ИЗВЕСТИЯ АКАДЕМИИ НАУК СССР

Серия математическая

37(1973), 833-847

УДК 513.6

и. в. долгачев

О СПЕЦИАЛЬНЫХ АЛГЕБРАИЧЕСКИХ КЗ-ПОВЕРХНОСТЯХ.І

И. Р. Шафаревичу к пятидесятилетию

В работе описываются алгебраические поверхности типа К3, обладающие гиперэллиптическими кривыми. Доказывается прямая и обратная теоремы о представлении таких поверхностей в виде двойной плоскости. Выясняется связь поверхностей этого типа с эллиптическими поверхностями.

Введение

Пусть k — алгебраически замкнутое поле характеристики $p \neq 2$. Алгебраическая проективная гладкая поверхность X над k называется K3-поверхностью, если X регулярна и канонический класс X тривиален, т. е. если $H^1(X, \mathcal{O}_X) = 0$ и $\omega_X \simeq \mathcal{O}_X$. Назовем K3-поверхность специальной, если на ней существует гиперэллиптическая кривая C рода $g \geqslant 2$. Цель настоящей работы дать явное описание всех таких поверхностей. Мы показываем, что специальные К3-поверхности есть в точности те К3-поверхности, которые допускают представление в виде двойной плоскости (т. е. бирационально изоморфны аффинной поверхности в ${\bf A}_b^3$ с уравнением $z^2 = F(x, y)$). Пусть π обозначает класс K3-поверхности X, т. е. наименьшую из больших единицы размерностей полных линейных систем на Х. Мы показываем, что для специальных КЗ-поверхностей п может принимать только значения 2, 3, 4 или 5. Это дает ответ на вопрос из работы (2). Кроме того, при $\pi > 2$ условие специальности эквивалентно условию существования на X пучка эллиптических кривых показателя ≤2. В § 4 работы мы показываем, что универсальная накрывающая эллиптической поверхности Энриквеса (или любой поверхности Энриквеса, если char(k) = 0) является специальной K3-поверхностью.

Основой всех предыдущих результатов служит следующая ТЕОРЕМА ЭНРИКВЕСА — КАМПЕДЕЛЛИ. Двойная плоскость, бирационально изоморфная К3-поверхности, эквивалентна одной из следующих двойных плоскостей:

- а) $z^2 = F_6(x, y)$, где $F_6(x, y) = 0$ кривая степени 6;
- б) $z^2 = F_8(x, y)$, где $F_8(x, y) = 0$ кривая степени 8, имеющая две обыкновенные четверные особые точки (быть может, бесконечно близкие):
- в) $z^2 = F_{10}(x, y)$, где $F_{10}(x, y) = 0$ кривая степени 10, имеющая семикратную особую точку и две обыкновенные тройные точки, бесконечно близкие к ней первого порядка;

r) $z^2 = F_{12}(x,y)$, где $F_{12}(x,y) = 0$ — кривая степени 12, имеющая девятикратную особую точку и три бесконечно близкие к ней первого порядка трехкратные обыкновенные точки.

Доказательство этой теоремы было дано Энриквесом в 1896 г. (8) и позже она передоказывалась Кампеделли (6), (7). В настоящей работе приводится модернизация доказательства Кампеделли.

Продолжение этой работы будет посвящено модулям и автоморфизмам специальных ҚЗ-поверхностей.

§ 1. Основные определения и вспомогательные леммы

Определение 1.1. К3-поверхностью называется гладкая проективная алгебраическая поверхность X с $H^1(X,\mathcal{O}_X)=0$ и $\omega_X=\Omega_X^2\simeq\mathcal{O}_X$. К3-поверхность называется специальной, если на ней существует гладкая гиперэллиптическая кривая рода $g\geqslant 2$.

ЛЕММА 1.2. Пусть $D = \sum_i n_i D_i$ — эффективный связный дивизор на K3-поверхности X. Предположим, что хотя бы для одного значения i $n_i = 1$. Тогда

$$\dim |D| \stackrel{\text{def}}{=} \dim_k H^0(X, \mathcal{O}_X(D)) - 1 = \frac{(D^2)}{2} + 1,$$

$$p_a(D) \stackrel{\text{def}}{=} \dim_k H^1(D, \mathcal{O}_D) = \dim |D|.$$

Точная последовательность пучков

$$0 \to \mathcal{O}_X (-D) \to \mathcal{O}_X \to \mathcal{O}_D \to 0$$

дает точную последовательность групп когомологий

$$0 \longrightarrow H^0(X, \mathcal{O}_X) \longrightarrow H^0(D, \mathcal{O}_D) \longrightarrow H^1(X, \mathcal{O}_X(-D)) \longrightarrow$$
$$\longrightarrow H^1(X, \mathcal{O}_X) \longrightarrow H^1(D, \mathcal{O}_D) \longrightarrow H^2(X, \mathcal{O}_X(-D)) \longrightarrow H^2(X, \mathcal{O}_X) \longrightarrow 0.$$

Так как X является K3-поверхностью, то

$$H^1(X, \mathcal{O}_X) = 0$$
, $H^2(X, \mathcal{O}_X) \simeq H^0(X, \omega_X) \simeq k$.

C другой стороны, в силу условия на D,

$$H^0(D, \mathcal{O}_D) = k.$$

Следовательно,

$$H^{1}(X, \mathcal{O}_{X}(-D)) = 0$$
, $\operatorname{din}_{k} H^{1}(D, \mathcal{O}_{D}) = \operatorname{din}_{k} H^{2}(X, \mathcal{O}_{X}(-D)) - 1$.

Остается воспользоваться теоремой Римана — Роха для пучка $\mathcal{C}_X(-D)$ и двойственностью Серра.

Определение 1.3. Число

$$\pi(X) = \min_{D \subset X} \{ \dim |D| | \dim |D| > 1 \}$$

называется κ лассом K3-поверхности X.

Замечания 1. В случае $k=\mathbb{C}$ класс $\pi(X)$ может принимать произвольное значение ≥ 2 [см. (¹), гл. IX]. По-видимому, это верно и в общем случае [ср. (9), стр. 256].

2. В книге (1) К3-поверхности назывались куммеровыми поверхностями. В настоящее время под последними понимают частный случай К3-поверхностей — неособые минимальные модели фактора двумерного абелевого многообразия относительно инволюции $x \rightarrow -x$. Произвольные К3-поверхности называются иногда обобщенными куммеровыми поверхностями (ср. (9)). В работе (2) специальной куммеровой поверхностью называлась К3-поверхность, для которой класс π реализуется системой гиперэллиптических кривых. Наше определение, очевидно, несколько шире. Пример, показывающий, что эти определения различны, нам неизвестен.

Определение 1.4. Морфизм $f: X' \rightarrow X$ полных целостных алгебраических поверхностей называется *двулистным накрытием*, если выполняется одно из следующих эквивалентных условий:

- 1) f индуцирует сепарабельное квадратичное расширение полей функций k(X')/k(X).
- 2) Существует открытое подмножество $U \subset X'$ такое, что $f \mid U$ является конечным морфизмом степени 2.
- 3) Морфизм f разлагается в композицию $X' \xrightarrow{f_1} X_1' \xrightarrow{f_2} X$, где f_1 бирациональный морфизм, а f_2 конечный морфизм степени 2.

Доказательство эквивалентности утверждений 1)—3) использует стандартную технику теории схем ((10), ch. 3) и не представляет труда.

Определение 1.5. Двойной плоскостью называется алгебраическая поверхность, бирационально изоморфная аффинной поверхности $\mathrm{Spec}\left(k[x,y,z]/(z^2-F(x,y))\right)$.

Предложение 1.6. Алгебраическая поверхность X является двойной плоскостью, если и только если она бирационально эквивалентна поверхности X, являющейся двулистным накрытием проективной плоскости $\mathbf{P}_{\mathbf{z}}^{\mathbf{z}}$.

Доказательство очевидно.

ЛЕММА 1.7. Пусть $g: X' \to X$ — двулистное накрытие гладких поверхностей. Тогда для любых дивизоров D_1 и D_2 на X имеем:

$$(f^*(D_1) \cdot f^*(D_2))_{X'} = 2(D_1 \cdot D_2)_X.$$

Доказательство тривиально следует из общих свойств колец Чжоу. ЛЕММА 1.8. Если D — целостный дивизор на Қ3-поверхности, то линейная система |D| не имеет базисных точек.

Доказательство см. в (1), гл. VIII, лемма 2.

Предложение 1.9. Пусть С— гиперэллиптическая кривая на К3-поверхности X с $p_a(C)=m$. Линейная система |C| задает двулистное накрытие $f: X \rightarrow V$, где V— поверхность степени m—1 в \mathbf{P}_k^m .

Доказательство см. в (1), гл. VIII, лемма 3.

Предложение 1.10. Пусть $f: X' \to X$ — двулистное накрытие гладких поверхностей. Пусть $X' \stackrel{f_1}{\to} X' \stackrel{f_2}{\to} X$ — разложение Штейна для f (см. условие 3) определения 1.4). Тогда особые точки поверхности X_1^* есть в точности прообразы особых точек кривой ветвления W конечного накрытия f_2 .

Действительно, поверхность X_1' нормальна и поэтому можно воспользоваться локальными свойствами конечных накрытий Галуа алгебраических многообразий [см. (12)].

Определение 1.11. Кривая W из условия предложения 1.10 называется кривой ветвления двулистного накрытия.

Следствие 1.12. Предположим, что кривая ветвления двулистного накрытия $f: X' \to X$ неособа и поверхность X' является минимальной моделью. Тогда f — конечный морфизм.

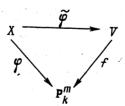
ЛЕММА 1.13. Пусть $f: X' \to X$ — конечный морфизм степени два нормальной поверхности X' на гладкую поверхность X. Предположим, что кривая ветвления W морфизма f имеет лишь обыкновенные двойные точки $P_1, ..., P_n$. Пусть $\overline{X} \to X$ — раздутие этих точек. Тогда нормализация \widetilde{X}' поверхности $X' \times_X \overline{X}$ является гладкой поверхностью, а проекция $X' \to \overline{X}'$ индуцирует конечное накрытис, кривой ветвления которого является собственный прообраз кривой W.

Это утверждение есть частный случай «метода Юнга» разрешения особенностей поверхностей. Его проверка сводится к тривиальным локальным вычислениям, которые мы опускаем.

§ 2. Теорема Энриквеса — Кампеделли

На протяжении этого параграфа через F_n мы будем обозначать относительно минимальную модель рациональной поверхности, обладающую рациональной кривой S_n с $(S_n^2) = -n$ (n- целое неотрицательное число, не равное 1) [см. (1), гл. 4]. Через L будем обозначать любой из слоев канонического морфизма $F_n \rightarrow \mathbf{P}_k^1$, сечением которого является кривая S_n .

Предложение 2.1. Пусть $\varphi: X \to \mathbf{P}_k^m$ — морфизм нормальной про-ективной поверхности, образ которого $\varphi(X)$ является нормально вложенной поверхностью степени m-1. Тогда существует разложение



где f — бирациональный морфизм, а V — одна из следующих поверхностей: \mathbf{P}_k^2 , F_n или поверхность \overline{F}_n , получающаяся стягиванием в нормальную точку кривой S_n на F_n .

Гиперплоское сечение поверхности $\varphi(X)$ является кривой степени m-1, нормально вложенной в (m-1)-мерное проективное пространство. Из теоремы Римана — Роха следует, что такая кривая рациональна.

В силу предложения 2 из работы (4) отсюда следует, что нормализация V поверхности $\phi(X)$ является одной из перечисленных выше поверхностей. Так как поверхность X нормальна, то получаем требуемое утверждение.

ЛЕММА 2.2. Пусть A — двумерное геометрическое регулярное локальное кольцо с полем вычетов k характеристики, отличной от 2. Пусть g — автоморфизм второго порядка кольца A. Тогда кольцо инвариантов A^g является либо регулярным, либо его пополнение \hat{A}^g изоморфно пополнению локального кольца вершины квадратичного конуса.

Очевидно, можно считать кольцо A полным, а следовательно, изоморфным кольцу k[[x,y]]. В этом случае действие g эквивалентно линейному и поэтому можно считать, что либо $g(x)=x,\ g(y)=-y,\$ либо $g(x)=-x,\ g(y)=-y.$ В первом случае $A^g{\simeq} k[[x,y^2]]$ регулярно, а во втором $A^g{\simeq} k[[x^2,y^2,xy]]{\simeq} k[[u,v,w]]/(uv-w^2)$. Тем самым лемма доказана.

ТЕОРЕМА 2.3. Пусть X— специальная K3-поверхность. Тогда существует двулистное накрытие $f: X \rightarrow V$, где V— одна из следующих поверхностей: \mathbf{P}_k^2 , F_0 , F_n (n=2,3,4), \overline{F}_2 .

Пусть C — некоторая гиперэллиптическая кривая на X, m — ее род. Применяя предложения 1.9 и 2.1, мы получим двулистное накрытие $f: X \rightarrow V$, где V — либо \mathbf{P}_k^2 , либо F_n , либо \overline{F}_n . Покажем, что случай n > 4 невозможен, а для n = 3 и n = 4 морфизм $f: X \rightarrow \overline{F}_n$ пропускается через канонический морфизм $F_n \rightarrow \overline{F}_n$, стягивающий сечение S_n в особую точку.

Предположим, что имеет место первый случай, т. е. $V=F_n$ с n>4. Пусть $f\colon X\stackrel{\phi_1}{\to} X'\stackrel{\phi_2}{\to} F_n$ — разложение Штейна морфизма f (т. е. ϕ_1 бирационален, а ϕ_2 — конечный морфизм степени 2). Допустим, что морфизм ϕ_1 является изоморфизмом в некоторой окрестности $\phi_2^{-1}(S_n)$. Тогда $f^{-1}(S_n)$ есть либо R_1+R_2 , где R_i — рациональные кривые на X, либо $f^{-1}(S_n)$ — неприводимая кривая. В любом случае $(f^{-1}(S_n)^2) \gg -8$. Так как, с другой стороны, $(f^{-1}(S_n)^2) = -2n$, то отсюда получаем, что $n \leqslant 4$.

Пусть теперь $f^{-1}(S_n) = D_1 + ... D_r + R$, где $D_i(1 \le i \le r)$ — рациональные кривые (быть может, приводимые), стягивающиеся морфизмом φ_1 в различные особые точки X', лежащие на $\varphi_2^{-1}(S_n)$, а R — собственный прообраз $\varphi_2^{-1}(S_n)$. Имеем:

$$(f^{-1}(S_n)^2) = -2n = \sum_{i=1}^r (D_i^2) + 2\sum_{i=1}^r (D_i R) + R^2.$$

Снова очевидно, что R — либо неприводимая кривая, либо $R = R_1 + R_2$, где R_i — рациональные кривые. В любом случае $(R^2) \geqslant -8$. Так как $(D_i^2) = -2$ (см. лемму 1.2), а $(D_i R) \geqslant 1$, то отсюда получаем:

$$n = r - \sum_{i=1}^{r} (D_i R) - \frac{(R^2)}{2} \le 4.$$

Заметим, что здесь n>0 может быть только в случае r=1, n=3, $R_1=R_2$. Предположим теперь, что имеет место второй случай: $V=\overline{F}_n$ (n>2). Пусть P— особая точка поверхности \overline{F}_n . Если бы морфизм $f:X\to \overline{F}_n$ был конечным над окрестностью точки P, то локальное кольцо \mathcal{O}_P было бы фактором регулярного кольца под действием группы 2-го порядка. В силу леммы 2.2 отсюда бы следовало, что P— либо неособая точка, либо обыкновенная двойная точка. Последнее, очевидно, противоречит тому, что n>2. Таким образом, $f^{-1}(P)$ — дивизор на X. В силу универсальности раздутий, мы получаем отсюда, что f разлагается в композицию $X\to F_n\to \overline{F}_n$. Теорема доказана.

Предложение 2.4. Пусть $f: X \to F_0$ — двулистное накрытие c Қ3-поверхностью X. Тогда кривая ветвления W морфизма f имеет степень (4,4). Кроме того, на X существуют эллиптические кривые E_1 и E_2 с $(E_1 \cdot E_2) = 2$, для которых линейная система $|E_1 + E_2|$ неприводима, и любая неособая кривая $D \in |E_1 + E_2|$ является гиперэллиптической кривой рода 3.

Пусть $L_1=L$ и $L_2=S_0$ — эффективные образующие ${\rm Pic}(F_0)$. Тогда $(f^{-1}(L_i)^2)=0$ и, следовательно, $|f^{-1}(L_i)|$ является пучком эллиптических кривых. Если E_i (i=1,2) — неособые эллиптические кривые из этого пучка, то, очевидно, $(E_1\cdot E_2)=2(L_1\cdot L_2)=2$. Так как $((E_1+E_2)^2)=4$, то $\dim |E_1+E_2|=3$. Неприводимость системы $|E_1+E_2|$ очевидна. Для любой неособой кривой $D\!\in\!|E_1+E_2|$ пучок $|E_1|$ высекает на D линейный ряд g_2^1 размерности 1 степени 2. Следовательно, D — гиперэллиптическая кривая. Ее род равен $\binom{D^2}{2}+1=3$. Если W — кривая ветвления f, то $(L_i\cdot W)=4$, так как $f^{-1}(L_i)$ — эллиптическая кривая. Значит, $W\!\sim\!4L_1+4L_2$, т. е. имеет степень (4,4).

Предложение 2.5. Пусть $f: X \to F_2$ — двулистное накрытие c К3-поверхностью X. Тогда кривая ветвления W морфизма f эквивалентна дивизору $8L+4S_2$. Кроме того, на X существуют эллиптическая кривая E и две рациональные неособые кривые R_1 и R_2 с $(R_1 \cdot R_2) = 0$, $(R_1 \cdot E) = (R_2 \cdot E) = 1$. При этом линейная система $|2E+R_1+R_2|$ неприводима и любая неособая кривая $D \in |2E+R_1+R_2|$ является гиперэллиптической кривой рода 3.

Так как $(L^2)=0$, то $|f^{-1}(L)|$ является пучком эллиптических кривых. Пусть $E\!\in\!|f^{-1}(L)|$ — неособая кривая из этого пучка. Так как $(S_2^2)=-2$, то $(f^{-1}(S_2)^2)=-4$. Рассуждая так же, как при доказательстве теоремы 2.3, получаем, что $f^{-1}(S_2)=R_1+R_2$, где R_i изоморфны S_2 и $(R_1\cdot R_2)=0$. Так как $(E(R_1+R_2))=2(L\cdot S_2)=2$ и $(ER_i)>0$, то $(E\cdot R_1)=(E\cdot R_2)=1$. Рассмотрим линейную систему $|2E+R_1+R_2|$. В силу леммы 1.2,

$$\operatorname{din}|2E + R_1 + R_2| = \frac{(2E + R_1 + R_2)^2}{2} + 1 = 3.$$

Так как, с другой стороны, $\dim |2E+R_i|=2, i=1,2, \text{ то } |2E+R_1+R_2|$ — неприводимая линейная система. Для любой неособой кривой $D \in |2E+R_1+R_2|$ пучок |E| высекает на D линейный ряд размерности 1 и сте-

пени 2. Следовательно, D — гиперэллиптическая кривая. Ее род равен $\frac{(D^2)}{2}$ +1=3.

Пусть $W \sim aL + bS_2$ — кривая ветвления морфизма f. Тогда $(W \cdot L) = 4$, так как $|f^{-1}(L)|$ — пучок эллиптических кривых. С другой стороны, $(W \cdot (2L + S_2)) = 8$, так как $|f^{-1} \cdot (2L + S_2)| = |2E + R_1 + R_2|$ — линейная система гиперэллиптических кривых рода 3. Элементарные вычисления показывают теперь, что a = 8, а b = 4.

Предложение 2.6. Пусть $f: X \rightarrow F_3$ — двулистное накрытие c К3-ловерхностью X. Тогда кривая ветвления морфизма f эквивалентна дивизору $10L+4S_3$. Кроме того, на X существуют эллиптическая кривая E и неособые рациональные кривые R_1 и R_2 с $(R_1 \cdot R_2) = (R_1 \cdot E) = 1$, $(R_2 \cdot E) = 0$. При этом линейная система $|3E+2R_1+R_2|$ неприводима и любая неособая кривая $D \leftrightharpoons |3E+2R_1+R_2|$ является гиперэллиптической кривой рода 4.

Снова, как и в предыдущих предложениях, $|f^{-1}(L)|$ — пучок эллиптических кривых. Пусть E — одна из кривых этого пучка. Так как $(S_3^2) = -3$, то $(f^{-1}(S_3)^2) = -6$. Рассуждая так же, как в первой половине доказательства теоремы 2.3, мы получим, что $f^{-1}(S_3) = 2R_1 + R_2$. Здесь R_2 — исключительная кривая на X, отображаемая морфизмом f в точку, а $2R_1$ — собственный прообраз S_3 . Так как $((2R_1 + R_2)^2) = -8 - 2 + 4(R_1 \cdot R_2) = -6$, то $(R_1 \cdot R_2) = 1$. Кроме того, $(E \cdot (2R_1 + R_2)) = 2(L \cdot S_3) = 2$, и так как, очевидно, $(R_2 \cdot E) = 0$, то $(E \cdot R_1) = 1$. Рассмотрим теперь линейную систему $|3E + 2R_1 + R_2|$. Очевидно, что

$$\dim |3E + 2R_1 + R_2| = \frac{((3E + 2R_1 + R_2)^2)}{2} + 1 = 4.$$

С другой стороны, $\dim |3E+R_1+R_2| < \dim |3E+2R_1| = 3$. Следовательно, система $|3E+2R_1+R_2|$ неприводима. Для любой неособой кривой D из этой системы $(E \cdot D) = (E \cdot (3E+2R_1+R_2)) = 2$, значит, пучок $|\vec{E}|$ высекает на D линейный ряд размерности 1 и степени 2. Таким образом, D — гиперэллиптическая кривая рода $\frac{(D^2)}{2} + 1 = 4$.

Пусть $W \sim aL + bS_3$ — кривая ветвления морфизма f. Тогда $(W \cdot L) = 4$, так как $|f^{-1}(L)|$ — пучок эллиптических кривых. С другой стороны, $(W \cdot (3L + S_3)) = 10$, так как $|f^{-1}(3L + S_3)| = |3F + 2R_1 + R_2|$ — линейная система гиперэллиптических кривых рода 4. Простые вычисления показывают теперь, что a = 10, а b = 4.

Предложение 2.7. Пусть $f: X \rightarrow F_4$ — двулистное накрытие с K3-поверхностью X. Тогда кривая ветвления морфизма f эквивалентна дивизору $12L+4S_4$. Кроме того, на X существуют эллиптическая кривая E и неособая рациональная кривая E с $(R \cdot E) = 1$. При этом линейная система |4E+2R| неприводима и любая неособая кривая из этой системы является гиперэллиптической кривой рода E.

Доказательство полностью аналогично доказательствам двух предыдущих предложений, и мы его опускаем.

Предложение 2.8. Пусть $f: X \to \overline{F}_2$ — двойное накрытие с K3-поверхностью X. Тогда существует двойное накрытие $f': X \to V$, где либо $V = F_0$, либо $V = F_2$.

Пусть P— особая точка поверхности \overline{F}_2 . Если $f^{-1}(P)$ является дивизором на X, то, в силу универсальности раздутий, морфизм f разлагается в композицию $X \rightarrow F_2 \rightarrow \overline{F}_2$, где $F_2 \rightarrow \overline{F}_2$ — стягивание сечения S_2 в особую точку. Если же морфизм f является конечным над некоторой окрестностью U точки P, то, в силу леммы 2.2, морфизм f неразветвлен над $U \setminus P$. Так как \overline{F}_2 изоморфно квадратичному конусу в \mathbf{P}_k^3 , то мы можем считать, что f есть морфизм X на поверхность второго порядка в \mathbf{P}_k^3 . Прообраз гиперплоского сечения f(X) определяет линейную систему |D| кривых рода $\pi=3$. С другой стороны, прообраз гиперплоского сечения, проходящего через вершину конуса, определяет дивизор E_1+E_2 из |D|. Так как $(D \cdot E_i)=2$ (E_i —прообраз образующей конуса), то (E_i^2) = 0, ($E_1 \cdot E_2$) = 2. Значит, E_i —эллиптические кривые на X. Ка кдый пучок $|E_i|$ определяет морфизм $f_i: X \rightarrow \mathbf{P}_k^1$. Так как ($E_1 \cdot E_2$) = 2, то морфизм $f_1 \times f_2: X \rightarrow \mathbf{P}_k^1 \times \mathbf{P}_k^1 = F_0$ является искомым двулистным накрытием.

ТЕОРЕМА 2.9 (Энриквес — Қампеделли). Специальная Қ3-поверхность бирационально эквивалентна одной из следующих 4-х типов двойных плоскостей:

- а) $z^2 = F_6(x, y)$, где $F_6(x, y) = 0$ кривая степени 6;
- b) $z^2 = F_8(x, y)$, где $F_8(x, y) = 0$ кривая степени 8, имеющая две обыкновенные четырехкратные особые точки (быть может, бесконечно близкие случай b');
- c) $z^2 = F_{10}(x, y)$, где $F_{10}(x, y) = 0$ кривая степени 10, имеющая семикратную особую точку и две тройные обыкновенные особые точки, бесконечно близкие к ней первого порядка;
- d) $z^2 = F_{12}(x, y)$, где $F_{12}(x, y) = 0$ кривая степени 12, имеющая девятикратную особую точку и три бесконечно близкие к ней обыкновенные тройные точки.

Доказательство. В силу теоремы 2.3 и предложения 2.8 существует двулистное накрытие $f: X \to V$, где V — одна из следующих поверхностей: $\mathbf{P}_{\mathfrak{p}}^{\mathfrak{p}}$, F_n (n=0,2,3,4).

Случай 1. $V = \mathbf{P}_k^2$. В этом случае для любой прямой L на \mathbf{P}_k^2 $(f^{-1}(L)^2) = 2(L^2) = 2$. Следовательно, линейная система $|f^{-1}(L)|$ состоит из кривых рода 2, а индекс пересечения прямой L с кривой ветвления равен 6. Таким образом, $\pi(X) = 2$, а кривая ветвления f имеет степень 6. Отсюда вытекает, что поверхность X бирационально эквивалентна двойной плоскости типа а).

Случай 2. $V = F_0$. В силу предложения 2.4 кривая ветвления W морфизма $f: X \to V$ имеет степень (4,4). Пусть P — некоторая точка на F_0 , не принадлежащая $W, \widetilde{F}_0 \to F_0$ — раздутие $P, \widetilde{X} = X \times_{F_0} \widetilde{F}_0$, $\widetilde{f}: \widetilde{X} \to \widetilde{F}_0$ — проекция. Взяв композицию \widetilde{f} с каноническим морфизмом $\widetilde{F}_0 \to P_k^2$ (стягивание собственных прообразов на \widetilde{F}_0 образующих F_0 , проходящих

через P), мы получим двулистное накрытие $\widehat{X} \to \mathbf{P}_k^2$. Кривая ветвления этого накрытия есть собственный образ W относительно бирационального отображения $F_0 \to \widehat{F}_0 \to \mathbf{P}_k^2$ и является, очезидно, кривой степени 8 с двумя четырехкратными особыми точками (образы стягиваемых кривых на \widehat{F}_0).

Так как поверхность \widetilde{X} бирационально эквивалентна исходной поверхности X, то получаем, что X бирационально эквивалентна двойной плоскости типа b).

Случай 3. $V = F_2$. В силу предложения 2.5 кривая ветвления W морфизма $f: X \to V$ эквивалентна дивизору $8L + 4S_2$.

Пусть P_1 и P_2 — различные замкнутые точки на F_2 , не принадлежащие W. Пусть $\widetilde{F}_2 \rightarrow F_2$ — раздутие этих точек. Стягивая собственные образы образующих L_1 и L_2 , проходящих через P_1 и P_2 , мы получим двулистное накрытие поверхности $\widetilde{X} = X \times_{F_2} \widetilde{F}_2 \rightarrow F_0$, кривой ветвления \widetilde{W} которого будет кривая степени (8,4) с двумя обыкновенными четырехкратными особыми точками, лежащими на сечении S_0 . Пусть Q — одна из этих точек и L — образующая, проходящая через Q. Раздувая точку Q и стягивая собственные образы сечений S_0 и L, мы получим двулистное накрытие $\widetilde{X} = \widetilde{X} \times_{F_0} \widetilde{F}_0 \rightarrow \mathbf{P}_k^2$ с кривой ветвления степени восемь с двумя бесконечно близкими четырехкратными особыми точками. Так как поверхности \widetilde{X} и X бирационально изоморфны, то получаем, что X бирационально изоморфна двойной плоскости типа \mathbf{b}').

Случай 4. $V=F_3$. В силу предложения 2.6 кривая ветвления W морфизма $f:X\to V$ эквивалентна дивизору $10L+4S_3$. В этом случае кривая W содержит в качестве одной из своих неприводимых компонент сечение S_3 . Пусть $W'=W\setminus S_3$. Тогда $(W'\cdot S_3)=1$ и $(W'\cdot L)=3$. Делая элементарные преобразования в произвольных трех точках P_1 , P_2 , P_3 , не лежащих на W, мы получим двулистное накрытие $\widetilde{f}:\widetilde{X}\to F_0$, где \widetilde{X} бирационально эквивалентна X, а кривая ветвления \widetilde{f} есть сечение S_0 и некоторая кривая W' степени (10,3) с тремя четырехкратными особыми точками на S_0 . Делая теперь элементарное преобразование с центром в одной из этих особых точек, мы получим двулистное накрытие $X\times_{F_0}\widetilde{F}_0\to P_k^2$ с кривой ветвления степени 10 с семикратной особой точкой и двумя бесконечно близкими к ней обыкновенными тройными точками. Тем самым мы получаем случай с) теоремы.

Случай 5. $V = F_4$. В силу предложения 2.7 кривая ветвления W морфизма $f: X \rightarrow F_4$ эквивалентна дивизору $12L + 4S_4$. В этом случае кривая S_4 входит в W, а кривая $W' = W - S_4$ с кривой S_4 не пересекается.

Проводя конструкцию, аналогичную случаю 4, мы получим случай d) теоремы.

Следствие 2.10. Для любой специальной K3-поверхности класс π может принимать только значения 2, 3, 4 или 5.

Действительно, прообраз прямой на двойной плоскости типа a) — d) является гиперэллиптической кривой рода 2, 3, 4 или 5.

⁹ Серия математическая, № 4

Следствие 2.11. Каждая специальная К3-поверхность с классом $\pi=2$ (соотв. 3, соотв. 4, соотв. 5) является двулистным накрытием \mathbf{P}_k^2 (соотв. F_0 или F_2 , соотв. F_3 , соотв. F_4).

Как упоминалось в начале доказательства теоремы 2.9, каждая специальная К3-поверхность X является двулистным накрытием одной из поверхностей \mathbf{P}_k^2 , F_0 , F_2 , F_3 или F_4 . Если $\pi=2$, то линейная система |C| кривых рода 2 определяет двулистное накрытие $X \to \mathbf{P}_k^2$. Если $\pi=3$, то линейная система |C| кривых рода 3 определяет морфизм $f: X \to \mathbf{P}_k^3$, образ которого V является поверхностью 2-го порядка. Каждая такая поверхность является либо квадрикой F_0 , либо конусом \overline{F}_2 . Остается применить предложение 2.8. Если $\pi=5$, то X может отображаться двулистно только на F_4 , так как в противном случае в силу предложений 2.4-2.6 на X существовала бы кривая меньшего рода. При $\pi=4$ морфизм $X \to \mathbf{P}_k^4$, определяемый системой кривых рода 4, должен пропускаться через одну из поверхностей F_n (n=2,3,4) (см. доказательство теоремы 2.3). Случай n=2 невозможен в силу предложения 2.5. Случай n=4 невозможен, так как не существует вложения F_4 в \mathbf{P}_k^4 .

§ 3. Обращение теоремы Энриквеса — Кампеделли

ЛЕММА 3.1. Пусть X — нормальная алгебраическая поверхность u D — целостная кривая на X, образ которой в группе $\mathrm{Pic}(X)$ делится на два. Тогда существует неразветвленное неприводимое накрытие $f: X' \to X \setminus D$ степени 2.

Воспользовавшись этальной топологией, рассмотрим на $U = X \setminus D$ точную последовательность Куммера (3):

$$0 \to \Gamma(U, \mathcal{O}_U^*)/\Gamma(U, \mathcal{O}_U^*)^2 \to H^1(U, \mu_2) \to \operatorname{Pic}(U_2) \to 0$$

(напомним, что char $(k) \neq 2$). Так как поверхность X нормальна, то канонический морфизм ограничения $r: \operatorname{Pic}(X) \to \operatorname{Pic}(U)$ сюръективен, а его ядро порождается дивизором D. Так как класс D делится в $\operatorname{Pic}(X)$ на 2, то фактор-группа $\operatorname{Pic}(X)/\operatorname{Ker}(r) = \operatorname{Pic}(U)$ содержит элемент второго порядка. Значит,

$$H^1(U, \mu_2) \neq 0.$$

Остается воспользоваться тем фактом, что группа $H^1(U, \mu_2)$ классифицирует главные расслоения над U со структурной группой $\mathbb{Z}/2\mathbb{Z}$. Нетривиальное такое расслоение и определяет искомое неразветвленное накрытие $f: X' \rightarrow U$.

ЛЕММА 3.2. В обозначениях леммы 1.13 имеем:

$$c_2(\widetilde{X}') = 2(c_2(X) + n) + 2\sum_{i=1}^{h} (g(W_i) - 1),$$

где $c_2(Z)$ — второе число Черна касательного пучка к поверхности Z (=топологической эйлеровой характеристике Z в случае k=C и =l-адической эйлеровой характеристике в общем случае), а $g(W_i)$, $1 \le i \le h$,—геометрический род неприводимой компоненты кривой ветвления W.

Если \overline{X} — раздутие двойных точек W на X, то $c_2(\overline{X}) = c_2(X) + n$. Остается применить «формулу соответствия Севери» (11).

ТЕОРЕМА 3.3. Пусть $z^2 = F_{2n}(x,y)$ (n=3,4,5,6) — двойная плоскость. Предположим, что кривая ветвления $F_{2n}(x,y) = 0$ неприводима и, кроме особенностей, указанных в теореме 2.9, имеет только обыкновенные двойные точки. Тогда минимальная проективная неособая модель этой двойной плоскости является специальной K3-поверхностью с классом $\pi \leq n-1$.

Доказательство. Пусть n=3, $W \subset \mathbf{P}_k^2$ — проективная кривая степени 6, неприводимая и имеюшая только двойные обыкновенные особенности (или гладкая). В силу леммы 3.1 существует неразветвленное накрытие $U' \to U = \mathbf{P}_k^2 \setminus W$ степени два. Очевидно, это накрытие можно продолжить до конечного морфизма $f: X \to \mathbf{P}_k^2$, разветвленного только над W [ср. (12), стр. 4]. Пусть V — раздутие \mathbf{P}_k^2 с центром в особых точках кривой W. В силу леммы 1.13 нормализация X' поверхности $X \times_{\mathbf{P}_k^2} V$ является неособой поверхностью, а проекция $f': X' \to V$ определяет конечное двулистное накрытие, разветвленное над собственным прообразом \overline{W} кривой W. Пусть L_1, \ldots, L_n исключительные кривые на V, являющиеся прообразами особых точек W относительно проекции $V \to \mathbf{P}_k^2$. Имеем:

$$K_{\mathbf{V}} = -3\overline{H} + L_{1} + \ldots + L_{n}$$

где \overline{H} — собственный прообраз прямой H на $\mathbf{P}^2_{t\bullet}$

С другой стороны, очевидно, что $\overline{W} \sim 6\overline{H} - 2L_1 + \ldots + 2L_n$. Отсюда следует [ср. (11)], что $K_{X'} \sim f^{**}(K_V) + \frac{1}{2}f'^*(\overline{W}) \sim 0$. В силу леммы 3.2 $c_2(X') = 2(3+n) + 2(9-n) = 24$. В силу формулы Нётера

$$1-q+p_g=\frac{c_2(X')+(K_{X'}^2)}{12}$$
 ,

откуда вытекает, что $q=\dim_k H^1(X,\mathcal{O}_{X'})=0$. Следовательно, поверхность X' регулярна и $K_{X'}\sim 0$, а это и есть определение K3-поверхности.

Пусть теперь n=4 и $W \subset \mathbf{P}_k^2$ — неприводимая проективная кривая степени 8, имеющая, кроме двух обыкновенных четырехкратных точек A_1 и A_2 , быть может, еще обыкновенные двойные точки P_1, \ldots, P_n . Раздувая точки A_1 и A_2 на \mathbf{P}_k^2 и стягивая собственный прообраз прямой A_1A_2 , мы получим, что собственный просбраз \overline{W} кривой W на квадрике F_0 является неприводимой кривой типа (4,4), имеющей, быть может, двойные обыкновенные точки P_1, \ldots, P_n . Остальная часть рассуждений проводится в этом случае аналогично предыдущему случаю (с заменой \mathbf{P}_k^2 на F_0).

Доказательства оставшихся случаев проходят по образцу предыдущих, и мы их опускаем. Заметим только, что при n=4 (случай беско-

нечно близких точек) придется \mathbf{P}_k^2 заменить на F_2 , при n=5 — на F_3 , при n=6 — на F_4 (ср. предложения 2.5, 2.6 и 2.7) и воспользоваться леммами 3.1 и 3.2.

Замечание 3.4. В случае $k=\mathbb{C}$ из результатов Г. Н. Тюриной [см. (¹), гл. IX] легко следует, что для «общей» двойной плоскости типа а) (соотв. b) или b'), c), d)) (ср. теор. 2.9) $\pi=2$ (соотв. 3, 4, 5). По-видимому, это верно и в общем случае.

§ 4. Эллиптические поверхности и специальные К3-поверхности

Напомним некоторые определения.

Определение 4.1. Пучком эллиптических кривых на проективной алгебраической поверхности X называется морфизм $f: X \rightarrow B$, где B — гладкая кривая, а общий слой f является гладкой эллиптической кривой. Показателем пучка называется показатель общего слоя X_{η} морфизма f, τ . е. общий наибольший делитель степени эффективных дивизоров на X_{η} , определенных над полем k(B).

Пусть r: $\operatorname{Pic}(X) \to \operatorname{Pic}(X_{\eta})$ — канонический морфизм ограничения. Переходя к группам Нерона — Севери, имеем гомоморфизм r: $\operatorname{NS}(X) \to \operatorname{NS}(X_{\eta}) \simeq \mathbb{Z}$. Легко видеть, что показатель пучка f на X равен порядку коядра гомоморфизма r. Другими словами, он равен $\min\{(F \cdot C) \mid C$ — трансверальная кривая над B, F — произвольный слой f}.

Определение 4.2. Гладкая проективная алгебраическая поверхность называется эллиптической, если на ней существует пучок эллиптических кривых. Показателем I эллиптической поверхности X называется минимальный из показателей всевозможных пучков эллиптических кривых на X.

ЛЕММА 4.3. Для того чтобы алгебраическая Қ3-поверхность X была эллиптической поверхностью c показателем I, необходимо и достаточно, чтобы на X существовала связная кривая C с $p_a(C)=1$ и неприводимая кривая S c $(C\cdot S)=I$.

Необходимость очевидна. Для доказательства достаточности надо воспользоваться леммами 1.2 и 1.8 и рассмотреть морфизм $f: X \to \mathbf{P_k^1}$, определяемый линейной системой |C|.

ТЕОРЕМА 4.4. Каждая специальная К3-поверхность X класса $\pi > 2$ является эллиптической поверхностью. Кроме того, при $\pi = 4$ или 5 по-казатель этой поверхности равен 1, а при $\pi = 3$ он не превосходит 2.

Доказательство. В силу 2.11 при $\pi=3$ (соотв. 4, соотв. 5) существует двулистное накрытие X на F_0 или F_2 (соотв. на F_3 , соотв. на F_4). Остается применить лемму 4.3 и предложения 2.4 и 2.5 (соотв. 2.6, соотв. 2.7).

ТЕОРЕМА 4.5. Каждая эллиптическая Қ3-поверхность с показателем $I \leq 2$ является специальной Қ3-поверхностью.

Доказательство. Пусть I=1, а C и S — кривые на X, выбранные с помощью леммы 4.3. Так как $(S^2) \geqslant -2$, то

$$((4C+2S)^2)=16(C\cdot S)+4(S^2)=16+4(S^2)\geqslant 8.$$

Кроме того,

$$((4C+2S)^2) > ((4C+S)^2) = 8 + (S^2),$$

 $((4C+2S)^2) > ((3C+2S)^2) = 12 + 4(S^2).$

Таким образом, линейная система |4C+2S| не имеет неподвижных компонент и состоит из кривых рода $g \ge 5$. Так как $(C^2) = 0$, то

$$(C_1 \cdot (4C + 2S)) = 2.$$

Следовательно, пучок |C| высекает на неособой кривой $D \in |4C+2S|$ линейный ряд g_2^1 . Значит, D— гиперэллиптическая кривая и X— специальная К3-поверхность.

Пусть I=2. Линейная система |C+S| не имеет неподвижных компонент и состоит из кривых рода

$$g = \frac{((C+S)^2)}{2} + 1 = \frac{4+(S^2)}{2} + 1 \geqslant 2.$$

Так как

$$(C(C + S)) = (C \cdot S) = 2,$$

то пучок |C| высекает на неособой кривой $D \in |C+S|$ линейный ряд g_2^1 . Следовательно, D — гиперэллиптическая кривая и X — специальная K3-поверхность.

Определение 4.6. Поверхностью Энриквеса называется гладкая алгебраическая поверхность X с $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$ и $\omega_X^{\otimes 2} \simeq \mathcal{O}_X$.

Предложение 4.7. Пусть X — поверхность Энриквеса. Тогда существует конечное неразветвленное накрытие степени $2 \ f: X' \to X$, где X' — K3-поверхность.

Так как $\omega_X \not \supset \mathcal{O}_X$, то пучок ω_X определяет элемент второго порядка в группе $\mathrm{Pic}(X)$. В силу точной последовательности Куммера:

$$0 \rightarrow H^0(X, \mathcal{O}_X^*)/H^0(X, \mathcal{O}_X^*)^2 \rightarrow H^1(X, \mu_2) \rightarrow \text{Pic}(X_1) \rightarrow 0$$

мы получаем, что $H^1(X, \mu_2) \neq 0$. Так как группа $H^1(X, \mu_2)$ классифицирует главные однородные пространства со структурной группой $\mathbb{Z}/2\mathbb{Z}$, то такое нетривиальное пространство определяет конечное неразветвленное двойное накрытие $f: X' \to X$. Элементарные вычисления [см. (11)] показывают, что $\omega_{X'} \simeq f^*(\omega_X) \simeq \mathcal{O}_{X'}$ и $H^1(X', \mathcal{O}_{X'}) = 0$. Следовательно, $X' \to K3$ -поверхность.

ПЕММА 4.8 (Л. Годо). Пусть X — эллиптическая поверхнос пь c $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$, $f: X \to \mathbf{P}^1_k$ — соответс пвующий пучок эллипти-

ческих кривых, F — произвольный слой над замкнутой точкой, $\Gamma_1 \sim \frac{1}{m_1} F$, ...

$$\ldots$$
, $\Gamma_n \sim \frac{1}{m_n} F$ — «носители» кратных слоев f . Тогда

$$\omega_X \simeq \mathcal{O}_X ((n-1)F - \Gamma_1 - \ldots - \Gamma_n).$$

Пусть $\omega_X = \mathcal{O}_X(K_X)$. Так как $H^1(X, \mathcal{O}_X) = 0$, то для любого целостного дивизора D с $p_a(D) = 1$ имеем: $\dim |D + K| = 0$. Пусть D' обозначает однозначно определяемый эффективный дивизор из линейной системы |D + K|. В частности, $F' = \lambda_1 \Gamma_1 + ... + \lambda_n \Gamma_n$, где $\lambda_i < m_i$ (так как $H^2(X, \mathcal{O}_X) = H^0(X, \omega_X) = 0$).

С другой стороны, так как $F' = (m_1 - 1) \Gamma_1 + \Gamma_1'$, то $\Gamma_1 = (\lambda_1 - m_1 + 1) \Gamma_1 + ... + \lambda_n \Gamma_n$. Отсюда получаем: $\lambda_1 - m_1 + 1 \geqslant 0$, что дает $m_1 - 1 \leqslant \lambda_1$, и так как $\lambda_1 < m_1$, то $\lambda_1 = m_1 - 1$. Аналогично доказываются равенства $\lambda_i = m_i - 1$.

Окончательно получаем:

$$K_X \sim F' - F \sim (m_1 - 1)\Gamma_1 + \ldots + (m_n - 1)\Gamma_n - F \sim (n - 1)F - \Gamma_1 - \ldots - \Gamma_n.$$

Следствие 4.9. В обозначениях предыдущей леммы если $\omega_X^{\otimes 2} \simeq \mathcal{O}_X$, то n=2, $m_1=m_2=2$ и

$$\omega_X \simeq \mathcal{O}_X(\Gamma_1 - \Gamma_2).$$

Имеем:

$$\mathcal{O}_X \simeq \omega_X^{\otimes 2} \simeq \mathcal{O}_X ((2n-2)F - 2\Gamma_1 - \dots - 2\Gamma_n) =$$

$$= \mathcal{O}_X ((n-2)F + (m_1 - 2)\Gamma_1 + \dots + (m_n - 2)\Gamma_n).$$

Так как все $m_i \ge 2$, то n=2 и $m_i=2$. Кроме того,

$$\omega_X \simeq \mathcal{O}_X (F - \Gamma_1 - \Gamma_2) \simeq \mathcal{O}_X (\Gamma_1 - \Gamma_2).$$

ТЕОРЕМА 4.10. Пусть X— эллиптическая поверхность Энриквеса. Тогда существует двойное конечное неразветвленное накрытие $f: X' \rightarrow X$, где X'— специальная K3-поверхность.

Доказательство. Пусть f — накрытие, построенное в лемме 4.1. Покажем, что X' — специальная K3-поверхность. Пусть J — якобиева поверхность для F [(1), гл. VI]. Легко видеть, что J — рациональная поверхность [ср. (5)]. Значит, группа Шафаревича Ш (J_{η}) общего слоя J тривиальна. Пользуясь теорией Огга — Шафаревича, мы получаем, что группа главных однородных пространств $WC(J_{\eta})$ есть прямая сумма

групп «локальных инвариантов»
$$WC(J_{\eta}) = \bigoplus_{x = P_b^1(k)} H^1(J_x, \mathbf{Q}/\mathbf{Z}).$$

В силу следствия 4.9 поверхность X определяет в $WC(J_{\eta})$ элемент X_{η} вида (α, β) , где $2\alpha = 2\beta = 0$. Следовательно, порядок X_{η} в этой группе равен 2. Так как показатель X_{η} равен порядку $(^{13})$, то X_{η} имеет над квадратичным расширением $k(\eta)$ рациональную точку. Композиция $X' \rightarrow X \rightarrow P_k^1$ определяет на X' структуру эллиптической поверхности. Так как, очевидно, показатель X'_{η} не превосходит показателя X_{η} , то заключаем,

что X' — эллиптическая K3-поверхность показателя ≤ 2 . Остается применить теорему 4.5.

Замечания. 1) В случае $\operatorname{char}(k) = 0$ можно показать, что каждая поверхность Энриквеса является эллиптической поверхностью [см. (1), гл. X]. По-видимому, это верно и в общем случае.

- 2) Можно показать, что для эллиптической поверхности Энриквеса X подгруппа кручения $\mathrm{Tors}(\mathrm{Pic}(F)) \simeq \mathbb{Z}/2\mathbb{Z}$. Так как, кроме того, $H^1(X,\mathcal{O}_X)=0$, то из теории Куммера и Шрейера следует, что поверхность X', построенная в теореме 4.4, является единственным неразветвленным абелевым конечным накрытием X. В характеристике 0 этот факт тривиально следует из односвязности K3-поверхности.
- 3) Эллиптическая поверхность Энриквеса X называется специальной [ср. (¹), гл. X], если существует квазисечение степени 2, являющееся рациональной кривой. В этом случае двойную плоскость, соответствующую K3-поверхности X', можно построить явно. Она имеет вид $z^2 = F_3(x,y) \cdot F_3'(x,y)$, где $F_3(x,y) = 0$ и $F_3'(x,y) = 0$ кубические кривые. В общем случае для поверхности X' $\pi \leqslant 3$.

Поступило 14.IX.1972

Литература

- ¹ Алгебраические поверхности, Тр. Матем. ин-та им. В. А. Стеклова АН СССР, 75 (1965).
- ² Авербух Б. Г., О специальных типах поверхностей Куммера и Энриквеса, Изз. АН СССР. Сер. матем., 29 (1965), 1095—1118.
- ³ Артин М., Накрывающие когомологии схем, Успехи матем. наук, 20, вып. 6 (1965), 13—18.
- ⁴ Гизатуллин М. Х., Об афинных поверхностях, пополняемых неособой рациональной кривой, Изв. АН СССР. Сер. матем., 34 (1970), 778—802.
- ⁵ Долгачев И. В., О гипотезе Ф. Севери относительно односвязных алгебраических поверхностей, Докл. АН СССР, 170, № 2 (1966), 249—252.
- ⁶ Campedelli L., Sopra i piani doppi con tutti i generi uguali all'unita, Rendiconti del Sem. Padova, 11, N 1—2 (1940), 1—27.
- ⁷ Campedelli L., Le superficie con i generi uguali all'unita rapresentabili in infiniti modi sul piano doppio, Rendiconti del Sem. Univ. Roma, s. V, 1 (1940), 105—138.
- * Enriques F., Sui piani doppi di genere uno Memorie della Soc. Ital. des Scienze, ser. III, t. X (1896), 201—222.
- ⁹ Enriques F., Le superficie algebriche, Bologna, 1949.
- 10 Grothendieck A., Elements de géometrie algébrique, Publ. Math. IHES, № 17 (1963).
- 11 I versen B., Numerical invariants and multiple planes, Amer. J. Math., 92, $\,\,$ $\,$ $\,$ $\,$ $\,$ $\,$ (1970), 968—996.
- ¹² Popp H., Fundamentalgruppen algebraischer Mannigfaltigkeiten, Lecture Notes in Math., vol. 176, Springer, 1970.
- 13 Шафаревич И. Р., Главные однородные пространства, определенные над полем функций, Тр. Матем. ин-та им. В. А. Стеклова АН СССР, 64 (1961), 316—346.