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ON SPECIAL ALGEBRAIC K3 SURFACES. I

UDC 513.6

I. V. DOLGACEV

To I. R. Safarevic on his fiftieth birthday

Abstract. In this paper we describe algebraic K3 surfaces on which lie hyper-

elliptic curves. We prove a direct and an inverse theorem on the representation of

such surfaces as a double plane. We explain the connection between surfaces of

this type and elliptic surfaces.

Introduction

Let k be an algebraically closed field of characteristic p 4 2. A smooth projec-

tive algebraic surface X over k is called a K3 surface if X is regular and the canoni-

cal class of X is trivial, i.e. if Hl(X, 0χ) = 0 and ωχ =s 0χ. We shall call a K3

surface special if there exists a hyperelliptic curve C of genus g > 2 on it. The goal

of this paper is to give an explicit description of all such surfaces. We will show that

the special K3 surfaces are precisely those which admit a representation as a double

plane (i.e. are birationally isomorphic to an affine surface in A | with the equation

z2 = Fix, y)). Let π denote the class of a K3 surface X, i.e. the smallest of the di-

mensions of complete linear systems on X which are greater than one. We shall show

that for special K3 surfaces π can only take the values 2, 3, 4, or 5. This answers

the question of [2]. Moreover, for π > 2 the condition of speciality is equivalent to

the existence of a pencil of elliptic curves of index < 2 on X. In §4 we will show

that the universal cover of an elliptic Enriques surface (or any Enriques surface if

char (k) = 0) is a special K3 surface.

The main result is the:

Enriques-Campedelli Theorem. A double plane which is birationally isomorphic to

a K3 surface is equivalent to one of the following double planes:

a) 2 = F^xi y)i where F^ix, y) = 0 is a curve of degree 6;

b) ζ = F&(x, y), where F&(x, y) = 0 is a curve of degree 8 having two ordinary

{singular) quadruple points {these can be infinitely near);

c) z2 = F 1 0(x, y), where FlQ(x, y) = 0 is a curve of degree 10 having a singular
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834 I. V. DOLGACEV

point of multiplicity seven and two ordinary triple points which are infinitely near to

first order;

d) z1 = F 1 2 ( x , y) where F ι 2( χ> y) = 0 is a curve of degree 12 having a singular

point of multiplicity nine and three ordinary points of multiplicity three which are infinitely

near to first order.

This theorem was first proved by Enriques in 1896 [8] and later was reproved by

Campedelli [6], [7]. In this paper we give a modernization of Campedelli's proof.

The continuation of this paper will be devoted to moduli and automorphisms of

special K3 surfaces.

§1. Basic definitions and auxiliary lemmas

Definition 1.1. A K3 surface is a smooth projective algebraic surface X with

Η (Χ, 0χ) = 0 and ωχ = Ω ·̂ ^ 0χ. Α Κ3 surface is said to be special if there exists

a smooth hyperelliptic curve of genus g > 2 on it.

Lemma 1.2. Let D = 1,.niDi be a connected effective divisor on a K3 surface X.

Assume that n^ = 1 for at least one value of i. Then

dim |D|Mdim,//°(X, Ox(D))—l = ^ - + 1,

pa (D) Μ dim k H
l (D, OD) = dim | D |.

The exact sequence of sheaves

0_>flx(_D)-*©x-»OD-*0

gives an exact sequence of cohomology groups

0 - /*· (Χ, Οχ) -> H* (D, GD) - Hl (X, Ox ( - D))

-* Hl {X, Ox) -+ tf1 (D, OD) -> tf2 (Χ, Οχ ( - D)) -> tf2 (Χ, Οχ) -> 0.

Since X is a K3 surface,

//ι (Χ, Οχ) = 0, tf2 (Χ, Οχ) ^Η°(Χ, ωχ) =κ ft.

On the other hand, because of the conditions on D we have H°(D, 0p) = k. Hence

tf1 (X, Ox (— D)) = 0, dim * Z/1 (D, ©D) = dim » //* (X, © x ( _ D)) — 1.

It remains to use Riemann-Roch for the sheaf 0χ(-ϋ) and Serre duality.

Definition 1.3. The number

ji(X) = m i n { d i m | D | | d i m | D | > l }
DCX

is called the class of the K3 surface X.

Remarks. 1. In the case k = C the class ΉΧ) can take any value > 2 (see [ l ] ,

Chapter IX). This is apparently also true in general (see [9l> p. 256).

2. In [l] K3 surfaces are called Kummer surfaces. At the present time this term

is used for a special case of K3's: nonsingular minimal models of the quotient of a
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two-dimensional abelian variety by the involution χ —> - χ. Arbitrary K3 surfaces are

frequently called generalized Kummer surfaces (cf. [9]). In [2] a "special Kumraer

surface" was a K3 surface for which the class π is realized by a system of hyper-

elliptic curves. Our definition is obviously somewhat broader. We do not know an ex-

ample showing that these definitions are actually different.

Definition 1.4. A morphism /: X' —• X of complete integral algebraic surfaces is

called a two-sheeted cover (or double cover) if one of the following equivalent condi-

tions holds:

1) / induces a separable quadratic extension of function fields k{X')/k(X).

2) There exists an open subset U C X' such that f\ U is a finite morphism of de-

gree 2. / /2

3) The morphism / splits into a composition X' —> Xj —>X, where /j is a bi-

rational morphism and f2 is a finite morphism of degree 2.

A proof of the equivalence of assertions 1)—3) uses a standard technique of the

theory of schemes (LlOj, Chapter 3) and presents no difficulty.

Definition 1.5. A double plane is an algebraic surface which is birationally iso-

morphic to the affine surface Spec(^[x, y, z]/(z2 — F{x, y))).

Proposition 1.6. An algebraic surface X is a double plane if and only if it is bi-

rationally equivalent to a surface X which is a double cover of the profective plane P?.

The proof is obvious.

Lemma 1.7. Let g: X' —» X be a double cover of smooth surfaces. Then for any

divisors Dj and D, on X we have

The proof follows trivially from general properties of Chow rings.

Lemma 1.8. // D is an integral divisor on a K3 surface, then the linear system

\D\ has no base points.

For a proof see [ l ] , Chapter VIII, Lemma 2.

Proposition 1.9. Let C be a hyperelliptic curve on a K3 surface X with pa(C) =

m. The linear system \C\ gives a double cover f: X —> V, where V is a surface of

degree m — 1 in P7*.

For a proof see [ l ] , Chapter VIII, Lemma 3.

Proposition 1.10. Let f: X'—» X be a double cover of smooth surfaces. Let X'
I\ li
—»X —>X be the Stein factorization of f {see condition 3) of Definition 1.4). Then

the singular points of the surface Χ'χ are precisely the inverse images of the singular

points of the branch curve W of the finite cover /,.

In fact, the surface Xj is normal and we can therefore use local properties of

finite Galois coverings of algebraic varieties (see [12]).
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Definition 1.11. The curve W of the hypothesis of Proposition 1.10 is called the

branch curve of the double cover.

Corollary 1.12. Assume that the branch curve of the double cover f: X —» X is

nonsingular and that the surface X is a minimal model. Then f is a finite morphism.

Lemma 1.13. Let f: X —> X be a finite morphism of degree two of a normal sur-

face X onto a smooth surface X. Assume that the branch curve W of the morphism f

has only ordinary double points Ρ .,···, Ρ . Let X —* X be the blowing-up of these

points. Then the normalization X of the surface X x,, X is a smooth surface, and

the projection X —• X induces a finite cover whose branch curve is the proper trans-

form of the curve W.

This assertion is a special case of "Jung's method" for resolving the singular-

ities of surfaces. Its verifications reduces to a trivial local computation, which we

omit.

§2. The Enriques-Campedelli Theorem

For the duration of this section Fn will denote a relative minimal model of a ra-

tional surface possessing a rational curve $n with (S*) = -η (π is a nonnegative in-

teger different from 1) (see [ l ] , Chapter 4). L will denote any one of the fibers of the

canonical morphism F n —» P£ a section of which is the curve Sn.

Proposition 2.1. Let φ: Χ—*Ρ7" be a morphism of a normal projective surface

whose image φ(Χ) is a normally imbedded surface of degree m - 1. Then there exists

a factorization

where f is a birational morphism, and V is one of the following surfaces: P ? , F or

the surface Fn obtained by blowing down the curve Sn on Fn at the normal point.

A hyperplane section of the surface φ(Χ) is a curve of degree m — 1 which is

normally imbedded in {m — l)-dimensional projective space. It follows from the Rie-

mann-Roch Theorem that such a curve is rational. By Proposition 2 of [4] it follows

from this that the normalization V of the surface φ(Χ) is one of the surfaces enu-

merated above. Since X is normal, we obtain the desired assertion.

Lemma 2.2. Let A be a regular geometric two-dimensional local ring with resi-

due field k of characteristic different from 2. Let g be an automorphism of A of

order 2. Then either the ring of invariants A8 is regular, or its completion Ag is iso-

morphic to the completion of the local ring of the vertex of a quadratic cone.
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We can obviously assume the ring A to be complete, and hence to be isomorphic

to the ring k[[x, y]]. In this case the action of g is equivalent to a linear map, and

therefore we may assume that either g(x) = χ and g(y) = —y, or g(x)= -x and g(y) =

— y. In the former case A8 ~ k[[x, y2]] is regular, and in the second A8~ k[[x2,y2,xy]]

as k[[u, v, w]]/(uv - u>2). This proves the lemma.

Theorem 2.3. Let X be a special K3 surface. Then there exists a double cover

/: X —» V, where V is one of the following surfaces: P2, F , Fn (n = 2, 3, 4), or ? 2 .

L e t C be a hyperel l ipt ic curve on X and m i t s g e n u s . Applying Propos i t ions 1.9

and 2 .1 , we obtain a double cover /: X —• V, where V i s P 2 , , Fn or Fn. We shal l show

that the c a s e η > 4 i s impossible, and for « = 3 and η = 4 the morphism /: X —> F

p a s s e s through the canonical morphism F —• F , which blows down the sect ion S at

the singular point.
φ Λ Φ 7

Assume that the first c a s e holds, i .e . V = F with η > 4. Let /: X —• X'—• F
η ' η

be the Stein factorization of the morphism / (i.e. φι is birational and φ2 is a finite

morphism of degree 2). We assume that the morphism φ. is an isomorphism in some

neighborhood of c ^ " 1 ^ ) . Then either f~l(Sn) is Rj + Rv where the R{ are rational

curves on X, or /~ ! (S n ) is an irreducible curve. In any case (f~1{Sn)
2) >-8. Since,

on the other hand, (/" Η$ Λ ) 2 ) = -2«, we obtain from this that η < 4.

Now suppose / " I(5 f i) = Dl + • · · + Dr + R, where D{ (1 < i < r) are rational curves

(perhaps reducible) blown down by the morphism φγ into distinct singular points of X*

lying on φ~ι{Ξη), and R is the proper transform of φ~1(Ξη). We have

(T (S*)2) = - 2n= 2 (A*) + 2 2 (D,R) + R*.
is=X 1=1

Again it is obvious that either R is an irreducible curve, or/? = i?j + /?2, where the

R. are rational curves. In either case (R 2 ) > - 8 . Since (D2) = - 2 (cf. Lemma 1.2)

and (D^R) > 1, we obtain

We note that η > 0 can happen here only in the case r = 1, η = 3, /?t = /?2·

Now we assume that the second case holds: V = Fn (n > 2). Let Ρ be a singular

point of F . If the morphism /: X —* F were finite over a neighborhood of P, the lo-

cal ring Op would be the quotient of a regular ring by the action of the group of order

two. By Lemma 2.2 it would follow from this that Ρ is either a nonsingular point or an

ordinary double point. The latter obviously contradicts the fact that η > 2. Thus

/" (P) is a divisor on X. By the universality of blowing-up, we will obtain from this

that / splits into a composition X —» F —> F . This proves the theorem.

Proposition 2.4. Let f: X —»FQ be α double cover with Χ α Κ3 surface. Then

the branch curve ψ of the morphism f has degree (4.4). Moreover, on X there exist

elliptic curves Εχ and E2 with (E j · Ε2) = 2, for which the linear system \E { + E2
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is irreducible, and any nonsingular curve D e | E j + E 2 | is a hyperelliptic curve of

genus 3-

Let Lj = L and L 2 = SQ be the effective generators of Pic(F Q ) . Then

( / - H L ^ 2 ) = 0, and hence |/— 1(Z-i)t is a pencil of elliptic curves. If E f (i = 1, 2) are

nonsingular elliptic curves belonging to this pencil, then obviously (Ej · Ε2) =

2(Lj · L 2) = 2. Since ((Ej + E2)
2) = 4, we have dim|Ej + E 2 | = 3. It is obvious that

the system \E. + Ε Λ is irreducible. For any nonsingular curve D 6 | £ j + E 2 | the

pencil | E j | cuts out a linear series g\ of dimension 1 of degree 2 on D. Hence D

is a hyperelliptic curve. Its genus is equal to (D2/2) + 1 = 3. If W is the branch

curve of /, then (L f • W) = 4, since /" 1(Li) is an elliptic curve. Hence W~ 4Lj + 4L2,

i.e. it has degree (4, 4).

Proposition 2.5. Let f: X — F2 be a double cover with X n K3 surface. Then

the branch curve W of the morphism f is equivalent to the divisor 8L + AS2. Moreover,

on X there exist an elliptic curve Ε and two nonsingular rational curves R. and R,

with (Rj- R 2) = 0 and (Rj· E) = (R2 · E) = 1. Here the linear system \2E + Rj + R2\

is irreducible and any nonsingular curve D € |2E + Rj + R2| is a hyperelliptic curve

of genus 3-

Since (L 2) = 0, |/~ HD\ is a pencil of elliptic curves. Let Ε e |/~ χ ( ί ) | be a

nonsingular curve belonging to this pencil. Since (S2) = - 2, we have ( / - 1 ( S 2 ) 2 ) = - 4 .

Arguing as in the proof of Theorem 2.3, we will obtain that /" ' (Sj) = Rj + R 2, where

the R. are isomorphic to S2 and (Rj • R2) = 0. Since (E(Rj + R2)) = 2(L · 5 2) = 2

and (ERj) > 0, we have (E · Rj) = (E · R 2) = 1. Consider the linear system

|2E + Rj + R 2 | . By Lemma 1.2

{2E + Rl + R*)i + 1 = 3.

Since, on the other hand, dim |2E + R{\ = 2, i = 1, 2, it follows that |2E + Rj + R2 |

is an irreducible linear system. For any nonsingular curve D € \2E + Rj + R2 | the

pencil \E\ cuts out a linear series of dimension 1 and degree 2 on D. Hence D is

a hyperelliptic curve. Its genus is equal to (D2)/2 + 1 = 3.

Let W ~ aL + bS2 be the branch curve of the morphism /. Then (W · L) = 4, since

| /~ ' (L) | is a pencil of elliptic curves. On the other hand, (W • (2L + S2)) = 8, since

|/ · (2L + 52)| = |2E + Rj + R2| is a linear system of hyperelliptic curves of genus

3. Elementary computations now show that a = 8 and b - 4.

Proposition 2.6. Let f: X — F ? fee α double cover with Χ α Κ3 surface. Then

the branch curve W o/ <fee morphism f is equivalent to the divisor 10L + 4S,. More-

over, on X there exist an elliptic curve Ε and nonsingular rational curves Rj and R2

with (Rj · R 2) = (Rj · E) = 1 and (R2 · E) - 0. Here Me linear system |3E+ 2Rj + R J

is irreducible and any nonsingular curve D e |3E + 2R j + R2 | is a hyperelliptic

curve of genus 4.
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Again, as in the preceding propositions, \f~l(L)\ is a pencil of elliptic curves.

Let Ε be one of the curves of this pencil. Since (5 2) = - 3, we have (/" Ks,) 2 ) = - 6 .

Arguing as in the first half of the proof of Theorem 2.3, we have that / " K s , ) = 2R1 +

R2- Here R2 is an exceptional curve on X which is mapped by the morphism / into a

point, and 2Rj is the proper transform of S}. Since ((2R1 + R2)
2) = - 8 - 2 + 4(Rj. R2)

= -6, we have (Rj · i?2) = 1. Moreover, (E • (2Rj + R2)) = 2i.L • Sj = 2, and since obviously

(R2 · E) = 0, we have {E • Rj) = 1. We now consider the linear system |3E + 2R t + R2[

It is obvious that

dim | 3 £ + 2 / ? x + / ? , ) =

On the other hand, dim |3E + Rj + R 2 | < c*"n |3H + 2Rj| = 3. Hence the system

|3E + 2Rj +• R 2 | is irreducible. For any nonsingular curve D of this system (E • D) =

{E • (3£ + 2Rj + R2)) = 2, and hence the pencil \E\ cuts out a linear series of dimen-

sion 1 and degree 2 on D. Thus D is a hyperelliptic curve of genus (D2)/2 + 1 = 4.

Let W ~ «L + έ>5, be the branch curve of the morphism /. Then (W • L) - 4,

since \f~l(L)\ is a pencil of elliptic curves. On the other hand, (W • (3L + 5 ?)) = 10,

since \f~ '(3L + S^)\ = \$E + 2RX + R2\ is a linear system of hyperelliptic curves of

genus 4. Simple computations now show that a = 10 and b = 4.

Proposition 2.7. Lez /: X — F 4 fee α double cover with Χ α Κ3 surface. Then

the branch curve of the morphism f is equivalent to the divisor 12L + 45^. Moreover,

o« X there exist an elliptic curve Ε and a nonsingular rational curve R with (R • E)

= 1. Here the linear system \4E + 2R\ is irreducible and any nonsingular curve of

this system is a hyperelliptic curve of genus 5.

The proof of this is completely analogous to the proofs of the preceding two

propositions, and we omit it.

Proposition 2.8. Let f: X — F2 be a double cover with Χ α Κ3 surface. Then

there exists a double cover f : X —· V, where either V = FQ or V = F- .

Let Ρ be the singular point of the surface F2. If f~l(P) is a divisor on X, then,

by the universality of blowings-up, the morphism / splits into a composition X —· F-

—' F2, where F2 —> F , is a blowing down of the section S, into the singular point.

But if the morphism / is finite over some neighborhood U of Ρ, then, by Lemma 2.2,

the morphism / does not split over U\P. Since F2 is isomorphic to a quadratic cone

in P | , we may assume that / is a morphism of X onto a surface of order two in P^.

The inverse image of the hyperplane section f(X) defines a linear system \D\ of

curves of genus π = 3. On the other hand, the inverse image of a hyperplane section

passing through the vertex of the cone defines a divisor El + E2 belonging to \D\.

Since {D • Ε;) = 2 (the Ε. are the inverse images of the generators of the cone), we

have (EJ) = 0 and (Ej · E2) = 2. Hence the E{ are elliptic curves on X. Each pen-

cil \E.\ defines a morphism f\ X — P | . Since (F. j · Ε2) = 2, the morphism fl χ

f2: X —* P^ χ P^ = F Q is the desired double cover.
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Theorem 2.9 (Enriques-Campedelli). A special K3 surface is birationally equiva-

lent to one of the following four types of double planes:

a) z 2 = F^ix, y), where F^(x, y) = 0 is a curve of degree 6;

b) z 2 = FB(x, y), where FAx, y) = 0 is a curve of degree 8 which has two ordi-

nary singular points of multiplicity four {perhaps infinitely near: case b'));

c) z 2 = F 1 0 (x, y), where F 10(*> y) = 0 is a curve of degree 10 which has a singu-

lar point of multiplicity seven and two ordinary triple points which are infinitely near

to first order;

d) ζ = F .Λχ, y), where F, 2(x, y) = 0 is a curve of degree 12 which has a singular

point of multiplicity nine and three ordinary triple points which are infinitely near to first order.

Proof. By Theorem 2.3 and Proposition 2.8 there exists a double cover /: X —» V,

where V is one of the surfaces P2, or Fnin - 0, 2, 3, 4).

Case 1. V = P 2 . In this case for any line L on P 2 we have ( / " H D 2 ) = 2(L2) =

2. Hence the linear system \f~ (D\ consists of curves of genus 2, and the intersec-

tion index of L with the branch curve equals 6. Thus rr{X) = 2, and the branch curve

of / has degree 6. From this it follows that the surface X is birationally equivalent

to a double plane of type a).

Case 2. V = F_. By Proposition 2.4 the branch curve W of the morphism /: X —* V

has degree (4, 4). Let Ρ be a point on F- which does not belong to W, let Fn—· F

be the blow-up of Ρ, Χ = Χ χ ρ FQ, and / : X —· F Q the projection. After taking the

composition of / with the canonical morphism F Q —» P^ (blowing-down of the proper

transforms on FQ of the generators of F o passing through P), we obtain a double

cover X —> P . . The branch curve of this cover is the proper image of W relative to

the birational map F Q —> FQ—· P^ and is obviously a curve of degree 8 with two sin-

gular points of multiplicity four (the images of curves on F o which can be blown down).

Since the surface X is birationally equivalent to the desired surface X, we see

that X is birationally equivalent to a double plane of type b).

Case 3· V = F 2 . By Proposition 2.5 the branch curve W of the morphism /: X —»V

is equivalent to the divisor 8L + 45 2 .

Let Pj and P 2 be distinct closed points on F 2 and not belonging to W. Let

F —> F2 be the blow-up of these points. Blowing down the proper images of generators

Lj and L 2 passing through Pj and P,, we obtain a double cover of surfaces X =

Χ χ Ρ F 2 —> FQ whose branch curve W is a curve of degree (8, 4) with two ordinary

quadruple points lying on the section SQ. Let Q be one of these points and L a gen-

erator passing through Q. Blowing up the point Q and blowing down the proper images

of the sections SQ and L, we obtain a double cover X= Χ χ F f F 0 —· P£ with a branch

curve of degree eight with two infinitely near singular points of multiplicity four. Since

the surfaces X and X are birationally isomorphic, we will obtain that X is birationally

isomorphic to a double plane of type b').

Case 4. V = Fy By Proposition 2.6 the branch curve W of the morphism /: X —» V

is equivalent to the divisor 10L + 45,. In this case the curve W contains as one of its
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irreducible components the section Sy Let VI' = V/\Sy Then {W1 • S,) = 1 and

(W1 · L) = 3. Making elementary transformations at any three points P., Ρ2, P , not

lying on W, we obtain a double cover / : X —· F o , where X is birationally equivalent

to X and the branch curve of / is the section SQ and some curve W of degree (10, 3)

with three singular points of multiplicity four on 5Q . Now making an elementary trans-

formation with center at one of these singular points, we obtain a double cover Χ χ Ρ

FQ —> p·? with a branch curve of degree 10 with a singular point of multiplicity

seven and two ordinary triple points which are infinitely near to it. Thus we get case

c) of the theorem.

Case 5. V = F 4 . By Proposition 2.7 the branch curve IV of the morphism /: X — F4

is equivalent to the divisor 12L + 4S 4. In this case the curve S. is contained in W,

and the curve W' = IV - S. does not intersect S..
4 4

Carrying out a construction analogous to case 4, we obtain case d) of the theorem.

Corollary 2.10. For any special K3 surface the class π can only take the values

2, 3, 4 or 5.

In fact, the inverse image of a line on a double plane of type a)—d) is a hyper-

elliptic curve of genus 2, 3, 4 or 5.

Corollary 2.11. Each special K3 surface with class π = 2 {respectively 3, 4, 5)

zs α double cover of P^ {respectively FQ or F2, F}, F 4 ) .

As was mentioned at the beginning of the proof of Theorem 2.9, each special K3

surface X is a double cover of one of the surfaces P | , F Q , F 2 , F ? or F 4 . If π = 2,

then the linear system \C\ of curves of genus 2 defines a double cover X —· P?. If

77 = 3, the linear system \C\ of curves of genus 3 defines a morphism /: X —· P? whose

image V is a surface of degree two. Each such surface is either the quadric FQ or

the cone F2. Now apply Proposition 2.8. If π = 5, then X can be mapped two-to-one

only onto F 4 , since otherwise by Propositions 2.4—2.6 there would exist a curve of

smaller genus on X. For π = 4 the morphism X — P^, defined by a system of curves

of genus 4, can pass through only one of the surfaces F {n = 2, 3, 4) (see the proof

of Theorem 2.3). The case η = 2 is impossible by Proposition 2.5. The case η = 4

is impossible since there does not exist an embedding of F, into P i .

§3. Converse of the Enriques-Campedelli Theorem

Lemma 3.1. Let X be a normal algebraic surface and D an integral curve on X

whose image in the group Pic (X) is divisible by two. Then there exists an irreducible

unramified cover F: X' — x\D of degree 2.

Using the etale topology, we consider on U = X\D the Kummer sequence [3]:

0 — Γ (U, oh)lT (U, Ouf -> tf1 (U, μ2) -* Pic (t/2) - 0

(recall that char k Φ 2). Since X is normal, the canonical restriction morphism

r: Pic (X) —· Pic(U) is surjective, and its kernel is generated by the divisor D. Since
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the class of D is divisible in Pic(X) by 2, the quotient group Pic(X)/KeKr) = Pic(l/)

contains an element of order two. Hence

It remains to use the fact that the group Η (U, μ,) classifies the principal bundles

over U with structure group Z/2Z. A nontrivial such bundle also defines the desired

unramified cover f:'X'—· U.

Lemma 3.2. In the notation of Lemma 1.13 uie have

i—1

where c2(Z) is the second Chern number of the tangent sheaf to the surface Ζ ( = the

topological Euler characteristic of Ζ in case k = C and the l-adic Euler characteris-

tic in the general case), and g(W), 1 < i < A, is the geometric genus of an irreducible

component of the branch curve W.

If X is the blow-up of the double points of W on X, then c 2 (x) = c2(X) + n. Now

use the "Severi correspondence formula" [ l l ] .

Theorem 3.3. Let z2 = F 2 n (x , y) (n = 3, 4, 5, 6) be a double plane. Assume that

the branch curve F 2 (x, y) = 0 is irreducible and, except for the singularities men-

tioned in Theorem 2.9, has only ordinary double points. Then the minimal projective

nonsingular model of this double plane is a special K3 surface with class π < η — 1.

Proof. Suppose η = 3, and ICC P | is a projective curve of degree 6 which is ir-

reducible and has only ordinary double points (or is smooth). By Lemma 3.1 there ex-

ists an unramified cover U' —· U = PLXW of degree two. This cover can obviously be

extended to a finite morphism /: X — P£, ramified only over W (cf. [12], p. 4). Let V

be the blow-up of P£ with center at the singularities of W. By Lemma 1.13 the nor-

malization X' of the surface Χ χ 2V is a nonsingular surface, and the projection

/': X' —· V defines a finite double cover, ramified over the proper transform W of the

curve W. Let Lj , · · · , Ln be exceptional curves on "V which are inverse images of singular

points of W relative to the projection V — P^. We have Kv - - 3H + Lj + · - · + Ln,

where Η is the proper transform of the line Η in P ? .

On the other hand, it is obvious that W ~ 6H - 2L j+ · · · + 2Ln. From this it fol-

lows (cf. [ l l]) that Κ χ " ν / ' * ( Κ ν ) + lAf'*&) ~ 0. By Lemma 3.2, c2(X') = 2(3 + n) +

2(9 - n) = 24. By Noether's formula

c% (ΧΊ -ΗΐΡχ·)

12

from which it follows that q - dim feHHx, Οχ ' ) = 0. Hence the surface X* is regular

and Κχ> ~ 0, and this is the definition of a K3 surface.

Now suppose η = 4 and W C P? is an irreducible projective curve of degree 8,
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having perhaps, besides the two ordinary quadruple points A and A2, only ordinary

double points P j , · · · , Ρn. Blowing up the points A j and A2 on P^ and blowing

down the proper transform of the line A j/42, we get that the proper transform W of W

on the quadric F Q is an irreducible curve of type (4,4), having perhaps ordinary double

points P j , · · · , p'n. The remaining part of the argument is carried out in this case

analogously to that of the previous case (replacing P^ by FQ).

The proofs of the remaining cases follow along the model of the preceding ones,

and we omit them. We only note that for η = 4 (case of infinitely near points) it is

necessary to replace P^ by F2, for η = 5, by F y for η = 6 by F 4 (cf. Propositions

2.5, 2.6 and 2.7) and to use Lemmas 3-1 and 3.2.

Remark 3.4. In case k = C it follows easily from the results of G. N. Tjurina

(see [ l ] , Chapter IX) that for a "generic" double plane of type a), b) or b'), c), d)(cf.

Theorem 2.9) π = 2, 3, 4, 5 respectively. This is apparently also true in general.

§4. Elliptic surfaces and special K3 surfaces

We recall some definitions.

Definition 4.1. A pencil of elliptic curves on a projective algebraic surface X is

a morphism β X-»B, where β is a smooth curve, and the general fiber of / is a smooth

elliptic curve. The index of a pencil is the index of the generic fiber X of the mor-

phism /, i.e. the greatest common divisor of the degrees of effective divisors on X

defined over the field k(B).

Let r: Pic(X) — Pic(iY ) be the canonical restriction morphism. Passing to

Neron-Severi groups we have a homomorphism Τ: NS(X) —· NSiX^)—·Ζ. It is easy to

see that the index of the pencil / on X equals the order of the cokernel of the homo-

morphism T. In other words, it is equal to min i(F • C)\C a transversal curve over B,

F an arbitrary fiber of f\.

Definition 4.2. A smooth projective algebraic surface is said to be elliptic if

there exists a pencil of elliptic curves on it. The index I of an elliptic surface X is

the minimal index of all the possible pencils of elliptic curves on X.

Lemma 4.3. For an algebraic K3 surface X to be an elliptic surface with index

I it is necessary and sufficient that on X there exist a connected curve C with

p (C) = 1 and an irreducible curve S with (C • S) = I.

Necessity is obvious. To prove the sufficiency we need" to use Lemmas 1.2 and

1.8 and consider the morphism /: X — P^ defined by the linear system \C\.

Theorem 4.4. Every special K3 surface X of class π > 2 is an elliptic surface.

Moreover, for π = 4 or 5 the index of this surface is equal to one (1), and for η = 3 it

is < 2.

Proof. By 2.11 for π = 3 (respectively 4 or 5) there exists a double cover X over

FQ or F2 (respectively F^ or F 4 ) . It remains to apply Lemma 4.3 and Propositions

2.4 and 2.5 (respectively 2.6 or 2.7).
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Theorem 4-5. Each elliptic K3 surface with index / < 2 is a special K3 surface.

Proof. Assume / = 1 and that C and S are curves on X chosen via Lemma 4.3.

Since ( S 2 ) > - 2 , we have

((4C + 2Sf) = 16(C - S) + 4(S2) = 16 +· 4(S*)> 8.

Moreover,

{(AC + 2Sf) > {{AC + S)2) = 8 + (S2),

((4C + 2Sf) > ((3C + 25)2) = 12 + 4(S2).

Thus the linear system |4C + 2S| has no fixed components and consists of curves

of genus > 5. Since (C2) = 0, we have (C · {AC + 2S)) = 2.

Hence the pencil \C\ cuts out a linear series g^ o n a nonsingular curve D €

\4C + 2S\. Hence D is hyperelliptic and X is special.

Suppose 1 = 2. The linear system | C + S\ has no fixed components and consists

of curves of genus

Since {C(C + S)) - (C · S) = 2, the pencil \C\ cuts out a linear series g2 on any non-

singular curve D e \C + S\. Hence D is a hyperelliptic curve and X is a special K3

surface.

Definition 4.6. An Enriques surface is a smooth algebraic surface X with

HHX, 0 X ) = H2{X, GX) = 0 and ω®2 « 0 χ .

Proposition 4.7. LeZ X fee an Enriques surface. Then there exists a finite un-

ramified cover of degree two f:X —· X, where X is a K3 surface.

Since ωχ φ 0χ, the sheaf ωχ defines an element of order two in the group

•Pic (X). By the Kummer sequence

0 — H° (Χ, Οχ)/Η° (Χ, Οχγ -» Η1 (Χ, μ2) - Pic (Xx) -> 0

we will obtain that H1{X, μ2) Φ 0. Since the group H1(X, μ2) classifies principal

homogeneous spaces with structure group Z/2Z, a nontrivial p.h.s. defines a finite

unramified double cover /: X' —· X. Elementary computations (see [ll]) show that ωχ<

^ / * ( ω χ ) = ^ 0χ< and Η 1 ( Χ ' , 0 χ Ο = 0. Hence X' is a K3 surface.

Lemma 4.8 (L. Godeaux). Let X be an elliptic surface with //Hx, 0χ) =

W2(X, © χ ) = 0, let f: X — P£ be the corresponding pencil of. elliptic curves, and F an

arbitrary fiber over a closed point. Let Τχ ~ (l/w2j)F, · · · , Γ π ~ (l/mn)F be the

"supports" of multiples of fibers of f. Then

atxs^Ox((n—l)F —1\— . . . —ra).

Let ω χ = 0χ(Κχ). Since Η {Χ, 0 χ ) = 0, for any complete (integral) divisor D

with ρ (D) = 1 we have dim(D + K\ = 0. Let D' denote the uniquely defined
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effective divisor of the linear system \D + K\. In particular, F' = A J F J + · · · + ΑπΓπ,

where λ. < m. (since H2(X, 0 v ) = H°(X, ων) = θ).
I I Λ Λ

On the other hand, since F' = (ml - l)Fj + F j , we have Tj = (A} - ml + l )Fj +

• · • + λ Γ . From this we obtain Aj — m j + 1 > 0, which gives m^ - 1 < Aj, and since

Aj < mv then λ } = τηχ - 1. The equalities A;. = m. - 1 are proved analogously.

Finally we obtain

Kx^F

>-F^{ml-\)T1+ ... +(ma-l)rn-F

^(n-^F-T,- ... -Γη.
Corollary 4.9. In the notation of the preceding lemma, if ω® 2 ~ 0χ, then η = 2,

raj = m2 = 2 an</ α>χ ^ O^CFj - Γ2)·

We have

Οχ^ωΤ^Οχ((2n-2)F-2Vl- . . . -2ΓΠ)

= Ox((n — 2 ) ^ + ̂  — 2 ) ^ + . . . +(/η η -2)Γ η ) .

Since all the m. > 2, we have η = 2 and mi = 2. Moreover,

ωχ a ΟΛ (F - 1 \ - Γ2) - Οχ (Γ, - Γ2).

Theorem 4.10. Let X be an elliptic Enriques surface. Then there exists a finite

unramified double cover f: X1 —> X, where X' is a special K3 surface.

Proof. Let / be the cover constructed in Lemma 4.1. We shall show that X' is a

special K3 surface. Let / be the Jacobian surface of F ([l], Chapter VI). It is easy

to see that / is a rational surface (cf. [5l). Hence the Safarevic group UK/.̂ ) of the

generic fiber of / is trivial. Using the theory of Ogg and Safarevic, we obtain that

the group of principal homogeneous spaces WC(J ) is the direct sum of the groups of

"local invariants" WCC/,,) = θ ! Hl(]x, Q/Z).

By Corollary 4.9 the surface X defines an element X_ in WC{] ) of the form (α, β),

where 2a. = 2/3 = 0. Hence the order of Χ η in this group equals two. Since the index

of X^ is equal to its order [13L Χ-η has a rational point over the quadratic extension

Κη). The composition X' — X — P^ defines a structure of elliptic surface on X1.

Since the index of X obviously does not exceed the index of X^, we then conclude

that X is an elliptic K3 surface of index < 2. It remains to apply Theorem 4.5.

Remarks. 1) In case char(yfe) = 0 one can show that every Enriques surface is an

elliptic surface (see [ l ] , Chapter X). This-apparently is also true in general.

2) One can show that for an elliptic Enriques surface X the torsion subgroup

Tors (Pic (F)) "= Z/2Z. Moreover, since H1(X, 0χ) = 0, it follows from Kummer and

Artin-Schreier theory that the surface X' constructed in Theorem 4.4 is the unique fi-

nite abelian unramified cover of X. In characteristic zero this fact follows trivially

from the simply-connectedness of K3 surfaces.

3) An elliptic Enriques surface X is said to be special (cf. [ l ] , Chapter X) if
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there exists a quasi-section of degree 2 which is a rational curve. In this case the

double plane corresponding to the K3 surface X' can be constructed explicitly. It has

the form z2 - F?(x, y) · F^(x, y), where F Λχ, y) - 0 and F'?(x , y) = 0 are cubic

curves. In the general case η < 3 for the surface X .
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