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O. Introduction 

Let f :  X ~ Y be a morphism of preschemes and let P be a certain 
property of f in a point x ~ X  (e.g. smoothness, equidimensionality, 
flatness and so on; see EEGA 4]). Consider the problem of describing 
the set of points x e X in which f does not satisfy the property P and also 
the projection of this set on Y. Many results concerning this problem 
are known. There exists, for example, the theorems (due to Grothendieck, 
see [EGA 4]) which assert the closedness of these sets. The question of 
the codimension of above sets is investigated in corresponding theorems 
of the purity, such as one of Zariski-Nagata ([13, 7]) for the property to 
be 6tale morphism and the theorem of the purity of Van der Waerden 
([EGA 4], 21.12.12) for the property to be isomorphism. 

Here we suggest the theorems of the purity when P is the property 
to be smooth and f:  X--* Y morphism of smooth schemes over a field 
with a smooth curve as a general fibre. Our first result is the following. 

Theorem of the purity upstairs. Let SingX(f) be the set of points 
x e X  in which f is not smooth. Assume that SingX(f)4:0. Then for any 
irreducible component S i of SingX(f) we have codim(Si, X)<2. 

As concerns of the projection of SingX(f) on Y, it seems natural the 
following 

Conjecture. Let X and Y be regular integral schemes, f :  X - - , Y  a 
proper flat morphism of the relative dimension 1 with smooth general 
fibre. If Singr(f)=f(SingX(f))4:0, then for any irreducible component 
S i of SingY(f) we have codim(Si, Y)= 1. In other words, Singr(f)  
defines a divisor on Y. 

Simple arguments based on the Stein's factorization of f and the 
theorem of the purity of Zariski-Nagata shows that we may assume 
that all fibres o f f  are geometrically connected. 

We prove here the following result in the direction of this con- 
jecture. 
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Theorem of the purity downstairs. Let g denote the genus of the 
general fibre of f .  The previons conjecture is true under the following 
additional assumptions: 

i) X and Y are smooth schemes over a field k. 

ii) In case g >  1 f is cohomologically flat (for example, f .  (d~x)= t~ r 
universally, see other conditions in 2.7). 

iii) In case g >  1, char(k)=01. 
Note that whereas the first theorem almost immediately follows 

from the standart arguments using the differential criterion of smooth- 
ness, the proof of the second one has considerably more specific char- 
acter. 

It is interesting to note that at the proof of this theorem we used 
(explicitly or not) all known theorems of the purity, besides mentioned 
above these are one for ~tale cohomology ([SGAA]), for the group of 
Brauer ([GB3]) and the Grothendieck's theorem of the purity for 
abelian schemes ([5]). The problem of the elimination of the restrictions 
imposed on f ,  X and Y is discussed in the last section of w 3. 

In conclusion I wish to thank M. Raynaud,  whose valuable remarks helped me to 
correct the first version of this paper. I also express my thanks to V.I, Danilov and 
Yu. I. Manin who very attentively looked through the manuscript  of  this paper and made 
many useful remarks. 

1. Theorem of the Purity Upstairs 

1.1. Recall one of equivalent definitions of smoothness ([EGA 4], 
17.5.2): 

Let f :  X - . Y  be a morphism of locally finite type. One says that f 
is smooth in a point x e X if the following conditions are satisfied: 

a) f is flat in x, 
b) denoting by X~ the fibre o f f  in the point y=f(x), we have d~x,.x 

is a geometrically regular local ring (if the residue field of y is perfect, 
it is sufficient to require just the regularity of d~x~.x ). 

We shall use the following differential criterion of smoothness (cf. 
[EGA 4], 17.11.1): Let S be a prescheme, f :  X-*Y be a S-morphism of 
locally finite type. Let 

* 1 1 1 f t~r/s~ 12x/s~ ~'~xlr ' '~  0 (1.1.1) 

be the exact sequence of sheaves of relative differentials (loc. cit., 16.4.19). 
Assume that X and Y are smooth S-preschemes. Then f is smooth in 

1. Raynaud  in his letter to the author  dated 13.1.69 outlined me another  proof of  the 
Theorem 3.2 which is based on results of [8] and is valid without any assumpt ion ofcoho-  
mological flatness and characteristic. Since 3.2 implies the theorem of the purity downstairs 
we get that restriction (ii) and (iii) cited in the introduction are unnecessary. 

3* 
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the point x ~ X  if and only if the sheaf ~ / r  is free in x and the sequence 
(1.1.1) is exact in x. 

In any case if f :  X ~  Y is smooth in x, then ~2~/r is free in x ([EGA 4], 
17.12.4). 

1.2. Let f be a dominant morphism of locally finite type of integral 
preschemes. Recall that f is called equidimensional in the point x EX 
if the dimension of the irreducible component of the fibre f - l ( f ( x ) ) ,  
passing through x is equal to the dimension of the general fibre of f .  

I f f  is smooth in a point x, then it is equidimensionat in x ([EGA 4], 
17.5.6); furthermore the rank of the free module ~ / r , ~  is equal to the 
dimension of the general fibre. 

We shall say that a morphism f is of the relative dimension n if it 
is equidimensional in any point of X and the dimension of its general 
fibre is equal to n. 

1.3. Lemma. Let f :  X---~Y be a morphism of locally finite type of 
integral S-preschemes and let 11 be the general point of X. Suppose that 
f is smooth in tl and Y is smooth over S. Then we have the exact sequence 
of sheaves on X:  

0 --~ f *  a~/s --, ~2~/s -~ ~lx/r-~, 0. (1.3.1) 

Proof Let ~x= Ker ( f*  ~/s---~21x/s). Since f is smooth in r/, ~x, ,=0;  
in other words, 7x is a torsion sheaf on X. However, since Y is smooth 
over S, the sheaf f *  g]~/s is locally free on X and can not contain a non- 
trivial torsion subsheaf. Hence Vx=0. q.e.d. 

1.4. We shall need also the following assertion from the theory of 
local cohomology of coherent algebraic sheaves (cf. [SGA]). 

Let X be a locally noetherian preschema, F a coherent (gx-Module, 
j: Y~--*X an open immersion and Z = X - I 1 .  We have the canonical 
homomorphism of sheaves on X: 

u: F--~j . j*  F. 

We are interesting when u is an isomorphism. We have Ker (u)= ~ z  ~ (F), 
Coker(u)=~zl(F),  where ~ ( F ) d e n o t e  sheaves of local cohomology 
with respect to Z. Furthermore, denoting dep thz (F )= in fdep thF  ~ 

(where depth F~ =codh F~ in notations of [11]), we have depthz(F)>n 
~f~(F)=0, i<n ([SGA], Exp. 3). Hence, u is an isomorphism if and 

only if depthz (F) > 2. 

1.5. Theorem (Purity upstairs). Let f :  X ~ Y be an S-morphism of 
locally finite type, where X,  Y are integral smooth S-preschemes and X 
is regular. Assume that the general fibre o f f  is one-dimensional and f 
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is smooth in the general point of X.  Let SingX(f) denote the set of points 
x eX ,  in which f is not smooth, with induced structure of  topological 
space. Suppose that SingX(f)=t:0. Then for any maximal point x o of 
SingX(f) we have 

codim (Xo, X) ~f  dim (gx, xo < 2. 

Proof. Let x o be a maximal point of SingX(f) (recall that it means 
that there is no such point xl~SingX(f )  for which x I # x  0 and x0e{xl} ). 
Suppose now that cod im(xo ,X)>2 .  Let A=Ox,~o, U = S p e c A ,  U '=  
U - x o ,  j: U~--~U' be a canonical immersion and M=t2~/r,~o. The 
ring A is regular and hence due to Auslander-Buchsbaum is factorial. 
This easily implies that Pic U'=O (cf. [EGA4] ,  21.6.13). Since x o is 
maximal in SingX(f), for any x~ U' the morphism f is smooth in x 
and hence by 1.2 j*(M ~) defines an invertible sheaf on U', but Pic U' =0,  
hence j* (M~) ~- Or,. Since X and Y are smooth, the exact sequence 1.3.1 
defines a locally free resolution of the sheaf 12~/r. Therefore, we have 
dim. proj. (M) < 1, and hence, since A is regular, 

depth M = dim A - dim. proj. (M) > 2 

(cf. [11]). Since depth A = d i m A > 2 ,  we have by 1.4 j ,  (9v,---(9 v, and 
hence M~ = j ,  j* M ~ - - j ,  (9 v, = d~ u = A~. So, M = A = I2J:/r,x o is free, and 
therefore by 1.3 and 1.1 f is smooth in x o. 

1.6. Corollary. Let f :  X - ~  Y be a morphism of locally finite type of  
smooth preschemes over a field with a curve as the general fibre. Suppose 
that f is smooth on an open set U a X containing points of codimension 
< 2, then f is smooth on X.  

1.7. Remark. Let f :  X ~ Y be a morphism of preschemes satisfying 
the conditions of 1.5. Let Ox/r denote the different o f f .  (See [4].) This a 
sheaf of ideals on X and from 1.1 and 1.3 it follows that the underlying 
topological space of the corresponding subscheme of X coincides with 
SingX(f). Let ~x/r  be the structure sheaf of this subscheme. (Discrimi- 
nant of f in terms of [4].) The Theorem 1.5 can be deduced also by 
considering the generalized Koszul complex of ~x/r (cf. [2], Th. 4) which 
can be easily constructed taking the sequence dual to t.3.1. 

2. Betti Numbers of  Curves Varying in a Family 

2.1. Let X be an algebraic curve over a separably closed field k, i.e. 
a k-scheme of finite type without immersed components with dim X = 1. 

h 
Assume that X is reduced and let X =  [J X~ its decomposition into 

i = l  
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irreducible components. Let Xi be the normalisation of X i, X = ~ -Xi, 
p: X ~ X  be the canonical projection. Denoting by P a closed point 
of X, define the numbers 

6x, i, = dimk P. ((Px)e/~x, e; 6x = ~ 6x. e. 
P e X  

Since the morphism p is finite, the sheaf p.((Px)/d)x is coherent and 
concentrated in the finite set of points and hence our definitions are 
correct. Define also the numbers 

�9 ; ' ~5' ~ e = Card {p- 1 (e)} _ 1 6x = ~ x.e. 
P e X  

2.2. If X is a complete algebraic curve, then its arithmetic genus is 
defined as 

n (X) = dim k H 1 (X, d~x), 

Assume that X is reduced and let g~ be the genus of X~. The Leray 
spectral sequence for the morphism f and the sheaf d~ x yields 

h 
n(X)= ~ g ~ + 6 x - h + s  (2.2.1) 

i=1 

where s is the number of connected components of X. 

2.3. Define the Betti numbers of X as 

i = 0  
IS, h 

/~(x) = |2 ~ g, + ~ x -  h + 1, i = 1 

[h', ~ '  i = 2  

[0, i>2 .  

If X is not reduced then we let 

~ (x)  = ~ (Xro~). 

2.4. Proposition. Let X be a complete algebraic curve over a separably 
closed field k. The ~tale cohomology of X with coefficients in the constant 
sheaf ~.. x ~- (Z/n Z)x ((n, char k) = 1) are as follows: 

H~ (Xet, #,,, x) = (Z/n Z) a'~x~. 

I f  furthermore X is reduced and k = C, the field of complex numbers, then 

Hi(Xcl, Z )  = Z #'tx~. 

Proof. Since the 6tale cohomology are topologically invariant 
([SGAA], Exp. 10,1.2) we have Hi(Xet, ~., x)= Hi(Xred, ~t, I~., xrcd)" After 
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that in both cases the assertion is easily deduced from the Leray spectral 
sequence for the morphism p: Xre~--* Xred (see for details in [3], Ch. 3). 

2.5. Corollary. Let X be a complete algebraic curve, defined over a 
separably closed field k. Then the topological Euler-Poincar( char- 
acteristic of X which is defined as 

e P ( X )  = Z ( -  1) i fl, (x) 
i 

coincides with the 1-adic Euler-Poincar~ characteristic of X (where 
1 + char k). I f  k = C and X is reduced, then EP(X) is equal to the usual 
topological Euler characteristic of X. 

2.6. Definition. A fiat morphism f :  X--~ Y is called cohomologically 
fiat over y e Y  if the canonical map ( f , ( g x ) r | 1 7 6  is 
bijective. 

2.7. Proposition. A proper fiat morphism f :  X--* Y with f,((gx)= (9 r is 
cohomologically f iat over ye  Y in any of the following cases: 

1. (9 x is cohomologically fiat in dimension 0 over y (i. e. f ,  (Ox)= (9 r 
universally) (e l  [EGA 3], 7.8.1). 

2. f is separable over y, i.e. the geometric fibre X~=Xy | k(y) is 
k (y) reduced. 

3. Y is regular, there exist n - 1  local parametres t I . . . .  , t._ 1 of the 
ring d?r,y ( n = d i m  Y) such that the prescheme 

X,= X |  ..., t,_,)er,~ 

is normal, the general fibre of the projection X t--~ Spec Or, y/(q, ... , t._ 1) d~r,, 
is separable and one of the following condition is satisfied: 

i) char k (y) = 0, 
ii) /f char k (y )=p>0 ,  then H2(Xy, d~xy)=0 and either g.c.d, of the 

multiplicites of geometrical components of the fibre Xy is prime to p or 
there exist an (.tale quasi-section of X t over Spec Cgr, J(t I . . . .  , t._ 1)Or, r. 

4. The sheaves Ri f .  r are locally free for i > O. 

Proof. The assertion 1. is obvious; to prove 2. apply the Kiineth 
formula, we have 

H ~ (Xy,, Ox~ ) = H ~ (X?  r ). 

Since X~ is connected and has a rational point, we have H~ ~x~)= 
k(y), this gives H ~  ~x,y)=k(y); as it follows from [EGA 3], 7.8 in 
case 4. f is cohomologically flat in dimension 0. The assertion 3. is an 
immediate corollary of the criterion of cohomological flatness in di- 
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mension 0 for one-dimensional base, due to Raynaud ([8], Th. 4), which 
can be applied in virtue of the following: 

2.8. Lemma.  Let A be a discrete valuation ring, Y= Spec A, f :  X - ~  Y 
proper flat morphism with geometrically integral general fibre. Then 

f ,  ((~x) = (9r. 

Proof. Since f is proper f ,  ((gx) = M, where M is A-module of finite 
type. Since f is flat, M is without torsion. However, finite modules with- 
out torsion over a discrete valuation ring are free. Hence M is free. 
Let y be the general point of Y, K = (gr.y be the fraction field of A. Since 
Xr is geometrically integral, we have M |  = ( f ,  ~x)r= H~ (9x~)= K 

A 
(cf. the proof  of  2.7,2). Hence M = A and f ,  (~0x) = (_0 r. 

2.9. Corollary. Let V be a regular curve over a discrete valuation ring A, 
i.e. a proper morphism of a regular two-dimensional scheme on SpecA 
(see [6]).  Suppose that the residue field of A has zero characteristic. 
Then V is cohomologically flat over the closed point of Spec A. 

Proof. Since V is regular it easy to see that the conditions of 2.8 are 
satisfied and we can apply 2.7, 3. 

In order to make more  clear the role of characteristic we shall give 
the following example due to Grothendieck (cf. [8]). 

2.10. Example. Let k o be an algebraically closed field of charac- 
teristic p > 0 ,  k=ko((t)) be the field of formal power series over k o. 
Consider over k an elliptic curve A whose reduction is an elliptic curve 
A o with zero invariant of  Hasse. Let f :  1/~ Y= Speck o [[tJ] be the mini- 
mal model of A (see [10]). Recall it means that V is regular, f is proper 
with general fibre isomorphic to A and the closed one to A o. Since 
the group HI(k, A)p#O (see [12]), there exist a principal homogenious 
space X over A which has order p in Hi(k, A). Let ~p: W--, Y be the corre- 
sponding minimal model of X, let F be the special fibre of ~o. It easy to 
see that F 0 =F~e d is an elliptic curve with zero invariant of Hasse and the 
multiplicity of F is equal to p. We shall show that Wis not cohomologi- 
cally flat over the closed point of Y. Let ~r be the Ideal of definition o f F  o . 
Since the selfintersection index o f f  o on Wis equal to 0 (see [63) we obtain 
that the conormal sheaf J / J  2 o f f  o is an invertible sheaf on F o of degree 0. 
Since F is a principal divisor on W we have F .  Fo is a principal on Fo, 
hence (9~o | ,g~ = J P / J P  + 1 ~ Oro- 

Therefore ~r  defines on F o a point of the finite order equal to p. 
Since F o has zero invariant of Hasse such point is necessary the unit 
point of F 0, and hence J / J z - ~  (gF0. Denote d~r = (9w/or "+1, we have for 
any n > 1 the exact sequence 

0 ~ : " / J  " + 1 ~  r Or._, ~ 0 .  
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Since J is invertible on W, we have J"/J"+l=(J/J2)"=(gVo for each 
n > 1. This gives 

Hi(W,J"/J"+a)=Hi(Fo,@Vo)=ko (i=0, 1) 

write the exact cohomology sequence 

0-~ H~ (3Vo) --~ H~ (gv.) ---~ H~ g'v._ ~)~ Ha( W, (gvo)- 

Taking n = l  and noticing that the map H~176 is 
surjective, we obtain that 

Ho(w, (.oF,)= ~o ~. 

Hence the map H~ has nontrivial kernel. 
This gives that H~ @r2)--* H~ (W, (gF,) is not zero. Therefore we obtain 
that dimkoH~ (9~2)>2. Proceeding by induction, we have 

dimko H~ @rp) = dimko H~ (_gr) > 2. 

Since by 2.8 f .  ((gx) = O r this shows that f :  W-+ Y is not cohomologically 
flat 

2.11. Theorem. Let f :  X--~ Y be a cohomologically flat proper mor- 
phism of the relative dimension one. Assume that Y is integral and the general 
fibre X,  of f is a smooth geometrically connected curve of the genus g. 
Then for any geometric point y: with the centre in y~ Y, we have 

#o (x@ = #o (x@ = 1, 

fl,(X~) <= flt(X~) = 2 g, 

#~ (x@ >= #~ (x@ = ~. 

Proof. The assertion about flo is an immediate corollary of the Con- 
nectedness Theorem of Zariski (see [EGA 3], 4, 3.10), and one concerning 
f12 is trivial. We prove the assertion about ill. Let A=(Pr, y; obviously 
we may assume that Y= Spec A, that the residue field of A is separably 
closed and that F=Xy is the special fibre of the morphism f :  X--~ Y. 
By the invariance of the Euler-Poincar6 characteristic (with coefficients 
in the structure sheaf) of fibres of a flat proper morphism ([EGA 3], 
7.9.11), we have, since dimko H~ (gx)= 1 

u(F)=rc(X,)=g. 

Let F 0 =F~ d and u' =d im k HI(Fo, (gVo), the ariphmetic genus of F o. The 
natural immersion Fo~-~F induces the epimorphism Ha(F,@v)--. 
Ha(Fo, Cvo) (since dim F =  1). This yields 

zV_<_~(F)=g. (1) 
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Hence it is sufficient to show that 

fll(Fo) < 2n ' . (2) 

By (2.2.1) and 2.3 this inequality is equivalent to the following one: 

26Fo--a'vo--h + l >O. (3) 
h 

Let F o = ~ Fi, where F i are irreducible components, P = ~ F~, let ff = ~ if/ 
i=1  

be the normalisation of F o and let F' be the curve, the underlying topo- 
logical space of which coincides with one of F and for any open U c F, 
r(u, ~F,)= { ( f ,  .. . ,  f . ) l f , ~ r ( U  c~ F,, CF), f/(P) =fi(P) for all pairs i, j such 
that P e F  i n Fj}. We have natural morphisms 

ff v 3 , p  V2,F, p , ,Fo .  

Denote by p = Pl o Pz o P3; ff  ~ Fo, P' = Pl ~ Pz: p ~ Fo the corresponding 
compositions. Let P e F  o, F~ ( j=  1, ...,np) be irreducible components 
of F o, which contain P. We have 

np 

p. (tPr)j, -- p.  (O~)e =s__0) Ori,, r =- Pl, .  (OF,)p = Or, p =- OVo, p- 

Furthermore 

i d m k p.  (t~r)p/p. (d~p)p = j~a 6%, e, 

where Pje P and p.  (Pj) = P, 

dim k p.  ((gp)e/Ov,,r = n v -  1. 

We also define the number yp= dim k d~v,,e/~v. P. 

Hence, we have 
/1io 

~Fo, P= n p -  1 + ~ 6%,~+?p. 
j = l  

Similar arguments show that 

' - n  - 1 - W ~ '  F o , P - -  p " ,(-., v r i j , P  j"  
j = l  

Now (3) can be rewritten in the form: 

np np 

2 ( n v - 1 ) + 2  Z Z6vis ,~ + 2  Z ? P -  Z Z31ij, P, - h + l > O .  
PcFo PcFo jffi l  P~Fo P~Fo jffil  

Let r be a local component of the conductor of the curve F~s in its 

normalisation ffij considered as a divisor on ffis" We have 26%,p> 
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deg(c%,~) ([9], Th. 10). This implies 

26%,~>deg c%,~ > 6~r~. (4) 

The obvious inductive argument shows that 

( n e - 1 ) - h +  l>O.  
PEFo 

Collecting all these inequalities we get (2). 

2.12. Suppose that for the fibre F of the morphism f :  X --} Y we have 
an equality ~l(F)=2g.  In this case all inequalities in the proof of 2.6 
must be equalities. We have 

(1) and (2) ~ rr (Fo) = n (F); 

(4)=*-all curves Fi are nonsingular; 

(5)=> the irreducible components of F are connected as a tree; 

(6)=~VPeFo, ?e=0,  this shows that in each point P components of 
F o are intersecting transversally. 

2.13. Let f :  V ~  Spec A be a regular curve over a discrete valuation 
ring A with the algebraically closed residue field k (cf. 2.9). Suppose that 
the general fibre o f f  is a geometrically connected smooth curve of the 
genus g. By the Connectedness theorem of Zariski (see [EGA 3], 4.3.10) 
this implies that the special fibre F of f is connected. Furthermore it is 
easy to see, applying [EGA 4], 15.4.2 that F has no immersed points. 

We shall use the notations and results of the intersection theory 
on V (see [6, 10]). 

Lemma. Assume additionally that V has no exceptional curves of  the 
I st kind and that g>0.  Considering F as a divisor on V, suppose that 
F = n C + D, where C is an integral curve of  the arithmetic genus g'>__ g not 
contained in the support o f  D. Then we have g '= g, D = 0 and either n = 1 
or n > 1 and g '=  g = 1. 

Proof Recall that we have for any effective divisor Z with support 
on F ([6], Th. 3.2): 

~of (Z .  K) + (Z ~) 
(z ,  o~) = pa (z)  = 2 (1) 

where K is the relative canonical divisor on V determined (not uniquely) 
by an isomorphism Ov(K)=eJv=f11/A. We have also ([6], no. 1): 

(F. Z) = 0. (2) 
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The invariance of the Euler characteristic ([EGA 3], 7.9.11) implies that 

pa(F) = 1 - g .  (3) 

Since C is reduced we have H~ d~c)= k and hence 

Pa (C) = dim k H ~ (C, 0c) - ~r (C)-- 1 - g'. (4) 

From (2) it follows that 

O=(C.F)=n(C2)+(C.D). 

Since F is connected and C is not the component of D we have therefore 

(C2)<0 and (C2)=0"r (5) 

Let D = n' C' + D', where C' is reduced and is not the component of D', 
we have from (2): 

0 = ( F .  C' )=n(C ' .  C)+n' (C'E)+(D ' .  C'). 

Hence (C '2)<0 and since Pa(C')~ 1 (C' is reduced!) we have from (1) 
( C ' - K ) > -  1. The case ( C ' - K ) = -  1 is impossible, since it would be 
imply that C' is an exceptional curve of the 1 st kind (the Castelnoovo's 
criterion, [6], 3.9). Therefore we have (C'- K ) > 0  and since C' is an ar- 
bitrary component, we get 

(D. K ) ~  0. (6) 

Now we have from (l) and (2): 

2 g - 2 = ( K .  F ) + ( F 2 ) = ( K  �9 F ) = n ( K  . C)+(D.  K). 

Applying (4) we obtain 

2 g -  2 = n ( 2 g ' -  2 ) -  n(C2)+(D . K). 

Denote A = g ' - g ,  we have from (5) 

n(C2)=(n - 1 ) ( 2 g ' -  2)+2A +(D-  K ) < 0 .  

However from the conditions of the lemma and (6) we have that all 
summands in the right side are nonnegative. Hence we get 

A =0= : -g '=g ,  

(C2)-----0:=> D---0 (in virtue of (5)) 

and ( n -  1) ( g ' -  1)=0. 

2.14. Corollary. In hypothesises of  2.11, we have for any y e Y 

EP(X~) >= EP(X~) = 2 -  2 g. 
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Furthermore, / fchar  k(y)=0 and X and Y are regular the equality takes 
place i f  and only if  either X r is smooth or g <= 1 and Xy.~ed is smooth curve 
of  the genus g. 

Proof  As it follows from 2.11 we have 

E P (Xy) - E P (Xq) = (fl~ (X#) - fl, (X~)) + (f12 (X~)- f12 (X#)) > 0 

and the equality takes place if and only if 

fll(X~) = ill(X#) = 2g,  

f12 (X~) = f12 (Xn) = 1. 

In virtue of 2.12 it implies that Xy, rea is a smooth curve of the genus 
equal to g. Suppose that Xy is not geometrically reduced (applying 
[-EGA 4], 15.4.2 it is easy to see that Xr has no immersed points and 
hence in classical terms "X~ is a multiple nonsingular fibre") and g > 2. 
The assertion is local and hence we can assume that Y= Spec A, where 
A is a local ring with the algebraically closed residue field and y is the 
closed point of A. ([EGA 4], 17.7.3.) Let n = d i m  A, since the property 
smoothness is constructive ( [EGA4] ,  17.7.11), there exist n - 1  local 
parametres t 1 . . . . .  t , _x~A  such that the general fibre of the canonical 
morphism X | A/(tl ,  . . . ,  t ._ ~) A ~ Spec A/(tl,  . . . ,  t ._ i) A is smooth. De- 

Y 
note by B the discrete valuation ring A/(t  1 . . . . .  t , _ l ) A  let f "  X ,=  
X |  B-*  Spec B be the canonical projection. The special fibre F of f '  

Y 
is isomorphic to X r |  where k(y) is the algebraic closure of k(y). 

k(y) 
Since flatness is preserved by the change base, f '  is flat. This easily implies 
that X t is reduced. 

Let p: XL-~ X t be the canonical morphism of normalization of X,. 
Denote by F the special fibre of the projection f:  _~,-+ Spec B. Each 
irreducible component of Fred is a curve of the genus > g. Applying the 
lemma to the desingularisation of X, (which exist due to results of 
Hironaka and obviously can be selected without exceptional curves 
of the 1 st kind) we obtain that F is an integral curve of the genus g. Since 
g >  1 this implies (by means, for example, the Hurwitz formula) that 
the restriction of p on P defines the isomorphism p': P-- .  Fre d (here we 
use that char k(y)=0). Let 2oe.gt be the general point of F, Xo=p(ff0). 
The ring (gx~,x o is integral and its normalisation coincides with (gx,,~ o. 
Since p - I ( F ) = P  it is easy to see that taro (gX,~o=mxo and since p' is an 
isomorphism we get that the corresponding extension k(,2o)/k(xo) is 
trivial. Hence we obtain that a) X, is geometrically unibranched in x 0 
( [EGA4] ,  6.15.1) and b) the canonical morphism p: X t ~ X  , is non- 
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ramified in ~o. Applying [EGA 4], 18.10.1 this implies that p is 6tale 
in Xo and hence (loc. cit., 17.5.8) X t is normal in Yo and p is an isomorphism 
in ~0. This yields that F is reduced in its general point and since F = Xy 
has no immersed points we get that it is reduced. This contradiction 
proves the assertion of the corollary. 

2.15. Remarks. a) In the case of dim X =  2 without the assumption 
of cohomological flatness the previous statement had been proved by 
~afarevi~ (Eli, Ch. 4, Th. 7) who used the intersection theory on X. In 
this case the equality is valid if and only if either Xy is smooth or Xy, rod 
is a smooth elliptic curve. The general case gives the third possibility 
namely, Xr, re d is a rational curve and such examples can be easily 
constructed with fibering of a threefold over a surface. 

b) The generalizing of 2.12 to the statement about semicontiniousness 
of the Euler-Poincar6 characteristic and Betti numbers is false if we do 
not assume that f is a separable morphism or dim Y-- 1. I conjecture 
that in case when f is separable it is true. 

3. Purity Downstairs 

3.1. Let f :  X --, Y be a flat proper morphism of the relative dimension 
1 with X, Y smooth over a field k. Suppose that the general fibre of f 
is a smooth geometrically connected curve of the genus g. We want to 
show that at certain restriction on f the set Singr( f )=f(SingX(f ) )  (see 
notations of 1.5), if it is not empty, defines a divisor on Y. For the future 
we assume that Singr(f)  4: 0- 

Lemma. For any maximal point Yo of Singr(f)  we have 

codim (Yo, Y) %f dim ~y, YO ~-~ 2. 

Proof. Since f is equidimensional, for any maximal point x o of the 
fibre f -10,o)  we have codim(xo,X)=codim(Yo,  Y) ([EGA4],  13.2.9). 
It is obvious that f - t ( y  o) contains a maximal point of SingX(f). In 
virtue of 1.5 this implies that codim(y o, Y)< 2. 

Suppose now that there exist a maximal point Yo of Singr(f)  with 
codim(Yo, Y)= 2. Let A =  ~)Y, Yo' Ash be its strict henselization ([EGA 4], 
18.5.8), Yo be the image of Yo in SpecA sh. By "localizing f "  we may 
assume that Y= Spec A sh ([EGA 4], 17.7.3). Let Y'= Y - Y o ,  X'  = X  r x Y'. 
Thus we have the commutative diagram: 

Xtr i ~ X 

y , r  J ~ y  
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where i and j are canonical immersions and f '  is a restriction o f f  on X'. 
Since Y0 was maximal on Singr(f)  and the smoothness is preserved at 
the base change ([EGA 4], 17.7.3) f '  is smooth. Thus we must to prove 
the following. 

3.2. Theorem of the purity downstairs (local form). Let Y= SpecA 
be a local strictly henselian regular two-dimensional scheme, yo~Y 
its closed point, Y'--- Y - Y o  be the punctured local scheme. Let f :  X --* Y 
be a proper flat morphism of the relative dimension 1 with smooth 
geometrically connected curve of the genus g as a general fibre. Assume 
that in case g>  1 f is cohomologically flat and in the case g > 1 the 
residue field k of A has zero characteristic. Suppose that the restriction 
o f f  on X ' = X  • Y' is smooth, then f is smooth. r 

3.3. Lemma (Grothendieck). Let A be a regular noetherian ring of the 
dimension two, m its maximal ideal, X=Spec  A, X ' = X - { m } .  Then for 
any locally free sheaf E on X'  there exists its free extension on X, i.e. a 
free sheaf L on X whose restriction on X '  coincides with E. 

Proof. Let j be the canonical immersion X'~-*X. Since E is locally 
free, j , L  is a coherent sheaf on X (cf. [SGA], Exp. VIII, II1-2). Denote by 
M an A-module of finite type for which j .  L=M~.  Since j .  j ' j .  L =  
j .  L = M ~ we have by 1.4 depth M > 2, and hence, since A is regular, we 
get dim. proj. M = d i m  A - d e p t h  M = 0  (see [I1]). Thus M is projective 
and, since A is local, it is free. 

Corollary 1. A locally free sheaf on X'  is free. 

Corollary 2. A is pure, i.e. any dtale covering of X'  is a restriction of 
some ~tale covering of X (cf [SGA], Exp. 10, 3.4). 

3.4. We shall need some notations and results from the theory of 
the Brauer's group of a prescheme, developed by Grothendieck (see 
[GB i], i=  1, 2, 3). 

Let X be a prescheme, the second cohomology group H 2 (X, G,,. x) 
in 6tale topology of X is called the cohomological group of Brauer of X 
and is denoted by Br'(X) ([GB 2], 2.7). This group coincides with the 
group of Brauer of X, defined as the group of classes of Azumaya's 
algebres on X (see [GB 1], 1.2) in the following cases ([GB 2], 2.2 and 
2.5): 

i) X is noetherian and dim X < 1. 
ii) X is regular and dim X < 2. 

iii) X is local henselian. 

3.5. Lemma. Let A be a two-dimensional local regular strictly henselian 
ring, Y=SpecA, x its closed point, Y '=  Y - x .  Then Br'(Y')=Br Y'=0. 
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Proof. Since dim Y'= 1, we have Br'(Y')= Br Y'. Let d '  be an algebra 
of Azumaya on Y'. Consider the canonical injection j: Y' ~ Y and let 
d = j .  d ' .  In virtue of the Corollary 1 to the Lemma 3.3, d '  is free as 
an Or-Module. Since dim A = 2, j .  (9 r = O r (see 1.4) and therefore d is 
also free as an Or-Module. Hence d is an algebra of Azumaya on Y 
([GB 1], Cor. 5.2). However, since A is strictly henselian, any algebra of 
Azumaya on Y is trivial (theorem of Azumaya, [GB 1], Cor. 6.2). There- 
fore d ' = j * d  is also trivial, q.e.d. 

3.6. Lemma. With notations of 3.2, we have for the special fibre F 
off: 

fll(F)=2g, f lz tF)=l .  

Proof. Endow the preschemes X, X', Y' and Y with &ale topology 
and consider on X' the sheaf #,,x, ~-(Z/n Z)x,, (n, char k)= 1. We have 

n,y' i=1  
i , R f .#n,x,=lg, ,  r / = 2  

i > 2 .  

Really, since f '  is smooth, for any geometric point y of Y' the corre- 
sponding fibre X~ is a smooth curve. Since f '  is cohomologically flat 
(see 2.7(2)), by the invariance of the ariphmetic genus of the fibres of a 
flat proper morphism ([EGA 3], 7.9.11), the genus of Xy is equal to g. 
Hence from 2.4 it follows that 

[ (Z/n  z )  2~ i = 1 

Hi(X"#"'x~)=]~ Z/nZ) i>2.i=2 (1) 

This is also an immediate corollary of the theorem of specialization for 
cohomology groups ([SGAA], XVI, 2.2). Applying the "Base change 
theorem" ([SGAA], Exp. 12, 3.1), we have 

I(Z/n Z) 2g i=  1 
i , _ i ~ Z  (R f .  U., x~) -~ #,, x')~-- H (X~, /n Z i = 2 

[o i>2 .  

By [SGAA],  Exp. 9, 2.13 this implies that the sheaves Rif'J.P,,x, (i = 1, 2) 
are locally constant on Y' and therefore (loc. cit. 2.1) are represented by 
an &ale covering Y' of Y'. As it follows from 3.3 (namely, Corollary 2), 
Y' is induced by some 6tale covering of Y, which is trivial, since Y is 

- -  - - t  strictly henselian ( [EGA4] ,  18.8.1). Thus Y' is trivial, i.e. Y ' = ~  Y/, 
where Y/-~ Y'. This shows that the sheaves Rif. ~,, x' are constant on Y' 
and hence we have (I). 
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Consider now the Kummer exact sequences on Y': 

0 --* H ~ (Y', (fiy,)*/H ~ (Y;  (fir')* "--* HI(Y ' ,  Pn, r') ~ (Pic Y'). ~ 0, 

0 -* (Pic y,)tn)_. H E ( y ;  Pn, Y') ---' Hz  (Y', Gin, r'),-* 0. 

As it was explained in the proof of 1.5, Pic Y' =0  (that is also immediately 
follows from the Corollary 1 to the Lemma 3.3). Furthermore, applying 
3.5, we have B r ' ( Y ' ) = H z ( Y ' , G m ,  r )=O.  Again using 3.2 we have 
H~ and since A is strictly henselian, A*=A *n ([EGA4],  
18.5.13). Thus 

Hi(y ' ,  Pn, r') = O, i = 1, 2. (2) 

Let's consider now the Leray spectral sequence 

E ~ J = H i ( y ' , R J f  ' ,, ~ . , J , ~ . , x ' ,  =* H (X, I~ , ,x , ) .  

We have by (2) E~'2= E2'i= 0, j > 0 .  This implies: 

�9 . ~ ( Z / n  Z )  2 g, i = 1 
H ~  R ' f * # " ' x ' ) = H ' ( X " # " ' x ' ) = ( Z / n Z ,  i=2 .  

The Kummer exact sequence on X' gives the following exact sequences 

0 --, H ~ (X',  (gx,)*/H ~ (X',  (fix,)* ~--' Ha (X',  #., x,) ~ (Pic X'). ~ 0, 

0 --~ (Pic X') (") ~ H 2 (X', #., x,) ~ H2 (X', G,., x,),---' 0. 

Since the general fibre of f is geometrically integral and Y' is normal, 
we have f .  ((fix,) = (fir' ([EGA 3], 4.3.12), therefore 

H ~  X' ,  (fix,)* = H ~  Y', (-Or,)* =A*, 

and hence by (3) we have 

(Pic X' ) .  = H 1 (X',  I~., x') = (Z/n Z) 2., 
(4) 

(Pic X') (") r 2 (X',/~,, x') = Z/n  Z .  

Since the relative dimension of the morphism f is equal to 1, we have 
an epimorphism P i c X ~ P i c F  (see [EGA4] ,  21.9.12 or [SGAA], 
Exp. 13, 3.2). The exact Kummer sequence on X together with the Base 
change theorem yields the isomorphism 

(Pic X),-~ H 1 (X, #,, x) ~ H1 (F, p., F) 
4 lnvemiones math.,VoL8 
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and the exact commuta t ive  diagram: 

0 --, (Pic X)<")-~ H 2 (X, ,tin, x) --~ HE (X, G,~, x). -+ 0 

0 -~ (Pic F) ~) ---, H 2 (F, ~., F) ~ N2 (F, Gm, e), --" O. 

1 
0 

Since the field k is separably closed H 2 (F, G.,, F), = 0 ( [SGAA],  Exp. 9, 
4.6). Hence we have 

(Pic X)~"~ = (Pic F)(") = H 2 (F, #., r) = (Z/n Z) p2~v), 

(Pic X) .  = H 1 (F, #., r) = (Z/n Z) alw). 

Since codim F = 2  and X is regular, we have ( [EGA 4], 21.6.12): 

Pic X = Pic X'. (5) 
By (4) this implies 

(Pic X).  = (Z/n Z) #1 ~p) = (Pic X') .  = (Z/n Z) 2 g, 
(6) 

(Pic X) t")= (Z/n Z)#2tr) = (Pic X') t") = Z/n Z 

hence f la(F)=2g,  f l z (F)=  1. q.e.d. 

3.7. Corollary.  With conditions of 3.2 we have for any n prime to 
char  k: 

Br '(X'),  = Br iX'), = 0. 

Proof Since dim X ' = 2  and X'  is regular, we have Br ' (X' ) - -Br(X') .  
Consider  the K u m m e r  exact sequence on X',  we get the following exact 
sequence: 

0 ~ (Pic X') t")--, H 2 (X', #n, X') ~ Br'(X'),  ~ 0. 

As we have seen at the p roo f  of  3.5 (the equalities (3) and (6)): 

(Pic X')~")=Z/nZ; Hz (X ' , t t , . x , )=Z /nZ .  

This yields that  Br '(X') ,  = 0. 

3.8. Remark. In case k =  C one can prove the assertion analogous 
to 3.4 by means of  usual topological  arguments  there Y is changed by a 
4-ball, Y ' =  Y-Yo  by a 3-sphere. We have the commuta t ive  diagram 

X'~__.X 

,1 ? 
y'~--~ y 
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Y' has trivial homologies in dimensions 1 and 2 (the analogue of (2)). 
Thus, since f '  is obviously a Serre's fibration, this implies that Hi (X ' ) -  - 
Hi(F'), where i=  1, 2 and F' is a fibre of f '  (the analogue of (3)). Con- 
tracting U to the point Yo and using the covering homotopy axiom, we 
get that X is contractible to F. This gives H i (X)= Hi(F). However, since 
codim F =4, we have Hi(X) = Hi(x') ,  i=  1, 2 (the analogue of (5)). Finally, 
we have H i (X) = H i (F) = H i(X') = H ~(F'), i = 1, 2. 

3.9. Theorem (Purity Downstairs). Let f :  X---~Y be a f iat  proper 
morphism of smooth schemes over a field k. Assume that f is of the relative 
dimension 1 with a smooth geometrically connected curve of the genus g 
as a general fibre. Suppose that in case g > 1 f is cohomologically f iat  
(see 2.6) and in case g >  1 char k=0.  Let S ingr( f )= f (SingX(f))  with the 
induced structure of  a topological space. Then if SingX(f)4:0, we have 
for any maximal point Yo~SingY(f)codim(Yo, Y)= 1. In other words, 
SingY(f) defines a divisor on Y. 

Proof Using the arguments of 3.1 it is sufficient to prove 3.2. Applying 
the Lemma 3.4 and Corollary 2.14 we obtain our assertion in case g >  1. 
Hence, it remains to consider two cases, namely, g = 1 and g = 0. 

Case g = 1. Since f is of the relative dimension 1 over a henselian 
ring, it is projective morphism (really, the special fibre F o f f  is complete 
curve and hence projective, taking ample ~0 ~ Pie(F) and lifting it to an 
element ~6Pic(X) we can apply [-EGA 3], 4.7.1). Hence F': X'--~Y' is 
a smooth projective morphism. Under these conditions there exist the 
relative Picard scheme Pic(X' /Y')  (see [FGA]) and its connected com- 
ponent of the unit section defines an abelian scheme J '  over Y' of the 
relative dimension 1 (i.e. an elliptic scheme in terms of Grothendieck, 
see [5], 4.7). As it easily follows from the definitions of Pic(X' /Y ')  the 
fibres of J'--* Y' are the jacobians varieties of the corresponding fibres 
of f ' .  In virtue of the Grothendieck's theorem of the purity for abelian 
schemes ([5], 4.7). J '  can be prolonged to the abelian scheme J over Y. 

Sublemma. The schemes X'  and J' are Y'-isomorphic. 

Proof As it easily can be seen this assertion is equivalent to the fact 
that the general fibre X'~ of f '  has a rational point over the field of 
fractions of the ring A, in other words X', is a trivial principal homo- 
genious space over elliptic curve J~. Let i: q ~--,Y' be a canonical injection 
of the general point, J, in obvious way represents on ~/an abelian sheaf 
in 6tale topology. Considering the Leray spectral sequence for i ".~ 
have the exact sequence: 

4* 

o - ~  H ~ (r ' ,  i ,  2~) - ~  H ~ (,7, 2~) r ~. II H I ( g ( y ) ,  J ; )  
r Y' 
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where /s denotes the field of fractions of the strict henselisation of 
the ring Or; r" As it well-known the elements of the group H 1(1/, J~) are 
interpreted as principal homogenious spaces over J~, considering X', as 
an element of this group, we have that its image at the map ~o is zero 
(since f '  is smooth and hence X' has a rational point over / ( (y)  for each 
point y). Therefore X' belongs to the Tate-Safarevi~ group HI(Y ', i .  d~). 
To prove the sublemma it is sufficient to show that this group is trivial. 
Since dim J ' =  2 and both J '  and Y' are regular, we can apply the results 
of Artin-Tate-Grothendieck concerning the connection between the 
Brauer group and the Tate-gafarevi~ group (see [GB 33, no. 4). Since 
J '-- ,  Y' is smooth and has a section these results give the isomorphism 
HI(Y' , i ,J~)~-BrJ '. Since B r J '  is a torsion group ( [GB2] ,  1.4) and 
char k = 0, we can apply Corollary 3.7 in order to get Br J' = 0. 

Hence, we get that schemes X and J are birationatly isomorphic 
over Y, namely, they coincides on the open set X'~-J'. Since 
c o d i m ( X - X ' ,  X ) = 2  and both X and J are regular, the theorem of the 
purity of Van der Waerden ([EGA 4], 21.12.12), applied to the graph 
of the birational correspondence between X and J implies that X is 
Y-isomorphic to J. However the second scheme is smooth over 1I, 
hence we are through. 

Case g = 0. Again as in the proof of 3.3 we may assume that Y= Spec A 
is strictly henselian. Since in the case g = 0  the geometric fibres of the 
morphism f ' :  X'--, Y' are projective lines, X' is a Severi-Brauer pre- 
schema over Y' (see [GB 1]). Let d r, be the corresponding Algebra 
Azumaya. Applying the Lemma 3.3, we get that d r , , i s  matricial. This 
implies that the Severi-Brauer preschema X' is trivial, i.e. X ' = P ( E ) =  
Proj (S (E)), where S(E) denotes a symmetric Algebra of a locally free 
sheaf E on Y'. Again applying 3.2, we obtain E=j*(L)  where L is a free 
sheaf on Y. Hence, X' = P ( E ) =  P ( L ) x  Y' ( [EGA 2], 4.1.3.1). 

So, we get that X is birationally isomorphic to the scheme P(L), 
namely, they coincide on the open subset X ' - - P ( L ) x  Y'. The same 

Y 
argument as in the previous case shows that X is isomorphic to P(L). 
However, the latter scheme is smooth over Y ([EGA 4], 17.3.9). Hence 
X is smooth over Y. q.e.d. 

3.10. Corollary. In hypotheses of 3.5 we have if f is smooth over an 
open set V c  Y containing points of codimension _~ 1, then f is smooth. 

3.11. Remarks. Here we discuss the problem of the elimination of 
restrictions imposed on f, X and Y, namely the assumptions (i)-(iii) 
cited in the introduction. 

1. The restriction (i) arises in the Theorem 1.5 which was used for 
the reduction to the local form 3.2 of the Theorem 3.9 (see 3.1). This 
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shows that there are two ways to eliminate (i): the first consists on the 
elimination (i) in 1.5 and in the second we have to prove 3.9 not using 1.5. 
Note that in the latter case the assertion 1.5 would be an immediate 
corollary of 3.9. 

2. In order to eliminate (ii) we need the proof of 2.14 not using the 
assumption of cohomological flatness. I guess that 2.14 just as in the case 
of dim Y= 1 is valid without such assumption. 

3. The restriction (iii) arises from the application of a result from the 
theory of Ogg-~afarevi6 for two-dimensional bases. To a pity all known 
results (not numerous) in this theory are up to p-torsion. 

4. It is obvious that without the assumption of flatness of f the 
Theorem 3.9 is false. In order to get a counterexample it is sufficient to 
blow up a subschema of a suitable closed fibre o f f  There exist less trivial 
counterexamples (due to Manin in case g = 0 and due to Kawai in complex 
case and g = 1). 

Added in Proof The Theorem 1.5 have been generalized by the author to the following 
result. Let f :  X ~ Y be a morphism of locally finite type of integral schemes. Suppose that 
either X and Y are smooth S-schemes or X is locally complete intersection over Y. Then 
codim (Sing x (f) ,  X ) <  n + I, where n is the dimension of the general fibre of f .  

Using this result one can reduce the Theorem 3.9, in which the condition on X and Y 
to be smooth is changed by the condition of regularity, to its local form 3.2. Thus the 
restriction i) cited in the introduction can be eliminated. 

Bibliography 

[EG A i ]  (i=2, 3,4) Grothendieck, A.: Elements de G6om6trie AIg6brique. Chapitre i. 
Publ. Math., 8 (i=2), 11, 17 (i= 3), 20, 24, 28, 32 (i=4). Paris 1961. 

[FGA] - Fondements de la G6om6trie Alg6brique (Collection d'exposes au s6minaire 
Bourbaki), Secr&ariat Mathematique, Paris 1957-  1962. 

[SGA] - S6minaire de G6om6trie Alg6brique, mimeo, notes, IHES, Paris 1962. 
[GB i] - Le groupe de Brauer i (i= 1, 2, 3), Sem. Bourbaki, May 1965, n ~ 290 (i= 1); 

Nov. 1965, n ~ 297 (i = 2); mim6o, notes, IHES, Paris, (i = 3). 
[SGAA] Artin, M., et A. Grothendieck: Cohomologie 6tale des sch6mas, S6minaire de 

I'IHES, mim6o, notes, Paris 1963/64. 
1. Algebraic surfaces (edited by I. R. ~afarevi6). Trudy Mat. Inst. Steklov, No. 75, lzdat. 

Acad. Nauk SSSR, Moscow 1965. 
2. Buchsbaum, D., and D.S. Rim: A generalized Koszul complex. Bull. Amer. Math. 

Soc. 69, 382-385 (1963). 
3. Danilov, V., and I. Dolga6ev: Etale topology of schemes (to be published, in russian). 
4. Dolga6ev, I., and A. Par~in: The different and d iscriminant of the regular maps. Matem. 

Zametki 4, No. 5, 519-523 (1968). 
5. Grothendieck, A.: Un th6oreme sur les homomorphismes de sch6mas abeliens. In- 

ventiones math. 2, 5 9 - 7 8  (1966). 
6. Lichtenbaum, S.: Curves over discrete valuation rings. Amer. Journ. 90, 380-406 

(1968). 
7. Nagata, M.: On the purity of the branch loci in regular local rings, lllin. Journal of 

Math. 3, 319-333 (1959). 



54 I.V. Dolga~ev: On the Purity of the Degeneration Loci of Families of Curves 

8. Raynaud, M.: Sp6cialisation du foncteur de Picard. Crit6re num6rique de repr6sent- 
abilit6. C.R. Acad. Sc. Paris 264, 1001-1004 (1967). 

9. Rosenlicht, M.: Equivalence relations on algebraic curves. Ann. of Math. 56, 169- 191 
(1952). 

10. gafarevi~,l.: Lectures on minimal models and birational transformations of two 
dimensional schemes. Tata Inst. of Fundamental Research. Bombay 1966. 

11. Serre, J.P.: Alg~bre locale, Multiplicit6s. Lecture notes in Math., No. 11. Berlin- 
Heidelberg-New York: Springer 1965. 

12. Vvedenski, O.N.: Duality in elliptic curves over local fields. II. Izv. Acad. Nauk. 
SSSR 30, 891-922 (1966) [in russian]. 

13. Zariski, O.: On the purity of the branch locus of algebraic functions. Proc. Nat. Acad. 
Sci. USA 44, 791-796 (1958). 

I.V. Dolga~ev 
Moscow State University 
Department of Mathematics 
Moscow, V-234, USSR 

(Received 1.9.1968; in revised form 27.12.1968) 


