AUTOMORPHIC FORMS AND QUASIHOMOGENEOUS SINGULARITIES

I. V. Dolgachev

In this paper we announce several results related to a variant and a generalization of a construction for normal singularities with a C*-action (see [3]).

1. Definition. Let U be a homogeneous complex manifold, Γ a group of analytic automorphisms of the manifold U, and L a one-dimensional vector (or line) Γ -bundle on U (see [8]). An automorphic form with weight k with respect to L is a cross section $\varphi \in H^0$ $(U, L^{\otimes k})^{\Gamma}$ of k-th-order tensors for the Γ -bundle L which is invariant with respect to the natural action of Γ . The graded C-algebra A $(L) = \bigoplus_{k \in \mathbf{Z}} H^0$ $(U, L^{\otimes k})^{\Gamma}$ will be called the algebra of automorphic forms with respect to L.

THEOREM 1. We shall assume that the triple (U, Γ , L) is admissible, i.e., that the following assumptions hold:

- A1. There is a normal subgroup of finite index $\Gamma' \subseteq \Gamma$ which acts freely and discretely on U.
- A2. The factor space U/Γ is a compact analytic space.
- A3. For some subgroup $\Gamma' \subseteq \Gamma$ satisfying A1, the factor L/Γ' determines a positive (in the sense of Kodaira) line bundle over the manifold U/Γ' .

Under these assumptions, the algebra of automorphic forms A(L) is a normal C-algebra of finite type and dimension dim U+1, with nonnegative grading.

2. Definition. The affine algebraic manifold X over the algebraically closed field k is said to be a quasi-cone if the one-dimensional algebraic torus G_m acts effectively on X and there is a unique point $x_0 \in X$ which belongs to the closure of every orbit. The point x_0 is called the vertex of the quasi-cone X.

PROPOSITION. Let X be an affine algebraic manifold over k. The following are equivalent:

- 1) X is a quasi-cone;
- 2) the coordinate ring k[X] has nonnegative grading and $k[X]_0 \approx k$;
- 3) there is a closed inclusion j: $X \to k^n$ such that j(X) is invariant with respect to the action of G_m on k^n where the action is defined by the formula $(x_1, \ldots, x_n) \to (x_1 t^{q_1}, \ldots, x_n t^{q_n})$, with $t \in G_m(k)$ and q_1, \ldots, q_n being positive integers;
- 4) there is an inclusion j: $X \to k^n$ such that the ideal giving j(X) is generated by weighted-homogeneous polynomials with positive rational weights [4].

The proof of this proposition is based on standard arguments about the actions of algebraic tori on affine manifolds (cf. [9]).

THEOREM 2. Let (U, Γ , L) be an admissible triple. Then the affine algebraic manifold Spec A(L) is a normal quasi-cone with vertex \mathbf{x}_0 defined by the maximal ideal $A(L)_+ = \bigoplus_{i>0} A(L)_i$. Conversely, each normal two-dimensional quasi-cone is isomorphic to the manifold Spec A(L) for some admissible triple (U, Γ , L).

VNIIKAneftegaz. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 9, No. 2, pp. 67-68, April-June, 1975. Original article submitted November 19, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1

$\begin{array}{c}Q_{16}\\Q_{17}\\Q_{18}\\Z_{17}^{1}\\Z_{18}^{1}\\Z_{19}^{1}\\S_{16}\\S_{17}\\W_{18}\end{array}$	(3, 3, 9) (2, 4, 13) (2, 3, 21) (3, 3, 7) (2, 4, 10) (2, 3, 16) (3, 5, 7) (2, 7, 10) (3, 5, 5) (2, 7, 7)	2 3 5 2 3 5 2 3 2 3	$egin{array}{c} E_{18} & E_{19} & E_{20} & U_{16} & W_{1,0} & J_{3,0} & Q_{2,0} & S_{1,0} & U_{1,0} & Z_{1,0}^{\mathfrak{t}} & \end{array}$	(3, 3, 5) (2, 4, 7) (2, 3, 11) (5, 5, 5) (2, 2, 3, 3) (2, 2, 2, 3) (2, 2, 2, 5) (2, 2, 3, 4) (2, 3, 3, 3) (2, 2, 2, 4)	2 3 5 2 1 1 1 1
---	---	--	---	---	--------------------------------------

While the first part of this theorem follows immediately from the preceding results, the proof of the second part is very specialized and uses the idea of a "singular Seifert bundle" from [9].

<u>Definition.</u> A singularity in this article is the jet (Y, y) of the analytic space Y at the point y. A singularity will be called a normal singularity if Y is normal at the point y. Isomorphism of singularities means an analytic isomorphism between the corresponding jets. A singularity is called quasi-homogeneous if it is isomorphic to the jet of some quasi-cone at its vertex.

S(L). Each admissible triple (U, Γ , L) determines a normal quasi-homogeneous singularity S(L). Each normal two-dimensional quasi-homogeneous singularity is isomorphic to a singularity of the form S(L).

3. Examples. 1) Let G be a finite subgroup of the group LG(n+1, C), Γ its image under the canonical homomorphism $\varphi: GL(n+1, C) \to PL(n, C)$, m the order of the subgroup $G \cap Ker \varphi$. The bundle $L = H^{\otimes m}$, where H corresponds to the hyperplane cross section of $P^n(C)$, is a Γ -bundle with respect to the natural action of Γ on $P^n(C)$. The triple $(P^n(C), \Gamma, L)$ is admissible, and the corresponding singularity S(L) is isomorphic to the factor-singularity $(C^{n+1}/G, 0)$, where 0 is the image of the coordinate origin.

When n = 1 and $G \subseteq SL(2, C)$ the singularity obtained in this way is a Klein singularity (in other terms it is a double rational singularity, a platonic singularity, a singularity of type A, D, E; see [4], §9).

2) Let U be a bounded homogeneous region in \mathbb{C}^n , Γ a discrete group of analytic automorphisms of U with compact factor U/Γ . Each Γ -bundle over U is given by the trivial bundle $U \times C$ with Γ -action $(z, \alpha) \to (g(z), h(g; z) \alpha)$, specified by the automorphicity factor $h \in Z^1(\Gamma, \mathscr{O}(U)^*)$. In particular, the automorphicity factor is defined as $h = J^{-1}$, where J(g; z) is the Jacobian of $g \in \Gamma$ at the point z. The well-known results of Borel [5] and Kodaira [7] show that the triple (U, Γ, J) is admissible. The quasi-homogeneous singularity associated with it is called canonical and is denoted by $S(\Gamma)$.

In particular, let $U = \{z \in \mathbb{C} \mid |z| < 1\}$, Γ the Fuchsian group of the first kind with signature $(0, m; n_1, \ldots, n_m)$. When m = 3 the singularities $S(\Gamma)$ were called canonical triangular singularities in [3], and in that article there were listed those singularities which occurred in \mathbb{C}^3 (the 14 unimodular singularities of Arnol'd). If Γ is a positive integer relatively prime to each of the n_1 , then there is not more than one automorphicity factor Γ with Γ = Γ . When such a factor exists (the appropriate conditions can be obtained through explicit calculation of the group of the cohomologies Γ (Γ , Γ); see [6]), we denote the singularity corresponding to the triple Γ to Γ the sets Γ of the level surfaces of the bimodal critical points of Arnol'd are given in Table 1 (notation from [2]).

3) Arnol'd's [1] parabolic two-dimensional singularities can be obtained from the appropriate automorphicity factor for the lattice Γ in C.

LITERATURE CITED

- 1. V. I. Arnol'd, Uspekhi Matem. Nauk, 28, No. 5, 17-44 (1973).
- 2. V. I. Arnol'd, Funktsional'. Analiz i Ego Prilozhen., 9, No. 1, 49-50 (1975).
- 3. I. V. Dolgachev, Funktsional'. Analiz i Ego Prilozhen., 8, No. 2, 75-76 (1974).
- 4. J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton (1968).
- 5. A. Borel, Topology, 2, 111-122 (1963).
- 6. R. Godement, Seminarie Bourbaki, Paris (March, 1954).
- 7. K. Kodaira, Proc. Nat. Acad. Sci. USA, 39, 1268-1273 (1953).

- D. Mumford, Geometric Invariant Theory, Springer-Verlag, Heidelberg-Berlin-New York (1965). P. Orlik and P. Wagreich, Ann. Math., 93, No. 2, 205-228 (1971). 8.
- 9.