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The rationality of the moduli spaces of Coble surfaces

and of nodal Enriques surfaces
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Abstract. We prove the rationality of the coarse moduli spaces of Coble
surfaces and of nodal Enriques surfaces over the field of complex numbers.
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To Igor Rostislavovich Shafarevich on the occasion of his 90th birthday

§ 1. Introduction

The purpose of this note is to prove the rationality of the moduli spaces of
Coble surfaces and of nodal Enriques surfaces over the field of complex numbers.
A Coble surface is a rational surface obtained by blowing up 10 nodes of a rational
plane curve of degree 6, and an Enriques surface is said to be nodal if it con-
tains a smooth rational curve. The moduli space of nodal Enriques surfaces is
a codimension-one subvariety in the 10-dimensional moduli space of Enriques sur-
faces. When the K3-cover of an Enriques surface degenerates, admitting an ordinary
double point fixed under an involution, the quotient by the involution is a rational
surface obtained from a Coble surface by blowing down the proper transform of the
plane sextic. In this way, the moduli space of Coble surfaces can be identified with
a codimension-one component of the boundary of the moduli space of Enriques
surfaces.

The idea behind the proof is similar to the one used by the second author for the
proof of rationality of the moduli space of Enriques surfaces [1]. The K3 surface
birationally isomorphic to the double cover of the projective plane branched along
the union of a cuspidal plane quintic and its cuspidal tangent contains the lattice
D

8

� U in its Picard group. It is shown that the moduli space of K3-covers of
Enriques surfaces and the moduli space of K3 surfaces admitting this lattice in its
Picard group are birationally isomorphic quotients of a bounded symmetric domain
of type IV. A similar idea is used here. We prove that the moduli space of K3-
covers of nodal Enriques surfaces (resp. K3-covers of Coble surfaces) is birationally
isomorphic to the moduli space of K3 surfaces birationally isomorphic to the double
cover of the projective plane branched along the union of a cuspidal plane quintic
and its cuspidal tangent line, where the quintic has an additional double point
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(resp. the cuspidal tangent line touches the curve at a non-singular point). It is
easily proved, using [2], [3], that the corresponding moduli spaces of plane quintics
are rational varieties.

Note that general Enriques and Coble surface are examples of the quotients of
a K3 surface by a non-symplectic involution which acts identically on the Picard
group. Ma [4] has recently shown the rationality of the moduli spaces of such K3
surfaces in many cases. The case of the K3-covers of Coble surfaces is one of eight
exceptional cases where his methods did not work.

The idea that the moduli spaces of Enriques surfaces (resp. nodal Enriques sur-
faces, Coble surfaces) should be related to the moduli space of cuspidal quintics
(resp. their special codimension-one subvarieties) originates from some (still hypo-
thetical) purely geometric constructions of the first author which may relate the
corresponding moduli spaces. We discuss these constructions in the last two sec-
tions of the paper.

For both of the authors the mathematical work of I. R. Shafarevich has been
always a great source of inspiration and admiration. We are happy to have an
occasion to dedicate our contribution to him.

§ 2. Preliminaries

A lattice is a free abelian group L of finite rank equipped with a non-degenerate
symmetric integral bilinear form L ⇥ L ! Z whose value on a pair (x, y) will be
denoted by x ·y. For x 2 L⌦Q, we call x2 = x ·x the norm of x. For a lattice L and
a rational number m, we denote by L(m) the free Z-module L with the Q-valued
bilinear form obtained from the bilinear form of L by multiplication by m. The
signature of a lattice is the signature of the real vector space L⌦R equipped with
the symmetric bilinear form extended from the one on L by linearity. A lattice is
said to be even if x · x 2 2Z for all x 2 L.

We denote by U the even unimodular lattice of signature (1, 1), and by Am, Dn

or Ek the even negative-definite lattice defined by the Cartan matrix of type Am,
Dn or Ek respectively. For an integer m, we denote by hmi the lattice of rank 1
generated by a vector with norm m. We denote by L � M the orthogonal direct
sum of lattices L and M , and by L�m the orthogonal direct sum of m-copies of L.
For any integer k we denote by Mk the set of x 2 M with norm k.

We denote by L
K3

the lattice E�2

8

�U�3. It is isomorphic to the 2-cohomology
group H2(X, Z) of a K3 surface equipped with the structure of a lattice defined by
the cup-product. We will refer to L

K3

as the K3-lattice. The lattice E = E
8

�U is
called the Enriques lattice. It is isomorphic to the lattice Num(S) = Pic(S)/(KS)
of numerical equivalence divisor classes on an Enriques surface S.

Let L be an even lattice and let L⇤ = Hom(L, Z), identified with a subgroup
of L ⌦ Q with the extended symmetric bilinear form. We denote by AL the quo-
tient L⇤/L and define maps

qL : AL ! Q/2Z, bL : AL ⇥AL ! Q/Z
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by qL(x + L) = x · x mod2Z and bL(x + L, y + L) = x · y mod Z. We call qL the
discriminant quadratic form of L and bL the discriminant bilinear form. A lattice
is said to be 2-elementary if its discriminant group is a 2-elementary abelian group.

Let O(L) be the orthogonal group of L, that is, the group of isomorphisms of L
preserving the bilinear form. Similarly, O(AL) denotes the group of isomorphisms
of AL preserving qL. There is a natural map

� : O(L) ! O(AL) (2.1)

whose kernel is denoted by O(L)⇤.

§ 3. The moduli spaces of Enriques, nodal Enriques and Coble surfaces

First we recall the moduli space of lattice polarized K3 surfaces. For any even
lattice M of signature (1, r � 1) primitively embeddable in the K3-lattice L

K3

,
one can construct the coarse moduli space M

K3,M (resp. Ma
K3,M ) of isomorphism

classes of M polarized (resp. amply polarized) K3 surfaces X, that is, isomor-
phism classes of pairs (X, j), where j : M ,! Pic(X) is a primitive lattice embedding
such that the image contains a nef and big (resp. ample) divisor class (see 1 [5]).
Let N = M?

LK3
. Then the period domain is given by

D(N) =
�
[!] 2 P(N ⌦ C) : ! · ! = 0, ! · !̄ > 0

 
, (3.1)

which is the disjoint union of two copies of the (20� r)-dimensional bounded sym-
metric domain of type IV. The moduli space is constructed as a quotient,

M
K3,M = D(N)/O(N)⇤, Ma

K3,M = (D(N) \ H�2

)/O(N)⇤,

where O(N)⇤ = Ker(O(N) ! O(AN )) and, for any d 2 Z,

H�2d =
[

�2N�2d

{[!] 2 D(N) : ! · � = 0}. (3.2)

We call H�2d the (�2d)-Heegner divisor. Suppose that N and M satisfy the con-
dition that

(⇤) the natural maps O(N) ! O(AN ), O(M) ! O(AM ) are surjective.
Then

M
K3,M/O(AM ) ⇠= D(N)/O(N), Ma

K3,M/O(AM ) = (D(N) \ H�2

)/O(N)

are coarse moduli spaces of K3 surfaces which admit a primitive embedding of M
in Pic(X).

The period point of a marked K3 surface belongs to H�2

if and only if there exists
a primitive embedding of M � h�2i in Pic(X). The image of a generator of h�2i
will be an e↵ective divisor class R with self-intersection �2 such that R · h = 0 for
every divisor class in the image of M . This shows that X does not admit any ample

1There is an additional technical requirement for the embedding which we refer to loc. cit.
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polarization contained in the image of M in Pic(X). In other words, any nef and
ample polarization of X originating in M will blow down R to a double rational
point.

We now consider an Enriques surface S. Let ⇡ : X ! S be its K3-cover and let
� be the fixed-point-free involution of X. Then ⇡⇤(Pic(S)) = ⇡⇤(Num(S)) ⇠= E(2).
We take E(2) as M and denote by N the orthogonal complement of M in L

K3

.
Then

N ⇠= U � E(2). (3.3)

Note that �⇤|M =1M and �⇤N |=�1N . It is known that any period point [!] of the
K3-cover X is not contained inH�2

(see, for example, [6]). The quotientD(N)/O(N)
is a normal quasi-projective variety of dimension 10, and

�
D(N) \ H�2

�
/O(N) is

the moduli space M
En

of Enriques surfaces.
Next we consider nodal Enriques surfaces, that is, Enriques surfaces containing

a smooth rational curve ((�2)-curve, for short). Let C be a (�2)-curve on an
Enriques surface S. Then ⇡�1(C) splits into the disjoint sum C

1

[ C
2

of two
(�2)-curves. The divisor class � = [C

1

�C
2

] with �2 = �4 belongs to ⇡⇤(Pic(S))?.
If we consider all (�2)-curves on S, the corresponding (�4)-vectors � generate
a negative-definite lattice R(2) in U � E(2), where R is a root lattice. The root
lattice R is a part of the notion of the root invariant for Enriques surfaces (see [7]).
Since any period point [!] of the K3-cover X is orthogonal to an algebraic cycle,
we obtain that the period [!] belongs to H�4

. Thus we define the moduli space
Mnod

En

of nodal Enriques surfaces by

Mnod

En

= (H�4

\ H�2

)/O(U � E(2)), (3.4)

where H�4

, H�2

are Heegner divisors in the period domain of Enriques surfaces.
It is known that such a (�4)-vector � in U � E(2) is unique up to the orthogonal
group O(U�E(2)), and the orthogonal complement �? in U�E(2) is isomorphic to

N = U � h4i � E
8

(2) (3.5)

(see [6]). The orthogonal complement M = N? of N in L
K3

contains E(2)� h�4i
as a sublattice of index 2, where E(2) = ⇡⇤(Pic(S)) and h�4i is generated by �.
Then the quotient D(N)/O(N) is a 9-dimensional quasi-projective variety. We call
a nodal Enriques surface S general if R ⇠= h�2i, that is, for any two (�2)-curves
C, C 0 on S, [C

1

�C
2

] = [C 0
1

�C 0
2

]. Note that, for a general nodal Enriques surface,
the decomposition E(2) � h�4i is unique, that is, it is independent of the choice
of (�2)-curves. Hence we have the following.

Proposition 3.1. Let N = U�h4i�E
8

(2). Then the moduli space Mnod

En

of nodal
Enriques surfaces is birationally isomorphic to D(N)/O(N).

Finally we consider Coble surfaces. A Coble surface is a smooth rational pro-
jective surface S such that | � KS | = ? but | � 2KS | 6= ? (see [8]). A classical
example of such a surface is the blow-up of the projective plane at the ten nodes of
an irreducible plane curve C of degree 6. The sets of 10 points in the plane realized
as the nodes of a rational sextic are examples of special sets of points in the sense
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of Coble [9] (they were called Cremona special in [10]). They were first studied
in [11]. In this note we will restrict ourselves to these classical examples.

Denote by M
Co

the moduli space of Coble surfaces constructed as a locally
closed subvariety of the GIT-quotient of the variety of 10-tuples of points in P2

modulo the group PGL(3). By taking the double cover of P2 branched along the
plane sextic with 10 nodes, the moduli space M

Co

can be described as an open set
of an arithmetic quotient of a 9-dimensional bounded symmetric domain of type IV.
We briefly recall this.

Denote by X the double cover of the Coble surface S branched along the proper
transform of the plane sextic C. Then X is a K3 surface containing the divisors E

0

,
E

1

, . . . , E
10

, where E
0

is the pullback of a line on P2 and E
1

, . . . , E
10

are the inverse
images of the exceptional curves over the nodes p

1

, . . . , p
10

of C. It is easily seen
that the corresponding divisor classes e

0

, e
1

, . . . , e
10

generate the sublattice MX of
Pic(X) isomorphic to M = h2i � h�2i�10. Note that M is a 2-elementary lattice
of signature (1, 10) with AM

⇠= (Z/2Z)11. The orthogonal complement of MX

in H2(X, Z), denoted by NX , is a 2-elementary lattice of signature (2, 9) with
qNX = �qM (see [12], Corollary 1.6.2). The isomorphism class of such lattice is
uniquely determined by �qM . Thus NX is isomorphic to

N = h2i � E(2) (3.6)

(see loc. cit., Theorem 3.6.2). We remark that M ⇠= E(2)� h�2i.
Let D(N) be as in (3.1), where N is the lattice (3.6). The quotient D(N)/O(N)

is a normal quasi-projective variety of dimension 9. The Torelli-type theorem for
algebraic K3 surfaces, due to Pyatetskii-Shapiro and Shafarevich [13], implies the
following (for more details, see [14]).

Proposition 3.2. Let N = h2i � E(2). Then the moduli space M
Co

of Coble
surfaces is isomorphic to an open subset of D(N)/O(N).

Note that N = h2i � E(2) is isomorphic to the orthogonal complement of
a (�2)-vector in U � E(2). This implies that the quotient of the (�2)-Heegner
divisor H�2

in the period domain of Enriques surfaces by the arithmetic subgroup
O(U �E(2)) is birationally isomorphic to the moduli space M

Co

of Coble surfaces.

§ 4. Plane quintics with a cusp

Let C be a plane quintic curve with a cusp p. Let L be the tangent line to C at
the cusp. We consider the following two cases:

1) the line L is tangent to C at a smooth point q of C;
2) C has an ordinary node q.
Let M

cusp

be the moduli space of cuspidal quintics, that is, the GIT-quotient of
the projective space of plane cuspidal curves of degree 5 by the group PGL(3). The
second author proved earlier that M

cusp

is a rational variety birationally isomorphic
to the moduli space M

En

(see [1]). The proof establishes a birational isomorphism
between M

En

and the moduli space of K3 surfaces birationally isomorphic to the
double covers of P2 branched along a cuspidal quintic and its cuspidal tangent. Here
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we will follow the same strategy, replacingM
cusp

with its codimension 1 subvarieties
M0

cusp

(resp. M00
cusp

) corresponding to quintics in case 1) (resp. case 2)).

Theorem 4.1. M0
5,cusp

and M00
5,cusp

are rational varieties of dimension 9.

Proof. We start with case 1). Let C be a quintic curve in this case. By a linear
transformation, we may choose coordinates (x

0

: x
1

: x
2

) in such a way that
p = (1 : 0 : 0) is the cusp, and V (t

1

) is the cuspidal tangent line which touches C
at the point q = (0 : 0 : 1). Since p is a cusp of C with cuspidal tangent V (x

1

), the
curve C is given by an equation of the form

ax3

0

x2

1

+ x2

0

A
1

(x
1

, x
2

) + x
0

A
2

(x
1

, x
2

) + A
3

(x
1

, x
2

) = 0, a 6= 0,

where A
1

, A
2

and A
3

are homogeneous polynomials of degrees 3, 4 and 5, respec-
tively. Plugging in x

1

= 0, we obtain the binary form x2

0

A
1

(0, x
2

) + x
0

A
2

(0, x
2

) +
A

3

(0, x
2

) in variables x
0

, x
2

. It must have a zero at (0 : 1) of multiplicity 2. This
implies that A

2

= x
1

A0
2

and A
3

= x
1

A0
3

for some polynomials A0
2

, A0
3

of degrees
3 and 4, respectively. Thus the equation of C can be rewritten in the form

F := ax3

0

x2

1

+ x2

0

A
1

(x
1

, x
2

) + x
0

x
1

A0
2

(x
1

, x
2

) + x
1

A0
3

(x
1

, x
2

) = 0, a 6= 0.

Let V be the linear subspace of S5(C3)⇤ consisting of quintic ternary forms F
as above (with a possibly equal to zero). The subgroup G of GL(4) which leaves V
invariant consists of linear transformations

x
0

! ax
0

+ bx
2

, x
1

! cx
1

, x
2

! dx
1

+ ex
2

.

Then M0
5,cusp

is birational to the quotient P(V )/G. It follows that the dimension
of M0

5,cusp

is equal to 9. Note that G is a soluble algebraic group of dimension 5
acting linearly on the linear space V of dimension 14. The assertion of rationality
now follows from a result of Miyata [2] and Vinberg [3].

The case 2) can be argued in the same way. We may assume that the node
does not lie on the cuspidal tangent line. First transform C to a curve such that
p = (1 : 0 : 0) is a cusp with the cuspidal tangent line V (x

1

), and q = (0 : 1 : 0) is
a node. Arguing as above, we find that C can be given by an equation

F := ax3

0

x2

1

+ x2

0

A
1

(x
1

, x
2

) + x
0

x
2

A
2

(x
1

, x
2

) + x2

2

A
3

(x
1

, x
2

) = 0, a 6= 0.

Let V 0 be a linear subspace of S5(C3)⇤ consisting of quintic ternary forms F as
above (with a possibly equal to zero). Its dimension is equal to 13. The subgroup G0

of GL(4) leaving V 0 invariant consists of projective transformations

x
0

7! ax
0

+ bx
2

, x
1

7! cx
1

, x
2

! dx
2

.

It is a soluble algebraic group of dimension 4 acting linearly on V . The variety
M00

5,cusp

is birational to the quotient variety P(V 0)/G0. It follows that the dimen-
sion of M00

5,cusp

is 9. Invoking the same result of Miyata and Vinberg, we obtain
that M00

5,cusp

is rational.
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§ 5. K3 surfaces associated with a plane quintic with a cusp

In this section, we shall show that M0
5,cusp

(resp. M00
5,cusp

) is isomorphic to
an open subset of an arithmetic quotient of a 9-dimensional bounded symmetric
domain of type IV.

First we consider case 1). Let C be a cuspidal quintic as in this case and let L
be the cuspidal tangent. Consider the plane sextic curve C + L. Let p be the
cusp and q the smooth point of tangency of L with C. Let X be the double cover
of P2 branched along C + L. Then X has a rational double point of type E

7

over p
locally isomorphic to V (z2 + y(y2 + x3)), and a rational double point of type A

3

over q locally isomorphic to V (z2 + x(x + y2)). Denote by X a minimal resolution
of X and by ⌧ the covering transformation. Then X is a K3 surface containing
11 smooth rational curves E

1

, . . . , E
11

with intersection graph pictured below:

• • • • • • • • •

••E1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

E
11

•

We see that E
1

, . . . , E
7

form the intersection graph of type E
7

, E
8

is the inverse
image of L and E

9

, E
10

, E
11

form the intersection graph of type A
3

. The covering
transformation ⌧ preserves each of E

1

, . . . , E
9

and interchanges E
10

and E
11

. Note
that the linear system

|E
1

+ E
3

+ 2(E
4

+ · · ·+ E
9

) + E
10

+ E
11

|

defines an elliptic fibration with a singular fibre of type eD
9

, and E
2

is a section of
this fibration. This implies that these 11 curves generate a sublattice MX of Pic(X)
isomorphic to M = U � D

9

. Here U is generated by the class of a fibre and the
section E

2

, and D
9

is generated by E
1

, E
4

, . . . , E
11

. Since the discriminant of M
is equal to 4, and there are no even unimodular lattices with signature (1, 10),
MX is primitive in H2(X, Z) and MX = Pic(X) for general X.

Let NX be the orthogonal complement of MX in H2(X, Z). Then NX has
signature (2, 9). It follows from [12], Corollary 1.6.2 that qNX

⇠= �qM . Note that
AM

⇠= Z/4Z. It also follows from loc. cit., Theorem 1.14.2 that the isomorphism
class of NX is uniquely determined by qM . Thus NX is isomorphic to

N = h4i � U � E
8

. (5.1)

Obviously O(MX) ⇠= Z/2Z. We have the following lemma, which is easy to prove.

Lemma 5.1. The group O(ASX ), and hence O(ATX ), is generated by the cover-
ing involution ⌧ . In particular, the natural maps (2.1), O(MX) ! O(AMX ) and
O(NX) ! O(ANX ) are surjective.

Let D(N) be as in (3.1) with the lattice N in (5.1). The quotient D(N)/O(N)
is a normal quasi-projective variety of dimension 9.

We fix a primitive embedding of M in the K3-lattice L
K3

with N = M?. We
also fix a basis {ei} of M which has the same incidence relation as {Ei}. It follows
from Lemma 5.1 that there exists an isometry from H2(X, Z) to L

K3

sending the
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classes of Ei to ei. This defines a M -lattice polarization on the corresponding K3
surface (see [5]) satisfying condition (⇤). Note that the M -marking determines the
action of the involution of ⌧ on H2(X, Z): ⌧⇤ acts trivially on e

1

, . . . , e
9

, inter-
changes e

10

and e
11

, and acts on N as �1. Conversely, let (X, j), (X 0, j0) be two
M -amply polarized K3 surfaces whose periods coincide in D(N)/O(N). We denote
by ⌧ (resp. ⌧ 0) the involution of X (resp. X 0). It follows from Lemma 5.1 that there
exists a Hodge isometry � : H2(X, Z) ! H2(X 0, Z) preserving the M -markings.
The Torelli type theorem for algebraic K3 surfaces implies that there exists an iso-
morphism ' : X ! X 0 with '⇤ = �. Moreover ' � ⌧ = ⌧ 0 � '. Hence ' induces
an isomorphism between the corresponding plane quintics. Thus we have the fol-
lowing theorem.

Theorem 5.2. Let N = h4i � U � E
8

. Then the moduli space M0
5,cusp

is iso-
morphic to an open subset of D(N)/O(N).

Next we study case 2). Again consider the plane sextic curve C + L. Let L
intersect C at the cusp p and two distinct points q

1

, q
2

. Let X be the double
cover of P2 branched along C + L. Then X has a rational double point of type E

7

over p and three rational double points of type A
1

over q
1

, q
2

, q. Denote by X the
minimal resolution of X and by ⌧ the covering transformation. Then X is a K3
surface containing 12 smooth rational curves E

1

, . . . , E
12

whose intersection graph
is pictured below:

•• • • • • • • • •

••E1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

E
11

E
12 ••

Here E
9

, E
10

or E
12

corresponds to the exceptional curve over q
1

, q
2

or q,
respectively, and E

1

, . . . , E
7

correspond to the exceptional curves over p, E
8

is the
inverse image of L and E

11

is the inverse image of the line passing through p and q.
The covering transformation ⌧ preserves each of E

1

, . . . , E
12

. Note that the linear
system

|2(E
4

+ · · ·+ E
8

) + E
1

+ E
3

+ E
9

+ E
10

|
defines an elliptic fibration with singular fibres of type eD

8

and of type Ã
1

, and E
2

is
a section of this fibration. This implies that these 12 curves generate the sublattice
MX of Pic(X) isomorphic to M = U �D

8

�A
1

. Here U is generated by the class
of the fibre and the section E

2

, the sublattice D
8

is generated by E
1

, E
4

, . . . , E
10

,
and the sublattice A

1

is generated by E
12

. Since the fixed locus of ⌧ consists of
a smooth curve of genus 4 and four smooth rational curves E

2

, E
4

, E
6

, E
8

, the
invariant sublattice of H2(X, Z) under the action of ⌧⇤ coincides with MX [15],
Theorem 4.2.2. In particular, MX is primitive in H2(X, Z) and MX = Pic(X) for
generic X.

Let NX be the orthogonal complement of MX in H2(X, Z). Then MX has
signature (2, 9), and NX is isomorphic to

N = h2i � U(2)� E
8

. (5.2)

It is easy to see that O(AMX ) ⇠= Z/2Z. This implies the following lemma.
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Lemma 5.3. The group O(AMX ) is generated by the isometry of SX acting
trivially on E

3

, . . . , E
12

and switching E
1

and E
2

. The group O(ANX ) is generated
by the covering involution ⌧ . In particular, the natural maps O(MX) ! O(AMX )
and O(NX) ! O(ANX ) are surjective.

Let D(N) be as in (3.1) with N defined in (5.2). Using the same argument as in
case 1), we prove the following theorem.

Theorem 5.4. Let N = h2i � U(2) � E
8

. Then the moduli space M00
5,cusp

is
isomorphic to an open subset of D(N)/O(N).

Remark 5.5. Ma [4] proved the rationality of the moduli space of K3 surfaces in
the case 2) by using another model of the quotient X/(⌧).

§ 6. Proof of the rationality

In this section, we prove the rationality of M
Co

and Mnod

En

.

Theorem 6.1. Let N (resp. N 0) be the lattice in (3.6) (resp. (5.1)). Then

D(N)/O(N) ⇠= D(N 0)/O(N 0).

Proof. We have N(1/2) = h1i � U � E
8

. The odd unimodular lattice N(1/2)
contains the unique even sublattice of index 2 isomorphic to N 0. Thus we can regard
N 0 as a sublattice of N(1/2). Then any isometry of N(1/2) preserves N 0 and
hence O(N(1/2)) ⇢ O(N 0). Conversely, consider (N 0)⇤ = h 1

4

i � U � E
8

. The
discriminant group AN 0 is a finite cyclic group of order 4 and contains the unique
subgroup N(1/2)/N 0 of order 2. This implies that any isometry of N 0 can be
extended to an isometry of N(1/2), and hence O(N 0)⇢O(N(1/2)). Thus we have
O(N(1/2))= O(N 0). Now consider the bounded symmetric domain D(N(1/2)) =
D(N 0). Then

D(N(1/2))/O(N(1/2)) = D(N 0)/O(N 0).

Obviously
D(N(1/2))/O(N(1/2)) ⇠= D(N)/O(N).

Therefore we have proved the assertion.

Theorem 6.2. Let N (resp. N 0) be the lattice in (3.5) (resp. (5.2)). Then

D(N)/O(N) ⇠= D(N 0)/O(N 0).

Proof. Consider

N 0(1/2) = h1i � U � E
8

(1/2), (N 0(1/2))⇤ = h1i � U � E
8

(2).

Then N is the even sublattice of (N 0(1/2))⇤. Hence O(N 0(1/2)) ⇢ O(N). Con-
versely, consider N⇤ = h1/4i � U � E

8

(1/2) and the discriminant quadratic form

qN : N⇤/N ! Q/2Z.
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We remark that N 0(1/2) is characterized as being the maximal submodule K of N⇤

such that qN (K/N) ⇢ Z/2Z. Any isometry of N can be extended to one, denoted
by �, of N⇤. Then the above remark implies that � preserves N 0(1/2). Hence
O(N) ⇢ O(N 0(1/2)). Therefore

D(N)/O(N) = D(N 0(1/2))/O(N 0(1/2)) ⇠= D(N 0)/O(N 0).

Combining Propositions 3.2, 3.1 and Theorems 5.2, 5.4, 6.1, 6.2, we have the
following theorem.

Theorem 6.3. There are birational isomorphisms

⌥ : M
En

⇠= M
5,cusp

, (6.1)

⌥0 : M
Co

⇠= M0
5,cusp

, (6.2)

⌥00 : Mnod

En

⇠= M00
5,cusp

. (6.3)

By Theorem 4.1, we obtain the following main theorem.

Theorem 6.4. M
Co

and Mnod

En

are rational varieties.

Remark 6.5. The K3-cover X of a general nodal Enriques surface is isomorphic
to a minimal non-singular model of the Cayley quartic symmetroid, the locus Y
of singular quadrics in a general 3-dimensional linear system L of quadrics in P3

(see [16]). The surface Y has 10 nodes corresponding to reducible quadrics in L.
The set of 10 points in P3 realized as the ten nodes of a Cayley quartic symmetroid
is one of the special sets of points in P3 in the sense of Coble (see [9]). There is
a beautiful relationship between Cayley quartic symmetroids and rational sextics
(see loc. cit.). The variety of such sets modulo projective equivalence is birationally
isomorphic to the GIT-quotient of the Grassmannian G of webs of quadrics in P3

modulo PGL(4). It is birationally isomorphic to some finite cover of Mnod

En

. The
rationality of G/ PGL(4) is a di�cult problem.

§ 7. A geometric construction: Enriques surfaces

Let M
En

(2) be the moduli space of degree 2 polarized Enriques surfaces, that is,
the coarse moduli space of pairs (X, h), where h is a nef divisor class with h2 = 2.
It is known that h = F

1

+ F
2

, where F
1

, F
2

are nef divisors with F 2

i = 0 and
F

1

· F
2

= 1, or h = 2F
1

+ R, where F
1

is as above and R is (�2)-curve with
F

1

·R = 0 (see [17], Corollary 4.5.1). We call h non-degenerate if h is as in the first
case, and degenerate otherwise.

For any h as above, the linear system |2h| defines a degree 2 map �h : X ! P4

whose image is a quartic del Pezzo surface D. If h is non-degenerate, D has 4
ordinary double points; otherwise, it has 2 ordinary double points and one rational
double point of type A

3

. We call D a 4-nodal quartic del Pezzo surface in the first
case and a degenerate 4-nodal quartic del Pezzo surface in the second (see [17],
Ch. 0, § 4). The set of fixed points of the deck transformation � of the double
cover �h consists of a smooth curve W and 4 isolated points. The image W of W
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on D is a curve of arithmetic genus 5 in the linear system |OD(2)|. It does not pass
through singular points of D. The map (�h)|W : W ! W is the normalization map.

Let M
En

(2)ndeg be the GIT-quotient |OD(2)|// Aut(D), where D is a non-
degenerate quartic del Pezzo surface, and let M

En

(2)deg be the same when D
is a degenerate quartic del Pezzo surface. The first variety (resp. the second) is
a projective variety of dimension 10 (resp. 9). The disjoint union

M
En

(2) = M
En

(2)ndeg [M
En

(2)deg

can be viewed as a compactification of the moduli space of degree 2 polarized
Enriques surfaces. Consider the forgetful rational maps

�
1

: M
En

(2)ndeg 99K M
En

, �
2

: M
En

(2)deg 99K Mnod

En

.

It is known that �
1

is of degree 27 · 17 · 31 (see [18]) and �
2

is of degree 23 · 17
(see [19]).

Any quartic del Pezzo surface is equal to the base locus of a pencil of quadrics
in P4. If D is a 4-nodal quartic del Pezzo surface, the pencil contains three singular
quadrics, two of corank 2 and one of corank 1. If D is a degenerate 4-nodal quartic
del Pezzo surface, it contains only two singular quadrics, both of corank 2 (see [17],
Ch. 0, § 4). The locus C of singular quadrics in the net N = |IW (2)| of quadrics
containing W is a curve of degree 5. It has two singular double points corresponding
to the singular quadrics of corank 2 containing D. The line ` joining the two singular
points is the pencil |ID(2)| of quadrics containing D. In the case of a non-degenerate
polarization, the line ` intersects C at some other non-singular point q. In the case
of a degenerate polarization, ` is tangent to a branch of one of the singular points.
Let C be the normalization of C. We assume that W is non-singular; this happens
for any unnodal Enriques surface and for a general nodal surface. In this case
the curve C is a non-singular curve of genus 4. Its plane quintic model is given
by the linear system |KC�q̄|, where q̄ is the pre-image of q under the normalization.
Recall that the canonical model of a non-singular curve of genus 4 is the complete
intersection of a cubic surface and a quadric surface. The rulings of the quadric
define two g1

3

’s on the curve (they coincide if the quadric is a cone). In our case, the
plane quintic model has two singular points, and the pencils of lines through these
points define two di↵erent g1

3

’s. Thus the quadric containing the canonical model
of C is non-singular. Each of the two lines passing through the point q̄ intersects C
at two points corresponding to the branches of the singular points of C. Thus,
in the degenerate case, the point q̄ coincides with one of the points of ramification
of the corresponding g1

3

. For a general canonical curve of genus 4 we have 12
points of ramification in each g1

3

.
Let X

4

be the coarse moduli space of pairs (T, t) which consist of a non-singular
curve T of genus 4 and a point t on it. Let X 0

4

be a hypersurface in X
4

of pairs
(T, t) such that t + 2t0 belongs to a g1

3

on T . The forgetful map (T, t) 7! t defines
a map X

4

! M
4

, where M
4

is the coarse moduli space of curves of genus 4.
In the non-degenerate case, it (birationally) identifies X

4

with the universal curve
over M

4

. In the degenerate case, it is a finite cover of degree 24. Projecting T from
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the point t, we obtain a plane quintic curve with a node and a cusp. Conversely, the
normalization of such a curve defines a pair (T, t) as above, where t0 corresponds
to the branch of the cusp and t is the pre-image of the residual point of the line
joining the two singular points. In this way we obtain a birational isomorphism

X 0
4

⇠= M00
5,cusp

.

By assigning to (X, h) 2 M
En

(2)ndeg (resp. (X, h) 2 M
En

(2)deg) the quintic
plane curve C parameterizing singular quadrics of the branch curve of the degree 2
map �h : X ! D, we obtain a rational map 2

 
1

: M
En

(2)ndeg 99K X
4

(resp.  
2

: M
En

(2)deg 99K X 0
4

).

The degree of this map is equal to the number of projective equivalence classes
of nets of quadrics with the fixed curve of singular quadrics. It is known that the
number of such equivalence classes is equal to the number of non-e↵ective even theta
characteristics on the normalization of the curve [21], Ch. 6. Since the canonical
model of C lies on a non-singular quadric, all even characteristics are non-e↵ective,
and their number is equal to 23(24 + 1) = 23 · 17. Since the degrees of the maps
 

2

and �
2

coincide, it is natural to make the following conjecture.

Conjecture 7.1. Let ⌥00 be the birational isomorphism in Theorem 6.3. Then

 
2

= ⌥00 � �
2

.

Next we assume that h is a non-degenerate degree 2 polarization. Let (T, t) 2
X

4

\ X 0
4

. Assume that q̄ is not a point of ramification of a g1

3

on T . Consider the
rational map

f : P3 99K P4

given by the linear system of cubic surfaces containing T . We choose a basis of the
linear system in the form (V (F ), V (x

0

Q), . . . , V (x
3

Q)), where T = V (F )\V (Q) is
the intersection of a cubic and a quadric, and x

0

, . . . , x
3

are projective coordinates
in P3. The image of the map is a singular cubic hypersurface K with equation

y
0

Q(y
1

, . . . , y
4

) + F (y
1

, . . . , y
4

) = 0.

The singular point o = [1, 0, . . . , 0] of K is the image of the quadric V (Q). Let L
be the tangent to T at the point t. Its image on K is a line ` not containing the
point o. Consider the projection of K from the line ` to the plane. Let K 0 ! K
be the blowing up of K along `. The projection defines the structure of a conic
bundle on K 0. It is known that the discriminant curve is of degree 5 (see [21]).
We claim that in our case it is a cuspidal quintic. Of course, the cusp is the
projection of the point o. It is clear that the cusp is distinguished from an ordinary
node by the property that the pencil of lines through the point contains only one

2The varieties X4, X 0
4 are known to be rational [20], and so is the variety MEn(2)ndeg.
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line intersecting the curve at the point with multiplicity > 3. A line through the
singular point of the discriminant curve corresponds to a hyperplane H containing
the line ` and the singular point o. Let y = f(t) be the image of the point t on K.
Its coordinates are (0 : a

0

: . . . : a
3

), where t = (a
0

: . . . : a
3

). Let `0 = oy be the
line on K joining y to o.3 It is easy to see that the plane in H spanned by ` and `0

intersects K along the line `0 taken with multiplicity 2. This plane corresponds to
the projection of o, that is, the cusp of the discriminant curve. The cubic surface
S = H \ K is the image of a plane ⇧ in P3 which contains the tangent line L.
Assume that L is not tangent to the quadric V (Q). The restriction of the map f
to ⇧ is given by the net of cubic curves which are tangent to each other at the
point t, and the base points of the net lie on the conic V (Q)\⇧. Since ⇧ contains
the tangent line to V (Q), the conic V (Q)\⇧ is tangent to L at t, and hence equals
the union of two lines l

1

, l
2

intersecting at t. The cubic V (F ) intersects the conic
at t and four additional points p

1

, p
2

2 l
1

and p
3

, p
4

2 l
2

. The conic bundle on S
contains four singular conics: 2`0, and the images of the reducible conics p

1

p
2

+p
3

p
4

,
p
1

p
3

+ p
2

p
4

, p
1

p
4

+ p
2

p
3

. The surface S has two singular points of type A
1

: one is
the node of K and the other lies on `0. We see that any plane ⇧ not tangent to V (Q)
has four singular conics. Thus, there is only one line intersecting the discriminant
curve at less than 4 points. It corresponds to the plane ⇧ tangent to the quadric
V (Q) at the point t. This proves the assertion.

Let C be the coarse moduli space of pairs (K, `), where K is a cubic threefold
with one ordinary double point and ` is a line not containing the singular point.
It is known that the map C ! M

5,cusp

which assigns to (K, `) the discriminant
curve of the conic bundle defined by ` is of degree equal to the number of odd theta
characteristics on the normalization of the discriminant curve [21], Remark 6.27.
The latter number is equal to 24 · (25 � 1) = 24 · 31. Thus our construction defines
a rational map of degree 24 · 31,

 
2

: X
4

99K M
5,cusp

.

Composing it with the rational map  
1

: M
En

(2)ndeg 99K X
4

we get a rational map

 
2

� 
1

: M
En

(2)ndeg 99K M
5,cusp

of degree 27 · 17 · 31. Comparing this with the degree of the map

�
1

: M
En

(2)ndeg 99K M
En

,

we propose the following conjecture (see [22]).

Conjecture 7.2. Let ⌥ be the birational isomorphism in (6.1). Then

⌥ � �
1

=  
2

� 
1

.

3In [22], the first author mistakenly chose the line `0 on K instead of ` for the centre of the
projection map.
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§ 8. A geometric construction: Coble surfaces

We assume that S is an unnodal Coble surface in the sense that it has no
(�2)-curves. We know that the orthogonal complement of KS in Pic(S) isomor-
phic to the Enriques lattice E. As in the case of unnodal Enriques surfaces, we
consider a polarization h = [F

1

+ F
2

] of degree 2. Such polarizations correspond
to lattice embeddings U ,! E. One can show that the linear system |2h| defines
a regular map �h : S ! P4 whose image is a 4-nodal quartic del Pezzo surface
D (see [10]). The set of fixed points of the deck transformation � of S consists
of a smooth curve W of genus 4 and three isolated points. The image of the
anti-canonical curve C 2 |�2KS | is a singular point q of D (the other three singular
points are the images of the isolated fixed points). The curve W intersects C at two
points. Its image W on D is a curve of arithmetic genus 5 with a double point at q.
It is equal to the complete intersection of a net of quadrics. Thus a Coble surface
is obtained as a degeneration of an Enriques surface when the branch curve W of
the map �h passes through a singular point of D.

Let us look at the discriminant curve of the net N of quadrics with base locus
equal to W . It is a plane quintic with two double points corresponding to corank 2
quadrics in the pencil |OD(2)|. What is di↵erent here is that one of the double
points is a cusp. In fact, it is known that the tangent cone of a double point of the
discriminant curve corresponding to a corank 2 quadric in the net consists of quadric
tangent to the singular line ` of the corank 2 quadric. Since the point q is a base
point of the net N , the restriction of N to the singular line ` has q as a base point.
Hence there is only one pencil of quadrics touching ` at one point (di↵erent from q).
This proves the assertion. Let T be the normalization of the discriminant curve D
of N . As in the case of Enriques surfaces, it is isomorphic to the intersection of
a non-singular quadric V (Q) and a cubic surface V (F ). The quintic curve D is
obtained by projecting T from a point t on T . Since the projection has a cusp, the
point t is a residual point of a point of ramification of one of the g1

3

on T . Thus, as
in the case of nodal Enriques surfaces, we obtain a rational map

 0
1

: M
Co

(2) 99K X 0
4

.

The degree of this map is the same as the degree of the map  
1

, that is, equal
to 23 · 17.

Next we consider the restriction of the map  
2

: X
4

99K M
5,cusp

to X 0
4

. In the
notation of the previous section, the cubic V (F ) intersects the tangent line L at
the point t and is tangent at the point p

2

= p
3

= t0. The cubic surface S is the
image of the plane ⇧ under the rational map given by the net of cubics tangent
at the point t, tangent to the line tt0 at t0 and passing through the points p

4

, p
5

.
Thus, we have only two singular conics on S in the pencil of conics defined by the
hyperplane H. This shows that the line defined by H intersects the discriminant
curve at two points, with multiplicity 3 at the cusp and multiplicity 2 at the other
point. This gives a rational map

 0
2

: X 0
4

99K M0
5,cusp

.
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The degree of this map is the same as in the Enriques case, that is, equal to 24 · 31.
The composite

 0
2

� 0
1

: M
Co

(2) 99K M0
5,cusp

is of degree 27 ·17·31. On the other hand, since the automorphism group of a general
Coble surface is isomorphic to the automorphism group of a general Enriques surface
(see [10]), the same count as in [18] shows that the degree of the rational map

�0 : M
Co

(2) 99K M
Co

is equal to 27 · 17 · 31. This suggests the following conjecture.

Conjecture 8.1. Let ⌥0 be the birational isomorphism in Theorem 6.3. Then

⌥0 � �0 =  0
2

� 0
1

.
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