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K3 SURFACES OF DEGREE SIX ARISING FROM DESMIC
TETRAHEDRA

ALEX DEGTYAREV, IGOR DOLGACHEV, AND SHIGEYUKI KONDŌ

ABSTRACT. We study K3 surfaces of degree 6 containing two sets of 12 skew
lines such that each line from a set intersects exactly six lines from the other set.
These surfaces arise as hyperplane sections of the cubic line complex associated
with the pencil of desmic quartic surfaces introduced by George Humbert and re-
cently studied by the second and third authors. We discuss alternative birational
models of the surfaces, compute the Picard lattice and a group of projective au-
tomorphisms, and describe rational curves of low degree on the general surface.

1. INTRODUCTION

Three tetrahedra in projective space P3 are called desmic if any two of them
are perspective with respect to any vertex of the third one. Equivalently, three
tetrahedra are desmic if they can be included in a pencil of quartic surfaces, called
a desmic pencil. An irreducible member of a desmic pencil is called a desmic
quartic surface. It contains 16 lines, the base locus of the pencil, and 12 nodes
lying by pairs in the edges of any desmic tetrahedron. Each line passes through
3 nodes, and each node is contained in four lines. A desmic pencil defines an
associated desmic pencil such that the original twelve nodes are the vertices of the
new desmic tetrahedra. George Humbert, in his study of desmic quartic surfaces
[7], showed that the set of lines contained in a quadric passing through the vertices
of any two of the desmic tetrahedra in the associated desmic pencil is a cubic line
complex G in the Grassmannian G1(P3) of lines in P3; it does not depend on the
choice of the pair of tetrahedra used. The complex G contains 24 planes, twelve
from each family of planes in the Plücker embedding of G1(P3) in P5.

The subject of the present paper is a transversal hyperplane section X of G,
which is a smooth K3 surface equal to the complete intersection of a quadric and
a cubic hypersurface in P4. In this paper, we call X a Humbert sextic K3 surface
(this should not be confused with the Humbert surfaces from the theory of abelian
surfaces with special properties of their endomorphism ring, see [13, Chap. IX]).
It contains two sets of twelve lines whose incidence relation is an abstract config-
uration (126, 126). It will be shown elsewhere by the first author that other sextic
K3 surfaces cannot contain such a configuration of lines.
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Projecting from any line, we find a birational model of X isomorphic to a double
cover of P2 branched along a plane sextic B with nodes at the vertices of a complete
quadrilateral P , see §3. The curve B is contact (i.e., has an even intersection index
at each intersection point, which are all distinct from the nodes) to the diagonals of
P , a nodal plane cubic, and six lines in general linear position. Although the ten
tangency conditions seem to impose too many constraints on the existence of the
curve B, of which we have a 5-dimensional family, in §6. We prove that, in fact,
the conditions of the tangency to the diagonals and one line almost imply (modulo
some finite combinatorial choices) all other conditions. This was made possible by
the computation of the Picard lattice of a general Humbert sextic X: it turns out to
be freely generated by 15 lines, see §4, Theorem 4.6.

Among other things dealt with in the paper is a description of smooth rational
curves of degree at most 4 (see §2.3 and §7.1) and elliptic pencils (see §7.2) on
a very general Humbert sextic K3 surface X . We also discuss the groups of pro-
jective and birational automorphisms of X , see §5. Most notably, we show that
any projective automorphism of X is induced from one of the Humbert line com-
plex G; in view of [5], this gives us a complete description of such automorphisms
(Theorem 5.2).

We work over the field of complex numbers, however, many of our results are
valid assuming only that the ground field is an algebraically closed field of charac-
teristic other than 2 or 3.

2. DESMIC PENCILS AND THE HUMBERT CUBIC LINE COMPLEX

In this section, we introduce Humbert sextic K3 surfaces and discuss the config-
uration (126, 126) of lines on them.

2.1. The line complex. Consider three tetrahedra in P3:

T1 : (x
2 − y2)(z2 − w2) = 0,

T2 : (x
2 − z2)(y2 − w2) = 0,

T3 : (w
2 − x2)(z2 − w2) = 0.

(2.1)

They are desmic, i.e., belong to the same pencil

aT1 + bT2 + cT3 = 0, a+ b+ c = 0.

Any other member of the pencil is a desmic quartic surface with 12 nodes given in
(2.2), lying by pairs on the edges of each of the tetrahedra (see [5]). It also contains
16 lines lying by four on each face of each tetrahedron and intersecting the edges
at the singular points. This forms a configuration (124, 163) of nodes and lines.

Consider the following twelve points Pi in P3:

1 : [0, 0, 0, 1], 2 : [0, 0, 1, 0], 3 : [0, 1, 0, 0], 4 : [1, 0, 0, 0],

5 : [1, 1, 1, 1], 6 : [1,−1, 1,−1], 7 : [1, 1,−1,−1], 8 : [1,−1,−1, 1],

9 : [1,−1, 1, 1], 10 : [1, 1,−1, 1], 11 : [1, 1, 1,−1], 12 : [−1, 1, 1, 1].

(2.2)
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They lie in pairs on the edges of any of the desmic tetrahedra with the faces Πj :

1 : x+ y = 0, 2 : x− y = 0, 3 : z + w = 0, 4 : z − w = 0,

5 : y − w = 0, 6 : x− z = 0, 7 : y + w = 0, 8 : x+ z = 0,

9 : y + z = 0, 10 : x− w = 0, 11 : x+ w = 0, 12 : y − z = 0.

(2.3)

Each of the twelve points lies in six planes. Each plane contains six points.
Each pair of points in the same row of (2.2) lies in two planes from (2.3),

and each pair of planes from the same row of (2.3) contains two common points
from (2.2). The precise incidence relations are illustrated in Table 1.

TABLE 1. The incidence relation between 12 + 12 lines

x
+

y

x
−
y

z
+

w

z
−
w

y
−
w

x
−
z

y
+
w

x
+
z

y
+

z

x
−
w

x
+
w

y
−
z

1∗ 2∗ 3 4 5 6∗ 7 8∗ 9∗ 10 11 12∗

[0, 0, 0, 1] 1∗ • • • • • •
[0, 0, 1, 0] 2 • • • • • •
[0, 1, 0, 0] 3 • • • • • •
[1, 0, 0, 0] 4 • • • • • •
[1, 1, 1, 1] 5 • • • • • •

[1,−1, 1,−1] 6 • • • • • •
[1, 1,−1,−1] 7 • • • • • •
[1,−1,−1, 1] 8 • • • • • •
[1,−1, 1, 1] 9 • • • • • •
[1, 1,−1, 1] 10 • • • • • •
[1, 1, 1,−1] 11 • • • • • •
[−1, 1, 1, 1] 12 • • • • • •

George Humbert [7] constructed a line complex of degree 3, i.e., a hypersurface
G in the Grassmannian G1(P3) ⊂ P5 cut out by a cubic hypersurface in P5 whose
rays are lines in quadrics passing through the eight points forming any two rows in
(2.2). It contains

12 α-planes of rays through each of the points P1, . . . , P12 from (2.2),
12 β-planes of rays lying in each plane Π1, . . . ,Π12 from (2.3).

(2.4)

The cubic complex G has 34 isolated singular points, 16 of which are lines on a
desmic quartic surface, and 18 are the edges of all three tetrahedra.

Definition 2.5. A Humbert sextic K3 surface X is a transversal hyperplane section
of G.

Remark 2.6. Thus, we assume that X is cut off G by a hyperplane R transversal
to G, but not necessarily to Q = G1(P3). Note though that, even if R is tangent
to Q, none of the 24 planes (2.4) lies in R, as otherwise G would contain the
tangency point and R would not be transversal to G.
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Convention 2.7. In view of Remark 2.6, the hyperplane R cuts each α-plane cor-
responding to a point Pi and each β-plane corresponding to a plane Πi see (2.4),
along a line. If Pi ∈ Πj , the corresponding α-plane and β-plane intersect along the
line consisting of rays passing through Pi and lying on Πj . This gives us twelve α-
lines L1, . . . , L12 and twelve β-lines M1, . . . ,M12 on X forming a configuration
(126, 126); we use the same numbering for the lines as that for the planes, so that
their incidence matrix is also given by Table 1.

In the table, each of the 12-tuples α, β is divided into three groups of four, called
quartets:

α = α1 ∪ α2 ∪ α3, β = β1 ∪ β2 ∪ β3.

From now on, we reserve H for the divisor class of a hyperplane section of X ,
and we identify the α-lines L1, . . . , L12 ∈ α and β-lines M1, . . . ,M12 ∈ β (as
well as other irreducible curves C with C2 < 0) with their divisor classes.

2.2. Equation. One can replace the Plücker coordinates in the Plücker embedding
G1(P3) ↪→ P5 with the Klein coordinates to get the following explicit equation of
the Humbert cubic line complex (see [5, the equation (12)]):

Q := x21 + x22 + x23 + y21 + y22 + y23 = 0,

F := x1x2x3 +
√
−1y1y2y3 = 0.

(2.8)

So, the equation of the Humbert sextic K3 surface in P5 is obtained by adding an
extra equation

R = a1x1 + a2x2 + a3x3 + a4y1 + a5y2 + a6y6 = 0. (2.9)

The condition that the surface is singular defines a closed subset of P4 (for example,
containing the intersection of two coordinate hyperplanes ai = aj = 0).

The set P of the 24 planes is naturally indexed by the elements of the symmetric
group S4

∼= (Z/2Z)2⋊S3: interpreting (Z/2Z)2 as {±
√
−1}3/ϵ1ϵ2ϵ3, the plane

corresponding to σ ∈ S3 and (ϵ1, ϵ2, ϵ3) ∈ (Z/2Z)2 is

V (x1 − ϵ1yσ(1), x2 − ϵ2yσ(2), x3 − ϵ3yσ(3)). (2.10)

The α- and β-planes differ by the sign of σ.
Note that equation (2.8) is invariant with respect to the natural action of the

group S4 × S4
∼= (Z/2Z)4 ⋊ (S3 × S3) (and it is this action that defines the

group structure on the set theoretic Cartesian product of (Z/2Z)2 and S3 above).
It is also invariant with respect to the transformation g0 of order 4 defined by

(x1, x2, x3, y1, y2, y3) 7→ (−y1,−y2,−y3, x1, x2, x3).

It is proved in [5] that the group G = (S4 ×S4)⋊Z/2Z of order 1152 is the full
group of projective automorphisms of the cubic line complex G.

2.3. Lines, conics, quartics. The K3 surface X is a transversal intersection of a
quadric Q∩ (hyperplane) and a cubic, where Q = V (Q). A hyperplane section of
X is a curve of bidegree (3, 3) on a quadric. It follows from Table 1 that there are
3
(
4
2

)
= 18 hyperplane sections that contains a quadrangle of lines, two from each

ruling of the quadric, and an irreducible residual conic. Each of these quadrangles,
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called proper, is determined by its pair of α-lines (or pair of β-lines) and can be
characterised by the property that its α-lines (resp. β-lines) are in the same quartet.

Each line belongs to 3 proper quadrangles, indexed by the quartets in the oppo-
site family. Thus, the 24 lines and 18 proper quadrangles form an abstract configu-
ration (243, 184). Each proper quadrangle determines a pair αr, βs of quartets, i.e.,
a (4× 4)-cell in Table 1. Each cell is the union of two proper quadrangles.

There are 16 hyperplane sections that contain a union of 6 lines, three from each
family α, β. Its dual graph is a complete bipartite graph K(3, 3). For this reason,
we call such unions of lines (3, 3)-configurations of lines, or just (3, 3)-fragments
(of the full configuration of lines of a given K3 sextic). The α- (resp. β-) lines
of each (3, 3)-configuration are in a bijection with the α- (resp. β-) quartets. The
16 (3, 3)-configurations and 24 lines form an abstract configuration (166, 244). It
follows that 16H ∼ 4

∑12
i=1(Li +Mi), hence,

12∑
i=1

(Li +Mi) ∼ 4H. (2.11)

Each (3, 3)-fragment consists of nine improper quadrangles (with all 144 =
16 × 9 quadrangles pairwise distinct), which are characterised by the property
that their α-lines (resp. β-lines) are in distinct quartets. In more detail, (3, 3)-
configurations on smooth sextic K3 surfaces are discussed in Remark 2.16 below.

For each quadrangle q, we denote by
∑

q the sum of the four lines in q. Thus,
each quadrangle q gives rise to a residual conic Cq ∈ |H −

∑
q|; the latter is

irreducible if and only if q is proper. If the α-lines (hence, also β-lines) of two
proper quadrangles q1, q2 constitute a whole quartet, q1 and q2 are disjoint and,
hence, constitute two singular fibers of a common elliptic pencil. It follows that∑

q1 =
∑

q2 and C1 = C2. This common conic is the intersection Q∩H1 ∩H2,
where Hi ⊂ P4 is the hyperplane spanned by qi.

Observation 2.12. We conclude that the conics on X (at least those accounted for
so far) can be indexed by

(1) pairs Li, Lj of α-lines that are in the same quartet, or
(2) pairs Mi,Mj of β-lines that are in the same quartet, or
(3) pairs (αr, βs) of quartets, i.e., the nine (4× 4)-cells in Table 1.

The first two indexing schemes are two-to-one, so we end up with the 9 conics Crs,
1 ≤ r, s ≤ 3, rather than the expected 18.

Indexed as in (3), one has Crs ·Li = 1 if and only if Li ∈ αr and Crs ·Mj = 1 if
and only if Mj ∈ βs; otherwise, Crs ·N = 0 for a line N . Besides, Crs ·Cuv = 2 if
r ̸= u, s ̸= v or 0 otherwise. For this reason, (3) is the preferred indexing scheme.

Remark 2.13. One can see the 9 conics and 18 proper quadrangles from (2.8).
The cubic hypersurface V (F ) contains nine three-dimensional subspaces V (xi, yj),

each intersecting the quadric Q along a quadric surface. Intersecting the latter by
V (R), we obtain nine conics Cij contained in X . Each Cij is contained in two
hyperplanes H±

ij = V (xi ± iyj). The hyperplane H±
ij cuts X along a quadrangle
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cut out by the planes (2.10) with σ(i) = j. This gives us the 18 proper quadrangles
of lines.

Observation 2.14. If Li ∈ α and Mj ∈ β are skew lines from distinct families,
the residual curve Qij ∈ |H − Li −Mj | is a smooth rational quartic curve. This
gives us 6 × 12 = 72 quartics, all distinct. The lines Li, Mj are singled out via
Qij · Li = Qij ·Mj = 3 whereas Qij ·N ∈ {0, 1} for any other line N .

In §7.1 below we assert that, apart from the 24 lines, 9 conics, and 72 quartics
described in this section, a general Humbert sextic has no smooth rational curves
of degree up to 4. There are infinitely many other smooth rational curves, see §5.

Observation 2.15. We use the digraph package in GAP [6] to compute the group
G = Sym(Γ) of symmetries of the dual adjacency graph Γ of lines on X: one has
|G| = 1152 = 16 × 72, and the group is generated by the involution Li ↔ Mi,
i = 1, . . . , 12, and two permutations

Li 7→ Lσ1(i), Mi 7→ Mσ(i), σ = (1, 9, 4, 12)(2, 10, 3, 11)(5, 8, 6, 7),

and
Li 7→ Lσ(i), σ = (1, 10, 8, 2, 11, 6)(3, 9, 7)(4, 12, 5),

Mi 7→ Mσ(i), σ = (1, 2, 3)(5, 12)(6, 9, 8, 10, 7, 11).

The group acts transitively on the set of the (3, 3)-fragments, and the stabilizer of
a (3, 3)-fragment q is isomorphic to the full group Sym(q) = (S3 ×S3) ⋊ Z/2.
In particular, G is transitive. Alternatively, G induces the full automorphism group
(S3 ×S3)⋊ Z/2 on the set of the (4× 4)-cells in Table 1. As an abstract graph,
each cell c is the disjoint union of two quadrangles and the stabilizer of c in G maps
two-to-one onto the index 2 subgroup of Sym(c) = (D8 ×D8) ⋊ Z/2 that is not
mixing α- and β-lines.

A posteriori one can easily verify that Sym(Γ) is indeed as claimed: the three
permutations indicated do belong to Sym(Γ) and, given Table 1, it is immediate
that any g ∈ Sym(Γ) fixing pointwise a certain (3, 3)-fragment q is the identity.

Remark 2.16. The configuration of lines on any smooth sextic K3 surface X ⊂ P4

(not necessarily the one considered in this paper) has the following (3, 3)-property:
given five distinct lines A1, A2, A3 and B1, B2, such that Ai · Bk = 1 for all i, k,
there is a unique sixth line B3 such that q = {A1, . . . , B3} constitute a (3, 3)-
configuration. Furthermore, any line on X that is not in q intersects exactly one
line in q. Arithmetically, B3 is found from

A1 + · · ·+B3 = H in Pic(X).

Geometrically, once the residual conic C above splits, its two components are in
the two distinct rulings of the quadric. Note that we do not even need to assume
beforehand that the A-lines or B-lines are pairwise disjoint. Should there be n > 0
extra intersection points, the class

e = H − (A1 +A2 +A3 +B1 +B2) ∈ Pic(X)

would have e2 = 2n−2 and e ·H = 1. If n = 1, then, since H is ample, e must be
the class of an irreducible curve of arithmetic genus one, and |H| restricted to the



K3 SURFACES OF DEGREE SIX ARISING FROM DESMIC TETRAHEDRA 7

curve has a base point, contradicting [11, Theorem 3.1]. If n ≥ 2, the sublattice
ZH + Ze is positive definite, contradicting the Hodge index theorem.

In particular, it follows also that two lines B1, B2 cannot meet more than three
common lines Ai. A similar argument shows that two intersecting lines B1, B2 can
meet at most one common line.

3. DOUBLE PLANE MODEL

Let us consider the projection

f : X → P2

of X with center at some α-line or β-line, say L = L1. It is given by the linear
system |H −L|. Its restriction to L is a hyperplane in |OL(3)| ∼= P3, which has no
base points; hence, f is a regular map.

We split β into the complementary subsets

β∗
1 = {M1,M2,M6,M8,M9,M12}, β̄∗

1 = {M3,M4,M5,M7,M10,M11}
of the lines that, respectively, intersect or are disjoint from L; the former are marked
with a ∗ in Table 1. (The subscript 1 refers to the chosen line L = L1.)

The standard formula for the canonical class of a double cover shows that the
branch curve B of f is of degree 6. The lines Mi ∈ β∗

1 intersecting L are blown
down to the nodes p1, . . . , p6 of B.

It follows from Table 1 that
• M2,M6,M12 intersect L5, L11,
• M1,M6,M9 intersect L6, L9,
• M2,M8,M9 intersect L7, L10,
• M1,M8,M12 intersect L8, L12,
• M1,M2 intersect L2,
• M6,M8 intersect L3,
• M9,M12 intersect L4.

Since (H−L)·Lj = 1 for any j ̸= 1, the images f(Lj) are lines in the plane. Each
of the pairs (L5, L11), (L6, L9), (L7, L10), (L8, L12) is mapped to the same line
passing through three of the nodes. Thus, their images form a complete quadrilat-
eral with vertices p1, . . . , p6 and sides

ℓ236 = ⟨p2, p3, p6⟩, ℓ135 = ⟨p1, p3, p5⟩,
ℓ245 = ⟨p2, p4, p5⟩, ℓ146 = ⟨p1, p4, p6⟩.

The remaining α-lines L2, L3, L4 are mapped to the diagonals

ℓ12 = ⟨p1, p2⟩, ℓ34 = ⟨p3, p4⟩, ℓ56 = ⟨p5, p6⟩.
The lines Li, i = 2, 3, 4, are in the same quartet with L1, thus giving rise to

conics C1i (see Observation 2.12). These conics are mapped to the diagonals, i.e.,

f−1(ℓ12) = M1 +M2 + L2 + C12,

f−1(ℓ34) = M6 +M8 + L3 + C13,

f−1(ℓ56) = M9 +M12 + L4 + C14.
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For the remaining lines Mi ∈ β̄∗
1 , since (H − L) ·Mi = 1, the images

ℓ1 = f(M3), ℓ2 = f(M4), ℓ3 = f(M5),

ℓ4 = f(M7), ℓ5 = f(M10), ℓ6 = f(M11)

are lines. The quartic Q1i (see Observation 2.14) is mapped to the same line as Mi.
Since all β-lines are skew, none of these lines ℓk passes through any of the nodes
p1, . . . , p6. Each line splitting under the cover, cuts out an even divisor 2d on the
branch curve B. In other words, it is a tritangent (or contact line) to B.

Now, let us look at the image of L under the projection. Since (H −L) ·L = 3,
the image of L is a singular irreducible cubic K.

We have f−1(K) ∈ |3H − 3L|; since (3H − 4L) ·Mi = −1 for Mi ∈ β∗
1 , this

cubic K passes through all nodes p1, . . . , p6 and

f−1(K) = M1 +M2 +M6 +M8 +M9 +M12 + L+ L′ ∈ |3H − 3L|,

where H · L′ = 8 and L′2 = −2. Since L is the image of the line L1, following
the classical terminology, we say that the node of K is apparent, i.e., it is resolved
under the double cover. The cubic is tangent to the branch curve B at three smooth
points (which may collide), so that L intersects L′ at the pre-images of these three
points and at the two points corresponding to the branches at the node of K.

Remark 3.1. As is well known, the condition that a double cover π : X → P2

branched along a nodal sextic curve B has a quartic birational model with an extra
node is the existence of a contact conic that passes through the nodes of the sextic.
The proper transform of the conic under the double cover splits into the union of
two curves C1 + C2 and the linear system |π∗OP2(1) + C1| maps X to a quartic
surface blowing down C1 to a node.

Along these lines, the condition that X admits a birational sextic model with
a line is the existence of a contact cubic K with an apparent node; this model is
smooth if and only if K passes through all nodes of B. The proper transform of
K splits into the union L + L′ of smooth rational curves and the linear system
|π∗OP2(1) + L| maps X birationally onto a surface of degree 6; the image of L is
a line. The ramification curve B̄ of the cover belongs to |L+ L′|.

4. THE PICARD LATTICE

Let Pic(X) be the Picard lattice of a general Humbert sextic K3 surface. In this
section, we show that the 24 lines Li,Mj generate a primitive sublattice S of rank
15. We give a Z-basis of S and compute the discriminant quadratic form of S,
upon which we conclude that S = Pic(X).

4.1. Hyperbolic bipartite graphs. Given a graph Γ with n vertices, we denote
by ZΓ the quadratic lattice of rank n with the Gram matrix G = A− 2In, where A
is the adjacency matrix of Γ and In is the identity matrix of size n. For a lattice L,
we let

radL := L⊥
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be the radical of L, the kernel of the map ZΓ → (ZΓ)∨ defined by the Gram
matrix. We often abbreviate L/radL to L/rad.

We take for Γ the bipartite graph with the bipartition (α, β) and the adjacency
relation defined by Table 1.

Let
S := ZΓ/rad .

With the geometric applications in mind, we refer to the vertices of Γ as lines. We
reiterate that S readily contains the “6-polarization” H =

∑
q, where q is any of

the (3, 3)-fragments (see Remark 2.16).

Proposition 4.1. The lattice S is of rank 15 and freely generated by the lines

(L2, L3, L4, L5, L6, L7, L8, L11,M1,M2,M3,M6,M8,M9,M12). (4.2)

The discriminant group S∨/S of S is isomorphic to (Z/2Z)⊕4 ⊕ Z/16Z.

Proof. The Gram matrix G of ZΓ can be written in the form[
−2I12 P
P −2I12

]
,

where P is the incidence matrix from Table 1. We can compute its integral Smith
normal form to check the assertions about the rank and the discriminant group. We
also compute the intersection matrix of the sublattice spanned by the lines from
(4.2) and check that its rank equals 15 and its discriminant group coincides with
that of S. □

Remark 4.3. It is easily seen that rad(ZΓ + ZH) is generated, over Z, by the
classes of the form H −

∑
q (see Remark 2.16), where q is one of the 16 (3, 3)

fragments in Γ. Furthermore, one can find a free basis for radZΓ consisting of
vectors of the form

∑
q′ −

∑
q′′.

Remark 4.4. By brute force (starting with a discrete graph on 12 vertices and
adding 12 more vertices one-by-one), up to isomorphism there are but six bipartite
graphs Γi of type (126, 126) that define a hyperbolic lattice Si; we let S1 = S
as above. It is remarkable that all these lattices are of rank 15, admit a vector
h ∈ Si ⊗ Q such that h · v = 1 for each vertex of the graph, and have h2 = 6. If
Si ̸= S, the graph violates the (3, 3)-property of Remark 2.16 and, hence, cannot
be realized as the full graph of lines on a smooth sextic K3 surface. For example,
see L1, L3,M1,M3,M4 in Figure 1.

In fact, it can be shown that only the graphs Γ1 = Γ and Γ2 defined by the
intersection matrix in Figure 1 can be realized as a part of the graph of lines on a
K3 surface, smooth or singular, of degree 6 (if i = 1) or degree 4 (if i = 1, 2). In
all three cases, a general surface is smooth and Γi is its full graph of lines.

4.2. The Picard lattice of X . We have established that the Picard lattice Pic(X)
of X contains a sublattice S of rank 15 spanned by the 24 lines. The following
proposition computes the discriminant form q : discr(S) → Q/2Z on the discrim-
inant group discr(S) = S∨/S ∼= (Z/2Z)⊕4 ⊕ Z/16Z.
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• • • • • • · · · · · ·
• • · · · · • • • • · ·
• · • • · · • • · · • ·
• · • · • · · • · • · •
• · · • · • • · • · · •
• · · · • • · · • • • ·
· • • · • · • · • · · •
· • • • · · · · • • • ·
· • · · • • • • · · • ·
· • · • · • · • · • · •
· · • · · • · • • · • •
· · · • • · • · · • • •

FIGURE 1. The graph Γ2

Proposition 4.5. The discriminant quadratic form q on discr(S) is defined by the
following Gram matrix: [

0 1
2

1
2 0

]
⊕
[
0 1

2
1
2 0

]
⊕
[
3
16

]
,

where, as usual, the diagonal entries are considered defined mod 2Z whereas the
others are defined mod Z.

Proof. It is straightforward that, in the basis (4.2) introduced in Proposition 4.1,
the five vectors γ1, . . . , γ5 ∈ S ⊗Q given by

2γ1 = [ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 ],

2γ2 = [ 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 ],

2γ3 = [ 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 ],

2γ4 = [ 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 ],

16γ5 = [ 2 2 4 2 10 12 2 1 1 7 1 2 12 12 10 ]

belong to S∨. The Gram matrix of these vectors is as in the statement and, since
the matrix is nondegenerate, modulo S they generate a group of the correct size
256 = |discr(S)|. □

Theorem 4.6. Let X be a Humbert sextic K3 surface with the Picard number 15.
Then, Pic(X) ∼= S and the transcendental lattice T (X) is isomorphic to

T ∼=

−2 1 0
1 −2 −1
0 −1 −6

⊕
[
0 2
2 0

]
⊕
[
0 2
2 0

]
.

Proof. By the assumption, Pic(X) contains S as a sublattice of finite index. The
overlattices of S of finite index correspond to isotropic subgroups of discr(S).
A non-trivial isotropic subgroup would contain an element of order 2 and, up to
the action of the group Sym(Γ) (see Observation 2.15), there are but two such
elements, namely, γ1 and 8γ5. They are represented by the rational vectors

δ1 =
1
2(M6 −M8 +M9 −M12), δ2 =

1
2(L5 − L6 + L7 − L8),



K3 SURFACES OF DEGREE SIX ARISING FROM DESMIC TETRAHEDRA 11

with δ2i = −2 and δi ·H = 0. If δi ∈ Pic(X), then ±δi would be represented by a
smooth rational curve contracted by |H| and X would be singular.

It is immediate that discr(T ) = −discr(S) and the signature σ(T ) = −3, i.e.,
T is in the genus of T (X). Due to [9, Theorem 1.14.2], this particular genus
consists of a single isomorphism class; hence, T (X) ∼= T . □

Corollary 4.7. Let Y be a K3 surface and ϕ : ZΓ/rad → Pic(Y ) an isomorphism.
Then Y is isomorphic to a Humbert sextic X so that the classes of lines in Pic(Y )
are the images of the vertices of Γ.

Proof. It suffices to show that the moduli space of lattice S polarized K3 surfaces
is irreducible. By [2, Proposition 5.6], the latter follows from the fact that T (Y )
contains an admissible 2-isotropic vector. □

Remark 4.8. The original construction of a Humbert sextic surface depends on 5
parameters: the choice of a hyperplane section of the Humbert cubic complex G.
This agrees with the fact that the Picard number of a general Humbert sextic equals
20− 5 = 15.

The sublattice U(2) ⊕ U(2) (the last two summands in T ) contains a primitive
sublattice U(2)⊕ ⟨4⟩ isomorphic to the transcendental lattice of a minimal resolu-
tion of the Kummer surface of the self-product of an elliptic curve. As we know,
the latter is birationally isomorphic to a Desmic quartic surface. Thus, we expect
that the closure of the family of Humbert sextic surfaces contains a one-parameter
family of sextic surfaces (probably singular) birational to desmic quartic surfaces.
Unfortunately, we were not able to find this family explicitly.

5. AUTOMORPHISMS OF X

In this section, we discuss the automorphism of general and some special repre-
sentatives of the Humbert family.

5.1. Projective automorphisms. We start with asserting that a general Humbert
sextic X has no automorphisms induced from PGL(5,C).

Lemma 5.1. Any projective automorphism σ of a Humbert sextic K3 surface X
extends to a projective automorphism of the Humbert line complex G.

Proof. Recall that G is cut off the quadric Q by a cubic hypersurface. Assume
that X = G ∩ R for a hyperplane R. Then X lies in Q0 = Q ∩ R and, hence,
we have σ(Q0) = Q0, as otherwise, X would be contained in the quartic surface
Q0 ∩ σ(Q0). Letting Q = V (q) for a quadratic form q, we conclude that (an
appropriately scaled lift to C5 of) σ is an automorphism of the restriction q|R. By
Witt’s extension theorem, it extends to an automorphism σ̃ of q, so that σ̃(Q) = Q.

By Remark 7.1 below, σ preserves as a set the “original” 24 lines L1, . . . ,M12

on X . Recall that each line in the Grassmannian Q = G1(P3) is contained in
exactly one α-plane and exactly one β-plane. For N = L1, . . . ,M12, denote by
π+
N (resp. π−

N ) the plane of the same (resp. opposite) type α or β as N (as defined
in Convention 2.7). In other words, π+

N are the 24 planes (2.4) whereas π−
N are

some “wrong” planes most likely not even contained in G. Since σ respects (i.e.,
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simultaneously preserves or simultaneously reverses) the type of lines (see Obser-
vation 2.15) and σ̃ respects the type of planes, we have σ̃(π+

N ) = πϵ
N for a constant

ϵ = ϵ(σ̃) = ±1. We consider separately the following two cases.
Case 1: the restriction q|R is degenerate (necessarily of corank 1).
Since the line N lies in the cone Q0 not passing through its vertex, exactly one of

π±
N lies in Q0 ⊂ R and, by Remark 2.6, it is π−

N . This property clearly distinguishes
the two planes and we have σ̃(π+

N ) = π+
N for each N = L1, . . . ,M12. Therefore,

G ∩ σ̃(G) contains the 24 planes (2.4) and we conclude that σ̃(G) = G: indeed,
otherwise G ∩ σ̃(G) would be a surface of degree 18.

Case 2: the restriction q|R is non-degenerate.
This time, there are two extensions σ̃: they differ by a “reflection” against R (a

choice of sign ±1 in the direction q-orthogonal to R). Since the reflection itself
is type reversing, a unique extension σ̃ can be chosen so that σ̃(π+

N ) = π+
N , upon

which concludes the proof in the same manner as in the previous case. □

Theorem 5.2. The subgroup of Aut(P4) that leaves a general Humbert sextic X
invariant is trivial.

Proof. By Lemma 5.1, the group of projective automorphisms of a Humbert sextic
K3 surface X = G ∩R coincides with the group AutR(G) of projective automor-
phisms of G leaving the hyperplane R invariant. Since Aut(G) is finite (see [5]
and §2.2), the points R ∈ P̌5 invariant under the natural action of Aut(G) or a
non-trivial subgroup thereof constitute a proper Zariski closed set. □

Remark 5.3. In general, if rkS < 20, the group of projective automorphisms
of a very general lattice S-polarized K3 surface X is computed as the pull-back
ρ−1(± id) under the natural homomorphism

ρ : OH(S) → O(discrS),

where OH(S) ⊂ O(S) is the (finite) subgroup preserving the polarization H ∈ S.
(If, as in Theorem 5.2, rkS is odd, the somewhat vague “very general” can be
replaced with the requirement Pic(X) = S.) Since, in our case, S is generated by
lines, OH(S) = SymΓ, whereupon, using Proposition 4.5 (and the proof thereof),
Observation 2.15, and GAP [6], we arrive at ρ−1(± id) = {id}.

5.2. Birational automorphisms. In spite of Theorem 5.2, we claim that the full
group Aut(X) of automorphisms of X is infinite. For example, in §7.2 below we
find quite a few elliptic fibrations on X . Some admit a section E so that the divisor
classes of E and of the irreducible components of the fibers span a positive corank
sublattice of Pic(X). By the Shioda–Tate formula [8, Chapter 11, Corollary 3.4],
the Mordell–Weyl group of translation automorphisms of X along the fibers of the
elliptic fibration is infinite (e.g., see Remark 7.2 below).

Another approach would be using the classification of the Picard lattices of the
algebraic K3 surfaces with finite automorphism group found in [10]: our lattice
S = Pic(X) is not on the list.

Besides, we have 24 involutions τN : X → X each of which is the covering
transformation of the projection X → P2 from a line N on X (see §3). For any
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pair of lines, the two covering involutions generate an infinite dihedral group. We
do not know whether these 24 involutions generate the whole group Aut(X).

Remark 5.4. In fact, any smooth sextic K3 surface with at least two lines has
infinite group of birational automorphisms. Furthermore, it can be shown that, with
very few exceptions, the involutions defined by a pair of distinct lines generate an
infinite dihedral group. Proofs and details will appear in [1].

5.3. Anti-symplectic involutions and cubic surfaces. In principle, Lemma 5.1
and the description of Aut(G) found in [5] (see §2.2) let us find all Humbert sextic
K3 surfaces admitting a non-trivial projective automorphism. Below we confine
ourselves to a maximal stratum with an anti-symplectic involution. Other examples
are mentioned in Remark 7.1 below.

Example 5.5. Let a1 = a2 = 1 in (2.8), (2.9). Then, X admits an anti-symplectic
involution γ : x1 ↔ x2 with Xγ a smooth hyperplane section C = V (x1 − x2).
Let s = x1x2, t = x1 + x2. Equations (2.8), (2.9) can be rewritten in the form

t2 − 2s+ x23 + y21 + y22 + y23 = 0,

sx3 +
√
−1y1y2y3 = 0,

t+ a3x3 + a4y1 + a5y2 + a6y3 = 0.

(5.6)

These equations define a surface in P(14, 2), where we weight s with degree 2 and
other coordinates with degree 1. Projecting from the point (0 : 0 : 0 : 0 : 1), we
obtain that Y is isomorphic to the cubic surface in P3 given by an equation

F =
(
(a3x3 + a4y1 + a5y2 + a6y3)

2 + x23 + y21 + y22 + y23
)
x3 + 2

√
−1y1y2y3.

The plane V (x3) is a tritangent plane of Y . Recall that any line ℓ on the cubic
surface Y is contained in one of the plane sections of Y containing one of the lines
V (x3, yi). Plugging in x3 = kyi in the equation of the cubic surface, we find that
the residual conic in the plane V (x3 − kyi) is given by a symmetric 3 × 3 matrix
whose entries are homogeneous polynomials in k (of different degrees).

Computing the determinant of this matrix, we find that the parameters k defining
singular residual conics are the zeros of the polynomial

k(k2 + 1)
(
(a23 + a25 + a26 + 1)k2 − 2(

√
−1a5a6 − a4a3)k + a24 + 1

)
= 0. (5.7)

The parameter k = 0 corresponds to the tritangent plane V (x3) containing the
residual conic equal to the union of the two lines ℓj ̸= ℓ1. We choose the param-
eters k = ±

√
−1. The branch curve B of the cover X → Y is cut out by the

quadric given by the equation

t2 − 4s = (a3x3 + a4y1 + a5y2 + a6y3)
2 + 2(x23 + y21 + y22 + y23) = 0.

Plugging in the equation x3 =
√
−1y1, we find

(a3x3 + a4y1 + a5y2 + a6y3)
2 + 2(y22 + y23) = 0,

and plugging in F = 0, we get

(a3x3 + a4y1 + a5y2 + a6y3)
2 + y22 + y23 + 2y2y3 = 0.
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Together this gives (y2 + y3)
2 = 0. This shows that each line on Y contained in

the plane V (x3−
√
−1y1) is tangent to the branch curve B. Similarly, we find that

all 12 lines in Y contained in the planes V (x3 −
√
−1yi) are tangent to B.

Remark 5.8. The set of 24 lines in Y lying in the planes V (x3±kyi), where k ̸= 0
satifies equation (5.7) is equal to the union of two sets of 12 lines, one of which is
a double-six of lines. By checking the intersections of the 12 lines corresponding
to the parameters k = ±

√
−1, we ontain that our set is complementary to the

double-six.

Remark 5.9. Let M be the moduli space of pairs (F,C), where F is a smooth
cubic surface and C is a smooth curve in |−2KF |. It is a variety of dimension 13,
a projective bundle over the moduli space of smooth cubic surfaces. Taking the
double cover of F branched along C, we obtain a finite map to the moduli space
M′ of K3 surfaces polarized by the lattice I1,6(2) ∼= Pic(F )(2). We find it amazing
that our 5-dimensional moduli space of Humbert sextic K3 surfaces intersects M′

along a four-dimensional subvariety. We believe, but could not prove it, that the
pre-image of this subvariety in M is of dimension 4 and projected surjectively onto
the moduli space of cubic surfaces.

5.4. Anti-symplectic involutions via lattices. Constructed in Example 5.5 is a 4-
parameter family of Humbert sextics X , each having 12 extra conics. It follows
that, for X general, the corank 1 space Pic(X)⊗Q is generated over S⊗Q by any
of these conics. Each conic can be regarded as a vector c ∈ Hom(ZΓ + ZH,Z);
as such, our “symmetric” conics have the following properties:

• c(H) = 2 and c(N) = 0 or 1 for each line, i.e., vertex N of Γ;
• c(N) = 1 for exactly four α-lines and exactly four β-lines;
• c annihilates rad(ZΓ + ZH), cf. Remark 4.3.

Apart from the nine old conics, there is a single G-orbit of such vectors c, and we
take for one of the new conics C the one intersecting

L5, L8, L10, L12,M6,M7,M9,M11,

see the first row in Figure 2 below. (We change the indexing from §5.3 for a better
looking matrix.) Then, we take

S̄ = (ZΓ + ZH + ZC)/rad (5.10)

for the new Picard lattice. A straightforward computation in the spirit of §4 and
§7.1 below shows that

• S̄ is indeed the Picard lattice of a smooth sextic K3 surface X;
• no non-trivial finite index extension of S̄ has this property; hence, the new

family constructed is indeed the one in §5.3;
• X has the 24 old lines, 9 old conics, and 12 new conics.

The new conics are depicted in Figure 2. The divisor classes of six of them are
shown in the figure, and others are found recursively: given a new conic C ′, four
more are H − C ′ − Li −Mj , where Li · C = Mj · C = Li ·Mj = 1. (A more
conceptual explanation of this phenomenon is found further in this section, where
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some of the conics on X̄ are interpreted as lines on a cubic surface.) Note that the
new conics appear in pairs indistinguishable by their intersection with the lines.
They are ordered so that {odd}, {even} constitute a double-six, see the bottom
right corner of Figure 3 below for the intersection matrix (divided by 2).

· · · · • · · • · • · • · · · · · • • · • · • · C
· · · · • · · • · • · • · · · · · • • · • · • ·
· · · · · • • · • · • · · · · · • · · • · • · •
· · · · · • • · • · • · · · · · • · · • · • · • H − C − C11
• · · • · · · · • · · • · • • · · · · · · • • ·
• · · • · · · · • · · • · • • · · · · · · • • · H − C − L12 −M11
· • • · · · · · · • • · • · · • · · · · • · · •
· • • · · · · · · • • · • · · • · · · · • · · • H − C − L10 −M9
• · • · · • · • · · · · · • · • • · • · · · · ·
• · • · · • · • · · · · · • · • • · • · · · · · H − C − L8 −M7
· • · • • · • · · · · · • · • · · • · • · · · ·
· • · • • · • · · · · · • · • · · • · • · · · · H − C − L5 −M6

FIGURE 2. The twelve new conics

Remark 5.11. There are several 4-parameter families of Humbert sextics with the
same set of lines and a few extra conics, no longer symmetric (cf. also Remark 7.1
below concerning extra lines). However, we only consider the one described.

Let Γ̄ be the colored graph of lines and conics on X̄ . Using the digraph
package in GAP [6], we can compute the group Ḡ = Sym(Γ̄). We have |Ḡ| = 192;
this group acts transitively on the set of lines and on that of the new conics, and the
action of Ḡ on the set of old conics has two orbits, one being {C11, C22, C33}. The
action of Ḡ on the lines (which almost determines its action on the conics) is the
set-wise stabilizer of the collection (shown in Figure 2){

{N ∈ Γ |N · C = 1}
∣∣ C is a new conic

}
under G = Sym(Γ), see Observation 2.15. The kernel of this action is generated
by an involution interchanging the two Schläfli double-sixes, see below.

Next, we argue as explained in Remark 5.3 and conclude that AutH X̄ = Z/2.
The generator γ of this group is an anti-symplectic projective involution of X: it
acts on the lines and old conics via

L2i ↔ M2i−1, L2i−1 ↔ M2i, Crs ↔ Csr, r ̸= s,

leaving invariant Crr, r = 1, 2, 3, and all new conics.

Remark 5.12. A posteriori we can consider the involution γT = −rv : T → T
(see Proposition 4.5), where rv is the reflection defined by an appropriate square
(−4) vector v ∈ T ∩ 2T∨ (e.g., the difference of the two generators of one of the
two U(2)-summands). Then we take T̄ = v⊥ for the new transcendental lattice, so
that the new Picard lattice is an index 2 extension S̄ ⊃ S ⊕ Zv. In more detail this
approach will be discussed by the first author elsewhere.

Yet another “systematic” way would be to analyze, in the spirit of Remark 4.4,
the realizations of Γ as the graph of lines on a 2-polarized K3 surface. This time
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we would have to allow singularities, arriving at a single 4-parameter family of 6-
nodal double planes. As explained in the next paragraph, this model is merely the
cubic surface X̄/γ with a sextuple of disjoint lines coming from invariant conics
on X̄ contracted.

· • · · • · • · · • • · • · · · · · · • • · · • • · ·
• · · · · • · • • · · • • · · · · · · · · • • · · • •
· · · • • · • · • · · • • · · · · · · · · • • • • · ·
· · • · · • · • · • • · • · · · · · · • • · · · · • •
• · • · · • · · • · • · · • · • • · · · · · · · · • •
· • · • • · · · · • · • · • · · · • • · · · · • • · ·
• · • · · · · • · • · • · • · · · • • · · · · · · • •
· • · • · · • · • · • · · • · • • · · · · · · • • · ·
· • • · • · · • · • · · · · • · · • • • • · · · · · ·
• · · • · • • · • · · · · · • • • · · · · • • · · · ·
• · · • • · · • · · · • · · • · · • • · · • • · · · ·
· • • · · • • · · · • · · · • • • · · • • · · · · · ·
• • • • · · · · · · · · · • • • • • • · · · · · · · ·
· · · · • • • • · · · · • · • · · · · • • • • · · · ·
· · · · · · · · • • • • • • · · · · · · · · · • • • •
· · · · • · · • · • · • • · · · · · • · • · • · • · •
· · · · • · · • · • · • • · · · · • · • · • · • · • ·
· · · · · • • · • · • · • · · · • · · · • · • · • · •
· · · · · • • · • · • · • · · • · · · • · • · • · • ·
• · · • · · · · • · · • · • · · • · • · · · • · • · •
• · · • · · · · • · · • · • · • · • · · · • · • · • ·
· • • · · · · · · • • · · • · · • · • · • · · · • · •
· • • · · · · · · • • · · • · • · • · • · · · • · • ·
• · • · · • · • · · · · · · • · • · • · • · • · · · •
• · • · · • · • · · · · · · • • · • · • · • · · · • ·
· • · • • · • · · · · · · · • · • · • · • · • · • · ·
· • · • • · • · · · · · · · • • · • · • · • · • · · ·

FIGURE 3. The 27 invariant divisors

Thus, we have twelve invariant pairs (split conics) Li + γ(Li), i = 1, . . . , 12,
three invariant old conics Crr, r = 1, 2, 3, and twelve invariant new conics. The
intersection matrix of these 12 + 3 + 12 = 27 invariant divisors obtained (upon
division by 2) is shown in Figure 3, and one can readily recognize the 27 lines on
the smooth cubic surface F = X̄/γ. The three lines in the middle lie in a tritangent
plane, and the two sextuples {2i}, {2i + 1}, i = 8, . . . , 13 (the even/odd ones of
the last twelve) constitute a Schläfli double-six. Any of these two sextuples can be
blown down to obtain the double plane model of Remark 5.12.

6. BACK TO THE DOUBLE PLANE MODEL

As we observed before, the family of Humbert sextic K3 surfaces depends on 5
parameters. However, their double plane model seems to require 18+1+3+6 = 28
conditions on plane sextics (depending on 27 parameters) to obtain a family of
sextics with 6 nodes, admitting a contact split nodal cubic, six contact lines, and
tangent to the diagonals of the complete quadrilateral. Here, we solve this puzzle
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FIGURE 4. The intersection of M ′
3 with the pre-images of the diagonals

by proving that the splitting of the three diagonals and one line is almost enough to
obtain the double cover isomorphic to a Humbert sextic K3 surface.

We start with a complete quadrilateral ℓ236, ℓ135, ℓ245, ℓ146 and a sextic curve B
with nodes at the six vertices p1, . . . , p6. First, we require that each diagonal
ℓ12, ℓ13, ℓ23 should be tangent to B at some point qi distinct from all points pi.
A straightforward computation in the spirit of §4 shows that there are two families
of such sextics, which differ by the proper transforms of the diagonals: either

(1) the triangle of the diagonals lifts to a hexagon, as in Figure 4, left, or
(2) the triangle of the diagonals splits into two triangles, as in Figure 4, right.

Remark 6.1. The two families can be described geometrically. Let f : Y → P2

be the minimal resolution of singularities of the double cover branched along B.
We factor f as Y → F ′ → P2, where F ′ is the weak del Pezzo surface of degree
3 obtained by blowing up the points p1, . . . , p6. The anti-canonical model of F ′ is
obtained by blowing down the proper transforms of the diagonals ℓij . It is isomor-
phic to the 4-nodal cubic surface F . The proper transforms of the diagonals can be
identified with the sum T of three lines m1,m2,m3 cut out by a tritangent plane
Π of F . The proper transform B′ of B is mapped to the intersection of F with a
quadric surface not passing through the nodes of F . Counting constants, we find
that there are two families of quadrics, both of dimension 6, intersecting each line
mi at one point with multiplicity two. In each family, one is required to impose
three conditions on quadrics.

One family is defined by the condition that a quadric Q intersects the tritangent
plane along a conic tangent to the lines mi. The other family is defined by the
condition that Q is tangent to the tritangent plane along a line ℓ. In the latter case,
the pencil of planes containing ℓ defines a pencil of cubic curves on F . It is equal
to the proper transform of the pencil of cubic curves in the plane with base points
p1, . . . , p6 and the points of tangency of B with the diagonals.

The triangle T of lines on the cubic surface F is a reducible curve of arithmetic
genus one. Its pre-image in the double cover is a double cover branched along the
Cartier divisor D = 2(q1+ q2+ q3) ∈ |OT (2)|, where Q∩T = {q1, q2, qc}. Thus,
we have two cases, resulting in two families of sextic curves B.

Case (1): Q ∩Π is a smooth conic tangent to T at q1, q2, q3.
The double cover is not trivial, i.e., it is not equal to the union of two curves

mapped isomorphically to T under the covering. This corresponds to the first two
pictures in Figure 4. Its restriction over the open curve T \{q1, q2, q3} corresponds
to a subgroup of index two of its fundamental group.
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The pre-image of T is a reducible curve with the dual graph shown in Figure 4,
left. Here and below, the action of the deck translation is the central symmetry.

Case (2): Q ∩Π is a double line.
The cover is trivial, i.e., it defines the trivial cover of T \ {q1, q2, qc}. The dual

graph of the pre-image of T is given in Figure 4, right.

Since we need to be able to choose pairwise disjoint pull-backs of the diagonals,
we concentrate on Case (1), where the triangle of the diagonas does not split under
the cover, i.e., the proper transform of the union of the diagonals is a hexagon (with
the three long diagonals, cf. Figure 4, left) of (−2)-curves on Y .

Let M ′
1,M

′
2,M

′
6,M

′
8, M ′

9,M
′
12 ⊂ Y be the proper transforms of the exceptional

curves of the blow-up, choose three disjoint sides L′
2, L

′
3, L

′
4 of the hexagon (e.g.,

the circled vertices in Figure 4, left), and let L′
5, L

′
11;L

′
6, L

′
9;L

′
7, L

′
10;L

′
8, L

′
12 be

the (−2)-curves that are mapped, in pairs, by the double cover f : Y → P2 to the
four sides of the quadrilateral. They are all (−2)-curves on Y .

Now, we invoke one more condition that there exists a tritangent line ℓ of B not
passing through its nodes. The tritangent ℓ splits under the double cover into the
union of two (−2)-curves intersecting at three points; denote them by M ′

3, M ′′
3 . It

can be shown that there are two irreducible families of pairs (B, ℓ), both depending
on 5 parameters: either

(3) B is as in Case (1) and has six tritangents, or
(4) B is as in Case (1) and has two tritangents.

In terms of ℓ itself only, the two families differ by the intersection of M ′
3 with the

sides of the hexagon, see the black vertices in Figure 4, left and center (whereas
the other pull-back M ′′

3 is represented by the white vertices); in Case (3), the other
pairs are obtained by rotation.

Thus, we have fifteen (−2)-curves

M ′
1,M

′
2,M

′
6,M

′
8,M

′
9,M

′
12, L

′
5, L

′
6, L

′
7, L

′
8, L

′
2, L

′
3, L

′
4, L

′
11,M

′
3.

Here, we choose one full pair L′
5, L

′
11 while keeping only one chosen line from

the other three pairs. Now, once the pairwise intersections of M ′
3, L

′
2, L

′
3, L

′
4 have

been arranged, it is immediate to check that, under the appropriate choice of the
components (L′

5, L
′
11), L

′
6, L

′
7, L

′
8, the intersection matrix of these curves coincides

with that of the curves constituting the basis (4.2) on a general Humbert sextic K3
surface X . (Indeed, since the pull-backs of the four sides of the quadrilateral are
disjoint from each other and from those of the diagonals, we merely index them
according to Table 1.) Therefore, these curves span a lattice isomorphic to Pic(X),
and it remains to apply Corollary 4.7.

Remark 6.2. For completeness, in Case (2) there is a single 5-parameter family of
pairs (B, ℓ):

(5) B is as in Case (2) and has four tritangents.
A pull-back M ′

3 of ℓ intersects those of the diagonals as shown in Figure 4, right.
Whereas the existence of (3) is guaranteed by Proposition 4.1, the existence

of (4) and (5), as well as the very fact that there are but three families needs proof,
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which will appear elsewhere. It is also worth mentioning that, in all five cases (1)–
(5), i.e., B itself or a pair (B, ℓ), a general curve B has quite a few contact cubics
with an apparent node. However, only in Case (3) there is a (unique) such cubic
passing through all six nodes of B, so that the corresponding sextic K3 surface
X ⊂ P4 is smooth (see Remark 3.1).

Remark 6.3. One can compare the specialty of the plane sextic B with respect
to the tangency conditions with another plane sextic curve, known as the Humbert
plane sextic of genus 5. It has five cusps and is tangent to any line connecting a pair
of cusps as well as the unique conic passing through the cusps. The double cover
of P2 branched along the Humbert sextic is birationally isomorphic to the Kummer
quartic surface associated with a nonsingular curve of genus 2 [3, Remark 8.6.9].
As in our case, the 16 tangency condition would wrongly imply that such a curve
should not exist.

7. ELLIPTIC PENCILS

We keep the notation Γ = Γ1, G = Sym(Γ), S = ZΓ/rad, etc. from §4.2, and
we consider a Humbert sextic X that is general in the sense that Pic(X) = S.

7.1. Rational curves. To find smooth rational curves on a polarized K3 surface,
we use the well known description of the nef cone and Vinberg’s algorithm [14] for
computing the fundamental polyhedra. As a step, the vectors of a given square in
a definite lattice are found by the Lenstra–Lenstra–Lovász lattice basis reduction
algorithm, which is implemented as ShortestVectors in GAP [6]. One can
also use the algorithm from [12].

We find that on X there are

• 24 lines (a single G-orbit),
• 9 conics (a single G-orbit),
• no twisted cubics, and
• 72 rational quartics (also a single G-orbit).

Thus, all lines are those constituting the original configuration Γ and all conics
and quartics are those described in Observation 2.12 and Observation 2.14, respec-
tively; we use the notation C, Q and the indexing introduced therein.

Taking this two steps further, we find that there are

• 816 = 48 + 192 + 576 (three G-orbits) rational quintics and
• 720 = 144 + 288 + 288 (also three G-orbits) rational sextics,

so that it hardly makes sense to study these or higher degree curves in detail.

Remark 7.1. We emphasize that these counts, as well as the smoothness of the
conics and quartics hold for a general member of the family only. In fact, as long
as lines are concerned, it is the nine conics Crs in Observation 2.12 that solely
control the smooth degenerations of Humbert sextics. Beyond the 24 original lines,
any other line is a component of one of these conics. Furthermore, the strata with a
fixed intersection graph of lines are labeled by the sets of conics that split (or rather
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the (S3 ×S3)⋊ Z/2 orbits thereof, see Observation 2.15). There are eight strata

• · ·
· · ·
· · ·
{1}

• • ·
· · ·
· · ·
{1}

• · ·
· • ·
· · ·
Z/2

• • ·
• · ·
· · ·
Z/2

• · ·
· • ·
· · •
S3

• • ·
· · •
· · •
(Z/2)2

• • ·
• • ·
· · ·
(Z/2)2

• • ·
• · •
· • •
D12

,

itemized by the Picard rank ρ = 16, 17, 18, 19. (Here, the grid represents the
(4 × 4)-cells in Table 1 that index the conics, and the •’s stand for the conics that
split. Distinct values of ρ are separated by ∥’s. For each stratum, we indicate the
group of projective automorphisms of a general representative, cf. Theorem 5.2
and §5.4; it is computed as explained in Remark 5.3. Symplectic automorphisms
preserve α and β whereas anti-symplectic ones interchange α ↔ β.) Proof will
appear in [1]. Degenerate Humbert sextics have many more conics, twisted cubics,
and quartics; still, only the original nine conics may split, at most six at a time.

7.2. Elliptic pencils with a reducible singular fiber. We are mostly interested in
the elliptic pencils on X with at least one reducible singular fiber made of lines.
Such fibers are induced subgraphs of Γ isomorphic to an affine Dynkin diagram.

All such subgraphs are listed below, where, for each type, we indicate the total
number of subgraphs followed by that itemized by the G-orbits. Marked with a ∗

are (orbits of) pencils admitting a section, which can always be chosen a line.

• Ã3: 162 = 18∗ + 144∗ (two orbits);
• Ã5: 1056 = 192∗ + 288∗ + 576∗ (three orbits);
• Ã7: 1512 = 72 + 144∗ + 144 + 288∗ + 288 + 576∗ (six orbits);
• Ã11: 48 (one orbit);
• D̃4: 360 = 72 + 288∗ (two orbits);
• D̃5: 720 = 144∗ + 576∗ (two orbits);
• D̃6: 5184 = 2× 144 + 3× 288 + 4× 576∗ + 576 + 1152∗ (11 orbits);
• D̃8: 1440 = 288 + 2× 576 (three orbits);
• Ẽ6: 3840 = 2× 96 + 192∗ + 4× 576∗ + 2× 576 (nine orbits);
• Ẽ7: 12672 = 3× 576∗ + 7× 576 + 4× 1152∗ + 2× 1152 (16 orbits);
• Ẽ8: 4608 = 4× 1152 (four orbits).

We analyze but a few interesting cases, leaving the rest to the reader. Note that the
list of smooth rational curves of degree up to 6 lets us detect reducible fibers in the
pencils of fiber degree up to 12, i.e., all except Ẽ7 or Ẽ8.

The Ã3-type subgraphs are the quadrangles discussed in §2.3. If q is a proper
quadrangle, apart from q the pencil P(q) has three reducible fibers: another proper
quadrangle q′ and two Ã1-type fibers made of two conics each. (We use the Dynkin
diagram notation since homologically we cannot detect the degenerations I2 → II
or I3 → III; most likely they do occur in some special members of the family.)
The two quadrangles q, q′ constitute a single cell (αr, βs), see §2.3, and the four
conics are Cuv, u ̸= r, v ̸= s, see Observation 2.12(3).

Remark 7.2. In particular, the Mordell–Weil group group of a pencil P(q) has
rank 5, proving that Aut(X) is infinite, cf. the discussion in §5.2.
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If q is an improper quadrangle, the pencil P(q) has two more reducible fibers:
another improper quadrangle q′ and an Ã2-type fiber made of a conic C and two
lines Li, Mj . Thus, we also have an involution q ↔ q′ on the set of improper
quadrangles; it does not preserve (3, 3)-fragments. The pencil is determined by the
pair Li, Mj of intersecting lines: the conic is C = Crs, where αr ∋ Li, βs ∋ Mj ,
and q, q′ are the complementary quadrangles in the two (3, 3)-fragments sharing
(Li,Mj) as a common corner.

Representatives of the three orbits of the type Ã5 (hexagonal) fibers and the
other reducible fibers of the corresponding pencils are as follows:

• Ã5 = (L1,M1, L2,M5, L4,M9): (L3,52) + (L11,51);
• Ã5 = (L1,M1, L2,M5, L5,M6): (L7,53) + (M3,53) + (C33, Q62);
• Ã5 = (L1,M1, L2,M5, L5,M12): (L3,M3, Q12,2) + (L7,52),

where (·) is an I∗-type fiber and dn is a certain representative of the n-th orbit of
degree d curves. In particular, we have a “natural” expression of the quintics in
terms of lines. (All sextics appear in the singular fibers of octagonal pencils.)

An example of a longest cycle Ã11 is

L1,M1, L6,M5, L10,M10, L3,M4, L7,M7, L11,M12,

and the corresponding pencil has no other reducible fibers. The divisor class of a
fiber lies in 4 · S∨, and all lines and conics are 4-fold sections.

The D̃4-type subgraphs constituting the shorter, 72-element orbit are described
as follows. Pick a quartet αs and a β-line Mj (or vice versa, with α and β reversed).
Each quartet αu, u ̸= s, has two lines that intersect Mj and, together with Mj , the
four lines obtained constitute the D̃4 in question. For example, L1, L2, L6, L8,M1

starting from (α3,M1). The elliptic pencil has two other reducible fibers:
• the complementary D̃4-fragment L3, L4, L5, L7,M4, so that all eight α-

lines constitute α∖ αs, and
• an I4-type fiber L10, C32, L11, C33.

In the latter, in the invariant terms, the two conics are Csv, βv ̸∋ Mj , and the two
lines are those from αs that are disjoint from Mj .

Certainly, one can construct numerically effective isotropic classes by combin-
ing smooth rational curves of higher degrees. Some of this combinations appear
above (most notably, pairs of conics), but the list is far from complete.

REFERENCES

[1] A. Degtyarev, S. Rams, Lines on sextic K3-surfaces with simple singularities, To appear, 2025.
[2] I. Dolgachev. Mirror symmetry for lattice polarized K3 surfaces. Algebraic geometry, 4, J.

Math. Sci. 81, 2599–2630 (1996)
[3] I. Dolgachev, Classical Algebraic Geometry, Cambridge Univ. Press 2012.
[4] I. Dolgachev, A. Duncan, Automorphisms of cubic surfaces in positive characteristic. Izv. Ross.

Akad. Nauk Ser. Mat. 83 (2019), no. 3, 15–92.
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