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We show that the plane Cremona group over a perfect field k of characteristic p ≥ 0

contains an element of prime order � ≥ 7 not equal to p if and only if there exists a

two-dimensional algebraic torus T over k such that T (k) contains an element of order �.

If p = 0 and k does not contain a primitive �th root of unity, we show that there are no

elements of prime order � > 7 in Cr2(k) and all elements of order 7 are conjugate.

1 Introduction

The classification of conjugacy classes of elements of prime order � in the plane Cremona

group Cr2(k) over an algebraically closed field k of characteristic 0 has been known

for more than a century. The possible orders of elements not conjugate to a projective

transformation are 2, 3, and 5 (see [6] and historic references there). Much less is known

in the case when the field k is not algebraically closed. For example, when k = Q, there

are no elements of prime order � > 3 that are conjugate to projective automorphisms of

the plane. However, there exists an element of order 5 in Cr2(Q) that acts biregulary on

a rational Del Pezzo surface of degree 5. The first example of a birational automorphism

of P2
Q of order 7 was constructed by J.-P. Serre. It is realized as an automorphism of a
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rational Del Pezzo surface of degree 6. He also raised the question about the existence of

birational automorphisms of prime order � > 7. As a byproduct of results of this article,

we prove that Cr2(Q) does not contain elements of prime order � > 7 and all elements of

order 7 are conjugate in Cr2(Q).

The main result of the article is the following theorem.

Theorem 1. Let k be a perfect field of characteristic p ≥ 0. Then Cr2(k) contains an

element of prime order � > 5 not equal to p if and only if there exists a two-dimensional

algebraic k-torus T such that T (k) contains an element of order �.

Recall that an algebraic k-torus is an affine algebraic group T over k that becomes

isomorphic to the torus Gn
m over an algebraic closure k̄ of k. In dimension two all k-tori

are rational over k [16], hence T (k) is contained in Cr2(k). The following result of J.-P.

Serre from [15], Theorem 4, gives a necessary and sufficient condition in order that an

algebraic k-torus contains an element of order � coprime to p.

Theorem 2. Let k be a field of characteristic p ≥ 0 and � �= p a prime number. Then the

following assertions are equivalent:

(i) there exists a two-dimensional algebraic k-torus T such that T (k) contains an

element of order �;

(ii) the degree of the cyclotomic extension k(ζ�) over k takes values in the set

{1, 2, 3, 4, 6}. Here ζ� is a generator of the group of �th roots of unity in k̄. �

We will also prove the following uniqueness result.

Theorem 3. Assume that k is of characteristic 0 and does not contain a primitive

�th root of unity. Then Cr2(k) does not contain elements of prime order � > 7 and all

elements of order 7 in Cr2(k) are conjugate to an automorphism of a Del Pezzo surface of

degree 6. �

We are using the same tools applied in [6] for classification of conjugacy classes of

finite subgroups of Cr2(C) adjusted to the case when the ground field is not algebraically

closed. As in [6], we show that there is a bijection between the conjugacy classes of finite

subgroups G of Cr2(k) and G-equivariant birational isomorphism classes of projective

k-rational smooth surfaces X equipped with a biregular action of G. Then we use an

equivariant version of two-dimensional Mori theory of minimal models over k. It allows

us to describe minimal pairs (X, G).
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The authors believe that, granted time and patience, the methods of [6] and [15]

can be used for classification of the conjugacy classes of all finite subgroups of Cr2(k).

We thank J.-P. Serre for letting us know about his results published in [15] that

were crucial for most of results in this article. His numerous correspondence with us on

the subject of this work is greatly appreciated. We are grateful to the referee for many

useful comments on our article.

2 Minimal Rational G-Surfaces

Let k be a field and k̄ be its algebraic closure. A geometrically rational surface X is a

smooth projective surface over k such that X̄ is birationally isomorphic to P2
k̄
. Here and

below, for any scheme Z over k we denote by Z̄ the scheme Z ×k Spec k̄. A geometrically

rational surface is called k-rational if it is k-birational to P2
k.

The following result is a culmination of several results due to V. Iskovskikh and

Yu. Manin. Its modern proof based on the theory of elementary links can be found in [7],

Section 4, p. 642.

Theorem 4. A minimal geometrically rational surface X over a perfect field k is k-

rational if and only if the following two conditions are satisfied:

(i) X(k) �= ∅;

(ii) d = K2
X ≥ 5. �

Let G be a finite subgroup of Autk(X). For any extension k′/k, the group G acts

naturally on Xk′ = X ×k Spec k′ and hence can be considered as a subgroup of Autk′ (Xk′ ).

A geometrically rational G-surface is a pair (X, G), where X is a geometrically

rational surface over k and G is a finite subgroup of Autk(X). A geometrically rational

G-surface (X, G) is called minimal if any G-equivariant birational k-morphism X → X′

to a geometrically rational G-surface X′ is a k-isomorphism. In the case when G = {1}, a

minimal surface is just a k-minimal surface in the sense of the theory of minimal models.

If G �= {1}, a minimal rational G-surface is not necessarily a k-minimal surface.

For lack of reference, we will prove the following theorem that is essentially due

to S. Mori.

Theorem 5. Let (X, G) be a minimal geometrically rational G-surface over a perfect field

k. Then one of the following two cases occurs:
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(i) X is a Del Pezzo surface with Pic(X)G ∼= Z of degree d := K2
X �= 7;

(ii) X admits a G-equivariant conic bundle structure with Pic(X)G ∼= Z2 generated,

after tensoring with Q, by KX and the class of a fiber. �

Recall that a conic bundle structure on a geometrically rational surface X is a

morphism φ : X → C , where C is a smooth genus 0 curve (not necessary isomorphic to

P1
k) and all fibers over closed points ts are isomorphic to reduced conics over the residue

field k(t ) of t . A nonsmooth fiber over a closed point t becomes isomorphic to a bouquet of

two P1’s over a quadratic extension of the residue field k(t ) of t . If c denotes the number

of singular geometric fibers of φ, then d := K2
X = 8 − c.

Let us first introduce the main attributes of Mori theory. These are the space

N(X) = Pic(X) ⊗ R, the cone NE (X) ⊂ N(X) spanned by effective divisor classes in Pic(X)

and the part NE (X)KX≥0 of NE (X) defined by the inequality KX · D ≥ 0.

Let N(X̄), NE (X̄) and NE (X̄)KX̄≥0 be the similar objects for the surface X̄. The Galois

group �k = Gal(k̄/k) of k acts naturally on X̄ and hence acts on N(X̄) and NE (X̄). The action

factors through the action of a finite quotient of �k and we have ([12, Proposition 2.6])

N(X̄)�k = N(X), NE (X̄)�k = NE (X), NE (X̄)�k
KX̄≥0 = NE (X)KX≥0,

NE(X) = NE(X)KX≥0 + R≥0[�1] + · · · + R≥0[�s], (1)

where �1, . . . , �s are k-irreducible curves such that �̄i is equal to the �k-orbit of an extremal

curve, i.e. a smooth rational curve Ēi such that 0 > KX̄ · Ēi ≥ −3.

By Theorem 2.7 from [12] one of the following cases occurs:

(i) There exists �̄i equal to a disjoint sum of (−1)-curves on X̄. In this case there

exists a birational k-morphism f : X → Y onto a smooth surface Y such that

f (�i) is a point.

(ii) rank Pic(X) = 2, �2
1 = 0 and there exists a conic bundle structure on X with the

class of a fiber over a closed point equal to the divisor class of �1.

(iii) Pic(X) ∼= Z and X is a k-minimal Del Pezzo surface of degree d �= 7.

Applying the averaging operator
∑

g∈G g to (1), we obtain

NE(X)G = NE(X)GKX≥0 + R≥0

⎡
⎣∑

g∈G

g(�1)

⎤
⎦ + · · · + R≥0

⎡
⎣∑

g∈G

(g(�s)

⎤
⎦ . (2)

Write R≥0[
∑

g∈G g(�i)] = R≥0[Li], where Li is a reduced G-orbit of �i. Let L be one of the

orbits that generate an extremal ray in NE(X)G (since KX is not nef, it exists).
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From now on we assume that rank Pic(X)G ≥ 2, otherwise the assertion of

Theorem 5 is obvious. Note that the case d = 7 is excluded for the obvious reason that

X̄ contains three (−1)-curves forming a chain, the middle one is �k × G-invariant.

The proof of Lemma 2.5 from [12], shows that L2 ≤ 0 since otherwise [L] lies

in the interior of NE(X)G . Since R≥0[L] is an extremal ray in NE(X)G , the divisor L̄ is a

�k × G-orbit of an irreducible component Ē of �̄.

Assume Ē2 = 0 as in case (ii) from above. Then L̄2 ≤ 0 implies that L̄ is the disjoint

sum of irreducible smooth rational curves with self-intersection 0. By the Hodge index

theorem, they are proportional in NE(X̄) (otherwise the signature of the intersection form

on Pic(X̄) is not equal to (1, r)) and the contraction of �k × G-invariant extremal ray R≥0[L̄]

defines a G-equivariant k-map to some k-curve C with geometrically connected fibers

(see [12, 2.5.1]).

Assume that we are in the case (i) from above, i.e. Ē is a (−1)-curve. Let L̄ =
Ē1 + · · · + Ēm, where {Ē1, . . . , Ēm} is the orbit of Ē = Ē1 with respect to �k × G. We have

0 ≥ L̄2 = mĒ1 · (Ē1 + · · · + Ēm) = m

(
−1 +

m∑
i=2

Ē1 · Ēi

)
. (3)

If L̄2 < 0, then
∑m

i=2 Ē1 · Ēi = 0. Replacing Ē1 with some other Ēi, we obtain that L̄

is a disjoint sum of (−1)-curves. Thus L can be G-equivariantly contracted contradicting

the minimality of (X, G).

So we may assume that L̄2 = 0 and
∑m

i=2 Ē1 · Ēi = 1. Without loss of generality, Ē ·
Ē2 = 1, Ē · Ēi = 0, i > 2. Write Ē2 = g(Ē ) for some g ∈ �k × G. Then Ē · Ē2 = g−1(Ē ) · Ē = 1,

hence g−1(Ē ) = Ē2 = g(Ē ) and g2 leaves Ē invariant. If m = 2, we obtain that the linear

system |Ē1 + Ē2| defines a G-invariant k-map onto P1. Assume m ≥ 3. Replacing Ē1 with

Ē3 in (3), and repeating the argument, we may assume that � is equal to the disjoint

sum of m
2 -bouquets Bi of two (−1)-curves, and each g ∈ �k × G either leaves a bouquet

invariant or sends it to another bouquet. Since B2
i = 0, Bi · KX = −2, and Bi · Bj = 0, i �= j,

by the Hodge index theorem, the divisors Bi represent the same divisor class. The linear

system |nBi|, for some n > 0, defines a G-invariant k-map to a curve C with geometrically

connected fibers.

It remains to be shown that a G-invariant k-map f : X → C constructed as above

is a conic bundle structure and also rank Pic(X)G = 2. The divisor class L defines a G-

equivariant extremal ray. Thus, its contraction from above has the relative Picard rank

equal to 1, defining a relatively minimal conic bundle. This implies that rank Pic(X)G = 2.
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Remark 1. The assumption that the ground field k is perfect is not essential. We used

it only to simplify the notations (see [12, Theorem 2.7], where k is not assumed to be

perfect). �

The following lemma is well known. Its proof in [6, Lemma 3.5] can be extended

to the case of an arbitrary ground field k by referring to [9], where one can find a proof of

the existence of a G-equivariant resolution of surfaces. In fact, in Section 2 of his article,

Lipman proves that the known existence of any resolution of a normal surface X implies

that the sequence

X = X1 ← X2 ← · · · ← Xn ← · · · ,

where each morphism Xi+1 → Xi is the composition of the blow-up of all singular points

and the normalization, terminates in a nonsingular surface Y. Obviously, the composition

map Y → X is G-equivariant for any finite group G acting on X.

Lemma 6. Let G be a finite subgroup of Cr2(k), then there exists a k-rational nonsingular

surface X, an injective homomorphism ρ : G → Autk(X) and a birational G-equivariant

k-map φ : X → P2
k such that

G = φ ◦ ρ(G) ◦ φ−1.
�

The G-surface (X, ρ(G)) can be obviously replaced by a minimal rational G-

surface, and in this way we establish a natural bijective correspondence between the

conjugacy classes of finite subgroups G of Cr2(k) and birational isomorphism classes of

minimal nonsingular k-rational G-surfaces (X, G) (see Theorem 3.6 in [6]).

In this note, we are interested in the case k is any perfect field and surfaces X are

k-rational. Since k is perfect, the surface X̄ is a nonsingular surface over k̄, so that we

can apply the theory of nonsingular rational surfaces over an algebraically closed field.

It follows from above that we may assume that an automorphism σ of prime

order � acts on a k-rational surface X making the pair (X, 〈σ 〉) a minimal 〈σ 〉-surface. We

say that σ acts minimally on X.

3 Elements of Finite Order in Reductive Algebraic Groups

Here we give a short exposition of some of Serre’s results from [15] that are relevant to

our discussion.
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Elements of Prime Order 3473

For any integer N and a prime number �, we denote by ν�(N) the largest n such

that �n divides N. For any finite group A we set ν�(A) to be equal to ν�(|A|).
The first historical result on elements of finite order in linear groups is the

following theorem of Minkowski [11].

Theorem 7. Let n be an integer ≥ 1 and � be a prime number. Define

M(n, �) =
[

n

� − 1

]
+

[
n

�(� − 1)

]
+

[
n

�2(� − 1)

]
+ · · ·

Let G be a finite subgroup of GLn(Q). Then ν�(G) ≤ M(n, �) and there exists an �-subgroup

G of GLn(Q) with ν�(G) = M(n, �). �

We will be interested in a similar result for the group PGLn(k) = GLn(k)/k∗. We

cannot apply the previous theorem since an element of finite order does not necessary

lift to an element of finite order in GLn(k). However, we can apply the following result of

Serre from [15].

From now on � will denote a prime odd number not equal to the characteristic

of k.

Let ζ� be a generator of the group μ�(k̄) of �th roots of unity in k̄. Set

t� = [k(ζ�) : k], m� = sup{d ≥ 1 : ζ�d ∈ k(ζ�)}.

Let P be the prime field contained in k. By Galois Theory,

t� = [P (ζ�) : P (ζ�) ∩ k].

If char k = 0, we obtain that t� divides � − 1. If k is of characteristic p > 0, then P (ζ�) ∼= Fps ,

where s is the order of p in F∗
� . Thus t� divides s.

For example, when k = Q, we have t� = � − 1 and m� = 1. If k = Fq, then t� is equal

to the order of q in F∗
� and m� = ν�(q�−1 − 1).

The following is a special case of Theorem 6 from [15].

Theorem 8. Let A be a finite subgroup of PGLn+1(k). For any � > 2,

ν�(A) ≤
∑

2≤s≤n+1,t�|s
(m� + ν�(s)),

(if the index set is empty, ν�(A) = 0). �

Corollary 9. Assume t� ≥ n + 2. Then PGLn+1(k) does not contain elements of prime

order �. �

 at U
niversity of M

ichigan on July 5, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


3474 I. V. Dolgachev and V. A. Iskovskikh

For example, if k is of characteristic zero and m�(k) = {1} (e.g. k = Q), then t� =
� − 1 and we get

n ≥ � − 2

if PGLn+1(k) contains an element of order �. For example, PGLn+1(k) contains an element

of order 7 only if n ≥ 5.

On the other hand, if k = F2 and � = 7, then t� = 3 and it is known that PGL3(k) is

isomorphic to a simple group of order 168 and it contains an element of order 7.

The next result of Serre [15], Theorems 4 and 4’, concerns elements of finite order

in an algebraic k-torus.

Theorem 10. Let T be an algebraic k-torus and A be a finite subgroup of T (k). Then

ν�(A) ≤ m�

[
dim T

φ(t�)

]
,

where φ is the Euler function. Assume m� < ∞ (e.g. k is finitely generated over its prime

subfield). For any n ≥ 1 there exists an n-dimensional k-torus T and a finite subgroup A

of T (k) such that ν�(A) = m�[ dim T
φ(t�)

]. �

Since this will be of importance to us, let us give Serre’s construction proving the

last assertion.

Let T be an algebraic k-torus of dimension d over an arbitrary field k. By defini-

tion, it is an affine algebraic group over k that becomes isomorphic to the group Gd
m over

some finite extension E of k. One can always choose E to be a separable Galois extension,

it is called a splitting field of T .

We denote by M = Hom(Gd
m, Gm) the group of rational characters of Gd

m, so that

Gd
m,E

∼= Spec Z[M]. A d-dimensional k-torus T split over a Galois extension E/k with

Galois group � defines a structure of a �-module on M such that T ∼= Spec E [M]�. In this

way the category of d-dimensional k-tori split over E is anti-equivalent to the category

of free abelian groups equipped with a structure of a �-module [16].

The group algebra Z[�] equipped with the natural structure of a Z[�]-module M

(the regular representation of �) defines an algebraic k-torus RE/k(Gm) of dimension equal

to [E : k]. It represents the functor on the category of k-algebras defined by L → (L ⊗k E )∗.

Now let us take E = k(ζ�) and let � be the Galois group of E/k. It is a cyclic group

of order t = t�. Let

xt − 1 = 	t (x)
(x),
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where 	t (x) is the tth cyclotomic polynomial over Q. We have Z[�] ∼= Z[x]/(xt − 1).

The multiplication by 
(x) in Z[x] defines an inclusion of �-modules Z[x]/(	t (x)) ↪→
Z[x]/(xt − 1) and hence a surjective homomorphism of k-tori RE/k(Gm) → T . Here T is

a φ(t )-dimensional k-torus defined by the character module M = Z[x]/(	t (x)). One can

view T as the image of RE/k(Gm) under the endomorphism 
(γ ), where γ is a generator

of �. One can show that 
(γ ) acts on the subgroup 〈ζ�m� 〉 of E∗ by an automorphism. This

implies that T contains ζ�m� . Thus

m�

[
dim T

φ(t )

]
= m�

[
φ(t )

φ(t )

]
= m� = ν�(〈ζ�m� 〉).

Now, for any positive integer n let s = [ n
φ(t ) ]. Take T equal to Ts

1 × G
n−sφ(t )
m , where

T1 is constructed as above. It is easy to see that T satisfies the last assertion of

Theorem 10.

Corollary 11. A two-dimensional k-torus T with T (k) containing an element of prime

order � > 2 exists if and only if t� takes values in the set {1, 2, 3, 4, 6}. �

Proof. In fact, the set {1, 2, 3, 4, 6} is the set of positive integers t� such that φ(t�) ≤ 2. If

φ(t�) > 2, Serre’s bound implies that no such torus exists. If φ(t�) = 2, Serre’s construction

from above exhibits such a torus. If φ(t�) = 1, i.e. t� = 1 or 2, we can take T = G2
m,k in the

first case and T = Rk(ζ�)/k(Gm) in the second case. �

4 Del Pezzo Surfaces of Degree 6

Here we recall some well-known facts about toric Del Pezzo surfaces of degree 6. Let k̄

be an algebraic closure of k. We continue to assume that k is perfect. Recall that a Del

Pezzo surface S of degree 6 over k̄ is isomorphic to the blow-up of three noncollinear

points p1, p2, p3 in P2
k̄
. The set of (−1)-curves on S consists of six curves, the exceptional

curves of the blow-up morphism, and the proper transforms of the lines pi, pj. In the

anticanonical embedding S ↪→ P6
k̄
, they are six lines forming a hexagon.

The surface S is isomorphic to Dk̄ = D ⊗ k̄, where D is a unique smooth projective

toric surface (defined over Z) with the Picard group of rank 4. It is defined by a complete

Z2-fan 
 whose 1-skeleton Sk1(
) consists of six rays, the primitive vectors in Z2 spanning

these rays are ±e1, ±e2, ±(e1 + e2), where e1, e2 is a basis in Z2. The closures of the orbits

corresponding to these rays is the set of six (−1)-curves.
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The group of automorphisms of the surfaceD is a group scheme over Z isomorphic

to G2
m � D12, where D12 is the dihedral group of order 12, realized as the subgroup of

GL2(Z) leaving the fan 
 invariant.

Let X be a rational Del Pezzo surface of degree 6 over k. Then X̄ = X ⊗k k̄ is

isomorphic to D = D ⊗ k̄. Since the set of all (−1)-curves on X̄ is defined over k, its

complement U in X becomes isomorphic to a torus over k̄. This implies that U is a torsor

(= principally homogeneous space) over a two-dimensional k-torus T (see [10, Chapter IV,

Theorem 8.6]). Since X is rational, X(k) �= ∅ and hence U (k) �= ∅ ([8, Proposition 4]). This

shows that U is an algebraic k-torus.

Fix a structure of k-torus T on U and consider its action on itself by translation.

Then we can extend the action to the action of T on X (see [13, p. 22]). Thus X is a

(not necessarily split) toric variety over k. Let E be a splitting field of the torus T and

XE = X ⊗k E . Then the split torus TE acts on XE making it into a split toric variety over E .

It is obviously isomorphic to DE := D ⊗k E . Thus E is a splitting field of X, i.e. XE
∼= DE .

Conversely, if E is a splitting field of X, the torus TE is split. The Galois group � of E/k

acts on XE via automorphisms of the toric variety, i.e. it acts on the lattice N ∼= Z2, the

dual lattice of the lattice M of characters of T , leaving invariant the fan 
 defining the

toric variety D. The variety X is isomorphic to the descent of D defined by this action,

defined uniquely up to k-isomorphism (see [1, 16]).

Choose a splitting field E such that the map � → Aut(
) is injective. It follows

from the classification of subgroups of D12 that one of the following cases occurs.

(i) � = 〈γ 〉, |�| = 2, the action of � on N is given by γ : (m, n) �→ (n, m);

(ii) � = 〈γ 〉, |�| = 2, γ : (m, n) �→ (−m, −n);

(iii) � = 〈γ 〉, |�| = 3, γ : (m, n) �→ (−n, m − n);

(iv) � = 〈γ1, γ2〉, � ∼= (Z/2)2, γ1 : (m, n) �→ (n, m), γ2 : (m, n) �→ (−m, −n);

(v) � = 〈γ1, γ2〉, � ∼= S3, γ1 : (m, n) �→ (−n, m − n), γ2 : (m, n) �→ (n, m);

(vi) � = 〈γ 〉, � ∼= Z/6, γ : (m, n) �→ (m − n, m);

(vii) � = 〈γ1, γ2〉, � = D12, γ1 : (m, n) �→ (m − n, m), γ2 : (m, n) �→ (n, m).

We easily get (see [1]) that

rank Pic(X) =

⎧⎪⎪⎨
⎪⎪⎩

3 in cases (i), (ii),

2 in cases (iii), (iv), (v),

1 in cases (vi), (vii).

Note that in all cases except case (i), the torus T is anisotropic (i.e. M� = {0}).
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Proposition 1. Assume that a cyclic group G = 〈σ 〉 of prime order � ≥ 5 acts minimally

on a k-rational Del Pezzo surface X of degree 6. Let T be the complement of the union of

(−1)-curves on X that acts on X via its structure of a toric surface over k. Then σ is defined

via the action by an element σ̃ ∈ T (k). The torus T splits over k(ζ�) with cyclic Galois group

〈γ 〉 of order 6 and t� = 6. The G-surface (X, G) is unique up to k-isomorphism. �

Proof. By assumption � ≥ 5, the group G cannot be isomorphic to a subgroup of D12,

hence can be identified with a subgroup of T (k). The assumption that (X, G) is minimal

implies that X is k-minimal because the set of (−1)-curves does not contain orbits of

length �. Let E be a minimal splitting field of X (and hence for T ) with Galois group �.

Then � is isomorphic to a subgroup of D12 and only cases (vi) and (vii) from the above

list are possible. Indeed, in the remaining cases rank Pic(X) > 1 and hence X is not

k-minimal.

Let us consider case (vi). In this case � = 〈γ 〉 is a cyclic group of order 6 and γ acts

on the lattice N = Z2 by a matrix
(

1 −1
0 1

)
. This matrix satisfies the cyclotomic equation

x2 − x + 1 = 0. The lattice M of characters of T is dual to the lattice N, and hence it is

isomorphic as a �-module to Z[x]/(x2 − x + 1). Thus the torus T and the surface X are

determined uniquely by the extension E/k. Let us show that, under our assumptions,

E = k(ζ�) and hence t� = 6.

Since G ⊂ T (k) extends the translation action on T by an element of order �,

the group T (E ) ∼= (E∗)2 contains G. The image of G under the projection homomorphism

T (E ) → E∗ contains the group μ� of �th roots of 1. Therefore, E ′ = k(ζ�) is contained in

E . Let T (E )[�] ∼= (M/�M) ⊗ μ� be the l-torsion subgroup of T (E ). The group Gal(E/E ′) acts

trivially on T (E )[�], or, equivalently, the actions of � and Gal(E ′/k) on T (E )[�] coincide.

By Minkowski’s lemma [15, Lemma 1], the natural homomorphism GL(M) → GL(M/�M)

is a bijection on the set of elements of finite order. This shows that the actions of the

Galois groups coincide on the whole character lattice M of T . In view of minimality of

the splitting field, we get E = E ′.

The previous argument also shows that case (vii) does not occur. In fact, if E is a

minimal splitting field with Galois group isomorphic to D12, then it follows from above

that E ′ = k(ζ�) is contained in E and must coincide with E . Since the extension E ′/k is

cyclic this is impossible. �

Applying Corollary 11, we obtain that � = 7 if char k = 0 and k ∩ Q(ζ�) = Q. On

the other hand, if for example k = F17 and � = 13, we get t� = 6. This shows that � = 13

is possible in this case.
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Remark 2. Another example of a nonsplit toric Del Pezzo surface is a Del Pezzo surface

X of degree 8 isomorphic to a nonsingular quadric F0 over k̄. Recall that F0 can be given

by a fan 
 with 1-skeleton spanned by vectors ±e1, ±e2. The automorphism group of

the toric surface (i.e. the subgroup of Aut(F0) preserving the toric structure) is equal

to G2
m � D8, where D8 is the dihedral group of order 8. Fix a toric structure on F0 by

fixing a quadrangle of rulings and a structure of a torus on its complement. Let E/k be

a Galois extension with Galois group �. Chose an injective homomorphism � → GL(2, Z)

that leaves invariant the fan 
. As we have mentioned above, there is a unique descent

of the toric variety F0 to a toric k-variety X. This is a toric Del Pezzo surface of degree 8.

Since all two-dimensional k-tori are rational, the surface X is a k-rational.

Following the proof of the previous proposition, we see that an automorphism of

order � ≥ 5 can act minimally on X only if T is isotropic with � isomorphic to a cyclic

group of order 2 acting by (m, n) �→ (n, m) or anisotropic with � isomorphic to a cyclic

group of order 4 or D8. In the first case T = RE/k(Gm) and T (k) = E∗ does not contain an

element of order �, unless t� = 2. In the second case TE is the quotient of the torus of

RE/k(Gm) corresponding to the submodule Z[x]/(x2 + 1) of Z[�] ∼= Z[x]/(x4 − 1). The group

T (k) contains an element of order � ≥ 5 only if t� = 4. If � ∼= D8, we obtain that E contains

k(ζ�). Since k(ζ�) = E , this case is impossible. �

5 The Main Theorem

Let us start proving our main result, which is Theorem 1 from Section 1. Let σ be an

element of prime order � > 2 in Cr2(k). As before, we assume that � �= p = char k.

Proposition 2. Assume � ≥ 5 and σ acts minimally as an automorphism of a k-rational

conic bundle X. Then t� ≤ 2 and σ is conjugate in Cr2(k) to an element defined by a rational

point on a two-dimensional algebraic k-torus. �

Proof. Let π : X → C be a conic bundle structure on X. Since X is k-rational, the set

X(k) is not empty and hence the set C (k) is not empty. Thus C ∼= P1
k.

Assume t� > 2, by Corollary 9, Autk(C ) ∼= PGL2(k) does not contain elements of

order �. Thus G = 〈σ 〉 acts trivially on the base C and hence acts on the generic fiber Xη

by k(η)-automorphisms. Since k is algebraically closed in k(η), we have t�(k(η)) = t�(k) > 2,

so we can apply Corollary 9 again and get that the action on Xη, and hence on X, is trivial.

Now we assume that t� ≤ 2. Let c be the number of reducible fibers in the conic

fibration.
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Assume first that c = 0, i.e. X̄ is a minimal ruled surface Fe. Since the base C

of the fibration is isomorphic to P1
k, this easily implies that X ∼= Fe over k. Let Ḡ be the

image of G in Autk(C ).

Suppose Ḡ is trivial, G has two fixed points, maybe conjugate on the general fiber

isomorphic to P1
k(C ). This defines a two-section S of the fibration fixed by G. If e > 0, one

of the components of S̄ is the exceptional section. The other component must be defined

over k and G-invariant. Since G acts identically on the base, each component is fixed by G

pointwise. Since the fixed locus of G is smooth (because � �= char k), the two components

do not intersect. The complement of S and two fibers is a G-invariant k-torus T . If e = 0,

then G leaves invariant the other projection to P1
k̄

and hence leaves invariant fibers over

two points, maybe conjugate over k. The complement of these two fibers and two fibers

of the first projection is an algebraic torus defined over k.

If Ḡ is not trivial, then it fixes two points x1, x2 on C , maybe conjugate over

k. A surface with e = 1 is not G-minimal. If e ≥ 2, the surface X has a unique sec-

tion S with self-intersection −e. The fibers F1, F2 over x1, x2 are G-invariant and each

contains a fixed point on S. Since � �= char k, the group G must have another fixed

point yi ∈ Fi, i = 1, 2. The closed subscheme {y1, y2} is defined over k. After we perform a

G-invariant elementary transformation at these points, we obtain a surface isomorphic

to Fe−2. Continuing in this way, we arrive at either F0
∼= P1

k × P1
k, or F1, the latter being not

G-minimal.

Now suppose c > 0. If (X̄, G) is minimal, then G contains an element that switches

irreducible components of some reducible fiber ([6, Lemma 5.6], the proof of this lemma

works whenever the ground field is algebraically closed and its characteristic is coprime

with the order of the group). Thus, the cyclic group G of order � is mapped nontrivially to a

group of even order. Since � is odd, this is impossible. Since (X, G) is minimal, this implies

that X → C is relatively minimal over k. Since Pic(X) is generated by KX and components

of fibers of the conic fibration, we have Pic(X) ∼= Z2. Suppose X is not k-minimal, then

there exists a birational k-morphism from X to a rational k-minimal surface X′ with

Pic(X′) ∼= Z. Thus X′ is a rational k-minimal Del Pezzo surface. In terminology of [7] this

makes a link of type I. Applying Theorem 2.6 (i) from loc. cit., we see that the possible

values of K2
X are 8, 6, 5, and 3.

If K2
X = 8, we have X′ = P2

k and X ∼= F1, so (X, G) is not minimal.

If K2
X = 6, X′ is a quadric Q in P3

k with Pic(Q) ∼= Z. The morphism X → X′ blows

down a pair E of conjugate (−1)-curves. We have E ∈ | − KX − 2F |, where F is the class

of a fiber in the conic bundle. Obviously, G leaves E invariant and hence (X, G) is not

minimal.
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If K2
X = 5, then X′ = P2

k and X → X′ blows down a fourtuple E of (−1)-curves. We

have E ∈ | − 2KX − 3F | and again (X, G) is not minimal.

Finally, if K2
X = 3, then X is a Del Pezzo surface isomorphic to a cubic surface. In

this case a (−1)-curve is a line on X. Thus X contains a line L defined over k such that the

conic bundle is formed by the pencil of planes through the line. The line L is G-invariant

and the pair (X, G) is not minimal.

Thus we may assume that X is k-minimal. Applying Theorem 4, we obtain K2
X ≥ 5.

The conic bundle X̄ contains c = 8 − K2
X ≤ 3 reducible fibers. Since G in its action on C

has no orbits of length 2 or 3, G has at least c fixed points on C .

If c = 3, G acts identically on C . The surface X̄ admits a birational morphism

to P2
k̄
, the blow-up of 4 points. The exceptional curves are sections of the conic bundle.

Their union E belongs to the linear system | − 2KX̄ − 3F |, where F is the class of a fiber

of the conic bundle on X̄. This shows that G leaves E invariant, and, since the order of

G is an odd prime number �, it leaves each component invariant. Thus G has four fixed

points on each fiber, hence acts trivially on the general fiber, hence trivially on X.

Assume c = 2, i.e. K2
X = 6 and X̄ is obtained by blowing up two points on a

quadric. They are the base points of a pencil of conic plane sections of the quadric.

The exceptional divisor E is a two-section of the conic bundle that belongs to the linear

system | − KX̄ − 2F |. As in the previous case G fixes each component of E . Let T be the

complement of the union B of E , F1, F2, where F1 and F2 are the singular fibers. Since

(X, G) is minimal, the Galois group switches the components of E and the components of

the fibers. This shows that B(k) consists of two points, the singular points of the fibers.

If k is infinite, X(k) is dense in X(k̄) because X is rational. This shows that T (k) �= ∅. If

k = Fq is finite, it follows from the Weil Theorem [10, Chapter IV, Section 5, Corollary 1]

that #X(k) ≡ 1 mod q, hence #X(k) > 2 and T (k) �= ∅ again. Thus T is a G-invariant two-

dimensional torus. Since σ is of order � ≥ 5, its image in the automorphism group of T

(as an algebraic group) is trivial. Thus σ is realized by an element of T (k).

Assume c = 1. Then X is obtained by blowing up one point on a minimal ruled

surface. This point must be a k-point and the exceptional curve is a component of a

unique singular fiber. Since � is odd it is G-invariant. Thus (X, G) is not minimal. �

Proposition 3. Assume that σ of prime order � ≥ 7 acts minimally on a k-rational Del

Pezzo surface X of degree d. Then one of the following cases occurs:

(i) d = 6, t� = 6;

(ii) d = 8, t� = 4 or t� = 2;

(iii) d = 9, t� ≤ 3.
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In all cases X has a structure of a toric surface and σ belongs to T (k), where T is an open

subset of X isomorphic to a k-torus. �

Proof. Assume first that d ≤ 5. In this case Aut(X̄) is isomorphic to a subgroup of the

Weyl group of a root system of type A4, D12, E6, E7, or E8 [6, Lemma 5.2]. The classification

of elements of finite order in Weyl groups shows that � ≤ 7, and the equality may occur

only if d = 2 or d = 1.

Assume d = 2. Let π : X̄ → P2
k̄

be a birational morphism that blows down seven

disjoint (−1)-curves C1, . . . , C7 and e be the divisor class of their sum. Obviously, e has

only one effective representative. Let R = (ZKX̄)⊥ be considered as a quadratic lattice

isomorphic to the root lattice of type E7. It is known that the stabilizer subgroup of e

in the Weil group W(E7) is isomorphic to the permutation group S7 (see [5]). The index

of this subgroup is equal to 576. Elements of the W(E7)-orbit of e correspond to sets of

seven disjoint (−1)-curves on X̄. They are paired into 288 pairs, two sets in the same pair

differ by the Geiser involution on X̄. Recall that the linear system | − KX̄| defines a degree

2 finite map X̄ → P2
k̄

ramified over a nonsingular plane quartic. The cover transformation

is the Geiser involution. It sends Ci to the curve C ′
i such that Ci + C ′

i ∈ | − KX̄|. Since

288 ≡ 1 mod 7, a group of order 7 has a fixed point on the set of such pairs and acts

identically on each element in the fixed pair. Thus we can find a σ -invariant class e as

above. It is known that R〈σ 〉 ∼= Z (see [6, Table 5]). Since e · KX̄ = −7, the divisor class

2e + 7KX̄ spans R〈σ 〉. Since the Galois group � commutes with 〈σ 〉, it either leaves the

class 2e + 7KX̄ invariant or contains an element that changes 2e + 7KX̄ to −2e − 7KX̄. In

the first case, e is 〈σ 〉 × �- invariant contradicting the assumption that (X, 〈σ 〉) is minimal.

In the second case, � contains an element γ that sends e to e′ = −e − 7KX̄. This implies

that γ (C1 + · · · + C7) = γ (C1) + · · · + γ (C7), where Ci + γ (Ci) ∈ | − KX̄|. Thus γ acts as the

Geiser involution. It sends the divisor class Ci − C j to C j − Ci. Together with 2e + 7KX̄,

the divisor classes of Ci − C j generate R, hence γ acts as the minus identity on R and

R� = {0}. This implies that X is k-minimal, and because d ≤ 5 and X is k-rational, this

contradicts Theorem 4.

Assume d = 1. An element of order 7 in W(E8) is conjugate to an element of

order 7 in W(E7), where the inclusion W(E7) ⊂ W(E8) corresponds to the inclusion of

the Dynkin diagrams. This implies that σ acting on X̄ is a lift of an automorphism σ ′

of order 7 of a Del Pezzo surface X̄′ of degree 2 under the blow-up of a σ ′-invariant

point. Let C8 be the corresponding σ -invariant exceptional curve. Let e′ = C1 + · · · +
C7 be the pre-image of the σ ′-invariant class in Pic(X̄′) from the previous case d = 2

and e = e′ + C8. Let R = (KX̄)⊥. Then R〈σ 〉 is generated (over Q) by v = 1
3 (e − 3C8 + 5KX̄)

and w = C8 + KX̄. We have (v, v) = −4, (v, w) = 1, (w, w) = −2. The Galois group leaves R〈σ 〉
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invariant and acts as an isometry of the quadratic form −4x2 + 2xy − 2y2. It is easy to

compute the orthogonal group of this quadratic form to obtain that an element of finite

order in this group is either the identity or the minus the identity. In the first case we

obtain that X is not 〈σ 〉-minimal. In the second case, by using the argument from the

previous case, we obtain that � contains an element γ that acts as the Bertini involution.

Recall that | − 2KX̄| defines a degree 2 map X̄ → Q, where Q is quadric cone in P3
k̄
. Its

cover transformation is the Bertini involution. It sends Ci to C ′
i ∈ | − 2KX̄ − Ci|. It acts

as the minus identity on R and hence X is k-minimal. We conclude as in the previous

case.

Finally, it remains to consider the case d ≥ 7. If d = 7, the surface X̄ is obtained

by blowing up two points in P2
k and is obviously not G-minimal (the proper transform of

the line joining the two points is G-invariant and is defined over k). If d = 8, the surface

is either F0 or F1. The surface F1 is obviously not G-minimal. Let X̄ = F0. Since � is odd,

G preserves the rulings on X̄ ∼= (P1
k̄
)2. Since X is a G-minimal Del Pezzo surface (the case

of a minimal conic bundle with Pic(X)G ∼= Z2 was already considered in Proposition 2),

Pic(X) ∼= Z and therefore the Galois group �k switches the two rulings. Since G commutes

with the Galois group, it cannot act identically on the base of any of the two rulings

(otherwise it acts identically on both rulings, hence acts identically on the surface). This

implies that σ has four fixed points on X̄, the vertices of a quadrangle of lines. Since σ is a

k-automorphism, the set of these points defines a closed subset of X and the quadrangle

descends to a divisor D on X whose complement is a k-torus T . So we obtain that X is a

toric Del Pezzo surface of degree 8. As we saw in Remark 2, this case is realized only if

t� = 4 or t� = 2.

If d = 9, the surface X̄ ∼= P2
k̄
. By definition, X is a Severi–Brauer variety of dimen-

sion two. Since X(k) �= ∅, it must be trivial, i.e. X ∼= P2
k. Thus Aut(X) ∼= PGL3(k). Applying

Corollary 9, we obtain that this can be realized only if t� ≤ 3. The fixed locus of σ in

P2
k̄

is either the union of a line and a point, or the set of three distinct points. In the

first case the line and the point must be defined over k. By joining the point with two

k-points on the line, we obtain a triangle of σ -invariant lines. Its complement is a k-

torus on which σ acts as a translation. In the second case, the three fixed points are fixed

under σ because � ≥ 5. They define a σ -invariant triangle on P2
k whose complement is a

k-torus.

The remaining case d = 6 was considered in Proposition 1 from the pre-

vious section. An automorphism of σ of order � ≥ 5 acts on a unique Del Pezzo

surface X and its image Aut(X) ∼= T (k) � D12 is contained in T (k). This proves

Theorem 1. �
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Remark 3. It is shown in [6, Table 8], that a Del Pezzo surface X of degree 1 over C does

not admit an automorphism of order 7, minimal or not. One can show that this is true

over an arbitrary field k (even of characteristic 7).

One can also prove the nonexistence of a minimal action of a cyclic group of

order 7 on a Del Pezzo surface of degrees d = 1 or 2 by using the ideas of Mori theory.

We give the proof only in the case d = 2 leaving the case d = 1 as an exercise to the

reader. Let G = 〈σ 〉. The group G × � acts on the Mori cone NE(X̄). It is a polyhedral

cone generated by the divisor classes of fifty-six (−1)-curves on X̄. The intersection of

NE(X̄) with Pic(X̄)G ∼= Z2 has two extremal rays, both G-invariant. They are switched by

the Geiser involution. The surface X̄ does not admit a G-invariant structure of a conic

bundle. In fact, since K2
X = 2, the number of singular fibers of such a conic bundle must

be equal to six. So G fixes them and switches the components of some of these fibers.

Since G is of odd order, this is impossible. Now, it follows from the proof of Theorem 5

that each G-invariant extremal ray is generated by a �-orbit of a (−1)-curve that consists

of disjoint curves. Since the number of (−1)-curves is equal to fifty-six and is divisible

by 7, such an orbit must consist of seven curves (if the orbit is a singleton, there are

at least six more invariant (−1)-curves contradicting to the fact that rank Pic(X̄)G = 2).

Thus the G-invariant Mori cone is generated by two extremal rays corresponding to two

seven-tuples of disjoint (−1)-curves. Since X is � − G-minimal, the group � switches the

two sets sending each curve Ci from the first set to the curve C ′
i ∈ | − KX − Ci| from the

second set. Therefore, it acts on Pic(X) as the Geiser involution. Thus X is k-minimal

contradicting its rationality. �

6 The Case of Characteristic 0

Assume char k = 0. We assume also that

(*) k ∩ Q(ζ�) = Q.

Thus

t� = � − 1.

Assume � ≥ 7. By Proposition 2, σ cannot act minimally on a conic bundle. By

Proposition 3, σ can only act minimally on a Del Pezzo surface X of degree 6 in which case

� = 7. By Proposition 1, X is a unique (up to isomorphism) toric surface T over k split

over E = k(ζ7). The Galois group � acts on TE via the subgroup H ⊂ Aut(
) isomorphic to

the cyclic group of order 6. The action of H on TE is �-equivariant, and hence admits a
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descent to an action of H on X. The seven-torsion subgroup T (k)[7] of T (k) is H-invariant.

Hence H acts on the cyclic group 〈σ 〉 of order 7 by automorphisms. This shows that all

nontrivial powers of σ are conjugate in Cr2(k).

This proves the following.

Theorem 12. Assume (*) is satisfied. Then Cr2(k) does not contain elements of prime

order > 7 and all elements of order 7 are conjugate. �

It follows from the proof of Proposition 3 that an element of order � = 5 can be

realized as an automorphism of a Del Pezzo surface of degree 8 defined over Q. One can

also show that it can be realized as a minimal automorphism of a Del Pezzo surface

of degree 5 over Q that arises from the Cremona transformation (x, y, z) �→ (xz, x(z −
y), z(x − y)) with four fundamental points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1). The blow-up of

these points is a Del Pezzo surface of degree 5 (see [3, p. 20]). Note that PGL3(Q) does

not contain elements of order ≥ 5, so these two transformations are not conjugate to

a projective transformation. Explicit examples of Cremona transformations of orders 5

and 7 over Q were given by N. Elkies in his letter to J. P. Serre on November 10, 2005 (see

http://math.harvard.edu/∼elkies/serre.pdf).
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