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i. Intreduction

Let G be a simple complex Lie group, U the subvariety of unipotent elements in
G, and # the variety of all Borel subgroups of G. It was shown by T. Springer [12]
that the projection

n:V={(u,B)eUX Z:ueB}->U

resolves the singularities of U. The fibre %, =7n"'(u) depends (up to isomorphism)
only on the conjugacy class of an element ue U. The second projection V— 2
identifies this fibre with the subvariety of Z of elements fixed under 4, which acts
on # by conjugation.

The projection, 7, is an isomorphism over the conjugacy class, C,, of regular
unipotent elements, the unique class whose closure is the whole variety U. On the
other hand, 4, is the fibre of maximal dimension, and is isomorphic to the variety
B.

For general G, the only other fibre whose structure has been known is the fibre
4, over a subregular unipotent element u. The conjugacy class, Cy.g, Of these
elements is the class which ‘goes next after’ Cyeq, i.6. U=CyegUCreq. It was shown
by J. Tits and R. Steinberg (cf. [14, p. 147]) that 3, is isomorphic to a union of
nonsingular rational curves, wkich form a configuration described by the Dynkin
diagram of a simple group G’ of type A4, D or E; G=G' if G is one of these types.
If # is identified with the quotient variety G/B, for a fixed Borel subgroup B, of
G, then each irreducible component, C, of 3, can be identified with the subvariety
P;/B, where P; is one of the r=rk(G) minimal parabolic subgroups of G, contain-
ing B,.

In general, one can associate a graph I, to any fibre, 3,, as follows (cf. [7,
§6.3]): The set of vertices of I}, is the set of irreducible components of 2,; two
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vertices are joined by an edge if the corresponding components of .#, intersect
along a subvariety of codimension 1 in each of them. Finally, the graph, I, is
labelled by associating to each vertex, v, of I, a subset, [, of the set, S, of simple
roots, determined as follows. For each simple root «;, let P; be the corresponding
minimal parabolic subgroup of G containing B,. Then, @; € I, when the projection
G/B—G/P; induces a structure of a P!-bundle on C,, the component of #, cor-
responding to v.

It is known [12] that 4, is connected, and that all irreducible components have
the same dimension [10;11, Ch. 2, 1.12]. Of course, if dim #,> 1, then the graph,
I,, gives only a part of the information about the structure of #,.

In this paper, we compute the graph, I, for a unipotent element v belonging to
the minimal conjugacy class, the unique class whose closure does not contain any
other conjugacy class, except the class {1}; see Table 3. If G is of type A, D or E,
then I, turns out to be ‘dual’ to the graph, I,,, of the resolution of a subregular
element; they coincide as unlabelled graphs, and the labelling sets, 7,, of the
former graph are complimentary, with respect to S, to the corresponding sets, I,
of the latter graph.

In [7, §1], D. Kazhdan and G. Lusztig associate to the Weyl group, W, of G a
set of graphs (left cells). In the next section, we recall the corstruction of these
graphs, which we call the KL-graphs. As was noticed in [7, §6.3], in the case G is
of type A,, n<S$5, every KL-graph is isomorphic to a graph, I, for some ueG,
and vice versa; this may be true for all n.

We show that for every G of type other than G, (resp. of type A, D, E) the
graph, I, of a subregular element # (resp. of an element « in the minimal class)
can be found among the KL-graphs. Also, if G is of type 4, D or E, then the
KL-graph corresponding to a unipotent element from the minimal conjugacy class
is the ‘dual’ to the KL-graph corresponding to a subregular element; see Proposition
2.3.

There is a representation theoretic motivation of the connection between the
KL-graphs and the resolution graphs. From this point of view, it is not surprising
that the case G, is exceptional, already, for the subregular class; the representa-
tions of the corresponding Weyl group may arise from other W-graphs, in the sense
of [7, §1], not necessarily KL-graphs. Also, the failure of the duality between the
subregular and minimal classes in the cases B, C, F and G is not very surprising.

The previous remark was pointed out to us by N. Spaltenstein, as well as the fact
that there exists another unipotent class which may play the role of the minimal con-
jugacy class in the cases B, C and F. This is a minimal special unipotent class; see
[8, 11]. When G is of type 4, D, or E, this special class is just the minimal class,
and when G =G, it is the subregular class. However, for G of type B, C or F, we
do not know the resclution graph of this special class.
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2. The Kazhdan-Lusztig graphs (KL-graphs)

2.1. Let T be a maximal torus in a Borel subgroup ByC G, R the root system ot
T,S={a,,...,,} the simple roots in R determined by By, W=N(T)/T the Weyl
group, and for aeR, s, € W is the corresponding reflection. As usual, we write s;
in place of s,,, to denote a simple reflection, and /(w), we W, is the length of w,
i.e. the number of simple reflections in a reduced decomposition of w. For w,w'e W
we write w'<w (the Bruhat order) if there exist elements w;=w,w,y, ..., w,=w’
such that w;=s,w;_, i=2,...,n where the y; are positive roots and w (7)) <0;
see [4; Ch. III]. According to [1; 15] it also can be defined as w’'< w if and only if
one can get a reduced expression for w’ by deleting some factors in a reduced expres-
sion for w.

2.2. For any w’,we W such that w'<w, a certain polynomial P, (t)eZ[t'*] is
defined in [7, 1.1] (the Kazhdan-Lusztig polynomial). Its degree is at most
L(((w)—I(w)—1). Let u(w’,w) be the coefficient of P, (r) at (/0 -1"1-D72,
Following [7, §1], we write w' < wif [(w)—/(w’) is odd, w'< w, and u(w’, w) #0. Let
Iy be the graph whose vertices are the elements of W and whose edges are the
subsets of the form {w’, w} with w’<w, or, of course, w< w’. We label the grapi
Iy by assigning the set L(w)={a € S: [(s,w)<l(w)} to the vertex w.

Again, as in [7, §1], we define w’ < wif there exists a chain wy=w, w,, ..., w,=w’
such that {w;, w;,,} is an edge of I'yy and L(w)Z L(w;,,) for i=1,2,...,n~1. We
write w=w’ if w< w’ and w’' < w. The equivalence relation = decomposes [}
into a disjoint union of subgraphs (called the KL-graphs) whose vertices form an
equivalence class with respect to =, and the graph structure is induced by the struc-
ture of I'y.

Let I'(w) denote the KL-graph containing we W as a vertex. If wy is the unique
element of W of maximal length, then the graph I'(wyw) depends only on I'(w) (see
[7, 3.3]) and will be called the dual KL-graph to the graph I'(w).

Since w%: 1, the correspondence I'(w)—~I'(wyw) is an involution. It is known
that wy(e;) = —a.;, where e:{1,2,...,r}={1,2,...,r} is a certain permutation
(identical if G is not of type A4,, D, (r odd), or Ey).

2.3. Proposition. Let '=I'(w) be a KL-graph and I'=r (wow) its dual graph.
Then the graphs I' and I” are isomorphic as unlabelled graphs; for each vertex w'
of T, the corresponding vertex of I is wow’. Also,

L(wow’) =S\ e(L(w))

(where, of course, we mean that &(a;) = Q).

Proof. This easily follows from the definitions and [7, Corollary 3.2], which says
that x< y if and only if wyy < wyx, for any x, ye W. [
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2.4L. Lemma. Let w,<w, in W. Suppose that there exists s € S such that swy<w,,
swy>w, and w,#sw,. Then w, { w,.

2.4 R. Lemma. The same as above, with s multiplying on the right.

Proof. |7, 2.3e, f]. O

3. The Kazhdan-Lusztig graph of a subregular element

Here, we will prove that the graph, I, for a subregular unipotent € U can be
found among the KL-graphs of W, and only when G+ G,. In the next section, it
will be shown that the corresponding dual KL-graph is isomorphic to the graph,
I, for u’ belonging to the minimal conjugacy class in U, for the cases G=A, D,
and E.

Analogously to L, let

Rw)={aeS: lws,)<lw)} (=L(w™)).
Let e S.

3.1L. Lemma. ae L(w) & w (@) <0.
3.1R. Lemma. ¢ € R(w) & w(a)<0.
Proof. [3A, Lemma 2.2.1]. O
3.2L. Lemma. a ¢ L(w) ¢ a e L(s,w).
3.2R. Lemma. a ¢ R(w) ¢ a € R(ws,).

Proof. By Lemma 3.1, a¢R(w) if and only if w(@)>0 i.c. ws,(a2)<O0 i.e.
a € R(ws,). The proof for L is entirely similar. [J

3.3. Lemma. Let y and & be elements of the root system R. Then
5y(0) =0 -y'(9)y

where y¥ is the co-root of y. It has the form y¥(6)=2(y,0)|y| % where (, ) is

W-invariant bilinear form on the vector space containing R. Assume that (y, ) #0.
Then

Iyl z]d]=»"0)=+1,
and
+2 if G#G,,

5l=7"©®)=
vl <181 =7"©) {13 if G=G,.
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If y and 6 are distinct simple roots, then (y,d)<0; and (y,8) =0 precisely when y
and 6 are not adjacent in the Dynkin diagram of G.

Proof. These facts are standard. See e.g. [9]. O

Since G is simple, the root system R is irreducible, and at most 2 root lengths
occur (long and short), each being an orbit of the action of W. When only one root
length occurs (i.e. when G is of type A, D or E) it is called ‘long’. These facts are
discussed in [6, §10.4].

Let o, f€ S be distinct.
3.4L. Lemma. {a, B} NL(Ww)=0= ¢ L(s,W).
34R. Lemma. {a, S} NR(W)=0= B¢ R(ws,).
Proof. We give the proof only for R. Recall that s,(8)=8-a"(B)a where a" is
the co-root of @, and @'(B)<0. Thus, ws,(8)=w(B)-a"(B)w(a)>0. Hence
Bé&R(ws,). O

We will be using an explicit numbering of the set of simple roots S={«,,...,a,}.
This is described in Table 1.

Table 1. Dynkin diagrams

The node numbered i represents the simple root ¢;. As usual, the arrows point toward the short roots.

1 2 r—1 r

A;: o—0——0 —_—O——0 r=1
1 2 r-1 r

B, Lo ——— e ——°) r=2
1 2 r-1 r

C,: o=y=0—— —0—0 r=3
1 2 r-2 r-1

D: o—mo0—— T rz4

r

1 2 3 r-1

E,: o—o———I— oe —0 r=6,7,8
r
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3.5. We proceed, now, to construct the KL-graph I(s;) containing the simple
reflection s,. The reader may verify that, for each group G not of type G,, the list,
below, contains all sequences (i, ...,i), 1=i;<r, constructed according to the
following 3 rules. (If G is of type G,, the rules do not apply, and we just list the
sequences that concern us, for future reference.)

Rule 1. The sequence begins with 1, i.e. ij=1.

Rule 2. The segment (...}, Jj...) can occur only if i#/ and a; is adjacent to @; in
the Dynkin diagram, Dg, of G.

Rule 3. The segment (..., j,i...) can occur only if @, =0 @; occurs in Dg.

3.6. Case A, (1,2,...,k) 1<k=r.
Case B, (1,2,...,k) 1<sk=<r, (1,2,...,n,r—1,...,j) 15j<r.
Case C, (1,2,...,k) 1=sk=<r, (1,2,1).
Case D, (1.2,...,k) 1<k<r, (1,2,...,r=2,1).
Case E, (1,2,...,k) 1 <k<r, (1,2,3,r).
Case F, (1,2,...,k) 1=sk=<4, (1,2,3,2), (1,2,3,2,1).
Case G, (1), (1,2), (1,2,1), (1,2,1,2), (1,2,1,2,1).

The sequence (i}, ..., i) determines the Weyl group element w=s; ©---°s; . We
will see that the inverses of the elements determined from the above listed sequences
form the vertices of I(s,).

3.7. Lemma. The expression for each w determined from the List 3.6 is reduced.
Also, if w ends in s;, i.e. iy =i, then R(w)={«a;}.

Proof. The proof for G, is by inspection. For G# G,, we do an induction on &,
the length cof the sequence determining w. The case k=1 is clear.

Write w=w'’s;. Here, w’is determired by a sequence from the list of length £ - 1,
and R(w’)={«;}, j#i, by the inductive assumption. Hence by Lemma 3.1 R, the
expression for w is reduced. By Lemmas 3.2R and 3.4 R, we have a;e R(w)C
{a;,a;}. It remains to see that ;¢ R(w).

Write w=w"s;, perhaps w”=1. Now,

w(e)) = w”s;s;(a)) = w((a) (ap)a) (e,) - Dea; - ) (a))a;),

by Lemma 3.3. By Rule 2 of 3.3, we know that ¢; and q; are adjacent in Dg,
and hence, that w” is acting on a positive root, by Lemma 3.3. Hence, if w”=1,
then w(e;)>0, as desired. So, assume w”#1. Then w”=w"s,, perhaps w”=1,
and R(w")={a,}, n+j. If, also, n#i, then we clearly have w(a;)>0. So, let us
assume that n=i. But, now, (...} j,i) occurs in the sequence for w, so by Rule 3
;=0 a; occurs in Ds. We have a}’(aj)=-1 and ¢)(a;)=-2. Thus, w(a;)=
w”si(a; + ;) = w”(a;).

Again, if w”=1, then w(a;)>0. So, assume that w”# 1. Then, R(w”)={a,,} by
induction. By Rule 3, we know that m#j. Hence, w7(e;)>0. [0
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3.8. Lemma. Let w™! be in the List 3.5, and o € W. Suppose that {w, a} is an edge
of I'y (see 2.2) and L(w)¢ L(0). Then o =s;w for some simple reflection s;.

Proof. By Lemma 3.7, we have L(w)={;}. By hypothesis, a;¢ L(0).

Case w<a. Let a;€L(0). Then a;#q;, s;w>w and s;0<g. So, o=s;w, by
Lemma 2.4 L.

Case o < w. Then, s;0>0¢ and s;w<w. Again, by Lemma 24L, o=s5;w. U

3.9. Lemma. Let ce W. If a=s, (see 2.2), then ¢~ is determined by an element
of the List 2.6.

Proof. For G=G,, the proof is by inspection. For G#G,, let wy,...,w, be a se-
quence in W with w;=s, and w,=0 such that {w;_;,w;} is an edge of I'y and
L(w;_)Z L(w;) for i=2,...,n.

Assume that o~! does not occur in the List. We will arrive at a contradiction.
Since w;! is in the List, choose an m so that for i<m, w;! is in the List and w;
is not. Change notation and put w=w,_, and ¢ =w,,. By Lemma 3.8, o =s;w for
some j. Also, L(w)={e;} and j#i since ¢~! is not in the List.

We will show that @; € L(a), contradicting the hypothesis that L(w)Z L(0). If a;
and a; are not adjacent in Dg, then s;(a;)=a; and ¢ '(e;) = w™'(2;) <0, as desired.
So, assume that @; and @; are adjacent in Dg.

Since ¢! is not in the List, while w™! is, appending j to the sequencz for w™
must violate Rule 3. Thus, the sequence for w™! ends with the segment (... j, i) and
either a; is joined to @; in Dg by a single bond, or ; =2, occurs in Dg. In the
first case, put w=s;w’ with L(w’)={e;}. Then

1

O'*l(ai) = w"ls,-sj(a,-) = W'-l(aj) <0,

as desired.

In the second case, the segment (... j,i) of w™! is moving to the left along Dg.
Since Dg has only one double bond, w~! must end with (...J,J,i). Put w=s;5;w"
with L(w”)={«;}. Then

O’“I(ai) = W”—ISJ’S,'SJ‘(Q,') = WﬂwlSjSi(a'i + Zaj)

=w”—1sj(a£+2aj)=wll~l(ai)<0- D

3.10. Theorem. The KL-graph, I'(s,), containing the simple reflection s, is as
described in Table 2. For G not of type G,, I'(s)) is equal to the graph I', of a
subregular unipotent element.

Proof. The last statement is verified by comparing with Steinberg [14, p. 148]. By
Lemma 3.9, the vertices for I'(s;) are amongst the inverses of the elements deter-
mined by the sequences in List 3.6. To determine the = equivalence class of s, we
need only determine the edges of Iy occurring amongst the inverses of the



1 2 r-1 r
Ar: [ S o S cee OO
1 2 r-1 r r-1 2 1
B: o—O— [P . NI WY , GNP , W
i 2 r—i r

o1
1 2 r-2 r-1
D, oG —T—c
Sr
1 2 3 r-1
E,: o———o0—0o— ... —0

or
i 2 3 2 i
F4 (O — a—— —O-
04
1 1 2 1
\.l'z: o

elements determined by the List. We do this by direct computation in each of the
possible types of G.

Case A,. Let Gy =5+ 5,5, 1 <k<r. By Lemma 3.7, {(0,) =k and L(o}) = {a,}.
Thus, for i<j we have 0;<g;, 5;0;,>0; and s;0;<0;. Hence, by Lemma 2.4 L all
the < relations are

01X06,%-<0,.

Moreover, L(0;.;)Z L(o;) and L(o;)Z L(0;_,), so we have

"2=,;_=-.-

U

g)=

o,.

Case 3,. Let ogy=s;:-5,8,, 1sk=<r, and T;=S;*** 810, 1=<j<r. Then
loy) =k, Lioy)={ox}, (r;)=2r—j and L(t;)= {e;}. As in the case 4,, we have




I(r)=3 and L(1)={e,}. We have
g=0,=''=0,
]
T
ccasal_ - al ¥ e e — 4 a4l __y_ L P M _ . s e e d P 1 _ P S
WILI1 11O OouUler CUges 4imnoIigst e o 5. MOicovCl, ial, j 1S 1ot a Cage since
Mo N\ _ M=\ o ayan and (o =) ic nat an adoa far i=72 gineca v 4. of 29
C\Ul’ L) D Lvell, aliu IU,, LI 10 1IVUL Qll UEV 1Vl ¢ == J JiIING L‘I\Ul, Vi. &olae
Case D.. Let g,=5,5,8;, 1<k<r and t=s e Then M Y=L
LIV L3 yr. Bd o & vk UK ~ Ul, A& awm IV w oA AL - hlrur__‘ ~ Ul. A ALlWEK I\Uk’ '\,,
La,)={a;}, (1)=r—1 and L(1)={e,}. We have
K7 [ § K)? AN 4 \NTr L 8 7
0= =0,2=0,-
u
T
with no other edges. The reasoning is the same as in the previous cases
CaseE,. Let o, =5y - 5,5, 1<k <rand t=s,535;5,. Then l(oy) =k, L(o;) = {ax},
N7)=4 and L(r)=r. We have
O\=0y=03=*=0,_|
Ny
T
with no other edges, as in the previous cases.
Nlmon LI T at oo —n o o 1l A - o oo oo o marmAd s o e o oo o o) TGN
LUoC 14, LAL k=9OKk"""9291s 1=ART:9, (170192039297 allu 2 =9233939% 11811
(r. ) = Yl Y=JIrv.} UHrNX=K —F and JT(r)X=Sn 3 We hava
I\UK’ vy H\VK’ l“k’, l\b‘, A Y] & SARLNG -I-J\l,‘, l“l" YY W LIAY N
0,=0,=03~04
R,
2
»n
{4
T,
1
with nn Athar adoae nc in tha nrauvinnce racac
YWILIE 1LV VLl uus\-u, @GaJ ki1 LiiN }ll\r'l\lu\, VATWVI .
ase G-, Let . =8:. G =85,8:, 1 =8:5~S1. T2 =5-5: 5,8 and g- =8, 5,5, 5,5:. Then
el A v i ~1y ML L¥1? 3 1¥&a~1? 4 &¥1¥4L~1 > 154515471
l(6;)=i and L(o;)={a,}(i odd), {a,}(i even). We have g,=0,--- =as with no

Remark. For G, there are 3 other KL-graphs, other than the one in Table 2, viz.
the graph dual to the one in Table 2, the graph consisting of the identity element,
and the graph consisting of the element of longest length in W. Evidently, the
subreguiar resoiution graph

1 2 1
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4. The resolution graph of the minimal unipotent class

In this section, we show that the resolution graph, I, as explained in Section 1,
of an element u in the minimal conjugacy class, has one vertex v; for each long
simple root @;. Two vertices v; and v; are joined precisely when ; and a; are
adjacent in the Dynkin diagram, Dg;, of G. The weight associated to v; is
I;=S\ {a;}. These graphs are displayed in Table 3. In particular, for G of type A4,
D or E, I, occurs as dual to the subregular graph, and also as a KL-graph. This
last statement follows from Theorem 2.10.and Proposition 2.3.

4.1. For each w, an element of the Weyl group W, let B{w] denote the Bruhat cell
BwB in G/B; see Borel [2, p. 347]. It is isomorphic to C™, and the Euclidean
closure in G/B is an irreducible algebraic variety of dimension {w). The Bruhat
ordering on W can be defined by w, < w, when B[w,]CB[w;], and coincides with
the ordering defined in 2.2.

Recall that wye W is the element of maximal length. The following is a formal
consequence of the definition of Bruhat order in 2.1.

4.2. Lemma. Let w <w, in W. Then wi'<w;' and wyw,< wyw,.

We view, now, the root systems, R, as a subset of h*, the vector space dual of

Table 3. The resolution graph of the minimal unipotent conjugacy class

The label, i, represents the index set /=S\{a;}.

1 2 r—-1 r
A, o—m—0—— o—0

1 2 r-1
B,: o———o0~— —o0

1
C: o

1 2 r-2 r-1
D,: o——o—— —I———o

r

1 2 3 r-1

E, . —0
r
1 2
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the Lie algebra of a maximali torus of G. Fix a W-invariant inner product (, ) on
b* and an element aeh*. Let E={we W: wa=a}. Assume that (a,@,)=0 for each
simple root ¢;, i.e. that a is in the closure of the fundamental Weyl chambre. Then,
E is generated by those simple reflections s; for which (a, ;) =0. For the proof of
this, and other related results, see Carter [3A, §2.5].

4.3. Lemma. Let o be any element of W. Then, with the above notation and
hypothesis, the coset aE contains elements w, and w,, necessarily unique, such that

w<w<w, VwedFE.

Proof. Let w, e oF be the element of minimal length. For any we oE, we may
write w=w;w’ for some w'eE. Moreover, I(w)=I(w;)+/(w’). In particular,
w; < w. Now, let wy € wyoE be the element of minimal length. Put w, = wyw; € E.
By the first part of the proof, w;<wyw, whence, by Lemma 4.2, w<wyw,. 0

Let #={neW: n~!'(h)>0}, where & is the highest root of R. Let d=max{/(n):
n ¢}, and let @4, ..., o, be the long roots in the Dynkin diagram, Dg, of G; see
Table 1. In [5, §§3,4], the following facts are proved.

4.4. Lemma. The Springer fibre for an element u in the minimal conjugacy class is

2,=U{Blnl:ner}.

There are precisely k elements n,,...,n,€ ¥ of the maximal length d; each cor-
responds to a long simple root. They satisfy
M n7'(h)=a;.
(ii) n;(x)<O0 for every simple root o other than «;.
(iii) n;s;=n;s; when a; is adjacent to a; in Dg; i.e. when (a;, a;)#0.
(iv) n; is the unique Weyl group element of maximal length taking a; to h.

Note. The case G=A, is described in Vargas [16, p. 2]. In [13], Springer shows
that 4,, above, is a union of Bruhat cells. Also, condition iv follows from i and
Lemma 4.3, since (h, @)=0 for each simple root a.

Let C;=B[n;]. Then dim(C;))=d and #,0JC;, i=1,...,k. The next lemma is
proved in Spaltenstein [10, 11] for every Springer fibre 2. It shows that the above
containment is actually an equality.

.

4.5. Lemma. 4, is pure d-dimensional.

Proof. Let n € s#. We wish to show that n<g; for some i=1,...,k. If n”'(h) =g,
then we are done by Lemmas 4.3 and 4.4(iv).

If n71(h) is not a simple root, choose any simple root a; such that n(e;)>0. Tk
is possible since n#w,. Then, by Lemma 3.1R, n<ns;. Also, (nsj)"(h) =
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s;n~'(h)>0, since s; permutes the elements of R \ {e;}. We take #s; to be our new
n, and must eventually obtain that #~'(k) is a simple root. This completes the
proof. [

4.6 Theorem. The weighted resolution graph, I',, for u in the minimal unipotent
conjugacy class, is as displayed in Table 3.

Proof. By Lemmas 4.4 and 4.5, there is one vertex v; for each long simple root «;.

Step 1. v, is joined to v; if @; is adjacent to @; in Dg. (The converse statement is
Step 2.)

With the notation of Lemma 4.4, let # =#;s; = 5;s;. Since n;(e;) <0, we have that
(n)=ln)—1=d-1, and n<p;. Similarly, n<#n;. Hence, C;NC;DB[n], a sub-
variety of dimension d— §. This proves Step 1.

Step 2. If v; is joined to v;, then @; and @; are adjacent in Dg.

Suppose v; is joined to v;, but that @; and ; are not adjacent. We will arrive at
a contradiction.

Let ne #, (n)=d—1 and Bln]CC;NC;. As explained in 2.1, there are positive
roots ¢ and B so that #;s,=i7=1;55. Renumber the long simple roots and choose
a chain

old a;=ag, ;5 ..., 0y, 0y =0ld @,

without repetitions; a,, _ is adjacent to @, in D for n=1,...,m, i.e. this is the sub-
diagram of Dg containing old ; and old ;. Also, we are assuming that m=2.
We have that 795, =1,,8p, i.€. Sps,=ny'No=n,,, where

T =S - 15SmSm~25m~1°"" 51525051

as is easily checked by induction, using Lemma 4.4(iii). The following equations
may also be verified:

¢)) (@) =y,
{2) nm(am) =02
3) Tm(0y)=—Qo— 0=+ ~ )y,

Lemma 3.3 will be used in the remainder of the proof. Replace 7, by SpSq, and
rewrite (1) and (2) to obtain

@ oy~ a"(@)a = ot — B ()P,
&) Oy~ @ (@)A =0y 23— BY(Qpy - 2)B-

Since the o;’s form part of a basis, it is easy to see from equation (4) that neither
o"(ay) nor BY(a,,) is zero. Moreover, they have the same sign. A similar statement
holds for (5). Thus, a"(ay) =¢a"(a,,) and BY(a,,) = eB"(a,,—,), Where e=+1.

If =1, subtract (4) and (5).

Oy~ Oy =0n—0Qy_3, Whence ap+a,_,=2a,
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This is impossible. Hence, e=—1. Now, add {(4) and (5).
ayt+a,=ay,+a,_, Wwhence ay=a,_,.

Thus, m=2 and sps,=5,5,55;, 50 that (sgs,)*=1, i.e. 8¥(@)=0.
Equation (3) simplifies to

(6) ap+2a; +ay=a"(a))a+ B (a,)B.

Let a"(ap) =4 and BY(a,) = u, which as we have seen, are both non-zero and of the
same sign. Equation (4) now reads

@) ao—a2=la‘[1ﬂ.
Evaluate a) on both sides and obtain
8) 0= Ay () - uay(B),

since ay(ay) = ay (@) = —1. Equation (6) implies that not both ) (e) and ay(B) are
zero. Thus, since @, is a long root, and A and u have the same sign, equation (8)
implies that aY(a)=aY(#)=+1 and A=u. In particular, ¢ and B have the same
length and

a(a)=p"(a))=¢€A, &'==l.

We now use equations (6) and (7) to solve for @ and f. There are two cases to
consider.

Case ¢’'=1. Then a=ay+ a,. Recall that n=n,s, has length d— 1. But
No(@) =no(cp) + no(e)
=h+ny(a,), Lemma 4.4(i)
>0,

i.e. nos,>ng, as explained in 2.1. This is a contradiction, since #, has length 4.

Case ¢'=—1. Then a=a;+a,. We have a=s/(;), S0 s,=5,5,5;. It is easily
verified that #y(a;)<0, 7ys;(a;) <0 and 7,5, 5,(r;)<0. This implies that = n,s,
has length d— 3, contradicting the hypothesis that »# has length d— 1.

This completes the proof of Step 2.

Step 3. The weight associated to v; is I; =S\ {«;}.

For any root a, let X,CG be the associated root subgroup. Let
Ui=T1{X,: >0, n;'(@)<0}. Now, C; is the closure of

Bln;}=Uin,o,

where o is the image under G—G/B of 1€G, and #; is identified with some
representation in the normalizer of the maximal torus in G. _
Let a; be any simple root, and P, the associated minimal parabolic. The fibre of
G/B—G/P; through a point xB is {xpB: pe P;}. Thus, C; is Pl-saturated precisely
when for each ze U; and for each p in some neighborhood P? of 1 in P; there is
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a z’ in U; with zn;pB=2'n;B. This condition may be rewritten as
(*) PCn ' Un;B.
Since P; is generated by B and X_,, () is equivalent :0 having
X_q,C [1 {Xp: B=n7"(@)<0,a>0}.

Here, we have used the fact that anw" =X for any we W and any root ¢.
Thus, [2, p. 347], - z,-=t1,~"(a) for some a>0, i.e. 7;(a;) <0. The argument can be
reversed, so that

I={aeS: n(a)<0}
=S\ {} by Lemma 4.4(ii). O
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