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1. Introduction

Let K be an algebraically closed field, and X be a projective surface defined over
K. The group of automorphisms Aut(X) acts on the Néron-Severi group of X. This
action preserves the intersection form and the canonical class KX , and therefore
provides a morphism from Aut(X) to the group of integral isometries O(K⊥

X) of
the orthogonal complement K⊥

X . When X is rational, the image satisfies further
constraints: It is contained in an explicit Coxeter subgroup WX of O(K⊥

X), and WX

has infinite index in O(K⊥
X) as soon as the rank ρ(X) of the Néron-Severi group of

X exceeds 11.
A natural problem is to describe all projective surfaces X for which Aut(X) is

infinite and its image in this orthogonal or Coxeter group is of finite index. When
K is the field of complex numbers, the problem asks for a classification of complex
projective surfaces with maximal possible groups of isotopy classes of holomorphic
diffeomorphisms.

We solve this problem when X is a rational surface. It turns out that this is the
most interesting and difficult case. In Section 7.2 we briefly discuss other types of
surfaces; one can treat them by more or less standard arguments.
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864 SERGE CANTAT AND IGOR DOLGACHEV

1.1. Automorphisms of rational surfaces. Let X be a rational surface defined
over K. The Néron-Severi group of X coincides with the Picard group Pic(X);
its rank ρ(X) is the Picard number of X. We denote by Aut(X)∗ the image of
Aut(X) in the orthogonal group O(Pic(X)). There are two alternative possibilities
for Aut(X) to be infinite.

The first occurs when the kernel Aut(X)0 of the action of Aut(X) on Pic(X)
is infinite. In this case, Aut(X)0 is a linear algebraic group of positive dimension
and Aut(X)∗ is a finite group (see [25]). All such examples are easy to describe
because the surface X is obtained from a minimal rational surface by a sequence of
Aut(X)0-equivariant blowups. Toric surfaces provide examples of this kind.

In the second case, the group Aut(X)∗ is infinite, Aut(X)0 is finite, and then
X is obtained from the projective plane P2 by blowing up a sequence of points
p1, . . . , pn, with n ≥ 9 (see [35]). The existence of such an infinite group Aut(X)∗

imposes drastic constraints on the point set P = {p1, . . . , pn} and leads to nice
geometric properties of this set. There are classical examples of this kind as well as
very recent constructions (see [20], [3], [31], [40]). Our goal is to classify point sets
P for which the group Aut(X)∗ is the largest possible, in a sense which we now
make more precise.

1.2. The hyperbolic lattice. Let Z1,n denote the standard odd unimodular lat-
tice of signature (1, n). It is generated by an orthogonal basis (e0, e1, . . . , en) with

e20 = 1, and e2i = −1 for i ≥ 1.

The orthogonal complement of the vector

kn = −3e0 + (e1 + · · ·+ en)

is a sublattice En ⊂ Z1,n. A basis of En is formed by the vectors

α0 = e0 − e1 − e2 − e3, and αi = ei − ei+1, i = 1, . . . , n− 1.

The intersection matrix (αi · αj) is equal to Γn − 2In, where Γn is the incidence
matrix of the graph T2,3,n−3 from Figure 1. In particular, each class αi has self-
intersection −2 and determines an involutive isometry of Z1,n by

si : x �→ x+ (x ·αi)αi.

By definition, these involutions generate the Coxeter (or Weyl) group Wn.

• • • • • •

•

. . .
s1 s2 s3 s4 sn−2 sn−1

s0

Figure 1. Coxeter-Dynkin diagram of type T2,3,n−3

1.3. Automorphisms and Coxeter groups. From now on, X is a rational sur-
face for which Aut(X)∗ is infinite. We write X as the blowup of P2 at n points p1,
..., pn with n ≥ 9; some of them can be infinitely near points and, by convention,
j ≥ i if pj is infinitely near pi. We now describe known constraints on the structure
of the group Aut(X)∗.

A basis (e0, . . . , en) of Pic(X) is obtained by taking for e0 the class of the total
transform of a line in P2, and for ei, 1 ≤ i ≤ n, the class of the total transform of
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AUTOMORPHISMS AND COBLE SURFACES 865

the exceptional divisor obtained by blowing up pi; in particular, the Picard number
ρ(X) is equal to n + 1. This basis is orthogonal with respect to the intersection
form: e20 = 1, e2i = −1 for i ≥ 1, and ei · ej = 0 if i �= j. We call such a basis
of Pic(X) a geometric basis. A geometric basis makes Pic(X) isometric to the
lattice Z1,n, by an isometry which maps ei to ei. Under this isomorphism, the
canonical class

KX = −3e0 + e1 + · · ·+ en

is mapped to the element kn ∈ Z1,n. We denote by (αi) the basis of K⊥
X corre-

sponding to (αi) under this isomorphism, i.e.

(1) α0 = e0 − e1 − e2 − e3, α1 = e1 − e2, . . . , αn−1 = en−1 − en,

and by si the involutive isometry of Pic(X) which is conjugate to si. By definition,
the group WX is the group of isometries of Pic(X) generated by these n involutions;
thus, WX is isomorphic to the Coxeter group Wn. It is known that the group WX

does not depend on a choice of a geometric basis (see [17], Theorem 5.2, page 27).
The group Aut(X)∗ acts by isometries on Pic(X) and preserves the canonical

class. According to Kantor-Nagata’s theorem (see [27], Theorem XXXIII, [35], p.
283, or [17], Theorem 5.2), the group Aut(X)∗ is contained in WX . Thus, we get a
series of inclusions

Aut(X)∗ ⊂ WX ⊂ O(Pic(X);KX) ⊂ O(Pic(X)),

where O(Pic(X)) is the orthogonal group of Pic(X) with respect to the intersection
form, and O(Pic(X);KX) is the stabilizer of the canonical class KX .

1.4. Cremona special point sets. When n ≤ 8, Wn is a finite group. We say
that the point set P := {p1, ..., pn} is Cremona special if n ≥ 9 and the group
Aut(X)∗ has finite index in WX .1 A rational surface obtained by blowing up a
Cremona special set will be called Cremona special. In this sense, Cremona special
surfaces with fixed Picard number are rational surfaces with largest possible discrete
automorphism groups among all rational surfaces with the same rank of the Picard
group.

Our goal is to classify Cremona special point sets, a problem that has already
been mentioned by Arthur Coble in his book [10], p. 278 (see also [20] and [25]).

Two kinds of such sets have been known since the beginning of the last century.
They are general Halphen sets of 9 points and general Coble sets of 10 points (see
[10]). Brian Harbourne showed in [24] that, in characteristic p > 0, and for any
integer n ≥ 9, a general set of n nonsingular points on an irreducible cuspidal cubic
curve is Cremona special; for this, he employed the fact that all such points are
p-torsion points in the group law on the set of nonsingular points on the cubic
curve. When n = 9, Harbourne sets are particular cases of Halphen sets.

We discuss the geometry of Halphen and Coble point sets in Sections 2 and
3, prove that the general ones are indeed Cremona special, and describe precisely
what “general” means in this context. By definition, the point set is unnodal if its
blowup does not contain smooth rational curves with self-intersection equal to −2
(also called nodal or (−2)-curves). This terminology is borrowed from the theory
of Enriques surfaces, where it is known that the isomorphism classes of unnodal
surfaces form an open subset in the moduli space. A surface obtained by blowing
up an unnodal set is called unnodal. We show that unnodal sets form an open

1Coble called such subsets special, so we somewhat deviate from his terminology.
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866 SERGE CANTAT AND IGOR DOLGACHEV

Zariski subset in the variety of point sets defining Halphen and Coble surfaces, and
that Cremona special Halphen and Coble surfaces are exactly the unnodal ones.

Harbourne examples are defined at the beginning of Section 5 and are discussed
in Section 6.1.

Then, our main result shows that the examples constructed by Halphen, Coble,
and Harbourne exhaust all possibilities of Cremona special point sets. As a corol-
lary, if a point set P is Cremona special, then it is unnodal.

Main Theorem. Let K be an algebraically closed field. Let P be a Cremona special
point set in P2

K
. Then P is unnodal and one of the following cases occurs:

• n = 9 and P is a Halphen set;
• n = 10 and P is a Coble set;
• n ≥ 10, char(K) > 0, and P is a Harbourne set.

Conversely, any such unnodal set is Cremona special.

As a corollary, if a rational surface X is Cremona special, then −KX or −2KX

is effective.

Remark 1.1. a. As explained in Section 7, there is a stronger version of this theorem
which does not assume that K is algebraically closed, but this requires a careful
definition of Cremona special point sets. Nonrational surfaces are dealt with in
Section 7.2.

1.1. b. When WX is infinite, it is Zariski dense in the real algebraic group
O(K⊥

X⊗R). Thus, a natural question is the following. If X is a rational surface and
Aut(X)∗ is infinite and Zariski dense in O(K⊥

X⊗R), does it follow thatX is Cremona
special? In other words, is it possible to generalize our Main Theorem under the
weaker assumption that Aut(X)∗ is infinite and is Zariski dense in O(K⊥

X ⊗ R)?
Since W9 contains a finite index, free abelian group of rank 8, every Zariski dense
subgroup of W9 has finite index. Thus, the problem concerns rational surfaces with
Picard number at least 10.

1.1. c. There is a notion of Cremona special point sets in projective spaces of
higher dimension and in their Cartesian products. Interesting examples of such
sets are known (see [10], [20], [19]). Unfortunately, the methods of this paper are
specific to dimension 2 and do not extend to the higher-dimensional case.

1.5. An action of Wn on point sets and its periodic orbits. Consider the va-
riety (P2)n and the diagonal action of PGL3 on it. Consider the GIT-quotient P2

n of
the action. It turns out that the groupWn acts on P2

n by birational transformations;
this Cremona action is described in chapter VI of [20].

Let Γ be a subgroup of Wn. Let (p1, . . . , pn) be an ordered stable set of distinct
points representing a point p ∈ P2

n. Let Xp be the surface obtained by blowing up
the projective plane at p1, . . . , pn; its isomorphism class depends only on p. The
group Pic(Xp) is isomorphic to Z1,n, with an isomorphism depending only on p;
we fix such an isomorphism, and the corresponding isomorphism between WX and
Wn.

If p is contained in the domain of definition of γ and γ(p) = p for all γ in Γ,
then there exists a subgroup Γ′ ⊂ Aut(Xp) such that the action of Γ′ on Pic(Xp)
and the identification Wn ∼ WXp

provide an isomorphism Γ′ → Γ. In other words,

points p ∈ P2
n which are fixed by the group Γ correspond to rational surfaces on

which Γ is represented by a subgroup of Aut(Xp).
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AUTOMORPHISMS AND COBLE SURFACES 867

Thus, our Main Theorem classifies periodic orbits of the group Wn, for n ≥ 9,
i.e. for infinite Coxeter groups Wn. This provides a dynamical interpretation of
the Main Theorem in terms of birational actions of Coxeter groups.

Remark 1.2. There are other nice examples of algebraic dynamical systems for
which periodic orbits are related to the construction of interesting geometric objects.

One of them is given by Thurston’s pull-back map. If F : S2 → S2 is a (topolog-
ical) orientation-preserving branched covering map of the sphere S2 with a finite
post-critical set2 PF of cardinality n, one can ask whether F is equivalent to a
holomorphic endomorphism f of the Riemann sphere P1(C), in the sense that

F = φ ◦ f ◦ ψ,
where φ and ψ are homeomorphisms which are isotopic relative to PF . The map
σF defined by Thurston acts on the Teichmüller space of S2 with n marked points;
fixed points of σF correspond to holomorphic structures on the sphere for which F
is realized by an endomorphism f . This situation is similar to the one studied here,
with σF in place of Wn and the Teichmüller space replacing P2

n. We refer to [22]
for a precise description of Thurston’s construction.

Another similar situation, with the mapping class group of a surface Σ (in place
of Wn) acting on the character variety of the fundamental group π1(Σ) (in place
of P2

n) is related to hyperbolic structures on three-dimensional manifolds, and to
algebraic solutions of Painlevé’s sixth equation (see [7] and the references therein).

2. Halphen surfaces

In this section, we describe Halphen surfaces, Halphen pencils of genus 1 curves,
and their associated point sets. We then show that unnodal Halphen point sets are
Cremona special. Most results in this section are known to experts, but may be
hard to find in the literature, and will be used in the following sections.

We assume some familiarity with the theory of elliptic fibrations over fields of
arbitrary characteristic and refer to [12], Chapter V, for this topic.

2.1. Halphen surfaces of index m. By definition, a (−n)-curve on a smooth
projective surfaceX is a smooth rational curve with self-intersection −n. The genus
formula shows the following.

Lemma 2.1. Let X be a smooth projective surface. Let n and l be positive integers.

(1) Assume −KX is nef. If E is a (−n)-curve, then n = 1, or n = 2 and
E ·KX = 0.

(2) Assume that the linear system |−lKX | contains a reduced, irreducible curve
C with C2 < 0. If E is a (−n)-curve, then n = 1, or n = 2 and E ·C = 0,
or E = C.

A smooth rational projective surface X is a Halphen surface if there exists an
integer m > 0 such that the linear system | −mKX | is of dimension 1, has no fixed
component, and has no base point. The index of a Halphen surface is the smallest
possible value for such a positive integer m.

LetX be a Halphen surface of indexm. ThenK2
X = 0 and, by the genus formula,

the linear system |−mKX | defines a genus 1 fibration f : X → P1, which is elliptic

2The post-critical set is the union of the images of the set of critical points of f under positive
iterations of f .
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868 SERGE CANTAT AND IGOR DOLGACHEV

or quasi-elliptic if char(K) = 2 or 3. This fibration is relatively minimal in the
sense that there is no (−1)-curve contained in a fiber.

Proposition 2.2. Let X be a smooth projective rational surface. Let m be a positive
integer. The following four properties are equivalent:

(i) X is a Halphen surface of index m;
(ii) | −KX | is nef and contains a curve F0 such that OF0

(F0) is of order m in
Pic(F0);

(iii) there exists a relatively minimal elliptic or quasi-elliptic fibration f : X →
P1; it has no multiple fibers when m = 1 and a unique multiple fiber, of
multiplicity m, when m > 1;

(iv) there exists an irreducible pencil of curves of degree 3m with 9 base points
of multiplicity m in P2, such that X is the blowup of the 9 base points and
| − mKX | is the proper transform of this pencil (the base point set may
contain infinitely near points).

In the proof of (iii)⇒(iv) below, the classification of minimal rational surfaces
is used. Recall that a minimal rational surface is isomorphic to P2 or to one of
the Segre-Hirzebruch surfaces Fn = P(O ⊕ O(−n)),3 with n ≥ 0 and n �= 1. If
n = 0, the surface is isomorphic to P1×P1 and, if n = 1, the surface is not minimal
since it is isomorphic to the blowup of P2 at one point. For all n ≥ 1 there is a
unique irreducible curve on Fn with negative self-intersection (equal to −n). It
is defined by a section of the P1-bundle Fn → P1 corresponding to the surjection
O ⊕O(−n) → O(−n) ([26], §V.2).

Proof of Proposition 2.2. Under assumption (i), the Riemann-Roch formula on a
rational surface and Serre’s Duality,

h0(D) + h0(KX −D) = h1(D) + 1
2D · (D −KX) + 1

and K2
X = 0 imply that h0(−KX) > 0. Let F0 be an element of the linear system

| −KX |.
We now prove (i)⇔(ii). The exact sequence

(2) 0 → OX → OX(nF0) → OF0
(nF0) → 0

together with h1(X,OX) = 0, because X is rational, show that

h0(OX(nF0)) = 1 + h0(OF0
(nF0)).

Since F0 is a nef divisor and F 2
0 = 0, the restriction of OX(nF0) to each irreducible

component of F0 is an invertible sheaf of degree zero. The curve F0 is of arithmetic
genus 1, so we can apply the Riemann-Roch Theorem on F0 (see [33], Lecture 11)
to conclude that h0(OF0

(nF0)) > 0 if and only if OF0
(nF0) ∼= OF0

if and only if
h0(OF0

(nF0)) = 1 .
This shows that the index m can be characterized by the property

m = min{n : h0(OX(−nKX)) = 2} = min{n : h0(OF0
(nF0)) > 0},

and the equivalence (i)⇔(ii) follows from this characterization.
(i)⇒ (iii) The pencil |−mKX | defines a morphism f : X → P1 with general fiber

of arithmetic genus 1. The generic fiber Xη is an irreducible curve of arithmetic
genus 1 over the field K(η) of rational functions on the curve P1. Since X is smooth,

3Here we adopt Grothendieck’s definition of the projective bundle associated to a locally free
sheaf.
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Xη is a regular curve over K(η). It is known that it is smooth if char(K) �= 2, 3,
so that in this case f is an elliptic fibration (see [12], Proposition 5.5.1). If it is
not smooth, then a general fiber of f is an irreducible cuspidal curve, so that f
is a quasi-elliptic fibration. As explained above (just before Proposition 2.2) the
fibration f is relatively minimal.

Since X is a rational nonminimal surface, there exists a (−1)-curve E on X
satisfying E ·KX = −1. This shows that KX is a primitive divisor class, i.e. KX

is not a multiple of any other divisor class. If m = 1, this implies that there are
no multiple fibers. If m > 1, this implies that the multiplicity n of any multiple
fiber nD divides m. Since |mF0| is a multiple fiber of multiplicity m, the class of
the divisor m

n F0 −D is a torsion element in the Picard group of X. Since X is a
rational surface, this class must be trivial, and we conclude that f has a unique
multiple fiber, namely mF0.

(iii)⇒(iv) Since the fibration f is relatively minimal, the canonical class is pro-
portional to the class of the fibers of f (see [1], §V.12); in particular, K2

X = 0 and
−KX is nef.

Let π : X → Y be a birational morphism to a minimal ruled surface. Suppose
that Y is not isomorphic to P2; then Y is isomorphic to a surface Fn, n �= 1. Let
E0 be the section of Y with E2

0 = −n and let E be its proper transform on X.
We have E2 ≤ −n and E2 = −n if and only if π is an isomorphism in an open
neighborhood of E0. Since −KX is nef, Lemma 2.1 shows that n = 0 or n = 2.
Assume n = 2. Then π is an isomorphism over E0; hence it factors through a
birational morphism π : X → X1, where X1 is the blowup of F2 at a point x �∈ E0.
Let X1 → F1 be the blowdown of the fiber of the ruling F2 → P1 passing through
x. Then we obtain a birational morphism X → F1 → P2. Assume now that n = 0.
The morphism factors through X → X2, where X2 is the blowup of a point y on F0.
Then we compose X → X2 with the birational morphism X2 → P2 which is given
by the stereographic projection of F0 onto P2 from the point y. As a consequence,
changing Y and π, we can always assume that Y = P2.

Since K2
X = 0, the morphism π : X → P2 is the blowup of 9 points p1, . . . , p9,

where some of them may be infinitely near. Since −KX is nef, any smooth rational
curve has self-intersection ≥ −2. This implies that the set of points {p1, . . . , p9}
can be written in the form

(3) {p(1)1 , p
(2)
1 , . . . , p

(a1)
1 ; . . . ; p

(1)
k , p

(2)
k , . . . , p

(ak)
k },

where the p
(1)
j are points in P2, and p

(b+1)
j is infinitely near, of the first order, to

the previous point p
(b)
j for j = 1, . . . , k and b = 1, . . . , aj − 1. Equivalently, the

exceptional curve

Ej = π−1(p
(1)
j )

is a chain of (−2)-curves of length (aj − 1) with one more (−1)-curve at the end of
the chain.

The formula for the canonical class of the blowup of a nonsingular surface at a
closed point shows that

(4) KX = −3e0 + e1 + · · ·+ e9,

where e0 = c1(π
∗(OP2(1)) and ej is the divisor class of Ej , j = 1, . . . , 9. This

implies that

| −mKX | = |3me0 −m(e1 + · · ·+ e9)|;
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870 SERGE CANTAT AND IGOR DOLGACHEV

hence the image of the pencil | −mKX | in the plane is the linear system of curves

of degree 3m with singular points of multiplicity m at p
(1)
i , 1 ≤ j ≤ k.

(iv)⇒ (i) Let X be the blowup of the base points of the pencil. The proper
transform of the pencil on X is the linear system |3me0 −m(e1 + · · · + e9)|. The
formula for the canonical class on X shows that this system is equal to | −mKX |.
Since the pencil is irreducible, | −mKX | is a pencil with no fixed component and
no base point, so X is a Halphen surface. �

Remark 2.3. The proof of the proposition shows that the multiplicity m of the
multiple fiber mF0 of the genus one fibration is equal to the order of OF0

(F0) in
Pic(F0). This property characterizes nonwild fibers of elliptic fibrations (see [12],
Proposition 5.1.5). It is a consequence of the vanishing of H1(X,OX). It always
holds if the multiplicity is prime to the characteristic.

2.2. Halphen pencils of index m. The following lemma is well known and its
proof is left to the reader.

Lemma 2.4. Let φ : S′ → S be the blowup of a point x on a smooth projective
surface S and let C ′ be the proper transform of a curve passing through x with
multiplicity 1. Then OC′(C ′ + E) ∼= (φ|C′)∗OC(C), where E = φ−1(x) is the
exceptional divisor.

In the plane P2, an irreducible pencil of elliptic curves of degree 3m with 9 base
points of multiplicity m is called a Halphen pencil of index m. If C0 is a cubic
curve through the base points, then C0 is the image of a curve F0 ∈ | −KX |; such
a curve is unique if m > 1 and moves in the pencil if m = 1.

The classification of fibers of genus 1 fibrations shows that OF0
(F0) �∼= OF0

implies that F0 is a reduced divisor of type Im in Kodaira’s notation, unless char(K)
divides m (see [12], Proposition 5.1.8). We further assume that F0 is irreducible
if m > 1; this will be enough for our applications. Thus F0 is a smooth or nodal
curve, unless the characteristic of K divided m in which case it could be a cuspidal
curve. Under this assumption, the restriction of π to F0 is an isomorphism F0

∼= C0;

in particular, no base point p
(j)
i is a singular point of C0.

In the notation of Equation (3), consider the divisor class in Pic(C0) given by

d = 3h− a1p
(1)
1 − · · · − akp

(1)
k ,

where h is the intersection of C0 with a line in the plane. Since OC0
(C0) ∼= OC0

(3h),
Lemma 2.4 gives

OF0
(F0) ∼= OF0

(3e0 − e1 − · · · − e9) ∼= (π|F0
)∗(OC0

(d)).

This implies that OF0
(F0) is of order m in Pic(F0) if and only if d is of order m

in Pic(C0). If we choose the group law ⊕ on the set C#
0 of regular points of C0

with a nonsingular inflection point o as the zero point, then the latter condition is
equivalent to

(5) a1p
(1)
1 ⊕ · · · ⊕ akp

(1)
k = εm,

where εm is a point of order m in the group (C#
0 ,⊕).

This provides a way to construct Halphen pencils and the corresponding Halphen
surfaces (under our assumptions that F0 is irreducible). Start with an irreducible

plane cubic C0, and choose k points p
(1)
1 , . . . , p

(1)
k in C#

0 satisfying Equation (5) with
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AUTOMORPHISMS AND COBLE SURFACES 871

a1 + · · · + ak = 9. Then blow up the points p
(1)
1 , . . . , p

(1)
k together with infinitely

near points p
(i)
j , i = 2, . . . , aj , to arrive at a rational surface π : X → P2. Then

| − KX | = |F0|, where F0 is the proper transform of C0. Since the p
(1)
i satisfy

Equation (5), OF0
(F0) ∼= (π|F0

)∗OC0
(εm) is of order m in Pic(F0). Since F0 is

irreducible, | −mKX | = |mF0| is nef. Consequently, Proposition 2.2 shows that X
is a Halphen surface.

2.3. Unnodal Halphen surfaces. By Lemma 2.1, Halphen surfaces contain no
(−n)-curves with n ≥ 3. Recall that a Halphen surface is unnodal if it has no
(−2)-curves. Since a (−2)-curve R satisfies R ·KX = 0, it must be an irreducible
component of a fiber of the genus 1 fibration f : X → P1. Conversely, all reducible
fibers of f contain (−2)-curves, because f is a relatively minimal elliptic fibration.
Thus X is unnodal if and only if all members of the pencil |−mKX | are irreducible.

In this case all the curves Ei are (−1)-curves; in particular, there are no infinitely
near points in the Halphen set. Also, in this case, the morphism f : X → P1 is
an elliptic fibration because any quasi-elliptic fibration on a rational surface has
a reducible fiber whose irreducible components are (−2)-curves (this follows easily
from [12], Proposition 5.1.6; see the proof of Theorem 5.6.3). The fibers of f are
irreducible curves of arithmetic genus 1. This shows that a Halphen surface is
unnodal if and only if it arises from a Halphen pencil with irreducible members.

Proposition 2.5. Let X be a Halphen surface of index m. Then X is unnodal if
and only if the following conditions are satisfied.

(i) There is no infinitely near point in the Halphen set P = {p1, . . . , p9};
(ii) the divisor classes

−dKX + ei − ej , i �= j, 0 ≤ 2d ≤ m,

−dKX ± (e0 − ei − ej − ek), i < j < k, 0 ≤ 2(3d± 1) ≤ 3m,

are not effective.

Remark 2.6. Since KX = −3e0+
∑

ei, the two types of divisor classes in condition
(ii) are equal to

3de0 − d(e1 + · · ·+ e9) + ei − ej , i �= j,

3de0 − d(e1 + · · ·+ e9)± (e0 − ei − ej − ek), i < j < k.

Example 2.7. When m = 1, the inequalities 2d ≤ m and 2(3d± 1) ≤ 3m lead to
d = 0 and the conditions are respectively redundant with (i), or exclude triples of
collinear points in the set {p1, . . . , p9}.

When m = 2, the inequality 2d ≤ m reads d = 0 or 1, and we have to exclude
a cubic through 8 points with a double point at one of them. The inequality
2(3d± 1) ≤ 3m gives rise to curves of degree 1 (for d = 0) and degree 2 (for d = 1).
We have to exclude triples of collinear points and sets of six points on a conic.

Proof of Proposition 2.5. Suppose the conditions are satisfied. Since no class ei−ej
is effective, the exceptional curves Ei are (−1)-curves. Thus the morphism π : X →
P2 is the blowup of 9 points, none of which is infinitely near another. This implies
that π does not contract any component of a member of | − mKX |. Let R be a
(−2)-curve on X. It must be an irreducible component of a member of | −mKX |;
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872 SERGE CANTAT AND IGOR DOLGACHEV

hence R̄ = π(R) is an irreducible component of a curve of degree 3m. Taking a
complementary component, we may assume that

(6) 2 deg(R̄) ≤ 3m.

The divisor class r = [R] belongs to K⊥
X and satisfies r2 = −2. Since (r+dKX)2 =

−2, we can change r into r′ = r+dKX in such a way that r′ = d′e0−k′1e1−· · ·−k′9e9
with |d′| ≤ 1. All such vectors r′ can be listed:

(7) r′ = ei − ej , i �= j, or r′ = ±(e0 − ei − ej − ek), i < j < k.

Thus

r = −dKX + ei − ej , or

r = −dKX ± (e0 − ei − ej − ek), i < j < k.

Since deg R̄ = r · e0 > 0 and −KX · e0 = 3, the curve R̄ is of degree 3d in the
first case, and of degree 3d± 1 in the second case. Thus, inequality (6) shows that
2d ≤ m (resp. 2(3d± 1) ≤ 3m). From (ii), we deduce that R̄ and R do not exist,
and that X is general.

Conversely, if one of these divisor classes is effective, then X contains a (−2)-
curve. This proves the proposition. �
Remark 2.8. Let f : X → P1 be a Halphen elliptic surface of index m > 1. The
generic fiber Xη is a genus one curve over the field K(η) which has no rational
point over this field. The Jacobian variety Jac(Xη) of Xη (equal to the connected
component of the identity of the Picard scheme of Xη over η) is an abelian variety
of dimension 1 over K(η). Applying the theory of relative minimal models one
can construct an elliptic surface j : J → P1 with generic fibers Jη isomorphic to
Jac(Xη). It is called the Jacobian elliptic surface of X → P1. In our case, this
elliptic surface is a Halphen surface of index 1. The curve Xη is a torsor over
Jη. Its class in the group of isomorphism classes of torsors over Jη is uniquely
determined by a choice of a closed point y ∈ P1 and an element α of order m in
Pic(Jy). The fiber Xy = mFy is the unique multiple fiber of f , the curves Fy and
Jy can be canonically identified and the isomorphism class of OFy

(Fy) coincides
with α. Since Halphen surfaces of index 1 are parameterized by an open subset
of the Grassmannian G(2, 10) of pencils of plane cubic curves, their moduli space
is an irreducible variety of dimension 8. The construction of the Jacobian surface
shows that the moduli space of Halphen surfaces of index m > 1 is a fibration over
the moduli space of Halphen surfaces of index 1 with one-dimensional fibers. It is
expected to be an irreducible variety of dimension 9.

Remark 2.9. It follows from Proposition 2.5 that unnodal Halphen sets of given
index form a proper Zariski open subset in the set of all Halphen sets of this index.
So, one can say that unnodal Halphen sets or the corresponding Halphen surfaces
are general in the sense of moduli.

2.4. Automorphisms of a Halphen surface. We now discuss a result of Coble
(see a modern proof in [23]) which describes the automorphism group of an unnodal
Halphen surface X and its image in the group WX .

Let X be a Halphen surface of index m. Since the group Aut(X) preserves the
canonical class KX , it preserves the linear system |−mKX | and permutes the fibers
of the Halphen fibration f : X → P1. As explained in the Introduction, see Section
1.3, we identify Pic(X) with Z1,9 and WX with the Coxeter group W9. The lattice
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E9
∼= K⊥

X is isomorphic to the root lattice of affine type E8; the radical of E9 is
generated by the vector k9 and the lattice E8

∼= E9/Zk9 is isomorphic to the root
lattice of finite type E8. Consequently, the Weyl group W9 is isomorphic to the
affine Weyl group of type E8 and fits in the extension

(8) 0 → E8
ι−→ W9 → W8 → 1,

where ι : E8 → W9 is defined by the formula

(9) ι(w)(v) = v + (v, k9)w −
(
(w, v) + 1

2 (v, k9)(w,w)
)
k9,

and W8 is a finite group of order 27 · 33 · 5 · 8!.4
The following theorem shows that the size of Aut(X) depends on the existence

of reducible fibers for f (see [23] for a more precise statement). We identify the
lattice E8 with K⊥

X/ZKX and the map ι with the homomorphism K⊥
X/ZKX → WX

defined by ι(D)(A) = A− (A ·D)KX .

Theorem 2.10. Let X be a Halphen surface of index m. If X is unnodal, then
Aut(X)∗ contains a subgroup G whose image in W9 is equal to ι(mE8) ⊂ ι(E8); in
particular, an unnodal Halphen set is Cremona special. If X is not unnodal, then
the index of Aut(X)∗ in WX is infinite, and thus X is not Cremona special.

Proof. Let f : X → P1 be the elliptic fibration defined by | − mKX | and Xη be
its generic fiber. Assume X is unnodal. Then Xη is a smooth elliptic curve over
the field K(η) of rational functions on P1 (see the beginning of Section 2.3). The
closure in X of a closed point ζ ∈ Xη of degree d(ζ) = [K(ζ) : K(η)] is an irreducible
curve ζ̄ such that the restriction of π to the curve is a finite cover of degree d(ζ).
Conversely, any irreducible curve C of relative degree d (a d-multi-section) intersects
Xη at a closed point of degree d. In the case of an unnodal Halphen surface, any
exceptional curve Ei is of relative degree m and the degree of any closed point on
Xη is a multiple of m. In particular, Xη has a structure of an abelian variety only
if m = 1.

Let Jη = Pic0Xη/η be the Jacobian variety of Xη. Now it is an abelian curve

which acts on Xη
∼= Pic1Xη/η by translations. In particular, Jη(η) acts by η-

automorphisms on Xη. Explicitly, the action is defined by the formula

(10) ta(x) = x′ ∼ x+ a, a ∈ Jη(η),

where x is a closed point of Xη over the algebraic closure of K(η). Since a is defined
over K(η), this guarantees that the action is defined over η.

It follows from the theory of relative minimal models that the action of Jη(η) on
Xη extends to a biregular action of X/P1. Thus we obtain an injective morphism

Jη(η) ↪→ Aut(X).

By taking the closure of a divisor on Xη, we have a natural surjective restriction
homomorphism

tr : K⊥
X → Jη(η).

Its kernel is equal to the subgroup Picfib(X) of Pic(X) generated by irreducible
components of fibers. If X is unnodal, Picfib(X) = ZKX ; hence Jη(η) ∼= Z8. This
proves that Aut(X) contains a subgroup isomorphic to Z8.

It remains to find out how this abelian group Jη(η) acts on Pic(X). Any effective
divisor D on X is a sum of irreducible components of fibers and the rest, which

4It is an exercise to check that ι(w + w′) = ι(w) ◦ ι(w′).
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874 SERGE CANTAT AND IGOR DOLGACHEV

we call the horizontal part. The restriction of the fibration f : X → P1 to the
horizontal part is a finite cover of degree equal to

degf (D) = −mD ·KX .

We say that an effective divisor is separable if its horizontal part is a separable
cover of P1. If char(K) does not divide m, any effective divisor is separable.

For any divisor class D on X let tr(D) be its scheme-theoretical intersection with
the generic fiberXη. If D is separable and irreducible, then tr(D) is a closed point
of Xη which is equal to the sum of degf (D) closed points over the algebraic closure

of K(η). Thus ta(tr(D)) = tr(D) + degf (D)a. Let A be an element of K⊥
X such

that tr(A) = a. Then

ta(D) ∼ D −m(D ·KX)A mod Picfib(X).

At this point, we assume that X is unnodal, so that

ta(D) ∼ D −m(D ·KX)A+ λKX

for some integer λ. Intersecting both sides with D and D′ = ta(D), and using that
D2 = D′2, we obtain λ = m

2 (D · A + D′ · A). Intersecting both sides with A, we

obtain D′ ·A = D ·A−m(K ·D)A2. Combining the two formulas, we get

(11) ta(D) ∼ D −m(D ·KX)A+ [m(D ·A)− m2

2
(D ·KX)A2]KX

(cf. [23], Proposition 9, where the sign in front of m2 must be changed). This
should be compared with formula (9). Since Pic(X) is generated by separable
effective divisors (e.g. by the divisor classes e0, . . . , e9), this determines the action
of Jη(η) on Pic(X). Restricting to K⊥

X , we obtain

ta(D) ∼ D +m(D ·A)KX .

So, the image of K⊥
X/ZKX in Aut(X) acts on K⊥

X as the subgroup ι(mK⊥
X) of WX .

This proves the first assertion of the proposition.
Assume now that X is not unnodal. The set of (−2)-curves on X is not empty

and coincides with the set of irreducible components of reducible fibers of f . The
group Aut(X) permutes the elements of this finite set. Thus, a finite index subgroup
of Aut(X) fixes all the divisor classes of these (−2)-curves. The subgroup of all
elements of E8 ⊂ W9 that fix such a class has infinite index in E8; more precisely,
the rank of this free abelian group is at most 8− k, where k is the dimension of the
subspace which is spanned by classes of (−2)-curves. This implies that Aut(X) has
infinite index in W9, and therefore that X is not Cremona special. �

Remark 2.11. Consider the variety H̃alp(m)gen ⊂ (P2)9 of ordered unnodal Halphen
sets (p1, . . . , p9). It follows from the Hilbert-Mumford numerical criterion of sta-

bility that the GIT quotient H̃alp
gen

//SL(3) exists and parameterizes the orbits
of unnodal Halphen ordered sets of index m. The group W9 acts on this space
regularly by means of the Coble action (see [20]). Since two Halphen surfaces are
isomorphic if and only if the corresponding Halphen sets are projectively equivalent,
we obtain that the subgroup mE8 acts trivially on this variety; hence the quotient
group G = W9/E8

∼= (E8/mE8)�W8 acts on the orbit space.
Since all automorphisms of a Halphen surface preserve the elliptic pencil, we have

a natural homomorphism ρ : Aut(X) → Aut(P1) whose image is a finite subgroup
preserving the set of points corresponding to singular nonmultiple fibers. If m > 1,
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it must also fix the multiple fiber, so the group is a cyclic group which has orbits
of cardinality ≤ 12. The kernel of ρ is a subgroup of Aut(Xη) which is a finite
extension of Jη by a cyclic group of order dividing 24 (6 if char(K) �= 2, 3). If
m ≤ 2 the group of order 2 is always present. It corresponds to the automorphism
x �→ −x of the generic fiber if m = 1 and the double cover Xη → P1

η given by

a 2-section if m = 2. For X general enough, we have Aut(X) ∼= Z8 � (Z/2Z) if
m ≤ 2 and Aut(X) ∼= Z8 otherwise. The image of the generator of (Z/2Z) in
Aut(X)∗ is equal to an element of W9 which is mapped to the center of the group
W8 = W9/ι(E8).

3. Coble surfaces

The construction of Cremona special point sets with 10 points is due to Coble
(see [9], [10]). A Coble surface is a rational smooth surface X such that the linear
system | − KX | is empty, but | − 2KX | is not. The classification of such surfaces
can be found in [21]. In what follows, we only need the special case, where we
additionally assume that K2

X = −1 and | − 2KX | consists of an irreducible curve
C. So, in this paper, a Coble surface is always assumed to be such a surface. A
Coble set is a point set P such that the blowup of P is a Coble surface.

In this section, we study Coble surfaces and show that unnodal Coble surfaces
are Cremona special. We provide a proof, which works in any characteristic. Most
arguments and constructions of this section are used in Section 5, where we prove
the Main Theorem.

3.1. From Coble to Halphen surfaces. Let X be a Coble surface, and C be an
irreducible curve in the linear system |− 2KX |. By definition, the arithmetic genus
pa(C) satisfies

pa(C) = 1 +
1

2
(C2 + C ·KX) = 1 +K2

X = 0.

Thus C is a smooth rational curve with self-intersection C2 = 4K2
X = −4.

Proposition 3.1. Let X be a Coble surface and πE : X → Y be the blowdown of
a (−1)-curve E. Then

• Y is a Halphen surface of index 2;
• C is the proper transform of the fiber F containing y0 = πE(E);
• the fiber F is irreducible, and y0 is its unique singular point.

Conversely, the blowup of a singular point of an irreducible nonmultiple fiber of a
Halphen surface of index 2 is a Coble surface.

Proof. Since K2
X = −1, we get K2

Y = 0. Let y0 be the image of E by πE. Let F
be the image of C; since C is irreducible, so is F . Since C · E = −2KX · E = 2,
the curve F is singular at y0. From π∗

E(F ) = C + 2E, we deduce that F is an
irreducible curve in the linear system | − 2KY |; in particular, F 2 = 0 and −KY is
nef.

By Riemann-Roch, h0(−KY ) > 0. If h0(−KY ) > 1, we can find a curve G from
| − KY | passing through y0, and thus π∗(G) − E is effective and | − KX | �= ∅,
contradicting the definition of a Coble surface. Thus h0(−KY ) = 1 and the unique
effective divisor F0 in |−KY | does not pass through y0. This implies that |− 2KY |
contains two linearly independent divisors, namely 2F0 and F ; hence h0(−2KY ) ≥
2. Since K2

Y = 0, 2F0 and F are disjoint, and the linear system | − 2KY | has no
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876 SERGE CANTAT AND IGOR DOLGACHEV

fixed components; since it contains the reduced and irreducible curve F , this pencil
is irreducible. Thus Y is a Halphen surface of index 2.

Conversely, let X be obtained from a Halphen surface Y of index 2 as indicated
in the assertion of the proposition. Since the irreducible fiber F belongs to |−2KY |
and its singular point is blown up, the linear system | − 2KX | is not empty and
contains the proper transform of F , which is a smooth rational curve. Moreover,
| −KX | is empty because | −KY | consists of the unique multiple fiber F0 of Y and
F0 does not pass through the point which we blow up. So, X is a Coble surface. �

Let π : X → P2 be the composition of πE : X → Y and the blow-down morphism
π′ : Y → P2 which is described in Proposition 2.2. The image F of C in Y belongs to
|−2KY | = |6e0−2(e1+· · ·+e9)|; hence its image in the plane is an irreducible plane
curve of degree 6 with 10 singular points p1, . . . , p10, maybe with some infinitely
near points. This set {p1, . . . , p10} is a Coble set of 10 points. It contains a Halphen
set of index 2; the remaining tenth point corresponds to the singular point of F .
Conversely, starting from a set of 10 singular points p1, . . . , p10 of an irreducible
curve of degree 6, we choose a point pi such that no other point is infinitely near
it. The remaining set of 9 points is a Halphen point set of index 2.

3.2. Unnodal Coble surfaces. By Lemma 2.1, a Coble surface X has no (−n)-
curves with n ≥ 3 except the unique curve in | − 2KX | (with self-intersection −4).
If X is unnodal and πE : X → Y is the blow-down map of a (−1)-curve E, then
Y is an unnodal Halphen surface of index 2. Otherwise the pre-image, in X, of a
component of a reducible fiber would define a (−2)-curve or a (−3) curve if πE(E)
is a singular point of a reducible fiber of the elliptic pencil on Y . However, the
converse is not generally true; one needs to impose more conditions on the point
set to ensure that X is unnodal.

Theorem 3.2. A Coble surface is unnodal if and only if it is obtained from a Coble
set {p1, . . . , p10} satisfying the following 496 conditions:

(i) no points among the ten points are infinitely near;
(ii) no three points are collinear;
(iii) no six points lie on a conic;
(iv) no plane cubic passes through 8 points with one of them being a singular

point of the cubic;
(v) no plane quartic curve passes through the 10 points with one of them being

a triple point.

This result is due to A. Coble [9], (10). A modern proof was sketched in [11],
Remark 4.7. We supply the full details here.

Proof of Theorem 3.2. It is known (and is easy to check) that the lattice E10
∼= K⊥

X

is a unimodular even lattice of signature (1, 9), hence isomorphic to the orthogo-
nal sum E8 ⊥ H, where H is the hyperbolic plane defined by the matrix

(
0 1
1 0

)
.

Explicitly, the E8-part is generated by the vectors αi, i = 0, . . . , 7. The sublattice
generated by E8 and α8 is isomorphic to E9. The radical of this copy of E9 and
the vector α9 generate the H-part. Suppose conditions (i)-(v) are satisfied. Since
there are no infinitely near points, X is obtained from P2 by blowing up 10 distinct
points pi. We denote by Ei the corresponding 10 exceptional divisors, and denote
by (e0, e1, . . . , e10) the geometric basis of Pic(X) (see Section 1.3).
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Let
fi = 3e0 − (e1 + · · ·+ e10) + ei, i = 1, . . . , 10.

We have fi ·fj = 1− δij . Let Yi be the Halphen surface of index 2 obtained from X
by blowing down the curve Ei. Then fi is the divisor class of the proper transform
of the half-fiber of the elliptic fibration on Yi. By Proposition 2.5, the first four
conditions guarantee that the Halphen surfaces Yi are unnodal. The pencil |2fi| is
equal to the pre-image of the elliptic pencil on Yi; it contains only one reducible
fiber, namely C + 2Ei.

We have
f1 + · · ·+ f10 = 30e0 − 9(e1 + · · ·+ e10) = 3Δ,

with

Δ = 10e0 − 3(e1 + · · ·+ e10) = −3KX + e0, Δ2 = 10, Δ ·KX = 0.

The linear system |Δ| is the proper transform of the linear system of plane curves
of degree 10 passing through the points pi with multiplicities ≥ 3. By counting
constants, or applying Riemann-Roch, dim |Δ| ≥ 5. Since the divisor classes fi are
represented by irreducible curves, the divisor class Δ is nef and big. An irreducible
curve R on X with R ·Δ = 0 satisfies R · fi = 0, for all i = 1, . . . , 10, hence must
coincide with the curve C. Thus |Δ| defines a morphism

φ : X → Pdim |Δ|

that contracts C onto a point z.
Consider the restriction of the linear system |Δ| to a general member Fi of |2fi|.

It is a linear series of degree 6. Since

Δ− Fi ∼ Δ− 2fi = 4e0 − (e1 + · · ·+ e10)− 2ei,

by condition (v), this divisor class cannot be effective. This shows that the restric-
tion of φ to Fi is given by a complete linear system of degree 6. Thus, φ|Fi

is an

isomorphism onto a normal elliptic curve of degree 6 spanning Pdim |Δ|, dim |Δ| = 5
and φ is a birational isomorphism onto a surface of degree 10. This surface has a
quotient singularity of type 1

4 (1, 1) at z = φ(C) .
The remaining arguments follow the proof of Theorem 4.4 from [11], almost

verbatim. Let R be a (−2)-curve and m0e0 − m1e1 − · · · − m10e10 be its divisor
class. We have m0 = R · e0 ≥ 0 and mi = R · Ei ≥ 0. Since Δ = −3KX + e0, we
have Δ · R = e0 · R = m0. Suppose first that m0 ≤ 4. Then listing all solutions of
the diophantine equations

3m0 = m1 + · · ·+m10,

m2
0 + 2 = m2

1 + · · ·+m2
10

with m0 ≤ 4, we find that R is contained in an exceptional curve coming from
an infinitely near point, or is equal to the proper transform of one of the curves
corresponding to conditions (ii) to (v), or belongs to the class 4e0−(e1+ · · ·+e10)−
ei− ej − ek + es with four distinct indices i, j, k, s. All cases except the last one are
prohibited by the assumptions of the theorem. In the last case, the curve R does
not intersect the exceptional curve Es; hence R is coming from a (−2)-curve on
the Halphen surface Ys obtained by blowing down Es. It follows from Proposition
2.5 that in this case there exists a conic passing through the six points pa with
a �= i, j, k, s. This is prohibited by condition (iii). Thus, there is no (−2)-curve R
with m0 ≤ 4.
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So, assume now that m0 > 4 for any (−2)-curve R. Repeating the argument of
the proof of Theorem 4.4 from [11], R · w(Δ) > 4 for all w ∈ WX . Taking w to be
the reflection with respect to R, we obtain R · w(Δ) = w(R) ·Δ = −R ·Δ < 0, a
contradiction. �

Remark 3.3. Theorem 3.2 shows that unnodal Coble sets form a Zariski open subset
in the set of all Coble sets. In particular, an unnodal Coble surface is a general
Coble surface in the sense of moduli.

3.3. Effective divisors on unnodal Coble and Halphen surfaces. Recall that
an element of En of norm −2 is called a root. The lattice is spanned by (simple)
roots αi (cf. Section 1.2). A real root is a root which belongs to the Wn-orbit
of one (or any) of these simple roots. It is known that all roots are real if and
only if n ≤ 10 (see, for example, [20], Remark 5, p. 79). Let X be a rational
surface obtained by blowing up a point set P with |P| = n. Using an isomorphism
En → K⊥

X defined by a choice of a geometric basis on X, we can transfer these
definitions to elements of the lattice K⊥

X ; since WX acts transitively on the set of
geometric bases, the definitions do not depend on the choice of a geometric basis.

We say that a root α in K⊥
X is effective if it can be represented by the divisor

class of an effective divisor. Clearly, the divisor class of a (−2)-curve is an example
of an effective root.

Later on we shall use the following result due to M. Nagata [35] which applies
to Coble and Halphen surfaces. For the sake of completeness, we include a proof.

Lemma 3.4. Let X → P2 be the blowup of n ≥ 9 points such that | − mKX |
contains an irreducible curve for some m > 0. Suppose that X has no (−2)-curves.
Then,

(0) for any effective divisor D and any w ∈ WX , the class w([D]) is effective;
(i) for any (−1)-curve E and any w ∈ WX , the linear system |w(E)| consists

of a unique (−1)-curve;
(ii) for any simple root αi and any w ∈ WX , the linear system |w(αi)| is empty;
(iii) for any primitive isotropic effective divisor class f and any w ∈ WX , the

divisor class w(f) is a primitive isotropic effective divisor class.

Proof. Let C be an element of | − mKX |. For any irreducible curve Z �= C, we
have Z · C = −mZ ·KX ≥ 0. By the adjunction formula, Z2 ≥ −2; since X does
not contain (−2)-curves, all irreducible curves Z �= C satisfy Z2 ≥ −1. Moreover,
Z2 = −1 implies that Z is a (−1)-curve.

Let Z be a curve with Z2 ≥ −1 and let de0 − d1e1 − · · · − dnen be its divisor
class. We have Z2 = d2 − d21 − · · · − d2n ≥ −1, and d = [Z] · e0 > 0 unless Z is one
of the exceptional curves Ei. We claim that, for any w ∈ WX ,

(12) w([Z]) · e0 > 0, unless w([Z]) = ei for some i > 0.

We use induction on the length l(w) of w as a word in simple reflections. Write
w = siw

′ with l(w′) < l(w), where si is the reflection given by the simple root αi

(see §1.3). By induction w′([Z])·e0 > 0 or w′([C]) = ej for some j > 0. In the latter
case, si(ej) is either equal to ek for some index k or to e0− ea − eb for some indices
a �= b > 0; so the assertion is true in the latter case. In the first case, the claim is
obvious for αi �= α0; so we assume αi = α0. Let w

′([Z]) = de0 − d1e1 − · · · − dnen
with d ≥ 1. Then w([Z]) = w′([Z]) + (w′([Z]) · α0)α0 implies that w([Z]) · e0 =
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2d− d1 − d2 − d3. Assume it is negative, i.e. 1 ≤ d < (d1 + d2 + d3)/2. Then

−1 ≤ d2 − d21 − · · · − d2n <
1

4
(d1 + d2 + d3)

2 − d21 − · · · − d2n

<
3

4
(d21 + d22 + d23)− d21 − · · · − d2n.

This gives

−4 < −d21 − d22 − d23 − 4(d24 − · · · − d2n);

hence d4 = · · · = dn = 0 and d1, d2, d3 ≤ 1. Since 2 ≤ 2d < d1 + d2 + d3 we obtain

w′([Z]) = e0 − e1 − e2 − e3 = α0.

This contradicts Z2 ≥ −1 and proves the claim.
(0) Let [D] be the class of an irreducible curve, with [D] �∈ Q[C]. For all w ∈ WX ,

we get w([D]) ·KX = [D] ·w−1(KX) = D ·KX = − 1
mD ·C ≤ 0; moreover, D2 ≥ −1.

By Riemann-Roch, w([D]) or [KX − w(D)] is effective. Intersecting [KX − w(D)]
with e0, and using (12), we see that [KX − w(D)] is not effective; hence w([D]) is
effective.

Now let D be any effective divisor. Write D as a sum of irreducible components

D = sC +
k∑

j=1

bjZj ,

where s ≥ 0, bj > 0, and Zj is an irreducible curve with [Zj ] �∈ Q[C] for all 1 ≤ j ≤
k. Then all classes w([Zj ]) are effective. Since w([D]) = s[C] +

∑
j bjw([Zj ]), the

class w([D]) is effective.
(i) Let E be a (−1)-curve which we identify with its divisor class. As we saw

above, w(E) is effective. Write an effective representative of w(E) as a sum of
irreducible components. Since w(E)2 = −1 < 0, some of the components must
have negative self-intersection. Thus we can write

(13) w(E) ∼ sC + a1G1 + · · ·+ akGk + Z,

where G1, . . . , Gk are (−1)-curves, Z is a sum of irreducible curves Zj with Z2
j ≥ 0,

and at least one of the coefficients s, a1, . . . , ak is positive. Applying w−1 we get

E ∼ sC + a1w
−1(G1) + · · ·+ akw

−1(Gk) + w−1(Z).

From Property (0), we know that the classes w−1(Gi), 1 ≤ i ≤ k, and w−1(Z)
are effective. Since E is a (−1)-curve, we have |E| = {E}. Also E �= C since
E2 = E ·KX = −1 but C2 = m2K2

X and C ·KX = −mK2
X cannot be both equal to

−1. This implies that s = 0, Z = 0, k = 1 and E = w−1(G1); thus |w(E)| = {G1}
and Property (i) is proved.

(ii) A simple root αi = ei−ei+1 is effective if and only if there are infinitely near
points, which is excluded since we know that X has no (−n)-curves with n ≥ 2.
The simple root α0 = e0 − e1 − e2 − e3 is effective if and only if the points p1, p2,
p3 are collinear. The proper transform of the corresponding line is a (−2)-curve;
hence this root is not effective. Suppose w(αi) is effective for some index i ≥ 0 and
some element w in WX . Write an effective representative as in Equation (13):

w(α) ∼ sC + a1G1 + · · ·+ akGk + Z.

Applying w−1, and using the same argument as in (i), we get a contradiction.
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(iii) By (0) we know that f ′ = w(f) is effective. This class is isotropic because
w preserves the intersection form. It is primitive because otherwise f = w−1(f ′) is
not primitive. �

3.4. Automorphisms of unnodal Coble surfaces. Here we provide a proof,
valid in any characteristic, of the following theorem which is implicitly contained
in [9] (expressed in terms of projective orbits of point sets; see §1.5); several steps
of the proof are used in Section 5.

Theorem 3.5. Let X be an unnodal Coble surface. Then Aut(X)∗ contains the
subgroup of WX which is isomorphic to

W10(2) := {w ∈ W10 : w(v)− v ∈ 2E10 for all v ∈ Pic(X)}
under the natural identification of WX with W10.

Remark 3.6. The subgroup W10(2) is obviously normal, and the quotient group
is isomorphic to the finite orthogonal group O+(10,F2) (see [12], Theorem 2.9).
We have to explain the meaning of the notation O+(10,F2). Up to conjugacy,
there are only two types of nondegenerate quadratic forms over F10

2 . Modulo 2, the
intersection form on K⊥

X is equivalent to the quadratic form

x1x2 + x3x4 + · · ·+ x9x10.

In other words, this quadratic form is of even type; the number of its isotropic
vectors (including the null vector) is 24(25 + 1). The notation O+(10,F2) is meant
to distinguish this quadratic form from the form of odd type x1x2 + x3x4 + · · ·+
x7x8 + x9x10 + x2

9 + x2
10, which has only 24(25 − 1) isotropic vectors.

To prove Theorem 3.5, we use the notation from the proof of Theorem 3.2.
Consider the elliptic fibrations |2f1| and |2f2| defined by the first two isotropic
vectors among f1, . . . , f10. From Proposition 3.1, each of these elliptic fibrations
comes from a Halphen surface of index 2, and each |fi| is reduced to a unique
element; we denote these curves by F1 ∈ |f1| and F2 ∈ |f2|. Let |D| = |2F1 + 2F2|.

Lemma 3.7. The linear system |D| = |2F1 + 2F2| has no base points and defines
a morphism φ : S → P4.

Remark 3.8. The proof of this lemma does not use the fact that −2KX is effective;
it depends only on the intersection properties of f1, f2 and KX , and the fact that
|fi| = {Fi} for some irreducible curve. This will be used in Section 5.5 (see Lemma
5.7).

Proof. Consider the following three exact sequences:

0 → OX(F1) → OX(F1 + F2) → OF1
(F1 + F2) → 0,(14)

0 → OX(F1 + F2) → OX(2F1 + F2) → OF1
(2F1 + F2) → 0,

0 → OX(F1 + 2F2) → OX(2F1 + 2F2) → OF1
(2F1 + 2F2) → 0.

Since degOF1
(F1 + F2) = 1 and pa(F1) = 1, we get h0(OF1

(F1 + F2)) = 1;
similarly, h0(OF1

(F2)) = 1.
Since h0(OX(F1)) = 1, the Riemman-Roch formula implies that h1(OX(F1)) =

0. Thus the first exact sequence shows that h0(OX(F1+F2)) = 2, and, by Riemann-
Roch, h1(OX(F1+F2)) = 0. Since degOF1

(2F1+F2) = 1, the second exact sequence
gives h0(OX(2F1 + F2)) = 3. By Riemann-Roch, h1(OX(2F1 + F2)) = 0. Since
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degOF1
(2F1 + 2F2) = 2, the third exact sequence gives h0(OX(2F1 + 2F2)) = 5;

hence dim |D| = 4.
Since F1 and F2 are irreducible and h0(OX(2F1+2F2)) > h0(OX(Fi+2Fj)), we

obtain that |D| has no fixed components. Let us now assume that |D| has a base
point. Such a point must lie on F1 or F2 and, without loss of generality, we may
assume that it lies on F1. The third exact sequence shows that the restriction map

H0(OX(2F1 + 2F2)) → H0(OF1
(2F1 + 2F2))

is a surjective morphism onto a complete linear system of degree 2 on F1. Thus |D|
has no base point on F1, and |D| has no base point at all. �

Lemma 3.9. The image of φ : X → P4 is a surface S of degree 4.

Proof. Since the map is given by the complete linear system |D|, its image spans P4

and its degree divides D2 = 8. So, there are only two possibilities: φ is 1-to-1 and
its image has degree 8, and φ is 2-to-1 and its image has degree 4; its image cannot
have degree ≤ 2 because every quadric surface of P4 is contained in a hyperplane.

We know that |F1+F2| is an irreducible pencil. Let P be its general member. It
is an irreducible curve of arithmetic genus 2. Let ωP be its canonical sheaf. Since
OFi

(C) ∼= OFi
(−2KX) ∼= OFi

, the adjunction formula gives

ω⊗2
P

∼= OP (2F1 + 2F2 + 2KX) ∼= OP (2F1 + 2F2).

The exact sequence

(15) 0 → OX(F1 + F2) → OX(2F1 + 2F2) → OP (2F1 + 2F2) → 0

shows that |D| cuts out on P the bicanonical linear system; hence the map φ|P is
of degree 2 onto a plane conic. In particular, the degree of φ : X → φ(X) cannot
be equal to 1; hence it is of degree 2 onto a quartic surface S in P4. �

Recall that an anticanonical del Pezzo surface S of degree d ≥ 3 is a surface
of degree d in Pd whose minimal resolution is isomorphic to the blowup V of 9− d
points in P2 (maybe infinitely near) with −KV nef and big. Each such surface S
is obtained as the image of V by the map given by the linear system | −KV |. An
anticanonical del Pezzo surface may have singularities (when −KV is not ample).
They are Du Val singularities (or ADE-singularities).

It is classically known that a surface of degree 4 in P4 that spans P4 is either an
anticanonical del Pezzo surface, or a cone over an elliptic curve, or a projection of a
surface of degree 4 in P5 (see [34, 35] and [18]). Since X is rational, and φ is given
by a complete linear system there is only one possibility: S is an anticanonical del
Pezzo surface.

Lemma 3.10. The image S of X under the map φ : X → P4 is a del Pezzo surface
of degree 4 with four ordinary double points.

Proof. Consider the four curves F1, F2, E1, E2, where Ei is the (−1)-curve corre-
sponding to the points pi, i = 1, 2, in the Coble set defining X. By definition,
Fi · Ei = 0, i = 1, 2, and Fi · Ej = 1, i �= j. Moreover, 2Ei + C ∈ |2Fi|, where
C ∈ | − 2KX |, C · Fi = 0, and C · Ej = 2, i �= j.

The restriction of |D| to each of the curves Fi is of degree 2 and cuts out a
complete linear system of degree 2 on these curves of arithmetic genus 1; thus φ|Fi

is a 2-to-1 cover of Fi onto a line �i, i = 1, 2.
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The restriction of |D| to each of the curves Ei is also of degree 2. Since Fi ·C = 0
and C2 = −4, the morphism φ contracts C onto a singular point q of S. This point
is contained in φ(E1) ∩ φ(E2) and is a ramification point for the maps φ|Ei

: Ei →
φ(Ei). Thus, the images of E1 and E2 are two lines �3 and �4 that intersect at the
singular point q.

We infer from the exact sequences (14) that

3 = h0(D − F1) > h0(D − F1 − F2) = 2;

hence �1 �= �2. Similarly, we prove that

• the four lines �i are distinct;
• the intersections �1 ∩ �2, �2 ∩ �3, �3 ∩ �4, �4 ∩ �1 are nonempty;
• all other intersections of two of these lines are empty.

Let Π1 be the plane spanned by �1 and �2 and Π2 be the plane spanned by
�3 and �4; the plane Π2 contains the singularity q = �3 ∩ �4 = φ(C). Since Π1

and Π2 intersect in at least two points and do not coincide (for �1 ∩ �3 = ∅)
they span a hyperplane H in P4. The pre-image of H ∩ S in X is the divisor
F1 + F2 + C + E1 + C + E2 ∈ |2F1 + 2F2|.

It is known that a quartic del Pezzo surface is equal to the base locus of a pencil
of quadrics. The quadrangle of lines is equal to the base locus of the restriction of
the pencil to H. It is easy to see that this pencil must be spanned by two quadrics
of rank 2, i.e. the union of two planes. It follows from this that the pencil of
quadrics containing S is spanned by two quadrics of rank 3. This implies that S
contains 4 singular points of type A1 (ordinary nodes) or 2 singular points of type
A1 and one singular point of type A3 (see [12], Lemma 0.4.2). In the second case
the surface does not contain a quadrangle of lines. Thus we obtain that S is a
4-nodal quartic del Pezzo surface. Its four nodes are the vertices of the quadrangle
of lines. It is known that a 4-nodal quartic del Pezzo surface is isomorphic to the
anticanonical model of the blowup of 5 points p1, . . . , p5 such that p3 is infinitely
near p2, p5 is infinitely near p4 and the points p1, p2, p3 and p1, p4, p5 are collinear
(see [12], Proposition 0.4.3). The quadrangle of lines is formed by the images of the
classes e1, e3, e5, and e0 − e2 − e4. �

Proof of Theorem 3.5. Let σ : S′ → S be the blowup of the point q = φ(C). The
exceptional curve is a (−2)-curve R on S′. The morphism φ factors through a finite
map φ′ : X → S′ of degree 2. The pre-image of R on X is the curve C.

Let τ be the automorphism of X defined by the deck transformation of the finite
double cover φ′ : X → S′. Note that it is defined even when char(K) = 2. Since
the genus 1 fibration X is not a quasi-elliptic fibration (the image of its general
member is a conic, but an elliptic curve cannot be mapped to a rational curve by
an inseparable map), the map φ′ is a separable finite morphism.

The Picard group Pic(S′) ⊗ Q of Q-divisor classes on S′ is of rank 3. It is
generated by the classes of the curve R and the proper transforms of the lines �1
and �2. For any divisor class A on X, we have, in Pic(X)⊗Q,

A+ τ (A) = a1f1 + a2f2 + a3KX .

Suppose A ∈ (Zf1+Zf2+ZKX)⊥. Since f1, f2 and KX are τ -invariant, we obtain,
by intersecting both sides with f1, f2, and KX , that a1 = a2 = a3 = 0. Thus
τ (A) = −A. The sublattice of K⊥

X spanned by f1 and f2 is isomorphic to the
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hyperbolic plane H. Its orthogonal complement is isomorphic to the lattice E8.
Thus we obtain

(16) τ∗ = idH ⊕−idE8
.

Now let w be an element of WX , and f ′
i = w(fi), i = 1, 2. Since X has no

(−2)-curves, we can apply Lemma 3.4 to obtain that the f ′
i are primitive, isotropic

and effective divisor classes; since w preserves both KX and the intersection form,
f ′
i ·KX = 0 and f ′

1 · f ′
2 = 1. Similarly, each class w([Ei]), i = 1, 2, is represented by

a unique (−1)-curve E′
i. The curve E

′
i does not intersect f

′
i and if one contracts E′

i

and applies Proposition 3.1, one sees that f ′
i is the pull-back of a Halphen pencil

of index 2. As above we deduce that each linear system |2f ′
i | is an elliptic pencil,

and repeating the argument by taking (f ′
1, f

′
2) instead of (f1, f2), we obtain an

automorphism τω = w ◦ τ ◦ w−1. This shows that Aut(X)∗ contains the minimal
normal subgroup containing the involution idH ⊕−idE8

. This finishes the proof of
Theorem 3.5 because this normal subgroup is isomorphic to W10(2) (this nontrivial
result is due to A. Coble; a modern proof can be found in [12], Theorem 2.10.1). �
Remark 3.11. One can show that, for a general Coble surface in the moduli sense,
the group of automorphisms is isomorphic to W10(2).

Remark 3.12. Assume char(K) �= 2. Let p : X ′ → X be the double cover of
X branched along the curve C ∈ | − 2KX |. This is a K3-surface which admits
an involution whose fixed-point locus consists of a (−2)-curve. Conversely, the
quotient of a K3-surface by such an involution is a Coble surface. The Picard
lattice of X ′ contains the pre-image of the Picard lattice of X. It is a primitive
sublattice isomorphic to the lattice 〈−2〉 ⊥ E10(2), where 〈−2〉 is given by the
matrix (−2) and E10(2) is obtained from the lattice E10 by multiplying the values
of the quadratic form by 2.

Over C, it follows from the theory of periods of complex K3 surfaces that the
coarse moduli space of such K3 surfaces exists and is an irreducible variety of
dimension 9. In fact, it is one of the two codimension 1 irreducible components
in the boundary of a compactification of the moduli space of Enriques surfaces. A
Coble surface can be obtained as a degeneration of an Enriques surface when its K3-
cover acquires an ordinary double point. The theory of periods also provides another
proof of Theorem 3.5 (see [37], Theorem 10.1.2) and shows that the automorphism
group of an unnodal Enriques surface contains a subgroup isomorphic to W10(2)
and that a general Enriques surface has its automorphism group isomorphic to
W10(2).

Our proof extends to the case of unnodal Enriques surfaces X over a field K of
arbitrary characteristic. In this case any embedding of H in Num(X) ∼= H ⊥ E8

defines a separable map of degree 2 on a 4-nodal quartic surface (it is separable for
the same reason as above: the surface has no quasi-elliptic fibrations). The deck
transformation acts by formula (16), and we finish as in the case of Coble surfaces
by invoking Theorem 2.10.1 from [12].

4. Gizatullin’s Theorem and Cremona special point sets

of nine points

Let X denote, as above, a rational surface over K; we denote by n+1 its Picard
number. In this section, we prove that Cremona special point sets with n = 9
points are Halphen sets.
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4.1. Parabolic automorphisms. Let g be an automorphism of X and g∗ the lin-
ear transformation of Pic(X) induced by g. Since the intersection form on Pic(X)
has signature (1, n) and the nef cone is Aut(X)-invariant, there are three possibili-
ties for the isometry g∗ (see [5], [23]).

• g∗ preserves an ample class h, i.e. g∗h = h; in this case, a positive iterate gk

of g acts trivially on Pic(X) and there is an embedding ofX into a projective
space PN

K
such that gk extends to a projective linear transformation of PN

K
.

• g∗ preserves a primitive nef class h with h2 = 0 but does not preserve any
ample class.

• g∗ does not preserve any nef class and the spectral radius (i.e. the largest
possible absolute value of an eigenvalue) of the linear transformation g∗ on
Pic(X)⊗ R is larger than 1.

In the first case, one says that g (or g∗) is elliptic, in the second that g is
parabolic, and in the third that g is hyperbolic (or loxodromic).

When g is parabolic, the class h is, up to a scalar multiple, the unique g∗-invariant
class in the isotropic cone of the intersection form. In particular, the assumption
that h is nef could be removed from the definition (see [23], Proposition 4, or [5]).
The following fundamental theorem of M. Gizatullin describes geometric properties
of parabolic automorphisms.

Theorem 4.1 (M. Gizatullin). Let X be a rational surface over an algebraically
closed field K. Let G �= {idX} be a group of automorphisms of X such that all
elements g in G \ {idX} are parabolic.

Then there exists a unique G-invariant primitive nef class h in Pic(X) with
h2 = h ·KX = 0 and there exists a unique positive integer m such that the linear
system |mh| is an irreducible pencil of curves of arithmetic genus 1. The relative
minimal model of this genus 1 fibration is a Halphen surface Y of index m.

Remark 4.2. Assume thatK = C is the field of complex numbers. Then, Gizatullin’s
Theorem can be strengthened: a finite index subgroup of G preserves each fiber
of the genus one fibration; it acts as a group of translations along the fibers, with
dense orbits in almost all fibers; if G is cyclic, periodic orbits are dense in X (see
[8, 6]).

Remark 4.3. Gizatullin’s Theorem is stated in [23] under the assumption that
char(K) �= 2, 3. As the author points out himself, this assumption is made only
to avoid quasi-elliptic fibrations, for which the arguments must be slightly mod-
ified but the same conclusion holds. Moreover, in our applications, quasi-elliptic
fibrations are not realized.

Corollary 4.4. Let X and G be as in Theorem 4.1. The group G descends to a
subgroup of the group Aut(Y ). In particular, it contains a finite index free abelian
subgroup G0, the rank of which is at most 8 and is equal to 8 if and only if Y is an
unnodal Halphen surface.

Proof. This follows from Theorems 4.1 and 2.10. �

4.2. Cremona special implies unnodal.

Proposition 4.5. A Cremona special rational surface X does not contain (−2)-
curves; i.e. it is unnodal.
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Proof. Denote by P = {p1, . . . , pn} a point set such that X is the blowup of P2 at
P; this provides a natural morphism π : X → P2, and a geometric basis (e0, . . . , en)
of Pic(X). Let RX be the set of effective real roots (see §3.3). Our first goal is to
prove that RX is empty.

Let W nod
X be the subgroup of WX generated by the reflections sα with α ∈ RX .

Since all reflections generating W nod
X are conjugate under WX to reflections defined

by the simple roots αi, a result of Deodhar [14] shows that W nod
X is a Coxeter

subgroup of the Coxeter group WX . Its intersection with Aut(X)∗ is equal to {1}
([16], Proposition 3,5). So, if Aut(X)∗ is of finite index in WX , the group W nod

X

must be finite, and W nod
X is a finite Coxeter group. It follows from the classification

of such groups that RX is a finite set and the sublattice NX generated by this set is
a negative definite sublattice of K⊥

X ; hence NX ⊗R is a proper subspace of K⊥
X ⊗R.

The group Aut(X)∗ leaves the sublattice NX invariant and acts as a finite group
on it. Identifying K⊥

X⊗R with En⊗R, Aut(X)∗ determines a finite index subgroup
of Wn that preserves the proper subspace NX ⊗ R.

Assume n ≥ 10. We invoke a theorem of Yves Benoist and Pierre de la Harpe
from [4] according to which the image ofWn in O(En⊗R) is Zariski dense. Since, by
assumption, Aut(X)∗ is a subgroup of finite index in Wn, we obtain that the image
of Aut(X)∗ is Zariski dense either in O(En ⊗ R) or in its connected component
of the identity SO(En ⊗ R).6 Thus the representation of Aut(X∗) in En ⊗ R is
irreducible, and hence NX = {0}.

When n = 9, the theorem proved by Benoist and de la Harpe asserts that the
image of the Coxeter group W9 is Zariski dense in the subgroup G9 of O(E9 ⊗ R)
defined by G9 = {g ∈ O(E9 ⊗ R) | g(k9) = k9}. If N is a proper subspace of
E9 ⊗ R which is fixed by a finite index subgroup of G9, then N/Rk9 is trivial. As
a consequence, NX = {0} in this case too.

Now we may assume that RX is empty; in particular, no αi is an effective divisor
class. Suppose we have a (−2)-curve R; it represents an effective root which is not
a real root. Write r = [R] = a0e0 −

∑
aiei ∈ RX . After permuting the elements

of the basis, we may assume that a1 ≥ · · · ≥ an. Intersecting with ei, we obtain
that ai ≥ 0. Applying Noether’s inequality [20], Chapter V, Proposition 5, we get
a0 < a1 + a2 + a3. Since α0 = e0 − e1 − e2 − e3 is not effective, the three points
p1, p2, p3 are not collinear. Let X123 be the surface obtained by blowing up P2 at
p1, p2, and p3. Let σ be the standard quadratic involution with fundamental points
p1, p2, p3. This birational transformation of the plane lifts to an automorphism of
X123; thus, the composition of π with σ is a new birational morphism from X to P2,
which provides a new geometric basis for Pic(X). In terms of the first geometric
basis (ei) of Pic(X), the change of basis corresponds to the linear transformation
sα0

. As a consequence, if r is the class of a (−2)-curve, then the class r′, defined
by

r′ = sα0
(r) = a′0e0 −

n∑
i=1

a′iei,

5The assertion is stated for the subgroup generated by the reflections with respect to all (−2)-
curves, but the proof is extended verbatim to our situation.

6SO(En ⊗R) is the connected component containing the identity for the Zariski topology, but
has two connected components as a real Lie group.
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is also the class of a (−2)-curve (in the new geometric basis). Moreover

a′0 = 2a0 − a1 − a2 − a3, a
′
1 = a0 − a2 − a3, a

′
2 = a0 − a1 − a3, a

′
3 = a0 − a1 − a2,

and a′i = ai, i > 3. Now, by Noether’s inequality, we have a′0 < a0. Since sα0
is in

WX , we can iterate this process, keeping the assumption that RX is empty. We
can therefore decrease a0 until it becomes 0. In this case one of the simple roots αi

becomes effective, a contradiction. �
4.3. Special point sets of nine points.

Theorem 4.6. Let P be a Cremona special point set with 9 points. Then P is an
unnodal Halphen set of some index m.

Proof. Let X be the surface obtained by blowing up P. Since Aut(X)∗ has finite
index in WX , this group contains also a free abelian group of rank 8 equal to a
subgroup of finite index in ι(E8) (see §2.4). This group preserves the isotropic
vector KX . By Gizatullin’s theorem there exists a (minimal) positive integer m
such that the linear system | −mKX | is an irreducible elliptic pencil. Thus X is a
Halphen surface of index m. By Proposition 4.5, X has no (−2)-curves. Thus X is
an unnodal Halphen surface. �

5. The general case

The main results of this section and the next one are summarized in the following
two theorems.

Theorem 5.1. Let P be a point set of n ≥ 10 points which is not contained in a
cubic curve. If P is Cremona special, then P is an unnodal Coble set. In particular,
n is equal to 10.

By definition, a Harbourne set is a set P of n ≥ 9 nonsingular points on a cuspidal
cubic C0 over a field of positive characteristic with the following property: If X
denotes the surface obtained by blowing up P and C denotes the strict transform
of C0 in X, then X has no (−2)-curves and the restriction morphism r from K⊥

X to

Pic0(C) has finite image. These point sets are Cremona special; this is proved by
Harbourne in [24].

Theorem 5.2. Let P be a point set of n ≥ 10 points contained in a cubic curve
C0 ⊂ P2. If P is Cremona special, then K has positive characteristic, C0 is a
cuspidal cubic, and P is a Harbourne set.

These results imply the Main Theorem. In this section, we prove Theorem 5.1.

5.1. A surface Y with ten Halphen pencils. Let P = {p1, . . . , pn} be a Cre-
mona special set, with the convention that j > i if pj is infinitely near pi. We blow
up successively each point pi and denote by

X = Xn → Xn−1 → · · · → X1 → P2

the sequence of blowups. Let qi : X → Xi be the corresponding birational morphism
and q∗i : Pic(Xi) → Pic(X) be the canonical homomorphism of the Picard groups.
Obviously q∗i (K

⊥
Xi

) ⊂ K⊥
X . Moreover the image under q∗i of the geometric basis of

Pic(Xi) (defined by the morphism Xi → P2) coincides with the first i + 1 vectors
of the geometric basis of X (defined by the morphism X → P2). This allows one
to identify WXi

with a subgroup of WX . Since Aut(X)∗ is of finite index in WX ,
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its intersection with WXi
is a subgroup of finite index; this subgroup preserves the

exceptional curves obtained from the blowups of pj for j > i, and descends as a
group of automorphisms of Xi. Thus all surfaces Xi, i ≥ 9, are Cremona special,
and all sets {p1, . . . , pi}, i ≥ 9, are Cremona special sets. By Theorem 4.6, the
surface X9 is an unnodal Halphen surface. In particular, the first 9 points do not
contain infinitely near points. Since the set of the first 10 points is Cremona special,
Proposition 4.5 shows that the surface X10 has no (−2)-curves; hence p10 is not
infinitely near pi for i ≤ 9 and the set {p1, . . . , p10} contains no infinitely near point.

Let i be an index between 1 and 10 such that p11 is not infinitely near pi.
Consider the sequence of points p1, ..., pi−1, pi+1, ..., p11, and apply the same
argument. We obtain that p11 is not infinitely near the points pj for 1 ≤ j ≤ 10.
By induction on n, and permutation of the points, this proves the following lemma.

Lemma 5.3. If P is a Cremona special point set of n ≥ 9 points, then P is a
proper subset of n distinct points in P2, and all subsets of P of m ≥ 9 points are
Cremona special.

Let Y = X10, Ei ⊂ Y be the (−1)-curve obtained by blowing up pi, 1 ≤ i ≤ 10,
and σEi

: Y → Yi be the blowdown of Ei. Since Yi is Cremona special, it is an
unnodal Halphen surface of some index mi. The pre-image of the elliptic fibration
of Yi is an elliptic pencil |mifi| on Y , where

fi = −KY + ei = σ∗
Ei
(−KYi

).

The divisor classes f1, . . . , f10 are exactly the primitive isotropic vectors in K⊥
Y

which we introduced in the proof of Theorem 3.2. We denote by p̃i ∈ Yi the point
σEi

(Ei); this point is the pre-image of pi under the natural projection Yi → P2.

5.2. Almost all indices are different from 1. Suppose that two indices mi and
mj are equal to 1, say m1 = m2 = 1. Let Bi ⊂ Yi, i = 1, 2, be the fiber of the
Halphen fibration which contains p̃i, and let ai be the multiplicity of this fiber at
p̃i. Let Ai ⊂ Y be the strict transform of Bi under the morphism σEi

. Since the
fibers of the Halphen surface Yi are irreducible, both Ai and Bi are irrreducible.
Then −KY is effective and represented by Ai + (ai − 1)Ei. Since K2

Y = −1, the
two curves A1 + (a1 − 1)E1 and A2 + (a2 − 1)E2 have a common component, and
thus A1 = A2; as a consequence, a1 = a2 = 1, i.e. p̃i is a smooth point of Bi, for
i = 1, 2. Denote by A the curve A1 = A2. By Lemma 2.4, the normal bundle of Ai

is equal to OAi
(−Ei ∩Ai), i = 1, 2. Thus the points E1 ∩A and E2 ∩A are linearly

equivalent on A. Since p1 �= p2 and A is an irreducible curve of arithmetic genus 1,
we get a contradiction. This proves the following lemma.

Lemma 5.4. At least nine of the indices mi, 1 ≤ i ≤ 10, are larger than 1.

5.3. An alternative. Effective curves with divisor class fi are total transforms of
fibers of the Halphen fibration on Yi with multiplicity mi. Thus, if mi = 1, the
class fi is represented by an irreducible curve (the total transform of any fiber that
does not contain pi), and if mi ≥ 2 the class fi is represented by an irreducible
curve if and only if p̃i is not contained in the multiple fiber of Yi.

Lemma 5.5. Either the set {p1, . . . , p10} is contained in (the smooth part of) a
cubic curve C and then all fi, 1 ≤ i ≤ 10, are represented by C ′ + Ei, where C ′ is
the strict transform of C, or {p1, . . . , p10} is not contained in a cubic curve, and
then all classes fi are represented by at least one irreducible curve.
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Proof. If the set P10 = {p1, . . . , p10} is contained in a cubic curve C, no pi is a
singular point of C, because otherwise the Halphen surface Yj , j �= i, would not be
special. If the set P10 is not contained in a cubic curve, then pi is not contained in
the multiple fiber of Yi, so that fi is represented by an irreducible curve. �

For the remainder of this section, we make the following assumption, where
Lemma 5.5 is used to prove the equivalence.

(A) Each primitive isotropic class fi is represented by an irreducible curve.
Equivalently, there is no irreducible cubic curve containing the set {p1, . . . ,
p10}. In particular, the multiple fiber of Yi does not contain p̃i.

In other words, we now assume that Y satisfies the assumption of Theorem 5.1.
Note that the irreducibility of the cubic curves in Assumption (A) follows from
Proposition 4.5.

5.4. All indices are different from 1. Suppose now that one index, say m1, is
equal to 1; by Lemma 5.4, mi ≥ 2 for i ≥ 2. As above, let B1 ⊂ Y1 be the fiber of
the Halphen fibration which contains the point p̃1, a1 ≤ 2 be its multiplicity at p̃1,
and A1 be its strict transform in Y ; then

σ∗
E1

(B1) = f1 = A1 + a1E1.

Let B2 ⊂ Y2 be the fiber of the Halphen fibration which contains the point p̃2. By
our assumption (A), the curve B2 is not the multiple fiber of the Halphen surface Y2.
Let A2 be the strict transform of B2 and a2 be the multiplicity of B2 at p̃2. Then

A2 ∼ m2f2 − a2E2 ∼ m2(−KY + E2)− a2E2 ∼ −m2KY + (m2 − a2)E2

and

A1 ·A2 = (−KY + (1− a1)E1) · (−m2KY + (m2 − a2)E2)

= −m2 + (m2 − a2) +m2(1− a1)

= −a2 − (a1 − 1)m2;

this number is negative because ai ≥ 1. Since A1 and A2 are irreducible curves,
we obtain A = A1 = A2. Since A1 is the strict transform of a cubic curve, this
contradicts our standing assumption (A) and proves the following lemma.

Lemma 5.6. Under assumption (A), all indices mi are larger than 1.

5.5. The linear system |D| = |2f1 + 2f2|. We now show that all indices mi are
indeed equal to 2; permuting the indices, it is sufficient to consider m1 and m2: We
already know that m1,m2 > 1 and we want to show that m1 = m2 = 2. For this
purpose, we study the linear system |2f1 + 2f2|.

Since mi ≥ 2 for all i, the linear system |fi| consists of a unique element. Hence,

|f1| = {F1}, |f2| = {F2},

where the divisors F1 and F2 are irreducible curves of arithmetic genus 1 by as-
sumption (A). Since F1 ·F2 = 1, the curves F1 and F2 intersect transversally at one
point

y0 = F1 ∩ F2.

Denote by |D| the linear system |2F1 + 2F2|.
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Lemma 5.7. Under assumption (A), the following properties are satisfied.

(i) The linear system |D| = |2F1 + 2F2| satisfies

D2 = 8, dim |D| = 4,

it has no fixed component, and it has no base point. It defines a morphism
φ : Y → P4.

(ii) Let S = φ(Y ) ⊂ P4 be its image. Then, on each curve Fi, i = 1, 2, φ
restricts to a 2-to-1 cover onto a line �i ⊂ S. The two lines �1 and �2 are
different.

(iii) The linear system |F1 + F2| is an irreducible pencil with two base points
y1 ∈ F1, y2 ∈ F2. The points si = φ(yi), i = 0, 1, 2, span a plane in the
projective space P4.

(iv) The degree of φ : Y → P4 is equal to 2, and its image is an anticanonical
del Pezzo surface S ⊂ P4 of degree 4; in particular, S is a normal surface.

(v) The pre-image of s0 under the map φ consists of exactly one point: φ−1{s0}
= {y0}.

Proof. (i) The argument is the same as in the proof of Lemma 3.7, where we used
only that f1 and f2 were represented by irreducible curves F1 and F2 that do not
move (see Remark 3.8).

(ii) Each curve Fi, i = 1, 2, is an irreducible curve of arithmetic genus 1. It
follows from the third exact sequence in (14) that the restriction of |D| to the curve
Fi is given by a complete linear system of degree 2. Thus, for i = 1, 2, the curve
φ(Fi) is a line �i ⊂ S and φ restricts to a 2-to-1 cover between Fi and �i. The same
exact sequences show that �1 �= �2.

(iii) The first exact sequence in (14) shows that |F1 +F2| is a pencil of curves of
arithmetic genus 2. Since (F1 + F2) · F1 = 1, its restriction to F1 (resp. to F2) has
degree 1.

Let εi be the nontrivial mi-torsion divisor class on Fi such that OFi
(εi) ∼=

OFi
(Fi). For i = 1, 2 we have OFi

(F1 + F2) ∼= OFi
(yi), where yi is an element

of the linear system |y0 + εi| on Fi. Clearly, yi �= y0 and does not move because
the arithmetic genus of Fi is 1. This shows that |F1 +F2| has no fixed components
and its base points are y1 and y2.

The restriction of φ to Fi is given by the linear system |D|, i.e. by
|OFi

(2F1 + 2F2)| = |OFi
(2y0 + 2εi)|.

Since 2y0 + 2εi ∼ yi + y0 + εi �∼ y0 + yi, we obtain that the points y0 and yi are
not mapped to the same point by φ; thus, s0 = φ(y0) and si = φ(yi), i = 1, 2, are
distinct. As a consequence, the plane Π0 spanned by the two lines �1 and �2 is also
spanned by the three points s0, s1, and s2.

(iv) Let us now prove that the degree of φ is equal to 2, i.e. degS = 4. Then,
as in Section 3.4 (see after Lemma 3.9), the image S of φ is a del Pezzo surface of
degree 4.

Since the map is given by a complete linear system, and a quadric surface in P4

is contained in a hyperplane, the only other possibility is that the degree is equal
to 1, i.e. degS = 8; thus, we now assume deg(S) = 8 and seek a contradiction.

Let o be a general point of Y ; in particular, o is not a base point of |F1+F2| and
its image o′ = φ(o) in S is not contained in the plane Π0. Let π : S → S′ ⊂ P3 be
the projection from o′. The composition π ◦φ is a rational map given by the linear

Licensed to Univ of Michigan. Prepared on Fri Jul  5 09:45:30 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



890 SERGE CANTAT AND IGOR DOLGACHEV

subsystem L of |2F1+2F2| of divisors passing through the point o. Replacing Y by
its blowup Y ′ → Y at the point o, we obtain a birational morphism φ′ : Y ′ → S′

onto a surface of degree 7.
A general member P of the pencil |F1 +F2| is an irreducible curve of arithmetic

genus 2. Consider the restriction of the map φ′ to P . It is given by a linear series of
degree 4. Would this linear series coincide with |2KP |, then φ′

|P : P → φ′(P ) would

be a 2-to-1 cover onto a plane conic (see the proof of Lemma 3.9), and φ would have
degree 2. Thus, φ′

|P is given by a linear series |KP + p + q|, where p + q �∈ |KP |.
The image φ′(P ) is a plane quartic curve, the points p, q are mapped to a singular
point of φ′(P ), and φ′

|P provides an isomorphism from P \ {p, q} to φ′(P ) \ {φ′(p)}.
The unique member P0 from |F1 + F2| which passes through the point o is

mapped to a plane curve on S passing through o′. This curve has degree 4; hence
it is projected to a triple line �′0 on S′. Since y1, y2 ∈ P0, the triple line �′0 contains
the projections s′1, s

′
2 of the points s1, s2. By assertion (iii), the points s0, s1, s2

span a plane Π0 in P4. Since Π0 does not contain the image o′ it is projected onto
a plane Π′

0 ⊂ P3 and this plane is spanned by the images s′0, s
′
1, and s′2 of the three

points s0, s1, and s2. The triple line �′0 = φ′(P0) is spanned by s′1 and s′2.
The image of the pencil |F1 + F2| on S′ is cut out by the pencil Q of planes

containing �′0. The plane Π′
0 is a member of Q and cuts out in S′ a curve of degree

7: This curve is equal to the union of the three lines �′1, �
′
2, and �′0, where the first

two enter with multiplicity 2 and the last one with multiplicity 3. Any other plane
from Q cuts out in S′ the line �′0 taken with multiplicity 3 and a quartic curve
P ′ = φ′(P ) for some P ∈ |F1 + F2|. Let N be the closure of the set of double
points of irreducible plane quartics cut out by Q in S′. It is a double conic K on
S′ (its pre-image on Y intersects P at two points, hence intersects 2F1 + 2F2 with
multiplicity 4). It passes through a point on �′0, the image of a double point of the
plane quartic φ(P0).

Let us see what else is in the singular locus of S′. Suppose Z is another irreducible
curve in the singular locus of S′ which is not contained in any plane from Q.
Then a general plane Π′ from Q intersects it, and hence the image of a general
P ∈ |F1 + F2| in Π′ acquires an additional double point. This contradiction shows
that Z is contained in some plane Π′ ∈ Q, certainly, different from Π′

0. We claim
that it must be a double conic. The unique alternative possibility is that Z is a
double line. Let F be its pre-image in Y . It is an irreducible component of some
divisor P from |F1 + F2|, with P = F + R for some effective divisor R. Since the
line Z intersects only one of the points s′1 and s′2, the curve F passes through only
one base point of |F1+F2|; hence we may assume that F ·F1 = 0. Let σE1

: Y → Y1

be, as in Section 5.1, the blowdown of the curve E1. We know that Y1 is a Halphen
surface with elliptic fibration |m1σE1

(F1)|, the fibers of which are irreducible. We
also know that F1 = σ∗

E1
(−KY1

); hence (σE1
)∗(F ) · KY1

= 0. If σE1
(F ) is not

a point, it must be a fiber of the elliptic fibration |m1σE1
(F1)|, and it cannot be

the multiple fiber σE1
(F1) (because Z �= �′1). Since F · F2 ≤ 1, this contradicts

m1 > 1, and shows that σE1
(F ) is a point, which means that F is the curve E1.

In particular, F · F2 = 1, F1 · R = 1, and F2 · R = 0, because the self-intersection
of P is 2. The same reasoning, applied to σE2

, implies that R is equal to E2, and
provides a contradiction because E1 + E2 is not a member of |F1 + F2|.
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So, we have now computed the singular locus of S′. It consists of two double
lines �′1, �

′
2, one triple line �′0, the double conic K, and some number c of double

conics contained in planes from the pencil Q.
A general plane section of S′ is a plane curve of degree 7. It has 2+2(c+1) double

points and one triple point. Its geometric genus is equal to 15 − 3 − 2 − 2(c + 1),
which is an even number. On the other hand, the geometric genus is equal to the
genus of a general curve from |2F1 + 2F2|, which is equal to 5. This contradiction
proves assertion (iv).

(v) Since φ : Y → S is a map of degree 2 onto a normal surface, the existence of
the Stein decomposition of φ implies that the pre-image of any point consists of at
most two points or contains a one-dimensional component.

We want to show that the pre-image of {s0} is reduced to {y0}. It contains the
union of the pre-images of s0 under the restriction maps Fi → �i. Since each such
map is of degree 2 and φ does not blow down any curve intersecting F1 + F2, we
may assume that y0 is a ramification point of φ|F1

: F1 → �1 and the pre-image of
F2 → �2 consists of two points y0 and y′0.

Let ν : S̄ → S be the blowup of the point s0. Suppose s0 is a nonsingular point
of S. Then the exceptional curve E of ν is a (−1)-curve on S̄. The rational map
ν−1◦φ : S ��� S̄ extends to a regular map φ̄ : Ȳ → S̄ with disconnected exceptional
locus over y0 and y′0. However, the restriction of φ̄ over E is ramified at the point
of intersection of E with the proper transform of �1, and hence φ̄−1(E) cannot be
disconnected. This contradiction shows that s0 is a singular point of S; hence φ is
not étale at y0, and hence s0 is a ramification point of φ and, as such, has a unique
pre-image. �

Now we can easily deduce from this lemma that m1 = m2 = 2. We know
that the maps Fi → �i ramify over s0. Each map is given by the restriction of
the linear system |2F1 + 2F2|. It is equal to the linear system |2y0 + 2εi|, where
OFi

(εi) ∼= OFi
(Fi) and mi is the order of εi in Pic0(Fi). Since 2y0 ∈ |2y0 + 2εi|,

we obtain 2εi ∼ 0; hence mi ≤ 2. Since all indices mi are larger than one, we get
mi = 2 for all 1 ≤ i ≤ 10.

5.6. The surface Y is a Coble surface. The surface Y is obtained from Yi by
blowing up a point p̃i; this point is contained in a nonmultiple member Bi of the
Halphen pencil of Yi. Let ai be the multiplicity of p̃i on Bi: it is equal to 1 if p̃i is
a nonsingular point of Bi and 2 otherwise. Let Ai be the strict transform of Bi on
Y . Since mi = 2, we have

(17) Ai + aiEi ∼ 2fi = −2σ∗
Ei
(KYi

) = −2KY + 2Ei.

If ai = 2 for some index, then Ai ∈ | − 2KY |; hence Y is a Coble surface, all Ai

coincide, and their natural projection on P2 is a sextic curve with double points at
p1, p2, . . ., p10.

Suppose ai = 1 for all i. Then

(18) Ai ∼ −2KY + Ei.

Let Fi ∈ |fi| = | − KY + Ei| be the pre-image of the reduced double fiber of the
Halphen pencil on Yi. Since σEi

is an isomorphism over an open neighborhood of
this fiber, the normal bundle OFi

(Fi) is of order 2 in Pic(Fi). Applying (18), we
obtain

OFi
(Aj − Ej) ∼= OFi

(−2KY ) ∼= OFi
.
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For j �= i, Aj · Fi = Ej · Fi = 1; hence Aj and Ej intersect Fi transversally at the
same point. Let π : Y → P2 be the natural projection, i.e. the blowdown of all
curves El, 1 ≤ l ≤ 10. The image of Fi is an irreducible cubic curve Ci. By blowing
down Ej , we see that π(Aj) is tangent to Ci at pj . Taking k �= i, j, we obtain that
π(Aj) is tangent at the same point to Ck; since Aj intersects Ej transversely, Ck

and Ci are tangent at pj . Fixing i and k and changing j, we see that Ck and Ci

are tangent at the 8 points pj with j �= k, so that the two irreducible cubics Ci and
Ck coincide. Hence Fi = Fk, while fi �= fk. This contradiction shows that Y is a
Coble surface.

Thus we have proved Theorem 5.1 when P contains exactly 10 points.

5.7. The surface X coincides with the Coble surface Y . To conclude the
proof of Theorem 5.1, it remains to show that n = 10, and thus X = Y is a Coble
surface, when P is a Cremona special set not contained in a cubic curve. We may
assume that X = X11, so that X is obtained by blowing up 11 points p1, . . . , p11
in P2; by Lemma 5.3 none of them is an infinitely near point.

By assumption, P is not contained in a cubic curve. Let Pj , 1 ≤ j ≤ 11, be
the subset of P obtained by removing the point pj . Assume that three of the sets
Pj , say P9, P10 and P11, are contained in cubic curves, say C9, C10 and C11. By
Section 5.3, these three cubics are irreducible. Let P ′ = {p1, . . . , p8}. Since P ′ lies
on an irreducible cubic curve, no four of its points are collinear. It follows that the
linear system of cubic curves containing P ′ is of dimension 1; let q be the ninth
base point of this pencil. The curves C9, C10, and C11 belong to this pencil; hence
any two of them intersect at q. Consequently C9 and C10 contain the set P ′ and
the points q and p11. It follows that C9 = C10 or that q = p11. If C9 = C10, then
P is contained in this cubic curve, if q = p11, then C11 contains P; in both cases,
P is contained in a cubic curve, a contradiction.

Thus, at most 2 of the Pj are contained in cubic curves. We can therefore
suppose that P1, P2, P3 and P4 are not contained in cubic curves. The surfaces
obtained by blowing up these sets are Cremona special and, as such, are unnodal
Coble surfaces. In particular, each set Pl, 1 ≤ l ≤ 4, determines a unique curve of
degree six with nodes along Pl.

Let us first assume that the characteristic of the field K differs from 2. Consider
the del Pezzo surface Z of degree 2 obtained by blowing up the last seven points
p5, . . . , p11. We identify the elements of the set

Q = {p1, p2, p3, p4}

with points on Z. By assumption, we have 4 curves Ci on Z in the linear system
| − 2KZ | with double points at Q \ {pi}; each Ci is the proper transform of the
sextic curve with nodes along Pi, 1 ≤ i ≤ 4. Consider the map Z → P2 defined by
the linear system | −KZ |. Since char(K) �= 2, its branch curve is a plane quartic
curve B (see [13], Chapter V.6, page 67). Each curve Ci is equal to the pre-image
of a conic Ki in the plane. Since Ci is singular at three points pj ∈ Q \ {pi}, the
conic Ki is tangent to B at the images qj of the points pj . In particular, the conics
Ki and Kj are tangent to B at two points. Consider the cubic curves Ki + Li,
where Li is the tangent line to B at qi. They all pass through q1, q2, q3, and q4
with tangent direction Li at qi. Thus they generate a pencil of cubic curves with
8 base points (four are infinitely near the points qi). The ninth base point must
be the intersection point q of the lines Li. But then three tangents of the conic Ki
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meet at q. This can happen only if char(K) = 2, so that n = 10 and X = Y when
char(K) �= 2.

Remark 5.8. The configuration of 4 conics with each pair tangent at two points
is realized in characteristic 2. Consider the 3-dimensional linear system of conics
ax2 + by2 + cz2 + dxy = 0. Each line through the point (0 : 0 : 1) is tangent to all
conics in the family. Choose four general points in the plane. For each subset of
three of these points find a unique conic in the family which passes through these
points. Then each pair of the four conics are tangent at two points.

Note that the pencil of cubic curves which we used in this proof defines a quasi-
elliptic fibration on the blowup of the base points. It has 8 reducible fibers of type
III in Kodaira’s notation (two smooth rational curves tangent to each other at one
point). There are no elliptic fibrations on a rational surface with such a combination
of reducible fibers.

It remains to consider the case when char(K) = 2. The difference here is that
the anticanonical linear system | −KZ | defines a separable map of degree 2 whose
branch curve is a conic, and the condition that the pre-image of a conic is singular
is not stated in terms of the tangency to the branch locus. So we have to find
another argument.

Since at most 2 of the Pj are contained in cubic curves, we can assume that
the Pi are not contained in cubic curves for 1 ≤ i ≤ 9; each of these nine point
sets is special, and is therefore a Coble set. Let Ri be the proper transform of the
sextic curve with double points at Pi, i = 1, . . . , 9. The curves Ri are pairwise
disjoint (−4)-curves, and the divisor class of each Ri is divisible by 2. Let D be the
divisor

∑
Ri, where i runs from 1 to 9, and let L be an invertible sheaf on X such

that L⊗2 ∼= OX(D). This sheaf defines an inseparable double cover π : Z → X
with branch divisor D. Recall that this means that Z is locally isomorphic to
Spec OX(U)[T ]/(T 2 + φ), where U is an affine open set, φ is a local equation of
D in U , and π∗(OX) ∼= OX ⊕ L−1. Since D is a reduced divisor, the cover has
only finitely many singularities. The set of singularities supports the scheme of
zeros of a section of Ω1

X ⊗ L⊗2 (see [12], Proposition 0.1.2,7). The length of this
0-dimensional subscheme is equal to the second Chern class of the rank 2 locally
free sheaf E = Ω1

X ⊗ L⊗2. The standard formula from the theory of Chern classes
gives

c2(E) = c2(Ω
1
X) + c1(Ω

1
X) ·D +D2.

In our situation, we have c2(Ω
1
X) = 14 (= the l-adic Euler characteristic of X) and

c1(Ω
1
X) = KX . This gives

c2(E) = 14 +KX ·D +D2 = 14 + 2× 9− 4× 9 = −4 < 0,

a contradiction.
Thus, Theorem 5.1 is proved in all cases, including char(K) = 2.

6. Cremona special sets of n ≥ 10 points lying on a cubic curve

To establish our Main Theorem, it remains to prove Theorem 5.2: Assuming
that P is Cremona special and lies on an irreducible cubic curve, we now prove

7This is analogous to the formula for the number of singular points of a holomorphic foliation
on a complex surface X defined by a section of Ω1

X ⊗ L⊗2.
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894 SERGE CANTAT AND IGOR DOLGACHEV

that the set P is one of Harbourne’s sets in this case. Note that, being Cremona
special, P does not contain an infinitely near point.

6.1. Torsion sets of points.

Lemma 6.1. If P is a Cremona special set of points on a cubic curve C0, then

(1) C0 is irreducible;
(2) there exists a positive integer s such that the divisor class of spi in Pic(C0)

does not depend on the choice of pi in P;
(3) 9spi ∈ |3sh| for all pi ∈ P, where h = c1(OC0

(1)), the divisor class of the
intersection of C0 with a line.

Proof of Lemma 6.1. We first assume that the number of points in P is equal to 10.
For all indices i ∈ {1, . . . , 10}, denote by Pi the set P \ {pi}. Since P is Cremona
special, so is Pi. By Theorem 4.6, there exists a positive integer mi such that Pi

is a Halphen set of index mi. Since Pi is contained in C0, this implies that C0 is
irreducible (otherwise the Halphen surface is not unnodal; hence Pi is not Cremona
special), and that

mi(

10∑
j=1,j �=i

pj) ∼ 3mih,

where h is the divisor obtained by intersecting C0 with a line. Let s be the least
common multiple of the mi, and let Σ be the sum of the 10 points pi. We obtain

s(Σ− pi) ∼ 3sh.

Hence the divisor class of spi does not depend on pi. Summing up these equalities,
we get 9sΣ ∼ 30sh, and thus 9spi ∼ 3sh.

If there are more than ten points in P, we consider all subsets of ten points
within P. Properties (1), (2), and (3) hold for these subsets, and therefore also for
P (for some positive integer s). �

The following definition is due to Harbourne [24].

Definition 6.2. A rational surface X with Picard number ρ(X) ≥ 11 and with
| − KX | = {D} for some irreducible reduced curve D is K3-like if the canonical
restriction homomorphism

r : K⊥
X → Pic0(D)

has finite image.

We say that a point set P which is contained in an irreducible reduced cubic
curve C0 is a torsion set if the blow-up surface X is K3-like. In that case, the
strict transform C of C0 coincides with the unique member D of the linear system
| −KX |.

When P ⊂ C0 is a torsion set, we denote by X the surface obtained by blowing
up P, and by Sr the kernel of the restriction homomorphism r : K⊥

X → Pic0(C).

The quotient group K⊥
X/Sr embeds as a finite subgroup in Pic0(C); we denote by

m > 1 the smallest integer such that K⊥
X/Sr is contained in the m-torsion subgroup

Pic0(C0)[m].

Corollary 6.3. A Cremona special set of n ≥ 10 points on an irreducible cubic
curve C0 is a torsion set.
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Proof. The image of the restriction homomorphism r : K⊥
X → Pic0(C0) is generated

by the divisor classes r(e0 − e1 − e2 − e3), and r(ei − ej) for i > j. From Lemma
6.1, we have

3sr(e0 − e1 − e2 − e3) = r(3sh− 9sp1) = 0, sr(ei − ej) = r(spi − spj) = 0.

This shows that the image of the restriction homomorphism is finitely generated
and is contained in the 3s-torsion subgroup Pic(C0)[3s] of Pic

0(D). As such, r(K⊥
X)

is finite. �
Proposition 6.4. Let P be a torsion set of n ≥ 10 points on an irreducible cubic
curve C0. Then P is Cremona special if and only if it is unnodal.

Proof. By Proposition 4.5, the condition that P is unnodal is necessary. By Theo-
rem 3.2 from [24], it is also sufficient.

Let us sketch Harbourne’s argument. Assume that P is unnodal. Since P is a
torsion set, the surface X is K3-like: The kernel Sr or r has finite index in K⊥

X .
By definition of m, mK⊥

X ⊂ Sr. Let w be an element of WX . Let Ei ⊂ X be the
exceptional divisor obtained by blowing up pi. The image of the class ei of Ei by w
is represented by a unique (−1)-curve Ei(w) (Lemma 3.4, assertion (i)). This curve
intersects C in a unique point pi(w) because C ∈ | −KX |. Thus, w transforms the
point set P into a new point set {p1(w), . . . , pn(w)} of the curve C0. This action is
the same as the action of Wn on the point sets, described in Section 1.5 (see also
[20], §VI.5). On the other hand, the image of r being finite, there exists a finite
index subgroup G of WX such that {p1(w), . . . , pn(w)} is projectively equivalent to
P for all w in G. From Section 1.5 (see [20], §VI), this implies that G is realized as
a subgroup of Aut(X)∗; thus, X is special. �
Example 6.5 (Harbourne’s examples; see Example 3.4 from [24]). Suppose that
char(K) = p > 0 and C0 is an irreducible cuspidal curve. The group Pic0(C0) is
isomorphic to the abelian group (K,+).

Let C#
0 be the complement of the singular point. Choose a point set P =

{q1, . . . , qn} of n ≥ 10 points on C#
0 , denote by X the blowup of P and consider

the restriction homomorphism

r : K⊥
X → Pic0(C0) ∼= K.

Its kernel Sr is equal to pK⊥
X when the elements 3h− q1 − q2 − q3, q1 − q2, ..., and

qn−1−qn of Pic0(C0) are linearly independent over Fp ⊂ K; general point sets with
n ≥ 10 points satisfy this property.

Suppose, now, that Sr = pK⊥
X . Since the divisor class of any (−2)-curve lies in

the kernel of r and, obviously, does not belong to pK⊥
X , the point set P is unnodal.

By Proposition 6.4, P is Cremona special.

From Proposition 6.4 we deduce that Theorem 5.2 is a consequence of the fol-
lowing statement.

Theorem 6.6. Let C0 ⊂ P2 be an irreducible cubic curve. Let P ⊂ C0 be a torsion
set with |P| = 10, and let m be the smallest integer such that the image of the
restriction morphism r is contained in Pic0(C0)[m]. If P is unnodal, then C0 is a
cuspidal cubic and char(K) divides 3m.

Note, in particular, that we assume in the following that the number n of blow-
ups is equal to 10. Thus, P is now a torsion set of ten distinct points on an
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irreducible cubic curve C0. As above, C denotes the strict transform of C0 in the
surface X. The following lemmas provide a way to decide whether P is unnodal or
not in terms of effective roots α ∈ K⊥

X (see Section 3.3).

Lemma 6.7. Let P be a set of n = 10 points on an irreducible cubic curve C0. Let
α ∈ K⊥

X be an effective root. Any effective representative of α contains a (−2)-curve
as one of its irreducible components.

Proof. Let D be an effective representative of the root α. Write D as a positive sum
lC+

∑
Fi, where the Fi are irreducible components different from C. Assume that

no component Fi is a (−2)-curve. Since −KX is represented by the irreducible curve
C, we have KX · Fi ≤ 0. The adjunction formula implies that any curve Fi with
negative self-intersection is a (−1)-curve. Since (

∑
Fi)

2 = (D− lC)2 = −2− l2 < 0,
some of the components Fi are (−1)-curves. Write

∑
Fi = E + A, where E is the

sum of (−1)-components of D. We have

E2 ≤ E2 + 2E · A+A2 =
(∑

Fi

)2

= −2− l2,

E · C = (D − lC −A) · C = l −A · C ≤ l.

Write E =
∑

kjFj , where the curves Fj in this sum are distinct (−1)-curves. The
second inequality gives

∑
kj ≤ l, and the first one gives

∑
k2j ≥ 2+ l2. This implies

2 + l2 ≤
∑

k2j ≤ (
∑

kj)
2 ≤ l2, a contradiction. �

It follows from this lemma that X is unnodal if and only if it does not contain
effective roots.

Lemma 6.8. Let P be a torsion set of n = 10 points on an irreducible cubic curve
C0. The surface X contains a (−2)-curve if and only if there exists a root α in the
kernel Sr of the restriction homomorphism r : K⊥

X → Pic0(C).

Proof. Let α be a root. Consider the exact sequence

0 → OX(KX + α) → OX(α) → OC(α) → 0,

where the first nontrivial map is the multiplication by a section of OX(−KX) which
vanishes along the curve C. The Riemann-Roch Formula, applied to the divisor
class −α, and Serre’s Duality imply

(19) h0(−α) + h0(KX + α) = h1(KX + α).

Suppose α is the class of a (−2)-curve R. Since C is an irreducible curve and
C · R = 0, the curve R is disjoint from C. Hence r(α) = OC(α) ∼= OC , and thus
r(α) = 0 in Pic(C). Conversely, suppose OC(α) ∼= OC . Then h0(OC(α)) �= 0;
hence either h0(OX(α)) �= 0, or h1(OX(KX + α)) �= 0. In the second case,

0 < h1(KX + α) = h0(KX + α) + h0(−α) ≤ h0(α) + h0(−α)

implies that α or −α is effective. Thus, in both cases, either α or −α is an effective
root and Lemma 6.7 implies that X contains a (−2)-curve. �
6.2. The reduction to a question on the arithmetic of quadratic forms.
The proof of Theorem 6.6 that we now describe is rather delicate, and uses strong
approximation results in a specific situation; unfortunately, we have not been able
to find a simpler geometric argument.

We assume that P ⊂ C0 is a torsion set and make use of the notation introduced
in the previous section. We assume that either (i) C0 is not cuspidal or (ii) C0 is
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cuspidal but char(K) does not divide 3m, and our goal is to show that X contains
a (−2)-curve; by Lemma 6.8, all we need to prove is the existence of a root α in
the kernel Sr of the morphism r.

Note that, under our assumptions, Pic0(C)[m] ∼= (Z/mZ)a, where a ≤ 2. Ob-
viously, Sr contains the sublattice mK⊥

X . Define Vm = Sr/mK⊥
X and Lm =

K⊥
X/mK⊥

X ; Vm is a submodule of Lm over the ring Z/mZ:

Vm = Sr/mK⊥
X ⊂ Lm = K⊥

X/mK⊥
X

∼= (Z/mZ)10.

This submodule Vm contains a free (Z/mZ)-submodule of dimension 8 because
a ≤ 2. The morphism r induces a morphism from Lm to Pic0(C)[m], and Theorem
6.6 becomes a consequence of the following purely arithmetic statement.

Theorem 6.9. Let m be a positive integer. Let Lm = E10/mE10 and Vm be a
(Z/mZ)-submodule of Lm containing a free submodule of rank 8. Then there exists
a root in E10 whose projection into Lm is contained in Vm.

We employ the theory of quadratic forms over any commutative ring A. Let M
be a finitely generated A-module. A function q : M → A is called a quadratic
form if

• for any x ∈ M and a ∈ A, q(ax) = a2q(x);
• bq(x, y) = q(x+ y)− q(x)− q(y) is a symmetric bilinear map M ×M → A.

The bilinear form bq is called the associated symmetric bilinear form. If 2 is invert-
ible in A, then q = 2−1b(x, x), and the notion of a quadratic form is equivalent to
the notion of a symmetric bilinear form. A module M equipped with a quadratic
form q is called a quadratic module.

We denote by b the bilinear form on K⊥
X given by the intersection product,

and we equip Lm with the symmetric bilinear form bm obtained by reduction of b
modulo m. When m is even, we equip Lm with the structure of a quadratic module
by setting

qm(x) =
1

2
bm(x, x)

(recall that our lattice K⊥
X is an even unimodular lattice). Let O(Lm) be the

orthogonal group of (Lm, bm) (resp. of (Lm, qm) when m is even).
To prove Theorem 6.9, fix a root α and consider its image ᾱ in Lm. Suppose we

find an element σ ∈ O(Lm) such that σ(ᾱ) ∈ Vm. Suppose, moreover, that σ lifts
to an element w ∈ O(K⊥

X). Then w(α) is a root, w(α) is contained in Sr, and we
are done. We now develop this strategy.

6.3. Orthogonal and Spin groups modulo pl. Since the quadratic form b of
the lattice E10 is unimodular, there is a connected smooth group scheme SOb over
Z such that SOb(Z) coincides with the group of isometries of the lattice E10 with
determinant 1.

The universal cover of SOb is a smooth group scheme Spinb over Z; the group
Spinb(Z) is the group Spin(E10) of all invertible elements of the even part of the
Clifford algebra of the quadratic Z-module E10 such that the corresponding inner
automorphism leaves E10 invariant (see [29], Chapter IV, §5).

There is an exact sequence of group schemes

(20) 1 → μ2 → Spinb → SOb → 1,
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898 SERGE CANTAT AND IGOR DOLGACHEV

where μ2 is the group of square roots of 1. For any commutative ring A with
Pic(A) = 0, the exact sequence defines the following exact sequence of groups:

1 → μ2(A) → Spinb(A) → SOb(A) → A∗/A∗2

(see [29], Theorem 6.2.6). This will be applied to A = Z/pkZ for prime numbers p.
In this case |A∗/A∗2| = |μ2(A)|; this number is equal to 2 if p �= 2, and to 1, 2, or
4 if p = 2 and k = 1, k = 2, or k ≥ 3 respectively. Thus the image of Spinb(A) in
SOb(A) is of index at most 4.

The group scheme Spinb is requested in order to apply the Strong Approxima-
tion Theorem (see [28], Theorem 24.6):

Theorem 6.10 (Strong Approximation). Let M be a unimodular indefinite integral
quadratic lattice of rank ≥ 3; if p is a prime integer, denote by Mp = M ⊗ Zp its
p-adic localization at p. Let pi, i ∈ I, be a finite set of prime numbers. Then the
canonical homomorphism

Spin(M) →
∏
i∈I

Spin(Mpi
)

has a dense image.

Note that, by the Chinese Remainder Theorem,

O(Lm) =
∏
i

O(L
p
ki
i

),

where m =
∏

pki
i is the prime factorization of m.

Since the fibers of the natural homomorphism Spin(Mpi
) → Spin(M/pi

ki) are
open subsets of Spin(Mpi

), we obtain a commutative diagram

(21) Spin(E10) ��

��

SOb(Z)

��
Spin(E10/mE10) �� SO(Lm),

for which the first vertical arrow is surjective, by the Strong Approximation Theo-
rem. Suppose we find a root α ∈ E10 and an element σ in the image of the bottom
horizontal arrow such that σ(ᾱ) ∈ Vm. Then, the commutative diagram shows that
σ can be lifted to an element w ∈ SOb(Z) such that the projection of w(α) into
Lm is contained in Vm, and therefore Theorem 6.9 is proved.

6.4. Orbits of SOb and Spinb modulo p. This section is a warm-up for the
following ones. Fix a root α in E10 and denote by ᾱ its image in Lp, where p is a
prime integer.

Since Lp is a nondegenerate quadratic space over Fp, the rank of any submodule
of Lp on which the quadratic form vanishes identically modulo p is at most 5. Any
quadratic form of rank ≥ 2 over Fp represents all elements in F∗

p ([39], Chapter I).
Thus, bp represents all elements of F∗

p.

Let r ∈ Vp be an element with r2 := bp(r, r) = −2. If p �= 2, Witt’s Theorem
provides an element σ ∈ O(Lp) such that σ(ᾱ) = r.

If p = 2, we consider L2 = E10/2E10
∼= F10

2 as a quadratic space with the
quadratic form q2(x) =

1
2b(x, x) mod 2. Since V2 is of dimension ≥ 8, q2 does not

vanish identically on V2. There are 496 = 24(25 − 1) vectors in the set q−1
2 (1) and
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all of them are represented by roots (see [11], Remark 4.7). Thus there are elements
of V2 which are represented by roots.

As a consequence, there is a root α in E10, such that, for each prime number p,
there is an element σ ∈ O(Lp) satisfying σ(ᾱ) ∈ Vp.

We now extend this idea to the case m = pk with k > 1, and use this extension
to prove Theorem 6.9.

6.5. Quadratic modules and orbits modulo pk. Here, the ring is A = Z/pkZ
and the quadratic module is M = Vm, equipped with the symmetric bilinear form
bpk or the quadratic form qpk when p = 2. Since A is local, with maximal ideal
m = pA, an element a in A is invertible if and only if a is not contained in m.

Lemma 6.11. The quadratic module Vpk represents all invertible elements of the

ring Z/pkZ (i.e. ∀a ∈ Z/pkZ, there exists x ∈ Vpk such that q(x) = a). The same
property holds for all free quadratic submodules M0 ⊂ Vpk of rank 8.

Proof. We prove the lemma for Vpk by induction on k. The same proof applies for
submodules of Vpk of rank 8.

When k = 1, Vp represents all nonzero elements of the field Fp, as explained in
Section 6.4. More precisely, for all a ∈ F∗

p there exists a pair of vectors (v, w) in Vp

such that q(v) = a mod p and bq(v, w) = 1 mod p.
Let k be a positive integer. The induction hypothesis asserts that for all invertible

elements a of Z/pkZ there exists a pair of vectors (v, w) in Vpk such that

q(v) = a mod pk and bq(v, w) = 1 mod pk.

Let a be an invertible element of Z/pk+1Z. Apply the induction hypothesis to find
elements v and w of Vpk+1 such that q(v) = a mod pk and bq(v, w) = 1 mod pk.

Then bq(v, w) is invertible in Z/pk+1Z and changing w in one of its multiples we
construct a vector w such that bq(v, w) = 1 mod pk+1. Write q(v) = a + bpk and
change v into v′ = v− bpkw; then q(v′) = a mod pk+1. We still have bq(v

′, w) = 1
mod pk, so that a multiple w′ of w satisfies bq(v

′, w′) = 1. The lemma is proved by
induction. �

Now we invoke the following analog of Witt’s Theorem for quadratic modules
over local rings (see [28], (4.4)).

Lemma 6.12 (Witt’s Theorem). Let M be a quadratic module over a local ring A
with maximal ideal m. Let F,G be free primitive submodules of M over the ring A.
Any isomorphism of quadratic modules F → G extends to an automorphism of the
quadratic module M .

Here primitive means that the quotient module is free.

6.6. Proof of Theorem 6.9. We are ready to prove Theorem 6.9, hence Theorem
6.6, and Theorem 5.2.

Let m be a positive integer and
∏

i p
ki
i be its decomposition into prime factors.

Let α ∈ E10 be a root (for example α = e1 − e2).

Let pk be any of the factors pki
i . Consider the image ᾱ of α in Lpk . Fix a free

submodule M0 of rank 8 in Vpk . By Lemma 6.11, there is an element v ∈ M0

with qpk(v) = −2 ∈ Z/pkZ if p �= 2 and qpk(v) = 1 if p = 2. The element
v generates a free primitive submodule of Lpk . By Witt’s Theorem, we find an
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element σ ∈ O(Lpk) such that σ(ᾱ) = v; in particular, σ(ᾱ) is contained in Vpk .
Let us show that σ can be chosen in the image of the map Spin(Lpk) → O(Lpk).

Recall that the reflection sh with respect to a vector h, for which q(h) is invertible,
is defined by the formula

sh(x) = x− b(x, h)

q(h)
h.

If h is in M0, sh is an isometry of Lpk that preserves M0. By Theorem (4.6) from
[28], any isometry of M0 (resp. Lpk) is the product of reflections in elements from
M0 (resp. Lpk). As explained in [28], page 39, Section 8, an element η of O(Lpk)
is in the image of Spin(Lpk) if and only if η is a product of an even number of
reflections, η = sh1

◦ · · · ◦ sh2s
, and its spinor norm sn(η) is 1, i.e.

sn(η) := q(h1) · · · q(h2s) = 1 mod (Z∗
pk)

2.

(See also [29], chapter IV, §6.)
Write σ as a composition of reflections shi

, 1 ≤ i ≤ l, with q(hi) ∈ Z∗
pk (l may

be odd). Apply Lemma 6.11 to find vectors hl+1 and hl+2 in M0 such that

q(hl+1) =

l∏
i=1

q(hi)
−1 and q(hl+2) = 1 mod (Z∗

pk)
2.

Change σ into shl+1
◦σ or shl+2

◦ shl+1
◦σ to obtain an isometry which is a product

of an even number of reflections. After such a modification, sn(σ) = 1 and σ is in
the image of Spin(Lpk). Since M0 is preserved by shl+1

and shl+2
, σ(ᾱ) is contained

in M0, and thus in Vpk .
Now let ᾱ denote the image of α into Lm. Since the previous argument applies to

all prime factors pki
i ofm, the Chinese Remainder Theorem shows the existence of an

element σ in Spin(E10/mE10) such that σ(ᾱ) ∈ Vm. By the Strong Approximation
Theorem, σ lifts to an element σ′ in Spin(E10); then, the image w of σ′ in SOb(Z)
maps the root α onto a root w(α) whose projection modulo m is in Vm. This proves
Theorem 6.9 and hence Theorem 6.6.

7. Non–algebraically closed fields and other surfaces

7.1. Non–algebraically closed fields. In this section, the ground field K is not
necessarily algebraically closed. Let K be its algebraic closure and let X̄ = X ⊗KK

be obtained from X by base field change. Let WX̄ denote the Coxeter subgroup of
O(Pic(X

K
)), as defined in Section 1.3. We have a sequence of inclusions

Aut(X)∗ ⊂ Aut(X̄)∗ ⊂ WX̄ ⊂ O(K⊥
X̄).

We say that X is Cremona special over K if Aut(X)∗ has finite index in WX̄

and WX̄ is infinite. The following result extends the Main Theorem to arbitrary
fields K.

Theorem 7.1. If X is Cremona special over K, then

• X̄ is unnodal;
• X is obtained from P2

K
by blowing up a finite subset of P2(K);

• X is a Halphen, a Coble, or a Harbourne example (over K).

Proof. Let n + 1 be the Picard number of X̄. Assume that X is Cremona special
over K; in particular, X is obtained from P2

K
by blowing up a 0-cycle P of length n

defined over K. Since Aut(X̄) contains Aut(X), X̄ is Cremona special.
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From our Main Theorem, we deduce that X̄ is unnodal, P is made of n distinct
points of P2(K), and X̄ is a Halphen, a Coble, or a Harbourne example over K.
In the Halphen case, the genus 1 fibration on X is unique. In the Coble case,
| − 2KX̄ | contains a unique member (the strict transform of the sextic curve with
double points along P). In the Harbourne case, when the Picard number of X̄ is
≥ 10, |−KX̄ | contains also a unique member (given by the proper transform of the
cuspidal cubic containing P). Thus, these curves and pencil are defined over K.

Let us show that Pic(X) has finite index in Pic(X̄). First, assume that n ≥
10. Consider the subgroup Pic(X) of Pic(X̄). It contains ample classes and the
canonical class KX ; in particular, it intersects K⊥

X on an infinite subgroup L which
is Aut(X)∗-invariant. But Aut(X)∗ has finite index in WX̄ , WX̄ is Zariski dense
in O(K⊥

X ⊗ R), and the action of this orthogonal group on K⊥
X ⊗ R is irreducible.

Thus, L ⊗ R coincides with K⊥
X ⊗ R. Since Pic(X) also contains KX , we deduce

that Pic(X)⊗R is equal to Pic(X̄)⊗R and that Pic(X) has finite index in Pic(X̄).
When n = 9, one needs a slightly different argument. Since Pic(X) contains am-

ple classes, the intersection form restricts to a form of signature (1,m) on Pic(X),
with m ≤ 9. In particular, the intersection form is negative definite on the orthog-
onal complement of Pic(X), and the action of Aut(X) on Pic(X) has finite kernel.
Since the action of Aut(X) on Pic(X) preserves the isotropic vector KX and the
integral structure, it contains a finite index, free abelian subgroup of rank at most
m − 1. Since Aut(X)∗ has finite index in W9, we deduce that m = 9 because W9

contains a free abelian group of rank 8. This shows that Pic(X) has finite index in
Pic(X̄).

Let us now prove that all points pi of P, 1 ≤ i ≤ n, are in fact defined over K,
i.e. that P ⊂ P2(K). It suffices to show that all (−1)-curves E in X̄ are defined
over K. Since Pic(X) has finite index in Pic(X̄), the divisor class of some positive
multiple mE is in Pic(X). Since |mE| = {mE}, we obtain that mE is defined over
K and hence E is defined over K. �

7.2. Other types of surfaces. We can extend the concept of Cremona special
rational surfaces to other types of projective surfaces as follows. One says that
a surface Y has a large automorphism group if Aut(Y )∗ is infinite and of finite
index in the orthogonal group O(K⊥

Y ) ⊂ O(Num(Y )), where Num(Y ) is the lattice
of divisor classes modulo numerical equivalence. Besides rational surfaces, other
candidates of surfaces with large automorphism groups are surfaces of Kodaira
dimension 0 or 1. Indeed, Aut(Y ) is finite if the Kodaira dimension of Y is 2, and
Aut(Y )∗ is finite if Y is ruled but not rational.

7.2.1. Kodaira dimension 1. If the Kodaira dimension of Y is 1, some multiple
of the canonical class defines an elliptic (or quasi-elliptic) fibration on Y . The
Mordell-Weil group of the corresponding Jacobian fibration embeds as a finite index
subgroup into Aut(Y )∗. By the Shioda-Tate formula, the rank of this group is equal
to ρ(Y )− 2, provided there are no reducible fibers in the genus 1 fibration. Using
the argument from the proof of Theorem 2.10, one can show, in this case, that
Aut(Y )∗ is of finite index in O(K⊥

Y ). Thus, Aut(Y )∗ has finite index in O(K⊥
Y ) if

and only if the canonical fibration has no reducible fiber.

7.2.2. Kodaira dimension 0. The classification of surfaces implies that minimal sur-
faces with Kodaira dimension 0 fall into four types: Abelian surfaces, K3 surfaces,
Enriques surfaces, and bielliptic surfaces.
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Theorem 7.2. Let K be an algebraically closed field with char(K) �= 2. Let Y be
a projective surface over K with Kodaira dimension equal to 0. If Aut(Y ) is large,
then Y is minimal and Y is not a bielliptic surface. If Y is an abelian surface, a
K3 surface, or an Enriques surface, then Aut(Y ) is large if and only if O(Num(Y ))
is infinite and Y does not contain any smooth rational curve.

Sketch of the proof. Recall that a (−k)-curve is a smooth rational curve with self-
intersection −k. Let Y be a projective surface with Kodaira dimension 0. The set
of classes of (−1)-curves is finite, and permuted by Aut(Y ); thus, if Aut(Y ) is large,
then Y is minimal and K⊥

Y = Num(Y ). If Y is bielliptic, it is easily checked that
Aut(Y )∗ is finite.

Abelian surfaces do not contain rational curves, and smooth rational curves
on K3 surfaces and Enriques surfaces are (−2)-curves. Each of them defines a
reflection on Num(Y ). Denote by Nod(Y ) the set of smooth rational curves and
by Ref(Y ) ⊂ O(Num(Y )) the group generated by the reflections around classes of
smooth rational curves.

Let Y be an abelian or K3 surface. Over the field of complex numbers, the Torelli
Theorem implies that Aut(Y )∗ is of finite index in O(Num(Y )) if and only if Nod(Y )
is empty (this is always true for abelian surfaces). For K3 surfaces this fact has
been extended recently to any characteristic p �= 2 by M. Lieblich and D. Maulik
(see [30]). They also extended another corollary of the Torelli Theorem: The set of
orbits of smooth rational curves with respect to the automorphism group is finite.
Their arguments can probably be adapted to abelian surfaces. Thus, an abelian
surface or K3 surface has a large automorphism group if and only if O(Num(Y )) is
infinite and Nod(Y ) is empty.8

Finally, the automorphism group of an Enriques surface without smooth rational
curves is always large, and this is true in any characteristic. The proof and the
statement are analogous to the proof of Theorem 3.5 (see [15], for K = C). �

7.2.3. Complex surfaces and rational curves. Let us assume that Y is a complex
projective surface.

(1) If Y is an abelian surface, Y does not contain rational curves;
(2) if Y is a K3 surface and Y does not contain any smooth rational curve, its

Picard number satisfies ρ(Y ) ≤ 11;
(3) a generic Enriques surface contains no smooth rational curve.

The first assertion is easily proved, and the third is contained in [2]. The second
one was explained to the authors by V. Nikulin: Any K3 surface with ρ(Y ) ≥ 12
contains a smooth rational curve (see [38], Theorems 14 and 15).

To prove it, assume ρ(Y ) ≥ 12. Since H2(Y, Z) is an even unimodular lattice of
dimension 22 and signature (3, 19), the orthogonal complement T (Y ) of Num(Y ) in
H2(Y, Z) has dimension ≤ 10. By Theorem 1.13.1* (or 1.13.2) in [36], the primitive
embedding T (Y ) ⊂ H2(Y, Z) is unique up to an isomorphism, because Num(U) is
indefinite and rank(T (Y )) ≤ 10 (see also Corollaries 2.9 and 2.10 in [32]). On the
other hand, since rank(T (Y )) ≤ 10, Theorem 1.12.2 of [36] implies the existence of
a primitive embedding

T (Y )⊕ 〈−2〉 ⊂ H2(Y, Z),

8If Aut(Y )∗ is infinite and Y contains smooth rational curves, then Ref(Y ) is infinite and its
elements represent different cosets of O(Num(Y )) modulo Aut(Y )∗.
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where 〈−2〉 denotes the 1-dimensional lattice generated by a vector with self-
intersection −2. Taking the orthogonal complement for this second embedding,
one obtains that Num(Y ) contains a copy of the sublattice 〈−2〉.

This shows that K3 surfaces with large automorphism groups must satisfy ρ(Y )
≤ 11. This is a strange coincidence with our main result that complex rational
surfaces with large automorphism groups must satisfy ρ = 10 or 11.

Corollary 7.3. Let Y be a complex projective surface with large automorphism
group. If Aut(Y )∗ does not contain any finite index abelian group, the Picard
number of Y is at most 11.

Indeed, the assumption implies that Aut(Y )∗ is infinite but does not preserve
a genus 1 fibration, since otherwise the Mordell-Weil group of the corresponding
Jacobian fibration would determine a finite index abelian subgroup of Aut(Y )∗.
Thus, either Y is rational, or its Kodaira dimension vanishes. The conclusion
follows from the Main Theorem, 7.2, and Nikulin’s argument.
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