ON SPECIAL ALGEBRAIC K3 SURFACES. I

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1973 Math. USSR Izv. 7833
(http://iopscience.iop.org/0025-5726/7/4/A05)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 141.213.236.110
The article was downloaded on 02/07/2013 at 19:51

Please note that terms and conditions apply.

ON SPECIAL ALGEBRAIC K3 SURFACES. I

UDC 513.6

I. v. DOLGAC̆EV

To I. R. Šafarevič on his fiftieth birthday

Abstract

In this paper we describe algebraic K3 surfaces on which lie hyperelliptic curves. We prove a direct and an inverse theorem on the representation of such surfaces as a double plane. We explain the connection between surfaces of this type and elliptic surfaces.

Introduction

Let k be an algebraically closed field of characteristic $p \neq 2$. A smooth projective algebraic surface X over k is called a $K 3$ surface if X is regular and the canonical class of X is trivial, i.e. if $H^{1}\left(X, \Theta_{X}\right)=0$ and $\omega_{X} \simeq \Theta_{X}$. We shall call a K3 surface special if there exists a hyperelliptic curve C of genus $g \geq 2$ on it. The goal of this paper is to give an explicit description of all such surfaces. We will show that the special K3 surfaces are precisely those which admit a representation as a double plane (i.e. are birationally isomorphic to an affine surface in A_{k}^{3} with the equation $z^{2}=\dot{F}(x, y)$). Let π denote the class of a K3 surface X, i.e. the smallest of the dimensions of complete linear systems on X which are greater than one. We shall show that for special K 3 surfaces π can only take the values $2,3,4$, or 5 . This answers the question of [2]. Moreover, for $\pi>2$ the condition of speciality is equivalent to the existence of a pencil of elliptic curves of index ≤ 2 on X. In $§ 4$ we will show that the universal cover of an elliptic Enriques surface (or any Enriques surface if $\operatorname{char}(k)=0$) is a special K3 surface.

The main result is the:
Enriques-Campedelli Theorem. A double plane which is birationally isomorphic to a K3 surface is equivalent to one of the following double planes:
a) $z^{2}=F_{6}(x, y)$, where $F_{6}(x, y)=0$ is a curve of degree 6 ;
b) $z^{2}=F_{8}(x, y)$, where $F_{8}(x, y)=0$ is a curve of degree 8 having two ordinary (singular) quadruple points (these can be infinitely near);
c) $z^{2}=F_{10}(x, y)$, where $F_{10}(x, y)=0$ is a curve of degree 10 having a singular
point of multiplicity seven and two ordinary triple points which are infinitely near to first order;
d) $z^{2}=F_{12}(x, y)$ where $F_{12}(x, y)=0$ is a curve of degree 12 having a singular point of multiplicity nine and three ordinary points of multiplicity three which are infinitely near to first order.

This theorem was first proved by Enriques in 1896 [8] and later was reproved by Campedelli [6], [7]. In this paper we give a modernization of Campedelli's proof.

The continuation of this paper will be devoted to moduli and automorphisms of special K3 surfaces.

§1. Basic definitions and auxiliary lemmas

Definition l.1. A K3 surface is a smooth projective algebraic surface X with $H^{1}\left(X, \mathcal{O}_{X}\right)=0$ and $\omega_{X}=\Omega_{X}^{2} \simeq \mathcal{O}_{X}$. A K3 surface is said to be special if there exists a smooth hyperelliptic curve of genus $g \geq 2$ on it.

Lemma 1.2. Let $D=\Sigma_{i} n_{i} D_{i}$ be a connected effective divisor on a K3 surface X. Assume that $n_{i}=1$ for at least one value of i. Then

$$
\begin{gathered}
\operatorname{dim}|D| \xlongequal{\text { def }} \operatorname{dim}_{k} H^{0}\left(X, O_{X}(D)\right)-1=\frac{\left(D^{2}\right)}{2}+1 \\
p_{a}(D) \stackrel{\text { def }}{=} \operatorname{dim}_{k} H^{1}\left(D, O_{D}\right)=\operatorname{dim}|D|
\end{gathered}
$$

The exact sequence of sheaves

$$
0 \rightarrow O_{X}(-D) \rightarrow O_{X} \rightarrow \mathcal{O}_{D} \rightarrow 0
$$

gives an exact sequence of cohomology groups

$$
\begin{gathered}
0 \rightarrow H^{0}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{0}\left(D, \mathcal{O}_{D}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}(-D)\right) \\
\rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(D, \mathcal{O}_{D}\right) \rightarrow H^{2}\left(X, \mathcal{O}_{X}(-D)\right) \rightarrow H^{2}\left(X, \mathcal{O}_{X}\right) \rightarrow 0
\end{gathered}
$$

Since X is a $K 3$ surface,

$$
H^{1}\left(X, O_{X}\right)=0, \quad H^{2}\left(X, O_{X}\right) \simeq H^{0}\left(X, \omega_{X}\right) \simeq k
$$

On the other hand, because of the conditions on D we have $H^{0}\left(D, \Theta_{D}\right)=k$. Hence

$$
H^{1}\left(X, O_{X}(-D)\right)=0, \quad \operatorname{dim}_{k} H^{1}\left(D, O_{D}\right)=\operatorname{dim}_{k} H^{2}\left(X, O_{X}(-D)\right)-1
$$

It remains to use Riemann-Roch for the sheaf $\mathcal{O}_{X}(-D)$ and Serre duality.
Definition l.3. The number

$$
\pi(X)=\min _{D \subset X}\{\operatorname{dim}|D \| \operatorname{dim}| D \mid>1\}
$$

is called the class of the K3 surface X.
Remarks. 1. In the case $k=\mathbf{C}$ the class $\pi(X)$ can take any value ≥ 2 (see [1], Chapter IX). This is apparently also true in general (see [9], p. 256).
2. In [1] K3 surfaces are called Kummer surfaces. At the present time this term is used for a special case of K3's: nonsingular minimal models of the quotient of a
two-dimensional abelian variety by the involution $x \rightarrow-x$. Arbitrary K3 surfaces are frequently called generalized Kummer surfaces (cf. [9]). In [2] a "special Kummer surface' was a K3 surface for which the class π is realized by a system of hyperelliptic curves. Our definition is obviously somewhat broader. We do not know an example showing that these definitions are actually different.

Definition l.4. A morphism $f: X^{\prime} \rightarrow X$ of complete integral algebraic surfaces is called a two-sheeted cover (or double cover) if one of the following equivalent conditions holds:

1) / induces a separable quadratic extension of function fields $k\left(X^{\prime}\right) / k(X)$.
2) There exists an open subset $U \subset X^{\prime}$ such that $f \mid U$ is a finite morphism of degree 2.
3) The morphism $/$ splits into a composition $X^{\prime} \xrightarrow{f_{1}} X_{1}^{\prime} \xrightarrow{f 2} X$, where f_{1} is a birational morphism and f_{2} is a finite morphism of degree 2.

A proof of the equivalence of assertions 1)-3) uses a standard technique of the theory of schemes ([10], Chapter 3) and presents no difficulty.

Definition 1.5. A double plane is an algebraic surface which is birationally isomorphic to the affine surface $\operatorname{Spec}\left(k[x, y, z] /\left(z^{2}-F(x, y)\right)\right)$.

Proposition 1.6. An algebraic surface X is a double plane if and only if it is birationally equivalent to a surface X which is a double cover of the projective plane \mathbf{P}_{k}^{2}.

The proof is obvious.
Lemma 1.7. Let $g: X^{\prime} \rightarrow X$ be a double cover of smooth surfaces. Then for any divisors D_{1} and D_{2} on X we have

$$
\left(f^{*}\left(D_{1}\right) \cdot f^{*}\left(D_{2}\right)\right)_{X}=2\left(D_{1} \cdot D_{2}\right)_{X}
$$

The proof follows trivially from general properties of Chow rings.
Lemma 1.8. If D is an integral divisor on a K 3 surface, then the linear system $|D|$ has no base points.

For a proof see [1], Chapter VIII, Lemma 2.
Proposition 1.9. Let C be a hyperelliptic curve on a K 3 surface X with $p_{a}(C)=$ m. The linear system $|C|$ gives a double cover $f: X \rightarrow V$, where V is a surface of degree $m-1$ in \mathbf{P}_{k}^{m}.

For a proof see [1], Chapter VIII, Lemma 3.
Proposition 1.10. Let $f: X^{\prime} \rightarrow X$ be a double cover of smooth surfaces. Let X^{\prime} $\xrightarrow{f_{1}} X_{1}^{\prime} \xrightarrow{f_{2}} X$ be the Stein factorization of $/$ (see condition 3) of Definition 1.4). Then the singular points of the surface X_{1}^{\prime} are precisely the inverse images of the singular points of the branch curve W of the finite cover f_{2}.

In fact, the surface X_{1}^{\prime} is normal and we can therefore use local properties of finite Galois coverings of algebraic varieties (see [12]).

Definition 1.11. The curve W of the hypothesis of Proposition 1.10 is called the branch curve of the double cover.

Corollary 1.12. Assume that the branch curve of the double cover $f: X^{\prime} \rightarrow X$ is nonsingular and that the surface X^{\prime} is a minimal model. Then f is a finite morphism.

Lemma 1.13. Let $f: X^{\prime} \rightarrow X$ be a finite morphism of degree two of a normal surface X^{\prime} onto a smooth surface X. Assume that the branch curve W of the morphism f has only ordinary double points $\underset{\sim}{P}, \cdots, P_{n}$. Let $\bar{X} \rightarrow X$ be the blowing-up of these points. Then the normalization \tilde{X}^{\prime} of the surface $X^{\prime} \times_{X} \bar{X}$ is a smooth surface, and the projection $\tilde{X}^{\prime} \rightarrow \bar{X}$ induces a finite cover whose branch curve is the proper trans. form of the curve W.

This assertion is a special case of "Jung's method" for resolving the singularities of surfaces. Its verifications reduces to a trivial local computation, which we omit.

§2. The Enriques-Campedelli Theorem

For the duration of this section F_{n} will denote a relative minimal model of a rational surface possessing a rational curve S_{n} with $\left(S_{n}^{2}\right)=-n$ (n is a nonnegative integer different from 1) (see [1], Chapter 4). L will denote any one of the fibers of the canonical morphism $F_{n} \rightarrow \mathbf{P}_{k}^{1}$ a section of which is the curve S_{n}.

Proposition 2.1. Let $\phi: X \rightarrow \mathbf{P}_{k}^{m}$ be a morphism of a normal projective surface whose image $\phi(X)$ is a normally imbedded surface of degree $m-1$. Then there exists a factorization

where f is a birational morphism, and V is one of the following surfaces: $\mathbf{P}_{k}^{2}, F_{n}$ or the surface \bar{F}_{n} obtained by blowing down the curve S_{n} on F_{n} at the normal point.

A hyperplane section of the surface $\phi(X)$ is a curve of degree $m-1$ which is normally imbedded in ($m-1$)-dimensional projective space. It follows from the Rie-mann-Roch Theorem that such a curve is rational. By Proposition 2 of [4] it follows from this that the normalization V of the surface $\phi(X)$ is one of the surfaces enumerated above. Since X is normal, we obtain the desired assertion.

Lemma 2.2. Let A be a regular geometric two-dimensional local ring with residue field k of characteristic different from 2. Let g be an automorphism of A of order 2. Then either the ring of invariants A^{B} is regular, or its completion \hat{A}^{B} is isomorphic to the completion of the local ring of the vertex of a quadratic cone.

We can obviously assume the ring A to be complete, and hence to be isomorphic to the ring $k[[x, y]]$. In this case the action of g is equivalent to a linear map, and therefore we may assume that either $g(x)=x$ and $g(y)=-y$, or $g(x)=-x$ and $g(y)=$ $-y$. In the former case $A^{g} \simeq k\left[\left[x, y^{2}\right]\right]$ is regular, and in the second $A^{g} \simeq k\left[\left[x^{2}, y^{2}, x y\right]\right]$ $\simeq k[[u, v, w]] /\left(u v-w^{2}\right)$. This proves the lemma.

Theorem 2.3. Let X be a special K 3 surface. Then there exists a double cover $f: X \rightarrow V$, where V is one of the following surfaces: $\mathrm{P}_{\boldsymbol{k}}^{2}, F_{0}, F_{n}(n=2,3,4)$, or \bar{F}_{2}.

Let C be a hyperelliptic curve on X and m its genus. Applying Propositions 1.9 and 2.1, we obtain a double cover $f: X \rightarrow V$, where V is $\mathbf{P}_{k}^{2}, F_{n}$ or \bar{F}_{n}. We shall show that the case $n>4$ is impossible, and for $n=3$ and $n=4$ the morphism $f: X \rightarrow \bar{F}_{n}$ passes through the canonical morphism $F_{n} \rightarrow \bar{F}_{n}$, which blows down the section S_{n} at the singular point.

Assume that the first case holds, i.e. $V=F_{n}$ with $n>4$. Let $f: X \xrightarrow{\phi_{1}} X \xrightarrow{\phi_{2}} F_{n}$ be the Stein factorization of the morphism $/$ (i.e. ϕ_{1} is birational and ϕ_{2} is a finite morphism of degree 2). We assume that the morphism ϕ_{1} is an isomorphism in some neighborhood of $\phi_{2}^{-1}\left(S_{n}\right)$. Then either $f^{-1}\left(S_{n}\right)$ is $R_{1}+R_{2}$, where the R_{i} are rational curves on X, or $f^{-1}\left(S_{n}\right)^{2}$ is an irreducible curve. In any case $\left(f^{-1}\left(S_{n}\right)^{2}\right) \geq-8$. Since, on the other hand, $\left(f^{-1}\left(S_{n}\right)^{2}\right)=-2 n$, we obtain from this that $n \leq 4$.

Now suppose $f^{-1}\left(S_{n}\right)=D_{1}+\cdots+D_{r}+R$, where $D_{i}(1 \leq i \leq r)$ are rational curves (perhaps reducible) blown down by the morphism ϕ_{1} into distinct singular points of X^{\prime} lying on $\phi_{2}^{-1}\left(S_{n}\right)$, and R is the proper transform of $\phi_{2}^{-1}\left(S_{n}\right)$. We have

$$
\left(f^{-1}\left(S_{n}\right)^{2}\right)=-2 n=\sum_{i=1}^{r}\left(D_{i}^{2}\right)+2 \sum_{i=1}^{r}\left(D_{i} R\right)+R^{2}
$$

Again it is obvious that either R is an irreducible curve, or $R=R_{1}+R_{2}$, where the R_{i} are rational curves. In either case $\left(R^{2}\right) \geq-8$. Since ($\left.D_{i}^{2}\right)=-2$ (cf. Lemma 1.2) and $\left(D_{i} R\right) \geq 1$, we obtain

$$
n=r-\sum_{i=1}^{r}\left(D_{i} R\right)-\frac{\left(R^{2}\right)}{2} \leqslant 4
$$

We note that $n>0$ can happen here only in the case $r=1, n=3, R_{1}=R_{2}$.
Now we assume that the second case holds: $V=\bar{F}_{n}(n>2)$. Let P be a singular point of \bar{F}_{n}. If the morphism $f: X \rightarrow \bar{F}_{n}$ were finite over a neighborhood of P, the local ring \mathcal{O}_{p} would be the quotient of a regular ring by the action of the group of order two. By Lemma 2.2 it would follow from this that P is either a nonsingular point or an ordinary double point. The latter obviously contradicts the fact that $n>2$. Thus $f^{-1}(p)$ is a divisor on X. By the universality of blowing-up, we will obtain from this that $/$ splits into a composition $X \rightarrow F_{n} \rightarrow \bar{F}_{n}$. This proves the theorem.

Proposition 2.4. Let $f: X \rightarrow F_{0}$ be a double cover with X a K 3 surface. Then the branch curve W of the morphism f has degree (4.4). Moreover, on X there exist elliptic curves E_{1} and E_{2} with $\left(E_{1} \cdot E_{2}\right)=2$, for which the linear system $\left|E_{1}+E_{2}\right|$
is irreducible, and any nonsingular curve $D \in\left|E_{1}+E_{2}\right|$ is a hyperelliptic curve of genus 3.

Let $L_{1}=L$ and $L_{2}=S_{0}$ be the effective generators of $\operatorname{Pic}\left(F_{0}\right)$. Then $\left(f^{-1}\left(L_{i}\right)^{2}\right)=0$, and hence $\left|f^{-1}\left(L_{i}\right)\right|$ is a pencil of ellipric curves. If $E_{i}(i=1,2)$ are nonsingular elliptic curves belonging to this pencil, then obviously $\left(E_{1} \cdot E_{2}\right)=$ $2\left(L_{1} \cdot L_{2}\right)=2$. Since $\left(\left(E_{1}+E_{2}\right)^{2}\right)=4$, we have $\operatorname{dim}\left|E_{1}+E_{2}\right|=3$. It is obvious that the system $\left|E_{1}+E_{2}\right|$ is irreducible. For any nonsingular curve $D \in\left|E_{1}+E_{2}\right|$ the pencil $\left|E_{1}\right|$ cuts out a linear series g_{2}^{1} of dimension 1 of degree 2 on D. Hence D is a hyperelliptic curve. Its genus is equal to $\left(D^{2} / 2\right)+1=3$. If W is the branch curve of f, then $\left(L_{i} \cdot W\right)=4$, since $f^{-1}\left(L_{i}\right)$ is an elliptic curve. Hence $W \sim 4 L_{1}+4 L_{2}$, i.e. it has degree (4, 4).

Proposition 2.5. Let $f: X \rightarrow F_{2}$ be a double cover with X a K3 surface. Then the branch curve W of the morphism f is equivalent to the divisor $8 L+4 S_{2}$. Moreover, on X there exist an elliptic curve E and two nonsingular rational curves R_{1} and R_{2} with $\left(R_{1} \cdot R_{2}\right)=0$ and $\left(R_{1} \cdot E\right)=\left(R_{2} \cdot E\right)=1$. Here the linear system $\left|2 E+R_{1}+R_{2}\right|$ is irreducible and any nonsingular curve $D \in\left|2 E+R_{1}+R_{2}\right|$ is a hyperelliptic curve of genus 3.

Since $\left(L^{2}\right)=0,\left|f^{-1}(L)\right|$ is a pencil of ellipric curves. Let $E \in\left|f^{-1}(L)\right|$ be a nonsingular curve belonging to this pencil. Since $\left(S_{2}^{2}\right)=-2$, we have $\left(f^{-1}\left(S_{2}\right)^{2}\right)=-4$. Arguing as in the proof of Theorem 2.3, we will obtain that $f^{-1}\left(S_{2}\right)=R_{1}+R_{2}$, where the R_{i} are isomorphic to S_{2} and $\left(R_{1} \cdot R_{2}\right)=0$. Since $\left(E\left(R_{1}+R_{2}\right)\right)=2\left(L \cdot S_{2}\right)=2$ and $\left(E R_{i}\right)>0$, we have $\left(E \cdot R_{1}\right)=\left(E \cdot R_{2}\right)=1$. Consider the linear system $\left|2 E+R_{1}+R_{2}\right|$. By Lemma 1.2

$$
\operatorname{dim}\left|2 E+R_{1}+R_{2}\right|=\frac{\left(2 E+R_{1}+R_{2}\right)^{2}}{2}+1=3
$$

Since, on the other hand, $\operatorname{dim}\left|2 E+R_{i}\right|=2, i=1,2$, it follows that $\left|2 E+R_{1}+R_{2}\right|$ is an irreducible linear system. For any nonsingular curve $D \in\left|2 E+R_{1}+R_{2}\right|$ the pencil $|E|$ cuts out a linear series of dimension 1 and degree 2 on D. Hence D is a hyperelliptic curve. Its genus is equal to $\left(D^{2}\right) / 2+1=3$.

Let $W \sim a L+b S_{2}$ be the branch curve of the morphism $/$. Then $(W \cdot L)=4$, since $\left|f^{-1}(L)\right|$ is a pencil of elliptic curves. On the other hand, $\left(W \cdot\left(2 L+S_{2}\right)\right)=8$, since $\left|f^{-1} \cdot\left(2 L+S_{2}\right)\right|=\left|2 E+R_{1}+R_{2}\right|$ is a linear system of hyperelliptic curves of genus 3. Elementary computations now show that $a=8$ and $b=4$.

Proposition 2.6. Let $f: X \rightarrow F_{3}$ be a double cover with X a K3 surface. Then the branch curve W of the morphism f is equivalent to the divisor $10 L+4 S_{3}$. Moreover, on X there exist an elliptic curve E and nonsingular rational curves R_{1} and R_{2} with $\left(R_{1} \cdot R_{2}\right)=\left(R_{1} \cdot E\right)=1$ and $\left(R_{2} \cdot E\right)=0$. Here the linear system $\left|3 E+2 R_{1}+R_{2}\right|$ is irreducible and any nonsingular curve $D \in\left|3 E+2 R_{1}+R_{2}\right|$ is a hyperelliptic curve of genus 4.

Again, as in the preceding propositions, $\left|\mathcal{I}^{-1}(L)\right|$ is a pencil of elliptic curves. Let E be one of the curves of this pencil. Since $\left(S_{3}^{2}\right)=-3$, we have $\left(f^{-1}\left(S_{3}\right)^{2}\right)=-6$. Arguing as in the first half of the proof of Theorem 2.3, we have that $f^{-1}\left(S_{3}\right)=2 R_{1}+$ R_{2}. Here R_{2} is an exceptional curve on X which is mapped by the morphism f into a point, and $2 R_{1}$ is the proper transform of S_{3}. Since $\left(\left(2 R_{1}+R_{2}\right)^{2}\right)=-8-2+4\left(R_{1} \cdot R_{2}\right)$ $=-6$, we have $\left(R_{1} \cdot R_{2}\right)=1$. Moreover, $\left(E \cdot\left(2 R_{1}+R_{2}\right)\right)=2\left(L \cdot S_{3}\right)=2$, and since obviously $\left(R_{2} \cdot E\right)=0$, we have $\left(E \cdot R_{1}\right)=1$. We now consider the linear system $\left|3 E+2 R_{1}+R_{2}\right|$. It is obvious that

$$
\operatorname{dim}\left|3 E+2 R_{1}+R_{2}\right|=\frac{\left(\left(3 E+2 R_{1}+R_{2}\right)^{2}\right)}{2}+1=4
$$

On the other hand, $\operatorname{dim}\left|3 E+R_{1}+R_{2}\right|<\operatorname{dim}\left|3 E+2 R_{1}\right|=3$. Hence the system $\left|3 E+2 R_{1}+R_{2}\right|$ is irreducible. For any nonsingular curve D of this system ($\left.E \cdot D\right)=$ ($\left.E \cdot\left(3 E+2 R_{1}+R_{2}\right)\right)=2$, and hence the pencil $|E|$ cuts out a linear series of dimension 1 and degree 2 on D. Thus D is a hyperelliptic curve of genus $\left(D^{2}\right) / 2+1=4$.

Let $W \sim a L+b S_{3}$ be the branch curve of the morphism f. Then $(W \cdot L)=4$, since $\left|f^{-1}(L)\right|$ is a pencil of elliptic curves. On the other hand, $\left(W \cdot\left(3 L+S_{3}\right)\right)=10$, since $\left|f^{-1}\left(3 L+S_{3}\right)\right|=\left|3 E+2 R_{1}+R_{2}\right|$ is a linear system of hyperelliptic curves of genus 4. Simple computations now show that $a=10$ and $b=4$.

Proposition 2.7. Let $f: X \rightarrow F_{4}$ be a double cover with X a K 3 surface. Then the branch curve of the morphism f is equivalent to the divisor $12 L+4 S_{4}$. Moreover, on X there exist an elliptic curve E and a nonsingular rational curve R with $(R \cdot E)$ $=1$. Here the linear system $|4 E+2 R|$ is irreducible and any nonsingular curve of this system is a hyperelliptic curve of genus 5 .

The proof of this is completely analogous to the proofs of the preceding two propositions, and we omit it.

Proposition 2.8. Let $f: X \rightarrow \bar{F}_{2}$ be a double cover with X a K 3 surface. Then there exists a double cover $f^{\prime}: X \rightarrow V$, where either $V=F_{0}$ or $V=F_{2}$.

Let P be the singular point of the surface \bar{F}_{2}. If $f^{-1}(P)$ is a divisor on X, then, by the universality of blowings-up, the morphism $/$ splits into a composition $X \rightarrow F_{2}$ $\rightarrow \bar{F}_{2}$, where $F_{2} \rightarrow \bar{F}_{2}$ is a blowing down of the section S_{2} into the singular point. But if the morphism f is finite over some neighborhood U of P, then, by Lemma 2.2, the morphism / does not split over $U \backslash P$. Since \bar{F}_{2} is isomorphic to a quadratic cone in \mathbf{P}_{k}^{3}, we may assume that f is a morphism of X onto a surface of order two in \mathbf{P}_{k}^{3}. The inverse image of the hyperplane section $f(X)$ defines a linear system $|D|$ of curves of genus $\pi=3$. On the other hand, the inverse image of a hyperplane section passing through the vertex of the cone defines a divisor $E_{1}+E_{2}$ belonging to $|D|$. Since $\left(D \cdot E_{i}\right)=2$ (the E_{i} are the inverse images of the generators of the cone), we have $\left(E_{i}^{2}\right)=0$ and $\left(E_{1} \cdot E_{2}\right)=2$. Hence the E_{i} are elliptic curves on X. Each pencil $\left|E_{i}\right|$ defines a morphism $f_{i}: X \rightarrow \mathbf{P}_{k}^{1}$. Since $\left(E_{1} \cdot E_{2}\right)=2$, the morphism $/_{1} \times$ $f_{2}: X \rightarrow \mathbf{P}_{k}^{1} \times \mathbf{P}_{k}^{1}=F_{0}$ is the desired double cover.

Theorem 2.9 (Enriques-Campedelli). A special K3 surface is birationally equivalent to one of the following four types of double planes:
a) $z^{2}=F_{6}(x, y)$, where $F_{6}(x, y)=0$ is a curve of degree 6;
b) $z^{2}=F_{8}(x, y)$, where $F_{8}(x, y)=0$ is a curve of degree 8 which has two ordinary singular points of multiplicity four (perhaps infinitely near: case b^{\prime}));
c) $z^{2}=F_{10}(x, y)$, where $F_{10}(x, y)=0$ is a curve of degree 10 which has a singular point of multiplicity seven and two ordinary triple points which are infinitely near to first order;
d) $z^{2}=F_{12}(x, y)$, where $F_{12}(x, y)=0$ is a curve of degree 12 which has a singular point of multiplicity nine and three ordinary triple points which are infinitely near to first order.

Proof. By Theorem 2.3 and Proposition 2.8 there exists a double cover $f: X \rightarrow V$, where V is one of the surfaces \mathbf{P}_{k}^{2} or $F_{n}(n=0,2,3,4)$.

Case 1. $V=\mathbf{P}_{k}^{2}$. In this case for any line L on \mathbf{P}_{k}^{2} we have $\left(f^{-1}(L)^{2}\right)=2\left(L^{2}\right)=$ 2. Hence the linear system $\left|\mathcal{T}^{-1}(L)\right|$ consists of curves of genus 2 , and the intersection index of L with the branch curve equals 6 . Thus $\pi(X)=2$, and the branch curve of f has degree 6. From this it follows that the surface X is birationally equivalent to a double plane of type a).

Case 2. $V=F_{0}$. By Proposition 2.4 the branch curve W of the morphism $f: X \rightarrow V$ has degree (4, 4). Let P be a point on $F_{\text {, }}$ which does not belong to W, let $\widetilde{F}_{0} \rightarrow F$ be the blow-up of $P, \widetilde{X}=X \times{ }_{F_{0}} \widetilde{F}_{0}$, and $\underset{f}{\mathcal{L}}: \widetilde{X} \rightarrow \widetilde{F}_{0}$ the projection. After taking the composition of \tilde{j} with the canonical morphism $\tilde{F}_{0} \rightarrow \mathbf{P}_{k}^{2}$ (blowing-down of the proper transforms on \widetilde{F}_{0} of the generators of F_{0} passing through P), we obtain a double cover $\widetilde{X} \rightarrow \mathbf{P}_{k}^{2}$. The branch curve of this cover is the proper image of W relative to the birational map $F_{0} \rightarrow \widetilde{F}_{0} \rightarrow \mathbf{P}_{k}^{2}$ and is obviously a curve of degree 8 with two singular points of multiplicity four (the images of curves on F_{0} which can be blown down).

Since the surface \tilde{X} is birationally equivalent to the desired surface X, we see that X is birationally equivalent to a double plane of type b).

Case 3. $V=F_{2}$. By Proposition 2.5 the branch curve W of the morphism $f: X \rightarrow V$ is equivalent to the divisor $8 L+4 S_{2}$.

Let P_{1} and P_{2} be distinct closed points on F_{2} and not belonging to W. Let $\widetilde{F} \rightarrow F_{2}$ be the blow-up of these points. Blowing down the proper images of generators L_{1} and L_{2} passing through P_{1} and P_{2}, we obtain a double cover of surfaces $\tilde{X}=$. $X \times{ }_{F_{2}} \widetilde{F}_{2} \rightarrow F_{0}$ whose branch curve \widetilde{W} is a curve of degree $(8,4)$ with two ordinary quadruple points lying on the section S_{0}. Let Q be one of these points and L a generator passing through Q. Blowing up the point Q and blowing down the proper images of the sections S_{0} and L, we obtain a double cover $\widetilde{X}=\widetilde{X} \times{ }_{F_{0}} \widetilde{F}_{0} \rightarrow P_{k}^{2}$ with a branch curve of degree eight with two infinitely near singular points of multiplicity four. Since the surfaces \widetilde{X} and X are birationally isomorphic, we will obtain that X is birationally isomorphic to a double plane of rype b^{\prime}).

Case 4. $V=F_{3}$. By Proposition 2.6 the branch curve W of the morphism $f: X \rightarrow V$ is equivalent to the divisor $10 \mathrm{~L}+4 \mathrm{~S}_{3}$. In this case the curve W contains as one of its
irreducible components the section S_{3}. Let $W^{\prime}=W \backslash S_{3}$. Then $\left(W^{\prime} \cdot S_{3}\right)=1$ and $\left(W^{\prime} \cdot L\right)=3$. Making elementary transformations at any three points P_{1}, P_{2}, P_{3} not lying on W, we obtain a double cover $\tilde{f}: \tilde{X} \rightarrow F_{0}$, where \tilde{X} is birationally equivalent to X and the branch curve of \tilde{f} is the section S_{0} and some curve W^{\prime} of degree $(10,3)$ with three singular points of multiplicity four on S_{0}. Now making an elementary trans$\underset{\sim}{f}$ formation with center at one of these singular points, we obtain a double cover $X \times{ }_{F_{0}}$ $\widetilde{F}_{0} \rightarrow \mathbf{P}_{k}^{2}$ with a branch curve of degree 10 with a singular point of multiplicity seven and two ordinary triple points which are infinitely near to it. Thus we get case c) of the theorem.

Case 5. $V=F_{4}$. By Proposition 2.7 the branch curve W of the morphism $f: X \rightarrow F_{4}$ is equivalent to the divisor $12 L+4 S_{4}$. In this case the curve S_{4} is contained in W, and the curve $W^{\prime}=W-S_{4}$ does not intersect S_{4}.

Carrying out a construction analogous to case 4, we obtain case d) of the theorem.
Corollary 2.10. For any special K3 surface the class π can only take the values $2,3,4$ or 5.

In fact, the inverse image of a line on a double plane of type a)-d) is a hyperelliptic curve of genus $2,3,4$ or 5 .

Corollary 2.11. Each special K3 surface with class $\pi=2$ (respectively 3, 4, 5) is a double cover of \mathbf{P}_{k}^{2} (respectively F_{0} or F_{2}, F_{3}, F_{4}).

As was mentioned at the beginning of the proof of Theorem 2.9, each special K3 surface X is a double cover of one of the surfaces $\mathbf{P}_{k}^{2}, F_{0}, F_{2}, F_{3}$ or F_{4}. If $\pi=2$, then the linear system $|C|$ of curves of genus 2 defines a double cover $X \rightarrow \mathbf{P}_{k}^{2}$. If $\pi=3$, the linear system $|C|$ of curves of genus 3 defines a morphism $f: X \rightarrow \mathrm{P}_{k}^{3}$ whose image V is a surface of degree two. Each such surface is either the quadric F_{0} or the cone \bar{F}_{2}. Now apply Proposition 2.8. If $\pi=5$, then X can be mapped two-to-one only onto F_{4}, since otherwise by Propositions $2.4-2.6$ there would exist a curve of smaller genus on X. For $\pi=4$ the morphism $X \rightarrow \mathbf{P}_{k}^{4}$, defined by a system of curves of genus 4, can pass through only one of the surfaces $F_{n}(n=2,3,4)$ (see the proof of Theorem 2.3). The case $n=2$ is impossible by Proposition 2.5. The case $n=4$ is impossible since there does not exist an embedding of F_{4} into \mathbf{P}_{k}^{4}.

§3. Converse of the Enriques-Campedelli Theorem

Lemma 3.1. Let X be a normal algebraic surface and D an integral curve on X whose image in the group Pic (X) is divisible by two. Then there exists an irreducible unramified cover $F: X^{\prime} \rightarrow X \backslash D$ of degree 2.

Using the étale topology, we consider on $U=X \backslash D$ the Kummer sequence [3]:

$$
0 \rightarrow \Gamma\left(U, O_{U}^{*}\right) / \Gamma\left(U, O_{U}^{*}\right)^{2} \rightarrow H^{1}\left(U, \mu_{2}\right) \rightarrow \operatorname{Pic}\left(U_{2}\right) \rightarrow 0
$$

(recall that char $k \neq 2$). Since X is normal, the canonical restriction morphism $r: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(U)$ is surjective, and its kernel is generated by the divisor D. Since
the class of D is divisible in $\operatorname{Pic}(X)$ by 2, the quotient group $\operatorname{Pic}(X) / \operatorname{Ker}(r)=\operatorname{Pic}(U)$ contains an element of order two. Hence

$$
H^{1}\left(U, \mu_{\mathrm{g}}\right) \neq 0
$$

It remains to use the fact that the group $H^{1}\left(U, \mu_{2}\right)$ classifies the principal bundles over U with structure group $\mathbf{Z} / 2 Z$. A nontrivial such bundle also defines the desired unramified cover $f: X^{\prime} \rightarrow U$.

Lemma 3.2. In the notation of Lemma 1.13 we have

$$
c_{2}\left(\widetilde{X}^{\prime}\right)=2\left(c_{2}(X)+n\right)+2 \sum_{i=1}^{h}\left(g\left(W_{i}\right)-1\right)
$$

where $c_{2}(Z)$ is the second Chern number of the tangent sheaf to the surface Z (= the topological Euler characteristic of Z in case $k=\mathrm{C}$ and the l-adic Euler characteristic in the general case), and $g\left(W_{i}\right), 1 \leq i \leq h$, is the geometric genus of an irreducible component of the branch curve W.

If \bar{X} is the blow-up of the double points of W on X, then $c_{2}(\bar{X})=c_{2}(X)+n$. Now use the "Severi correspondence formula" [11].

Theorem 3.3. Let $z^{2}=F_{2 n}(x, y)(n=3,4,5,6)$ be a double plane. Assume that the branch curve $F_{2 n}(x, y)=0$ is irreducible and, except for the singularities mentioned in Theorem 2.9, has only ordinary double points. Then the minimal projective nonsingular model of this double plane is a special K3 surface with class $\pi \leq n-1$.

Proof. Suppose $n=3$, and $W \subset \mathbf{P}_{k}^{2}$ is a projective curve of degree 6 which is irreducible and has only ordinary double points (or is smooth). By Lemma 3.1 there exists an unramified cover $U^{\prime} \rightarrow U=\mathbf{P}_{k}^{2} \backslash W$ of degree two. This cover can obviously be extended to a finite morphism $f: X \rightarrow \mathbf{P}_{k}^{2}$, ramified only over W (cf. [12], p. 4). Let V be the blow-up of P_{k}^{2} with center at the singularities of W. By Lemma 1.13 the normalization $X^{\prime \prime}$ of the surface $X \times{ }_{p_{k}^{2}} V$ is a nonsingular surface, and the projection $f^{\prime}: \bar{X}^{\prime} \rightarrow V$ defines a finite double cover, ramified over the proper transform \bar{W} of the curve W. Let L_{1}, \cdots, L_{n} be exceptional curves on V which are inverse images of singular points of W relative to the projection $V \rightarrow \mathbf{P}_{k}^{2}$. We have $K_{V}=-3 \bar{H}+L_{1}+\cdots+L_{n}$, where \bar{H} is the proper transform of the line H in \mathbf{P}_{k}^{2}.

On the other hand, it is obvious that $\bar{W} \sim 6 \bar{H}-2 L_{1}+\cdots+2 L_{n}$. From this it follows (cf. [11]) that $K_{X} \prime \sim f^{\prime *}\left(K_{V}\right)+1 / 2 f^{*}(\bar{W}) \sim 0$. By Lemma 3.2, $c_{2}\left(X^{\prime}\right)=2(3+n)+$ $2(9-n)=24$. By Noether's formula

$$
1-q+p_{g}=\frac{c_{2}\left(X^{\prime}\right)+\left(K_{X^{\prime}}^{2}\right)}{12}
$$

from which it follows that $q=\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{x}\right)=0$. Hence the surface X^{\prime} is regular and $K_{X}, \sim 0$, and this is the definition of a $K 3$ surface.

Now suppose $n=4$ and $W \subset \mathbf{P}_{k}^{2}$ is an irreducible projective curve of degree 8 ,
having perhaps, besides the two ordinary quadruple points A_{1} and A_{2}, only ordinary double points P_{1}, \cdots, P_{n}. Blowing up the points A_{1} and A_{2} on P_{k}^{2} and blowing down the proper transform of the line $A_{1} A_{2}$, we get that the proper transform \bar{W} of W on the quadric F_{0} is an irreducible curve of type (4,4), having perhaps ordinary double points $P_{1}^{\prime}, \cdots, P_{n}^{\prime}$. The remaining part of the argument is carried out in this case analogously to that of the previous case (replacing \mathbf{P}_{k}^{2} by F_{0}).

The proofs of the remaining cases follow along the model of the preceding ones, and we omit them. We only note that for $n=4$ (case of infinitely near points) it is necessary to replace \mathbf{P}_{k}^{2} by F_{2}, for $n=5$, by F_{3}, for $n=6$ by F_{4} (cf. Propositions 2.5, 2.6 and 2.7) and to use Lemmas 3.1 and 3.2.

Remark 3.4. In case $k=C$ it follows easily from the results of G. N. Tjurina (see [1], Chapter IX) that for a "generic" double plane of type a), b) or b'), c), d) (cf. Theorem 2.9) $\pi=2,3,4,5$ respectively. This is apparently also true in general.

§4. Elliptic surfaces and special K3 surfaces

We recall some definitions.
Definition 4.1. A pencil of elliptic curves on a projective algebraic surface X is a morphism $f: X \rightarrow B$, where B is a smooth curve, and the general fiber of f is a smooth elliptic curve. The index of a pencil is the index of the generic fiber X_{η} of the morphism f, i.e. the greatest common divisor of the degrees of effective divisors on X_{η} defined over the field $k(B)$.

Let r : $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X_{\eta}\right)$ be the canonical restriction morphism. Passing to Néron-Severi groups we have a homomorphism $\bar{r}: \mathrm{NS}(X) \rightarrow \mathrm{NS}\left(X_{\eta}\right) \rightarrow \mathbf{Z}$. It is easy to see that the index of the pencil f on X equals the order of the cokernel of the homomorphism \bar{r}. In other words, it is equal to $\min \{(F \cdot C) \mid C$ a transversal curve over B, F an arbitrary fiber of $f\}$.

Definition 4.2. A smooth projective algebraic surface is said to be elliptic if there exists a pencil of elliptic curves on it. The index l of an elliptic surface X is the minimal index of all the possible pencils of elliptic curves on X.

Lemma 4.3. For an algebraic $K 3$ surface X to be an elliptic surface with index I it is necessary and sufficient that on X there exist a connected curve C with $p_{a}(C)=1$ and an irreducible curve S with $(C \cdot S)=I$.

Necessity is obvious. To prove the sufficiency we need to use Lemmas 1.2 and 1.8 and consider the morphism $f: X \rightarrow \mathbf{P}_{k}^{1}$. defined by the linear system $|C|$.

Theorem 4.4. Every special K3 surface X of class $\pi>2$ is an elliptic surface. Moreover, for $\pi=4$ or 5 the index of this surface is equal to one (1), and for $\pi=3$ it is ≤ 2.

Proof. By 2.11 for $\pi=3$ (respectively 4 or 5) there exists a double cover X over F_{0} or F_{2} (respectively F_{3} or F_{4}). It remains to apply Lemma 4.3 and Propositions 2.4 and 2.5 (respectively 2.6 or 2.7).

Theorem 4.5. Each elliptic K3 surface with index $I \leq 2$ is a special K3 surface.
Proof. Assume $I=1$ and that C and S are curves on X chosen via Lemma 4.3. Since $\left(S^{2}\right) \geq-2$, we have

$$
\left((4 C+2 S)^{2}\right)=16(C \cdot S)+4\left(S^{2}\right)=16+4\left(S^{2}\right)>8 .
$$

Moreover,

$$
\begin{aligned}
\left((4 C+2 S)^{2}\right)>\left((4 C+S)^{2}\right) & =8+\left(S^{2}\right) \\
\left((4 C+2 S)^{2}\right)>\left((3 C+2 S)^{2}\right) & =12+4\left(S^{2}\right)
\end{aligned}
$$

Thus the linear system $|4 C+2 S|$ has no fixed components and consists of curves of genus ≥ 5. Since $\left(C^{2}\right)=0$, we have $(C \cdot(4 C+2 S))=2$.

Hence the pencil $|C|$ cuts out a linear series g_{2}^{1} on a nonsingular curve $D \in$ $|4 C+2 S|$. Hence D is hyperelliptic and X is special.

Suppose $I=2$. The linear system $|C+S|$ has no fixed components and consists of curves of genus

$$
g=\frac{\left((C+S)^{2}\right)}{2}+1=\frac{4+\left(S^{2}\right)}{2}+1 \geqslant 2
$$

Since $(C(C+S))=(C \cdot S)=2$, the pencil $|C|$ cuts out a linear series g_{2}^{1} on any nonsingular curve $D \in|C+S|$. Hence D is a hyperelliptic curve and X is a special K3 surface.

Definition 4.6. An Enriques surface is a smooth algebraic surface X with $H^{1}\left(X, \mathcal{O}_{X}\right)=H^{2}\left(X, \mathcal{O}_{X}\right)=0$ and $\omega_{X}^{\otimes 2} \simeq \mathcal{O}_{X}$.

Proposition 4.7. Let X be an Enriques surface. Then there exists a finite unramified cover of degree two $f: X^{\prime} \rightarrow X$, where X^{\prime} is a K 3 surface.

Since $\omega_{X} \not \not \mathcal{O}_{X}$, the sheaf ω_{X} defines an element of order two in the group .Pic (X). By the Kummer sequence

$$
0 \rightarrow H^{0}\left(X, O_{X}^{*}\right) / H^{0}\left(X, \mathcal{O}_{X}^{*}\right)^{2} \rightarrow H^{1}\left(X, \mu_{\Sigma}\right) \rightarrow \operatorname{Pic}\left(X_{1}\right) \rightarrow 0
$$

we will obtain that $H^{1}\left(X, \mu_{2}\right) \neq 0$. Since the group $H^{1}\left(X, \mu_{2}\right)$ classifies principal homogeneous spaces with structure group $Z / 2 Z$, a nontrivial p.h.s. defines a finite unramified double cover $f: X^{\prime} \rightarrow X$. Elementary computations (see [11]) show that $\omega_{X^{\prime}}$ $\simeq f^{*}\left(\omega_{X}\right) \simeq \mathcal{O}_{X^{\prime}}$ and $H^{1}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\right)=0$. Hence X^{\prime} is a K3 surface.

Lemma 4.8 (L. Godeaux). Let X be an elliptic surface with $H^{1}\left(X, \Theta_{X}\right)=$ $H^{2}\left(X, \mathcal{O}_{X}\right)=0$, let $f: X \rightarrow \mathbf{P}_{k}^{1}$ be the corresponding pencil of elliptic curves, and F an arbitrary fiber over a closed point. Let $\Gamma_{1} \sim\left(1 / m_{1}\right) F, \cdots, \Gamma_{n} \sim\left(1 / m_{n}\right) F$ be the "supports" of multiples of fibers of f. Then

$$
\omega_{X} \simeq \mathcal{O}_{X}\left((n-1) F-\Gamma_{1}-\ldots-\Gamma_{n}\right)
$$

Let $\omega_{X}=\mathcal{O}_{X}\left(K_{X}\right)$. Since $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, for any complete (integral) divisor D with $p_{a}(D)=1$ we have $\operatorname{dim}|D+K|=0$. Let D^{\prime} denote the uniquely defined
effective divisor of the linear system $|D+K|$. In particular, $F^{\prime}=\lambda_{1} \Gamma_{1}+\cdots+\lambda_{n} \Gamma_{n}$, where $\lambda_{i}<m_{i}\left(\right.$ since $\left.H^{2}\left(X, \mathcal{O}_{X}\right)=H^{0}\left(X, \omega_{X}\right)=0\right)$.

On the other hand, since $F^{\prime}=\left(m_{1}-1\right) \Gamma_{1}+\Gamma_{1}^{\prime}$, we have $\Gamma_{1}=\left(\lambda_{1}-m_{1}+1\right) \Gamma_{1}+$ $\cdots+\lambda_{n} \Gamma_{n}$. From this we obtain $\lambda_{1}-m_{1}+1 \geq 0$, which gives $m_{1}-1 \leq \lambda_{1}$, and since $\lambda_{1}<m_{1}$, then $\lambda_{1}=m_{1}-1$. The equalities $\lambda_{i}=m_{i}-1$ are proved analogously.

Finally we obtain

$$
\begin{gathered}
K x \sim F^{\prime}-F \sim\left(m_{1}-1\right) \Gamma_{1}+\ldots+\left(m_{n}-1\right) \Gamma_{n}-F \\
\sim(n-1) F-\Gamma_{1}-\ldots-\Gamma_{n} .
\end{gathered}
$$

Corollary 4.9. In the notation of the preceding lemma, if $\omega_{X}^{\otimes 2} \simeq \mathcal{O}_{X}$, then $n=2$, $m_{1}=m_{2}=2$ and $\omega_{X} \simeq \mathcal{O}_{X}\left(\Gamma_{1}-\Gamma_{2}\right)$.

We have

$$
\begin{aligned}
& \mathcal{O}_{X} \simeq \omega_{X}^{\otimes 2} \simeq \mathcal{O}_{X}\left((2 n-2) F-2 \Gamma_{1}-\ldots-2 \Gamma_{n}\right) \\
& \quad=\mathcal{O}_{X}\left((n-2) F+\left(m_{1}-2\right) \Gamma_{1}+\ldots+\left(m_{n}-2\right) \Gamma_{n}\right)
\end{aligned}
$$

Since all the $m_{i} \geq 2$, we have $n=2$ and $m_{i}=2$. Moreover,

$$
\omega_{X} \simeq \mathcal{O}_{X}\left(F-\Gamma_{1}-\Gamma_{2}\right) \simeq \mathcal{O}_{X}\left(\Gamma_{1}-\Gamma_{2}\right)
$$

Theorem 4.10. Let X be an elliptic Enriques surface. Then there exists a finite unramified double cover $f: X^{\prime} \rightarrow X$, where X^{\prime} is a special K3 surface.

Proof. Let / be the cover constructed in Lemma 4.1. We shall show that X^{\prime} is a special K3 surface. Let J be the Jacobian surface of F ([1], Chapter VI). It is easy to see that J is a rational surface (cf. [s]). Hence the Šafarevič group ШII $\left(J_{\eta}\right)$ of the generic fiber of J is trivial. Using the theory of Ogg and Šafarevič, we obtain that the group of principal homogeneous spaces $W C\left(J_{\eta}\right)$ is the direct sum of the groups of "local invariants" $W C\left(J_{\eta}\right)=\oplus_{x \in \mathrm{P}_{k}^{1}(k)} H^{1}\left(J_{x}, \mathbf{Q} / \mathbf{Z}\right)$.

By Corollary 4.9 the surface X defines an element X_{η} in $W C\left(J_{\eta}\right)$ of the form (α, β), where $2 \alpha=2 \beta=0$. Hence the order of X_{η} in this group equals two. Since the index of X_{η} is equal to its order [13], X_{η} has a rational point over the quadratic extension $k(\eta)$. The composition $X^{\prime} \rightarrow X \rightarrow \mathbf{P}_{k}^{1}$ defines a structure of elliptic surface on X^{\prime}. Since the index of X_{η}^{\prime} obviously does not exceed the index of X_{η}, we then conclude that X^{\prime} is an elliptic $K 3$ surface of index ≤ 2. It remains to apply Theorem 4.5.

Remarks. 1) In case char $(k)=0$ one can show that every Enriques surface is an elliptic surface (see [1], Chapter X). This-apparently is also true in general.
2) One can show that for an elliptic Enriques surface X the torsion subgroup Tors $(\operatorname{Pic}(F)) \simeq \mathbf{Z} / 2 \mathrm{Z}$. Moreover, since $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, it follows from Kummer and Artin-Schreier theory that the surface X^{\prime} constructed in Theorem 4.4 is the unique finite abelian unramified cover of X. In characteristic zero this fact follows trivially from the simply-connectedness of K 3 surfaces.
3) An elliptic Enriques surface X is said to be special (cf. [1], Chapter X) if
there exists a quasi-section of degree 2 which is a rational curve. In this case the double plane corresponding to the K 3 surface X^{\prime} can be constructed explicitly. It has the form $z^{2}=F_{3}(x, y) \cdot F_{3}^{\prime}(x, y)$, where $F_{3}(x, y)=0$ and $F_{3}^{\prime}(x, y)=0$ are cubic curves. In the general case $\pi \leq 3$ for the surface X^{\prime}.

Received 14/SEPT/72

BIBLIOGRAPHY

1. R. Šafarevič et al., Algebraic surfaces, Trudy Mat. Inst. Steklov. 75 (1965) = Proc. Steklov Inst. Math. 75 (1965). MR 32 \#7557; 35 \#6685.
2. B. G. Averbuh, On special types of Kummer and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1095-1118; English transl., Appendix to Proc. Steklov Inst. Math. 75 (1965), 251-276. MR 35 \#6686.
3. M. Artin, Covering cohomologies of schemes, Uspehi Mat. Nauk 20 (1965), no. 6 (126), 13-18. (Russian) MR 34 \$7530.
4. M. H. Gizatullin, On affine surfaces that can be completed by a nonsingular rational curve, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 778-802 = Math. USSR Izv. 4 (1970), 787-810. MR 43 \#6211.
5. 6. V. Dolgačev, On Severi's conjecture conceming simply connected algebraic surfaces, Dokl. Akad. Nauk SSSR 170 (1966), 249-252 = Soviec Math. Dok1. 7 (1966), 1169-1172. MR 34 \#2579.
1. L. Campedelli, Sopra i piani doppi con tutti i generi uguali all'unita, Rend. Sem. Mat. Univ. Padova 11 (1940), 1-27. MR 8, 224.
2. -., Le superficie con i generi uguali all'unita rappresentabili in infiniti modi sopra un piano doppio, Univ. Roma e Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5) 1 (1940), 105-138. MR 9, 57.
3. F. Enriques, Sui piani doppi di generi uno, Mem. Soc. Ital. Sci. (3) 10 (1896), 201-222.
4. -_, Le superficie algebriche, Zanichelli, Bologna, 1949. MR 11, 202.
5. A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. No. 17 (1963). MR 29 \#1210.
