
MATH. 513. JORDAN FORM

Let A1, . . . , Ak be square matrices of size n1, . . . , nk, respectively with entries in a field F . We
define the matrix A1 ⊕ . . .⊕Ak of size n = n1 + . . . + nk as the block matrix

A1 0 0 . . . 0
0 A2 0 . . . 0
...

...
...

...
...

0 . . . . . . 0 Ak


It is called the direct sum of the matrices A1, . . . , Ak. A matrix of the form

λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
...

0 . . . . . . λ 1
0 . . . . . . 0 λ


is called a Jordan block. If k is its size, it is denoted by Jk(λ). A direct sum

J = Jk1 ⊕ . . .⊕ Jkr (λr)

of Jordan blocks is called a Jordan matrix.

Theorem. Let T : V → V be a linear operator in a finite-dimensional vector space over a field
F . Assume that the characteristic polynomial of T is a product of linear polynimials. Then there
exists a basis E in V such that [T ]E is a Jordan matrix.

Corollary. Let A ∈ Mn(F ). Assume that its characteristic polynomial is a product of linear
polynomials. Then there exists a Jordan matrix J and an invertible matrix C such that

A = CJC−1.

Notice that the Jordan matrix J (which is called a Jordan form of A) is not defined uniquely.
For example, we can permute its Jordan blocks. Otherwise the matrix J is defined uniquely (see
Problem 7). On the other hand, there are many choices for C. We have seen this already in the
diagonalization process.

What is good about it? We have, as in the case when A is diagonalizable,

AN = CJNC−1.

So, if we can compute JN , we can compute AN . It follows from the matrix multiplication that

(A1 ⊕ . . .⊕Ak)N = AN
1 ⊕ . . .⊕AN

k .

Thus it is enough to learn how to raise a Jordan block in Nth power. First consider the case when
λ = 0. We have

Jk(0)2 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0
...

... 0 1
0 . . . . . . 0 0


2

=



0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
...

...
0 . . . . . . 0 0 1
0 . . . . . . 0 0 0
0 . . . . . . 0 0 0
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We see that the ones go to the right until they disappear. Continuing in this way, we see that

Jk(0)k = 0.

Now we have
Jk(λ)N = (λIn + Jk(0))N =

λNIn +
(

N

1

)
λN−1Jk(0) + . . . +

(
N

i

)
λN−iJk(0)i + . . . + λ

(
N

N − 1

)
Jk(0)N−1 + Jk(0)N . (1)

This is proved in the same way as one proves the Newton formula:

(a + b)N =
N∑

i=0

(
N

i

)
an−ibi.

We look at the product of N factors (a + b) . . . (a + b). To get a monomial an−ibi we choose i
brackets from which we will take b. The number of choices is

(
N
i

)
.

Notice that in formula (1), the powers Jk(0)i are equal to zero as soon as i ≥ k.
So we get

Jk(λ)N =



λN
(
N
1

)
λN−1

(
N
2

)
λN−2 . . . . . .

(
N

k−1

)
λN−k+1

0 λN
(
N
1

)
λN−1

(
N
2

)
λN−2 . . .

(
N

k−2

)
λN−k+2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... λN

(
N
1

)
λN−1

0 0 . . . . . . 0 λN


,

where, by definition
(
N
m

)
= 0 if N < m.

Before we go to the proof of the Theorem, let us explain how to find J and C. Notice that

rank(Jk(0)) = k − 1, rank(Jk(0)2) = k − 2, . . . , rank(Jk(0)k) = 0.

Let us introduce the notion of the corank of a matrix A ∈ Matn(F ) by setting

corank(A) = n− rank(A) = nullity(A) .

Then we see that corank(Jk(0))i = i and is equal to the number of the first zero columns. Now,
for any Jordan matrix J = Jk1(λ1)⊕ . . . Jkr

(λr), we have

corank((J − λIn)q) =
∑

i∈I(λ)

corank(Jki
(0)q),

where I(λ) is the set of indices i for which λi = λ. Let

dm(λ) = the number of Jordan blocks Jm(λ) in J ,
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cq(λ) = corank((J − λIn)q) = corank((A− λIn)q) . (2)

The last equality follows from the fact that

(A− λIn)q = (CJC−1 − λIn)q = (C(J − λIn)C−1)q = C(J − λIn)qC−1.

So, (A− λIn)q and (J − λIn)q are matrices of the same operator and hence have the same rank.
We have

c1(λ) =
∑
m≥1

dm(λ),

c2(λ)− c1(λ) =
∑
m≥2

dm(λ),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

cj(λ)− cj−1(λ) =
∑
m≥j

dm(λ),

......................................................

cn(λ)− cn−1(λ) =
∑
m≥n

dm(λ) = dn(λ).

Solving this system for dm(λ) we find

d1(λ) = 2c1(λ)− c2(λ) ,

dj(λ) = −cj−1(λ) + 2cj(λ)− cj+1(λ) , j = 2, . . . , n− 1, (3)

dn(λ) = cn(λ)− cn−1(λ) .

This gives the answer for J .

Remark. For matrices of small size we can list all possible Jordan forms, and then choose the
right one by applying formula (2).

Example. Let

A =

 1 1 1
1 1 2
0 0 0


The characteristic polynomial is PA(λ) = (−λ)3 + 2(−λ)2. So the eigenvalues are 0 and 2. Since
0 is a root of multiplicity 2, it must appear twice at the diagonal. Possible Jordan forms are

J1 =

 0 0 0
0 0 0
0 0 2

 , J2 =

 0 1 0
0 0 0
0 0 2

 .

Since corank(A) = corank(A− 0I2) = corank(J2 − 0I2) = 1 we have to choose J = J2.

Now let us give the answer for C. I will describe how to find C without proper justification.
By definition of the matrix of a linear operator,

AC
(1)
1 = λ1C

(1)
1 , AC

(1)
2 = λ1C

1)
2 + C

(1)
1 , . . . , AC

(1)
k1

= λ1C
(1)
k1

+ C
(1)
k1−1.
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We solve the first equation for C
(1)
1 finding an eigenvector with eigenvalue λ1. Next we have to

solve an inhomogeneous system of equations to find C
(1)
2 . Here we may have a problem because

of non-uniqueness of C
(1)
1 . It could be a “wrong eigenvector”, i.e. corresponding to different block

with the same λ1 at the diagonal. In this case a solution of the inhomogeneous system may not
exist.

The correct way to do is the following. Let m be the size of the largest Jordan block with λ1

at the diagonal and A− λ1In.
1) Let V1 = N(A − λIn)m) Since (A − λIn)m(A − λIn)(v)) = (A − λIn)(A − λIn)m(v)), the

linear operator LA−λIn
maps V1 to itself. Consider LA−λIn

as a linear operator U : V1 → V1. You
can find some basis in V1 and a matrix A1 of U in this basis. You will use it in the next steps.

2) Find a basis v
(1)
1 , . . . , v

(1)
n1 in R(Um−1). Note that Um(v) = 0 for any v ∈ V1, so nonzero

vectors in R(Um−1) are eigenvectors with eigenvalue λ1.
3) Now search for linearly independent vectors v

(2)
1 , . . . , v

(2)
n1 in R(Um−2) such that U(v(2)

i ) =
v
(1)
i .

4) Then extend v
(2)
1 , . . . , v

(2)
n1 to a basis v

(2)
1 , . . . , v

(2)
n2 in R(Um−2).

5) Then, do it the same starting from R(Um−2). That is, find linearly independent vectors
v
(3)
1 , . . . , v

(3)
n2 in R(Um−3) that are mapped to v

(2)
1 , . . . , v

(2)
n2 by U . Then extend this set to a basis

v
(3)
1 , . . . , v

(3)
n3 in R(Um−3).

6) Continuing in this way you will find the following basis in V (λ1):

v
(1)
1 . . . v

(1)
n1

v
(2)
1 . . . v

(2)
n1 . . . v

(2)
n2

...
...

...
...

...
...

v
(m)
1 . . . v

(m)
n1 . . . v

(m)
n2 . . . v

(m)
nm

(4)

It satisfies the following properties
(i) n1 ≤ n2 ≤ . . . ≤ nm;
(ii) n1 + . . . + ni = dim R(Um−i), in particular, n1 + . . . + nm = dim V1;

7) Now take C
(1)
1 = v

(1)
1 , . . . , C

(m)
1 = v

(m)
1 in this order. These are the first m columns of the

matrix C. They correspond to the largest block Jm(λ1). Next take the vectors

C
(1)
2 = v

(1)
2 , . . . , C

(m)
2 = v

(m)
2 , . . . , C(1)

n1
= v(1)

n1
, . . . , C(m)

n1
= v(m)

n1
.

they correspond to the remaining blocks Jm(λ1). You have used the first m columns of the list (4)
(taking vectors from the top to the bottom). Next go to the next columns and do the same. This
gives you the part of C responsible for the blocks with λ1 at the diagonal.

8) Now go to the next eigenvalue λ2 and do steps 1)-7). This will give you the part of C
responsible for the blocks with λ2 at the diagonal. Continue in this way until you have used all
the distinct eigenvalues.

Example (cont.) Let us find the matrix C such that A = CJC−1. First we take λ1 = 0. We
find V1 = N(A2) is spanned by (3, 0,−2), (−1, 1, 0). Now N(A) is spanned by C1 = (−1, 1, 0).
This is a unique eigenvector with eigenvalue 0 (up to proportionality). Now we are looking for
C2 = a(3, 0,−2) + b(−1, 1, 0) such that AC2 = C1. We find that C2 could be taken equal to
(3, 0,−2). It is not a unique solution. We can add to C2 any vector proportional to C1 to obtain
another solution. Finally we find the third column C3 by solving the equation (A− 2I3)C3 = 0. A
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solution is C3 = (1, 1, 0). So

C =

−1 −3 1
1 0 1
0 2 0

 .

We leave to the reader to verify that A = CJC−1.

Now let us go to the proof of the main theorem.
For any linear operator T : V → V and a non-negative integer i we denote by T i the compo-

sition of T with itself i-times. By definition, T 0 = idV .
A linear subspace L ⊂ V is called invariant with respect to T if T (v) ∈ L for any v ∈ L.
Let

L1 ⊂ L2 ⊂ . . . ⊂ Lk ⊂ . . . ⊂ V

be a sequence of linear subspaces of V such that each is a subset of the next one. Let

L =
⋃
k

Lk

be the union of these subspaces (it could be infinitely many of them). I claim that L is a linear
subspace of V . Indeed, take v, w ∈ L. Let v ∈ Lk, w ∈ Lm. Without loss of generality we may
assume that k ≤ m. Since Lk ⊂ Lm, we get v, w ∈ Lm. Since Lm is a linear subspace, we get
v + cw ∈ Lm ⊂ L for any c ∈ F . Thus L is a linear subspace.

We apply this to the following situation. Let U be a linear operator, and Lk = N(Uk). We
have N(Uk) ⊂ N(Uk+1) since Nk(v) = 0 implies N(Uk+1) = N(Nk(v)) = N(0) = 0. Thus we
have a sequence of linear subspaces

{0} ⊂ N(U) ⊂ N(U2) ⊂ . . . ⊂ N(Uk) ⊂ . . . ⊂ V.

It follows from above that⋃
k

N(Uk) = {v ∈ V : Uk(v) = 0 for some k > 0}.

is a linear subspace of V . It is also invariant with respect to U . In fact, if v ∈ N(Uk) for some
k, then Uk−1(U(v)) = Uk(v) = 0, hence U(v) ∈ N(Uk−1) (if k = 0, we have v = 0 so U(v) = 0
belongs to any subspace).

Recall that the eigensubspace of T corresponding to an eigenvalue λ is the kernel of the
operator T − λidV . Define the generalized eigensubspace of T corresponding to an eigenvalue λ by

V (T, λ) = {v ∈ V : (T − λidV )i(v) = 0 for some i > 0}.

Take U = T − λidV in above, we obtain the proof of the following.

Lemma 1. V (T, λ) is a linear susbspace of V . It is invariant with respect to T .

Let us restrict the operator T to the invariant subspace V (T, λ) (that is consider the same
rule for T only applied to vectors from V (T, λ)). We shall exhibit a basis in V (T, λ) such that the
matrix of T with respect to this basis is the direct sum of Jordan block matrices with λ at the
diagonal.
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Notice that the operator U = T−λidV when restricted to V (T, λ) satisfies Um = 0 for some m > 0.
In fact, every vector v ∈ V (T, λ) satisfies U i(v) = 0 for some i > 0. Choose a basis v1, . . . , vk in
V (T, λ) and let m be chosen such that Um(vi) = 0 for all i = 1, . . . , k. This can be done since
U j(v) = 0 imlplies Us(v) = Us−j(U j(v)) = 0 for s ≥ j. Now writing any v ∈ V (T, λ) as a linear
combination of the basis, and using that Um is a linear operator, we obtain that Um(v) = 0 for all
v ∈ V (T, λ).

Let us consider any finite-dimensional vector space W and a linear operator U : W → W
satisfying Um = 0 for some m ≥ 0 (a linear operator with such property is called a nilpotent
operator). The smallest m with this property is called level of nilpotency of U .

Observe that
R(U i+1) ⊂ R(U i).

Indeed U i+1(v) = U i(U(v)), so if a vector w is equal to the value of U i+1 at some vector v, then
it is also equal to the value of U i at U(v) ∈ V (T, λ). So we have a chain of linear subspaces

{0} = R(Um) ⊂ R(Um−1) ⊂ . . . ⊂ R(U) ⊂ W. (4)

Observe that
U(R(U i)) = R(U i+1).

To see this, use that U i+1(v) = U(U i(v)), so each vector in R(U i+1) is equal to the value of U at
some vector in R(U i).

Lemma 2. Let U be a nilpotent linear operator on a vector space W 6= {0}. Let m be its
nilpotency level. Then all inclusions in (4) are strict.

Proof. Suppose R(Uk) = R(Uk−1. Then dim N(Uk) = dim N(Uk−1, and since N(Uk−1) ⊂
N(Uk) we get N(Uk) = N(Uk−1). For any v ∈ V we have 0 = Um(v) = Uk(Um−k(v)), hence
Um−k(v) ∈ N(Uk). By above Um−k(v) ∈ Nk−1, hence Nk−1(Nm−k(v) = Nm−1(v) = 0. This
contradicts the definition of the level of nilpotency of U .

Let us go back to our situation when U = T − λidV restricted to V (T, λ). Let n1 =
dim R(Um−1). Since R(Um) = 0, U sends all vectors from R(Um−1) to {0}. Let v

(1)
1 , . . . , v

(1)
n1

be a basis of this space. Since U : R(Um−2) → R(Um−1) is surjective, we can find v
(2)
1 , . . . , v

(2)
n1 in

R(Um−2) with
U(v(2)

i ) = v
(1)
i , i = 1, . . . , n1.

I claim that
v
(1)
1 , . . . , v(1)

n1
, v

(2)
1 , . . . , v(2)

n1

are linearly independent. In fact, if

a1v
(1)
1 + . . . + an1v

(1)
n1

+ b1v
(2)
1 + . . . + bn1v

(2)
n1

= 0,

we apply U to obtain that

0 = a1U(v(1)
1 ) + . . . + an1U(v(1)

n1
) + b1U(v(2)

1 ) + . . . + bn1U(v(2)
n1

) = b1v
(1)
1 + . . . + bn1v

(1)
n1

.

This gives b1 = . . . = bn1 = 0, and hence a1 = . . . = an1 = 0. Notice that v
(1)
1 , . . . , v

(1)
n1 belong to

N(U), so we can find a basis of N(U)∩R(Um−2) of the form v
(1)
1 , . . . , v

(1)
n1 , v

(2)
n1+1, . . . , v

(2)
n2 . Together
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with the vectors v
(2)
1 , . . . , v

(2)
n1 we get a basis of R(Um−2). In fact, by the formula for the dimension

of the range space of a linear transformation, the dimensions of the subspaces span(v(2)
1 , . . . , v

(2)
n1 )

and N(U) ∩ R(Um−2) add up to the dimension of R(Um−2). Also their intersection is the zero
subspace {0}. In fact, if

∑n1
i=1 aiv

(2)
i ∈ N(U), applying U we get

∑n1
i=1 aiU(v(2)

i ) =
∑n1

i=1 aiv
(1)
i = 0,

hence a1 = . . . = an1 = 0 because the vectors v
(1)
1 , . . . , v

(1)
n1 are linearly independent. Next we find

v
(3)
1 , . . . , v

(3)
n2 ∈ R(Um−3) which are mapped to v

(2)
1 , . . . , v

(2)
n2 , respectively. Then we find a basis of

N(U)∩R(Um−3) which includes the previous basis v
(1)
1 , . . . , v

(1)
n1 , v

(2)
n1+1, . . . , v

(2)
n2 of N(U)∩R(Um−2).

The union of this basis and the set v
(2)
1 , . . . , v

(2)
n2 , v

(3)
1 , . . . , v

(3)
n2 is a basis of R(Um−3). Proceeding

in this way, we find a basis in V (T, λ)

v
(1)
1 . . . v

(1)
n1

v
(2)
1 . . . v

(2)
n1 . . . v

(2)
n2

...
...

...
...

...
...

v
(m)
1 . . . v

(m)
n1 . . . v

(m)
n2 . . . v

(m)
nm

(6)

satisfying the following property
(i) n1 ≤ n2 ≤ . . . ≤ nm;
(ii) n1 + . . . + ni = dim R(Um−i), in particular, n1 + . . . + nm = dim V (T, λ);
(iii) (T − λidV )(v(j+1)

i ) = v
(j)
i if i = 1, . . . , nj .

Let us find the matrix of V (T, λ) of T with respect to this basis. We first reorder the vectors
by taking the first m vectors from the first column in (6) starting from the top, then go to the
second column and so on. Since (T − λidV )(v1) = 0, (T − λidV )(vi) = vi−1, i = 2, . . . ,m, we
obtain

T (v1) = λv1, T (vi) = λvi + vi−1, i = 2, . . . ,m.

This shows that the first m columns of the matrix of T look like

λ 1 0 . . . . . . 0
0 λ 1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 . . . . . . 0 λ 1
0 . . . . . . 0 0 λ


Continuing in this way we easily convince ourselves that the matrix of T in our basis is equal to
the direct sum of n1 Jordan blocks of size m, n2 − n1 Jordan blocks of size m − 1, and, finally,
nm − nm−1 Jordan blocks of size 1. All of them of course have λ at the diagonal.

To finish the proof we use

Lemma 3. Let λ be an eigenvalue of T . Then

V = V (T, λ)⊕W, ,

where W is invariant with respect to T and T − λidV is invertible when restricted to W .

Proof. We know that V (T, λ) = N((T−λidV )m) for some m > 0. Define W = R((T−λidV )m).
Then the dimensions of the spaces V (T, λ) and W add up to dim V . It remains to show that
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V (T, λ) ∩ W = {0}. If v is in the intersection we have v = (T − λidV )m(w), for some w ∈ V ,
and hence 0 = (T − λidV )m(v) = (T − λidV )2m(w). This implies that w ∈ V (T, λ). But then
(T − λidV )m(w) = 0 and thus v = 0.

Now we can finish the proof. Take a Jordan basis in V (T, λ) and extend it to some basis of V . The
matrix of T is the direct sum of a Jordan matrix and a matrix of T restricted to W . It is easy to see
that the determinant of a block matrix is equal to the product of determinants of the blocks. This
shows that the characteristic polynomial of an operator restricted to W divides the characteristic
polynomial of T (this is true for any invariant subspace, see Theorem 5.21 from the book). By
assumption it factors into the product of linear polynomials. By induction on dimension of the
vector space, we may assume that the theorem is true for W . Since the restriction of T − λidV

to W is inveritible, its eigenvalues are different from λ. Thus T restricted to W has a basis such
that the matrix of T is the sum of Jordan blocks with no λ at the diagonal. Taking this basis and
adding to this the basis for V (T, λ) which we have just constructed we see that the matrix of T is
the sum of Jordan blocks. The theorem is proven.

Let us give one application of the theory. We know that Ak = CJkC−1. For any polynomial
P (x) = a0x

d + ad−1x
d−1 + . . . + a1x + ad define

P (A) = a0A
d + ad−1A

d−1 + . . . + a1A + adIn.

It is immediately checked that P (A) = CP (J)C−1. Since we know how to compute Jk, we know
how to compute P (J). It is enough to give a formula for P (Jk(λ).

P (Jk(λ)) =



P (λ) P (1)(λ) 1
2!P

(2)(λ) . . . . . . 1
(k−1)!P

(k−1)(λ)
0 P (λ) P (1)(λ) 1

2!P
(2)(λ) . . . 1

(k−2)!P
(k−2)(λ)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... P (λ) P (1)(λ)

0 0 . . . . . . 0 P (λ)


,

where, by definition

P (k)(x) = a0
d!

(d− k)!
xd−k + a1

(d− 1)!
(d− k − 1)!

xd−k−1 + · · ·+ akk!ak,

the familiar formula for the k-th derivative of a polynomial.
Now suppose F = R (or C for those who is familiar with functions in one complex vari-

able) and we are given any function f(x) : F → F such that the set of eigenvalues {λ1, . . . , λr}
(called the spectrum of A) lies in its domain of definition and also that f has mi + 1 derivatives
f (1)(λi), . . . , f (mi+1)(λi) at λi, where mi is the size of the largest block of J with λi at the diagonal.
Let

pi(x) = f(λi) + f (1)(λi)(x− λi) +
1
2!

f (1)(λi)(x− λi)2 + . . . +
1

mi!
f (mi)(λi)(x− λi)mi

be the Taylor polynomial of f(x) of order mi at the point λi. Let J = J1 ⊕ . . .⊕ Jr be the block
sum of Jordan matrices (not necessary block-matrices) Ji with λi at the diagonal. Then we define

f(A) = C(p1(J1)⊕ · · · ⊕ pr(Jr))C−1.
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One can prove that this definition does not depend on a choice of the jordanization A = CJC−1.
For example, one can define eA, sinA, cos A for all matrices, or log A for all matrices with positive
eigenvalues, and check that 1

A is defined if detA 6= 0 and coincides with A−1.
For example, one solve a system of linear differential equations

dx(t)
dt

= A · x(t)

in one step
x(t) = etAx0,

where x(0) = x0.

Problems

1. Find the Jordan form of the following matrices

a)

 0 1 0
−4 4 0
−2 1 2

 , b)


3 −4 0 2
4 −5 −2 4
0 0 3 −2
0 0 2 −1

 ,

 1 1 1
0 1 1
0 0 1

 .

2. For the matrix a) from Problem 1 compute A10.
3. Prove that a matrix A with complex entries is nilpotent if and only if its characteristic polynomial
is equal to (−λ)n (the assertion is true for a matrix with entries in any field).
4. Find the Jordan form of a matrix A with complex entries satisfying A2 = A.
5 Let J = Jn(0). Find the Jordan form of J2.
6. Count the number of different (up to permutation of blocks) Jordan matrices of size n ≤ 4 with
0 at the diagonal.
7. Prove that two Jordan matrices are matrices of the same linear operator with respect to different
bases if and only if one is obtained from another by permutation of its Jordan blocks.
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