C ONTEMPORARY

MATHEMATICS
o R S

Recent Progress in Algebra

An International Conference on
Recent Progress in Algebra
August 11-15, 1997
KAIST, Taejon, South Korea

Sang Geun Hahn
Hyo Chul Myung
Efim Zelmanov
Editors

Americon Mathematicol Soniety




http://dx.doi.org/10.1090/conm/224

Selected Titles in This Series

224

223

222

221

220

219

218

217

216

215

214
213

212

211

210
209

208

207

206

205

204

203

202

201
200

199

Sang Geun Hahn, Hyo Chul Myung, and Efim Zelmanov, Editors, Recent
progress in algebra, 1999

Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, Editors, Advances
in discrete and computational geometry, 1999

Kang-Tae Kim and Steven G. Krantz, Editors, Complex geometric analysis in
Pohang, 1999

J. Robert Dorroh, Giséle Ruiz Goldstein, Jerome A. Goldstein, and Michael
Mudi Tom, Editors, Applied analysis, 1999

Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic
geometry and group representations, 1998

Marc Henneaux, Joseph Krasil’shchik, and Alexandre Vinogradov, Editors,
Secondary calculus and cohomological physics, 1998

Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain
decomposition methods 10, 1998

Eric Carlen, Evans M. Harrell, and Michael Loss, Editors, Advances in differential
equations and mathematical physics, 1998

Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their
applications, 1998

M. G. Nerurkar, D. P. Dokken, and D. B. Ellis, Editors, Topological dynamics
and applications, 1998

Lewis A. Coburn and Marc A. Rieffel, Editors, Perspectives on quantization, 1998
Farhad Jafari, Barbara D. MacCluer, Carl C. Cowen, and A. Duane Porter,
Editors, Studies on composition operators, 1998

E. Ramirez de Arellano, N. Salinas, M. V. Shapiro, and N. L. Vasilevski,
Editors, Operator theory for complex and hypercomplex analysis, 1998

Jézef Dodziuk and Linda Keen, Editors, Lipa’s legacy: Proceedings from the Bers
Colloquium, 1997

V. Kumar Murty and Michel Waldschmidt, Editors, Number theory, 1998
Steven Cox and Irena Lasiecka, Editors, Optimization methods in partial differential
equations, 1997

Michel L. Lapidus, Lawrence H. Harper, and Adolfo J. Rumbos, Editors,
Harmonic analysis and nonlinear differential equations: A volume in honor of Victor L.
Shapiro, 1997

Yujiro Kawamata and Vyacheslav V. Shokurov, Editors, Birational algebraic
geometry: A conference on algebraic geometry in memory of Wei-Liang Chow (1911-1995),
1997

Adam Koranyi, Editor, Harmonic functions on trees and buildings, 1997

Paulo D. Cordaro and Howard Jacobowitz, Editors, Multidimensional complex

analysis and partial differential equations: A collection of papers in honor of Frangois
Treves, 1997

Yair Censor and Simeon Reich, Editors, Recent developments in optimization theory
and nonlinear analysis, 1997

Hanna Nencka and Jean-Pierre Bourguignon, Editors, Geometry and nature: In
memory of W. K. Clifford, 1997

Jean-Louis Loday, James D. Stasheff, and Alexander A. Voronov, Editors,
Operads: Proceedings of Renaissance Conferences, 1997

J. R. Quine and Peter Sarnak, Editors, Extremal Riemann surfaces, 1997

F. Dias, J.-M. Ghidaglia, and J.-C. Saut, Editors, Mathematical problems in the
theory of water waves, 1996

G. Banaszak, W. Gajda, and P. Krason, Editors, Algebraic K-theory, 1996
(Continued in the back of this publication)

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



This page intentionally left blank

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Recent Progress in Algelbra

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



This page intentionally left blank

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



C ONTEMPORARY
IMATHEMATICS

224

Recent Progress in Algebra

An International Conference on
Recent Progress in Algebra
August 11-15, 1997
KAIST, Taejon, South Korea

Sang Geun Hahn
Hyo Chul Myung
Efimm Zelmanov
Eqitors

American Mathematical Society
Licensed to Univ of Michigan. Prepared on Fri Jul 5 15&%¥%§§(d&mggr§mlﬂ%’.)985.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Editorial Board
Dennis DeTurck, managing editor
Andreas Blass Andy R. Magid Michael Vogelius

The International Conference on Recent Progress in Algebra was held at KAIST,
Taejon, South Korea, August 11-15, 1997.

1991 Mathematics Subject Classification. Primary 00B20, 05D05, 05E15, 05E25, 11G09,
11F11, 11F75, 11G09, 11R18, 11R33, 17B10, 17B37, 17B65, 17B70, 17D05, 19A31,
20C15, 20C20, 20K18, 20F05, 20F50.

Library of Congress Cataloging-in-Publication Data

International Conference on Recent Progress in Algebra (1997 : Taejon-si, Korea)

Recent progress in algebra : an International Conference on Recent Progress in Algebra, August
11-15, 1997, KAIST, Taejon, South Korea / Sang Geun Hahn, Hyo Chul Myung, Efim Zelmanov,
editors.

p. cm. — (Contemporary mathematics, ISSN 0271-4132 ; 224)

Includes bibliographical references.

[SBN 0-8218-0972-5 (alk. paper)

1. Algebra—Congresses. 1. Hahn, S. G. (Sang Geun) II. Myung, Hyo Chul, 1937- .
ITI. Zelmanov, Efim, 1955—. IV. Title. V. Series: Contemporary mathematics (American Math-
ematical Society) ; v. 224.

QA150.1568 1997
512—dc21 98-35282
CIP

Copying and reprinting. Material in this book may be reproduced by any means for educational
and scientific purposes without fee or permission with the exception of reproduction by services
that collect fees for delivery of documents and provided that the customary acknowledgment of the
source is given. This consent does not extend to other kinds of copying for general distribution, for
advertising or promotional purposes, or for resale. Requests for permission for commercial use of
material should be addressed to the Assistant to the Publisher, American Mathematical Society,
P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to
reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In
such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of
each article.)

© 1999 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at URL: http://wwv.ams.org/

10987654321 04 03 02 01 00 99

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Contents

Foreword ix

A double complex for computing the sign-cohomology of the universal
ordinary distribution
GREG W. ANDERSON 1

Down-up algebras and Witten’s deformations of the universal enveloping
algebra of sl
GEORGIA BENKART 29

Localizations of Grothendieck groups and Galois structure
TeED CHINBURG, BoAS EREZ, GEORGIOS PAPPAS, AND MARTIN
TAYLOR 47

Invariant stable bundles over modular curves X (p)
IGOR V. DOLGACHEV 65

Okubo algebras and twisted polynomials
ALBERTO ELDUQUE 101

Some new results on modular forms for GL(2F,(T)
ERNST-ULRICH GEKELER 111

Counting jump optimal linear extensions of some posets
HyunGg CHAN JUNG 143

The irreducible representations of categories
MaAsasHI Kosuba 151

Prounipotent prolongation of algebraic groups
ANDY R. MAGID 169

Graded simple Jordan algebras and superalgebras
CONSUELO MARTINEZ 189

The centralizer algebra of the Lie superalgebra p(n) and the decomposition
of V®* as a p(n)-module
DoNGHO MOON 199

Drinfeld-Anderson motives and multicomponent KP hierarchy
IGOR YUu. POTEMINE 213

vii
Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



viii CONTENTS

Weil classes and Rosati involutions on complex abelian varieties
Yu. G. ZARHIN AND B. J. J. MOONEN 229

On some open problems related to the restricted Burnside problem
ErFiM ZELMANOV 237

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Foreword

An international conference “Recent Progress in Algebra” was held at the Korea
Advanced Institute of Science and Technology (KAIST) and Korea Institute for
Advanced Study (KIAS), Korea, during August 11-15, 1997. This conference was
primarily organized by the Research Center of Algebra and its Applications at
KAIST which was supported by fundings from the Korea Science and Engineering
Foundation (KOSEF).

The purpose of this conference was to bring together the central topics and
their progress in algebra, combinatorics, algebraic geometry, and number theory.
The conference also served as an impetus for research activities by both young and
established Korean mathematicians in these fields. The present volume contains
selected papers contributed by participants in the conferences. These papers cover
a wide range of topics in the aforementioned areas, which in our opinion reflects
the true character of modern algebra.

We are grateful to KOSEF who provided generous fundings for the conference
through the Research Center of Algebra and its Applications, and to KIAS for the
support of additional fundings during the preparation of the conference.

We gratefully acknowledge the valuable assistance of the members of the
Local Organizing Committee, S. Bae, S. Kang, D. Kim, J. Koo, H. Lee, and many
graduate students at the Mathematics Department of KAIST for the preparation
of the conference. We also wish to thank the participants of the conference for their
enthusiasm, and in particular, those who presented excellent talks and contributed
papers.

Our special thanks goes to Christine Thivierge from the AMS for the thoughtful
assistance during the preparation of this volume, and to many anonymous referees
who offered valuable suggestions for the final organization of the manuscripts.

May, 1998

Sang Geun Hahn,
Hyo C. Myung,
Efim Zelmanov
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Contemporary Mathematics
Volume 224, 1999

A double complex for computing the sign-cohomology of the
universal ordinary distribution

Greg W. Anderson

1. Introduction

For each positive integer f, a level f ordinary distribution with values in an
abelian group A is a periodic function ¢ : %Z — A of period 1 satisfying the level
f distribution relations

“ a+1
s =Y o ).

i=0 9
where g is any positive integer dividing f and a € %Z. The universal level f
ordinary distribution U(f) is the quotient of the free abelian group on symbols
of the form [a] with a € %Z/Z, modulo the level f distribution relations. An
ordinary distribution with values in A is a function ¢ : Q — A such that for each
positive integer f, the restriction of ¢ to }Z is a level f ordinary distribution; the
universal ordinary distribution U is the direct limit of the groups U(f). The group
Gy := Gal(Q(¢s)/Q) (= (Z/fZ)*) acts naturally on the group U(f), and thus in
the limit G := Gal (Q(Cxo) /Q)(= Z*) acts on U. See Kubert’s paper [11] or Lang’s
book [13] for background.

Let G C G be the subgroup generated by complex conjugation. Given any
abelian group M equipped with an action of G, we define the sign-cohomology
(resp. -homology) of M to be the Tate cohomology (resp. homology) of G, with
coefficients in M. The basic facts about the structure and sign-cohomology of the
modules U(f) and their limit U are as follows.

e Provided that f > 1 and f # 2 mod 4, the sign-cohomology of U(f) is in
each degree a vector space over Fy of dimension 271, where r is the number
of distinct primes dividing f.

e The group G acts trivially on the sign-cohomology of U(f).

e As an abelian group, U(f) is a free of rank |Gy|, and the natural map
U(f) — U is a split monomorphism. (In particular, the limit U is a free
abelian group.)

e Provided that f > 1 and f # 2 mod 4, the natural map U(f) — U induces
a monomorphism in sign-cohomology.

1991 Mathematics Subject Classification. Primary: 11R18, 11R20, 11R27, 11R29. Sec-
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2 G. W. ANDERSON

The first and second results were obtained by Sinnott [16] in the course of Sin-
nott’s calculation of unit- and Stickelberger-indices associated to the cyclotomic
field Q(¢y). The third and fourth results were obtained by Kubert [11], [12].

There is another presentation of the Gy-module U(f) due to Iwasawa, which
we now briefly recall. There exists a unique periodic function u : Q — Q of period
1 such that for all positive integers f one has

Y w (%) x(a) = [T (@ = x(»))

0<a<f plf
(a,f)=1

for all primitive Dirichlet characters x of conductor dividing f. Let U’(f) be the
Z[Gy]-submodule of Q[G | generated by elements of the form

> u(%)er ey
0<a<f g
(a,f):l

where g is any positive integer dividing f and o,(s = (7. One can verify that u is
an ordinary distribution; it follows that U’(f) is a quotient of U(f). One can verify
that as an abelian group U’(f) is free of rank |Gy|; it follows that U’(f) and U(f)
are isomorphic G y-modules because the underlying abelian groups are free of the
same rank, namely |Gy|.

We hasten now to correct the misleading impression of the history of our subject
created by speaking of U’(f) as Iwasawa’s presentation of U{f). In fact, it was
the module U’(f) that was defined first (Iwasawa introduced it in the course of
a pioneering investigation of the index of the Stickelberger ideal) and it was the
module U’(f) (denoted U in Sinnott’s paper [16]) that Sinnott actually worked
with. Only later was the module U(f) defined by Kubert [11], and then part of the
rationale for making the definition was to have a convenient presentation of U’(f)
by generators and relations.

The analogue of Sinnott’s unit-index calculation [16], with the Carlitz mod-
ule assigned to the role played in classical cyclotomic theory by the multiplicative
group, was carried out by Galovich and Rosen [7]. Quite recently, L. S. Yin [17]
attempted to generalize the results of Galovich-Rosen by replacing the Carlitz mod-
ule with a general sign-normalized rank one Drinfeld module. Yin computed the
unit-index conditional on a remarkable conjecture concerning the Galois-module
structure of the sign-cohomology of the relevant analogue of U’(f). Yin’s conjec-
ture is tantalizing because it seems to be just beyond the reach of the inductive
method of computation introduced by Sinnott and employed by Yin.

In this paper we study some problems in the function field setting analogous
to that of determining the structure and sign-cohomology of the modules U(f)
and their limit U, with the main goal of proving Yin’s conjecture. In defining the
generalization of U(f) studied here, we more or less follow a definition given by
Hayes [9] and attributed there to Mazur. In order to prove Yin’s conjecture, we
identify the analogue of U’(f) coming up in Yin’s work with the corresponding
analogue of U(f), and we compute the sign-cohomology of U(f) by a new method
involving double complexes. Our method keeps track not only of the distribution
relations but also of the higher syzygies among the distribution relations. Even
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DOUBLE COMPLEX 3

in the classical cyclotomic setting our method yields a new insight: provided that
f # 2 mod 4, the sign-homology of U(f) is canonically isomorphic to the Farrell-
Tate homology of the subgroup of Q* generated by —1 and the primes dividing
f. The Farrell-Tate theory, which figures prominently in our proof of Yin’s con-
jecture, was devised by Farrell [6] to extend Tate’s well known theory for finite
groups to groups of finite virtual cohomological dimension. See Brown’s book [1]
for background. In turn, Mislin [14] has extended Farrell’s theory; the generaliza-
tion, called complete cohomology, applies to all groups. The results of this paper
suggest that more number-theoretic applications of complete cohomology can be
expected. The title of the paper notwithstanding, we actually work with homology
rather than cohomology because the former has functorial properties better suited
to our purposes.

We mention that techniques developed in this paper have recently been applied
by P. Das [2], [3] to the study of algebraic I'-monomials, namely complex numbers

of the form
Hi ['(a;)™
(2m)w

where a; € QN(0,1), m; € Z, w € Z, and for all integers t prime to the denominators
of the a; one has
w= Z m;(ta;)
i

where (z) is the fractional part of . Such numbers are in fact algebraic by a
result of Koblitz and Ogus [4, Appendix] and figure in a reciprocity law due to
Deligne [4],[5]; the corresponding formal sum Y, m;[a; +Z| represents a class in the
second degree sign-cohomology of U which strongly influences the Galois-theoretic
properties of the monomial. Das has proved a series of results greatly illuminating
the structure of the Galois group over Q of the extension of Q({,) generated by the
algebraic I'-monomials. Das has also been able to give elementary proofs of some
facts about algebraic I'-monomials which previously could only be proved with the
aid of Deligne’s theory of absolute Hodge cycles on abelian varieties. We conclude
by noting that a function field analogue of Deligne’s reciprocity law recently given by
S. Sinha [15] suggests that Das’s theory of algebraic I'-monomials might fruitfully
be extended to global fields of characteristic p > 0.

2. Preliminaries

2.1. Notation. The cardinality of a set S is denoted |S|. The difference of
sets X and Y is denoted X \ Y. The group of units of a ring R is denoted R*.
The fiber of a map f: X — Y at a point y € Y is denoted f~1(y), and the inverse
image of subset S C Y is denoted f~'(9).

2.2. Abstract nonsense. Let 2 be an abelian category. A chain compler X
in A is a family {X,},cz of objects of ™ equipped with a family of morphisms
{0n(X) € Homg(Xn, Xn—1)}nez such that 8,_1(X)0,(X) = 0. A chain map
f : X — Y of chain complexes in 2 is a family {f, € Homg(X,,Yn)}nez of
morphisms such that f,,—19,(X) = 0,(Y)fr. Given two chain maps f,g: X — Y,
a homotopy T : f — g is a family {T,, € Homgy (X, Yn+1)}nez of morphisms such
that f, — gn = On4+1(Y)Th + Tr—10,(X); we say that f and g are homotopic, and
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4 G. W. ANDERSON
we write f ~ g, if there exists a homotopy T : f — g. Given a chain complex X in
A and an integer k, put

X[k] = Xnek, On(X[K]) := (=1)*0p_r(X),

thereby defining the twist X[k]. Given a chain map f: X — Y of chain complexes
in A, put

Cone(f)n := [ X;n_l ] , On(Cone(f)) := _6;;_15)() an?y) )

thereby defining the mapping cone Cone( f), which fits into a natural exact sequence
0—Y — Cone(f) —» X[1] -0
of chain complexes in 2.

PROPOSITION 2.2.1. Let f: X — Y be a chain map of chain complezes in 2.
Let S be the set of integers n such that both f,_1 and f, are isomorphisms. Then
there exists a chain map e : Cone(f) — Cone(f) such that e ~ 1 and e, = 0 for all
s€S.

PROOF. For each n, let ¢, : Y,, — X, be f, 1 or 0 according as f, is or is not
invertible. Then the family of morphisms

{[ 0 ] : Cone(f), — Cone( f)nH}

is a homotopy from the identity map to a map e such that e,, = 0 for n € S, as one
verifies by a brief matrix calculation. O

nez

PROPOSITION 2.2.2. Letg: X — Z and h:' Y — Z be chain maps of chain
complezes in an abelian category A. Make either of the following assumptions.

1. H.(Homg(X,,Cone(h))) = 0 for all n and there erists ¢ chain map e :
Cone(h) — Cone(h) such thate ~1 and e, =0 for alln € 0.

2. H*(Homg(X,Y,)) = 0 and H*(Homy(X, Z,)) = 0 for all n, and there
exists a chain map e : Cone(h) — Cone(h) such that e ~ 1 and e, = 0 for
alln> 0.

Then there exists a chain map f : X — Y unique up to homotopy such that g ~ hf.

ProOF. Under either hypothesis 1 or hypothesis 2, every chain map X[k] —
Cone(h) is homotopic to the zero map. In particular, one has ig ~ 0, where
i : Z — Cone(h) is the evident map, whence follows the existence of f after a
brief matrix calculation. Moreover, the difference of any two homotopies ig — 0
defines a chain map X[1] — Cone(h) homotopic to the zero map, whence follows
the uniqueness of f up to homotopy after another brief matrix calculation. O

2.3. Farrell-Tate homology. Let G be a group. We say that a (left) G-
module M (we work exclusively with left modules) is relatively projective if M is
a direct summand of a G-module of the form Ind?l} N for some abelian group N.
Here Ind{Gl} is the functor left adjoint to the restriction functor Res?l} associating
to each G-module the underlying abelian group; more generally, given a subgroup
H C @, the corresponding restriction functor is denoted by Resf,, and the function
left (resp. right) adjoint to Res$ is denoted by Ind$, (resp. Coind$%).
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DOUBLE COMPLEX 5

PROPOSITION 2.3.1. Let G be a group, H C G a subgroup of finite index, M
a relatively projective G-module, and X a chain complex of G-modules.

1. If Res?l} X is contractible, then H,(Homg(M, X)) =0.
2. If Res$ X is contractible, then H*(Homg(X, M)) = 0.

PROOF. There is no loss of generality in assuming that M = Ind{Gl} N for some
abelian group N. One has H,(Homg(M, X)) = H.(Hom(N, Res{Gl} X)) =0, and

therefore assertion 1 holds. Because H is of finite index in G,
the functors Ind$ and Coind§; are isomorphic,
hence H*(Homg (X, M)) = H*(Homy (Res$ X, Indﬁ} N)) = 0, and therefore as-
sertion 2 holds. O

PROPOSITION 2.3.2. Let G be a group. Letg: X — Z and h: Y — Z be chain
maps of chain complezes of G-modules. Assume that X,Y and Z are concentrated
in nonnegative degree, Res{Gl} Cone(h) is contractible, and X, is relatively projective
for all n. Then there exists a chain map f : X — Y unique up to homotopy such
that g ~ hf.

ProOF. This boils down to a special case of Proposition 2.2.2. O

Given G-modules M and N, recall that the tensor product M ® N is defined
to be the tensor product of underlying abelian groups equipped with the diagonal
G-action g(m @ n) := (gm) ® (gn). More generally, given chain complexes X and
Y of G-modules, the tensor product X ® Y is defined to be the chain complex of
G-modules given by the rules

X&) = P XY,
ptg=n

and
Op+¢(X ®Y)(z®y) := (0p(X)z) @y + (—1)Pz ® (04(Y)y)

for all z € X, and y € Y5,

We say that a chain map f : X — Y of chain complexes of G-modules is
a resolution if X and Y are concentrated in nonnegative degree, X, is relatively
projective for all n, and Res?l} Cone(f) is contractible. Abusing language, in a
situation where the chain map f is understood, we also say that X is a resolution
of Y. Proposition 2.3.2 specifies the sense in which resolutions are unique. Now
by one’s favorite method one can construct a resolution P of Inf?l} Z such that P,
is projective for all n; then, for any chain complex X of G-modules concentrated
in nonnegative degree, the tensor product complex X ® P is a resolution of X.
In particular, every G-module M (viewed in this context as a chain complex of
G-modules concentrated in degree 0) has a resolution. Now if G is a group of
cohomological dimension 7, then there exists a resolution P of Inf{G1 y Z such that
P, is projective for all n and P, = 0 for n > r, and hence every G-module M has
a resolution M ® P concentrated in degree < r.

PROPOSITION 2.3.3. Let G be a group of finite cohomological dimension. Let
P be a chain complex of G-modules such that P, is relatively projective for all n
and Res{cl} P is contractible. Then P is contractible.
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6 G. W. ANDERSON

PROOF. The complex Pt obtained by replacing P, by 0 for all » < 0 is a
resolution of coker Jy(P) = ker 8_;(P), and hence has the homotopy type of a
complex concentrated in degree < r, where r is the cohomological dimension of
G. It follows that ker 8,(P) = coker 0,41(P) is a direct summand of P, for all
n > r. An evident modification of the preceding argument proves that ker 9, (P) =
coker 9, +1(P) is a direct summand of P, for all n. O

PROPOSITION 2.3.4. Let G be a group. Letg: X — Z and h: Y — Z be chain
maps of chain complexes of G-modules. Make the following assumptions:

1. G is of finite virtual cohomological dimension.

2. h, is an isomorphism for all n > 0.

3. X,, Y., and Z, are relatively projective for all n, and Res{Gl} X 1is con-
tractible.

Then there ezxists a chain map f : X — Y unique up to homotopy such that g ~ hf.

ProOOF. By hypothesis 1 and Proposition 2.3.3, there exists a subgroup H C G
of finite index such that the chain complex Resg X is contractible. By hypothesis
2 and Proposition 2.2.1 there exists a chain map e : Cone(h) — Cone(h) such that
e~ 1ande, =0 for all n > 0. By hypothesis 3 and Proposition 2.3.1, one has
H*(Homg(X,Y,)) = 0and H*(Homg (X, Z,)) = 0 for all n. The result now follows
by Proposition 2.2.2. O

We say that a chain map k : X — P of chain complexes of G-modules is a
completion if X,, and P, are relatively projective for all n, Res‘{’;1 } X is contractible,
and Kk, is an isomorphism for all n > 0. Proposition 2.3.4 specifies the sense in
which completions are unique. Abusing language, in a situation where the chain
map & is understood, we also call X a completion of P. For any group G of finite
virtual cohomological dimension r, Farrell [6] (see also Brown [1, Chap. X]) showed
how to construct a resolution P of Inf?l} Z with P, projective for all n, and a

completion F 5 P with F, projective for all n and k, an isomorphism for all
n > r; given a G-module M, the tensor product M ® P is then a resolution of M,
and the tensor product M ® F' a completion of M ® P.

Given a group G of finite virtual cohomological dimension and a G-module M,
one defines

H.(G, M) := H,(Coinv& X)

where X is any completion of a resolution of M, and Coinvg is the functor left
adjoint to the functor Inf?l} equipping abelian groups with trivial G-action. We
also introduce the abbreviated notation

H.(G) := H.(G,Inf{}, Z).

The Farrell-Tate homology theory H, extends to groups of finite virtual cohomo-
logical dimension the theory introduced by Tate for finite groups.

2.4. The Shapiro lemma and related results. Let G be a group of finite
virtual cohomological dimension, and let H be a subgroup (necessarily also of finite
virtual cohomological dimension). Let N be an H-module and let Y be a completion
of a resolution of N. Then Ind§ Y is a completion of a resolution of Ind§ N.
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Further, the functors Res% o Inf?l} and Inf ?1} are isomorphic, and hence so are their
left adjoints Coinvg oInd$ and Coinvl. One thus obtains canonical isomorphisms
H,(G,Ind$ N) = H,(Coinv&Ind§ Y))

= H,(CoinvEY)

= H.(H,N)
of graded abelian groups. The assertion that there exists an isomorphism between
the extreme terms in the relation above, functorial in H-modules N, is the Shapiro
lemma for Farrell-Tate homology.

With G and H as in the preceding paragraph, let M be a G-module and let X
be a completion of a resolution of M. Then Res$ X is a completion of a resolution
of Res M. Suppose now that H is a normal subgroup of G and put Q := G/H.
Let Infg be the inflation functor that equips each Q-module with a G-action via

the quotient map G — @, and let Coinvg be the functor left adjoint to Infg. Now
the functors Coinvi o Res$; and Res?l} o Coinv$; are isomorphic. Moreover, the

functor Res?l} is exact. One thus obtains canonical isomorphisms

H.(H,Res§ M) = H,(Coinvil Res$ X)
= H.(Res(), Coinv§j X)

= Res?l} H,(Coinv$ X)

of graded abelian groups. Thus A, (H, Resf, M) is canonically equipped with graded
Q-module structure; in the sequel we identify H,(H,Res$; M) with H, (Coinv$, X)
rather than H,(Coinvi Res§ X).

PROPOSITION 2.4.1. Let T be a group of finite virtual cohomological dimension.
Let G be a normal subgroup of I'. Let 11 be any subgroup of T'. Put

H:=Gnl, T:=T/G, M:=1/H.
Let M be a II-module. Then there exists an isomorphism
H.(G,ResL, Indhy M) = Indk A, (H, Resl} M)
of T-modules functorial in M.

PrOOF. Clearly the functors Res]; o Inff. and Infjj 9Resg are isomorphic, and
hence so are their left adjoints Coinvy, o Ind; and Ind% o Coinv'y. Moreover, the

functor Indfﬁ is exact. Let X be a completion of a resolution of M. One has
canonical isomorphisms

H,(G,ResgIndy M) = H,(Coinvg Ind]; X)
= H,(Indf; Coinvyy X)
= Indf H,(Coinvij X)
Ind}; A, (H,Resly M)
of graded I'-modules. O

PROPOSITION 2.4.2. Let G be a group of finite virtual cohomological dimension
and let H C G be a normal subgroup. Let o be an element of the center of G. Let M
be a G-module on which o acts trivially. Let X be a completion of a resolution of M.
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8 G. W. ANDERSON

Then the automorphism of X induced by o isAhomotopic to the identity, and hence
oH € G/H induces the identity mapping in H,(H,Res$ M) = H,(Coinv$ X).

PrOOF. This is a consequence of the uniqueness of completions of resolutions
(Proposition 2.3.2 and Proposition 2.3.4). a

2.5. The double complex K7. We give a construction exploited repeatedly
in the paper. The input for the construction is as follows:

A commutative ring R with unit.

An R-module M.

A linearly ordered set S.

A family {fs € R}ses-

Elements f* of R such that f¥f~ =0.

The output of the construction is as follows:

e A double complex K7 of R-modules, i. e., a bigraded R-module
+

KT =KT (M/R’ {fS}SES, [ ;— :|> = @@KTmn
equipped with R-linear maps
0,6 : KT - KT

of bidegree (—1,0) and (0, —1), respectively, such that 8° = 0, 62 = 0, and
06 + 60 =0.

e Chain complexes of R-modules

K = IC(M/R, {fs}SES) )

— _ f+

K = K(M/R,{fs}ses, - ),
~ 1\

T -7 M/R,[f_ D

_ _ [ f+ 1

T = T(M/R{files |} )

tot tot -f+
KTttt = x7te (M/R,{fs}ses, [ IS N
’CT+ = ’CT+ <M/R, {fs}sGSa [ :;-‘i ] )

which we call the companions of the double complex K7 .

The notation K7 is meant to call Koszul and Tate to mind.

Here is the construction. We define S to be the free abelian group on symbols
of the form [I, k] where I C S is a finite subset and k is an integer, and we bigrade
S by declaring the symbol [/, k] to be of bidegree (||, k). Put

KT = M®S
a(m ® [17 k]) = Zie]('_1)|{je”j<i}|fim by [I \ {1'}’ k]
+ . .
oy f ffm®[I,k-1] ifkiseven
§(m® [I,k]) (=1) { Fm@[Lk—1] ifkisodd
for all m € M, finite subsets I C S and integers k. Take K, := K7 o and equip
K with the differential induced by the operator 9. Take 7, := K7, and equip 7
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DOUBLE COMPLEX 9

with the differential induced by the operator 8. Put

K=K (J,_iM/R, {fs}ses)  Te=T (&@%/R’ [ ’;f D .

Let K7 be the total complez associated to the double complex KT, i. e., a copy
of KT graded by total degree and equipped with the differential induced by 8 + 6.
Let K7~ be the subcomplex of KX7*" spanned over R by elements of the form
m® [I,k] withm € M, I C S finite, and k < 0. Finally, put K7t := KT /KT .
Note that T is naturally a quotient of X7"°* and K naturally a quotient of K7 .

PROPOSITION 2.5.1. Let R be a commutative ring with unit, M an R-module,
{fs}ses a family of elements of R indexed by a linearly ordered set S, f* elements
of R such that f*f~ = 0. Consider the double complex

KT (M/R, {f-}ocs, [ ;f D

and companion complezes K, K, T, T, KT*" and KT ™.

1. If, for all finite subsets I C S, the sequence {f;}ic1 is M-regular, then K is
acyclic in positive degree.

2. If, for some s € S, the element fs operates invertibly on M, then K is
acyclic.

3. If K is acyclic in positive degree, then the quotient map KT*°* — T induces
an isomorphism in homology.

4. If T is acyclic, then KT*" is acyclic and the quotient map KT+ — K
induces an isomorphism in homology.

PROOF. Because homology commutes with direct limits, we may assume that
S is a finite set. Then assertions 1 and 2 are standard facts about Koszul complexes;
assertions 3 and 4 are proved by straightforward spectral sequence arguments. [

2.6. Almost free abelian groups. Finitely generated abelian groups are of
finite virtual cohomological dimension and hence the Farrell-Tate theory applies
to them. For each homomorphis ¢ : H — G of groups, ¢* denotes the functor
equipping each G-module with an H-action via ¢.

PROPOSITION 2.6.1. Let ' be a finitely generated abelian group and let G C T
be a subgroup. Let A C G x G be the diagonal subgroup. Letp : T'x G — I' and
q:TxG — G be the first and second projections, respectively. Letr : T>('xG)/A
be the isomorphism inverse to that induced by p — q. Let F' be a completion of a
resolution P of Inf{Gl} Z such that F,, and P, are projective for all n. Let M be a
I'-module. Put

M’ :=r* Coinvi*“(p*M ® ¢* F).
Then there exists an isomorphism

H.(M') = Inff,, H.(G,Resg M)
of graded I'-modules functorial in M.

PrOOF. Without loss of generality we may assume that F' = Resg F, where F
is a completion of a resolution P of Iangl} Z such that P, and F,, are projective for

all n. Let ' ( (1))
i:= (v~ (v, T
di= (v (1,7)) }‘F I
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10 G. W. ANDERSON

and let §: ' x I' = T be the second projection. Consider the complex
M = Inf{lﬂ’fp)/A Coinvi*" (p*M ® §*F)
of I' x -modules. Now d*(p*M ® §* F) = M ® F is a completion of a resolution of
M and one has an isomorphism
d Inf{rxxrr) /A Coinv}y*" = Infr.  Coinvg, d*
of functors; accordingly, we have an isomorphism
H,(d"M) = Infy, H.(G,Resg M)

of graded I'-modules functorial in M. One has an isomorphism of functors

+% I'xI’ s IxD_ % o I'xG 'xT
" Inf 1y a Coinv™ = 7" Coinvy™ ™ Resp

and thus we have an isomorphism

H,(i*M) = H,(M')
of graded I'-modules functorial in M. Finally, for all v € T', the action of v on
F'is homotopy trivial by Proposition 2.4.2, hence the elements () and d(y) of
I' x T induce homotopic automorphisms of the complex M, and hence we have a
canonical isomorphism 3 5

H.(d"M)=H,(i*M)
of graded I'-modules functorial in M. O

We say that an abelian group is almost free if the group can be factored as the
product of a free abelian group and a finite cyclic group. The multiplicative group
of a global field is almost free. Every subgroup of an almost free abelian group is
again almost free.

PROPOSITION 2.6.2. Let I' be a finitely generated abelian group. Let G C T be
an almost free subgroup of rank r, and let m be the order of the torsion subgroup of
G. Let gy,...,9- € G be independent, and let go € G generate the torsion subgroup
of G. Let M be a I'-module. Consider the chain complex

m—1 4
M’ = ’CTtOt (M/Z[F], {1 _ gi};‘:l’ |: E:]:i:oggo :I) .
— 90
of T'-modules. Then there exists an isomorphism
H.(M') = Infy,; H.(G,Resg M)
of graded I'-modules functorial in M.

ProoF. Consider the double complex

m—1 -
o1 (zie/2ic) (1 - o Y | 0.4 )
— 9%
and its companions P := K7+ and F := KT**. Then P, and F,, are projective for
all n and moreover F,, = P, for all n > r; by Proposition 2.5.1, P is a resolution
of Inf?l} Z and F a completion of P. The result now becomes a special case of
Proposition 2.6.1. 0

PROPOSITION 2.6.3. Let G be an almost free abelian group of positive finite
rank v and let m be the order of the torsion subgroup of G. Then H,(G) is a free
(Z/mZ)-module of rank 2" for all n.
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DOUBLE COMPLEX 11

Proor. By Proposition 2.6.2 we have an isomorphism

H,.(G)>H, (ICT““ (Z/Z, {0}y, [ o ])) :
whence the result after a brief computation with binomial coefficients. O

The following technical result is the key to our proof of Yin’s conjecture.

PROPOSITION 2.6.4. Let I" be an abelian group (not necessarily finitely gener-
ated) and let II C T be a subgroup of finite index. Let G C T be an almost free
subgroup of finite rank r, let IIG C T be the subgroup generated by Il and G, and
let m be the order of the torsion subgroup of G. Let g1,...,9, € G be independent
and let go € G generate the torsion subgroup. Consider the chain complex

ot r 11 Zm—lgi
K :=KT" <IndrI Inffl, 2/2Z[T), {1 - g; I=1,[ i 9 D

of I'-modules. Then one has an isomorphism
H,(K)S Indfi Inf§ H, (IING)
of graded I'-modules.

PRrOOF. Let IV C T’ be a finitely generated subgroup such that G C I” and
I'I1 = T. Replacing T with I, we may assume that I is finitely generated. We
have at our disposal a canonical isomorphism

H,(K) = Inff. /¢ H.(G,Resg Indy Inf}, Z)
provided by Proposition 2.6.2, a canonical isomorphism
A r‘ G A
H.(G, Resg Ind]; Inf{}y Z) = Indi/ (11 oy B (I1N G, Resfing Inf{ Z)
provided by Proposition 2.4.1, a canonical isomorphism

A.(IIN G, Reslj Inf{}) Z) = Inf "9 A, (1N G)

provided by Proposition 2.4.2, and an isomorphism

r/G I1/(IING
Inff ¢ Indy/, % ) Inf (Y7 = Indfy Inf{§

of functors, whence the result. O

3. The principal objects of study

3.1. The basic data (K, A,sgn). For the rest of the paper we fix the following
items.

e A locally compact nondiscrete topological field K containing only finitely
many roots of unity.

e A discrete cocompact integrally closed subring A C K.

e A continuous homomorphism

sgn : KX — (the group of roots of unity in K)

the restriction of which to the group of roots of unity of K is the identity
mapping.
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12 G. W. ANDERSON

We call sgn the sign homomorphism, and we say that x € K* is positiveif sgnz = 1.
We say that the basic data are archimedean aif K is archimedean. We denote the
fraction field of A by k.

There is only one archimedean example (K, A,sgn) of basic data, namely the
triple (R,Z,z — z/|z|). In the archimedean case our usage of the term “positive”
is just the ordinary usage.

The simplest example (K, A,sgn) of nonarchimedean basic data arises as fol-
lows. Let I, be the field of ¢ elements and let F(T") be the field of rational functions
in a variable T with coefficients in F;. Take K to be the completion F,((1/T)) of
F,(T) at the infinite place. Take A to be the polynomial ring F,[T]. Decompose
F,((1/T))* as a direct product

Fo - T% - (1+ (1/T)F,([1/T1)

and take the sign homomorphism sgn to be projection to the first factor. In this
example the positive elements of F,[T] are the monic polynomials.

Every nonarchimedean example (K, A, sgn) of basic data arises in the following
manner. Let X/kq be a smooth projective geometrically irreducible curve defined
over a finite field ky. Let oo be a closed point of X. Take K to be the completion
of the function field of X at co. Take A to be the ring consisting of elements of the
function field of X regular away from oo. Choose an isomorphism of topological
fields under which to identify K with F,((1/T)), where q is the cardinality of the
residue field of oo, and define the sign homomorphism as in the preceding example.

For archimedean and nonarchimedean basic data (K, A,sgn) alike, the ring A
is a Dedekind domain the group of units of which is finite, the class group of which
is finite, and every residue field of which is finite.

3.2. A-lattices. A fractional A-ideal is a finitely generated nonzero
A-submodule of k. An integral A-ideal is a fractional A-ideal contained in A. When
we speak of fractional or integral A-ideals we tacitly exclude the zero ideal of A
from consideration. We say that a fractional A-ideal I is principal in the if I = (a)
for some a € k*; we say that I is principal in the narrow sense if I = (a) for some
positive a € k*. The quotient of the group of fractional A-ideals by the subgroup
of ideals principal in the narrow sense is by definition the narrow ideal class group.
The narrow ideal class group is finite.

An A-lattice is by definition a cocompact discrete A-submodule of K. An A-
lattice is without A-torsion and contains a copy of A as a subgroup of finite index,
and therefore is projective over A of rank one. We say that two A-lattices W, and
W, are homothetic, and we write W; ~ Ws, if there exists some positive z € K
such that £W; = W5. The relation of homothety is an equivalence relation in the
set of A-lattices.

Every fractional A-ideal is an A-lattice. Fractional A-ideals belong to the same
narrow ideal class if and only if they are homothetic. Every homothety class of
A-lattices contains a fractional A-ideal. The set of homothety classes of A-lattices
thus corresponds bijectively with the narrow ideal class group and in particular is
finite.

3.3. The set =. Given z € K and an A-lattice W, we say that
z+W:={z+weK|weW}

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



DOUBLE COMPLEX 13

is a translate of the A-lattice W, and we say that a subset of K is an A-lattice
translate if of the form =z + W. We always write A-lattice translates as a sum,
the first symbol denoting an element of K and the second an A-lattice. We say
that two A-lattice translates z; + W7 and zo + W5 are homothetic, and we write
1+ W1 ~ x9+Wo, if for some positive y € K one has yW; = W5 and yx; —x2 € Wa.
Homothety is an equivalence relation in the set of A-lattice translates. Note that
for all A-lattices W and z,y € K,one hasz+ W ~y+ W ifand only ifx —y € W.
Given an A-lattice translate x + W and an integral A-ideal f, we say that x + W
is annihilated by f, or that x + W is f-torsion, if xf C W; and we say that £ + W
is of order f if {a € A|az € W} = f. We say that an A-lattice translate is torsion
if f-torsion for some integral A-ideal f.

We denote the homothety class of a torsion A-lattice translate z+W by [z+W].
We denote the set of homothety classes of torsion A-lattice translates by =. For each
integral A-ideal f, let Z(f) be the set of homothety classes of f-torsion A-lattice
translates, and let =*(f) be the set of homothety classes of A-lattice translates
of order f. Given a fractional A-ideal I and an A-lattice W let I - W be the A-
submodule of K generated by all products of the form aw where a € I and w € W;
the A-submodule I - W is again an A-lattice.

PROPOSITION 3.3.1. Let f be an integral A-ideal. There exists a unique map
Yi:E-E
such that
Yilo+W]=[z+f W]
for all torsion A-lattice translates £+ W . Every fiber of the map Y7 is of cardinality
|A/f|. One has

on}/g =

i

(mmme

f) if f divides g
if f is prime to g

9

~~ ~
<
~—

~!
<
RN
X (1
= <
Il I
(1] —~A—~——"—

*(g/f) if f divides g
*(9) if f is prime to g
Y/ 'E(9) = E(f9)
for all integral A-ideals g.
PROOF. The proof is quite straightforward and we omit it. O

3.4. The profinite group G. Given integral A-ideals f, I and J, we write
I ~; Jif I and J are prime to f and there exist nonzero a,b € A prime to f such
that b/a is positive, a = bmod f and al = bJ. The relation ~; is an equivalence
relation in the set of integral A-ideals prime to f. For each integral A-ideal f,
the quotient G of the monoid of integral A-ideals prime to f by the equivalence
relation ~; is a finite abelian group. The family of groups {Gy} forms an inverse
system indexed by the set of integral A-ideals directed by the divisibility relation.
Put

G:= lir_n Gy.

The transition maps of the inverse system {G} are surjective and hence each group
Gy is canonically a quotient of G.

Given an integral A-ideal f, let \/f be the product of the maximal A-ideals
dividing f.

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



14 G. W. ANDERSON

PROPOSITION 3.4.1. For each integral A-ideal f, the natural map

err (Gf - Gf/p) — ker (Gf — Gf/\/?)
plf

is bijective, where the Cartesian product on the left is extended over the mazimal
A-ideals p dividing f.

PROOF. There exists a unique isomorphism
(A/f)*=ker (Gy — G1)

under which, for all positive a € A prime to f, the congruence class of a modulo
f maps to the ~-equivalence class of (a). This noted, the proposition reduces to
the Chinese Remainder Theorem. O

PROPOSITION 3.4.2. Let f be an integral A-ideal. Let x + W be a torsion
A-lattice translate of order f.

1. For all integral A-ideals I and J both prime to f, one has I ~¢ J if and
onlyife+I' Wr~zx+J - W.

2. For all torsion A-lattice translates ' + W’ of order f there exists an integral
A-ideal I prime to f such thatx’ + W' ~xz+ 171 W.

PROOF. 1(=). By hypothesis there exist nonzero a,b € A prime to f such
that b/a is positive, a = b mod f and al = bJ. We have

ba M1t W=J1t W, balz—zeat-WnJT L. wealw,

whence the result.
1(«<=). By hypothesis there exists some positive y € K such that

yI vV W=J1W, ye—zeJ ' W

Necessarily yJ = I, and moreover, because I and J are prime to f, we can write
y = b/a where 0 # a,b € A are prime to f. We have

b-—a)ze(I'+JH-Wnflt-W=W,

hence a = b mod f, and the result follows.

2. Replacing ' + W’ by a homothetic torsion A-lattice translate, we may
assume that W’/ = J~!. W for some integral A-ideal J prime to f; replacing
W by J~!- W, we may assume that W = W’. By hypothesis both z + W and
z’ + W generate the free rank one (A/f)-module f~! - W/W, and hence we can
find positive a € A such that az = '’ mod W. Necessarily a is prime to f. Then
'+ W=az+W~z+ta 'W=z+(a"l) W. a

PROPOSITION 3.4.3. There exists a unique (left) action of the group G on =
such that for all integral A-ideals f, integral A-ideals I prime to f, and A-lattice
translates ¢ + W of order f,

olz+W]=[z+I" W]

for all ¢ € G with image in G5 equal to the ~s-equivalence class of I. (Hereafter
= is considered to be equipped with the action of G so defined.)

ProOF. This follows in a straightforward way from Proposition 3.3.1 and
Proposition 3.4.2. O
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»

PROPOSITION 3.4.4. Let f be an integral A-ideal. The map Yy : E — Z i
G-equivariant. Moreover, for any A-lattice translate x + W of order f, the map
o oz +W]: G — EX(f) induces a bijection Gy HEX(f).

Proor. This follows in a straightforward way from Proposition 3.3.1 and
Proposition 3.4.2. O

REMARK 3.4.5. In class field theory the group G is identified with the Galois
group of a certain infinite abelian extension of k. In the archimedean (resp. nonar-
chimedean) case, this extension can be obtained explicitly by adjoining to & all
roots of unity (resp. all torsion points of all sign-normalized rank one elliptic A-
modules). The set = turns out to be G-equivariantly isomorphic in the archimedean
(resp. nonarchimedean) case to the set of roots of unity (resp. the disjoint union,
extended over the set of sign-normalized rank one elliptic A-modules p, of the set of
torsion points of p). For an overview of the theory of sign-normalized rank one el-
liptic A-modules see Hayes [9]. For an overview of related function field arithmetic
see Goss (8].

3.5. The sign group G... For each integral A-ideal f, let D be the subgroup
of Gy consisting of the ~j-equivalence classes of ideals of the form (a) for some
a € A such that a =1 mod f. We define

Gw =1limDs C G.
We call G, the sign group.

REMARK 3.5.1. Identifying G with the Galois group of an abelian extension of
k via class field theory, the subgroup G may be interpreted as the decomposition
group of the valuation of k inherited from K.

PROPOSITION 3.5.2. There exists a unique homomorphism
sgn : Goo — K*
mapping Goo isomorphically to the group of roots of unity of K such that
(1 [z + W] = [(sgny) "} (z + W)
for all v € G and torsion A-lattice translates x + W.

PROOF. For each integral A-ideal f, let Ef be the subgroup of A* consisting
of a € A* such that a = 1 mod f. Then for all but finitely many integral A-ideals
f, one has Ey = {1}. (In fact, if f is not the unit ideal and E; # {1}, then
(K,A,sgn) = (R,Z,z — z/|z|) and f = (2).) For all integral A-ideals f there
exists a unique homomorphism ¢ : Dy — K*/E; mapping Dy isomorphically
to the group of roots of unity of K* modulo E; under which an element of Dy
represented by an ideal of the form (a) for some a € A such that a = 1 mod f maps
to the Ey-coset containing sgna. The system {¢;} is compatible and induces a
homomorphism ¢ : Goc — K* mapping G, isomorphically to the group of roots
of unity of K.

We claim that ¢ has property (1). Fix an integral A-ideal f, a torsion A-lattice
translate £ + W of order f and an element v € G. Choose an integral A-ideal T
prime to f belonging to the ~ ;-equivalence class to which v gives rise in Gy. Then
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16 G. W. ANDERSON

I = (a) for some a € A such that ¢ = 1 mod f, and

Vlz + W] [z+ 11 W]

(sgna)~la(z + I~ - W)]

[(sgna)~(az + W)]

[(sgna)~ (z + W)] = [p(y) " (z + W)].

The claim is proved. Thus we have established the existence of a homomorphism
G — K* with the desired properties; uniqueness follows by Proposition 3.4.4. O

I

Fix a generator g € G arbitrarily and let m denote the order of G,. Given
an abelian group M equipped with an action of G, and an integer i, we define the
ith sign-homology module and the (1 — i)t" sign-cohomology module of M to be

e

As explained in §2, the sign-(co)homology of M can be identified with the Tate
(co)homology of G, with coefficients in M.

3.6. The module U®), Let R be a commutative ring with unit. Let A be
the free R-module generated by =, and let the action of G on = be extended to A
in R-linear fashion. Fix a family

v={vs}
of elements of R indexed by the integral A-ideals such that
v = 1

and

Vig = VfVy
for all integral A-ideals f and g. We are primarily interested in the case R = Z
and v = 1, but we work at the higher level of generality because (i) it offers no
additional difficulties and (ii) we anticipate applicability of the theory to the study
of K-theoretic index questions.

The R-module U is defined to be the quotient of A by the R-submodule
generated by the family of elements of the form

Vp€ — Z n
neYy L)
where p is a maximal A-ideal, £ € =, and the sum is extended over those n € =
such that Y,n = £{. By Proposition 3.4.4, ker (.A -U (")) is G-stable, and hence
the action of G on A descends to U®*). The multiplicativity of the system {v;},
along with Proposition 3.4.4, implies that ker (.A — U(")) contains every element

of the form
viE— .

neY, 1(€)
where f is an integral A-ideal, £ € E, and the sum is extended over those n € =
such that Yynp = ¢.
Let f be an integral A-ideal. We define A(f) to be the R-submodule of A
generated by Z(f). The R-module A(f) is finitely generated and free, and clearly

A=JAf).
f
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By Proposition 3.4.4, the R-module A(f) is a G-stable R-submodule of A, and
moreover the action of G on A(f) factors through an action of Gy. We define
U®)(f) to be the quotient of A(f) by the R-submodule generated by all elements

of the form
vp€ — Z n
"IEYp_l(f)

where p is an maximal A-ideal dividing f and £ € E(f/p). By Proposition 3.4.4,
ker (A(f) = U ()(f)) is G-stable, and hence the action of G descends to U @) (f).
Note that the action of G on U)(f) factors through an action of G5. Clearly

U®) = lim UM (f).

The multiplicativity of the system {v;} implies that ker (A(f) — U*)(f)) contains
all elements of the form
Vg€ — Z n

nEYp—-l(E)
where g is any integral A-ideal dividing f and & € E(f/g).

4. The structure of U*) and its sign-homology
4.1. A partition of =.

LEMMA 4.1.1. Let f be an integral A-ideal. Letp be a mazimal A-ideal dividing
f. Write f = cp™ where n is a positive integer and c is an integral A-ideal prime to
f. Let ¢ € G be an element projecting to the ~.-equivalence class of p in G.. Let S
be a set of elements of G mapping bijectively to ker (Gy — Gy/,) under projection
to Gy. Then

-1y, ifn=1
(2) > ’7=(Z‘75>+{g © ij:n>1

€Yy (Y (€)) o€S
for each € € Z*(f).
PROOF. Let x + W be an A-lattice translate of order f such that £ = [z +
W]. Let T be a set of positive elements of A prime to f mapping bijectively to

ker ((A/f)* — (A/(f/p))*) under reduction modulo f. Let b be a positive element
of A such that b=0mod p and b = 1 mod c. Then the sum

3) (Z[az+W]>+{ ot W] ifn=1
a€T

equals the left side of (2). Put J := p~!(b). Then J is an integral A-ideal prime to
c such that Jp is ~.-equivalent to the unit ideal, {(a) | @ € T} is a set of integral
A-ideals prime to f mapping bijectively to ker (G — Gy,), and

(4) <Z[$+(a)"loW]) +{ ([)“H’J_IP_I-W] ifn=1

= ifn>1

equals the right side of (2). But for each a € T one has
az+W~z+a 'W=z+(a)"!- W
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18 G. W. ANDERSON

Further, in the case n = 1 one has
br+w~z4+b"W=x+J p7.W.

Thus the sums (3) and (4) are equal term by term. d

LEMMA 4.1.2. There exists a partition

o9}
-1l=
k=0

[

with the following properties:

1. For all integers k > 0, integral A-ideals f, and & € Ex N E*(f), there exists
a mazimal A-ideal p dividing f such that Y,; ' (Y,(€))\ {€} C Ex—1UE(f/p).

2. For all integral A-ideals f such that the map G — Gy, /7 is injective, the
group G stabilizes and acts freely upon the set Zg NE*(f).

3. For each integral A-ideal f, one has |Zo N E(f)| = |Gy].

(Hereafter we will assume such a partition of E to be fized.)
PRrROOF. For each integral A-ideal f, we select a subset S(f) C G with the
following properties:

o 1€ 5(f).

o The natural map Sy — Gy is bijective.

e If the natural map G — Gy is injective, then the set S(f) is a union of
cosets of G in G.

By Proposition 3.4.1 and Proposition 3.4.4 it follows that for each integral A-ideal
f and £ € EX(f), there exist unique

o€ S(f/VF)

and, for each maximal A-ideal p dividing f, unique
7 € S(f) Nker (G — Gy p)

such that
=0 <HTp> 1+ f;
P

in this situation we declare £ € Zj, where k is the number of maximal A-ideals p
dividing f such that 7, = 1. Property 1 of the partition may be verified with the
help of Lemma 4.1.1; property 2 of the partition follows by Proposition 3.4.4. For
each integral A-ideal f, one has

B0 V2NN = |Gyvg| - TT (fer (G5 = )| = 1)
plf

where the product is extended over the maximal A-ideals p dividing f, and hence
property 3 of the partition holds by Mobius inversion. O
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4.2. A A-basis for A. Let A be the polynomial ring over R generated by
a collection {X,} of independent variables indexed by the maximal A-ideals. For
each integral A-ideal f put

Xf = HX::

where
r=1I»"
i

is the prime factorization of f. Then the collection of monomials {X} indexed by
the integral A-ideals is an R-basis of A. We equip A with the unique structure of
A-module extending the R-module structure in such a way that

Xpe= Y

neY; (€

for all £ € = and integral A-ideals f. By the G-equivariance of the map Y}, the
action of G on A is A-linear.

For each integral A-ideal f, put Z(f>) = Ux_, Z(fV), let A(f>) be the
R-span of Z(f°), and let R [{X,},s] be the R-subalgebra of A generated by the
variables X, where p is a maximal A-ideal dividing f. Note that A(f*) is a G-
stable R [{X,},s]-submodule of A.

THEOREM 4.2.1. Let f be an integral A-ideal.

1. The elements of A(f) of the form X € with g an integral A-ideal dividing f
and £ € Z9 NE(f/g) constitute an R-basis.

2. The elements of A(f*°) of the form X & with g a integral A-ideal such that
V9 divides /f and £ € Z9 NE(f™) constitute an R-basis.

3. As an R [{X,},7]-module A(f>) is free and the set 29 NE(f>°) is a basis.

4. As a A-module A is free and the set Z¢ is a basis.

ProOOF. Clearly 1 = 2 = 3 = 4. It will be enough to prove assertion 1. In
turn, it will be enough to show that the family of elements of A(f) in question
spans A(f) over R, because that family has cardinality

Y o1Gg =3 IEX(9)l = [E(S)]

alf glf
by property 3 of the partition = = [[;-,E¢. In turn, it will be enough to prove
that
(5) A NA*(f) € (A1 NAX () + Y A(f/p) + D XpA(f/p)

plf plf

where k is a positive integer, A is the R-span of Z¢, A*(f) is the R-span of Z* (f),
and the sums are extended over the maximal A-ideals p dividing f. But for each
¢ € EX(f) NE} there exists by property 1 of the partition = = [ [}~ Zx a maximal
A-ideal p such that

£ = XpYp(€) € Ae—1t NAX(f) + A(f/p),
and hence (5) does indeed hold. O
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20 G. W. ANDERSON

4.3. An R-basis for U®). For each integral A-ideal f, put

U(V)(foo) — NII_IPOO U(u)(fN) — Z If(XJ:(;fjp))A(foo) .
P

THEOREM 4.3.1. Let f be an integral A-ideal.

1. The R-module U is free and the set Zo gives rise to an R-basis.

2. The R-module UY)(f>) is free and the set Zo N Z(f>) gives rise to an
R-basis.

3. The R-module U™ (f) is free and the set EgNE(f) gives rise to an R-basis.

4. With the exception in the archimedean case of f eractly divisible by 2, the
natural map UV (f) — UM (f*°) induces an isomorphism in sign-homology.

ProOF. 1. Clearly

R= __A_’ U™ = #
Zp(Xp —p)A Zp(Xp —vp)A
By Theorem 4.2.1, the set =g is a A-basis of .4, and therefore gives rise to an R-basis

of U™,

2. An argument similar to the preceding one proves this.

3. Let Ag be the R-span of Zy. It is enough to show that the natural map
Ao NA(f) = UW(f) is bijective, and injectivity is clear by what we have proved
so far. By Theorem 4.2.1 we have

A(f) = (A NA(F) P ( > X, (AN A(f/9))
1#g|f

and hence

A(f) = (Ao N AU P ( 3 (X~ vg) (Ao A(f/g))) ,

1#g|f

whence follows the surjectivity of map in question.

4. By Lemma 4.1.2 and what we have already proved, the set
ZoN(E(f*) \ E(f)) gives rise to an R-basis for the quotient U (f><)/U™)(f) that
is stabilized by G, and on which G, acts freely. Consequently the sign-homology
of the quotient U®)(f>°)/U™)(f) vanishes. ad

4.4. The sign-homology of U(*). Let A’ be the R-submodule of A generated
by =\ E(1). Let A[G] be the group ring of G with coefficients in A. Note that A
is a A[G)-module and that A’ is a A[G]-submodule. Let R[G] C A[G] be the R-
subalgebra generated by G and let R[G] C A[G] be the R-subalgebra generated by
Goo. Let Zf C Z be the union of all Go.-orbits of cardinality |G| Let A" be the
R-span of Et. Then A' is a free R[Goo]-module. Note that At is a A[G]-submodule
of A. Note that A’ is a A[G]-submodule of .A containing A'. Of course the only
case in which A’ # A is the archimedean case.

PROPOSITION 4.4.1. In the archimedean case, X, annihilates A’/ AT for all

primes p.
PROOF. One has X5[1/2+Z] = [1/4+Z] + [3/4+ Z]; the case of an odd prime
p is similarly trivial. O

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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THEOREM 4.4.2. Assume either that we are in the nonarchimedean case or
that vy € R for all integral A-ideals f. Let m be the order of G and let yp € Goo
be a generator. Fiz a linear ordering of the set of mazimal A-ideals arbitrarily.
Then the directed family of graded R|G]-modules underlying the directed family

(6) {H,, (nrwt ((.A/.A’)/A[G], {vp = Xp}ois> { i b D)}

-7
of graded A[G]-modules indezed by squarefree integral A-ideals f is isomorphic to
the directed family

o (e )

of graded R[G]-modules indexed by squarefree integral A-ideals f. (An explicit iso-
morphism is given in the proof.)

PROOF. Let f be a squarefree integral A-ideal. Let A(f)[G] be the group ring
of G with coefficients in the R-subalgebra A(f) C A generated by the variables
X, for p ranging over maximal A-ideals dividing f. Consider the following chain
complexes of A(f)[G]-modules.

(8) KTt ((A/A’)/A(f)[GL {vo = Xo}ois [ ZII" 0;:6 D
9) KT <A(f°°)/A(f)[G], {vp = Xo}piss [ len O;: ; ])
(10) ( (F=)/AF)G), {vp - p}mf’[ ano;)7 6 D

The chain complex (8) is naturally a quotient of (9) because
AJA = A(f*)/(A(f*)n A').

The chain complex (10) is naturally a quotient of (9) because they are companions
of the double complex
Em 1 4
(1) KT (AGAGIGL - Xobas, | 52070 ]).
Yo
We claim that both quotient maps induce homology isomorphisms; the claim
granted, the isomorphism from the homology of (8) to the homology of (10) provided
by the claim induces (for variable f) the desired isomorphism from the directed
family of graded R[G]-modules underlying (6) to the directed family (7).
We turn to the proof of the claim. Clearly the chain complex

T (.A( 1) 0 AT/A(F)(G), [ 2"10;073 ])
is acyclic, and hence by Proposition 2.5.1 the chain complex
) KT (A7)0 AADIG) = Kb, | T )
is acyclic. The chain complex

e ((222540) A6 - X1
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22 G. W. ANDERSON

vanishes in the nonarchimedean case and is acyclic in the archimedean case by
Proposition 2.5.1 and Proposition 4.4.1. Therefore the chain complex

A(fe)n A PR

tot _ i=0 Yo

(13) KT ((————~A(foo) A7 ) DG Ay = Xpkpigy | 20

is acyclic by Proposition 2.5.1. The acyclicity of the chain complexes (12) and (13)
implies that the quotient map from (9) to (8) is a homology isomorphism. Now
A(f>) is by Theorem 4.2.1 a free A(f)[G]-module. It follows by Proposition 2.5.1
that the complex

K (A(foo)/A(f)[G]a {VP - Xp}plf)

is acyclic in positive degree, and hence by Proposition 2.5.1 the quotient map from
(9) to (10) is indeed a homology isomorphism. The claim is proved. O

5. The universal ordinary distribution

For the remainder of the paper we specialize the preceding theory as follows.
We take the coeflicient ring R to be Z and we take vy = 1 for all integral A-ideals f.
Then A becomes the free abelian group generated by the set Z and U becomes the
quotient of A4 by the subgroup generated by all elements of the form £ — Zn ey, (e

with € € Z and p a maximal A-ideal. We now write simply U instead of U*) and
U(f) instead of U )(f). We call U the universal ordinary distribution.

5.1. Comparison of U(f) and U'(f). For each locally constant homomor-
phism y : G — C*, there exists a unique integral A-ideal ¢ such that for all integral
A-ideals f, the homomorphism x factors through G if and only if ¢ divides f; the
integral A-ideal c is called the conductor of y. Given a locally constant homomor-
phism x : G — C* of conductor ¢ and a maximal A-ideal p, if p does not divide c,
let x(p) denote the value of x at any o € G projecting to the ~ -equivalence class
of p in G, and otherwise, if p does divide ¢, put x(p) := 0.

LEMMA 5.1.1. There exists a unique homomorphism u : A — Q such that
for all integral A-ideals f and locally constant homomorphisms x : G — C* of
conductor dividing f one has

1
/GU(’Y[l + fx()duly) = R H 1 - x(p))

where p is Haar probability measure on G and the product is extended over the
mazimal A-ideals p dividing f. Necessarily u factors through the universal ordinary
distribution U.

PROOF. Existence and uniqueness of u are clear in view of Proposition 3.4.4.
Fix a maximal A-ideal p and consider the unique homomorphism v : A — Q such
that v(€) = u(X,¢) for all { € Z. It will be enough to prove that u = v. Let f be
any integral A-ideal divisible by p. Write f = ¢p™ with n > 1 and c prime to p.
Select a subset S C G mapping bijectively to ker (G F— Gy /p), and select ¢ € G
such that ¢ and p have a common image in the generalized ideal class group G..
For all locally constant homomorphisms x : G — C* of conductor dividing f/p, by
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Lemma, 4.1.1 and the definition of u, one has

/G v(y[1+ f/pl)x(v)du(v)

i (Zu<m[1+f1>+{ u(@=L+ f/p]) ifn =1 )x(v)du(v)

og€S

1
- 'Gf/p] qlgp) (1 - X(Q))

where the product is extended over the maximal A-ideals ¢ dividing f. Therefore
u = v, and we are done. O

For each integral A-ideal f, let U’(f) be the Z[G]-submodule of Q[G] gener-
ated by elements of the form

> uFll+g)r ! € QG

YE€G¢

where g is any integral A-ideal dividing f and 4 € G is any lifting of vy € Gy. It is
easy to check that U’(f) is a free abelian group of rank |G¢|. In the archimedean
case U’(f) coincides with the module denoted by U in Sinnott’s paper [16], and in
the nonarchimedean case with the module denoted by U in Yin’s paper [17]. We
remark that Yin worked under the additional hypothesis (not made in this paper)
that the infinite valuation of k is of degree 1 over the constant field of k; in that case
every principal ideal is automatically principal in the narrow sense. In all cases,
because the homomorphism u factors through the universal ordinary distribution
U, it follows formally that Inf$ ; U'(f) is G-equivariantly a quotient of U(f) and
hence G-equivariantly isomorphic to U(f) because the underlying abelian groups
are free of the same rank, namely |Gy/|.

5.2. Proof of Yin’s conjecture. Assume now that we are in the nonar-
chimedean case. Let A be the ring obtained from A by inverting the variables Xp
for p ranging over maximal A-ideals, and let I' C A* be the subgroup generated by
those variables. Then A is the integral group ring of ', and I is a free abelian group
for which the family of elements of the form X, for p a maximal A-ideal constitute a
basis. Note that the group T is a copy of the group of fractional A-ideals. Let A[G]
be the group ring of G with coefficients in A, and let TG C A[G]* be the subgroup
generated by I' and G. Then the natural map I' x G — I'G is an isomorphism and
A[G] may be viewed as the integral group ring of I'G. Let II C I'G be the kernel of
the unique homomorphism I'G — G; under which each v € G maps to its image in
G1, and each variable X, with p a maximal A-ideal maps to its narrow ideal class.
Note that the group I'G/II is a copy of G;. Recall that A’ is the subgroup of A
generated by E \ E(1).

LEMMA 5.2.1. For every mazimal A-ideal p, the action of X, on AJA is in-
vertible, and hence A/ A’ can be viewed as a T'G-module; as such, A/ A’ is isomor-
phic to Ind5® Inf?l} Z.
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PROOF. For any A-lattice W, maximal A-ideals p and ¢, and v € G such that
~ and q have a common image in G;, one has

X W] = lg7'p- W]+ > ly+p-W]
0#yeq~1p-W/p-W
[g 'p- W] mod A'.

The result follows straightforwardly from this identity. O

For each integral A-ideal f, let I'(f) be the subgroup of I' generated by the
variables of the form X, for some maximal A-ideal p dividing f.

LEMMA 5.2.2. Let f be an integral A-ideal. Then the group I'(f)Go NI is
isomorphic to the subgroup of k* consisting of elements that are units at all mazimal
A-ideals not dividing f. In particular, T'(f)Go NII is almost free of rank r with
torsion subgroup of order w, where r is the number of distinct mazimal A-ideals
dividing f, and w is the number of roots of unity in k.

PROOF. For each a € k*, there exists unique y(a) € G such that
sgn~y(a)sgna =1,
where sgn is as defined in Proposition 3.5.2. One can check that the map
a— Xv(a): k* - TG

induces an isomorphism k*5I'Go, NI, whence the result via the Dirichlet unit
theorem. O

The following was conjectured L. S. Yin [17, p. 64] in the case that the infinite
valuation of k is of degree 1 over the constant field of k.

THEOREM 5.2.3. Let f be a nonunit integral A-ideal and identify Go with
a subgroup of G5 under the natural map. Let Hy be the subgroup of the narrow
ideal class group G1 generated by the narrow ideal classes of the mazrimal A-ideals
dividing f and the fractional A-ideals principal in the wide sense. Then the sign-
homology of U'(f) is in each degree G g-equivariantly isomorphic to

Infg/ Ind§: Inf (i} (Z/wZ)* ",

{1}
where T 1s the number of distinct mazimal A-ideals dividing f, and w is the number
of roots of unity of k.

PROOF. We work with the G-module U(f) instead of the Gy-module U’(f).
By Theorem 4.3.1 it will be enough to show that the sign-homology of U(f*°) is in
each degree G-equivariantly isomorphic to

Inf§, Ind§}: Inf{} (Z/wZ)? " = Resg Ind? sy, Inf (/) G (z/wZ)? .

Now by Theorem 4.4.2, the sign-homology of U(f*°) is isomorphic as a graded
G-module to the graded G-module underlying the homology of the chain complex

oot ((A/A’)/A[G],{l —Xp}Plf’[ 21:;_6;:0 ])
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where vy € G is a generator. In turn, by Lemma 5.2.1, we can identify the homol-
ogy of the latter complex with the graded A[G]-module underlying the homology
of the chain complex

m—1
KT <1ndgG Inf, Z/Z[TG), {1 - X}y, [ Zf:_o%:ro D .
By Proposition 2.6.4 the homology of the latter complex is isomorphic as a graded
I'G-module to

Indp )6, Inf {11 A (D(f)Goo N1II).

P:inally, by Proposition 2.6.3 and Lemma 5.2.2, the Farrell-Tate homology group
H.((T(f)Goo)NII) is in each degree a free (Z/wZ)-module of rank 2"~!. The proof
of Yin’s conjecture is complete. O

5.3. The archimedean case: the double complex SK. We narrow the
focus to the archimedean case. We are going to explain how the general theory
developed above specializes to the classical situation originally contemplated by
Iwasawa, Sinnott and Kubert. We speak now of positive integers and prime numbers
rather than integral and maximal A-ideals. We identify A with the free abelian
group on symbols of the form [a] with a € Q/Z, and thus identify U with the
universal ordinary distribution as defined by Kubert. Fix a positive integer f > 1
such that f # 2 mod 4. We identify U(f) with Kubert’s universal level f ordinary
distribution. We also write U(f*°) := lim,_ U(f"), and we put f%,Z/Z =
U:’=1 anZ/ Z

By Theorem 4.3.1, we have at our disposal a subset Xy C Q/Z giving rise to
a basis of U such that the set Xo N -}-Z/Z is of cardinality |G| and gives rise to a
basis of U(f). Thus we recover Kubert’s result to the effect that the natural map
U(f) — U is a split monomorphism with source a free abelian group of rank |Gy|.
From Theorem 4.3.1 we also get a little more, namely that the map U(f) — U(f>°)
induces an isomorphism in sign-(co)homology.

Consider the free abelian group SK generated by symbols of the form [a, g, n]
where a € Q/Z, g is a squarefree positive integer and n is an integer. (The notation
SK is meant to call Sinnott and Kubert to mind.) Let G operate on SK by the
rule o{a, g,n] := [ta, g,n], where t is any integer such that for any root of unity ¢ of
order equal to the denominator of a, one has 0¢ = ¢¢. Equip SK with a G-stable
bigrading SK = @,,, @,, SKmn by declaring the symbol [a, g,n] to be of bidegree
(m, n), where m is the number of prime factors of g. Equip SK with a G-equivariant
differential of bidegree (0, —1) by the rule

6[0”9’ n] = (—l)m([a,g,n - 1] + (—l)n[_a’g’n - 1])
and a G-equivariant differential 9 of bidegree (—1,0) by the rule

a[a’g’ n] = Z(_l)i_l ([a’g/pi’n] - Z [b,g/p,-,n])

=1 pib=a

where p; < --- < p,, are the primes dividing g. Let SK’ C SK be the subgroup
generated by symbols [a,g,n] with a # 0. Let SK(f) C SK be the subgroup
generated by symbols [a, g,n] where a € -}Z/Z and put SK(f*°) := o2, SK(f™).
Finally, let N be the subgroup generated by all symbols of the form [a, g,n] with
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26 G. W. ANDERSON

g # 1, and by all elements of the form 8[a, g, n| where g is prime. Note that SK',
SK(f°), and N are bigraded, G-, 8- and é-stable subgroups of SK.
Now on the one hand, the total complex associated to the double complex

SK(f*)
SK(fe)nN

in an obvious way computes the sign-homology of U(f°°). But the double complex
(11) figuring in the proof of Theorem 4.4.2 can (as a double complex of G-modules)
be identified with SK(f°°), and what the proof of the theorem says in the present
context is that the quotient maps

. SK(f*)
SK(f%) SK(f~)NnSK'
!
SK(f>)
SK(fe)nN

induce isomorphisms in homology of associated total complexes. In particular, the
double complex

SK(f*>)
SK(f=)NSK'

also computes the sign-homology of U(f°°). But the latter double complex has an
extremely simple structure: it is a copy of the double complex

k7 (2/2. 0. | 5 |)

which, if employed as in the proof of Proposition 2.6.3, computes the Farrell-Tate
homology of the subgroup of Q* generated by —1 and the primes p dividing f.
Thus, in confirmation of Sinnott’s result, we find that the sign-(co)homology of
U(f*) (and therefore also that of U(f)) is in each degree a vector space over F3 of
rank 27!, where 7 is the number of prime divisors of f.

Passing to the limit over f, we can identify the sign-homology of U with the
homology of the total complex associated to the double complex SK/SK'. It is
easy to see that the natural map

SK(f®) Sk
SK(f2)nSK' — SK’

of double complexes is isomorphic to the natural map

K7 (272001, § ) = KT (212 01y e | § |)

of double complexes. Thus, in confirmation of Kubert’s result, we find that the
natural map U(f*°) — U induces a monomorphism in sign-homology. Finally, it
is clear that G acts trivially on SKK/SK’, and in confirmation of Sinnott’s result,
we find that G acts trivially on the sign-(co)homology U and a fortiori on the
sign-homology of U(f).
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Down-up Algebras and Witten’s Deformations
of the Universal Enveloping Algebra of sl,

Georgia Benkart

ABSTRACT. Down-up algebras originated in the study of differential posets.
In this paper we explain their relationship to Witten’s 7-parameter family
of deformations of the universal enveloping algebra U(sl2) of the Lie algebra
sl and to the subfamily of conformal sl algebras singled out by Le Bruyn.
Down-up algebras exhibit many of the important features of U(slz) including
a Poincaré-Birkhoff-Witt type basis and a well-behaved representation theory.
We describe Verma modules for down-up algebras and results on category O
modules for them.

§1. Down-up algebras and their combinatorial origins

Differential posets.

Assume P is a partially ordered set (poset), and let CP denote the complex
vector space whose basis is the set P. For many posets there are two well-defined
transformations on CP, the down and up operators, which come from the order
relation on P and are defined by

d(y) = Z z and u(y) = Z z.

<y y<z
Thus, d(y) is the sum of all the elements = of P that y covers, and u(y) is the sum
of all the elements z of P that cover y.

The characterizing property of an r-differential poset is that the down and
up operators satisfy du — ud = rI for some positive integer r, where I is the
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30 GEORGIA BENKART

identity transformation (see [St]). Thus, the space CP affords a representation
of the Weyl algebra, (the associative algebra with generators y,z subject to the
relation yzr —xy = 1), via the mapping y — d/r, and z — u. Since the Weyl algebra
also can be realized as differential operators y — d/dz and z — z (multiplication by
z) on C|z], Stanley referred to the posets satisfying du — ud = rI as r-differential.
Fomin [F] studied essentially the same class of posets (when r = 1), calling them “Y-
graphs”. This terminology comes from the fact that Young’s lattice of all partitions
of all nonnegative integers provides an important example.

A partition p of an integer m can be regarded as a descending sequence p =
(p1 > p2 > ...) of parts whose sum |p| = Y, p; equals m. fv = (13 21, > ...)
is a second partition, then p < v when u; < y; for all i. The partition v covers
w (written g < v) if 4 < v and |v| = 1+ |p|. Thus, 4 < v if the partition u is
obtained from v by subtracting 1 from exactly one of the parts of v, and d(v) is the
sum of all such y. Analogously, u(v) is the sum of all partitions 7 obtained from
v by adding 1 to one part of v. Many interesting enumerative and combinatorial
properties of Young’s lattice can be deduced from fact that it is a 1-differential
poset (see [St] and [F]).

The down and up operators on the partition poset also have a representation
theoretic significance. The simple modules of the symmetric group S,, are indexed
by the partitions v of n. Upon restriction to S,,_; the representation labelled by
v decomposes into a direct sum of simple S,,_;-modules indexed by the partitions
i < v, so it is given by d(v). When the simple module labelled by v is induced to a
representation of S, 11, it decomposes into a sum of simple S, 4;-modules indexed
by partitions 7 of n + 1 such that v < 7, which is just u(v).

In his study of uniform posets [T|, Terwilliger considered finite ranked posets
P whose down and up operators satisfy the following relation

didi1u; = apdiui1d; + Biui—odi—_1d; + v;d;,

where d; and u; denote the restriction of d and u to the elements of rank i. (There
is an analogous second relation,

dip1uitio1 = ui—1diui—1 + Biti—1ui—odi—1 + Yili-1,
which holds automatically in this case because d;; and u; are adjoint operators
relative to a certain bilinear form.) In many instances the constants in these rela-
tions do not depend on the rank i. In those examples, the down and up operators
satisfy

d?u = q(q + 1)dud — ¢*ud® + rd
du? = q(q + 1)udu — ¢®u®d + ru
where ¢ and r are fixed complex numbers. Such a poset is said to be “(q,7)-

differential,” and many interesting examples of (g,r)-differential posets are con-
structed in [T] from certain subspaces of a vector space over a finite field.

1. Assume W is an n-dimensional vector space over GF(q), the field of q ele-
ments, and consider the set of pairs P = {(U, f) | U is a subspace of W and
f is an alternating bilinear form on U} with the ordering: (U, f) < (V,g) if
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U is a subspace of V and g|y = f. Then P is a (g, r)-differential poset with
r=-q"(g+1).

2. In Example 1 replace “an alternating bilinear form” with “a quadratic form”.
The resulting poset P is (g, —¢"*!(q + 1))-differential.

3. In this example assume W is an n-dimensional space over GF(g?) and the
bilinear forms are Hermitian. The poset P is (g2, —¢*"*1(g%+1))-differential
in this case.

Down-up algebras.

To study the algebra generated by the down and up operators of a poset and
its actior on the poset, we introduced the notion of a down-up algebra in our joint
work with Roby (see [BR]). Although the initial motivation for our investigations
came from posets, we made no assumptions about the existence of posets whose
down and up operators satisfy our relations. However, when such a poset exists,
it affords a representation of the down-up algebra, and so our primary focus in
[BR] was on determining explicit information about the representations of down-up
algebras. Proofs of the results stated in this paper and more detailed explanations
can be found in [BR].

DEFINITION 1.1. Let a, 83,7 be fixed but arbitrary complex numbers. The uni-
tal associative algebra A(a, 3,7) over C with generators d, u and defining relations

(R1) d®u = adud + Bud? + vd,
(R2) du? = audu + fu?d + yu,

is a down-up algebra.

It is easy to see that when « # 0 the down-up algebra A(a, 3,7) is isomorphic
to A(a, 8,1) by the map, d — d’', u — ~yu'. Therefore, it would suffice to treat just
two cases v = 0,1, but to avoid dividing considerations into these two cases, we
retain the notation +.

Examples of down-up algebras.

If B is the associative algebra generated by the down and up operators d, u of
a (g, r)-differential poset P, then relations (R1) and (R2) hold with a = ¢(q + 1),
B = —¢?,and ¥ = r. Thus, B is a homomorphic image of the algebra A(, 3, ) with
these parameters, and the action of B on CP gives a representation of A(a, 3,7).

The relation du — ud = rI of an r-differential poset, can be multiplied on
the left by d and on the right by d and the resulting equations can be added to
get the relation d?u — ud? = 2rd of a (—1,2r)-differential poset. Thus, the Weyl
algebra is a homomorphic image (by the ideal generated by du — ud — r1) of the
algebra A(0,1,2r). The ¢-Weyl algebra is a homomorphic image of the algebra
A(0,¢%,q+1) by the ideal generated by du — qud — 1. The skew polynomial algebra
C,ld, u], or quantum plane (see [M]), is the associative algebra with generators d,u
which satisfy the relation du = qud. Therefore, C,4[d, u] is a homomorphic image
(by the ideal generated by du — qud) of the algebra A(2q, —¢?,0).
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32 GEORGIA BENKART

Suppose g is a 3-dimensional Lie algebra over C with basis z, y, [z, y] such that
[z[z,y]] = vz and [[z, y],y] = vy. In the universal enveloping algebra U(g) of g, the
relations above become

%y — 2xyr + yz? = vz

zy® - 2yzy + y’z =y
Thus, U(g) is a homomorphic image of the down-up algebra A(2,—1,v) via the
mapping ¢ : A(2,-1,79) — U(g) with ¢ : d — z, ¢ : v — y. The mapping
Y:g— A(2,-1,v) withy : z— d, ¥ : y— u, and ¢ : [z,y] — du —ud extends, by
the universal property of U(g), to an algebra homomorphism ¢ : U(g) — A(2,-1,%)
which is the inverse of ¢. Consequently, U(g) is isomorphic to A(2, —1,7).

The Lie algebra sl; of 2 x 2 complex matrices of trace zero has a standard basis
e, f, h, which satisfies [e, f] = h, [h,e] = 2e, and [h, f] = —2f. From this we see
that U(sly) = A(2, —1,—2). The Heisenberg Lie algebra $ has a basis z, y, 2 where
[z,y] = 2z, and [z, 9] = 0. Thus, U(H) = A(2,-1,0).

S.P. Smith [Sm] investigated a class of associative algebras having a presentation
by generators a, b, h and relations [h, a] = a, [h,b] = —b and ab — ba = f(h), where
f(h) is a polynomial in h. In the special situation that deg(f) < 1, such an algebra
is a homomorphic image of a down-up algebra A(2,—1,7) for some 7.

Y1 Y2
Ya
special linear Lie superalgebra L = sl(1,1) = Ly @ Lt under the supercommutator

[z,y] = zy — (—1)%yz for ¢ € Lg, y € Lz It has a presentation by generators
e, f (which belong to L7 and can be identified with the matrix units e = e,
f= 62,1) and relations [ea [evf]] =0, [[6, f]af] =0, [e,e] =0, [f’ f] = 0. The
universal enveloping algebra U(sl(1, 1)) of sl(1, 1) has generators e, f and relations
ef - fe2=0,ef?— f?e=0,e* =0, f2=0. Thus, U(sl(1,1)) is a homomorphic
image of the down-up algebra A(0,1,0) by the ideal generated by the elements e?
and f2, which are central in A(0,1,0).

The 2 x 2 complex matrices y = ) with supertrace y; — y4 = 0 is the

Consider the field C(g) of rational functions in the indeterminate g over the
complex numbers, and let Uy(g) be the quantized enveloping algebra (quantum
group) of a finite-dimensional simple complex Lie algebra g corresponding to the
Cartan matrix 2 = (a;,;)7;=,- There are relatively prime integers ¢; so that the
matrix (¢;a; ;) is symmetric. Let

m_ g ™
g = qe‘, and [m]; = & —9% qz_l

qi — 4q;
for all m € Z>¢. When m > 1, let

[m]i! = HU]i-

Set [0];! =1 and define

%], =
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Then U =U,(g) is the unital associative algebra over C(q) with generators
E, F,K;,K;! (i=1,...,n) subject to the relations

(Ql) K;K; ' = K[ 'K;, K.K; = K,K;

(Q2) K:E;K " = ¢ E

(Q3) KiF;K; ' = q; ' F;

K, - K!
(Q4) B — BB = bi,= — =
i %

l1—a;;

Q5)Z(1 [ “i’j]_E}‘“*vf"“EjE;eo for i#j

1-ai,;

(Qﬁ) Z (_l)k [1 _—kai’j] . E;l—ai’j_ijFik =0 for 7 # ]

k=0

Suppose a;; = —1 = a;; for some i # j, and consider the subalgebra U ;
generated by E;, E;. In this special case, the quantum Serre relation (Q5) reduces
to

E2 — [2;E;E;E; + E;E? =0  and
E; — [2),E;E.E; + E,E? = 0.
Since —¢; = f;a;; = ejaj’i = —/{;, the coefficients [2]; and [2]; are equal. The
algebra U; ; (with ¢ is specialized to a complex number which is not a root of
unity) is isomorphic to A([2];, —1,0) by the mapping E; — d, E; — u. The same
result is true if the corresponding F’s are used in place of the E s. In particular,

when g = sl3, the algebra U, ; is just the subalgebra of U,(sl3) generated by the
E’s.

§2. Witten’s Deformations of U(sl;)

To provide an explanation of the existence of quantum groups, Witten ([W1],
[W2]) introduced a 7-parameter deformation of the universal enveloping algebra
U(sl). Witten’s deformation is a unital associative algebra over a field K (which
is algebraically closed of characteristic zero and which could be assumed to be C)
and depends on a 7-tuple £ = (£1,...,&7) of elements of K. It has a presentation
by generators z,y, z and defining relations

(2.1) xz —§12x = Eox
(22) zy — E3yz = §ay
(2.3) ya — &y = £62° + &r2.

We denote the resulting algebra by 20(¢).
Let us assume & = 0 and &7 # 0. Then substituting expression (2.3) into (2.1)
and (2.2) and rearranging we have
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34 GEORGIA BENKART

— &52%y + (1 + &16s)ayz — brya® = &b
— &y® + (1 + &abs)yay — &ay’z = Eabry.
In particular, when & # 0, &; = €3, and & = £4 we obtain

2y = 1 +£1€5xya: 3 élyzg B éz_élx
& 5 5
2 1+&& & o, &&
WETe YT e Y
From this it is easy to see that a Witten deformation algebra 20(§) with & = 0,
€7 # 0, & = &3, and & = &4 is a homomorphic image of the down-up algebra
A(a, B,v) with

(2.4)

_ltbs 4 & b

& & &
This is the initial step of the proof of the following result.

(2.5)

THEOREM 2.6. A Witten deformation algebra 20(§) with

(2.7) =0, &6 #0, 61 =&, and {2 =&

is isomorphic to the down-up algebra A(e, 8,7) with o, B, given by (2.5). Con-
versely, any down-up algebra A(a, 3,7) with not both o and B equal to 0 is isomor-
phic to a Witten deformation algebra 2(§) whose parameters satisfy (2.7).

PROOF. Observe first that any deformation algebra 20(§) with ¢ = 0 and
€7 # 0 is isomorphic to the algebra 20'(£), which has generators x,y and defining
relations

— &%y + (1 + &1&5)zyz — E1ya’ = &6
— &y’ + (1 + &3bs)yzy — Eay’z = &abry.

When £ = 0 and &7 # 0 we will identify these two algebras.

We have argued above that a deformation algebra 2(§) whose parameters
satisfy (2.7) is a homomorphic image of A(a, 83,7) for a, 3, given by (2.5) via the
map that sends d to z and v to y. Now consider the map K(z,y) — A(e,5,7)
from the free associative algebra K(z,y) generated by z,y to the down-up algebra
A(a,B,7) (with o, 8,7 as in (2.5)) given by z — d and y — u. By (2.8), the

(2.8)

elements
2, 1+&6s & b7
Ty & :vya:+§yx + = §5
2 1+&& &1 o 5257
Ty & yxy+€yw+ 55

are in the kernel, and so there is an induced homomorphism 20(§) — A(e, 8,7)-
Thus, the two algebras can be seen to be isomorphic. Observe that &; # 0 if and
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only if 8 # 0. If § = 0 then a = {5_1 # 0, so either « or 3 is nonzero for the
down-up algebras that are obtained.

Conversely, consider an arbitrary down-up algebra A(a, 3,7) with not both «
and 3 equal to 0. Suppose first 3 # 0, and let £; be a solution to £ — a&; — 8 = 0.

Set
&3=6, & =0, 0#& €K (arbitrary)
(2.9) 1 %
65_a_§1a 62_64— 57-

(Note that 3 # 0 implies @ # £;.) The relations in (2.9) imply the ones in (2.5).
Consequently, if £ = (£1,...,£7) where the parameters satisfy (2.9), then 20(¢§) =
A(a, 3,v) where a, 8, are as in (2.5).

Finally suppose for the down-up algebra A(c,3,7) that 8 =0 and o # 0. Set
&1 = & = 0, and define the remainder of the parameters in §{ = (¢1,...,&7) as in
(2.9). The corresponding deformation algebra 20(¢) is isomorphic to A(c,0,7). O

A deformation algebra 25(€) has a filtration, and Le Bruyn ([L1], [L2]) inves-
tigated the algebras 20(£) whose associated graded algebras are Auslander regular.
They determine a 3-parameter family of deformation algebras which are called con-
formal sly algebras and whose defining relations are

TZ2—0Q2r =1
(2.10) y—ayz =y
yr —cxy = b2® + z

When ¢ # 0 and b = 0, the conformal sl, algebra with defining relations given by
(2.10) is isomorphic to the down-up algebra A(a,3,7) with a = ¢71(1 + ac),8 =
—acland y = —c7!. If c = b =0 and a # 0, then the conformal sl, algebra is
isomorphic to the down-up algebra A(a,3,7) witha =a"!, 3=0and vy = —a™!.

In a recent paper Kulkarni [K] has shown that under certain assumptions on the
parameters, a Witten deformation algebra is isomorphic to a conformal sly algebra
or to a double skew polynomial extension. The precise statement of the result is

THEOREM 2.11. ([K, Thm. 3.0.3]) If £1€3€5€2 # 0 or £1€3€5€4 # 0, then 2(§)
is isomorphic to one of the following algebras:
(a) A conformal sly algebra with generators x,y, z and relations given by (2.10)
for some a,b,c € K.

(b) A double skew polynomial extension (that is, a skew polynomial extension
of a skew polynomial ring) whose generators satisfy

(i) zz—2x=z, 2y—yz=Cy, yr—nzy=0 or
(il) zw = 0wz, wy=kKyw, yz=Azy
for parameters ¢,n,0,k, ) € K.

Kulkarni studies the simple representations of the conformal si; algebras and
of the skew polynomial algebras in (b). Essential to the investigations in [K] is the
observation that the conformal sl, algebra of (2.10) can be realized as a hyperbolic
ring R{¢, 7}, where R is the polynomial ring K[z, 7] and ¢ is the automorphism
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of R sending f(z,7) to f(az + 1,c~ (7 — t(az + 1)), where t = bz? + 2. Kulkarni
then applies results of Rosenberg [R] to describe the left ideals in the left spectrum
of R{¢,7} and to determine the maximal left ideals for the conformal sl, algebras.
Further applications of results of [R] give the left spectrum of the double skew
polynomial extensions in (b) of Theorem 2.11.

§3. Representations of down-up algebras

Down-up algebras have a rich representation theory. In this section we con-
struct highest weight modules for A(e, 3,) and discuss more general weight mod-
ules. Further details of the results can be found in [BR, Sec. 2].

Highest weight modules.

A module V for A = A(e, 3,7) is said to be a highest weight module of weight
A if V has a vector yo such that d - yo = 0, (du) - yo = Ayo, and V = Ayy. The
vector yo is a mazximal vector or highest weight vector of V.

PROPOSITION 3.1. (See [BR, Sec. 2]) Set A1 = 0 and let Ao = X € C be
arbitrary. For n > 1, define )\, inductively by the recurrence relation,

(3.2) A =aAp_1 + BAn—2 + 7.
The C-vector space V(\) with basis {v, | n =0,1,2,...} and with A(a, 83,7)-action
given by
. d-Vp=MA_1Vn—1, n>1, and d-vp=0
(3.3) 1Vn—1 0

U Up = Up4i-

is a highest weight module for A(a, 8,7). Every A(a, B3,7)-module of highest weight
A is a homomorphic image of V/()).

Because it shares the same universal property and many of the same features as
Verma modules for finite-dimensional semisimple complex Lie algebras, the module
V()) is said to be the Verma module for A(a, 3,7).

ProOPOSITION 3.4.
(a) V(X) is simple if and only if A, # 0 for any n.

(b) If m is minimal with the property that A, = 0, then M(X) = spanc{v; |
j > m+ 1} is a mazimal submodule of V(X).

(c) Suppose N is a submodule of V() such that N C spanc{v; | j > 1}. Then
N C M.
When V() is simple, we set M(A) = (0).
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Weight modules.

If we multiply the relation d?u — adud — fud? = ~vd on the left by u and the
relation du? — audu — Bu?d = ~yu on the right by d and subtract the second from
the first, the resulting equation is

(3.5) 0 = ud’u — du®*d  or (du)(ud) = (ud)(du).

Therefore, the elements du and ud commute in A = A(a,,7). For any basis
element v, € V()\), we have du - v, = \,v, and ud - v, = A,—1v,. Using that with
n =0 and XA # 0, it is easy to see that du and ud are linearly independent. Let
h = Cdu & Cud.

We say an A-module V is a weight module if V =3 .. V,, where V,, = {v €
V | h-v =wv(h)v for all h € h}, and the sum is over elements in the dual space h*
of h (necessarily the sum is direct). Any submodule of a weight module is a weight
module. If V,, # (0), then v is a weight and V, is the corresponding weight space.
Each weight v is determined by the pair (v/,1”) of complex numbers, v’ = v(du)
and " = v(ud), and often it is convenient to identify v with (¢/,v"). In particular,
highest weight modules are weight modules in this sense. The basis vector v, of
V() is a weight vector whose weight is given by the pair (A,, An—1). Finding these
weights explicitly involves solving the linear recurrence relation in (3.3), which can
be done by standard methods as in [Br, Chap.7] for example.

PROPOSITION 3.6. Assume A_; =0, \g = A, and \, for n > 1 is given by the
recurrence relation A\, — aln_1 — BAn—2 = 7. Fiz t € C such that
2 o®+443
4

(i) Ifa®+4B8#0, then

An =177 + CoTy + Ty,

where

ot

2
_{(l—a—ﬁ)_l’)’ if a+p#1

Tn = 2-a)'yn  if a+B=1 (necessarily o#2),

and (] — 1 ) -1 A— Zo )
C2 To —T1 -7 1 Cl/\+’)"—231

(i) Ifa®+48 =0 and a # 0, then

A =cC18" +cons™ +x, where
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s=2
T2

. _{(l—a—ﬁ)‘lv if a+pB#1
"Tl2%y  if a+fB=1 de if a=2 B=-1,

C1 _ 1 0 A—.’I)o
and (cz)_(—l 2a‘1><a)\+'y—a:1>'
(iii) Ifa®+48=0and a =0, then 3 =0 and A\, =~ for alln > 1.

a? + 40

If a, 3 are real, then it is natural to take t = in the above calcula-

tions.

Let us consider several special cases.

ExaMPLE (1). Recall that the universal enveloping algebra U(sly) of sl; is
isomorphic to the algebra A(2,—1,—2), and the universal enveloping algebra U($))
of the Heisenberg Lie algebra § is isomorphic to A(2 —1,0). For any algebra
A(2,-1,7), applying (ii) with s = a/2 = 1 and z,, = n?y/2 we have that

TR

2
- i m
)\n—/\+()\+2)n+ 5

=(n+1)A+ 7—2").

In the sly-case, the operator h = du—ud is used rather than du. The eigenvalues
of hare \y — Ap—1 = A+ny = A—2n,n =0,1,..., (as is customary in the
representation theory of sly), and V() is simple if and only if A € Z>o. The
analogous computation in the Heisenberg Lie algebra shows that the central element
z = du — ud has constant eigenvalue )\, = \.

, where

Therefore

ExXAMPLE (11).  Recall that the quantum case discussed in Sec. 1 involves
the down-up algebra A([2];,—1,0). To compute the values of A, in this case, we
adopt the shorthand

P = qi,
p? —p2?
p—p!

o +4f=p*+2+p2-4=(p-p ')~

and note that a = [2]; = =p+p !, B=-1,and y =0 so that

Thus
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p+pt+p—p!
T =
2
+pl=(-p7Y) _ _
ry=PHP 2(p P _

(2’> N p‘ll—p (p——; —11> ((p+2‘1)>\)

pl-p\p7A) p-pt\-pA)"

Therefore
A -,
)\n = P 1 pn - P —lp
p—p p—p
n+l _ o —(n+1)
(P P_l ) A
p—p
= [n+ 1]; .
In the particular case of Uy (sl3), the subalgebra generated by the E;’s is isomor-

q2 _ q—z qn+1 - q—(n+1)

phic to A([2], —1,0) where [2] = FEr= and A, = [n+1]A = (—q?(;_—l———))\

in that case.

ExampLE (11). For the algebra A(1,1,0), the solutions to the associated
linear recurrence A, = Ap_1 + An—2, Ao = A, A_1 = 0, (hence the eigenvalues of du
and ud on V(X)) are given by the Fibonacci sequence Ag = A, A1 = A, A2 = 2),

A3 = 3\, Ay = 5), .... In this case, the equations in Proposition 3.6 reduce to
n+1 n+1l
NN NS V5 [1-+5
"5 2 2

EXAMPLE (1v). When 8 = 0, we may assume ¢t = /2 so that r; = a and
r9 = 0. Solving for A, from Proposition 3.6 we obtain

Y Nor o
,\n={()\ 1—a)°‘ tie ol
A+yn  if a=1.

Weights and submodules.

In [BR] we investigated in detail the weight space and submodule structure
of the Verma module V()). Roots of unity play a critical role in determining the
dimension of a weight space. For example if 3 = 0, it is easy to see from the
expressions in Example (iv) that weight spaces are either 1-dimensional or infinite-
dimensional. (The latter occurs when o # 1 and A = 4/(1 — a) or « is a root of
unity, or when a@ = 1 and v = 0). This dichotomy is a general phenomenon. We
briefly summarize some of the main results.
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40 GEORGIA BENKART

PROPOSITION 3.7.
(a) InV()) each weight space is either one-dimensional or infinite-dimensional.
If an infinite-dimensional weight space occurs, there are only finitely many
weights.

(b) If each weight space of V(A) is one-dimensional, then the proper submodules
of V(X) have the form N = spanc{v; | j > n} for some n >0 with A\, =
0, and hence they are contained in M(X).

(¢) If v = 0 = A, then V(X) has infinitely many mazimal proper submodules,
each of the form N(7) = spanc{v, — Tv,_1 |n =1,2,...} for some T € C,
and infinitely many one-dimensional simple quotients, L(0,7) = V(0)/N(.
In all other cases, M(X) is the unique mazimal submodule of V(X), and there
is a unique simple highest weight module, L(\) = V(\)/M()\), of weight A
up to isomorphism.

In a weight module the weight spaces are translated by the operators d and u.
If m € M is a vector of weight v = (v/, "), where v/ = v(du) and v = v(ud), in
an A(aq, 3,7)-module M, then

(i) u-m has weight

p(v) = (@), w@v)")  where
p) =av' + V" +y and  p@)”" =0, and

(i) when 8 # 0, d - m has weight

(3.8)

(3.9 6(1/)/ = I(/(S(V)',(S(y)”) where

s(v) =v" and  S(v)' =BV - —7),
An easy direct computation shows that §(u(v)) = v and p(6(v)) = v.

Starting with vy = (A,0) for A € C, and defining v, inductively by v, =
pu(Vn_1) = p™(vo), we have v, = (A, An—1), where A, is as in (3.2). Thus the set
{vo,v1,...} is just the set of weights of the Verma module V(}).

Lowest weight modules.

Lowest weight modules W for A = A(a,3,7) can be created by reversing the
roles of d and u. Thus, there is a vector wg such that u - wg = 0, ud - wo = Kwo,
and W = Awy. When 3 # 0, the eigenvalues of du are given by the sequence which
has k_; = 0, kg = k, an arbitrary complex number, and

Bkn + Qkp_1 — Kn_2 = —7, Or equivalently

1
(3.10) Kn=B""(— akn_1+ kn-2—7)

for all n > 1.
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DOWN-UP ALGEBRAS AND DEFORMATIONS OF U(sl2) 41

PROPOSITION 3.11. Let W(k) be the C-vector space having basis {w, | n =
0,1,2,...}.

(a) Assume B8 # 0, k_1 = 0, and ko = Kk, an arbitrary element of C. Suppose
kn forn > 1 is as in (3.10), and define

U Wy = Kp_1Wn-1, Nn>1, and u-wy=0
(312) n n—1Wn—-1 et 0
d-wp = Wpy1.

Then this action gives W (k) the structure of a lowest weight A(a,3,7)-
module.

(b) When =0 and o # 0, set

n+1

Kpn = =Y E a™’
Jj=1

for alln > 0. Then W(—vya™!) with the action given by (3.12) is a lowest
weight A(a, (3,7)-module.

(c) When v # 0, the only lowest weight A(0,0,~)-module is the 1-dimensional
module W = Cwg withd-wyg = 0 = u-wg. When~vy =0, set k, = 0
for all n. Then W(0) with the action given by (3.12) is a lowest weight
A(0,0,0)-module.

When 3 # 0, the set of weights of the lowest weight module W (k) is just
{6"(w) | n=0,1,...}, where w = (0, k).

Category O modules.

Bernstein, Gelfand, and Gelfand [BGG] introduced an important category of
weight modules for finite-dimensional complex semisimple Lie algebras, the so-called
category O modules. There is analogous category that can be defined for a down-up
algebra A = A(a, B,7).

(3.13) The category O consists of all A-modules M satisfying the following condi-
tions:

(a) M is a weight module relative to h = spanc{du,ud}, ie. M =3 M,
where M, = {m € M | h-m = v(h)m for all h € h};

(b) d acts locally nilpotently on M, so that for each m € M, d*m = 0 for some
n.

(¢) M is a finitely generated A-module.

The category O is closed under taking submodules and quotients. It contains
all the Verma modules V() and their simple quotient modules L(A) = V/(A\)/M(A)
(and in the case that v = 0 and A = 0, the one-dimensional quotients L(0,7) =
V(0)/N™).
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PROPOSITION 3.14. Suppose B # 0. If M is an simple object in the category
O, then either M = L()\) for some ), or else vy = 0 and M = V(0)/N(? = L(0,7)
for some T € C.

There is more general category of modules that can be defined for the down-up
algebra A = A(a, 8,7). Here we require that 3 # 0.

(3.15) The category O’ consists of all A-modules M satisfying the following condi-
tions:

(a) M is a weight module relative to § = spanc{du, ud}.

(b) Cld]m is finite-dimensional for each m € M.

(c) M is a finitely generated A-module.

The modules in O clearly belong to O, but (¥’ is larger than O which can be
seen from examining the simple modules in O’.

PROPOSITION 3.16. Suppose F is a set of weights such that §(w), p(w) € F
whenever w € F. Suppose p € C is nonzero, and let N(F, p) be the C-vector space
with basis {v, |w € F}.

(a) Define

d-v, = PUS(w)

U vy = p7 (W) V() -
Then this action extends to give an A(a, 3,v)-module action on N(F,p).

(b) If F is generated by any weight v = (V',v") € F under the action of §, and
if V' #0 for any v € F, then N(F, p) is a simple A(a, 3,)-module.

THEOREM 3.17. Assume M is a simple module in the category O'. Then there
are three possibilities:

(a) M is a highest weight module, that is, M is isomorphic to L()\) for some A
or to L(0,7) for some T € C (when v =0).

(b) M is a finite-dimensional lowest weight module with weights v,6(v),...,
6"~ 1(v) such that 6"(v) = v for somen > 1.

(¢) M is isomorphic to N(F,p) for some p # 0 and some finite set F =
{v,6(v),..., 6" Y(v)} such that §"(v) = v for some n > 1.

§4. The structure of down-up algebras

It is apparent from the defining relations that the monomials u*(du)’d*, i, j, k =
0,1,... in a down-up algebra A = A(a,3,7) determine a spanning set. In [BR,
Thm. 3.1] we apply the Diamond Lemma (see [Be]) to prove a Poincaré-Birkhoff-
Witt type result for down-up algebras. There is one essential ambiguity, (d*u)u =
d(du?), and the result of resolving the ambiguity in the two possible ways is the
same. Arguing in this manner we prove
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THEOREM 4.1. (Poincaré-Birkhoff-Witt Theorem) Assume A = A(w, 83,7) is
a down-up algebra over C. Then {u*(du)’d* | 4,5,k =0,1,...} is a basis of A.

The Gelfand-Kirillov dimension is a natural dimension to assign to an algebra
A, and many cases (such as when A is a domain), it provides important struc-
tural information (see for example, [AS]). Theorem 4.1 enables us to compute
the GK-dimension of any down-up algebra A = A(a,3,v). The spaces A(® =
spanc {u*(du)’d* | i + 2j + k < n} afford a filtration (0) ¢ A® c AV c ... ¢
UnA™ = A(a, B,7) of the down-up algebra, and A(™ A C A(m+7) since the
defining relations replace the words d?u and du? by words of the same or lower to-
tal degree. The number of monomials u*(du)’d* with i4+2j+k = £is (m+1)(m+1)
if £ = 2m and is (m + 1)(m +2) if £ = 2m + 1. Thus, dimA(™ is a polynomial in n
with positive coefficients of degree 3, and the Gelfand-Kirillov dimension is given

by
GKdim(A(a, 8,7)) = limsup log,, (dim A(™)
(4.2) In (dim A(”))
= lim ————~
n—oo Inn

In [BR, Sec. 3] we show

ProposiTiON 4.3. If A(e, 8,7) has infinitely many simple Verma modules
V(A), then the intersection of the amnihilators of the simple Verma modules is
zero.

As an immediate consequence, for such a down-up algebra A(a, 3,~) the Jacob-
son radical, which is the intersection of the annihilators of all the simple modules,
is zero.

Conditions for A(a,3,7) to have infinitely many simple Verma modules are
(4.4)

(1) o +48 # 0 and o? # —43cos?(/2) where e* is a root of unity, or

(2) a®+48=0and a #0 or

(3) a=0=gFand v #0.

Gradation and the center.

The free associative algebra over C generated by d and u can be graded by
assigning deg(d) = —1 and deg(u) = 1 and extending this by using deg(ab) =
deg(a) +deg(b). The relations d’u = adud+ fud? +~d and du? = audu+ fu’d+~yu
are homogeneous, so the down-up algebra A = A(a, 83,+) inherits the grading and
decomposes into homogeneous components A = @, .z Ar. In [BR, Sec. 3] we show
that the subalgebra Ag = spanc{u’(du)’d' | i, =0,1,...} is commutative.
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PROPOSITION 4.5. Assume A has infinitely many simple Verma modules. Let
A=,z A; be the Z-grading of A= A(a,3,7). Then:

(a) The center Z(A) of A is contained in Ay = spanc{u‘(du)’d' | i,j =0,1,...}.

(b) Suppose z € Z(A) and V(X) is any Verma module of A. Then z acts as
a scalar, say x(2), on V(X). The mapping x» : Z(A) — C is an algebra
homomorphism.

(c) A scalar m € C is linked to A if m = Apq1 for some n > 0 with A\, =0,
where the sequence \1, A2, ... is constructed using the recurrence relation in
(8.2) starting with A\_qy =0 and Ao = \. If 7 is linked to A\, then xr = Xx-

Open Problems.* We conclude by mentioning several open questions con-
cerning down-up algebras.

(a) The down-up algebras A(2,—1,7) are Noetherian because they are univer-
sal enveloping algebras of finite-dimensional Lie algebras. Determine when
A(a, B8,7) is Noetherian.

(b) Determine conditions on «, 8,~ for A(a,3,7) to be a domain. When 8 = 0,
then d(du — aud — 1) = 0 so that A(e, 3,) has zero divisors for any choice
of a,y € C. The universal enveloping algebra examples A(2,—1,7), as well
as the quantum examples A([2];, —1,0), show that some down-up algebras
are domains.

(c) What is the center of A(a,3,7)? The center can be nontrivial as the en-
veloping algebra examples A(2, —1, ) show. The down-up algebra A(0, 1, 0)
has the elements d? and 2 in its center.

(d) When is A(a, B,7) a Hopf algebra?

(e) Relate Kulkarni’s presentation of the maximal left ideals in conformal sl;
algebras to the simple modules in category O and category '. The approach
in [K] using noncommutative algebraic geometry is quite different from the
one in [BR] and so is the description of the simple modules.

(f) Study the homogenization Alt] of the down-up algebra A = A(a, 3,7), which
is the graded algebra generated by d, u,t subject to the relations

d*u = adud + Bud® + vdt?, du?® = audu + Bud + yut?,
dt =td, ut=tu.
Homogenized sl; is a positively graded Noetherian domain and a maximal
order, which is Auslander-regular of dimension 4 and satisfies the Cohen-
Macaulay property. Le Bruyn and Smith [LS] have determined the point,
line, and plane modules of homogenized sl; and shown the line modules are
homogenizations of the Verma modules.
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Localizations of Grothendieck Groups and Galois Structure
Ted Chinburg, Boas Erez, Georgios Pappas, and Martin Taylor

ABSTRACT. In this paper we describe how the theory of ordinary and modular
characters may be localized at the prime ideals of certain commutative rings
acting on the representation ring of a finite group over a field. This localized
character theory, and a Lefschetz Riemann Roch Theorem, are applied to
study the Galois module structure of the cohomology of the structure sheaves
of semi-stable curves over rings of algebraic integers.

1. Introduction

Two basic techniques in studying modules for a finite group are character theory
and localization. The first part of this paper concerns how character theory may
itself be localized, in the following sense. Suppose T is a subgroup of a finite group
G, and that F is a field. The Grothendieck group G%(ZG) of all finitely generated
ZG-lattices becomes a commutative ring via the tensor product of lattices over Z.
Via the restriction of operators from G to T and the tensor product of T-modules
over Z, G4(ZG) acts on the Grothendieck group Go(FT) of all finitely generated
FT-modules. Brauer (c.f. §2) determined the prime ideals p of G%(ZG), while
the theory of ordinary and modular characters (c.f. §3) provides a description
of Go(FT) by means of functions on 7. Our main result concerning Go(FT) is
a character theoretic description (c.f. Theorem 3.8) of the localization Go(FT),
by means of functions on a subset T%? of T, where £ is the characteristic of F.
This description allows one to readily compute the rank of Go(FT), as a finitely
generated module over the localization Zq of Z at the ideal q generated by the
residue characteristic of p. Theorem 3.8 is also useful in analyzing the ring structure
on Go(FT), resulting from the tensor product of FT-modules over F. We illustrate
some applications of Theorem 3.8 in §4.

The above localization of character theory can be used to study the coherent
Galois module structure of schemes. Suppose X is a projective scheme over the
ring of integers Oy of a number field N, with a right action of a finite group G
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over Oy. Let Go(G, X) be the Grothendieck group of all coherent Ox-modules
F having an action of G compatible with the action of G on Ox. If f : X —
Spec(On) is the structure morphism, one has an Euler characteristic map f, :
Go(G, X) — Go(OnG). This map, and a more refined Euler characteristic for tame
G-actions, are recalled in §5; in the following discussion we identify Go(OnG) with
the Grothendieck group GOO” (OnG) of OnG-lattices. Coherent Galois structure
theory has to do with methods for determining f,(F), and with connections between
such Euler characteristics and other invariants of the G action on X. For a survey
of some results in this subject, see [6].

The ring G%(ZG) acts on Go(G, X) and Go(OnG) via the tensor product over
Z. In §5 we recall a Lefschetz Riemann Roch Theorem from [2] concerning the image
f«(F), of fo(F) in the localization of Go(ONG) at a prime ideal p of GZ(ZG). ( If
the action of G is tame one may prove a more refined result.) The interest of this
theorem is that it provides a way of determining f,(F), from calculations of Euler
characteristics on a G-stable closed subset X#™®4 of X which may be much smaller
than X. The localized character theory developed in §3 is useful in carrying out
these calculations.

To illustrate the results of §3 - §5, we consider in §6 the following situation. Let
G = T be a group of prime order r acting on a curve X over Oy. Let H(On,G)
be the subgroup of Go{ONG) generated by r-torsion classes and classes induced up
to G from the trivial subgroup. We will suppose the fixed point set X is zero-
dimensional, and that the fibers of X over Oy are reduced with at most ordinary
double points having tangent directions defined over On. Under these conditions,
we show in Theorem 6.3 a formula for the image of f,(Ox) in Go(OnG)/H in terms
of the action of G on the tangent spaces of the points of X¢ which do not lie over
r. The first and second Stickelberger elements © and ©, of Z[Aut(G)] enter into
this formula. From it one may deduce (c.f. Corollary 6.5) that f,(Ox) lies in the
subgroup of Go(OnG) generated by H(Op, G) and the images of © and O, acting
on Go(ONG). This provides an upper bound for the set of classes in Go(OnG)
which are of the form f,(Ox) for some X as above. One can view Corollary 6.5
as a step towards a counterpart for two-dimensional schemes of McCulloh’s results
in [10] and [11] concerning classes coming from the Galois structure of rings of
integers. When the action of G on X is tame, we prove analogous results concerning
a refined Euler characteristic f¢7(Ox) in Ko(OnG). If instead of assuming X¢
is zero-dimensional, one assumes X is empty or purely 1-dimensional, a more
precise result which completely determines f.(Ox) in Go(OnG) can be obtained
by a different method [8].

In §3 we have allowed T to be a proper subgroup of G. This case arises from
studying coherent Galois structure on G-schemes X for which the inertia group T’
of a point z € X is strictly between G and the identity subgroup. In later papers
we plan to return to this topic in greater generality by studying both lower and
upper bounds on the set of classes in Go(OnG) or Ko(OnG) which are of the form
F«(Ox) or f€T(Ox) for G-schemes X over O of various kinds.

2. Prime ideals of GZ(ZG)

Let G be a finite group. Define GZ(ZG) to be the Grothendieck group of all
finitely generated ZG-lattices. Then G%(ZG) is a commutative ring via the tensor
product of lattices over Z. By [5, Th. 39.12] and [4, Th. 24.1], G5(ZG) is finite
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LOCALIZATIONS OF GROTHENDIECK GROUPS AND GALOIS STRUCTURE 49

over Z. In this section we recall a description of the prime ideals of GZ(ZG) due
to Brauer.

PROPOSITION 2.1. Tensoring ZG-lattices with Q over Z induces a surjective
ring homomorphism G%(ZG) — Go(QG) having nilpotent kernel. As a conse-
quence, the prime ideals of G5(ZG) correspond bijectively to those of Go(QG).

PROOF. This is [5, Thm. 39.16]. O

Let ¢ be a root of unity in an algebraic closure Q of Q which has order divisible
by the order of each element of G. We define an action of I'q = Gal(Q/Q) on G by
letting o € I'q send g € G to a(g) = ¢*, where ¢ is any integer such that o(¢) = (*.
Two elements g,¢’ € G are said to be I'q-conjugate if ¢’ is conjugate to o(g) for
some o € I'q.

PROPOSITION 2.2. Let x. be the character of ¢ € Go(QG). The map ¢ — X,
identifies Go(QG) with the ring Rq(G) of characters of representations of G which
are realizable over Q.

a. Let £ be a prime ideal of Z. Suppose g is an £-regular element of G, i.e. an
element of order prime to £. The kernel Q¢ 4 of the homomorphism Rq(G) —
Z/¢ defined by x — x(g) mod £ is a prime tdeal of Rq(G), and all primes of
Rq(G) arise in this way.

b. Suppose g’ € G is {'-reqular for some prime ideal £' of Z. One has Q¢ o =
Qe,g if and only if ¢ = £ and g is T'q-conjugate to g'.

c. Forg' and?' as above, one has Qp ¢ C Qqq if and only if ¢’ C L and g’ = g"-h
for some g, h € G having the following properties:

(i) ¢" is 'q-conjugate to g and commutes with h;
(i) h is the identity if £ = {0};
(iii) h has order a power of the residue characteristic of £ if £ # {0}.

PROOF. Define A = Z[(]. Since A ®z Rk (G) is finite over Rk (G), the map
which identifies a prime of Rg(G) with the set of primes over it in A ®z Rk (G)
defines a bijection. From [12, Ex. 12.7, p. 101] one finds that the prime ideals of
A ®z Rx(G) may be described in the the following way. Let g be a prime ideal of
A, and let g be a g-regular element of G. The kernel Py, of the homomorphism
A®zRq(G) — A/q defined by a®x — ax(g) mod q is a prime ideal of A®z Rq(G),
and each prime ideal of this ring arises in this way. One has Py o C Pg 4 if and
only if ' C q and ¢’ = g” - h where g” is I'q-conjugate to g and commutes with h,
h is the identity if q = {0}, and h has order a power of the residue characteristic
of q if g # 0. One has Py o = Pq4 and only if ' = q and g is conjugate to g'.

For h € H = Gal(Q(¢)/Q) one sees that h sends Pq 4 to Py(q),g, since H acts
trivially on Rq(G). Since Rq(G) is flat over Z we have (A ®z Rq(G))¥ = A¥ @4
Rq(G) = Rq(G). Therefore H permutes transitively the primes of A ®z Rq(G)
over a given prime of Rq(G). From the definition of Py 4 we see that Pq ;NRQ(G) =
Qe if N Z = £. Thus the primes over Q¢ 4 in A ®z Rq(G) are exactly those of
the form Py , for @' a prime of A over £. The description of the primes of Rq(G)
given in Proposition 2.2 now follows from the above description of the primes of
ARz RQ (G) d

DEFINITION 2.3. Suppose £ is a prime of Z and g is an {-regular element of

G. Let pyq be the prime ideal of GE(ZG) corresponding to the the prime Qq 4 of
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Proposition 2.2(a) under the bijection Spec(Rq(G)) < Spec(GZ(ZG)) of Proposi-
tion 2.1.

3. Localized character theory

In this section we will use character theory to find explicit expressions for the
localizations of certain Grothendieck groups. We begin with a general result which
will clarify the structure of modules for G%(ZG).

PROPOSITION 3.1. Suppose R is a commutative ring finite over Z such that
the algebra Q ®z R is the direct sum of a finite number of copies of Q. Let M be
an R-module. Suppose q ( resp. p ) is a prime ideal of Z (resp. R ). Let My
( resp. M, ) be the localization of M at q ( resp. p ). Define P(q) to be the set of
primes of R over q. Then the natural Rq-module homomorphism

(3.1) My — @ M,

is an isomorphism. Here Mq = 2Zq ®z M = Rq®r M and M, =R, ®r M.

PRrROOF. Consider the natural Rq-algebra homomorphism

(3.2) h:Rq— @ Rp.
pEP(q)

By the definition of localization and tensor products, one has Mq = Zq ®2z M =
Rq®r M and M, = R, ®r M. Thus the desired direct decomposition (3.1) will
follow from h being an isomorphism. If q = 0, we have assumed that Rq = Q®z R
is isomorphic as a Q-algebra to the direct sum of copies of Q; therefore h defines
such an isomorphism. Hence for the rest of the proof we may assume that q is a
maximal ideal of Z. Then h is the natural homomorphism from ihe ring Rq into
the (finite) product of its localizations at the maximal ideals of Rq, so h is injective.
It will thus suffice to show h is surjective.

Let R’ be the normalization of the image of R in R®z Q. Since R is finite over
Z, the natural ring homomorphism R — R’ has finite kernel and cokernel. Since
R ®z Q is algebra isomorphic a direct sum of copies of Q, R’ must be isomorphic
to a direct sum of copies of Z. Consider now the diagram of morphisms

h
Rq — eapGP(q) R

(3.3) l l

Ra - Ower@Re 5 OreraRy

Here R, is the localization of R’ at p when one considers R’ as an R-module. The
set P'(q) is the set of prime ideals p’ of R’ over q. The injective homomorphism o
in the second row of (3.3) comes from viewing R’ as an R-module. The injective
homomorphism 3 comes from the natural map R;, — €D ol R, , where the direct
sum is over the primes p’ over p in R’. The composition (3 o a is the natural map
Ry — D o EP/(q) R, which is an isomorphism since R’ is the algebra direct sum
of a finite number of copies of Z. Thus « and 8 are isomorphisms. Now because
R - R’ has finite kernel and -cokernel, the vertical homomorphisms in diagram
(3.3) also have finite kernel and cokernel because localization is exact. It follows
that h must have finite cokernel, and we have already shown the kernel of h is {0}.
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Since q is a maximal ideal of Z, the finiteness of coker(h) implies

(3.4) P d'R, Ch(Ry)

pEP(q)

for some integer ¢ > 0. On localizing the surjection R — R/q'R at p we obtain
an isomorphism R,/q'R, — (R/q'R),. Now R/q'R is a finite R-module since
R is finite over Z, so this module is supported on finitely many prime ideals of
R. It follows from the structure theorem for commutative Artinian rings [9, Thm.
V1.9.7] that the natural map

(3.5) R/QR— @ R,/d'R,

pEP(q)

is an isomorphism. Combining (3.4) and (3.5), we see h is surjective, and by what
has already been shown this completes the proof. O

DEFINITION 3.2. Let F be a field of characteristicl > 0 and let T be a subgroup
of a finite group G which acts trivially on F. The Grothendieck group Go(FT) is
a GE(ZT)-module via the tensor product over Z of ZT-lattices. We may regard
Go(FT) as a G%(ZG)-module via the ring homomorphism G%(ZG) — G%(ZT)
induced by the restriction of operators from G to T'.

COROLLARY 3.3. When R = GZ(ZG) the hypothesis of Proposition 3.1 is sat-
isfied. Thus in particular,

(3.6) Zq ®2 Go(FT) = Go(FT)q = €D Go(FT),
pPEP(q)

for all fields F and subgroups T C G. Since Go(FG) is a free finitely generated
Z-module on the classes of simple FT-modules, each of the modules appearing in
(3.6) is a free finitely generated Zy-module.

We now recall how Go(FT) may be described by character theory.

DEFINITION 3.4. Let | = char(F). Ifl =0, let W(F) = F and let T' = T. If
1> 0, let W(F) be the ring of Witt vectors over F, and let T' be the set of l-regular
elements of T. Define K(F) to be the fraction field of W(F). Let n be the ezponent
of T. Define n; be the part of n which is prime to l, so that n = [*n; for some
integer a > 0. Let (,, be a primitive n;-th root of unity in a fized separable closure
FsP of F. Then L = F((,,) is a finite seperable extension of F, and there is a
unique root of unity (,, € W(L) which reduces to (,, modulo the mazimal ideal
of W(L). Let A’ be the subring Z[(,,] of W(L). The action of the Galois group
Gal(L/F) on L extends in a unique way to an action on W (L), and we let A be
the subring of A’ fized by Gal(L/F)

Note that K(L)/K(F) is an unramified Galois extension of fields, with Galois
group Gal(L/F). We have an injective homomorphism Gal(L/F) — (Z/n;)* de-
fined by 0 — t if 0(Cn,) = (Cn,)?. Let I,,(F) be the image of Gal(L/F) under this
homomorphism. We will say two elements z,y € T' are F-conjugate in T if z is
conjugate in T to y* for some t € I, (F).

DEFINITION 3.5. Suppose T' is a union of conjugacy classes in T* and that R is
a commutative ring. Define Homg (T',R) to be the set of functions f : T' — R such
that f(t) = f(t') if t,t' € T' are F-conjugate in T. Then Hom?(T',R) becomes
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a ring via the ring operations of R. We define a G%(ZG)-module structure on
Hom)(T",R) in the following way. Suppose o € GZ(ZG) and f € Hom% (T, R).
The restriction of the character xo of a to T’ is an element of HomS(T’ \Z) C
Hom?(T',Z). We let a- f be xo - f.

Suppose s € T and that M is an FT-module of dimension m. Since s has
order prime to | = char(F), the action of s on F*? @ M is diagonalizable. The
eigenvalues {fi,...,[in} of s are roots of unity in L C F of order dividing the
l-primary part n; of the exponent n of T. Let u; € A C W(L) be the unique root
of unity of order equal to that of ; which has image i; in L. Define the (Brauer)
character of M to be the function y s : T — A’ defined by

xm(s) = Zui-
i=1

Since M is an F'T-module, the action of an automorphism of Gal(L/F) must per-
mute the eigenvalues {ji, ..., fim }. Recall that elements of Gal(L/F) extend in a
unique way to automorphisms of W(L) over W (F"). It follows that xas takes values
in 4 = A/CMEE) c W(F) = W(Feer)Gal(F*"/F)  Suppose o € Gal(L/F) has
image t € I,,(F) and that z = s in T. Then the action of ¢ takes the eigenvalues
of s on M to those for x = s, so by what we have already shown, these sets of

eigenvalues are permutations of one another. It follows that xs is an element of
Hom? (T, A).

THEOREM 3.6. ([4, p. 508 - 511 and Thm. 21.25]) The function M — xm
extends additively to an injective GZ(ZG)-algebra homomorphism x : Go(FT) —
Hom? (T, A). This homomorphism and the inclusion of A into K(F) induce an
isomorphism of K(F)-vector spaces

X ®1: Go(FT) ®z K(F) — Hom?’(T!, K(F))

where Go(FT) is a free finitely generated abelian group. It follows that the rank
of Go(FT) as a free abelian group equals the dimension of Hom’(T!, K(F)) over
K(F), which is the number of distinct F-conjugacy classes in T".

We now state our main result concerning localizations of Go(FT) at prime
ideals of GZ(ZG).

DEFINITION 3.7. Let q be a prime ideal of Z, and suppose g € G is q-regular.

a. For ¢ € G4(ZG), the character x. takes values in Z. Let p = pqg,q be the
prime ideal of all c € GZ(ZG) such that x.(g) = 0 mod q. By Propositions
2.2 and 2.1, all prime ideals of GZ(ZG) have this form for some q and g.

b. Ifq = {0}, let T"* be the set of t € T* which are conjugate in G to a generator
of < g >. Suppose now that q = pZ for some rational prime number p. Let
T be the set of t € T which are conjugate in G to a product of the form
g - g", where g’ is a generator of < g >, g’ is of p-power order, and g’ and
g’ commute.

THEOREM 3.8. . With the notations of Definitions 3.4, 3.5 and 3.7, let p = pq g

be a prime ideal of GZ(ZG) over q.
a. Ifa € GE(ZG)—p, then xa(g9) € Z—q. Let Aq (resp. Zq ) be the localization
of A = Z[(] ( resp. Z ) at the multiplicative set Z — q. We then have an
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isomorphism of G%(ZG), algebras
z : Hom%)(T!, A), — Hom%(T"*, Aq)
induced by a~' - f — h, where h(t) = xa(t)"L - f(t) fort € TH*.

b. The character map in Theorem 3.6 together with the isomorphism in (a)
induces an injection of GZ(ZG),-algebras

Xp : Go(FT), — Hom}(T"*, Aq).

c. On viewing Zq and Aq as subrings of K(F), the homomorphism x, induces
an isomorphism K (F')-vector spaces

Xp ®1: Go(FT), ®z, K(F) — Hom(T"*, K(F)).

Thus 7 = rankz (Go(FT),) = dimK(F)Homf;(Tl”’,K(F)) is the number
of F-conjugacy classes in TP, where conjugation is taken with respect to
elements of T.

d. Via x,, the algebra Hom%)(T"?, Ay) is finite over the ring Go(FT),. An
element B € Go(FT), is a unit if and only if x,(8) € Hom%(T"*, A%), where
Ay is the unit group of Aq.

PROOF. Suppose, as in (a), that p = pg, and a € GZ(ZG) — p. Let t be an
element of T%*. By definition, ¢ is conjugate to ¢’ - ¢” in G, where < g’ >=< g >,
g" is the identity if g = {0}, and ¢” is an element of p-power order which commutes
with ¢’ if @ = pZ # 0. The character x,, is the character of a rational representation
of G. Hence x, takes values in Z. As in [4, Lemma 21.12] we have

Xa(t) = Xxa(9'-9")
3.7 = Xa(¢') mod q
Xa(9)

Since a ¢ p, we have x4(g) # 0 mod q. Therefore x,(t) € Z — q, as claimed. We
see from this that the map z in (a) is well defined. The fact that z is a GZ(ZG),-
algebra map follows from the definitions of the algebra structures on the domain
and range. The map
Hom[}(T!, A) — HomZ)(T"*, A)

induced by restriction of functions from T' to T"* is surjective. Since Zq injects
into G5(ZG), and Aq = Zq - A, we deduce from this that z is surjective. To show
that z is injective, it will suffice to show that if f € Hom’(T!, A) and f has trivial
image in Hom%j(T%?, A,), then there is an a € GZ(ZG) — p such that a - f = 0.
Since A injects into Ay, we know that f vanishes on the elements of T"*. Suppose
t € T' — TH?. Let p' be the prime ideal of pioy, of GE(ZG). Thus p' is the ideal
of all 3 € G4(ZG) such that xs(t) = 0. In view of Definition 3.4 and Proposition
2.2, the assumption that ¢ ¢ T implies p = pq 4 does not contain p’. Thus there
is an element a; € p’ which is not in p. The product

o = H 6 7
teTt-The

does not lie in p, and x4 (t) = 0 for all t € T* — T*. Thus o - f vanishes on all
elements of T" since f vanishes on the elements of T"#. This proves z is injective.
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The existence of the injective character map x, in part (b) now follows from
(a) on localizing at p the injection x : Go(FT) — Hom%(T*, A) of Theorem 3.6.
To prove (c), recall from Corollary 3.3 that we have a direct sum decomposition

Go(FT) ®z Zq @GO(FT),,

where the summands on the right are ﬁmtely generated free Z,-modules. On ten-
soring with K(F') over Zq we get an isomorphism

(3.8) Go(FT) ®z K(F) —» @) Go(FT), ®z, K(F).
P

Consider now the homomorphism
(3.9) Xp ® 1: Go(FT), ®z, K(F) — Hom(T"*, K(F))

which results from x, and the embedding of Aq into K(F). Taking the direct
sum of these maps over the summands on the right hand side of (3.8) gives a
homomorphism

Go(FT) ®z K(F) — @ Homj(T"*, K(F)) = Hom(T", K(F))

in which the second equality follows from
T = u,T"*.

This is exactly the isomorphism appearing in Theorem 3.6. Since (3) is an iso-
morphism, we conclude that each of the homomorphisms in (3.9) must be as well,
which proves (c).

We finally prove (d). By (b), (c) and Corollary 3.3, x, induces an injection
R = Go(FT), — R’ = Hom%)(T"*, Ay) of Z-algebras. These algebras are finite
and flat over Zg because Aq is finite and flat over Zq, so R’ is finite over R. The
unit group R'* is Hom[j(T"#, A}). Thus to show the last assertion in (d), it will
suffice to show R* = RNR'*. Clearly R* C RNR'*. Suppose @ € RNR'*. Since
R’ is a finite flat Zg-module, the characteristic polynomial over Zq of multiplication
by a on R’ has unit constant coefficient. Since « is a root of this polynomial, it
follows that o € R*, which completes the proof. O

4. Inverses of classes in Go(FT),

In this section we assume the notations of Theorem 3.8. We illustrate how this
result can be used to calculate inverses of certain classes in Go(FT), which arise
in the study of coherent Euler characteristics (c.f. §5 and §6).

Let M be an FT-module of dimension d > 0 over F. For i > 0, the i-th
lambda operator on Go(FT) is defined by the it* exterior power \'(M) = A*M
over F. Define

d
(4.1) A1 (M) =) (-1)'A'M
=0

in Go(FT). Suppose fii(h),...,fq(h) are the eigenvalues in F of an l-regular
element h of T acting on M. The value of the virtual character of A_;(M) on h is
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then
d

(4.2) Xa_,(m)(h) = H(1 — pi(h))

where p;(h) is the unique root of unity in W (F') of the same order as fi;(h) which
has image fi;(h) in F.

As in Theorem 3.8, let G be a group containing T. Let q be a prime ideal of
Z and suppose g is a g-regular element of G. Let p = pq 4 be the prime ideal of
GZ%(ZG) specified in Definition 3.7(a).

PROPOSITION 4.1. The class A_1(M) is invertible in Go(FT), if and only if
T;(h) # 1 for all h € T"? and alli = 1,... ,d. If @ = pZ for some rational prime
p, this implies i, (h) is not a p-power root of unity.

PrOOF. With the notations of Definition 3.4, we have an inclusion of finite flat
Z, algebras Aq C Ay. Furthermore, u;(h) € Ay for h € T"?, and xx_,(a)(h) € Aq.
By (4.2) and the argument at the end of the proof of Theorem 3.8, one sees that
Xr_(m)(h) € Ay if and only if the element 1 — y;(h) is a unit in the algebra
Z[ui(h)]lq C Ay for all i. Hence by Theorem 3.8(d), it will suffice to show that
1 — p;(h) is a unit for all h € TY* if and only if u;(h) # 1 for all such h. If q =0
this is clear since then Z[u;(h)]q is a field. So suppose q = pZ for some prime p and
that u;(h) # 1 for all h € T"*. If p = [ then h must be p regular, so 1 — u;(h) is a
unit in Z[p;(h)]q. Suppose now that p # I. It will suffice to show that y;(h) is not
a p-power root of unity. But [ # p and the element g in Definition 3.7 is a p-regular
element. Therefore Definition 3.7 implies h? € T'* if h € T"?. Hence u;(h) # 1
for h € T"* implies no u;(h) can be a p-power root of unity; this completes the
proof. O

We now compute an explicit inverse for A_;(M) in Go(FT), when this class is
invertible.

Write the exponent n of T as n = n’-n”, where n” = 1 if q = 0, and where n” is
the power of p dividing n if q = pZ # 0. Let x4, ... ,z4 be independent commuting
indeterminates, and let si,...s4 be the elementary symmetric functions in the z;.

Let Pyn.q(s1,-.. ,S4) be the polynomial with integer coefficients such that
d n''-1 ‘ n'—1
(43) Pyng(st,---5sa) = [T &) - (Y k-2f™"))
i=1  j=1 k=1

PROPOSITION 4.2. Suppose A_1(M) is invertible in Go(FT),. The inverse of
A_1(M) in Go(FT), is

(—n)"% Pang(A(M), ..., X%(M))
where —n' is a unit in Zq.

~ Proor. With the notations of Proposition 4.1, the value of the character of
M(M) on h € T is S; = sj(ui(h),...,pa(h)), where s; is the jt* symmetric
function. Thus by Theorem 3.8, to prove Proposition 4.2 it will suffice to show

(44) Pd,n,q(Sla o an) : X/\_I(M)(h) = (_n,)d
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for h € T"?. We have an identity

n'' —1 n'—1

(45) (=) (3 =) - (3 k-af™) = -=")- (S5 k- ak)
Jj=1 k=1

(49) B T

Suppose now that we substitute u;(h) for z; in this identity. By Proposition 4.1,
¥ = pi(h)™" is a nontrivial n/ " root of unity, so the right hand side of (4.6)
equals —n'. Substituting this back into the right hand side of (4.3) and using (4.2)
proves (4.4). O

We now discuss a special case of Proposition 4.2.

DEFINITION 4.3. Suppose T is cyclic of prime order r. For a € Z, let o, be
the element of the automorphism group Aut(T) of T for which o,(t) = t* for all
t € T. We define the Stickelberger element of Z[Aut(T)] to be

(4.7) &= > a0,
O0<a<r
Define a quadratic Stickelberger element of Z[Aut(T)] by
(4.8) 8= Y 9_(02_—1_).0_&—1.
O<a<r

Suppose M is a T-module and that ¢ € Aut(T). Define a T-module o(M) by
letting o(M) have the same underlying group as M, and by letting t € T act on
m e o(M) byt ;M= o~ 1(t) - m. When we discuss the action of ¢ on various

Grothendieck groups G of T-modules M, we will mean the action which sends the
class (M) of M to (c(M)). We will use exponential notation for the induced left
action of the group ring Z[Aut(T)] on G.

LEMMA 4.4. Suppose T has prime orderr, Go(FT), # 0, M is a non-zero FT-
module and that A_, (M) is invertible in Go(FT),. Then the residue characteristic
of p is different from r, and so is the characteristic £ of F. Suppose further that
M =£® &L for some non-trivial one-dimensional character € : T — F*. Then

— 1—7r e 1 e 1 r—1
(4.9) >\_1(M)1:(2—r).§ +F'52=?'((T)
in the torsion-free group Go(F[T)),, where 17 denotes the trivial character of the
group T.

-1T+%-M62)

PROOF. Since Go(FT), # 0, we see from Theorem 3.8(c) that T'* is not
empty. Thus if £ = 7, T? must be {e}, since T consists of l-regular elements.
However, every eigenvalue of e acting on M is the identity, so A_{(M) cannot be
invertible by Proposition 4.1. This proves £ # r. The residue characteristic of p
cannot equal r by Proposition 4.1.

Suppose now that M = £ H£~1. The eigenvalues in F of an (I-regular) element
h € T"* are £(h) and £(h)~!. By Proposition 4.1, if ¢ is the unique root of unity in
W (F) of the same order as £(h) which has image &(h) in F, then ¢ # 1. Thus ( is
a primitive r-th root of unity. By the definition of the action of automorphisms of

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



LOCALIZATIONS OF GROTHENDIECK GROUPS AND GALOIS STRUCTURE 57

T on T-modules, we have £%= (h) = £(h®) = £(h)® for a € Z prime to 7. In view
of (4.2), the first equality in (4.9) will follow if we can show

@10) gy = e X wee ke 3 depe

0<a<r 0<a<r

whenever ( is a primitive r-th root of unity. It is straightforward to check this
identity by multiplying both sides by 27(1 —¢)(1—¢~!) and by then using that fact
that > ... (% = 0. The second equality in (4.9) is proved by adding the right
side of (4.10) to the result of replacing ¢ in (4.10) by ¢~!, and by then simplifying
USing 20<a<7‘ a(ca + C_a) = 20<a<r(a +r— a)ca = —-T. O

5. Lefschetz Riemann Roch Theorems

Let G be a finite group. By a G-scheme X we will mean a flat equidimensional
projective scheme over Spec(Z) with a right action of G. A G — X sheaf F is a
quasi-coherent sheaf of Ox-modules such that the action of G is compatible with
the action of G on Ox (see [13, §1.2]). We will call F' coherent (resp. locally free)
if F is coherent (resp. locally free) as an Ox-module.

Define Ky(G, X) (resp. Go(G, X)) to be the Grothendieck group of coherent
locally free G — X sheaves (resp. coherent G — X sheaves). The operation of
taking exterior products over Ox makes Ko(G, X) into a A-ring, in the sense of 7],
and Go(G, X) is a Ko(G, X)-module. If X is regular, (5.8) in [13] shows that the
natural inclusion of categories induces an isomorphism

Given a G-morphism 7 : X — Y of G-schemes, we have a pull-back homomor-
phism

™ : Ko(G,Y) — Ko(G,X)
and if 7 is flat, a homomorphism

™ :Go(G,Y) - Go(G, X).
If 7 is proper, there is a direct image homomorphism

Ty : Go(G, X) — Go(G,Y).

Via tensor products over Z, Ky(G,X) and Go(G,X) are modules for the ring
G2(ZG).

Suppose f : X — Y is a proper G-morphism between G-schemes X and Y,
and that G acts trivially on Y. Suppose F € Ky(G, X). We will refer to f.(F) €
Ko(G,Y) as the equivariant Euler characterisic of F. A prime ideal of G%(ZG) is
called I-adic if it contains the kernel of the homomomorphism G%(ZG) — Z induced
by taking ranks over Z of finitely generated Z-modules. The Lefschetz Riemann
Roch Theorem concerns the image of f.(F) in the localizations of Ko(G,Y) at non
I-adic primes p of GZ(ZG).

By Propositions 2.1 and 2.2, there is a prime ideal ¢ of Z and an /-regular
element g € G such that p is the prime ideal py 4 of Definition 2.3. The prime ¢
and the conjugacy class C(g) of g are uniquely determined by p. Let X” be the
minimal closed G-subscheme of X containing the fixed point subscheme X9. Then
X* is the union of the fixed point schemes X9 as g’ ranges over C(g), and X°*
depends only on p. Let X?**d be the reduction of X?.
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THEOREM 5.1. (Lefschetz Riemann Roch [2, Thm 3.1]). Suppose p is a non
I-adic prime of G4(ZG), and that X and XP** are reqular. The natural closed
immersion 1 = i, : X pred 5 X is a regular embedding. The conormal bundle N'*
of this embedding is a locally free G — X*™*4 module. Therefore we can define

ATV = SN W)

i>0

in Ko(G,XP ), where the i-th A operator \* is induced by taking i-th exterior
powers. The class A\_1(N™) is invertible in the localization Ko(G, X?™4), of the
G%(ZG) algebra Ko(G, XP*4) at p. Finally, we have a commutative square

Ko(G,x) MO g6, xpred),
f*l l(foz').,p
Ko(GY) — — Ko(G,Y),

where G acts trivially on' Y by assumption.

REMARK 5.2. For all G-schemes W, let ty : Ko(G,W) — Go(G,W) be the
natural forgetful homomorphism. Suppose f|xrea : X?™4 — Y factors as the
composition of a proper morphism g : X#™*4 — Z followed by a closed immersion h :
Z —Y. Thentyo f|xorea , : Ko(G, Xeredy 5 Go(G,Y) factors as the composition
of g, : Ko(G, XP™4) — Go(G, Z) followed by h, : Go(G,Z) — Go(G,Y). By the
localization sequence, j* o h, = 0 if j* : Go(G,Y) — Go(G,U) is the restriction
homomorphism associated to the open immersion j : U =Y — Z — Y. Thus
j* oty o f|xeres = 0. Hence under the hypotheses of Theorem 5.1, we have Jpotyo
f« =0, where j; : Go(G,Y), — Go(G,U), is the homomorphism induced by j.

REMARK 5.3. Suppose that the action of G on the generic fiber of X is étale.
For each non-I-adic prime p of G%(ZG), the subset X*™4 is then supported off of
the generic fiber Yq = Y ®z Q of Y. Therefore, Remark 5.2 shows f,(Ko(G, X)) C
Ko(G,Y) has trivial image in Go(G,Yq),. Suppose in particular that Yq =
Spec(F') for some field F' of characteristic 0. Then Gy(G,Yq) = Rr(G), and a
character x € Rp(G) has trivial image in Rr(G), for all non-I-adic primes if and
only if x(g) = 0 for all non-trivial elements g € G. Thus x must be a multiple of
the regular representation F'G.

Following [3], the action of G on X over Y will be said to be tame if for
each £ € X, the order of the inertia group of z in G is relatively prime to the
residue characteristic of z. Suppose Y = Spec(A) is affine. Let CT(AG) be the
Grothendieck group of all finitely generated AG-modules which are cohomologically
trivial as G-modules. It is shown in [1] and [3, §8] that when the action of G on X
is tame, one has a refined Euler characteristic homomorphism f¢7 : Ko(G, X) —
CT(AG). In [2, Thm. 6.7], the following counterpart of Theorem 5.1 is shown.

THEOREM b5.4. With the hypotheses of Theorem 5.1 , suppose Y = Spec(On)
where O is the ring of integers of a number field N. The forgetful homomorphism
Ko(OnG) — CT(ONG) is then an isomorphism. Suppose that the action of G on
X is tame, and that for x € X, two elements of the inertia group of x which are
conjugate in G generate the same subgroup of the inertia group. We then have a
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commutative square
Ko(G,x) T K (@, xe),
e (foi){7
CT(OnG) — CT(ONG),
where G acts trivially on On by assumption.

REMARK 5.5. In (2], more general versions of Theorems 5.1 and 5.4 are proved
in which X and Y are assumed to be projective schemes over Spec(Ok) = S when
K is a number field. In these versions, one localizes at primes p of Ko(G, S) rather
than at primes of G4(ZG). A version of fC7 when Y is not affine is discussed in
(3].

6. Curves over rings of integers

In this section we will suppose Oy is the ring of integers of a number field N and
Y = Spec(On). We will let f: X — Y be the structure morphism of a flat regular
projective curve X over Y. We will assume the fibers of X over closed fibers of Y
are reduced with at most ordinary double points having tangent directions defined
over Y. We will assume that G = T is a group of prime order r acting on X over
Y, and that the fixed point set X G is zero-dimensional. If z € X©, the conormal
bundle N /o OD T of the embedding of x into X is the sheaf associated to the

two-dimensional k(x) vector space I,/I2, where I, is the ideal sheaf of z in X and
k(z) is the residue field of x. Here I,./I? is just the cotangent space to X at z. Let
XC be the subset of X not lying over the prime r of Z.

LEMMA 6.1. Suppose x € XC and that y = f(x) is the point of Y below .

a. The natural map k(y) — k(z) is an isomorphism.

b. Let p = pq,q be the prime of GZ(ZG) specified in Definition 2.3 for a prime
ideal q # rZ of Z and a non-identity element g of G. The class )\_1(./\/'3}/1)
is invertible in the (non-zero) localization Go(k(z)G),.

c. The point = is an ordinary double point on the fiber of X over y.

d. The k(z)G-module N}/I is isomorphic to &, ® £, where £ : G — k(x)* is
a non-trivial character of G.

PROOF. Statement (a) follows from the fact that the inertia group of z € X& C
X% is G. In part (b), since g generates G, the fixed point set X9 equals X as well
as the minimal closed G-stable subset X” of X containing X9. Since X€ is zero
dimensional, the reduction X*"d of X* is the union of G-stable closed points, one
of which is z. By Theorem 5.1, the class A_;(N*) is invertible in the localization
Ko(G, XPd), of the G&(ZG)-algebra Ko(G, X?"d) at p. Here

(6.1) Ko(G,X?™Y), = @ Ko(G,Spec(k(z')), = P Go(k(z')G),
z'€XC '€ XC

where G acts trivially on k(z’) for ' € X©, and z is one of these z/. One has
Go(k(z)G), # {0} by Theorem 3.8 since q # rZ and k(z) has characteristic differ-
ent from r. Part (b) of Lemma 6.1 now follows from the fact that relative to the
isomorphism (6.1) we have

(6.2) N'= P Nijw-

z’eXC
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To prove (c), let 7 be a uniformizing parameter of the local ring Oy, . Since we have
assumed the fiber f~1(y) is reduced, if = is non-singular on f~!(y) then 7 defines
a non-zero element of Ny Jz fixed by G. However, no such element can exist by
Proposition 4.1 because we have shown (b). Finally, to prove (d), we have assumed
that the (distinct) tangent directions at the ordinary double point x are defined
over Y. Thus in the completion 1) x,z of the local ring Ox ;, one has 7 = f; - f»
where {f1, f2} is a set of generators for the maximal ideal fx of O x,z- Since 1) Xz
is regular, it is a U.F.D.. The action of g € G on @X,I fixes m and takes irreducible
elements of O x .« to irreducible elements. If r > 2, then g2 also generates G, and
g% must take f; to u;f; for some unit u; € (’5}1 Since I, / (IAI)2 is isomorphic
to Ny Jo = Iz /I2, this shows Ny /o is the direct sum of one-dimensional G-stable
k(x)-subspaces spanned by the images of f; and fo. This proves (d) when r > 2.
If r = 2, then part (b) and Proposition 4.1 imply that both eigenvalues of g acting
on the (semi-simple) k(z)G-module Ny /. are equal to —1. Hence (d) holds in this
case as well. O

DEFINITION 6.2. Identify Ko(G,Y) with the Grothendieck group G§™ (OnG)
of OnG-lattices. Let Ind?e}Ko(ON) be the subgroup of G’S’N((’)NG’) generated by
classes of modules of the form Indfe}P = OnG ®o, P for some finitely generated
projective On-module P. Let

Go(OnG)

t: Ko(G,X) - (———F—
(Ind%;}Ko(oN)

)eaZlt]l = M(G,Ox)

be the homomorphism induced by the direct image map f. : Ko(G, X) — Ko(G,Y)
together with the forgetful isomorphism Ko(G,Y) = GSV(OnG) — Go(ONG).
Suppose the action of G on X is tame. Define Indf';}Go((’)N) to be the subgroup
of classes in CT(OnG) generated by classes of modules of the form Ind?e}M =
OnG Qo M for some finitely generated On-module M. Let

CT(ONG) )

7 Ko(G, X) = (————
(Ind?e}Go(oN)

VALS) o MG On)°T

be the homomorphism induced by the Euler characteristic map fCT : Ko(G,X) —
CT(OnG) defined just prior to Theorem 5.4.

THEOREM 6.3. For x € XC, the character £, of Lemma 6.1 defines a finite co-
homologically trivial OnG-module via the natural homomorphism OnG — k(z)G.
In this way, £, defines a class in Go(ONG) as well as a class in CI(OnG); we
will denote each of these classes also by &,. Let 1, be the one-dimensional k(z)-
module with trivial G-action, which we will regard as an OnG-module. With the
notations of Definition 6.2, one has

wox) = 3 (U504 1.6
ze X8
(63) = > %-(—H;l Aoa+ 1 )*</z)62)
zeXG
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in M(G,On) where © and O, are the elements of the integral group ring of Aut(T)
defined in Definition 4.3. If the action of G on X 1is tame, then

©T0x) = ¥ ((12-7‘1") ,€g+%.€§2)

zeXE

(6.4) = >

zeX8

. ((T;l) ga+ % . (N;‘(/x)ez)

D=

in M(G,0y)CT.

REMARK 6.4. The proof of the Theorem will show that for z € X, the class
r—1 N R
L_z_.) lgz + % . (NX/m)e

in Go(k(z)G) ®z Z[%] is uniquely divisible by 2, which explains the meaning of the
summands on the far right sides of (6.3) and (6.4).

PROOF. Let p = pq,4 be the prime ideal of G¥(ZG) specified in Definition 2.3
for the prime ideal q of Z and the g-regular element g € G. Let 1y be the one-
dimensional trivial representation of the subgroup H of G. Suppose g = e. The
element z =71 -1¢ — Indﬁz}l{e} of G¥(ZG) then lies in p, since the character of z
vanishes on g = e. However,

z-L=r-L-Ind{,1}-L=r-L-Indf,(res§ L)

for all OnG-lattices L, and Indﬁ}(resg}L) € Indﬁa}Ko(ON). Since the classes of
OnG-lattices generate M (G, Oy ), and the multiplication action of r on M(G, On)
is invertible, we conclude that the multiplication action of z on M (G, Oy) is invert-
ible. Since z lies in p if g = e, and M(G,On), is finitely generated over the local
ring GZ(ZG),®z Z[%], we conclude from Nakayama’s Lemma that M(G,0On), =0
ifg=e.

Suppose now that p is a prime ideal for which g # e. In the notation of Theorem
5.1, the set X?d is the reduction of the fixed point set X9 = X&, which is the
union of finitely many closed points. By Theorem 5.1, the image of f.(Ox) in
Ko(G,Y), = GE™ (ONG), is

(6.5) Ox)p= Y AaWNx) ™

zeXpred

By Lemma 4.4, only the z in the subset X& of X¢ = X* which do not lie over r
contribute to the right hand side of (6.5), since z € X¢— X implies Go(k(z)G), =
0. In view of Lemmas 6.1 and 4.4, the contribution to the right hand side of (6.5)
from a point € X corresponds to the the term associated to x in the sums
appearing in (6.3). Hence the two sides of each equality in (6.3) have the same
image in the localization of M (G, Oy) at each prime p of G%(ZG) for which g # e,
while the same is true for those p for which g = e because M(G,0On), = 0 for
such p. Hence the equalities in (6.3) must hold in M(G,Op). One proves (6.4)
similarly. O

COROLLARY 6.5. Let G = Go(G,On)(tor) (resp. G[r*°] = Go(G,On)[r*°]) be
the subgroup of classes of Go(G,On) of finite (resp. of r-power) order. Then G
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contains the subgroup S = S(G,On) of classes of finite On modules of order prime
to r having trivial G-action. One has

£+(0x) € G® +G% + G[r™] + Ind (., Ko(On)

and
2- £.(0Ox) € S+ G° + G[r™] + Ind{,; Go(ON)

Proof: By the localization sequence, the torsion subgroup of Go(ONG) is gener-
ated by the classes of modules of finite order. Therefore Corollary 6.5 follows from
Theorem 6.3.

In a similar way one can prove:

COROLLARY 6.6. The classgroup Cl(OnG) may be defined to be the torsion
subgroup of CT(OnG), where the forgetful map Ko(OnG) — CT(OnG) is an
isomorphism. Let CI(OnG)[r™] be the r-Sylow subgroup of Cl(OnG). The Swan
subgroup Scr of Cl(OnNG) is the subgroup of CT(OnG) generated by classes of
finite On -modules of order prime to r which have trivial action by G. If the action
of G on X is tame, then

FET(0x) € CUONG)® + CL(ONG)®? + CU(ONG)[r™] + Ind(., Go(On)
and
2- f.(Ox) € Sor + Cl(ONG)®? + CUONG)[r™] + Ind{, Go(On)
REMARK 6.7. The first Stickelberger ideal of Z[Aut(G)] is defined to be
S = Z[Aut(G)] N (2) - Z[Aut(G)].

Define CI°(OnG) to be the kernel of the homomorphism CI(OxG) — CI(Oy)
which is induced by restriction from G to the trivial subgroup of G. In [10], Mc-
Culloh shows that if N contains a primitive 7-th root of unity, then CI°(ONG)®
is the subgroup of classes of CI(OnG) of the form [Or] — [N : Q][OnG], were
L ranges over all finite cyclic tamely ramified degree r-extensions of N together
with a choice of isomorphism between G and Gal(L/N). (See [11] for the gen-
eralization of this result to all number fields N and all abelian groups G.) Here
O] = RET(Ow) if h : W = Spec(Or) — Spec(Oxn) = Y is the structure mor-
phism. Thus Corollary 6.6 is a partial counterpart of McCulloh’s result for dimen-
sion two schemes. However, McCulloh’s resolvent theoretic methods yield stronger
results for dimension 1 schemes than those which can be obtained by Theorem
5.1. For example, Theorem 5.1 would imply only that for L as above, [Op] lies in
CU(ONG)® + CL(ONG)[r™] + Indf,, Go(On).

COROLLARY 6.8. Suppose N = Q, so Oy = Z. Let < ZG > be the subgroup
of Go(ZG) (resp. CT(ZG)) generated by the class of ZG. Let G (resp. G[r*]) be
the subgroup of classes in Go(ZG) of finite (resp. finite r-power) order. We have

£:(0x) € G%* +G[r™]+ < ZG >

on identifying Ko(G,Y) = Ko(G,Spec(Z)) with G5(ZG) = Go(ZG). The class
group CL(ZG) may be defined as the torsion subgroup of CT(ZG). Let Cl(ZG)[r*]
be the r-Sylow subgroup of CI(ZG). If the action of G on X is tame, then

T (0x) € CI(ZG)®? + CUZG)[r™)+ < ZG > .
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LOCALIZATIONS OF GROTHENDIECK GROUPS AND GALOIS STRUCTURE 63

PROOF. By [5, Thm. 39.21 and Th 50.2], the groups G and CI(ZG) may be
identified with the ideal class group of the field Q(¢,) when (. is a primitive r-th
root of unity. The first Stickelberger element © annihilates this ideal class group
by [14, Thm. 6.10]. Corollary 6.8 follows from this and Corollary 6.5. O

REMARK 6.9. Suppose r > 3. In a later paper we will show that modulo
CUZG)[r>*]+ < ZG > each class in CI(ZG)®? arises as fCT(Ox) for some X
having a tame action of G. We will also show that there are primes r for which
CI(ZG)®? has a non-trivial element of order prime to 7. This will show there are
X having a tame action of G for which f€7(Ox) is not in < ZG >.
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INVARIANT STABLE BUNDLES
OVER MODULAR CURVES X (p)

Igor V. Dolgachev

Introduction.

Let X be a smooth projective algebraic curve of genus g > 1 and G be the
group of its automorphisms. The problem is to describe vector bundles on X which
are invariant with respect to the action of G on X. In this paper we address this
problem in the case when the curve X is the modular curve X (p) obtained as a
compactification of the quotient of the upper-half plane H = {z € C : 3z > 0} by

the action of the principal congruence subgroup I'(p) = {A = (i Z) € SL(2,Z):

A =1 mod p}. We shall assume that p is a prime number > 5 although some
of our results are true for any p not divisible by 2 and 3. Here the group G is
isomorphic to the group PSL(2,F,). Also we restrict ourselves with stable bundles.
In other words, we are trying to describe the set of fixed points for the natural
action of G on the moduli space of rank r stable vector bundles on X(p). The
case of rank 1 bundles is rather easy and the answer can be found in [AR]. The
group of G-invariant line bundles on X (p) is generated by a line bundle A of degree

1’22—21 which is a (2p — 12)-th root of the canonical bundle. For the future use
we generalize this result to any Riemann surface X with a finite group G of its
automorphisms such that X/G = P'. This result must be known to experts but I
could not find a reference. When the determinant of the bundle is trivial, we are
able to relate our problem to the problem of classifying unitary representations of
the fundamental group of the Brieskorn sphere ¥(2,3,p), that is, the link of the
singularity z2+y3+2P = 0. Applying some known results from differential topology
we prove that there exist exactly 2n rank 2 G-invariant stable bundles with trivial
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66 I. V. DOLGACHEV

determinant and 3n? £ n rank 3 (if p # 7) G-invariant stable bundles with trivial
determinant on X(p), where p = 6n + 1. Note that the determinant of a stable
G-invariant rank 2 bundle is an even multiple of A. So, after twisting by a line
bundle, we obtain a G-invariant bundle with trivial determinant.

Even in the case of rank 2 and 3 our results are still unsatisfactory since we
were able to give a geometric construction of all of these bundles only in the case
p = 7. Some of the bundles we discuss are intrinsically related to the beautiful
geometry of modular curves which goes back to Felix Klein.

I would like to thank the organizers of the conference for giving me the op-
portunity to revisit Korea. This paper owes much to the work of Allan Adler and
correspondence with him. The book [AR] was a great inspiration for writing this
paper. Finally I would like to thank Hans Boden and Nikolai Saveliev for coaching
me in the theory of Casson invariant of 3-dimensional manifolds.

1. G-invariant and G-linearized stable vector bundles.

Let X be a compact Riemann surface of genus g. For each r > 0 there is
the moduli space Mx(r) of semi-stable rank r vector bundles over X. Assume
that a finite group G acts holomorphically on X (not necessary faithfully). By
functoriality G acts holomorphically on M (r) and we denote by Mx(r)¢ the
subvariety of fixed points of this action. If [E] € Mx(r) is the isomorphism class
of a stable bundle, then [E] € Mx(r)€ if and only if E is G-invariant, i.e. for any
g € G, there is an isomorphism of vector bundles

¢g:9"(E) — E.

If [E] € Mx(r) is the point representing the equivalence class of a semi-stable
but not stable bundle E, then it is known that F is equivalent to a decomposable
bundle ' = E; @ ... @ Ej (in the sense [E] = [E’]), where all E; are stable of the
same slope u(E;) = %% as E (see [Se]). Then [E] € Mx(r)€ if and only if E’
is G-invariant. In the following we will always assume that E is either stable or is
decomposable as above. Assume that the collection ¢ = {¢4},ec can be chosen in
such a way that for any g,¢9' € G

Dgog’ = Gg’ Og/*(¢g)‘

Then we say that E admits a G-linearization, and the pair (E, ¢) is called a G-
linearized vector bundle. Of course, in down-to-earth terms this means that the
action of G on X lifts to an action on the total space of E which is linear on each
fibre and a G-linearization is such a lift. One naturally defines the notion of a
morphism of G-linearized vector bundles, and, in particular, one defines the set
Mx (G;r) of isomorphism classes of G-linearized semi-stable rank r vector bundles
over G. There is a natural forgetting map

e: Mx(G;r) — Mx(r)°.

Proposition 1.1. Let E be a stable G-invariant rank v bundle on X. One can
assign to F an element

c(E) € H*(G,C*)
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INVARIANT STABLE BUNDLES OVER MODULAR CURVES X(p) 67

such that E belongs to the image of the map e if and only if ¢(E) = 1. Here the
cohomology group is taken with respect to the trivial action of G on the group C*.

Proof. This is of course rather standard. Let ¢, : g*(F) — E, g € G, be some
set of isomorphisms defined by E. We have

Pgg' = Cq,g'Pg’ © 9/*(%)

for some ¢y € Aut(E). Since E is stable, Aut(F) consists only of homotheties,
so that Aut(F) = C*. It is easy to check that {cq 4 }4,4cc defines a 2-cocycle of
G with coefficients in the group C*. Its cohomology class c(E) does not depend on
the choice of {¢g}gec. It is trivial if and only if ¢4 o = ¢4 © g"*(cg) for some map
c: G — Aut(FE),g — c4. Replacing ¢, with 9y = ¢4 0 ¢4, we get

wgg’ = ¢g’ o gl*("/)g)'

The set {1)4}gcc defines a G-linearization on E. Clearly for any E in the image of
e, we have ¢(E) = 1. This checks the assertion.

Corollary 1.2. Assume G is a perfect group (i.e. coincides with its commutator
subgroup). Let

1-H¥(GCY->G—-G—1
be the universal central extension of the group G defined by the group of Schur
multipliers H?>(G,C*). Consider the action of G on X defined by the action of G
on X. Then each stable G-invariant bundle E admits a G-linearization.

Proof. Use that ~
H2(G, C) =1

Now let us describe the fibres of the map e. Let (F, ¢) be a G-linearized semi-
stable bundle. Consider the direct product G x Aut(E) which acts on X via the
action of G on X and the trivial action of Aut(E) on X. Obviously

Ec Mx(T)GXAUt(E).

Proposition 1.3. Let E be a G-linearized vector bundle and let {¢4},cc be the
family of isomorphisms ¢4 : g*(E) — E defining its linearization. For each (g,a) €
G x Aut(E) set

Pga) =@ ' 0¢g:(g,0)"(E) =g¢*(E) » E— E.

Then the set of isomorphisms of vector bundles ¢, o) defines a G x Aut(E)-
linearization of F if and only if, for any g € G and any a € Aut(FE),

pg0 9" (a) = aog,. (1.1)
Proof. It is immediately verified that
$ga) 09" (B(g,0)) = &' T 0 g 0 g™ (a7T) 0 g ().
This is equal to

-1 _ _
P(g9",a0a’) = o loa 1°¢gg’ =a'" oo 0¢y 09 ()

if and only if, for any ¢, «,
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68 I. V. DOLGACHEV

This is of course equivalent to the assertion of the proposition.

Definition A G-linearization ¢ = {¢g}4cc on E € Mx(G;7) is called distinguished
if ¢ satisfies the condition (1.1) from Proposition 1.3.

Theorem 1.4. Let (E, $) € Mx(G;r) be a G-linearized bundle with distinguished
linearization. Then any G-linearization ¢ on E is equal to

wg = ’\(g_l) o ¢ga
where

A:G — Aut(F)
is a homomorphism of groups.
Proof. First we check that for any homomorphism of groups A : G — Aut(FE)

the collection {1y = ¢4 0 A\(9)}4cc defines a G-linearization of E. This is straight-
forward:

Yoo = A(99') g = Mg ™) 0 X(g™") 0 by 0 g™ (¢g) =

Ag' 1) 0 dg 0 g (Ag™h)) 0 9" (dg) = g 0 " ().
So it is checked. Now suppose we have another G-linearization ¢ = {¢g}4ecc on E.
Then
dyovy’ B g () - E
is an automorphism of E. Thus 9, = A(g~') o ¢, for some automorphism A(g~!)

of E. Now reversing the previous computations we check that the map g — A(g) is
a homomorphism of groups.

Example 1.5. Every G-linearization on a stable bundle is distinguished and there
is a natural bijection

e '(e((E,¢))) — Hom(G,C*).

Example 1.6. Let E = O% be the trivial bundle. It is semi-stable but not stable.
Consider the trivial G-linearization on E by setting for each (z,v) € ¢*(E); = Eq.z

¢g(.'17,1)) = (g : 1?,’0).
Obviously it is distinguished, and

e }(0%) = Hom(G,GL(r,C)).

2. Line bundles

Let us consider the special case of line bundles. Here we can say much more.
First let us denote by Pic(X)® the group of G-invariant line bundles and by
Pic(G; X) the group of G-linearized line bundles. The latter group has the fol-
lowing simple interpretation in terms of G-invariant divisors:
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INVARIANT STABLE BUNDLES OVER MODULAR CURVES X(p) 69

Proposition 2.1. The group Pic(G; X) is isomorphic to the group of G-invariant
divisors on X modulo the subgroup of divisors of G-invariant meromorphic func-
tions.

Proof. Let D =3 __y n.x be a G-invariant divisor. This means that, for any

g€G,
D=g"(D)= )Y n.g'(x).
zeX

Let Lp be the line bundle whose sheaf of sections is the invertible sheaf Ox (D)
whose set of sections over an open subset U is equal to {f € C(X) : div(f) +
D > 0 after restriction to U }. The group G acts naturally on the field C(X)
of meromorphic functions on X. If f € C(X) is considered as a holomorphic
map f — P! then the image 9f of f under g € G is equal to the composition
fog™!. Since (9f) = g*((f)) we have a natural isomorphism of invertible sheaves
Ox (D) — Ox(g*(D)). It defines an isomorphism of line bundles ¢, : ¢*(Lp) — Lp
which satisfies ¢gr0g = ¢y © g*(¢y/). This makes Lp a G-linearized line bundle.
If Lp is equal to zero in Pic(X) then D = (f) for some f € C(X) with the
property (9f) = (f) for all g € G. The ratio x, = 9f/f is a nonzero constant,
and the map G — C* defined by x, is a homomorphism of groups. It defines a
linearization on Lp. It is trivial if and only if f € C(X)®. This shows that the
group Div(X)® /div(C(X)®) of G-invariant divisors modulo principal divisors of
the form (f), f € C(X)€, is mapped isomorphically onto a subgroup of Pic(G; X).
I claim that the image is the whole group. In fact, let L be a G-linearized line bundle
and ¢4 : g*(L) — L be the set of isomorphisms satisfying ¢qo = ¢4 0 g*(¢4/) Which
define the linearization. Then ¢, is defined by a meromorphic function f; such
that g*(D) = D + (fy). We have fgoq = 9fy fy so that (fy)gec is a one-cocycle
of G with values in C(X)*. By Hilbert’s Theorem 90 this cocycle must be trivial.
Hence we can write fy = %a/a for some a € C(X). Replacing D with D’ = D — (a)
we obtain g*(D’) = D’ for any g € G. This shows that Lp & Lp arises from a
G-invariant divisor. This proves the assertion.

Proposition 2.2. There is an exact sequence of abelian groups
0 — Hom(G, C*) — Pic(G; X) — Pic(X)¢ — H*(G,C*) — 0.
Proof. The only non-trivial assertion here is the surjectivity of the map
e: Pic(X)¢ —» H*(G,C*).

To prove it we need a cohomological interpretation of the exact sequence. We use
the following two spectral sequences with the same limit (see [Gr], p. 200):

"B = H”(G, H'(X, 0%)) = H"(G; X, 0%),

"E5 = HP(Y, R%7C (0%)) = H™(G; X, 0%).
Here 7 : X — Y = X/G is the canonical projection and the group H!(G; X, O%)
is isomorphic to Pic(G; X). The first spectral sequence gives the exact sequence
0 — Hom(G, C*) — Pic(G; X) — Pic(X)Y — H*(G,C*) — H?*(G; X, 0%).

In order to show that H?(G; X, 0%) = 0 we use the second spectral sequence. We
have
B} = H*(Y,77(0%)) = H*(Y,0%) =0,
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70 I. V. DOLGACHEV

as it follows from the exponential exact sequence 0 — Z — Oy — O3 — 0.
'Ey' = H'(Y, R'n((0%)) =0

since R'7%(0%) is concentrated at a finite set of branch points of .
'ES? = H(Y, R*n(0%)) =0

since R27%(0%), & H%*(G,,C*), where G, is the isotropy group of a point = €
7~ 1(y), and the latter group is trivial because G, is a cyclic group. All of this
shows that H%(G; X,0%) = 0.

Corollary 2.3. Let Div(X)® be the group of G-invariant divisors and P(X)® be
its subgroup of principal G-invariant divisors. Then Div®(X)/P(X)C is isomorphic
to a subgroup of Pic(X)® and the quotient group is isomorphic to H*(G,C*).

Now let us use the second spectral sequence for the map = : X — X/G to
compute Pic(G; X) more explicitly. Let y1,...,yn be the branch points of 7 and
e1,... ,en be the corresponding ramification indices. For each point z € 7~ (y;)
the stabilizer subgroup G, is a cyclic group of order e;. The exact sequence arising
from the second spectral sequence looks as follows:

0 — Pic(Y) — Pic(G; X) - &1 1Z/e;Z — 0. (2.1)

Here the composition of the first homomorphism with the forgetting map e :
Pic(G; X) — Pic(X) is the natural map n* : Pic(Y) — Pic(X). The second
homomorphism is defined by the local isotropy representation p;, : G, — C* de-
fined by the G-linearized bundle L. Here we fix some z; in each fibre 77*(y;). Let
D; = 7~ !(y;) considered as a reduced G-invariant divisor on X. Let us assume

that
Y =PL
Then the isomorphism classes s; of L; = Lp,,i = 1,... ,n, generate Pic(G; X) and
satisfy the relations e;s; = ... = e,s,. This easily implies that
Pic(G; X)YZDZ/dyDZ/(d2/d1)® ... BL/(dn_1/dn—2), (2.2)
where
dy = (e1,.--,en)yda=1(..,€€5,...,)...  dn_1=(€1- - €n1,...,€2 " €p).

To define a generator of the free part of Pic(G; X) we use the Hurwitz formula for
the canonical line bundle of X:

Kx =" (Ky)® (&} Li ™).

We know that Pic(Y) is generated by the isomorphism class a of the line bundle
L, corresponding to the divisor D = 1-y where y € Y. Then m*(a) = N+, where
N is a positive integer and ~ generates Pic(G; X} modulo the torsion subgroup.
Applying (2.1) we obtain that

Z/N & Tors(Pic(G; X)) =2 @7 Z/e; L,

and hence
€1 €pn

N =
(€1 €n—1,...,€2° - €n)

=l.cm.(e1,... ,ey).
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INVARIANT STABLE BUNDLES OVER MODULAR CURVES X (p) 71

Now, switching to the additive notation,

n

e1...enKx =€1...,m(—2a) + Z(ei —1ey...epL; =

i=1

n n
—_:—261...enN'y+Z(ei—1)61'(;_'e"ny=el...en(n—2—Ze[1)N'y.
i=1 t i=1
This implies that
(n—2)e;...en—€1--€p_1—...€2:-€n
Ky = _
X (e1- " €n—1y... €3 -€y) K
“ 1
Le. —2-V" D). 2.3
emfens. . sen)ln=2= 33 (23)

Now we are ready to compute Pic(X(p))®, where X (p) is the modular curve of
level p and G = PSL(2,F)).

The following result is contained in [AR], Corollaries 24.3 and 24.4. However,
keeping in mind some possible applications to more general situations, we shall give
it another proof which is based on the previous discussion.

Theorem 2.4. Assume p > 5 is prime. Let G = PSL(2,F,). Then
Pic(X (p))? = Pie(SL(2, Fy); X (p)) = Z,

where
NP2 = Kx (p)
and )
p“—1
deg A = .
8 2

Moreover, Pic(G; X (p)) is the subgroup of Pic(X (p))® generated by A\2.

Proof. We use that the map 7 : X (p) — X (p)/PSL(2,F,) is ramified over three
points with ramification indices 2,3 and p. It follows from the previous computa-
tion that Pic(G; X (p)) is a free cyclic group generated by a (p — 6)-th root of the
canonical class. We use Proposition 2.1 and well-known facts that Hom(G, C*) =
{1}, H*(G,C*) = Z/2. This gives us that Pic(X (p))¢ = Pic(G; X (p)) is a subgroup
of index 2 in Pic(X(p))¢. It remains to show that Pic(X(p))¢ does not contain
2-torsion elements. Let L € Pic(X)$ be a torsion element of order n in Pic(X)€.
Let p,, be the constant sheaf of n-th roots of unity. The Kummer sequence

0— pp > 0% - 0% —0

implies that Pic(X)$ = H'(X, u,)€. Replacing O% with p, in the proof of Propo-
sition 2.2, we obtain that all arguments extend to this situation except that we
cannot use that H?(G, ) = 0. As a result we obtain an exact sequence

0 — Pic(G; X)2 — Pic(X)§ — H*(G, u2) — H*(Ga,, p2)-

The last homomorphism here is the restriction homomorphism for group cohomol-
ogy. Here z; is a ramification point of index 2. The exact sequence

0> pu—>C*-C*" -0
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72 I. V. DOLGACHEV

shows that H?(G,u2) = H?(G,C*); = Z/2 (because Hom(G,C*) = 1) and also
H?*(Gy,,p2) = Z/2 (because H'(G,,C*) = Z/2). 1 claim that the restriction
homomorphism is bijective. Let a be the non-trivial element of H%(G, up). It is
represented by the extension

1 — pp — SL(2,F,) — PSL(2,F,) — 1.

Let g € SL(2,Z) be a lift of the generator g of G,,. Then g% = —1 has order 4 and
therefore the exact sequence restricts to the nontrivial extension

1> pe = pg Gy —1

representing the nontrivial element of H?(Gy,, u2)-
The last assertion follows from the known genus, and hence the degree of the
canonical class, of a modular curve (see [Sh], p. 23).

Remark 2.5 The previous result implies that the group of PSL(2,F,)-invariant
divisors on X (p) modulo principal divisors is generated by a divisor of degree (p? —
1)/12. This result can be also found in ([AR], Corollary 24.3) together with an
explicit representative of this class

D= €(D2 - D3 —pr),

where € = £1 and p = 6n + €. Here Dy, denote the G-orbit of points with isotropy
subgroup of order k.

The tensor powers of the line bundle )\ generating the group Pic(X(p))® allows
one to embed X (p) SL(2,F,)-equivariantly in projective space. We state without
the proof the following result (see [AR], Corollary 24.5):

Theorem 2.6. Assume p is prime > 5. Denote by V_ (resp. V) one of the two
irreducible representations of SL(2,F,) of dimension P—gl (resp. P% ). Then
1. a base-point free linear subsystem of |\P=3)/2| maps X (p) in P(V-) =
P(=3)/2 onto a curve of degree (p — 3)(p* — 1)/48;
2. a base-point-free linear subsystem of |\P~1)/2| maps X(p) in P(Vy) =
P(P=1)/2 onto a curve of degree (p — 1)(p* — 1)/48.

It is conjectured that the linear systems embedding X (p) in P(V_) and in P(V.)
are complete (see [AR], p.106). This is known to be true only for p = 7.

Remark 2.7 As was shown in [AR], Corollary 24.5, the image of X (p) in P(V)
(resp. P(V_) ) described in the previous theorem is the z-curve (resp. A-curve)
of Klein. From the modern point of view these embeddings can be described as
follows. Recall that X (p) is a compactification of the moduli space of isomorphism
classes of pairs (E, ¢), where E is an elliptic curve and (e, e2) is a basis of its group
E, = (F,)? of p-torsion points. Let O be the origin of E. There is a special basis
(Xo,...,Xp—1) in the space I'(E, Og(pO)) which defines a map

f:E—-PPl . (Xo(z),...,Xp-1(2))

satisfying the following properties:
1. (Xo(z—e1),..., Xp1(z—€1)) = (X1(z), X2(2),... , Xp_1(x), Xo(2));
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2. (Xo(m+/eg), oy Xpo1(z+e2)) = (Xo(z), (X1 (), ... ,¢P " Xp_1(z)), where
C — 627”' p;

3. (XO(—:L')’ ce ’Xp—l(_m)) = (Xp—l(w)’ Xp—Q(m)1 e ,Xl(l‘), XO(:L'))
Let 7 : X(p) — X (p) be the universal family of elliptic curves (E, e1, e2) (its fibres
over cusps are certain degenerate curves, p-gons of lines). The p-torsion points of
the fibres determine p? sections of the elliptic surface X(p). The functions X,,
define a morphism X'(p) — PP~! whose restriction to the fibre (E, e1, e2) is equal to
the map f. The functions 2z, = X; = Xp_1-m,m=0,..., ?’;—3, define a projection
of the image of X(p) in P(*~3)/2(C). The image of the section of 7 defined by the
O-point is the z-curve of Klein. On the other hand if we consider the functions
Ym = Xm + Xp—1-m We get the projection of X(p) in P(P~1/2(C). The center of
this projection contains the 0-section so that the restriction of the projection map
to each curve f(F) is the projection from the origin f(0) and still defines the image
of f(0). The set of these images forms the A-curve of Klein. There are certain
modular forms Ay,...,A 2t defined on the upper-half plane which define the map

from X (p) to the A-curve.
It is proven in [Ve}, Thm. 10.6, that the z-curve is always nonsingular.

Example 2.8. Let p = 7. Thendeg A\ = 2, Kx = )\? is of degree 4 so that X(7) is a
curve of genus 3. The divisor class A is an even theta-characteristic on X (7). It is the
unique theta characteristic invariant with respect to the group of automorphisms
G = PSL(2,F7) of X(7) (see other proofs of this fact in [Bu], pp. 22-25, [DK],
pp.292-294). The z-curve is a canonical model of X(7), a plane quartic. This is
the famous Klein’s quartic with 168 automorphisms. In an appropriate coordinate
system it is given by the equation

zdzy + 1o + 210 = 0.
The A-curve is a space sextic with equations
2z + \/ity3 + 2922 = 2y + V2t2% + 2222 = 22 + V2t2? + 2zy% = 2\/§zyz —t3=0

(see [E1], p. 163).

It is well-known (see, for example, [Tj], p. 95 and p.104) that a theta char-
acteristic # with H°(X,0) = 0 on a plane nonsingular curve X of degree n with
equation F' = 0 gives rise to a representation of F' as the determinant of a symmet-
ric n X n matrix with linear forms as its entries. In other words, 6 defines a net
of quadrics in P*~! and X parametrizes the set of singular quadrics from the net.
The pair (X, 8) is called the Hesse invariant of the net. It follows from Table 2 in
Appendix 1 that S?(V,) contains V_ as a direct summand (as representations of
SL(2,F~)). This defines a SL(2, Z)-invariant net of quadrics in P(V, ) with the Hes-
sian invariant (X, ). The corresponding representation of X as the determinant
of a symmetric matrix of linear forms is known since Klein (see [E1], p. 161):

—xo 0 0 —x
T3x1 + 2330 + 2370 = det 8 %1 £2 :;2 (2.4)

—I, —Iy —Io 0

Example 2.9. Let p = 11. Then deg A = 5, Kx = A9 is of degree 50 so that
X (11) is a curve of genus 26. The z-curve is a curve of degree 20 in P4. According
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to F. Klein [K11], pp. 153-156 (cf. [AR], Lemma 37.4, p.128) it is equal to the

locus
w v 0 0 z
v z w 0 0
{(v,w,z,y,2) €P*:7k | 0 w y z 0] <3}
0 0 = 2z vy
z 0 0 y v

The matrix in above is the Hessian matrix of a G-invariant cubic hypersurface W
given by the equation

v’w 4 wir + 2’y + 22 + 22v = 0.

This hypersurface has the group of automorphisms isomorphic to PSL(2,F;;). The
A-curve is a curve of degree 25 in P5. It is the curve of singularities of a unique
quartic ruled hypersurface in P(V) (see Appendix V in [AR] which contains the
results of the first author). We refer for these and other beautiful facts about the
geometry of X(11) to [AR] and [E2].

3. Rank 2 bundles

We shall use the following result of S. Ramanan which is a special case of
Proposition 24.6 from [AR]:

Theorem 3.1. Let G be a finite subgroup of the group of automorphisms of a
curve X and E be a G-linearized rank r vector bundle over X. Then there exists
a flag

OcEFicE,Cc...CE,_1CF
of G-invariant subbundles, where each E; is of rank i and all inclusions are G-
equivariant.

Because of the importance of this result for the sequel we shall sketch a proof.
Choose an ample G-linearized line bundle L with trivial isotropy representations.
This is always possible by taking products and powers of the translates of an ample
line bundle by elements from G. Then we apply the Lefschetz Fixed Point Formula
for coherent sheaves:

tr(g|L} ® E;)

tr(glH*(X, BE® L") ~tr(glH' (X, E@ L) = Y7 =475

g(z)=x

Since g acts identically on L., the right-hand side is independent of n. Taking n
sufficiently large, we get rid of H!. Since the dimension of H° will grow with n
and the trace of g # 1 on H® does not change with n we easily obtain that H°
contains the trivial irreducible representation for large n. This implies that there
exists a G-invariant section of E ® L™. It gives a G-invariant embedding of L™ in
E. It generates a G-invariant subbundle of E. Now we take the quotient and apply
induction on the rank.

Corollary 3.2. Let E be a PSL(2,F,)-invariant rank r vector bundle over X (p).
Then there is a PSL(2,F,)-equivariant flag

OCE,CE;C...CE,,CE (3.1)
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of PSL(2,Fp)-invariant rank i vector bundles E;.

Proof. To see that the previous theorem applies, we use Corollary 1.2 that shows
that E admits an SL(2,F,)-linearization. If the center C = {1} of SL(2,F,) does
not act identically on F, hence acts as —1 on each fibre, we replace E by E' = EQ\.
Since A is SL(2,Fp)-linearized but not PSL(2,F,)-linearized the center C acts as
—1lon A. So E’ is PSL(2,F,)-linearized and the theorem applies.

We shall call a flag (3.1) a Ramanan flagof E. Let L; = E;/E; 1,i=1,...,r,
where Eg = 0, E,, = E, be the factors of a Ramanan flag of E. We know that each
L; is equal to A% for some integer a;. We shall call the sequence (ai,...,a,) a
sequence of exponents of E. Clearly the sequence (—a,,... ,—a;) is a sequence of
exponents of the dual bundle E*. Note that the same bundle may have different
sequences of exponents.

Proposition 3.3. Let (a1,...,a,) be a sequence of exponents of a PSL(2,F,)-
invariant stable rank r bundle over X(p). Let a = a; + ...+ a,. Then, for any
s<r,

a;+...+as < sa.
Proof. This follows immediately from the definition of stability.

In the case r = 2 we will be able to say more about sequences of exponents of
a rank 2 bundle (see Corollary 4.3) but now let us note the following result (see
[AR], Lemma 24.6):

Proposition 3.4. Assume r = 2 and let (a1,a2) be a sequence of exponents of a
G-stable bundle E. Then ai + a3 is even.
This follows from the fact that any G-invariant extension
0> AT > FE—>)X2 50
has obstruction class for splitting in
Hl (X, )\al—ag)SL(Q,]Fp) — (HO(X, Aez—a1 +2p—12)*)SL(2,le).
Since —1 acts as —1 in H?(X, A\°%)* the latter space is trivial.
Corollary 3.5. Each PSL(2,F,)-invariant stable bundle of rank 2 over X (p) has

determinant isomorphic to A*, where a is even.

By tensoring E with E ® A~%/2 we may assume now that det E is trivial. This
allows us to invoke some results from topology. Recall the following fundamental
result from [NS], pp. 556-558:

Theorem 3.6. Let E be a degree 0 stable vector bundle on a compact Riemann
surface X. Then there exists an irreducible unitary representation

p:m(X) — U(r)

such that E is isomorphic to the vector bundle H x C"/m1(X) — X = H/m(X),
where H is the universal cover of X with the natural action of m1(X) on it, and the
fundamental group m, acts on the product by the formula v : (z,v) — (v-z, p(y)-v).
This construction defines a bijective correspondence between the set of isomorphism

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



76 I. V. DOLGACHEV

classes of stable rank r bundles of degree zero and the set of irreducible unitary rep-
resentations of w1 (X)) of dimension r up to conjugation by a unitary transformation
of C". In this correspondence stable bundles with trivial determinant correspond
to irreducible representations p : m1(X) — SU(r).

Note that this theorem also gives a representation theoretical description of
points of the moduli space M x(r,0) of semi-stable rank r vector bundles over X
representated by semi-stable but not stable bundles of degree 0. They correspond
to reducible unitary representations.

We shall apply this theorem to our situation. First we need the following;:

Definition. A G-linearized vector bundle is called G-stable if for any G-linearized
subbundle F of E one has u(F') < p(E) (see 1.1 for the definition of u).

Notice that a G-stable bundle is always semi-stable since it is known that any
bundle always contains a unique, hence G-invariant, maximal semi-stable subbundle
(see [Se], Proposition 2, p. 15). Obviously a stable bundle is G-stable. However, a
semi-stable bundle could be also G-stable. For example, the trivial bundle defined
by an irreducible representation of G is G-stable but not stable. Recall from section
1 that we always assume that a semi-stable G-linearized bundle is a direct sum of
stable bundles.

Theorem 3.7. Let E be a G-linearized semi-stable vector bundle of degree 0
given by a unitary representation p : m(X) — U(r). Let Il be the group of
automorphisms of the universal cover H of X generated by lifts of elements of G.
In other words, 11 is the subgroup of G x Aut(H) consisting of pairs (g,§) such
that g is a lifting to H of the automorphisms of X determined by g. Then p can
be extended to a unitary representation p : II — U(r). Moreover this defines a
bijective correspondence between the set of isomorphism classes of G-stable rank r
bundles of degree 0 and the set of irreducible unitary representations II — U(r) up
to conjugation by a unitary transformation of C".

Proof. First we fix the trivial C*° bundle £ of rank r over X, and a G-invariant
Hermitian metric on E. We can always do it since X is compact. Let A be the
set of unitary connections on £ whose curvature form has type (1,1) with trivial
cohomology class. Any A € A defines a holomorphic structure E4 on € of degree 0;
its sheaf of holomorphic sections is equal to the set of local solutions of the equation
04 = 0, where 04 is the (0,1) component of the covariant derivative of A. Any
holomorphic structure E on £ of degree 0 is defined in this way by a unique unitary
connection A € A ([DoK], Proposition 2.1.56, p. 46). The natural action of the
unitary gauge group G on A extends to an action of the complexified gauge group
GC and the set of orbits of G€ in A can be identified with the set of isomorphism
classes of holomorphic structures on E of degree 0 (loc. cit., p. 210). A proof
of Theorem 3.6 given by S. Donaldson [Don] consists of showing that the G-
orbit corresponding to the isomorphism class of a semi-stable holomorphic bundle
E of degree 0 contains a unique G-orbit of flat unitary connections. In particular,
replacing E by an isomorphic bundle, we may assume that E is defined by a unique
flat unitary connection Ag. Now the isomorphism ¢, : g*(E) — E defined by the
G-linearization of E sends the flat unitary connection g*(Ag) on g*(E) to a flat
unitary connection on E which must coincide with Ag. Considered as a horizontal
distribution on the total space V(E) of E the connection g*(Ag) is equal to Ag.
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This shows that Ag is preserved under the G-linearization, considered as an action
on V(E). Let V be the sheaf of horizontal sections of E with respect to Ag. It is a
sheaf of complex unitary vector spaces of dimension equal to the rank of E. If we are
willing to identify a vector bundle with the corresponding sheaf £ of holomorphic
sections, then V is a subsheaf of £. In fact we have an isomorphism of C-sheaves
£ 2V R®0Ox. It follows from above that V admits a G-linearization, the restriction
of the G-linearization of £. This G-linearization preserves the unitary structure on
fibres. The group II acts on the pull-back Y of Von H via a representation p of
IT in U(r). Conversely given such a representation p , we consider the semi-stable
vector bundle E, = H x C"/T", where I' = 7, (X) acts on H x C" via the restriction
p of p, (z,v) = (g9-2,p(g)(v)). The group G = II/T" acts naturally on E, and
defines a G-linearization.

Now, if p is irreducible, then E, is G-stable since otherwise it contains a G-
invariant semi-stable subbundle of degree 0, and by the above construction it will
define a unitary subrepresentation of p. Conversely, if E, is G-stable, the represen-
tation p is irreducible, since otherwise its direct summand will define a G-invariant
semi-stable subbundle of E, of degree 0.

Let II be as above. It is given by an extension of groups
1-T->II-G—-1,

where I' & 711 (X). Assume that X/G = H/II = P1. Then II, as an abstract group,
is given by the genetic code:

D=<y,...,WmA'=...=7"=m"Mm=1>,

where Ze{l < n — 2. As a group of transformations of H, II is isomorphic to
a discrete subgroup of PSL(2,R) which acts on H as a subgroup generated by
even products of reflections in sides of a geodesic n-gon with angles m/e;. Such
a subgroup of PSL(2,R) is called a Dyck group (or a triangle group if n = 3) of
signature (ey, ... ,e,). Conversely, let II be an abstract group as above and I" be a
normal torsion-free subgroup of finite index. Choose an isomorphism from II to a
Dyck group (if n = 3 it is defined uniquely, up to a conjugation). Let us identify II
with its image. The group I' acts freely on H and the quotient H/T is a compact
Riemann surface Xr with m1(X) & I'. The factor group G = II/T" acts on Xt by
holomorphic automorphisms. The projection 7 : Xr — Xr/G = P! ramifies over n
points with ramification indices ey, ... ,e,.

The modular curve X(p) is a special case of this construction. One takes
(e1,-..,en) =(2,3,p) and ' = m (X (p)).

Let II be the group with the genetic code

=< s s An, hlh central, 47! = ... =4 =1 ... A =h >.
It is a central extension of II with infinite cyclic center generated by h:
l1-(h)y-O-0-1. (3.2)

We shall assume that II is perfect, i.e. coincides with its commutator I’ =
(IL, . This happens if and only if the e;’s are pairwise prime. In this case the
commutator group II' = [II,II] is a universal central extension of II (see [Mi], §5):

1-(t)— [I:I, f[] -1 - 1. (3.3)
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Its center (¢) is a subgroup of (h) generated by h®, where
s=er-en(n—2-) €).
=1

The genetic code of I’ is

I =< @i,...,dn,t|t central, g&* =% ... go» =t" G- -G =1t° >, (3.4)
where
sb;=1mode;, 0<b; <ey,
poS b1
l=1 el el .. en
All of this is well-known in 3-dimensional topology (see for example, [S], §10 and
§12). We have
= 7T1(2(61, oo 1671)),
where X(ey, ... ,ey) is a Seifert-fibred 3-dimensional homology sphere given explic-
itly as the intersection of a sphere S**~! with center at the origin in C" and the
algebraic surface given by the equations

2+t =0, i=2,...,n—1

The group II is the fundamental group of the link of a canonical Gorenstein singu-
larity admitting a good C*-action (see [Do}).

Corollary 3.8. Keep the notation of Theorem 3.7. Assume that the group II is
perfect. Let 1 — H?*(G,C*) — G — G — 1 be the universal central extension of
G and let d = |H*(G,C*)|. Then Il is mapped surjectively on G and there is a bi-
jective correspondence between irreducible unitary representations p : | SU(r)
with p(h)? = 1 which restrict to an irreducible representation of T = Ker(Il' = @)
and G-invariant stable rank r bundles over Xt with trivial determinant.

Proof. Let I = F/R where F is a free group. It is known that the universal
central extension II' is isomorphic to [F, F]/[R, F] (see [Mi], §5). Since G = F/R/,
where R C R’ we obtain that G 2 [F, F]/[R/, F] and there is a surjective homo-
morphism II" — G. Let ' be the kernel of this homomorphism. We have a central
extension for I':

15 @t¥)>T T -1,
where d’|d. Given an irreducible representation p : II' — SU(r) with p(h)¢ = 1
we define 8 : T' — SU(r) by first restricting p to I' and then factoring it through
the quotient f‘/ (t%) = T'. Since, by the assumption, the restriction of p to T is
irreducible, 3 is irreducible. This defines a stable rank r bundle E on Xr with trivial
determinant. Since I is normal in II’, the group G acts on E = H xC" /T’ and makes
F a G-invariant bundle. Conversely, by Corollary 1.2, any G-invariant stable bundle
E with trivial determinant admits a G-linearization. This linearization defines a G-
linearization on the local coefficient system V defined by the flat unitary connection
on E. The group I' acts on the pull-back V =V xx H of V on H via the action of
I on H and the trivial action on V. Since V trivializes on H, it coincides with the
universal covering of V. Thus the action of G lifts to an action of V and defines an
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action of I' on V = H x C". This defines a unitary representation of the group II’
in SU(r).

Remark 3.9 If r = 2 we do not need the assumption that the restriction 8 of
p: II' — SU(2) to T is irreducible. Assume it is not. Then it decomposes into
sum of one-dimensional unitary representations Vi + Vo. By Theorem 3.6 they
define two line bundles on Xt with determinants of degree 0. These bundles are
invariant with respect to the group G = II/T. However, the computations from
the first section show that Pic(Xr) is generated by an element of positive degree.
This shows that § must be the trivial representation. Thus p factors through a
representation p: G — SU(2). However, it is easy to see using the classification of
finite subgroups of SU(2) that G does not admit non-trivial 2-dimensional unitary
representations. This gives us that p is the trivial representation which contradicts
the assumption that p is irreducible.

Corollary 3.10. Let (a1,a2) be a sequence of exponents of a stable G-invariant
rank 2 vector bundle over X (p). Then (a1 — a2)/2 is an odd number.

Proof. We already know from Proposition 3.4 that a; +a- is even. By tensoring
with A7 we may assume that F has trivial determinant, i.e. a;+as = 0. Assume
a; is even. Then the extension

0> A" 5> FE—- )20

shows that the center of SL(2,F,) acts identically on E. Hence the bundle E admits
a PSL(2,F,)-linearization. By Theorem 3.7, this defines a unitary representation
p: 1T — SU(2). Let g; be a generator of IT of order 2. Then p(g;)? = 1 and hence
p(g1) = £1. This implies that p(g2)® = p(g3)? = 1 and p(g2g3) = p(g1) = £1. This
gives that p(g;) = 1,7 = 1,2,3, i.e. p is trivial. This contradicts the assumption
that E is stable.

Theorem 3.11. Let p = 6n+1. Then there exist exactly 2n non-isomorphic rank
2 stable G-invariant vector bundles over X (p) with trivial determinant.

Proof. This is an immediate corollary of Theorem 3.7, Remark 3.9, and the
known computation of the number of irreducible unitary representation of the fun-
damental group of the Brieskorn sphere X(e1,ez,e3) (see [FS], Proposition 2.8,
p.116).

We will give an independent verification of this result for the case p = 7 in §6.
We shall also say more about how to use the results of [FS] when we sketch the
proof of Theorem 4.2.

4. Isotropy representation

Let us return to the general situation of a finite group G acting on a compact
Riemann surface X. Let C(X; G) be the set of pairs (C, g), where C is a connected
component of the fixed locus of g € G, modulo the natural action of G on these
pairs by

g'-(C,9)=(4'(C),9'99' ™).
Since X is a curve, C is either a single point or all of X. In the latter case the
element g belongs to the kernel A of the action of G on X. Let C(X;G) denote
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the set of complex valued functions on the set C(X;G). We define the isotropy
representation map:
p: Mx(G;r) = C(X;G)

as follows. For each E € Mx(G;r) defined by isomorphisms ¢, : g*(E) — E and
for each (C, g) € C(X;G) we let

p(E)(Ca g) = T\ra'ce(d)g,z : g*(E)z =FE;— Ez),

where z € C.
Consider the quotient

Y = X/G

and let p : X — Y be the natural orbit map. There is a finite set of G-orbits
in X with non-trivial isotropy subgroup. They correspond to the set S of points
Y1,--- ,Yn in Y such that p is ramified over any point x € p~1(S). For any g €
G, we have gG,9~! = Gy. In each fibre p~!(y;) pick a point z; and denote
the corresponding isotropy subgroup G, by G;. This is an extension of a cyclic
subgroup G; of G of order e; and the group A. It is clear that each (C, g) € C(X;G)
can be represented by a pair (z;,9;),g; € G;, or by a pair (X,a),a € A. Assume A
is central in G (as it will be in our case). Then this representation is unique since
G, is cyclic. Thus we have

n

CX:6) = Y (e — 1) + 1Al

=1

The representatives of C(X; G) can be chosen as follows:

(xl’gl)y e 7(-7:179‘121_1)7 oo 7($n,gn)1 ] ,(wm!]i"_l), (X, a),a (S A’
where each g; € G is a representative of a generator of (G/A),,.

Now we place ourselves in the situation discussed in the previous section and
assume that X = Xr, where I' is a torsion free normal subgroup of a Dyck group
II of signature (ey,...,e,). Also we assume that II is perfect. In this case we
can choose representatives of C(Xr;G) taking for g; the images of the standard
generators 7; of IT'.

Theorem 4.1. Keep the notation of Corollary 3.8. Let E be a stable vector bundle
on Xr arising from a unitary representation p : II' — SU(r). Then, for any integer
k,

Trace(p(g¥)) = Trace((¢gr )z, : o, — Es,), i=1,...,n.

Proof. This follows easily from the construction of E by means of a unitary
representation of IT'.

In the case r = 2 an algorithm for computations of the traces Trace(p(g¥)) of
a unitary representation p of the group IT’ of signature (e, ez, e3) is described in
[FS], p. 111-112. In our case (e, ez2,e3) = (2,3,p = 6n + €) we can use the values
b=1,bi=1,bo=1,b5=nife=1and b=2,b; =1,bo =2,b3=6n—1ife = -1
in the presentation (3.4) of the group IT'. Following the example from loc. cit. on
p- 112, we get the following
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Theorem 4.2. Let (e1,ez,e3) = (2,3,p) and let p : ) SU(2) be an irreducible
representation. Write p = 6n + €, where e = +1. Then

[Trace(p(71)), Trace(p(%2)), Trace(p(3s))] = [0,6,2cos<”7f“>1,

where k is an integer with (—1)¥*™ = ¢ between n + 1 and 5n if ¢ = 1 and between
n and 5n — 1 ife = —1.

Recall that we have 2n unitary irreducible representations p : II' — SU(2) and
this agrees with the number of all possible triples of the characters.
The conjugation classes of the unitary matrices p(%;) are represented accord-

ingly by
i 0 e(3—e)7ri/6 0 ekﬂ'i/p 0
0 —i)>’ 0 e—(3—e)7ri/6 ’ 0 e—kﬂ'i/l’ :

So raising the corresponding matrices in powers and computing the traces, we get
the expression for the traces of powers of the generators 4; and of the central element
t.

In fact, following A. Adler, we can easily write down actual matrices defining
the representation p:

P(g2) =€ . ’
—y/3 - cosz(k—:) 3+ zcos(%’r)
(Gs) —%+cos(%") —i,/%—cosz(%")
p(@)=|{ -
—iy/3 — cosz(%") 3+ cos(%”)

Corollary 4.3. Let E be a stable rank 2 SL(2,F,)-linearized bundle on X (p) with
trivial determinant. Let [0, €, 2cos(%°)] define its isotropy representations and let
(a,—a) be a sequence of exponents of E. Then a is an odd negative integer, and

an =tk modp, a==x1 mod®6.

Proof. Let
00X >E—->)2"%>0

be the extension defined by the sequence of exponents (a,—a). Since E is stable
of degree 0, a must be negative. From Corollary 3.10 we know that a is odd.
Clearly the isotropy representation of E is determined in terms of the isotropy
representation of A\*. We know that A?P~12 = K X(p)- The isotropy representation
of the cotangent line bundle Kx is easy to find. Any generator g; of the isotropy
group G, acts as a primitive e;-th root of unity. Let us take it to be e?™"/¢. Then
the isotropy representation of A at (z;,g;) is given by some 2e;-th root of unity
esim/ei (0 < s; < 2e;, which satisfies (p—6)s; =1 mod e;. We easily find

1,3 ifi=1
3—e 3—¢ Y

5 = 5 e +3 ifi=2 (41)
n,n+p ifi=3,e=1

p—n,2p—n ifi=3e=-1.
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This shows that [2cos(as17/2),2 cos(asen/3),2cos(aszm/p)] = [0,€,2cos(kn/p)].
We check that the first entries coincide automatically because a is odd (this also
gives another proof of the fact that a is odd). The equality 2 cos(as,m/3) = € easily
gives a = £1 mod 6 and sy = 3—59 Here we use that a must be odd. To satisfy
cos(assm/p) = cos(km/p) we must have asg = +k mod 2p. If e =1, we have k +n
is even. This easily gives s3 = n and an = +k mod 2p. Since an = £k mod 2 when
€ = 1, we get the condition an = £k mod p. If ¢ = —1, we have k + n is odd. This
gives s3 = p —n and a(p — n) = £k mod 2p. Again a(p — n) = £k mod 2 when
€ = —1. This gives again an = £k mod p. This proves the assertion.

The proof also gives the following information about the isotropy representation
of the line bundle A (proven by other methods in [AR]):

Corollary 4.4. Let (s1, 82,s3) be the triple of integers defining the isotropy rep-
resentation of A as in (4.1). Then

1, ifi=1
2 ifi=2
S; =
n ifi=3,e=1
p—n ifi=3e=-1.

5. The Adler-Ramanan-Klein bundle

It was introduced by A. Adler and S. Ramanan ([AR], §24). It arises from
an interpretation of Klein’s quartic equations defining the z-curve X (p) (see [KF],
p.268). We refer to [AR] and [Ve] for a modern treatment of these equations. We
shall prove that this bundle is stable when p = 7 and find its sequence of exponents.

Recall that SL(2,F,) has two non-isomorphic irreducible representations of di-
mension p;21 and two non-isomorphic representations of dimension PJZ”—I When
p = 3 modulo 4 the two representations from each pair are dual to each other. One
can combine one representation from each pair to form the sum isomorphic to a Weil
representation V of SL(2,F,) of dimension p (see, for example, [AR], Appendix 1).
The nontrivial central element —1 of SL(2,F,) decomposes this representation in
even and odd part of dimension (p + 1)/2 and (p — 1)/2, respectively. We denote
these representations by V.. and V_. The z curve X(p) lies in the projectivization
of V_. The A-curve X (p) lies in the projectivization of V_.

Combining the interpretation of Klein’s equations ([K12], p.195) from [AR],
Theorem 19.7, p. 56, together with a result from [Ve], Théoreme 10.6, p. 145, we
obtain the following result:

Theorem 5.1. There is an isomorphism of representations of SL(2,F):
7 SEHVo) = A%(Vy).

Let vy : P(V_) — P(S%(V_)) be the Veronese embedding given by the complete
linear system of quadrics in P(V_). Identifying P(S?(V_)) with P(A?(V,.)) by means
of T, we have

X(p) = v ' (G(2,V4)),

where G(2,V,) is the Grassmann variety of 2-dimensional linear subspaces in V..
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Definition. The Adler-Ramanan-Klein bundle (the ARK bundle for brevity) over
X (p) is the inverse image of the tautological rank 2 bundle over G(2, V) under the
map vo : X(p) — G(2,V,).

Theorem 5.2. The determinant of the ARK bundle E is equal to \37P. It is
stable provided the following condition is satisfied:

H°(X(p),\*) does not contain V. as in irreducible summand if a < %3 (*)

Proof. Since the dual bundle E* embeds X (p) in G(2, V) and the correspond-
ing Pliicker embedding of X (p) is given by quadrics we obtain that the determinant
of E* is equal to AP~3. Assume FE is not stable. Then E* is unstable too and con-
tains a destabilizing subbundle of degree > P;—Sdeg A. By [Se], Proposition 2, p.
15, one can always choose a unique maximal destabilizing subbundle. This implies
that E* contains a G-invariant subbundle isomorphic to A* with a > 9—5—‘3 Then
E* has a quotient of the form \%, where a < p;_s Since E* defines an embbeding
in G(2,V,) it is spanned by the subspace V} of its space of global sections. This
shows that A* is spanned by V_} too. This implies that there is a SL(2, F,)-invariant
non-trivial linear map V;; — H°(X(p), A\?). This contradicts the assumption of the
theorem.

Remark 5.3 It is conjectured (see [AR], p.106) that
VX = HO(X(p), \P=3/2) v} = H(X(p), \P+D/2),

This makes plausible that (*) is always satisfied. In fact, together with Adler and
Ramanan, I believe that HO(X(p),A*) = 0 for a < 252 and H(X(p),A\"7") = V_
(see the “WYSIWYG” Hypothesis in [AR], p.106).

6. Example: p = 7,r = 2

To simplify notation X will denote in this section the modular curve X (7). We
know from Theorem 3.11 that there exist exactly two non-isomorphic stable rank
2 bundles with trivial determinant. Let us prove it without using topology. We
use the following well-known description of the moduli space of semi-stable rank 2
bundles over a compact Riemann surface of genus 3 (see [NR]):

Theorem 6.1. Let SUx(2) be the moduli space of semi-stable rank 2 bundles with
trivial determinant over a compact Riemann surface of genus 3. Then there is an
embedding ® : SUx(2) — P(H°(J%(X),0(20))) = P7, where J%(X) is the Picard
variety of divisor classes of degree 2 and © is the hypersurface of effective divisor
classes. For every E € SUx(2) its image is a divisor in P(H°(J*(X),0(20))) =
|20| whose support is equal to the set of L € J?(X) such that H(X,E® L) # 0.

Lemma 6.2. Let Vi be the unique irreducible 6-dimensional representation of
PSL(2,F7). Then there are isomorphisms of PSL(2, F;)-representations
Ve 2 Vg = S%(Vo) 2 AX(V,),
S (Vo) = Vg @ SH(VX).

Proof. The last isomorphism in the first line was observed already in Theorem
5.1. The Veronese map P(V_) — P(S?(V_)) = P(Vs) is obviously PSL(2,F7)-
equivariant. The isomorphism in the second line is obtained by considering the
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restriction of the linear system of quadrics in P(Vg) to the Veronese surface, the
image of the Veronese map. The subspace V; is the subspace of quadrics vanishing

on the Veronese surface. The quotient space is isomorphic to the space of quartics
in P(V_).

Corollary 6.3. Let X = X(7) be the Klein quartic. Then the group G =
PSL(2,F7) acts naturally on SUx (2) and has exactly three fixed points represented
by the trivial bundle and two stable bundles.

Proof. By construction the map ® from Theorem 6.1 is PSL(2, F;)-invariant. So
the group SL(2,F;) acts linearly in H°(J?(X),0(20)). Consider the embedding
of X in P5 given by the linear system [2Kx|. Since H°(X,O(2Kx)) = S%(V*)
we see from Lemma 6.2 that X is embedded equivariantly in P(Vs) where Vs is
the unique irreducible 6-dimensional representation of PSL(2,F;). We have the
restriction map

r: H(J*(X),0(20)) — H(©,06(20))
whose kernel is one-dimensional and is spanned by a section with the divisor of
zeroes equal to 20. This gives the decomposition of representations

H°(J*(X),0(20)) = C® H°(©, 06(20)). (6.1)
Now one can show that there is a canonical isomorphism of representations
H°(8,06(20)) = H(P(Vs), Ix(2)),

where Zx is the ideal sheaf of X embedded in the space P(Vs) (see [BV], 4.12)
and HO(P(V;),Zx(2)) is accordingly the space of quadrics vanishing on X. Since
X C P® is projectively normal the restriction map

H(P(Vs),0(2)) — H°(X, Ox (4Kx))

is surjective and its kernel is isomorphic to H°(P(Vs),Zx(2)). This gives an iso-
morphism of representations

S?(Ve) = H(P(Vs), Ix (2)) ® HO(X, Ox (4Kx)).
Since S4(V*) = H%(X,0x(4Kx)) ® C, we obtain from Lemma 6.2
H(P(Vs),Ix(2)) = Vs @ C.
Collecting everything together we get an isomorphism of SL(2, F7)-representations
H°(J*(X),020)=CaoCa V. (6.2)

This shows that the set of fixed points of PGL(2,F7) in the linear system [20| =
P(H(J?(X),0(20))) is equal to the line £ = P(C & C). It remains to see that
it intersects SUx (2) at 3 points. One point corresponds to the trivial bundle and
the other two to stable bundles. Let C be one of the trivial one-dimensional sum-
mands in H°(J?(X),0(20)) which corresponds to Ker(r). It follows from the
construction of ® that the corresponding point in |26)] is equal to the divisor 2©
which is the value of ® at the trivial bundle. The map r defines a projection map
120] \ {20} — P(H°(P(Vs),Zx(2))) with the center at the point defined by the
divisor 20 € |26|. The line £ is the closure of the fibre of this projection over the
PSL(2,F,)-invariant quadric containing the curve X. This quadric can be identified
with the Grassmanian G(2,4) in the Pliicker space P?. By Proposition 1.19 and

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



INVARIANT STABLE BUNDLES OVER MODULAR CURVES X(p) 85

Theorem 3.3 of [BV] the intersection (¢ \ {20}) N SUx(2) consists of two stable
bundles. One is the the restriction to X of the universal quotient bundle twisted
by A~! and another is the dual of the restriction of the universal subbundle twisted
by A. This proves the assertion.

So we know how to construct the two stable G-invariant bundles on X(7)
with trivial determinant. We embed X(7) in P(S?(V_)*) = P° by |2Kx|. Then
identify the representations S?(V_) and A?(V,), consider the Grassmanian G (2, V,.)
embedded by the Pliicker map, and then restrict to X (7) the universal bundle and
the universal subbundle and twist them to get the trivial determinant. The ARK
bundle corresponds to the universal subbundle.

The next lemma must be a special case of computations from [AR], pp. 101-
105, however some typographical errors make it an unsuitable reference. We refer
to [A3] for the corrections and more general results.

Lemma 6.4. There is an isomorphism of representations of SL(2,F7):

v ifk=3

174 ifk=5

HX(),2%) = Vieav' ifk="7
4 =

VieVie Vi ifk=9

where Vg and V{ are the 8-dimensional and the 6-dimensional irreducible represen-
tations of the group SL(2,F7) on which —1 does not act identically.

Proof. By a theorem of H. Hopf (cf. [ACGH], p.108), given any linear map
f:A®B—-C

where A, B, C are complex linear spaces and f is injective on each factor separately,
then
dim f(A® B) > dim A+ dim B - 1.

We apply it to the map
HY(X,\) @ HO(X,X3) = V> @V} — HO(X,\%).

Using Table 3, Appendix 2, we find that V* ® V} = V, @ V§. Thus H(X, \%)
must contain Vj as its direct summand. By Riemann-Roch, it must be equal to V{.
Similarly, considering the map

HO(X, ) @ HO(X,°) = V2 ® Vg — H(X,\T)

we get that its image is of dimension > 10. Since, by Riemann-Roch, H?(X, A7)
is of dimension 12, and H°(X, \®) does not have vectors invariant with respect to
SL(2,F7) (use that —1 acts non-trivially) , we obtain that the multiplication map
is surjective. Using Table 4, Appendix 2, we find that

VieVe=Vio Vo Vi e V.

This gives us two possibilities: HO(X,\") =V, @ VJ or HO(X,\") = V{ @ V{*. If
the second case occurs, we consider the map H°(X,\®)® H°(X,\") — HO(X, A'?).
Here, we find that the image is of dimension > 19. We know the direct sum decom-
position for the 22-dimensional SL(2,F7)-module H°(X, A\'2) (see Appendix 1). It
tells us that it contains exactly one one-dimensional summand. However, Tables 3
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and 4 from Appendix 2 tell us that H°(X, A5)® (V@ V¢*) = Vi (V{®V{*) does not
contain one-dimensional summands. Hence the one-dimensional summand must be
in the cokernel of the multiplication map. But since the cokernel is of dimension
< 3 and SL(2,F;) does not have two-dimensional irreducible representations, we
get a contradiction. Therefore HO(X,\7) = V, & V4.

Finally |\°| is cut out by the linear system of cubics in P(V, ). We know from
Table 2, Appendix 1, that S*(Vy)* = Vi @ V} @ V{ @ V{*. The linear system
of cubics spanned by the polars of the unique invariant quartic in P(V,) realizes
the summand V,. The A-curve X(7) is contained in a linear system of cubics
isomorphic to V¥. This implies that H(X,\%) 2V, & V{ & V{*.

The next lemma concerns the even powers of A:

Lemma 6.5. Let R be the representation ring of SL(2,F;). Then we have the
following identity in the ring R[[t]]:

i HO(X(7), A" = (1 — t4) i SMV_)*tn.
n=0

n=0

Proof. It suffices to remark that the ring "> - H%(X(7), A\*") is the coordinate

n=0
ring of the Klein quartic, and the ring Y ., S™(V_)* is the coordinate ring of the
projective plane.

Theorem 6.6. The ARK bundle E over X (7) is stable and is isomorphic to N*®
X%, where N is the normal bundle of the A-curve X(7) in P(V,) = P3.

Proof. The stability of E immediately follows from Theorem 5.2 since we have
H°(X(7),A?) = V_. By definition of the normal bundle we have the following exact
sequences of SL(2, F;)-linearized bundles over X

0->X25T—>No0,

0—+0x’—>V+®)\3 —-T -0,
where T is the tangent bundle of P3. Combining them together we get an exact

sequence

0-F -V, X =N -0, (6.3)
where

0-0x > F—-X2%-0. (6.4)
First we see that

det(N) = A2 @det F~! = A2 @ A% = A1,
Twisting (6.3) by A=, we get
0-FRXN 5V, @A 25N =0, (6.5)

where N’ = N ® A~ with det N’ = A\* = K%. I claim that N’ = E*. Taking the
exact sequence of cohomology for (6.5) we get

HY(X,N') =Ker(H(X,F® A% = H'(X,Vy ® \7?). (6.6)
Tensoring (6.4) with A~> and taking cohomology we obtain
0 HY(X,A\% - H(X,F® A% - H'(X,\™") - 0. (6.7)

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



INVARIANT STABLE BUNDLES OVER MODULAR CURVES X(p) 87

Everything here is in the category of SL(2,F7)-modules. By Serre’s duality
HY(X,A73) = HO(X,\T)*, HY(X,A\77) = Ho(X,\%)*. (6.8)
Applying Lemma 6.4 to (6.8) and using (6.7), we get
H (X, Fe x®)2V;eVieVioVio V" (6.9)
Now, using Table 3 from Appendix 2 and Lemma 6.5, we obtain
H{(X, VX )=V, H'(X,\ %) =

Vi@ HX, M) =Vi@Ve=Vio Vo Vio V" (6.10)
The sequence (6.6) and a comparison of (6.9) and (6.10) gives us a summand V}
in H°(X, N’) and defines a nonzero map of vector bundles

'(/):V_,"_‘@Ox—*N’.

Assume the image of 1 spans a line subbundle. Then N’ contains a line subbundle
L of the form \®. Since V. is irreducible, it maps injectively into H%(X, A\%), hence
a > 3. In fact, using Lemmas 6.4 we find that a = 3 or a > 11. Using the
exact sequences (6.3) and (6.4) it is easy to see that dim H°(X,N) = 24. Since
A5 C N, we see that the case a > 11 is impossible. So a = 3. This also gives
that L is saturated in N’, i.e. the quotient N/L is torsion free (otherwise we find
a G-invariant line subbundle of N’ strictly containing A3). Since det N’ = \*, we
obtain that N'/L = \. But then we have an extension

0- XN

This easily gives, using Lemma 6.5 and Table 2 from Appendix 1, that H(X, N)¢ =
R%(X,\%)¢ = C. The exact sequence (6.4) gives H°(X, F)¢ = C,H'(X,F)¢ =0,
and the exact sequence (6.3), together with the decomposition V, ® H?(X,\3) =
Vi ®V} =Cea Vs ® Vs from Table 3 of Appendix 2, gives that H(X, N)¢ = 0.

This contradiction proves that the image of 1 generates a rank 2 subbundle
of N'. Thus the cokernel of 9 is concentrated over a finite set of points in X (7)
contained in the set S of zeroes of s A s’ for some sections of A2(N’). However,
A%(N') = K% and hence S consists of at most 8 points. Since S is obviously G-
invariant, this is impossible. So 1 is surjective. This implies that N’ defines an
equivariant embedding of X (7) in G(2,V,). The composition of this embedding
with the Pliicker map is given by |2K x| and, hence is defined uniquely (since there
is only one equivariant isomorphism S?(V_)* = A%(V,)*). This shows that the
restriction of the universal subbundle on the Grassmannian to the image of X(7)
coincides with the ARK bundle. Hence N'* is this bundle.

Remark 6.7 Since the condition of stability is open we get a curious fact that the
normal bundle of a general sextic curve of genus 3 in P is stable. I do not know
whether it was previously known.

Theorem 6.8. Let E be the ARK bundle over X(7). Then there is an exact
sequences of SL(2, F7)-linearized bundles:

0-E®XA 35 V_®0x - A0 -0, (6.11)
0 A M S E@A— A 0. (6.12)
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Proof. Let N be the normal bundle of the A-curve X (7). Tensoring (6.3) with
A72 we find the exact sequence

05 FRX 2oV, 0A > N®A 20 (6.13)
Taking cohomology we easily get
HY(X,NXH=HYX,FXx ) =H'(X,\"))o H(X,\™*) =

HY (X, M) @ HO(X, ) = Vs V> o Vs (6.14)
This defines a map of sheaves ¢ : V* ® Ox — N ® A~2. Assume that its image
generates a line subbundle. Using the same argument as in the proof of Theorem
6.6 we get that N ® A2 fits in the exact sequence

0o NI 2o 850

Taking the global sections and using (6.14) we obtain that the representation V& V7
is a direct summand of H%(X, \®) & V5 & V;. This is impossible. Thus the image
of 1 generates a subbundle of rank 2 of det N ® A2 = A!0. Since there are no
G-invariant subsets in X (7) of cardinality < deg A!® = 20, we conclude that this
map is surjective. Thus we have an exact sequence

020 V'0x - NA 2 0.

After dualizing and using Theorem 6.6, we obtain the sequence (6.11).
To get (6.12), we twist (6.13) by A° to obtain

0-FRNMSV,®\N >N —0. (6.15)

The exact sequence

0= Mo FeoM oS0
gives

HY(X,FeX)=HYX,))=C, H' (X, FoX)=Vio V"

Since H'(X,V,; ® A7) = 0, we obtain that H°(X, N ® A\?) is mapped surjectively
onto H'(X, F®A*), and hence contains a G-invariant section. This section defines
a non-trivial (and hence injective) map of sheaves Ox — N ® A* and hence an
injective map

AT SNQAT=E®A
The cokernel of this map does not have torsion since otherwise its support will be
a G-invariant subset of cardinality < deg A!! = 22. The smallest cardinality of a
G-invariant set on X(7) is 24. Thus the cokernel is isomorphic to Al.

Remark 6.9 The exact sequence (6.11) can be defined as follows. We have a
linear system of curves of degree 5 which are polars of a unique G-invariant sextic
in P(V_). This defines a map V_ — H°(X,0x(K%)) = H°(X,)'°) and also a
surjective map V_ ® Ox — A1°.

Remark 6.10 Let E be the ARK bundle over X (7). The ruled surface P(E) can
be projected to P(V,) with the image equal to the tri-secant scroll S of the A-curve

X (7). Recall that any even-theta characteristic # on a canonical curve X of genus
3 defines a (3-3)-correspondence R on X (see, for example, [DK], p.277):

R={(z,y) e X x X : |0+ —y| #0}.
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The set R(x) consists of points in the unique positive divisor equivalent to 6 + z.
Let X' be the image of X in P2 under the map given by the complete linear system
|36]. Since |30 — (6 + z)| = |26 — z| = |Kx — z| is a pencil, we obtain that the
image of R(x) lies on a line < R(z) >. This is a tri-secant line of X’. When z runs
over the set of points of X, the tri-secant lines form a scroll S containing X’ as a
singular curve of multiplicity 3. The map £ —< R(z) > defines an embedding of
X in G(2,4). This scroll also can be described as follows (see [SR], pp. 179-180,
or [Hu], pp. 294-306). The linear system of cubics through X’ is of dimension 3
and defines a birational transformation of P® to P3. It factors through the blow-up
Y — P3 of X’ and the blow-down of the proper inverse transform S’ of S to X’ in
another copy of P3. This shows that S’ is isomorphic to the projectivization of the
normal bundle of X’. In our case the tri-secant scroll S is a surface in P(V..) defined
by an invariant polynomial of degree 8 (see [E1], pp.202-205). Also in our case the
correspondence R on X (7) is a modular correspondence T5. This was discovered
by F. Klein [K13], footnote 16, pp.177-178 (see also [A2]).

What is the second stable G-invariant bundle with trivial determinant over
X(7)? It is very well-known. It can be described, for example, as follows. Embed
X (7) into the Jacobian Jac'(X) and take the normal bundle tensored with A~!. In
other words, consider a natural bijective map V* — H°(X,Ox(Kx)). It defines
an exact sequence

0 E -SV*®0x — A = 0. (6.16)
Then E = E’ ® A is a G-invariant rank 2 bundle with trivial determinant.

Another way to see it is to restrict the tangent bundle of P(V_) to the Klein

quartic. This bundle is E ® 3.

Theorem 6.11. Let E = E'® A, where E’ is defined by the exact sequence (6.16).
Then E is a stable rank 2 G-invariant bundle over X (7) which admits a non-split
G-invariant extension

02> E—) 0. (6.17)

Proof. Twisting (6.11) by A5 we obtain the exact sequence
0-EQXN - V*®X =28 5o (6.18)
This gives
HY(X,E®X\%) =Ker(V* @ H°(X, %) — H°(X,\8)) =

Ker(V*@ (Vo V7)) - Vs & Vg),

where V7 and V3 are the 6-dimensional and the 8-dimensional irreducible representa-
tions of the group PSL(2,F7). Since V* ® V_ contains a one-dimensional summand,
we find a G-invariant section of E ® A\3. This gives a G-invariant inclusion A~° in
E, and hence the extension (6.17).

Now let us check the stability of E. Assume that F is not stable. Then it must
contain a G-invariant destabilizing subbundle A* for some a > 0. Twisting (6.16)
by Al7% we obtain an extension

0-EQX o V_o@A 5 2320,

where HO(X, E ® A72) # 0. However H°(X,V_ ® A'~¢) does not have SL(2, F7)-
invariant sections when a > 0. This proves that E is stable.
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We denote by E(_5 5) and E(_1; 11y the two non-isomorphic stable G-invariant
rank 2 bundles with trivial determinant over X (7) with corresponding exponential
sequences. Notice that the exponential sequences agree with Theorem 4.2 and
Corollary 4.3. As we know from the proof of Corollary 6.3 the bundles E(_;; 11)
and E(_s 5 arise as the restrictions of the universal subbundle and the universal
quotient bundle on the Grassmanian G(2,V, ). In other words they are dual in the
following sense: there exists an exact sequence

0— E(—-ll,ll) QN2 Vi®0x — E(_515) RN =0 (6.19)

We have seen already that E(_1;,11)® A~2 is the ARK bundle and its projectiviza-
tion is a non-singular model of the tri-secant scroll of the A-curve X (7). The
projectivization of the bundle E(_55 ® A™2 = (E(_55 ® A*)* is a nonsingular
model of a scroll S* in the dual space V. We can change the roles of V and V}
by changing the action of PSL(2,F7) on X(7) via an outer automorphism of the
group. Then we consider S* as a scroll of degree 8 in the A-space invariant with
respect to PSL(2,F7). It is equal to the Hessian of the quartic G-invariant surface
in P(V4) (see [E1], pp.202-205).

Remark 6.12 There are some natural non-stable G-invariant rank 2 bundles over
X (7). For example, the bundle F which is defined by the (non-split) exact sequence
(6.4). Tensoring with A we see that F' is unstable. A sequence of exponents of F'® A
is equal to (1,—1). The same bundle can be obtained by a construction similar to
the construction of E(_5 5y and E(_1,11). Using the polar linear system of the Klein
quartic we realize V3 as a submodule of S3(V3)* and obtain an exact sequence

0->E -V_®0x -\ 0.

The bundle E = E' ® A3 is a G-invariant rank 2 bundle with trivial determinant.
To see that it is unstable we use that

HY(X,E® X7 ') =Ker(V_ ® H*(X,)?) — H°(X,)\?)) =

Ker(V_ ® V* — Vs @ Vi) = Ker(C® Vs — Vg ® V) O C.

This shows that FE contains X as its subbundle. It is easy to see that the quo-
tient is the line bundle A~! and the corresponding extension does not split. Since
Ext' (A1, 1) = H!(X, A\?) = C, we obtain that E is isomorphic to F ® A.

7. Example: p = 7,r = 3
We use the following result from [Bo], p. 214 (cf. Fig.3 on p.213):

Theorem 7.1. Let p = 6n + 1. The number of irreducible 3-dimensional unitary
representation of the Brieskorn sphere %(2,3,p) is equal to 3n? + n. All these
representations are trivial on the center of m1(%(2,3,p)).

Applying Theorem 3.7, we obtain

Corollary 7.2. Letp = 6n+1 and G = PSL(2,F,). There are exactly 3n*+n non-
isomorphic G-stable rank 3 bundles with trivial determinant over X (p). Moreover
each such a bundle admits a unique G-linearization. If p # 7 each G-stable bundle
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of rank 3 and trivial determinant decomposable as the direct sum of stable bundles
is stable (and hence indecomposable).

Proof. Only the last assertion does not follow immediately from Theorem 7.1
and Theorem 3.7. Let us prove it. Suppose that F = @F; is G-stable but not
stable. Since F is G-stable we see immediately that each summand must be of
rank 1 and of degree 0. Since there are no nontrivial G-invariant line bundles of
degree 0 on X (p) we obtain that either E is trivial, and hence is defined by a 3-
dimensional representation of SL(2,F,). It is possible only for p = 7. In this case
E must be trivial.

Remark 7.3. As was pointed out to me by A. Adler the previous argument shows
more: If G = SL(2,F,) has no nontrivial permutation representation of prime
degree r then there is a bijection between the set of strictly semistable points in
SUx (p) (r)¢ and the set of irreducible representations of degree r of G.

Let us assume p = 7. We need to exhibit four rank 3 G-stable vector bun-
dles with trivial determinant over X (7). This is easy. First of all we take the
two rank 2 bundles E(_55) and E(_1;11) and consider their second symmetric
powers S?(E(_s55)), S?(E(~11,11))- The other two are obtained by considering the
trivial bundles V_ ® Ox,V* ® Ox with linearizations defined by two irreducible
3-dimensional representations of G. It is easy to compute their sequences of expo-
nents (aj, az,as3):

Theorem 7.4. We have

(—10, 0, 10) IfE = S2(E(_515))
(-22,0,22) if E=S*E(11,11))
(-2,—-4,6) fE=V_Q®0x
(-6,4,2) ifE=V*®O0Ox.

Proof. The first two sequences can be immediately computed from the known
sequences of exponents of the rank 2 bundles. To compute the third sequence we
use that H9(X,V_ ® A\?) = V_ ® V* contains a trivial summand. This implies that
E contains a G-linearized subbundle isomorphic to A~2. Using Theorem 6.11 and
the dual of the exact sequence (6.16) we see that the quotient F' is isomorphic to
E(_55 ®\. Now we use that (—4,6) is a sequence of exponents for E(_5 5y ® . By

the sentence preceding Proposition 3.3, (—6,4,2) is then a sequence of exponents
for V@ Ox.

(01,02,03) =

Remark 7.5 The first two bundles correspond to unitary representations of the
group 7 (X(2, 3, 7)) which arise from a representation p : m; — SO(3) C SU(3). The
remaining two bundles correspond to ”additional” ([Bo], p.211) irreducible repre-
sentations. The new information here is that the additional representations factor
through an irreducible representation of PSL(2,F;). This was verified directly by
H. Boden.

We have a canonical exact sequence corresponding to the embedding of X (7)
as the A-curve:
0 E - Vi®0x - A =0 (7.1)
Twisting by A we obtain a rank 3 G-invariant bundle E with trivial determinant.
One can show that E = S?(E(_1; 11)).
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Similarly, the exact sequence
05 E -V;®0x -2 -0

defined by the polar linear system of the SL(2, F7)-invariant quartic surface in the
A-space defines the G-invariant rank 3 bundle E = E'® )3 with trivial determinant.
Once can show that it is isomorphic to S2(E(_515)).

8. Example: p = 11,r = 2

By Theorem 3.11 we expect to find four non-isomorphic PSL(2, Fy;)-invariant
stable bundles of rank 2 with trivial determinant. Here we have of course the
ARK bundle which is stable if one checks that V} ¢ H°(X(11),A%) for a < 4.
Assume H°(X(11),\*) contains V. Since it contains already V* we would have
dim H°(X (11),)*) > 11. This contradicts the Clifford theorem (see [ACGH],
p. 107). The same theorem implies that V} ¢ H%(X(11),A%) for a < 2. So, it
remains to verify that V} ¢ H°(X(11),3). We use the following fact from the
theory of algebraic curves (cf. [ACGH], Exercise E-1, p.198, there is a misprint in
the formula, and I think some assumptions must be added too):

Lemma 8.1. Let C' be a compact Riemann surface of genus g and L be a line
bundle on C of degree d < g — 1. Assume that the complete linear system |L| is of
dimension r > 0 and base-point-free. Then

2d > g+ 2r — dim H*(C, K¢ ® L™2).

Proof. Let W¢ denote the subvariety of Jac?(C) whose support is the set of
line bundles M of degree d with dim H°(M,L) > r + 1. By Proposition 4.2 of
[ACGH], p. 189, we have the following formula for the dimension of the tangent
space of Wj:

dim Ty, (Wj) = g — dim Image o, (8.1)
where
Ho HO(Ca L) ® HO(Ca Kc® L—l) - HO(C’ KC)
is the natural map. Let V C H°(C, L) corresponding to a base-point-free subpencil
of |[L|. Applying the base-point-free pencil trick (loc. cit., p.126), we obtain that
the kernel of the restriction of the map p to V ® H°(C, K¢ ® L™!) is isomorphic
to H°(C, K¢ ® L™2). Thus

dim Image po > 2dim H(C, K¢ ® L™1) — dim H°(C, Kc ® L™2).
Using (8.1) and the Riemann-Roch Theorem we get
0 < dimT(W)) < g — (2dim H*(C,Kc ® L) — dim H*(C, Kc ® L™?) =

g—2(dim H(C,L) —d — 14 g) + dim H*(C,Kc ® L™%) =
—g — 2r 4+ 2d + dim H°(C, K¢ ® L™?).
This is the asserted inequality.
Theorem 8.2. The ARK-bundle on X(11) is stable.

Proof. As we have noticed before we have to check that H°(X(11),3) does
not contain V' as a direct summand. Assume this is not true. Since deg A3 =15,
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the complete linear system |A\3| has no base points (otherwise we find a G-invariant
subset of X(11) of cardinality < 15). Applying the previous Lemma we have

30 > 26 +2dim H°(X(11),A®) — 2 — dim H°(X (11), A*) > 36 — dim H°(X (11), A%).

This implies that dim H°(X (11), A\*) > 6. Since H°(X(11), A*) already contains V_
of dimension 5 we have dim H°(X (11), A*) > 10 (notice that H°(X (11),X*)¢ = {0}
since otherwise X contains a G-invariant subset of cardinality 20 which as is easy
to see does not exist on X(11)). By Clifford’s theorem dim |X*| < 1deg A* = 10.
Thus dim H°(X(11), A*) = 10. The complete linear system |A\*| maps X(11) onto
a curve C in PP, Its projection to P* given by the linear subsystem |V_| of |A\4| is
the Klein z-curve X (11) of degree 20 and genus 26. This implies that C is also of
degree 20 and genus 26. This contradicts the Castelnuovo bound for the genus of
a curve of degree d in P"([ACGH], p. 116):

m(m — 1)
< - 7
="

where d — 1 = m(r — 1) + e for some positive integers m and e with 0 <e <r — 1.

(r — 1) + me,

Note that the assertion that H°(X(11),A3) does not contain V' was indepen-
dently checked by A. Adler by the methods of [AR], App. III (see [A4]). In fact he
also shows that this assertion follows from the equality dim H°(X(11),A*) = 5 and
the latter is equivalent to the fact that there is only one G-equivariant morphism
of X(11) onto a curve of degree 20 in P*.

Another potential candidate is the vector bundle defined by using the fact that
the z-curve X (11) parametrizes polar quadrics of corank 2 of the invariant cubic
hypersurface W (see Example 2.9). This defines a bundle with determinant \°
which embeds X (11) in G(2, V_). The corresponding ruled surface in P(V_) is the
four-secant scroll of the z-curve X (11) of degree 30 (see [E2], p. 65). Similar to the
tri-secant scroll of X (7) it is defined by a modular (4, 4)-correspondence on X(11)
(see [A2], Theorem 1, p.433).

To introduce the third candidate, we use that the cubic hypersurface W admits
a G-invariant representation as the Pfaffian hypersurface (see [AR], p. 164):

0 v o w Y z
—-v 0 0 z -z 0
2 2 2 2 2, _ -w 0 0 0 vy
v'wtwr+xiy+yz+2°v=Pf r -2 0 0 0w (8.1)
-y zz -v 0 0 0
-z 0 y —w 0 0

This representation is obtained by considering a linear map V. — S%(V*) defined
by the polar linear system of W and then identifying the representations S%(V*) and
A2(V,)* (see Theorem 5.1). The cubic hypersurface W is equal to the pre-image of
the cubic hypersurface in P(A?(V,)*) which coincides with the chordal variety C
of the Grassmanian G(2,V}). The latter carries a canonical rank 2 bundle whose
fibre over a point ¢ € C is equal to the null-space L; C V. of the corresponding
skew-symmetric matrix. To get a bundle over X (11) we use the decomposition of
PSL(2,F,; )-representations

H°(X,Kx)=V_®Vio® Vi1, (8.2)
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where Vi9 and V;; are 10-dimensional and 11-dimensional irreducible representa-
tions of PSL(2,Fy;) (see [He]). This decomposition allows us to project X (11) to
P(V_) as a curve of degree 50. It turns out that the image of the projection is
contained in the cubic W. This result is due to F. Klein [KF], p. 413, and is repro-
duced by A. Adler (see [AR], Appendix 3). This allows us to restrict the bundle E
to obtain a G-invariant bundle over X (11). This bundles embeds X (11) in G(2,V,.)
by the linear system of quadrics spanned by the Pfaffians of order four principal
submatrices of the skew-symmetric matrix from (8.1). So, the determinant of the
bundle is equal to A8.

Note a beautiful result of M. Gross and S. Popescu [GP] who show that the
cubic Wwhich establishes a natural birational isomorphism between the cubic W
and a compactification of the moduli space of abelian surfaces with polarization of
type (1,11). Using this one could probably see in another way how X (11) embeds
in P(V_) as a curve of degree 50.

Finally one may try to consider the normal bundle of X(11) in the cubic W.
I do not know yet whether any of the last three bundles is stable, nor do I know

their sequence of exponents. I also do not know the sequence of exponents of the
ARK-bundle.

Appendix 1. Decompositions of S*(V_) and S™(V,) for p=7

It follows from the character table of the groups SL(2,F,) (see, for example,
[D], vol. B, pp. 498-499) that SL(2,F) has eleven non-isomorphic irreducible
representations. In the following we denote by V) the irreducible representation of
SL(2,F7) of dimension k and by V; another representation of the same dimension
which does not factor through PSL(2,F7). We assume that

Vo=V, Vo=V,
The following generating function was computed in [BI]):

Qv (t) = _ dimc Hom"S* ¥ (v, sn(V))t™.
t=0
We have -

WO = Toma sy
t+t" 4+t 411

Q)= aomaoma-s)
2+ 8%+ 8% 4110

QO = aoma—ma =)’

t2 + 18
W) =T ma -y
t3
Qv (t) = (1-#)1-3)(1-t)’
t4

Q)= g paoma-o
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Using the similar arguments one can compute the generating function

Py(t) =Y _ dim¢c HomS"3F7) (v, S*(V, )"

t=0
We have
Pu(t) = 1485+ 810 4412 4 416 4 418 4 420 4428
' Q-1 -1 -1 )
Py, (1) = t? —tt + 10 4205 + 12 4 21 4 2018
’ A=A -tH(A -1 -e)
Py (t) = 26 + 2610 4 12 4 2416 4 418 — 420 4 422
’ 1-HA-tHA -1 -t) 7
Pu(t) = 2t% + 8 4+ 2010 4 ¢12 4 2416
6 (1—2)(1—t42(1—t19)
Py (1) = % + 11 4+ 260 4 2610 4412 4 414
! (1-e)(1 -1 —t6)(1 — &)’
Pu(t) = t4 + 48 + 268 + 2412 4414 4416
’ (1-2)P21-t5)(1-¢1) °
Pu,(t) = t— 13+ 85 4209 — 11 4413 4417
’ 1-2p2Q-t)1-e)
3 7 9 11 15 17 19
Py (t) = £+ tT -1 2N 415 — 17 4o

(1-e2)2(1 -t8)(1—t14) 7
t3 4 219 4 t15
(1—¢2)2(1 - t4)(1 - t14)’
28 +17 + 1% + ¢ 418 4+ 210
Pyy(t) = 22 6 14
(1 =2)2(1 = 19)(1 = ¢14)
A suspicious reader may check (for example using Maple) that
Py, (t) + 3Py, (t) + 3Pva* (t) + 6Py, (t) + 7Py, (t) + 8Py, (t) + 4Py, (t)+
1
(1-t4)

Pyy(t) = Py (t) =

4Py, (t) + 12Py;(t) + 8Py (t) = > _ dim S™(V} )t" =
n=0
The generating functions Py (t) and Qv (t) allows one, in principle, decompose
any symmetric power S™(V*) or S™(V}) in irreducible representations of SL(2,F7).
We give a few examples:

S*(Va)r = Vs

S}z = Va+Wr

S Vs = Vi+Ve+ W

Ss(Vg)* = WB+VW+Vi+W

S5 = Vi+2-Ve+Vi+ W

ST Vi) = Va+Vi+2-Vi+2-V

SEVs)* = Vi4+Vy+3-Ve+Vr+2-Vg
SOMVa)* = 2-V3+2-VF+Ve+3-Va+2-Vy

Sm(Vs)* = Vi+Vs+4-Vs+2- V7243
St (V5)* 2 Va+2-Vi+Ve+4-Vo+4-V4
Table 1: Decomposition of S™(V5)

I
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S2(Vy)r = Va+ Wy

SBVa)r = Va+Vi+Ve+ Vg

54(‘/:1)* = Vi+2-Ve+2-Vo+Vs

SS(Va)* = 2-Vi+2-Vi+2 Ve+2-Vi+2 Ve
S5V = Vi+2-Va+2 Ve+2-Ve+5-Vh+3 Vs

Table 2: Decomposition of S™(V}")

To deduce from this the decompositions for H?(X(7), \?*) = HO(X(7), K%)
we have to use Lemma 6.5 which gives

> dim HO(X(7), ")t = (1 — 1) Y dim S™(Va)*¢".
n=0

n=0

Appendix 2. Tables for tensor products of representations of SL(2,F7)

We use the notation from Appendix 1. For brevity we skip V in the notation V,.
The following tables give the decompositions for the tensor products of irreducible
representations of SL(2, F7). This was computed by hand from the known character
table of the group SL(2,F7) (see for example, [D], vol. B, pp. 498-499). However,
one can also check these computations using one of the standard computer algebra
programs (for example,GAP).

Vs %4 Vs
Vi 3 +6 1+38 3*+7+38
Vi 1+8 3+6 3+7+38
Ve 3 4+7+8 3+7+38 1+2:6+7+2-8
Vi 6+7+8 6+7+8 3+3*+6+2-7+2-8
Ve 3+6+T7+38 3*+6+7+8 3+3°+2:6+2-7+2-8
V4 4*+8’ 6'+6'* 4* +6/+6'*+8/
Vi 6 +6" 4+8 4+6 +6™+8
Vs 446 +8 4* +6' +§8 4+4*+6'+6*+2.8
Vg* 4+6™ 48 4* + 6" +8 44+4*4+6' +6™+2.8

Vi 4*+6'+6"+8 4+6 +6*+8 4+4*+2-6 +2-6"+2-8

Table 1
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Vi
| %y
Ve
VZ
Vs
Vi

Ve

V'SI*
Vg

Vs
Ve
Va
Vs
V4

Ve
‘/61*

Vz
6+7+8
6+74+8

3+3*+6+2-7+2-8
1+34+3*+2-64+2-74+2-8
34+3"4+2-6+2-74+3-8

4+4*+6/+61*+8I
4+4*+6I+6I*+8/

444*4+2-6/+6+2-8
44+4*4+6'+2-6*+2-8
44+4*4+2-6/+2-6*+3-8

Vi

4* + 8

6 +6*

4* +6' +6'* + 8

4+4*+61+61*+8l
446 +6"+2-8
3*+6+7

14748
3+6+7+8
3+6+7+8

3" +6+7+2-8

V*
4+6 +8
4*+6'+8

444*+6'+6+2.8
444*4+6"+2-6*+2-8
44+4*4+2-6'4+2.6*4+2-8

3F+6+7+8
3+6+7+8
6+2-74+2-8

14+3+3"+6+7+2-8
3+3*+2-64+2-7+2-8

INVARIANT STABLE BUNDLES OVER MODULAR CURVES X(p)

Vs
3+6+T7+8
3*+6+7+8
3+3*+2-6+2-7+2-8
3+3*+2-64+2-74+3-8
1+43+3*+2-6+3-7+3-8
446 +6*+2-8
4+ 6 +6'*+2-8
44+4*+2-6/+2-6*+2-8
44+4*+2-6+2-6+2-8
2:44+2-4*42-6+2-6*+3-8
Table 2
Vi Ve
6/+61* 4+6I+81
4+ 8 4* +6' + 8
4+61+6I*+81 4+4*+6I+6I*+
2.8
444*+6 +6*+8 444*+2-6 46"
+2-8
4* +6'+6'*+2-8 4+4*+2.6 426
+2-.8
1+7+8 3+6+7+8
3+6+7 3*+6+7+8
3*+6+7+8 6+2-7+2-8
3*+6+7+8 1+43+3*+6+7+
2-8
3+46+7+2-8 3+3*+2-6+2-7+
2-8
Table 3
| %%

4*+6' +6*+8
446 +6*+8

44+4*4+2-6+2-6*+2.8
444*+2-6/+2-6*+3-8
2.442-4*4+2-6/4+2-6*+3-8

3*+6+7+2-8
3+64+7+2-8
3+3"+2-64+2-74+2-8

Table 4

3+3*+2-64+2-742-8
3+3*+2-64+3-7+3-8
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ABSTRACT. Okubo algebras form a class of nonunital composition algebras .
with very interesting properties. The classification of these algebras was com-
pleted recently and presents a quite different behavior over fields of character-
istic three. The aim of this work is to show that this is not really so, since the
construction of the Okubo algebras in characteristic three is a kind of limit of
the one in other characteristics.

1. Introduction

On the set of trace zero 3 x 3 matrices over a field F containing a cubic primitive
root w of 1 (hence the characteristic of F' is supposed to be # 3), Okubo [O]
considered the new multiplication

1
(1) zxy = pay+ (1 - plyz - 3T(zy)1

—Ww

1
where p = , zy denotes the usual product of matrices and T" denotes the trace.

He realized that the algebra thus obtained, denoted by Ps(F'), verifies

(2) (zxy)*xz=z*(y*xz)=n(r)y

for any z,y, where n(z) = %T(zQ) (which has sense even in characteristic 2 since
T(x?) “can be divided by 2” for any = € si(3,F)). Moreover, n is a strictly
nondegenerate quadratic form on Pg(F') (i.e. the symmetric bilinear form obtained
by polarization, given by n(z,y) = n(z+y) —n(z) —n(y), is nondegenerate), which
permits composition:

3) n(zy) = n(z)n(y),
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102 ALBERTO ELDUQUE

for any x,y € P3(F), so that Ps(F) is a nonunital composition algebra. Besides,
the norm n is invariant ((OO1, Lemma I1.2.3]):

4) n(z *xy,z) = n{z,y * 2)

for any z,y,z € Ps(F).

The algebra Ps(F’) satisfies some very interesting properties. It is flexible ((x *
y)*x = x % (y * x) Vz,y), Lie-admissible (that is, it becomes a Lie algebra with
the commutator product [z,y]* = = * y — y * z, namely, the Lie algebra sl(3, F))
and simple, since so is the attached Lie algebra. It was termed the pseudo-octonion
algebra in [O] and its forms (that is, those algebras B over a field F such that the
algebra obtained by extending scalars up to the algebraic closure F of F, B = F®B,
is isomorphic to Ps(F)) were called Okubo algebras [EM1].

Over fields F' of characteristic 3, the pseudo-octonion algebra Ps(F') was defined
in [002] by means of its multiplication table. A more conceptual, but equivalent,
definition was given in [EP}, borrowing ideas from [Pe], as follows: let C = C(F)
be the algebra of Zorn’s vector matrices

C’(F):{(: Z) :a,ﬂeF,u,veFxeF}

with multiplication

a u)fd W\ _ ad’ +u-v au' + f'u—v xv

v f3 v B )T \dv+ v +uxd B8 +v-u
where u - v and u X v denote the usual dot and vector product in V = F x F x F,
let us take the endomorphism ¢ of V' which permutes cyclically the canonical basis

of V and define .
o uy) a ¥
v B) "\ 3 )

where ¢* is the adjoint relative to the dot product. Then 7 is an automorphism of
C(F) of order 3 and the algebra C(F) with the new multiplication given by

Try=3"5"
is called the pseudo-octonion algebra and denoted too by Ps(F). Again the forms
of Pg(F) are called Okubo algebras. This definition is actually valid in any charac-
teristic.

Apart from Okubo algebras, there is just another family of nonunital compo-
sition algebras with invariant associated quadratic norm. They are obtained as
follows: let C be any unital composition algebra (also termed Hurwitz algebra)
of dimension > 2 (see [ZSSS, Chapter 2]) with norm n over a field F' and let
z + ¥ =n(z,1)1 — z its standard involution. Then define a new multiplication on
C by means of

T*xYy =1y
for any z,y € C. The new algebra (C, ) thus obtained is called the para-Hurwitz
algebra associated to C. Relations (2), (3) and (4) are easily verified for (C, *).

Okubo algebras, together with para-Hurwitz algebras and some forms of two-
dimensional para-Hurwitz algebras comprise all the symmetric composition alge-
bras, that is, all the composition algebras with invariant norm (see [001], [002],
[EP] and [E]).
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OKUBO ALGEBRAS AND TWISTED POLYNOMIALS 103

This property of the invariance of the norm makes it possible to study very
nicely the classical phenomenon of triality by using the eight-dimensional symmetric
composition algebras instead of the Hurwitz algebras (see [KMRT]).

The last step in the classification of the symmetric composition algebras was
given recently in [E], where the Okubo algebras over fields of characteristic 3 were
determined, but in a completely different way to the path followed in other char-
acteristics.

The next two results (Theorems 1 and 2) present the classification of the Okubo
algebras. The first one shows the classification obtained in [EMS3] over fields of
characteristic # 2,3, which was inspired in [F] and extended previous results in
[EMZ2]. Actually, as remarked in [E], the arguments in [EM3], with some minor
changes, are valid in characteristic 2 as well. Also, the result will be stated following
[KMRT, (36.38)]. The second result will state the classification in characteristic 3
obtained in [E], extending previous results in [EP].

In order to state Theorem 1, some notation is needed. Given a central simple
associative algebra A of degree 3 over a field K, any element z € A satisfies its
generic minimum polynomial:

(5) pe(N) = X3 = T(2)\? + S(z)\ — N(z)1,

for a linear form T (the trace), a quadratic form S, with 25(z) = T(z)? — T(x?)
(something that can be checked just for the algebra of 3 x 3-matrices over the alge-
braic closure and only for the diagonal elements, since the diagonalizable matrices
form a Zariski dense subset), and a cubic form N over K. The set of trace zero
elements will be denoted by Ag. Besides, if A is equipped with an involution J
of the second kind, so that the subfield F' of fixed elements of K by J satisfies
that K/F is a separable field extension of degree two, then J will be said to be a
K /F-involution and H (A, J)o will denote the set of fixed elements of A by J with
zero trace (which is an F-subspace, but not a K-subspace). Then:

THEOREM 1. Let F be a field of characteristic # 3 and let w be a cubic primitive
root of 1 (in an algebraic closure of F).

(i) If w € F then the Okubo algebras over F are, up to isomorphism, ezactly
the algebras (Ao, *), where A is a central simple associative algebra over F
of degree 3 and x is the multiplication given by (1).

Two Okubo algebras over F are isomorphic if and only if so are the corre-
sponding central simple associative algebras.

(ii) If w & F and K = F[w] then the Okubo algebras over F are, up to iso-
morphism, ezactly the algebras (H(A, J)o,*), where A is a central simple
associative algebra over K of degree 3 equipped with a K/F-involution J
and where * is again given by formula (1).

Two Okubo algebras over F' are isomorphic if and only if so are the corre-
sponding central simple associative algebras as algebras with involution.

In both items of this Theorem, the norm n of the Okubo algebra is the re-
striction, either to Ag or to H(A,J)o, of —%S(z) (which equals %T(xz) if the
characteristic is not 2).

In order to state Theorem 2 (characteristic 3) some extra notation is needed
too. Let a and B be two nonzero scalars in a field F' of characteristic 3 and let
F*PB(z,y] be the (commutative and associative) algebra obtained as the quotient
of the algebra F[X,Y] of polynomials in two variables by the ideal generated by
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104 ALBERTO ELDUQUE

X3 —a and Y3 — 3. Here z and y denote the classes of the variables X and Y
modulo this ideal. On F®#[z,y] consider the new multiplication determined by
(see (E}):

J
! !

(6) sy oaly = (1 ~ s

T
)xz+z y.7+.1 .

Then for any u,v € F*P[z,y]o def span({z'y’ : 0 < 4,5 < 2, (3,7) # (0,0)), the
product u ¢ v decomposes as

(7) uov=n(u,v)+u*xv
with n(u,v) € F and u * v € F*#[z,y]o. Then

THEOREM 2. Up to isomorphism, the Okubo algebras over a field F' of char-

acteristic 3 are exactly the algebras (F*P[z,y|o,*) for nonzero scalars o and 3 in
F.

The norm in the Okubo algebra (F*#[z,y]o, *) is given by n(u) = in(u,u) =
—n(u,u), where n(, ) is given by (7). The conditions for isomorphisms between
two such algebras (F®?[z,ylo, *) and (F®#'[x, y]o, *) are given in [E] in terms of
the scalars «, 3,’ and 3. It also turns out that all the Okubo algebras over fields
of characteristic 3 have isotropic norm or, equivalently, there are no division Okubo
algebras over these fields.

In spite of the big difference in the results and methods of proof of both Theo-
rems above, it will be shown in the next section that the Okubo algebras over fields
of characteristic # 3 with isotropic norm can be built starting with algebras of
twisted polynomials and in that respect, the situation in characteristic 3 is a “kind
of limit” of the isotropic case in other characteristics. This will allow us to give
in section 3 a common multiplication table for the Okubo algebras with isotropic
norm, depending on two parameters and valid over any field.

2. Okubo algebras and twisted polynomials

The idea behind the results in this section grew out of a conversation with
professor M.A. Knus, to whom the author wants to express his appreciation, during
a visit to the ETH at Ziirich.

It consists of expressing the central simple associative algebras which appear
in Theorem 1, giving rise to the Okubo algebras with isotropic norm, as quotients
of a twisted polynomial ring. To begin with, let K be a field of characteristic
# 3 containing a cubic primitive root w of 1 and consider the twisted polynomial
ring K,[X,Y], which is the usual polynomial ring but where the variables do not
commute, but satisfy instead the relation

YX =wXY.

The center of K,,[X,Y] is the subring generated by X3 and Y*: K[X?,Y3]. Now,
given two nonzero scalars @ and 3 in K, let I, 3 be the ideal generated by the central
elements X3 —a and Y3 — 3, so that I, 3 = K, [X,Y])(X% —a)+ K, [X,Y|(Y3 - 3).
Let z and y denote the classes of X and Y modulo I, g and denote by K2*[z,y]
the quotient K, [X,Y]/I4 3.
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OKUBO ALGEBRAS AND TWISTED POLYNOMIALS 105

Therefore, K fj’ﬂ [z, y] is the unital associative K—algebra generated by z and y
and subject to the relations 23 = «, y* = 3 and yr = wxy (see for instance [Pi,

Chapter 15], where this algebra is denoted by ;’—i )-
In order to describe the central simple associative algebras in Theorem 1 which

are related to the Okubo algebras with isotropic norm a Lemma is needed:

LEMMA 3. Let (A,*) be any Okubo algebra with nonzero idempotents and
isotropic norm n over a field F' of characteristic # 3. Then there is an element
z € A such that n(z) =0 and n(z,x xx) = 1.

ProoF. By [EP, Theorem 3.5], there is a Cayley-Dickson algebra C over F,
with standard involution z — Z and multiplication that will be denoted by juxtapo-
sition, equipped with an automorphism 7 of order 3 such that H = {a € C' : a” = a}
is a quaternion subalgebra of C' and A is isomorphic to the algebra C. defined on
C but with the new product:

Txy=2"5" .
Moreover, under the isomorphism the norm of A corresponds to the norm of C as a
composition algebra, which will also be denoted by n. In case H is a split quaternion
subalgebra, that is, H is isomorphic to Maty(F) as composition algebras (the norm
of the algebra of 2 x 2-matrices is the determinant), the element that corresponds

1 0 .
to ( 0 0) verifies n(z) = 0 and

n(x,z*x)=n(x,:i2)=n(((l) g)(g (1)))=|(1) 0

as required. Otherwise H is a division algebra but C is split since the norm is
isotropic. Then we may find an element v € H' with 0 = n(1 +v) = 1 + n(v).
Since 7 fixes elementwise H and H+ = Hv, v" = wv for some w € H such that
w? + w + 1 = 0 (because 7° = 1). Hence the element x = —1 — v verifies n(z) =0
and computing in C = H & Hv we get

=1,

rxz = (=14 wv)(-1+w?v) =1 - (w+w?)v + (W*w)v?

=l4+v4w?=-w+v
and
n(z,z*xz) =n(-1-v,—~w+v) =n(l,w) —n(v,v) =-1+2=1,

as required. 0O

Now, the announced description:

THEOREM 4. Let F be a field of characteristic # 3 and let w be a cubic primitive
root of 1 (in an algebraic closure of F):

(i) Ifw € F and A is a central simple associative algebra of degree 3 over F then
there are nonzero scalars o, 3 € F such that A is isomorphic to F&P [z, y].

(ii) Ifw ¢ F, K = Flw] and (A, J) is a central simple associative K -algebra of
degree 3, equipped with a K/F-involution J of the second kind, such that the

norm of the associated Okubo algebra (H(A, J)o, *) is isotropic, then there

are nonzero scalars o, 3 € F such that (A, J) is isomorphic (as an algebra
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106 ALBERTO ELDUQUE

with involution) to (KA [x,y], I), where I is the unique K/F —involution of
the second kind on KP[x,y] which fizes = and y.
Conversely, the norm of the Okubo algebras associated to FP[z,y] in item (i) and
to (KP[z,y],I) in item (ii) are isotropic.

PROOF. If w € F, the element z in F%P[z,y] verifies T(z) = S(z) = 0 (and
N(z) = a). Hence z € F>P[z,y]o and n(z) = —3S(x) = 0. The same happens to
the element x € H(K%?[z,y],I)o in case w & F. Hence the converse is clear.

Assume now that w € F, then item (i) follows from standard results in asso-
ciative algebras (see [Pi, Chapter 15]). For completeness we include the argument:
either A = Mats(F) (up to isomorphism), and then A is the algebra generated by
the elements

10 0 010
(8) z=|0 w 0 and y=(0 0 1
0 0 w 1 00

which satisfy 3 = y® = 1 and yr = wzy, so that A is isomorphic to Fl'![z,y], or
A is a central division algebra and hence cyclic. Since w € F, there are elements
z € A\ F with 23 = a € F and, by the Skolem-Noether theorem another element
y can be found with yzy~! = wz. Hence y® centralizes z and y, which generate A
and hence y® = 3 € F and A is isomorphic to F*# [z, y].

Finally, assume that w ¢ F and (A, J) is an algebra as in the statement of item
(ii). By hypothesis there is an element 0 # z € H(A, J)o with S(z) = 0, so that
its generic minimum polynomial (5) is A3 — a for some a € F (since z € H(A, J),
o = N(z) is fixed by J). If A is a division algebra o # 0, K[z] is a cyclic field
extension of K and by the Skolem-Noether theorem there is an invertible element
z € A with zzz7! = wz. Then y = (2J(2))? also verifies yz = wzy and belongs to
H(A,J). Besides y° centralizes A and belongs to H(A,J), so y® = § € F and it
follows that (A, J) is isomorphic to (K%?[z,y], I).

But even in case A = Matz(K), so that the associated Okubo algebra has
nonzero idempotents by [EM3, Proposition 7.4], for any z € H(A, J)o with n(z) =
0 and n(z,z xz) = 1 as in the Lemma above, one has 0 = 2n(z) = —25(z) =
1T(2%), so that zxz = 2 and 1 = n(z,z*z) = —15(z,2?) = 5T(z%); hence it fol-
lows from (5) and from T'(z) = 0 = S(z) and T(z3) = 3 that 23 = 1. Besides, from
T(z) = T(z?) = 0 it follows that 1,z and z2 are linearly independent. Therefore
z is similar to the diagonal matrix in (8) and there is another invertible element
z € A = Mat;(K) with 2z = wzz. As above, the element y = (2J(2))? also verifies
yx = wzy, it is invertible and fixed by J. It then follows 0 # y®> = 3 € F, that
y € H(A, J)o and that (A, J) is isomorphic to (K}#[z,y], I). O

CoroLLARY 5 ([EMS3, Proposition 7.3]). There do not exist division Okubo
algebras over fields containing the cubic primitive roots of 1.

A general result can be given in case w ¢ F' about the central simple associative
algebras of degree 3 over K = F[w] equipped with a K/F-involution:

PROPOSITION 6. Let (A, J) be a central simple associative algebra of degree 3
over K = Flw], where F is a field of characteristic # 3 and w a cubic primitive
root of 1, w &€ F, equipped with a K/F-involution (of second kind). Then there are
nonzero scalars o, B € F such that (A, J) is isomorphic to (K&P[z,y], I,), where I
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OKUBO ALGEBRAS AND TWISTED POLYNOMIALS 107

is the K/ F-involution of K®P[z,y] that fizes x and y, a is an invertible element in
K2P[z,y] fized by I and I, is the K/F -involution given by I,(u) = al(u)a™! for
any u.

PROOF. In case A = Mat3(K), then the elements = and y in (8) satisfy 2® =
y® = 1, yr = wzy and they are fixed by the K/F-involution I given by I(u) =
1 00
,where g = | 0 0 1| and (ui;)* = (@j;), with v — 7 the nontrivial
010
F-automorphism of K. Then (see [J, p.192]) there is an invertible element a fixed
by I such that J(u) = al(u)a™! for any u and (A, J) = (K} !(z,y], L)
In case A is a division algebra, by [HK, Proposition 1] there are elements
0 # z € Ag with 3 = a € F and r fixed by a K/F-involution I. Then K|[z]/K is a
cyclic field extension and by the Skolem-Noether theorem there is a 0 # z € A with
2z = wzz. Then, as before, the element y = (21(z))? is fixed by I and also satisfies
yz = wry. Besides y3 = B3 € F and again (A4, J) is isomorphic to (K%#[x,y], I,)
for a suitable element a. g

gu*g—l

Theorem 4 tells us that in case the associated Okubo algebra has isotropic
norm, then the element a in Proposition 6 can be taken to be 1.

3. Common multiplication table

The results in the previous section make clear the similarities in the construction
of the Okubo algebras in characteristic 3 and # 3. First, let us assume for a while
that F is a field of characteristic # 3 containing the cubic roots of 1 (w € F') and
a and S are nonzero scalars in F. The set of trace zero elements in F%#[z,y] is

F3P[z,ylo = span(z’y’ : 0 < i,j <2, (4,5) # (0,0)).
With p = I——Tw, define on F%#[z,y] a new product by

uov = puv + (1 — p)vu.
Then for any u,v € FE2?[z,y]o
uov =n(u,v)+u*v
where u x v is given by (1) and n(u,v) = $T(uv) = —1S(u,v). This is completely

analogous to (7). o
Besides, the elements w="z'y’ (i,j € Z) of F*?[z,y] multiply according to

9)
w gyl 0w T gty = S (#wiiji'yj' +(1- u)wi’yj/xiyj)

— - (+5") (uw"'j +(1- #)wj'i) gt it

= (o + (1 - pw™>) (w—(i+i’)<j+j’)zi+i'yj+j’)
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whereA='.l, J.,
v

. Also notice that since p = 13% = ;;’-i—w and 1 —p = ;2

1  if A=0 (mod 3),
ol + (1 —pw™2={ 0 ifA=1 (mod3),
~1 if A=2 (mod 3).
Therefore,
(10) wl +(1—pw™®=1-A (mod 3),

which shows how close (6) and (9) are.
On the other hand,

A -A w oA w -a 1 1-A _ —(1-4)
= + (1 — pw™2 = w4+ wt s — (w -—w )
wl—w w—w! w—w-1

and one can think that w collapses to 1 if the characteristic is 3. However, for real
numbers (think of ¢ as w)

) giA — g—(1-8)
m —-—7)-

lim = —=1-A.

Therefore, (6) can be though of as a limit of (9) when w collapses to 1, as commented
in the Introduction:

In case F is a field of characteristic # 3 but w ¢ F' and a and (3 are nonzero
scalars in F', according to Theorem 4 we consider the algebra with involution
(K&P[x,y],I), where K = Flw], 2° = a, ¥°> = 3, yr = wzy and I is the K/F-
involution fixing  and y. Then the elements w~* z'y’ verify that

Iw™¥zly?) = w™29yigt = w™¥ghyd,
so that the set of trace zero elements fixed by I is
H(KZ"[w,y),T)o = F-spanfw™z'y’ 1 0<4,j <2, (i,) # (0,0)).

And the ¢ multiplication of these elements is given again by (9).
As a consequence of (6), (9) and (10), the basis

{z:; & —ziyf 1 —1<i,j <1, (4,5) # (0,0)}

of the Okubo algebra (F**[z,y]o, *) in case the characteristic of F is 3 and the
basis

{oi & —wVa'y 1 -1 <45 < 1, (i,5) # (0,0}
of either (F%P[z,yo,*) or (H(K%?[z,y],I)o,*) in case the characteristic of F is
not 3 share the same multiplication table (which is exactly Table 1 in [E], with
different name for the parameters). That is:

THEOREM 7. For any Okubo algebra with isotropic norm over an arbitrary field
(in particular any Okubo algebra over any field of characteristic 3 or of character-
istic # 3 but containing the cubic roots of 1), there are nonzero scalars o, 3 € F
and a basis {z;; : —1 < 14,5 <1, (¢,5) # (0,0)} such that the multiplication table is:
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z1,0 T-1,0 zo,1 T0,-1 z1,1 To1,-1 zT-1,1 T1,-1
T1,0 [—ax_1,0 0 { 0 T1,-1 0 To,—1 0 ar—1,-1
1.0 0 —a~lz1 9 T_1,1 0 o1 0 a—lzlvl 0
Z0,1 z1,1 0 —pBzo,-1 0 Bz1,-1 0 0 1,0
Zo,—1 0 T-1,-1 0 —B7 1z, 0 5'11—1,1" T-10 i (3
T1,1 | ar-1,1 0 0 z1,0 |—(af)z-1,-1 O Bxo,-1 0
z_1-1| 0 o7lzm | zo10 0 0 —(af) 'z 0 B 1zo,
T-1,1| %o, 0 Br-1,-1 0 0 alzio |-a!'Br1-1 0
z1,-1 0 z0,—1 0 Bl'zin az_1,0 0 0 —aBflz_1;
0O
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Some new results on modular forms for GL(2,F,[T])

Ernst-Ulrich Gekeler

Introduction.

The modular forms in question, i.e., Drinfeld modular forms, are analogues in
positive characteristics of classical elliptic modular forms. They are rigid ana-
lytic functions defined on Drinfeld’s upper half-place 2 = C — K, where C is
the completed algebraic closure of K., the completion of a global function field
K at some fixed place oco.

In the present paper, we restrict to the simplest and most important case where
K = F4(T) is a rational function field and “co” is the usual place at infinity,
although most of the theory can be developed for general function fields in one
variable over finite constant fields.

Let A be the subring of elements of K regular away from oo, i.e., A is the poly-
nomial ring Fy[T]. It embeds discretely into K, with compact quotient. There-
fore, the sextuple (A, K, K, C, 2, GL(2, A)) shares many properties (more than
visible at a first sight) with (Z,Q,R,C, H* = C—R,GL(2,Z)). The most basic
modular forms in the present context are the Eisenstein series

ro
Ei(z) = Z (az + b)k

a,beA

introduced by D. Goss in the seventies [13] [14]. In fact, Ex is a modular form
of weight k for I' = GL(2, A), non-zero if 0 < k = 0 (mod ¢ — 1), and the
two algebraically independent forms E,_; and E,z_; generate the ring of all
modular forms (with trivial type) for I'. As in the classical case, such forms, their
zeroes, relations, expansions around cusps, congruence properties etc. encode
important parts of the arithmetic of K. They are directly related to Drinfeld
modules (in particular, there exist analogues of the classical discriminant and
invariant functions A and j) and, in a less obvious fashion, to elliptic curves
over K (through some kind of Shimura-Taniyama-Weil correspondence [9]).

In the first part of this article (sect. 1-5, largely based on [6]), we expose
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112 ERNST-ULRICH GEKELER

known results about modular forms for I' and introduce some technical tools.
Here we omit most of the proofs and restrict to explaining the definitions and
constructions. This part also provides the necessary background for the second
part (sect. 6-8), whose results are new. In the second part, we investigate the
zeroes of the Eisenstein series Fi. Such a series is called special if k has the form
¢’ — 1 for some j. The main results are (precise definitions are given below):

(A) (Prop. 6.7): If the zero z of Ej lies in the “fundamental domain” F =
{z€Q | |2| =|z|; > 1} for T then |z| = 1. Equivalently, the j-invariant
j(z) of each zero of Ej satisfies |j(z)| < q7.
This is similar to a result of Rankin and Swinnerton-Dyer [16] in the
classical case.

(B) (Thm. 8.5): For each zy € Fgx+1 — Fy, there exists a unique zero z € F of
the special Eisenstein series Ex_; that satisfies |z — 29| < 1, and these are
all the zeroes of Egx_; in F. They are all simple, and their j-invariants
are zero or of absolute value ¢9.

(C) (Thm. 7.14, Thm. 8.12): Let Lx/K be the subfield of C generated by the
j(z), where Ejx_1(z) = 0. Then Ly - K is the unramified extension of
degree k + 1,2,1 of K, if kK > 4, k = 3, k < 2, respectively. Further,
L /K is unramified at finite primes of K of degree d > k.

Here (A) is rather simple and stated for completeness only, whereas (B) and
(C) are deep. We also have similar results on the forms OEx_, of weight g +1

and type 1, where 8 : f+—— f' + k‘%l f is the “Serre derivative” of a modular
form of weight k.

Let ¢ € A[X] be the polynomial

where z runs through a system of I'-representatives of zeroes z of Ejx_, with
j(z) # 0. Then Ly is the splitting field of ¢k, and it is conjectured that
Gal(Ly/K) is the full symmetric group on the zeroes of @i, provided that k£ > 4.
(For k < 3, the Galois group is smaller for trivial reasons.) Gunther Cornelissen
has proved that @i is always irreducible, and he was also able to show that its
Galois group is as conjectured at least if q is odd and k is even.

These results/conjectures shed new light on the classical situation, too. In the
above-mentioned analogy, special Eisenstein series E x_; ought to correspond
to classical Eisenstein series E,_; with a prime p > 3 and Ly to the field gener-
ated by the j-invariants of its zeroes. Numerical evidence (for p < 89) suggests
that the polynomial

X)) = [  x-ie)

j a zero of Ej_
J#0,1728
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MODULAR FORMS FOR GL(2, F,[T]) 113

is always irreducible with the full symmetric group as its Galois group. Fur-
thermore, the numerator of its discriminant is highly divisible by (almost: the
prime [ = 11 seems to play a special role) all primes [ < 25—1, but also by some
unpredictable larger primes [. Hence a flat analogy of e.g. (C) fails to hold in
the classical case, and more work has to be done to understand ¢,.

It is a pleasure for me to thank the organizers of the KAIST conference for
the invitation to lecture on the present material. I would also like to thank G.
Cornelissen for extensive discussions as well as for help with some numerical
calculations.

1. Notations.
The following notation will be used throughout.
(1.1)

F, = finite field with ¢ elements, of characteristic p

A = F,[T] the plynomial ring over F, with
quotient field K = F (T)

Ko = TFy((m)) the completion of K at the infinite place oo,
with uniformizer 7 = T, ring of integers O = Fy[[r]],
normalized valuation v : K, — Z U {o0} and absolute
value |z| = ¢~ V(@)

C = completed algebraic closure of K, provided with
the unique extension of “| . |”, ring of integers
Oc ={reC | || <1} and
maximal ideal m¢ = {z € C | |z| < 1}

Q = (C — K the Drinfeld upper half-plane, acted upon by

r = GL(2,A).

Recall that C is algebraically closed with F,, the algebraic closure of F, as its
residue class field. For z € C we define the imaginary part |z|; := infzek |z — z|
= mingek,, |2 — z|. It satisfies

(1.2)

az+b' _ |ad—bc[|zI for (ab
i

cz+d|,  |cz+d? cd) € GL(2 Kx).

The “upper half-plane” Q is the set of C-points of a rigid analytic space defined
over K,. In particular, the notion of holomorphic or meromorphic functions
on () is defined. Typical admissible open subsets of 2 are the sets (in fact,
affinoids)

(1.3) D, :={z€0 | q"("“) <lz| =7 < ¢},

which together with their shifts D, , := D, +z (n € Z, z € K ) cover .
Typical holomorphic functions on § are rational functions in z € 2 — P}(C)
without poles on €2, or locally uniform (i.e., uniform on the D,, ,;) limits of such.
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114 ERNST-ULRICH GEKELER

We will adapt a naive point of view and simply write Q, D, , etc., the analytic
structure being understood. More details can be found e.g. in [9], sect. 1.

2. Lattices [5] [15] [10].

A subset S of C is discrete if its intersection with each ball B, ={z € C | 2| < r}
is finite. An Fg-lattice in C is a discrete F,-subspace, an A-lattice a discrete A-
submodule. With each lattice A C C, we associate its exponential function

(2.1) ea(z) = 2] (1 - §).

Here the []' denotes the product over the non-zero elements of A; similar nota-
tion will be used for sums over A. The discreteness condition on A implies that
the product (in arbitrary order) converges, uniformly on each B,, to an entire
function e : C — C. It is surjective, F,-linear, A-periodic, has constant
derivative €}, (z) = 1, and satisfies the identity of meromorphic functions on C:

(2.2) ta(s) = —— = 2D _ g~ 1

ea(z) ea(2) £ z-— A

(2.3) The above properties of e, imply that it has an everywhere convergent se-
ries expansion e;(z) = 35 @27 . We call such functions F,-linear. It is imme-
diately verified that the set of these is stable under composition. Let 7: C — C
be the Frobenius map z — 2%. Then ey may be written as ey = 5_ a;7¢, and
composition of entire Fy-linear functions corresponds to multiplication in the
non-commutative power series ring C{{r}} = {formal series 3" ;7% | o; € C},
where the usual rule ¢ = cr for constants c is replaced by 7c = ¢7. Actually, ex
belongs to the subring Cen: {{7}} of series 3" a;7* that satisfy |a;|r? — 0 for all
r > 0. Note that ey is even a “polynomial” in 7 if and only if d := dimp, A < oo,
in which case deg,(ep) = d.

(2.4) For each Fy-lattice A and k € N, we put
Ex(h) = 307,
AeA

the k-th Eisenstein series of A. It converges always, but vanishes identically if
k # 0 (mod g — 1). For further use, we note the identity

: 2~ _N T Eu(A)F,
(25) ") k}_‘;o k(A)z
which follows from (2.2) by an easy calculation. (Here and in the sequel, we use
the convention Ep(A) = —1.) The function ey = 14037+ - has a composition
inverse '
logp = Z pirt
i>0
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MODULAR FORMS FOR GL(2,F,[T]) 115

in C{{r}}, whose radius of convergence, regarded as a series 3" ;27 in z, equals
the diameter of A, diam(\) := min{|A| | 0 # A € A}. It is an amusing exercise
to show

(2.6) B = —Eyp_y(A) (i 20).

2.7 Proposition. Let A be an Fy-lattice in C. There exists a uniquely deter-
mined series Gi(X) = Gk, A(X) of polynomials over C (k € N) that satisfy the
identity of meromorphic functions

(i) % (z——})\—)k = Gk, (ta(2))-

The Gy, have the following properties (putting G, =0 for k <0):
(i) Gy =X(Gr-1+a1Gr—q+ 02Gr_gz2+---)

(iif) Gy is monic of degree k

(iv) Gk(0)=0

(v) Ge=XFif1l<k<gq

(vi) Gpe = (GR)"

(vi)) X2Gj(X) = kGi41

uX .
(viii) kZZOGk(X)Uk = 1= Xen(a) in C[[X,u]]
() Gu(X)= > BXT™7, ifk=¢ -1.

0<i<j

Here the a; (8;) are the coefficients of ep (log, ), respectively. The Gy, are called
the Goss polynomials of A. Items (i)-(vii) are due to David Goss ([14], ch. VI),
the remaining appear in [6] sect. 3.

2.8 Remark. All the assertions made in the present section remain valid in an
arbitrary field L containing [, as long as only finite-dimensional F4-subspaces
A of L are considered.

3. Drinfeld modules [15] [10].

In this section, A is an A-lattice of finite rank » € N. For a € A, consider the
commutative diagram with exact rows

0 — A — C =A, C — 0
(3.1) la la e}
0 — A — C = C — 0,
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116 ERNST-ULRICH GEKELER

where the left hand vertical maps are multiplication by a and ¢ is defined by
the diagram, i.e., by the functional equation

(3.2) ea(az) = ¢ (ea(2)).

Then ¢2 belongs to C{7}, the ring of “polynomials” in 7, and, for a # 0 of
degree d, has the form

(3.3) ¢2 =a+h(a,A)r+ - lr4(a, A)Tr'd

with I,.4(a, A) # 0, as we see by comparing coefficients in (3.2). The various ¢2
commute in C{r}, and a — ¢2 defines a homomorphism ¢* of F,-algebras
from A to C{r}. Now since C{7} acts on C = G,(C), we get a new structure
of A-module on the additive group scheme G, /C, given by

a* z=¢5(2) (z€0).

Each structure of A-module on G,/C given by an F,-algebra homomorphism
¢: ar— ¢, from A to C{r} subject to (3.3) is called a Drinfeld A-module of
rank r over C. Note that an F,-algebra homomorphism from A = F,[T] to C{r}
is given through the image of T, which can be prescribed arbitrarily. Drinfeld
modules may be defined over arbitrary fields provided with a structure as A-
algebra. There are obvious notions of morphisms and isomorphisms of Drinfeld

modules, and we have the following “Weierstra8 uniformization” result due to
Drinfeld [3].

3.4 Theorem. Fach Drinfeld A-module ¢ over C arises from an A-lattice A as
above, and A — ¢ induces an equivalence between the category of A-lattices
of rank r in C (morphisms c: A — A’ are multipliers ¢ € C such that cA C A’)
and the category of Drinfeld A-modules of rank r over C.

Between the coefficients /;(a, A) of ¢* and the Eisenstein series E;(A) associated
to A, the following relation holds (see e.g. [6] 2.10):

(3.5) a Ep_y(A) = Y Eu_1(Ml(a, M),
i+j=k
where as in (2.5), the convention Eq(A) = —1 is in force. It allows to recursively

determine the E «_; from the I; and vice versa. As a consequence, the function
lj(a,?) on A-lattices has weight ¢’ — 1, i.e., for c € C*,

(3.6) Li(a,cA) = =9 1;(a, A)
holds.

(3.7) We first consider in detail the case [r = 1]. Each rank-one A-lattice has
the form A = ¢- A with some constant ¢. Correspondingly, a rank-one Drinfeld
module ¢ = ¢ is given by ¢4 = T + [1(T, A)7. As results from (3.6), we can
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find a unique lattice A = TA such that its associated Drinfeld module p := ¢*,
the so-called Carlitz module, satisfies pr = T + 7. Here the period 7 is uniquely
determined up to a (¢ — 1)-th root of unity. We choose one such 7 and fix it
once for all. We refer to [15] ch. 3 for a detailed study of p and the role it plays
e.g. in the class field theory of K (which is similar to cyclotomic theory over
the rationals Q).

In order to describe ey and log, for A = WA, we introduce some A-valued
arithmetic functions.

[ = T9-T o (i20)
(38) D; = [li-1e-- e
Li = [’l][’t—l][l] (121) andD0=L0=1.

(The symbol L; appears twice: as a field extension of K and as the above
element of A. We are confident that no confusion occurs.) As is easily verified,

[ = 1IIf (f € A monic prime of degree d|i)
D, = 1f (f monic of degree )
L; = lem{f} (f monic of degree 7).

Furthermore, for A =TA,
1 (=1
(3.9) exr = Z ET and log, = Z _Li_T
120 120

holds. The (g — 1)-th power of the period 7 may be expressed as

71 = [1]E,_1(A) = Za —q

a€A

(3.10) = ‘[”H [z+1] -

’

. a —1
= - pim T G

a€A
deg a<N

which are similar to well-known formulae for the classical counterpart 27 of 7.
(The first of these follows immediately from (3.5), the others are proven in [12]
and (5] IV 4, respectively.) In particular,

[7| = |T|7°T = q7°1.
(3.11) We finally define for 0 # a € A the a-th inverse cyclotomic polynomial
fa(X) = pa(X 1) X7

Here p,(X) is the (commutative) polynomial obtained from p, by replacing 7*
through X?'. Then f,(X) has degree |a| — 1, leading coefficient a and absolute

deg a

€ A[X].
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118 ERNST-ULRICH GEKELER

term f,(0) = leading coefficient of a as a polynomial in T'. For example, f;(X) =
1, fr(X) =TX9 1 +1, fro(X) = T2X9 =1 + (T9+ T) X7~ + 1. Writing

pa(X)= D L@, M)XT

0<i<d

with d = deg a, we have I; € A and deg I; = (d — i)¢'. Using the Newton
polygon, we get the uniform bound |A] < q?l_l for zeroes A of p,(X). If now a
is monic, fo(X) = H (1 = AX), and finally by an easy estimate,

Pa(X)=0

(3.12) fa(z) — 1] < §9° 7D
for all z € C with |z| < 6-¢"#71,0< 6 < 1.

(3.13) Next, we consider the case [r = 2|, A rank-two A-lattice A has the form
A = Awy + Aw,, where wy,wy € C are Ky-linearly independent. Multiplying
by a suitable constant, we can assume A = Aw + A, where w € Q is determined
up to the action of I' = GL(2, A). On the other hand, a rank-two Drinfeld
A-module ¢ = ¢" over C is given by ¢r = T + 11(T, A)T + I2(T, A)72, which we
write as
¢r =T + g(A)T + A(A)T2.

Two pairs (g, A) and (¢’, A’) give rise to isomorphic Drinfeld modules ¢ and ¢’

if and only if -‘ﬁ;— = 9%. We therefore define the j-invariant of ¢ as

) gq+1
Putting I'\ Q for the set of orbits of T on 2, we obtain bijections
(3.14)
classes of rank-two isomorphism classes
r\Q-= A-lattices in C, =, { of rank-two Drinfeld § — C,
up to scaling A-modules over C

given by z — A, := Az + A, A —> ¢", and ¢ — j(¢), respectively. We thus
think of j : T\ Q =, C as a moduli space for rank-two Drinfeld A-modules
over C. Of course, the above reminds of the setting of (elliptic) modular forms
for the group SL(2,Z), and the notation chosen is intended to underline the
analogy.

4. Modular forms [14] [4] [5] [6].

Before formally defining modular forms for I', we describe the moduli space
r\Q =, C < P}C) and a uniformizer around the “cusp” co. (Although the
symbol “co” is used twice for the infinite place of K and for the cusp, i.e., the
point at infinity of P!(C), the context will always distinguish the two meanings.)
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(4.1) First note that v permutes the subsets D, , of @ and acts with finite
stabilizers. Therefore, the quotient of {2 by I' exists in the category of analytic
spaces, and has as C-points the point set I \ . We define an elliptic point of
I’ as some z € Q such that I', := {y € ' | vz = z} is strictly larger than the
generic stabilizer {(30) | a € F;}. We have:

(4.2) There is precisely one I'-orbit of elliptic points, namely the orbit of Fz — F,
— Q. For each elliptic point z, the stabilizer I", is isomorphic with IF;2, a cyclic

group of order ¢% — 1.

In other words, the projection § — I' \ Q is unramified off elliptic points, and
2

is ramified with index ¢ + 1 = E% at the elliptic points. Going through the

constructions of (3.14), we see that z is elliptic if and only if j(z) = 0.

(4.3) Next, let ¢ > 1 and Q. = {z € C | |z|; > c}. If c lies in the value group
qQ of C (which we always assume), §), is an admissible open subspace of 2. It
follows from (1.2) that v(2,) N Q. # 0 implies y €T = {y €T | yoo = 00} =
{G 5) € I'}. Hence ', \ Q. injects into I' \ 2 as an admissible open subspace.
We put

1 ;1

(44) t(Z) = m =7 T(z)’

which is holomorphic on 2 and invariant under shifts z — z + b, b € A.

4.5 Lemma. (i) Let z € Q be such that |2| = |z|; = ¢* € with0<e<1,d € Z.

Then
log [t(z)] = —¢%(;%—¢ (d>1)
—d—(q—ﬂ—l—e) (d<0).

(ii) If z € Q has imaginary part |z|; > 1, the absolute value |t(2)| depends only
on |z|; and satisfies

|2li < —log, [t(2)] < colzl:
with some constant co > 1 independent of z. Therefore t induces an isomor-
phism of A\ Q. with some pointed ball B, — {0} of radius r = r(c).

Proof. [6] 5.5+ 5.6. O

Now the transformations on © and 2, induced by I',, are products of shifts
z +— z+b (b € A) and multiplications z — az (a € F};). Furthermore,
t(az) = a='t(2), whence 197 : Too \ Q, —> B, — {0} with 7’ = r(c)9~!. Glue-
ing the cusp oo to I'\ =, C therefore corresponds to filling in the missing

point in our pointed balls, and s = t9~! may serve as a uniformizer around oco.
Here is the picture.
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By —{0} <& To\Q — I'\Q =% C

(46) 1 1

B, < o — PY(C)

We may now make the following

4.7 Definition. A modular form of weight k and type m for T' = GL(2, A) is a
function f : & — C that satisfies

() fOrn) = &8 f(2) (v= () eD);

(ii) f is holomorphic on ;

(iii) f is holomorphic at infinity. That is, for |z|; large enough,
f may be expanded as a convergent power series f(z) =Y a;t*(z).

We define the order of f at 0o as v (f) = vanishing order of the power series

in t. We further let My ,,, be the C-vector space of modular forms of weight

k and type m. Then M, := @Mkyo and M = @Mk,m are C-algebras
k>0 k>0, m( mod ¢g—1)

graded by Ny and Ny x Z/(q — 1), respectively.

4.8 Remarks. (i) Since det v € A* = Fy, the type m depends only on
m (mod ¢ —1).

(ii)) If m = 0 (mod g — 1), any f subject to condition (i) is invariant under
I'so and therefore has an expansion with respect to s = t2~!. This is not so in
general.

(iii) The existence of a non-trivial modular form of weight k and type m implies
that k = 2m (mod g — 1), as results from looking at v = (39).

(iv) In general, the expansion Y a;t* of f will not converge on all of 2. Nonethe-
less, the coefficients a; determine f uniquely since €2 is connected as an analytic
space. By abuse of language, we often write f = 3 a;t".

Some examples of forms of type 0 have already appeared.

4.9 Examples. (i) Let 0 < £k = 0 (mod ¢ — 1). The Eisenstein series

Ek A Ek(Az+A) = agAm
Conditions (i) and (ii) of (4.7) are easily verified, and the series expansions are
given e.g. in [13] sect. 2 and [6] 6.3.

(i) Let 0 # a € A and i > 0. The function l;, : z — l;j(a,Az+ A) is a
modular form of weight ¢* — 1 and type zero. In particular, g = li 7 € Mg_1,0
and A =l € My2_1. This may be seen, modulo (i), by expressing ; , via
(3.5) as an isobaric polynomial in the Eisenstein series E ;. E.g., g = [1]E;—1,
A= [2]E 2_1 + [1]qutll

~

is a non-zero element of My .
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(iii) It is less easy to find examples of forms with non-trivial types. Here is one.
Let H be the subgroup {(2?)} of I, and consider the Poincaré series

-y (”*d) m(y2) (v = ().

YEH\T

The sum is well-defined, since the v-th term depends only on the class of v in
H\T. It converges and gives rise to some 0 # Py ., € My, provided that
k>0,k=2m (mod ¢g—1) and m < qil

For a modular form 0 # f and z € 2, we let v,(f) be the vanishing order of f at
z, which depends only on the orbit of z. The next result is similar to Théoréme
3 in ch. II of [17] and may be proved by a rigid analytic analogue of contour
integration [11] pp. 93-95; a different proof is given in [5] V.5.

4.10 Theorem. For 0 # f € My, m, the following relation holds:

* ve(f) VOO(f)_ k
ZEXF\:QVz(f)+q+1+ q—l _qg_la

where the left hand sum 3" is over the non-elliptic I'-orbits in ) and e is some
fized elliptic point.

Putting h := Py1,1, we obtain the vanishing orders given in the table

(4.11)
Ve | vz, z non-elliptic | v
g1 0 0
h|O 0 1
Al O 0 q—1

Also, Ep2_; has precisely one zero z mod I', which is non-elliptic, and corre-
sponds to j(z) = [1]. Further, Mpo = C, h?~! = const.A, and the next result
is an easy consequence.

4.12 Corollary. (i) (D. Goss [14]) My = C[g, 4],
(i) M = C[ga h];
where {g, A} resp. {g,h} are algebraically independent.

The t-expansions of these forms and also of the Eisenstein series may be effec-
tively calculated and turn out to be A-valued after a trivial normalization. We
first state the result for A.

4.13 Theorem. A(z) has the product expansion, which converges locally uni-
1
formly for |t| < g” - 1:

7T Az) = —t97! H fa(t)@ D=1,

a€A monic
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122 ERNST-ULRICH GEKELER

The formula is proved in [4]. It is similar to the product g [](1 — ¢™)?* for the
elliptic discriminant: even the exponents (g% — 1)(g — 1) and 24 have a common
interpretation through values of the zeta functions of K and @, respectively ([5]
VI1.4). The radius of convergence comes out from (3.12). Note that, in view of

fat) =1+ o(tqdeg a_l(q_l)), the product converges formally in the power series
ring A[[t]]. Hence the coefficients of 717 A(z) lie in A. A similar assertion is
true for the Eisenstein series.

4.14 Theorem. Let k € N be divisible by g — 1. Then

7 kE, = Zaiti with certain a; € A (i > 1) and 0 # a9 € K.
i>0

A more precise description of the t-expansion of Ej is given in [6] 6.3. In
particular
7199 = T 9(1E,1 € A[l].

This motivates to rescale our basic modular forms g, A by putting
— _1_a2
(4.15) Gnew ‘= 7 qgold, Apew = 1~ JAVER

Only this new normalization will be used from now on.

5. Integrality and congruence properties.

(5.1) Let f be a holomorphic A-invariant function on €, e.g. a modular form. We
define the differential operator 8 as f — 0f := 7! %, which on t-expansions
is —t?4 as results from (2.2). We further put

E = % and O f :=0f + kEf (f € Mym).

The relevant properties of E and Ji are collected as follows. Proofs are given
in [6] sect. 8.

5.2 Proposition. (i) E satisfies the functional equation

(cz +d)? c

Y B() - ————
det ~ 7 det ~

(ii) E(2) = Z at(az) =7 ! Z azazl—}—b'

a€A monic a monic bEA

ab

E(yz) = (cz+d) undery=(2]) €T.

5.3 Proposition. (i) f € My m = Ok f € Mrt2,m+1
(ii) fi € M, m, (i = 1,2) = Ok, 4k, (f1 - f2) = Ok, (f1) f2 + f18k,(f2)

We therefore regard @ = (0x) as a differential operator of weight two on the
graded C-algebra M. Now the spaces of f € M1 (resp. f € Mgp_1y)
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with voo(f) > 0 have dimension one, which gives the following identities up to
multiplicative constants. These constants are determined by comparing leading
terms.

5.4 Theorem ([6] Thm. 9.1). g = h and h?~! = —A.

In the next table, extracted from [6] sect. 10, we give the first few terms of
these functions.

5.5 Table.

expansion with respect to s = ¢t~ 1
g | 1—[1s+[1)s? 7t —[1]s7 — [1]2s7 T 4 o(s29 ~24+1)
h/t | —1—s9"1 4+ [1]s7 — %972 + 2[1]s%7 1 — [1]25%7 + o(s%777)
A | —s+ 57— [1]s9H! — 59 9L L 50 4 o(sT 1)
E/t ]| 14571 +5%772 - [1]s°7 1 + 0(s%073)

We define My ,(A), Mo(A), M(A) to be the respective A-modules of modular
forms having t-expansions with A-coefficients. By the above, h € Mg;1,1(A),
and from (4.12)-(4.14) we derive:

5.6 Corollary. My ,(A) is an A-structure on the C-vector space My y,. Fur-
thermore, My(A) = Alg, A] and M(A) = Alg, h].

It is convenient to also scale the special Eisenstein series of weight ¢* — 1 as
follows. For k > 0 define

(5.7) gk 1= (—1)k+171—ququk_1.

Combining some of the preceding material ((2.6), (3.5), (3.9), 4.14)), we arrive
at the following description of g.

5.8 Proposition. gx has absolute term 1 and coefficients in A, and satisfies
the recursion

gk =gk 19" —[k—1geoA? = (k>2)
withgo =1, g1 = g.

For what follows, we fix a prime p of A of degree d and with residue class field
F, = A/p. Reduction (mod p) and everything derived from it will be denoted
by (7). We consider congruences (mod p) of modular forms, i.e., of their ¢-
expansions.

5.9 Proposition ([6] 6.11). For k > 0, we have

eralt) = ge(t7)  (mod p).

In particular, g3 = 1 (mod p).
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124 ERNST-ULRICH GEKELER

Next, we let A,y be the (non-completed) localization of A at p and M, the
subring of M(A)® K of forms with p-integral coefficients. We want to determine
the image M of the canonical map

My = Ag)[[tl] — Fpl[t]]
In order to do so, we need the polynomials Ax(X,Y), A;(X,Z) over A well-
defined through the conditions
Let ¢ be the generic Drinfeld module over A[g, A] defined by
¢r =T + gt + AT?,

where g and A are considered as indeterminates. If for the moment p is the
monic generator of p, we write

$p= D lipr,

0<i<2d

where ; , = F; ,(g, A) with some polynomial F; = F; , € A[X,Y]. The proper-
ties of Ag, A}, Fi given below are consequences from (5.4), (5.8), (5.9) and the
commutation rule ¢, o ¢ = ¢ o ¢, in Afg, Al{7}.

5.11 Proposition. (i) Ax(X,Y), A} (X, Z) and Fi,(X,Y) are isobaric of weight
q* —1, where the variables X, Y, Z have weights g—1, ¢ —1, g+ 1, respectively.
(i) Ap(X,~2971) = A}(X,2)

2

(iii) Ao =1, Ay = X, Ap = Ap1 X7 — [k — 1) Ap_p Y9

(iv) Fo = p, F1 = 32X,

[K|Fy = XF{_ - X9 "B\ + YFL, - Y" " Fy (k2>2).

(k>2)

5.12 Proposition. Axq = A‘}cd - Ag (mod p)

We are especially interested in the polynomial Fy(X,Y) and its reduction
Fy(X,Y) (essentially the “Hasse invariant of rank-two Drinfeld modules in char-
acteristic p”), whose meaning we briefly describe. Recall that (™) is reduction
(mod p). Regarding g, A still as indeterminates, but now over Fy,

q~ST =T+ gr+ Ar? € Fy(g9,A){7}

defines a rank-two Drinfeld module ¢ on the A-field Fy(g,A) of characteris-
tic p. Inserting specific values go, Ao for g,A yields a Drinfeld module, say
$(90:20)  over the field they generate. The fact that Fj;(go,Ao) = 0 now says

+1
that ¢(9020) is supersingular [7]. This implies e.g. that j(¢(9020)) = ii—o— lies
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MODULAR FORMS FOR GL(2,F,[T)) 125

in the quadratic extension of Fy.

Let € : Fp[X,Y] — Fy[[t]] and €* : Fy[X, Z] — Fy[[t]] be the homomorphisms
that map X, Y, Z to the expansions (mod p) g, A, h of g, A, h respectively.
We can now answer the question about M asked above.

5.13 Theorem ([6] 12.1). (i) Aq = Fy,, i.e., Ay = Fyp (mod p).

(i) The kernel of € is the principal ideal in Fy[X,Y] generated by Ag(X,Y) —1.
Similarly, ker €* = (A%(X,Z) = 1). Hence My = Fy[X,Y]/(Aa(X,Y) —1) and
M = F,[X, 2)/(A5(X, 2) - 1).

5.14 Remark. Assertion (i) states a certain relation between the special Eisen-
stein series g4 and supersingular j-invariants for rank-two Drinfeld A-modules
in characteristic p, where p is a prime of degree d. Checking supersingularity is
most easily performed using the polynomial Ay, whose calculation is consider-
ably simpler than the one of Fg,, and depends only on d but not on p itself.

Note also that £y ,(X,Y) — 1 € ker ¢ means that the t-expansion of Iy, is con-
gruent to the constant 1 (mod p).

The rings My and M are further discussed in [6] sect. 12. These rings are
normal, i.e., Dedekind rings, and their spectra are p-fibers of certain modular
curves.

6. Zeroes of Eisenstein series.

(6.1) In this section, we consider the set {z € 2 | Ex(z) = 0} of zeroes of Ex on
Q, where k is divisible by ¢ — 1. It is stable under the action of ', and consists
therefore of the full reciprocal image of a subset of C under j: Q@ — C. Such
z € § or their j-invariants j(z) are referred to as z-zeroes or j-zeroes of Fj,
respectively. From (4.10) we see that the set of j-zeroes is finite.

6.2 Lemma. Let e €  be an elliptic point. Then Ey vanishes in e if and only
if k is not divisible by ¢ — 1.

Proof. The “if” part follows from (4.10) and v (Ex) = 0 (or directly from the

automorphy condition applied to a suitable v € T'.). Suppose k = 0 (mod ¢* —

1). Without restriction, e € Fp2. Then Eji(e) = Z a* = B (A®) with
a€A®?)

A® = Fq2[T], and the assertion follows from the next lemma upon replacing ¢

by ¢>. O

6.3 Lemma. Let k € N be divisible by ¢ — 1. Then Ex(A) # 0.

Proof. In K, we have (mod 7) : Ex(A) = Z a k= Z 1=—1. O
a€F; a€Fy
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126 ERNST-ULRICH GEKELER

We next put
(6.4) F={2€Q | |z|=|zli 21} and Fo = {z € Q | |z]| = |2|; =1},

which are admissible open subsets of 2. We further define a sequence of sub-
groups I'; of I as follows:

To=GL(2,F,), [y ={(}}) €T | a,d € F}, deg b< i}, i > L.

Then T', = stabilizer of co € P}(K) = U r;.
i>1

F is as close to a fundamental domain for I" on §2 as is possible in our situation.

6.5 Proposition. (i) Fach element of Q is I'-equivalent to some element of F.
(i) Let z, 2" = vz (v € T') be T-equivalent in F, k := [log, ||| the greatest integer
less or equal to log, |z|. Then v € T'. In particular, |2'| = |z| = |2|; = |2'|;.

Proof. (i) Let z € § be given, and suppose that |2]; < 1. Applying some
(3%) € T'w, we can achieve that also [2| < 1. If log, |2| ¢ Z then |z| = |2};,
hence |z = |27 =|2| ' = |z|;' > 1land 27! = g(l))z € F. If log, |z] € Z,
the formula |271|; = |2|72|z|; shows that |z71| > |z71|; > ¢?|z|;. After a finite
number of steps we thus arrive at some 2’ = vz with |2/|; > 1. Again applying
some (3%) € T if necessary, we get |2/| = |2']; > 1.

(i) This is a consequence of (1.2) and |cz + d| = max{]c|#|,|d|} for (Zs) el
O

The next result is proved in [8] Thm. 2.17.

6.6 Theorem. For z € F, we have

log, |i(2)] = q%g—e(g—1)) if|zl=]z;>1
< q if |2 = |2 = 1,

where, as in (4.5), |z| = |2li = ¢ € withd e N and 0 < e < 1.

Note that log, |j(2)| only depends on |z|; as long as |2|; > 1. Further, log, |j(2)| =
glz); if log, |2|; € N, and its values for non-integral log, |2|; interpolate linearly.

6.7 Proposition. Let k € N be divisible by ¢ — 1. The Fisenstein series Ej
satisfies |Ex(2)| < 1 for z € F with equality if z € Fo. In particular, the set of
z-zeroes of Ey is contained in Fo. Each j-zero j(t) satisfies |j(2)} < ¢7.

Proof. For a,b € A and z € F, we have |az + b| = max{|az|,|b]} > 1, from
which |Ey(z)] < 1 results. If moreover z € Fy, |az + b| > 1 for (a,b) # (0,c)
with ¢ € F,. Hence

B (z |Z (az+b 'Z k{=1

ceFy
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The last statement follows from (6.6). O

6.8 Remark. The zeroes of Eisenstein series in general fail to be simple, for
essentially trivial reasons. Let for example k = a(q — 1) with 1 < a < ¢. From
dim Mo = 1, Ey = const. EJ_, (in fact, By = (—1)*t'EJ_,), and thus has
an a-fold zero at elliptic points. Other multiple zeroes arise, of course, from
Epr = EY (p = char(F,)). A less trivial example is given in (6.12).

(6.9) We next discuss how to calculate the Ey. Recall that Ei(z) = Ex(A;) with
A, = Az + A, and so the identities of sect. 2 may be applied. Write e, for the
exponential function e, associated to A, by (2.1) and log, for its composition
inverse. They have expansions

e:(w) = Y ai(2)w?, log,(w) =Y Bi(z)w?,
i>0

where the coefficients a;, 8; are holomorphic in z (actually, modular forms of
weight ¢* — 1 and type 0). From

ex(w) = (= 3 Ei(2)w') (O aj(2)w?),

i>0 >0

e.(w)

w =

we get the relation, valid for k£ > 1:
(6.10) Ei(2) + 01(2) Ek41-g + @2(2) Bky1-2 + - =0,

where as usual, Ey = —1 and Ex = 0 if £ < 0. It allows recursive calculation of
the Ey from the a;, which in turn are determined through the §;, i.e., special
Eisenstein series. Viz.,

(6.11) Y Bl =0 (k21).
i+i=k
We illustrate this by the following example.
6.12 Example. Let k < ¢® — 1 be divisible by ¢ — 1. From (6.10),
Ey=—a1Epy1-q— 0oEpy1_g2.
Further

+1 +1
oy =—-p1=E;1, ag=-fo+B]" =Ep_+E]T],

thus
— q+1
Ek = _Eq~1Ek+1—q - qu—lEk-}-l—qz - Eq—lEk+1—q2'

Similar recurrence formulae may be written down for larger k. More specifically,
consider k = 2(¢q? — 1). We have

Eygr-1y = - q—l(—Eq—ilEqu—zq ~ Eg_1Ep_g— E{Y1Ep_,)
—Ezz_l ~EMEp,
= DLy
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128 ERNST-ULRICH GEKELER

using E,; = E] and Ejg-1) = ——Eg_l. This somewhat mysterious identity is not

forced by dimension reasons since dim Ma(42_1),0 = 3. It would be interesting
to know which subscripts k give rise to similar identities, i.e., for which tuples
ki,... ks, l1,...,l; subject to D" k; = )" 1;, we have a relation [ Ex, = [[ Ei;
up to sign.

7. The polynomials ¢, and .

In the present section, strongly influenced from [1], we study in more detail the
special Eisenstein series Egx_; or rather the g = (—l)k‘Hfl_qk LyEge_;.

We first define the one-variable version of the polynomial Ax(X,Y") of (5.10).
7.1 Lemma. Ay, considered as a polynomial in X, is monic of degree

(¢* —1)/(g—1). It is not divisible by X if k is even, and exactly once divisible
by X if k is odd.

Proof. Obvious from (5.11). O
For what follows, we let x, A, 4 : N — Ny be defined by

x(k) = 0 foreven and x(k) =1 for odd k

k—1 k
¢+ (=1
Mk = e - 7
(7.2) (k) o)
k _ ax(k)
¢ —q
k) = 11 .
(k) 71
We further put
_ Ak(XaY)
Pk = X ®ys®

By the lemma, ¢ is a monic polynomial of degree p(k) in 5q7+1 By abuse

of notation, we also use “X” as the indeterminate of ¢ = pr(X). Its crucial
property (which follows directly from its construction) is

(7.3) gk = W A*F) g, (5).
Further, for non-elliptic z € 2, we have the equivalence
ok (4(2)) = 0 & g(2) =0.
7.4 Proposition. We have o9 = ¢1 =1 and for k > 2
or(X) = X P 1 (X) - [k — pr—2(X).
Proof. Translation of (5.11) (iii). O

Note that the quantity (k) is strictly larger than pu(k — 2) = deg wr—2, and
therefore no cancellation takes place in the formula.
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7.5 Example. The first few @i are oo =1 =1, po = X - [1],
by = X1-[]XT1- 2
pr = XU X7 - [2X7 -0 — [3X + [1][3]
@y = Xo+a_[1]x9’+a-1 _[2]x9° — [3]X9° -+
+[1)3]X9° 0" +a-1 _ [4] X9 4 [1][4] X 91 + [2](4].

As in section 5, we let p be a prime of A of degree d with residue field F, and
reduction map ¢ — Z. Translating (5.12) (or directly using induction from
(7.4)) yields

7.6 Proposition. For k > 0, x satisfies the congruence
orra(X) = Xx(k))\(d+1)(pzd(pd (mod p). O

7.7 Theorem. (i) The polynomial @4 is square-free. Hence pq4(X) = [[(X —3),
where j runs over the non-elliptic j-zeroes of g4.
(ii) All the z-zeroes of ga (and thus of Eqa_;) are simple.

Proof. (i) It is shown in [6] 11.7 that the polynomial Fy, of (5.10) is square-

free, hence also its dehomogenized version Fy ,(X,Y)/Y™ X8 -m(q®-1))/(q-1)
which is a polynomial f(-)i;l) in %ﬂ Here deg = deg Fyp, = ¢ — 1 and
m = max{i | i(¢> — 1) < deg}. But F;, = 44 (5.13), and so $4(X) = f(X) is
square-free, too, as well as pq4(X) itself.

(ii) Let 29 € € be non-elliptic. Since the j-invariant j : 8 — C is unramified
in 29, we have ord,,gq(2) = ord(,,)®a(j), which is < 1 by (i). Let now e be
an elliptic point. From (6.2) we see that g4(e) = 0 if and only if d is odd. The
precise vanishing order v.(gq) = 1 (for d odd) results from (i) and (4.10), since

#{j #0 | jajzero of ga} = deg g = p(d) = *8gles — 2o O

7.8 Remarks. (i) As the proof shows, ¢4(X) = [[(X — j), where j runs
through the supersingular invariants j # 0 of rank-two Drinfeld modules in
characteristic p. Hence the j-zeroes of g4 provide a canonical lift of these to
the generic characteristic. This also gives a canonical way of identifying the sets
>~ (p) of supersingular invariants in different characteristics p of the same degree
d.

(ii) An alternative proof of the theorem, which avoids the above congruence
and supersingularity considerations, may be given as follows ([5] VIL.3, [1] I
3.4): Suppose zp € F is a zero of Eja_;. Then we know from (6.7) that |2| =
|26|; = 1. Hence for a,b € A, |azp + b| = max{lal,|b|}, and we can estimate the

terms in d—‘i—Eqd_l(zo) = Z,m, which eventually yields ';—qud_]_(Zo) # 0.
a,b

We already know from (6.7) and (7.3) that the roots of ¢ (X), i.e., the non-zero
j-roots of g, are < ¢7 in absolute value. In fact, equality holds.
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7.9 Proposition. All the roots z of i (X) satisfy |z| = ¢7.

Proof. 1t suffices to verify that the Newton polygon of ¢y over K is a straight
line with slope q. More explicitly, write

(pk = Z akﬂ:X”’(k)"i‘
0<i<u(k)

Then it is straightforward from (7.4) that
(i) —v(pk(0)) = deg(px(0)) = q-deg pr and
(i) —v(ak ;) = deg(ak;) < ¢* for all 4,

which yields the result. [

7.10 Questions/Remarks. Concerning the polynomials ¢, and their splitting
fields Ly over K, several natural questions arise, which have obvious analogues
for classical Eisenstein series over Q.
(i) Is ¢k always irreducible?
(ii) Is the Galois group Gal(ypy) the full symmetric group?
(iii) Which places of K are ramified in Ly, and what is the discriminant

D Li/ k!

The “classical” counterpart for ¢y, is (for a natural prime p > 3)

wp(X) = [I(X - 3),
where j runs through the non-elliptic (i.e., j # 0,1728) j-zeroes of E, 1(z) =

Z l(a—erlT)m. For p < 89 (for all p?), ¢, is irreducible over Q with the full sym-
a,beZ

metric group Sqeg o, as its Galois group, as has been checked by G. Cornelissen,
using MAPLE. In our function field situation, we have: ¢y is irreducible over
K. Furthermore, Gal(px) = Sdeg o, at least if k£ > 4 is even and ¢ is odd [2].
The case k = 3 is degenerate and yields the affine group {(3}) | a € F}, b€ Fo}
over F, as Galois group of @3 ([1] 1.6.2). For k < 2, deg ¢x < 1. Question (iii)
will be dealed with below; see also (8.11) and (8.12).

7.11 Definition. For k € N, put
Dy = H [i]P(0) — (D) =x (k=)
o<i<k
Based on numerical calculations, G. Cornelissen conjectured that, up to a con-
stant in Fy, Dy = disc(px). A first step into this direction is
7.12 Proposition. |disc(yx)| < |Dkl-
Proof ([1] 1.7.3; beware of misprints!). We have

(*) Idisc(pr)| = H |z —y| < H ¢ = qqu(k)(u(k)—l)_
TH#Y

zAY
Pr()=0=yp(y)
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After a lengthy but elementary calculation,
Dkl = ] q? (R =) =x (k=)
o<i<k

evaluates to the right hand side of (*), which gives the result. O
7.13 Example (loc. cit. 7.2). tdisc(p3) = D5
Proof. p3(X) = X9 —[1)X97! — [2], hence the equalities up to sign

disc(e3) H p3(z H[l]:cq_2 =192 ? =Ds. O

w3(z)=0

We next show that disc(yx) and Dy have the same finite prime divisors.

7.14 Theorem. Let p be a prime of A of degree d and k > 3. The reduction
@k of v (mod p) has multiple roots if k > d (except for (q,d, k) = (2,2,3)) and
is square-free for k < d.

Proof. The assertion follows for k > d from (7.6) and for k = d from the proof
of (7.7), i.e., the fact that @, is the square-free supersingular polynomial. For
the case k < d (actually, k < d: we therefore get a second proof for k = d), we
use a variant of the argument given in [6] Thm. 12.6.

It suffices to show that the plane affine curve over F, defined by Ax(X,Y) =0
is non-singular off (X,Y’) = (0,0), as long as k < d. Here and in the remainder
of the proof, we suppress the (7) for “reduction mod p”. This is checked directly
fork=1or2. (A; =X, Ay = X9 —[1]Y.) For k > 3, we have

FAX)Y) = FAi  Ca (k- 1]3%/%—2 yd?
FAXY) = Fh- XU —[k-1F A, YT
Hence
0 0
(%) bYAk(X, Y)= BYAk(X Y)

is equivalent with the matrix equation

2 A1 XA xa7 0
ok F) k—1 ) k—2 ) B — ( ) .
(x+) ( %(Ak—l £Ak—2 k- 1]ye™’ 0
If Vi denotes the 2 x 2-determinant in (**), an elementary calculation left to
the reader yields

Va=[1], Vir1 = [k = 1Y Vi (k> 3).

Taking into account that “Ax(X,0) =0= X =0” (7.1), we now use induction
to prove the statement

S(k): “(x) implies (X,Y) = (0,0)”.
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This turns out to hold as long as [k — 1] # 0 (mod p), i.e., as long as k < d
(3.8). The proof is finished. O

Comparing with the definition of Dy, we see that Dy, and disc(px) have the same
finite prime divisors. In particular, the splitting field Ly of ¢y is unramified at
places p of A of degree d > k.

Similar considerations that led us to the properties of the zeroes of gx may also
be applied to the functions

(7.15) hk = 6gk.

7.16 Proposition. (i) The two series (hi) and (1hi) (where 1hy := %’1& ) satisfy
the same recursion

he=hi_1 g7 —[1he—2A? (k> 2)

as the series (gx), with initial conditions ho =0, hy = h and 1hg =0, 1hy =1,

respectively.

(ii) 1h1 = 2h] with some shy € Myx_1 o that satisfies
ohik = 2hi_19? —[k— l]g—lhk_gA‘lk—3

2ho= 0, 2h =1

(k>2)

Proof. Immediate from applying the differential operator 9 to (5.8), and using
the fact that taking g-th roots is well-defined and additive. O

]
Let now By (X, Z) € A[X, Z] be the unique polynomial such that By(g,h) = hk.
From (5.10) and 0h = 0, we have

0 0
Bk(X, Z) = ﬁAZ(X, Z)Z = an-Ak(X, '—'Zq—l)Z,

1

Note that ohy has its coefficients in A[T9 | = F,[T9

where %Ak(X ,—Z971) is homogeneous of weight ¢* —q. (As usual, the weights
of X and Z are ¢—1 and q+ 1, respectively.) The largest power of Y := —Z9~!
of weight < g* — ¢ is Y#(RF)—x(k+1) and

ax Au(X,Y) X+

y iR —x(es1) — Polynomial in times XaX(k+1)

We therefore define the polynomial ¢ by

Xq+1 Bk(Xa Z)
(7.17) Y ( Y /T yrm—x(k+D) . xax(k+1) . 7’

which is similar to the polynomial ¢, of (7.2). It has the properties analogous
to (7.3) and (7.4):

(7.18) Ry = gX D) L ARR)=x(k+1) L p g ()
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and for non-elliptic z € ),
d)k(_j(z)) =0« hk(z) = 0;

Yo =11 =1, and for k > 2,
r(X) = XAE=CD (X)) — [k — o (X).

The first few of them are ¢, = 1, 3 = X9 — [2],

(7.19)

Ya = X7 —[2X779 3]
Py = XTI [2]X9 - [3] X9 -0+ — [4]X7 + [2][4].

Also, one shows without difficulty:

(7.20) 1k is monic of degree deg ¥ = deg ¢x — x(k + 1) = p(k) — x(k + 1)
and deg(¥x(0)) = q - deg k. Further, writing ¥ (X) = Y ax,; X948 ¥+~ with
a; € A, we have deg ar; < ¢i. Hence again the Newton polygon of v is a
straight line of slope ¢, and the next result follows.

7.21 Proposition. All the roots z of Yr(X) and hence all the j-zeroes x # 0
of hi, = Ogx, satisfy |x| =q?. O

7.22 Remark. The 1 are g-th powers of polynomials with coefficients in
F, [Tq—l]. Since for non-elliptic z, v;(hx) = ord;(,)¥x(j), this is in keeping with
the fact that all the v, (hy) are divisible by q. We shall see later (8.14) that v, (hx)
actually equals g for all zeroes z of hx. We also note that the present v slightly
differ from those ¢)C defined in [1]; the relation is ¢ (X) = XX(*k+Dyy (X).

8. Location of zeroes of special Eisenstein series and of their Serre
derivatives.

We already know that all the zeroes z € F of gy and hy satisfy z € Fo, i.e.,
|z| = |z|; = 1, with |j(z)] = 0 or ¢?. Here we investigate how the zeroes are
distributed in Fy. First note that C has Fq, the algebraic closure of F,, as its
residue class field. For z € O¢c = {z € C | |2| < 1}, we have

z€Fy & 3z0€F,—F,such that |z —z| <1

(8.1) < red(z) ¢ Fy,

where red : O¢ — O¢/me = Fq is the reduction map. The idea is to
approximate Ey(z) by the truncated series

~ / 1

Ek(Z) = m and
a,beF,
(8.2) .
— _ -1 _
wt(z) = e; (z)—zz_a
a€A
by
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134 ERNST-ULRICH GEKELER

() =egl(2) = 3 —

’
zZ—a
a€F,

which at the same time may be considered as reductions mod m¢ of FEy, e;‘l,
respectively. We therefore deal first with these “finite Eisenstein series”, i.e.,
lattice sums over finite-dimensional F,-lattices.

8.3 Proposition. Let k be divisible by ¢ — 1. Then as rational functions,
Ei(2) = —(1+ Gk(D)),
where G (X) is the k-th Goss polynomial attached to the Fg-lattice Fy. We have
_ k—1-i(g—1) i yk—i(g—1)
NP SR (—1yixk=slaD),
0<i<(k—1)/q

and in particular,

Gpa(X)= S x7 -7

0<i<k
Proof.
) / 1
Bue) = Y0+ Y =143 Y
beF, aeﬂl" bEF, (az +b)f a b (2 + b/a)*
= - Z ———— = —1—Gi(t) by (2.7) ().
k
p (z+b)
Furthermore,
uX uX
I;)Gk X)u 1—Xe]1rq(’U,)—1—X(u“’uq),

which yields the stated Gx(X) upon expanding the geometric series. Analyzing
the binomial coefficients in G;(X) for [ of the special form | = ¢*—1 (or applying

(2.7) (ix), combined with logg_(z) = Z z"i) gives the last formula. O
i>0

8.4 Proposition. For z € Fy we have:

Ep_1(2) =04 2z € Fperr — Fy,
and all the roots are simple.
Proof. Let z € Fy. Then

Bpi()=0e1+ Y i(2)7 7 =0
0<i<k

& Z e%z (2) = 0 (since z ¢ F, and therefore £(z) is finite and non-zero)
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MODULAR FORMS FOR GL(2,F,(T)) 135

@z=27"" as er,(2) =z — 2%.

Using again (2.7), parts (vi) and (vii), and £¥(z) = —t%(z), we have for
29 € Foet1 — Fy, to = t(20):
& Bpor() = ~Gly (o) = Gello) = B’ #0,
i.e., the simplicity of the roots. [
/ 1 )
We now come back to Egx_; = a%:A m itself. Let z € Fy be a zero.

If at least one of a,b is non-constant, the term (az + b)l"qk is less than 1 in
absolute value. Hence, modulo m¢,

0=Egx_i(2)= Y

a,beF,

/ 1 ~
@y = B,

ie, z = 290 € Fges1 — Fg. On the other hand, given 20 € Fgrs1 — Fy, we
have Egx_1(20)| < 1 and | £ Epx_1(20)| = |§Z—Eqk_1(z0)| =1, hence by Hensel’s
lemma, there exists a unique zero z of E x_; congruent to zo. We have therefore
proved the following theorem.

8.5 Theorem. For each zg € Fyx+1 — Fq, there erists a unique zero z € Fo of
Egk_y that satisfies |z — 29| < 1, and these are all the zeroes of Egx_y in F. O

Note that the above also gives an independent proof of the simplicity of zeroes
of special Eisenstein series.

8.6 Corollary. Let z € Fy have red(z) = z € Fy — F,. Then

lgr(2)] = 1, if 20 € Fgenr
< 1, ifzxe ]Fqk-H.

Proof. The constant comparing Eg«_; and gx = (=1)k+izi=a" L, . Ex_; has
absolute value 1. The result now follows from |Egx_;(2)| < 1and |Eg_;(2)| < 1
= Eqk_l(zo) =0. O

8.7 Corollary. In the same situation,

i)l = ¢ ifz &Fp
< q9, ifZ()EFq2.

Proof. This follows from j = 9—2—1 and |A| = ¢~ 7 uniformly on Fy ([8] 2.13,
where the equivalent formula log, |Ao| = ¢* is given). O

For the convenience of the reader, we give a list with the logarithms of absolute
values of the relevant functions on Fy.
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136 ERNST-ULRICH GEKELER

8.8. Table
[ f | log, |f] on Fo | log, |f(2)| depending on 2z = red(2) |
T -9
Al il
t =1 T ey Jh — 7=
eyt 0 :
Ek _ <0 < 0iff Ek(Zo) =0
gk,Eqk_l,Eqk_l <0 < 0 iff 29 E]Fqk+1
A —-q
JAWSY ¢
g <0 <0iff zg € ]qu
J <gq <qiff 20 e Fpo
- 1
8.9 Proposition. Let Z be the coordinate on P! /Fq, and considert = Z —
a€l, z-a
1 - 14 f9-1)e+1! -
=5 and j := (——tftq_—l)— as rational functions on P'. Then j is invari-
ant under the action of I'y = GL(2,F,) on P! and identifies the quotient I'p\ P!
with PL.

Proof. 1t is immediate that j is invariant under matrices of the form (5)) since

#(aZ) = a~'#(%). A small calculation gives the invariance under (J;), hence j is
invariant under I'g, which is generated by matrices of that shape. As a function
in %, j has degree ¢° — ¢ = #PGL(2,F,), thus ]Fq(j) is the fixed field of I'y in
F,(Z). Therefore, j defines a birational morphism from T'g \ P! to P!, which is
an isomorphism since the target P! is normal. O

8.10 Theorem. Let z,w be zeroes of gr in Fo, 20 = red(z), wy = red(w).
Then
l7(z) —j(w)] = 0, if 2o, wo are equivalent under I'y = GL(2,Fy)
= ¢q? otherwise.
Proof. In the first case, also z and w are I'y-equivalent by Theorem 8.5, whence
i(2) = j(w).
For the second case, we take a closer look on the behavior of j on Fy. We have
q+1
j= %, where A = —t97! H fa(£)@=D@=1) Now the infinite product
a€A monic
P(z) = H -- - converges and satisfies |[P(z)—1| < 1 on Fy, as follows from (3.12)
and (4.5). Hence on Fy, the following congruences mod m¢ hold:

TIIA(z) = el U(2)P(2) = ep,(2) 77 = ()01,
g = T I1E;—1(2) = E;—1(z) (since 7*77[1] is a 1-unit)
= E,1(2) = —(1+1%(2)7") by (8.3), and further
T(z) = (1+E(2)7 )9 H(2) 9 = (14 1(20)9 1) H(20) 9 = j(20)-

We see from (8.9) that I'g-inequivalent points zo, wo give rise to different j(zo) #
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J(wo). Thus finally [7'~9j(2) — 7' ~%j(w)| = 1 and |j(2) — j(w)| = [7*~*| = ¢°.
O

8.11 Corollary. The inequality of Proposition 7.12 is in fact an equality, i.e.,
|disc(gk)| = Dkl

Proof. Immediate from (8.10) and the proof of (7.12). O

8.12 Theorem. Let Ly /K be the splitting field of ok, that is, the field exten-
sion generated by the j-zeroes of gr.. Then Ly - K is the unramified extension
of Koo Of degree k + 1,2, 1 ifk >4, k =3, k = 1,2, respectively.

Proof. The assertion is trivial if & = 1,2, thus suppose £k > 3. We have
Ly Koo = Koo(j(2) | Egr_y(2) = 0). Let zp € Fern — Fy and K& =
Koo (wo | wo € Fgr+1) be the unramified extension of degree k + 1. The expan-

sion of Egx_; around 2o has coefficients in Kc(,if“), as follows from developing

k
q°—1
1 1 . . L
= into a geometric series in z — zg

(az+b)"*~" | (azo + b)(1 + 228y

and rearranging terms. Hence the zero z of Ex_; close to 2o actually lies in

K%t For the same reason, t(2)7~! = 71~ %4(z)!~7 and j(z) = convergent
Laurent series in t(2)9~! with coefficients in A C K, lie in K& In view of
71795(2) = j(2) (see (8.9)), it now suffices to show:

k > 4: The field extension F,(S) generated over F, by the value set
S =j(Fgrsr —Fg) of j: Fppsr1 —Fg — Forsr equals Forrr;

k=3 p3(X)=X9—[1]X9! — [2] has K2 as its splitting field.

Now j, being of degree ¢® —g, has image S of cardinality #(S) > 91;;_7;3 > gk2.

For k > 4, #(S5)? > #F jx+1, hence Fy(S) = Fx+1, and this also holds for k =4
since k + 1 =5 is prime. If k = 3,

q
—T—qzxq%(%) =1-TV X9+ (1-TV)X - 1= X9+ X - 1 = n(X)

has the same splitting field as @3(X). But n(X) = [[(X — e), where e runs
through the elements of F,: with trace 1. Its splitting field over F, therefore

equals Fg2, which gives K§,§) for the splitting field of 3 over K. O

The present result, together with (8.11) and Theorem 7.14 strongly suggests
that in fact disc(wx) = Dy, possibly up to a constant in F;. We cannot resist
here to present the following table, suitable to catalyse some meditation. It
contains the numerators of the discriminants of the polynomials ¢, (see (7.10))

in the range 29 < p < 79, i.e., those p # 83 where 2 < deg ¢, < 6.

Note that, in contrast with our r € A[X], ¢, € Q[X], and denominators
actually occur. So its discriminant is in general not an integer. The numbers
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¢ are k-digit integers without small prime factors, which we didn’t attempt to
further factorize.

8.13 Table (G. Cornelissen/MAPLE).

p | deg yp | num(disc(yp))

29 2 217.39.55 .73 .137. 281827873

31 2 221.39.55.74.132. 39468318601

37 3 246 .330 . 515.712.112.136.172.192 . ¢13 - ¢o1

41 3 247.325.519.79.114.135.172.192 . 2137 - ¢34

43 3 248 .324.515. 714 .136.172.192.97.223 - ¢;5 - Co3

47 3 248 .327.515.79.112.136.172.192 . ¢4g

53 4 292.353.530.721.114.13%9.176.192.232.67-73
127 - 1481 - ¢cgy

59 4 2107 . 351 . 531 . 721 .116.1312.176.196.232. ¢392

61 5 2156386 . 555. 735.1118.1320. 176 . 199 . 232 . 29 . 314
-3037 - C160

67 5 2160.385.551.735.1113.1320.176.196.236.294.314
279 - 1987 - 21467 - c175

71 5 2160386 . 551, 733.1119.1320.1712.196.236.29%. 314
127 - 313 - 6311 - 29837 - c180

73 6 224‘2 . 3136 . 570 . 753 . 1118 . 1330 . 1715 . 1916 . 238 . 294 . 316
‘376 - 1867 - C272

79 6 2240 . 3129 . 577 . 753 . 1122 . 1325 . 1714 . 1914 . 236 . 294 . 314
-376 .53 - 3319 - cog3

The reader will observe that all the primes [ < ?;—1 (with the possible exception
of [ = 11) occur to a high power in num(disc(y;)), which is a weak analogy of
the behavior of disc(¢x) € A. However, we can neither prove this fact (?), nor
do we understand the larger prime divisors | that appear.

Some of the results about zeroes of g have analogues for hy resp. OE gk _;.

8.14 Theorem. For each z € Fgx — Fy, there exists a unique zero z € Fy of
hi that satisfies |z — 20| < 1, these are all the zeroes of hy in F, and they have
multiplicity q.

Proof. We start with two simple estimates.
Let z € Fy, a,b € A. Then
(i) deg a> 0= |mat(az)| <1

<1

(ii) max{deg a,deg b} >0 = ‘m

The second of these is trivial, and the first follows from (4.5).
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For z € Fy,
' 1 / 1
ROEp ()= Y mp A
woea (az + b)" 1 chen (az+ b)e -1
/ a
=Y —F T 2 Z D
a,b (az + b)q a€A monic a,b az + b)q !

which has absolute value < 1. Modulo m¢,

7 Y. at(az) =7t(2) by (8.15) (i)

a monic
1 1 -
p— -1 — = =
—eA(Z)_Zz—a_Zz—a t(z)’
a€A a€lF,
/
and in the double sums Z , only terms with (a,b) € F, x F, contribute to the
ab
congruence. Hence
— / a - =
7r6Eqk_1(z) = Z W - t(Z)Eqk_l(Z)
a,bel,
= 3 af(an)? - H2)Ep1(2).
acF,

Now #(az) = a~'#(2), hence by the formula for G,x_; given in (8.3), the above
equals

) ) |-1- P HRT | = Y i)

0<i<k 0<i<k
= Z #(20)T T+, if 20 = red(2) € F,.
0<i<k
Suppose that hi(z) = 0 =TOE_,(z). Then
P i i k+1
0= Z t(z)7? = Z er,(20)! =23 —25 , ie., 20 € Fp
0<i<k 0<i<k

On the other hand, red(z) = 20 € F implies that [TOE;x_;(2)| < 1, from
which we will derive the existence of a g-fold zero z with z = zy. Since |t| =1

on Fy,
1 ki ~
17raEqk_1E Z 777 = QhZ,
0<i<k
~ -~ k-1 i
where shy = Z t? 79 has zeroes at z = z9 € Fyx — Fy, in fact, simple

0<i<k
zeroes, as follows from the proof of (8.4). Up to a suitable scaling, 2y is the
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reduction of the function >hy of (7.16). Hence the simple zeroes of ohx may be
uniquely lifted to simple zeroes of 2hg in Fy, i.e., to zeroes of multiplicity q of
hy = const. OE x_;. This finishes the proof. [.

Using similar methods, we get the following analogues of results (8.6), (8.10)
and (8.12) for the zeroes of hy. We leave details to the reader.

(8.15) For z € Fy with red(z) = zp € F, — F,,

|hk(z)| 1, if 20 ¢1Fqk
I,

if 2 € ]Fqk.

A

(8.16) Let z,w be zeroes of hy in Fy with reductions zg, wy. Then

|7(2) — j(w)] = 0, if z0,wo are equivalent under I'y = GL(2,F,)
= ¢?7 otherwise.

(8.17) Let My /K be the splitting field of 1. Then My - Ko is the unramified
1

extension of degree k of Ko(T9 ) if k > 5, of degree 2 if k = 4, it equals
Koo(T? ) if k=3, and Koo if k=1,2.

8.18 Remark. As is apparent from the preceding, the functions £, Ey, j ete.,
as rational functions of Q/F, := F, — F — P!(F,), may be regarded as the
reductions (up to scaling) of the functions ¢, Ex, 7, ... on Q0. They are modular
with respect to the action of I'g on €2/F,. Proposition (8.3) describes the ?-
expansion of the Eisenstein series Ej, and (8.9) gives the modular uniformization
of I'o \ (/F,). In fact, an important part of our present results on Drinfeld
modular forms evolves from the investigation of functions on the “finite upper
half-plane” 2/F,;. Hence the theory of such “finite modular forms” is at least
not empty. A systematic study of them will be given elsewhere.
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Counting jump optimal linear extensions of some posets

Hyung Chan Jung

1. Introduction

Let P be a finite poset and let |P| be the number of vertices in P. A subposet
of P is a subset of P with the induced order. A chain C in P is a subposet of P
which is a linear order. The length of the chain C is |C| — 1. A poset is ranked
if every maximal chain has the same length. A linear extension of a poset P is a
linear order L = z1,x2,...,Z, of the elements of P such that z; < z; in P implies
i < j. Let L(P) be the set of all linear extensions of P. Szpilrajn [13] showed that
L(P) is not empty.

Let P,Q be two disjoint posets. The disjoint sum P + Q of P and @ is the
poset on P U @ such that z < y if and only if z,y € Pand £ < y in P or z,y € Q
and x < y in Q. The linear sum P & @ of P and @ is obtained from P + Q by
adding the relation z < y for all z € P and y € Q.

Throughout this section, L denotes an arbitrary linear extension of P. Let
a,b € P with a < b. Then b covers a, denoted a < b, provided that for any c € P,
a < ¢ < b implies that ¢ = b. A (P, L)-chain is a maximal sequence of elements
21,22,... ,2k such that 23 < 23 < --- < 2z in both L and P. Let ¢(L) be the
number of (P, L)-chains in L.

A consecutive pair (z;, z;+1) of elements in L is a jump (or setup) of P in L if z;
is not comparable to z;; in P. The jumps induce a decomposition L = C;®- - -&C),
of L into (P, L)-chains Cj,...,C,, where m = ¢(L) and (maxC;,minC;;;) is a
jump of Pin L for ¢ = 1,... ,m — 1. Let s(L, P) be the number of jumps of P
in L and let s(P) be the minimum of s(L, P) over all linear extensions L of P.
The number s(P) is called the jump number of P. If s(L,P) = s(P) then L is
called a (jump) optimal linear extension of P. We denote the set of all optimal
linear extensions of P by O(P). The width w(P) of P is the maximal number of
elements of an antichain (mutually incomparable elements) of P. Chein and Habib
(2] introduced several aspects of jump number. Dilworth [3] showed that w(P)
equals the minimum number of chains in a partition of P into chains. Since for
any linear extension L of P the number of (P, L)-chains is at least as large as the
minimum number of chains in a chain partition of P, it follows from Dilworth’s
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144 H. C. JUNG

theorem that
(1) s(P) > w(P) — 1.

If equality holds in (1), then P is called a Dilworth poset or simply a D-poset. More
discussion about D-posets is given in [12].

A poset P is cover N-free if P does not contain cover N = {z; < y1,Z2 <
y1,T2 < Yo} as a subposet. A cycle (on 2n elements) is a partially ordered set
{agn > an,a2n > Q1,8n4+i > @iyQnyi > ai41 fori =1,... ,n—1}. A poset P is
cycle-free if P does not contain cycle as a subposet. Proposition 1.1 and Lemma
1.2 give properties of cycle-free posets and cover N-free posets.

ProOPOSITION 1.1 (DUFFUSs, RIVAL AND WINKLER [4]). If P is cycle-free,

then
s(P) = w(P) — 1.
LEMMA 1.2 (EL-ZAHAR AND RIVAL [6]). If P is cover N-free, then for any
antichain {a1,..., an} in P there is L € O(P) such thata; < --- < a,, in L.

In this paper, we will count the number of optimal linear extensions of some
finite posets. It is clear that |O(P)| < |L(P)|.

2. Direct Counting

By direct counting, Jung [8] counted optimal linear extensions of some basic
posets :
A k-chain k is a chain of length k — 1. We get easily s(a1 + - +an) =n—1
and
Oy +-+-+ag)| = nl.

Let I, = 1+ ---+ 1 (m times). We define a complete multipartite poset to
be a poset M(my,... ,my) = Ip, @+ & I, . Then we get (M(m1,...,my,)) =
mip+---+my, —n and

(2) |(')(M(m1, ,mn))| =mqlmy!---m,.

Especially, K,n = M(m,n) is called a complete bipartite poset. Then from
(2), we get
|O(Km,n)| = minl.

An upward [downward) rooted tree T, [T4) is a poset whose diagram is an upward
[downward] rooted tree. Let T =T, or T4. Then we get s(T) = w(T) — 1 and

(3) O(T)| = w(T).
A fence (or zigzag) on n elements is a poset F, = {a1 < a2,a2 > as,...}. We
get s(Fr) =[5] -1 and
1, if n =1 or even

O(F,)| =
IO(Fn)| {2("_1)/2, otherwise.

For intergers n, k with n > 0 and k > 0, the general crown S¥ is the poset of
unit length with n + k minimal elements z1,... ,Z,+x and n + k maximal elements
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COUNTING JUMP OPTIMAL LINEAR EXTENSIONS OF SOME POSETS 145

Yi,--- »Ynt+k- The order on S¥ is defined by z; < y; iff j ¢ {i,i +1,...,i+k},
where addition is modulo n + k. Then we get s(S¥) = 2n + k — 3 and

(4) |O(SH)| = 25 (n + k){(n — 1)1}%.
A standard poset on n elements S, is defined to be S2. From (4), we get
|O(Sn)| = nl(n— 1)L

Let N = {z1 < y1,22 < ¥1,Z2 < Y2} be a poset. The linear orders L, =
T1T2y1Y2, Lo = T1Z2y2y1, L3 = ToT1¥1Y2, Ls = T2T1y2y1, Ls = T2y27191 are all
the possible linear extensions of N. Thus |£(N)|=5. Also, s(N)=1 and only Ls is
the optimal linear extension of N, that is,

(5) |O(N)| = 1.

Let C2, be a cycle on 2n elements. By direct counting, we get |O(Cap)| =
n-2n1

El-Zahar and Rival [5] shows that s(Py+P;) = s(P;)+s(P2)+1 and s(P1®P;) =
s(Py) + s(P,) for finite posets P;, P,. This motivates the following theorem:

THEOREM 2.1. Let Py, P, be finite posets. Then
s s !
(a) |0(Py + Py)| = Gt B2 |O(Py)] - [O(P2)),
(b) 10(P & P,)| = |O(P1)] - |O(P,)].

PROOF. (a) Let L; € O(P;) and Ly € O(P2). Then ¢(L;) = s(P1) + 1 and
¢(Ly) = s(P,) + 1. Let L be a linear sums of (P, L,)-chains and (P, Ly)-chains

such that L[P,] = L, and L[P;] = L,. Then L € O(P; + P,). All the possible
number of the above L is

(U5 (")

This holds for every L; € O(P;) and for every Ly € O(P). Thus

s(Py) + s(Py) + 2
s(P1) 1 >"9(P1)| |O(Py).

On the other hand, if L € O(P, + P,) then L[P;] € O(P,) and L[P,] € O(P,). Thus
L is a linear sums of (P;, L[P;])-chains and (P, L[P;])-chains. This completes the
proof of (a).

(b) Let L; € O(P;) for i = 1,2. Since L1 ® Ly, € O(P, & P2), we get |O(P; & Py)| >
|O(Py)| - |O(P2)|. For any L € O(P1 @ P»), every elements of P, precedes every
elements of P;. Also, L[P;] € O(F;) for ¢ = 1,2. Thus L = L[P,]| & L[P.], and so
|O(P, & P2)| < |O(P1)| - |O(P2)|. This proves (b).

|O(P, + P2)| > (

Let V = {y1 > z1,¥2 > x1}. Then |O(V)| = 2 and we get |O(N)| = 1 from
(5), and we get |O(V + N)| = 12 by Theorem 2.1 (a). Also, by applying Theorem
2.1, we get (2).

A poset P is called series parallel if it can be constructed from singletons using
the operations of disjoint sum (+) and linear sum (@). By Theorem 2.1, we can
easily count the number of optimal linear extensions of any series parallel posets.
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146 H. C. JUNG

Note the difference between N and cover N. Rival[10] showed that a finite poset is
series parallel if and only if it contains no subset isomorphic to N.

Thus if a finite poset P contains no subset isomorphic to N then we can count
the number of optimal linear extensions of P.

For example, let Pp=1® (1@ (1+1))+ (1 (1 +1+1))). Then we can get
|O(Py)| = 120 by Theorem 2.1.

3. Structure Counting

Let P be a poset, and @ be a subposet of P. For any L € L(P) we let L[Q] be
a subposet of L which is also a linear extension of Q.

THEOREM 3.1. If P is cycle-free, then
(6) |O(P)| < w(P)!.
Moreover, equality holds in (6) if P is cycle-free and cover N-free.

PRrOOF. Let n = w(P), and A = {z1,... ,Z,} be a maximum size antichain.
Assume that the following (7) is true:

(7) if P is cycle-free and L, # Lo where L;, Ly € O(P) then L,[A] # Lo[A].

Then |O(P)| = |{L[A4] : L € O(P)}| < |A|! = n! and we get (6).

To prove (7) we will show that if L;[A] = Ly[A] then L, = L,.

Suppose L; # Ls. Choose the first different elements y; € L; and y2 € Ly. Since
Y1, Y2 are the first different elements, y; < y2 in Ly and y < y; in La. So y; and
yo are incomparable in P. Now choose a (P, L;)-chain C} which contains y;, and
a (P, Ly)-chain Cf which contains y,. Since P is cycle-free, ¢(L) = w(P) for any
L € O(P) by Proposition 1.1, and so any (P, L)-chain contains exactly one z; for
some i. Thus we can choose z; € C} and z; € C?. Now since L;[A] = Ly[A], we
get x; = x;, and so ¢ = j.

In P since y; and y» are incomparable either y; < x; and y» < x; or y; > z; and
yo > ;. If y1 < x; and Yo < z; hold, y» < x; implies that C} follows ¥y, in L, and
thus yo < y; in Ly, which is a contradiction. So y; > z; and y2 > z; in P.

Now consider (P, L1)-chains. Since y; > z; in C}, there exists a (P, L1)-chain C}!
which contains y, and z;,. But z; and z;, are incomparable, thus y, > z;,. Since
Yo > ;, C precedes C’ll1 in Ly. Thus z; < z;, in L;[A]. Similarly, consider (P, Ls)-
chains. Since y, > x; in C?, there exists a (P, L2)-chain Cz22 which contains y; and
z;,. But z; and z;, are incomparable, thus y; > z;,. Since y; > x;, C? precedes
Cl22 in Ly. Thus z; < z;, in Ly[A].

Since P is cycle-free, 1 # lz. Now y1 > 2y, in P implies C} follows (P, L;)-chain C},
which contains z;, in L;. Thus z;, < z; < z;, in L1[A]. Also, y2 > ;, in P implies
C? follows (P, Ly)-chain C? which contains z;, in Ly. So we get z, < z; < 21, in
Ly[A). Hence L;1[A] # L3[A], which is a contradiction. Thus (7) holds, and (6) is
proved.

Assume that P is cover N-free and cycle-free. Since P is cover N-free, by
Lemma 1.2, for any z;, ...x;, there is L € O(P) such that x;, < ... <z;, in L.
Thus |A|! < |O(P)|. Since P is also cycle-free, (6) holds. Hence |O(P)| = w(P)!.

For n > 5, |O(C2,)| = n-2""! < n! = w(Cs,)! Since Cyy, is a cycle, this
shows that the converse of Theorem 3.1 is false. A poset K = {z; < 2 < z3,¥1 <
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Y2 < Y3, Y1 < T2 < Y3, Y2 < 3,1 < T3,Z1 < Y3} contains cycle and cover N. But
|O(K)| = w(K)! = 2 holds. This shows that Theorem 3.1 is the best possible result.
By applying Theorem 3.1 we get (3) easily, and (5) is an example of inequality in
(6).

Let N, = {z1 < %1,%2 < 2 < y1,Z2 < Y2} be a poset. Then since N, contains
N as a subset, it is not series parallel. Thus we cannot apply Theorem 2.1 to get
|O(N.)|. But by Theorem 3.1, we get |O(N.)| = 6.

Let P, @ be two posets. The direct product P x @ of P and @ is the poset on
{(p,q) : p € P,q € Q} where (a,b) < (c,d) if and only ifa < cin P and b < din Q.
Let P" be P x --- x P (n times).

PROPOSITION 3.2. Let P be a finite poset. Then every (P, L)-chain has length
at most k — 1 for all linear extension L of P if and only if s(P x k) = |P| — 1.

PROOF. Suppose that every (P, L)-chain has length at most k — 1 for all linear
extension L of P. Let L, be any optimal linear extension of P x k. Then any
(P x k, L,)-chain has length at most k£ — 1. Otherwise, let C be a (P x k, L,)-chain
which has length at least k. Let (p2,l2) = maxC and (p1,!;) = minC. Then
pe > py and lp > ;. If po = py or lo = 1) then |C| < k, which contradicts the
fact that the length of |C| is at least k. Thus p; > p; and l; > [;. Note that
(p1,12) and (p2,!;) are incomparable. So one of the (p1,l2) and (p2,!;) is not in C,
say (p1,l2). In L,, since (p1,l;) < (p1,l2), C precedes (p1,l2), which contradicts
(p1,12) < (p2,l2). Thus in L., since (p1,l2) < (p2,l2), (p1,l2) precedes C, which
also contradicts (p1,!;) < (p1,l2). Hence every (P x k, L,)-chain has length at most
k—1. Now we get s(P x k) > JLT%[ —1=|P|—1. Let L* = ®&({p} x k : p ordered
as in some linear extension [ of P). Since s(L*, P xk) = |P| -1, s(P xk) = |P|—1.

Conversely, suppose that s(P x k) = |P| — 1 holds. If there exists a linear
extension L such that some (P, L)-chain C has length at least k, without loss of
generality we may assume L = C1 @ --- @ Cio1 @ C D Ciy1 & --- & C,. Now
construct a linear extension I, as follows: I, = (®({p} x k: p ordered as in C; &
e ®C-))8(@F (Cx {i})®(®({p} Xk : p ordered as in C;;1®---DCy)). Since
s(ls, P x k) < |P| — 1, we get a contradiction. This completes the proof.

COROLLARY 3.3 (JUNG [7]). Let the mazimum size of a chain in a ranked poset
P be at most k. Let C(a) = {(a,%) : i = 1,... ,k} for all a € P. Choose a linear
extension L of P, and let L. = ®C(a) where C(a) is arranged just like the order of
a in L. Then L, is an optimal linear extension of P x k, and s(P x k) = |P| — 1.

We consider the poset a; X - - x a, where ay,...,a, are positive integers. We
assume that a; > 2 for i =1,...,n and let a* = max{ay,...,a,}. Without loss of
generality, we assume that a* = a,. Define C(by,... ,bp—1) = {(b1,... ,bp_1,1) :
1 <i<a*}. Then C(by,...,bn—1) is a chain of length a* — 1 for any by,... ,b,_;
where 1 <b; <ajforj=1,...,n—-1

COROLLARY 3.4 (JUNG [7]). Let L* = @®C(by,... ,bn—1) where the (by,...,
bn—1) are in lexicographic order. Then L* € O(ay X --- X a,) and
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148 H. C. JUNG

PROPOSITION 3.5. Let P be a finite poset. Then every (P, L)-chain has length
less than k — 1 for all linear extension L of P if and only if O(P x k) ={L: L =
®({p} X k: p ordered as in a linear extension | of P )}.

PRrROOF. If every (P, L)-chain has length less than k — 1 for all linear extension
L of P, then we get easily

O(P xk)={L:L=e&({p} xk: pordered as in a linear extension [ of P )}.

Suppose converse is not true. Then there exists a linear extension L = C; @
o @DCi10C;®Ciq1®---®Cp, of P such that the length of C; is at least k — 1.
Now define L, = [®({p} xk:pordered asin C1 & --- & C;_1)|® [®(Ci x {j} : j =
1,... k)] ® [@®({p} x k : pordered as in C;41 & --- & Cy)]. If the length of C; is
at least k, then s(L., P x k) = Y021 |Cj| + k + ¥}, |C;| — 1 < |P| — 1, which
contradict Proposition 3.2. If the length of C; equals k — 1, then s(L,,P x k) =
Z;;Il ICjl+ k437,11 1Cj| =1 =|P|~1. Thus L. € O(P x k), which contradicts
O(P xk)={L:L=®({p} xk: pordered as in a linear extension ! of P )}.

THEOREM 3.6. Let P be a finite poset. Then every (P, L)-chain has length less
than k — 1 for all linear extension L of P if and only if |O(P x k)| = |L(P)].

PROOF. Let L; € O(P x k). Since s(P x k) = |P|—1, every (P X k, L1)-chain
has length k — 1. Thus L; = ®({p} x k : p ordered as in some linear extension
l; of P). So |O(P x k)| < |L(P)|. On the other hand, for any linear extension
L of P we get an optimal linear extension &({p} x k : p ordered as in L). Hence
|O(P x k)| 2 |£(P)|.

COROLLARY 3.7. Suppose P is either (i) a poset whose mazimum size of a
chain is less than k or (ii) products of chains each of which has length less than
k-1. Then

|O(P x k)| = |L(P)].

4. Concluding Remarks
There are some unsolved problems in counting optimal linear extensions.

PROBLEM 4.1. Characterize P where P is not bipartite if |O(P)| = k for
k=1,2,3.

PROBLEM 4.2. Count the number of optimal linear extensions of products of
finite chains.

We denote the set of maximal [minimal] elements of a poset P by Maz(P)
[Min(P)]. Let Fa, be the family of bipartite posets P such that if Maz(P) =
{al,ag, ces ,an} and Min(P)={b1,b2, ces ,bn}, then b; < a1,a; > by, by < ag,...,b,
< an, with possible comparabilities a; > b; for some ¢, j where1 <i < j—1<n-1.
Note that for bipartite posets Problem 4.1 is partially solved by Y.J. Yoon [14]: A
bipartite poset P has a unique optimal linear extension if and only if P € Fay for
some n. Later H.C. Jung [9] extends this idea and characterized bipartite posets
with two optimal linear extensions.
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Also, Problem 4.2 is partially solved by H.C. Jung [8]: |O(m")| > H’,;lkmn_k,

and let a; = ... = a; > aiy1 > @ip2 > -+ > an, then |O(ay x -+ x ay)| >
Io(ﬂ X oo X gl)lai+1"’an|£(ai+l X v X (_I_n_)l

(1]
2]

B8l
(4]

(9]
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The Irreducible Representations of Categories

Masashi Kosuda

ABSTRACT. The author constructs the irreducible representations of the Hecke
category and the Jones category using the irreducible representations of the
centralizers of the mixed tensor representations of quantum groups U, (gl (C)
and using the irreducible representations of the Jones algebra respectively. The
irreducible representations of the former category give the HOMFLY invariants
of oriented tangles and those of the latter category give the Jones invariants of
non oriented tangles. In this article, the author will explain how an irreducible
representation of a category becomes completely reducible and apply this to
the Hecke category and the Jones category.

Introduction

In this article, we construct irreducible representations of two categories. One
is the Hecke category which is obtained from the category of oriented arcs and
circles in R? x [0,1]. The other is the Jones category which is obtained from the
category of disjoint arcs in R x [0, 1]. These categories are defined in Section 1.

The composition of morphisms is regarded as a product of a category. However,
we cannot necessarily define the product between every two elements of the category
unlike the case of groups. Nevertheless, some categories have presentations by their
generators and relations [T] just like groups. The Hecke category and the Jones
category have such a property. In other words, we can define these categories by
their generators and relations.

A linear representation of a category is a functor from the category to the
category of linear maps. Since the Hecke category and the Jones category are
defined by the generators and the relations, to define the representations of these
two categories, we have only to define functors so that they preserve the relations
of each category.

The purpose of this article is to construct the irreducible representations of
these two categories. An irreducible representation of category is a functor which
has no proper subfunctors. (See Section 2.)

The following are the main results. (Theorem 0.3 and Theorem 0.4 are due to
his paper [Y].)
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152 MASASHI KOSUDA

THEOREM 0.1. Let ¢ € C be a non zero parameter which is not a root of
unity and let a € C be another non zero parameter which is not a power of q. Then
arbitrary representation of the Hecke category H = H(C;a~!,q—q™!) is completely
reducible.

THEOREM 0.2. Let Ag,; be a set of pairs of partitions defined by
min(k,l)
Ai= ][ {lo.Bl; B partitions, |a| = k —m, || =1 —m}
m=0

and put

A=D( U A= ﬁ( U A

r=0 k>0, I1>0 p=—00 k>0, >0
k+l=r k—l=p

We fiz parameters q,a € C so that they satisfy the conditions in Theorem 0.1. Then
for the Hecke category H = H(C;a,q — q~ ) the following hold.
1. For any pair of partitions v € A, there exists an irreducible representation
PY of H.
2. For v1,7v2 € A, the irreducible representations P" and P"? of H are equiv-
alent if and only if v1 = 7o.
3. Conversely, for any irreducible representation P of H, there exists a pair of
partition v € A such that P and P7 are equivalent.

THEOREM 0.3. (Yoshioka) Let ¢ € C be a non zero parameter which is not a
root of unity. Then arbitrary representation of the Jones category J = J(C;q) is
completely reducible.

THEOREM 0.4. (Yoshioka) Let ¢ € C be a non zero parameter which is not a
root of unity. Then for the Jones category J = J(C;q) the following hold.

1. For any non negative integer I, there exists an irreducible representation
Rep, of J.

2. For non negative integers Iy and lz, the irreducible representations Rep,,
and Rep,, of J are equivalent if and only if I, = l5.

3. Conversely, for any irreducible representation Rep of J, there exists an
integer | such that Rep and Rep; are equivalent.

In order to prove Theorem 0.1 and Theorem 0.3, we use Theorem 2.8. (The
papers [K, Y] give full details of the proof.)

We will define the above representations {P7} and {Rep,} in Section 3 using a
family of Bratteli diagrams. The fact that these families of representations satisfy
Theorem 0.2 and Theorem 0.4 respectively is proved using Theorem 2.7. (The
details are also in the papers [K, Y].)

The notion of the irreducible representation was introduced by Neretin [N] and
formulated by Yoshioka in his Master’s thesis [Y].

This article is organized as follows. In Section 1 we give the definitions of the
Hecke category and the Jones category. In Section 2 we introduce the notion of the
irreducible representations of (small) categories according to the papers (K, N, Y]
and show conditions for a category to be completely reducible. In Section 3 we
define a complete set of irreducible representations {P7} of the Hecke category and
in Section 4 we define a complete set of irreducible representations {Rep,} of the
Jones category.
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FIGURE 1. An oriented tangle

1. The Hecke category and the Jones category

Let r and s be non-negative integers. An oriented (r, s)-tangle T is a finite set
of disjoint oriented arcs and circles properly embedded (up to isotopy) in R? x [0, 1]
such that

T ={(1,0,0)i =1,2,...,7} U{(4,0,1)lj =1,2,... s},

and such that T is perpendicular to R? x {0} and R? x {1} at every boundary
point of 8T. (See Figure 1.) With each (r, s)-tangle T, we associate two sequences,
O_T = (e1(T),e2(T), ... ,&(T)) and 8+T = (eX(T), €3 (T), ... ,€°(T)), consisting of
+1. Here ¢;(T) = +1 if the tangent vector of T at (4,0, 0) is outward with respect to
R? x [0,1] and €;(T) = —1 otherwise. Similarly e/(T) = —1 if the tangent vector of
T at (4,0, 1) is outward and €/ (T') = +1 otherwise. If r = 0 (resp. s = 0), then 8_T
(resp. 07 T) is the empty set §. We can easily find that if ] &(T) # 31 €/(T)
then there exist no (r, s)-tangles.

Before defining the Hecke category, we define the category OT A of oriented
tangles. The objects of OT A are defined as the sequences {(ej,...€)|r =0,1,...}
with €¢; = £1 including the empty sequence and denoted by Ob(OT A). A morphism
from € = (e,...,€) to € = (€},...,€,) is a C-linear combination of oriented
(r, s)-tangles in which each tangle T satisfies 9_T = € and 81T = €. The set of
morphisms from € to € is denoted by Morp 4(¢,€'). We define the composition
product T o T of tangles T} and T3 by placing T} on T3, gluing the corresponding
boundaries and shrinking half along the vertical axis. (Figure 2.) The composition
Ty o Ty is defined only when 8 Ty = 0*T,. The composition product will be
extended C-linearly.

Slightly changing the argument in Turaev’s paper [T], we will find that every
oriented tangle T' can be presented by a composition product of special tangles as
in Figure 3. In other words, these special tangles are generators of OT . A. We also
find that there are relations as in Figure 4 together with the “commuting relations”
as in Figure 5 among the generators. (See their paper [ADO, O, T|].) Conversely,
we can define OT A by these generators and relations.

Keeping the above fact in mind, we define the Hecke category.
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T
11 eee |
T,
TT cee |
Tl [} T2

FIGURE 2. Product of tangles
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FIGURE 3. Special tangles (generators of the Hecke category)

DEFINITION 1.1. Let Ob(H(C;a=',g—q71)) = {(e1,...€)|r = 0,1,...} with
€; = +1 or —1 including the empty sequence be the objects of H(C;a~1,q — q71).
Let [I] be the identity morphism on € € Ob(H(C;a~!,q — ¢7')). Then the Hecke

category H = H(C;a~t,q — q~!) corresponding to the field C and the parameters
a,q € C is defined by the generators:

XTI, I X Is] ¢ (6,41,+1,€) — (6,+1,+1,€), (&€ € Ob(H)),
(LU 1), [ILUI] (e, €) —  (e,x1,F1,€), (¢€ € Ob(H)),
(LU I, [IUIs) . (6, F1,£1,€¢) — (e,€), (e,€ € Ob(H)),

1] : € — €, (e € Ob(H))

and the commuting relations:

o fIpw,e)l © Ha,ep)91c) = Ha,yp)91c) © [TafIb,2,c)]

for f:x—>y,g:2—w, f,g€{XT,X",U,,U,U,, U} and a,b,c € Ob(H),
and the following relations:
L. [IfUlI(+_l,e’)] ° [I(e,+1)UlI€'] = [I(€,+1,e’)] = [I(e,_+1)U"I€’] ° [IeUTI(H,e’)]a
L(e,-1yUler] 0 LUiI(—1,en] = [L(e,~1,e)] = HeUrI(—1,en] © [I(e,-1)Urle],
2. [Ie—1,-yUde] o T, —1,-1,41) Ul (—1,en) © H(e,—1,-1) X E L1, _1,e1)]
o[l(e,-1yUtd(41,-1,-1,en] © LUl (~1,-1,e1)]
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FIGURE 4. Relations
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F1GURE 5. Commuting relations

= [LUJ_1,—1,en] 0 Hie, 1y Urd(41,-1,-1.e)) © Tie,—1,-1) X EL( 21, —1,¢1)]
O[I(Ev—ly_—ld—l)UTI(—],E’)] o [Iie,—1,—1yUrIe],

3. [I(e,-f—l)UlIe'] o [IeX+I(—1,e’)] o [I(E,_H)UTL/]
= [I(£,+1,e’_)]
= L4y Ulle) o (I X7 I_y ) © [L(e,4+1)Urle],

4, [I€X+I€/] o [I€X_IE/] = [I(E,+1y+1,€/)] = [ICX_Ief] ) [I€X+I€/],

5. [T Ie]o [IY 1] =_[I(e,+1,—1,e')],
where [IET_IEI] = [IEUTI(+1,—1,6’)] o [I(s,—l)X_I(—l,e’)] o) [I(e,—1,+1)UrIe’]
and [I.Y VL] = I, _141)Uille] o [Ie, -y XTIy o] © (LU (11, -1,e))]s
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FIGURE 6. The skein relation

VAY,
(AN N

FIGURE 7. (m,n)-diagram

6. [I€X+I(+lyer)] o [I(€‘+1)X+IE/] ] [I€X+I(+1,€/)]
= [I(ey+1)X+I€/] o [I€X+I(+1,€')] o [I(€,+1)X+I€/],
together with the following skein relation (pictured in Figure 6):
a_l[IeX+Ie’] - a[IEX—IE'] = (q - Q)_I[I(e,+1,+1,e’)]1
for any pair of objects €, € € Ob(H).

Note that the restriction of the Hecke category on an object € makes an algebra
H(e,€) = Morp (e, €). The algebra structure of H(e, €) is intensively studied in the
paperssBCHLLS, KM].

Next we define the Jones category. Let m and n be non-negative integers. We
suppose that m + n is divisible by 2. An (m,n)-diagram D is defined as a finite set
of disjoint arcs properly embedded (up to isotopy) in R x [0, 1] such that

oD ={(1,0)i =1,2,... , m}u{(G,lj =1,2,...,n},

and such that D is perpendicular to R x {0} and R x {1} at every boundary point
of dD. (See Figure 7.)

The objects of J are defined as the set of non negative integers and denoted by
Ob(J). A morphism from m to n is defined as a C-linear combination of (m,n)-
diagrams. The set of morphisms from m to n is denoted by Mor j(m, n). fm+n
is not divisible by 2, we understand that Mor 7(m,n) = {0}. Let ¢ € C be a non
zero parameter. We define the composition product D; o Dy of (m,n)-diagrams
D, and D, just like the composition product of tangles. However, if we have p
closed circles in the picture D; o D3, then we remove the circles and multiply by
BP. Here B = q+ q~!. (See Figure 8.) The composition D; o D, is defined only
when 0_D; = 0T D,. It will be extended C-linearly.

Similarly to the case of the Hecke category, we can define the Jones category
by generators and relations. (See Figure 9.)

DEFINITION 1.2. Let Ob(J(C;q)) = {0,1,2,---} be the objects of J(C;q).
Namely, Ob(J(C; q)) is a set of non negative integers. Let [I,] € Mor 7., (7, 1)
be the identity morphism on n € Ob(J(C;q)). Then the Jones category J =
J(C;q) corresponding to the field C and the parameter ¢ € C is defined by the
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FIGURE 9. Generators and relations of the Jones category

generators:
Intln] @ m+m’ —> m+m'+2 (m,m' €0bT)),
InFly] @ m4+m'+2 —  m+m'  (m,m' € 0b(T)),
I.) m - m (m € Ob(7))

and the commuting relations:

[IafIb+w+C] o [Ia+z+ngc] = [Ia+y+ngC] o [IafI(b+z+c)]
for f:z >y, g:2— w, f,g € {r,7} and a,b,c,€ Ob(J), and the following
relations:
1. [ImfIl+m’] o [Im+lTIm’] = [Im+l+m’] = [Im+1'FIm’] o [ImTIl+m’],
2. [In7ly) o ImTIm] = BImt+m],
for any pair of objects m,m’ € Ob(J).

2. Representations of categories

In this section, we introduce the notion of irreducible representations of cate-
gories according to the papers [N] and [Y]. Throughout this section, we consider
the following category A. Let K be a field. Suppose that a category A has the
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set of objects Ob(.A) which is non empty. This means we only consider small cat-
egories. For any pair of objects z,y € Ob(A), the set of morphisms Mor 4(z,y) is
a finite dimensional K-vector space. For any triple of objects z,y,z € Ob(A), the
composition of morphisms Mor 4(y,z) X Mor 4(x,y) — Mor 4(z, 2) are bilinear.
In the following we denote Mor 4(x,y) by A(z,y). By the definition of the
category A, we find that A(z, z) is a K-algebra for any object z € Ob(A). We use
the notation V.. to denote the category of finite dimensional K-vector spaces.

DEFINITION 2.1. Let F be a covariant functor from a category A to the cate-
gory V.. For a pair of objects z,y € Ob(A), if the correspondence a € A(z,y) to
F(a) € Ve is K-linear, then we call F a (linear) representation of the category .A.

For the above functor F, we put V = {V, = F(z)|x € Ob(A)}. The represen-
tation F is sometimes denoted by (F,V). The zero representation O is one of the
representations of the category A. It is defined by the functor which maps each
object x € Ob(A) to {0}.

Two representations F = (F,V = {V;}) and G = (G,W = {W,}) of A are
equivalent, if they are natural equivalent. In other words, there exists a family of
K-isomorphisms {¢, : V; — W} such that G(a) o ¢, = ¢, o F(a) for each pair of
objects z,y and for each morphism o € A(z,y).

These representations are extensions of the notion of those of K-algebras. In
fact, for x € Ob(A) and o € A(z,x), the correspondence a — F(a) defines a
K-linear map A(z,z) — Hompg (V,,V,) which preserves the composition of mor-
phisms. We denote the representation (as K-algebra) of A(z,z) by F, = (F;,Vs)
and call it the restriction of F on A(z,x) or restriction of F on z.

DEFINITION 2.2. Let F = (F,V) and G = (G, W) be representations of a
category A. If there exists a family of injective K-linear maps {¢, : W; — V. } such
that F(a) o, = ¢y 0 G(a) holds for each pair of objects z,y and for each morphism
o € A(z,y), then we call G a subrepresentation of F.

DEFINITION 2.3. If a representation F has no subrepresentations except F' it-
self and O, we call it irreducible. (The zero representation O is, by definition, not
irreducible.) If a representation F' can be decomposed into a direct sum of irre-
ducible representations, we call it completely reducible. Here a direct sum @;c;F;
of representations F; = (F;,V; = {V; z|z € Ob(A)}) is defined as follows:

zdimK Vie < o0, forze Ob(A),

i€l

(@ F) (z) = EPVie forz e ObA),
i€l i€l

<® Fi> (@) = @Fi(a) : @‘/},x — @ Viy
i€l el 1, i€l

for z,y € Ob(A) and o € A(z,y).

LEMMA 2.4. Let F = (F,V) be a representation of a category A. If a represen-
tation G = (G, W) of the algebra A(z,z) is a subrepresentation of Fy, = (F;,Vy),
then there exists a subrepresentation G = (G, W) of F such that the restriction of
G on A(z,z) is equivalent to G.

PROOF. Define a functor G = (G, W) as follows:
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1. Gz) =W, =W,

2. G(y) =Wy =F(A(z,y))W for y € Ob(A),

3. G(a) =F(a)lw,, for ',y € Ob(A),a € A(z',y').
Then we have

G(a)(Wy) = G(a)(F(A(z,z'))W)
= F(aoA(z,z'))W

F(A(z,y))W
W,

N

O

We call the functor G which is defined as above the cyclic hull of G with respect
to F.

LEMMA 2.5. Let F be an irreducible representation of a category A. For an ob-
ject x € Ob(.A), the restriction F, = (F;,V,) of F on A(z,x) defines an irreducible
representation or the zero representation of A(zx, ).

PROOF. Suppose that we have V, # {0}. If there exists a proper non zero
subrepresentation F, = (F., V) of F, the cyclic hull F’ of F, with respect to F is
not equivalent to F nor O. This contradicts that F is irreducible . O

For an irreducible representation we have the following lemma.

LEMMA 2.6. Let F be an irreducible representation of a category A. For a pair
of objects x,y € Ob(A), if Vy # {0} and V,, # {0}, then there exists a morphism
a € A(z,y) such that F(a) : V; — V), is non zero.

PROOF. Suppose that F(A(z,y)) = {0}. Define (F',V' = {V}) as follows:

o V! =F(A(z,2))V, for each object z € Ob(A),

e F'(a) =F(a)ly; : V] = V,, for z,w € Ob(A) and for a € A(z,w).
Since V, # {0} and V, = {0} by the definition, (F', V") becomes a proper subrep-
resentation of F. This contradicts that F is irreducible. O

THEOREM 2.7. Let F = (F,V) and G = (G, W) be irreducible representations
of a category A. If V, and W, are equivalent as A(zx,z)-module for some object
x € Ob(A) and if they are not equal to {0}, then F and G are equivalent as
representations of the category.

THEOREM 2.8. Suppose that a category A satisfies the following further condi-
tions.
1. Ob(A) is a well-ordered set.
2. For any object © € Ob(A), all the finite dimensional representations of the
K -algebra A(z,z) are completely reducible.
3. If objects z,y € Ob(A) satisfy x <y and A(z,y) # {0}, then A(y,z) # {0}
and there exist morphisms 7, € A(y,z) and 7, € A(z,y) such that 1, =
Ty © T,, where 1, is the unit of A(x,x).
Then an arbitrary representation F = (F,V) of A is completely reducible.

For the proof of the above two theorems, see the papers [K, N, Y].
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3. Irreducible representations of the Hecke category

In this section we define linear maps {P” = (P, L")} from H to categories of
linear spaces {L£"}. These linear maps define all the irreducible representations of
the Hecke category H. Let ¢ € C be a non zero parameter which is not a root of
unity and let a € C be another non zero parameter which is not a power of q. (See
the condition in Theorem 0.1.) Let H = H(C;a~!,q — ¢~!) be the Hecke category
corresponding to C, a~! and q — ¢~ !.

Categories {L"} are defined over C. The objects of L” are C-vector spaces
{CSYe)?|e € Ob(H)} and the morphisms of L7 are the linear maps between two
objects of L.

We define the set £2(¢)” according to the paper [S] by Stembridge.

Let A = (A1, A2,...,A,) be an integer sequence, and define |A\| = A; + A2 +
-+ + Ap. We call that )\ is a staircase if the sequence is weakly decreasing. In
particular we call that A is a partition of N if the sequence is non negative, weakly
decreasing, and |A\| = N. Two partitions (A1, A2, -, An) and (A1, Ao, -+, A, 0)
are considered to be the same. The length [(A) of A is the number of nonzero terms
in A. Let 0 be the null partition (the partition of 0). Every partition A\ has the
dual partition \* = (X},... )} ), where A{ = Card{j|)\; > i}. For a partition },
the Young diagram of A is the arrangement of |\| squares; the first row A, the
second row Ag, - - -, the last row ), parts, and line up to the left. We denote the
coordinates of boxes in a Young diagram in matrix style. For example, if a box
is in the i-th row and in the j-th column of a Young diagram J, it is denoted by
(,5) € A. Each box in a Young diagram X has its hook length h) defined by

h,\(i,j)=)\,'—j+/\;~—i+1.
Let v = [a, 8] be a pair of partitions. For a fixed n such that n > l(a) + I(8),
we can give a correspondence between staircases and pairs of partitions by
(alaa27 ey _,62, _ﬂl) € 7" = [a’IB]'

In the following, we suppose that n is large enough comparing to I(a) + I(8) and
we fix this n. So we can identify a staircase with a pair of partitions by the above
correspondence. For a staircase v = [a, (], if we take a negative integer s so that
s < —f1, then there exists a partition A = (A1, A2,... , A,) such that

()\1+S,)\2+S,... ,An+3)=(’71,’)’2,... 7771)

Staircases are partially ordered by defining

Y= (717729”' v’Y’n) C 71 = (7{»7&3 7’7;1)
if and only if

" < ’Yia'YZ < ’Yé, y Tn < 7;1
With the language of pairs of partitions, we may define [a, 3] C [o/, 3] by a1 <
af,az < ay,--- and B < B1,B5 < PBa,---. If we consider a staircase as a pair of
Young diagrams, and consider it as two sets of coordinates in matrix style, then
v C +' means a C o’ and #' C 3. Under this preparation, for an object € € Ob(H),
we shall associate a set of tableauz 2(e). A tableau is a sequence of staircases which
is defined as follows.

DEFINITION 3.1. Let 4(%) be the staircase defined by the pair of the null par-
titions [0, 0]. A tableau & of length r and shape v is a sequence (YD, 7" =4)
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FIGURE 10. The branching rule

of staircases in which either v() > y(=1D |y — |4(=1)] = 1 or 4 c 4(-D),
|[y®| = |y¢=D] = —1 for 1 < i < r. The tableau ¢ is said to be of type € =
(€1,... € ), where ¢; = |[y®| — |y~

Figure 10 shows how v( is generated from 4(~1) according to the signature ¢;
in making a tableau. We call this generation rule the branching rule.

We denote the number of ones in € by Pos(¢), and the number of minus ones
in € by Neg(e).

All the tableaux of type € are conveniently described using the graph I, as
follows. Let Pos(¢) = k and Neg(e) = [. Vertices of I, are classified to k +1+ 1
floors. Let

min(k,l)
A, = H {[ev, B]; @, B partitions, |a| = k —m, |B| =1 — m}

m=0

be a set of pairs of partitions. The top floor (the k + I-th floor) of I'c has |Ag,|
vertices which are labeled by the elements of Ax; one by one. The bottom floor
(the 0-th floor) has a unique vertex labeled by the pair of the null partitions 40 =
[0,0) € Aoo. The ip-th floor (1 < ip < k+ 1) of T'c has |Ak, | vertices which are
labeled by staircases in Ay, ;, one by one. Here ko = |{e; > 0;i =1,2,... ,ip}| and
lo=1|{e; <0;i=1,2,... ,ip}|. Two vertices labeled by v and ' respectively are
joined by an edge if and only if they are different each other only by one box as
pairs of partitions.

ExXAMPLE 3.2. If e = (+1,—-1,+1,—1,+1), I'¢ is pictured in Figure 11.

We can get any tableau of shape v and of type € from the graph I'. as an
ascending path from the bottom vertex [§, §] to the top vertex . Conversely, any
ascending path from the bottom vertex to a top vertex v expresses some tableau.
We identify each of these paths with the corresponding tableau.

As it defined in [GHJ, KM], each vertex of ', has its weight. These weights
are defined by the indices {«} which are assigned to the vertices. Let A be the set
of all the pairs of partitions:

A=

s

( Ar,).
0 k>0, 1>0
k+l=r

r

Il
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FIGURE 11. T'(41,-1,41,-1,41)

By the definition of Ag; it is easy to see that Ax+14+1 O Ak,y. On the other hand,
ifk—1#K —1U, then Ax; N Ay = 0. Hence we have

oo

A= JT ( U Ax)

p=—00 k>0, I>0
k—l=p

Let v = [A, p] such that A = (A, A2,...) and p = (u1,p2,...). Then the weight
s[y] of v is defined by

.. (N [ajj—it+Ae—k+1 L
ien (101 =i = AN T, S T s alas g — 4

(3.3) s[y]= — —— )
bl H(i,j)e)\[hA(Zv])] H(i,j)ep[hﬂ(z’J)]
where
a—lqm _ aq-—m qm _ q—m
am|=—————and [m]=[1;m| = ———.
[a; m] pp [m] = [1;m] R

In the following we fix a staircase v € A. For the fixed staircase v, (€)? is the
set of all the tableaux whose shapes are v and whose types are e. The objects of
L are the C-vector spaces {CS2(e)"|e € Ob(H)}. If Q(e)” = 0, then CQ(e)” = {0}.
We denote the natural basis of CQ(¢)” defined by the tableaux {£|¢€ € Q(e)”} by
{ve}. The morphisms of L7 are the linear maps between two objects of £? and the
composition is the composition of linear maps.

An object € = (€1, .. ,€x) of H is mapped by P to an object P7(e) = CQ(e)”
of £7. If either CQ(e)” or CQ(€’)" is the 0 space, then Mor s+ (e,€’) = {0}. Hence
if either Q(e)” = @ or Q(¢’)” = 0, then P?(¢(T)) = 0 for any tangle T such that
O_T=cand 07T =¢.

In the following we define the linear map P? assigning each generator of the
Hecke category H to a morphism of £”.

Definition of P (¢([[. X I])) and PY(c([IeX ~Ie]))

Let £ = (¢,+1,+1,€¢') be an object on which ¢([IcX*I.]) is defined. Suppose
that Pos(z) = k, Neg(z) = and € = (€1, €2,... ,€i—1), € = (€i+2,€i43,- - , €kt1)-

If v & Ak, then define P7(.([I. Xt I])) = 0.
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FIGURE 12. Tableaux £ and &’

Y

Otherwise, each of the generators of the form {c([Ic.X"I~])} is mapped to a
morphism from the object CQ(z)” to itself. Let

E = (7(1)’ cee 77(i_1)”7(i)17(i+1)a cee a'y(k-H) = '7)

be a tableau of shape v and of type x. Then according to the branching rule as in
Figure 10, the staircase 7(**1) is obtained from (=1 one of three ways.

1. By adding two boxes to the same row of 'y("‘l)r
2. By adding two boxes to the same column of v(:=1), ‘
3. By adding boxes in different rows and columns of y(:~1).

(Here we regard the staircases 7(\~1) and 7(*1) as Young diagrams defined by
partitions and a negative integer.) In case (c), there exists exactly one tableau

& =M, AT (D) Ay,

which differs from £ in its i-th coordinate only. Further in this case, the two boxes
A+ \ 4 and 4 \ 4(~1) make a hook as pictured in Figure 12. Write h for the
hook length (including the added two boxes). The axis distance d(&,1) is defined
as follows:

d(€, i) = h—1,  if the lower left box was added first,
> 1=h, if the upper right box was added first.

We note that axis distance may be negative. If (=1 and (¥ are both partitions
and if the first box is added to (4, c;) and the second box is added to (7;+1,cit+1),
then we have

d(&,1) = (cip1 — Tig1) — (ci — 13).
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Using this axis distance d and g-integers [i] which is defined in (3.3), we define
PY(([I. Xt 1)) and P (¢([I.X " I]))as follows:

a-que case (a),
PY(([IXtIo))ve = a-agve+a-bvg = —a 'dq‘lvg case (b),
a-fqveta- I%lvgf case (c),
P'((IX Io))ve = a ' apve+a™' - beve
a ! g lug case (a),
= {at-(—que case (b),

a”l- 5'[;—;1;5 +at- !%vax case (c).

If the axis distance involves the depth of staircases n, then we replace g by a™!.
For example if d = i + n, then
itn _ - a-1d' — ag—"
@ =fi+n) = I——L— ==L —[a;i)

Definition of PY(¢([I.U,I¢])) and P7(([IUil+]))

Let z = (¢,€), o, = (e,+1,-1,€') z; = (¢,—1,+1,€¢) be objects such that
(([IUIe]) : £ — z, and «([[UjI]) : € — x; are defined. Suppose that Pos(z) =
k,Neg(x) =1 and € = (€1, €2,... ,€), € = (€i41,€it2y- - , €kti)-

If v € Ak, then define PV (¢([I.U,I])) = 0 and P (([IUi1])) = 0.

A generator (([[U,I]) (resp. «([IUil-])) is mapped by P? to a morphism
from the object CQ(z)” to the object CQ(z,)” (resp. CQ(x;)?). For each tableau

= (7(1),”_ ,,y(i—l),u,,y(z‘+1),m ,,y(k+l) =)

of shape v and of type z, we define the tableau £(j) (resp. £'(j')) of shape v and
of type z, (resp. z;) as follows:
£G) = W, AT AG), BT, AR = ),
(resp. £G") = (Vs AT, v (), Y, D = ),)

where {A(j)} (j = 1,2,...,p(n)) (resp. {v(5)} (' = 1,2,...,p'(1)) are all the
staircases such that A(j) D p and |A\(j)| — |¢| = 1 (resp. v(j') C p and |v(5')| —

|| = —1). See the branching rule pictured in Figure 10. Under these notation
PY(([IU,I.])) (resp. P7(¢([IUI]))) is defined as follows:
p(k)

P([LUIo))ve = Y vees).
J

p'(p) v(i'
(resrx PY(([IUilo]))ve = Z S[s[(/z])]ve'(j'r)

Definition of P (([I.U,I])) and P (([I.U 1))
Let z, = (¢,—1,+1,€), z; = (6,+1,—1,€), £ = (¢,€') be objects such that

([I.U.I)) : z, — % and «([I.U;I]) : 7 — % are defined. Suppose that Pos(z,) =
Pos(z;) = k,Neg(z,) = Neg(z;) = and

€= (€1,€2,... y€i~1), € = (5i+2,€i+3a .. ,6k+l)~
If v & Ak_1.1_1, then define P (([I.U,I¢])) = 0 and P (.([I.UiL¢])) = 0.
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A generator (([I.U,I.]) (resp. ([I.U;I.])) is mapped by P” to a morphism
from the object CQ(z,.)” (resp. CQ(z;)7) to the object CQ(£)". For each tableau

£ = ('y(l),... ,,Y(i—l) - U’,y(i) - u,,y(i+1),.” ’,y(k+l) =7)
of shape « and of type z, (resp. z;), we define
P‘Y(L([IEUrlel]))’Ug = 6(7(i_1),7(i+1))vé

_ {0, if (1) o 4D,

{ 0, if YD £ 404D, )

(resp- P (([LOe]))ve = if /(=1 = A(+D)

slul,,.
siv] Uf ’
where é is a tableau of shape v and of type & which is obtained from the tableau &
by removing the i-th coordinate v(*) = u and the (i + 1)-st coordinate y(+1),

4, Irreducible representations of the Jones category

In this section we define linear maps {Rep, = (Rep,, £;)} from J to the
categories of linear spaces {£;}. These linear maps define all the irreducible repre-
sentations of the Jones category J. Let ¢ € C be a non zero parameter which is
not a root of unity. (See the condition in Theorem 0.3.) Let J = J(C;q) be the
Jones category corresponding to the complex field C and the parameter g.

In this section, a tableau is a sequence of partitions which is defined as follows.

DEFINITION 4.1. Let a(®) be the null partition. A tableau £ of length n and
shape a is a sequence (!, ..., a(® = a) of partitions in which satisfies I{a®) < 2,
al 5 ali-Y and |a®| - jalY|=1. fori=1,2,... ,n.

In the above definition, since the lengths of the shapes are at most 2, each shape
« has a presentation by two non negative integers {a;, ). It is also characterized
by two non negative integers [ = a3 — as and n = a3 + as.

Let Vi(n) be a set of tableaux whose shapes are a = (ai,a3) such that [ =
a1 — as and n = a; + a;. Now we define categories {£;}. The objects of the
categories {L£;} are C-vector spaces {CV,(n}|n € Ob(J)} and the morphisms of L,
are the linear maps between two objects of £;.

All the tableaux are described using the graph I',, as follows. Vertices of I,
are classified to n + 1 floors. Put

Py(n) = {a = (a1, ag)|a partition, l(a) < 2, a; + az = n}

The top floor (the n-th floor) of T, has |Py(n)| vertices which are labeled by the
elements of P»(n) one by one. The bottom floor (the 0-th floor) has a unique vertex
labeled by the null partition a(® = ¢ € P,(0). The %y-th floor (1<ip<n)of Iy
has P, (io)| vertices which are labeled by partitions in Ps(ig) one by one. Two
vertices labeled by « and o’ respectively are joined by an edge if and only if they
are different each other only by one box.

EXAMPLE 4.2. I's is pictured in Figure 13.

We can get any tableau of shape o from the graph I',, as an ascending path
from the bottom vertex @ to the top vertex a. Conversely, any ascending path from
the bottom vertex to a top vertex o expresses some tableau. We identify each of
these paths with the corresponding tableau.
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FIGURE 13. T's

As it defined in [GHJ, KM], each vertex of I, has its weight. These weights
are defined by the partitions {A} which are assigned to the vertices. Let A = (A1, A\2)
be a partition of the length at most 2. Put [ = A; — A and n = A; + A2. Then the
weight s[A] of X is defined by

1 —i4+2]
s[A] = = =[l+1]
(i%;le)\ [h/\(7’7.7)]

In the following we fix a partition a = (o, a2) of the length at most 2. Suppose
that a; —~ as = | and a3 + az = n. For the fixed partition a, Vi{n) is the set of
all the tableaux whose shapes are a. The objects of L; are the C-vector spaces
{CVi(n)|n € Ob(J)}. If Vi(n) = @, then CV;(n) = {0}. We denote the natural
basis of CV;(n) defined by the tableaux {£|¢ € Vi(n)} by {v¢}. The morphisms
of £; are the linear maps between two objects of £; and the composition is the
composition of linear maps.

An object n of J is mapped by Rep; to an object Rep;(n} = CV|(n) of £;. If
either CV(n) or CV(n') is the O space, then Morp (n,n’) = {0}. Hence if either
Vi(n) = @ or Vi(n’) = 0, then Rep,(D) = 0 for any diagram D such that _D =n
and 87D =n/.

In the following we define the linear map Rep; assigning each generator of the
Jones category J to a morphism of £;.

Definition of Rep;([In7I])

If | > n+n' or n+n’ #lmod2, then define Rep,([I,71./]) = 0.

A generator [I,,71,/] is mapped by Rep, to a morphism from the object CV;(n+
n’) to the object CVi(n + 2+ n’). For each tableau

e=(aW,..., a1V o™ = ) oD Lo ) = )

of shape «, we define the tableau £(j) (j = 1,2) of shape a as follows:
£G) = (@M, .. ,a™ D X AG), ATt emt) = o),

where {A\(j)} (j = 1,2) are partitions such that I(A(j)) < 2, A(F) D X and |A(5)| —

|[A| =1 and agf) is the partition of length 2 which is made from o(¥) by adding one
box to each row. Under these notation Rep,([I,7I,/]) is defined as follows:

Rep;([[n71w])ve = { %(sp\(mvm +sA@vey)  ifn=2m+1.

Definition of Rep,([I,7I,])
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If I >n+n or n+n'#lmod2, then define Rep,([I,71,/]) = 0.
A generator [I,,7],/] is mapped by Rep, to a morphism from the object CV;(n+
2+ n') to the object CV;(n + n'). For each tableau

£ = (a(l), . ,a(n—l) =y, a(n) = u, Ot(n+1), . ’a(n+n') - a)

of shape a, if a{®*1) is not the partition obtained from v by adding one box to each
row, then we define

Rep, ([, 71 ])ve = 0.
Otherwise, we put
= (V... ,a* = V,a(_"+1),... ,a(_"+n,) =a._),

where a'” is the partition obtained from a(¥ by removing one box from each row.

Under these notation, we define Rep;([I,7I,/])ve as follows.

_ Slv:,  ifn=2m,
Rep,([[n7In])ve = EH Y fn=om +1
3 = :
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Prounipotent Prolongation of Algebraic Groups
Andy R. Magid

ABSTRACT. G is a linear algebraic group (scheme) over the algebraically closed
characteristic zero field k. The kernel UG of the natural map from points of
G in one variable formal powers series over k to the k points of G is an inverse
limit of unipotent algebraic groups; that is, a prounipotent group. This paper
considers to what extent G can be recovered from UG. It is shown that the
related question for Lie algebras can be answered when the Lie algebra is semi-
simple, and from this an answer is derived when G is semi-simple and a linear
representation of G over k is specified.

Introduction

In the study of finite p groups, a number of topics become easier to investigate,
and some new and intriguing questions arise, through passage to inverse limits to
the study of pro-p groups. For example, the existence of free pro-p groups makes
possible the study of combinatorial group theory entirely in the (pro) “p” category;
free objects like this make cohomology more convenient to study and use; and the
new and interesting question about characterizing the (continuously) linear (over
Qp) pro-p groups arises.

Unipotent algebraic groups over an algebraically closed field k of characteristic
zero (which will henceforth be assumed to be the complex numbers C) share some
formal properties with finite p groups in characteristic p, most notably that k& is
their unique simple module, and so it should not be surprising that prounipotent
groups naturally arise both as a tool and as a source of interesting new questions
in the unipotent context also.

A unipotent k group G (remember that k = C) is also a complex analytic group
whose Lie algebra Lie(G) is nilpotent and whose exponential map exp : Lie(G) — G
is an analytic bijection whose inverse is denoted log. Because Lie(G) is nilpotent
the Campbell- Baker-Hausdorff formula for Lie(G) is actually a polynomial map,
which means that the algebraic group structure on G, as well as the maps exp and
log are canonically algebraic (polynomial). Moreover any analytic homomorphism
between unipotent groups is automatically algebraic for the same reason. There are
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170 A. R. MAGID

analytic but not algebraic maps from a unipotent group G to GL, (k) (for example,
C — GL1(C) by t — €!), but any analytic map from G to a unipotent subgroup of
GL, is necessarily algebraic. A finite dimensional (algebraic) G module V is a finite
dimensional k vector space such that the corresponding representation G — GL(V)
is analytic and has range in a unipotent subgroup; in general, a G module is a k
vector space which is a direct limit of finite dimensional modules. If V is a G
module and if V # 0 then V& # 0.

Prounipotent groups.
A prounipotent group G is the limit of an inverse system of unipotent groups
with surjective algebraic transition morphisms: G = lim(G;) where G; is unipotent

and the maps G; — G; are surjective analytic homomorphisms.
Here are some examples:
EXAMPLE 1. Any unipotent group G is prounuipotent.

EXAMPLE 2. An infinite direct product []
is a prounipotent group, such as
I1G..

0

ic1 Gi, where each G; is unipotent,

ExaMPLE 3. Let R = k << t;,...,tg >> be the non-commutative formal
power series algebra, let £, = 1+41¢,.,1 <r <d, and let M be the maximal ideal of
R generated by the t,. Then R = lim(R/M"). Let G; be the subgroup of the group

of units of R/M* generated by the images of the x,; G; is unipotent and the inverse
limit lim(G;) is a prounipotent subgroup of the group of units of R. We denote
the inverse limit F = F(z1,...,zq4); it is a free prounipotent group on zy,...,Z4.
There is a direct construction of F' also, which in addition makes sense for infinite
sets of generators.

EXAMPLE 4. Proalgebraic groups are inverse limits of algebraic groups, and
they have pronuipotent radicals which are prounuipotent groups. For instance, let
T be a finitely generated group. Take all representations p : I' — GL(W) on a finite
dimensional k spaces, and form the product and map

P:T—J[eLw).
P

The Zariski closure A(T") of the image of P is a proalgebraic group, and its prounipo-
tent radical R,A(T) is a prounipotent group. When T is free, R, A(T") is a free
prounipotent group (on an infinite set).

EXAMPLE 5. GLn(k[[t]]) = {3;50 4it* | Ao € GLn(k)}.
Let UGL, = Ker(GL,(k[[t]])) = GLn(k)). If UGL,,i = Ker(GL,(K[[t]]/t*"!) —
GLy(k)) then it is clear that UGL,, = im(UGLy,1). We will see in the next section
why UGL,,1 is unipotent and hence why UGL,, is unipotent.

The groups in Example 5 are a model for a general class of prounipotent groups

associated to affine (eventually semisimple) algebraic groups which will be discussed
at length below.
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Because of Example 3 (free prounipotent groups), we can construct a combina-
torial group theory for prounipotent groups, including presentations by generators
and relations. In particular we can talk about the (minimal) number of generators
and relations for a prounipotent group, usually denoted d and r, respectively as
the minimal number of generators of a free prounipotent group mapping onto the
given prounipotent group. Modules for a prounipotent group G = lEn(Gi) are di-

rect limits of G; modules. Thus k is the only simple G module. The category of
G modules has enough injectives (in fact, the coordinate ring k[G] is the injective
hull of k) and so one can construct injective resolutions and cohomology, in partic-
ular Ext’(';(V, W) for any G modules V, W, using an injective resolution of W. We
define H'(G,W) = Ext‘(k, W) and then talk about the cohomological dimension
of G (the smallest integer n for which H*(G,W) = 0 for all W and all i > n),
and it turns out that the prounipotent groups of cohomological dimension one are
precisely the free ones. From this it follows that subgroups of free prounipotent
groups are free and that we can calculate the number of generators d of G as the
dimension of H!(G, k) and the number of relations r as the dimension of H?(G, k).
For unipotent groups it even turns out that r > %, except for the special cases
when G=G, (d=1and r =0) and when G =G, X G, (d=2and r =1).

For any prounipotent group G, we define the closed lower central series by:

1. C'G=G

2. C**'G = (G, C'G) (Zariski closure) for i > 1

G is finitely generated if and only if the abelian prounipotent group C*G/C?*G
is finite dimensional, and if it is then C**'G = (G, C'G) for all i. In other words,
the closed lower central series conincides with the lower central series.

We define the Lie algebra of the prounipotent group G to be the left G invariant
derivations of the coordinate ring: Lie(G) = Derg(k[G]). It follows that if G =
lim(G;) then Lie(G) = lim(Lie(G;)). In particular, Lie(G) is pronilpotent.

For any pronilpotent Lie algebra L, we define the closed lower central series by:

1. C'L=1L

2. C*'L = [L,C*L] (Zariski closure) for i > 1

If G is finitely generated, then so is L (in the pronilpotent category) and for
all i C'L = [L,C*" L] = Lie(C'G).

Continue to assume that G is finitely generated. As with any group, the direct
sum

@iZlciG/CHlG

is a Lie algebra, the Lie bracket coming from the commutator in G.

Here, we will want to look at the direct product

gr(G,C'G) =[] c'G/ctG
i>1
which is a pronilpotent Lie algebra.
Similarly, for any finitely generated ptonilpotent Lie algebra L we have the
associated graded pronilpotent Lie algebra
gr(L,c'L) =[[c'L/ct L.
i>1

Then it turns out that there is an isomorphism gr(L,C'L) = gr(G, C*G).
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More generally, if G = G! > G? > ... is a normal series (of closed subgroups
of G) with (G*,G?) < G**7 for all 4, j then we can form the Lie algebra

gr(G,G") =[] ¢'/G6

i>1

using the commutator for bracket. If L' = Lie(G") then we also have an associated
graded pronilpotent Lie algebra

gr(L, L) =[] L'/

i>1
and an isomorphism gr(L, L}) = gr(G, G?).

For the material in this section, see the references [LM1, LM2,LM3,LM4]
and [M3].

Linearity.

A pro—p group G is linear if it can be continuously embedded in GL,(Zp).
If it has a linear subgroup H of finite index then representation can be induced
from H to G to see that G is linear; a “virtually linear” group is linear. A pro—p
group is powerful if the (closed) subgroup GP generated by p*" powers contains the
commutator subgroup; that is G? > (G, G). [DDMS] proved that powerful pro—p
groups are linear, more precisely, that virtually powerful pro—p groups are linear
(everything here is finitely generated in the pro—p category).

One can consider a similar question for prounipotent groups, or equivalently for
a pronilpotent Lie algebra L, with k[[t]] taking the place of Z,. There is no natural
analogue of the p power operation, so something like the following is required:

Suppose that L is finitely generated in the pronilpotent category and that there
is 7 € Endg(L) such that:

1. 7[z,y] = [z, 7y] for all z,y € L;

2. ﬂioniL = 0;

3. 7L D [L, L].

Then [N] there is an ideal I of finite codimension in L and an embedding

I — gla (K[[2]])-

The embedding takes values in the pronilpotent subalgebra tM,, (k[[t]]).

Thus pronilpotent Lie algebras with a suitable “t” operator are virtually (in
the sense of finite codimension) linear. On the other hand, it is known that there
are pronilpotent Lie algebras L which have finite codimemsion ideals I such that
I is linear and L is not [M1]. (Note that this is much stronger than saying that
there is a representation of I finite dimensional over k[[t]] which does not induce to
a representation of L finite dimensional over k[[t]].)

Linearity for prounipotent groups, or equivalently for pronilpotent Lie algebras,
is thus more complicated than for pro—p groups. We turn then to the apparently
simpler question of starting with known linear prounipotent groups. We have an
obvious construction of such groups analogous to Example 5 above, to which we
now turn.
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Prounipotent prolongations of groups and Lie algebras
In this section, we are going to define some generalizations of Example 5 above.

DEFINITION 1. Let H be an affine algebraic group over k. The prounipotent
prolongation UH of H is the kernel of H(k[[t]]) — H(k) induced from k[[t]] — k by
t— 0.

We will check below that UH is indeed prounipotent. H is not, of course,
a homomorphic image of UH (for example H could be reductive, and all finite
dimensional images of UH are unipotent). The main point of this work is to
investigate the question of to what extent UH determines H.

If a faithful representation H < GL,, is selected then there is a commutative
diagram:

1 —— UGL, —— GLu(k[}t]]) —— GLn(k) —— 1

© I I I

l1—— UH —— H(K[t]) —— HEk) —— 1
There is also a related construction for Lie algebras.

DEFINITION 2. Let Lo be a finite dimensional Lie algebra over k. Then I/LO
denotes the k Lie algebra [[;° Lot* where Lie product is definied by [zt?,yt’] =
[z, y]t**I for z,y € Lo.

We will see that ULg is pronilpotent and, for H affine, discuss the relation
between UH and ULie(H) below.

As with the groups, L is not, of course, a homomorphic image of ULy (for
example Lg could be simple, and all finite dimensional images of U Lo are nilpotent).
We will investigate the question of to what extent UL, determines L.

We intend to address the basic questions:

1. Does UH and the representation UH — UGL,, determine H?

2. Does UH determine H?

3. Does ULg determine Lg?

The first step will be to set up the foundations for the construction of UH.

Higher codual numbers.
Let B be any commutative k algebra. We want to consider the functor from
commutative k algebras to sets given by

A Algi(B, A[t]/t™1).

If this functor is representable, we denote the representing algebra B[m] (so
Algi(B[m], A) = Algk(B, A[t]/t™+1) for all A). If m = 1 then A[t]/t? is the dual
numbers over A, so we call B[1] the codual numbers over B and in general refer to
the algebras B[m| as higher codual numbers. Of course B — B[m] is, technically
speaking, the adjoint to the functor A — A[t]/t™*!, so that B[1] is adjoint to the
dual numbers functor.

A k algebra homomorphism

¢:B—+A[t]/tm+1=A+AE+A52+...+A'{’"
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where
¢(f) = ¢o(f) + $1(N)E + - + (/)T

has the properties that

1. ¢;: B — Ais k linear; and

2. ¢i(be) = 3,1 4= Bp(b)og(c).

Thus to define B[m| we need an object universal for maps meeting the above
two conditions. Note that the condition on ¢¢ is that it be a k algebra morphism.

The symmetric algebra Si(B) is universal for k linear maps from B and thus
B ® S (B)®™ is universal for one algebra and m k linear maps: explicitly, there is
a bijection

Algi(B ® Sk(B)®™, A) — Algx(B, A) x Homy (B, A) - - - x Homy (B, A)

by
@ (¢o, P15, Pm)
where
(b)) =2(1®---Qbe; ®---®1).
Here we write be; to denote b € S;(B) C Si(B) for for i > 1 and we let eg = 1 € B.
Then
#i(bc) =2(1®---®bce; ®---®1)

and
D dp(B)delc)= > P(1®--@bep®@ - @NB1R Ry @+ ®1)
ptq=1 p+g=i
=<I>(Z(1®---®bep®---®ceq®-~-®1).
p+q=i

We let I,,, be the ideal of B ® Si(B)®™ generated by all

1@ @bee; ®---®1— Y (19 ®be,®-+-@ceg®--®1)
ptg=t
for all b,c € B.
Then we have

PROPOSITION 3. B[m] = B ® Sx(B)®™/L,, represents the functor
A — Algi(B, A[t)/t™1).
where ® : B — A[t]/t™! by &(b) = S ¢;(b)T' corresponds to F : Blm] — A
defined by F(boeo ® --- ® bmem) = [[¢i(b:;) and G : B[m] — A corresponds to
U:B— Aft]/t™t by () =Y. G(1®-- - ®be; ® - @ )T
Of course the association B — B[m] is functorial: if f : B — C is a k algebra
homomorphism then the corresponding map B[m] — C[m] is induced from by X

bie; ® -+ ® bpem — f(bo) X f(b1)e; @ -+ @ f(bm)em. Note that this implies that
if f is surjective then so is f[m)].

For any B, we have B[0] = B and for k we have k[m| = k for all m.

We have been using e; to denote 1 € B = Si(B) in the i** tensor factor
in B® Si(B)®™ = B Q, S(Bey) Q -+ ® S(Ben). Using the fact that tensor
products of symmetric algebras of modules are symmetric algebras of the direct
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sums of the modules, and that scalar extensions of symmetric algebras of modules
are symmetric algebras of the scalar extension of the module, we have

B® Sk(B)®m = SB(B Rk (361 PD... Ben))

and we write this latter in the notation B[Bey, ..., Be,,|. Then we write B[m] =
B|Be,...,Beny]/Im = Blz1(B),...,zm(B)], writing z;(b) for be; + I, (including
i = 0), so that

1. z;(ab) = az;(b) for a € k and b € B;

2. z;(b+ ¢) = z;(b) + zi(c) for b,c € B; and

3. zi(be) =3, 4=i Tp(b)zq(c) for b,c € B.

We are going to retain the notation zo(b), even though we can identify zo(b)
and b. (More formally, this would be the identification of B and B[0], which can
be made consistently for all m via the obvious maps B[0] — B[m].)

From Proposition 3, the identity map B[m| — B[m] corresponds to the map
Blm] — B[m][t]/t"* by b — S(1® - ® be; ® -+ ® 1)’, which we can now
translate as b — 3 z;(b)f". Similarly, a map f : B — A[t]/t™+! by f(b) = 3 fi(b)t'
corresponds to the map F : B[m] — A determined by F(z;(b)) = fi(b).

We will use this notation to establish two other basic facts about the higher
codual number construction.

PROPOSITION 4. Suppose t1,...,ts generate B as a k algebra. Then {x;(t;) |
0<i<m, 1<j<s} generates B[m] as a k algebra.

PRroOOF. Clearly {z;(b) | b€ B, 0 <1i < m} generates B[m] as a k algebra.
By the k linearity of the z;, it will be sufficient to prove that for any monomial
M in the t;’s, z;(M) belongs to the subalgebra B’ of B[m] generated over k by
all z;(t;). This is seen by induction on the length (M) of the monomial M: for
(M) =1 (that is, M = t; some j) z;(M) € B’ by definition. Suppose z;(M) € B’
for all all monomials of length r, and let M have length r + 1. Then M = Mpyt;
for some j and some Mo with £(Mo) = r, and then z;(M) =3_ . _. zp(Mo)zq(t;)
belongs to B’ by induction.

As an example of Proposition 4, w can consider the case of a polynomial ring
Bly]. It follows from the proposition that B[y|[m] is generated over B[m] by z;(y),
0 < ¢ < m. And it is clear that the z;(y) are algebraically independent over
B[m] by considering the B algebra homomorphism Bly] — Blyo, ..., ym][t]/t™
by y — 3"yt . Thus we have

COROLLARY. For polynomial rings, Bly][m] = Blzo(y),. .. Zm(¥)].

We also record here the situation with localization by a single element: if f is a
non-zero divisor in B then mapping B[f~!] to A[t]/t™*! means mapping B in such
a way that f goes to a unit. If & : B[m] — A corresponds to ¢ : B — A[m]/t™+!
and ¢(f) = 3 ¢:(f)t’ then ®(z:(f)) = ¢:(f) and in A[t]/t™+! ¢(f) is a unit if and

only if ¢o(f) is a unit of A. Thus we have the following formula:

B[f~][m] = Blm][xo(f)~"].
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PROPOSITION 5. Let J be an ideal of B and suppose J is generated by {ba |
a € A}. Let J[m] be the ideal of B[m] generated by {z;(ba) |0 <i<m, a€ A}
Then

(B/J)[m] = Blm|/J[m].

PROOF. Let A be a k algebra. Algy((B/J)[m], A) = Alge(B/J, Alt]/t™1) =
{f € Algp(B, A[t]/t™*) | f(J) = 0}. Now f : B — AJt]/t™"! is given by F :
B[m] — A where f(b) = 3 F(z;(b))t' so that f(J) = 0 if and only if F(z;(b)) =0
for all b € J and 0 < i < m. Thus the kernel of F must contain {z;(by) | 0 < i <
m, o« € A}. And if it does contain this set, and if b = Y anb, belongs to J then

since
z;(b) = in(aaba) = Z Tp(aa)Tq(ba)

a,p+g=1i
F(zi(b)) = 0. It follows that f(J) = 0 if and only if F((J[m]) = 0, and hence that
B[m]/J[m] represents the same functor as (B/J)[m], and the proposition follows.

As noted above, the higher codual numbers functors are adjoint functors, from
which it follows trivially that they preserve algebra coproducts, and that iterations
may be done in any order, facts which we now record:

PROPOSITION 6. Let By and By be k algebras and my and mo positive integers.
Then

1. (B1 ®k Bz)[m] is naturally isomorphic to Bi[m] ®x Bz[m]; and
2. (B[ma])[mys] is naturally isomorphic to (B[mz])[m,].

PROOF.

Algi((B1 ®k Ba)[m], A) = Algx(B; ®k B, Alt]/t™)
= Algi (B, A[t]/t™1) x Algy (B, A[t]/t™1)
= Algy(B1[m], A) x Algi(Bz[m], A)
= Algi(B1[m] ®k Ba[m], A),

which proves the first assertion.
(A[t)/t™*1)[s]/s™2*1 is naturally isomorphic to (A[s]/s™2*1)[t]/t™ ! so that

Algy((B[ma])[me), 4) = Algi((B, (A[t]/t™+1)[s]/s™*)
= Algy((B, (A[s]/s™ T[] /t™ 1)
= Algi ((B[ma])[mi], A).

We can be explict about the isomorphism (B; ® B2)[m] — Bi[m| ®k B2[m]:
in terms of elements, we have z;(b®c) — 3_ . Tp(b) ® z4(c).

Finally, we consider the relation among the higher codual numbers B[m] for
different values of m. If m; > mo there is a canonical homomorphism, natural in
A, A[t]/t™+! — A[t]/t™2*! and hence a map, natural in A,

Algk(B[m1]1 A) = Algk(Ba A[t]/tmrH) -
Algk(B, A[t]/t™**") = Algk(Blm], 4)
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which must come from a unique k algebra map B[my] — B[m;]. It follows that
{Bl[i] | i > 0} forms a direct system. Using these, we can define the infinitely high
codual numbers as B[oo] = lim(B[m]), and we then have

PROPOSITION 7. B[oo| represents the functor

A — Algi(B, A[t]])-

PROOF. Since A[[f]] = lim(A[t]/t™+),

Alge(B, Allt]) = limAlge(B, A[f] /™)
= limAlgi (B[m], 4)
— Alg,(limBm], A)
— Alg(Blod], A).

Jet bundle schemes.

DEFINITION. Let X = Spec(B) be an affine k scheme. We let X[m], 0 < m <
oo denote the affine k scheme Spec(B[m]). We call X[m| the m jet bundle of X. If
X is an affine k variety we let X[m] denote Spec(k[X])[m](k), calling it the m jet
bundle also. If ¢ : X — ) is a morphism of schemes, then there is a corresponding
morphism ¢[m] : X[m] — Y[m] and if f: X — Y is a morphism of varieties, then
there is a corresponding morphism ¢(m] : X [m] — Y [m]

Note that X[0] = X, and that X’[1] is the tangent bundle of X. If X is an affine
variety (so that k[X] is finitely generated over k) then for finite m, by Proposition
4, X[m] is an affine variety with k[X[m]] = k[X][m]/V0.

Now suppose G is an affine algebraic group over k. A — Algy(k[G), A[t]/t™1!)
is a group valued functor, and it follows that k[G][m] is a (cocommutative) Hopf
algebra over k, and in particular reduced, from which it follows that G[m] is an
affine algebraic group over k (proaffine if m = oo) with k[G[m]] = k[G][m]. As in
the remarks following Proposition 6, we can be explicit about the comultiplication
in k[G[m]]: if v : k[G] — k[G]®k[G] is the comultiplication, and y(b) = _ b1) ®b(a)
then k[G][m] — k[G][m] ® k[G][m] is given by

.’IJ,‘(b) — Z Zmp(b(l))®mq(b(2))

p+g=1

If € : k[G] — k is the augmentation, then the augmentation e[m] : k[G][m] —
k[m] = k is given by e[m](z;(b)) = zi(e(b)), and this latter is O for i > 0. Thus
it follows that the augmentation ideal I(G[m]) = Ker(e[m]) contains {z;(b) | b €
I(G) = Ker(¢),0 < i < m}. So I(G[m]) 2 I(G)[m]; since by Proposition 5
k[G][m]/I(G)[m] = (k[G]/I(G))[m] and this latter is k[m] = k we have I(G[m]) =
I(G)[m)].

It is instructive to look more closely at the examples of G = GL,, and G = SL,,
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EXAMPLE GL. Fix n, and let k[GL,| = k[t;;][det~1]. As noted in the corollary
to and discussion before Proposition 4, it follows that

k[GLn[m]] = k[{zp(ti;) | 0 < p < m,1 < 4,5 < n}fwo(det) ™).
Here {z,(t;;) |0<p<m, 1<4,j<n}isasetof mn? indeterminates over k.

If we interpret k points as morphisms k[G L, [m]] — k, we can identify k points
as follows:

GLn[m](k) = GLa(k[t)/t™F"),  am [Y_ alap(tiy))]
p

Since comultiplication in k[GLy,] is given by t;; — Y, tik ® tx;, we have comul-
tiplication in k[GLy,][m| given by

iltp(tij) — z Z xr(tik) ® xs(tkj)

k T+s=p

and zo(det) ™! — zo(det) ! ® zo(det) L.
Augmentation maps z,(t;;) to dopdi; (and therefore zo(det) to 1). Antipode
formulas may also be determined (which we omit here).

ExAMPLE SL. Fix n, and let k[SL,] = k[GL,]/(det — 1). By Proposition
5, k[SL,|[m] = k[GLy][m]/(zo(det — 1),...,zm(det — 1)). For i > 0, we have
z;(det — 1) = z;(det), and zo(det — 1) = zo(det) — 1. The image of k[SL,] =
k[SL,][0] in k[SL,|[m] is k[GL,][0]/(z0(det) — 1), so we end up with

KSLalfm] = KISLu][{ep(ti;) | 1 < p < m,1 <i,5 < n}]/(z1(det), .., am(det)).

We further recall that to construct the kernel of a morphism f : G — H of
affine algebraic groups, we identify Ker(f) and G xpy {e}, so that k[Ker(f)] =
k[G]/f*(I(H))k[G], where I(H) is the augmentation ideal of k[H]. We can use this
to see Lie algebras.

EXAMPLE LIE(G[m]). If H is any affine k group, we have the group Lie(H) as
the kernel of H[1] — H[0] = H. Thus

k[Lie(H)] = k[H 1]]/zo(I(H))k[H[1]].

Since k[H|[1]] = k[H][1] is generated over k by {zo(b),z1(b) | b € k[H]}, and zo(b) —
b(e) € zo(I(H))k[H][1]], it follows that the images y(b) = z1(b) + zo(I(H))k[H][1]]
generate k[Lie(H)]. Since z1(bc) = zo(b)z1(c) + z1(b)zo(c), we also have y(bc) =
b(e)y(c) + y(b)c(e). Moreover, these are the only relations, so if by,...,bs give a
basis of I(H)/I(H)?, then k[Lie(H)] is the polynomial algebra on y(b1)...y(bs)

Applying these formulas to H = G[m] we have that k[Lie(G[m])] is gener-
ated over k by elements y(z,(b)); as above, if we select elements giving a ba-
sis of I(G[m])/I(G[m])? we get polynomial generators over k. In addition, since
I(GIm]) = I(G)[m)], if by, ..., b, generate the ideal I(G) then {y(z,(b;)) |1 <i <
7,0 < p < m} generate k[Lie(G[m])].

Applied to G = GL,, this gives that
K{Lie(GLa[m])] = k{y(zp(t:1)) | 1 < 1,5 <n,0 <p < m}]
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PROUNIPOTENT PROLONGATION OF ALGEBRAIC GROUPS 179

and hence an identification

Lie(GLn[m])(k) — Mo (k[t]/t™ ") B D Bly(zp(tis))-

Computing Lie(SL,[m])(k) is a bit more complicated: it follows from the cal-
culation of k[SL,[m]] above that

k[Lie(SLy[m])] =
k[{y(zp(ti;)) | 1 <4,5 < n,0 < p <m}]/(y(zo(det)), ... y(zm(det))).
To compute y(zp(det)), we first consider a permutation o and the monomial
m =1l1531) - - - tno(n)-

and apply z, to get

wP(m) = Z Zq, (tla(l)) ... Tyq, (tna(n))

and then apply y and use the fact that ¢;;(e) = 6;; to see that y(z,(m)) = 0 unless
o(t) =i Vi, in which case

Y(Tp(T11 - - - Tnn)) = Z_ y(@p(tii)-

We conclude that
k[Lie(SLn[m])]
= k[{y(zp(ts)) |1 <4,5 <n,0<p< m}]/(z y(@o(tis), - Zy(wm(tu))-

Above, we identified Lie(GL,)(k) and M, (k[t]/t™!). We can write this latter

as {3° A;t' | A; € M,(k)}. We these identifications, we can then write the above
as
Lie(SLn)(k) = {D_ Ait' € Lie(GLy)(k) | trace(4;) = 0}.

In the above calculations and examples, the case m = oo follows from the case
of finite m by passage to the direct limit.

Finally, we have the relation between infinite jet bundle groups and prounipo-
tent prolongations:

LEMMA 8. Let G be an affine algebraic group over k. Then there is an isomor-

phism
Lie(G) = Ker(G[1] — G) & Ker(G[m + 1] — G[m])
for all finite m.

PROOF. Let a € Ker(G[m + 1] — G[m]) = G[m + 1] Xgjm| {e}. With the
identification G[i] = G[i](k) = Algk(k[G], k[t]/t™+!), we have the commutative
diagram

k[G] —— k[t]/tm+?

I |

k. ——— k[t]/tmt!
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180 A. R. MAGID

so that a is given by b — ap(b) + am+1(b)fm+1. Define x(a) : k[G] — k[t]/t* by
b ag(b) + am+1(b)t. Then a — k(a) is the desired isomorphism.

Of course the vector group Lie(G) is unipotent. By repeated application of
Lemma 8, we then conclude the following:

COROLLARY 9. Let G be an affine algebraic group over k. Then Ker(G[i] —
Glj]) (for i > j) is unipotent for all finite i, j and prounipotent for i = oo, j finite.

Combining most of the results of this section, we have the following description
of prounipotent prolongations:

THEOREM 10. Let H be an affine algebraic group over k. Then the prounipo-
tent prolongation UH = Ker(H[oo] — H|[0]) of H is prounipotent and has coor-
dinate ring k[H][oo]/I(H)k[H][oo]. If a representation H — GL,, is given, and if
{fa | a € A} generates the kernel of restriction k(GL,] — k[H] then

k{zp(tig) |1 < 4,5 <n,p=0,1,2,...}][det}]
({xo(tij) - 6ij’mp(fa) l 1<4,j<n,a€eAp=0,12,... })

kK[UH] =

Shift Structures

We are concerned in this section with Lie algebras L = [];~; L; where each L; is
finite dimensional and all “isomorphic”; a typical example being U(Lo) = [[;=; Lot
(Definition 2). For a € L; we will let a € L denote the infinite tuple whose i*" entry
is a and all other entries 0. We assume that L is prograded, in the sense that if
a € L; and b € L; then [a,b] € L;y;: in terms of infinite tuples, the Lie product is
thus

(@), (6)7) = ()7 where ¢, = 3 [ai,by)
i+j=p

We begin by making clear what is meant by saying that the L; are “isomorphic”:

DEFINITION 11. Let L = ]—[fi 1 Li; where each L; is a finite dimensional vector
space. A shift structure on L is a set of linear ismorphims ¢; : Ly — L;, Vi such
that

1. ¢, is the identity.
2. For alla,be Ly and all 4,57 > 1

[¢i(a), $;(D)] = Biv (95 [a,b)).

On U(Ly), we have a shift structure defined where ¢; : Lot — Lot is given by
multiplication by #~1.

We can use a shift structure to construct a Lie structure on L;.

LEMMA 12. Let ¢ = {¢;} be a shift structure on L = [];°, L;, Define a product
on Ly bya-3b= ¢, [a,b]. Then Ly is a Lie algebra under this product.
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PROOF. The product is clearly k bilinear and skew symmetric. For the Jacobi
identity, we need to verify that for a,b,c € L,

a-(b-c)y=(a-b)-c+b-(a-c).
First, we have, by the Jacobi identity for L, that

[¢1 (a)a [¢1 (b)a ) (C)]] = [[¢1 (a)v é1 (b)]? é1 (C)] + [¢1 (b)’ [¢1 (a)’ #1 (C)]]

From the definition of the product,

[81(a), [$1(b), $1(c)]] = [[¢1(a), p2(b - c)]

and then by the definition of shift structure this latter is
¢3(0z '[a,b-c]) = ¢a(a- (b-c)).

Similarly,

([¢1(a), $1(b)], $1(c)] = é3((a-b) - c)
and

[61(b), [$1(a), p2(c)]] = ¢3(b- (a - c).

Since ¢3 is a linear isomorphism, the result now follows.

Since (L1,-) is a finite dimensional Lie algebra, we can form its pronilpotent
prolongation; as we now note, the shift structure makes this isomorphic to L.

PROPOSITION 13. Let L =[] L; have a shift structure ¢ = {¢; | i = 1,2,...}
and let Ly = L, with the product -4. Then

ULo) = L by Y ait' > (@),

i=1
is a Lie algebra isomorphism

PROOF. The mabp is a linear bijection. To check that it is a Lie homomorphism,
we note that [a;t%,a;t’] = (a; - a;)t'"7 — ¢;1;(a; - a;) and by the definition of the
Lie product in Lo this latter is ¢;4;(¢3 [as,b;]) which, by the definition of shift
structure is [¢;(a;), ;(a;)].

Because of Proposition 13, in the presence of a shift struture we can assume
that L = U(Lg). As we now see, in case Ly is its own commutator, the graded
structure on U(Lo) is determined by the Lie structure.

PROPOSITION 14. Let Ly be a finite dimensional k Lie algebra and assume that
L() = [Lo, L()]. Then

C"(U(Lo)) = Y _ Lot'.

i>n

Conversely, if C*(U(Lo)) = 3,5, Lot* then Lo = [Lo, Lo).
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PROOF. Let L =U(Lo) and let L™ = [[;,, Lot*. We want to prove that C"L =
L™. We begin by showing C"L C L™ by induction on n. The case n = 1 follows
since both sides are L. Suppose it holds for some m. Then C™*!L = [L,C™L] C
[L,L™]. Ifa= 3,5 at" € Land b= 3, bit" € L™ then [a,b] = 3 cpt?
where ¢, =3, .. [ai,b;]. Clearly min(i +j)=1+m=m+1sop>m+1and
[a,b] € L™*1. (Notice that this part of the proof does not require the hypothesis
on Lg.)

Next we show that C"L D L", also by induction on n. Fix a basis {z1,...,2,}
for Ly. The case n = 1 again follows since both sides equal L. Suppose the
inclusion holds for m. Let ¢ = 3 o, . ¢cpt? € L™, Let A; = z;t and for
each p > m + 1 select elements Bj, € kxz; such that ), ;[z;, Bjp] = ¢, (this is
possible because Lo = [Lo, Lo] = Y_;[xi, Lo]. Let B; = 3 5, . Bjpt?™! € L™
Then 32, ;[Ai, Bj] = 32, ; 2o, Biplt? = 32,3, (@i, Biplt? = 32, cpt? = c. Since
A; € L and B; € L™, we have c € [L,L™] C [L,C™L] = C™*'L, completing the
proof.

Finally, suppose that C?(U(Lg)) = Y_,>, Lot’, and let a € Lo. Since z = at? €
S isg Lot = [U(Lo),U(Lo)], we have y; = Y bit’ and 2z, = Yeyt!, 1 <i < N
such that £ = [z, ;] which implies that a = 3 [b:1, ¢i1] € [Lo, Lo)-

We retain the notation of the proof of Proposition 14 (L™ = [];, Lot’) for
later use.

Since it is clear that the Lie algebras L' C U(Ly) are finitely generated, in the
pronilpotent sense, Proposition 14 implies the same for the lower central series:

COROLLARY. Let Ly be a finite dimensional Lie algebra that coincides with its
commutator subalgebra, and let L = U(Lgy). Then, for all i C*L is finitely generated
as a pronilpotent Lie algebra.

Note that Propositions 13 and 14 actually characterize pronilpotent prolonga-
tions, at least in the case of trivial abelianization:

COROLLARY. Let Lo be a finite dimensional Lie algebra that coincides with its
commutator subalgebra, and let L = U(Lg). Then:

1. L=gr(L,C:L); and

2. C™"(U(Lo)) = L™ for all n; and

3. L has a shift structure.

Conversely, any Lie algebra L satisfying (1), (2), (3) is of the form U(Ly) for
some Ly satisfying Lo = [Lo, Lo].

The preceding corollary does not assert that the Lie algebra Ly is uniquely
determined by L = U(Lg). It is to that question that we now turn. In the corollary
above, the first two conditions are independent of L, so we will continue to assume
that L = [[L; with C*L = L'. If L = U(Lo) = U(Lyp), then it will have shift
structures ¢ and v coming from Ly and Lg, respectively. Here’s how ¢ and v are
related:

LEMMA 15. Let ¢ = {¢:} and ¢ = {;} be shift structures on L = []L;.
Define A; : Ly — Ly by ¥i(z) = ¢:(Ai(x)). Then

Ai(a) ¢ Aj(b) = Airj(a-y b).
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PROUNIPOTENT PROLONGATION OF ALGEBRAIC GROUPS 183

In particular,
a-yb=A3"(a4h)
and in the ¢ product on L4,

a-Ar(b)=Ar(a) b

PROOF. ¢;4;(Airj(a-y b)) = virj(a-y b) = vir;vy ([a,8]) = [Wi(a), ;(b)] =
[6i(Ai(a)), $i(4;(b))] = diridz ' ([Ai(a), 4;(D)]) = Gi+;(Ai(a) -4 A;(b)) 50 Airj(a-y
b) = A;(a) -4 A;(b). Since A; = I, applying this last equation to the case i = j =1
gives Az(a -y b) = a -4 b and the cases (i,7) = (1,7) and (3,5) = (r,1) show that
both a -4 A,(b) and A,(a) -4 b coincide with A; (a4 b).

NoOTATION. To use the results of Lemma 15, we will fix the following notation:
L denotes the vector space L; regarded as a Lie algebra with bracket the ¢ multi-
plication. We let P,Q, R € GL(Ly) be the invertible linear transformations P = A,
, Q@ = A3A; ! amd R = P~1. We denote the 9 Lie multiplication by a center dot.
Thus on Ly we have the formulas

1. [a, Pb] = Qla,b] = [Pa,b] and

2. a-b= Rla,b].

We are also going to assume that Lj is semisimple.

We are going to investigate the implications for L of the existence of P and
Q, and we will use these to analyze the relations of the two Lie products.

First, we fix a Cartan subalgebra H in L and we let z € H be a regular element
so that H = {a € Lo | [a,z] = 0}. If a € H then 0 = [a,z] so 0 = Q[a,z] = [Pa, z]
so P(a) € H. It follows that P(H) = H. Let B C H* be the set of (non-zero) roots
and for a € B let x, € Ly be a corresponding root vector. Any x € Ly can be
uniquely written as x = h(z) + ) 3.3 As(z)zs where h(z) € H and Ag(z) € k. For
a € H, [a,z4) = a(a)z,, so that

[P(a)vxa] = a(Pa)za.
Let z = P(z,). Then [a,z] = [a, h(z)] + 3_ A\s(z)B(a)zp so that

[a, P(za)] = Z/\B(P(xa):@(a)mﬂ'

Now [P(a),za] = [a, P(z4)], so choosing an a € H such that 3(a) # 0 all 8 and
comparing the above equations shows that P(z,) = ko + YaZa for ko, € H and
scalar y,. Now we compute [z, P(zg)] = [P(za), zg] for a # 3

[Zas P(2p)] = [Tas kg + vp28] = —a(ks)Ta + V5[Ta, Ts];

[P(xa); 15,3] = [ka + YaZa, xbeta] = B(ka)zveta + Yo [:Ea, :Eﬁ]-

If a + 8 € B (which entails that a + 8 # a,) [Za,zs] is a scalar multiple
of 443. Otherwise, [z4,z3] € H. Thus comparing the above two expressions for
[Ta, P(zp)] = [P(za), ] shows that B(k,) = 0 for all 8 # a. Since [P(z4),Ta] =
Qra,za) =0, 0 = [ka + YaZa) Ta] = (ka)Ta +Ya[Ta, Ta] 50 a(ks) = 0 also. Since
B spans H*, we have that k, = 0. Thus we have shown that

P(zo) =YaZa Yo #0 VaeB.
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(Ya # 0 since P is invertible.)

If L(a) C Lo denotes the root space corresponding to «, (which is spanned by
Zo), then the above formula shows that L(«) is P stable, with v, the eigenvalue of
P on L(a).

Now we consider the Lie structure from . Recall that z - w = R[z, w] where
R = P~1. 1t follows that for z,z € Lo, z -z = 0 if and only if [z,z] = 0. Thus
an abelian subalgebra in one product is an abelian subalgebra in the other and the
centralizer of z in either product is the same. Taking x to be a regular element of
H shows that H is a Cartan subalgebra in either product. Since R(z,) = v, %o
for a € B and for a € H we have

a- T, = Rla,z,] = ala)y, 'a

which shows that z, is a root vector for H in the 9 product with root o/ = 'c.
Suppose a # 8 but o = 3. Then 'ya'yﬁ_la = f which implies that 7,75 b=
—~1, so that 8 = —a and y_4 = —Ya. Now [Z4,Z_o] # 0, but v4[Za,Z-a] =
[7&-7:0’33—(1] - [P(ﬂ?a),.’ll_a] = [xa,P(x—a)] = [xa, _'Yax—a] = _70[xayx~a], which
is a contradiction. Thus o’ # 3.

Let B’ = {&’ | a € B}, and let L(a’) be the corresponding root space. We have
L(a) C L(a’), and since B — B’ is bijective we have equality, so the B’ root spaces
are all one dimensional. Moreover,

Ly =H &g L(Ol/)

is a root space decomposition in the v product.

Furthermore, if o, 3, a+ 8 € B, so that L(a), L(8), and L(a+3) = [L(a), L(B)]
are all one dimensional, then L(a/) - L(8") = R([L(a),L(B)]) = L(a + ) is one
dimensional, proving that o/ + 3 = (a + 8)’ € B. Thus the bijection B — B’
carries sums to sums. Of course it readily follows from this that the two root
systems B and B’ for the Lie algebras (Ly, [a, b]) and (Lo, a - b) are equivalent.

We summarize this discussion with the following theorem:

THEOREM 16. Let L be a Lie algebra over k. Forn > 1 let L,, =C"L/C"*'L
and let L™ = [[i > nL'. Assume that

1. L; is finite dimensional.

2. L=gr(L,C'L).

3. C*"L = L" for all n.

4. L has a shift structure.

5. Ly is semisimple in the Lie bracket determined by the shift structure.

Then the isomorphism class of the semisimple Lie algebra L, is independent of
the choice of shift structure.

Of course the Theorem applies notably to the case of pronilpotent prolonga-
tions:

COROLLARY. Let Lo be a finite dimensional semisimple Lie algebra. Then Lg
is determined up to isomorphism by the pronilpotent prolongation ULy.
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Prolongation of groups

Now we turn to the study of the prounipotent prolongation UH = Ker(H [oo] —
HI0]) of an algebraic group H. Our goal is to find to what extent the group H
can be recovered from UH. Since if H' — H is an isogeny then UH’ — UH is an
isomorphism, we will concentrate on simply connected H, so the goal then becomes
to recover Lie(H) from UH. Our plan is to relate the Lie algebras Lie(U H) and
ULie(U), since (at least for semi-simple H) the latter determines Lie(U).

The corollary to Theorem 16 implies that for (semi-simple) algebraic groups
H if Lie(UH) = ULie(U) then UH determines Lie(H). We recall the calculations
preceding Lemma 8 above, which show that we have this equality for H = SL,:
those calucations showed that

Lie(GLn[oo]) = [] olnt’
=0

and -
Lie(SLn[oo]) = [ [ stnt’;

i=0
since Lie(UGL,) = Ker(Lie(GL,[oc] — Lie(GL,)) and the map on Lie algebras
amounts to projection on the first factor, we see that Lie(UGL,) = ULie(GL,)
and Lie(USL,) = ULie(SL,). (For later use, we note that this implies that
C'(UGL,) = C'(ULie(GLy) = [1;5, Lie(GL,)t.)
Thus we can recover SL,, from its prounipotent prolongation:

COROLLARY. Let U be a prounipotent group and let L = Lie(U). Forn > 1
let L, =C"L/C"*'L and let L™ = []i > nL.

Then U is isomorphic to USL, if and only if

1. L, is finite dimensional.

2. L=gr(L,CL).

3. C"L = L" for all n.

4. L has a shift structure.

5. L is isomorphic to sl,, in the Lie bracket determined by the shift structure.

Note that the corollary implies that C™Lie(USL,) = [[;5,, sl,t!, a property
that we do not expect for general H.

One of the key points in the characterization of Theorem 16 is that L is the
(complete) associated graded Lie algebra of its natural filtration by its lower central
series, and that this filtration coincides with the t filtration. The two filtrations
are always present on Lie(UH), but as noted there is no reason to expect them to
coincide in general. It turns out to be convenient, conceptually and notationally,
to consider the filtrations already on the prounipotent group UH.

DEFINITION. On UH we can define t filtration as follows: for i > 1, let UH? =
Ker(H[oo] — H[i — 1]).

Note that the ¢ filtration on U H, unlike the lower central series, is not intrinsic.

For the ¢ filtration, we have that UH! = UH, UH* > UH'*!, and UH' /U H**!
is the kernel of H[: + 1] — H[i] which, by Lemma 8, is Lie(H), hence abelian, so

(UH,UH’) < UH**J. Moreover, because the succesive quotients are the Lie
algebra of H, we also have shown the following:
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LEMMA 17. Let H be an algebraic group. Then the associated graded Lie alge-
bra gr(UH,UH") is isomorphic to ULie(H).

It follows from Lemma 17 that, for semisimple H, UH, with its t filtration,
determines Lie(H).

Although the ¢ filtration is not intrinsic in general, it is for GL,, since, as we
noted above, we have shown that it coincides with the lower central series for GL,
(so that UGL}, = C*UGL,,). If H is a subgroup of GL,, the t filtration of U H is the
restriction to UH of that of GL,, so that UH! = UH NUGL:, = UH N C*UGL,.
In other words, the t filtration on UH as a subgroup of UGL,, is intrinsic. Using
this, we can recover Lie(H) from UH < UGL,, in the following sense:

THEOREM 18. Let Hy, and Hs be semisimple subgroups of GL,. Suppose there
is an automorphism of UGL,, carrying UH, to UHy. Then Lie(H;) and Lie(Hs)
are isomorphic.

ProOOF. The autoomorphism induces an isomorphism between the filtrations
UH} = UH; N C'GL, and hence between their complete associated graded Lie
algebras. By Lemma 17, these are U(Lie(H;). Now the corollary to Theorem 16
provides the result.

Lemma 17 also provides additional information about the group UH: the Lie
algebra U(Lie(H)) is finitely generated by degree one as a pronilpotent Lie algebra,
hence gr(UH,U H") is finitely generated in the same sense. We have a natural map

gr(UH,C*UH) — gr(UH,UH")

surjective in degree one. If U — UH is a surjection of prounipotent groups we have
a corresponding surjective map

gr(U,C*'U) — gr(UH,C*UH);
and we can select U to be finitely generated free prounipotent so that the composite
gr(U,C'U) — gr(UH,UH")

is surjective in degree 1, and hence surjective. This means that the corresponding
group map U — UH is also surjective, and hence that U H is finitely generated as
a prounipotent group, a fact we now record:

PROPOSITION 19. Let H be an affine algebraic group such that H = (H, H).
Then UH 1is finitely generated as a prounipotent group.

In [M2], it was shown how to construct differential field extensions of the
rational function field C{z) with given prounipotent group as differential Galois
group. That means that it is possible to produce such an extension with group
UH, where H is a given linear group. It is also known [T'T] that every linear
group is a differential Galois group over C(z). It is conceivable that the methods
leading to the recovery of H from UH, at least in the semisimple case, will yield
a construction of extensions with group H from those with group UH; that was
part of the motivation for the investigation reported on here, although that project
remains uncompleted. (A construction of differential Galois extensions of C(x) with
given linear algebraic group as differential Galois group is given in [MS].)
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ABSTRACT. Superconformal algebras, superalgebras that are extensions of the
Virasoro algebra, play an important role in Physics. Here we give an approach
to their classification through Jordan theory

1. Introduction

A superconformal algebra is a Z-graded simple Lie superalgebra that contains
the Virasoro algebra in the even part and such that the dimensions of all the
homogeneous components, dimL;, are uniformely bounded.

Let V be a homogeneous variety of algebras, that is, a class of F-algebras
satisfying a certain set of homogeneous identities (see [ZSSS]). Let A € V.

Let’s introduce the definition of a superalgebra corresponding to a variety V.
In general, by a superalgebra we mean just a Z/2Z-graded algebra, A = A + Aj.

Example Let V be a vector space. The Grassmann (or exterior) algebra G(V)
is the quotient of the tensor algebra T(V) modulo the ideal generated by symmetric
tensors v @ w + w @ v; v,w € V. Clearly G(V) = G + Gy, where Gg (resp. Gi )
is spanned by products of elements of V' of even (resp. odd) length.

Suppose that- V' is infinite dimensional. By the Grassmann envelope of a su-
peralgebra A = Ag + A7 we mean the subalgebra G(A) = Aj ® G + A1 ® Gi of
the tensor product A ® G.

DEFINITION 1. A superalgebra A = Ag + A;j is called a V-superalgebra if the
Grassmann envelope G(A) lies in V.

In particular, if A = A + Aj is a V- superalgebra, then A5 € V and Aj is a
module over Ag.

In this way one can define Lie superalgebras, Jordan superalgebras, etc. Clearly,
associative superalgebras are just Z/2Z-graded associative algebras and a commu-
tative superalgebra is more often called a supercommutative (super) algebra.
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190 CONSUELO MARTINEZ

In [KvL] V. Kac and J. W. van de Leur conjectured that superconformal al-
gebras over an algebraically closed field of zero characteristic admit a classification
that is similar to the one obtained by Mathieu in [M2] for graded simple algebras.
To be more precise, let F[t™1t &, ... ,€n] be the associative supercommutative
algebra of polynomials in one Laurent variable ¢ and n odd variables &1,... ,&,.
The Lie superalgebra W (1, n) of superderivations of F[t~1,¢,£,,... ,&,], graded by
degrees of t, is a graded simple Lie superalgebra containing the Virasoro algebra Vir
in the even part and having dimensions of all homogeneous components uniformely
bounded. V. Kac and Van de Leur conjectured that an arbitrary graded simple Lie
superalgebra containing Vir in the even part and having dimensions of all homoge-
neous components uniformely bounded is isomorphic to W (1,n) (for some n) or to
one of known subsuperalgebras of W(1,n).

Without the assumption of the existence of a Virasoro subalgebra also loop
algebras and superalgebras of Cartan type appear.

The above conjecture about superalgebras, as it has been mentioned before, is
inspired by the results known for graded simple algebras.

The study of graded simple Lie algebras with restrictions on dimensions of
graded components was initiated by V. Kac in [K1]. In this work he formulated
the following

Conjecture: Let L be a graded simple Lie algebra such that the function
n — dim(L,) is bounded by some polynomial in n. Then L is either a simple
finite dimensional Lie algebra or a loop algebra or an algebra of Cartan type or the
Virasoro algebra.

Let us look through the list of algebras that appear in Kac’s conjecture.

Loop algebras. Let n be a natural number, G be a Z/nZ-graded finite di-
mensional algebra, G = Gy + G + - + Gp—1. For an arbitrary integer ¢, let
i, 0 < i < n — 1, denote the residue of i modulo n. By a loop algebra corre-
sponding to G we mean the subalgebra £(G) = EieZ G; ®t¢ of the tensor product
G ® F[t~1,t]. If G is a simple finite dimensional Lie (Jordan) algebra then £(G)
is a graded simple Lie (Jordan) algebra and the dimensions of all homogeneous
components are uniformely bounded.

Equivalently, we can define loop algebras in the following way:

A Z/nZ-graded algebra is an algebra with an automorphism w of order n.
Then w can be extended to an automorphism @ : G ® F[t™1,t] — G ® F[t™1,t],
a®t" — n'w(a) ® t*, where 7 is a primitive nth-root of the unit in F.

So L£(G) is the set of fixed points of .

Virasoro algebra, Vir, is the Lie algebra of derivations of the Laurent poly-
nomial ring F[t~1,¢]. It is well known that elements e, = t"*14 form a basis that
satisfies [e;, e;] = (§ — ©)eit;.

The subalgebra Vir;, derivation algebra of F[t], has the basis {e;};>-1.

Cartan algebras. Let W,, be the algebra of derivations of F[ti,... ,t,]. Car-
tan algebras are W,, and the subalgebras S,, < Wy,, Hom < Wopm, Koms1 < Womia
(see [K1] or [M2]).

In [M1,M2] O. Mathiew proved the conjecture of V. Kac, proving the following:
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GRADED SIMPLE JORDAN ALGEBRAS AND SUPERALGEBRAS 191

THEOREM 2. (0. Mathieu) Let L be a graded simple Lie algebra over an al-
gebraically closed field of zero characterisitic with the dimensions of the graded
components L; uniformely bounded (growth one). Then L is isomorphic to one
of the following algebras:

(1) a simple finite dimensional Lie algebra, or

(2) a loop algebra, or

(3) Vir, or

( 4 ) V’i’l‘] .

If we only assume that the function n — dim(Ly,) is bounded by some polyno-
mial in n (finite growth) then other Cartan algebras can appear in (4) (not only
Vi”‘l ) .

2. Lie-Jordan relations

DEFINITION 3. A (linear) Jordan algebra is a vector space J with a binary
operation (z,y) — xy satisfying the following identities:

(J1) zy = yz

(J2) (z*y)z = 2*(yz).

EXAMPLES (see [J])

1) If A is an associative algebra over F, (3 € F) we then can define a new
product -in Aby: a-b= %(ab + ba). Denote as A(*) the new algebra obtained in
this way. It is easy to check that (A(1),.) is a Jordan algebra.

A Jordan algebra J is called special if it is a subalgebra of the Jordan algebra
(AM),.) for some associative algebra A. In the other case A is called exceptional.

2) If (A, %) is an associative algebra with involution, H(A,*) = {a € A|a* = a}
is a Jordan subalgebra of (A1), .).

3) Let O be the octonions, H3(O,*) denotes the algebra of 3x3 hermitians
matrices over the octonions. It is an exceptional Jordan algebra.

4) Let V be a vector space over F with a symmetric bilinear form <,>. Then
J = F1+V with the product (al +v)(fl +w) = (af+ < v,w >)1+Pfv+awis a
(special) Jordan algebra, called the Jordan algebra of a bilinear form.

Every simple finite-dimensional Jordan algebra over an algebraically closed field
F is either special or isomorphic to H3(O, *) (see [J]).

Let L be a Lie algebra containing a subalgebra Fe+ Fh+F f which is isomorphic
to slo(F'), that is, [e, f] = h, [f,h] = 2f, [e,h] = —2e.

Suppose that the operator ad(h) : L — L is diagonalizable and that the only
eigenvalues of ad(h) are -2,0,2. Let L = L(_3) + L(oy + L(2) be the decomposition
of L into a sum of eigenspaces. Following J. Tits [T] we will define a structure of
a Jordan algebra on J = L(_g) via x(_g) * y(—2) = [[*(-2), f],y(—2)] for arbitrary
elements x(_2),y—2) € L(~2). The algebra L can be recovered (up to central
extensions) from J.

On the other hand, for an arbitrary Jordan algebra J with 1 there exists the
unique (up to isomorphism) pair L 2 slz(F’) with these properties such that L(_g) =~
J and L has zero center. We will call such a Lie algebra the Tits-Kantor-Koecher
construction of J and denote it K(J) =J~ + [J~,JT] + J* (see [J]).
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192 CONSUELO MARTINEZ

Let L = Lg+L; be a graded Lie superalgebra such that dimensions dimL;, L; =
L5 + L;7, are uniformely bounded. Then the zero component Ly is a finite dimen-
sional Lie superalgebra, Ly = Lo + Loj. It is known (see [K1]) that a finite
dimensional Lie superalgebra is solvable if and only if its even part is solvable.
Suppose that the Lie algebra Ly is not solvable. Then (see [K1]) Ly; contains
a subalgebra slo(F) = Fe + Fh + Ff with [e, f] = h, [f,h] = 2f, [e,h] = —2e.
An arbitrary homogeneous component L; is a module over slo(F'). Since there is
only one irreducible slo(F')-module in each dimension and dimensions of L; are uni-
formely bounded it follows that only finitely many irreducible sls(F)-modules can
occur in decompositions of L;, ¢ € Z. This implies that ad(h) : L — L, x — [z, h]
is diagonalizable and has finitely many eigenvalues. In [Z1] it was shown that such
Lie algebras can be studied by means of Jordan theory.

The classification of Z-graded simple Jordan superalgebras with the dimensions
of homogeneous components uniformely bounded appears now as a natural task.

EXAMPLES

1) Let G denote now a Z/nZ-graded finite dimensional superalgebra, G = Gy +
Gi1+:+-+Gn-1. The loop superalgebra corresponding to G is L(G) = }_,.7 G ® tt.

If G is a simple Jordan ( Lie ) superalgebra then £(G) is a graded simple Jordan
(Lie) superalgebra and dimensions of the graded components, dimL(G),, i € Z, are
uniformely bounded.

2) A graded simple Jordan superalgebra J is of Cartan type if J contains a
graded subsuperalgebra B of finite codimension such that the corresponding sub-
space B~ +[B~,J*]+[J~,B*]+ B* of the Tits-Kantor-Koecher Lie superalgebra
K(J) is a subsuperalgebra of K(J) of finite codimension. Thus K(J) is a Lie
superalgebra of Cartan type.

3) Let V be a direct sum of two vector spaces, both V5 = ®,c7Voi and V1 =
®,;c7 Vi are represented as direct sums of finite dimensional vectors spaces such
that dimensions of subspaces V; = Vg;+Vj;, i € Z are uniformely bounded. Suppose
further that the space V is equipped with a nondegenerate supersymmetric form
<,>: V xV — F. That is, <, > is symmetric on Vj, skew-symmetric on Vj and
< Vo, Vi >=< V1,V >=< V;,V; >= (0) if i + j # 0. Then the direct sum of
vector spaces J = F1+V = Js + Ji, Jy = F1+ V;, J; = Vi becomes a Jordan
superalgebra under multiplication vw =< v,w > 1 for v,w € V. The superalgebra
J is graded simple, J; = V; for i # 0, Jo = F1+ V}.

4) Let A = A + Aj be an associative supercommutative algebra. If a € A;
then we denote |a| = i. A bracket [,] : A x A — A is called a contact bracket
(“generalized Poisson bracket” in [KvL,Ki]). Compare also to “Jordan bracket”
in [Ki]) if:

(i) (4,],]) is a Lie superalgebra,

(ii) D : a — [a,1] is a derivation of A,

(iii) D(a)[b, ] + (=1)lel1¥HD D(b) (¢, a] + (=111« ) D(c)[a, B] = 0,

(iv) [a,bc] = [a,blc + (—1)!4IPlp[a, c] — D(a)bc,

(v) for a € A; we have D(a)[a,a] = 0.

Starting with an associative supercommutative superalgebra A with a contact

bracket [,] : A x A — A consider a direct sum of vector spaces J = J(4,[,]) =
A+ Az. We shall define a multiplication on J. For arbitrary elements a,b € A their
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GRADED SIMPLE JORDAN ALGEBRAS AND SUPERALGEBRAS 193

product in J is the product abin A4, a(bx) = (ab)z, (bx)a = (=1)1%(ba)z, (az)(bz) =
(=1)"/[a, b].
The Z/2Z-gradation on A can be extended to a Z/2Z-gradation on J via Jy =

Ag + Aiz, J; = Aj + Agz. The superalgebra J is a Jordan superalgebra (see [Kn]
and [KM]). We call it the Kantor Double of (4,[,]).

Letn>1, V=Vy+...+ V,_; a finite dimensional Z/nZ-graded vector space
over F. The gradation on V can be uniquely extended to a Z/nZ-gradation on the
Grassmann algebra, G(V) = 7' G(V)s.

Let A=Y, 7 G(V);®t' = L(G(V)). If [,] : Ax A— Ais a contact bracket,
the element x in the Kantor Double construction is given degree ¢ such that 2i € nZ
and [A;, Ag] C Ajik4o: for arbitrary j,k € Z, then the Kantor Double J = A + Az
is a Z-graded Jordan superalgebra having all dimensions dim/(J;), i € Z, uniformely
bounded.

It has been proved in [KMZ] that the examples given before “nearly” cover
the collection of graded simple Jordan superalgebras having dimensions of graded
component uniformely bounded.

3. Previous Results

Before formulating the main result of [KMZ], we will discuss some results that
are used in the proof.

A) GK-dimension in Jordan algebras

DEFINITION 4. Let A be a finitely generated (no necessarily associative) alge-
bra. Let V be a finite dimensional F-vector space generating A and let V™ denote
the linear span of all product of lenght < n in elements of V. The Gelfand-Kirillov
dimension of A ( denoted GK dim(A) for short) is defined by:

GKdim(A) = limsup In[dimV™]
n—oo Inn
If the algebra A is not necessarily finitely generated then GK dim(A) = sup GK
dim(C), where C runs over all finitely generated subalgebras of A.

It is known that the above definition does not depend on the particular finite
dimensional vector space generating A (see [BK], [GK]| and [KL]).

If A is associative, Lie, Jordan or alternative, then GK dimA = 0 if and only
if dimpA < oo and there are no algebras with 0 < GKdimA< 1 (see [KL]). In
the associative case G. Bergman proved (see [KL]) that there are no associative
algebras with 1 < GKdimA< 2. But there are algebras having dimension s for
every real number 2 < s.

The structure of associative algebras having GK dim = 1 was determined in
a series of papers by Small, Stafford and Warfield Jr. They proved that a finitely
generated associative algebra having GK dimension 1 is PI. If it is prime, then it
is a finite module over its center. The prime radical is nilpotent.

Some general properties of Gelfand Kirillov dimension in Jordan algebras were
studied in [M]. Then in [MZ1] the result of Small, Stafford and Warfield Jr. has
been extended to Jordan algebras.
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194 CONSUELO MARTINEZ

THEOREM 5. Let A be a finitely generated linear Jordan algebra of GK dimen-
sion 1. Then:

(a) if A is semiprime, then A is a finite module over a finitely generated central
subalgebra of the associative center of A,

(b) the radical of A is nilpotent.

In the same paper we proved that there are no Jordan algebras having GK
dimension strictly between 1 and 2.

Notice that the even part A of a Jordan superalgebra of the type that we are
interested in is a Z-graded Jordan algebra in which dimensions of all homogeneous
components are uniformely bounded. So either A is finite dimensional or it has GK
dim = 1.

B) Simple graded and prime graded Jordan algebras

For graded algebras we can get more precise information. The following result
is an analog from the theorem of O. Mathieu in [M2].

THEOREM 6. Let A = zieZ A; be a graded simple Jordan algebra of finite
growth, that is, dimJ; < |i|° + d, where ¢,d are constants. If we assume that A is
infinite dimensional, then A is isomorphic to one of the following Jordan algebras:

(a) The simple Jordan algebra associated to a symmetric nondegenerate bilinear
form over an infinite dimensional vector space V', or

(b) A loop algebra.

Recall that a (nonassociative) algebra A is said to be prime if for any two
nonzero ideals I and L of A their product IL is nonzero. A Jordan algebra A
is said to be nondegenerate if, for an arbitrary element a from A, a®> = 0 and
(Aa)a = (0) imply a = 0.

In the proof of Theorem 6 the following facts are used:

- The algebra A is non-degenerate if and only if is graded non-degenerate.

- The algebra A is prime non-degenerate if and only if it is graded prime non-
degenerate.

Consequently, the structure of prime nondegenerate algebras, studied in [Z1]
plays a very important role. Also Mathieu’s result is used. In a concrete way, it is
used that fact that a graded simple Lie algebra of finite growth is PI.

Once the structure of simple graded Jordan algebras of finite growth (that is,
finite GK dimension) is known, we can study the structure of graded prime algebras.
The change of simple by prime forces the change of finite growth by growth one
(GK-dimension 1). Now the structure of this algebras is given by the following:

THEOREM 7. Let A = ZiEZ A; be a prime nondegenerate graded Jordan al-
gebra. Suppose that there exists d > 0 such that dimA; < d, for all i. Then A
is:

(a) either a graded simple algebra ( so known by the previous theorem) or

(b) only finitely many negative (resp. finitely many positive) components of
A are nonzero, that is, there exists s > 1 such that A; = 0 for all i < —s ( or
A; = 0 for all i > s). Moreover, there exists a simple finite dimensional Z/nZ-
graded algebra G and a monomorphism of graded algebras ¢ : A — L(G) such that
#(Ax) = L(G), for all k greater than a certain number m > 1 (resp. less than
-m).
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GRADED SIMPLE JORDAN ALGEBRAS AND SUPERALGEBRAS 195

Remark. We will refer to algebras of type (b) as “one-sided graded algebras”.

4. The main result. General ideas of its proof
The aim of [KMZ] is to prove the following result

THEOREM 8. Let J = ZieZ J; be an infinite dimensional graded simple Jor-
dan superalgebra over an arbitrarily closed field F of zero characteristic such that
dimensions dim(J;) are uniformely bounded. Then J is isomorphic to one of the
following superalgebras:

1) a loop superalgebra L(G), where G = Go+ Gy + -+ Gn_1 is a finite dimen-
stonal simple Z/nZ- graded superalgebra,

2) a Jordan superalgebra F1 +V of a nondegenerate supersymmetric form in
a Z-graded vector space V = Vg + Vi,

3) a Kantor Double J = A + Az of an associative supercommutative algebra
A= ZieZ G(V); ® t* with a contact bracket, where V.= Vo + -+ + V,_1 is a
Z/nZ- graded finite dimensional vector space. If n is odd then there is one (up
to isomorphism) Jordan superalgebra of this type with x being of degree 0. If n is
even then there are two contact brackets on A leading to two nonisomorphic Jordan
superalgebras, one with x having degree 0 and one with x having degree 5*,

4) a Jordan superalgebra of Cartan type,

5) an exceptional Jordan superalgebra Js whose Tits-Kantor Koecher construc-
tion is isomorphic to the exceptional Cheng-Kac superalgebra CK(6) (see [CK]).

Let us denote A and M the even and odd part respectively of J. For every
element x € M the operator R(x)?: J — J, y — (yx)z is a derivation.

Let D be the linear span of {R(z)?|z € M} and let I be maximal graded
D-invariant ideal of A such that I is nilpotent.

It can be proved that A/I is a direct sum of prime nondegenerate D-invariant
graded ideals: A=A/I=AD @ ... @ A", B

According to the previous section the structure of each of these A(¥) is known
to be of one of the following types:

(a) finite dimensional, or

(b) a loop algebra, or

(c) an infinite dimensional Jordan algebra associated to a bilinear form, or

(d) a one sided graded algebra.

More precise information on the structure of A is given by the following propo-
sition:

PROPOSITION 9. If a superalgebra J satisfies the assumptions of the Theorem
and A denotes its even part, then one of the following assertions holds:

1) A/I ~ L(G) a loop algebra of a simple finite dimensional Jordan algebra of
a bilinear form, the ideal I is nilpotent and I # (0),

2) A/I is a one-sided graded algebra commensurable with a loop algebra L(G)
of a simple finite dimensional Jordan algebra of a bilinear form,

3) A/I is a finite dimensional simple Jordan algebra of a bilinear form, I # (0),

4) A=AV @ A?  where A® are algebras of the types (a), (b), (c) or (d) that
we have mentioned above,

5) A ~ L(G), where G is a simple finite dimensional Jordan algebra of a bilinear
form,
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6) A is a finite dimensional simple algebra,
7) A/I is a simple infinite dimensional Jordan algebra, I # (0),
8) A is a simple infinite dimensional Jordan algebra of a bilinear form.

The Jordan superalgebra J is of Cartan type in the following cases:

i) If I =(0), A= AN @ A®  AM is one sided graded and A is either finite
dimensional or one sided graded of the same type as A(") (that is, both positively
or both negatively graded).

ii) If A/I is one sided graded (I can be (0) or not).

If I +# (0) and A/I is finite dimensional, then J is finite dimensional.
If I = (0) and A is either finite dimensional or infinite dimensional of a bilinear
form, then J is either finite dimensional or the Jordan algebra of a superform.

The following cases are shown to be impossible:

a) A= AN @ A with AW finite dimensional and A a loop algebra.

b) A= AM @ A? with AN and A one-sided graded, one of them positively
graded and the other one negatively graded.

c) A=AV 3 A®? with AW an infinite dimensional Jordan algebra of a bilinear
form.

d) A® @ A® with AM a loop algebra and A® one sided graded.

e) (0) # I and A/I infinite dimensional of a bilinear form.

If A is a sum of two loop algebras then J is either a loop superalgebra or an
algebra obtained by the Kantor double process.

If I = (0) and A is a loop algebra associated to a simple finite dimensional Jor-
dan algebra G, then J is either a loop superalgebra or, in case when A is associated
to the algebra of 2 x 2 matrices, the exceptional algebra Js. The Tits-Kantor-
Koecher construction of Jg is the exceptional Lie superalgebra CK(6) discovered
by Cheng and Kac (see [CK]).

Finally, the main case corresponds to A/I ~ £(G) the loop algebra associated
to a Jordan algebra of a bilinear form G. In this case, (0) # I = M (A) is nilpotent.

First it is proved that the algebra A splits over its McCrimmon radical I, that
is, there is a subalgebra B of A with B ~ £(G) and A = I + B. in this case J is a
Kantor double superalgebra.
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The Centralizer Algebra of the Lie Superalgebra p(n) and
the Decomposition of V® as a p(n)-module

Dongho Moon

ABSTRACT. We construct an associative algebra Aj and show that there is a
representation of Ay on V®* where V is the natural 2n-dimensional represen-
tation of the Lie superalgebra p(n). We show that Ay is the full centralizer of
p(n) on V®k_ Using Ax, we decompose the tensor space V® for k =2 or 3,
and show that V®F is not completely reducible for any k > 2.

0. Introduction

In his papers [16] [17], I. Schur showed that the action of the symmetric group
S on the tensor product space V®* by place permutations and the natural action
of the general linear group GL(V) on V®* commute with each other. Moreover he
proved that those two actions determine the full centralizers of each other. This
result, which is often quoted as Schur-Weyl duality, connects the combinatorial
theory and the representation theory of GL(V) and Si. For example, the decom-
position of the GL(V)-module V®* into irreducible summands can be obtained
from the decomposition of the group algebra CS), into minimal left ideals which are
labeled by standard Young tableaux.

After Schur’s initial results, there have been various attempts to obtain ana-
logues of Schur-Weyl duality (or to determine the full centralizer algebras) in
other settings. In [5], R. Brauer described the centralizer of the orthogonal Lie
group O(n), and the symplectic Lie group Sp(n) (for n even) using what are
now called Brauer algebras. An analogue of Schur-Weyl duality for the general
linear Lie superalgebra gl(m,n) was obtained by A. Berele and A. Regev [3].
A.N. Sergeev [18] obtained the same result for gl(m,n) independently. In the
same paper [18], Sergeev also determined the full centralizer of the almost sim-
ple Lie superalgebra sq(n). The orthosymplectic Lie superalgebras spo(m,n) were
studied by G. Benkart, C. Lee Shader and A. Ram in [2] (see also [9] and [10]). The
centralizer algebras for Lie color algebras, which are Lie algebras graded by a finite
abelian group, and their relation with the Lie superalgebra case were studied by the
author in [11] [13]. The general linear Lie color algebra case was also investigated
by S. Montgomery and D. Fischman using Hopf algebra methods in [6].
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200 DONGHO MOON

In this paper we will discuss the Lie superalgebras p(n). The algebras sp(n) =
p(n)Nsl(n,n) are the only ones in Kac’s list [7] of classical simple Lie superalgebras
whose centralizer algebras are not known (excluding the exceptional algebras F'(4),
G(3) and D(2,1;a)). We obtain the full centralizer algebra of p(n) in End (V).
We also construct maximal vectors of p(n). Then we use the centralizer algebra
of p(n) to decompose the tensor space V®? and V®3. This decomposition enables
us to find dimension formulas for some highest weight p(n)-modules. It will follow
that V®* is not completely reducible for every k > 2. The author hopes that the
technique developed to decompose V®2 and V®3 could be used for higher values of
k.

This paper is based on the presentation given at the conference on Recent
Progress in Algebra held at KAIST, Taejon, Korea. But there are few new results
after the conference. For example Theorem 2.7 (b) was not announced at the
conference. More details with complete proofs of the results in this paper will
appear elsewhere (see for example, [12] or [13]).

The author wishes to express his sincere gratitude to Professor G. Benkart,
under whose guidance the work presented here was done.

1. The Lie superalgebra p(n)

Let V = C™*™ be a Zy-graded (m + n)-dimensional vector space over C, with
V = Vy ® Vi, where Vj = C™ and V; = C". The general linear Lie superalgebra
gl(m,n) = gl(m,n); ® gl(m,n); is the set of all (m + n) X (m + n) matrices over
C, which is Zy-graded by

attmo={ (5 D)[A€Mmn(©, BeMun(©},

attm)i={(& ) [B€Mnia©) CEMun(©],

together with the super bracket

[z,9] = zy — (-1)*yz

for z € gl(n,n)s, y € gl(n,n); a,b=01.
Let v: V — V be the linear mapping which satisfies

v(v) = (=1)*v for v € V;.
We define the supertrace str on gl(m,n) by,

str(z) =Tr(yz) =TrA—-TrD,

for x = é, IB; € gl(m,n), where T'r is the usual matrix trace. The special linear

Lie superalgebra sl(m,n) is the subalgebra,
sl(m,n) = {z € gl(m,n)|str(z) = 0},

of gl(m,n) of matrices of supertrace zero.
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THE CENTRALIZER ALGEBRAS OF p (n) 201

There is a natural action of gl(m,n) on V by matrix multiplication, which
extends to an action on the k-fold tensor product V®* of V. More precisely,
T (11@V2 ® - ® vk)
k
=Z(—1)abl+m+ab“1 VO Vi1 ® LV QVit1 ® - ® Uk,
i=1
where z € gl(n,n)s, and v; € Vj,, a,b; = 0 or 1.
The symmetric group Sy on k-letters acts on V®* by graded place permutation.
So for (i i+ 1) € Sk,
Ei+D)n® - Qupg=(-1)"""*1v; Q- QUi—1 ®Vi+1 QU; ® -+ ® Vg,

where v; € V,,. The actions of Sk and gl(m,n) on V® commute with each other
(see for example, [3] or [18]).

For the rest of this paper we restrict our considerations to the case dim Vg =
dim Vi = n. Let (,) be a nondegenerate bilinear form on V' x V such that

(i) (v,w) = (~=1)%(w,v) for v € V3, and w € V.
(i) (v,w)=0if v,w € V5 or v,w € V5.
Then we define the homogeneous spaces of the Lie superalgebra p(n) as follows.
Fora=0or1l,
p(n)s = {a: € gl(n,n)a | (zv,w) + (—=1)*(v,zw) = 0
Vo € Vi,b=0, or 1,Yw € V}.

Then p(n) = p(n)s ® p(n);i is a subsuperalgebra of gi(n,n).

Since the bilinear form is nondegenerate on V', there exists a basis B = ByU B;
for V such that By = {ey,...,e,} is a basis for V5 and B; = {en+1,--- ,€n4n} is
a basis for Vj, and

(en+i»ej> = <6j,€n+i> = 51',3', (61',61‘) = (en+iaen+j> =0,

fori,j =1,2,...,n. In other words e; and e,; are dual to each other with respect
to the bilinear form. So we will use the notation e;* := e,4; and e,4;* := e;, for
i=1,...,n.

The matrix of the bilinear form relative to the basis B is given by

0 I,
Fo = (eweMzsen = (1 )
Using Fpg, we can see that p(n) can be represented as

p(n) = {(é _iT) € M2 x2.(C) A, B, C € gl(n), }

BT=B, CT=-C
Here AT denotes the usual matrix transpose of A.
In 7] Kac showed that

sp(n) = p(n) N sl(n, n)
2{(/1 B ) eMW%(C)’ Aesl(n) B, Cegln), }

c -AT BT =B, CT=-C

is a simple Lie superalgebra provided n > 3.
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202 DONGHO MOON

Let E;; denote the standard matrix unit which has 1 in the (s, t)-position and
0 elsewhere. We will denote homogeneous basis elements a;;, b;;, ¢;; of p(n) by

aij = FEij — Ejinitn € {(g —SlT) I Ae gl(n)} for1<i,j<n

bij == ij+n+Eji+n€{(g g)‘BEQZ(n),BT=B} for1<i<j<n

Cij = i+nj_Ej+ni€{<g g)lC’Egl(n), CT=—C} for1<i<j<n.

For a semisimple Lie algebra, the Killing form, which is nondegenerate, plays an
essential role in the theory of highest weight modules. A classical Lie superalgebra
L is called basic when L has an even nondegenerate invariant bilinear form. The
basic classical Lie superalgebras are close to the ordinary classical Lie algebras in
many respects (for more information, see [8]). But it can be shown that there does
not exist any nonzero invariant bilinear form on p(n) if n > 3 (see for example [7]
or [15]). Therefore we need a more general theory to construct the highest weight
modules for Lie superalgebras which are not basic classical.

I. Penkov and V. Serganova developed a general way to construct highest weight
modules of arbitrary finite-dimensional Lie superalgebras [14]. We fix b, the set of
all the diagonal matrices in p(n), as a Cartan subalgebra of p(n). A linear functional
o € b* is a root of p(n) if and only if p(n), = {z € p(n)|[h,z] = a(h)z, Vh e h} #
(0). Then p(n) has the root space decomposition relative to b,

p(n) = P p(n),

a€h*

The set A = {a € h*\ 0|p(n), # (0)} is the set of roots of p(n). Penkov and
Serganova developed a way to construct generalized triangular decompositions of
p(n), even though we cannot define simple roots of p(n). From [14] we have the
following triangular decomposition of p(n);

THEOREM 1.1. [14] There is a decomposition of A = A, U A_ such that
p(n) =p(n)- ®h&p(n)y,
p(n)y = @ p(n), is the C-span of {a;;|l <i<j<n}U{by|l <i<j<n},

a€A
b is the set of diagonal matrices in p(n) which is the C-span of {a;li = 1,...n}
and
p(n)- = @ p(n), is the C-span of {a;;]1 < j<i<n}U{c;|l <i<j<n}
a€EA_

Here we note that there is no automorphism 7 of p(n) so that 7(p(n), ) = p(n)_
and 7(p(n)_) = p(n),. In fact these spaces have different dimensions.

DEFINITION 1.2. A p(n)-module V is a highest weight module if and only if V
is generated over p(n) by a weight vector v, € V such that p(n), - vy = (0). We
say A € b* is the weight of v, if h- vy = A(h)vy, for all h € .

From now on we will adopt the convention on parities that p(z) = a if 0 £z €
p(n), and p(v) =bif 0 # v e V;.
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THE CENTRALIZER ALGEBRAS OF p (n) 203

2. The centralizer algebra of p(n) on V&

We describe the full centralizer algebra of p(n) on V®* in this section.
Consider V*, the dual vector space of V. Then V* is also Z,-graded so V* =
(V*)p ® (V*);, where (V*); = (15)", and V* is a p(n)-module by

(@ g)(w) = —(~1)PPDg(z - w), VweV,
for z € p(n) and g € V*.
Define a linear map f: V — V*, v+ f, by f,(w) = (v,w), for v,w € V.
Then f is p(n)-module isomorphism i.e.,
X - f'u = (—1)a41f1‘-va T € p(n)d

Moreover we see f : Vg — (V*)1, and Vi — (V*);, ie., f is a p(n)-module
isomorphism of parity 1.
There is also a p(n)-module structure on End(V') defined by

(@ p)(w) =z pw) = (=1 PP p(z - w),
for € p(n) and ¢ € End(V). Also we have that V ® V* is isomorphic to End(V)
by
VeV* — End(V), VO g Pyg,

where for all w € V, ¢, 4(w) = g(w)v. By this series of p(n)-module isomorphisms,
V ® V is isomorphic to End(V):

VeV 18] Vev: —  End(V)
e;Re;* — (—l)p(ei)ei ® fe; — (—l)p(ei)Eij
2n
Y (-1Plede; @ e — — Iy

=1

2n
Because the identity map Iy on V is a p(n) invariant, Y (=1)P(¢)e; ® e;* is a p(n)
i=1
invariant.
Define the contraction map ¢ € End(V®2) by

2n
c(v1 ® v2) = (v1,v2) Z(—I)”(e")ei ®e;.
i=1

Since a p(n)-module invariant is killed by p(n), it’s easy to show
z-c(v1 ®u2) =0=rc-z(v1 ® v2).

So ¢ € Endy(n)(V®?) and ¢(V®?) is 1-dimensional submodule of V ® V.
Let s be the action of (12) € Sy on V®2, so

s(v1 @ vg) = (—1)PEVPO2)y, @ o).

Then s € Endp(,,) (V®?) since the action of S; commutes with the action of p(n) on
Ve
Define ¢;,5;, € Endp(n)(V®k), 1=1,2,...,k—1, by

¢, = [®¢ D @c [,k

5; = Iv®(i_1) Rs® IV®(k_i_1)
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204 DONGHO MOON

PROPOSITION 2.1. ¢; and s; satisfy the following relations:

sP=1, &’=0, es;=—¢; siei=e;, 1<i<k-—1,

$iS; = 5;5;, §;¢; = €;5;, €;¢; = ¢;¢;, |t — 4] > 2,
$i5i415: = $i+15i5i41, €i+1€i€i+1 = —€i11, €118 = —¢;, 1<i<k-2,
$i€i418; = —5i41€;, €i11€5i41 = —€;115; 1<i<k-2

DEFINITION 2.2. Let Ay be the unital associative algebras generated by z4,.. .,
k-1, U1,... ,Dk—1 with defining relations

=1, 9" =0, 0iti = =0, L0 =5, 1<i<k-1,

Lt = Ekis 5 = 95E, a5 =059, -4 > 2,
Lifir1li = Lit1Elit1y Dit19iDiv1 = —Dit1, Yilit1hi = —0;, 1<i<k-2,
LiDir19i = —Lit19i, Dit1Diki+1 = —Dir1li 1<i<k-2

Note that the defining relations for r;, ¢ = 1,... ,k — 1 in Definition 2.2 are
those of the symmetric group Si. Hence we see that there is a copy of CSy in Ayg.

PROPOSITION 2.3. There is a representation ¥: Ay — Endy(n,) (V) of Ay
given by U(x;) =s; and U(y;) = e;.

A k-diagram is a graph with two rows of k vertices each, one above the other,
and k edges such that each vertex is incident to precisely one edge. The k-diagrams
form a basis for the Brauer algebra By(n). Because the relations in Ay are very
similar to the relations for the Brauer algebra Bi(0) (with n = 0), we guess that
there should be a close relation between these two algebras. In particular, we would
hope to represent the basis elements of Ay using k-diagrams, as in the case of the
Brauer algebra.

Let F denote the free associative algebra with 1 on a set z1,x2,... ,x,, over a
field k. Give the set X of all monomials in z1, ... ,x,, the lexicographic ordering <.
Let S be a set of pairs of the form o = (w,, f,), where w, € X and f, € F being
a linear combination of monomials < w,. For any 0 € S and A,B € X, let T4oB
denote the linear map sending Aw, B to Af,B and fixing all other monomials. Let
R denote the semigroup generated by the {ra,plc € S, A,B € X}. Callz € X
reduced if 7(z) =  for all r € R. Let us call a 5-tuple (o,7; A, B,C) € §? x X3 for
which w, = AB, w, = BC, an ambiguity of S. An ambiguity is resolvable if there
exists 7,7’ € R such that r(f,C) = ' (Af,).

LEMMA 2.4. (The Diamond Lemma)[4]
All ambiguities of S are resolvable if and only if the reduced elements under R form
a k-basis for the quotient algebra F/{w, — f5 : 0 € S).

Generally it is not true that two algebras, which have the same generating
elements and similar generating relations, have similar structures. However, in our
case, we use Lemma 2.4 to prove

THEOREM 2.5.
dimc Ax = (2k — 1)!' = (2k — 1)(2k — 3) - -- 3 - 1 = dim¢ Bg(0).

Moreover the k-diagrams form a basis for Bi(0) and for A, and the product of
two k-diagrams in A can be found using their product in B (0). More precisely,
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THE CENTRALIZER ALGEBRAS OF p (n) 205

let d; , d2 be any two k-diagrams. Then the product d; * dz in Ax can be written
as

dy x dy = £dy o dy,

where d; o dj is the multiplication in By (0). We have not succeeded yet in deter-
mining a closed form formula for the sign. But there is a way to figure out the sign
for any two of k-diagrams given to us. We present an example below.

Assume 7 € C. The product of two k-diagrams d; and dj in the Brauer algebra
By.(n) is obtained by placing d; above d» and identifying the vertices in the bottom
row of d; with the corresponding vertices in the top row of dj.

EXAMPLE 2.6. If

. .
dl: 3 d2=
¢ ¢ e ¢« e

then

N
N
dlo@%,lzw
« e ¢ e
« «

The power on 7 records the number of closed cycles in the middle, which in
this example is 2. The algebra By (0) has the parameter 7 specialized to 0. Thus
in By(0), d o d2 = 0 in this example.

Now let’s consider A3. The dimension of A3 is 3!! =5-3-1 = 15. We assign to
each basis element of A3 with a 3-diagram:

1=III, I1=>< I, F2=IX I1?2=>§<, F2}51=>%<,
ikt = >I<, "1 =Y I, D2 —I ~y e = Un, D21 = X,
i92n = >I< Dir2 = /7< D2l = >Y\ I102—>£/ 2y = \5<

Applying the procedure described in [4], we obtain a reduction system S on the
generators 1,r1,r2,91,92 so that all ambiguities of S are resolvable. (For more
detailed information, see [4].) In this case the reduction system S consists of the
following relations:

B=5=1 91=95=0, pri=-b;, rpi=y;, fori=12
L2riZi = 2k, 919291 = —h1, 920192 = —Y2, Y201 = —r2h
D2D1%2 = —P2k1, I1k2h1 = —BY2h1, Y2ril2 = —h2h1, Yikehr = —M
2102 = 9192, I201h2 =12,  Y2rih2 = Y2, Direli = k2
D1h2k1 = P1Xe, I2Bal2 = Y2t
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206 DONGHO MOON

Using this reduction system, we easily get the products of 3-diagrams in As. For

example,
>i< * % =(r19281)(D1x2) = £192(x191)52

=t1(929122) = —r19281
Note that the even part p(n); of p(n) is isomorphic to the general Lie algebra
gl(n), and as a p(n)z-module V is isomorphic to the direct sum T@®U, where T = C"
is the n-dimensional natural representation of gl(n) and U = T* is the dual of T
The gl(n)-invariants of the mixed tensor space T®* ® (T*)®! are determined in

[1]. Using their results, we can prove a result which could count as an analogue of
Schur-Weyl duality for the Lie superalgebra p(n).

THEOREM 2.7.
(a) U: Ay — Endy(n)(V®*) is a faithful representation of Ay if n > k.
(b) W(Ag) is the full centralizer of p(n), if n > k. In other words,
Endy(n) (VE*F) = U(Ax).

If the centralizer algebra on V®* is semisimple, then V®* decomposes into a
sum of indecomposable submodules using minimal idempotents of the centralizer
algebra. Therefore it is interesting to know whether Ay is semisimple.

THEOREM 2.8. Ay is not semisimple for all k > 2.

3. Maximal vectors of p(n) in V®*

In this section we construct maximal vectors of p(n) in the tensor space V&
using the centralizer algebra Ay. Note that we regard CSy as a subalgebra of Ag
Define the contraction mapping ¢, 4 on the (p, g)-tensor slot by

e 1
Cpq =0 "hi0.

s

where o € CSy is such that o(1) = p, and 0(2) = ¢. It is not difficult to show that
Cp,q is well-defined.

LEMMA 3.1. ¢, 4 is independent of the choice of .
If p={p1,...,p;} and ¢ = {q1,...,4g;} are two disjoint ordered subsets of
{1,... ,k} such that p; < ¢;, for all ¢ = 1, ... j, then we set
) k
Cpg = Cpra1 " " Cpjq;p L= 1,..., 3
cp,p : = identity.

Let (p,q) = {(pl,ql), ,(pj»q;)}, and denote by p(j) the set of all such (p,q).

L5
Also we set P = O p(j)-
3=0

Let H be the set of all diagonal matrices in gl(n,n). Note the Cartan subalgebra
b of p(n) is contained in H. For ¢ = 1,2,...,2n, define a linear functional ¢; :
H — C, by £;(E;;) = 6;;. Let X be a partition of [ < k. Then we denote by
£()) the length of A, which is the number of nonzero parts of A. For each partition
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A = (A1,A2,A3,..., Agpn) with length £()\) < 2n, we associate a weight of p(n) in
the following way;
A= A€+ + AonEon.

A standard tableau T of shape A is obtained by filling in the frame of A with
elements of 1,... ,k so that the entries increase across the rows from left to right
and down the columns. We set £(T) := £()\). We associate two subgroups in the
symmetric group Six to T. The row group Rt consists of all permutations which
permute the entries within each row. Similarly, the column group Cr is the group
consisting of all permutations permuting the entries within the columns. Define s,
an element of the group algebra C(Sg), by

Sp = Z P Z sgn(¢)¢

YERT ¢€Cr

Then st has the property that there is some h(\) € Z* that only depends on
the shape of T such that sy = h(\)sr (See [19]). Now the Young symmetrizer
determined by T is the idempotent defined by

1
Yyr = WST.
EXAMPLE 3.2. Assume n =8, k = 14, and A+ 10. Then
<
L n=a 1[6]1104]
A= izfz. Let T = 2.8
3=2 A 1419
. 7\.4=1 7
L] As=1 @
Then A =4e; + 262 + 263 +64+¢5,and g =--- = A1 =0.

Let A = (A1,...,A2,) F I, a partition of [, where | = k — 2j for j =0, ... ,L%_{
Let STx((pU ¢)°) denote the set of standard tableaux of shape A with entries in
(pU q)°, where (p,q) € p(j). Fix T € STx((pU q)°). Define the associated simple
tensor wrpq = w1 ® -+ @ wi by

€1 if7 € p,
w;=qe] =eny1 ifi€g,
€ if i € (pU q)° and i is in jth row of T.

Now define a tensor 6 by 6 := yrcp qwr,p,q , Where yr is the Young symmetrizer
determined by T. Then we can show 6 is a maximal vector of weight A = \je; +
-+ + 4+ Aap€ay,, which means

p+(n)d =0, h-6=X\h)8, Vheh.
THEOREM 3.3. Ifn > k, then
{y:rcg,ng,E,g (n.9) € P, TeST((pUg)), «T)< n}

is a linearly independent set of mazimal vectors.
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208 DONGHO MOON

4. The decomposition of V&

In this section we obtain the decomposition of the p(n)-module V®* for k = 2
and 3 into indecomposable modules using the centralizer algebra Ay of p(n). For
larger values of k, we also hope that this kind of decomposition can be obtained
using Ax. We use the decompositions of V®2 and V®3 to conclude that V®* is not
completely reducible for any k& > 2.

4.1. Decomposition of V2,
We note that the centralizer algebra As is not semisimple. In fact the radical
Rad(Az) of Ay is equal to (n,). In this case it follows from Theorem 3.3 that

01 =ymmer ®e; =e; Qe

1
62 =yger®e = 5(61 Res—ex®e;)

2n
03 =cipe1®e€1" = Z(—l)"(e")ei Qe

=1

are linearly independent maximal vectors of p(n) in V®2. By direct computation
we can show there are no more maximal vectors.
As a module for gl(n,n) (and hence for p(n)),

VE =y (V®?) & vy (Ve?).

Note that 6, € yaz(V®2) and 6, 05 € y(V®2). These modules are irreducible for
gl(n,n), but not for p(n). In fact we have the following:

4.1.1. ymy (V®?) is an indecomposable p(n)-module which is not irreducible.

0 is the unique maximal vector (up to scalar multiples) in the submodule
y (V®?) and U(L)6; is the unique p(n)-submodule. It has codimension 1. Here
U(L) is the universal enveloping algebra of the Lie superalgebra L = p(n). So we
have that U(L)8; = V(2¢;) is the irreducible L-module of highest weight 2¢,. We
have the following diagram of submodules. '

ym (V82)
1
U(L)6y = yrrm (VE?) Nkerc
‘2n2 -1
(0)

Therefore we obtain the dimension formula for V(2¢1).

dimV (2¢;) = dimyprg (V®?) - 1

=2n% 1.
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THE CENTRALIZER ALGEBRAS OF p (n) 209
4.1.2. vy (V®2) is an indecomposable p(n)-module which is not irreducible.

In this case, U(L)#, is the same as gy (V®2). And U(L)6s is a one-dimensional

trivial submodule. So vy (ve®?) / Cl3 = V(g1 + €2), the irreducible p(n)-module of
highest weight €1 + &2.

Vg (V&%) =U(L)82

|2n2 -1
U(L)03 = imc
B
(0)

From this we can determine the dimension of the irreducible highest weight module
V(e1 + €2),
dim V(E1 + 62) = dimy (V®2) -1

=2n% 1.

4.2. Decomposition of V®3., Note that A3 is not semisimple. The radical
Rad(A3) of A3 is the C-span of

NAIN NR-A7A N KA
A=A+ AR KA7A+A%
Note the dimension of Rad(As3) is 5, so the dimension of A3/Rad(A3) is 10.

In this case we can show that all the linearly independent maximal vectors in
V®3 can be listed as

0 =cipe1®e1" Qe
b2 =ci3e1®e1®@e”
03 =cp3e1 Qe Qer”
01 = yummer ®e1 e
05 = y@zﬁ ® el ®e2

O =yEe ®e2 e
07 Zy@el ® ez R e3.

As a p(n)-module, V®3 decomposes as

VE = yupm (V%) @ Y Ve e e v e y@ (V®?)
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210 DONGHO MOON

Also we know how these seven maximal vectors spread over V®3:
61 € yopm (V)
05, 61420+ 0; € ypm (V®3)
03, 201+0,—03¢ yEE(Vm)
07, —01+6,—03¢€ y@ (V®3).

4.2.1. yazm (V®3) is an indecomposable p(n)-module which is not irreducible.

04 is the only maximal vector in this submodule and U(L)§, is the only sub-
module of yupm (V®3). Therefore U(L)f, is the unique irreducible p(n)-module
with highest weight 3¢;.

Yaem (V®3)

U(L)0s =V (3¢1)

(0)
Moreover
yom (V) [U(L)0s 2 V(er) = T,
So we have the dimension of the irreducible highest weight module V(3¢ ).
dim V(3¢;) = dim yapm (V®?) - 2n
_ 8n(2n? +1) 3

3 2n.

4.2.2. nel (V®3) is a completely reducible p(n)-module.
We have the irreducible decomposition of o (V®3) in this case,

ygn (VE?) = U(L)0s & U(L)(: + 203 + 0s),
UL)s 2V (21 +e2) and U(L)(01 +202+603) =2V (e) =V
So we obtain the dimension of the irreducible highest weight module V(2¢; + &3),
dim V(261 + €2) = dimU(L)65 = dimygz. (V®3) —2n

_ 2n(2n+1)(2n - 1)

3 2n.

423, yga (V).

Y (V'®3) is isomorphic to e (V®2) as p(n)-modules. So Y (V®3) is com-
pletely reducible.
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THE CENTRALIZER ALGEBRAS OF p (n) 211
4.2.4. y% (V®3) is an indecomposable p(n)-module which is not irreducible.

There are two maximal vectors in this submodule, 67 and —6; + 6, — 63. The
vector 07 will generate the whole module ny (V®3), and —6; + 62 — 05 is a maximal

K
vector of weight ;. So U(L)(—61 + 62 — 63) is an irreducible module which is
isomorphic to V = C**™. There are no other submodules in y% (V®3). Therefore,

we obtain the following diagram.
y% (V®3) =U(L)6,

U(L)(~01 + 62 — 63)
|2n
(0)
L{(L)(—Ol + 02 - 93) = V(el) = ‘/,

g (V) [C(=01 + 05— 85) = V(1 + 2 +¢3).
3]

And we may compute the dimension of the irreducible highest weight module V (g1 +
€2 + €3),
dimV (e, + €2 +¢3) = dim y% (V®3) -2

_ 8n(2n®+1)
=5 -
For any contraction map ¢ € Endy(n)(V®), ¢ maps V®* onto V®~2. So for
each k, V®* has a submodule M, which is isomorphic to V®?2 if k is even, or to
V®3 if k is odd. Since V®2 and V'®3 are not completely reducible from our previous
arguments, we have the following corollary.

2n.

COROLLARY 4.1. V® is not completely reducible as a p(n)-module for any
k>2.
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Drinfeld-Anderson Motives and Multicomponent KP
Hierarchy

Igor Yu. Potemine

ABSTRACT. We define Drinfeld-Anderson motives and sheaves generalizing
Drinfeld modules, Anderson ¢-motives and Laumon-Rapoport-Stuhler D-ellip-
tic sheaves. The first main result is a proof of an anti-equivalence of the
category of Drinfeld-Anderson motives of T-rank n over L and a certain sub-
category of the category of commutative subrings of the matrix ring M, (L[r])
where 7 is the Frobenius morphism. The second main result is a classification
of Drinfeld-Anderson motives over finite fields. Analogies with (generalizations
of) the Burchnall-Chaundy-Krichever theorem as well as the multicomponent
KP hierarchy are given.

Introduction

It turns out that commutative subrings of certain non-commutative rings of
operators are very important for the arithmetic algebraic geometry, the class field
theory as well as integrable systems. Such subrings correspond to algebro-geometric
data consisting of torsion-free sheaves on marked algebraic curves with some addi-
tional structures (including a sort of local or formal trivialization at marked points).
We consider the case of ordinary differential operators in characteristic zero and
the case of twisted polynomials of a Frobenius morphism in positive characteristic.

The structure of this paper is the following. The first four sections give a
general survey of Burchnall-Chaundy, Krichever-Mulase and Drinfeld results about
commutative subrings of non-commutative rings of operators. The next three sec-
tions is the original core of this paper. In section 5 Drinfeld-Anderson motives are
defined and the first main theorem is proved (theorem 5.3). After that the phe-
nomenon of existence of non-pure commutative subrings is described. We define a
notion of pure Drinfeld-Anderson motives and extend it to a geometric definition of
pure Drinfeld-Anderson sheaves over an arbitrary Fg-scheme S. Further, a classifi-
cation of Drinfeld-Anderson motives over finite fields is given (theorem 7.1). It is
analogous to the classification of “usual” motives over finite fields in many ways (cf.
[Mi]) although our motives are with “values in positive characteristic”. In section
8 we discuss analogies between the category of Drinfeld-Anderson motives and the
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214 I. YU. POTEMINE

multicomponent KP hierarchy. Finally, we mention further generalizations in the
differential case.

David Goss underlined to the author the importance of an analytic uniformiza-
tion of Drinfeld-Anderson motives. We do not discuss this topic in the paper only
because it could lead us too far from our main purpose. The construction of such
an uniformization does not seem to present any additional difficulties with respect
to the case of t-motives ([Anl], §2).

The notion of Drinfeld-Anderson motive seems to be new. Although this pa-
per is self-contained, an interested reader can extract more background from the
author’s Ph.D. thesis ([Po], ch. 1).

Acknowledgments. I am very thankful to the organizers of the conference “Recent Progress
in Algebra” for presenting me an opportunity to give a talk on the topic of this article. It is a
pleasure for me to thank my colleagues and all members of KIAS for their help and for creating
excellent atmosphere in the institute. I would like to thank also David Goss for his stimulating

questions concerning analogies between (the category of) Drinfeld modules and KP hierarchy.

1. Krichever modules of rank 1

Let L be a field of characteristic zero and denote L|[t]][d/dt] the ring of ordinary
differential operators. The systematic study of commutative subrings of this ring
was done for the first time in twenties in the series of papers by Burchnall and
Chaundy [BCh].. Although some results goes back at least to Wallenberg and
Schur (see the introduction to the article [Mul]). Half of century later Krichever
[Kr| rediscovered the construction of Burchnall and Chaundy and related it to
the integration of nonlinear partial differential equations of Korteweg-de Vries and
Kadomtsev-Petviashvili type.

Let X be a projective curve over a field L and fix a smooth closed point P on
it.

THEOREM 1.1. (Burchnall-Chaundy-Krichever, [Mum]|) The category of com-
mutative subrings A of R = L|[t]](d/dt] of rank 1 containing L (called Krichever
modules of rank 1) up to the conjugation by invertible elements of L[[t]] is anti-
equivalent to the category of quadruples (X, P, F,n) where F is a torsion-free sheaf
on X of rank 1 such that

KO(F) =h'(F)=0 (1.1)
and n: Tx’p:L.
The consideration of torsion-free sheaves as well as the present version of the
Burchnall-Chaundy-Krichever result is due to Mumford [Mum].

2. Drinfeld modules of rank 1

Let L be a field over Fy, Xo a projective curve and X = Xo ®p_ L. We fix a
smooth closed point P on X. Denote 7 : ¢ — ¢? the Frobenius morphism of L. We
consider the ring L[7] of twisted polynomials with the commutation rule 7c = cI7
for any ¢ € L. The simplest Drinfeld module! of rank 1 :

p:T—T+71 (2.1)

lsee theorem 2.1 below and (4.2) for the definition
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DRINFELD-ANDERSON MOTIVES AND MULTICOMPONENT KP HIERARCHY 215

for X = P} = Proj L[T] called the Carlitz module was studied by L. Carlitz in
thirties [Carl]. Drinfeld [Drl] discovered more general objects which he called

elliptic modules while trying to prove the Langlands conjecture (for global function
fields).

THEOREM 2.1. (Drinfeld ; [Dr2], [Mum]) The category of commutative sub-
rings A of R = L[r] of rank 1 containing Fy (called Drinfeld modules of rank 1) up
to the conjugation by elements of L* is anti-equivalent to the category of quadruples
(X, P,F,n) where F is a torsion-free sheaf on X of rank 1 such that x(F) =0 and

n:(Idx, x 7)*F —=F(P - Q) (2.2)
for a smooth closed point Q # P.

As Drinfeld remarked ([Dr2], [Mum, §3], [An3, 3.3]) the condition x(F) = 0
implies h°(F) = h!(F) = 0.

3. Commentaries

The rank of a commutative subring A C R is defined as the g.c.d. of degrees
of its elements. If X is smooth curve then any torsion-free sheaf F of rank 1 is a
line bundle and by the Riemann-Roch formula we have :
0= h%(F) — h}(F) = x(F) =1 — g + deg(F) = deg(F) =g — 1. (3.1)
Any element £ € Jac(X) = Pic®(X) acts by the tensor product on Pic?~*(X) and
on the moduli space M! of Drinfeld (Krichever) modules of rank 1. In this way we
obtain what is called a Jacobian flow. For example (in the differential case), if X
is a hyperelliptic curve of genus 2 and P is a Weierstrass point then the Jacobian
flow is given (up to a constant) by the Korteweg-de Vries equation :
ou d%u Ju
55— o83 + 6u 5 (3.2)
We would like to say few words about the proofs of the theorems quoted above.
It is remarkable that the proofs essentially coincide. On the one hand, if A C R
is a commutative subring as above then formally X — P = Spec A and the degree
map D — deg D defines a valuation corresponding to P. Moreover, for any D € A
the “eigenspaces” of D glue into a torsion-free sheaf of rank 1.

On the other hand, a quadruple (X, P, F,n) defines an isospectral deformation
of F (see [Mum, §2,3] for more details). This deformation is trivial outside (of a
small neighborhood) of P and defines an injection A = H*(X — P,Ox) — R.

4. Krichever modules of arbitrary rank and elliptic sheaves

There are several problems arising when one tries to give an analogous descrip-
tion in the case of commutative subrings of arbitrary rank. See [Mum, §2] and
[PW] for discussions of these problems. However, in the case of twisted polynomi-
als, Drinfeld introduced a notion of elliptic sheaf and generalized theorem 2.1 above.
The definition of an elliptic sheaf will be given later in more general context.

THEOREM 4.1. (Drinfeld; [Dr2], [Dr3]) The category of commutative subrings
A of R = L[] of rank r containing F, (called Drinfeld modules of rank r) up to the
conjugation by elements of L* is anti-equivalent to the category of triples (X, P, F)
where F is an elliptic sheaf.
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216 I. YU. POTEMINE

Any Drinfeld module is given, in fact, by an injection

¢: A=T(Xo — Py, 0x,) — L[7] (4.1)
In particular, if Xo = IF’lqu then it is given by the image of T :

r
p: T Zai'ri. (4.2)

i=0
for some elements a; € L. See, for instance, the definition of the Carlitz module in

section 2.

It is certainly possible to define also Krichever sheaves and to prove an anal-
ogous theorem in the differential case (cf. [Lau2]). There exists also an another
approach due to Mulase.

THEOREM 4.2. (Mulase, [Mul]) There is a natural bijective correspondence
between the set of commutative subrings A of R = L[[t]][d/dt] of rank r containing
L (called Krichever modules of rank r) considered up to the conjugation by invertible
elements of L[[t]] and the set of quintuples (X, P, F,n,m) where F is a semi-stable
torsion-free sheaf on X of rank r and of degree d = r(g — 1) having no non-trivial
holomorphic global sections, 1 is a local trivialization of F near P and 7 is a local
r-sheet covering ramified at P.

It is remarkable in the both cases that the commutativity of a subring A force
it to be elliptic, that is, consisting of operators with invertible leading coefficients.

5. Drinfeld-Anderson motives

Let L be a perfect field over F,. We would like to go further and describe
commutative subrings of the matrix ring M,,(L[7]). For this purpose we introduce
a notion of Drinfeld-Anderson motives generalizing elliptic sheaves [Dr3], Anderson
t-motives [Anl] and Laumon-Rapoport-Stuhler D-elliptic sheaves [LRS] over L.

Let Xo/F, be a projective curve and Py a smooth closed point on X,. We
denote

A=T(Xo - Py,0x,) (5.1)

the ring of functions on X regular outside of Py. We suppose that L is equipped
with a non-zero morphism a; : A — L.

DEFINITION 5.1. A Drinfeld-Anderson A-motif M of rank r and T-rank n is a
left (A ®r, L[7])-module verifying the following conditions :

1. M is a free L[r]-module of rank n

2. M is a torsion-free (A ®F, L)-module of rank r

3. (a — ay(a)) is nilpotent on M/7M for any a € A.

A morphism of Drinfeld-Anderson motives is an (A ®r, L[7])-linear map.

REMARK 5.2. On the one hand, if n = 1, our definition of M is equivalent to
the Drinfeld definition of an elliptic sheaf of rank r over L ([Dr3], [Cara, sect. 2]).
On the other hand, if Xo = P_and, consequently, A = Fo[t] then M is nothing else
but an Anderson t-motive [Anl]. Furthermore, if M is a D-elliptic sheaf of rank r
over L (cf. [LRS]) then the underlying (A ®, L[7])-module is a Drinfeld-Anderson

motive of rank r? and 7-rank r.
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DRINFELD-ANDERSON MOTIVES AND MULTICOMPONENT KP HIERARCHY 217

We denote M,,(L[7]) the ring of square matrices of order n over L[r] with the
commutation rule 7B = B(?7 where B9 is the “naive” gth power of B € M,,(L)
(with respect to each component). Since L[r] is both left and right euclidian any
matrix D € M, (L[r]) is equivalent to a diagonal matrix. We say that D is non-
degenerate if it is equivalent to a diagonal matrix without zeros on the principal
diagonal. Any D defines an endomorphism up, of the additive group scheme G ;.
If, in addition, D is non-degenerate then the kernel Hp of this endomorphism is a
finite group scheme over F,. We define the degree of D by

deg(D) = log, (§(Ker(D|L))) + ht(Hp) (5.2)

where ht(Hp) is the height of Hp (cf. [Laul, (2.1)] in the case n = 1). For any
element D € M,,(L[r]) we have a decomposition :

k
D= Dir'. (5.3)
=0

where D; belong to M, (L). We would like to consider non-degenerate commutative
subrings A C M,,(L[r]) verifying for any D € A the following condition :

Dy = D, + nilpotent matrix (%)
where D, is proportional to the identity matrix Id,,. If D, is not equal to zero
then ht(Hp)=0 in the formula (5.2). We also assume that A satisfies the following
condition of finite generation? :

Hom(G} ;,G, ;)= > Voa (k)

a€A
for a certain finite-dimensional L-subspace V C Hom(G}[,G, ) (cf. [Anl],
(1.1.3)). Finally, we suppose that A contains F, via the diagonal injection a +—
Diag(a, ...,a) for any a € F,.

THEOREM 5.3. The category of commutative subrings of My (L[7]) containing
F, and verifying the conditions (x) and (xx) up to the conjugation by elements
of GL(n, L) is anti-equivalent to the category of Drinfeld-Anderson motives of 7-
rank n.

Proor. First of all, we would like to prove that any commutative non-degene-
rate subring A C M, (L[r]) verifying the conditions above corresponds to a certain
pair (Xo, Py) by formula (5.1). Consider the graded ring

A=P A (5.4)
£>0
where
Ar={D € A| deg(D) < ¢} (5.5)
and put Xo = Proj A. Let K be the quotient field of A. Then the function
D +— deg(D) defines a valuation of K, that is, a point Py on Xg. It is clear now
that our commutative subring is given by an injection
@Y F(X() - P(), OXO) — Mn(L[T]) (56)
and the map a; is defined by a — D, where D = ¢(a).
2the author is very grateful to a referee for pointing out that in the higher-dimensional case

such a condition can not be avoided even if we suppose that the rank of A (as g.c.d. of degrees of
its elements) is finite
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Further, the group M = Hom(G} [,G, ;) has a natural structure, denoted
M(p), of a left (A ®F, L[7])-module given by the following rules :

(zm)(e) = z(m(e)) (5.7)
(rm)(e) = m(e)* (5-8)
(am)(e) = m(D(e)) where D = ¢(a) (5.9)

foranya€ A,z € L, e € G} ; and m € M. The condition () above implies that
M is finitely generated as (A ®F, L)-module.

A left (A®r, L[7])-module, finitely generated as an (A ®p, L)-module and as a
left L[7]-module, is torsion-free over A®p, L if and only if it is torsion-free over L[7]
(cf. [Anl], Lemma 1.4.5). As a consequence we obtain that M (y) satisfies proper-
ties (1) and (ii) in the definition of Drinfeld-Anderson motives. Indeed, M(yp) is a
free L[7]-module of finite type by construction and all the more torsion-free. Thus,
by the lemma just mentioned, M(yp) is also torsion-free over A ®p, L. Moreover,
the property (x) of a ring A implies the condition (iii) in definition 5.1.

Reciprocally, if M is a Drinfeld-Anderson motive of 7-rank n then its structure
of (A ®F, L)-module defines a morphism :

@(M): A— Endp ;)M = End(G} 1). (5.10)
The image of this morphism is a commutative subring of M, (L[7]) satisfying obvi-
ously all required properties.
Finally, it is easy to see that the functors

A o M({p) and M — Im(p(M)) (5.11)
define the anti-equivalences of the considered categories (cf. [Anl], th. 1) O

As corollaries we obtain theorems 2.1 and 4.1 in the case where L is a perfect
field. The key point in the proof is to show that our notion of Drinfeld-Anderson
motive in those particular cases coincides with the notion of elliptic sheaf over L. In
general, elliptic sheaves and D-elliptic sheaves may be defined over any F,-scheme
S. We shall return to this question in the next section while defining a notion of
pure Drinfeld-Anderson sheaf.

A morphism ¢ in the theorem above is called a Drinfeld-Anderson module
of rank r and 7T-rank n by analogy with Drinfeld modules and Anderson abelian
t-modules ([An1], §1).

ExAMPLE 5.4. If ¢ is a Drinfeld module then M) is called a Drinfeld motive.
It can be described by generators and relations in the following way :

M(p) = (A®F, LIT])/(e1 = wler), - (ex — plex)) (5.12)
where {c;,...,c.} is a system of generators of A over F,.
6. Pure Drinfeld-Anderson motives and sheaves

There is a new phenomenon of existence of “non-pure” commutative subrings®
of M,,(L[r]) when n > 1. In this section we define what is a pure Drinfeld-Anderson
motive following Anderson’s ideas. It turns out that the definition may be extended

3this is, in particular, related to the existence of non-multisoliton solutions of the multicom-
ponent KP hierarchy (see [KvdL, (0.4)])
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to a more general situation where a perfect field L is replaced by an arbitrary F,-
scheme S. In particular, elliptic sheaves of rank r and D-elliptic sheaves of rank r2
are pure of weight 1/r.

6.1. Pure DA motives. We use henceforward the traditional notation oo for
a fixed closed point Py on Xy and v, for the corresponding additive valuation of
the function field K of Xy. This notation is a little misleading since any closed
point on X, corresponds to a finite place of K.

Let K, be the completion of X at oo, O, the valuation ring of K, w.,
an uniformizer and x, the residue field. Consider a Drinfeld-Anderson A-motif
M and denote K (L) = Koo@]FqL. If the degree d., of oo is equal to 1 we have

(L) = L((w,,)). Moreover, we shall use the following notations :

VIM)=M K) (K@, L) et V(M)o =M ® K, (6.1.1)
Ay L A®g, L

We put ¢ = 7% and we shall equip V(M), with an unique structure of left
(A ®p, Lo])-module extending its structure of (A ®g_ L)-module by the formula

a(m@(Zciw;)) = (crm)@(Zc?doo w;)) (6.1.2)

for any m € M.

DEFINITION 6.1.1. A Drinfeld-Anderson A-motif M of over L is called pure of
weight w = u/v if there exists an (O, ®y, L)-lattice Moo C V(M)oc such that

@M, ="M, (6.1.3)

for certain relatively prime natural integers u et v.

If M is a pure Drinfeld-Anderson motive then

w=ufv=n/r (6.1.4)
(cf. [An1], (1.9.1)).

PROPOSITION 6.1.2. The category of pure Drinfeld-Anderson A-motives over
L is equivalent to the category of (A ®p, L[7])-modules equipped with an exhaustive
filtration :

MycM,C---CM,C---CM (6.1.5)

verifying the following condition :

M, +w M, =M, , =M;+0c"M,. (6.1.6)

Proof. See ([An1], prop. 1.9.2)
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6.2. Pure DA sheaves. In this subsection we intend to show that the con-
ception of Drinfeld-Anderson motive is, in fact, geometric. All schemes considered
here are F-schemes. We suppose in addition that n < r and that u, v are relatively
prime integers.

DEFINITION 6.2.1. A pure Drinfeld-Anderson sheaf of pole oo, of rang r, of
T-rang n and of weight w = n/r = u/v over a scheme S, consists of the following
commutative diagram :

Lo, &g Lo, Lo
e/ e/ e/ e/ (6.2.1)
‘r]- 7- ‘rj . ‘rj . ‘rj
- -1 & < i+l
where for any i € Z, £, is a locally free O, s-module of rang r and
Tgi = (ldx X F‘I'Obs/]pq)*gi (6.2.2)

is the pull-back of &; with respect to the Frobenius morphism of S, and where j and
¢ are Oy, g-linear injections. In addition, these data should satisfy the following
conditions :

[Pole]: &;/j(Ei-1) is the direct image (T'.,)..A; of a locally free Og-module of
rang n by the section oo :

l,:5—>XxS, s— (00,3). (6.2.3)

[Zero]: &;/p(T€i—1) is the direct image ('q)«B; of a locally free Og-module of
rang n by a section I', : § — X x S given by the graph of a morphism
a:S— X — {oo}.

[Purity]: £i1v.q = E({uocc} x §) where the composition of v consecutive mor-
phisms is a natural injection.

[Normalization]: the Euler characteristic x(Eo|xxs) € [0,n[ for any geometric
point s of S.

By the condition [Pole], an injection j identifies £;+1 and &; over

(X x8)-T, =Spec AxS (6.2.4)
and ¢ defines a semi-linear morphism. It implies that the union &€ = UE; is a
locally free OSpec( A)x g-module equipped with a semi-linear Frobenius morphism
¢ : &€ — €. Such an object is called a @-sheaf (cf. [TW], sect. 1). In the case where
S = L is a field, this p-sheaf is clearly an (A ®F, L[r])-module. Moreover, diagram
(6.2.1) defines filtration (6.1.5), and the purity condition implies (6.1.6). If S =L
then ¢-sheaves are called p-modules and was studied by Drinfeld [Dr4] (see also
the proof of theorem 7.1 (iii)).

7. Classification over finite fields

In this section we give a partial motivation for the word “motive” applied to
the objects defined above. Indeed, the category of Drinfeld-Anderson motives over
a finite field F (or its algebraic closure F) is similar to the category of “usual”
motives over F (cf. [Mi]). There is a fundamental difference nonetheless between
these two categories since our motives are with “values in positive characteristic”.

~

It means that their L-functions are with values in the functional Tate field Coo =K oo

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



DRINFELD-ANDERSON MOTIVES AND MULTICOMPONENT KP HIERARCHY 221

corresponding to a point co on a curve Xy with the function field K (see [Gol] or
[TW] for detailed analysis of these L-functions).

Let F be a finite field over F, equipped with a morphism «; : A — L. Denote
pr the place of K (and the prime ideal of A) corresponding to the kernel of ;.
This place will be called “divisorial” characteristic of L. Furthermore, consider
a Drinfeld-Anderson A-motive M of 7-rank n and a corresponding commutative
subring given by an injection

e(M) : A = M, (F[r]). (7.1)

Such a motive has the natural Frobenius endomorphism F = 7{FFal  Since

the image of ¢(M) consists of non-degenerate matrices it extends to an injection

K — M, (F(r)) where K = Quot(A) and F(7) is the quotient skew field of F[r]
(well-defined because F is perfect).

Two Drinfeld-Anderson motives M; and M of T-rank n are isogenous if there
exists a surjective endomorphism u of G ; with a finite kernel such that

[up(M1))(a) = [p(M2)u](a) (7.2)
for any a € A. As we are going to prove now, the category DA(F) of Drinfeld-
Anderson motives over F (considered up to isogenies) is semi-simple. It makes
sense therefore to speak about simple Drinfeld-Anderson motives.

THEOREM 7.1. (i) The category of Drinfeld-Anderson motives (up to isogeny)
over F is abelian, tensor and semi-simple.
(ii) (“Riemann hypothesis”) If M is a pure Drinfeld-Anderson A-motive of weight
w over F then

deg(w) = [F:F,] - w (7.3)
for any root w of the characteristic polynomial Py(x) of M.
(iii) If M is a pure simple Drinfeld-Anderson A-motive of rang r, of weight w and
of “divisorial” characteristic py over F then :
(a) K(F) is a field such that [K(F): K] divide r ;
(b) there exist an unique place 0o|oo and an unique place Pylpy of K(F) ;
(c) End(M) ® 4 K is a central simple algebra of dimension (r/[K(F) : K])?
over K(F) with invariants :
w[K(F):K] i =
invg =4 —w-[K(F):K] if =00 . (7.4)
0 otherwise

PROOF. (i) A Drinfeld-Anderson motive has a natural structure of a p-module
as was remarked in the end of the previous section (see also the proof of (7.4) below).
Drinfeld proved that the category of w-motives over F is abelian and semi-simple
[Dr4, prop. 2.1.1]. It implies that the analogous assertions for the category DA(F)
also hold. Moreover, for any two Drinfeld-Anderson motives M and M’, we define
the tensor product M ® M’ as a left (A ®p_L(r])-module coinciding with M @ M’
as an (A ®p,_ L)-module and such that :

sy def ’
T(m®m') =(rm) ® (tm') (7.5)
for any m € M and m’ € M’ (cf. [An1, 1.11)).
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(ii) Since any Drinfeld-Anderson motive M over F is semi-simple there is a decom-
position (by the Wedderburn theorem) :

End(M)®4 K =M, (D,) ®--- &M, (D)), (7.6)
where D,, 1 < k < [, are division algebras with centers C,. The characteristic
polynomial may be defined by the following formula :

Py (z) = HN% onrg(z — F) (7.1
where nr; : M,, (D)) — C}, denotes the reduced norm. It is easy to see that
Par(0) = pp (7.8)

where F, = A/pp (cf. [Ge, th. 5.1 (ii)] when n = 1). Since M is pure the co-adic
valuations of all its roots are the same ([Gol], Lemma 2.2.9). Consequently, we

have :
v () = v (Pr (O = v (p;[ur:m‘,])/r __n T[Fdjq] - _ [F :;F;] W

(iii) First of all, K(F) is a field since F' commutes with elements of A. The algebra
M, (F(7)) is central simple over F,(F)) and splits neither at oo nor at py. By the
centralizer theorem,

End(M) s K = CentMn(]F(T))(K) = CentMn(F(.,.))(K(F)) (7.9)
is a simple algebra over K(F'). Since K (F') contains the center Fy(F) of M, (F(7))
we have that K (F) is exactly the center of End(M) ® 4 K and

[K(F) : Fq(F)] = [Mn(F(7)) : (End(M) ® 4 K)] (7.10)

divides
(. () Eg(FN) =) (7.11)

and the quotient is [(End(M) ® 4 K) : K(F)] (cf. [Laul], proof of prop. 2.2.2). On
the other hand, since

|F|oo — q[]F:IFq]~w — q[]F:IF'q]'n/r (712)
we have
(K (F) : By (F)] = —vs(F)deg() = " Fdd ey k) g

(cf. [Ge], (2.7)). It implies that

(End(M) ®4 K) : K(F)] = (n- [F : Fo]/[K(F) : Fo(F)))* = (r/|K(F) : K])*.
(cf. [Gel, sect. 2, [Laul], prop. 2.2.2). As a result we proved (a), (b) and a part
of (c).

Finally, we shall prove the formula (7.4) using general Drinfeld results on ¢-
modules, ¢-pairs and Dieudonné modules ([Dr4, sect. 2], [LRS, App. A,B]). A
p-module (V, ¢) over F is, by definition, a (K ®, F)-vector space V equipped with
a (K ®p 7)-semi-linear map ¢ : V — V. If M is a Drinfeld-Anderson motive over
F then tile pair

(V(M), ) d§f<M Q) (K 2, 1F),¢> (7.14)

A®; F

is called the p-module associated to M. Drinfeld proved that there is a bijection
(V,9) = (K(v,4),I(v,,)) between isomorphism classes of ¢-modules and ¢-pairs
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(see loc. cit. for the definition of -pairs an for the proof of this statement). In the
considered case we simply have :

(Km0 Dvim),ey) = (K(F), F). (7.15)

In addition, the invariants of (K(v,,), II(v,,)) are given by the following formula :

invey (End(V, ¢)) = — deg(P)vp(Ty,,). (7.16)

Let p be a place of K. A Dieudonné K,-module (V, ;) is a (K, @Fq F)-module
V, together with a (Kp®FqT)-semi-linear map ¢ : V, — V,. We fix an embed-
ding x(p) = A/p — F and for integers u,v (v > 1) we denote (V, , ., ¥p o) a0
irreducible Dieudonné module such that

= =\ V
Voo =(Kp®x()F) (7.17)
and
wte, fori=1
) = p Cv
Pp.vules) { e;_; otherwise (7.18)
where (ey,...,e,) is the standard basis of V, ,, ,,.

Let (V,¢) be an irreducible o-module, (K ) = (Kv,0)»A(v,,)) the corre-
sponding ¢-pair and

Vi, 0p) = Kp®x (Vi) (Vip, 0q) = Kqn®z(V, ) (7.19)

the induced Dieudonné modules. Then, always due to Drinfeld results (loc. cit.),
there is a decomposition

(V;)’ (Pp) = @(V‘B’ ‘Psp) = @(]V‘.B,vm,uq3 ) (p‘.p,v,p,um )sm (720)
Blp Blp

where integers ug, vy, sy are uniquely defined by the following relations :
Uy, Sp = 1

ged(ug, vp) =1 o

Uy /vy = deg(PB)vy (ID)/ [Ky : Koy

Here d(IT) denotes the g.c.d. of denominators of rational numbers deg(‘B)u‘n(fI) for

(7.21)

all places B of K. In view of equations (7.16) and (7.21) we obtain

invy (End(M) ® 4 K) = inve (End(V/(M), ¢)) = —(ug/vgg)- [Kyp : Kop)].-

which implies (7.4) since, in particular, O=F K= K(F)and ug /vy =w O
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8. Multicomponent KP hierarchy

One can interpret Jacobian flows defined in section 3 as flows on (quotients of)
the Sato’s infinite-dimensional Grassmanian. Moreover, there exists a dynamical
system on this Grassmanian (called KP hierarchy) such that any Jacobian flow as
above is induced by a restriction of this system on a finite-dimensional subspace.
From this point of view, Krichever (Drinfeld) modules are solutions of KP hierarchy
whose orbits are finite-dimensional. In the differential case, the KP hierarchy is a
collection of commuting vector fields given by an infinite set of partial differential
equations of Korteweg-de Vries and Kadomtsev-Petviashvili type. In this section
we define a multicomponent KP hierarchy whose solutions with finite-dimensional
orbits are analogous to Drinfeld-Anderson motives.

We say that a map (of vector spaces) is Fredholm if it has both finite kernel
and cokernel. For any natural integer k the Sato’s infinite-dimensional Grassmanian
Gr), is defined as :

Gr;, ={ subspaces W C L((t))®* | projection
Yo : W — (L((t))/L[[t]]t)®* is Fredholm}

In other words, Gr,, is the set of subspaces W C L((t))®* comparable to L[t~1]®*
(cf. [Sa], [Mul, sect. 1], [AB, 6.1], [An3, 2.1]). The index of a Fredholm map =
is defined by :

(8.1)

ind v = dim  Ker v — dim; Coker 7. (8.2)
Denote Gr(0) the (sub)Grassmanian of subspaces of index zero. Then
Grj (0) & {W € Gr(0) | dimKer vy = dimjCoker v,y =0}  (8.3)

is called the big cell of Gr(0).

Consider a quintuple (X,{P;}, F,ti,n = {m:}) where {P;}, 1 < ¢ < k, are
distinct smooth closed points on X, ¢; are local coordinates at P; and 7); are formal
trivializations of a torsion-free sheaf F at P;. Then a multicomponent Krichever
map from the moduli space of quintuples as above to the Sato Grassmanian Gr,, is
defined by the formula :

(X, {P}, F tion = {n}) » U n(H(X, F(@L,F;)) C L((1))®*.  (8.4)
{t:}

Finally, the k-component KP hierarchy consists of commuting vector fields arising
from the natural action of (L[t~1]¢t~!)®* on the quotient Gry/(L[[t]*)* (see [DM,
6.1] for more details).

The precise description of the “usual” Krichever map is given by the following
functorial version of theorem 4.2.

THEOREM 8.1. ([Mul, th. 3.5]) The Krichever map defines the anti-equivalen-
ce of the category of quintuples as in theorem 4.2 and the category of Schur pairs
(A, W) where W is a point of the big cell Gr*(0) of the Sato Grassmanian and A
is a subring of L((t)) stabilizing W.

A similar description in the multicomponent case certainly exists (cf. [LM1])
and is closely related to our main theorem 5.3.
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9. Generalizations

Finally, we would like to mention some generalizations in the differential case :

e super Krichever modules and super KP hierarchy ((MR], [Mu2])
e Drinfeld-Sokolov hierarchies associated to Kac-Moody algebras ([DS1] and
[DS2])

¢ Beilinson-Drinfeld G-opers where G is a semi-simple Lie algebra over L [BD]

To the best of the author’s knowledge, the construction of analogous objects in
positive characteristic is still an open problem?*.
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WEeil classes and Rosati involutions on complex abelian
varieties

Yu.G. Zarhin* and B.J.J. Moonen

1. Abelian varieties, polarizations and divisor classes

Consider a complex torus X = t/T", where t = C9 is a complex vector space of
finite dimension g and T' & Z?9 a discrete lattice in t of (maximal) rank 2g. We
say that X is an abelian variety if it admits a polarization, by which we mean a
positive definite Hermitian form

H:txt—C

whose imaginary part

L=S(H):txt—>R
takes integral values on I'. Clearly, a sum of two polarizations is also a polarization.
In particular, we can multiply a polarization by a positive integer to obtain another
one.

There exists a polarization on X if and only if X (as a complex-analytic man-
ifold) is algebraizable, which condition in turn is equivalent to the existence of a
projective embedding X — P™ for some m. We refer to Mumford’s book [11] for
the basic theory of abelian varieties.

ExAMPLE 1.1 (elliptic curves). Every 1-dimensional complex torus X = C/T’
admits a polarization. Namely, if I' = Z - wy + Z - wy with w; /ws & R then for each
positive integer n the Hermitian form

LA
" Sw@n) |
defines a polarization on X. One can check that all polarizations on X are of this
form.

(2, w) =

It should be mentioned that, for ¢ > 2, “most” complex tori do not admit a
polarization.

From now on, assume that X is an abelian variety and that H is a polarization.
The form L = Ly := $(H) is a non-degenerate skew-symmetric R-bilinear form on
t such that

L(zz,2y) = L(z,y) Vz,ye€t;z €S,
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230 YU. G. ZARHIN AND B. J. J. MOONEN

where

S={zeC*|2z=1}.
In other words, L is S-invariant. Conversely, if ¢ is an S-invariant skew-symmetric
R-bilinear form on t, then H,(z,y) = ¢(iz,y) + i ¢(z,y) defines a Hermitian form
on t with S(H,) = . If in addition ¢(T',T') C Z then there are polarizations H;
and H, such that

¢ =S(Hy) — S(Ha).
Indeed, one may take H; = nH + H, and H, = nH for a sufficiently large positive
integer n.

The natural map I' ® R — t is an isomorphism of real vector spaces, which we

will take as an identification. Now consider the Q-vector space V = Vx :=T'® Q.
One may view V as a Q-lattice in Vg :=V ® R=T ® R = t. We have

Frcvcv=t.

We will consider t = Vg as a real vector space provided with a Q-lattice V and an
action of S which gives it the structure of a complex vector space.
Let
p:VxV-Q

be a skew-symmetric Q-bilinear form on V. Let us extend ¢ by R-linearity to the
skew-symmetric R-bilinear form

¢er:VxV-oR.

We call o a divisor class if pg is S-invariant. Clearly, the set D(X) of divisor classes
is a Q-vector subspace of Homq(/\éV, Q); in particular it is finite-dimensional. By
what was said before, if ¢ is a divisor class then ¢ = J(H,,) for some Hermitian
form H, on t = Vg. It readily follows that ¢ is a divisor class if and only if it can
be presented as a Q-linear combination of imaginary parts of polarizations.

There is another way to describe the divisor classes, which involves the endo-
morphism algebra and Rosati involutions. First, notice that the endomorphism ring
End(X) of the complex torus X is the ring of all C-linear maps u : t — t such that
u(I") C T. Here is an obvious alternative description: the ring End(X) consists of
the homomorphisms v : ' — I" whose R-linear extensions vg : t — t (identifying
I'® R and t) commute with the action of S. This last description allows us to
identify the endomorphism algebra End®(X) := End(X) ® Q with a Q-subalgebra
of Endg(V). It is known (see [11], p. 178, for example) that if X is an abelian
variety, then EndO(X ) is a semi-simple Q-algebra.

Associated to H, there is an involution v — v’ on End®(X), called the Rosati
involution and characterized by

L(vz,y) = L(z,v'y) Vv e End®(X);z,y € V.
Since H(z,y) = L(iz,y) +1- L(z,y), and since the v € End’(X) commute with the
action of S, we also have

H(vz,y) = H(z,v'y) Vv € End’(X);z,y € Vk.

This implies that the Rosati involution is a positive involution. In particular, the
center of End®(X) is a product of totally real number fields and of CM-fields.
(Recall that a CM-field is a totally imaginary quadratic extension of a totally real
number field).
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WEIL CLASSES 231

For example, assume that End°(X) is a number field. Then there are two

possibilities:

e F= EndO(X ) is a totally real number field. The only positive involution on
F is the identity map. Therefore, the Rosati involution on End®(X) is the
identity map.

o F = EndO(X ) is a totally imaginary quadratic extension of a totally real
number field Fy. The only positive involution on F' is the “complex conju-
gation” (the non-trivial automorphism of F' over Fy). Therefore, the Rosati
involution is the complex conjugation.

Now the description of the divisor classes in terms of a Rosati involution on the
endomorphism algebra goes as follows. Start with one polarization form H, with
imaginary part L and associated Rosati involution v — v’ on EndO(X ). Then one
can show that the map which sends u € End’(X) to the Q-bilinear form

(z,y) — L(uz,y)
on V induces a bijection
{u € End®(X) | v/ = u} = D(X).

2. Hodge classes and Weil classes

DEFINITION 2.1. Let n be a positive integer, and consider a skew-symmetric
Q-multilinear form v € HomQ(/\fD"V, Q). Extend % by R-linearity to a form yg €
Hompg (AZ" Vg, R). We call 9 a Hodge class (in degree 2n) if yg is S-invariant.

REMARK 2.2. Clearly, a skew-symmetric Q-bilinear form on V (with n = 1)
is a Hodge class if and only if it is a divisor class. It is also clear that a linear
combination of Hodge classes of the same degree 2n is a Hodge class of degree 2n
and that the exterior product of Hodge classes 41, ... , ¥, of degrees 2n;, ... ,2n;
is again a Hodge class, of degree 2(n; + - - - + ng).

DEFINITION 2.3. A Hodge class is called decomposable if it can be written as a
Q@-linear combination of exterior products of divisor classes. Otherwise, it is called
exceptional.

Easy linear algebra arguments imply that if dim(X) < 3 then all Hodge classes
are decomposable. For instance, assume dim(X) = 3. Then every form ¢ €
HomQ(/\aV, Q) can be uniquely written as the exterior product of L and a skew-
symmetric Q-bilinear form on V, since dim(V) =6 and L : V x V — Q is non-
degenerate. This implies that every Hodge class in degree 4 is of the form L A ¢
where ¢ is a divisor class.

It was Mumford who first gave an example of an abelian fourfold X with an
exceptional Hodge class of degree 4; see [13]. In his examples End®(X) is a CM-
field of degree 8 over Q (i.e., X is an abelian fourfold of CM-type) which contains
an imaginary quadratic subfield k. The action of k on V must satisfy the following
condition: it gives rise to the natural action of ¥ ®y C on Vg = t and this action
makes t a free k ®p C = C @ C-module of rank 2. This condition may be restated
as follows: if k = Q(a) where o = —d € Z., and if H is a polarization on X,
then the Hermitian form

H(az,y)

(z,y) — ﬁ

Licensed to Univ of Michigan. Prepared on Fri Jul 5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



232 YU. G. ZARHIN AND B. J. J. MOONEN

on t has signature (2,2). (This does not depend on the choice of v/—d € C.)

In [22], A. Weil proposed a different approach to the construction of exceptional
Hodge classes. His construction and its natural generalization proved to be useful in
various aspects of arithmetic and geometry of abelian varieties; see for example [1],
(2], [4], [6], [8], [15], [19], [18], [23]. Weil’s construction from [4], in its generalized
form, works as follows.

Suppose E is a CM-field, and that there is a given ring homomorphism F —
End°(X). Then V becomes a E-vector space of dimension m = 2g/[E:Q]. The
trace map Trg/q : E — Q gives rise to an isomorphism

Tre/e
Hompg(ARV,E) = Homg(AZV,Q),

which yields an embedding

Tr
Homp(AZV,E) & Homg(AZV,Q) C Homg(AZV,Q).

Let W = Wg C Homg(AgV, Q) be the image of this embedding; it is the set of all
skew-symmetric m-linear forms ¢ on the Q-vector space V such that

¢(€£L'1,l'2,... ,l‘m) =¢($1,€(E2,... ,.’Bm) = =¢($1,5L'2,... ,C(Em)
foralle e F and z1,z2,... ,2., € V.

REMARK 2.4. The [E:QJ-dimensional Q-vector space Wg has a natural struc-
ture of one-dimensional E-vector space, given by

(ed)(x1,2,... ,Tm) := @p(ex1,Z2,... ,Tm).
Note also that
(e™P)(T1, T2,y ,Tm) = P(ex1,€T2,... ,€Tm).
REMARKS 2.5. (i) Let r be a positive integer and let
Y: VX xV-0Q
be an r-linear form on V which is not identically zero and such that
Y(exy, Ta, ... ,xr) = Y(T1,€T2,... ,&r) =+ = P(21,Z2,... ,€Ly)

for all e € E and z;,22,... ,2, € V. If e € E* is not an rth root of unity then
there exist y1,¥2,...,yr € V