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ABSTRACT. We extend to arbitrary characteristic some known results
on automorphisms of complex Enriques surfaces that act identically on
the cohomology or the cohomology modulo torsion.

1. INTRODUCTION

Let S be algebraic surface over an algebraically closed field k of charac-
teristic p ≥ 0. An automorphism σ of S is called numerically trivial (resp,
cohomologically trivial) if it acts trivially on H2

ét(S,Q`) (resp. H2
ét(S,Z`)).

In the case when S is an Enriques surface, the Chern class homomor-
phism c1 : Pic(S) → H2

ét(S,Z`) induces an isomorphism NS(S) ⊗ Z` ∼=
H2
ét(S,Z`), where NS(S) is the Néron-Severi group of S isomorphic to the

Picard group Pic(S). Moreover, it is known that the torsion subgroup of
NS(S) is generated by the canonical class KS . Thus, an automorphism σ is
cohomologically (resp. numerically) trivial if and only if it acts identically
on Pic(S) (resp. Num(S) = Pic(S)/(KS)). Over the field of complex num-
bers, the classification of numerically trivial automorphisms can be found
in [11], [12]. We have

Theorem 1. Assume k = C. The group Aut(S)ct of cohomologically trivial
automorphisms is cyclic of order ≤ 2. The group Aut(S)nt of numerically
trivial automorphisms is cyclic of order 2 or 4.

The tools in the loc.cit. are transcendental and use the periods of the K3-
covers of Enriques surfaces, so they do not extend to the case of positive
characteristic.

Our main result is that Theorem 1 is true in any characteristic.
The author is grateful to S. Kondō, J. Keum and the referee for useful

comments to the paper.

2. GENERALITIES

Recall that an Enriques surface S is called classical if KS 6= 0. The op-
posite may happen only if char(k) = 2. Enriques surfaces with this property
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are divided into two classes: µ2-surfaces or α2-surfaces. They are distin-
guished by the property of the action of the Frobenius on H2(S,OS) ∼= k.
In the first case, the action is non-trivial, and in the second case it is triv-
ial. They also differ by the structure of their Picard schemes. In the first
case it is isomorphic to the group scheme µ2, in the second case it is iso-
morphic to the group scheme α2. Obviously, if S is not classical, then
Aut(S)nt = Aut(S)ct.

It is known that the quadratic lattice Num(S) of numerical equivalence
divisor classes on S is isomorphic to Pic(S)/(KS). It is a unimodular even
quadratic lattice of rank 10 and signature (1, 9). As such it must be isomor-
phic to the orthogonal sum E10 = E8 ⊕U , where E8 is the unique negative
definite even unimodular lattice of rank 8 and U is a hyperbolic plane over
Z. One can realize E10 as a primitive sublattice of the standard unimodular
odd hyperbolic lattice

Z1,10 = Ze0 + Ze1 + · · ·+ Ze10, (2.1)

where e2
0 = 1, e2

i = −1, i > 0, ei · ej = 0, i 6= j. The orthogonal comple-
ment of the vector

k10 = −3e0 + e1 + · · ·+ e10

is isomorphic to the lattice E10.
Let

fj = −k10 + ej, j = 1, . . . , 10.

The 10 vectors fj satisfy

f2
j = 0, fi · fj = 1, i 6= j.

Under an isomorphism E10 → Num(S), their images form a sequence
(f1, . . . , f10) of isotropic vectors satisfying fi · fj = 1, i 6= j, called an
isotropic sequence in [3]. An isotropic sequence generates an index 3 sub-
lattice of Num(S).

A smooth rational curve R on S (a (−2)-curve, for brevity) does not
move in a linear system and |R + KS| = ∅ if KS 6= 0. Thus we can and
will identify R with its class [R] in Num(S). Any (−2)-curve defines a
reflection isometry of Num(S)

sR : x 7→ x+ (x ·R)R.

Any numerical divisor class in Num(S) of non-negative norm repre-
sented by an effective divisor can be transformed by a sequence of reflec-
tions sR into the numerical divisor class of a nef divisor. Any isotropic
sequence can be transformed by a sequence of reflections into a canonical
isotropic sequence, i.e. an isotropic sequence (f1, . . . , f10) satisfying the
following properties
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• fk1 , . . . , fkc are nef classes for some 1 = k1 < k2 < . . . < kc ≤ 10;
• fj = fki +Rj, ki < j < ki+1, whereRj = Ri,1 + · · ·+Ri,sj is the

sum of sj = j − ki classes of (−2)-curves with intersection graph
of type Asj such that fki · Rj = fki ·Ri,1 = 1

• • • • •. . .
Ri,1 Ri,2 Ri,sj−1 Ri,sjfki

Any primitive isotropic numerical nef divisor class f in Num(S) is the
class of nef effective divisors F and F ′ ∼ F + KS . The linear system
|2F | = |2F ′| is base-point-free and defines a fibration φ : S → P1 whose
generic fiber Sη is a regular curve of arithmetic genus one. If p 6= 2, Sη is
a smooth elliptic curve over the residue field of the generic point η of the
base. In this case, φ is called an elliptic fibration. The divisors F and F ′ are
half-fibers of φ, i.e. 2F and 2F ′ are fibers of φ.

The following result by J.-P. Serre [15] about lifting to characteristic 0
shows that there is nothing new if p 6= 2.

Theorem 2. Let W (k) be the ring of Witt vectors with algebraically closed
residue field k, and let X be a smooth projective variety over k, and let G
be a finite automorphism group of X . Assume

• #G is prime to char(k);
• H2(X,OX) = 0;
• H2(X,ΘX) = 0, where ΘX is the tangent sheaf of X .

Then the pair (X,G) can be lifted to W (k), i.e. there exists a smooth pro-
jective scheme X → Spec W (k) with special fiber isomorphic to X and
an action of G on X over W (k) such that the induced action of G in X
coincides with the action of G on X .

We apply this theorem to the case when G = Autnt(S), where S is an
Enriques surface over a field k of characteristic p 6= 2. We will see later
that the order of G = Autnt(S) is a power of 2, so it is prime to p. We have
an isomorphism H2(S,ΘS) ∼= H0(S,Ω1

S(KS)). Let π : X → S be the K3-
cover. Since the map π∗ : H0(S,Ω1

S(KS)) → H0(X,Ω1
X) ∼= H0(X,ΘX)

is injective and H0(X,ΘX) = 0, we obtain that all conditions in Serre’s
Theorem are satisfied. Thus, there is nothing new in this case. We can
apply the results of [11] and [12] to obtain the complete classification of
numerically trivial automorphisms. However, we will give here another,
purely geometric, proof of Theorem 1 that does not appeal to K3-covers
nor does it uses Serre’s lifting theorem.
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3. LEFSCHETZ FIXED-POINT FORMULA

We will need a Lefschetz fixed-point formula comparing the trace of an
automorphism σ of finite order acting on the l-adic cohomologyH∗ét(X,Ql)
of a normal projective algebraic surface X with the structure of the sub-
scheme Xσ of fixed points of σ.

The subscheme of fixed points Xσ is defined as the scheme-theoretical
intersection of the diagonal with the graph of σ. Let J (σ) be the ideal sheaf
of Xσ. If x ∈ Xσ, then the stalk J (σ)x is the ideal inOX,x generated by el-
ements a−σ∗(a), a ∈ OX,x. Let Tri(σ) denote the trace of the linear action
of σ on H i

ét(X,Ql). The following formula was proved in [13], Proposition
(3.2):∑

(−1)iTri(σ) = χ(X,OXσ) + χ(X,J (σ)/J (σ)2)− χ(X,Ω1
X ⊗OXσ).

(3.1)
If σ is tame, i.e. its order is prime to p, then Xσ is reduced and smooth

[8], and the Riemann-Roch formula easily implies

Lef(σ) :=
∑

(−1)iTri(σ) = e(Xσ), (3.2)

where e(Xσ) is the Euler characteristic of Xσ in étale l-adic cohomology.
This is the familiar Lefschetz fixed-point formula from topology.

The interesting case is when σ is wild, i.e. its order is divisible by p. We
will be interested in application of this formula in the case when σ is of
order 2 equal to the characteristic and X is an Enriques surface S.

Let π : S → Y = S/(σ) be the quotient map. Consider an OY -linear
map

T = 1 + σ : π∗OS → OY .
Its image is the ideal sheaf IZ of a closed subscheme Z of Y and the inverse
image of this ideal in OS is equal to J (σ).

Theorem 3. Let S be a classical Enriques surface and let σ be a wild
automorphism of S of order 2. Then Sσ is non-empty and connected.

Proof. As was first observed by J.-P. Serre, the first assertion follows from
the Woods Hole Lefschetz fixed-point formula for cohomology with coeffi-
cients in a coherent sheaf [7] (we use that

∑
(−1)iTr(g|H i(S,OS)) = 1 and

hence the right-hand side of the formula is not zero). The second assertion
can be proved for a wild automorphism of any prime order by modifying
the arguments from [5]. This was done in [9].1 �

1The assertion is not true for non-classical Enriques surfaces. The analysis of this case
reveals a missing case in [5]:Xσ may consist of an isolated fixed point and a connected
curve.
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Proposition 1. Let S be a classical Enriques surface. Assume that Sσ con-
sists of one point s0. Then Lef(σ) = 4.

Proof. Let π : S → Y = S/(σ) be the quotient morphism and y =
π(s0). Since h0(OZ) = 1, it follows from [2] that the formal comple-
tion of the local ringOY,y is a rational double point of type D(1)

4 isomorphic
to k[[x, y, z]]/(z2 + xyz + x2y + xy2) (see [5], Remark 2.6). Moreover,
identifying ÔY,y with the ring of invariants of ÔX,x0 = k[[u, v]], we have

x = u(u+ y), y = v(v + x), z = xu+ yv.

This implies that the ideal J (σ)s0 generates the ideal (u2, v2) in k[[u, v]].
Applying (3.1), we easily obtain

Lef(σ) = dimk k[[u, v]]/(u2, v2) + dimk(u
2, v2)/(u4, v4, u2v2)

−2 dimk k[[u, v]]/(u2, v2) = 4 + 8− 8 = 4.

�

Since, for any σ ∈ Autct(S), we have Lef(σ) = 12, we obtain the follow-
ing.

Corollary 1. Let σ be a wild numerically trivial automorphism of order 2
of a classical Enriques surface S. Then Sσ is a connected curve.

Proposition 2. Let S be a classical Enriques surface and σ be a wild nu-
merically trivial automorphism of order 2. Assume that (Sσ)red is con-
tained in a fiber F of a genus one fibration on S. Then (Sσ)red = Fred

or (Sσ)red = Fred −R, where R is an irreducible component of F .

Proof. Since σ fixes each irreducible component of F , and has one fixed
point on each component which is not contained in Sσ, the structure of
fibers show that there is only one such component. �

4. COHOMOLOGICALLY TRIVIAL AUTOMORPHISMS

Let φ : S → P1 be a genus one fibration defined by a pencil |2F |. Let D
be an effective divisor on S. We denote by Dη its restriction to the generic
fiber Sη. If D is of relative degree d over the base of the fibration, then Dη

is an effective divisor of degree d on Sη. In particular, if D is irreducible,
the divisor Dη is a point on Sη of degree d. Since φ has a double fiber, the
minimal degree of a point on Sη is equal to 2.

Lemma 1. S admits a genus one fibration φ : S → P1 such that σ ∈
Autct(S) leaves invariant all fibers of φ and at least 2 (3 if KS 6= 0) points
of degree two on Sη.
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Proof. By Theorem 3.4.1 from [3] (we will treat the exceptional case when
S is extra E8-special in characteristic 2 in the last section), one can find a
canonical isotropic sequence (f1, . . . , f10) with nef classes f1, fk2 , . . . , fkc
where c ≥ 2.

Assume c ≥ 3. Then we have three genus one fibrations |2F1|, |2Fk2|,
and |2Fk3 | defined by f1, fk2 , fk3 . The restriction of Fk2 and Fk3 to the
general fiber Sη of the genus one fibration defined by the pencil |2F1| are
two degree 2 points. If KS 6= 0, then the half-fibers F ′k2 ∈ |Fk2 + KS| and
F ′k3 ∈ |Fk3 +KS| define two more degree two points.

Assume c = 2. Let f1 = [F1], f2 = [Fk2 ]. By definition of a canonical
isotropic sequence, we have the following graph of irreducible curves

• • • •

• • • •

•· · ·

· · ·

F1

R1

F2

Rk−1 Rk

Rk+1 R7 R8

Assume k 6= 0. Let φ : S → P1 be a genus one fibration defined by
the pencil |2F1|. Then the curves F2 and R1 define two points of degree
two on Sη. If S is classical, we have the third point defined by a curve
F ′2 ∈ |F2 + KS|. Since σ is cohomologically trivial, it leaves the half-
fibers F1, F2, and F ′2 invariant. It also leaves invariant the (−2)-curve R1.
If k = 0, we take for φ the fibration defined by the pencil |2Fk2| and get the
same result. �

The next theorem extends the first assertion of Theorem 1 from the Intro-
duction to arbitrary characteristic.

Theorem 4. The order of Autct(S) is equal to 1 or 2.

Proof. By the previous Lemma, Autct(S) leaves invariant a genus one fibra-
tion and 2 or 3 degree two points on its generic fiber. For any σ ∈ Autct(S),
the automorphism σ2 acts identically on the residue fields of these points. If
p 6= 2 (resp. p = 2), we obtain that σ, acting on the geometric generic fiber
Sη̄, fixes 6 (resp. 4) points. The known structure of the automorphism group
of an elliptic curve over an algebraically closed field of any characteristic
(see [16], Appendix A) shows that this is possible only if σ is the identity.

So far, we have shown only that each non-trivial element in Autct(S) is of
order 2. However, the previous argument also shows that any two elements
in the group share a common orbit in Sη̄ of cardinality 2. Again, the known
structure of the automorphism group of an elliptic curve shows that this
implies that the group is of order 2. �

Lemma 2. Let F be a singular fiber of a genus one fibration on an elliptic
surface. Let σ be a non-trivial tame automorphism of order 2 that leaves
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invariant each irreducible component of F . Then

e(F σ) = e(F ). (4.1)

Remark 1. Formula (4.1) agrees with the Lefschetz fixed-point formula
whose proof in the case of a reducible curve I could not find.

Proof. The following pictures exhibit possible sets of fixed points. Here
the star denotes an irreducible component in F σ, the red line denotes the
isolated fixed point that equal to the intersection of two components, the
red dot denotes an isolated fixed point which is not the intersection point of
two components.

• • • • • • • •
•

F F F F

•
• e(F σ) = 10Ẽ8

• • • • • • •
•
F F F •
• •

e(F σ) = 10D̃8 •

• • • • • • • •
•

F F

F

F e(F σ) = 9Ã8

• • • • • • • •
•

e(F σ) = 9Ã8

• • • • • • •
•

• F F F

•
• e(F σ) = 9Ẽ7

• • • • • •
•
F F •
• •

e(F σ) = 9D̃7 •

• • • • • • •
•

F F

F

F e(F σ) = 8Ã7

• • • • • • •
•

e(F σ) = 8Ã7

• • • • •
•

• FF F

F

e(F σ) = 8Ẽ6

• • • • •
•
F F •
• •

e(F σ) = 8D̃6 •

• • • • • •
•

F

F

F e(F σ) = 7Ã6
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• • • • • •
•

e(F σ) = 7Ã6

• • • • •
•

F

F

F e(F σ) = 6Ã5

• • • • •
•

e(F σ) = 6Ã5

• • •F•
• •

e(F σ) = 6D̃4 •

• • • •
•

F

F

e(F σ) = 5Ã4 • • • •
•

• • •F

F

e(F σ) = 4Ã3 • • •
•

• •
•

F e(F σ) = 3Ã2 • •
•

• •F e(F σ) = 2Ã1 • •

Also, if F is of type Ã∗2(IV ) (resp. Ã∗2(III), resp. Ã∗1(II), resp. Ã0(I1),
resp. Ã∗∗(II)), we obtain that F σ consists of 4 (resp. 3, resp. 2, resp. 1)
isolated fixed points. Observe that the case D̃5 is missing. It does not occur.
The equality e(F σ) = e(F ) is checked case by case.

�

Theorem 5. Assume thatKS 6= 0. A cohomologically trivial automorphism
σ leaves invariant any genus one fibration and acts identically on its base.

Proof. The first assertion is obvious. Suppose σ does not act identically on
the base of a genus one fibration φ : S → P1. By assumption KS 6= 0,
hence a genus one fibration has two half-fibers. Since σ is cohomologically
trivial, it fixes the two half-fibers F1 and F2 of φ. Assume p = 2. Since σ
acts on the base with only one fixed point, we get a contradiction. Assume
p 6= 2. Then σ has exactly two fixed points on the base. In particular, all
non-multiple fibers must be irreducible, and the number of singular non-
multiple fibers is even. By Lefschetz fixed-point formula, we get

e(Sσ) = e(F σ
1 ) + e(F σ

2 ) = 12.

Since p 6= 2, Fi is either smooth or of type Ãni , i = 1, 2. Suppose that
F1 and F2 are singular fibers. Since σ fixes any irreducible component of
a fiber, Lemma 2 implies that e(F σ

i ) = e(Fi) = ni. So, we obtain that
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n1 + n2 = 12. However, F1, F2 contribute n1 + n2 − 1 to the rank of the
sublattice of Num(S) generated by components of fibers. The rank of this
sublattice is at most 9. This gives us a contradiction. Next we assume that
one of the half-fibers is smooth. Then a smooth fiber has 4 fixed points,
hence the other half-fiber must be of type Ã7. It is easy to see that a smooth
relatively minimal model of the quotient S/(σ) has singular fibers of type
D̃4 and Ã7. Since the Euler characteristics of singular fibers add up to 12,
this is impossible.

�

Remark 2. The assertion is probably true in the case when S is not classical.
However, I could prove only that S admits at most one genus 1 fibration on
which σ does not act identically on the base. In this case (Sσ)red is equal to
the reduced half-fiber.

We also have the converse assertion.

Proposition 3. Any numerically trivial automorphism σ that acts identi-
cally on the base of any genus one fibration is cohomologically trivial.

This follows from Enriques’s Reducibility Lemma [3], Corollary 3.2.2.
It asserts that any effective divisor on S is linearly equivalent to a sum of ir-
reducible curves of arithmetic genus one and smooth rational curves. Since
each irreducible curve of arithmetic genus one is realized as either a fiber
or a half-fiber of a genus one fibration, its class is fixed by σ. Since σ fixes
also the class of a smooth rational curve, we obtain that it acts identically
on the Picard group.

5. NUMERICALLY TRIVIAL AUTOMORPHISMS

Here we will be interested in the group Autnt(S)/Autct(S). Since Num(S)
coincides with Pic(S) for a non-classical Enriques surface S, we may as-
sume that KS 6= 0.

Let O(NS(S)) be the group of automorphisms of the abelian group NS(S)
preserving the intersection product. It follows from the elementary theory
of abelian groups that

O(NS(S)) ∼= (Z/2Z)10 o O(Num(S)).

Thus
Autnt(S)/Autct(S) ∼= (Z/2Z)a. (5.1)

The following theorem extends the second assertion of Theorem 1 to
arbitrary characteristic.

Theorem 6.
Autnt(S)/Autct(S) ∼= (Z/2Z)a, a ≤ 1.
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Proof. Assume first that p 6= 2. Let σ ∈ Autnt(S)\Autct(S). By Proposition
3, there exists a genus one fibration φ : S → P1 such that σ acts non-trivially
on its base. Since p 6= 2, σ has two fixed points on the base. Let F1 and
F2 be the fibers over these points. Obviously, σ must leave invariant any
reducible fiber, hence all fibers F 6= F1, F2 are irreducible. On the other
hand, the Lefschetz fixed-point formula shows that one of the fixed fibers
must be reducible. Let G be the cyclic group generated by (σ). Assume
there is σ′ ∈ Autnt(S) \ G. Since Autnt(S)/Autct(S) is an elementary 2-
group, the actions of σ′ and σ on the base of the fibration commute. Thus
σ′ either switches F1, F2 or it leaves them invariant. Since one of the fibers
is reducible, σ′ must fix both fibers. We may assume that F1 is reducible.
By looking at all possible structure of the locus of fixed points containing
in a fiber (see the proof of Lemma 2), we find that σ and σ′ (or σ ◦ σ′) fixes
pointwisely the same set of irreducible components of F1. Thus σ ◦ σ′ (or
σ′) acts identically on F1. Since the set of fixed points is smooth, we get a
contradiction with the assumption that σ′ 6= σ.

Next we deal with the case p = 2. Suppose the assertion is not true. Let
σ1, σ2 be two representatives of non-trivial cosets in Autnt(S)/Autct(S). Let
φi be a genus one fibration such that σi does not act identically on its base.
Since, we are in characteristic 2, σi has only one fixed point on the base.
Let Fi be the unique fiber of φi fixed by σi. Replacing σ2 with σ1 ◦ σ2, if
needed, we may assume that σ2 does not act identically on the base of φ1.
It follows from Proposition 2 that Sσi = (Fi)red−Ri for some (−2)-curves
Ri. Then σ3 = σ1 ◦ σ2 acts identically on the bases of φ1 and φ2, and hence
contains 2-sections of φ1 and φ2. It is easy to see that they coincide with R1

and R2. Now Sσ3 contains (F1)red + R2 = (F2)red + R1 and this cannot be
contained in F3. This contradiction proves the assertion. �

6. EXAMPLES

In this section we assume that p 6= 2.

Example 1. Let us see that the case when Autnt(S) 6= Autct(S) is realized.
Consider X = P1 × P1 with two projections p1, p2 onto P1. Choose two
smooth rational curves R and R′ of bidegree (1, 2) such that the restriction
of p1 to each of these curves is a finite map of degree two. Assume that R is
tangent to R′ at two points x1 and x2 with tangent directions corresponding
to the fibersL1, L2 of p1 passing through these points. Counting parameters,
it is easy to see that this can be always achieved. Let x′1, x

′
2 be the points

infinitely near x1, x2 corresponding to the tangent directions. Let L3, L4 be
two fibers of p1 different from L1 and L2. Let

R∩L3 = {x3, x4}, R∩L4 = {x5, x6}, R′∩L3 = {x′3, x′4}, R′∩L4 = {x′5, x′6}.



NUMERICALLY TRIVIAL AUTOMORPHISMS 11

We assume that all the points are distinct. Let b : X ′ → X be the blow-
up of the points x1, . . . , x6, x

′
1, . . . , x

′
6. Let Ri, R

′
i be the corresponding

exceptional curves, L̄i, R̄, R̄′ be the proper transforms of Li, R,R′. We
have

D = R̄ + R̄′ +
4∑
i=1

L̄i +R1 +R2

∼ 2b∗(3f1 + 2f2)− 2
6∑
i=1

(Ri +R′i)− 4(R′1 +R′2),

where fi is the divisor class of a fiber of the projection pi : X → P1. Since
the divisor class of D is divisible by 2 in the Picard group, we can construct
a double cover π : S ′ → X ′ branched over D. We have

KX′ = b∗(−2f1 − 2f2) +
6∑
i=1

(Ri +R′i) +R′1 +R′2,

hence
KS′ = π∗(KX′ +

1

2
D) = (b ◦ π)∗(f1 −R′1 −R′2).

We have L̄2
1 = L̄2

2 = R2
1 = R2

2 = −2, hence π∗(L̄i) = 2Ai, i = 1, 2,
and π∗(Ri) = 2Bi, i = 1, 2, where A1, A2, B1, B2 are (−1)-curves. Also
R̄2 = R̄′

2
= L̄2

3 = L̄2
4 = −4, hence π∗(R̄) = 2R̃, π∗(R̄′) = 2R̃′, π∗(L̄3) =

2L̃3, π
∗(L̄4) = 2L̃4 where R̃, R̃′, L̃3, L̃4 are (−2)-curves. The curves R̄i =

π∗(Ri), R̄
′
i = π∗(R′i), i = 3, 4, 5, 6, are (−2)-curves. The preimages of the

curves R′1 and R′2 are elliptic curves F ′1, F
′
2. Let α : S ′ → S be the blowing

down of the curves A1, A2, B1, B2. Then the preimage of the fibration p1 :
X → P1 on S is an elliptic fibration with double fibers 2F1, 2F2, where
Fi = α(F ′i ). We haveKS = 2F1−F1−F2 = F1−F2. So, S is an Enriques
surface with rational double cover S 99K P1×P1. The elliptic fibration has
two fibers of types D̃4 over L3, L4 and two double fibers over L1 and L2.

The following diagram pictures a configuration of curves on S.

•

• • •

•

•••

•

•

•

•
L̃3

R̄3 R̃ R̄′3

L̃′4

R̄4 R̄′4

R̄6

R̃′
R̄5 R̄′5

R̄′6
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Let us see that the cover automorphism is numerically trivial but not co-
homologically trivial (see other treatment of this example in [12]). Con-
sider the pencil of curves of bidegree (4, 4) on X generated by the curve
G = R + R′ + L3 + L4 and 2C, where C is a unique curve of bidegree
(2, 2) passing through the points x4, x

′
4, x6, x

′
6, x1, x

′
1, x2, x

′
2. These points

are the double base points of the pencil. It is easy to see that this pencil de-
fines an elliptic fibration on S with a double fiber of type Ã7 formed by the
curves R̄3, L̃3, R̄5, R̃

′, R̄′5, L̃4, R̄
′
3, R̃ and the double fiber 2C̄, where C̄ is the

preimage of C on S. If g = 0, f = 0 are local equations of the curvesG and
C, the local equation of a general member of the pencil is g+µf 2 = 0, and
the local equation of the double cover S 99K X is g = z2. It clear that the
pencil splits. By Proposition 3 the automorphism is not cohomologically
trivial.

Note that the K3-cover of S has four singular fibers of type D̃4. It is
a Kummer surface of the product of two elliptic curves. This is the first
example of a numerically trivial automorphism due to David Lieberman
(see [11], Example 1). Over C, a special case of this surface belongs to
Kondō’s list of complex Enriques surfaces with finite automorphism group
[10]. It is a surface of type III. It admits five elliptic fibrations of types

D̃8, D̃4 + D̃4, D̃6 + Ã1 + Ã1, Ã7 + Ã1, Ã3 + Ã3 + Ã1 + Ã1.

Example 2. Let X = P1 × P1 be as in the previous example. Let R′ be
a curve of bidegree (3, 4) on X such that the degree of p1 restricted to R′

is equal to 4. It is a curve of arithmetic genus 6. Choose three fibers of
L1, L2, L3 of the first projection and points xi ∈ Li on it no two of which
lie on a fiber of the second projection. Let x′i � xi be the point infinitely
near xi in the tangent directions defined by the fiber Li. We require that R′

has double points at x1, x2, x
′
2, x3, x

′
3 and a simple point at x′1 (in particular

R′ has a cusp at x1 and has tacnodes at x2, x3). The dimension of the linear
system of curves of bidegree (3, 4) is equal to 19. We need 5 conditions to
have a cusp at x1 as above, and 6 conditions for each tacnode. So, we can
always find R′.

Consider the double cover π : Y → X branched over R′ + L1 + L2 +
L3. It has a double rational point of type E8 over x1 and simple elliptic
singularities of degree 2 over x2, x3. Let r : S ′ → Y be a minimal resolution
of singularities. The composition f ′ = p1◦r◦π : S ′ → P1 is a non-minimal
elliptic fibration on S ′. It has a fiber F ′1 of type Ẽ8 over L1. The preimage
of L2 (resp. L2) is the union of an elliptic curve F ′2 (resp. F ′3) and two
disjoint (−1)-curves A2, A

′
2 (resp. A3, A

′
3), all taken with multiplicity 2.

Let S ′ → S be the blow-down of the curves A2, A
′
2, A3, A

′
3. It is easy to

check that S is an Enriques surface with a fiber F1 of type Ẽ8 and two
half-fibers F2, F3, the images of F ′2, F

′
3.
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The following picture describes the incidence graph of irreducible com-
ponents of F1.

• • • • • • • •
•R1

R2 R3 R4 R5 R6 R7 R8 R9

Under the composition of rational maps π : S 99K S ′ → Y → X , the
image of the component R8 is equal to L1, the image of the component R9

is the intersection point x0 6= x1 of the curves R′ and L1. Let σ be the
deck transformation of the cover π (it extends to a biregular automorphism
because S is a minimal surface).

Consider a curve C onX of bidegree (1, 2) that passes through the points
x1, x2, x

′
2, x3, x

′
3. The dimension of the linear system of curves of bidegree

(1, 2) is equal to 5. We have five condition for C that we can satisfy. The
proper transform of C on S is a (−2)-curve R0 that intersects the compo-
nents R8 and R2. We have the graph which is contained in the incidence
graph of (−2)-curves on S:

•

•

•

•

•

•

•

•

• •R4

R1

R3

R2

R5

R6

R7

R8

R9

R0

(6.1)

One computes the determinant of the intersection matrix (Ri · Rj)) and
obtains that it is equal to −4. This shows that the curves R0, . . . , R9 gener-
ate a sublattice of index 2 of the lattice Num(S). The class of the half-
fiber F2 does not belong to this sublattice, but 2F2 belongs to it. This
shows that the numerical classes [F2], [R0], . . . , [R9] generate Num(S). We
also have a section s : Num(S) → Pic(S) of the projection Pic(S) →
Num(S) = Pic(S)/(KS) defined by sending [Ri] to Ri and [F2] to F2.
Since the divisor classes Ri and F2 are σ-invariant, we obtain that Pic(S) =
KS ⊕ s(Num(S)), where the both summands are σ-invariant. This shows
that σ acts identically on Pic(S), and, by definition, belongs to Autct(S).
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Remark 3. In fact, we have proven the following fact. Let S be an Enriques
surface such that the incidence graph of (−2)-curves on it contains the sub-
graph (6.1). Assume that S admits an involution σ that acts identically on
the subgraph and leaves invariant the two half-fibers of the elliptic fibration
defined by a subdiagram of type Ẽ8. Then σ ∈ Autct(S). The first exam-
ple of such a pair (S, σ) was constructed in [4]. The surface has additional
(−2)-curves R′1 and R′9 forming the following graph.

•

•

•

•

•

•

•

•

• •R4

R1 R
′
1

R3

R2

R5

R6

R7

R8

R9R′9

R0

•• (6.2)

All smooth rational curves are accounted in this diagram. The surface has
a finite automorphism group isomorphic to the dihedral group D4 of order
4. It is a surface of type I in Kondō’s list. The existence of an Enriques
surface containing the diagram (6.2) was first shown by E. Horikawa [6].
Another construction of pairs (S, σ) as above was given in [11] (the paper
has no reference to the paper [4] that had appeared in the previous issue of
the same journal).

Observe now that in the diagram (6.1) the curves R0, . . . , R7 form a nef
isotropic effective divisor F0 of type Ẽ7. The curve R9 does not intersect
it. This implies that the genus one fibration defined by the pencil |F0| has
a reducible fiber with one of its irreducible components equal to R9. Since
the sum of the Euler characteristics of fibers add up to 12, we obtain that
the fibration has a reducible fiber or a half-fiber of type Ã1. Let R′9 be
its another irreducible component. Similarly, we consider the genus one
fibration with fiber R0, R2, R3, R5, . . . , R9 of type Ẽ7. It has another fiber
(or a half-fiber) of type Ã1 formed by R1 and some other (−2)-curve R′1.

So any surface S containing the configuration of curves from (6.1) must
contain a configuration of curves described by the following diagram.
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•

•

•

•

•

•

•

•

• •R4

R1 R
′
1

R3

R2

R5

R6

R7

R8

R9R′9

R0

•• (6.3)

Note that our surfaces S depend on 2 parameters. A general surface from
the family is different from the Horikawa surface. For a general S, the curve
R′9 originates from a rational curve Q of bidegree (1, 2) on X that passes
through the points x0 and x2, x

′
2, x3, x

′
3. It intersects R8 with multiplicity

1. The curve R′1 originates from a rational curve Q′ of bidegree (5, 6) of
arithmetic genus 20 which has a 4-tuple point at x1 and two double points
infinitely near x1. It also has four triple points at x2, x

′
2, x3, x

′
3. It intersects

R4 with multiplicity 1. In the special case when one of the points x2 or x3

is contained in a curve (0, 1) Q0 of bidegree (0, 1) containing x0, the curve
Q becomes reducible, its component Q0 defines the curve R′9 that does not
intersect R8. Moreover, if there exists a curve Q′0 of bidegree (2, 3) which
has multiplicity 2 ar x2, multiplicity 1 at x′2, x3, x4, and has a cusp at x1

intersecting R′ at this point with multiplicity 7, then Q′0 will define a curve
R′1 that does not intersect R4. The two curves R′1 and R′9 will intersect at
two points on the half-fibers of the elliptic fibration |2F |. This gives us the
Horikawa surface.

Example 3. Let φ : X → P1 be a rational elliptic surface with reducible
fiber F1 of type IV and F2 of type I∗0 = D̃4 and one double fiber 2F . The
existence of such surface follows from the existence of a rational elliptic
surface with a section with the same types of reducible fibers. Consider the
double cover X ′ → X branched over F1 and the union of the components
of F2 of multiplicity 1. It is easy to see that X ′ is birationally equivalent
to an Enriques surface with a fiber of type Ẽ6 over F1 and a smooth ellip-
tic curve over F2. The locus of fixed points of the deck transformation σ
consists of four components of the fiber of type Ẽ6 and four isolated points
on the smooth fiber. Thus the Lefschetz number is equal to 12 and σ is
numerically trivial. Over C, this is Example 1 from [12] which was over-
looked in [11]. A special case of this example can be found in [10]. It is
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realized on a surface of type V in Kondō’s list of Enriques surfaces with
finite automorphism group.

7. EXTRA SPECIAL ENRIQUES SURFACES

In this section we will give examples of cohomologically trivial automor-
phisms that appear only in characteristic 2.

An Enriques surface is called extra special if there exists a root basis B
in Num(S) of cardinality ≤ 11 that consists of the classes of (−2)-curves
such that the reflection subgroup G generated by B is of finite index in the
orthogonal group of Num(S). Such a root basis was called crystallographic
in [3]. We additionally assume that no two curves intersect with multiplicity
> 2. By a theorem of E. Vinberg [17], this is possible if and only if the Cox-
eter diagram of the Coxeter group (G,B) has the property that each affine
subdiagram is contained in an affine diagram, not necessary connected, of
maximal possible rank (in our case equal to 8).

One can easily classify extra special Enriques surfaces. They are of the
following three kinds.

An extra Ẽ8-special surface with the crystallographic basis of (−2)-curves
described by the following diagram:

• • • • • • • • •
•R1

R2 R3 R4 R5 R6 R7 R8 R9 C

It has a genus one fibration with a half-fiber of type Ẽ8 with irreducible
components R1, . . . , R9 and a smooth rational 2-section C.

An extra D̃8-special surface with the crystallographic basis of (−2)-curves
described by the following diagram:

• • • • • • •
• •

•
R1

R3 R4 R5 R6 R8 R9 CR7

R2

It has a genus one fibration with a half-fiber of type D̃8 with irreducible
components R1, . . . , R9 and a smooth rational 2-section C.

An extra Ẽ7+Ã1-special Enriques surface with the crystallographic basis
of (−2)-curves described by the following diagram:

• • • • • • • • •
••R1

R2 R3 R4 R5 R6 R7 R8 C R9

R10
or
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• • • • • • • • •
••R1

R2 R3 R4 R5 R6 R7 R8 C R9

R10

It has a genus one fibration with a half-fiber of type Ẽ7 with irreducible
components R1, . . . , R8 and a fiber or a half-fiber of type Ã1 with irre-
ducible components R9, R10. The curve C is a smooth rational 2-section.

It follows from the theory of reflection groups that the fundamental poly-
hedron for the Coxeter group (G,B) in the 9-dimensional Lobachevsky
space is of finite volume. Its vertices at infinity correspond to maximal
affine subdiagrams and also to G-orbits of primitive isotropic vectors in
Num(S). The root basis B is a maximal crystallographic basis, so the set of
the curves Ri, C is equal to the set of all (−2)-curves on the surface and the
set of nef primitive isotropic vectors in Num(S) is equal to the set of affine
subdiagrams of maximal rank. Thus the number of genus one fibrations on
S is finite and coincides with the set of affine subdiagrams of rank 8.

It is not known whether an extra D̃8-special Enriques surface exists.
However, examples of extra-special surfaces of types Ẽ8, or Ẽ7 + Ã1 are
given in [14]. They are either classical Enriques surfaces or α2-surfaces.
The surfaces are constructed as separable double covers of a rational sur-
face, so they always admit an automorphism σ of order 2.

Suppose that S is an extra Ẽ8-special surface. Then we find that the
surface has only one genus one fibration. It is clear that σ acts identically
on the diagram. This allows one to define a σ-invariant splitting Pic(S) ∼=
Num(S)⊕KS . It implies that σ is cohomologically trivial.

Assume that S is extra Ẽ7⊕ Ã1-special surface. The surface has a unique
genus one fibration with a half-fiber of type Ẽ7. It also has two fibrations
in the first case and one fibration in the second case with a fiber of type
Ẽ8. It implies that the curves R1, · · · , R8, C are fixed under σ. It follows
from Salomonsson’s construction that σ(R9) = R10 in the first case. In
the second case, R9 and R10 are σ-invariant on any extra special Ẽ7 ⊕ Ã1-
surface.
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