Mathematics of the USSR-Izvestiya

UNIPOTENT GROUP SCHEMES OVER
INTEGRAL RINGS

To cite this article: B J Vesfeler and | V Dolgaév 1974 Math. USSR Izv. 8 761

View the article online for updates and enhancements.

Related content

- NONABELIAN COHOMOLOGY AND
EINITENESS THEOREMS FOR
INTEGRAL ORBITS OF AFFINE GROUP
SCHEMES
E A Nisnevi

- CONTRACTION OF THE ACTIONS OF
REDUCTIVE ALGEBRAIC GROUPS
V L Popov

- ON QUASI-LOCAL “"CLASS FIELDS” OF
ELLIPTIC CURVES. |

O N Vvedenski

Recent citations

- Amartya Kumar Dutta
- Arne Dir and Ulrich Oberst

- One-dimensional affine group schemes
William C Waterhouse and Boris

Weisfeiler

This content was downloaded from IP address 141.211.4.224 on 01/01/2021 at 15:16


https://doi.org/10.1070/IM1974v008n04ABEH002127
http://iopscience.iop.org/article/10.1070/IM1975v009n04ABEH001496
http://iopscience.iop.org/article/10.1070/IM1975v009n04ABEH001496
http://iopscience.iop.org/article/10.1070/IM1975v009n04ABEH001496
http://iopscience.iop.org/article/10.1070/IM1975v009n04ABEH001496
http://iopscience.iop.org/article/10.1070/SM1987v058n02ABEH003106
http://iopscience.iop.org/article/10.1070/SM1987v058n02ABEH003106
http://iopscience.iop.org/article/10.1070/IM1976v010n05ABEH001821
http://iopscience.iop.org/article/10.1070/IM1976v010n05ABEH001821
http://dx.doi.org/10.1007/978-93-86279-12-5_2
http://dx.doi.org/10.1007/BFb0062991
http://dx.doi.org/10.1016/0021-8693(80)90104-0

Izv. Akad. Nauk SSSR Math. USSR Izvestija
Ser. Mat. Tom 38 (1974), No. 4 Vol. 8 (1974}, No. 4

UNIPOTENT GROUP SCHEMES OVER INTEGRAL RINGS

UDC 519.4
B. Ju. VEISFEILER AND I. V. DOLGACEV

Abstract. In this paper we study families of unipotent algebraic groups over integral
rings. The main results relate to the geometry of such families, In particular, we prove
that, under some hypotheses, the space of such a family is isomorphic to an affine space
over the base. We give counterexamples showing that in the case of an arbitrary base ring
the basic facts of the theory of unipotent algebraic groups over a field cease to be true.
For a certain class of the group schemes that we consider we prove results on cohomology,

extensions and deformations.

Introduction

The present paper is devoted to the study of families of unipotent algebraic groups
parametrized by an affine integral scheme § (or, more precisely, to the study of unipo-
tent group schemes over § in the sense of (0.8)).* The general theory of group schemes
was established in the seminar of Grothendieck and Demazure [2] (SGAD), in which, in
addition, families of reductive groups were studied.

The theory of unipotent algebraic groups, and in particular thac of commutative uni-
potent groups, over a field represents a beautifully complete theory (see, for example,
[7D). On the other hand, questions about families of unipotent groups arise naturally in
the theory of quasielliptic algebraic surfaces [11]. Moreover, unipotent groups play an
important role in studying the structure of affine groups over a field, and the same role
can be expected of them over arbitrary schemes. It is curious to note also that the study
of unipotent group schemes leads to interesting questions in the geometry of affine vari-
eties (see §3.8.5 in particular).

The majority of the results of this paper are based on the assumption that the base
scheme is the spectrum of a discrete valuation ring. The examples of $6 show that uni-
potent group schemes over general integral rings have many pathological properties
{which, however, are not surprising in the light of the work of Raynaud {12D).

As is well known, the theory of unipotent groups over a field is only interesting in

AMS (MOS) subject classifications (1970), Primary 14L15; Secondary 14M20, 14F20.
*Translator's note. A study of unipotent algebraic groups by T. Kambayashi, M. Miyanishi
and M. Takeuchi has recently been published (Lecture Notes in Math., vol. 414, Springer-Verlag,
New York-Heidelberg-Berlin, 1974).
Copyright © 1975, American Mathematical Society
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762 B. Ju. VEISFEILER AND L. V. DOLGACEV

positive characteristic. According to Raynaud’s results this also holds in the general
case: over schemes of characteristic 0 the theory is trivial.

The main property of unipotent groups over a field consists of the existence of a
composition series of elementary groups (i.e. subgroups of the additive group of the
field). As the examples of $6 show, the only analogue of this property over general
integral rings is a theorem on linear unipotence (3 1). If the ground ring is a discrete
valuation ring, then one can prove the stronger assertion about the extension of a com-
position series from the generic fiber to a flat series over the ring (cf. § 4).

In §2 we study the coordinate ring of a unipotent group scheme over a discrete
valuation ring. The results of this section play the basic role in studying the geometry
of such groups. Each such group, under some restrictions on the generic fiber, is given
as a complete intersection in affipe space. If the ground ring is equicharacteristic and
the group is commutative and smooth of period p with connected fibets, then it becomes
AY over some radical extension of the base (Theorem 3.5). This result generalizes
the well-known classical result. A discussion of some natural generalizations of this
result is given in §3.8.

In $4 we show that smooth connected groups lift from a perfect field of character-
istic p to unipotent group schemes over rings of characteristic 0. There we also find
extensions of Gm by Ga. n$s, using a standard cohomological technique, we com-
pute the Grothendieck cohomology groups of commutative unipotent group schemes,

At the present time (i.e. a year after the present work was completed) we are cer-
tain that the ideas, methods and results of this paper can also be applied in studying
models of tori and semisimple groups. We have a number of examples of such models.
The fact that unipotent groups are essential here is clear, for example, for the follow-
ing reason: if G is a model of a torus (i.e. if G is a torus over the generic fiber), then
G degenerates to a unipotent group over some closed set. Preliminary considerations
show that the methods of 33 2 and 4 can be applied to models of the group Gm and give
analogous results. Moteover, we have succeeded in computing extensions of some
models of Gm by Ga (cf. §4.7) over equicharacteristic rings.

We thank V. I. Danilov for useful comments.

$0. Notation and review

0.1. Let S be a scheme and (Sch/S) the category of S-schemes. A group object
of this category is called a group scheme over § ((SGAD), I, 2.1; see also [9], §11).
For any S-scheme T and any S-group scheme G the set G(T) = Hom(T, G) is an ab-
stract group, called the group of T-points of G. The association T » G(T) defines a
contravariant functor from the category Sch/S into the category of groups (Gr). This
functor is often identified with the group scheme G.

Group schemes over § form a subcategory of Sch/S, whose morphisms are homo-
morphisms of group schemes, defined in the natural way.

0.2. As is the case for every S-scheme, the terminology of the theory of schemes
is applied for S-group schemes. In particular, one defines such concepts as affine,

flat and smooth S-group schemes.
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0.3. We recall that if § = Spec A, where A is a field, then any S-scheme is flat.
But if A is a one-dimensional regular ring (for example, a discrete valuation ring), then
the condition that a scheme X of finite type over S be flat is equivalent to the follow-
ing ([6), Chapter I, §2.4, Proposition 3):

0.3.1. The A-algebra @x’x is torsion-free for all x € X,

In the general case, if the base scheme § is regular, then the condition that a
scheme X locally of finite type over § be flat is equivalent to the following:

0.3.2. The fibers X, s €5, have the same dimension ((EGA) 1V, 14.4.4, 15.4.2).

We note that the fibers of a flat morphism [: X - S, where § is connected, have the
same dimension.

0.4. In case the base scheme § is locally noetherian, the condition that a scheme
X locally of finite type over S be smooth is as follows ((EGA), IV, 17.5.2): X is a
flat S-scheme and for all s € § the fiber X is 2 smooth scheme over the residue field
k(s) of the point s.

As is known, that a group scheme over a field k& is smooth is equivalent to its be-
ing geometrically reduced ([7], Chapter II, §5, Theorem 2.1). By Cartier’s theorem
([7], Chapter 11, $6, no. 1), if S is a scheme of characteristic zero (i.e. a Q-scheme),
then any flat S-group scheme is a smooth §-scheme.

0.5. Let G be an affine S-group scheme. Assume that § = Spec A is an affine
scheme. Then G is also affine, i.e. G = Spec B, where B is an A-algebra.

The ring B = I'(G, OG) is denoted by A[G] and is called the coordinate ring of the
affine A-group scheme G. The structure of a group scheme on a scheme G is equiva-
lent in this case to giving B an A-algebra structure. The latter is defined by giving

three A-algebra homomorphisms:

p: B—+B®aB (comultiplication),
.: B—B {coinversion),

e: B—>A (coidentity),

for which the standard axioms hold ((SGAD), I, 4.2; see also [9]).

0.5.1 1f [:G > S is a flat S-group scheme of finite type over § and /*(OG) is a
flat @S~module, then on G’ = Spec (/*@G)) there exists a strucrure of an affine flat S-
group scheme for which the canonical homomorphism u:G » G’ is a homomorphism.
The scheme G' is called the affinization of the group scheme G. By the results of
Raynaud ({12}, VII, 3.2), the affinization is defined in case § is regular and dim § < 2.
Moreover, in this case, if G is quasi-affine, then the homomorphism #:G » G' is an
open immersion ([12], VII, 3.1).

0.5.2. By the results of Raynaud ([12], VII, 2.2), if § is a normal scheme and G
is a smooth S-group scheme with connected fibers, whose fibers over the maximal points
(generic points of the irreducible components of §) are affine, then G is quasi-affine,

0.6. Let G be a group scheme over a field & and G® the connected component of

G containing the identity. Then G° is geometrically connected ((SGAD), VI, 2.L.1).
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For any S-group scheme G we denote by G° the subset of G that is the union of
the connected components of the fibers Gg for s €S. If G is open (for example,
when G is smooth over S ((SGAD), VI,, 3.10), then the corresponding subscheme is
denoted by G® and is called the connected component of the identity of G. It is an

S-group scheme, and for any S-scheme T we have

GCT)={u &EG(T): Vie=T the image of u in Gt(t) is contained in Gg(t)}.

Obviously G = G° if and only if the fibers of G are connected.

0.7. We now recall some definitions and properties of unipotent algebraic groups
over a field (here by algebraic groups we mean group schemes of finite type over a
field; they are not necessarily smooth).

0.7.1. An algebraic group G over a field % is said to be unipotent if the following

equivalent conditions hold:

a) G is affine and in k[G] there exist generators tys +ey t,, such that p(t!.) =
t;91+1@® ".' + Eaii ® bi]., where @i bl.]. € k[tl, cnny ti-l] (cf. {16], Chapter VIi,
'§1.6, Remark 2).

b) G possesses a composition series whose successive quotients are isomorphic

to the subgroups Ga.k {cf. (SGAD), XVII, 3.5, 1.5).
0.7.2. Examples. a) G, , is the additive group;

R(Goel =Eklll, p()=tR! +1R¢4
L(f) =—1, e(t)=0.

b) @, ,, where g= p’s p = char k> 0;
klagd=k1EL/(), pO=t®1+10¢
) (Z/p2),, p = char &> 0;
RIZIp D)) =kIY(E"—1), p)=(R1+ 1QL
d) Forms of Ga'k, p = char £ >0-
RIGl =kt ), 1 =at, +atl+ ... +antd,

ao#=0, a,Ek, }L(t;):t,®1+l®t{,
Lt = —tn e(t) =0, i=1,2

According to [15] these equations give all the k-forms of Ga,k' They are trivial if &
is perfect. If @ =1, then k(atla“"’ s+ @ 7") is a minimal (purely inseparable) de-
composition field for G.
e) Two-dimensional smooth connected groups. We write
-1

O, (x) = -,-i,- 2 C;, YR xe=Zix] Qi)

I-]
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We put
EIGl=k[fpta), n()=6Q1+1Q%h

Bl =6®1+1Q4+ Jadi(h), sk

Any unipotent two-dimensional connected smooth group is given by such formulas if %
is perfect ([16), Chapter VII, $2.7, Proposition 8). '

f) If k is a field of characteristic 0 and G a unipotent group scheme over k,
then G is a smooth connected group. If g is its Lie algebra, then for any &-algebra
A the group G(A) is identified with g(A) via mapping exp: g(A) » G(A), where for x
€ g(A)

expx = § (ad x)° (i)™

(this series terminates since § is nilpotent), and the multiplication is given by the
Campbell-Hausdorff formula ((SGAD), XVII, 3.9 ter). In particular, if G is commuta-
tive, then G & G:,k'

0.7.3. An affine unipotent algebraic group over the field & possesses the follow-
ing properties (see (SGAD), XVII, 3.9, 4.1.1, 4.1.3):

a) G has a central composition series whose successive quotients are isomorphic
to G_a',e if & is of characteristic 0 (see 0.7.2f)) (respectively to one of the groups
Ga,k or a, ., ortoa k-form of the group (Z/pZ)" if char k = p > 0).

b) If G is connected, then there exists a composition series with quotients iso-
morphic to Ga,k orto a, ;.

¢} If G is connected and smooth, then G possesses a central composition series
whose successive quotients are k-forms of Ga. In particular, the space G is a form of
the affine space A7. If k is perfect, these forms are trivial. In the general case the
forms of Ga,k are isomorphic to Ga,k over a suitable radical extension.

0.8. Definitions. Let G be a flat group scheme of finite type over S. We say
that

a) G is unipotent if the fibers of G over each point s € § are unipotent algebraic
groups over k(s).

b) G is linearly unipotent if G is affine and there exist sections #,, ..., ¢ of

the ring GS,G such that
RE) =t ®1+ 104+ D a;® by,
i

where @, b, €Oy, ..., t,_4)

Remark. The second definition is extremely close to the definition over a field
(0.2.1). It is clear that b) == a). Later on we shall show that for certain affine unipo-
tent S-groups G over integral affine bases these definitions are equivalent. The only
apparent difference between a) and b) is that in a) we do not require that G be affine
and § integral. Example 6.1 shows that over a ring with nilpotents these definitions
are not equivalent. On the other hand, Example 6.2 shows that over integral rings

there exist unipotent group schemes that are not affine.
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0.8.1. (Raynaud [12], XV, 3). Let S be a scheme of characteristic 0, G a uni-
potent S-group, and F = Lie G the @S-Lie algebra of G. Then the exponential map
exp: W(F) + G is an isomorphism of S-schemes. Moreover, if we equip W(F) with a
group law described by the Campbell-Hausdorff formula, then exp is a group isomorphism.
In particular, if S = Spec A, then G is linearly unipotent. Moreover, G is a form of
A;’ in the Zariski topology (0.10.2).

We recall (SGAD) that for any coherent @ Module ¥, W(¥) denotes the S-group
scheme representing the functor T » I(T, ®0S® ). Since S is of characteristic 0,
the group scheme G is smooth and has connected fibers. In particular, F = Lie G is
a locally free O -Module and W(F) is the vector bundle over S corresponding to F
((SGAD), 11.4.11).

0.8.2. According to Grothendieck ((SGAD), X, 8.7, p. 121) a smooth S-group G of
finite type is unipotent if and only if its maximal fibers are unipotent, This indicates
that the condition of smoothness is perhaps unnecessary.

0.9. Let § be an integral locally noetherian scheme, % its generic points and X,
a scheme of finite type over 7. A flat S-scheme of finite type extending X, will be
called a model of Xp. Incase X, is a group scheme over 7, a group model of Xy is
a flar S-group scheme G extending X

0.9.1. Examples. a) Every flat S-scheme (respectively S-group scheme) is a model
(a group model) of its generic fiber.

b) If § is the spectrum of a discrete valuation ring A and G, an extension of an
abelian variety by a torus, then by the results of Néron and Raynaud {13] there always
exists a group model for G-

c) If A is the ring of integers of a local field K, then the parahoric subgroups of -
a semisimple group over K are its smooth group models {19].

0.10. Let S be a scheme, By a Grothendieck topology on the scheme § we mean
an arbitrary topologized full subcategory T of the category Sch/S, whose: topology is
given by the set Cov(T) of finite surjective families of morphisms tu, sy, jep S €
Ob(T), called covers of S'. Here the finiteness means that the set of md:ces 1 is fi-
nite, and the surjectivity that U, ¢U) =$’

0.10. L In what follows we shall come across the following topologies on a noether-
ian scheme S: )

a) The Zariski topology T =S, . It is formed by the open subschemes of the
scheme S, and Cov(S,, ) consists of the families {U; 238’ where &, is an open
immersion,

' b) The éuale topology T = S¢,. It is formed by érale S-schemes, and Cov(Sz)
consists of families {Ui 2L 8"} in which ¢, is an étale morphism.

c) The fppf-topology T =3§ fppte It is formed by flat separated quasifinite S-schemes
of finite type, and Cov (Sfppf) consists of families of flat morphisms.

Here a morphism is called quasifinite if its fibers are finite ((EGA)).

d) The fpqc-topology T =S, . . It is formed by flat quasicompact S-schemes.

Cov(Sch) consists of families of flat morphisms.
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e) The radicaltopology T =S 4. It is formed by finite flat radical S-schemes.
Cov(S,, ) consists of families of flat morphisms.

Here a morphism /: X » Y of schemes is said to be radicalif, forall y €Y, /7 1(y)
consists of the single point x and the corresponding extension of residue fields
k(x)/k(y) is radical (i.e. is purely inseparable) ((EGA), 1.3.5.8). ‘

0.10.2. Let S be a scheme and T a Grothendieck topology on S. We will say that
an S-scheme X is an §-form of an S-scheme Y relative to T if there exists a covering

{Ui— Shier € Cov (T),

such that for all 7 €]

XXsUi_%YXSUi.

In particular, one can speak about forms in the Zariski topology, fppf-forms, étale forms,

radical forms, etc..
§$ 1. Linear unipotence

1.0. This subsection is aimed at introducing the notation that will be used.

Let A be an integral ring, K its field of fractions, X an affine model of the affine
space A¥ over A, and AlX] = T(X, OX)' Let ¢:A[X] » K[X] be the natural imbedding,
KIX]= Klxyenny x 1

1.0.1. If :c'l1 ces x;" is a monomial, we shall sometimes write it in the form x,
interpreting ¢ as the vector (¢}, ..., ¢ ). Let ¢ <« m denote component-wise compari-
son of vectors (i.e. ¢;<m, forall i). If m=(m), then T(m) = {t:1 < m}.

The signs > and < will denote lexicographic comparison of vectors (according to
the first different component from the right; in particular, (1,0, ..., 0) is the minimal
vector with nonnegative integral coefficients); max is always taken relative to this
order.

We shall write ¢ =deg x'. If [= }:atx‘, then deg [=max(t:a, £0).

1.0.2. For f € A[X] we put deg [ =deg ¢(/). Let

Pr={fEAlX]:degf <1},
Pi = {f& AlX]:degf< 1),
Py = PyP;.
Then the following lemma is obvious.

Lemma. a) P, Pt' and -15[ are finitely-generated torsion-free A-modules.
b) dim P, ® K =1.

1.0.3. For each vector t we denote by Zypeeer Ty the set of elements of
P, whose images in ﬁl are generators of Fz' Since X is of finite type, there exists
a vector m(X) = (m, ..., m ) such that AlXx] = A{z'.]., i=1, ..., A7), 7 € T(m{XNH1

1.0.4. Lemma. ¢ ® ¢ is an imbedding of AlX] ® A[X] into Kix] ® KIX].
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Proof. Consider the exact sequence of A-modules
0—A{X] > K[X].

Since AlX] is a flat A-module, the sequence

0 AXI®AXIEBKX]® ALX]

is exact, Now it suffices to note that
KIXIQAIX|=KIXI®KIX], ¢o®1=9R%
1.0.5. For {=Sa ®b € K[X] ® KIX] we set
deg f = max (dega 1+ deg b).

Then, in view of 1.0.4, the following lemma is obvious.

Lemma. Let f=3a,®b, € ALX] ® ALX). Then

deg (¢ ® ¢) (f) = max (deg a; +- deg by).

1.1. Theorem. Let G be an affine group model over A of a unipotent group, where

the generic fiber of G is isomorphic to Ag- Then G is linearly unipotent.

1.1.1. Proof. We adopt the notation of 1.0 for X = G. We number the %, so that
x; will be primitive mod(xy, ..., x,_ ) (see 4.4 below or [7], Chapter IV, $4, Theorem
4,1). We have A[G] = A[zi]., i €(1, dN), j € T(m(G))]. We number the 2] € T(m(G)),

in succession and so that deg z, <deg z, = i<j.

1.1.2. Lemma. Let y € A[G), deg y = t. Then
PO =91+ 1Qy+Da®by

where a,, b, € A[G], deg @, < t,deg b, <! and deg(3a, ®b) <t
Proof. Let y = Zdlxi, d; € K. Then

CRK)W=yR1+1Qy+Nd 3 cynx! @ x*
£ g

(because of the choice of the order on the x). From a comparison of the formulas for
p#(y) and (z ® K)y) it follows that Za, ® b, € P ® P ® K, from which in view of
1.0.4 we get 32, ®b, € P, ® P/, and, in view of 1.0.5, deg(Za,® ) < .

1.1.3. We have AlG] = Alz, ..., zyl, where i> j = deg z;> deg z. Since

P,(Z‘)——-:Z‘® 141 ®2‘+Zd”®bq,
dega;<ldeg z, degh; <degz,

it follows that



UNIPOTENT GROUP SCHEMES 769

ay = 2 Gijm2,,, bii = Z q;fim 2, Qijmy QiimEA,
mi m<i

from which our assertion also follows.
1.1.4. Remark. Applications to the case of a discrete valuation ring are based on

the choice of the basis {z 1 (‘‘reduced polynomials’’) and on Lemma 1.1.2.

1.2. Theorem. Let A be an integral ring, and G an affine group model of a com-

mutative group over A. Then G is a commutative group scheme.

Proof. Let o:A[G] ® ALG] -+ ALG] ® A[G] be the interchange of factors, We have

K G ® K (612 K [G1® K [Gl—

209

P09
AIG® A[G)~> AIG)® A[G)
n 1
AlQG]
iy
KIG)

We know that the outer triangle is commutative as well as all the rectangles on its
sides. Since ¢ and ¢ ® ¢ are imbeddings (1.0.4), the inner triangle is commutative.
L3.1. Remark. If 2 is invertible in A, we can symmetrize the formulas for p(y).

Namely, in view of 1.3,

B =Da®b=>bu®a.

Therefore
B (y) = 2%(a,-®b,+bf®a,-).

1.3.2. Corollary. Affine group models of commutative unipotent groups are com-

mutative group schemes.

1.3.3. Remark. If the ground ring R has nilpotents, then there exists a group
scheme G over R whose generic fiber is commutative, but which is irself not commu-
tative. For example, R = Hul/u?, % a field, R[G) = Rlx, y, 2], x, y primitive, and
W2)=2@1+1® z+ uy ®x.

§92. Some technical theorems

2.0. The properties of affine unipotent groups over discrete valuation rings turn
out to be rather close to the properties of unipotent groups over fields. To prove the
corresponding assertions we need some explicit information about the generators of the
ring ALG], which is contained in Theorems 2.3.0, 2.4.0 and 2.5.0 proved below.

2.1. Let A be a discrete valuation ring, n its uniformizing parameter, k= A/7
the residue field, p = char k, and K the field of fractions of A.

Let X be an affine model of AZ over A. We adopt the notation and conventions

of 1.0.
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2.1.1. Since A is a principal ideal ring, in view of Lemma 1.0.2 we have that ﬁt
is a free A-module with a single generator (i.e. Af) = 1 in the notation of 1.0.3). We
denote the corresponding element z,, by z,.

Definition. We set y; =z, ), and denote by y,,; the first z, such that
deg z,>degy; and z, ¢ Aly,, ..., ¥ :

2.1.2. Ve set

Q={jyycKx..., %]}, Q=
s—2r='gr"'g2r-n gzr= llytrﬂ_' 1]9

I={t;y=1Lty...,ta}y, T=[L,N]—I, N=ty—1
If ¢ 661., then we put w(?) = i,

Proposition. a) If t €1, then
Yt = QX + P (yp cen g yi—x)n a=K, a; = 0.
b) If t €I, then there exists d, €N such that

4 yt (= A [yxv vae !/1-1]: ﬂd’_l!/t $A [yp ey yt—l]'

Proof. If t €1, then y, € Klx, ..., qu)], but y, ¢ Klx, ..., "w(;)_xl' There-
fore degy, = (i}, ..., iy O eees 0), iw(z) # 0. Since n“xw(t) € AlG) for sufficiently
large a, and since degy,>degy, for i> ¢, and y, € Klx, ..., X oty= J for i<y, it
follows that the images of "axw(t) and y in Py, Ve coincide, i.e. i, =1, which
proves a).

From a) it follows that K[x,, ..., xwm] =Klyy . ees yt]. Therefore for t €1 we
have n% € Aly,, ..., y,_;}. Choosing a to be minimal with this property, we obrain b).

2.2. In this subsection we introduce some notions and we will prove some assertions
that will allow us to establish the main results of this section.

2.2.1. Let p=char A/m#0. Let B be an A-algebra with generators u, i €[1, t].
We assume that [1, f] = IUI_ 1 €/, and to each €T we associate the number (7).
P(ul, ey U ) is a polynomial, then the written form P = Ea ut wxll be said to be rea'uced
if for i = (z ey i) from a,£0 it follows that i <p'(a+l) for all a e, t-1]
such that a+ lel.

Furthermore, we require that the algebra B be the quotient algebra of the polynomial

algebra A[ul, cees "z] modulo the ideal generated by the relations

- (1) . T
vie]l ffu=uly + 3 @t fora €A andall i€l
j<m(i—1,p")
where
a,-,-u/'
i<mii-1,p7(0)

is in reduced written form, and m(s, /) =(0, ..., 0, 4, 0,...,0). We write
Pluyy.ooyu. ,) for u? Pl +2a u’ We define now . and Q. in the following way:

i1 i-1 i=1 i i 8 y
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Q={Lt,—1)]
where |INQ | =4, Inli, tiﬂll = i + 1 (by definition QM ={1, 1 and Q, = &), and

ﬁt = Qi'—Qi-l.
If i €[1, 7, then we put w(i) =7 for i €Q . Further, we put m = |I|.
2.2.2. Lemma. Let Pluyy ..., u) €B. Then P has a reduced written form.

Proof. Let P(uy,...,u)= Eaiui be some written form of the polynomial P. Let
A(i) = Si,. We construct an algorithm (&, which transforms the given written form of
polynomials into another. An application of the algorithm @ to the monomial u” gives

the polynomial Edn.u", where
max (A (f) : d,; F=0) < A (r).

Moreover, if max(A(j): d #£0) = X(r), then Q(«") = «"; and this happens if and only if
u” is reduced. In view of these rematks the algorithm described below stops after a
finite number of steps, and the final result is a reduced polynomial.

We now describe (. Let au”#£0 be a term of highest degree r=(r), ..., r) for
which 7 does not satisfy the condition of being reduced. Let 8 be the least number for
which B+1€T,B+1<1, 82 p A we put

Q (2 a u‘) = Naw' + & (@),

[P 4
_pr(B+1) d
Glau)=aul...ug®. . ut - uf® priBt (P upyr — Ppas (g - . 4p))-

The property of (! mentioned above is obvious, and the lemma is proved.
2.2.3. We have ﬁ'ﬂl =1. Weput v =ug, 7 €f1, m]. For a2 polynomial
Ovy, ..., v,) we denote by deg 0 its degree relative to {v } (cf. 1.0.1),

Lemma. a) The subring A[ul, vees vm] of the ring B is isomorphic to a polyno-
mial ring in m variables.

b) Let P(ul, ceus ut) €B, and let P = Zaiui be reduced written form. Let p =
max(iza . #0), p=(py, ..., p). Then there exist an a € N and a polynomial
O(vyy ooy v, ) such that 7P = Q. Here if deg Q =(8,,...,98 ), then

6 = Z (pu H P’m)) .
es=q, gégq
Proof. a) obviously follows from Definition 22, L
We shall prove b). We put d = an—da (cf. 2.2 1). For the written form Ebiui,
b, € K, we put
% =max(2i¢:b,#0), 6 = max (i : b ==0),

t=min(gel:i,=0 Vacsg+1, 101,

We now define an algorithm  (in some sense a converse to the algorithm ®@ of the
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proof of Lemma 2.2.2), which acts on the written forms of polynomial of u P orees Uy

Namely, if Ebiui, b, € A, is some written form, k = K(Ebiui) and g = r(Zbiui), then we
put

[ i, i
q q+1 t
uq+) .- ut

i H
F Zb;u‘——»n“kZb‘u{‘. ot »Zciui‘ oo U ()

i iq-l (@ ? lq-l-l 17
—VZC[ ull. S Uq-l (uq..l + 2 dqluf) 4 uq+1 ces ut .

From the choice of & and d it follows that c; € A. Furthemore, it is obvious that
f(ﬁ(ibiui)) < r(Zblui). Therefore B stops after t - |I]| steps, and the end result will be
a polynomial in the u, i €1, i.e. in the v. It remains to show that this will be a poly-
nomial of the indicated degree. This follows from the fact that

O (B W) = (iys ..+ bgers bger =+ P @iy 0, igeyy ... ),

and from the following simple fact: if

v=(peen i =l i g P,

jar <P, P>,
then o(B(x)) > o(B(')).

In fact it is necessary to show that i _; + p'(”)iq >fa1t p'(")jq follows from
Gy i > Ggoys i igoy <#™® and j_ <p™?. Bucif i = i this is obvious.
And if i,> ig this follows from the inequalities on i,.1 and Tg-1°

According to what was said above, a term of maximal degree will always remain a

term of maximal degree, from which assertion b) of the lemma follows.

2.2.4. Corollaries. a) B is a flat A-algebra.

b) B&K=Kvy, ..., v, L

©) The reduced written form is unique.

d) Nonproportional reduced monomials have different degree (in the ring

K[vl, cees vm] and relative to vy, ..., v ).

Proof. All these assertions are direct consequences of 2.2.3b). For example, here
is a proof of a). We must show that B has no A-torsion. Let P € B, and let Zaiui be
its reduced written form. If #P =0, this means, according to 2.2.3b), that U(Zalu') =0
(in the notation of the proof of 2.2.3), i.e. Eaiu' = 0, as was required,

2.2.5. Remark. If #” is a reduced monomial, then each monomial u/, i < j, is
also reduced.

2.2.6. Lemma. Let v »v/=av,+ Qfvy, « -+, v,_ ) be a change of generators
in the ring Klvy, ..., vm]. If deg and deg' are the degree functions with respect to
the first and second systems of generators respectively, then for each polynomial P €

K[ul, cees vm] we have deg P = deg' P.

The proof is obvious.
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2.2.7. Let
PeB®,K)®,(BR,K),
P=2d,~,-u‘®u", dije K.

We will say that this written form is reduced if the nonzero monomials di].u‘ and di].u’

are reduced.

Lemma. Each polynomial P € B ® B ® K possesses a reduced written form, which

is then unique,

This written form will be denoted by ((P).

Proof. Let P =ZXb, 4 ® u’ be an arbitrary written form. We define an algorithm
d-ae@ by the formula ap) = b, a(u') ® ((x’), where & is the algorithm from the
proof of Lemma 2.2.2. As in the proof of Lemma 2.2.2, we obtain ad(P) = &d' 1(p) for
sufficiently large d, and then Zf (P) is a reduced written form,

If P=2b, E "®ul = 2d;u ‘® u! are two reduced written forms, then

0 =2 (bij"_d"j) ui®ui.

Therefore it suffices to prove that 0 € B ® B ® K has a unique reduced written form.
Let 0 = Edi’.ui ® «/, and let

t1= max (i : d‘l *O}, t2 = Max (i : dt‘i + 0}'

Then under the inclusion of B ®B ® K in K{vl, cens vm] ® K[vl, cens vm] the lead-

ing term of this expression will be of the form

!
bt‘t'vde‘ uts ® vdegu’!
and is not equal to zero, which contradicts the fact that this is a written form of zero.
2.3. The goal of this subsection is to prove that the generators y . of the ring
A[Gl, where G is an affine group model of a unipotent group with generic fiber isomor-
phic to A%, possess the properties indicated in 2.2. We shall use these properties in

§§3 and 4.
We apply the notation of §2.1 for X = G. In addition we put

-1
M) =pE)—x@1—1Qx, @(x)= %—p‘;‘_’ Cp“xl®xoa.:
{may
and let m{i, d) denote a vector of arbitrary length whose ith component is equal to 4,
and the remaining ones to zero. We put h(i) = deg Y
2.3.0. Let G be an affine group model of a unipotent group over A whose generic
fiber is isomorphic to AL, Let K{Gl = K[x,, ..., x"], where we shall assume ({7],
Chapter IV, § 4, Theorem 4. 1) that x_ is primitive modulo K[xl, cees X;_ 1]-

Theorem. Let p = char A/n £0. We can choose ypli€ T (see 2.1), so that
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iy = yi”-’1 + Pi(Yp oo s Yiua)s

where a) deg'l\;i(yl, cees Y < p™? deg Y;-q and b) 7¥i]p,

2.3.0.1. Remarks. a) The theorem can also be proved when char A/7 = 0. How-
ever, in this case, instead of assertion b) of the theorem, we have the condition ndi|p
for some prime p, from which it follows that T = & (cf. 0.8.1).

b) If char K = p, then assertion b) of the theorem is void, since p =0 in K. This
gives us the possibility of proving more precise assertions in characteristic p (cf. 2.4,
2.5).

2.3.0.2. The proof of this theorem can be considered as a detailed carrying out of
the proof of the theorem on linear unipotence. We use in an essential way the possibil-
ity of canonically choosing a basis in A[G]. The apparatus that gives this canonical
choice is the reduced polynomials of 2.2.

2.3.1. Before we proceed to the proof, we introduce some notation and definitions.

2.3.1.1. We shall say that y, i < ¢, are properly chosen generators if they satisfy
the conclusion of the theorem.

It is clear that the considerations of § 2.2 are applicable to the subalgebra B of
A[G] generated by the y,, i <t In particular, one can define ‘‘reducedness”, and as-
sertions 2.2.2--2.2.7 hold.

2.3.1.2. Lemma. Let y, ..., y, be properly chosen generators, and let t + 1 € r
and 17‘1!"’1)/t+l = Eaiyi, a, €A, where Zaiyi is a reduced written form.
a) If amy"’, a, #0, is the highest degree term in this written form, then we may

assume that a,_ = 1.
b) If a; € 7%t+1A, then we may assume that a =0,

Proof. Assume that @ =nb, b € A. Then

2= nd’+l-ly1+1 -_ bym E A [G]
and deg z <deg y,,,. Hence
N1y, = nby™ + n 2.

But, in view of the flatness of A[G), this contradicts the condition on the choice of

a'”l (cf. 2.1.3). Therefore a_ € A*,

We put y;” =a_ 1yt“. It is easy to see that y;ﬂ satisfies an analogous equa-
tion with a_ = 1.

Now if a, Endl’”b,.b €A, then we put y,,; =y, - by’. Then y/,, €AlG] and
adet y,41 = 2ay® - ay’, as was required.

2.3.1.3. Lemma. Let y,, ..., y, be a properly chosen system of generators. Let
t+ 1€l and let
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Yter = KXo+ + Z aiy‘, a;, % EK,

be a reduced written form. If a, € A, then we may assume that a,=0.

Proof. Let a, € A. Putting yt'ﬂ =Y,41 - al.yi we get our assertion.

2.3.2. Let M = A[G] ® AlG] and r= (rl, ey rn). We denote by M_ the subspace
of M ® K generated by elements @ ® b for which deg a + deg b <r. The function
deg a ® b = deg a + deg b will be called the global degree.

2.3.2.1. We recall that, according to 1.1.2, for all y € A[G] we have

1) =Da®b, o, by AG),

dega; ldegy, degh;<ldegy, dega;®b;<Cdegy.
We must make this assertion more precise.
2.3.2.2. Let y= Eaiyi, a, € K, be areduced written form. Let A= {i:a]. £0l We

number the elements of A in increasing order, and write

Z aiyl = Z buy*a’ bo =K, MeEA.
Let

] A
z=>3 bay"% @)=Y by’ Qui
a>q
be reduced written form.
Lemma. Let r=deg y*a~1, and assume that b, €A if degy' ® y' > r. For q(y)

€M it is necessary that

n (bq-ly;vq"') -+ Z by QyeM+ M,.
deg it @yl =r

Proof. Reduced monomials form a basis of A[G]. The reduced written form for
7{y) is precisely the expression of 7(y) by basis elements, which was used in 1.1 to
prove linear unipotence. The terms bay)“‘, a < g - 1, have smaller degree than
bq_ly)“l"1 (see 2.2.3, 2.2.6). Therefore

A ~
7].( 3! bay™ )EM'.
a<g-1

From this our assertion follows,

2.3.2.3. The preceding assertion is used in the following form.

Corollary. We adopt the conditions of 2.3.2.2. If deg y'®y = m(tl.’., peiiy for
bi].yi ®yj d M+ M, then either )‘q-l = m(t, p), or n(bq_ l)/A‘i“l) EM+ fif,.

Proof. We assume that n(bq_ ly"Q— DeM+ :’W'. Then 2.3.2.2 yields 7 = m(¢, p%).
The assertion now follows from 2.2.3 and 2.2.6.
2.3.3. We recall some properties of binomial coefficients and the expressions

® ().
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2.3.3.1. Let d=p".b. Then p°~°|Ch if p**' 4 8.

2.3.3.2. €A% =CJ mod .

2.3.3.3. GCDM[l d= l]Cd =1 if d £ p% p prime; and GCDqc[g 4- I]Cd p if
d=p° p prime.

2.3.3.4. @ (x) € Z[x] ® Z[x], and (I)a(xﬂb) =0,,,(x)mod p Z[x] ® Z[«].

2.3.4. Now suppose that y,, ..., y, are properly chosen generators.

2,3.4.1. If i €], then

] (y,) = Omod M},w.

N = EC" 7' ® 7" mod pM + Mgy

for a> 1, and q(yf.' )= pd)l(yf - ) mod p2M + Mh(i)‘

2.3.4.2. Lemma. Let i €], m=0%,b>1,p4+b,y=mli,p%, §=m(i,m~ 9,
and

n(y") = meiaay“ ® &
where y® ® yP are reduced monomials for bmiaﬁ’é 0. Then

bmive =C mod ;.

Proof. Let
M) = 3] biopy® @ yP mod My,

where deg biaﬁyaa y'6= h(7), deg biaﬁya < h(i), and deg biaﬁyﬂ < b(i) for biaﬁ;é().
Then

NN =GR 1+ 1Qui+ 3 biopy® ® yH)™

m-1

— R I—1Q¢'= 2 Cayl * @ yf + D dopty®® ¥® mod Mgy,

We note that either y or yB contains y,, j < i, for deg da_ﬁyag yB= mh(i) and a, B
£ m(i, d). If afeer putting such a monomial in reduced form we have a term of the form
y:.I @ y?, a + 8 =m, then this will be the term of highest degree and thus its coeffi-

cient will be a multiple of =, from which our assertion follows.

2.3.4.3. Lemma. l.,etzEIandm-.:p“+l a>0. Let y,8 and b ., 5 beasin

2.3.42. Then b, s =C"" mod np.

Proof. For 7(yT") we write the same expressions as in the proof of 2.3.4.2. The
same method as in the proof of 2.3.4. 2 establishes that the terms daﬁy @y'B which
after reduction give the term yy ® y with a coefficient that does not lie in np, are

contained in the sum
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Ciyl” @ yP* ™ 4+ 3 (biapy® @ yB)™

(since the remaining terms contain the coefficient p and after reduction they again give
w).
Assume that b7, ™" ® y™B after reduction gives dyf.’a nya(’” D, Then fora

suitable b we must have
deg ym = deg 4" = m (o (i), 7).
Consequently

deg yo = m (o (i), p*-2)

and, in view of 2.2.3, y%= y;” and p-deg y% = deg y; But then, since the written form
for 77()’,~) is reduced, from the proof of 2.3.4.2 we will find

g =dy;+Q(..), degQ<deguy:
From this it follows that y* = yif’_r;i)- l, and hence
pé~1(p-1)
i-1 .

P$=y

We assume that the coefficient of such a term lies in 7~ dipA. Then
(biagy® Q@ ¥ = (Tf-dip)p (nd M- [T'Iph(i”

from which our assertion follows,

The proof that b,,4 € a~%ipA is carried out by induction. Let w(i) =r, i= t + .
If j = 0, our assertion is contained in 2.3.4.1. We assume that i. 1> uue for j— 1 and
prove it for j. We have

pr(i-1)=1 ~

N(Yio) = 3% 1pdO, (7, )+ ..., dE A,

p’(‘."l)‘l

-d, -d, —~ (3
) =1 G @1+ 1@y +x pdd, (12T ")+ ..

=d, r(i) ~d r()
—n il —a Q.

Terms of the form y? Qy? of degree deg y, are obtained by different methods, but by
virtue of the induction hypothesis and in view of the fact that enough factors of 7 show
up under reduction, we get our assertion.

2.3.5. We proceed to the proof of the theorem. We use induction on i. Assume we
have proved that y,, ..., y, are properly chosen. We shall show that y,,, can be cho-
sen properly. If ¢+ 1 € ], there is nothing to prove (cf. 2.3.1.3). So assume t+ /] €],

2.3.5.1. Let n'dl“yt+1 =3a.y, be reduced written form, @, € A. Let m =

max(i:ai #0). By 2.3.1.2, a, =1. By 2.3.2.2,
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We shall show that m = m(t, %) and n?t*1|p follow from this.

2.3.5.2. We note that if m =(m,, ..., m, 0,...,0), then m, # 0.

In face, if m, = 0, then, by the reducedness (sée 2.2), we will have deg Yer <
deg y o Which contradicts the fact that y,,, has been properly chosen.

2.3.5.3. Assume that m £0 for i <t. Then 7(y ) contains the term

m~m({,my)

~d my
oy @y '

which, by 2.3.4, is the unique reduced term of such a form in 7(y,,,) that does not lie
in pM. From this it follows that this case is impossible, i.e. m ;=0 for all iét

2.3.5.4. Nowlet m . =0,iét,m =d,d=p%, p+b and b#1. By23.42ic
follows from this that 7 tﬂ]c:, a=1,..., b~ 1, However, this is not possible for
d 2L

2.3.5.5. Thus m, = p%, and m,=0 for all i#t. By 23.4.3 we must then have
ndl"llcg for all a €[1, p -~ 1}, From this it follows that wd"'l]p, which, together with
the proof of 3.1, which again allows us to use 2.2, completes the induction step,

2.4. Now suppose char K = p. Let K[G] = K[xl, cees xn]. Assume that [1, n} =
UeotJar Jan]g=@ for a £ B, and we have that i>] for a > forall i € J, and
all j € Jp Assume further that for i € | | we have

n (x) = 0mod K [x;, EﬁgaJa] RKxp j Eagﬁ.lgl.

Such a partitioning corresponds to the normal series whose quotients are isomorphic to
old
a,K*
We put
’ Q= U Q=% i/,
1=
~ ~,
If i €Q,, weput w(i) =a,

2.4.0. Theorem. Let char K =p >0. We can choose y, i €[1, N] (cf. 2.1), so

that for i € we have

d - .
nly = 2 Zaiia!/:? i + Pi(yp .= Qi) Gja E A,

]Eﬁm(l) a
i<i

and for i € ] we have

Y1 = Xxowm + 2 Z aljuy}’a + 5 U i E% W), % apeK.
i€han @
i<i
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Here, setting n(i) =max(a: a, .  ,#0) for i € I, we have:
[L 3
a) 8 i1 i) = 1fori€l, and

b) ;=0 if j+ 1€l and axdj+1).

2.4.0.1. Remark. Assertion a) is contained in 2.3.0. Assertion b) means simply
that we consider things in reduced written form.

2.4.0.2. The proof of Theorem 2.4.0 is in essence that of Theorem 2.3.0 using the
property p =0,

2.4.1. We will now say that y;, ..., y, are chosen properly if they satisfy the con-
clusion of Theorem 2.4.0, It is clear that all the properties of proper generators that

were considered in 2.3 are also preserved in the present situation,

2.4,2. Now let y5 ..., y, be properly chosen generators. We assume everywhere
below that d,=0 for i €]. Put

Ri=M+ Ky | EQpl ® K 14 | € nl-
2.4.2.1. Forall 7 €[1, 4

Nw) =0 modRy,

b-1
@) = D P Q@ 7" modR,.
a=1

In particular, 7(y? *) =0 mod R,
2.4.3. Proof of the theorem. Induction on i. We assume we have shown that y,,

.«+5 ¥, are chosen properly. We shall show that we can choose y,,; properly.
244 1. Let

Yt1 = Kewrro(ter) T 2 ay,

where x,,; =0 if 1 € I, Zaiyi is reduced written form, a@; € K and
deg Tay < deg Xoct+1)

for i € I. We apply the notation of 2.3.3.2to y = Zaiyi. In particular, A ={iza,£0};
having enumerated the elements of A in increasing order, we have

Al-1

y= Izl) bay™e.

a=0

If Ay=mli, d), we put p(a)=1i
2.4.4.2. Secondary descending induction on the elements of A. Assume that for

a > g we have shown that A, = m(p(a), p¥%). Put

v
— p G
2= 2 bay%q)-

azq

By 2.4.3.1 we have. 7(2) =0 mod R, ;.

2443, Put A, _y=m=(m, ..., my) and y™ ¢ Kly,, i € Qgp41y-1)- We shall
show that if m £ m{i, p?), then b,.1 €A, and then we apply 2.4.11 or 2.3.1.2. By
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2,4,2.1 and the property 7{(z) =0 mod R,,; we have
1 (bq‘lym) =.¢ mod (Rt‘ﬂ + M + Mdeg y"‘)-

However, in view of 2.3.2.3 for m # mli, p?) it follows from this that b,_y €A, as was
required (for m = m(i, p 4) we obtain the condition 0 - bq__1 € A, which cannot occur).

This proves the theorem.

2.5. Corollary. Under the assumptions of Theorem 2.4,0, if the generic fiber of G
is G g then Y iell, N1, can be chosen as in Theorem 2.4.0, where P =0 for all
i 6[1 N] (since ], =1[1, N} in this case).

2.6. Corollary. uUnder the hypothesis of Corollary 2,5 there exists an exact se-

quence of groups over A:

1+G—->GYy GV 1.

Proof. We put F;= zrdei-— fi(Yl, e Y4 i € I. Since the P, are p-polyno-
mials, the mapping ¥ A[XI., i€l]l A[YI, ceny YN], given by the formula

Q)(Xl) = Fy (YI, ey YN),

defines a homomorphism GN - GL’J‘ (if we assume X, and Y; to be primitive), whose
kemel is the coordinate ring of the group G. It is obvxously an epimorphism.
2.7, Remark. Apparently, the proof of Theorem 2.4.0 can be extended to the case

when the J, are chosen so that

N = D) D 8jm@m (x)mod K [x;, j Y BOKx j& U el
j<i m

(This corresponds to a series whose factors are commutative.) For this it would be
necessary to change the order of the vectors deg y’, to prove an analogue of 1. 12 for
this new order and to adapt 2.2 to the new situation.

Such a generalization of 2.4 would allow us to prove Theorem 3.5 in the following
guise for arbitrary commutative groups: smooth models of unipotent groups with connec-
ted fibers over a discrete valuation ring with field of fractions of characteristic p are

forms of A{ in the radical topology.

§3. The geometry of unipotent groups
g ry p group

3.0.0. In this section A denotes a discrete valuation ring, K its field of fractions,
n the uniformizing parameter of A, k= A/n the residue field, and p the characteristic
of k.

3.0.1. In this section we shall prove that affine unipotent groups over A, since
they are models of A}, are complete intersections in Az. Moreover, if the equations
defining such a group G are written as p-polynomials (see 3.3.0) (we then say that G
is a p-polynomial group), and if the fibers of G are smooth and connected, then G ¢ =
G, ®, Al A7’ for some quasi-radical extension A’ D A (see 3.3.2).

In pasticular, if ADF , then each smooth commutative group G with G, = G
with connected fibers is p-polynomial, and by the same token we can apply the asser-

tion given above to such a G.
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3.0.2. The question of whether every affine unipotent group model of AL is p-
polynomial remains open.

3.0.3. We observe that the assumption that our unipotent A-group scheme is affine
is not very restrictive. According to the result announced by Raynaud (cf. {12], 1%,
2.2), every flat separable A-group scheme of finite type with affine generic fiber is af-
fine. The condition of separatedness holds for any flat group scheme of finite type
with connected fibers ((SGAD), VI, 5.5).

We observe that, without using the result of Raynaud mentioned above, we can find
that unipotent quasi-affine A-group schemes are affine, if we use [12), vi1, 3.1.3.2. In
particular, this is true if G is smooth with connected fibers (since in this case G is
quasi-affine (see {12}, vi1, 2.)).

3.1. Theorem. Let G be an affine unipotent group that is a model of A} over A.
Let yy, ..., yy be generators of the algebra AlGl, constructed according to 2.1, and

set
ﬂdié/i=Pi(!/1, ceey yl'—l}r ZEI_,

where P, is a polynomial of the form indicated in Theorem 2.3.0. Then the relations

indicated above are the only relations in ALGl.

Proof. We have shown in 2.2.4 that the algebra B constructed by the generators
and relations indicated in the theorem is flat, Let : B » A[G] be the projection of B
onto A[G). We have a commutative diagram

B —% A4
o} p
Klu,iel}-+>Kly,iecl}=Klxy, ..., xn).

Since the bottom arrow is an isomorphism, and the vertical arrows are inclusions, it

follows that ¥ is an isomorphism, which proves the assertion of the theorem.

3.2. Corollary. Let G be an affine unipotent group over A, which is a model of

A%. Then G is a complete intersection in A}.

Prool. We retain the notation of Theorem 3.1. Let | = {il, ceny irl, where r=N
-n (cfe 2L and i; <..0 < i, Put

Fn=amy, —P, (Vi ..., Y ).

By Theorem 3.1 the scheme G is given by the ideal 1= (F,,..., F) in AQ’ =
Spec A[Yl, cses YN]. We must show that the sequence Fy, ..., F, is regular, i.e.,
setting B, = Aly,, ..., YN]/(FI’ -+es F_._y), we must show that F_ is not a zero
divisor in B_. By 3.L1 the algebra B, is flat, Therefore B is included in B, ® K.
We have

Bm@K:—‘ K[Y,,]E(lﬂ [17 lm_l])n [imv N]]
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Let ] be an ideal in B, ® K generated by Y, j €Inll, i -1l If F, is a zero divi-
sorin B_, then F_ is a zero divisor in B, ® K, and hence F, is a zero divisor in
B, ®K/] Howevet, B, ®K/]=KY,j 6[1 » N1], and the image of F_ in B, ® K/]
is @ ”"Y, . Since Y;  is nota zero dzvxsor in K[Yj, j€ [im, N11, our assertion is

proved.
3.3. We will say that an affine scheme G over A is p-polynomial if AlG] =

Aly P ey yN], [, N)=IuT,INT =@ and G is given in, A"X by the equation

d d
n iyi = 2 Zaauy’,’u, a‘-,-aEA, F) 4 llp,

j<i a

Qigmay=1, r)=max(@: @;;-ye5%0) for ie].

It is obvious that a p-polynomial A-scheme G is a model of A%.
The goal of this subsection is a proof of the following result.

Theorem. Let G be a smooth p-polynomial scheme over A with connected fibers
of dimension n. Then there exists an unramified extension A' D A such that the corre-

sponding extension of residue fields is radical and Ga'=G,®, Ay AZ:,

3.3.0. Definition. A polynomial of the form

PXp oor X)=DaXP € A1X,, - .., Xal
i

is called a p-polynomial.

A mapping f:A[Xl, cony Xﬂ] - A[Tl, RN Tn] is called a p-polynomial homomor.
phism if /(Xl.) = Ri(TI’ cees Tn) is a p-polynomial for all i €{1, n],

If, moreover, [ is an isomorphism and /’1 is a p-polynomial homomorphism, then

/ is called a p-polynomial isomorphism,

3.3.1. Lemma. If [:AlX;,..., X ]+ AlT}, ..., T, ] is a p-polynomial homomor-
phism, then for any p-polynomial P(X,, ..., Xn)

fP)—P pAlTy, ..., Tal
where P' = PI(TI’ vees T,) is a p-polynomial.

3.3.2. Definition. A discrete valuation ring A’ containing A, with uniformizing
parameter 7' and residue field k' = A'/7", is called a quasi-radical extension of A
if A’ =n'A’ and k'/k is a radical field extension.

We note that if A D Fp, then the morphism Spec A’ + Spec A is radical in the

sense of 0.10. le),

3.3.3, Lemma. For any invertible element a € A and any n >0 there exists a
quasi-radical extension A' D A containing an element a' € A' such that a't™ - a € nA’.

Proof. Let @ be the i image of a under the natural homomorphism A + k. We choose
a radical extension &' = k(\/—') and some finite quasi-radical extension A’ D A
with residue field &' (this can be done because of (EGA), 0 1y 10:3.2). Let a' €A be
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bR . .
mapped into V@ under the natural homomorphism ¢: A’ » A'/7 = k', Obviously
P@)—0@ =@ —a =0

n .
and by the same token a'?” — a €7A’, as required.

3.3.4. Lemma. Let P € AlXy, ..., X, be a p-pclynomial that is irreducible mod-
ulo w and has invertible nonzerocoefficients. There exist a quasi-radical extension
A' D A and a p-polynomial isomorphism f: A'lX,, ..., X)- AT, ..., T,) such that
[Py~ T, €pA' (T, ..., T).

Proof. Let

n M !
P = 2 2 a,-,-Xj-’ .
f==1 i=0

We apply induction on the maximum of the m, with Bjm # 0. Without loss of general-
ity we may assume that m; = max(m_: Bim ; #0). Assume that m, = 0. Then, setting

R[(TI, se ey 7'n)=T[, i=2' ceey Ny

Rl (Tlp as ey Tn) = a;(}(Tl— 2 aloTl) ’

=2
we find that P(Ry, ..., Rn) = T,. The homomorphism X, R(Ty, ..., Tn) obviously
defines a p-polynomial isomorphism A[Xl, cees Xn] - A[Tl, ceey Tn]. Now let my > 0.
If all the Bjm ; = 0 for j> 2, then the polynomial P(X,, ..., Xn) = E’:f;oah.x‘{' is not
irreducible mod 7. Thus we may assume that, say, @2,, £ 0. By assumption my > m,.
By 3.3.3 there exists a quasi-radical extension A’ D A containing the elements

b, =(ali/a2m2)i"m2, i=my, ..., m. Put
Ry = Tu
Rl = Tb i > 31
Ry =Ty—bpTy— ... —buTT"™,

The homomorphism [: X~ Ri(Tl, ceey Tﬂ) obviously defines a p-polynomial isomor-
phism A'[Xl, ey X"] - A'[TI, ey Tn]. We have

azm.Xgm"f‘ alm.Xfm’ + ...+ almleml
= Gom, (Xg+ bm Xy + <. 4+ b X2 Y™ 4 pF (X, X,)

and thus

my—t

P'=PQRy ..., Ry= X aiT? + X auT? +

=0 i==0
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n My
+2 2 T} + pF' (Ty, T).

Ju3 {m=0

Since [ is an isomorphism, the polynomial P'(T, ..., T,) is irreducible. If my > m,,
we lower max(m 1 rees mn) and we can use the induction hypothesis. But if m, =m,,
then we must apply the preceding argument, interchanging T, and T,, and again lower

m,. The proof is complete,

33.5. Lemma. Let F=nX . ~P(X;,...,X ) €AlXy, ..., X 4}, andlet P
have the form P =P + P, + ... +nde, where P, € AlX), ..., X 1,i=0,...,4d
Put

Fi=aYi—Piyn—Yin SAXy, ooy X Yoo -.., Yal
i=1,...,d Y,=0.

Then there exists an isomorphism
frAXy ooy Xan(F)—>A[Xy ooy Xnn Yoy ooy Yai(Frs ..., Fa).

Proof. We define a homomorphism 7:A[X1, ceey Xnﬂ] - A[Xl, cees X0 Yoy
«ves Y ] by setting
7(X,)=X,. fori=1,..., n,

FXs) =Ya+ Ps(Xy, ...\ Xa).

We have

d
T(F (X3 « .oy Xnni)) =7 (“dxnn - 2 wPi(Xy, ..., xrz))

i=0
d
= :t‘Yd “+ ﬂde— 2 JtiP,' = nde -+ Jl’,de
{==0
d-1 d
+ 2 ! (Flﬂ — Yy 4 Y) —ndPy = 2 ﬂi-lF;-
I=0 i=1

Therefore [ defines a homomorphism -

frAIXy ooy XadF)—>ALXy ooy X Yyy ooos YUF - .., Fa).

~
The fact that [ is an isomosphism follows easily from the construction of [.

3.3.6. Lemma. Let F=nX ., -P(X 5.0y Xn) —aQxAX 5 enes Xﬂ) eA[Xl, ves X ik
where P = P(X|, ..., X ) is @ modn irreducible p-polynomial, Then there exists a
quasi-radical extension A' D A and an isomorphism f: A'[X}, ..., X_,J/(F) »
ATY, ..., Y 1 such that



UNIPOTENT GROUP SCHEMES 785

FX)=Ri(Yy ..., Yo)+a®:(Yy, ..., Vo)
where the R, are p-polynomials.

Proof. We may obviously assume that the nonzero coefficients of the polynomial P
are invertible. Applying Lemma 3.3.4, we find a quasi-radical extension A’ D A and a

p-polynomial isomorphism
f].: A, [X],s MR Xn+1]"‘>A’ [7.1’ sy Tm Xnﬂ.]
such that /((F)=nX ., -T;-#Q(T, ..., T).

We write the polynomial Q' in the form

QT oo s T)=Q(Tg .., T) + T Q(Tyy ..., To)
and consider the isomorphism
fa: ATy, oy Tpy Xnad > A'[Ty, ..., Tw S,
defined by the following formula:

RTy=T, i=12 ..., n,

fz (Xn+1) =8— TIQ; (Tl, ceny T,,).

We have

fre h(F)=n(S—Qi(Ty ..., Ta) =Ty

from which, by passing to the quotient ring, we obtain an isomorphism
Fo: A X ooer Xnal(F) > ATy ooy Tne SYR(S —Qi(Tar ... To)) = Th)-

Taking the composition of this isomorphism with the isomorphism
ATy ooy Ton SYRES— Qi T -ovs T) =T =AY, oos Yl
that is defined by the formulas
Tir>Yi, =2, ..., 0

S—>Y:,
Tl = “Yu— :IT.Q; (Y!) s sy Yn-!)v

we find an isomorphism f: A'[Xl, e e X"ﬂ]/(F) - A'[Yl, vy Yu].

From the construction of [ it easily follows that
FX) =Ri (Vg vy Yr) 1@ (Vs oos Y

where the R (Yl’ vees Y ) are p-polynomials.
3.3.7. Proof of'nleorem 3.3. By definition there exists a subset T-= {zl, v
Sy, N] such that A[G] "’A[Xl, veos XAF 1 ooy Fy_ ), where F=a%iX;,
- P;(Xl’ coes Xijo 1 i=1, , N =n, the P, are p-polynomials, and # ’lP
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a) (Reduction to the case when d], = 1, and the nonzero coefficients of the polyno-

mials P, are invertible.) We represent the polynomial P,(X,, ..., Xiy-1) in the form

P, =P® 4 nP® 4 ... 4 P ntipld,

where the P(li) (i=0,...,d; = 1) are p-polynomials with invertible nonzero coeffi-
cients. Applying Lemma 3.3.5, we obtain a homomorphism

712 A[Xl, cees XN]—>A[Y1, ey Yg,_l, Y,‘,, eeos Yigdysr ors YN4a)
(X[#-'PY[, l<i<i1t

Xi =Yg, <IN,
Xq o Yl;*d; - P{d'-l) (Yl, ceny Yil-l))’

inducing an isomorphism

fl: A[XI' tevy XN]/(F) _*A[yp ve ey YN*d‘]/(F;l), veay ngx)),
where

FP =¥t —Yipa—PEV (Y, .., Vi), 2<i<d,

F(ll) = J!Y[‘— P(lo) (Yl, cany yi,—x)-
Since '[\; is a p-polynomial homomorphism, we have

71 (Fz) = F; = ud’Yi.+d‘ - P2 (ny CRICS | Y‘,q»dl—)) - pQ (Yl’ vaey Y‘rﬂ‘r—l)l
where P, is a p-polynomial, We represent Fz' in the form
Fr= iy q,— PO — PP — . — b (P + pr-4iQ),

where the nonzero coefficients of the P(zi) 0<i< d, — 1) are invertible. Applying

Lemma 3.3.5 to F2' y we obtain an isomorphism
fa: AlXy ... Xal/(Fy, F))
i A [Zlv ey ZN-H!,-I»J,]/(Fg.l)r veey ngl)r —F-gl)t very 1_;{24:)),

where
F¥ ==nZ, —P"(Z,, ..., Ziy),
F =nZiwis— Zipia— PV 2y, ..y L)y 2<i< d,,
FO =nZy s, — PP (Zsy ..y Zipayi)s
F;l) = ﬂZi,+d,+t-1—Zi,+d.+t-z — P ;i-l) Ey ees Z"*d‘q) 2= dz

Continuing this process, we eventually obtain an isomorphism

AlXy ..., X\V(F oo Fnen) > AlTy ooy Tsd(Fro +.vy Fionid)s
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where d=d; +...+ den’ and for some subset ' = s ooy iN_"+d} cl1, N] we
have that F’.' =aTi;—P{(Ty, .o, Tij- 1) and the P, are p-polynomials whose nonzero
coefficients are invertible, Therefore we may assume that d]. = 1 and the nonzero coef-

ficients of P are invertible,
b) Since the closed fiber G, of the scheme G is integral, the k-algebra k[Go] is

also integral. We have

EIGY=E[X: ... XulPys ...» Puo)s

where the 51. are the images of the polynomials P, under the reduction homomorphism
A[Xl, vees XN] - k[Xl, cees XN]’ _In particular, the polynomials —P-l.(Xl, cees XN) are
irreducible.

c) (end of the proof). Let

B]=A[X1,...,X1i](F1...., Fj), i=1,..., N —n.

By Lemma 3,3.6 there exists a quasi-radical extension A'DA and an isomorphism
fi: B; =B, QA" — A'[Yp N
such that
fl (X() = Rz (Ylv veay Y.“_l) + Jﬂ’Dg (Yl' caey Yl;-l), 1 é i < il!

where the R{Y, ..., Y;j~1) are p-polynomials. We extend the isomorphism f; to an

isomorphism
Fii By=B, ®aA =B [Xipns -+, XV Xt,—Pa(Xpr « ..y Xip-1)).
- AWy cors Yoo Yoo ooy Y@y — Py (Yy, .oy Yia)
—aQ Yy, -y Vi),
by setting
hX)=hX), 1<i<i,
FX) =Y, i <i<i,

Obviously P;(Yl, vens Yiz_z) is an irreducible p-polynomial. Thus we can again ap-
ply Lemma 3,3.6 and cont'l;nue with an analogous argument. Finally, we obtain for some
quasi-radical extension A D A the desired isomorphism

F: A1G) = Byon @uA > AlZy ...\ Zi)

and thus we have proved Theorem 3.3,
3.4, Corollary. Under the hypotheses of Theorem 3.3 we assume that the residue
field k is perfect. Then G A%.

In fact, since k is perfect, the extension A’ D A of the assertion of Theorem 3.3

necessarily coincides with A.
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3.5. The application of Theorem 3.3 to unipotent groups is based on 2.4.0 and 3.1

Theorem. Let S be a locally noetherian regular integral scheme of dimension < 1
over a field k of characteristic p. Let G be a commutative smooth unipotent S-group
scheme with generic fiber of period p and with connected fibers of dimension n. Then
G is a form of AY relative to the radical topology (cf. 0.10.2).

Proof. If dim § = 0, the assertion is well known (0.7.3c)). Assume that dim S = 1.
Using the standard technique of passing to the projective limit ((EGA), IV.8.5), we may
assume that § = Spec A, where A is a discrete valuation ring. Let K be the field of
fractions of A. In view of 0.7.3¢c) there exists a radical extension K'/K such that
G ®y K'Y G? . Let §' be the normalization of § in K'. Then S’ = Spec A’, where
A' is a discrete valuation ring, and the canonical morphism Spec A’ + Spec 4 is radi-
cal. Now taking instead of G the group scheme G =G Xa §', we find ourselves, be-
cause of 0.7.3¢), in the situation of 2.5. Therefore G’ is a p-polynomial A'-scheme.
Since the conditions of smoothness and connectedness of the fibers are preserved under
flat base change, we can apply Theorem 3.3 to G'. As a result we obtain a quasi-radi-
cal éxtension A” DA’ such that G' ®,r A" & A%#. Since A'> Fp, the morphism
Spec A" » Spec A’ is radical (cf. 3.3.2), and therefore the composition §” = Spec A"
+ Spec A" 5 Spec A is also radical.

3.6. Corollary. In addition to the hypothesesof Theorem 3.5 assume that the gene-
eric fiber G, is isomorphic to G? 7 and that the residue fields of the closed points of
S are perfect. Then G is a form of G, ¢ in the Zariski topology.

This follows immediately from 3.4 and the proof of 3.5.

3.7. Proposition. Let S be a locally noetherian regular integral scheme of dimen-
sion < 1. Every smooth group model of Ga n over S with connected fibers is a form of

Ga,S in the Zariski topology.

The proof of this proposition is precisely analogous to the proof of Theorem 3.5 and
Corollary 3.6, in which instead of Theorem 3.3 we use the following

Lemma. Let G be a smooth model of G,  over A with connected [ibers. Then

GG, ,.

Proof. According to 2.3.0, A[G] = Aly,s ..., yy], where T =[2 N} in our case.
We shall show that | = &.
Assume that I # @. Then A[G] is given by the relations

(i) .
ua‘y‘-_—'yia—'l +Pi(y1y “ ey yi—x)’ l=2.-.., N,

where deg P, <deg'y,. We consider k[G] = &ly, ..., y,l,
) D : )
yip:1 +Pl(,yv---v yl’-l)=0' ‘=2"'°’N'

Ve put B = kly,, y,] C[G]. The inclusion B -+ #[G] defines an epimorphism G » Spec B.
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(That Spec B has a group structure follows from the linear unipotence of G.) From this
we see that Spec B must be a one-dimensional smooth connected unipotent group scheme,

However,
B = X, X,)/XP™P - P (X)), degP (X)) <p"®,

and is not a geometrically integral ring. Therefore I = and AlG) = Aly,), as required.

3.8. In this subsection we offer some comments on the resules of this section.

3.8.1. The proof of Theorem 3.3 is considerably simpler if the ring A is equichar-
acteristic. In fact, Lemma 3.3.1 shows that the image of a p-polynomial with respect
to a p-polynomial homomorphism is again d p-polynomial, This fact allows us to con-
siderably simplify Lemma 3.3.6, and along with this yields a proof of the theorem.

3.8.2 It appears that Corollary 3.4 can be strengthened if instead of requiring that
the residue field be perfect we require the existence of the isomorphism G, = A} for
the closed fiber. For this it is necessary to show that Lemma 3.3.4 holds in this case,
with A’ = A,

3.8.3. The results of 2.3.0 and 3.3—3.6 make the following conjecture plausible.

Conjecture 1. Let S be a normal locally noetherian integral scheme and G a
smooth affine unipotent S-group scheme with connected fibers. Then G is a form of
AY with respect to the fppf-topology. If in addition § is an equicharacteristic scheme,
then the same is true with respect to the radical topology.

We observe that the condition of affineness in Conjecture 1 is essential (cf. Ex-
ample 6.2). If § is a scheme of characteristic zero, then Conjecture 1 is true by vir-
tue of 0.8. L

3.8.4. If dim S = 1, the preceding conjecture would follow from Theorem 3.3 and
the following conjecture.

Conjecture 2. Let A be a discrete valuation ring. Every unipotent group model
of affine space is a p-polynomial A-scheme.

3.8.5. Conjecture 1 is obviously a special case of an assertion of the following
form:

Let S be as in Conjecture 1, and X an affine S-scheme such that the fiber X _ s
Al forall s €5. Then X is a form of Ag in the Zariski topology.

It has been shown by V. 1. Danilov (unpublished) that this assertion is true if n =
1 (cf. 3.7). The preceding assertion is closely connected with a result of Brydski [5].

§4. Composition series
The notation is the same as in 3.0.0.
~
4.1. Theorem. Let G be a unipotent group model of A} over A. Let H be a
normal subgroup of the group Gy; H is isomorphic to AY. Then there exists an affine

group model H, normal in G, such that Hy = H. The quotient G/H exists and is a
group model of the group GK/ﬁ.

Proof. Let K[G] = K[xl, censy xn] and K[GK/m = K[xl, PR F 1] (here we

have used a theorem from (7], IV, §4, 4.1). We will moreover assume that %, is
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primitive modulo x;, ..., x,_; (see[7], 1V, §$4, 4.1). Put B = AlG) NKlxysenny x 1.

The kemel of the homomorphism G -+ Spec B has the ring A[G) Ay, i €Q__ ) asn;tms_l
ring (cf. 2.2 1). The kernel is flat by 2.2.4a); denote it by H. By the above G, Spec B,
H and the homomorphisms H + G and G » Spec B are flat. By construction H, = H,

as required,

4.2, Let G be as in 41. The series of group models
G=G,0G2 ... 2G2...

is called a model of the series Gy =Gy DG, p 2... DG, 2 ..., if the quotients
Gi/Gi+j exist,

Theorem. Let G be a unipotent group model of A™ over A. Then G contains
models of the following series:
a) the composition series whose quotients are Ga,K"
b) the upper and lower central series;
n

c) the characteristic composition series whose quotients are models of G, ..

The proof is achieved by applying Theorem 4.1, taking into account [7], Chapter
IV, $ 4, Theorem 4.1 and also 0.7.3c).

4.2,1. Examples 6.3 and 6.7.5 show that a smooth unipotent group model with con-
nected fibers may not have a series of smooth group schemes with connected fibess.

4.3. Theorem 4.2 is a special case of the following general assertion, whose proof
is based on the deep results of Raynaud and Anantharaman on the existence of quotients

of flat group schemes over one-dimensional bases ([4], [14]).

Theorem. Let G be a flat S-group scheme of finite type over a locally noetherian
one-dimensional regular integral scheme S. Let n be a generic point of S, and let
G, = E‘O 2 El .2 En = 0 be a composition series of the generic fiber G,q. Then
there exists a composition series of the group G which is a model of this series.

Proof. By (EGA), 1V.2.8.5, the scheme-theoretic closures G, of the subgroups E:i
will be flat S-group schemes. It remains to use the results of [4] on the existence and
those of [ 18] on the affineness of the quotients G,/G .y

4.4. We put

pl~1
D, (x) =% ) Chaxe ® .

a=1
Note that in characteristic p we have

@, (x) = D, (x7*).

Lemma. Let L be a field of characteristic p and G a commutative unipotent
group that is isomorphic as a scheme to A]. Then we can choose generators Xipeoey

X of the ring L{G] such that
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() = 2 Yaya®a(x). (+)

j<i a

Proof. By [7], Chapter IV, §4, Theorem 4.1, the group G has a composition series
of the groups G_ ;. By [7], Chapter 11, § 3, 4.6 and Chapter I, $ 4, Corollary 6.6, G
is given by such formulas if n = 2. Apply induction on n. We assume thar the asser-

tion is true for n <t and prove it for n=t+ 1. We have
l-G,>G—-H—>1,

dim H = t, L[H] = L{x,, ..., x,}, and formula (*) holds for n(x)), i <t. Put H, =
Spec L[xl, cees X, 1]. Then we have the exact sequence

1> H, 305 H 1,

where H, = Gd.

The group G is determined by a cocycle a € HZ(Ga, H) (ct. [7], 11, § 3, 4.6). We
have
+ w‘ 3
H? (Goy Hy) ¥ H2 (G, H) = H? Gar H))
(exact at the middle tem). t//*(a) corresponds to formulas of the form (*) by the induc-

tion hypothesis, so we may assume that Y {a) = 0. But then @ €Im ¢, and hence a

is again given by formulas of the form (), as required.

4.5. Theorem. Let G be a unipotent group over k = A/m, isomorphic to Az. Then
there exists an unipotent group scheme G over A such that G, >C, andalso G =
A% . In particular, if the field is perfect, then any smooth connected group over this
field lifts to characteristic 0.

Proof. Let k(] = &x}, ..., x,] and

n (xl') = 2 Z:Eijaq)a (xi)v Eijae k.
j<i a
Ve also choose a,., € A such that the reduction of aa is equal to @,;iq- Weput
AlGl = Aly s -. ., y"] and
M) =2 2 aa®a (4)).
i<i a
It is clear that then the reduction of A[G] is 8, and it is only necessary to check
that these formulas give a group law. It is also clear that it suffices to check these
formulas for n = 2, 7{y;) = 0 and 5(y,) = ®(y,). This is immediate.

4.6. Remark. The hypotheses of Theorem 4.5 are essential. For example, non-
trivial forms of the group G, (see 0.7.2d) if A/ is not perfect) do not lift to unipo-
tent groups in characteristic 0.

In fact, if char K=0 and dim G = 1, then G = Ga,K and thus Proposition 3.7
is applicable.

4.7. Theorem. E.tensions of G_ , by G, 4 overthe ring A have coordinate ring
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Aly,, y,) with the composition law

1) =0, n{y) = ;aimi (), acsA

In particular, the set of extensions is isomorphic to a free module over the noncommuta-

tive ring (A/p)[F], where F is the Frobenius operator (in A/p).

Proof. We shall first show that the second assertion of the theorem follows from
the first. In fact, y, »y;, ¥, ¥, + Ply,) are the only changes of coordinates that do
not change the extension (in case it is nontrivial). For such changes to preserve the
shape of our formulas it is necessary that P(y,) be a p-polynomial, P(y,) = Ebiyfi.
But then in the new coordinates we have

M(9) =0, n (g = 3 (@ + pb) Vi ().

Since, moreover, ,,J(y) (@ (y))i” in A/p, our assertion is proved.,

Let G be an extension of G,a by G, 4 Then GZ A2, i.e. AlG) = Alys y,)
We may assume that the 1mbeddmg Aly 1] > A[G] corresponds to a projection of our ex-
tension. Then we have 7(y,) = 0. Automatically 7(y,) € Aly,] ® Aly,].

We consider the cases char K = 0 and char K = p > 0 separately.

4.7.1. First suppose that char K= 0. Then K[G] = K[x,, x,] and 5(x,) = (x,) =
0. We may assume that x, =y,. In this case y, = O(xl, x ), and in view of the condi-
tions 7(y,) € Aly,] ® Aly,] and 5(x,) = 7(x,) =0 we have y, = bx, + P(x;). We will
show that by admissible changes of variables P(x,) reduces to the form P(x NEDS xp'
and pr, € A. The assertion of the theorem will follow from this with @, = pr.. Let P(x )
=2bix';. Assume that for i > g we have proved that pb, € A and that we may assume

the validity of the equality

2 biXi = 2 r,-xf‘

i>q

We shall show that if deg b,_,x["' £ p% then b _, €4; then, applying 2.3.1.3,

we may assume that b, _, = 0. In fact, setting z = Elqule’ we have
n (Z) = Z Pftq)i (Xl), pri e A.

Applying 2.3.3 to n(bq_lxlq"l), we find that bq__IC‘:'_l €A forall i €[1, g-2).

If - 14 p%, it follows from this that b _; € A, as required. If g- 1= p%, then
from 2.3.3.3 we find b -p € A, which completes the induction step.

4,7.2. Now if char K p, then KIG] = Klx), x,), x; =y, 5(x,) = b @ (x,) and
E €K (cf. [7] Chapter II, § 3.4.6 and Chapter 111, §4 Corollary 6.6). We have ¥, =

, + Xb.x}. Replacing x, by bx,, we obtain b= 1 and n(x ) =32a®(x)). Carrying
out the mducnon as above, we find that (cf. 2.3.2.3) 2b x = Er;:1 . whence 7ly,) =
Za®(x,), as required.

4.7.3. Remark. The proof of 4.7.1 actually does not use the condition that A is
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an equicharacteristic discrete valuation ring. Namely, let A be a local ring and K its
field of fractions, char K =0. Let B be the integral closure of Z in A. Then B is
a discrete valuation ring. Let 7 be the uniformizing parameter of B, p = char B/7, and
D=A®Q, andlet G be an extension of G, 4 by G, 4. Then, according t0 0.8.1,
Gp = G p- Since A[G] = Aly, y,1, 7ly,) = 0 and r](yz) € Aly,] ®A[y1], we have y,
= bx, + P(x \)» where b €Q and P(x,) € D[x,]. In particular, 7P(x,) € Alx ] for suit-
able a.

After these remarks, the proof of 4.7.1 goes through without change and leads to

the following result.

Theorem. Let A be a local integral ring with field of fractions of characteristic
0 and residue field of characteristic p > 0. The conclusions of Theorem 4.7 hold over A.

§5. Cohomology of commutative unipotent groups

5.0. The notation is that of 3.0.0. In addition, let § = Spec A, and let 5 be the
generic point of A and s the closed point of A, In this section we compute the coho-
mology of commutative unipotent groups G over A. The cohomology H;(X, G) is con-
sidered with respect to the fpge-topology (a = 1), the fppf-topology (a = 2), and the
&tale topology (a = 3) on the scheme X.

All the group schemes considered in this section are assumed to be commutative.

(13

5.1. The following results relate to the ‘‘comparison theorems’’ ‘for cohomology
with respect to the various topologies:

5.1.1 (Grothendieck [8]). If G is a smooth group scheme over an arbitrary scheme
X, then Hi(X, G) = H} (x G), i >0,

5.1.2 (Mxyamslu [10]) For any X-group scheme G, H (X Gz ;(X, G

5.2. We recall the standard computation of the cohomology of '‘elementary’’ uni-
potent groups over a field k& of characteristic p > 0,

5.2.0. The following exact sequences are basic for these computations:
0 — &, — G, — Gg —0, ©)

0 (Z/pZ)s— Ga~> G, — 0. (%%)

Here F:x + x* and P:x + xP o x. The first of these sequences is exact only in
the fpqc- and fppf-topologies: the second is also exact in the étale topology.
5.2.1. By 5.1.1 and (SGAA), 1X.4.3, for any affine base X
H'(X,G,x) =0, i>G.

5.2.2. Applying the exact sequences of cohomology groups to sequence (*) of
5.2.0, from 5.2.1 we obtain

Hl' b _{k+/kp i—l
e =170, " iz t@=12.

Since the restriction of the sheaf a, to S¢, equals zero, then

Hi(k,a,) =0, i>0.
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5.2.3. Analogously, using 5.2.1 and the sequence (*%) of 5.2.0, we find that

. ZpZ, =0,
Hok, @ip2)s) = kY0 (RY), i=1
0, i>1

(@=1,2,3).

By Witt's theorem (cf. [17], p. 447), if k is a local field, then
k*/p (k%) =Hon (k*/%**, Q/Z).
5.2.4. Now if G is an étale k-form of (Z/pZ),, then it is trivialized on some sep-

arable extension k'/k of degree dividing p — 1. By (SGAA), IX, 5.2, it follows from this

that
0 =Hi (%, @/pZw) = Hy(k G)=0.

Since G is smooth, Hi(k, G) = Hi(k, G) for a = 1, 2.
5.2.5. Collecting together the results of 5.2, 1-5.2.4, we obtain the following as-

sertion:

Lemma. Let G=G, x» @, oran étale k-form of Z/pZ. Then for a =1, 2 and 3
we have H: (k, G =0 /or i> 2. Furthermore, if G is connected and k is perfect, then
Ha(k, G)=0 for i>1 (a=1, 2, 3).

5.3. The computation of the cohomology of arbitrary unipotent groups over k is
based on the existence of a composition series of elementary groups (0.7.3) for such
groups.

In particular, we obtain the following

Proposition. Let G be a unipotent k-group. Then Hi(k, G)=0 fori>2(a=1,
2, 3). If, in addition, G is connected and k is perfect, then Hi{k, G} =0 for i> 1
(a=1, 2 3). If G is connected, then H;(k, G)=0,i>1, for any field k. Moreover,
if k is algebraically closed, then Hi(k, G) =0 for i>1 and a =1, 2, 3.

5.4. In this subsection we shall prove the following result.

Theorem. Let G be a unipotent S-group. Assume that S is equicharacteristic and
G, ¥ AZ. Then HS, G) =0 for i>2 and a = 1,2, 3. If k is algebraically closed,

then this is also true for i > 1.

Proof. By 4.3 it suffices to prove the theorem while assuming that G is a group
model of G an Applying Lemma 2.6 and 5.2.1, we obtain Hi(S, G) = 0 for i > 2 and
all a, Moreover, H (S G) is the cokemel of the homomorphism AN 5 AN=1 Gefined

by the formula

@y .. ay) > (Fy@n )y ..., Fnlay, .., an))

where the F . are the p-polynomials of 2. 6. If & is algebraically closed, this mapping
is obvnously surjective. Thus in this case H.(S, G) = 0, as required.
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5.5. Corollary. Let G be a unipotent S-group scheme. Assume that char K =p>0
and that the generic fiber G is smooth and connected. Then for a = 3 we have
Hﬁl(S, G)=0 for i > 2. This is also true for a = 1 and 2 if G is smooth.

Proof. Let K'/K be a radical extension such that G,® K'Z A% (0.7), and let
S’ be the normalization of S in K'. Then §’' » S is a radical integral surjective mor-
phism, from which it follows that H;(S, G = H;(S', GS') for i > 0 (SGAA, VI, 1..2).
It remains to apply Theorem 5.4 and Assertion 5.1, L

$6. Examples and counterexamples

In this section we give examples, mostly showing the limits at which one or an-
other classical assertion or an assertion of the present paper ceases to be true. Ve
also have examples showing that the conditions imposed in the definitions and theorems
are essential.

Below ZP denotes the ring of p-adic integers, ZpﬂtB the ring of formal power se-
ries over Zp. If A is azring, then K is its field of fractions.

Ve let

1 Pt o t
n@=p@—1®a—a®l, O (= P > Ca@ar-e.
a=1

6.1. An example of a group that is unipotent but not linearly unipotent over a non-
reduced ring. Let A = Z,[u]/u?, AlG] = Alx], n(x) = ux ® x, ((x) = = x + ux? and elx) =
0. The unique fiber of this group is unipotent. In order to get rid of the term ux ® x,
we can only use the substitution x -+ ax + uP(x), @ € A* However, such substitutions
have no influence over ux ® x, i.e. the group is not linearly unipotent.

6.2. An example of a unipotent group over Zpl[tll that is quasi-affine but not af-
fine (due to Raynaud [12], VII, 3). Let A = Zp[[t]], AlG) = Alx, y, 2)/pz =ty + x + =P,
7x) = 7y} = 0 and 7(z) = ®,(x). Then G is a smooth A-group. Over Apy = Op[[t]l it
is isomorphic to G2 = Spec A(p)[x, ¥l (cf. 0.7.20). Over A,y it is isomorphic to
Spec A(t)[x, 2] (since y = (pz—x® = x)/1) and is an extension of G, = Spec A(t)[x, y}/(x)
by G, = Spec A(t)(x]‘

Let s ={(p, ). We have G = Spec Fp[x, ys 2}/(x? + x). In particular, G is not
connected. The connected component G° of the identity of G is a smooth quasi-affine
group ((SGAD), VIg, 3.10) with connected fibers. Since profG_Go(G) = 2, it follows
that T(G) » T(G?) is bijective (cf. [12], VIL.3), and since G £ G, G° is not affine.
We note that here all the fibers of G° are affine spaces AZ,

6.3. An example of a smooth group with connecied fibers over Z, that does not
have a composition series consisting of smooth connected group schemes. Take

A=1Z, AlGl=Alx,y 222=x'+y+y,

@) =n@) =0, 1@) =0, () + D, ()
We have Fz[G] = Fz[v, w)], where v = x4 x4 ysw=z+ 1% 5(v) =0 and Ww) = (Dz(u).
From this we see that for G to be an extension of G by G, over Z, it is necessary
that A[G] contain an element T = x> + x + y mod 2- A[G] such that 7 = ax + By. But
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such an element does not exist and thus G does not have a series of Ga's (cf. 4.7,
6.7.5).

However, the embedding A[x] + A[G] defines a homomorphism whose kemel is
Spec Aly, 2]/(2z = y2 +y). It is nonconnected, although it is smooth. On the other
hand, the embedding Aly] +» A[G] defines a homomorphism whose kernel is

Spec Afx, 2}/2z=x".
Its fibers are connected, but it is not smooth.
6.4. An example of a smooth affine unipotent group with connected fibers over
A =1Z,[1], for which there does not exist a model (cf. 42 of the upper and lower central

series. Take
AlGl=Alx, y, 2, u)/2u =12 + x* + g,
M) =1 =0 1@ =2x®y,
N =2Rz+2xQRQzy+22x Ry + U2 Q ¥+ x ® x.

G is a connected smooth A-group, and G ® Q is isomorphic to the group of unipo-
tent matrices of order three. The imbedding K[x, y] » K[G] defines a homomorphism of
G ®K into Gi,K (quotient modulo the center).

We will show that a model of the lower (upper) central series of G (cf. 4.2) con-
tains no flat groups. In fact, such a series must be defined by the embedding K[x, y] n
ALG) » A[G). The kernel of the corresponding homomorphism is Spec Alz, u)/(2: = 2%).
This group is not flat (on the line ¢ = 0) (see 0.3.2).

6.5. An example of a flat affine commutative unipotent group over the ring A =
F,[1, which does not have a composition series consisting of flat one-dimensional

groups. We rake
A [G] =A [x, Y, Z]/tlz = tzyz + x2 + ax,

n(x) =0, 7y =t0:1(x), ) =HD,(x).

This group is flat. It is smooth (but not connected) for a = 1, and its fibers are con-
nected for a = 0. Over le[tzll((tl)) it is isomorphic to a Witt group. Every homomor-
phism of the Wit group G, in G,  is given by an embedding KIAx)] + K[G] = Kx, y],
where f(x) is a p-polynomial. The kemel of this homomorphism is Spec Klx, y]/AA)).

Assume that G has a composition series of one~dimensional groups over A, Then,
by what has been mentioned above, the projection of this series is given by an embed-
ding A[G] ® K[/(x)] » A[G]. The kemel of this homomorphism is

Alx, y, 2l (f(x), t,iz—ty*— X*—ax).

This last scheme has dimension 2 at the point (‘1’ lz) and thus is not flat (see 0.3.2).

6.6. An example of a smooth connected affine commutative unipotent group over
A= Zz[ﬁlﬁt] that does not have a composition series consisting of flat groups. We
take
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AlG) = Alx, y, 2, u)Y 22=x +ty%, V2u=y+1?

MWD =11)=0, 1x=V2ty®y,
MW =V22Qz+2%2yQRy+ WyRzy + VILL R -

Over K the homomorphism of projection is defined by an embedding of Klax + byl
into K[G} = Klx, y), a, b € K. Therefore over A the homomorphism of projection must
be defined by an embedding of M = K{ax + by] NA[G] in A[G]. We may obviously as-

sume that a, b € A,
We assert that over the line ¢t = 0 the kernel of any such homomorphism is not flat.

In fact, A/(DG) = Alz, 4], x = 2z, y = 2u. Therefore M® A/(1) C 2A/(1)[G], from which
it follows that the kernel is not flat (see 0.3.2).

6.7. Some models of Gi over a discrete valuation ring A with field of fractions
of characteristic zero. We consider affine group models of GZ over A, where A isa
discrete valuation ring, char K=0 and char A/m = p £ 0. We have

A[Gl = Alx, y, 2)/nd+12 = Z a;x? 4 2 biy?, a, b A,

i=0 i=0

74D, (G, be) = A

nx) =n(y) =0,

m n
n@E)=nd1.p [2 a:D; () -+ ) bid; (y)J-
| {=1 (=1
The set of such groups is denoted by @. We will call the numbers 4, a, for i€
[0, m] and b for j €[0, n] the parameters of the group G.
6.7.1 Let Ay= A/7%*!, and let Ad[F] be the additive group of noncommutative
polynomials of F whose coefficients lie in Ad’ where Fa = a’F, a ¢ A
Furthermore, let 11, = (d, A;[F])- We associate a set of parameters d, (ai), (bi)
to an elemen:Holf Hd according to the rule: let a. be a vector with coordinates (ai, bi),

taken mod 7" . Then to our set we associate {(d, EalFi) € Hd.

Lemma. If 14, (a), (b)} and 14, (ai’ ) (bl.')! are two sets of parameters that cor-

respond to the same element of the set 11, then these sets yield isomorphic A-groups.

+ ..
Proof. We have al.' =a,+ ciﬂdJrl and bi' = b,. + dirrd 1 The substitution
22— Zcixﬂi —_ Zd,yp'

takes one group into the other.

We will denote by G, where w €1l ,, any A-group whose parameters are reduced
in w.

6.7.2. The group gd = GLI(Ad) X GLZ(Ad) acts on Il ; according to the formula
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(», D) (d, S F‘) = (d, an‘r,-r‘)
(GL; acts on the left and GL, on the right).

Lemma. Let ¢, 0 €Il . The groups G, and G¢ are isomorphic if and only if gw
= ¢ for suitable g Egd.

Proof. The A-module Ax + Ay is uniquely isolated in A[G] as the A-module of
primitive elements., Therefore x and y are determined up to the substitution x » ax +
Bys y » yx + Oy, det(;g) € A* We denote this matrix by D. Since ndﬂlp, and since

(@x + By = 0" + §”°y" moip,

(vx + 89y = (""" + 8"y )mod p,

in view of Lemma 6.7.1 we can define an action of GLZ(Ad) on Hd that agrees with
the one described above.
In order to preserve the shape of the formulas, we can only admit for z the substi-

tution
z>hz+ 3 cux? by diy?’,

which in view of Lemma 6.7.1 reduces to replacing the parameters a; and b, (modulo
ndﬂ) by /\a'. and )\bi. This gives an action of GL, which coincides with the one de-

scribed above.
Now if two groups G, and Gy are isomorphic, then by what was mentioned above

there must exist a substitution
x—>ax+ By, y—vx+ 8y, z—>hz+ o'+ Sdy

that takes one set of parameters into the other, which proves our assertion.
6.7.3. Let H , be the group of automorphisms of the group G2 over 4 . H  is
d group p group G d d
generated by transformations from GLZ(Ad) and transformations of D:

Xx—x+ donZa‘-xﬂ‘,

Y=y +dn Fhye + 3 yix?

(where d) =0 if d=0;d, =1 if d#0).
Put Wd = GL, x Hd and define an action of D on Il by the formula

(d, Zr,-F') > (d, Z?,- F‘),

where

~p o~

ri= (f[) ri), r1 (f,, f"), ;; = Z r; (udﬁa)pa’
o+f=i
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Fimrit X ro@d)”+ 3 vt

S+t=i S4l=i
This action extends to an action of ?(d on nd.

Lemma. Let ¢, w €Il The groups G, ® A, and G, ® A, are isomorphic over
A, if and only if hw = ¢ for suitable b €1 ;.

The proof is different from the proof of the preceding assertion only in that the mod-
ule of primitive elements now consists of the p-polynomials Edi' xpi 4 Ed:.'ypi in x and

y; and Hd is precisely the group that preserves this module.

6.7.4. Corollary. Let w €Il . The isomorphism classes over A of the A-groups
belonging to G which over A, are isomorphic to G, ® A, are parametrized by the ho-
mogeneous space GLZ(Ad)\}(d. In particular, this set is infinite (and even infinite-
dimensional).

6.7.5. Corollary. Let the field k = A, be perfect, and let a™ = p. Then for each
smooth connected group over k there exist GLz(k)\Hm_ | nonisomorphic A-groups that
reduce to the same group. Only one of these groups (up to isomorphism) admits a smooth
composition series.

Proof. It suffices to construct such a group. It is given by one of the sets d=m
-Lay=1,a,=0,i>0,b €A (cf. 4.7). Now apply the preceding assertion.

6.7.6. Suppose k is not perfect. The forms of G, over k are enumerated in
0.7.24d).

~
Corollary. For any k-form G of the group G , there exist infinitely many smooth
affine group models of GZ x With connected fibers over A, which over k have the series

05>Gop—> GRG0,
If p is ramified in A, then there exist an infinite number of models of Gi'K over A such

that G, = Ga’K % G.

Proof. That there are infinitely many follows from 6.7.4. Suppose G is given by

the equation

m
ypn= 2 aixpiy a0#= 0’ alEk

=0

(cf. 0.7.2d)). Put w = (0, 2rFY), where r,= (@, 0) for idnyr =(ad ,-1) and @, =
@, mod n. Then w €1l and

Ga.» = Spec kix, 4, z]/(yp" e 2 a.-xPi> .

The mapping k[x, y1/(y¢™ - Taxt’) » k(G ) defines a homomorphism G, e G. Its
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kemel is Spec k[z] = G, In 1y ¢ A% then Gor = ¢ x G, . (in view of formula
6.7).
Received 8/MAY/73
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