
Adv. Geom. 2018; 18 (1):119–132

Igor V. Dolgachev*

Quartic surfaces with icosahedral symmetry
DOI 10.1515/advgeom-2017-0040. Received 23 September, 2016; revised 9 April, 2017

Abstract:We study smooth quartic surfaces in ℙ3 which admit a group of projective automorphisms isomor-
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1 Introduction
LetA5 be the icosahedron group isomorphic to the alternating group in 5 letters. Starting fromPlatonic solids,
it appears as an omnipresent symmetry group in geometry. In this article, complementing papers [4] and [5],
we discuss families of smooth quartic surfaces in ℙ3 that admit the group A5 as its group of projective sym-
metries.

It follows from loc. cit. that any smooth quartic surface S with a faithful action of A5 belongs to one
of the two pencils of invariant quartic surfaces. One of them arises from a linear irreducible 4-dimensional
representation of A5 and was studied in great detail by K. Hashimoto in [10]. It contains a double quadric
and four surfaces with 5, 10, 10, or 15 ordinary double points. The other pencil arises from a faithful linear
representation of the binary icosahedron group 2.A5. As was shown in [4] and [5], it contains two singular
surfaces singular along its own rational normal cubic and two surfaces with 10 ordinary double points. In
this paper we show first that one of the surfaces with 10 ordinary double points from Hashimoto’s pencil
can be realized as a Cayley quartic symmetroid defined by a A5-invariant webW of quadrics (this result was
independently obtained by S. Mukai). We also show that the Steinerian surface of this web parametrizing
singular points of singular quadrics in the web coincides with one of two smooth members of the second
pencil that admits a larger group of projective symmetries isomorphic to S5. To see this we give an explicit
equation of the second pencil. We also show that the apolar linear system of quadrics to the webW contains
two invariant rational normal curves that give rise to two rational plane sextics with symmetryA5 discovered
by R. Winger [20], [21].

It ismy pleasure to thank I. Cheltsov, B. vanGeemen, K. Hulek and S.Mukai for their help in collecting the
known information about the subject of this paper. I would like also to thank the referee for careful reading
of the manuscript and useful remarks.

2 Two irreducible 4-dimensional representations
Let E be a 4-dimensional linear space over an algebraically closed field 𝕜 of characteristic ̸= 2, 3, 5 and let
|E| ≅ ℙ3 be the projective space of lines in E. Assume that E is a non-trivial projective linear representation
space for A5 ≅ PSL(2,𝔽5) in |E|. Then it originates either from a linear representation of A5 in E, or from a
linear representation of its central double extension 2.A5 ≅ SL(2,𝔽5), the binary icosahedral group. Thus E
is either an irreducible representation, or contains a one-dimensional trivial representation, or decomposes
into the sum of two irreducible two-dimensional representations.
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Proposition 1. Suppose there exists a smooth quartic surface S in |E| which is invariant with respect to a non-
trivial projective representation of A5. Then E is an irreducible representation of G = A5 or G = 2.A5.

Proof. Suppose E has a one-dimensional trivial summand. It is known that an element of order 3 acting on
a smooth quartic surface has 6 isolated fixed points; see [18]. A glance at the character tables of the groups
shows that an element g of order 3 in G in its action on the 3-dimensional summand has three different
eigenvalues, one of them is equal to 1. This shows that g has a pointwise fixed line in |E| and two isolated fixed
points. The line intersects the quartic at 4 points, so all the fixed points are accounted for. In particular, one of
them is fixed with respect to the whole groupA5. However, the assumption on the characteristic implies that
G acts faithfully on the tangent space of S at this point, and the group A5 has no non-trivial 2-dimensional
linear representations.

Now we consider case when E decomposes into the sum of two irreducible 2-dimensional representa-
tions. This could happen only when G = 2.A5. In this case G has two invariant lines in |E|, hence the union
of two invariant sets of at most 4-points on S. The known possible orders of subgroups of A5 shows that this
is impossible. 2

So, we are dealing with projective representations of the group A5 coming from an irreducible 4-
dimensional representation 𝕎4 of A5 or from an irreducible faithful 4-dimensional linear representation
𝕌4 of 2.A5.

It is known that the group 2.A5 has two irreducible 2-dimensional representations 𝕍 and 𝕍󸀠, both self-
dual but one is obtained from the other by composition with an outer automorphism ofA5. The center acts as
the minus identity. Since it acts as the identity on the symmetric squares S2𝕍 or S2𝕍󸀠, the groups A5, 2.A5
admit two 3-dimensional representations, both of them are irreducible and self-dual, they differ from each
other by an outer automorphism.

The group A5 acts in |S2𝕍∨| via the Veronese map of |𝕍| → |S2𝕍| of its natural action on |𝕍| ≅ ℙ1. The
restriction of the representation S2𝕍 of A5 to its subgroup H of order 10 isomorphic to the dihedral group
D10 has a trivial one-dimensional summand. It defines a fixed point of H in its action in the plane |S2𝕍|. Its
orbit ofA5 consists of six points, called by F. Klein the fundamental points. The linear system of plane cubics
is invariant with respect to A5 and defines an irreducible subrepresentation of S3(S2𝕍)∨ of dimension 4.
The image of the plane under the map defined by the linear system of cubics is isomorphic to the Clebsch
diagonal cubic surface representing the unique isomorphism class of a nonsingular cubic surface with the
automorphism group isomorphic toS5; see [9], 9.5.4. The representation𝕎4 is isomorphic to the restriction
of the standard irreducible representation ofS5 realized in the hyperplane x1 + ⋅ ⋅ ⋅ + x5 = 0 in 𝕜5.

The representation𝕌4 is realized in the third symmetric power S3𝕍 of 𝕍. It is self-dual and isomorphic
to S3𝕍󸀠. The projective representation of A4 in |𝕌4| is obtained via the Veronese map |𝕍| → |S3𝕍| from the
natural action of A5 on |𝕍|.

Using the character table for G one obtains the following.

Proposition 2. Let S4𝕎∨ and S4𝕌4 be the fourth symmetric powers of𝕎4 and of𝕌4, and let ( )G denote the
subspace of G-invariant elements. Then

dim(S4𝕎∨)G = dim(S4𝕌∨4)
G = 2.

Thus we have two pencils of invariant quartic polynomials (S4𝕎4)A5 and (S4𝕌4)2.A5 , so our quartic sur-
face S is a member of one of them.

3 The pencil |(S4𝕎∨4)A5|
Since 𝕎4 is the restriction of the standard representation of S5, the invariant theory says that the space
(S4𝕎4)A5 is isomorphic to the linear space of symmetric polynomials of degree 4 in variables x1, . . . , x5 and
the discriminant anti-symmetric polynomial. Since the degree of the latter is larger than 4, we obtain that

(S4𝕎4)A5 = (S4𝕎4)S5 .
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Thus anyA5-invariant pencil of quartic surfaces in |𝕎4| consists of the quartics given by equations s4+ λs22 =
s1 = 0, where the si are elementary symmetric functions. It will be more convenient to rewrite this equation
in terms of power symmetric functions:

x41 + ⋅ ⋅ ⋅ + x
4
5 − t(x

2
1 + ⋅ ⋅ ⋅ + x

2
5)

2 = x1 + ⋅ ⋅ ⋅ + x5 = 0 (3.1)

where t = (2λ + 1)/2.
Computing the partial derivatives, we find that theS5-orbits of singular points are represented by points

with coordinates (1, 1, −1, −1, 0), or (1, −1, 0, 0, 0), or (2, 2, 2, −3, −3), or (1, 1, 1, 1, −4) corresponding to
the parameters t = 1/4, 1/2, 7/30, 13/20, respectively. This gives the following.

Proposition 3. The surface St given by equation (3.1) is nonsingular if and only if t ̸= 1
2 ,

1
4 ,

7
30 ,

13
20 . If t = 1/4,

it has 15 singular points, if t = 1/2, 7/30, it has 10 singular points, if t = 13/20, it has 5 singular points. Each
singular point is an ordinary node.

Example 1. The surface S1/4 is the intersection of the Castelnuovo–Richmond–Igusa quartic threefold (see [9],
9.4.4) given by the equations

x41 + ⋅ ⋅ ⋅ + x
4
6 −

1
4
(x21 + ⋅ ⋅ ⋅ + x

2
6)

2 = x1 + ⋅ ⋅ ⋅ + x6 = 0 (3.2)

in ℙ5 and the hyperplane x6 = 0. Its singular points are the intersection of the hyperplane with the fifteen
double lines of the threefold.

Example 2. If t = 1/2, then λ = 0 and the surface can be rewritten by the equations∑5i=1 1
xi = x1 + ⋅ ⋅ ⋅ + x5 = 0

in ℙ4. We recognize the equation of the Hessian surface of the Clebsch diagonal cubic surface C3. Its 10
nodes are the vertices of the Sylvester pentahedron. Its edges lie on the surface and together with the nodes
form the Desargues symmetric configuration (103); see [11], III §19. By definition of the Hessian surface, S1/2
is a quartic symmetroid (see [9], 4.2.6), the locus of points in |E| such that the polar quadric of the cubic
surface C3 is singular. This symmetric determinantal representation of S1/2 is defined by a linear map ofS5-
representations𝕎4 → S2𝕎∨4 . It is the polar map associated with the cubic surface (see [9]). It allows one to
rewrite the equation of the Hessian of the Clebsch cubic surface as the symmetric determinant:

det(

L − x1 L L L
L L − x2 L L
L L L − x3 L
L L L L − x4

) = 0,

where L = x1 + x2 + x3 + x4.
It is known that the surface S1/2 is isomorphic to the K3-cover of an Enriques surface X with Aut(X) ≅

S5 (of type VI in Kondo’s classification [16]). The covering involution is defined by the standard Cremona
transformation (x1, . . . , x5) 󳨃→ (x−11 , . . . , x−15 ).

Example 3. Assume that t = 7/30. Projecting from the node q0 = (2, 2, 2, −3, −3), we get the equation of
S7/30 as the double plane

w2 = (xy + xz + yz)2(x + y + z)2 − 3(x − y)2(x − z)2(y − z)2

= 111x2y2z2 + 80(x3y2z + x3yz2 + x2y3z + x2yz3 + xy3z2 + xy2z3)
+ 13(x4y2 + x4z2 + y4z2 + x2z4 + y2z4 + x2y4) + 10(x4yz + x3y3 + x3z3 + xy4z + xyz4 + y3z3).

The branch curve B is the union of two cubic curves intersecting at 9 points

[1, 0, 0], [0, 1, 0], [0, 0, 1], [2, −1, 2], [−1, 2, 2], [2, 2, −1], [−2, 1, 1], [1, −2, 1], [1, 1, −2].

It is well-known and goes back to A. Cayley (see a modern exposition in [8]) that this implies that the surface
S7/30 is a quartic symmetroid. We will return to this example in the next section.

Authenticated | idolga@umich.edu author's copy
Download Date | 1/26/18 4:03 AM



122 | Dolgachev, Quartic surfaces with icosahedral symmetry

Example 4. Let S3 be the Segre cubic primal (see [9], 9.4.4) given by the equations x31+⋅ ⋅ ⋅+x
3
6 = x1+⋅ ⋅ ⋅+x6 = 0.

It is isomorphic to the image of a rational map f : ℙ3 99K ℙ4 given by the linear system of quadrics through 5
points p1, . . . , p5 in general linear position. The images of the lines ⟨pi , pj⟩ are the 10 nodes on S3. Consider
the surface S in S3 given by the additional equation x21 + ⋅ ⋅ ⋅ + x

2
6 = 0. Obviously, it has S6-symmetry. The

pre-image of S under themap f is a quartic surface inℙ3 with 5 nodes at p1, . . . , p5. One canmake themap f
to beS5-invariant by viewingℙ3 as the hyperplane y0 + ⋅ ⋅ ⋅ + y5 = 0 inℙ4 and choosing the points p1, . . . , p5
to be the points in the hyperplane with coordinates [1, 0, 0, 0, −1], [0, 1, 0, 0, −1], etc. The group S5 acts
naturally in ℙ3 by permuting the 5 points. The restriction of this representation to A5 is the projectivization
of the linear representation space𝕎4. Via this action, themap f becomes aS5-invariant birational map from
ℙ3 to the Segre cubic C3. Thus f−1(S) is a 5-nodal quartic in |𝕎4| withS5-symmetry.

Note that the action ofS5 on the Segre cubic primal is closely related to its known action on the del Pezzo
surface of degree 5 via the following commutative diagram explained in [19], Proposition 4.7:

X

σ

��

χ //

φ0

  

X+

φ

��

φ+
0

~~
S3

ℙ3 //

f
>>

D

Here χ is a flop, φ and φ+0 are small contractions to the Segre cubic primal,D is a del Pezzo surface of degree
5 and φ is a ℙ1-bundle.

The pencil (3.1) was intensively studied by K. Hashimoto in [10]. So it is appropriate to refer to it as the
Hashimoto pencil. In particular, Hashimoto computed the lattice T(Xt) of transcendental cycles of a minimal
nonsingular model Xt of a singular member St of the pencil.

Theorem 1. Assume that 𝕜 = ℂ. For any singular member of the Hashimoto pencil, the lattice T(Xt) is of rank 2
and is given by the matrix

(
4 0
0 10
) for t = 1

2
, (4 1

1 4
) for t = 1

4
, (4 2

2 16
) for t = 7

30
, (6 0

0 20
) for t = 13

20
.

The transcendental lattice of a generic member of the pencil is of rank 3 and is given by the matrix

(
4 1 0
1 4 0
0 0 −20

) .

Remark 1. It is known that the quartic surface defined by the equation

F = x4 + y4 + z4 + w4 + 12xyzw = 0 (3.3)

admits a group of projective automorphisms isomorphic to 24.S5 (see [17]). According to S. Mukai [18], the
subgroup 24.A5 is isomorphic to theMathieu groupM20 and is realized as one of themaximal finite groups of
symplectic automorphisms of a complex K3 surface. The equation defining the surface is an invariant of the
Heisenberg groupH2 acting in its Schrödinger 4-dimensional irreducible representation (see [3]). The linear
space of invariant quartic polynomials is 5-dimensional and it has a basis that consists of the polynomials

p0 = x4 + x4 + z4 + w4, p1 = x2w2 + y2z2, p2 = x2z2 + y2w2, p3 = x2y2 + z2w2, p4 = xyzw.
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Let

M1 = −2p0 + 24p4,
M2 = p0 − 6(p1 + p2 + p3),
M3 = p0 + 6(−p1 + p2 + p3),
M4 = p0 + 6(p1 − p2 + p3),
M5 = −2p0 − 24p4,
M6 = p0 + 6(p1 + p2 − p3)

be a spanning set of this linear space. The fifth of them defines the surface from (3.3). We propose to call
the polynomialsMi theMaschke quartic polynomials (not to be confused with the Maschke octic polynomial
from [2]). It is shown in [17], p. 505, that they satisfy the equations

(
6
∑
i=1

M2
i )

2
− 4

6
∑
i=1

M4
i =

6
∑
i=1

Mi = 0.

We recognize the equations of the Castelnuovo–Richmond–Igusa quartic threefold from Example 1. Thus for
any Maschke polynomial Mi, the surface V(Mi) is a Galois 24-cover of the pre-image of a coordinate hyper-
plane section of the quartic threefold isomorphic to the surface S1/4 from the Hashimoto pencil. This shows
the appearance of 24.S5 in the group of projective automorphisms of V(Mi).

It was communicated to me by Bert van Geemen that the projective transformations defined by the ma-
trices

M = (

1 1 −1 −1
1 −1 −1 1
−1 1 −1 1
−1 −1 −1 −1

) and N = (

1 −1 −i −i
−1 1 −i −i
i i 1 −1
i i −1 1

) (3.4)

define automorphisms of orders 5 and 2 that generate a subgroup of automorphisms of V(F) that splits the
extension 24.S5. This shows that the Maschke quartic surface V(Mi) admits S5 and hence A5 as groups of
projective automorphisms. By computing the traces of M and N we find that S5 originates from its linear
standard irreducible 4-dimensional representation, and the surface must be isomorphic to a member of the
Hashimoto pencil. According to computations made by Bert van Geemen, the surface V(M1) corresponds to
the parameter t = 3

20 (3−i). Note that according to S.Mukai the transcendental lattice of theMaschke surface is
given by the diagonal 2×2-matrixwith the diagonal entries 4 and40. So it is different from the transcendental
lattice of a general member of the pencil.

4 The pencil |(S4𝕌∨4)A5|
Recall that the linear representation space𝕌4 of G = 2.A5 is isomorphic to the space S3𝕍. Since there is only
one isomorphism class of irreducible faithful 4-dimensional representations of G, we have an isomorphism
𝕌4 ≅ S3𝕍 ≅ S3𝕍󸀠.

Let e1, e2 be a basis in 𝕍 and let (u, 𝑣) be the coordinates in 𝕍 with respect to this basis, i.e. the dual
basis of (e1, e2) in 𝕍∨. The spaces Sd𝕍 and Sd𝕍∨ have natural monomial bases (ed1 , e

d−1
1 e2, . . . , ed2) and

(ud , ud−1𝑣, . . . , 𝑣d), respectively. The polarization isomorphism

Sd𝕍∨ → (Sd𝕍)∨

assigns to ud−i𝑣i the linear function on Sd𝕍 that takes the value 1
d! (d − i)!i! on ed−i1 di2 and zero on all other

monomials. This shows that the basis ((di )u
d−i𝑣i)i=0,...,d is the dual basis of (ed1 , e

d−1
1 e2, . . . , ed2). Thus any

binary form f ∈ Sd𝕍∨ can be written as

f =
d
∑
i=0
(di )aiu

d−i𝑣i , (4.1)
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so that (a0, . . . , ad) are the natural coordinates in the space Sd𝕌∨. Although this notation is widely used in
the invariant theory, we switch to the basis ((di )e

d−i
1 ei2) of Sd𝕍 to get the dual basis formed by the monomials

ud−i𝑣i. So we drop the binomial coefficients in (4.1). This helps us to obtain formulas that agree with those
given in Klein’s book.

Let us clarify the coordinate-free definition of the Veronese map

νd : 𝕍 → Sd𝕍.

It is defined by assigning to a vector αe1 + βe2 the linear function f 󳨃→ f(α, β) on Sd𝕍∨ = (Sd𝕍)∨. It follows
that

νd(αe1 + βe2) =
d
∑
i=0
(di )α

d−iβied−i1 ei2 = (αe1 + βe2)
d .

In coordinates, this is the map
(u, 𝑣) 󳨃→ (ud , ud−1𝑣, . . . , u𝑣d−1, 𝑣d). (4.2)

Passing to the projective space, we get the map

νd : |𝕍| → |Sd𝕍|

that is given by the complete linear system |Sd𝕍∨| = |O|𝕍|(d)|. The image Rd of this map is a Veronese curve
of degree d, or a rational normal curve of degree d. If we re-denote the coordinates ud−i𝑣i by (x0, . . . , xd), a
hyperplane V(∑di=0 aixi) intersects Rd along the closed subscheme that is isomorphic, under the Veronese
map νd, to the closed subscheme V(∑di=0 aiud−i𝑣i) of |𝕍|.

Dually, we have the Veronese map
ν∗d : 𝕍

∨ → Sd𝕍∨

which assigns to a linear function l = au + b𝑣 ∈ 𝕍∨ the linear function νd(l) ∈ Sd𝕍∨ that takes on ed−i1 ei2 the
value equal to ad−ibi. It follows that

ν∗d(αu + β𝑣) =
d
∑
i=0
(di )α

d−iβiud−i𝑣i = (αu + β𝑣)d .

So we get a familiar picture: points of |Sd𝕍∨| are non-zero binary forms of degree d up to proportionality, and
points of the Veronese curve are powers of linear forms, up to proportionality.

In coordinates, the dual Veronese map is given by

(e1, e2) 󳨃→ (ed1 , . . . , (
d
i )e

d−i
1 ei2, . . . , e

d
2).

The image R∗d of the corresponding map

ν∗d : |𝕍
∨| = ℙ(𝕍) → |Sd𝕍∨| = ℙ(Sd𝕍)

is the dual Veronese curve of degree d. The duality can be clarified more explicitly. For any point x ∈ Rd,
one can consider the osculating hyperplane at x, the unique hyperplane in |Sd𝕍| that intersects Rd at one
point x with multiplicity d. The dual Veronese curve R∗d in the dual space |Sd𝕍∨| is the locus of osculating
hyperplanes.

One can use the isomorphism |𝕍∨| → |𝕍| defined by assigning to a linear function l = au + b𝑣 ∈ 𝕍∨ its
zero V(l) = [−b, a] ∈ |𝕍|. In other terms, it is defined by the exterior product pairing𝕍×𝕍 → ⋀2𝕍 ≅ 𝕜. Thus
we have two Veronese maps

νd : |𝕍| → |Sd𝕍| and ν∗d : |𝕍| → |S
d𝕍∨|

with the images Rd and R∗d. The map of |𝕍| → |Sd𝕍∨| is given, in coordinates, by

(u, 𝑣) → ((−1)ded2 , . . . , (−1)
d−i(di )e

i
1e

d−i
2 , . . . , ed1).
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Let ρ : G → GL(𝕍) be a linear representation of a group G. By functoriality, it defines a linear repre-
sentation Sd(ρ) : G → GL(Sd𝕍). The dual linear representation ρ∗ : G → GL(𝕍∨) defines a representation
Sd(ρ∗) : G → GL(Sd𝕍∨). It follows from the polarization isomorphism that the representations Sd(ρ) and
Sd(ρ∗) are dual to each other.

After fixing these generalities, it is easy to describe irreducible linear representations of G = 2.A5. We
start with the 2-dimensional representations𝕍 and𝕍∨. We choose a basis e1, e2 in𝕍 and its dual basis (u, 𝑣)
in 𝕍∨ as above to assume that the group preserves the volume forms e1 ∧ e2 and u ∧ 𝑣. Thus in these bases
we represent the matrices of the representation by unimodular matrices. According to [15], p. 213, the group
2.A5 is generated by the transformations S, T, U of orders 5, 4, 4, respectively, and its representation in𝕍 is
given in terms of coordinates as follows:

S : (u, 𝑣) 󳨃→ (ε3u, ε2𝑣),

T : (u, 𝑣) 󳨃→ 1
√5
(−cu + d𝑣, du + c𝑣),

U : (u, 𝑣) 󳨃→ (−𝑣, u),

where ε = e2πi/5 and c = ε − ε−1, d = ε2 − ε−2. We have

λ = c
d
= ε + ε−1 + 1 = 1 +

√5
2

,

which is the golden ratio. It satisfies λ2 = λ+1.Note that the trace of S is equal to ε3+ε2 = λ2−2 = λ−1 = −1+√52 .
This is denoted by b5 in [7], so we can identify this representation with the one given by the character χ6. The
representation𝕍󸀠 is given by the same formulas as above, where ε is replacedwith ε2. The trace of S becomes
b5∗ := −λ.

Next we consider the 3-dimensional irreducible representations realized in S2𝕍 and S3𝕍󸀠. In the basis
(e21, 2e1e2, e

2
2) of𝕍, the first representation is given by the matrices

S :(
ε 0 0
0 1 0
0 0 ε−1

) , T : 1
√5
(

ε + ε4 2 ε2 + ε3

1 1 1
ε2 + ε3 2 ε + ε4

) , U :(
0 0 1
0 −1 0
1 0 0

) .

Note that Klein uses slightly different coordinates (A0, A1, A2) = (−u𝑣, 𝑣2, −u2), so his matrices are slightly
different.

The second irreducible 3-dimensional representation (S2𝕍)󸀠 is obtained by replacing ε with ε2. The in-
variant theory for the icosahedron group A5 in this representation is discussed in Klein’s book (see also [9],
9.5.4).

The linear representation𝕌4 of 2.A5 realized in S3𝕍 is given by the matrices

S :(

ε4 0 0 0
0 ε3 0 0
0 0 ε2 0
0 0 0 ε

) ,

T : d3

5√5
(

−λ3 3λ2 −3λ 1
λ2 −2λ + λ3 1 − 2λ2 λ
−λ 1 − 2λ2 2λ − λ3 λ2

1 3λ 3λ2 λ3
) =

d3

5√5
(

−(1 + 2λ) 3(λ + 1) −3λ 1
λ + 1 1 −2λ − 1 λ
−λ −2λ − 1 −1 λ + 1
1 3λ 3(λ + 1) 2λ + 1

) ,

U :(

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

) .

The dual representation is given by the same formulas, where ε is replaced with ε2.
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We will use the coordinates

(x0 = u3, x1 = u2𝑣, x2 = u𝑣2, x3 = 𝑣3).

LetN1 ⊂ S2𝕌∨4 be the linear space of quadratic forms such that |N1| is the linear system of quadrics with the
base locus equal to the Veronese curve R3. Obviously, it is an irreducible summand of S2𝕌∨4 . It is generated
by the quadratic forms

q1 = x0x3 − x1x2, q2 = x0x2 − x21, q3 = x1x3 − x22.

Under the transformation S they aremultiplied by 1, ε, ε4, respectively. The trace of S is equal to 1+ε+ε4 = λ.
Thus we can identify the spaceN1 with the linear representation S2𝕍. LetN∗2 be the linear space of quadratic
forms in the dual space𝕌∨4 such that the linear system of quadrics |N∗2 | has the base locus equal to the dual
Veronese curve R∗3 . It is spanned by the quadratic forms

q󸀠1 = 9ξ0ξ3 − ξ1ξ2, q󸀠2 = 3ξ0ξ2 − ξ
2
1 , q󸀠3 = 3ξ1ξ3 − ξ

2
2 ,

where ξ0 = e31, ξ1 = e
2
1e2, ξ2 = e1e

2
2, ξ3 = e

3
2 are the dual coordinates. The representationN∗2 is isomorphic to

S2𝕍󸀠. Consider the dual space (N∗2)⊥ ⊂ S2𝕌
∨
4 of apolar quadratic forms. It is spanned by the quadratic forms

p1 = x0x3+9x1x2, p2 = 2x0x2+3x21, p3 = 2x1x3+3x22, p4 = x20, p5 = x23, p6 = x0x1, p7 = x2x3.

The linear span is a 7-dimensional summand of S2𝕌4. Computing the character of S2𝕌∨, we find the decom-
position

S2𝕌∨4 ≅ S
2𝕌4 ≅ 𝕎4 ⊕ S2𝕍 ⊕ S2𝕍󸀠. (4.3)

This shows that
(N∗2)
⊥ = 𝕎4 ⊕ S2𝕍󸀠.

Observe that the quadratic forms pi are eigenvectors of Swith eigenvalues 1, ε, ε4, ε3, ε2, ε2, ε3, respectively.
Since S has trace −1 on𝕎4, we find that the summand V1 of (N∗2)⊥ isomorphic to𝕎4 is spanned by eigen-
vectors with eigenvalues ε, ε2, ε3, ε4. Under the transformation T, the forms (p1, . . . , p7) are transformed to
(−p1, p3, p2, p5, p4, −p7, −p6). Now we use the following known fact due to T. Reye (see [14], Lemma 4.3).

Theorem 2 (T. Reye). A general 6-dimensional linear space L of quadrics inℙ3 = |E| contains precisely two nets
N1,N2 with the base loci equal to Veronese curves C1, C2 of degree 3. The dual space L⊥ of apolar quadrics in
|E∨| contains 10 quadrics Qi with one-dimensional singular locus ℓi. Each line ℓi is a common secant of C1, C2.

It follows from the lemma that the summandof S2𝕌∨4 isomorphic to S2𝕍󸀠 is isomorphic to the linear space
N2 such that the base locus of the net of quadrics |N2| is a rational normal cubic curve. It is easy to see that
this is possible only ifN2 is generated by

r1 = x0x3 + 9x1x2, r2 = x20 + ax2x3, r3 = x23 − ax0x1,

where a2 = 9. Since the image of the point [0, 1, 0, 0] on the curve under the transformation Tmust be on the
curve, we check that a = 3. Thus the base locus is a rational normal cubic curve with parametric equations

|𝕌| → |𝕌4|, (u, 𝑣) 󳨃→ (9u2𝑣, 27𝑣3, −u3, 27u𝑣2). (4.4)

Note that one can avoid using Reye’s Theorem by using decomposition (4.3) and the facts there exist no A5-
invariant lines nor A5-invariant conics, and that A5-orbits are of length ≤ 8.

Now we are ready to describe the pencil |S4𝕌∨4 | of invariant quartics. We take as generators of the pencil
the tangential ruled surfaces of the invariant rational normal curves defined by the nets |N1| and |N2|. They
are obviously invariant with respect to the action of G in |𝕎4|. The net |N1| defines amap from |𝕎4| to |N∨1 | =
|S2𝕍∨|whose image is an invariant conic, the fundamental conic. Its equation inKlein’s coordinatesA0, A1, A2
is A20 + A1A2 = 0. The equation of the dual conic in the dual coordinates A

󸀠
0, A
󸀠
1, A
󸀠
2 in the dual plane |S2𝕌∨| is

A󸀠0
2 + 4A󸀠1A

󸀠
2 = 0.
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It follows that the equation of the tangential ruled surface must be of the form Q2
0 + 4Q1Q2, where Qi = 0 are

equations of quadrics from the net |N1|. We know that A0, A1, A2 are eigenvectors for the transformation S
acting in |S2𝕌| with eigenvalues 1, ε, ε−1. Thus A󸀠0, A

󸀠
1, A
󸀠
2 are eigenvectors for the action of S in S2𝕌∨ with

the eigenvalues 1, ε−1, ε. Therefore our quadrics Q0, Q1, Q2 are also eigenvectors for the action of S in S2𝕎∨4
with eigenvalues 1, ε−1, ε. We find that (Q0, Q1, Q2) = (q1, λq3, λ󸀠q2) for some constants λ, λ󸀠. Since the
equation is invariant with respect to the transformation U, and A󸀠1 󳨃→ −A

󸀠
2, we must have λ = −λ󸀠. We find

the condition on λ that guarantees that the equation Q2
0 − λ2Q1Q2 = 0 is the equation of the tangential ruled

surface of the Veronese curve C1 = R3.
At each point [1, t0, t20, t

3
0] the tangent line to the Veronese curve R3 is spanned by the vector [0, 1, 2t0,

3t20]. Plugging in the parametric equation s(1, t0, t20, t
3
0) + r(0, 1, 2t0, 3t

2
0) of the tangent line in the equation

q21 + c2q2q3 = 0, we obtain that c2 − 4 = 0. Thus the equation of the quartic tangential ruled surface is

S1 : (x0x3 − x1x2)2 − 4(x0x2 − x21)(x1x3 − x22) = x20x23 − 6x0x1x2x3 + 4x0x
3
2 + 4x1x

3
3 − 3x

2
1x

2
2 = 0. (4.5)

The second invariant quartic is the tangential ruled surface of the rational normal curve C2 defined paramet-
rically in (4.4). The net of quadrics containing this curve is G-equivariantly isomorphic to S2𝕍󸀠. It defines
the map from |𝕌4| to |(S2𝕍󸀠)∨|. The invariant conic in this space is the same conic as in the previous case.
Similarly to this case we get the equation

(x0x3 + 9x1x2)2 + d2(x20 + 3x2x3)(x
2
3 − 3x0x1) = 0. (4.6)

The parametric equation of the tangent line to the base curve C2 is

s(9t20, 27, −t
3
0, 27t0) + r(6t0, 0, −t

2
0, 9) = 0.

Plugging this in the equation (4.6), we obtain d2 + 4 = 0 and the equation of the second tangential surface is

S2 : (x0x3 + 9x1x2)2 − 4(x20 + 3x2x3)(x
2
3 − 3x0x1) = 3(4x

3
0x1 − x

2
0x

2
3 + 18x0x1x2x3 + 27x

2
1x

2
2 − 4x2x

3
3) = 0.

So our pencil |(S4𝕌∨4)2.A5 | can be explicitly written in the form λF1 + μF2 = 0, where

F1 = x20x
2
3 − 6x0x1x2x3 + 4x0x

3
2 + 4x1x

3
3 − 3x

2
1x

2
2 and

F2 = 4x30x1 − x
2
0x

2
3 + 18x0x1x2x3 + 27x

2
1x

2
2 − 4x2x

3
3.

Consider the linear transformation

K : (x0, x1, x2, x3) 󳨃→ (√3x2,
1
√3

x0, −
1
√3

x3,√3x1). (4.7)

We have K2 = U ∈ G, and the group generated by K and G is isomorphic to 2.S5. We immediately check that
it transforms

x0x3 + 9x1x2 󳨃→ 3(−x0x3 + x1x2), x20 + 3x2x3 󳨃→ 3(x21 − x0x2), x23 − 3x0x1 󳨃→ 3(x22 − x1x3).

This shows that K(S2) = S1, more precisely, we get K(F2) = 3F1. Thus the surfaces

S3 = V(3F1 + F2) = V(x20x
2
3 + 2x

3
0x1 + 9x

2
1x

2
2 − 2x2x

3
3 + 6x0x

3
2 + 6x

3
1x3) and (4.8)

S4 = V(F2 − 3F1) = V(−x20x
2
3 + 9x0x1x2x3 − 3x0x

3
2 − 3x

3
1x3 + 9x

2
1x

2
2 + x

3
0x1 − x2x

3
3).

areS5-invariant. One checks, using MAPLE, that they are nonsingular.
The following result is proven in [5].

Proposition 4. The pencil generated by the quartic surfaces S1 and S2 contains two more singular members;
each of them has 10 ordinary double points. The base curve B of the pencil is an irreducible curve of degree 16
with 24 singular points, and each of them is an ordinary cusp. It also contains a unique A5-orbit of 20 points.

It is easy to see these two orbits of singular points of B. Each of them is the intersection of one of the
rational normal cubic curves C1 and C2 with a nonsingular surface from the pencil. If we take the latter to be
the surface S3 or S4, we obtain that the union of the two orbits is invariant with respect toS5.

In the next section we will be able to see explicitly the unique orbit of 20 points.
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5 AnA5-invariant web of quadrics in |𝕌4|
Consider the linear 2.A5-equivariant map

φ :𝕎4 → S2𝕌∨4 (5.1)

defined by the decomposition (4.3). The correspondingmap of the projective spaces defines aweb of quadrics
in |𝕌4|. Recall that some of its attributes are the determinantal surface D(φ) parametrizing singular quadrics
in the web, and the Steinerian surface St(φ) parametrizing singular points of singular quadrics from the web.

Let us find the equation of the discriminant surface. We choose a basis of φ(𝕎4) formed by the quadrics

Q1 = 2x1x3 + 3x22, Q2 = x20 − 2x2x3, Q3 = x23 + 2x0x1, Q4 = 3x21 + 2x0x2.

They are transformed under the representation of 2.A5 (with the center acting trivially) as follows

S : (Q1, Q2, Q3, Q4) 󳨃→ (ε4Q1, ε3Q2, ε2Q3, εQ4),

T :(

Q1
Q2
Q3
Q4

) 󳨃→ c(

−λ 1 λ2 λ
1 λ −λ λ2

λ2 −λ λ 1
λ λ2 1 −λ

)(

Q1
Q2
Q3
Q4

) ,

U : (Q1, Q2, Q3, Q4) 󳨃→ (Q4, Q3, Q2, Q1),

where c is some constant which will not be of concern for us. Choose a basis of φ(𝕎4) ⊂ S2𝕌∨4 spanned by
the following quadratic forms:

Q󸀠1 = ε
4Q1 − ε3Q2 − ε2Q3 + εQ4, (5.2)

Q󸀠2 = ε
3Q1 − εQ2 − ε4Q3 + ε2Q4,

Q󸀠3 = ε
2Q1 − ε4Q2 − εQ3 − ε3Q4,

Q󸀠4 = εQ1 − ε2Q2 − ε3Q3 + ε4Q4.

The symmetric matrix defining the quadratic form y1Q󸀠1 + y2Q
󸀠
2 + y3Q

󸀠
3 + y4Q

󸀠
4 is equal to the matrix

A(y1, y2, y3, y4) = (

a11 a12 a13 0
a21 a22 0 a24
a31 0 a33 a34
0 a42 a43 a44

) ,

where

a11 = −(ε3y1 + εy2 + ε4y3 + ε2y4,
a12 = a21 = −(ε2y1 + ε4y2 + εy3 + ε3y4),
a13 = a31 = εy1 + ε2y2 + ε3y3 + ε4y4,

a22 = 3(εy1 + ε2y2 + ε3y3 + ε4y4),
a24 = a42 = ε4y1 + ε3y2 + ε2y3 + εy4,

a33 = 3(ε4y1 + ε3y2 + ε2y3 + εy4),
a34 = a43 = ε3y1 + εy2 + ε4y3 + ε2y4,

a44 = −(ε2y1 + ε4y2 + εy3 + ε3y4).

Plugging in these expressions and computing the determinant, we obtain (using MAPLE) the equation of the
discriminant surface, where y5 = −y1 − y2 − y3 − y4,

det(A(y1, y2, y3, y4)) = 25(
5
∑
i=1

y4i −
5
∑

1≤i<j≤5
yiy3j + ∑

1≤i<j≤k≤5
yiyjy2k − 3 ∑

1≤i<j<k<l≤5
yiyjykyl),
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where y5 = −(y1 + y2 + y3 + y4). We can rewrite this in terms of power functions to obtain the equation of the
discriminant surface in the form

30
5
∑
i=1

y4i − 7(
5
∑
i=1

y2i )
2
= y1 + y2 + y3 + y4 + y5 = 0. (5.3)

This is the equation of the 10-nodal surface S7/30 from the Hashimoto pencil. (This identification of the dis-
criminant surface with the surface S7/30 was also confirmed to me by S. Mukai.)

Remark 2. The 10 nodes of the symmetric discriminant quartic (also known as a Cayley symmetroid quartic)
correspond to the singular lines of 10 reducible quadrics in the web. According to A. Coble [6], p. 250, they
are the 10 common secants of the rational normal curves C1 and C2.

Let us now compute the equation of the Steinerian surface of the web of quadrics defined by the map
(5.1). If we choose the basis of φ(𝕎4) given by (5.2), then the equation of the Steinerian surface is given by the
determinant of the matrix with columns Q󸀠1 ⋅ x, Q

󸀠
2 ⋅ x, Q

󸀠
3 ⋅ x, Q

󸀠
4 ⋅ x, where we identify Q

󸀠
i with the associated

symmetric matrix and x is the column of the coordinates x0, x1, x2, x3 in𝕌4:

A = (

−ε3x0 − ε2x1 + εx2 ε4x3 − ε2x0 + 3εx1 3ε4x2 + ε3x3 + εx0 ε4x1 + ε3x2 − ε2x3
−ε4x1 + ε2x2 − εx0 −ε4x0 + ε3x3 + 3ε2x1 3ε3x2 + ε2x0 + εx3 −ε4x3 + ε3x1 + εx2
−ε4x0 + ε3x2 − εx1 3ε3x1 + ε2x3 − εx0 ε4x3 + ε3x0 + 3ε2x2 ε4x2 + ε2x1 − εx3
ε4x3 − ε3x1 − ε2x0 3ε4x2 − ε3x0 + εx3 ε4x1 + ε2x3 + 3εx2 −ε3x3 + ε2x2 + εx1

)

t

Computing the determinant of thematrix A, we find that the equation of the Steinerian surface coincideswith
the equation of the surface S4 from (4.8).

The Steinerian surface S4 contains 10 lines, the singular lines of 10 reducible members of the web cor-
responding to singular points of the discriminant surface S7/30. These are of course the 10 common secants
of the two rational normal curves C1 and C2. The unique orbit of 20 points from the same proposition is of
course the intersection points of the 10 common secants with the curves C1 and C2.

Remark 3. Recall that a minimal nonsingular model of a Cayley quartic symmetroid is isomorphic to the K3-
cover of an Enriques surface. In turn, the Enriques surface is isomorphic to a Reye congruence of bidegree
(7, 3) in the Grassmannian G(2, 4); see [8]. This applies to our surface S4. The embedding j : S4 󳨅→ |𝕌4| de-
fines an invertible sheaf L1 = j∗O|𝕌4|(1). The birational morphism from s : S4 → S7/30 ⊂ |𝕎4| whose image
is the quartic symmetroid S7/30 that inverts the rational map from the discriminant surface to the Steinerian
surface defines another invertible sheaf L2 = s∗O|𝕎4|(1). It is known that the covering involution of S4 pre-
serves the tensor product L1 ⊗ L2. Since both maps are A5-equivariant, we obtain that the action of A5 on
S7/30 descends to an action on the Enriques surface.

The following is a list of open questions:

∙ Find the values of the parameters corresponding to the 10-nodal members. Are these surfaces determi-
nantal? What is the transcendental lattice of its minimal nonsingular member?
∙ Findmore facts about theS5-invariant surfaceS3. Is it determinantal?What is its transcendental lattice?
∙ Find the transcendental lattice of the general member of the pencil.

6 The catalecticant quartic surface
There is another view of the Cayley symmetroid quartic surface S7/30. First we have the decomposition of the
linear representations of A5

S6𝕍∨ ≅ S6𝕍 ≅ 𝕎4 ⊕ S2𝕍.

Comparing this with (4.3), we find an isomorphism

S2(𝕌4)∨ ≅ S6𝕍 ⊕ S2𝕍󸀠.
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The summand S6𝕍 is isomorphic to the image of S2(𝕌4)∨ under the restriction to the Veronese curve R6 of
degree 3. The kernel S2𝕍󸀠 is isomorphic to the (linear) space of quadrics vanishing on the Veronese curve.
Recall that each f ∈ S2d𝕍∨ defines a linear map a : Sd𝕍 → Sd𝕍∨ (the apolarity map). We view a basis of
Sd𝕍 as partial derivatives of the coordinates (u, 𝑣) in Sd𝕍 and apply the differential operator fd( ∂∂u ,

∂
∂𝑣 ) to f

to obtain a binary form of degree d in u, 𝑣. In these coordinates, the determinant of the map is a polynomial
of degree d + 1 in coefficients of the form f , called the catalecticant (see [9], 1.4.1). A general zero of this
polynomial is a binary form of degree 2d that can be written as a sum of less than the expected number
(equal to d) of powers of linear forms. In the projective space |S2d𝕍∨| this corresponds to the variety of d-
secant subspaces of dimension d − 1 of the Veronese curve R2d. In our case where d = 3 and the basis in
S6𝕍∨ is taken as in (4.1), we get a quartic polynomial

Cat = det(

a0 a1 a2 a3
a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 a6

) .

The zeros of this polynomial in |S6𝕍∨| is the variety Tri(R6) of trisecant planes of the Veronese curve R6. Let
S = Tri(R6)] ∩ |𝕎4|; this is a quartic surface in |𝕎4|. Let us see that it coincides with the Cayley symmetroid
S7/30 studied in the previous section. In coordinates, a direct computation shows that the binary form f =
∑ as(6s)t

s
0t

6−s
1 ∈ S6𝕍∨ corresponds to the quadric

Q = a0y20 + a2y
2
1 + a4y

2
2 + a6y

2
3 + 2a1y0y1 + 2a2y0y2 + 2a3y0y3 + 2a5y2y3 + 2a4y3y1 + 2a3y1y2.

The condition that Cat(f) = 0 becomes the condition that Discr(Q) = 0. This shows that the catalecticant
quartic becomes isomorphic to the discriminant quartic in ℙ6 = ℙ(N⊥). The singular locus of the variety
Tri(R6) is of degree 10 and it is isomorphic to the secant variety of R6. Intersecting it with |𝕎4|we obtain 10
singular points of our symmetroid S7/30.

Note that another model of S6𝕍 is the space of harmonic cubics used in [12] in |S2𝕍| with respect to the
dual of the fundamental conic.

7 A5-invariant rational plane sextic
Let N1 and N2 be the nets of quadrics with base loci rational normal curves C1 and C2 defined by the para-
metric equations (4.2) and (4.4). Restricting |N2| to C1 we obtain a map C1 → |N∨2 | ≅ |S2𝕍󸀠∨|. We identify the
plane |S2𝕍󸀠∨| with the plane |S2V󸀠| via the A5-invariant conic. Using the basis ofN2 formed by the quadrics
V(x0x3 + 9x1x2), V(x20 + 3x2x3) and V(x

2
3 − 3x0x1), the map ℙ1 → C1 → |S2𝕍󸀠∨| is given by

(u, 𝑣) 󳨃→ (z0, z1, z2) = (10u3𝑣3, u6 + 3u𝑣5, 𝑣6 − 3u5𝑣).

Recall that the quadratic polynomials r1, r2, r3 defining the basis are eigenvectors of S with eigenvalues
(1, ε3, ε2) and hence proportional to Klein’s dual coordinates (A󸀠0, A

󸀠
1, A
󸀠
2). Since they are also transformed

as (r1, r2, r3) 󳨃→ (−r1, r3, r2) under U, they are equal to (c󸀠A󸀠0, cA󸀠1, −cA󸀠2) for some constants c, c󸀠. Also, we
know that the dual conic A󸀠02 + 4A󸀠1A󸀠2 = 0 parameterizes the singular quadrics in the net, and hence the
equation of S2 shows that we may assume that c󸀠 = ±1, c = 2. We noticed before that in our coordinates u, 𝑣,
we have to choose c󸀠 = −1. Thus

(z0, z1, z2) = (−A󸀠0, 2A󸀠1, −2A󸀠2).

The polarity isomorphism |S2𝕌| → |S2𝕌󸀠∨| defined by the conic A20 + A1A2 = 0 gives (A0, A1, A2) =
(−2A󸀠0, A

󸀠
2, A
󸀠
1). Thus, in the Klein coordinates, the image of ℙ1 → C1 → |S2𝕌󸀠∨| → |S2𝕌󸀠| is equal to

the curve Γ1 with parametric equation

Γ1 : (u, 𝑣) 󳨃→ (A0, A1, A2) = (−5u3𝑣3, −𝑣6 + 3u5𝑣, u6 + 3u𝑣5).
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This agrees with the parametric equation of an A5-invariant rational sextic curve found by R. Winger in
[20], [21]. He uses slightly different coordinates (x, y, z) = (A1, A2, A0).

The pencil of A5-invariant sextics is spanned by the triple conic and the union of the six fundamental
lines:

μ(xy + z2)3 + λz(x5 + y5 + z5 + 5x2y2z − 5xyz3 + z5).

According to R. Winger [21], the curve Γ1 is a unique rational curve in this pencil with its 10 nodes forming
an orbit of A5. It corresponds to the parameters (λ : μ) = (27, 5). The equation of Γ1 becomes

27z(x5 + y5) + 5x3y3 + 150x2y2z2 − 120xyz4 + 32z6 = 0.

The action ofA5 in the dual plane |S2𝕌∨| has an orbit of 6 points. The corresponding lines in the original
plane |S2𝕌| are the 6 lines with equations

A0 = 0, A0 + ενA1 + ε−νA2 = 0, ν = 0, . . . , 4.

Each of these fundamental lines intersects the curve Γ1 at 2 points with multiplicity 3. The 12 intersection
points are the images of the orbit ofA5 acting inℙ1 that can be taken as the vertices of the icosahedron. They
are the zeros of the polynomial

Φ12 = u𝑣(𝑣10 + 11u5𝑣5 − u10).

The 10 pairs of branches of the singular points of Γ1 correspond to the A5-orbit of 20 points in ℙ1. They are
the zeros of the polynomial

Φ20 = u20 + 𝑣20 + 288(u15𝑣5 − u5𝑣15 − 494u10𝑣10.

The dual curve Γ∗1 of Γ1 is a rational curve of degree 10 with parametric equation

(x∗, y∗, z∗) = (−10u7𝑣3 − 5u2𝑣8, 5u8𝑣2 − 10u3𝑣7, u10 − 14u5𝑣5 − 𝑣10).

Its equation can be found in [12], p. 83. Note that, via the fundamental conic, we can identify the dual planes
|S2𝕍| and |S2𝕍∨|. Thuswehave the second rational sextic curve Γ2 and its seconddual curve Γ∗2 . It is a rational
curve Γ∗2 of degree 10 with parametric equation

(x, y, z) = (−10(u7𝑣3 − u2𝑣8, 10(u8𝑣2 − 2u3𝑣7, u10 − 14u5𝑣5 − 𝑣10).

The pair of these curves corresponds to the pair of rational normal curves C1, C2. This pairing of rational
normal sextics is discussed in detail in [6], Chapter 4.

Since the line z = 0 intersects Γ1 at two points with multiplicity 3, the Plücker formulas show that Γ∗1 ,
and hence also Γ∗2 , has six 4-fold multiple points. They are the fundamental points of A5. (Note that there is
another A5-invariant rational curve of degree 10 with 36 double points; we will not be concerned with it.)

Remark 4. The blow-up of the 10 nodes of Γ1 (or of Γ2) is a rational Coble surface C with | −KC | = 0 but
| −2KC | ̸= 0 and consists of the proper transform of the sextic Γ1. It inherits the A5-symmetry of Γ1. It is
known that a Coble surface with an irreducible anti-bicanonical curve is a degenerate member of a pencil
of Enriques surfaces. As I was informed by S. Mukai, there is a pencil of Enriques surfaces containing A5 in
its automorphism group (acting linearly in its Fano embedding in ℙ5) that contains among its members the
Enriques surfaces with K3-covers S1/2 and S7/30 as well as the Coble surface C.

Remark 5. The parametric equation of the A5-invariant rational sextic Γ1 appears in [13], p. 122. It is shown
there that the curve Γ1 is equal to the intersection of the tangent lines at the origin of the modular family of
elliptic quintic curves inℙ4 with the eigenplane of the negation involution. It is also discussed in [1], pp. 751–
752, where it is shown that there is a (3 : 1)-map from the modular Bring’s curve X0(2, 5) (isomorphic to the
intersection of the Clebsch diagonal cubic surfacewith the quadric x21+⋅ ⋅ ⋅+x

2
5 = 0) to the normalization of the

curve Γ1 that coincides with the forgetting map X0(2, 5) → X(5). The twelve cusps of Γ1 are its intersection
points with the fundamental conic.
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