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Abstract A set of points in the projective plane is said to be Cremona special if its
orbit with respect to the Cremona group of birational transformations consists of
finitely many orbits of the projective group. This notion was extended by A. Coble
to sets of points in higher-dimensional projective spaces and by S. Mukai to sets of
points in the product of projective spaces. No classification of such sets is known in
these cases. In the present article we survey Coble’s examples of Cremona special
points in projective spaces and initiate a search for new examples in the case of
products of projective spaces. We also extend to the new setting the classical notion
of associated points sets.
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1 Introduction

Let Wp,q,r denote the Coxeter group defined by the Coxeter graph of type Tp,q,r.

We will be interested in the cases when the group Wp,q,r is infinite. It follows
from the classification of finite reflection groups that Wp,q,r is infinite if and only if
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r ≤ 1. Finite groups Wp,q,r are known to be isomorphic to the Weyl groups

of root systems of type A2×A1,An,D5,E6,E7,E8.

It has been known since the fundamental work of A. Coble [2], [4] that the
groups W2,q,r act birationally on the configuration spaces of ordered q + r points in
Pq modulo projective transformations. Roughly speaking, the subgroup generated
by the generators sp, . . . ,sp+q+r−1 acts by permutations of points and the additional
generator sp−1 acts via the standard Cremona transformation of degree q which in-
verts the coordinates of each point. The stabilizer subgroup of the orbit of a points
set can be interpreted as a group of pseudo-automorphisms of the variety obtained
by blowing-up this set. Here a pseudo-automorphism means a birational automor-
phism which is an isomorphism outside of a closed subset of codimension ≥ 2. For
example, if q = 2, the group of automorphisms of the blow-up surface becomes iso-
morphic to a subgroup of the Coxeter group W2,3,r. This result, sometimes attributed
to M. Nagata [22], goes back to S. Kantor [18], A. Coble [2], and P. Du Val [12].

It is known that, for a general points set, the automorphism group of the blow-up
surface is trivial [15], but in a special case it could be very large in the sense that
it is realized as a subgroup of finite index in W2,3,r. Coble was the first to initiate
a search of points sets in projective spaces which are special in the sense that the
pseudo-automorphism group of the blow-up variety is realized as a subgroup of
finite index in W2,q,r. For example, a set of points in the projective plane is special
if its orbit with respect to the Cremona group contains only finitely many orbits
with respect to the projective group. Coble gave several examples of special sets in
the plane and in three-dimensional space. Among these examples is the set of base
points of a pencil of plane cubic curves, or the set of nodes of a rational plane sextic,
or the set of nodes of a Cayley symmetroid quartic surface. A modern treatment of
Coble’s theory can be found in [9].

A generalization of the Coble representation of W2,q,r in the group of birational
automorphisms of X2,q,r to a representation of an arbitrary Coxeter group Wp,q,r on
the configuration spaces of ordered points sets in the product of projective spaces
was recently given by S. Mukai [21]. He applied this to the construction of new
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counter-examples to Hilbert’s 14th Problem about finite generation of rings of in-
variants. The purpose of the paper is to initiate a search of special sets of points in
this new setting. We also extend the classical notion of association of points sets in
projective space to points sets in the product of projective spaces.

2 The Cremona action of Wp,q,r

We define the configuration space of ordered sets of q + r points in the product of
projective spaces Pp,q := (Pq−1)q+r to be the GIT-quotient

Xp,q,r = (Pp,q)q+r//SL(q)p−1,

where the group SL(q)p−1 acts naturally on the product Pp,q and diagonally
on the product (Pp,q)q+r. We choose a democratic linearization on the product
(Pp,q)q+r ∼= (Pq−1)(p−1)(q+r) defined by the invertible sheaf O(1)�(p−1)(q+r). To ex-
clude the trivial cases, we assume that p,q,r > 1. The variety Xp,q,r is an irreducible
rational variety of dimension D = (p−1)(q−1)(r−1).

The group Sp−1×Sq+r acts naturally on Xp,q,r by permuting the p−1 factors of
Pp,q and q+ r factors of (Pp,q)q+r. It is realized as the subgroup of Wp,q,r generated
by the Coxeter generators s1, . . . ,sp−2 and sp, . . . ,sp+q+r−1. Following Coble, Mukai
extends this action to a homomorphism

crp,q,r : Wp,q,r→ Bir(Xp,q,r)∼= AutC(C(z1, . . . ,zD)) (1)

by defining the action of the remaining generator sp−1 and checking that the rela-
tions between the generators are preserved. Recall that the standard Cremona trans-
formation T in projective space Pq−1 is a birational transformation given by the
formula

z = [z0, . . . ,zq] 7→ [z−1
0 , . . . ,z−1

q ]. (2)

We extend T to the product (Pq−1)p−1 by the formula

(z(1), . . . ,z(p−1)) 7→
(

[
1

z(1)
0

, . . . ,
1

z(1)
q−1

], [
z(2)

0

z(1)
0

, . . . ,
z(2)

q−1

z(1)
q−1

], . . . , [
z(p−1)

0

z(1)
0

, . . . ,
z(p−1)

q−1

z(1)
q−1

]
)

. (3)

A general points set can be represented in Xp,q,r by a unique ordered points set
(p1, . . . , pq+r) with the first q+1 points equal to the reference points

[1,0, . . . ,0], . . . , [0, . . . ,0,1], [1, . . . ,1].
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We use projective transformations in each copy of Pq−1 to assume that the projec-
tions of the first q+1 points p1, . . . , pq+1 are the reference points in Pq−1. Then we
apply T to the rest of the points. Note that T is not defined at the intersections of
the pull-backs of coordinate hyperplanes in the first factor Pq−1. One checks that
this action of generators preserves the defining relations of the Coxeter group and
defines the homomorphism (1). We call this homomorphism the Cremona action of
Wp,q,r.

Let P be an ordered set of q+ r distinct points in Pp,q and let

πP : VP → Xq+r

be its blow-up. We consider VP up to a birational isomorphism which is an iso-
morphism outside a closed subset of codimension≥ 2 (a pseudo-isomorphism). The
action of such a birational isomorphism on the group H2(VP ,Z)∼= Pic(VP) is well-
defined. Denote by Ei ∼= Ppq−p−q the exceptional divisor over the point pi and let
ei = [Ei] be its class in H2(VP ,Z). Let pri : Pp,q→ Pq−1 be the projection to the i-th
factor and hi = [π∗(pr∗i (H))], where H is a hyperplane in Pq−1. Then

h1, . . . ,hp−1,e1, . . . ,eq+r

form a basis of H2(VP ,Z). We call it a geometric basis. Let

h1, . . . ,hp−1,e1, . . . ,eq+r

be its dual basis in H2(VP ,Z). We can realize it by taking −ei to be the class of a
line in Ei and hi to be the homology class of a line in Pq−1 embedded in Pp,q under
the inclusion map in the i-th factor ιi : Pq−1→ (Pq−1)p−1. Let

α1 = hp−2−hp−1, . . . ,αp−2 = h1−h2, (4)

αp−1 = h1− e1− . . .− eq,

αp = e1− e2, . . . ,αp+q+r−2 = eq+r−1− eq+r,

and

α
1 = −hp−2 +hp−1, . . . ,α p−2 =−h1 +h2,

α
p−1 = (q−2)h1 +(q−1)h2 + . . .+(q−1)hp−1 + e1 + . . .+ eq,

α
p = e2− e1, . . . ,α p+q+r−2 =−eq+r−1 + eq+r.

We immediately check that the matrix (αi,α
j)+2Ip+q+r−2 is the incidence matrix

of the graph Tp,q,r. The two bases
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α = (α1, . . . ,αp+q+r−2), α
∨ = (α1, . . . ,α p+q+r−2)

form a root basis. The Weyl group of this root basis acts on H2(VP ,Z) (resp. on
H2(VP ,Z)) as the group generated by the simple reflections

si : x→ x+(x,α i)αi (resp. si : y→ y+(y,αi)α i).

Let e = e1 + . . .+ eq+r. It is immediately checked that

1≤ i≤ p−2 : si(hi) = hi+1, s(h j) = h j, j 6= i, i+1,

si(e j) = e j, j = 1, . . . ,q+ r,

i = p−1 : si(h1) = (q−1)h1− (q−2)e,

si(h j) = h j +(q−1)(h1− e), j 6= 1,

si(e j) = h1− e+ e j, 1≤ j ≤ q, si(e j) = e j, j > q.

i > p : si(h j) = h j, j = 1, . . . , p−1,

si(ep−1+i) = ep+i, si(e j) = e j, j 6= p−1+ i, p+ i.

It follows that the Weyl group is isomorphic to the Coxeter group Wp,q,r with Coxeter
generators si.

Note that the following vectors are preserved under the action:

KVP
= −q(h1 + . . .+hp−1)+(pq− p−q)(e1 + . . .+ eq+r) ∈ H2(VP ,Z),

kVP
= −q(h1 + . . .+hp−1)+ e1 + . . .+ eq+r ∈ H2(VP ,Z).

One recognizes in KVP
the canonical class of VP . One can check that α is a basis of

the orthogonal complement of kVP
in H2(VP ,Z) and α∨ is a basis of the orthogonal

complement of KVP
in H2(VP ,Z).

Another way to look at this is to define a linear map

H2(VP ,Z)→ H2(VP ,Z), γ → γ
∨,

on the basis (hi,e j) by

hi 7→ (q−1)(h1 + . . .+hp−1)−hi, i = 1, . . . , p−1, ei 7→ −ei, i = 1, . . . ,q+ r.

Then x · y := (x,y∨) defines a structure of a quadratic lattice on H2(VP ,Z) with
the Gram matrix in the basis (h1, . . . ,hp−1,e1, . . . ,eq+r) given by block-sum of the
square matrix
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Ap,q :=


q−2 q−1 q−1 . . . q−1
q−1 q−2 q−1 . . . q−1

...
...

...
...

...
q−1 q−1 q−1 . . . q−2


and the matrix −Iq+r. The signature of this lattice is equal to (1, p +q + r−2) and
the discriminant is equal to (−1)q+r(pq− p−q). We have

K∨VP
= (pq− p−q)kVP

,

so k⊥VP
is mapped onto K⊥VP

and

K2
VP

= (pq− p−q)(pqr− pq− pr−qr).

This implies that the sublattice k⊥VP
with a basis α is an even lattice of signature

(t+, t−) (or (t+, t−, t0) if t0 6= 0):

sign(Ep,q,r) =


(0, p+q+ r−2) if pqr− pq− pr−qr > 0,

(0, p+q+ r−3,1) if pqr− pq− pr−qr = 0,

(1, p+q+ r−3) otherwise.

The group Wp,q,r is finite if and only if pqr− pq− pr− qr > 0 and it contains an
abelian subgroup of finite index if and only if pqr− pq− pr−qr = 0.

It is convenient to introduce an abstract quadratic lattice Ip,q,r defined in a basis
(h1, . . . ,hp−1,e1, . . . ,eq+r) by the matrix Ap,q⊕−Iq+r, a vector

Kp,q,r =−q(h1 + . . .+hp−1)+(pq− p−q)(e1 + . . .+ eq+r),

and the sublattice
Ep,q,r := (Kp,q,r)⊥.

with a canonical basis (α1, . . . ,α p+q+r−2), where α i are expressed in terms
of (h1, . . . ,hp−1,e1, . . . ,eq+r) by formulas (4). We also define the Weyl group
W (Ep,q,r) as the group of orthogonal transformations of the lattice Ep,q,r generated
by reflections with respect to the vectors α i:

si : x 7→ x+(x ·α i)α i.

This is the Coxeter group corresponding to the Tp,q,r-graph. For simplicity of nota-
tion, we set W (Ep,q,r) = Wp,q,r.
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A choice of a geometric basis in H2(VP ,Z) defines a geometric marking of VP ,
i.e. an isometry of lattices ϕ : Ip,q,r→H2(VP ,Z) such that ϕ(Kp,q,r) = KVP

. Under
this isometry the lattice Ep,q,r is mapped onto K⊥VP

.

It is easy to see that Wp,q,r acts transitively on the root basis α of Ep,q,r. An
element of the Wp,q,r-orbit of any element from the canonical basis is called a root.
A root is called positive if it can be written as a linear combination of the canonical
basis with non-negative coefficients. One can show that any root α is either positive
or −α is positive.

Lemma 2.1 Let α = ∑
p−1
i=1 dihi − ∑

q+r
j=1 mie j be a positive root. Let

d = d1 + . . .+dp−1. Suppose that one of the numbers di is positive. Then

(i) qd = ∑
q+r
j=1 m j;

(ii) (q−1)d2−∑
p−1
i=1 d2

i −∑
q+r
k=1 m2

k =−2;

(iii) (q−1)d−d1 < m1 + . . .+mq, if m1 ≥ m2 ≥ . . .≥ mq+r and d1 ≤ . . .≤ dp−1;

(iv) assume d > 0, then di ≥ 0, i = 1, . . . , p−1, and m j ≥ 0, j = 1, . . . ,q+ r.

Proof The first equality follows from the condition that α ·Kp,q,r = 0. The second
one follows from the condition that α2 =−2.

(iii) The ordering of the coefficients implies that α ◦α i ≥ 0 for i 6= p− 1. One
checks that

α ·α p−1 = (q−1)d−d1−
q

∑
j=1

m j. (5)

Assume the inequality does not hold. Then α ·α i ≥ 0 for all αi. This means that α

belongs to the fundamental chamber of the root system. The proof that it is impos-
sible is the same as in the proof of the corresponding statement for the case p = 2
in [9], p. 75.

(iv) It is checked immediately that d ≥ 0 for a positive root. Let us use induction
on d. Assume d = 1. Then (i) and (ii) give

1−
p−1

∑
j=1

d2
i =

q

∑
j=1

m j(mi−1).

The left-hand side is non-positive, the right-hand-side is non-negative. This gives
that one of the di is equal to 1, all others are zeros. Also, m j = 1 or 0. This checks
the assertion.
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It is known that si transforms the set of positive roots with α i deleted to a subset
of positive roots (see [17], Lemma 1.3). Applying si, i 6= p−1, we may assume that
that di’s and m′j are ordered as in (iii). Using (5), we obtain

α
′ = sp−1(α) =

p−1

∑
i=1

d′ihi−
q+r

∑
j=1

m′ie j, (6)

where

d′1 = (q−1)d−
q

∑
j=1

m j,

m′j = (q−1)d−d1− (m1 + . . .+mq−m j), j = 1, . . . ,q,

and all other di’s and m j’s are unchanged. By (iii), we obtain that d′1 < d1, and
hence d′ = ∑d′i < d. If ∑d′i > 0, we are done by induction. Assume that d′ = 0.
Then (i) and (ii) give 2− ∑d2

i = ∑m2
j . This gives the following possibilities

α ′ = hi−h j,ei− e j, i < j. But then α = sp−1(α ′) satisfies (iv) and (v).

Note that a vector in Ip,q,r satisfying (i)-(iv) from the lemma is not necessarily a
root. An example in the case p = 2,q = 3 is given in [9].

Lemma 2.2 Let α be a root in Ep,q,r and ∆(α) be the subset of Pp,q that consists
of points sets such that ϕP(α) is effective. Then ∆(α) is a closed proper subset of
Pp,q.

Proof If α = α i or its transform under si, i 6= p− 1, the assertion is obvious. The
root α i, i < p− 1, is never effective, the roots α i, i > p− 1, are effective only if
some points coincide, and α p−1 is effective only if the first q + 1 points are in a
hyperplane. A points set for which all such roots are not effective will be called a
regular point set. It follows from Lemma 2.1 that, for roots α with d = ∑di > 0,
the condition that its image is effective reads as the condition of the existence of a
hypersurface of multi-degree (d1, . . . ,dp−1) passing through the points pi ∈P with
multiplicity≥mi. Obviously it is a closed condition. Assume ∆(α) = Pp,q for some
α with ∑di > 0. Without loss of generality, we may assume that m1 ≥ . . . ≥ mq+r

and d1 ≤ . . .≤ dp−1. Also we may assume that P is a regular set. Now we take Q

from the projective equivalence class of crp,q,r(sp−1)([P]). Then ϕQ(sp−1(α)) is an
effective root (the transform under T of the hypersurface defining ϕP(α)). Property
(iii) of a positive root together with (6) implies that the hypersurface defined by the
root ϕQ(sp−1(α)) has multi-degree (d′1, . . . ,d

′
p−1) with d′ = ∑d′i < d. Now we can

use induction on d. We know that ∆(sp−1(α)) is a proper subset, hence we find a
regular Q such that the root sp−1(α) is not effective.
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Definition 1 A points set P is called unnodal if under the geometric marking
ϕP : Ip,q,r→ Pic(VQ) defined by P , no root is mapped to an effective divisor class.

It follows from Lemma 2.2 that the set of unnodal points sets is the complement
of the union of proper closed subsets ∆(α), where α is a positive root in Ep,q,r. This
set is infinitely countable if the lattice Ep,q,r is not negatively definite.

Note that we do not know whether the closed subsets ∆(α) are hypersurfaces in
Pp,q when α is a root different from α i, i 6= p−1. It is true in the cases when Pp,q is
a surface.

Proposition 1 Let P be an unnodal point set. Then, for any w∈Wp,q,r, the marking
wϕ := ϕ ◦w−1 is a geometric marking on VP defined by the points set Q such that
crp,q,r([P]) = [Q].

Proof Let P be a regular set of points. We use that, for Coxeter generator
si ∈Wp,q,r, crp,q,r(si) is defined at [P]. If si 6= sp−1, then siϕP = ϕQ, where Q

is obtained from P by either permuting the points, or as the image of an automor-
phism of Pp,q permuting the (p−1) factors. If i = p−1, then [Q] is defined by the
points set (3), where T is the standard Cremona transformation of Pp,q. Note that
the divisor classes E ′i representing sp−1(ei), i = 1, . . . ,q, are not contractible on VP

if dimPp,q > 2. However, they become contractible when we apply to VP a pseudo-
isomorphism. The geometric marking corresponding to a points set Q representing
crp,q,r(si)([P]) is equal to siϕ . So, if we show that Q is again a regular set, we are
done.

Let l(w) be the minimal length of w as the product of Coxeter generators. This
is well-defined in any Coxeter group. Let us prove by induction on l(w) that the
image of a geometric basis defined by P under w is a geometric basis. Write w as
the product of generators sik · · ·si1 , where k = l(w). Assume i1 6= p−1. Then, as we
have already observed, si1 transforms a geometric basis to a geometric basis. It is
defined by a regular points set Q such that crp,q,r(si1)([P]) = [Q].

Assume i1 = p − 1. Consider the birational transformation crp,q,r(sp−1) of
Xp,q,r. It transforms the point [P] corresponding to a normalized points set
P = (p1, . . . , pq+1, . . . , pq+r) to the point [Q], where

Q = (p1, . . . , pq+1,T (pq+2), . . . ,T (pq+r)) = (p′1, . . . , p′q+r).

Assume that Q is not regular. If it does not satisfy the first condition of regular-
ity, then some points in this set coincide. But this could happen only if one of the
points pi, i > q + 1, in P lies in an exceptional divisor of T (i.e. the closure of
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points which are mapped to the set of indeterminacy of T−1 = T ). It is easy to see
that this set consists of the union of the pre-images of hyperplanes in the first copy
of Pq−1 which are spanned by all points pr1(p1), . . . ,pr1(pq+1) except one, say p j.
Since h1− e1− . . .− eq + e j− ei is not an effective divisor, the images of the points
{p1, . . . , pq, pi} \ {p j} under the first projection are not contained in a hyperplane.
So the new points set Q consists of distinct points. Next assume that the second con-
dition of regularity is not satisfied. This means that the projections of some points
p′j1 , . . . , p′jq+1

to some t-factor lie in a hyperplane. Applying crp,q,r(si),1≤ i≤ p−2,

we may assume that t = 1. It follows from the definition of the transformation T that
T ∗(h1) = 2h1− e1− . . .− eq. It agrees with the action of sp−1 on the geometric ba-
sis. If the points p′j1 , . . . , p′jq+1

are projected to a hyperplane in the first factor, then
the pre-image of this hyperplane under T is an effective divisor in the class

2h1− e1− . . .− eq− e j1 − . . .− e jq+1 = sp−1(h1− e j1 − . . .− e jq+1),

where we replace e jk with ei if jk = i for some i ≤ q. Since h1− e j1 − . . .− e jq+1 is
a root, and sp−1(h1− e j1 − . . .− e jq+1) is again a root, it cannot be effective. This
proves that si1 is well defined on [P] and transforms it to [Q], where Q is a regular
point set. It remains to apply induction on l(w).

Proposition 2 Let P be an unnodal points set and w ∈ Wp,q,r be such that
crp,q,r(w)([P]) = [P]. Then there exists a pseudo-automorphism τ : VP−→ VP

such that w = ϕ
−1
P ◦ τ∗ ◦ϕP .

Proof Let σ : VP → Pp,q be a birational morphism contracting the divisors
E1, . . . ,Eq+r to points p1, . . . , pq+r ∈P . Then there exists a pseudo-automorphism
Φ : VP− → V ′P and a contraction σ ′ : V ′P → Pp,q of divisors E ′i to the same set
of points P such that Φ∗(E ′i ) = ϕP ◦w ◦ϕ

−1
P . Since two blow-ups of the same

closed subscheme are isomorphic, there exists an isomorphism Ψ : VP− → V ′P
which sends Ei to E ′i . The composition τ = Φ ◦Ψ−1 : VP− → VP is a pseudo-
automorphism of VP whose existence is asserted in the Proposition.

Corollary 1 Let P be an unnodal set in Pp,q. Then the stabilizer subgroup

(Wp,q,r)P := {w ∈Wp,q,r : crp,q,r(w)([P]) = [P]}

is isomorphic to a subgroup of the group Autps(VP) of the group of pseudo-
automorphisms of VP .

Let Φ ∈ Autps(VP) and let Φ∗ be its action on H2(VP ,Z). We say that Φ is
Cremona-like if there exists w ∈Wp,q,r such that
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w = ϕ
−1
P ◦Φ

∗ ◦ϕP .

Let Autcr(VP) be the subgroup of Autps(VP) of Cremona-like transformations. We
have a natural homomorphism

Autcr(VP)→Wp,q,r, Φ 7→ ϕ
−1
P ◦Φ

∗ ◦ϕP .

It is clear that its kernel is isomorphic to the group of automorphisms of VP lifted
from automorphisms of Pp,q.

Remark 1 In the case p = 2,q = 3, one can prove, using Noether’s Theorem on
generators of the planar Cremona group, that Autcr(VP) = Aut(VP).

It seems that A. Coble [2] and S. Kantor [19] claimed that
Autcr(VP) = Autps(VP) in the cases p = 2 and q is arbitrary. Their claim
was based on their theory of punctual or regular Cremona transformation of Pq−1.
A punctual Cremona transformation is a product of projective transformations
and the standard Cremona transformations. By Noether’s Theorem, any planar
Cremona transformation is punctual. Kantor says that a Cremona transformation
Φ of P3 has no fundamental curves of the 1st kind if the graph of Φ transforms
any fundamental curve to a fundamental curve of the inverse transformation.
He claimed that any such transformation is punctual (citing from [16], p. 318:
“the so-called proof is admittedly “gewagt”, and merits a stronger adjective”).
Another “equivalent definition” ([13], p. 192) of a punctual transformation requires
that all base conditions follow from conditions at points. No rigorous proof of
equivalence of these definitions is available. What we need is to prove (or disprove)
the following assertion:

Let σi : VPi− → Pp,q be two blow-up varieties and Φ : VP1− → VP2

be a pseudo-isomorphism. Then the Cremona transformation
σ2 ◦ Φ ◦ σ

−1
1 : Pp,q− → Pp,q is a composition of the standard transformation

(3) and automorphisms of Pp,q.

3 Examples of Cremona special sets

Definition 2 A points set P is called Cremona special if the image Autcr(VP)∗ of
Autcr(VP) in Wp,q,r is a subgroup of finite index.
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Since the condition is vacuous when Wp,q,r is a finite group, we will additionally
assume that Wp,q,r is an infinite group.

All examples of Cremona special sets that I know use the theory of abelian
fibrations that I remind below.

Let Y be a smooth projective variety over a field L. There exists an abelian variety
Alb0(Y ) and a torsor Alb1(Y ) over Alb0(Y ) satisfying the universal property for
morphisms of Y to torsors over an abelian variety [23], [25]. If Y (K) 6= /0, then
Alb0(Y ) = Alb1(Y ) is the Albanese variety Alb(Y ) of Y . The dual abelian variety
of Alb0(Y ) is isomorphic to the (reduced) Picard variety Pic0

Y/K . We say that Y

is an abelian torsor if the canonical map Y → Alb1(Y ) is an isomorphism. In the
simplest case when dimY = 1, this means that Y is a smooth curve of genus 1, and
Alb0(Y ) = Pic0

Y/K is its Jacobian variety.

Let f : X → S be a projective morphism of irreducible varieties. We assume that
S is smooth and X is Q-factorial with terminal singularities. Assume that a generic
fibre Xη is an abelian torsor over the field of rational functions K = κ(η) of S.
Moreover, assume that f is relatively minimal in the sense that KX ·C ≥ 0 for any
curve C contained in a fibre. Let A = Alb1(Xη), the group A(K) acts biregularly on
Xη via translations

ta : x 7→ x+a, x ∈ Xη(K̄),a ∈ A(K).

This action defines a birational action on X , and, the condition of minimality implies
that the action embeds A(K) into the group Autps(X) of pseudo-automorphisms of
X [20], [24], Lemma 6.2.

Assume that the class group Cl(X) of Weyl divisors is finitely generated of rank
ρ (e.g. X is a unirational variety as it will be in all applications). Let

rη : Cl(X)→ Cl(Xη)∼= Pic(Xη)

be the restriction homomorphism. By taking the closure of any point of codimension
1 in Xη , we see that this homomorphism is surjective. Let Pic0(Xη) = Pic0

Xη /K(K)
be the subgroup of Cartier divisor classes of algebraically equivalent to zero. Then
we have an exact sequence of finitely generated abelian groups

0→ Clfib(X)→ Cl(X)0→ Pic(Xη)0→ 0,

where Clfib(X) is the subgroup of Cl(X) generated by the classes of Weil divisors
∑niDi such that codim f (Di) ≥ 1. Since the dual abelian varieties are isogenous,
we obtain that the group A(K) is finite generated. In the case when Xη(K) 6= /0,
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hence Xη
∼= A, the group A(K) is called the Mordell-Weil group of the fibration. We

keep this terminology in the general case and denote the group A(K) by MW( f ).
Counting the ranks, we obtain the Shioda-Tate formula

rank MW( f ) = rank Cl(X)−1− rank Cl(S)− ∑
s∈S(1)

(#Irr(Xs)−1), (7)

where S(1) is the set of points of codimension 1 in S and Irr(Xs) is the set of irre-
ducible components of the fibre Xs.

Example 1 Assume p = 2,q = 3, hence r ≥ 6. The known examples in these cases
are due to A. Coble [1], [4]. The first example is an Halphen set of index m, the set
of 9 base points of an irreducible pencil of curves of degree 3m with nine m-multiple
base points (an Halphen pencil of index m). The proper transform of the pencil in
VP is the linear system |−mKVP

|. We assume that all fibres are irreducible which
is equivalent to the condition that the set P is unnodal. When m = 1 this can be
achieved by assuming that no three points are collinear ([24], Lemma 3.1). Let C be
the unique cubic curve passing through the base points p1, . . . , p9. We assume that
C is nonsingular. Obviously, this is an open condition on P . If we fix a group law
on C with an inflection point as the zero, then the condition that P is an Halphen
set of index m is that the points pi add up in the group law to a point of order m. Let

a : Z9→C, (m1, . . . ,m9) 7→ m1 p1 + . . .+m9 p9,

where the sum is taken in the group law on C. Assume that a(m) 6= 0 for any vector
m = (m1, . . . ,m9) with (m−m1, . . . ,m−m9) ∈ Z9

≥0 and m1 + . . .+m9 < 2m. This is
an open condition on P that guarantees that there are no curves of degree d < 2m
with singular points at the point pi of multiplicity mi. Now, if D is a reducible mem-
ber of the pencil, one of its parts has degree < 2m and passes through the pi with
some multiplicity mi as above. By assumption, this is impossible, so all members
of the pencil are irreducible, and stay the same when we blow-up the nine points.
Since all (−2)-curves on VP are contained in fibres, we obtain that P is unnodal.
Let f : VP → P1 be the elliptic fibration defined by the Halphen pencil. Applying
the Shioda-Tate formula, we find that the rank of the Mordell-Weil group is equal
to 8. Thus Z8 embeds into Autps(VP) = Aut(VP). The known structure of W2,3,6

shows that the image is a normal subgroup of finite index. More detailed analysis
of the action gives that the quotient group is isomorphic to (Z/8Z)8oW2,3,5 (see
[15]).

In the second example, P is a Coble set, the ten nodes p1, . . . , p10 of an ir-
reducible rational plane curve of degree 6. The proper inverse transform C of the
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sextic is equal to the anti-bicanonical linear system | − 2KVP
|. The double cover

of VP branched along C is a K3-surface which can be considered as a degenera-
tion of the étale double cover of an Enriques surface. One uses the period theory
of Enriques surfaces to show that the locus of Coble sets is irreducible. Also, using
some lattice-theoretical methods from [8], one can show that there are only finitely
many closed conditions on P (in fact, exactly 496 conditions) that guarantee that
P is an unnodal set. Let C ob⊂ P10

2 be the subset of projective equivalence classes
of unnodal Coble sets. This is a locally closed subset invariant with respect to the
Cremona action. Let

cr2,3,7 : W2,3,7→ Aut(C ob)

be the action homomorphism. Its kernel is a normal subgroup of W2,3,7. Observe
that any subset of 9 points in P is an Halphen set of index 2, The Halphen pencil
is generated by the sextic curve and the unique cubic curve through the 9 points
taken with multiplicity 2. Conversely, a Coble set is obtained from an Halphen set
of index 2 by choosing a singular member of the pencil, its singular point is the
tenth point of the set. Fix two points, say p1 and p2 and let F1 and F2 be the proper
transforms in VP of the cubic curves through p3, . . . , p10 and pi, i = 1,2. The linear
system |2Fi| is a pencil, the proper transform of the corresponding Halphen pencil.
We have Fi ·F2 = 1 so that (2F1 + 2F2)2 = 8. One can show that the linear system
|2F1 + 2F2| defines a degree two map from VP onto a quartic Del Pezzo surface in
P4 with 4 ordinary double points. The image of the curve C is one of these nodes.
The deck transformation of the cover defines an isometry of the lattice K⊥VP

∼= E2,3,7

which is conjugate to the isometry − idE2,3,5⊕ idU , where E2,3,7 ∼= U ⊕E2,3,5 is an
orthogonal decomposition into the sum of two unimodular sublattices. It is known
that the normal subgroup of W2,3,7 containing this isometry has finite quotient group
isomorphic to O(10,F2)+ [7], Theorem 2.10.1.

Recently, in a joint work with S. Cantat, we were able to prove the following.

Coble also constructed examples of Cremona special sets in P3.

Then it  is either anTheorem 1 Let P be a Cremona special set in the plane.
Halphen set, or a Coble set, or a set of ≥10 points on an irreducible cuspidal curve 

>in characteristic p 0.
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Example 2 The first series of examples are analogs of Halphen sets. One considers
an elliptic normal curve C of degree 4 in P3 equipped with the group law defined by
a choice of an osculating point. Choose 8 points P = {p1, . . . , p8} on C in general
position which add up to a point of order m in the group law. Then one shows that
there exists a surface F2m of degree 2m with m-multiple points at p1, . . . , pm which
does not belong to the family of surfaces of the form Gm(q1,q2) = 0, where Gm

is a homogeneous polynomial of degree m and q1 and q2 are quadratic forms in
3 homogeneous coordinates in P3 such that C = V (q1)∩V (q2). The linear system
|OP3(2m)−m(p1 + . . .+ pm)| defines a regular map

f : VP → Pm+1.

Its image is the projective cone over a Veronese curve of degree m in Pm. The image
of C is the vertex of the cone. If we fix a nonsingular quadric Q in the pencil of
quadrics V (λq1 + µq2), then the restriction of the linear system to Q is a pencil of
elliptic curves of degree 4m with eight m-multiple points. Thus a general fibre of f
is an elliptic curve. If we blow-up the proper transform of C in VP , we obtain an
elliptic fibration

f ′ : V ′P → Fm;

the fibres over the points on the exceptional section of Fm are m-multiple elliptic
curves. The case m = 1 corresponds to a well-known set of Cayley octads, the com-
plete intersection of three quadrics. It is discussed in detail in [9]. By choosing the
set P general enough, as in the example of Halphen sets, we find that all fibres over
points of codimension 1 are irreducible. Since rank Pic(V ′P = 10, rank Pic(Fm) = 2,
applying the Shioda-Tate formula (2), we obtain that rank MW( f ′) = 7. Thus the
kernel of cr2,4,4 contains a normal subgroup isomorphic to Z7. It is known to be a
normal subgroup of W2,4,4. If m = 1, the quotient group is isomorphic to W2,3,4. If
m > 1 it must be isomorphic to (Z/mZ)7oW2,3,4; however, I confess that I have not
checked this.

The second series of examples generalizes a Coble set. It is the set of 10 nodes
of a symmetric determinantal quartic surface (Cayley symmetroid). This example
has been worked out in detail in an unpublished manuscript [7] (see also [8]). The
group of pseudo-automorphisms of VP contains a normal subgroup of W2,4,6 with
quotient isomorphic to Sp(8,F2).

Here are some new examples in the cases p > 2.

Example 3 Take p = q = r = 3, so that W3,3,3 is the affine Weyl group of type E6. We
are dealing with the set of 6 points in P2×P2 modulo PGL3×PGL3. Consider the
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subsets P = (x1, . . . ,x6) such that dim |h1 +h2− x1− . . .− x6|= 3 (one more than
expected). It is known that this is equivalent to that the two projections of P to P2

are associated sets of 6 points in the plane [10]. It is known that the variety of such
pairs modulo projective equivalence is isomorphic to an open subset of P4 [9]. Since
(h1 + h2)4 = 6, for a general set P , the linear system L = |h1 + h2− x1− . . .− x6|
has P as its set of base points, hence defines a morphism

f : VP → P3 (8)

whose general fibre is the intersection of three divisors of type (1,1), hence is an
elliptic curve. The exceptional divisors E1, . . . ,E6 are disjoint sections of this fibra-
tion.

The restriction of f over a general line ` in P3 defines an elliptic fibration
f` : V`→ P1, where V` is the blow-up of 6 points in a complete intersection of two
divisors in |h1 +h2| in P2×P2. The latter is known to be isomorphic to a Del Pezzo
surface of degree 6, the blow-up of three non-collinear points in the plane embedded
into P8 by the linear system of plane cubics through the three points. Thus f` is an
elliptic fibration obtained from an Halphen pencil of index 1.

Let ∆ ⊂ P3 be the locus of points x ∈ P3 such that f−1(x) is a singular fibre.
Assume that P is general enough so that ∆ is reduced. It follows from the the-
ory of elliptic fibrations that reducible fibres f−1(x) over points of codimension
1 lie over singular points of ∆ of codimension 1. Thus, under our assumption all
such fibres are irreducible. We may apply the Shioda-Tate formula to obtain that
rank MW( f ) = 6. Thus the action of the Mordell-Weil group defines a subgroup in
the kernel of cr3,3,3 isomorphic to Z6. This is known to be a normal subgroup of
finite index with quotient isomorphic to W2,3,3. A subgroup of finite index has only
finitely many orbits in the set of roots of E3,3,3. This shows that the infinitely many
discriminant subvarieties of X3,3,3 restrict to finite many subvarieties on the open set
of points [P] such that the elliptic fibration (8) has reduced discriminant surface
∆ . It remains to check that the set of such points is open in the set of points [P]
with dim |h1 + h2− x1− . . .− x6| = 3. For this it is enough to show that this set is
non-empty. This can be done by explicit computation by taking a sufficiently gen-
eral pair of associated sets of 6 points in the plane (see more about the association
in the next section).

Example 4 Take p = q = 3,r = 4. We are dealing with the set of 7 points in P2×P2

modulo PGL3 × PGL3. The linear system of hypersurfaces of bi-degree (2,2) is
of dimension 35. If we take 7 general points p1, . . . , p7 , then we expect a unique
hypersurface with double points at the pi’s. However, there is a pencil L of hyper-
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surfaces of bi-degree (1,1) through these points, so there will be a 2-dimensional
linear system N of hypersurfaces of bi-degree (2,2) with double points at points
at L . Let us consider a set P of 7 points such that there exists a hypersurface Z
of bi-degree (2,2) with double points at p1, . . . , p7 which does not belong to N .
Let C be the intersection of Z with the base surface of the pencil L . It is a curve
of arithmetic genus 7 with 7 double points, hence it is a rational curve. We have
−KVP

= 3(h1 + h2− e1− . . .− e6), hence [C] = (− 2
3 KVP

)3, so the locus of points
[P] in X3,3,4 with the above property is invariant with respect to the Cremona action.

Let Pi = P \ {pi}. The linear system of hypersurfaces of bi-degree (1,1)
through Pi is of dimension 2 and the linear system of hypersurfaces of bi-degree
(2,2) is of dimension 6 and contains Z. Then we get a rational map

fi : VPi → P
6

with the image equal to the cone S over the Veronese surface. Its fibres are elliptic
curves, the proper transforms of curves of arithmetic genus 7 with 6 double points.
The exceptional divisors Ei are 2-sections of the elliptic fibration fi. This is all sim-
ilar to the example of a Coble set so that fi is an analog of the Halphen pencil
of index 2 through 9 double points out of ten nodes of the Coble sextic. An elliptic
curve F over a field K and a point x0 ∈ F of degree 2 defines a degree 2 map F→ P1

over K. It is given by the linear series |x0|. We apply this to our situation to obtain a
birational involution σi of VPi over S. This involution extends to the localization of
fi over any point s ∈ S(1). This implies that σi is a pseudo-automorphism of order 2.
This involution is defined at the point pi and extends to a pseudo-automorphism σ̃i

of VP . Following the analogy with Coble sets, I speculate that any two involutions
σ̃i, σ̃ j commute and the product σ = σ̃i ◦ σ̃ j defines an involution of K⊥VP

∼= E3,3,4

conjugate to the involution − idE2,3,3⊕ idU , where E2,3,3 and U are orthogonal sum-
mands ofE3,3,4. Also I speculate that the normal subgroup of W3,3,4 generated by this
involution is of finite index in W3,3,4 and generates the 2-level congruence subgroup
W3,3,4(2). It will follow then that the quotient group is isomorphic to O(6,F2)− (see
[7], Theorem 2.9.1).

4 Association

Examples of Cremona special sets of points in higher-dimensional spaces Pn can be
obtained by the classical construction called the association (in modern time known
as the Gale transform). It is discussed in detail in [9] or [14]. To give an idea, one
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considers a linear map Cq+r+1→Cq+1 defined by the matrix with columns equal to
projective coordinates of the points. The kernel of this linear map is isomorphic to
Cr+1, and the transpose map defines a map Cq+r → Cr+1 representing q + r points
in Pr. This is well-defined on the projective equivalence classes of ordered points
sets. The association defines an isomorphism of GIT-quotients

as : X2,q,r→ X2,r,q.

The Coble action of W2,p,q ∼= W2,q,r commutes with the association so that the image
of a Cremona special set in Pq is a Cremona special set in Pr. However, to see
explicitly the action is rather non-trivial geometric problem.

The following nice example is due to B. Totaro [24].

Example 5 Let p1, . . . , p9 be the image of an Halphen set of index 1 under a Veronese
map P2 → P5. This set is associated to the set P(see [3], Thm. 20, [11], Proposi-
tion 5.4). Consider the linear system of cubic hypersurfaces with double points at
p1, . . . , p9. Its dimension is equal to 3 and its base locus consists of 45 curves:36
lines through pi, p j, and 9 rational normal curves through all points except one. Let
VP−→ P3 be the corresponding rational map. Its base locus consists of 45 disjoint
P1’s with normal bundle OP1(−1)4. One can perform a flip on these curves giving
another smooth 5-fold W in which the 45 curves are replaced with 45 smooth three-
dimensional subvarieties Si isomorphic to P3 with normal bundle OP1(−1)2. Now
we have a morphism Φ : W → P3 with general fibre isomorphic to an abelian sur-
face. The subvarieties Si are sections and generate the Mordell-Weil group of rank
8. The exceptional divisors Ei cut out on the fibres twice a principal polarization.
The abelian fibration Φ is relatively minimal in the sense that KW ·C = 0 for any
curve contained in a fibre. This implies that the translations by sections act on W
by pseudo-automorphism [20]. Thus Autps(VP) ∼= Autps(W ) contains a subgroup
isomorphic to Z8. It is known that the such a group must be of finite index in W2,3,6.

The associated set of the set P = {p1, . . . , p10} of 10 nodes of a quartic sym-
metroid surface is a set of 10 points in P5 which is equal to the intersection of two
Veronese surfaces [3], Theorem 26. The secant variety of a Veronese surface is a
cubic hypersurface singular along the surface. This shows that the associated set
Q = {q1, . . . ,q10} is contained in the base locus of a pencil of cubic hypersurfaces
with double points at the qi’s. The set of 9 points Qi = Q \{qi} is associated to the
set Σi of 9 points in the plane equal to the projection of the set Pi \ {pi} from pi

[9], Chapter 3, Prop. 4. It is known that the set Σi is equal to the set of base points
of a pencil of cubics. In fact, this property distinguishes Cayley symmetroids from
other 10-nodal quartic surfaces [6]. Thus any subset of 9 points Qi in Q is a set



Cremona special sets of points in products of projective spaces 133

from Totaro’s example. Let Gi ∼= Z8 be the group of pseudo-automorphisms of VQi

defined by the Mordell-Weil of the corresponding abelian fibration. The point pi is
a singular point of one of its fibres and is a fixed point of Gi. Thus Gi extends to
a group of pseudo-automorphisms of VP . One may ask whether the subgroups Gi

generate a subgroup of finite index in W2,4,6. I do not know the answer.

Note that the permutation group S3 acts on the Weyl group Wp,q,r via permut-
ing (p,q,r). The relation between Xp,q,r and Xp,r,q is the product of p− 1 copies
of the association map. This defines an isomorphism as23 : Xp,q,r → Xp,r,q. The va-
rieties Xq,p,r and Xp,q,r are not isomorphic but there exists a natural birational iso-
morphism. In fact, let us consider Xp,q,r as the GIT-quotient of the product of p−1
copies of (Pq−1)q+r by PGL(q)p−1. Using PGL(q) in each copy we can fix the first
q + 1 points among q + r-points. The quotient becomes birationally isomorphic to
((Pq−1)r−1)p−1, which is birationally isomorphic to C(p−1)(q−1)(r−1). Now if we do
the same with Xq,p,r we obtain a birational model isomorphic to ((Pp−1)r−1)q−1.
which is birationally isomorphic to the same space C(p−1)(q−1)(r−1).

Example 6 Consider the set of Cayley octads in P3 as a generalized Halphen set of
index 1. This is a Cremona special set for W2,4,4. It is self-associated, with respect
to the symmetry of the Dynkin diagram. Now consider the set of 6 points q1, . . . ,q6

in (P1)3. It corresponds to (p,q,r) = (4,2,4). Make the six points Cremona special
by requiring that the linear system of divisors of type (1,1,1) containing P is of
dimension one larger than expected. The rational map given by this linear system
defines an elliptic fibration f : VP → P2. It has 6 disjoint sections defined by the
exceptional divisors E1, . . . ,E6. Applying the Shioda-Tate formula, we obtain that
the rank of the Mordell-Weil group is equal to 7. This is a subgroup of finite index
in W2,4,4.

Conjecture 1 Let σ ∈S3 and σ : Xp,q,r → Xσ(p),σ(q),σ(r) be the birational map de-
scribed above. Then

crσ(p),σ(q),σ(r) = σ ◦ crp,q,r ◦σ
−1.

It follows from this conjecture that the image of a Cremona special set of points
under the σ -association is a Cremona special set of points.
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