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A Supersingular K3 Surface in Characteristic 2

and the Leech Lattice

I. Dolgachev and S. Kondō

1 Introduction

Let k be an algebraically closed field of characteristic 2. Consider F4 ⊂ k and P2(F4) ⊂
P2(k). Let P be the set of points and let P̌ be the set of lines in P2(F4). Each set contains

21 elements, each point is contained in exactly 5 lines, and each line contains exactly

5 points. It is known that the group of automorphisms of the configuration (P, P̌) is iso-

morphic to M21 ·D12, where M21(∼= PSL(3, F4)) is a simple subgroup of the Mathieu group

M24 and D12 is a dihedral group of order 12.

In this paper, we prove the following main theorem.

Theorem 1.1. There exists a unique (up to isomorphism) K3 surface over k satisfying the

following equivalent properties:

(i) the Picard lattice of X is isomorphic to U ⊥ D20;

(ii) X has a Jacobian quasi-elliptic fibration with one fiber of type D̃20;

(iii) X has a quasi-elliptic fibration with the Weierstrass equation

y2 = x3 + t2x + t11; (1.1)

(iv) X has a quasi-elliptic fibration with 5 fibers of type D̃4 and the group of sec-

tions isomorphic to (Z/2)4;

(v) X contains a set A of 21 disjoint (−2)-curves and another set B of 21 disjoint

(−2)-curves such that each curve from one set intersects exactly 5 curves

from the other set with multiplicity 1;

Received 6 February 2002. Revision received 8 July 2002.

 at U
niversity of M

ichigan on July 5, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


2 I. Dolgachev and S. Kondō

(vi) X is birationally isomorphic to the inseparable double cover of P2 with branch

divisor

x0x1x2

(
x3

0 + x3
1 + x3

2

)
= 0; (1.2)

(vii) X is isomorphic to a minimal nonsingular model of the quartic surface with 7

rational double points of type A3, which is defined by the equation

x4
0 + x4

1 + x4
2 + x4

3 + x2
0x2

1 + x2
0x2

2 + x2
1x2

2 + x0x1x2(x0 + x1 + x2) = 0; (1.3)

(viii) X is isomorphic to the surface in P2 × P2 given by the equations

x0y2
0 + x1y2

1 + x2y2
2 = 0, x2

0y0 + x2
1y1 + x2

2y2 = 0. (1.4)

The automorphism group Aut(X) contains a normal infinite subgroup generated by 168

involutions and the quotient is a finite group isomorphic to PGL(3, F4) · 2. �

Since the group PSL(3, F4) ·2 is not a subgroup of the Mathieu group M23, our the-

orem shows that Mukai’s classification of finite groups acting symplectically on a com-

plex K3 surface (see [12]) does not extend to positive characteristic.

2 Supersingular K3 surfaces in characteristic 2

2.1 Known facts

Recall that a supersingular K3 surface (in the sense of Shioda [16]) is a K3 surface with

the Picard group of rank 22. This occurs only if the characteristic of the ground field k is a

positive prime p. By a result of Artin [1], the Picard lattice SX = Pic(X) of a supersingular

K3 surface is a p-elementary lattice (i.e., the discriminant group S∗
X/SX is a p-elementary

Abelian group). The dimension r of the discriminant group over Fp is even and the num-

ber σ = r/2 is called the Artin invariant. We assume that p = 2. A fundamental theo-

rem of Rudakov and Shafarevich [13, 14] tells that any supersingular K3 surface admits

a quasi-elliptic fibration, that is, a morphism f : X → P1 whose general fiber is a regu-

lar but not smooth geometrically irreducible curve of genus 1. Over an open subset U of

the base, each fiber is isomorphic to an irreducible cuspidal cubic, the reducible fibers

are Kodaira genus 1 curves of additive type. The closure of the set of cusps of irreducible

fibers is a smooth irreducible curve C, the cusp curve. The restriction of f to C is a purely

inseparable cover of degree 2. It follows that C is isomorphic to P1, and hence by adjunc-
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A Supersingular K3 Surface and the Leech Lattice 3

tion is a (−2)-curve on X. A surface with a quasi-elliptic fibration is unirational. Thus,

any supersingular K3 surface in characteristic 2 is unirational. This is one of the main

results of [13, 14].

In this paper, we study a supersingular K3 surface with the Artin invariant σ = 1.

It follows from the classification of 2-elementary lattices of signature (1, 21) that the

Picard lattice of such a K3 surface is unique up to isometries (see [14, Section 1]). There-

fore, it is isomorphic to U ⊥ D20. As usual, U denotes the unique even unimodular indef-

inite lattice of rank 2 and An, Dn, or En denotes the negative definite even lattice defined

by the Cartan matrix of type An, Dn, or En, respectively. Moreover, it is known that any

supersingular K3 surface with Artin invariant σ = 1 is unique up to isomorphisms (see

[14, Section 11]).

2.2 The Weierstrass model

Proposition 2.1. Let X be a supersingular K3 surface whose Picard lattice SX is isometric

to U ⊥ D20. Then X has a quasi-elliptic fibration with one singular fiber of type D̃20 and

a section. Its affine Weierstrass equation is

y2 + x3 + t2x + t11 = 0. (2.1)
�

Proof. First we see that the above Weierstrass equation defines a K3 surface whose

Picard lattice is isomorphic to U ⊥ D20. Recall (see [14, Section 12] and [8, Chapter 5])

that the Weierstrass model of a quasi-elliptic fibration f : S → P1 on a nonsingular pro-

jective surface S over an algebraically closed field of characteristic 2 with χ(S,OS) = n

is a closed subscheme of the total space of the vector bundle OP1(2n) ⊕ OP1(4n) over P1

given by the equation

y2 + x3 + a(t0, t1)x + b(t0, t1) = 0, (2.2)

where a ∈ H0(P1,OP1(4n)) and b ∈ H0(P1,OP1(6n)). Dividing the equation by t6n
0 and

making the substitution x → x/t2n
0 and y → y/t3n

0 , we get the affine Weierstrass equation

y2 + x3 + A(t)x + B(t) = 0, (2.3)

where A(t) (resp., B(t)) is an inhomogeneous polynomial of degree 4n (resp., 6n). Con-

versely, given an affine Weierstrass equation, we can homogenize it (with respect to t)
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4 I. Dolgachev and S. Kondō

by substituting t = t1/t0, multiplying the equation by t6n
0 and making the substitu-

tions y → yt3n
0 , x → xt4n

0 . The discriminant of the Weierstrass model is a section of

OP1(12n) ⊗ ω⊗2
P1

∼= OP1(12n − 4) defined by

∆ = a(da)2 + (db)2. (2.4)

In our case, n = 2 and

a(t0, t1) = t6
0t2

1, b(t0, t1) = t0t11
1 , ∆ = t20

1 . (2.5)

It is known (see [8, Corollary 5.5.8]) that the order of vanishing of the discriminant at a

point s ∈ P1 is equal to e(Fs)−2, where Fs is the fiber over the point s and e(Fs) is its Euler-

Poincaré characteristic. Applying this to our situation, we obtain that the fibration has

one degenerate fiber F over the point (1, 0) with Euler-Poincaré characteristic equal to 22.

It follows from the classification of degenerate fibers of a quasi-elliptic fibration that F

is of type D̃20. Obviously, its Picard lattice contains U ⊥ D20, which is generated by the

class of components of fibers and a section. Since σ ≥ 1, the Picard lattice isomorphic

to U ⊥ D20. Now, the assertion follows from the uniqueness of supersingular K3 surface

with the Artin invariant 1. �

3 Leech roots

In this section, we denote by X the K3 surface whose Picard lattice is isomorphic to U ⊥
D20.

3.1 The Leech lattice

We follow the notation and the main ideas from [2, 3, 4, 5, 6, 11]. First, we embed the

Picard lattice SX
∼= U ⊥ D20 in the lattice L = Λ ⊥ U ∼= II1,25, where Λ is the Leech lattice

and U is the hyperbolic plane. We denote each vector x ∈ L by (λ,m,n), where λ ∈ Λ, and

x = λ + mf + ng, with f, g being the standard generators of U, that is, f2 = g2 = 0, and

〈f, g〉 = 1. Note that r = (λ, 1,−1 − 〈λ, λ〉/2) satisfies r2 = −2. Such vectors will be called

Leech roots. We denote by ∆(L) the set of all Leech roots. Recall that Λ is an even negative

definite unimodular lattice of rank 24, realized as a certain subgroup in R24 = RP
1(F23)

equipped with inner product 〈x, y〉 = −x ·y/8 (in group theory one often changes the sign

to the opposite). For any subset A of Ω = P1(F23), let νA denote the vector
∑

i∈A ei, where
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A Supersingular K3 Surface and the Leech Lattice 5

{e∞ , e0, . . . , e22} is the standard basis in R24. A Steiner system S(5, 8, 24) is a set consisting

of 8-element subsets of Ω such that any 5-element subset belongs to a unique element

of S(5, 8, 24). An 8-element subset in S(5, 8, 24) is called an octad. Then Λ is defined as a

lattice generated by the vectors νΩ −4ν∞ and 2νK, where K belongs to the Steiner system

S(5, 8, 24). Let W(L) be the subgroup generated by reflections in the orthogonal group O(L)

of L. Let P(L) be a connected component of

P(L) =
{
x ∈ P(L ⊗ R) : 〈x, x〉 > 0

}
. (3.1)

Then W(L) acts naturally on P(L). A fundamental domain of this action of W(L) is given by

D =
{
x ∈ P(L) : 〈x, r〉 > 0, r ∈ ∆(L)

}
. (3.2)

It is known that O(L) is a split extension of W(L) by Aut(D) (see [4, 6]).

Lemma 3.1. Let X be the K3 surface whose Picard lattice SX is isomorphic to U ⊥ D20.

Then there is a primitive embedding of SX in L such that the orthogonal complement S⊥
X

is generated by some Leech roots and isomorphic to the root lattice D4. �

Proof. Consider the following vectors in Λ:

X = 4ν∞ + νΩ, Y = 4ν0 + νΩ, Z = 0,

T =
(
x∞ , x0, x1, xk2

, . . . , xk22

)
= (3, 3, 3,−1,−1,−1,−1,−1, 1, . . . , 1),

(3.3)

where K = {∞, 0, 1, k2, . . . , k6} is an octad. The corresponding Leech roots

x = (X, 1, 2), y = (Y, 1, 2), z = (0, 1,−1), t = (T, 1, 2) (3.4)

generate a root lattice R isomorphic to D4. Obviously, R is primitive in L.

Let S be the orthogonal complement of R in L. Then it is an even lattice of signa-

ture (1, 21) and the discriminant group isomorphic to (Z/2Z)2 (the discriminant groups

of S and R are isomorphic). Since such a lattice is unique, up to isometry, we obtain that

S ∼= U ⊥ D20. �
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6 I. Dolgachev and S. Kondō

3.2 (42 + 168) Leech roots

We fix an embedding of SX into L as in Lemma 3.1. Let P(X) be the positive cone of X, that

is, a connected component of

{
x ∈ P(SX ⊗ R) : 〈x, x〉 > 0

}
, (3.5)

which contains the class of an ample divisor. Let D(X) be the intersection of D and P(X).

It is known that Aut(D(X)) ∼= M21 · D12, where M21
∼= PSL(3, F4) and D12 is a dihedral

group of order 12 (see [2, Section 8, Example 5]). Each hyperplane bounding D(X) is the

one perpendicular to a negative norm vector in SX ⊗Q which is the projection for a Leech

root. There are two possibilities for such Leech roots r:

(i) r and R (∼= D4) generate a root lattice isomorphic to D4 ⊥ A1;

(ii) r and R generate a root lattice isomorphic to D5.

Lemma 3.2. There are exactly 42 Leech roots which are orthogonal to R. �

Proof. Let R ′ be the sublattice of L generated by vectors x, y, z from (3.4). Obviously, R ′ is

isomorphic to the root lattice A3. By Conway [3, 5], the Leech roots orthogonal to R ′ are

4ν∞ + 4ν0, νΩ − 4νk, 2νK ′ , (3.6)

where K ′ contains {∞, 0} and k ∈ {1, 2, . . . , 22}.

Among these Leech roots, the followings are orthogonal to vector t ∈ R:

4ν∞ + 4ν0, νΩ − 4νk, 2νK ′ , (3.7)

where K ′ ∈ S(5, 8, 24), K ′∩K = {∞, 0}, or K ′∩K = {∞, 0, 1, ∗}, and k ∈ K\{∞, 0, 1}. Obviously,

the number of these roots is equal to 42. �

Remark 3.3. In [17, Table I, page 219], Todd listed the 759 octads of the Steiner system

S(5, 8, 24). The octads in the proof of Lemma 3.2 correspond to the following {Eα, Lβ} in

Todd’s table. Here, we assume that

K = {∞, 0, 1, 2, 3, 5, 14, 17}. (3.8)
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A Supersingular K3 Surface and the Leech Lattice 7

Then

E1 = {∞, 0, 1, 2, 4, 13, 16, 22}, E2 = {∞, 0, 1, 2, 6, 7, 19, 21},

E3 = {∞, 0, 1, 2, 8, 11, 12, 18}, E4 = {∞, 0, 1, 2, 9, 10, 15, 20},

E5 = {∞, 0, 1, 3, 4, 11, 19, 20}, E6 = {∞, 0, 1, 3, 6, 8, 10, 13},

E7 = {∞, 0, 1, 3, 7, 9, 16, 18}, E8 = {∞, 0, 1, 3, 12, 15, 21, 22},

E9 = {∞, 0, 1, 4, 5, 7, 8, 15}, E10 = {∞, 0, 1, 4, 6, 9, 12, 17},

E11 = {∞, 0, 1, 4, 10, 14, 18, 21}, E12 = {∞, 0, 1, 5, 6, 18, 20, 22},

E13 = {∞, 0, 1, 5, 9, 11, 13, 21}, E14 = {∞, 0, 1, 5, 10, 12, 16, 19},

E15 = {∞, 0, 1, 6, 11, 14, 15, 16}, E16 = {∞, 0, 1, 7, 10, 11, 17, 22},

E17 = {∞, 0, 1, 7, 12, 13, 14, 20}, E18 = {∞, 0, 1, 8, 9, 14, 19, 22},

E19 = {∞, 0, 1, 8, 16, 17, 20, 21}, E20 = {∞, 0, 1, 13, 15, 17, 18, 19},

L1 = {∞, 0, 4, 6, 8, 16, 18, 19}, L2 = {∞, 0, 4, 6, 13, 15, 20, 21},

L3 = {∞, 0, 4, 7, 9, 10, 13, 19}, L4 = {∞, 0, 4, 7, 11, 12, 16, 21},

L5 = {∞, 0, 4, 8, 10, 12, 20, 22}, L6 = {∞, 0, 4, 9, 11, 15, 18, 22},

L7 = {∞, 0, 6, 7, 8, 9, 11, 20}, L8 = {∞, 0, 6, 7, 10, 12, 15, 18},

L9 = {∞, 0, 6, 9, 10, 16, 21, 22}, L10 = {∞, 0, 11, 12, 13, 16, 19, 22},

L11 = {∞, 0, 7, 8, 13, 18, 21, 22}, L12 = {∞, 0, 7, 15, 16, 19, 20, 22},

L13 = {∞, 0, 8, 9, 12, 13, 15, 16}, L14 = {∞, 0, 8, 10, 11, 15, 19, 21},

L15 = {∞, 0, 9, 12, 18, 19, 20, 21}, L16 = {∞, 0, 10, 11, 13, 16, 18, 20}.

(3.9)

The remaining 6 Leech roots correspond to

4ν∞ + 4ν0, νΩ − 4νk, (3.10)

where k ∈ {2, 3, 5, 14, 17}.

Lemma 3.4. There are exactly 168 Leech roots r such that r and R generate a root lattice

D5. �

Proof. We count the number of such Leech roots r with 〈r, t〉 = 1. Such r corresponds to

one of the following vectors in Λ (see the proof of Lemma 3.2):

νΩ − 4νk (k /∈ K), 2νK ′
(
K ′ ∈ S(5, 8, 24),

∣∣K ∩ K ′∣∣ = 4, 1 /∈ K ′). (3.11)
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8 I. Dolgachev and S. Kondō

Obviously, the number of vectors of the first type is 16. Since the number of octads con-

taining fixed 4 points is 5, the number of vectors of the second type is 40. Thus, we have

the desired number 56 × 3 = 168. �

3.3 The 42 smooth rational curves

Let

w = (0, 0, 1) (3.12)

be the Weyl vector in L (characterized by the property that 〈w, λ〉 = 1 for each Leech root).

Since the Leech lattice does not contain (−2)-vectors, 〈w, r〉 �= 0 for any (−2)-vector r in

L = Λ ⊥ U. Consider its orthogonal projection w ′ to R⊥ ⊗ Q. Easy computation gives

w ′ = w + 5z + 3x + 3y + 3t ∈ R⊥,〈
w ′, w ′〉 = 14. (3.13)

Fix an isometry from SX to R⊥ and let h be the divisor class corresponding to w ′. The

above property of w implies that 〈h, r〉 �= 0 for any (−2)-vectors r in SX. Composing the

embedding with reflections in (−2)-vectors in SX, we may assume that h is an ample di-

visor class. Each of the 42 Leech vectors from Lemma 3.2 defines a vector v from Pic(X)

with self-intersection −2. Since 〈h, v〉 = 1, by Riemann-Roch, we obtain that v is the di-

visor class of a curve Rv with R2
v = −2. Since h is ample, each Rv is an irreducible curve,

and hence isomorphic to P1.

Thus, the 42 Leech roots in Lemma 3.2 define 42 smooth rational curves in X.

Lemma 3.5. Let X be a K3 surface over a field of characteristic 2. The following properties

are equivalent:

(i) the Picard lattice SX of X is isomorphic to U ⊥ D20;

(ii) X has a quasi-elliptic fibration with 5 singular fibers of type D̃4 and 16 disjoint

sections;

(iii) there are two families A and B each consisting of 21 disjoint smooth ratio-

nal curves. Each member in one family meets exactly five members in an-

other family. The set A ∪ B generates SX. �

Proof. (i)⇒(ii) Fix an isometry from SX to R⊥. Consider the five disjoint (−2)-curves Kk

corresponding to

νΩ − 4νk,
(
k ∈ {2, 3, 5, 14, 17}

)
. (3.14)

 at U
niversity of M

ichigan on July 5, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


A Supersingular K3 Surface and the Leech Lattice 9

Then |2Kk +R1 +R2 +R3 +R4| gives a genus 1 fibration with five singular fibers of type D̃4,

where Ri correspond to the vectors Ei in Remark 3.3. Moreover, the curves correspond-

ing to the vectors Li are 16 disjoint sections of this fibration. The fibration satisfies the

Rudakov-Shafarevich criterion of quasi-elliptic fibration [14, Section 4].

(ii)⇒(i) It follows from the Shioda-Tate formula [15] that the discriminant of SX

is equal to 4.

(ii)⇒(iii) We take for A the set of sections and multiple components of fibers. We

take for B the set of nonmultiple components of reducible fibers and the cusp curve. The

curves from the set A correspond to the Leech roots {Eα, 4ν∞ + 4ν0}, and the curves from

B correspond to the Leech roots {Lα, νΩ−4νk}. The cusp curve C corresponds to the Leech

root 4ν∞ +4ν0 (see Remark 3.7). It follows from the Shioda-Tate formula that the set A∪B

generates SX.

(iii)⇒(ii) Take R0 ∈ A and 4 curves R1, R2, R3, R4 from B which intersect R0. Then

F = 2R0 + R1 + R2 + R3 + R4 (3.15)

defines a quasi-elliptic fibration with a fiber F of type D̃4. Let N be the fifth curve from B

which intersects R0. It is easy to see that the curves from A∪B\{N} which do not intersect

the curves R1, R2, R3, R4 form four more reducible fibers of type D̃4. The remaining curves

give 16 disjoint sections. �

Lemma 3.6. Let X be the K3 surface whose Picard lattice is isomorphic to U ⊥ D20 and

let A, B be the sets described in Lemma 3.5. Let h be the divisor class corresponding to

the projection of the Weyl vector w = (0, 0, 1) ∈ Λ ⊥ U to R⊥ ⊗ Q. Then

h =
1

3

∑
E∈A∪B

E. (3.16)
�

Proof. Observe that the right-hand side h ′ of (3.16) intersects each curve Ri with multi-

plicity 1. Since the curves Ri generate SX, h − h ′ is orthogonal to SX, and hence is equal to

zero. �

Remark 3.7. Note that the curve C from the proof of Lemma 3.5 is the cusp curve C ′ of

the quasi-elliptic fibration. In fact, since it intersects the double components of the re-

ducible fibers, it is a 2-section. Since the components Fi of fibers and C ′ generate a sub-

lattice of finite index in SX, we must have C ≡ C ′ +
∑

i niFi for some rational coefficients

ni. Intersecting both sides with each Fj, we get
∑

i ni(Fi · Fj) = 0. Since the intersection

matrix of irreducible components is semidefinite, this implies that
∑

i niFi = mF, where
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10 I. Dolgachev and S. Kondō

F is the class of a fiber and m ∈ Q. But now (C − C ′)2 = −4 − 2(C · C ′) = (mF)2 = 0 gives

C ∼ C ′. Since a smooth rational curve does not move, we get C = C ′.

Remark 3.8. A quasi-elliptic fibration with 5 fibers of type D̃4 has 16 sections if and only

if the Picard lattice has discriminant equal to 4, and hence is isomorphic to U ⊥ D20.

This follows immediately from the Shioda-Tate formula. Also, if X has a quasi-elliptic

fibration with 5 fibers of type D̃4 and 16 sections, then the 16 sections are automatically

disjoint (note that m-torsion sections on an elliptic or a quasi-elliptic surface over a field

of characteristic dividing m are not necessarily disjoint). Hence, the surface contains 42

smooth rational curves with the intersection matrix as described in Lemma 3.5. We now

show this. Let C be the cuspidal curve of the fibration and let Fi = 2E0(i) + E1(i) + · · · +
E4(i), i = 1, . . . , 5, be the reducible fibers of the fibration. The divisor D = 2C + E0(1) +

· · · + E0(4) is nef and satisfies D2 = 0. Thus it defines a genus 1 pencil |D|. No sections

intersect D, so they are contained in fibers of the fibration. Also, the components E1(5),

E2(5), E3(5), E4(5) do not intersect D, and hence are contained in fibers of |D|. We have

16 sections, so there exists Ei(5), say, E1(5), such that it intersects at least four of the

sections. By inspection of the list of possible reducible fibers of a genus 1 fibration, we

find that E1(5) together with 4 disjoint sections form a fiber of type D̃4. Now, we have 12

remaining sections, which intersect one of the components Ei(5), i = 2, 3, 4. Again, we

may assume that E2(5) intersects at least four of the remaining 12 sections, and hence,

we find another fiber of type D̃4. Continuing in this way, we obtain that the 16 sections

together with the curves E1(5), E2(5), E3(5), E4(5) form 4 fibers of type D̃4. In particular,

they are disjoint.

3.4 The 168 divisors

Let r be a Leech root as in Lemma 3.4. The projection r ′ of r into SX ⊗ Q is a (−1)-vector.

We can directly see that each r ′ meets exactly 6 members in each family A and B stated

in Lemma 3.5. For example, if we use the same notation as in Remark 3.3 and take (νΩ −

4ν4, 1, 1) as r, then r meets exactly twelve Leech roots corresponding to

E1, E5, E9, E10, E11, 4ν∞ + 4ν0, L1, L2, L3, L4, L5, L6. (3.17)

We remark that these twelve curves are mutually disjoint. We set

l =
1

7

(
2h +

∑
R∈A

R

)
. (3.18)
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A Supersingular K3 Surface and the Leech Lattice 11

Then l ∈ SX, l
2 = 2, l · R = 0 for any R ∈ A, l · R = 1 for any R ∈ B, and

2r ′ = 2l −
(
R1 + · · · + R6

)
, (3.19)

where R1, . . . , R6 are (−2)-curves in A which meet r ′. Each r ′ defines an isometry

sr ′ : x −→ x + 2
(
r ′ · x)

r ′ (3.20)

of SX, which is nothing but the reflection with respect to the hyperplane perpendicular

to r ′.

Consider a quasi-elliptic fibration on X with five reducible fibers of type D̃4 with

16 sections. Let C be the cusp curve and let F be the class of a fiber. We now take as A

the set of 21 curves consisting of C and simple components of fibers, and as B the set

consisting of 16 sections and multiple components of fibers. Then, we can easily see that

l = C + F and

sr ′(l) = 5l − 2(R1 + · · · + R6),

sr ′(Ri) = 2l − (R1 + · · · + R6) + Ri.
(3.21)

4 Explicit constructions

4.1 Inseparable double covers

Let L be a line bundle on a nonsingular surface Y over a field of characteristic 2, and

s ∈ H0(Y,L2). The pair (L, s) defines a double cover π : Z → Y which is given by local

equations z2 = f(x, y), where (x, y) is a system of local parameters and f(x, y) = 0 is the

local equation of the divisor of zeroes of the section s. Replacing s with s + t2, where

t ∈ H0(Y,L), we get an isomorphic double cover. The singular locus of Z is equal to the

zero locus of the section ds ∈ H0(Y,Ω1
Y ⊗ L2). It is locally given by the common zeroes of

the partials of f(x, y). The canonical sheaf of Z is isomorphic to π∗(ωY ⊗ L). All of these

facts are well known (see, e.g., [8, Chapter 0]).

We consider the special case when Y = P2 and L = OP2(3). The section s is identi-

fied with a homogeneous form F(x0, x1, x2) of degree 6. We assume that F6 = 0 is a reduced

plane curve of degree 6. The expected number N of zeroes of the section dF6 is equal to the

second Chern number c2(Ω1
P2(6)). The standard computation gives c2 = 21. So, if N = 21,

the partial derivatives of any local equation of F6 at a zero x of ds generate the maximal

ideal mx. This easily implies that the cover Z has 21 ordinary double points. So, a minimal

resolution X of Z has 21 disjoint smooth rational curves.
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12 I. Dolgachev and S. Kondō

4.2 The double plane model

To construct our surface X as in Theorem 1.1(vi), we take the inseparable cover corre-

sponding to the plane sextic F6 = 0 with dF6 vanishing at the 21 points of P2 defined over

F4. Consider the sextic defined by the equation

F6 = x4
0x1x2 + x4

1x0x2 + x4
2x0x1 = 0. (4.1)

Its partial derivatives are

x4
1x2 + x4

2x1, x4
0x2 + x4

2x0, x4
1x0 + x4

0x1. (4.2)

Since a4
i = ai for a ∈ F4, we see that all partials vanish at any point in P2(F4). Thus, the

exceptional divisor of a minimal resolution X of the corresponding double cover X ′ →
P2 is a set A of 21 disjoint smooth rational curves. Let Σ(P) be the blowup of the set P.

Then X is isomorphic to the normalization of the base change X ′ ×P2 Σ(P). Now let P̌ be

the set of 21 lines on P2 defined over F4. Their equations are a0x0 + a1x1 + a2x2 = 0,

where (a0, a1, a2) ∈ P. The 21 lines are divided into three types: three lines which are

components of the sextic F6 = 0; 9 lines which intersect the sextic at three of its double

points; and 9 lines which intersect the sextic at two points of its double points. In the

last case, each line is a cuspidal tangent line of the cubic x3
0 + x3

1 + x3
2 = 0. The proper

inverse transform l̄ of any line in Σ(P) is a smooth rational curve with self-intersection

−4, which is either disjoint from the proper inverse transform of the sextic, or is tangent

to it, or is contained in it. In each case, the preimage of l̄ in X is a (−2)-curve taken with

multiplicity 2. Let B be the set of such curves. Since each line p̌ ∈ P̌ contains exactly 5

points from P, and each point p ∈ P is contained in exactly 5 lines from P̌, the sets A and

B satisfy property (v) from Theorem 1.1. Finally, notice that the map X → P2 is given by

the linear system |l|, where l is defined by (3.18).

4.3 A switch

A switch is an automorphism of X which interchanges the sets A and B. We show that

it exists. Consider the pencil of cubic curves generated by the cubics x0x1x2 = 0 and

x3
0 + x3

1 + x3
2 = 0. Its base points are

(1, 1, 0), (1, a, 0),
(
1, a2, 0

)
, (1, 0, 1), (1, 0, a),(

1, 0, a2
)
, (0, 1, 1), (0, 1, a),

(
0, 1, a2

)
.

(4.3)
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A Supersingular K3 Surface and the Leech Lattice 13

After blowing up the base points, we obtain a rational elliptic surface V with 4

reducible fibers of type Ã2. The 12 singular points of the four fibers are the preimages

of the points in P not appearing in (4.3). The surface X is the inseparable cover of the

blowup of V at these points. It has an elliptic fibration with 4 fibers of type Ã5. The base

of this fibration is an inseparable double cover of the base of the elliptic fibration on V.

Now we find that the Mordell-Weil group is isomorphic to Z/2Z ⊕ (Z/3Z)2. Nine of these

sections are curves from the set A of (−2)-curves corresponding to points in P2(F4). They

correspond to the base points (4.3). Another 9 sections are from the set B of (−2)-curves

corresponding to lines in P2(F4). They correspond to the lines dual to the points (4.3),

that is, the lines ax0 + bx1 + cx2 = 0, where (a, b, c) is one of (4.3). Fix a zero section s0

represented by, say, an A-curve. Let Fi =
∑

k∈Z/6 Ek(i), i = 1, 2, 3, 4, be the reducible fibers

such that Ek(i) · Ek+1(i) = 1 and s0 intersects E0(i). It is easy to see that the 9 sections

from A intersect the components E0(i), E2(i), E4(i), each component is intersected by 3

sections. The B-sections intersect the components E1(i), E3(i), E5(i), again each compo-

nent is intersected by 3 sections. Also, the components E0(i), E2(i), E4(i) are B-curves and

the components E1(i), E3(i), E5(i) are A-curves. Thus, we obtain that A ∪ B consists of 18

sections and 24 components of fibers. Now, consider the automorphism T of the surface X

defined by the translation by the 2-torsion section s1. Obviously, s1 intersects the compo-

nents E3(i). We see that T interchanges the sets A and B. Also, note that if s0 corresponds

to (a0, a1, a2), then s1 is a B-curve corresponding to the line a0x0 + a1x1 + a2x2 = 0. To

be more specific, let s0 correspond to the point p = (1, 1, 0). Then s1 corresponds to the

line l : x0 + x1 = 0. Indeed l is the cuspidal tangent of F : x3
0 + x3

1 + x3
2 = 0 at the point

p. After we blow up p, the two sections s0 and s1 intersect at one point of the fiber repre-

sented by F. But this could happen only for the 2-section since the 3-torsion sections do

not intersect (we are in characteristic 2). Similarly, we see that T sends a section repre-

sented by a point (a, b, c) to the section represented by the dual line ax0 + bx1 + cx2 = 0.

Also, it is easy to see that T transforms a fiber component corresponding to a point to the

component corresponding to the dual line. Thus T is a switch.

We remark that we can directly find a configuration of four fibers of type Ã5 and

18 sections on 42 smooth rational curves A∪B. This implies the existence of such elliptic

fibration (and hence a switch) without using the above double plane construction.

4.4 Mukai’s model

In a private communication to the second author, Mukai suggested that the surface X is

isomorphic to a surface in P2 × P2 defined by the equations

x2
0y0 + x2

1y1 + x2
2y2 = 0, x0y2

0 + x1y2
1 + x2y2

2 = 0. (4.4)

 at U
niversity of M

ichigan on July 5, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


14 I. Dolgachev and S. Kondō

To prove this, we consider the linear system |h|, where h is the divisor class representing

the projection w ′ of the Weyl vector w ∈ L. Recall that h is an ample divisor satisfying

h · R = 1 for any R ∈ A ∪ B. Consider the quasi-elliptic fibration |F| as in Lemma 3.5. We

may assume that the set A consists of nonmultiple components of fibers and the cusp

curve C, and the set B consists of 16 sections, and 5 multiple components of fibers.

Let D1 = 2R0+R1+R2+R3+R4 be a reducible member of |F| and let S1, . . . , S4 be four

sections intersecting R1. Consider the quasi-elliptic pencil |F ′| = |2R1 + S1 + S2 + S3 + S4|.

The set (B \ {R0}) ∪ {C} is the set of irreducible components of reducible members of |F ′|.

The curve C ′ = R0 is its cuspidal curve. Now we check that, for any R ∈ A ∪ B,

(h − C − F) · R =
(
C ′ + F ′) · R. (4.5)

Since the curves R generate the Picard group of X, we see that

h = (C + F) +
(
C ′ + F ′). (4.6)

The linear system |C+F| defines a degree 2 map π1 : X → P2 which blows down the curves

from the set A and maps the curves from the set B to lines. The linear system |C ′ + F ′|

defines a degree 2 map π2 : X → P2 which blows down the curves from the set B and

maps the curves from A to lines. Let φ : X → P8 be the map defined by the linear system

|h|. Using (4.6), we easily see that φ maps X isomorphically onto a surface contained in

the Segre variety s(P2 ×P2). We identify X with a surface in P2 ×P2. The restriction of the

projections p1, p2 : P2 × P2 → P2 are the maps π1, π2 defined by the linear systems |C + F|

and |C ′+F ′|. Let l1, l2 be the standard generators of Pic(P2×P2) and [X] = al21+bl1 ·l2+cl22

be the class of X in the Chow ring of P2 × P2. Intersecting [X] with l21 and l22, we get a =

c = 2. Since h2 = 14, we get

14 = [X] · (l1 + l2
)2

=
(
2l21 + bl1 · l2 + 2l22

) · (l21 + 2l1 · l2 + l22
)

= 4 + 2b. (4.7)

Thus

[X] = 2l21 + 5l1 · l2 + 2l22 =
(
2l1 + l2

) · (l1 + 2l2
)
. (4.8)

This shows that X is a complete intersection of two hypersurfaces V1, V2 of bidegree (2, 1)

and (1, 2).

The image of each curve from the set A (resp., B) in P2 × P2 is a line contained

in a fiber of the projection p1 (resp., p2). The fibers of the projection p1 : V1 → P2 define

a linear system |L| of conics in P2. Let V be the Veronese surface parametrizing double
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A Supersingular K3 Surface and the Leech Lattice 15

lines. The intersection |L| ∩ V is either a subset of a conic, or is the whole |L|. Since |L|

contains at least 21 fibers which are double lines that are not on a conic, we see that

|L| ⊂ V. Thus all fibers of p1 : V1 → P2 are double lines. This implies that the equation of

V1 can be chosen in the form

A0y2
0 + A1y2

1 + A2y2
2 = 0, (4.9)

where the coefficients are linear forms in x0, x1, x2. It is easy to see that the linear forms

must be linearly independent (otherwise, X is singular). Thus, after a linear change of

the variables x0, x1, x2, we may assume that Ai = xi, i = 0, 1, 2.

Now consider a switch T ∈ Aut(X) constructed in Section 4.3. Obviously, it inter-

changes the linear systems |C+F| and |C ′+F ′|, and hence is induced by the automorphism

s of P2 × P2, which switches the two factors. This shows that s(V1) = V2, hence the equa-

tion of V2 is

y0x2
0 + y1x2

1 + y2x2
2 = 0. (4.10)

We remark that the curves

(
x0, x1, x2

)
=

(
a0, a1, a2

)
, a0y2

0 + a1y2
1 + a2y2

2 = 0,
(
a0, a1, a2

) ∈ P2
(
F4

)
(4.11)

and their images under the switch form 42 smooth rational curves on X = V1 ∩ V2 satis-

fying Theorem 1.1(v).

4.5 The quartic model

Consider the quartic curve in P2 defined by the equation

F4

(
x0, x1, x2

)
= x4

0 + x4
1 + x4

2 + x2
0x2

1 + x2
0x2

2 + x2
1x2

2 + x2
0x1x2 + x0x2

1x2 + x0x1x2
2

= 0.

(4.12)

This is a unique quartic curve defined over F2, which is invariant with respect to the

projective linear group PGL(3, F2) ∼= PSL(2, F7) (see [9]). Let Y be the quartic surface in P3

defined by the equation

x4
3 + F4

(
x0, x1, x2

)
= 0. (4.13)
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16 I. Dolgachev and S. Kondō

Clearly, the group PGL(3, F2) acts on Y by projective transformations leaving the plane

x3 = 0 invariant.

Taking the derivatives, we find that Y has 7 singular points,

(
x0, x1, x2, x3

)
= (1, 1, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1),

(0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 1, 1).
(4.14)

We denote by {Pi}1≤i≤7 the set of these singular points. Each singular point is locally

isomorphic to the singular point z4 + xy = 0, that is, a rational double point of type A3.

Let X be a minimal resolution of Y. We claim that X is isomorphic to our surface. Note

that the points in P2 whose coordinates are the first three coordinates of singular points

(4.14) are the seven points of P2(F2). Let a0x0 + a1x1 + a2x2 = 0 be one of the seven lines

of P2(F2). The plane a0x0 + a1x1 + a2x2 = 0 in P3 intersects Y doubly along a conic which

passes through 3 singular points of Y. For example, the plane x0 + x1 + x2 = 0 intersects

Y along the conic given by the equations

x2
0 + x2

1 + x2
2 + x2

3 + x0x1 + x0x2 + x1x2 = x0 + x1 + x2 = 0. (4.15)

We denote by {C ′
i}1≤j≤7 the set of these conics and by I(j) the set of indices i with Pi ∈ C ′

j.

Let R
(i)
1 + R

(i)
2 + R

(i)
3 be the exceptional divisor of a singular point Pi. We assume

that R
(i)
2 is the central component. It is easy to check that the proper inverse transform Cj

of each conic C ′
j in X intersects R

(i)
2 with multiplicity 1, if Pi ∈ C ′

j, and does not intersect

other components. This easily gives

h = 2Cj +
∑

i∈I(j)

(
R

(i)
1 + 2R

(i)
2 + R

(i)
3

)
, (4.16)

where h is the preimage in X of the divisor class of a hyperplane section of Y, and we

identify the divisor classes of (−2)-curves with the curves.

Observe now that X contains a set A of 21 disjoint smooth rational curves, seven

curves Ci and 14 curves R
(i)
1 , R

(i)
3 . Each of the seven curves R

(i)
2 intersects exactly 5 curves

from the set A (with multiplicity 1). We will exhibit the additional 14 smooth rational

curves which together with these 7 curves form a set B of 21 disjoint (−2)-curves such

that A ∪ B satisfies Theorem 1.1(v).

To do this, we take a line in P2(F2), for example, x1 = 0. Then there are exactly 4

points on P2(F2) not lying on this line

(
x0, x1, x2

)
= (0, 1, 0), (1, 1, 0), (0, 1, 1), (1, 1, 1). (4.17)
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The plane H : x1 + x3 = 0 in P3 passes through the 4 singular points of the quartic sur-

face Y

P1 = (0, 1, 0, 1), P2 = (1, 1, 0, 1), P3 = (0, 1, 1, 1), P4 = (1, 1, 1, 1) (4.18)

and intersects Y along a quartic curve Q ′ given by the equations

x4
0 + x4

2 + x2
0x2

1 + x2
1x2

2 + x2
2x2

0 + x0x1x2

(
x0 + x1 + x2

)
= x1 + x3 = 0. (4.19)

It splits into the union of 2 conics

Q ′
1 : x2

0 + ax2
2 + x0x1 + ax1x2 = x1 + x3 = 0,

Q ′
2 : x2

0 + a2x2
2 + x0x1 + a2x1x2 = x1 + x3 = 0.

(4.20)

Let C ′ be one of the 7 conic curves C ′
i’s corresponding to the line x1 = 0. It is given by the

equations

x2
0 + x2

2 + x2
3 + x0x2 = x1 = 0. (4.21)

Then H meets C ′ at q1 = (1, 0, a, 0), q2 = (1, 0, a2, 0). Note that Q ′
1 passes through P1, . . . ,

P4, q1 and Q ′
2 passes through P1, . . . , P4, q2. Each singular point Pi of the quartic Y is lo-

cally isomorphic to z4 + xy = 0 and the local equation of the quartic Q ′ at this point

is z = 0. This easily shows that the proper inverse transform of Q ′ in X consists of two

smooth rational curves Q1 and Q2, each intersects simply the exceptional divisor at one

point lying in different components of R
(i)
1 ∪ R

(i)
3 . Thus Q1 (or Q2) intersects exactly five

curves from A, 4 curves R
(i)
j (j = 1 or 3, i = 1, . . . , 4) and the proper inverse transform of

C ′ in X. Also, it is clear that 14 new quartic curves obtained in this way neither intersect

each other, after we resolve the singularities of the quartic, nor intersect the curves R
(i)
2 .

This proves the claim.

Remark 4.1. The configuration C of 14 curves Ci, R
(i)
2 is isomorphic to the configuration of

points and lines in P2(F2). The group PGL(3, F2) acts on the surface X via its linear action

in P3 leaving the hyperplane x3 = 0 fixed. Its action on the configuration C is isomorphic

to its natural action on lines and points.

5 Automorphisms of X

In this section, we describe the group of automorphisms of the surface X. First, we ex-

hibit some automorphisms of X and then prove that they generate the group Aut(X).
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18 I. Dolgachev and S. Kondō

5.1 The group PGL(3, F4)

Consider the double-plane model of X with the branch curve F6 = 0 as in (4.1). The group

G = PSL(3, F4) acts naturally on the plane P2(F4). For any g ∈ GL(3, F4), let Pg = F6(g(x)).

Let

g
(
x0, x1, x2

)
=

(
a0x0 + a1x1 + a2x2, b0x0 + b1x1 + b2x2, c0x0 + c1x1 + c2x2

)
. (5.1)

After substituting, we obtain that

Pg(x) = α0x4
0x1x2 + α1x4

1x0x2 + α2x4
2x0x1 + A2

g, (5.2)

where Ag is a cubic polynomial, and

α0 = a4
0

(
b1c2 + b2c1

)
+ b4

0

(
a1c2 + a2c1

)
+ c4

0

(
a1b2 + a2b1

)
,

α1 = a4
1

(
b0c2 + b2c0

)
+ b4

1

(
a0c2 + a2c0

)
+ c4

1

(
a2b0 + a0b2

)
,

α2 = a4
2

(
b1c0 + b0c1

)
+ b4

2

(
a1c0 + a0c1

)
+ c4

2

(
a1b0 + a0b1

)
.

(5.3)

Since x4 = x for all x ∈ F4, we see that

α0 = α1 = α2 = det(g). (5.4)

Thus, the map Tg : (z, x) → (det(g)2z + Ag(x), g(x)) is an automorphism of the double

plane. It is easy to verify that

Ag ′g(x) = det
(
g ′)2

Ag(x) + Ag ′
(
g(x)

)
. (5.5)

This implies that the map g �→ Tg defines an action of GL(3, F4) on the double plane.

Obviously, it factors through an action of PGL(3, F4). Since G = PSL(3, F4) is simple, the

action of G is faithful. We can easily see that PGL(3, F4) is also faithful.

Note that the induced actions of G on the sets A and B is isomorphic to the ac-

tions of G on points and lines in P2(F4).

5.2 The 168 Cremona transformations

Let P1, . . . , P6 be 6 points in P2(F4) such that no three among them are colinear. Since each

smooth conic over F4 contains exactly 5 points (it is isomorphic to P1
F4
), we see that the

set P = {P1, . . . , P6} is not on a conic. This allows us to define a unique involutive quintic
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Cremona transformation Φ given by the linear system of curves of degree 5 defined over

F4 with double points at the points of P (see [7, Book IV, Chapter VII, Section 4]). Let Ci

be the conic containing the set P \ {Pi}, i = 1, . . . , 6. The transformation Φ blows down

each conic Ci to a point Qi of P2(F4). Let B : F6 = 0 be the branch curve (4.1) of the double

cover X → P2. By adding to F6 the square of a cubic form, we may assume that each point

from P is a double point of the curve B. Since Φ−1 (a line) is a quintic with double points

at P, the image B ′ = Φ(B) of B is a curve of degree 5 ·6−4 ·6 = 6. Each point Qi is a double

point of B ′. Let F ′
6(y0, y1, y2) = 0 be the equation of B ′ and let Φ be given by homogeneous

polynomials of degree 5

(
y0, y1, y2

)
=

(
f0

(
x0, x1, x2

)
, f1

(
x0, x1, x2

)
, f2

(
x0, x1, x2

))
. (5.6)

Then

F ′
6

(
y0, y1, y2

)
= F6

(
x0, x1, x2

) 6∏
i=1

qi

(
x0, x1, x2

)2
, (5.7)

where qi(x0, x1, x2) = 0 are the equations of the exceptional conics Ci. Taking the par-

tials, we find

2∑
i=0

∂F ′
6

∂yi

∂fi

∂xj
= q2 ∂F6

∂xj
, j = 0, 1, 2, (5.8)

where q =
∏6

i=1 qi. Let P ∈ P2(F4) \ P. We know that the partials of F6 vanish at P. Since

the determinant of the Jacobian matrix (∂fi/∂xj) of Φ is invertible outside the locus q =

0, we obtain that the partials of F ′
6 vanish at Φ(P). This shows that the partials of F ′

6

vanish at all points of P2(F4). Using the same argument as in Section 5.1, we find that

F ′
6 = αF6 + F2

3. Since we chose Φ so that Φ2 is the identity, we get α2 = 1, and hence

α = 1. Now, we can define a birational transformation of the double plane by the formula

Φ̃(z, x) = (z+F3,Φ(x)). This birational automorphism extends to a regular automorphism

(since X is a minimal model).

Next, we show that the number of sets P is equal to 168. We say that a subset of

P2(F4) is independent if no three points from it are colinear. Let Nk be the number of

independent subsets of P2(F4) of cardinality k. We have

N1 = 21, N2 =
20N1

2
, N3 =

16N2

3
, N4 =

9N3

4
,

N5 =
2N4

5
, N6 =

N5

6
=

21 · 20 · 16 · 9 · 2
6!

= 168.

(5.9)
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20 I. Dolgachev and S. Kondō

Finally, we remark that the above 168 automorphisms act on the Picard lattice

SX as reflections with respect to 168 (−4)-vectors stated in Section 3.4. This follows from

(3.21).

We denote by N the normal subgroup of Aut(X) generated by 168 involutions.

5.3 The automorphism group

It is known that the natural map from Aut(X) to O(SX) is injective (see [14, Section 8,

Proposition 3]). Moreover, Aut(X) preserves the ample cone, and hence Aut(X) is a sub-

group of the factor group O(SX)/W(SX)(2), where W(SX)(2) is the group generated by (−2)-

reflections. By the argument in [11, Lemma 7.3], we can see that, for any isometry g in

O(SX) preserving an ample class, there exists an automorphism ϕ ∈ N such that g ◦ ϕ ∈
Aut(D(X)). This implies that O(SX)/W(SX)(2) is a subgroup of a split extension of N by

Aut(D(X)). Recall that Aut(D(X)) ∼= M21 · D12 (see Section 3.2). Here M21 = PSL(3, F4).

The Frobenius automorphism of F4 gives an involution on 21 lines and 21 points in P2(F4).

This involution induces an isometry ι of SX because 42 smooth rational curves generate

SX (Lemma 3.6). The dihedral group D12 is generated by ι, a switch, and an automor-

phism of order 3 induced from a projective transformation of P2(F4) given by




a 0 0

0 1 0

0 0 1


 . (5.10)

We will show that ι cannot be represented by an automorphism of X. To do this, we con-

sider a quasi-elliptic fibration with 5 fibers of type D̃4 from Lemma 3.5. Then ι fixes 3

fibers of type D̃4 and switches the remaining 2 fibers. This does not happen if ι is real-

ized as an automorphism, since otherwise ι will induce a nontrivial automorphism of P1

with 3 fixed points.

Thus, we conclude that

Aut(X) ∼= N · PGL
(
3, F4

) · 2, (5.11)

where the involution 2 is generated by a switch.

Corollary 5.1. The finite group PGL(3, F4) · 2 is maximal in the following sense. Let G be

a finite group of automorphisms of X, then G is conjugate to a subgroup of PGL(3, F4) · 2.

�
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Proof. Note that G fixes the vector

h̃ =
∑
g∈G

g∗(h), (5.12)

which is nonzero because h is an ample class and G is an automorphism group. The vec-

tor h̃ is conjugate to a vector in D(X) under N (see Section 5.3). This means that G is con-

jugate to a subgroup of Aut(D(X)). Now the assertion follows. �

Conjecture 5.2. Let X be a K3 surface over an algebraically closed field k of characteristic

p admitting the group PGL(3, F4) · 2 as its group of automorphisms. Then p = 2 and X is

isomorphic to the surface X from Theorem 1.1. �

6 Proof of Theorem 1.1

By definition, X satisfies property (i) (see Section 2.1). By Proposition 2.1, X satisfies

properties (ii) and (iii). By Lemma 3.5, X satisfies properties (iv) and (v). Property (vi)

follows from Section 4.2. Property (vii) was proven in Section 4.5 and property (viii) in

Section 4.4. The group of automorphisms was computed in Section 5. The uniqueness fol-

lows from the fact that the Artin invariant σ is equal to 1.

It remains to prove the equivalence of properties (i)–(viii).

(ii)⇒(i). The components of fibers and the zero section define the sublattice U ⊥
D20 ⊂ Pic(X) of rank 22. If the assertion is false, Pic(X) would be unimodular. However,

there are no even unimodular lattices of rank 22 of signature (1, 21).

(i)⇒(ii) An isotropic vector f from U can be transformed with the help of (−2)-

reflections into the class of a fiber of a genus 1 fibration. Let e1, . . . , e20 be a positive root

basis of D20. Without loss of generality, we may assume that e1 is effective. This will

imply that all ei’s are effective. Since f · ei = 0 for all i’s, the irreducible components

of ei’s are contained in fibers of the genus 1 fibration. Since the rank of the subgroup of

Pic(X) generated by irreducible components of fibers is at most 20, we see that all ei’s are

irreducible (−2)-curves. They are all contained in one fiber which must be of type D̃20.

If f ′ is an isotropic vector from U with 〈f, f ′〉 = 1, the class of f ′ − f gives the class of a

section. A theorem from [14, Section 4] implies that the fibration is quasi-elliptic.

(i)⇔(iv) follows from Lemma 3.5.

(iv)⇔(v) follows from Lemma 3.5.

(ii)⇔(iii) follows from Proposition 2.1.

(vi)⇔(i) follows from Section 4.2.

(vii)⇔(i) follows from Section 4.5.

(i)⇔(viii) follows from Section 4.4 and the uniqueness of X.
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This finishes the proof of Theorem 1.1.

Remark 6.1. If we take a sublattice A2 ⊥ A2 in U ⊥ Λ, its orthogonal complement is

isomorphic to U ⊥ E8 ⊥ E6 ⊥ E6. This lattice is isometric to the Picard lattice of the su-

persingular K3 surface in characteristic 3 with the Artin invariant 1. It is known that this

K3 surface is isomorphic to the Fermat quartic surface [16, Example 5.2]. Using the same

method as in this paper, we can see that the projection of the Weyl vector is the class of a

hyperplane section of the Fermat quartic surface, 112 lines on the Fermat quartic surface

can be written in terms of Leech roots and the projective automorphism group PGU(4, F3)

of the Fermat quartic surface appears as a subgroup of Aut(D).

Remark 6.2. A lattice is called reflective if its reflection subgroup is of finite index in the

orthogonal group. The Picard lattice U ⊥ D20 is reflective. This was first pointed out by

Borcherds [2] and it is the only known example (up to scaling) of an even reflective lattice

of signature (1, 21).

Esselmann [10] determined the range of possible ranks r of even reflective lattices

of signature (1, r − 1) as 1 ≤ r ≤ 20 or r = 22. This is the same as the possible ranks

of the Picard lattices of K3 surfaces. Of course, the rank r = 22 occurs only when the

characteristic is positive.
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[2] R. Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987), no. 1, 133–

153.

[3] J. H. Conway, Three lectures on exceptional groups, Finite Simple Groups (Proc. Instructional

Conf., Oxford, 1969), Academic Press, London, 1971.

[4] , The automorphism group of the 26-dimensional even unimodular Lorentzian lattice,

J. Algebra 80 (1983), no. 1, 159–163.

[5] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., Grundlehren

der Mathematischen Wissenschaften, vol. 290, ch. 10, Springer-Verlag, New York, 1999.

 at U
niversity of M

ichigan on July 5, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


A Supersingular K3 Surface and the Leech Lattice 23

[6] , Sphere Packings, Lattices and Groups, 3rd ed., Grundlehren der Mathematischen Wis-

senschaften, vol. 290, ch. 27, Springer-Verlag, New York, 1999.

[7] J. L. Coolidge, A Treatise on Algebraic Plane Curves, Dover Publications, New York, 1959.

[8] F. R. Cossec and I. V. Dolgachev, Enriques Surfaces. I, Progress in Mathematics, vol. 76,
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