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Let C be a simple ~~rn~~~x Lie roup, 
G, an roups of G. ft was shown b 
that the projection 

resolves the singularities of U, The fibre 
only on the conjuga~y class of an element u E U. The second ~r~j~~ti~n V-, d 
ident~~es this fibre with the subvariety of 8 of elements fixed under u, which acts 
on A? by conjugation. 

The projection, n, is an isomorphism over the conjuga 
uni~utent elements~ the unique class whose closure is the 

f is the fibre of m 

Greg , of regular 
variety U. On the 

G, the only other fibre whose structure has been n~wn is the fibre 
U over a sub ular unipotent element u. Th cmjugacy class, Csregr of these 

ss which ‘goes next after’ Greg i-e. U= C&J eisreg. ft was shown 
by J. Tits and R. Steinberg (cf. f&4, p. 147]) that u is isomorphic to a union of 
nonsingu~ar rational curves, w~~ich form a configuration descri 
diagram of a sirn~~e grout C’ of type A, I) or 43; C = G’ if C is 
If ~8 is identified with the quotient variety c/B0 for a fixed rel subgroup I30 of 

en each irreduci le component, C, of ith the subvariety 
where Pi is one of the ~=r~~~~ minim 

ing BO. 
In general, one can associate a graph rM to any fibre, S,, a ~~~~~~vs @f- 57% 

&.3]): The set of vertices of pU is the set of irredu~i le components of 
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vertices are joined by an edge if the corresponding components of (1, intersect 
along a subvariety of codimension 1 in each of them. Finally, the graph, r;l, is 
labelled by associating to each vertex, U, of rU a subset, I,, of the set, s, of simple 
roots, determined as follows. For each simple root q+ let Pi be the corresponding 
minimal parabolic subgroup of G containing Bo. Then, Cyi E IU when the projection 
C/B-C/Pi induces a structure of a lP’-bundle on CU, the component of 9, cor- 
responding to v. 

It is known [12] that &$ is connected, and that all irreducible components have 
the same dimension [ 10; 11, Ch. 2, 1.121. Of course, if dim :a,> 1, then the graph, 
rU, gi,%ves only a part of the information about the structure of au. 

In this paper, we compute the graph, rU, for a unipotent element u belonging to 
the minimal conjugacy class, the unique class whose closure does not contain any 
other conjugacy class, except the class { 1); see Table 3. If G is of type A, D or E, 
then rU turns out to be ‘dual’ to the graph, &,#, of the resolution of a subregular 
element; they coincide as unlabelled graphs, and the labelling sets, I,, of the 
former graph are complimentary, with respect to S, to the corresponding sets, Ii, 
of the latter graph. 

In [7, $11, D. Kazhdan and G. Lusztig associate to the Weyl group, W, of G a 
set of graphs (left cells). In the next section, we recall the construction of these 
graphs, which we call the KL-graphs. As was noticed in [7, $6.31, in the case G is 

of type 4, no 5, every KL-graph is isomorphic to a graph, rU, for some u E G, 
and vice versa; this may be true for all n. 

We show that for every G of type other than G2 (resp. of type A, D, E) the 
graph, r’, of a subregular element u (resp. of an element u in the minimal class) 
can be found among the KL-graphs. Also, if G is of type A, D or E, then the 
KL-graph corresponding to a unipotent element from the minimal conjugacy class 
is the ‘dual’ to the KL-graph corresponding to a subregular element; see Proposition 
2.3. 

There is a representation theoretic motivation of the connection between the 
KL-graphs and the resolution graphs. From this point of view, it is not surprising 
that the case Gz is exceptional, already, for the subregular class; the representa- 
tions of the corresponding Weyl group may arise from other W-graphs, in the sense 
of 17, 811, not necessarily KL-graphs. Also, the failure of the duality between the 
subregular and minimal classes in the cases B, C, F and G is not very surprising. 

The previous remark was pointed out to us by N. Spaltenstein, as well as the fact 
that there exists another unipotent class which may play the role of the minimal con- 
jugacy class in the cases B, C and F. This is a minimal special unipotent class; see 
]8, 111. When G is of type A, D, or E, this special class is just the minimal class, 
and when G = Gz it is the subregular class. However, for G of type B, C or F, we 
do not know the resolution graph of this special class. 
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azhdan-lusztig graphs ( 

2.1. Let T be a maximal torus in a Bore1 subgroup E&G, R the root system of 
T, s= {a,, . ..) a,} the simple roots in R determined by BO, W=N(T)/T the Weyl 
group, and for ar E R, s, E W is the corresponding reflection. As usual, we write si 
in place of sa,, to denote a simple reflection, and i(w), WE IV, is the length of w, 
i.e. the number of simple reflections in a reduced decomposition of w. For w, W’E W 
we write w’< w (the Bruhat order) if there exist elements w1 = w, w2, . . . , w, = w’ 

such that Wi=S,,Wi_i, i=2, . . . . n where the yi are positive roots and w&(~J < 0; 
see [4; Ch. III]. According to [l; 151 it also can be defined as w’< w if and only if 
one can get a reduced expression for w’ by deleting some factors in a reduced expres- 
sion for w. 

2.2. For any w’, w E W such that w’< w, a certain polynomial P,+,,,(t) E Z[t’/Z] is 
defined in [7, 1.11 (the Kazhdan-Lusztig polynomial). Its degree is at most 
+(1(w) - I(w’) - 1). Let ,u(w’, w) be the coefficient of P,,+(t) at t(‘(‘+‘)--‘(““‘- ‘)‘? 
Following [7, 511, we write w’< w if l(w) - I(w’) is odd, W’C w, and ~(w’, w) #O. Let 
I-, be the graph whose vertices are the elements of W and whose edges are the 
subsets of the form {w’, w} with w’< w, or, of course, w < w’. We label the graph 
& by assigning the set L(w) = {a! E S: f(s,w) < 1(w)} to the vertex w. 

Again, as in [7, 8 11, we define w’ << w if there exists a chain wl = w, w2, . . . , w, = w’ 

such that {wi,wi+i} is an edge of fw and L(wJQTL(w,,,) for i=l,Z,...,n- 1. We 
write w = w’ if w << w’ and w’<< w. The equivalence relation = decomposes &+, 
into a disjoint union of subgraphs (called the KL-graphs) whose vertices form an 
equivalence class with respect to = , and the graph structure is induced by the struc- 
ture of rw. 

Let T(w) denote the KL-graph containing w E W as a vertex. If w. is the unique 
element of W of maximal length, then the graph Qwow) depends only on T(w) (see 
[7, 3.31) and will be called the dual KL-graph to the graph T(w). 

Since w$ = 1, the correspondence ~(w)-+T(wow) is an involution. It is known 
that wo(cwi) = -at(i), where e : { 1,2, . . . ,r} +{ 1,2,, . . . , r} is a certain permutation 
(identical if G is not of type A,, 0, (r odd), or E6). 

2.3. Proposition. Let r=r(w) be a KL-graph and P=T(wow) its dual graph. 
Then the graphs r and 1? are isomorphic as unlabelled graphs; j’or each vertex w’ 
of I-‘, the corresponding vertex of f is w. w’. Also, 

LOWOW’) = S\&(L(W’)) 

(where, of course, we mean that E(ai) = a,(i)). 

roof. This easily follows from the definitions and [7, Corollary 3.2], which says 
that x < y if and only if way < wax, for any x, y E W, El 
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2.4 L. Lemma. Let w1 C w2 in W. Suppose that there exists s E S such that sw2 < w2, 
swl > w1 and w2#swI. Then w1 { w2. 

2.4 R, Lemma. The same as above, with s muifiplying on the right. 

Proof. [7, 2.3e, f]. 0 

3. The Kazhdan-Lusztig graph of a subegular element 

Here, we will prove that the graph, 1p,, for a subregular unipotent u E U can be 
found among the KL-graphs of W, and only when G# Gz. In l-he next section, it 
will be shown that the corresponding dual KL-graph is isomorphic to the graph, 
.Q, for u’ belonging to the minimal conjugacy class in U, for the cases G =A, D, 
and E. 

Analogously to L, let 

R(w)={a!ES: I(ws&l(w)} (=L(w-I)). 

Let a!&. 

3.1 L. Lemma. awl * w-‘((r)<O. 

3.1 R. Lemma. CT E R(w) cs w(a) c 0. 

Proof. [3A, Lemma 2.2.11. 0 

3.2 L. Lemma. cy $ L( w) ++ Q E L(s, w). 

3.2 R, Lemma. a $ R(w) * Q! E R(ws,). 

Proof. By Lemma 3.1, a $ R(w) if and only if w(a)> 0 i.e. ws,(a)<O i.e. 
a E R(ws,). The proof for L is entirely similar. Cl 

emma. Let y and S be elements of the root system R. Then 

where yv is the co-root of y. It has the form $‘(a) = 2(y, 6) 11 p 11 -2 where ( , ) is 
W-invariant bilinear form on the vector space containing R. Assume that (y, S) t 0. 
Then 

and 
IIYII 2 IISII JYW= 419 
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If y and S are distinct simple roots, then (y, 6) s 0; and (y, 6) = 0 precisely when y 
and 6 are not adjacent in the Dynkin diagram of G. 

Proof. These facts are standard. See e.g. [9]. Cl 

Since G is simple, the root system R is irreducible, and at most 2 root lengths 
occur (long and short), each being an orbit of the action of W. ‘When only one root 
length occurs (i.e. when G is of type A, D or E) it is called ‘long’. These facts are 
discussed in [6, 810.41. 

Let a, j3 E S be distinct. 

3.4 L. Lemma. {cl, /I} n L(w) = 0 =$ p $ L(sQ w). 

3.4R. Lemma. {a,j3}nR(w)=0~fl~R(ws,). 

Proof. We give the proof only for R. Recall that s&3)=8- a”(P)a! where CY” is 
the co-root of CT, and a”(/?)~O. Thus, ws,(&= w(B) -a”(P)w(a)>O. Hence 

PM(ws,). 0 

We will be using an explicit numbering of the set of simple roots S = {q , . . . , a,}. 

This is described in Table 1. 

Table 1. Dynkin diagrams 

The node numbered i represents the simple root ai. As usual, the arrows point toward the short roots. 

1 2 r-l r 
A,: - . . . _o__o rll 

1 2 
B,: - . . . z&L rz2 

r-l r 
cr: ‘. . . . - rz3 

1 2 r-2 r-l 
D,: - . . . 

I- 

rr4 

r 

E,: kLxJ . . 2’ r=6,7,8 

F4: 

1 2 
Gt: 
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3.5. We proceed, now, to construct the KL-graph Z&) containing the simple 
reflection sl. The reader may verify that, for each group G not of type G2, the list, 
below, contains all sequences (il, . . . , k , i ) 1 s i+ r, constructed according to the 

following 3 rules. (If G is of type Gz, the rules do not apply, and we just list the 
sequences that concern us, for future reference.) 

Rule 1. The sequence begins with 1, i.e. ii = 1. 
Rule 2. The segment (.. . i, j . . .) can occur only if i+j and ai is adjacent to Cyi in 

the Dynkin diagram, DG9 of G. 
Rule 3. The segment (. . . i j, i . . .) can occur only if CT, ccy;;W aj occurs in DG. 

3.6. Case A, (1,2, . . . . k) 1 sksr. 
Case B, (1,2 ,... ,k) lskcr, (1,2 ,..., r,r- l,..., j) lsj<r. 
Case C, (1,2, ..-, k) 1 sksr, (1,2,1). 
CaseO, (1,2 ,..., k) l~k<r, (1,2 ,..., r-2,r). 
Case El (1,2,..., k) 1 sk<r, (1,2,3,r). 
Case F4 (1,2, . . . , k) lrks4, (1,2,3,2), (1,2,3,2,1). 

Case G2 (l), (I,2), (I,2,1), (1,2, I,2), (1,2,1,2,1). 

The sequence (ii, . . . , ik) determines the Weyl group element w = si, 0 .** 0 Sik. We 

will see that the inverses of the elements determined from the above listed sequences 
form the vertices of T(sl). 

3.7. Lemma. The expression for each w determined from the List 3.6 is reduced. 
Also, if w ends in Sig i.e. ik = i, then R(W) = (Cti ) . 

Proof. The proof for Gz is by inspection. For G# GZ, we do an induction on k, 
the length of the sequence determining w. The case k= 1 is clear. 

Write w = w’s~. Here, w’ is determined by a sequence from the list of length k - 1, 
and R(w’) = { aj}, j+ i, by the inductive assumption. Hence by Lemma 3.1 R, the 
expression for w is reduced. By Lemmas 3.2 R and 3.4 R, we have ai E R(w) C 
{ ai, (xj}. It remains to see that aj $ R(W). 

Write w’= w”sj, perhaps w”= 1. NOW, 

W(CYj) = W “SjSi (aj) = W “((CZy(CYj)a~(ai) - 1)aj - tY/(Q!j)tYi), 

by Lemma 3.3. By Rule 2 of 3.5, we know that ai and aj are adjacent in &, 
and hence, that w” is acting on a positive root, by Lemma 3.3. Hence, if w”= 1, 
then w(aj) > 0, as desired. So, assume w’ # 1. Then w’ = w”‘s,, perhaps w”’ = 1, 
and R(w’)={an}, n#j. If, also, n#i, then we clearly have w(aj)>O. SO, let US 

assume that n = i. But, now, (... i, j, i) occurs in the sequence for w, so by Rule 3 
ai w aj occurs in DG. We have a/(aj) = -1 and ay(ai) = -2. Thus, w(ai) = 
W ‘Si (aj + Qi) = W “( Qj). 

Again, if w”‘= 1, then w(a,)>O. So, assume that w”+ 1. Then, R(w”)= {a,} by 
induction. By Rule 3, we know that m# j. Hence, wh”‘(aj)>O. q 
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Cake CF < W. Then, sia> o and pi W< W. Again, by Lemma 2.4 L, G = si W. 

3.9, Lemma. Let t3 E W. If 0 = s1 (see 2.2), ther,r a”’ is deter~~i~~d by an element 
of the List 3.6, 

Proof. Fur = G-J, the proof is by inspection. Fur G 7t Gz, let wI, . . . 1 wn be 8 se- 
quence in W with WI =sl and w;, = cr such that { Wi_ 1 f wi} is an edge of r?, and 
L(Wj_ ~~~~~Wj~ for i=2, *.. ,n, 

Assume that 6-r does not occur in the List. We will arrive at a contradiction. 
Since w,’ is in the List, choose an m so that for km, wF’ is in the List and w;’ 
is not. Change notation and put w = w, _ 1 and er = w, a By Lemma 3.8, B = Sj w for 
some j. Also, L(w)={ai} and j+i since 6-l is not in the List. 

We will show that q E L(C), contradicting the hypothesis that dew) @X.&F). If aj 
and txj are not adjacent in I) cp then sj(aj) = Cyj and CF- ’ (ai) = W- ’ (cQ < 0, as desired m 

So, assume that Cri and CQ are adjacent in L)c. 
Since 0-r is not in the List, while w-i is, appending j to the sequence for w-i 

must violate Rule 3. Thus, the sequence far w-i ends with the segment (. . . j, i) and 
either oj is joined to aj in DG by a single bond, or ai w aj occurs in Dd. In the 
first case, put W =SiW’ with DEW’) = (tXj)* Then 

~-‘~~i) = W~-~S~Sj~~~~ = W’-‘~~j) < 0, 

as desired. 
In the second case, the segment (- j, i) of w-l is moving to the left along DG. 

Since DG has only one double bond, w-l must end with f-i, j,i). Put FV=.QS~W~ 
with ~~w~~ = {q}. Then 

3AO. T~~orern* Tie ~~-g~~ph, I’&), cunt~i~i~g the ~i~p~~ rejection st is QS 
described in Table 2. For G not of type C2, T(s,) is equaE to the graph r, of a 
subregular unipotent element. 

Proof. The last statement is verified by comparing with Steinberg 114, p* 138]. 
Lemma 3.9, the vertices fur T(si) are amongst the inverses of the elements deter- 
mined by the sequences in List 3.6. To determine the = ~~uiv~en~e class of q, we 

need onBy determine the edges of r, u~~urring amongst the inverses of t 
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Table 2. The KL-graph containing sl 

The number i beside a node represents the index set t = (ai). 

A,: 0 CI 0 0 

1 2 r-l r r-i 2 1 
Br: o-------o---_- . . . 3 h * c . . . _Q___o 

1 2 r-l f 
Cr : 

7-- 

. . . - 

1 

1 2 r-2 r-l 
D$ - . . . 

-T r 

1 2 1 2 1 
G,: 0 A A 0 

elements determined by the List. We do this by direct computation in each of the 
possible types of G. 

Case A,. Let ck=sko*- s2s1, 1 S ks r. By Lemma 3.7, I(Q) = k and L(c@ = (a& 
Thus, for i< j we have Oi< Oj, SjOi > Oi and SjOj< Oj. Hence, by Lemma 2.4 L all 
the ( relations are 

Moreover, L(Oi_l)Q:L(Oi) and L(Oi)QL(Oi_l), SO we have 

CaSe? &. Let ~k=sk”‘s;ZsI, lrksr, and tj=Sj***Sr,lGr, hj<k Then 
&ok) = k, L(ak) = {ak), l(?j) = 2r-j and L(Tj) = {aj}. AS in the Case A,, We have 

The onlt; possible omitted edges must be between ok and rj, and Lemma 2.4 L 
implies ihis can happen only if k= j. But /(rk) - [(ok) is even, so that ok # rk. 

case r;-. Let ~k=Skgwo s2sl, lrksr and t=S,S2Sl. Then i(Ok)=k, L(ak)={ak}, 
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l(r) = 3 and L(r) = {a,). We have 

with no other edges amongst the 0’s. Moreover, {q, t} is not an edge since 
I - f(r) is even, and {Qi, r} is not an edge for i ~3 since t<ai; cf. 2.2. 

Case Dr. Let ~&=s&...S2s~, Isk<r and r=S,S,_2..‘S2S~. Then &)=k, 
L(a&) = ((Y&j, I(z) = r - 1 and L(T) = {a,}. We have 

with no other edges. The reasoning is the same as in the previous cases. 

cast? E,. Let b& = s& . ..S2s1. lrk<randr=s~s7s2sI.ThenI(ak)=k,L(~k)={ak}, 
!(I-) =4 and L(s) =r. We have 

with no other edges, as in the previous cases. 
case FA. Let o&=s&...s2slv 15 kI4, ~1=~1~2~3~2~1 and ~2=~2~3~2~1. Then 

[(ok) = k, L(o&) = {a&}, I(Ti) = 6 - i and L(ri) = { ai}. We have 

with no other edges, as in the previous cases. 
Case G2. Let q =sl , o2 =s2sl, o3 =sls2sl, a4 = s2sls2sl and cr5 = sls2sls~sl. Then 

l(Oi)=i and L(Oi)= {al}(i odd), {az)(i even). We have crl = 02 l -• = 05 with no 
other edges, as in the previous cases. Cl 

Remark. For G2 there are 3 other KL-graphs, other than the one in Table 2, viz. 
the graph dual to the one in Table 2, the graph consisting of the identity element, 
and the graph consisting of the element of longest length in W. Evidently, the 
subregular resolution graph 

1 2 1 
0 

T 

0 

b 1 

does not appear. 
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4. The resolution graph of the minimal unipotent class 

In this section, we show that the resolution graph, TU, as explained in Section 1, 

of an element u in the minimal conjugacy class, has one vertex Vi for each long 
simple root ai. Two vertices vi and vi are joined precisely when ai and aj are 
adjacent in the Dynkin diagram, Do, of G. The weight associated to Vi is 
Ii = S\ { ai}. These graphs are displayed in Table 3. In particular, for G of type A, 
D or E, ru occurs as dllal to the subregular graph, and also as a KL-graph. This 
last statement follows from Theorem 3.10. and Proposition 2.3. 

4.1. For each w, an element of the Weyl group W, let B[w] denote the Bruhat cell 
BwB in G/B; see Bore1 [2, p. 3471. It is isomorphic to Chw), and the Euclidean 
closure in G/B is an irreducible algebraic variety of dimension I(w). The Bruhat 
ordering on IV can be defined by w1 c w2 when B[w,] c B[wJ, and coincides with 
the ordering defined in 2.2. 

RecaM that w. E W is the element of maximal length. The following is a formal 
consequence of the definition of Bruhat order in 2.1. 

4.2. Lemma. Let w1 < w2 in FK Then Wi’ c IV?’ and wow2 < wow, . 

We view, now, the root systems, R, as a subset of lj*, the vector space dual of 

Table 3. The resolution graph of the minimal unipotent conjugacy class 

The label, i, represents the index set I=S\(rr,.). 

1 2 r-l r 
A,: o-----o------ .*. w 

I 2 r-l 
Br: e . . . _o 
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the Lie algebra of a maximal torus of G. Fix a W-invariant inner product ( , ) on 
Q *, and an element a E b *. Let E = { w E W: wa = a}. Assume that (a, ai) 10 for each 
simple root Q~, i.e. that a is in the closure of the fundamental Weyl chambre. Then, 
E is generated by those simple reflections si for which (a, oi) =O. For the proof of 
this, and other related results, see Carter [3A, g2.51. 

4.3. Lemma. Let o be any element of W. Then, with the above notation and 
” hypothesis, the coset GE contains elements w1 and w2, necessarily unique, such that 

w,<wcw2 VW E oE. 

Proof. Let w1 E oE be the element of minimal length. For any w E oE, we may 
write w = wtw’ for some w’EE. Moreover, I(w) = I(wl) + I(w’). In particular, 
w1 < w. Now, let w; E wOaE be the element of minimal length. Put w2 = wowi E GE. 
By the first part of the proof, wi< wow, whence, by Lemma 4.2, WC wow;. Kl 

Let X= {q E W: n-‘(h)> 0}, where h is the highest root of R. Let d = max{ I(q): 
~EJ?}, and let cyl,..., cyk be the long roots in the Dynkin diagram, &, of G; see 
Table 1. In [5, #3,4], the following facts are proved. 

4.4. Lemma. The Springer fibre for an element u in the minimal conjugacy class is 

There are precisely k elements n 1, . . . , ?p Yp of the maximal length d; each cor- 
responds to a long simple root. They satisfy 

(i) t;r;’ (h) = ai. 
(ii) vi(a)<0 for every simple root a other than oi. 

(iii) ViSj = qjSi when ai is adjacent to oj in Do; i.e. when (ai, aj) # 0. 
(iv) vi is the unique Weyl group element of maximal length taking oi to h. 

Note. The case G =A, is described in Vargas [ 16, p. 21. In [ 131, Springer shows 
that :#,, above, is a union of Bruhat cells. Also, condition iv follows from i and 
Lemma 4.3, since (h, a) r0 for each simple root a. 

Let Ci = B[qi]. Then dim(Ci) = d and .8, > UC,., i = 1, . . . , k. The next lemma is 
proved in Spaltenstein [lo, 1 I] for every Springer fibre 3,. It shows that the above 
containment is actually an equality. 

4.5. Lemma. A$, is pure d-dimensional, 

Proof. Let VEX We wish to show that q<qi for some i=l,...,,k. If q-‘(h)=aj, 
then we are done by Lemmas 4.3 and 4.4(iv). 

If n-‘(h) is not a simple root, choose any simple root aj such that q(aj) > 0. TEL 
is possible since ?I# wo. Then, by Lemma 3.1 R, UC QSja Also, (~Sj)-‘~h) = 



Sjq- ’ (h) > 0, since Sj permutes the elements af R’ \ {@j j) . WC take VSj t0 be our new 
q, and most ev~~t~a~~y obtain that q-r (Jr) is a simple root. This completes the 
proof. 

roof, By Lemmas 4.4 and 4.5, there is one vertex uj for each long simple root q. 
~~~~ I. ui is joined to uj if ai is adjacent ta ai in DG- (The converse statement is 

Step 2.) 
ith the ~~tati~~ of Lemma 4.4, Iet q = ~~~~ = qjsi* Since ~~~~j~~~, we !XW that 

~~~~ = 2~~~~ - 1= d - 1, and q < Q. SimiI~ly~ q < qje Hence, Ci f”I Cj 2 B[@l) a sub- 
variety of dimension d- E I This proves Step 1. 

Step 2. If Ui is joined to I.+ then q and aj are adjacent in DG. 
Suffuse ui is joined to Uj, but that ai and aj are not adjacent. We will arrive at 

a contradiction. 
Let q E X, I(q) = d - 1 and &q] C Cl f? C’j. As explained in 2.1, there are positive 

roots a and /I so that ~~~* = q = ~~~~. renumber the long simple roots and choose 
a chain 

without repetitions; cr, _ 1 is adjacent to a, in DG for pz = 1, .‘. ,m, i,e. this is the sub- 
iagram of DG ~~ntain~~~g old ai and old aj* Also, we are assuming that FEZ ~2, 
We have that ~~~~ = ~~~~~ i.e. $8~~ ==q;rqo= n,, where 

as is easily checked by indu~ti~~l, using Lemma 4.4(iii). The following equations 
also be verified: 

a 3.3 will be used in lthe remainder of the proof. ~e~~a~e ~~ by spsa, and 
rewrite (1) and (2) to obtain 

CV am - ar”@&! = 47, -2 - P”(ar, _ 2)/L 

Since the CQ”S form part of a basis, it is easy to see from e~uatiu~ (4) that neither 
~‘~~~~ nor ~v~~*~ is zero. similar statement 
holds for (5). Thus, ~v~~~~ 

If c: = 1, subtract (4) and (5). 

~u-~~=~~-~,~-2~ whence a0 + cr, _ 2 = 2~~ 
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This is fmpossible. Hence, e = - 1. Now, add (4) and (5). 

a0+%l =a,+a,_2, whence ao=a,,,_2. 

Thus, m = 2 and sssa = s1s2sosl, so that (s~s,)~ = 1, i.e. B”(a) = 0. 
Equation (3) simplifies to 

(6) a0 + 2al + a2 = av(al)a + jlv(al)#?. 

Let av(ao) = A and /?“(a2) =p, which as we have seen, are both non-zero and of the 
same sign. Equation (4) now reads 

(7) ao-a2=Aa-I/?. 

Evaluate a;” on both sides and obtain 

since a;“(ao) = a;J(a2) = -1. Equation (6) implies that not both a:(a) and cry(p) are 
zero. Thus, since a1 is a long root, and il and ,u have the same sign, equation (8) 
implies that a:(a) = a;(/?) = f 1 and rZ =p. In particular, a and /3 have the same 
length and 

av(al) =Bv(al) =&‘A, E’= +l. 

We now use equations (6) and (7) to solve for a and p. There are two cases to 
consider. 

Case tf= 1. Then a=ao+al. Recall that q =qos, has length d- f. But 

tl0(4 = tt0@0) + rtdal) 

=h+ tl0(ad, Lemma 4.4(i) 

i.e. ~os,>~o, as explained in 2.1. This is a contradiction, since q. has length d. 
Case e’= - 1. Then a = al + a2. We have a = s1 (a2), so s, = s1 s2sl. It is easily 

verified that qo(al) < 0, qosl(a2) < 0 and qOsIs2(aI ) < 0. This implies that q = qo.sa 
has length d- 3, contradicting the hypothesis that q has length d- 1. 

This completes the proof of Step 2. 
Step 3. The weight associated to Vi is Ii = S\ { ai). 
For any root a, let X,C G be the associated root subgroup. Let 

Vi= n {Xa: a>O, q,F’(a)<O}. NOW, Ci is the closure of 

where o is the image under G-+G/B of 1 e G, and r/i is identified with some 
representation in the normalizer of the maximal torus in G. 

Let aj be any simple root, and Pj the associated minimal parabolic. The fibre of 
G/B+G/Pj through a point XB is (xPB: p E Pi>. Thus, Ci is II”-saturated precisely 
when for each ZE L/i and for each p in some neig borhood e of 1 in Pj there is 
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a 2’ in ui with ZqipB = Z’qtEm This condition may be 

(*) ffCq;‘UiqiB. 

rewritten as 

Since pi is generated by B and X._,, (*) is equivalent to having 

X_*,c n ~Xg:B.=~i’(a)<O,a>O}. 

Here, we have used rhe fact that IV&W-~ =X,, for any w E W and any root a. 
Thus, [2, p. 3471, -CQ = qIT’(a) for some cx>O, i.e. qi(aj) <O. The argument can be 
reversed, so that 

Ii=(aES: t7i(a)<O} 

=S\ {ai) by Lemma 4.4(ii). Cl 
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