Igor V. Dolgachev

On certain families of elliptic curves in projective space ${ }^{\star}$

To the memory of Fabio Bardelli

Received: September 18, 2002; in final form: November 10, 2002
Published online: February 16, 2004 - © Springer-Verlag 2004
Mathematics Subject Classification (2000). 14E07, 14H25, 14N20

1. Introduction

Let $\operatorname{El}\left(n ; p_{1}, \ldots, p_{m}\right)$ be the family of elliptic curves of degree $n+1$ in \mathbb{P}^{n} containing a fixed set of m distinct points p_{1}, \ldots, p_{m}. In modern language, $\mathrm{El}\left(n ; p_{1}, \ldots, p_{m}\right)$ is a Zariski-open subset of the fibre of the evaluation map ev : $M_{1, m}\left(\mathbb{P}^{n}, n+1\right) \rightarrow\left(\mathbb{P}^{n}\right)^{m}$, where $M_{1, m}\left(\mathbb{P}^{n}, n+1\right)$ is the space of regular maps of elliptic curves equipped with an ordered set of m points to a curve of degree $n+1$ in \mathbb{P}^{n}. Its general fibre, if not empty, is an irreducible variety of dimension $(n+1)^{2}-m(n-1)$. The largest possible m for which the map ev is dominant is equal to $9(n=2,5), 8(n=3,4), n+3(n \geq 6)$. In the last case we show that the general fibre is isomorphic to an open subset of a complete intersection of $n-2$ diagonal quadrics in \mathbb{P}^{n+2}. In particular, birationally, it is a Fano variety if $n \leq 6$, a Calabi-Yau if $n=7$, and of general type if $n \geq 8$. The group $g_{n}=(\mathbb{Z} / 2 \mathbb{Z})^{n+2}$ acts naturally in \mathbb{P}^{n+2} by multiplying the projective coordinates with ± 1. The corresponding action of a subgroup of index 2 of g_{n} is induced by a certain group of Cremona transformations in \mathbb{P}^{n} which we will describe explicitly.

There are three cases when $\operatorname{El}\left(n ; p_{1}, \ldots, p_{m}\right)$ is of expected dimension 0. They are $(n, m)=(2,9),(3,8),(5,9)$. It is well known that in the first two cases $\mathrm{El}\left(n ; p_{1}, \ldots, p_{m}\right)$ consists of one point. Less known is the fact that the same is true in the case (5, 9). D. Babbage [1] attributes this result to T. G. Room. Apparently it was proven much earlier by A. Coble [2]. We reproduce Coble's proof in the paper. This result implies the existence of a rational elliptic fibration $f: \mathbb{P}^{5}-\rightarrow$ $\mathrm{El}\left(5, p_{1}, \ldots, p_{8}\right)$ which is an analog of the well-known rational elliptic fibrations $\mathbb{P}^{2}-\rightarrow \mathbb{P}^{1}=\mathrm{El}\left(2 ; p_{1}, \ldots, p_{8}\right)$ and $\mathbb{P}^{3}-\rightarrow \mathbb{P}^{2}=\mathrm{El}\left(3 ; p_{1}, \ldots, p_{7}\right)$ defined by the pencil of plane cubics through 8 points and by the net of quadrics through 7

[^0]* Research partially supported by NSF grant DMS 990780
points, respectively. We show that its locus of points of indeterminacy is a certain 3-fold, a Weddle variety studied intensively by Coble [4], [5], [6].

I am grateful to D. Eisenbud, S. Mukai and R. Vakil for valuable discussions on the topic of this paper.

2. Association

2.1. We start with a reminder of the classical theory of association of finite sets of points. We follow the modern exposition of this theory given in [8].

Let Z be a Gorenstein scheme of dimension 0 over a field k, \mathcal{L} be an invertible sheaf on Z and $V \subset H^{0}(Z, \mathcal{L})$ be a linear system. The duality pairing

$$
H^{0}(Z, \mathcal{L}) \times H^{0}\left(Z, \omega_{Z} \otimes \mathcal{L}^{-1}\right) \rightarrow H^{0}\left(Z, \omega_{Z}\right) \xrightarrow{\text { trace }} k
$$

allows one to define the subspace $V^{\perp} \subset H^{0}\left(Z, \omega_{Z} \otimes \mathcal{L}^{-1}\right)$. The pair

$$
\left(V^{\perp}, \omega_{Z} \otimes \mathcal{L}^{-1}\right)
$$

is called the Gale transform of (V, \mathcal{L}).
2.2. Assume that Z is realized as a closed subscheme of a connected smooth d dimensional scheme $B \subset \mathbb{P}^{n}$. Let \mathscr{I}_{Z} be its sheaf of ideals in B. We have a short exact sequence of sheaves on B

$$
0 \rightarrow \tau_{Z}(1) \rightarrow \mathcal{O}_{B}(1) \rightarrow \mathcal{O}_{Z}(1) \rightarrow 0,
$$

which gives an exact sequence

$$
H^{0}\left(B, \mathcal{O}_{B}(1)\right) \rightarrow H^{0}\left(Z, \mathcal{O}_{Z}(1)\right) \rightarrow H^{1}\left(B, \tau_{Z}(1)\right) \rightarrow H^{1}\left(B, \mathcal{O}_{B}(1)\right)
$$

Let us assume that B is embedded by the complete linear system, i.e., the restriction map $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}\right) \rightarrow H^{0}\left(B, \mathcal{O}_{B}(1)\right)$ is bijective. Then the image of the map $H^{0}\left(B, \mathcal{O}_{B}(1)\right) \rightarrow H^{0}\left(Z, \mathcal{O}_{Z}(1)\right)$ is equal to V. If we also assume that $H^{1}\left(B, \mathcal{O}_{B}(1)\right)=0$, then we will be able to identify V^{\perp} with $H^{1}\left(B, \tau_{Z}(1)\right)^{*}$. Using Serre's duality, we get

$$
\begin{equation*}
V^{\perp} \cong \operatorname{Ext}^{d-1}\left(\tau_{Z}(1), \omega_{B}\right) \tag{2.1}
\end{equation*}
$$

2.3. In particular, taking $B=\mathbb{P}^{n}$, we can fix a basis in $\operatorname{Ext}^{n-1}\left(\mathcal{I}_{Z}(1), \omega_{\mathbb{P}^{n}}\right)$, so that the linear system $\left|V^{\perp}\right|$ maps Z to a subset $Z^{\text {ass }}$ in the projective space

$$
\begin{equation*}
\mathbb{P}\left(\left(V^{\perp}\right)^{*}\right) \cong \mathbb{P}\left(H^{1}\left(\mathbb{P}^{n}, \tau_{Z}(1)\right)\right) \cong \mathbb{P}^{m-n-2} \tag{2.2}
\end{equation*}
$$

where $m=\operatorname{deg} Z:=\operatorname{dim}_{k} H^{0}\left(Z, \mathcal{O}_{Z}\right)$. We will always assume that $m \geq n+3$. The set $Z^{\text {ass }}$ is called the associated set of Z. It depends on a choice of a basis in $H^{1}\left(\mathbb{P}^{n}, \tau_{Z}(1)\right)$. If Z is a reduced scheme defined by an ordered set of m distinct points $\left(p_{1}, \ldots, p_{m}\right)$ in \mathbb{P}^{n}, then the associated set $Z^{\text {ass }}$ is an ordered set of points $\left(q_{1}, \ldots, q_{m}\right)$ in \mathbb{P}^{m-n-2}.
2.4. Now let B be a curve in \mathbb{P}^{n}. Then $Z \subset B$ can be identified with a positive divisor, and

$$
\begin{equation*}
V^{\perp} \cong \operatorname{Ext}^{d-1}\left(\tau_{Z}(1), \omega_{B}\right)=H^{0}\left(B, \mathcal{O}_{B}\left(K_{B}+Z-H\right)\right), \tag{2.3}
\end{equation*}
$$

where H is a hyperplane section and K_{B} is a canonical divisor. Thus we see that the associated scheme $Z^{\text {ass }}$ is equal to the image of the divisor Z under the map $B \rightarrow \mathbb{P}^{m-n-2}$ given by the complete linear system $\left|K_{B}+Z-H\right|$.
2.5. Remark. Let $Z \subset \mathbb{P}^{n}$ be a reduced scheme consisting of m distinct points $\left(p_{1}, \ldots, p_{m}\right)$. A choice of an order defines a basis in the space $H^{0}\left(Z, \mathcal{O}_{Z}(1)\right)$. Choosing a basis in $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)\right)$ we can represent Z by the matrix A of the linear map $H^{0}\left(Z, \mathcal{O}_{Z}(1)\right)^{*} \rightarrow H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)\right)^{*}$ equal to the transpose of the restriction map $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)\right)^{*} \rightarrow H^{0}\left(Z, \mathcal{O}_{Z}(1)\right)$. The columns of A are projective coordinates of the points p_{i} 's. Let B be a matrix whose rows form a basis in the nullspace of A. Then the columns of B can be chosen as the projective coordinates of the ordered set of points q_{1}, \ldots, q_{m} in \mathbb{P}^{m-n-2}. These points represent the associated set of points $Z^{\text {ass }}$ which is well defined up to projective equivalence. This is the original classical definition of association (see [2], [3]). Let P_{n}^{m} be the space of m ordered points in \mathbb{P}^{n} modulo projective equivalence. This is a GIT-quotient with respect to the democratic linearization (i.e the unique linearization compatible with the action of the symmetric group S_{m}). The association defines an isomorphism of algebraic varieties (see [7]):

$$
\text { ass : } P_{n}^{m} \cong P_{m-n-2}^{m} .
$$

As far as I know the first cohomological interpretation of the association was given by A. Tyurin [11].

3. Normal elliptic curves in \mathbb{P}^{n} through $n+3$ points

3.1. We shall apply 2.4 to the case when B is an elliptic curve embedded in \mathbb{P}^{n} by a complete linear system (a normal elliptic curve of degree $n+1$). Let $\mathrm{El}\left(n ; p_{1}, \ldots, p_{m}\right)$ be the set of normal elliptic curves in \mathbb{P}^{n} containing $m \geq n+3$ distinct points p_{1}, \ldots, p_{m}. As in the Introduction we consider $\operatorname{El}\left(n ; p_{1}, \ldots, p_{m}\right)$ as an open Zariski subset of the fibre of the evaluation map ev : $M_{1, m}\left(\mathbb{P}^{n}, n+1\right) \rightarrow$ $\left(\mathbb{P}^{n}\right)^{m}$ over $\left(p_{1}, \ldots, p_{m}\right) \in\left(\mathbb{P}^{n}\right)^{m}$. Let Z be the reduced scheme $\left\{p_{1}, \ldots, p_{m}\right\}$ and let $B \in \operatorname{El}\left(n ; p_{1}, \ldots, p_{m}\right)$. We fix a basis in $\mathbb{P}\left(H^{1}\left(\mathbb{P}^{n}, \chi_{Z}(1)\right)\right)$ to identify $Z^{\text {ass }}=\left\{q_{1}, \ldots, q_{m}\right\}$ with an ordered subset of \mathbb{P}^{m-n-2}. It follows from 2.4 that $Z^{\text {ass }}$ lies on the image of B under the map ϕ given by the complete linear system $|Z-H|$ of degree $m-n-1$. Recall that a choice of a basis in $H^{1}\left(\mathbb{P}^{n}, \tau_{Z}(1)\right)$ defines a choice of a basis in $H^{0}\left(B, \mathcal{O}_{B}(Z-H)\right)$; so the image of each $B \in \mathrm{El}\left(n ; p_{1}, \ldots, p_{m}\right)$ lies in the same space \mathbb{P}^{m-n-2} and contains $Z^{\text {ass }}$. If $m>n+3$, the $\operatorname{map} \phi: B \rightarrow \mathbb{P}^{m-n-2}$ is an embedding. Since the association is the duality, we obtain the following:
3.2. Theorem. Assume $m>n+3$. Let $Z=\left\{p_{1}, \ldots, p_{m}\right\}$ and $Z^{\text {ass }}=\left\{q_{1}\right.$, $\left.\ldots, q_{m}\right\}$. The association defines an isomorphism of algebraic varieies:

$$
\mathrm{El}\left(n ; p_{1}, \ldots, p_{m}\right) \cong \mathrm{El}\left(m-n-2 ; q_{1}, \ldots, q_{m}\right)
$$

3.3. Remark. In the case $m=2 n+2$ one can speak about self-associated schemes Z, that is, Gorenstein schemes such that $Z^{\text {ass }}=Z$ after an appropriate choice of a basis in $H^{1}\left(\mathbb{P}^{n}, \tau_{Z}(1)\right)$. In this case $|H|=|Z-H|$, so that $Z \subset B$ is cut out in B by a quadric. The association isomorphism from Theorem 3.2 is of course the identity.
3.4. Let us consider the exceptional case $m=n+3$. In this case the map $\phi: B \rightarrow$ \mathbb{P}^{1} is of degree 2. It maps p_{1}, \ldots, p_{n+3} to the associated set of points q_{1}, \ldots, q_{n+3} in \mathbb{P}^{1}. Conversely, fix a set $\mathbb{Q}=\left\{q_{1}, \ldots, q_{n+3}\right\}$ of distinct points in \mathbb{P}^{1} and let Z_{Q} be the corresponding 0-dimensional scheme on \mathbb{P}^{1}. Take a degree 2 map $\phi: B \rightarrow \mathbb{P}^{1}$ and choose $n+3$ points $\mathcal{P}=\left\{p_{1}, \ldots, p_{n+3}\right\} \subset B$ such that $p_{i} \in \phi^{-1}\left(q_{i}\right)$. Let $Z_{\mathcal{P}}$ be the corresponding 0 -dimensional subscheme of B. Since

$$
\phi_{*}\left(\phi^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \otimes \mathcal{O}_{Z_{\mathcal{P}}}\right)=\mathcal{O}_{Z_{\mathbb{Q}}}(-1),
$$

we can identify the corresponding vector spaces of sections. The associated set $Z_{Q}^{\text {ass }}$ lies on the image of \mathbb{P}^{1} under the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ given by the linear system $\left|\mathcal{O}_{\mathbb{P}^{1}}\left(Z_{Q}\right) \otimes \mathcal{O}_{\mathbb{P}^{1}}(-1)\right|$. The linear system

$$
\left|\mathcal{O}_{B}\left(p_{1}+\ldots+p_{n+3}\right) \otimes \phi^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)\right|
$$

embeds B into the same \mathbb{P}^{n} with $Z_{\mathcal{P}}^{\text {ass }}=Z_{\mathcal{Q}}^{\text {ass }}=Z$. Thus (B, \mathcal{P}) defines a point in $\operatorname{El}(n ; Z)$. The double cover $\phi: B \rightarrow \mathbb{P}^{1}$ is defined, up to isomorphism, by a choice of the branch divisor $W \subset \mathbb{P}^{1}$, i.e. an unordered set of 4 distinct points in \mathbb{P}^{1}; the latter can be identified with a point in $\mathbb{P}^{4} \backslash \Delta$, where Δ is the discriminant hypersurface. We will continue to identify \mathbb{P}^{k} with the symmetric product $\left(\mathbb{P}^{1}\right)^{(k)}$. Let $\iota: B \rightarrow B$ be the covering involution. It is clear that the (B, \mathcal{P}) and $(B, \iota(\mathcal{P}))$ define the same point in $\operatorname{El}(n ; Z)$. Summarizing we obtain the following:
3.5. Theorem. Let q_{1}, \ldots, q_{n+3} be distinct points in \mathbb{P}^{1} and let p_{1}, \ldots, p_{n+3} be the associated set of points in \mathbb{P}^{n}. The variety $\operatorname{El}\left(n ; p_{1}, \ldots, p_{n+3}\right)$ is isomorphic to the fibre of the evaluation map ev : $M_{1, n+3}\left(\mathbb{P}^{1}, 2\right) \rightarrow\left(\mathbb{P}^{1}\right)^{n+3}$ over $\left(q_{1}, \ldots, q_{n+3}\right)$. The forgetting map $M_{1, n+3}\left(\mathbb{P}^{1}, 2\right) \rightarrow M_{1}\left(\mathbb{P}^{1}, 2\right) \cong \mathbb{P}^{4} \backslash \Delta$ restricted to the fibre is a Galois cover with the Galois group \mathcal{G}_{n} isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{n+2}$.
3.6. Fix a set \mathcal{P} of m points p_{1}, \ldots, p_{m} in \mathbb{P}^{1} and consider the subvariety

$$
X=\left\{A \in \mathbb{P}^{k}: A \cap \mathcal{P} \neq \emptyset\right\} .
$$

It is clear that $X=X_{1} \cup \ldots \cup X_{m}$, where $X_{i}=\left\{A \in \mathbb{P}^{k}: p_{i} \in A\right\}$. This is the image in $\left(\mathbb{P}^{1}\right)^{(k)}$ of a coordinate hyperplane in $\left(\mathbb{P}^{1}\right)^{k}$, and hence is a hyperplane in \mathbb{P}^{k} of effective divisors D of degree k such that $D-p_{i}>0$. Let us identify \mathbb{P}^{k} with $\left|\mathcal{O}_{\mathbb{P}^{1}}(k)\right|$ and let $R=v_{k}\left(\mathbb{P}^{1}\right)$ be the Veronese curve in $\left|\mathcal{O}_{\mathbb{P}^{1}}(k)\right|^{*}=\breve{\mathbb{P}}^{k}$. Then X_{i} is the hyperplane in $\left|\mathcal{O}_{\mathbb{P}^{1}}(k)\right|$ corresponding to the point $v_{k}\left(p_{i}\right) \in R$. Thus X is the union of hyperplanes corresponding to m points on R.
3.7. The previous discussion shows that the branch divisor of the map $\operatorname{El}\left(n ; p_{1}\right.$, $\left.\ldots, p_{n+3}\right) \rightarrow \mathbb{P}^{4} \backslash \Delta$ consists of the union of open subsets of $n+3$ hyperplanes corresponding to $n+3$ points on a rational normal curve in \mathbb{P}^{4}. Since the fundamental group of the complement of N hyperplanes in a general linear position in \mathbb{P}^{k} is isomorphic to \mathbb{Z}^{N-1}, the Galois $(\mathbb{Z} / 2 \mathbb{Z})^{n+2}$-cover $X \rightarrow \mathbb{P}^{4}$ branched along the union of $n+3$ hyperplanes H_{i} is defined uniquely up to an isomorphism. Thus $\mathrm{El}\left(n ; p_{1}, \ldots, p_{n+3}\right)$ is an open subset of X. A well-known way to construct X is as follows. Let

$$
l_{i}=\sum_{s=0}^{4} a_{i s} t_{s}=0, \quad i=0, \ldots, n+2
$$

be linear equations defining the hyperplanes H_{i}. We assume that $l_{i}=t_{i}, i=$ $0, \ldots, 4$. Consider the map

$$
i: \mathbb{P}^{4} \rightarrow \mathbb{P}^{n+2},\left(t_{0}, \ldots, t_{4}\right) \mapsto\left(l_{0}\left(t_{0}, \ldots, t_{4}\right), \ldots, l_{n+2}\left(t_{0}, \ldots, t_{4}\right)\right)
$$

Let $\left(x_{0}, \ldots, x_{n+2}\right)$ be projective coordinates in \mathbb{P}^{n+2} and let $\left(y_{0}, \ldots, y_{n+2}\right)$ be projective coordinates in another copy of \mathbb{P}^{n+2}. Consider the map $\psi: \mathbb{P}^{n+2} \rightarrow \mathbb{P}^{n+2}$ defined by the formula $\left(x_{0}, \ldots, x_{n+2}\right)=\left(y_{0}^{2}, \ldots, y_{n+2}^{2}\right)$. Then X is isomorphic to the pre-image of $i\left(\mathbb{P}^{4}\right)$ under the map ψ. It is easy to see that X is a complete intersection of the quadrics

$$
y_{i}^{2}-\sum_{s=0}^{4} a_{i s} y_{s}^{2}=0, \quad i=5, \ldots, n+2
$$

3.8. Corollary. $\mathrm{El}\left(n ; p_{1}, \ldots, p_{n+3}\right)$ is isomorphic to an open Zariski subset of a smooth complete intersection of $n-2$ quadrics in \mathbb{P}^{n+2}. In particular, X is birationally of general type for $n>7$, Calabi-Yau for $n=7$, and Fano for $n \leq 6$.
3.9. Remark. The projection from the last point defines a map

$$
\mathrm{El}\left(n ; p_{1}, \ldots, p_{m}\right) \rightarrow \mathrm{El}\left(n-1 ; p_{1}, \ldots, p_{m-1}\right)
$$

In the case $m=n+3$, this is a finite map of varieties of dimension 4. I do not know the degree of this map.

4. Cremona action

4.1. Let P_{n}^{m} be the space of m ordered points in \mathbb{P}^{n} modulo projective equivalence (see Remark 2.5). Recall that the Cremona action on P_{n}^{m} is a homomorphism of groups:

$$
\begin{equation*}
\mathrm{cr}_{n, m}: W_{n, m} \rightarrow \operatorname{Bir}\left(P_{n}^{m}\right), \tag{4.1}
\end{equation*}
$$

where $W_{n, m}$ is the Coxeter group corresponding to the Coxeter diagram defined by a $T_{2, n+1, m-n-1}$ graph (see [7]). Let s_{0}, \ldots, s_{m-1} be its Coxeter generators with s_{0} corresponding to the vertex of the Coxeter diagram with the arm of length 2.

In the action (4.1), the element s_{0} acts by means of the standard Cremona transformation

$$
T: \mathbb{P}^{n}-\rightarrow \mathbb{P}^{n}, \quad\left(z_{0}, \ldots, z_{n}\right) \mapsto\left(z_{1} \cdots z_{n}, z_{0} z_{2} \cdots z_{n}, \ldots, z_{0} z_{1} \cdots z_{n-1}\right),
$$

as follows. Choose an open subset U of P_{n}^{m} representing stable orbits of sets of distinct points $\mathcal{P}=\left(p_{1}, \ldots, p_{m}\right)$ such that p_{1}, \ldots, p_{n+1} span \mathbb{P}^{n}. Then one can represent any point x of U with a set $\mathcal{P}=\left(p_{1}, \ldots, p_{m}\right)$ such that

$$
\begin{equation*}
p_{1}=(1,0, \ldots, 0), \ldots, p_{n+1}=(0, \ldots, 0,1) . \tag{4.2}
\end{equation*}
$$

Then we define

$$
\operatorname{cr}_{n, m}\left(s_{0}\right)(x)=\left(p_{1}, \ldots, p_{n+1}, T\left(p_{n+2}\right), \ldots, T\left(p_{m}\right)\right)
$$

The subgroup S_{m} of $W_{n, m}$ generated by s_{1}, \ldots, s_{m-1} acts via a permutation of factors of $\left(\mathbb{P}^{n}\right)^{m}$.
4.2. For any subset $\mathcal{P} \in\left(\mathbb{P}^{n}\right)^{m}$ representing a point $x \in U$ let $\pi_{\mathcal{P}}: X(\mathcal{P}) \rightarrow \mathbb{P}^{n}$ denote the blowing up of \mathbb{P}^{n} with center at \mathcal{P}. The Picard group $\operatorname{Pic}(X(\mathcal{P}))$ has a natural basis $e_{\mathcal{P}}=\left(e_{0}, e_{1}, \ldots, e_{m}\right)$, where e_{0} is the class of the pre-image of a hyperplane, and $e_{i}, i>0$, is the class of the exceptional divisor blown-up from the point p_{i}. This basis is independent of a choice of a representative of the orbit x. The group $W_{n, m}$ acts on $\operatorname{Pic}(X(\mathcal{P}))$ as follows. The subgroup S_{m} acts by permuting $e_{i}, i \neq 0$, and s_{0} acts by
$e_{0} \rightarrow e_{0}-e_{1}-\ldots-e_{n+1}, \quad e_{i} \rightarrow e_{0}-e_{1}-\ldots-e_{n+1}+e_{i}, i=1, \ldots, n+1$,
all e_{i} are invariant for $i>n+1$. We immediately check that all elements $w \in W_{n, m}$ leave the anticanonical class

$$
-K_{X(\mathcal{P})}=(n+1) e_{0}-(n-1) \sum_{i=1}^{n+3} e_{i}
$$

invariant.
If $y=\mathrm{cr}_{n, m}(w)(x)$ and Q is a representative of y, then there is a birational map $f: X(\mathcal{P}) \rightarrow X(Q)$ which is an isomorphism in codimension ≥ 2 such that

$$
w\left(e_{\mathcal{P}}\right)=f^{*}\left(e_{\mathcal{Q}}\right) .
$$

In particular, if $y=x$, we can choose $\mathcal{Q}=\mathcal{P}$ and obtain a pseudo-automorphism g of $X(\mathcal{P})$ (i.e. a birational automorphism which is an isomorphism in codimension ≥ 2) such that $w=g^{*}$.
4.3. Recall from Remark 2.5 that the association defines an isomorphism of algebraic varieties

$$
\operatorname{ass}_{n, m}: P_{n}^{m} \rightarrow P_{m-n-2}^{m} .
$$

It commutes with the Cremona action in the following sense. There is a natural isomorphism of the Coxeter groups $\tau: W_{n, m} \rightarrow W_{n, m-n-2}$ defined by the unique isomorphism of the Coxeter diagrams $T_{2, n+1, m-n-1}$ and $T_{2, m-n-1, n+1}$ which leaves the vertex corresponding to s_{0} fixed. We have

$$
\begin{equation*}
\operatorname{cr}_{n, m}(w)(x)=\operatorname{cr}_{m-n-2, m}(\tau(w))\left(\operatorname{ass}_{n, m}(x)\right) \tag{4.3}
\end{equation*}
$$

4.4. We will be interested in the special case $m=n+3$. In this case $W_{n, m} \cong$ $W\left(D_{n+3}\right)$, the Weyl group of the root system of type D_{n+3}. It is known that $W\left(D_{n+3}\right) \cong G_{n} \rtimes S_{n+3}$, where $G_{n} \cong(\mathbb{Z} / 2)^{n+2}$ is generated by the element $w_{1}=s_{0} \circ s_{n+2}$ and their conjugates. Let $x \in P_{n}^{n+3}$ be represented by a point set \mathcal{P} as in (4.2). We also assume that $p_{n+2}=(1, \ldots, 1), p_{n+3}=\left(a_{0}, \ldots, a_{n}\right)$ with $a_{i} \neq 0$. Then

$$
\operatorname{cr}_{n, n+3}\left(w_{1}\right)(x)=\left(p_{1}, \ldots, p_{n+1}, p_{n+3}^{\prime}, p_{n+2}\right)
$$

where $p_{n+3}^{\prime}=\left(1 / a_{0}, \ldots, 1 / a_{n}\right)$. Consider the projective transformation

$$
g: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}, \quad\left(t_{0}, \ldots, t_{n}\right) \mapsto\left(a_{0} t_{0}, a_{1} t_{1}, \ldots, a_{n} t_{n}\right) .
$$

Then $w(\mathcal{P})=g(\mathcal{P})$, and hence $\operatorname{cr}_{n, n+3}(x)=x$. This shows that w_{1} acts trivially on P_{n}^{n+3}. In particular, the Cremona action $\mathrm{cr}_{n, m}$ has the kernel which is a normal subgroup of $W_{n, n+3}$ containing w_{1}. It is easy to see that the kernel coincides with G_{n}. For example, this follows from (4.3) since $P_{n}^{n+3} \cong P_{1}^{n+3}$. Thus we obtain that G_{n} acts by pseudo-automorphisms of the blow-up $X(\mathcal{P})$.
4.5. Following [4] we show in more details how the group G_{n} acts on $X(\mathcal{P})$. Let V be the vector space over \mathbb{F}_{2} consisting of subsets of $[n+3]=\{1, \ldots, n+3\}$ of even cardinality with the addition defined by $S+S^{\prime}=S \cup S^{\prime} \backslash\left(S \cap S^{\prime}\right)$. Let A be the affine space over V consisting of subsets of odd cardinality. For any $I \in A$ of cardinality $2 k+1$ consider the following divisor class in $X=X(\mathcal{P})$:

$$
\begin{equation*}
D_{I}=k e_{0}-(k-1) \sum_{i \in I} e_{i}-k \sum_{i \in \bar{I}} e_{i} \tag{4.4}
\end{equation*}
$$

where \bar{I} denotes the complementary subset of $[n+3]$. For example, when $k=0$, i.e., $I=\{s\}$ for some $s \in[n+3]$, we get $D_{\{s\}}=e_{s}$.

Lemma 1. There is a unique isomorphism $h: V \rightarrow G_{n}, J \mapsto w_{J}$ such that $w_{\{n+2, n+3\}}=s_{0} \circ s_{n+2}$, and

$$
\begin{equation*}
w_{J}\left(D_{I}\right)=D_{J+I}, \quad \forall J \in V, \forall I \in A . \tag{4.5}
\end{equation*}
$$

Proof. First we check this directly for $w_{\{n+2, n+3\}}$:

$$
D_{I+\{n+2, n+3\}}=s_{0} \circ s_{n+2}\left(D_{I}\right), \quad \forall I \in A .
$$

Then we extend this to all subsets of cardinality 2 of V by defining, for any $\sigma \in S_{n+3}, w_{\sigma(\{n+2, n+3\})}=\sigma \circ w_{n+2, n+3} \circ \sigma^{-1}$ and using that

$$
D_{I+\sigma(\{n+2, n+3\})}=D_{\sigma\left(\sigma^{-1}(I)+\{n+2, n+3\}\right)}=\sigma \circ w_{n+2, n+3} \circ \sigma^{-1}\left(D_{I}\right)
$$

Finally, we extend the map h to all even subsets by linearity.
4.6. Let $J \in V$ with $\# J=2 k$. Then

$$
w_{J}\left(e_{s}\right)=D_{J \cup\{s\}}=k e_{0}-(k-1) \sum_{i \in J} e_{i}-k \sum_{i \notin J} e_{i}+e_{s},
$$

if $s \notin J$, and

$$
w_{J}\left(e_{s}\right)=D_{J \backslash\{s\}}=(k-1) e_{0}-(k-2) \sum_{i \in J} e_{i}-(k-1) \sum_{i \notin J} e_{i}-e_{s}
$$

otherwise. We have

$$
\begin{aligned}
& -K_{X(\mathcal{P})}=(n+1) e_{0}-(n-1) \sum_{i=1}^{n+3} e_{i}=w_{J}\left((n+1) e_{0}-(n-1) \sum_{i=1}^{n+3} e_{i}\right)= \\
& \quad(n+1) w_{J}\left(e_{0}\right) \\
& -(n-1)\left(k(n+1) e_{0}-((k-1)(n+1)-1) \sum_{i \in J} e_{i}-(k(n+1)-1) \sum_{i \notin J} e_{i}\right) .
\end{aligned}
$$

This gives

$$
\begin{equation*}
w_{J}\left(e_{0}\right)=(k(n-1)+1) e_{0}-(k-1)(n-1) \sum_{i \in J} e_{i}-k(n-1) \sum_{i \notin J} e_{i} . \tag{4.6}
\end{equation*}
$$

This shows that the pseudo-automorphism of $X_{\mathcal{P}}$ induced by $\mathrm{cr}_{n, m}\left(w_{J}\right)$ is given by the linear system of hypersurfaces of degree $k n-k+1$ passing through the points $p_{i} \notin J$ with multiplicity $(k-1)(n-1)$ and through the points $p_{i} \in J$ with multiplicity $k(n-1)$.
4.7. Assume that $n=2 g-1$ is odd. Applying Lemma 1 we obtain that, for any $I \in A$,

$$
w_{[n+3]}\left(D_{I}\right)=D_{\bar{I}}
$$

and hence

$$
w_{[n+3]}\left(D_{I}\right)+D_{I}=D_{\bar{I}}+D_{I}=g e_{0}-(g-1) \sum_{i=1}^{n+3} e_{i} \in\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|
$$

The subgroup $G_{n} \subset W_{n, n+3}$ acts on $X_{\mathcal{P}}$ and leaves the half-anticanonical linear system

$$
\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|=\left|g e_{0}-(g-1) \sum_{i=1}^{n+3} e_{i}\right|
$$

invariant. The distinguished element $w_{[n+3]} \in G_{n}$ leaves 2^{g} divisors $D_{I}+D_{\bar{I}} \in$ $\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|$ invariant. Coble shows [4] that

$$
\begin{equation*}
\operatorname{dim}\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|=2^{g}-1 \tag{4.7}
\end{equation*}
$$

and the divisor classes $D_{I}+D_{\bar{I}}$ span $\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|$. In particular, $w_{[n+3]}$ acts identically in the projective space $\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|$.
4.8. Let $\tilde{W}_{g} \subset X_{\mathcal{P}}$ be the locus of fixed points of $w_{[n+3]}$. This is defined as the closure of the fixed locus of $w_{[n+3]}$ restricted to an invaraint open subset where $w_{[n+3]}$ is defined. The projection W_{g} of \tilde{W}_{g} in \mathbb{P}^{n} is a Weddle variety of dimension g. Coble proves that the linear system $\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|$ maps W_{g} to $\mathbb{P}^{2^{8}-1}$ and the image is isomorphic to the Kummer variety of the Jacobian variety $\operatorname{Jac}(C)$ of a hyperelliptic curve C of genus g embedded via $|2 \Theta|$ on $\operatorname{Jac}(C)$. The curve C is the hyperelliptic curve corresponding to $n+3=2 g+2$ points on \mathbb{P}^{1} associated to $\left(p_{1}, \ldots, p_{n+3}\right)$.
4.9. Let $p \in W_{g}$ be a fixed point of $w_{[n+3]}$. Consider the set $\left(p_{1}, \ldots, p_{n+3}, p\right)$ and $w_{[n+3]}$ as an element of $W_{n, n+4}$. Let $\mathcal{Q}=\left(q_{1}, \ldots, q_{n+3}, q\right)$ be the associated set in \mathbb{P}^{2}. The projection from q defines $n+3$ points in \mathbb{P}^{1} which are associated to $\left(p_{1}, \ldots, p_{n+3}\right)$ (see [2], [7]). Using (4.3), we see that $\mathrm{cr}_{n, n+4}\left(w_{[n+3]}\right)$ corresponds to $\mathrm{cr}_{2, n+4}\left(w_{0}\right)$ for some $w_{0} \in W_{2, n+4}$. Moreover, we may assume that $\mathrm{cr}_{2, n+4}\left(w_{0}\right)$ defines an automorphism g (in dimension 2 any pseudo-automorphism is an automorphism) of the blow-up $X(\mathbb{Q})$. Since $\mathrm{cr}_{n, n+3}\left(w_{[n+3]}\right)$ fixes the orbit of $\left(p_{1}, \ldots, p_{n+3}\right)$, we see that $\mathrm{cr}_{2, n+4}\left(w_{0}\right)$ leaves the lines $\left\langle q_{i}\right\rangle$ invariant. This implies that the automorphism g is induced by a de Jonquières transformation of the projective plane (see [10, p. 150]). Its fixed set of points is a hyperelliptic curve of degree $g+2$ with g-multiple points at q and tangent lines $\left\langle q, q_{i}\right\rangle$. This curve is isomorphic to the curve C from 4.8. When we vary the point p in the Weddle variety W_{g} the subvariety of P_{2}^{n+4} of associated point sets \mathcal{Q} consists of orbits of points sets $\left(q_{1}, \ldots, q_{n+3}, q\right)$ such that C admits a plane model C^{\prime} of degree $g+2$ with Weierstrass points at q_{1}, \ldots, q_{n+3} and a g-multiple point at q. The g branches at q define an effective divisor D of degree g on C such that the map $C \rightarrow C^{\prime}$ is given by the linear system $\left|g_{2}^{1}+D\right|$, where g_{2}^{1} is the linear series of degree 2 defined by the hyperelliptic involution. In this way the Weddle variety W_{g} becomes birationally isomorphic to the symmetric product $C^{(g)}$ modulo the hyperelliptic involution, and hence to the Kummer variety of $\operatorname{Jac}(C)$. All of this can be found in $[3, \S 38]$.
4.10. Let us see how the group G_{n}, in its realization as the group of pseudoautomorphisms of the blow-up $X(\mathcal{P})$, acts on the variety $\operatorname{El}\left(n ; p_{1}, \ldots, p_{n}\right)$. For any $B \in \mathrm{El}\left(n ; p_{1}, \ldots, p_{n}\right)$ let \bar{B} be the proper inverse transform under the projection $\pi_{\mathcal{P}}: X(\mathcal{P}) \rightarrow \mathbb{P}^{n}$. Since $\mathcal{O}_{X(\mathcal{P})}\left(e_{0}\right) \cong \pi_{\mathcal{P}}^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$, we see that \bar{B} is embedded in \mathbb{P}^{n} by the linear system $\left|e_{0}\right|$. It follows from (4.6) that

$$
\begin{gathered}
w_{J}(\bar{B}) \cdot e_{0}=\bar{B} \cdot w_{J}\left(e_{0}\right) \\
=\bar{B} \cdot\left[(k(n-1)+1) e_{0}-(k-1)(n-1) \sum_{i \in J} e_{i}-k(n-1) \sum_{i \notin J} e_{i}\right] \\
=(k(n-1)+1)(n+1)-(k-1)(n-1) 2 k-k(n-1)(n+3-2 k)=n+1 .
\end{gathered}
$$

This shows that $B^{\prime}=\pi_{\mathcal{P}}\left(w_{J}(\bar{B})\right)$ is embedded in \mathbb{P}^{n} by a complete linear system. Similarly we check that

$$
w_{J}(\bar{B}) \cdot e_{i}=\bar{B} \cdot w_{J}\left(e_{i}\right)=1
$$

and hence B^{\prime} passes through the points p_{1}, \ldots, p_{n+3}. Thus each w_{j} acts on the variety $\operatorname{El}\left(n, p_{1}, \ldots, p_{n+3}\right)$. We would like to verify that this action corresponds to the action of the Galois group g_{n} of the cover $\mathrm{El}\left(n ; p_{1}, \ldots, p_{n+3}\right) \rightarrow \mathbb{P}^{4}$ from Theorem 3.5. For this we consider the double covers $\phi: B \rightarrow \mathbb{P}^{1}$ and $\phi^{\prime}: B^{\prime} \rightarrow \mathbb{P}^{1}$ defined by the linear systems $\left|\mathcal{O}_{B}(-1) \otimes \mathcal{O}_{B}\left(p_{1}+\ldots+p_{n+3}\right)\right|$ and $\left|\mathcal{O}_{B^{\prime}}(-1) \otimes \mathcal{O}_{B^{\prime}}\left(p_{1}+\ldots+p_{n+3}\right)\right|$, respectively. Each maps the set $\mathcal{P}=$ $\left(p_{1}, \ldots, p_{n+3}\right)$ to the same set of points in \mathbb{P}^{1}, the associated set of \mathcal{P}. The isomorphism $w_{J}: B \rightarrow B^{\prime}$ defines an isomorphism of the covers, and we have $\phi^{\prime}\left(w_{J}\left(p_{i}\right)\right)=\phi^{\prime}\left(p_{i}\right)$ for each $i=1, \ldots, n+3$. Thus B and B^{\prime} belong to the same fibre of the map $\operatorname{El}\left(n, p_{1}, \ldots, p_{n+3}\right) \rightarrow \mathbb{P}^{4}$.

The homomorphism $G_{n} \rightarrow g_{n}$ which we have just constructed is not injective in the case when $n=2 g-1$ is odd. In fact, the linear system $\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|$ cuts out a g_{2}^{1} on each \bar{B}. Since $w_{[n+3]}$ acts identically on $\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|$ it induces an automorphism of \bar{B}. Thus $B^{\prime}=B$ in this case. It is clear that the fixed points of $w_{[n+3]}$ on \bar{B} are the points of intersection of \bar{B} and the Weddle variety W_{g}. In particular, we obtain

$$
\begin{equation*}
\# \bar{B} \cap W_{g}=4 \tag{4.8}
\end{equation*}
$$

unless all curves b are contained in W_{g}. However, by using the next lemma and induction on g we see that the latter does not happen.
4.11. Lemma. For any $J \in V$ with $\# J=2 k$, let F_{J} be the set of fixed points of the involution w_{J} in $X_{\mathcal{P}}$. Then $\operatorname{dim} F_{J}=k-1$. If $k>2$, the projection map π_{J} from the linear space spanned by the points $p_{i}, i \in \bar{J}$ defines a finite map of degree $2^{n+2-2 k}$ from $\pi_{\mathcal{P}}\left(F_{J}\right)$ to the Weddle variety W_{k-1} in $\mathbb{P}^{2 k-3}$ corresponding to the set $\pi_{J}\left(\left\{p_{i}\right\}_{i \in J}\right)$.

Proof. See [4, p. 456].
4.12. Theorem. The kernel of the homomorphism $G_{n} \rightarrow g_{n}$ is of order ≤ 2. It is generated by $w_{[n+3]}$ if n is odd.

Proof. Let K be the kernel of the homomorphism $G_{n} \rightarrow \mathcal{g}_{n}$ and $B \in \operatorname{El}\left(n ; p_{1}\right.$, $\left.\ldots, p_{n+3}\right)$. Assume n is odd. Since K leaves the linear system $\left|-\frac{1}{2} K_{X(\mathcal{P})}\right|$ invariant, K leaves the g_{2}^{1} on B cut by this linear system invariant. Thus the image of K in $\operatorname{Aut}(B)$ is equal to the image of $w_{[n+3]}$. If $w_{J} \in K$ acts identically on B, then B is contained in the fixed locus F_{J} of w_{J}. Hence the union of all curves from $\mathrm{El}\left(n ; p_{1}, \ldots, p_{n+3}\right)$ is contained in F_{J}. Let $\# J=2 k$. If $k \leq 2$, this cannot happen since $\operatorname{dim} F_{J}$ is too small. So we may assume that $k>3$. Projecting from the subspace spanned by the points $p_{i}, i \in \bar{J}$, we obtain that the Weddle variety W_{k-1} contains all elliptic curves from $\operatorname{El}\left(2 k-3 ; q_{1}, \ldots, q_{2 k}\right)$. But this contradicts (4.8).

Assume n is even. Assume B is preserved under some w_{J}. Since w_{j} sends the set of points p_{1}, \ldots, p_{n+3} to a projectively equivalent set of points, we may assume that w_{J} induces a projective transformation of B. Since B is embedded in \mathbb{P}^{n} by a linear system of odd degree, a projective automorphism of B of order 2 cannot be a translation by a 2 -torsion point (when we fix a group law on B). It must fix 4 points on B. Now we finish as in the previous case.
4.13. Remark. In the case n is even, the homomorphism $G_{n} \rightarrow g_{n}$ must be injective. However I cannot prove it.

5. A rational elliptic fibration on \mathbb{P}^{5}

5.1. Now we consider the special case $n=5, m=9$. By Theorem 3.2

$$
\mathrm{El}\left(5 ; p_{1}, \ldots, p_{9}\right) \cong \mathrm{El}\left(2 ; q_{1}, \ldots, q_{9}\right)
$$

where $\mathcal{Q}=\left(q_{1}, \ldots, q_{9}\right)$ is the point set associated to $\mathcal{P}=\left(p_{1}, \ldots, p_{9}\right)$. It is well known that there is a unique nonsingular cubic through a general set of 9 points in \mathbb{P}^{2}. Thus we obtain the following:
5.2. Theorem (A. Coble). Let $\left\{p_{1}, \ldots, p_{9}\right\}$ be a general set of 9 points in \mathbb{P}^{5}. Then there exists a unique elliptic curve of degree 6 containing these points.
5.3. For a special set of 9 points \mathcal{Q} in \mathbb{P}^{2}, the dimension of the linear system of cubics through \mathcal{Q} varies from 0 to 5 . However, if we assume that $\mathrm{El}\left(2 ; q_{1}, \ldots, q_{9}\right) \neq \emptyset$, then $\operatorname{dim} \mathrm{El}\left(2 ; q_{1}, \ldots, q_{9}\right) \leq 1$.
5.4. Proposition. Assume that $\operatorname{dim} \operatorname{El}\left(2 ; q_{1}, \ldots, q_{9}\right)=1$. Then the linear system defining the associated set of points $\mathcal{P}=\left(p_{1}, \ldots, p_{9}\right)$ in \mathbb{P}^{5} is equal to the restriction of the complete linear system of conics. In particular, \mathcal{P} is equal to the image of \mathcal{Q} under a Veronese map $v_{2}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$.

Proof. The scheme $Z=\left\{q_{1}, \ldots, q_{9}\right\}$ is cut out by two cubics, and so is arithmetically Gorenstein, i.e., its homogeneous coordinate ring is Gorenstein. Now the assertion follows from Corollary 2.6 of [8].
5.5. Remark. The assertion is claimed by Coble in [2]. The proof uses a method which has not been justified so far (see Problem 2.3 in [8]).
5.6. Lemma (A. Coble). Let E be an elliptic curve of degree 6 in \mathbb{P}^{5}. Then E is contained in exactly 4 Veronese surfaces.

Proof. Take 9 points on E such that the associated set of points in \mathbb{P}^{2} lies on a pencil of nonsingular cubics C_{t}. By Proposition 5.4 and Theorem $3.2, E$ is the image of some C_{t} under a Veronese map. Thus E is contained in some Veronese surface (this can also be verified by counting constants). Let V be a Veronese surface containing E. Then the linear system $|D|$ on E cut out by the complete linear system L, where L is an effective generator of $\operatorname{Pic}(V)$, satisfies $|2 D|=\left|\mathcal{O}_{E}(1)\right|$. Also, it comes with a fixed isomorphism $\phi: S^{2}\left(H^{0}\left(\mathcal{O}_{E}(D)\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{E}(2 D)\right)$. Suppose two Veronese surfaces V and V^{\prime} contain E and cut out the same linear system $|D|$ on E. Then the two embeddings $E \rightarrow V, E \rightarrow V^{\prime}$ differ by a linear endomorphism T of $H^{0}\left(E, \mathcal{O}_{E}(D)\right)$ such that $S^{2}(T)$ is the identity. This obviously implies that T is the identity, and hence $V=V^{\prime}$. On other hand, if $|D| \neq\left|D^{\prime}\right|$, we can choose an isomorphism $S^{2}\left(H^{0}\left(E, \mathcal{O}_{E}(D)\right)\right) \rightarrow S^{2}\left(H^{0}\left(E, \mathcal{O}_{E}\left(D^{\prime}\right)\right)\right)$ such that the compositions of two embeddings $E \rightarrow\left|\mathcal{O}_{E}(D)\right|^{*}$ and $E \rightarrow\left|\mathcal{O}_{E}\left(D^{\prime}\right)\right|^{*}$ with the corresponding Veronese maps $\left|\mathcal{O}_{E}(D)\right|^{*} \rightarrow\left|\mathcal{O}_{E}(2 D)\right|^{*}$ and $\left|\mathcal{O}_{E}\left(D^{\prime}\right)\right|^{*} \rightarrow$ $\left|\mathcal{O}_{E}\left(2 D^{\prime}\right)\right|^{*}$ are the same. This proves the assertion.
5.7. Let $E \in \operatorname{El}\left(5, p_{1}, \ldots, p_{8}\right)$. Let V be a Veronese surface containing E. We may assume that V is the image of the Veronese map $v_{2}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ and $E=v_{2}(C)$ for some nonsingular plane cubic C. Let q_{1}, \ldots, q_{8} be the points on C such that $v_{2}\left(q_{i}\right)=p_{i}, i=1, \ldots, 8$. Choose the ninth point q_{9} such that $Q=\left\{q_{1}, \ldots, q_{9}\right\}$ is the base locus of a pencil of cubics. Then, by Proposition 5.4 the associated set of points $\mathbb{Q}^{\text {ass }}$ is the image under a Veronese map. We can fix the Veronese map by requiring that $v_{2}\left(p_{i}\right)=q_{i}, i=1, \ldots, 8$. Let $v_{2}\left(q_{9}\right)=p_{9}$. Then by Theorem 3.2, $\mathrm{El}\left(5 ; p_{1}, \ldots, p_{9}\right) \cong \mathrm{El}\left(2 ; q_{1}, \ldots, q_{9}\right)$ is an open subset of \mathbb{P}^{1}. We want to show that the point p_{9} is on the Weddle variety W_{3} corresponding to the set of points $\left(p_{1}, \ldots, p_{8}\right)$.
5.8. Lemma. Let $\left(q_{1}, \ldots, q_{9}\right)$ be an ordered set of base points of an irreducible pencil of cubic curves. Then there exists a unique plane curve C of degree 5 with a triple point at q_{9} such that the lines $\left\langle q_{i}, q_{9}\right\rangle$ are tangents to C at q_{i}. Conversely, given such a curve C, there exists a pencil of cubic curves with base points at q_{1}, \ldots, q_{9}.

Proof. We give a modern version of the proof given by Coble in [3, §38]. Let X be the blow-up of the points q_{1}, \ldots, q_{9}. This has a structure of an elliptic surface together with the zero section defined by the exceptional curve E_{9} blown up from q_{9}. Let F be the divisor class of a fibre and S be the divisor class of the proper transform of a line through the point q_{9}. Then $|F+S|$ defines a double cover $f: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that the pre-image of the first ruling is equal to the pencil $|F|$, and the pre-image of the second ruling is equal to the pencil $|S|$. The
branch curve B of f is a curve of bi-degree (4,2). It is a hyperelliptic curve of genus 3. Its pre-image in X is equal to $2 R$, where R is isomorphic to B. On each nonsingular fibre F there are two ramification points of the pencil $|S|$ restricted to F. The curve R is equal to the locus of these points when F varies in the pencil. Similarly, for each member of $|S|$ there are two ramification points of the restriction of the pencil $|F|$, and these ramification points are also on R.

Let us show that the image of R in \mathbb{P}^{2} is the hyperelliptic curve C from the assertion of the lemma. The image \bar{E}_{9} of E_{9} is a curve of bi-degree $(1,1)$ such that $f^{-1}\left(\bar{E}_{9}\right)=E_{9}+E_{9}^{\prime}$, where E_{9}^{\prime} is the image of E_{9} under the involution of X defined by the double cover f. Since \bar{E}_{9} is tangent everywhere to the branch curve R, we see that E_{9} intersects R at 3 points. Thus C has a triple point at q_{9}. Let E_{i} be the exceptional curve blown up from q_{i} and let S_{i} be the proper inverse transform of the line $\left\langle q_{i}, q_{9}\right\rangle$. Then $E_{i}+S_{i} \in|S|$, and $f\left(E_{i}\right)=f\left(S_{i}\right)$ is a fibre of the second ruling of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ which is tangent to B at a point P such that $f^{-1}(P)=E_{i} \cap S_{i}$. This shows that $E_{i} \cap S_{i} \cap R \neq \emptyset$, and hence C is tangent to $\left\langle q_{i}, q_{9}\right\rangle$ at q_{i}. Thus C satisfies all the properties from the assertion of the lemma. Let us show its uniqueness. Suppose C^{\prime} is another curve satisfying the same properties. Let R^{\prime} be its proper inverse transform on X. We have $R \cdot R^{\prime}=25-9-16=0$, and $R^{2}=R^{\prime 2}=25-9-8=8$. This contradicts the Hodge Index Theorem.

It remains to prove the converse. We will be brief, letting the reader fill in the details. Let R be the proper inverse transform of C in X. Then the linear system $|R-S|$ defines a double cover $f: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}$. If the restriction of f to S is of degree 1 , then its image is a plane section of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and hence $|R-2 S|=\left\{S^{\prime}\right\}$ for some curve isomorphic to S. However, $(R-2 S)^{2}=4,(R-2 S) \cdot K_{X}=0$ imply that the arithmetical genus of S^{\prime} is equal to 1 . This contradiction proves that the image of S must be a fibre of a ruling on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. This implies that $|R-2 S|$ is a pencil of elliptic curves (the pre-image of another ruling). Its image in \mathbb{P}^{2} is a pencil of cubics with base points q_{1}, \ldots, q_{9}.
5.9. Theorem. Let p_{1}, \ldots, p_{8} be general points in \mathbb{P}^{5}. Then the locus of point $p_{9} \in \mathbb{P}^{5}$ is such that $\operatorname{dim} \operatorname{El}\left(5 ; p_{1}, \ldots, p_{9}\right)=1$ is equal to the Weddle variety W_{3} associated to the points p_{1}, \ldots, p_{8}.

Proof. We know that if $\operatorname{dim} \operatorname{El}\left(5 ; p_{1}, \ldots, p_{9}\right)=1$, then $\left(p_{1}, \ldots, p_{9}\right)$ is associated to a base point set of a pencil of cubics in \mathbb{P}^{2}. Now the assertion follows from 4.9 and the previous lemma.
5.10. Remark. The assertion of Theorem 5.9 agrees with (4.8) and Lemma 5.6. We have 4 Veronese surfaces V_{i} on $E \in \operatorname{El}\left(5 ; p_{1}, \ldots, p_{8}\right)$. In each V_{i} we find the ninth point $p_{9} \in E$ such that there exists a pencil of cubics through p_{1}, \ldots, p_{9}. The point p_{9} must belong to W_{3} and we have $E \cap W_{3}=4$.
5.11. Remark. It was shown by Coble [4, p. 489] that W_{3} is of degree 19 with singular points at p_{1}, \ldots, p_{8} of multiplicity 9 , triple lines $\left\langle p_{i}, p_{j}\right\rangle$ and the triple curve equal to the rational normal curve through the points p_{1}, \ldots, p_{8}.
5.12. By Theorem 5.2 we have a rational elliptic fibration

$$
\Phi: \mathbb{P}^{5}-\rightarrow \operatorname{El}\left(5 ; p_{1}, \ldots, p_{8}\right)
$$

defined by the universal family of elliptic curves passing through the points p_{1}, \ldots, p_{8}. Its set of points of indeterminacy is the Weddle variety W_{3}. If we blow up p_{1}, \ldots, p_{9} and then blow up the proper inverse transform \tilde{W}_{3} of W_{3} we expect to get a regular map $\tilde{\Phi}: \tilde{X} \rightarrow \operatorname{El}\left(5 ; p_{1}, \ldots, p_{8}\right)$. Let $\pi: \tilde{X} \rightarrow \mathbb{P}^{5}$ be the composition of these blow-ups. For each nonsingular point $p \in W_{3} \backslash\left\{p_{1}, \ldots, p_{8}\right\}$ the image of the line $\pi^{-1}(p)$ under $\tilde{\Phi}$ in $\operatorname{El}\left(5 ; p_{1}, \ldots, p_{8}\right)$ is the pencil of elliptic curves from $\operatorname{El}\left(5 ; p_{1}, \ldots, p_{8}\right)$ passing though p. Thus there are 4 rational curves through each general point in the variety $\operatorname{El}\left(5 ; p_{1}, \ldots, p_{8}\right)$. The restriction of $\tilde{\Phi}$ over each such curve is a rational elliptic surface corresponding to the associated set of points \mathcal{Q} of $\mathcal{P}=\left(p_{1}, \ldots, p_{8}, p\right)$ in \mathbb{P}^{2}. It is isomorphic to the proper inverse transform \tilde{V} under π of a Veronese surface containing $\left(p_{1}, \ldots, p_{8}, p\right)$. In the Cremona action $\mathrm{cr}_{2,9}: W_{2,9} \rightarrow \operatorname{Bir}\left(P_{2}^{9}\right)$ the orbit of \mathcal{Q} is fixed under the subgroup G isomorphic to $H=\mathbb{Z}^{8} \rtimes(\mathbb{Z} / 2 \mathbb{Z})$ (see [7, p. 124]). Using (4.3), we obtain that the orbit of the points set \mathscr{P} is fixed under the subgroup isomorphic to H in the Cremona action $\mathrm{cr}_{5,9}$. In particular, we find that the group of pseudo-automorphisms of the blow-up $X(\mathcal{P})$ contains an infinite group G^{\prime} isomorphic to H. Let V^{\prime} be the proper inverse transform of the Veronese surface V in $X(\mathcal{P})$. The projection $\tilde{X} \rightarrow X(\mathcal{P})$ defines an isomorphism $\tilde{V} \rightarrow V^{\prime}$. The group G leaves V^{\prime} invariant and its action on V^{\prime} corresponds to the action of G on $X(Q)$. Apparently (I have not checked it), the action of H on each \tilde{V} is the restriction of the automorphism group of the generic fibre of the elliptic fibration $\tilde{\Phi}$ isomorphic to H.
5.13. Remark. The fact that $X(\mathcal{P})$ has an infinite group of pseudo-automorphisms was used by S. Mukai [9] to construct an example of a linear action of the additive group \mathbb{G}_{a}^{3} in the polynomial algebra $\mathbb{C}\left[T_{1}, \ldots, T_{9}\right]$ such that the algebra of invariants is not finitely generated.

References

1. Babbage, D.: Twelve associated points in [5]. J. Lond. Math. Soc. 23, 58-64 (1948)
2. Coble, A.: Associated sets of points. Trans. Am. Math. Soc. 24, 1-20 (1922)
3. Coble, A.: Algebraic Geometry and Theta Functions. Coll. Publ. v. 10, Am. Math. Soc. 1929 [New reprint: Amer. Math. Soc. Providence, 1968]
4. Coble, A.: A generalization of the Weddle surface, of its Cremona group, and its parametric expression in terms of hyperelliptic theta functions. Am. J. Math. 52, 439500 (1930)
5. Coble, A., Chanler, J.: The geometry of the Weddle manifold W_{p}. Am. J. Math. 57, 183-218 (1935)
6. Coble, A.: The geometry of the Weddle manifold W_{p}. Bull. Am. Math. Soc. 41, 209-222 (1935)
7. Dolgachev, I., Ortland, D. Point Sets in Projective Spaces and Theta Functions. Astérisque 165 (1988)
8. Eisenbud, D., Popescu, S.: The projective geometry of the Gale transform. J. Algebra 230, 127-173 (2000)
9. Mukai, S.: Counterexamples to Hilbert's fourteenth problem for the 3-dimensional additive group. Publ. Math. RIMS 1343 (2001)
10. Semple, J., Roth, L.: Introduction to Algebraic Geometry. Oxford: Oxford Science Publ. 1987
11. Tyurin, A.: Special 0-cycles on polarized K3 surfaces. Izv. Akad. Nauk SSSR, Ser. Mat. 51, 131-151 (1987)

[^0]: I.V. Dolgachev: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, e-mail: idolga@umich. edu

