pull-back, with respect
to (6.1), of S is a rank-n vector bundle on P. It is defined by any of the above six
choices, in particular, by a choice of the Veronese curve C c P. We denote the dual
bundle by E(C, m) and call it the Schwarzenberoer bundle of degree m associated to
C. Thus fibers of E(C, m) have the form

H(P, (.9(m- 2))
E(C, m)x {s H(P1, (9(m 2)): div(s) > (6.2)

If we fix another isomorphism pro-2 [(gvl(m 2)[, this time by means of an-
other Veronese curve R ofdegree m 2 in/m-2, then we can view each point x P"
as a positive divisor D, on R and the space P(V(x)) as the projective subspace
spanned by D, i.e., as an (n- 1)-secant fiat of R. For this reason the projective
bundle P(E(C, m)) is called the n-secant bundle of R (see [Schw2]).
One can easily show that E(C, m) is generated by its space ofglobal sections which

is canonically isomorphic to H(P, (9(m 2)) C"-1.

6.2. The bundle E(C, m) is in fact a Steiner bundle. This fact is well known (see
e,g., [BS], Example 2.2). Let us give a precise statement.

Fix an isomorphism P" P(V), dim V n + 1. Then the choice of a Veronese
curve C is given by an isomorphism V - S"A, where A is a 2-dimensional vector
space and the points of the curve C are represented by the n-th powers l", A.
Consider the multiplication map

t: V ( sm-n-2A SnA (R) sm-n-2A -- sm-2A. (6.3)

6.3. POVOSmON. The Schwarzenberoer bundle E(C, m) is a Steiner bundle on
pn= p(S,A) defined by vector spaces I Sm-n-2A, W sm-2A and the tensor
t: V (R) I --. W 9iven by (6.3).

Proof. This follows from formula (6.2) and the fact that for two sections

f H(P, (.9(a)), 9 n(Pt, (.9(b)) we have div(f) >/div(9) if and only iff is divisible
by .

6.4. THEOREM. Let o’g (H,..., H) be an arranoement of m hyperplanes in P"
in 9eneral position. Suppose that all H considered as points of I5n lie on a Veronese
curve (_.. (Equivalently, all Hi osculate the dual Veronese curve C P".) Then there is
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an isomorphism

E(/g) E(C, m).

Proof. This is equivalent to Theorem 3.8.5 from [K] which describes the
Veronese variety in the Grassmannian corresponding to E(g). We prefer to give a
direct proof here.

Let Ir be the space defined in 1.4 and W c C" be the space of vectors with sum
of coordinates zero (see formula (1.2)). We shall construct explicit isomorphisms

o: s’-n-2(a).-- l, fl’. sm-2A -- W,
which take the multiplication tensor (6.3) into the fundamental tensor t which
defines E(Cg) as a Steiner bundle.

Let f 0 be the equation of the hyperplane H from H. The condition that H
osculates C means that f considered as an element of V* S"A* can be written in
the form u’ where u A*. Let p p1 P(A) be the point corresponding to ui.
Let us identify the space S’-2A H(P, (9(m-2)) with the space H(P,
f(p + + p)) of forms with simple poles at (p, p,). After that the map fl
is defined by the formula

fl(co) (respl(co), res,,,(co)), co n(P, fl(p + + Pm))" (6.4)

By the residue theorem the sum of components of fl(co) equals 0, i.e., fl(co)e I4.
Now, if we fix a point q different from the p’s, then we can identify the space
H(P, (_9(n)) S"A with the space of rational functions on P1 with poles of order
< n at q. Let us denote this latter space by L(nq). Let us also regard the space
sm-n-2A as the space H(P, fX(p + + p. nq)) of forms with at most simple
poles at p and with a zero of order < n at q. This is a subspace of H(P,

(Px + + Pm), and we define to be the restriction of fl to this subspace.
Let us see that this is correct, i.e., the image of indeed lies in the space Ie. By

definition (see 1.4), le c C consists of (21, 2m) such that 2f(v) 0 for every
v V. In our case 2 resp,(co), where co e H(P, f(p + + p, nq)). Since
we have identified V S"A L(nq), we have, for any v s V,

’, 2,fi(v) 2(u’, v) Z resp,(co). (u’, v) res,(co, v) 0

since the form co.v has poles only at p.
This shows the correctness of the definition of maps and ft. After the

identification given by these maps it is obvious that the multiplication tensor
becomes identified with the fundamental tensor tr.

6.5. COROLLARY. Suppose that /’, :g" are two arranoements of m hyperplanes in

9eneral position in pn such that all the hyperplanes from and f" osculate the same
fixed Veronese curve C P". Then the logarithmic bundles E(/) and E(") are
isomorphic.
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6.6. PROPOSITION. Let C, C’ be two Feronese curves in P such that for some
m > n + 2 the Schwarzenberger bundles E(C, m) and E(C’, m) are isomorphic. Then
C=C’.

Proof. We shall show that C can be recovered intrinsically from E(C, m). Since
E(C, m) is a Steiner bundle, its defining tensor t: lz (R) I W is determined by
E(C, m) itself (see Proposition 3.2). We know that there are isomorphisms I/ SnA,
I -Sm-n-2A, W Sm-2A, with dim A 2 which take the tensor into the
multiplication tensor (6.3). We shall see that as soon as such isomorphisms exist, the
Veronese curves in P(V), P(1), P(W) consisting of perfect powers of elements of A
are defined by alone. Indeed, gives a morphism T: P(V) x P(1) P(W). The
Veronese curve R in P(W) is recovered as the locus of w P(W) such that T-l(w)
consists ofjust one point, say (v, i). The loci of v (resp. i) corresponding to various
w e R constitute the Veronese curves ofperfect powers in P(V) and P(I) respectively.
Proposition 6.6 is proven.

6.7. Consider as an example the case when m n + 3. It is well known that any
n + 3 points in general position in P" lie on a unique Veronese curve (see [GH],
p. 530). So Corollary 6.5 and Proposition 6.6 lead to the following conclusion.

For two arrangements and t’ of n + 3 hyperplanes in general position in P",
the logarithmic bundles E(Ct) and E(Ct’) are isomorphic if and only if the
Veronese curves osculated by and t’ coincide.

Moreover, any deformation of a bundle E(ct) is again of this type, as the following
proposition shows.

6.8. PROPOSITION. Any Steiner bundle E on P of rank n with dim I 2,
dim W n + 2 is a Schwarzenberger bundle E(C, n + 3) for some Feronese curve
CPo

Proof. Let E be the associated Steiner bundle on P1 (see 3.20). By Proposition
3.21, it suffices to show that E E(,ct) for some arrangement of points on P. But
this is obvious since E is of rank 1 and hence is determined by its first Chern class,
which is equal to n + in our case. Thus taking any n + 3 points on P, we realize
Eas as a logarithmic bundle and hence realize E as a Schwarzenberger bundle.

7. A Toreili theorem for logarithmic bundles.

7.1. Let gen(m, n) be the variety of all arrangements ofm unordered hyperplanes
in P in general position. So ge(m, n) is an open subset in the symmetric product
Sym’(i6). (Note that we do not factorize modulo projective transformations.) The
correspondence E(Ct) defines a map

(m, n) M(n, (1 ht)n+l-), (7.1)
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where M(n, (1 ht)"+1-=) is the moduli space of stable rank-n bundles on P" with
Chern polynomial (1 ht)"+1-. We are interested in the question of whether this
map is an embedding. The statements that some moduli space is embedded into
another are traditionally called "Torelli theorems" after the classical Torelli theorem
about the embedding ofthe moduli space ofcurves into the moduli space of Abelian
varieties. The following theorem, which is the main result of this section, shows that
q is very close to an embedding, at least for large m.

7.2. THEOREM. Let m > 2n + 3 and let Yf, f’ be two arrangements of m
hyperplanes in P" in 9eneral position. Suppose that the correspondin9 logarithmic
bundles E(y,f) and E(Yf’) are isomorphic. Then one of the two possibilities holds:

(1) acg (possibly after reorderin9 the hyperplanes).
(2) There exists a Veronese curve C c P" such that all hyperplanes from , and

at’ osculate this curve. In this case E(Jeg) and E(/g’) are isomorphic to the
Schwarzenberoer bundle E(C, m).

7.3. To prove Theorem 7.2 we have to recover (as far as possible) the
configuration from the bundle E(Jcg). The key idea is that the lines lying in each
9 are special jumping lines.
More precisely, we shall call a line c P" a superjumpin9 line for oug if the

restriction E()I contains as a direct summand a sheaf (91(a) with a < 0. As before,
let us write m nd + 1 + r with 0 < r < n. Clearly the line is superjumping if and
only if the restriction E,o,m(JCg)ll of the normalized bundle contains (91(b) with b < d.

7.4. PROPOSITION. Any line lyin9 in one of the hyperplanes H of the arrangement
/g is a superjumpin9 line for Jr.

Proof. We can assume that c H1. Let F be a vector bundle on P1. The property
that F contains (9(a), with a < 0 as a direct summand, is equivalent to the fact that
HI(P1, F(-2)) :- 0.
We shall therefore prove that for F E(Jcg)ll the above cohomology does not

vanish. Since the dimension ofthe cohomology groups varies semicontinuously with
l, it is enough for our purpose to assume that c Hx is not contained in any other
H, 1. The residue exact sequence (2.1) gives a surjection

F - (91 @ ClHi O.
i=2

Hence F(-2) maps surjectively onto (91(-2). Since for coherent sheaves on p1 the
functor H is right exact, we get a surjection HI(F(-2)) H1((91(-2)) C. The
proposition is proven.

We want now to reformulate the condition of being a superjumping line in terms
of the dual projective space/5,.
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7.5. PROPOSITION. Let gO’ (H t, H) be as before and let P be a line not
lying in any Hi. Let pi be the point of the dual projective space corresponding to

Hi. Let also Z be the codimension-2 fiat corresponding to the line I. Then the
following two conditions are equivalent:

(i) is a superjumpin line for gig.

(ii) There exists a quadric Q P (of rank 4) containing all the points p,
Pm and the fiat Z.

Proof. Consider the dual bundle E* to E E(). In other words, E* is the
bundle Tp(log A). A line is superjumping for A if and only if H(l, E*) :/: O. By
reasoning analogous to that in the proof of Corollary 4.8 and Lemma 5.11, the
existence ofa section ofE* I is equivalent to the existence ofa regular map " --. Hm
of degree such that O(l c Hi) Hm Hi for 1, m 1. A map is just an
identification of with some line l’ in Hm. Let A, A’ be codimension-2 flats in/
corresponding to l, 1’. The map gives an identificaton P of the projective lines
(pencils) ]A[ ]A’[ formed by hyperplanes through A and A’ respectively. Such an
identification defines, by Steiner’s construction [GH], a quadric Q of rank < 4.
Explicitly, Q is the union of codimension-2 subspaces of the form II F(H) where
IIe ]A[ is a hyperplane through A. This proves Proposition 7.5.

7.6. We would like now to characterize the hyperplanes H of s as those of
which every line is superjumping for t. To do this, it is again convenient to use the
dual projective space P" and the points p e/ corresponding to H. Let us call a
point q ,6 adjoint to p, Pm if q does not coincide with any of p, and for any
codimension-2 flat Z c P containing q there is a quadric containing Z, p,..., Pro"
For a fixed point q e i6" let H c P be the corresponding hyperplane. Proposition
7.5 shows that q is adjoint to px,..., Pm if and only if any line in H is superjumping
for (H,..., Hm). Thus Theorem 7.2 is equivalent to the following fact (in
which we write P" instead of/n).

7.7. THEOREM. Let P Pm be points in P" in linearly general position and
m > 2n + 3. Then:

(a) unless allp lie on one Veronese curve, there are no points adjoint to p p;
(b) if all pi do lie on one Veronese curve C, then points of C, and only they, are

adjoint to p,..., p,.

Part (b) is a consequence of Lemma 4.21. We shall concentrate on the proof of
part (b). The proof will be based on the classical Castelnuovo lemma [GH].

7.8. LEMMA. Let m > 2n + 3 and px,..., p be points in P" in linearly #eneral
position which impose < 2n + 1 conditions on quadrics. Then p lie on a Veronese
curve.

We shall prove the following fact which, together with Castelnuovo lemma, will
imply Theorem 7.7.
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7.9. PROPOSITION. If m > 2n and q is adjoint to P Pro, then q, pl, Pm
impose exactly 2n + conditions on quadrics.

Proof. Let L be the linear system of all quadrics through the first 2n points p

P2n" It is well known that L has codimension 2n in the linear system 160(2)1 of all
quadrics and quadrics from L cut out precisely Pl,..., P2n" For any codimension-2
flat Z pn let M(Z) be the linear system of all quadrics through Z. It has dimension
2n (see 4.2). To establish Proposition 7.9 it suffices to prove the following fact.

7.10. PROPOSITION. Let q be any point different from Pl, PEn. Let L c L be
the linear system of all quadrics through P l, P2n, q" Then"

(a) for a generic codimension-2 fiat Z containing q the intersection L c M(Z)
consists of one point;

(b) the points L M(Z) for generic Z through q as above span L1 as a projective
subspace.

Proof of 7.9 from 7.10. Suppose we know Proposition 7.10. Note that L1 has
codimension 2n + in 1(9(2)1. This follows from the fact that quadrics from L (in
fact, just rank-2 quadrics from L) cut out Pl,..., PEn and nothing else.

Let L2 c L1 be the linear system of quadrics through all Pi, 1, m and q.
We shall show that L2 L 1. Indeed, suppose that L2 is a proper subspace in
Since q is adjoint to Pl, Pro, the intersection L2 M(Z) is nonempty for any
codimension-2 flat Z through q. But for generic such Z the intersection L Z
L1 c Z consists of just one point and these points span L1. Hence L2 should miss
some of these points, giving a contradiction.

Proof of Proposition 7.10(a). Suppose that the statement is wrong. Then for
every Z through q the linear system L c M(Z) contains a pencil. This means that
for any additional point r pn and any Z through q there will be a quadric
containing P1,..., PEn, r and Z. Now we shall move r and Z in a special way to get
a contradiction.

Let us number the points Pl, P2n SO as to ensure that the hyperplane
(Pl, Pn) does not contain q. Let H (q, Pl,-.-, Pn-1). Take 1-parameter
families Z Z(t), r r(t), C with the following properties:

(1) Z(t), r(t) lie in H for any t;
(2) Z(0) (q, Pl, Pn-2), the point r(0) is a generic point inside Z(0);
(3) For 0 the flat Z(t) intersects Z(0) transversely inside H and the curve r(t)

intersects Z(0) transversely at 0.

Let Q(t) be a quadric containing Pl, P2n, r(t), Z(t) (which exists by our
assumption). We can choose Q(t) for 0 to depend algebraically on t. Let Q
limt-o Q(t). Then Q contains the flat (q, Pl, Pn-2) and, in addition, the em-
bedded tangent space to Q at points pl,..., Pn-2 and r(0)coincides with the hyper-
plane H. This means that the lines (p, Pn-1 ) and (r(0), Pn-1 ) will lie on Q. This
implies that the whole hyperplane H will be part of Q. Hence the remaining n + 1
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points p, P2n should lie on another hyperplane, which is impossible. Part (a) of
Proposition 7.10 is proven.

7.11. Now we shall concentrate on the proof of part (b) of Proposition 7.10.
Note that we can reformulate it as follows.

7.12. PROPOSITION. The linear system L of quadrics through pt P2n and q
is spanned by quadrics of rank < 4 contained in this system.

Indeed, the union ofL M(Z) for all codimension-2 flats Z through q coincide
with the part ofL consisting of quadrics of rank < 4.
So we shall prove Proposition 7.12. Note that is a consequence of the following

fact.

7.13. LEMMA. The linear system L of quadrics through pt, PEn is spanned by

(1/2)(2:) quadrics of rank 2 contained in L.

Indeed, suppose we know Lemma 7.13. Let Q be any quadric in L. By the lemma,
Q is a linear combination of rank-2 quadrics Q, Qs which lie in L but not
necessarily in L. Since L is a hyperplane in L, any pencil (Q, Q) intersects L
and Q lies in the projective span of their intersection points (for all i, j). But any
quadric from any pencil (Q, Q) has rank < 4 since the Q have rank 2. This reduces
our statement to Lemma 7.13.
To prove Lemma 7.13, let D 1(9(2)1 be the locus of quadrics in P of rank < 4.

7.14. LEMMA. The dimension of D equals 2n, the de#ree of D equals (1/2)(2),
and D spans the projective space

Proof of Lemma 7.14. The space D is the image of the map f:/5 x/5
_

1(2)1
which takes (H, H’) - H H’. The map f is generically two-to-one. The inverse
image under f of the standard bundle (9(1) on the projective space 10(2)1 is C0(1, 1),

and its degree (self-intersection index) is (2). This proves the statements about

the dimension and the degree. The fact that D spans 1(.9(2)1 follows since D contains
the Veronese variety of double planes which by itself spans IC(2)1.

End of the proof ofLemma 7.13. Note that L intersects D in finitely many points
whose number is equal to the degree ofD. These points are, moreover, smooth points
ofD (being quadrics of rank exactly 2). Hence the intersection is transversal at any
of the points.

Suppose that the intersection points do not span L and are contained in some
hyperplane M L.
Take any quadric X D which does not belong to L and consider the

codimension-2n subspace W in L spanned by M and X. Then W intersects D in
more points than the degree of D. This means that the intersection will contain a
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belong to M. Clearly there will be one of these quadrics, say, Q, which will be
contained in any C(X).
The embedded tangent space TO-C(X) is contained in the tangent space to D at

(2. Since L intersects D transversely, To.C(X) does not intersect M in any point.other
than Q. On the other hand, since D spans (_9(2)], for a generic X D the intersection
of the projective span (M, X) with To.O will consist of Q alone. Since To.C(X) c
To.D c (M, X), we get a contradiction.

This finishes the chain of reductions proving Proposition 7.10(b). The proof of
Theorem 7.7 is finished.
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