
CONTEMPORARY 
MATHEMATICS 

224 

Recent Progress in Algebra 
An International Conference on 

Recent Progress in Algebra 
August 11-15, 1997 

KAIST, Taejon, South Korea 

Sang Geun Hahn 
Hyo Chul Myung 
Efim Zelmanov 

Editors 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Selected Titles in This Series 

224 Sang Geun Hahn, Hyo Chul Myung, and Efim Zelmanov, Editors, Recent 
progress in algebra, 1999 

223 Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, Editors, Advances 
in discrete and computational geometry, 1999 

222 Kang-Tae Kim and Steven G. Krantz, Editors, Complex geometric analysis in 
Pohang, 1999 

221 J. Robert Dorroh, Gisela Ruiz Goldstein, Jerome A. Goldstein, and Michael 
Mudi Tom, Editors, Applied analysis, 1999 

220 Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic 
geometry and group representations, 1998 

219 Marc Henneaux, Joseph Krasil'shchik, and Alexandre Vinogradov, Editors, 
Secondary calculus and cohomological physics, 1998 

218 Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain 
decomposition methods 10, 1998 

217 Eric Carlen, Evans M. Harrell, and Michael Loss, Editors, Advances in differential 
equations and mathematical physics, 1998 

216 Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their 
applications, 1998 

215 M. G. Nerurkar, D. P. Dokken, and D. B. Ellis, Editors, Topological dynamics 
and applications, 1998 

214 Lewis A. Coburn and Marc A. Rieffel, Editors, Perspectives on quantization, 1998 
213 Farhad Jafari, Barbara D. MacCiuer, Carl C. Cowen, and A. Duane Porter, 

Editors, Studies on composition operators, 1998 
212 E. Ramirez de Arellano, N. Salinas, M. V. Shapiro, and N. L. Vasilevski, 

Editors, Operator theory for complex and hypercomplex analysis, 1998 
211 J6zef Dodziuk and Linda Keen, Editors, Lipa's legacy: Proceedings from the Bers 

Colloquium, 1997 
210 V. Kumar Murty and Michel Waldschmidt, Editors, Number theory, 1998 
209 Steven Cox and Irena Lasiecka, Editors, Optimization methods in partial differential 

equations, 1997 
208 MichelL. Lapidus, Lawrence H. Harper, and Adolfo J. Rumbos, Editors, 

Harmonic analysis and nonlinear differential equations: A volume in honor of Victor L. 
Shapiro, 1997 

207 Yujiro Kawamata and Vyacheslav V. Shokurov, Editors, Birational algebraic 
geometry: A conference on algebraic geometry in memory of Wei-Liang Chow {1911-1995), 
1997 

206 Adam Koranyi, Editor, Harmonic functions on trees and buildings, 1997 
205 Paulo D. Cordaro and Howard Jacobowitz, Editors, Multidimensional complex 

analysis and partial differential equations: A collection of papers in honor of Franc;ois 
Treves, 1997 

204 Yair Censor and Simeon Reich, Editors, Recent developments in optimization theory 
and nonlinear analysis, 1997 

203 Hanna Nencka and Jean-Pierre Bourguignon, Editors, Geometry and nature: In 
memory of W. K. Clifford, 1997 

202 Jean-Lou\s Loday, James D. Stasheff, and Alexander A. Voronov, Editors, 
Operads: Proceedings of Renaissance Conferences, 1997 

201 J. R. Quine and Peter Sarnak, Editors, Extremal Riemann surfaces, 1997 
200 F. Dias, J.-M. Ghidaglia, and J.-C. Saut, Editors, Mathematical problems in the 

theory of water waves, 1996 
199 G. Banaszak, W. Gajda, and P. Krasoii, Editors, Algebraic K-theory, 1996 

(Continued in the back of this publication) 

http://dx.doi.org/10.1090/conm/224

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



This page intentionally left blank 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Recent Progress in Algebra 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



This page intentionally left blank 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CoNTEMPORARY 
MATHEMATICS 

224 

Recent Progress in Algebra 
An International Conference on 

Recent Progress in Algebra 
August 11-15, 1997 

KAIST, Taejon, South Korea 

Sang Geun Hahn 
Hyo Chul Myung 
Efim Zelmanov 

Editors 

American Mathematical Society 
Providence, Rhode Island 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Editorial Board 
Dennis DeThrck, managing editor 

Andreas Blass Andy R. Magid Michael Vogelius 

The International Conference on Recent Progress in Algebra was held at KAIST, 
Taejon, South Korea, August 11-15, 1997. 

19~11 Mathematics Subject Classification. Primary OOB20, 05D05, 05E15, 05E25, 11G09, 
llFll, 11F75, 11G09, 11R18, 11R33, 17B10, 17B37, 17B65, 17B70, 17D05, 19A31, 

20C15, 20C20, 20E18, 20F05, 20F50. 

Library of Congress Cataloging-in-Publication Data 
International Conference on Recent Progress in Algebra (1997 : Taejon-si, Korea) 

Recent progress in algebra: an International Conference on Recent Progress in Algebra, August 
11-15, 1997, KAIST, Taejon, South Korea/ Sang Geun Hahn, Hyo Chul Myung, Efim Zelmanov, 
editors. 

p. em. -(Contemporary mathematics, ISSN 0271-4132; 224) 
Includes bibliographical references. 
ISBN 0-8218-0972-5 (alk. paper) 
1. Algebra-Congresses. I. Hahn, S. G. (Sang Geun) II. Myung, Hyo Chul, 1937- . 

III. Zelmanov, Efim, 1955-. IV. Title. V. Series: Contemporary mathematics (American Math-
ematical Society) ; v. 224. 
QA150.I568 1997 
512-dc21 98-35282 

CIP 

Copying and reprinting. Material in this book may be reproduced by any means for educational 
and scientific purposes without fee or permission with the exception of reproduction by services 
that collect fees for delivery of documents and provided that the customary acknowledgment of the 
source is given. This consent does not extend to other kinds of copying for general distribution, for 
advertising or promotional purposes, or for resale. Requests for permission for commercial use of 
material should be addressed to the Assistant to the Publisher, American Mathematical Society, 
P. 0. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to 
reprint-permission~ams.org. 

Excluded from these provisions is material in articles for which the author holds copyright. In 
such cases, requests for permission to use or reprint should be addressed directly to the author(s). 
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of 
each article.) 

© 1999 by the American Mathematical Society. All rights reserved. 
The American Mathematical Society retains all rights 

except those granted to the United States Government. 
Printed in the United States of America. 

§ The paper used in this book is acid-free and falls within the guidelines 
established to ensure permanence and durability. 

Visit the AMS home page at URL: http: I /www. ams. org/ 

10987654321 04 03 02 01 00 99 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Contents 

Foreword ix 

A double complex for computing the sign-cohomology of the universal 
ordinary distribution 
GREG W. ANDERSON 1 

Down-up algebras and Witten's deformations of the universal enveloping 
algebra of .sl2 
GEORGIA BENKART 29 

Localizations of Grothendieck groups and Galois structure 
TED CHINBURG, BOAS EREZ, GEORGIOS PAPPAS, AND MARTIN 
TAYLOR 47 

Invariant stable bundles over modular curves X(p) 
IGOR V. DOLGACHEV 65 

Okubo algebras and twisted polynomials 
ALBERTO ELDUQUE 101 

Some new results on modular forms for GL(21Fq[T]) 
ERNST-ULRICH GEKELER 111 

Counting jump optimal linear extensions of some posets 
HYUNG CHAN JUNG 143 

The irreducible representations of categories 
MASASHI KOSUDA 151 

Prounipotent prolongation of algebraic groups 
ANDY R. MAGID 169 

Graded simple Jordan algebras and superalgebras 
CONSUELO MARTINEZ 189 

The centralizer algebra of the Lie superalgebra p(n) and the decomposition 
ofV®k as a p(n)-module 
DONGHO MOON 199 

Drinfeld-Anderson motives and multicomponent KP hierarchy 
IGOR Yu. POTEMINE 213 

vii 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



viii CONTENTS 

Weil classes and Rosati involutions on complex abelian varieties 
Yu. G. ZARHIN AND B. J. J. MOONEN 

On some open problems related to the restricted Burnside problem 
EFIM ZELMANOV 

229 

237 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Foreword 

An international conference "Recent Progress in Algebra" was held at the Korea 
Advanced Institute of Science and Technology (KAIST) and Korea Institute for 
Advanced Study (KIAS), Korea, during August 11-15, 1997. This conference was 
primarily organized by the Research Center of Algebra and its Applications at 
KAIST which was supported by fundings from the Korea Science and Engineering 
Foundation (KOSEF). 

The purpose of this conference was to bring together the central topics and 
their progress in algebra, combinatorics, algebraic geometry, and number theory. 
The conference also served as an impetus for research activities by both young and 
established Korean mathematicians in these fields. The present volume contains 
selected papers contributed by participants in the conferences. These papers cover 
a wide range of topics in the aforementioned areas, which in our opinion reflects 
the true character of modern algebra. 

We are grateful to KOSEF who provided generous fundings for the conference 
through the Research Center of Algebra and its Applications, and to KIAS for the 
support of additional fundings during the preparation of the conference. 

We gratefully acknowledge the valuable assistance of the members of the 
Local Organizing Committee, S. Bae, S. Kang, D. Kim, J. Koo, H. Lee, and many 
graduate students at the Mathematics Department of KAIST for the preparation 
of the conference. We also wish to thank the participants of the conference for their 
enthusiasm, and in particular, those who presented excellent talks and contributed 
papers. 

Our special thanks goes to Christine Thivierge from the AMS for the thoughtful 
assistance during the preparation of this volume, and to many anonymous referees 
who offered valuable suggestions for the final organization of the manuscripts. 
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Contemporary Mathematics 
Volume 224, 1999 

A double complex for computing the sign-cohomology of the 
universal ordinary distribution 

Greg W. Anderson 

1. Introduction 

For each positive integer f, a level f ordinary distribution with values in an 
abelian group A is a periodic function ¢ : J- Z ---t A of period 1 satisfying the level 
f distribution relations 

g-l ( ) ¢(a)=~¢ a;i , 

where g is any positive integer dividing f and a E IJZ. The universal level f 
ordinary distribution U(f) is the quotient of the free abelian group on symbols 
of the form [a) with a E J-Z/Z, modulo the level f distribution relations. An 
ordinary distribution with values in A is a function ¢ : Q ---t A such that for each 
positive integer f, the restriction of ¢ to J- Z is a level f ordinary distribution; the 
universal ordinary distribution U is the direct limit of the groups U(f). The group 
Gf := Gal(Q((J)/Q)(= (Z//Z)x) acts naturally on the group U(f), and thus in 
the limit G :=Gal (Q((oo) /Q)(= zx) acts on U. See Rubert's paper [11) or Lang's 
book [13) for background. 

Let Goo C G be the subgroup generated by complex conjugation. Given any 
abelian group M equipped with an action of G00 , we define the sign-cohomology 
(resp. -homology) of M to be the Tate cohomology (resp. homology) of Goo with 
coefficients in M. The basic facts about the structure and sign-cohomology of the 
modules U(f) and their limit U are as follows. 

• Provided that f > 1 and f ¢. 2 mod 4, the sign-cohomology of U(f) is in 
each degree a vector space over lF 2 of dimension 2r-l, where r is the number 
of distinct primes dividing f. 

• The group G f acts trivially on the sign-cohomology of U(f). 
• As an abelian group, U(f) is a free of rank IGJI, and the natural map 

U(f) ---t U is a split monomorphism. (In particular, the limit U is a free 
abelian group.) 

• Provided that f > 1 and f ¢. 2 mod 4, the natural map U(f) ---t U induces 
a monomorphism in sign-cohomology. 

1991 Mathematics Subject Classification. Primary: 11R18, 11R20, 11R27, 11R29. Sec-
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2 G. W. ANDERSON 

The first and second results were obtained by Sinnott [16] in the course of Sin-
nott's calculation of unit- and Stickelberger-indices associated to the cyclotomic 
field Q((J)· The third and fourth results were obtained by Kubert [11], [12]. 

There is another presentation of the G rmodule U(f) due to Iwasawa, which 
we now briefly recall. There exists a unique periodic function u : Q -+ Q of period 
1 such that for all positive integers f one has 

0<a5,f 
(a,/)=1 

u (y) x(a) = IJ (1- x(p)) 
pff 

for all primitive Dirichlet characters x of conductor dividing f. Let U' (!) be the 
Z[G f ]-submodule of Q[G f] generated by elements of the form 

L u (~) a;; 1 E Q[G1] 
0<a5J 
(a,/)=1 

where g is any positive integer dividing f and aa(J = (/· One can verify that u is 
an ordinary distribution; it follows that U'(f) is a quotient of U(f). One can verify 
that as an abelian group U'(f) is free ofrank IGJii it follows that U'(f) and U(f) 
are isomorphic G /-modules because the underlying abelian groups are free of the 
same rank, namely IGJI· 

We hasten now to correct the misleading impression of the history of our subject 
created by speaking of U'(f) as Iwasawa's presentation of U(f). In fact, it was 
the module U' (!) that was defined first (Iwasawa introduced it in the course of 
a pioneering investigation of the index of the Stickelberger ideal) and it was the 
module U'(f) (denoted U in Sinnott's paper [16]) that Sinnott actually worked 
with. Only later was the module U(f) defined by Kubert [11], and then part of the 
rationale for making the definition was to have a convenient presentation of U' (!) 
by generators and relations. 

The analogue of Sinnott's unit-index calculation [16], with the Carlitz mod-
ule assigned to the role played in classical cyclotomic theory by the multiplicative 
group, was carried out by Galovich and Rosen [7]. Quite recently, L. S. Yin [17] 
attempted to generalize the results of Galovich-Rosen by replacing the Carlitz mod-
ule with a general sign-normalized rank one Drinfeld module. Yin computed the 
unit-index conditional on a remarkable conjecture concerning the Galois-module 
structure of the sign-cohomology of the relevant analogue of U'(f). Yin's conjec-
ture is tantalizing because it seems to be just beyond the reach of the inductive 
method of computation introduced by Sinnott and employed by Yin. 

In this paper we study some problems in the function field setting analogous 
to that of determining the structure and sign-cohomology of the modules U(f) 
and their limit U, with the main goal of proving Yin's conjecture. In defining the 
generalization of U(f) studied here, we more or less follow a definition given by 
Hayes [9] and attributed there to Mazur. In order to prove Yin's conjecture, we 
identify the analogue of U'(f) coming up in Yin's work with the corresponding 
analogue of U(f), and we compute the sign-cohomology of U(f) by a new method 
involving double complexes. Our method keeps track not only of the distribution 
relations but also of the higher syzygies among the distribution relations. Even 
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DOUBLE COMPLEX 3 

in the classical cyclotomic setting our method yields a new insight: provided that 
f "¥= 2 mod 4, the sign-homology of U(f) is canonically isomorphic to the Farrell-
Tate homology of the subgroup of Qx generated by -1 and the primes dividing 
f. The Farrell-Tate theory, which figures prominently in our proof of Yin's con-
jecture, was devised by Farrell [6] to extend Tate's well known theory for finite 
groups to groups of finite virtual cohomological dimension. See Brown's book [1] 
for background. In turn, Mislin [14] has extended Farrell's theory; the generaliza-
tion, called complete cohomology, applies to all groups. The results of this paper 
suggest that more number-theoretic applications of complete cohomology can be 
expected. The title of the paper notwithstanding, we actually work with homology 
rather than cohomology because the former has functorial properties better suited 
to our purposes. 

We mention that techniques developed in this paper have recently been applied 
by P. Das [2], [3] to the study of algebraic r-monomials, namely complex numbers 
of the form 

ni r(ai)m; 
(27ri)W 

where ai E Qn(O, 1), mi E Z, wE Z, and for all integers t prime to the denominators 
of the ai one has 

where (x) is the fractional part of x. Such numbers are in fact algebraic by a 
result of Koblitz and Ogus [4, Appendix] and figure in a reciprocity law due to 
Deligne [4],[5]; the corresponding formal sum Ei mi[ai +Z] represents a class in the 
second degree sign-cohomology of U which strongly influences the Galois-theoretic 
properties of the monomial. Das has proved a series of results greatly illuminating 
the structure of the Galois group over Q of the extension of Q( ( 00 ) generated by the 
algebraic r-monomials. Das has also been able to give elementary proofs of some 
facts about algebraic r-monomials which previously could only be proved with the 
aid of Deligne's theory of absolute Hodge cycles on abelian varieties. We conclude 
by noting that a function field analogue of Deligne's reciprocity law recently given by 
S. Sinha [15] suggests that Das's theory of algebraic r -monomials might fruitfully 
be extended to global fields of characteristic p > 0. 

2. Preliminaries 

2.1. Notation. The cardinality of a set S is denoted lSI. The difference of 
sets X and Y is denoted X\ Y. The group of units of a ring R is denoted Rx. 
The fiber of a map f: X-+ Y at a pointy E Y is denoted f- 1(y), and the inverse 
image of subsetS~ Y is denoted f- 1 (8). 

2.2. Abstract nonsense. Let 2l be an abelian category. A chain complex X 
in 2l is a family {Xn}nEZ of objects of 2l equipped with a family of morphisms 
{8n(X) E Hom!X(Xn,Xn-l)}nEZ such that On-I(X)on(X) = 0. A chain map 
f : X -+ Y of chain complexes in 2l is a family Un E Hom!X(Xn, Yn)}nEZ of 
morphisms such that fn-IOn(X) = On(Y)fn· Given two chain maps J,g: X-+ Y, 
a homotopy T: f-+ g is a family {Tn E Hom!X(Xn, Yn+I)}nEZ of morphisms such 
that fn- gn = On+I(Y)Tn + Tn-IOn(X); we say that f and g are homotopic, and 
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4 G. W. ANDERSON 

we write f,....., g, if there exists a homotopy T: f -t g. Given a chain complex X in 
~ and an integer k, put 

X[k] := Xn-k, 8n(X[k]) := ( -1)k8n-k(X), 

thereby defining the twist X[k]. Given a chain map f: X -t Y of chain complexes 
in~. put 

C (f) ·- [ Xn-1 ] !'l (C (f))·- [ -8n-1(X) 0 ] one n .- Yn , Un one .- fn-1 On(Y) , 

thereby defining the mapping cone Cone(!), which fits into a natural exact sequence 

0 -t Y -t Cone(!) -t X[1] -t 0 

of chain complexes in ~-

PROPOSITION 2.2.1. Let f: X -t Y be a chain map of chain complexes in~-
Let S be the set of integers n such that both fn-1 and fn are isomorphisms. Then 
there exists a chain map e : Cone(!) -t Cone(!) such that e ,....., 1 and en = 0 for all 
s E S. 

PROOF. For each n, let ¢n : Yn -t Xn be f;;1 or 0 according as fn is or is not 
invertible. Then the family of morphisms 

{ [ ~ ~n ] : Cone(f)n -t Cone(f)n+1} nEZ 

is a homotopy from the identity map to a map e such that en = 0 for n E S, as one 
verifies by a brief matrix calculation. D 

PROPOSITION 2.2.2. Let g : X -t Z and h: Y -t Z be chain maps of chain 
complexes in an abelian category ~- Make either of the following assumptions. 

l.. H*(Hom21(Xn, Cone(h))) = 0 for all n and there exists a chain map e : 
Cone(h) -t Cone(h) such that e,....., 1 and en= 0 for all n « 0. 

2. H*(Hom21(X, Yn)) = 0 and H*(Hom21(X, Zn)) = 0 for all n, and there 
exists a chain map e: Cone(h) -t Cone(h) such that e,....., 1 and en = 0 for 
all n » 0. 

Then there exists a chain map f : X -t Y unique up to homotopy such that g ,....., hf. 

PROOF. Under either hypothesis 1 or hypothesis 2, every chain map X[k] -t 

Cone( h) is homotopic to the zero map. In particular, one has ig ,....., 0, where 
i : Z -t Cone(h) is the evident map, whence follows the existence off after a 
brief matrix calculation. Moreover, the difference of any two homotopies ig -t 0 
defines a chain map X [1] -t Cone( h) homotopic to the zero map, whence follows 
the uniqueness of f up to homotopy after another brief matrix calculation. D 

2.3. Farrell-Tate homology. Let G be a group. We say that a (left) G-
module M (we work exclusively with left modules) is relatively projective if M is 
a direct summand of a G-module of the form Indfl} N for some abelian group N. 
Here Indfl} is the functor left adjoint to the restriction functor Resfl} associating 
to each G-module the underlying abelian group; more generally, given a subgroup 
H ~ G, the corresponding restriction functor is denoted by Res~, and the function 
left (resp. right) adjoint to Res~ is denoted by Ind~ (resp. Coind~). 
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DOUBLE COMPLEX 5 

PROPOSITION 2.3.1. Let G be a group, H ~ G a subgroup of finite index, M 
a relatively projective G-module, and X a chain complex of G-modules. 

1. If Resfl} X is contractible, then H* (Homa(M, X)) = 0. 
2. If Res~ X is contractible, then H* (Home (X, M)) = 0. 

PROOF. There is no loss of generality in assuming that M = lndf1} N for some 
abelian group N. One has H*(Homa(M,X)) = H*(Hom(N,Resf1}X)) = 0, and 
therefore assertion 1 holds. Because H is of finite index in G, 
the functors lnd~ and Coind~ are isomorphic, 
hence H*(Homa(X, M)) = H*(HomH(Res~ X, lnd~} N)) = 0, and therefore as-
sertion 2 holds. 0 

PROPOSITION 2.3.2. Let G be a group. Let g : X -+ Z and h: Y-+ Z be chain 
maps of chain complexes ofG-modules. Assume that X, Y and Z are concentrated 
in nonnegative degree, Resf1} Cone( h) is contractible, and Xn is relatively projective 
for all n. Then there exists a chain map f :X -+ Y unique up to homotopy such 
that g "' hf. 

PROOF. This boils down to a special case of Proposition 2.2.2. 0 

Given G-modules M and N, recall that the tensor product M ® N is defined 
to be the tensor product of underlying abelian groups equipped with the diagonal 
G-action g(m ® n) := (gm) ® (gn). More generally, given chain complexes X and 
Y of G-modules, the tensor product X ® Y is defined to be the chain complex of 
G-modules given by the rules 

(~®Y)n := E9 Xp®Yq 
p+q=n 

and 
Op+q(X ® Y)(x ® y) := (8p(X)x) ® y + ( -l)Px ® (8q(Y)y) 

for all x E Xp and y E Yq. 
We say that a chain map f : X -+ Y of chain complexes of G-modules is 

a resolution if X and Y are concentrated in nonnegative degree, Xn is relatively 
projective for all n, and Resfl} Cone(/) is contractible. Abusing language, in a 
situation where the chain map f is understood, we also say that X is a resolution 
of Y. Proposition 2.3.2 specifies the sense in which resolutions are unique. Now 
by one's favorite method one can construct a resolution P of Inff1} Z such that Pn 
is projective for all n; then, for any chain complex X of G-modules concentrated 
in nonnegative degree, the tensor product complex X ® P is a resolution of X. 
In particular, every G-module M (viewed in this context as a chain complex of 
G-modules concentrated in degree 0) has a resolution. Now if G is a group of 
cohomological dimension r, then there exists a resolution P of Inf~} Z such that 
Pn is projective for all nand Pn = 0 for n > r, and hence every G-module M has 
a resolution M ® P concentrated in degree :::; r. 

PROPOSITION 2.3.3. Let G be a group of finite cohomological dimension. Let 
P be a chain complex of G-modules such that Pn is relatively projective for all n 
and Resfl} P is contractible. Then P is contractible. 
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6 G. W. ANDERSON 

PROOF. The complex p+ obtained by replacing Pn by 0 for all n < 0 is a 
resolution of coker80 (P) = ker8_ 1(P), and hence has the homotopy type of a 
complex concentrated in degree :::; r, where r is the cohomological dimension of 
G. It follows that ker8n(P) = coker8n+l(P) is a direct summand of Pn for all 
n > r. An evident modification of the preceding argument proves that ker 8n ( P) = 
coker 8n+l (P) is a direct summand of Pn for all n. 0 

PROPOSITION 2.3.4. Let G be a group. Let g : X ~ Z and h : Y ~ Z be chain 
maps of chain complexes of G-modules. Make the following assumptions: 

1. G is of finite virtual cohomological dimension. 
2. hn is an isomorphism for all n » 0. 
3. Xn, Yn, and Zn are relatively projective for all n, and Resfl} X is con-

tractible. 
Then there exists a chain map f : X ~ Y unique up to homotopy such that g "' hf. 

PROOF. By hypothesis 1 and Proposition 2.3.3, there exists a subgroup H ~ G 
of finite index such that the chain complex Res~ X is contractible. By hypothesis 
2 and Proposition 2.2.1 there exists a chain map e: Cone(h) ~ Cone(h) such that 
e "' 1 and en = 0 for all n » 0. By hypothesis 3 and Proposition 2.3.1, one has 
H*(Homc(X, Yn)) = 0 and H*(Homc(X, Zn)) = 0 for all n. The result now follows 
by Proposition 2.2.2. 0 

We say that a chain map K. : X ~ P of chain complexes of G-modules is a 
completion if Xn and Pn are relatively projective for all n, Resfl} X is contractible, 
and K-n is an isomorphism for all n » 0. Proposition 2.3.4 specifies the sense in 
which completions are unique. Abusing language, in a situation where the chain 
map K. is understood, we also call X a completion of P. For any group G of finite 
virtual cohomological dimension r, Farrell [6] (see also Brown [1, Chap. X]) showed 
how to construct a resolution P of Inffl} Z with Pn projective for all n, and a 
completion F ~ P with Fn projective for all n and K-n an isomorphism for all 
n ~ r; given a G-module M, the tensor product M ®Pis then a resolution of M, 
and the tensor product M ® F a completion of M ® P. 

Given a group G of finite virtual cohomological dimension and a G-module M, 
one defines 

A 0 G H*(G, M) := H*(Comv0 X) 

where X is any completion of a resolution of M, and Coinv8 is the functor left 
adjoint to the functor Inff1} equipping abelian groups with trivial G-action. We 
also introduce the abbreviated notation 

A A G 
H*(G) := H*(G,Infp} Z). 

The Farrell-Tate homology theory fi* extends to groups of finite virtual cohomo-
logical dimension the theory introduced by Tate for finite groups. 

2.4. The Shapiro lemma and related results. Let G be a group of finite 
virtual cohomological dimension, and let H be a subgroup (necessarily also of finite 
virtual cohomological dimension). Let N be an H-module and let Y be a completion 
of a resolution of N. Then Ind~ Y is a completion of a resolution of Ind~ N. 
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Further, the functors Res~ o Inff1} and Inf{;} are isomorphic, and hence so are their 
left adjoints Coinv8 o Ind~ and Coinv~. One thus obtains canonical isomorphisms 

Jt(G,Ind~N) = H*(Coinv8Ind~Y)) 
= H*(Coinv~ Y) 
= H*(H,N) 

of graded abelian groups. The assertion that there exists an isomorphism between 
the extreme terms in the relation above, functorial in H-modules N, is the Shapiro 
lemma for Farrell-Tate homology. 

With G and H as in the preceding paragraph, let M be a G-module and let X 
be a completion of a resolution of M. Then Res~ X is a completion of a resolution 
of Res~ M. Suppose now that H is a normal subgroup of G and put Q := G /H. 
Let Infg be the inflation functor that equips each Q-module with a G-action via 
the quotient map G---> Q, and let Coinv~ be the functor left adjoint to Infg. Now 
the functors Coinv~ oRes~ and Resr1} o Coinv~ are isomorphic. Moreover, the 
functor Resr1} is exact. One thus obtains canonical isomorphisms 

fi*(H, Res~ M) = H*(Coinv~ Res~ X) 
= H*(Resr1} Coinv~ X) 
= Resrl} H*(Coinv~ X) 

of graded abelian groups. Thus fi * ( H, Res~ M) is canonically equipped with graded 
Q-module structure; in the sequel we identify H*(H, Res~ M) with H*(Coinv~ X) 
rather than H*(Coinv~ Res~ X). 

PROPOSITION 2.4.1. Let r be a group of finite virtual cohomological dimension. 
Let G be a normal subgroup of r. Let II be any subgroup of r. Put 

H := G n II, f' := rjG, fi :=II/H. 

Let M be a IT-module. Then there exists an isomorphism 
A r r rA II H*(G, Res0 Indii M) = Ind0 H*(H, ResH M) 

off' -modules functorial in M. 

PROOF. Clearly the functors Resh o InfF and InfH o Resh are isomorphic, and 
hence so are their left adjoints Coinv~ o Indh and Indh o Coinv~. Moreover, the 
functor Indh is exact. Let X be a completion of a resolution of M. One has 
canonical isomorphisms 

A r r r r H*(G, Res0 Indii M) = H*(Coinv0 Indii X) 

of graded f'-modules. 

= H*(Indh Coinv~ X) 
lndh H*(Coinv~ X) r A II lnd0 H*(H, ResH M) 

0 

PROPOSITION 2.4.2. Let G be a group of finite virtual cohomological dimension 
and let H ~ G be a normal subgroup. Let a be an element of the center of G. Let M 
be a G-module on which a acts trivially. Let X be a completion of a resolution of M. 
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Then the automorphism of X induced by a is homotopic to the identity, and hence 
aH E G/H induces the identity mapping in fi.(H,Res~M) = H.(Coinv~X). 

PROOF. This is a consequence of the uniqueness of completions of resolutions 
(Proposition 2.3.2 and Proposition 2.3.4). 0 

2.5. The double complex KT. We give a construction exploited repeatedly 
in the paper. The input for the construction is as follows: 

• A commutative ring R with unit. 
• An R-module M. 
• A linearly ordered set S. 
• A family Us E R}sES· 
• Elements J± of R such that J+ f- = 0. 

The output of the construction is as follows: 
• A double complex KT of R-modules, i. e., a bigraded R-module 

KT = KT ( MjR, {/s}sES, [ j~ ]) = ffiffiKT mn 
m n 

equipped with R-linear maps 

8,8: KT---+ KT 

of bidegree ( -1, 0) and {0, -1), respectively, such that 82 = 0, 82 = 0, and 
88 +88 = 0. 

• Chain complexes of R-modules 

K K (M/R, {/s}sES), 

K K MjR,{fs}sES, [ j~]), 
T = T M / R, [ j~ ]) , 
T = T MjR,{fs}sES, [ j~]), 

KTot = JCT"'' ( M/R,{f.}.es, [ ~~ ~, 
KT+ KT+ ( MjR,{fs}sES, [ ~~] , 

which we call the companions of the double complex KT. 
The notation KT is meant to call Koszul and Tate to mind. 

Here is the construction. We define S to be the free abelian group on symbols 
of the form [I, k] where Is;;; Sis a finite subset and k is an integer, and we bigrade 
S by declaring the symbol [I, k] to be of bidegree (III, k). Put 

KT .- M®S 
o(m® [I,k]) := LiEl(--1)1{jEllj<i}lfim® [I\ {i},k] 
8( [I k]) ._ (-1)111 { J+m ®[I, k- 1] if k is even 

m ® ' .- f-m ®[I, k -1] if k is odd 

for all m E M, finite subsets I s;;; Sand integers k. Take Kn := KT nO and equip 
K with the differential induced by the operator 8. Take 7;. := KTon and equip T 
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with the differential induced by the operator 8. Put 

K:=K(f~M/R,{fs}sEs), T:=T(LsE~fsM/R,[ ~~ ])· 

Let KTot be the total complex associated to the double complex KT, i.e., a copy 
of KT graded by total degree and equipped with the differential induced by{)+ 8. 
Let KT- be the subcomplex of KTot spanned over R by elements of the form 
m® [I,k] with mE M, I~ S finite, and k < 0. Finally, put KT+ := KTot/KT-. 
Note that T is naturally a quotient of KTot and K naturally a quotient of KT+. 

PROPOSITION 2.5.1. Let R be a commutative ring with unit, M an R-module, 
Us} sES a family of elements of R indexed by a linearly ordered set S, f± elements 
of R such that J+ f- = 0. Consider the double complex 

KT ( M/R,{fs}sES, [ ~~]) 
and companion complexes K, K, T, T, KTot and KT+. 

1. If, for all finite subsets I~ S, the sequence {fi}iEI is M -regular, then K is 
acyclic in positive degree. 

2. If, for some s E S, the element Is operates invertibly on M, then K is 
acyclic. 

3. If K is acyclic in positive degree, then the quotient map KTot ---+ T induces 
an isomorphism in homology. 

4. If T is acyclic, then KTot is acyclic and the quotient map KT+ ---+ K 
induces an isomorphism in homology. 

PROOF. Because homology commutes with direct limits, we may assume that 
S is a finite set. Then assertions 1 and 2 are standard facts about Koszul complexes; 
assertions 3 and 4 are proved by straightforward spectral sequence arguments. 0 

2.6. Almost free abelian groups. Finitely generated abelian groups are of 
finite virtual cohomological dimension and hence the Farrell-Tate theory applies 
to them. For each homomorphis <P : H ---+ G of groups, <P* denotes the functor 
equipping each G-module with an H-action via </J. 

PROPOSITION 2.6.1. Let r be a finitely generated abelian group and let G C r 
be a subgroup. Let ~ ~ G X G be the diagonal subgroup. Let p : r X G ---+ r and 
q : r x G ---+ G be the first and second projections, respectively. Let r : r ~(r x G)/~ 
be the isomorphism inverse to that induced by p- q. Let F be a completion of a 
resolution P of Inffl} Z such that Fn and Pn are projective for all n. Let M be a 
r -module. Put 

M' := r* Coinv~xG(p* M ® q* F). 
Then there exists an isomorphism 

, r · r H.(M) = Infr;c H.(G, Resc M) 
of graded r-modules functorial in M. 

PROOF. Without loss of generality we may assume that F = Res~ F, where F 
is a completion of a resolution P of Inffl} Z such that Pn and Fn are projective for 
all n. Let 

i:={rf--+{r,l)) } ·r---+rxr 
d:=(rf--+("Y,"Y)) · 
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and let ij : r X r ---t r be the second projection. Consider the complex 
M- I frxr C . rxr( *M 10> -*F-) := n (rxr)/~ omv ~ p VY q 

of r x r -modules. Now d* (p* M ® ij* F) = M ® P is a completion of a resolution of 
M and one has an isomorphism 

d* I frxr C . rxr I fr C . r d* n (rxr);~ omv ~ = n r;a omv0 

of functors; accordingly, we have an isomorphism 
* - r A r H*(d M) = Infr;aH*(G,Res0 M) 

of graded r-modules functorial in M. One has an isomorphism of functors 

i* Inf{rxJr)/~ Coinv~xr = r* Coinv~xG Res~~~ 

and thus we have an isomorphism 

H*(i* M) = H*(M') 
of graded f-modules functorial in M. Finally, for all "Y E r, the action of "Y on 
P is homotopy trivial by Proposition 2.4.2, hence the elements i("Y) and d("Y) of 
r X r induce homotopic automorphisms of the complex M' and hence we have a 
canonical isomorphism 

H*(d* M) = H*(i* M) 
of g;raded r-modules functorial in M. D 

We say that an abelian group is almost free if the group can be factored as the 
product of a free abelian group and a finite cyclic group. The multiplicative group 
of a global field is almost free. Every subgroup of an almost free abelian group is 
again almost free. 

PROPOSITION 2.6.2. Let f be a finitely generated abelian group. Let G ~ f be 
an almost free subgroup of rank r, and let m be the order of the torsion subgroup of 
G. Let g1 , ... , gr E G be independent, and let go E G generate the torsion subgroup 
of G. Let M be a r -module. Consider the chain complex 

M' := KTtot ( M/Z[r], {1- gi}r=l• [ ~~~::b ]) . 
of r -modules. Then there exists an isomorphism 

, r A r 
H*(M) = Infr;a H*(G, Res0 M) 

of graded r -modules functorial in M. 

PROOF. Consider the double complex 

KT ( Z[G]/Z[G], {1- gi1}r=l• [ ~~~;!t ]) 
and its companions P := KT+ and F := KTtot. Then Pn and Fn are projective for 
all nand moreover Fn = Pn for all n ~ r; by Proposition 2.5.1, Pis a resolution 
of Inffl} Z and F a completion of P. The result now becomes a special case of 
Proposition 2.6.1. D 

PROPOSITION 2.6.3. Let G be an almost free abelian group of positive finite 
rank r and let m be the order of the torsion subgroup of G. Then Hn(G) is a free 
(ZjmZ)-module of rank 2r-l for all n. 
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PROOF. By Proposition 2.6.2 we have an isomorphism 

whence the result after a brief computation with binomial coefficients. 0 

The following technical result is the key to our proof of Yin's conjecture. 

PROPOSITION 2.6.4. Let r be an abelian group (not necessarily finitely gener-
ated) and let II s;;; r be a subgroup of finite index. Let G s;;; r be an almost free 
subgroup of finite rank r, let IIG s;;; r be the subgroup generated by II and G, and 
let m be the order of the torsion subgroup of G. Let g1, ... , gr E G be independent 
and let go E G generate the torsion subgroup. Consider the chain complex 

K:=ICTot (Ind~Inffl}Z/Z(r],{l-gi}r= 1 , [ Li::.o~:b]) 
of r -modules. Then one has an isomorphism 

H*(K)~ Ind~a Inff11 H* (II n G) 

of graded r -modules. 

PROOF. Let r' s;;; r be a finitely generated subgroup such that G s;;; r' and 
r'II = r. Replacing r with r', we may assume that r is finitely generated. We 
have at our disposal a canonical isomorphism 

H*(K) = Inf~;c H*(G, Res~ Ind~ Inff1} Z) 

provided by Proposition 2.6.2, a canonical isomorphism 

H*(G, Res~ Ind~ Inff1} Z) = Ind~frrnc) H*(II n G, Resgnc Inffl} Z) 

provided by Proposition 2.4.1, a canonical isomorphism 

H*(II n G, Resgnc Inff1} Z) = Inf?(tnG) H*(II n G) 

provided by Proposition 2.4.2, and an isomorphism 

I fr I dr /G I fl1/(l1nG) I dr I fl1G n r;c n IT/(ITnG) n {1} = n rrc n {1} 

of functors, whence the result. 

3. The principal objects of study 

0 

3.1. The basic data (OC, A, sgn). For the rest of the paper we fix the following 
items. 

• A locally compact nondiscrete topological field OC containing only finitely 
many roots of unity. 

• A discrete cocompact integrally closed subring A C OC. 
• A continuous homomorphism 

sgn: ocx -+ (the group of roots of unity in OC) 

the restriction of which to the group of roots of unity of OC is the identity 
mapping. 
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We call sgn the sign homomorphism, and we say that x E ][{ x is positive if sgn x = 1. 
We say that the basic data are archimedean aif ][{ is archimedean. We denote the 
fraction field of A by k. 

There is only one archimedean example (OC, A, sgn) of basic data, namely the 
triple (IR, Z, x t--t xjjxl). In the archimedean case our usage of the term "positive" 
is just the ordinary usage. 

The simplest example (OC, A, sgn) of nonarchimedean basic data arises as fol-
lows. Let IFq be the field of q elements and let IFq(T) be the field of rational functions 
in a variable T with coefficients in IFq. Take][{ to be the completion 1Fq((1/T)) of 
IFq(T) at the infinite place. Take A to be the polynomial ring IFq[T]. Decompose 
IFq((1/T))x as a direct product 

IF; · Tz · (1 + (1/T)IFq[[1/T]]) 

and take the sign homomorphism sgn to be projection to the first factor. In this 
example the positive elements of IF q [T] are the monic polynomials. 

Every nonarchimedean example (OC, A, sgn) of basic data arises in the following 
manner. Let X/ko be a smooth projective geometrically irreducible curve defined 
over a finite field ko. Let oo be a closed point of X. Take ][{ to be the completion 
of the function field of X at oo. Take A to be the ring consisting of elements of the 
function field of X regular away from oo. Choose an isomorphism of topological 
fields under which to identify][{ with IFq{(1/T)), where q is the cardinality of the 
residue field of oo, and define the sign homomorphism as in the preceding example. 

For archimedean and nonarchimedean basic data (OC, A, sgn) alike, the ring A 
is a Dedekind domain the group of units of which is finite, the class group of which 
is finite, and every residue field of which is finite. 

3.2. A-lattices. A fractional A-ideal is a finitely generated nonzero 
A-submodule of k. An integral A-ideal is a fractional A-ideal contained in A. When 
we speak of fractional or integral A-ideals we tacitly exclude the zero ideal of A 
from consideration. We say that a fractional A-ideal I is principal in the if I= (a) 
for some a E P; we say that I is principal in the narrow sense if I= (a) for some 
positive a E P. The quotient of the group of fractional A-ideals by the subgroup 
of ideals principal in the narrow sense is by definition the narrow ideal class group. 
The narrow ideal class group is finite. 

An A-lattice is by definition a cocompact discrete A-submodule of K An A-
lattice is without A-torsion and contains a copy of A as a subgroup of finite index, 
and therefore is projective over A of rank one. We say that two A-lattices W1 and 
W2 are homothetic, and we write W1 "' W2, if there exists some positive X E ][{ 
such that X wl = w2. The relation of homothety is an equivalence relation in the 
set of A-lattices. 

Every fractional A-ideal is an A-lattice. Fractional A-ideals belong to the same 
narrow ideal class if and only if they are homothetic. Every homothety class of 
A-lattices contains a fractional A-ideal. The set of homothety classes of A-lattices 
thus corresponds bijectively with the narrow ideal class group and in particular is 
finite. 

3.3. The set 3. Given x E ][{and an A-lattice W, we say that 

X + w := {X + w E ][{ I w E W} 
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is a translate of the A-lattice W, and we say that a subset of ][{ is an A-lattice 
translate if of the form x + W. We always write A-lattice translates as a sum, 
the first symbol denoting an element of ][{ and the second an A-lattice. We say 
that two A-lattice translates XI + WI and X2 + w2 are homothetic, and we write 
XI+ WI "' X2 + w2' if for some positive y E ][{ one has y WI = w2 and YXI- X2 E w2. 
Homothety is an equivalence relation in the set of A-lattice translates. Note that 
for all A-lattices W and x, y E IK, one has x + W "'y + W if and only if x- y E W. 
Given an A-lattice translate x +Wand an integral A-ideal f, we say that x + W 
is annihilated by J, or that x + W is !-torsion, if xf ~ W; and we say that x + W 
is of order f if {a E A I axE W} =f. We say that an A-lattice translate is torsion 
if /-torsion for some integral A-ideal f. 

We denote the homothety class of a torsion A-lattice translate x+ W by [x+ W]. 
We denote the set of homothety classes of torsion A-lattice translates by 3. For each 
integral A-ideal J, let 3(!) be the set of homothety classes of /-torsion A-lattice 
translates, and let gx (f) be the set of homothety classes of A-lattice translates 
of order f. Given a fractional A-ideal I and an A-lattice W let I · W be the A-
submodule of ][{ generated by all products of the form aw where a E I and w E W; 
the A-submodule I · W is again an A-lattice. 

PROPOSITION 3.3.1. Let f be an integral A-ideal. There exists a unique map 

Y1: 3 ---t 3 

such that 
Y1[x + W] = [x +/-I· W] 

for all torsion A-lattice translates x+ W. Every fiber of the map Y1 is of cardinality 
lA/ fl. One has 

Y13x (g) 

yi-I3(g) 

for all integral A-ideals g. 

= YJg 
= ~ 3(g /f) iff divides g 

3(g) iff is prime to g 
3x (gf f) iff divides g 

= 3 x (g) if f is prime to g 
3(fg) 

PROOF. The proof is quite straightforward and we omit it. D 

3.4. The profinite group G. Given integral A-ideals f, I and J, we write 
I "'1 J if I and J are prime to f and there exist nonzero a, b E A prime to f such 
that bfa is positive, a= b mod f and ai = bJ. The relation "'I is an equivalence 
relation in the set of integral A-ideals prime to f. For each integral A-ideal J, 
the quotient G 1 of the monoid of integral A-ideals prime to f by the equivalence 
relation "'1 is a finite abelian group. The family of groups { G 1} forms an inverse 
system indexed by the set of integral A-ideals directed by the divisibility relation. 
Put 

G := limG1. 
+-

The transition maps of the inverse system { G 1} are surjective and hence each group 
G 1 is canonically a quotient of G. 

Given an integral A-ideal f, let V1 be the product of the maximal A-ideals 
dividing f. 
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PROPOSITION 3.4.1. For each integral A-ideal f, the natural map 

Ilker (GJ --t GJ;p) --t ker ( GJ --t Gf!Vl) 
Plf 

is b:ijective, where the Cartesian product on the left is extended over the maximal 
A-ideals p dividing f. 

PROOF. There exists a unique isomorphism 

(A/f)x::::...ker(GJ --t Gl) 

under which, for all positive a E A prime to f, the congruence class of a modulo 
f maps to the "'requivalence class of (a). This noted, the proposition reduces to 
the Chinese Remainder Theorem. D 

PROPOSITION 3.4.2. Let f be an integral A-ideal. Let x + W be a torsion 
A-lattice translate of order f. 

1. For all integral A-ideals I and J both prime to f, one has I "'! J if and 
only if X -1- I- 1 • W rv X -1- J- 1 · W. 

2. For all torsion A-lattice translates x' + W' of order f there exists an integral 
A-ideal I prime to f such that x' + W' "'x + I- 1 · W. 

PROOF. 1 (:::}). By hypothesis there exist nonzero a, b E A prime to f such 
that bja is positive, a= b mod f and ai = bJ. We have 

ba- 1 r 1 · W = J- 1 · W, ba-1x- X E a- 1 · W n J- 1 f- 1 · W ~ J- 1 • W, 

whence the result. 
1 ( ¢=). By hypothesis there exists some positive y E lK such that 

yi- 1 · W = J- 1 • W, yx- X E J- 1 • W. 

Necessarily yJ =I, and moreover, because I and J are prime to f, we can write 
y = bja where 0 =f. a, bE A are prime to f. We have 

(b- a)x E (J-1 + J- 1 ) • W n f- 1 · W = W, 

hence a = b mod f, and the result follows. 
2. Replacing x' + W' by a homothetic torsion A-lattice translate, we may 

assume that W' = J- 1 • W for some integral A-ideal J prime to f; replacing 
W by J- 1 · W, we may assume that W = W'. By hypothesis both x + W and 
x' + W generate the free rank one (A/ f)-module f- 1 • WjW, and hence we can 
find positive a E A such that ax = x' mod W. Necessarily a is prime to f. Then 
x' + W = ax + W rv x + a-1 W = x + ( a- 1 ) • W. D 

PROPOSITION 3.4.3. There exists a unique (left) action of the group G on 3 
such that for all integral A-ideals f, integral A-ideals I prime to f, and A-lattice 
translates x + W of order f, 

a[x+ W] = [x+r 1 · W] 

for all a E G with image in Gf equal to the "'!-equivalence class of I. (Hereafter 
3 is considered to be equipped with the action of G so defined.) 

PROOF. This follows in a straightforward way from Proposition 3.3.1 and 
Proposition 3.4.2. D 
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PROPOSITION 3.4.4. Let f be an integral A-ideal. The map Yt : 3 ~ 3 is 
G-equivariant. Moreover, for any A-lattice translate x + W of order f, the map 
a f-t a[x + W] : G ~ 3x (/) induces a bijection G f~3x (!). 

PROOF. This follows in a straightforward way from Proposition 3.3.1 and 
Proposition 3.4.2. 0 

REMARK 3.4.5. In class field theory the group G is identified with the Galois 
group of a certain infinite abelian extension of k. In the archimedean (resp. nonar-
chimedean) case, this extension can be obtained explicitly by adjoining to k all 
roots of unity (resp. all torsion points of all sign-normalized rank one elliptic A-
modules). The set 3 turns out to be G-equivariantly isomorphic in the archimedean 
(resp. nonarchimedean) case to the set of roots of unity (resp. the disjoint union, 
extended over the set of sign-normalized rank one elliptic A-modules p, of the set of 
torsion points of p). For an overview of the theory of sign-normalized rank one el-
liptic A-modules see Hayes [9]. For an overview of related function field arithmetic 
see Goss [8]. 

3.5. The sign group G00 • For each integral A-ideal f, let Dt be the subgroup 
of G f consisting of the "'requivalence classes of ideals of the form (a) for some 
a E A such that a = 1 mod f. We define 

Goo:= limDt c G. 
+--

We call Goo the sign group. 

REMARK 3.5.1. Identifying G with the Galois group of an abelian extension of 
k via class field theory, the subgroup Goo may be interpreted as the decomposition 
group of the valuation of k inherited from K 

PROPOSITION 3.5.2. There exists a unique homomorphism 

sgn : Goo ~ lKx 

mapping Goo isomorphically to the group of roots of unity of lK such that 

(1) 1'[x + W] = [(sgn')')-1(x + W)] 

for all')' E Goo and torsion A-lattice translates x + W. 

PROOF. For each integral A-ideal f, let E f be the subgroup of Ax consisting 
of a E Ax such that a= 1 mod f. Then for all but finitely many integral A-ideals 
f, one has Et = {1}. (In fact, iff is not the unit ideal and Et =f. {1}, then 
(JK, A, sgn) = (IR, Z, x f-t xflxl) and f = (2).) For all integral A-ideals f there 
exists a unique homomorphism ¢ f : D f ~ lK x / E f mapping D f isomorphically 
to the group of roots of unity of ocx modulo Et under which an element of Dt 
represented by an ideal of the form (a) for some a E A such that a = 1 mod f maps 
to the E rcoset containing sgn a. The system { ¢ f} is compatible and induces a 
homomorphism ¢ : Goo ~ ocx mapping Goo isomorphically to the group of roots 
of unity of K 

We claim that¢ has property (1). Fix an integral A-ideal f, a torsion A-lattice 
translate x + W of order f and an element 1' E G00 • Choose an integral A-ideal I 
prime to f belonging to the "'requivalence class to which 1' gives rise in G f. Then 
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16 G. W. ANDERSON 

I= (a) for some a E A such that a= 1 mod J, and 
')'[x + W] = [x + J- 1 · W] 

[(sgna)-1a(x + /- 1 . W)] 
[(sgna)-1 (ax + W)] 
[(sgna)-1(x + W)] = [t/J('/')-1(x + W)]. 

The claim is proved. Thus we have established the existence of a homomorphism 
Goo --+ ocx with the desired properties; uniqueness follows by Proposition 3.4.4. 0 

Fix a generator ')'o E Goo arbitrarily and let m denote the order of G00 • Given 
an abelian group M equipped with an action of Goo and an integer i, we define the 
ith sign-homology module and the (1- i)th sign-cohomology module of M to be 

As explained in §2, the sign-(co)homology of M can be identified with the Tate 
(co)homology of Goo with coefficients in M. 

3.6. The module U(v). Let R be a commutative ring with unit. Let A be 
the free R-module generated by 3, and let the action of G on 3 be extended to A 
in R-linear fashion. Fix a family 

v = {vJ} 
of elements of R indexed by the integral A-ideals such that 

VI= 1 

and 
Vfg = VJVg 

for all integral A-ideals f and g. We are primarily interested in the case R = Z 
and v = 1, but we work at the higher level of generality because (i) it offers no 
additional difficulties and (ii) we anticipate applicability of the theory to the study 
of K-theoretic index questions. 

The R-module U(v) is defined to be the quotient of A by the R-submodule 
generated by the family of elements of the form 

vpe- :L 7] 
ryEYp- 1 (e) 

where p is a maximal A-ideal, e E 3, and the sum is extended over those 7J E 3 
such that Yp1J = e. By Proposition 3.4.4, ker (A--+ U(v)) is G-stable, and hence 
the action of G on A descends to U(v). The multiplicativity of the system {vJ }, 
along with Proposition 3.4.4, implies that ker (A--+ U(v)) contains every element 
of the form 

v1e- :L 7] 
ryEYv- 1 (e) 

where f is an integral A-ideal, e E 3, and the sum is extended over those 7J E 3 
such that YJ1J =e. 

Let f be an integral A-ideal. We define A(!) to be the R-submodule of A 
generated by 3(!). The R-module A(!) is finitely generated and free, and clearly 

A= UA(f). 
f 
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By Proposition 3.4.4, the R-module A(!) is a G-stable R-submodule of A, and 
moreover the action of G on A (f) factors through an action of G 1. We define 
U(v)(J) to be the quotient of A(!) by the R-submodule generated by all elements 
of the form 

vpe- I: "' 
ryEYp- 1 (e} 

where p is an maximal A-ideal dividing f and e E S(f fp). By Proposition 3.4.4, 
ker (A(!)--+ U(v)(f)) is G-stable, and hence the action of G descends to U(v)(f). 
Note that the action of G on U(v)(f) factors through an action of GJ· Clearly 

U(v) = IimU(v)(f). 
---> 

The multiplicativity of the system {vJ} implies that ker (A(!)--+ U(v)(f)) contains 
all elements of the form 

vge- I: "' 
ryEYp- 1 (e} 

where g is any integral A-ideal dividing f and e E 'B(ffg). 

4. The structure of U(v) and its sign-homology 

4.1. A partition of S. 

LEMMA 4.1.1. Let f be an integral A-ideal. Let p be a maximal A-ideal dividing 
f. Write f = cpn where n is a positive integer and cis an integral A-ideal prime to 
f. Let¢ E G be an element projecting to the "'c-equivalence class ofp in Gc. LetS 
be a set of elements of G mapping bijectively to ker ( G 1 --+ G f/p) under projection 
to G1. Then 

I: "'=(I: ae) + { ~- 1 Yp(e) 
ryEYp- 1 (Yv(~)) uES 

(2) 

for each e E gx (!). 

ifn = 1 
ifn > 1 

PROOF. Let x + W be an A-lattice translate of order f such that e = [x + 
W]. Let T be a set of positive elements of A prime to f mapping bijectively to 
ker ((A/ f)x --+(A/(! fp))x) under reduction modulo f. Let b be a positive element 
of A such that b = 0 mod p and b = 1 mod c. Then the sum 

(3) (L: [ax+ w]) + { ~x + W] ~! ~ : ~ 
aET 

equals the left side of (2). Put J := p- 1(b). Then J is an integral A-ideal prime to 
c such that Jp is "'c-equivalent to the unit ideal, {(a) I a E T} is a set of integral 
A-ideals prime to f mapping bijectively to ker (GJ--+ G1;p), and 

(4) (~[x + (a)- 1 . w]) + { ~ + J- 1P- 1 
· W] !~ ~: ~ 

equals the right side of (2). But for each a E Tone has 

ax+ W rv X+ a-1W =X+ (a)- 1 · W. 
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18 G. W. ANDERSON 

FUrther, in the case n = 1 one has 

bx + w"' x + b- 1w = x + J-1p-1 . w. 
Thus the sums (3) and (4) are equal term by term. D 

LEMMA 4.1.2. There exists a partition 

00 

k=O 

with the following properties: 

1. For all integers k > 0, integral A-ideals f, and~ E 3k n 3x {!), there exists 
a maximal A-ideal p dividing f such that yp- 1 (Yp(~)) \ {0 ~ 3k_1 U3{! fp). 

2. For all integral A-ideals f such that the map Goo- Gf/Vf is injective, the 
group G 00 stabilizes and acts freely upon the set 3 0 n 3 x (f). 

a. For each integral A-ideal f, one has l3o n 3{!)1 = IGJI· 
(Hereafter we will assume such a partition of 3 to be fixed.) 

PROOF. For each integral A-ideal f, we select a subset S(f) ~ G with the 
following properties: 

• 1 E S(f). 
• The natural map Sf - G f is bijective. 
• If the natural map Goo - G f is injective, then the set S(f) is a union of 

cosets of Goo in G. 
By Proposition 3.4.1 and Proposition 3.4.4 it follows that for each integral A-ideal 
f and ~ E 3 x (f), there exist unique 

and, for each maximal A-ideal p dividing f, unique 

Tp E S(f) n ker {G- GJ;p) 

such that 

~=a (I] Tp) [1 + f]; 

in this situation we declare~ E 3k, where k is the number of maximal A-ideals p 
dividing f such that Tp = 1. Property 1 of the partition may be verified with the 
help of Lemma 4.1.1; property 2 of the partition follows by Proposition 3.4.4. For 
each integral A-ideal f, one has 

l3o n 3x{f)l = IGnV/1· IT {\ker (GJ- GJ;p) \- 1) 
Plf 

where the product is extended over the maximal A-ideals p dividing f, and hence 
property 3 of the partition holds by Mobius inversion. D 
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4.2. A A-basis for A. Let A be the polynomial ring over R generated by 
a collection {Xp} of independent variables indexed by the maximal A-ideals. For 
each integral A-ideal f put 

xi:= II x;ii 
i 

where 

is the prime factorization of f. Then the collection of monomials {X f} indexed by 
the integral A-ideals is an R-basis of A. We equip A with the unique structure of 
A-module extending the R-module structure in such a way that 

XJf.= L Tf 
'I/Ey/-1(~) 

for all f. E S and integral A-ideals f. By the G-equivariance of the map YJ, the 
action of G on A is A-linear. 

For each integral A-ideal f, put S(/00 ) := U~= 1 S(JN), let A(/00 ) be the 
R-span of S(/00 ), and let R [{Xp}plf] be the R-subalgebra of A generated by the 
variables Xp where p is a maximal A-ideal dividing f. Note that A(/00 ) is a G-
stable R [{Xp}piJ]-submodule of A. 

THEOREM 4.2.1. Let f be an integral A-ideal. 
1. The elements of A(f) of the form X 9 f, with g an integral A-ideal dividing f 

and f. E S0 n S(f /g) constitute an R-basis. 
2. The elements of A(/00 ) of the form X 9 f, with g a integral A-ideal such that 

ylg divides VJ and f. E S0 n S(/00 ) constitute an R-basis. 
3. As an R [ {Xp}plf] -module A(/00 ) is free and the set Son S(/00 ) is a basis. 
4. As a A-module A is free and the set So is a basis. 

PROOF. Clearly 1 ~ 2 ~ 3 ~ 4. It will be enough to prove assertion 1. In 
turn, it will be enough to show that the family of elements of A(f) in question 
spans A(f) over R, because that family has cardinality 

LIGgl = LISx(g)l = IS(f)l 
gif glf 

by property 3 of the partition S = U;:'=0 Sk. In turn, it will be enough to prove 
that 

(5) Ak nAx(f) ~ (Ak-1 nAx(f)) + LA(ffp) + LXpA(ffp) 
Pif Pif 

where k is a positive integer, Ak is the R-span of Sk, Ax (f) is the R-span of S x (f), 
and the sums are extended over the maximal A-ideals p dividing f. But for each 
f. E sx (f) n sk there exists by property 1 of the partition s = U;:'=O sk a maximal 
A-ideal p such that 

f.- XpYp(f,) E Ak-1 n Ax (f)+ A(f fp), 

and hence (5) does indeed hold. 0 
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20 G. W. ANDERSON 

4.3. An R-basis for U(v). For each integral A-ideal f, put 

u(v)(foo) := lim u(v)(JN) = A(foo) . 
N-+oo EPif(Xp- Vp)A(foo) 

THEOREM 4.3.1. Let f be an integral A-ideal. 
1. The R-module U(v) is free and the set 3o gives rise to an R-basis. 
2. The R-module U(v) (!00 ) is free and the set 30 n 3(!00 ) gives rise to an 

R-basis. 
:3. The R-module U(v) (f) is free and the set 30 n 3(!) gives rise to an R-basis. 
4. With the exception in the archimedean case off exactly divisible by 2, the 

natural map U(v)(f)-+ U(v)(Joo) induces an isomorphism in sign-homology. 

PROOF. 1. Clearly 

R= A ' 
Ep(Xp- Vp)A 

By Theorem 4.2.1, the set 3o is a A-basis of A, and therefore gives rise to an R-basis 
of u(v). 

'2. An argument similar to the preceding one proves this. 
3. Let Ao be the R-span of 3o. It is enough to show that the natural map 

Ao n A(!) -+ u(v) (f) is bijective, and injectivity is clear by what we have proved 
so far. By Theorem 4.2.1 we have 

A(f) = (AonA(J))(B ( L X 9 (AonA(Jjg))) 
l#glf 

and hence 

A(f) = (Ao n A(f)) E9 ( L (X9 - v9 )(Ao n A(f jg))) , 
l#glf 

whence follows the surjectivity of map in question. 
4. By Lemma 4.1.2 and what we have already proved, the set 

30 n(3(f00 ) \ 3(!)) gives rise to an R-basis for the quotient U(v)(f00 )jU(vl(J) that 
is stabilized by Goo and on which Goo acts freely. Consequently the sign-homology 
of the quotient U(v)(f00 )jU(v)(f) vanishes. D 

4.4. The sign-homology of U(v). Let A' be the R-submodule of A generated 
by~~\ 3(1). Let A[G] be the group ring of G with coefficients in A. Note that A 
is a A[G]-module and that A' is a A[G]-submodule. Let R[G] C A[G] be the R-
subalgebra generated by G and let R[Goo] ~ A[G] be the R-subalgebra generated by 
G00 • Let 3t C 3 be the union of all G00-orbits of cardinality IGool· Let At be the 
R-span of 3t. Then At is a free R[G00]-module. Note that At is a A[G]-submodule 
of A. Note that A' is a A[G]-submodule of A containing At. Of course the only 
case in which A' =f. At is the archimedean case. 

PROPOSITION 4.4.1. In the archimedean case, Xp annihilates A' /At for all 
primes p. 

PROOF. One has X2 [1/2+Z] = [1/4+Z] + [3/4+Z]; the case of an odd prime 
p is similarly trivial. D 
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THEOREM 4.4.2. Assume either that we are in the nonarchimedean case or 
that Vf E Rx for all integral A-ideals f. Let m be the order of Goo and let "Yo E Goo 
be a generator. Fix a linear ordering of the set of maximal A-ideals arbitrarily. 
Then the directed family of graded R[G]-modules underlying the directed family 

(6) { H* ( JCTot ((A/A')/A[G], {vp- Xp}plf• [ ~~o~:b ]) ) } 
of graded A[G]-modules indexed by squarefree integral A-ideals f is isomorphic to 
the directed family 

(7) 

of graded R[G]-modules indexed by squarefree integral A-ideals f. (An explicit iso-
morphism is given in the proof.) 

PROOF. Let f be a squarefree integral A-ideal. Let A(f)[G] be the group ring 
of G with coefficients in the R-subalgebra A(/) ~ A generated by the variables 
Xp for p ranging over maximal A-ideals dividing f. Consider the following chain 
complexes of A(f)[G]-modules. 

(8) JCTot ((A/A')/A(f)[G], {vp- Xp}plf• [ ~~o~:b ]) 

(9) ICTot (A(/00 )/ A(f)[G], {vp - Xp}plf• [ ~~o~:b ] ) 

(10) T (A(/00 )/ A(f)[G], {vp- Xp}plf• [ ~~o~:b ] ) 
The chain complex (8) is naturally a quotient of (9) because 

A/A'= A(/00 )/(A(/00 ) n A'). 
The chain complex (10) is naturally a quotient of (9) because they are companions 
of the double complex 

(11) ICT (A(/00 )/ A(f)[G], {vp- Xp}plf• [ ~~o~:b ] ) . 
We claim that both quotient maps induce homology isomorphisms; the claim 
granted, the isomorphism from the homology of (8) to the homology of (10) provided 
by the claim induces (for variable f) the desired isomorphism from the directed 
family of graded R[G]-modules underlying (6) to the directed family (7). 

We turn to the proof of the claim. Clearly the chain complex 

T (A(/00 ) nAt/ A(f)[G], [ ~~o~:b ]) 
is acyclic, and hence by Proposition 2.5.1 the chain complex 

(12) JCTot (A(/00 ) nAt/ A(f)[G], {vp- Xp}plf• [ ~~o~:b ]) 
is acyclic. The chain complex 
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22 G. W. ANDERSON 

vanishes in the nonarchimedean case and is acyclic in the archimedean case by 
Proposition 2.5.1 and Proposition 4.4.1. Therefore the chain complex 

is acyclic by Proposition 2.5.1. The acyclicity of the chain complexes (12) and (13) 
implies that the quotient map from (9) to (8) is a homology isomorphism. Now 
A(/00 ) is by Theorem 4.2.1 a free A(f)[G)-module. It follows by Proposition 2.5.1 
that the complex 

is acyclic in positive degree, and hence by Proposition 2.5.1 the quotient map from 
(9) to (10) is indeed a homology isomorphism. The claim is proved. D 

5. The universal ordinary distribution 

For the remainder of the paper we specialize the preceding theory as follows. 
We take the coefficient ring R to be Z and we take VJ = 1 for all integral A-ideals f. 
Then A becomes the free abelian group generated by the set S and U becomes the 
quotient of A by the subgroup generated by all elements of the form~- E 11Eyp-1 (e) 1J 
with~ E Sand p a maximal A-ideal. We now write simply U instead of U(v) and 
U(f) instead of U(vl(J). We call U the universal ordinary distribution. 

5.1. Comparison of U(f) and U'(f). For each locally constant homomor-
phism X : G- ex, there exists a unique integral A-ideal c such that for all integral 
A-ideals f, the homomorphism x factors through Gt if and only if c divides f; the 
integral A-ideal cis called the conductor of X· Given a locally constant homomor-
phism x: G- ex of conductor c and a maximal A-ideal p, if p does not divide c, 
let x(p) denote the value of x at any a E G projecting to the "'c-equivalence class 
of pin Gc, and otherwise, if p does divide c, put x(p) := 0. 

LEMMA 5 .1.1. There exists a unique homomorphism u : A - Q such that 
for all integral A-ideals f and locally constant homomorphisms X : G - ex of 
conductor dividing f one has 

1 u(1'[1 + f])x('Y)d~Lb) := 
1
d I II (1- x(p)) 

G f Plf 

wht~re IL is Haar probability measure on G and the product is extended over the 
maximal A-ideals p dividing f. Necessarily u factors through the universal ordinary 
distribution U. 

PROOF. Existence and uniqueness of u are clear in view of Proposition 3.4.4. 
Fix a maximal A-ideal p and consider the unique homomorphism v : A - Q such 
that v(~) = u(Xv~) for all~ E B. It will be enough to prove that u = v. Let f be 
any integral A-ideal divisible by p. Write f = cpn with n 2: 1 and c prime to p. 
Select a subset S C G mapping bijectively to ker ( G f - G f/p), and select ¢ E G 
such that ¢and p have a common image in the generalized ideal class group Gc. 
For all locally constant homomorphisms X: G- ex of conductor dividing f jp, by 
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Lemma 4.1.1 and the definition of u, one has 

fa v{'y[1 + f fp])x('Y)dJ.L('y) 

= fa (~ u(a-y[1 + f]) + { ~(¢-1-y[1 + f fp]) !~ ~: ~ ) x('Y)dJ.L('y) 

= _1_ II (1- x(q)) 
IG f !PI ql(f fp) 

23 

where the product is extended over the maximal A-ideals q dividing f. Therefore 
u = v, and we are done. D 

For each integral A-ideal f, let U'(f) be the Z[GJ]-submodule ofQ[GJ] gener-
ated by elements of the form 

L u(i'[1 + g])'Y-1 E Q[GJ] 
"'EGt 

where g is any integral A-ideal dividing f and i' E G is any lifting of 'Y E G f. It is 
easy to check that U'(f) is a free abelian group of rank IGJI· In the archimedean 
case U'(f) coincides with the module denoted by U in Sinnott's paper [16], and in 
the nonarchimedean case with the module denoted by U in Yin's paper [17]. We 
remark that Yin worked under the additional hypothesis (not made in this paper) 
that the infinite valuation of k is of degree 1 over the constant field of k; in that case 
every principal ideal is automatically principal in the narrow sense. In all cases, 
because the homomorphism u factors through the universal ordinary distribution 
U, it follows formally that Inf81 U'(f) is G-equivariantly a quotient of U(f) and 
hence G-equivariantly isomorphic to U(f) because the underlying abelian groups 
are free of the same rank, namely IG f I· 

5.2. Proof of Yin's conjecture. Assume now that we are in the nonar-
chimedean case. Let A be the ring obtained from A by inverting the variables Xp 
for p ranging over maximal A-ideals, and let r C Ax be the subgroup generated by 
those variables. Then A is the integral group ring of r' and r is a free abelian group 
for which the family of elements of the form Xp for p a maximal A-ideal constitute a 
basis. Note that the group r is a copy of the group of fractional A-ideals. Let A[G] 
be the group ring of G with coefficients in A, and let rG c A[G] x be the subgroup 
generated by rand G. Then the natural map r X G ---t ra is an isomorphism and 
A[G] may be viewed as the integral group ring of rG. Let n ~ rG be the kernel of 
the unique homomorphism rG ---t G1 under which each 'Y E G maps to its image in 
G1, and each variable Xp with p a maximal A-ideal maps to its narrow ideal class. 
Note that the group rG /ll is a copy of G1. Recall that A' is the subgroup of A 
generated by S \ S(1). 

LEMMA 5.2.1. For every maximal A-ideal p, the action of Xp on A/ A' is in-
vertible, and hence A/ A' can be viewed as a rG-module; as such, A/ A' is isomor-
phic to Ind~G Inffl} Z. 
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PROOF. For any A-lattice W, maximal A-ideals p and q, and 'Y E G such that 
'Y and q have a common image in G1. one has 

0#yEq- 1 p·Wfp·W 
_ [q- 1p · W] mod A'. 

The result follows straightforwardly from this identity. 

[y+p·W] 

D 

For each integral A-ideal /, let r(/) be the subgroup of r generated by the 
variables of the form Xp for some maximal A-ideal p dividing f. 

LEMMA 5.2.2. Let f be an integral A-ideal. Then the group r(/)G00 n II is 
isomorphic to the subgroup of P consisting of elements that are units at all maximal 
A-ideals not dividing f. In particular, r(/)Goo n II is almost free of rank r with 
torsion subgroup of order w, where r is the number of distinct maximal A-ideals 
dividing f, and w is the number of roots of unity in k. 

PROOF. For each a E P, there exists unique "((a) E Goo such that 

sgn"((a)sgna = 1, 

where sgn 'Y is as defined in Proposition 3.5.2. One can check that the map 

a~----+ X(a)'Y(a) : kx --+ rG 

induces an isomorphism kx~rGoo n II, whence the result via the Dirichlet unit 
theorem. D 

The following was conjectured L. S. Yin [17, p. 64] in the case that the infinite 
valuation of k is of degree 1 over the constant field of k. 

THEOREM 5.2.3. Let f be a nonunit integral A-ideal and identify Goo with 
a subgroup of Gt under the natural map. Let Ht be the subgroup of the narrow 
ideal class group G1 generated by the narrow ideal classes of the maximal A-ideals 
dividing f and the fractional A-ideals principal in the wide sense. Then the sign-
homology of U' (f) is in each degree G f -equivariantly isomorphic to 

I fG / I dG I fHI ('71/ '71)2r-1 n Gl n H~ n {1} IL.I WIL.I ' 

where r is the number of distinct maximal A-ideals dividing J, and w is the number 
of roots of unity of k. 

PROOF. We work with the G-module U(f) instead of the Grmodule U'(f). 
By Theorem 4.3.1 it will be enough to show that the sign-homology of U(/00 ) is in 
each degree G-equivariantly isomorphic to 

G Gl fH' ( I )2r-l Re rG I drG I fnr(f)Goo ('7// '71)2r-l Inf01 IndH1 In {1} Z wZ = s0 n nr(f)Goo n {1} IL.I WIL.I • 

Now by Theorem 4.4.2, the sign-homology of U(/00 ) is isomorphic as a graded 
G-module to the graded G-module underlying the homology of the chain complex 

JCTot ((A/A')/A[G],{1-Xp}plf• [ Li~~~:o ]) , 
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where "Yo E Goo is a generator. In turn, by Lemma 5.2.1, we can identify the homol-
ogy of the latter complex with the graded A[G]-module underlying the homology 
of the chain complex 

ICTot (lnd~Ginfrl}zjZ[rG],{1-Xp}plf• [ Li~o~;o ]) . 
By Proposition 2.6.4 the homology of the latter complex is isomorphic as a graded 
rG-module to 

Ind~~{f)Goo Inf?snaoo ii.(r(f)Goo nIT). 
Finally, by Proposition 2.6.3 and Lemma 5.2.2, the Farrell-Tate homology group 
fi.((r(f)Goo) niT) is in each degree a free (Z/wZ)-module of rank 2r-1. The proof 
of Yin's conjecture is complete. D 

5.3. The archimedean case: the double complex SIC. We narrow the 
focus to the archimedean case. We are going to explain how the general theory 
developed above specializes to the classical situation originally contemplated by 
lwasawa, Sinnott and Kubert. We speak now of positive integers and prime numbers 
rather than integral and maximal A-ideals. We identify A with the free abelian 
group on symbols of the form [a] with a E Q/Z, and thus identify U with the 
universal ordinary distribution as defined by Kubert. Fix a positive integer f > 1 
such that f ¥;. 2 mod 4. We identify U(f) with Kubert's universal level f ordinary 
distribution. We also write U(f00 ) := limn-+oo U(r), and we put ~~ Z/Z := 

U:'=1 /nZ/Z. 
By Theorem 4.3.1, we have at our disposal a subset X 0 c Q/Z giving rise to 

a basis of U such that the set Xo n J-Z/Z is of cardinality IGJI and gives rise to a 
basis of U(f). Thus we recover Kubert's result to the effect that the natural map 
U(f)- U is a split monomorphism with source a free abelian group of rank IGJI· 
From Theorem 4.3.1 we also get a little more, namely that the map U(f)- U(f00 ) 

induces an isomorphism in sign-(co)homology. 
Consider the free abelian group SIC generated by symbols of the form [a, g, n] 

where a E Q/Z, g is a squarefree positive integer and n is an integer. (The notation 
SIC is meant to call Sinnott and Kubert to mind.) Let G operate on SIC by the 
rule u[a, g, n] := [ta, g, n], where t is any integer such that for any root of unity ( of 
order equal to the denominator of a, one has u( = (t. Equip SIC with a G-stable 
bigrading SIC = ffim ffin SICmn by declaring the symbol [a, g, n] to be of bidegree 
(m, n), where m is the number of prime factors of g. Equip SIC with a G-equivariant 
differential of bidegree (0, -1) by the rule 

6[a,g,n] := (-1)"'([a,g,n -1] + (-1)n[-a,g,n -1]) 

and a G-equivariant differential o of bidegree ( -1, 0) by the rule 

o[a,g,n] := ~)-1)i- 1 (ra,gfpi,n]- ~ [b,gfpi,n]) 
•-1 p;b-a 

where P1 < · · · < Pm are the primes dividing g. Let SIC' C SIC be the subgroup 
generated by symbols [a, g, n] with a ::J. 0. Let SIC(!) C SIC be the subgroup 
generated by symbols [a,g,n] where a E J-Z/Z and put SIC(f00 ) := u:=1 SIC(r). 
Finally, let N be the subgroup generated by all symbols of the form (a, g, n] with 
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g =f. 1, and by all elements of the form 8[a, g, n] where g is prime. Note that SIC', 
SIC(J00 ), and N are bigraded, G-, 8- and 8-stable subgroups of SIC. 

Now on the one hand, the total complex associated to the double complex 

in an obvious way computes the sign-homology of U(J00 ). But the double complex 
(11) figuring in the proof of Theorem 4.4.2 can (as a double complex of G-modules) 
be identified with SIC(f00 ), and what the proof of the theorem says in the present 
context is that the quotient maps 

SIC(Joo) 

! 
SIC(Joo) 

SIC(J00 ) nN 

induce isomorphisms in homology of associated total complexes. In particular, the 
double complex 

also computes the sign-homology of U(f00 ). But the latter double complex has an 
extremely simple structure: it is a copy of the double complex 

ICT ( Z/Z, {O}PI/• [ ~ ] ) 

which, if employed as in the proof of Proposition 2.6.3, computes the Farrell-Tate 
homology of the subgroup of Qx generated by -1 and the primes p dividing f. 
Thus, in confirmation of Sinnott's result, we find that the sign-(co)homology of 
U(f00 ) (and therefore also that of U(J)) is in each degree a vector space over lF2 of 
rank 2r-l, where r is the number of prime divisors of f. 

Passing to the limit over f, we can identify the sign-homology of U with the 
homology of the total complex associated to the double complex SIC/SIC'. It is 
easy to see that the natural map 

of double complexes is isomorphic to the natural map 

ICT ( Z/Z, {O}plf• [ ~ ] ) ~ ICT ( Z/Z, {O}p:any prime• [ ~ ] ) 

of double complexes. Thus, in confirmation of Kubert's result, we find that the 
natural map U(J00 ) ~ U induces a monomorphism in sign-homology. Finally, it 
is clear that G acts trivially on SIC/SIC', and in confirmation of Sinnott's result, 
we find that G acts trivially on the sign-(co)homology U and a fortiori on the 
sign-homology of U(f). 
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Down-up Algebras and Witten's Deformations 
of the Universal Enveloping Algebra of sl2 

Georgia Benkart 

ABSTRACT. Down-up algebras originated in the study of differential posets. 
In this paper we explain their relationship to Witten's 7-pararneter family 
of deformations of the universal enveloping algebra U(.sl2) of the Lie algebra 
.sl2 and to the subfamily of conformal .sl2 algebras singled out by Le Bruyn. 
Down-up algebras exhibit many of the important features of U(.sl2) including 
a Poincare-Birkhoff-Witt type basis and a well-behaved representation theory. 
We describe Verma modules for down-up algebras and results on category 0 
modules for them. 

§1. Down-up algebras and their combinatorial origins 

Differential posets. 

Assume P is a partially ordered set (poset), and let CP denote the complex 
vector space whose basis is the set P. For many posets there are two well-defined 
transformations on CP, the down and up operators, which come from the order 
relation on P and are defined by 

d(y) =LX and u(y) = Lz. 
x~y y~z 

Thus, d(y) is the sum of all the elements x of P that y covers, and u(y) is the sum 
of all the elements z of P that cover y. 

The characterizing property of an r-differential poset is that the down and 
up operators satisfy du - ud = r I for some positive integer r, where I is the 
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30 GEORGIA BENKART 

identity transformation (see [St]). Thus, the space CP affords a representation 
of the Weyl algebra, (the associative algebra with generators y, x subject to the 
relation yx-xy = 1), via the mapping y 1---+ dfr, and x 1---+ u. Since the Weyl algebra 
also can be realized as differential operators y 1---+ dfdx and x 1---+ x (multiplication by 
x) on C[x], Stanley referred to the posets satisfying du - ud = r I as r-differential. 
Fomin [F] studied essentially the same class of posets (when r = 1), calling them "Y-
graphs". This terminology comes from the fact that Young's lattice of all partitions 
of a.ll nonnegative integers provides an important example. 

A partition f..L of an integer m can be regarded as a descending sequence f..L = 
(f..L1 ~ f..L2 ~ ... ) of parts whose sum lf-LI = Ei f..Li equals m. If v = (v1 ~ v2 ~ ... ) 
is a second partition, then f..L ~ v when f..Li ~ vi for all i. The partition v covers 
f..L (written f..L -< v) if f..L ~ v and lvl = 1 + lf-LI· Thus, f..L -< v if the partition f..L is 
obtained from v by subtracting 1 from exactly one of the parts of v, and d( v) is the 
sum of all such f..L· Analogously, u(v) is the sum of all partitions 1r obtained from 
v by adding 1 to one part of v. Many interesting enumerative and combinatorial 
properties of Young's lattice can be deduced from fact that it is a !-differential 
poset (see [St] and [F]). 

The down and up operators on the partition poset also have a representation 
theoretic significance. The simple modules of the symmetric group Sn are indexed 
by the partitions v of n. Upon restriction to Sn- 1 the representation labelled by 
v decomposes into a direct sum of simple Sn-1-modules indexed by the partitions 
f..L-< v, so it is given by d(v). When the simple module labelled by vis induced to a 
representation of Sn+b it decomposes into a sum of simple Sn+1-modules indexed 
by partitions 1r of n + 1 such that v-< 1r, which is just u(v). 

In his study of uniform posets [T], Terwilliger considered finite ranked posets 
P whose down and up operators satisfy the following relation 

didi+1Ui = O:idiUi-1di + /3iUi-2di-1di + "fidi, 

where di and ui denote the restriction of d and u to the elements of rank i. (There 
is an analogous second relation, 

di+1 UiUi-1 = O:iUi-1diUi-1 + /3iUi-1 Ui-2di-1 + "fiUi-1, 
which holds automatically in this case because di+1 and ui are adjoint operators 
relative to a certain bilinear form.) In many instances the constants in these rela-
tions do not depend on the rank i. In those examples, the down and up operators 
satisfy 

d2u = q(q + l)dud- q3ud2 + rd 

du2 = q(q + l)udu- q3u2d + ru 

where q and r are fixed complex numbers. Such a poset is said to be "(q, r)-
differential," and many interesting examples of (q, r)-differential posets are con-
structed in [T] from certain subspaces of a vector space over a finite field. 

1. Assume W is ann-dimensional vector space over GF(q), the field of q ele-
ments, and consider the set of pairs P = { (U,!) I U is a subspace of W and 
f is an alternating bilinear form on U} with the ordering: (U,!) ~ (V, g) if 
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U is a subspace of V and glu =f. Then Pis a (q, r)-differential poset with 
r = -qn(q + 1). 

2. In Example 1 replace "an alternating bilinear form" with "a quadratic form". 
The resulting poset Pis (q, -qn+l(q +!))-differential. 

3. In this example assume W is ann-dimensional space over GF(q2 ) and the 
bilinear forms are Hermitian. The poset P is ( q2 , -q2n+ 1 ( q2 + 1) )-differential 
in this case. 

Down-up algebras. 

To study the algebra generated by the down and up operators of a poset and 
its action on the poset, we introduced the notion of a down-up algebra in our joint 
work with Roby (see [BR]). Although the initial motivation for our investigations 
came from posets, we made no assumptions about the existence of posets whose 
down and up operators satisfy our relations. However, when such a poset exists, 
it affords a representation of the down-up algebra, and so our primary focus in 
[BR] was on determining explicit information about the representations of down-up 
algebras. Proofs of the results stated in this paper and more detailed explanations 
can be found in [BR]. 

DEFINITION 1.1. Let a, (3, 'Y be fixed but arbitrary complex numbers. The uni-
tal associative algebra A( a, (3, 'Y) over C with generators d, u and defining relations 

(Rl) ~u = adud + f3ud2 + "'fd, 
(R2) du2 = audu + (3u2d + "'(U, 

is a down-up algebra. 

It is easy to see that when 'Y f. 0 the down-up algebra A(a,f3,"'f) is isomorphic 
to A( a, (3, 1) by the map, d ~---+ d', u ~---+ "'fU1• Therefore, it would suffice to treat just 
two cases 'Y = 0, 1, but to avoid dividing considerations into these two cases, we 
retain the notation 'Y. 

Examples of down-up algebras. 

If B is the associative algebra generated by the down and up operators d, u of 
a (q, r)-differential poset P, then relations (Rl) and (R2) hold with a = q(q + 1), 
f3 = -q3 , and 'Y = r. Thus, B is a homomorphic image of the algebra A( a, (3, 'Y) with 
these parameters, and the action of Bon CP gives a representation of A( a, (3, "f). 

The relation du - ud = r I of an r-differential poset, can be multiplied on 
the left by d and on the right by d and the resulting equations can be added to 
get the relation d2u- ud2 = 2rd of a ( -1, 2r)-differential poset. Thus, the Weyl 
algebra is a homomorphic image (by the ideal generated by du- ud- rl) of the 
algebra A(O, 1, 2r). The q-Weyl algebra is a homomorphic image of the algebra 
A(O, q2 , q + 1) by the ideal generated by du- qud -1. The skew polynomial algebra 
Cq[d, u], or quantum plane (see [M]), is the associative algebra with generators d, u 
which satisfy the relation du = qud. Therefore, Cq[d, u] is a homomorphic image 
(by the ideal generated by du- qud) of the algebra A(2q, -q2, 0). 
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Suppose g is a 3-dimensional Lie algebra over C with basis x, y, [x, y] such that 
[x[x, y]] ="(X and [[x, y], y] = "fY· In the universal enveloping algebra U(g) of g, the 
relations above become 

x 2y- 2xyx + yx2 ="(X 

xy2 - 2yxy + y2x = "fY· 
Thus, U(g) is a homomorphic image of the down-up algebra A(2, -1,"() via the 
mapping ¢ : A(2, -1,"() -t U(g) with ¢ : d f--t x, ¢ : u f--t y. The mapping 
1/J : g -t A(2, -1, "() with 1/J : x f--t d, 1/J : y f--t u, and 1/J : [x, y] f--t du- ud extends, by 
the universal property ofU(g), to an algebra homomorphism 1/J: U(g) -t A(2, -1, "f) 
which is the inverse of¢. Consequently, U(g) is isomorphic to A(2, -1, "f). 

The Lie algebra .s£2 of 2 x 2 complex matrices of trace zero has a standard basis 
e, J, h, which satisfies [e, /] = h, [h, e] = 2e, and [h, /] = -2/. From this we see 
that U(.s£2) ~ A(2, -1, -2). The Heisenberg Lie algebraS) has a basis x, y, z where 
[x,yj = z, and [z,SJ] = 0. Thus, U(SJ) ~ A(2, -1,0). 

S.P. Smith [Sm] investigated a class of associative algebras having a presentation 
by generators a, b, hand relations [h, a]= a, [h, b] =-band ab-ba= f(h), where 
f(h) is a polynomial in h. In the special situation that deg(f) ~ 1, such an algebra 
is a homomorphic image of a down-up algebra A(2, -1,"() for some "f· 

The 2 x 2 complex matrices y = ( Yl y2 ) with supertrace Yl - Y4 = 0 is the 
· Y3 Y4 

special linear Lie superalgebra L = .s£(1, 1) = L0 EB £1 under the supercommutator 
[x, y] = xy - ( -1 )abyx for x E La, y E Lt;. It has a presentation by generators 
e, f (which belong to Ly and can be identified with the matrix units e = e1,2, 
f = e2,d and relations [e, [e, /]] = 0, [[e, /], /] = 0, [e, e] = 0, [/, /] = 0. The 
universal enveloping algebra U(.s£(1, 1)) of .s£(1, 1) has generators e, f and relations 
e2 f- fe2 = 0, eP - Pe = 0, e2 = 0, P = 0. Thus, U(.s£(1, 1)) is a homomorphic 
image of the down-up algebra A(O, 1, 0) by the ideal generated by the elements e2 
and P, which are central in A(O, 1, 0). 

Consider the field C ( q) of rational functions in the indeterminate q over the 
complex numbers, and let Uq(g) be the quantized enveloping algebra (quantum 
group) of a finite-dimensional simple complex Lie algebra g corresponding to the 
Cartan matrix 2l = ( ai,j )i,i=l. There are relatively prime integers li so that the 
matrix (liai,i) is symmetric. Let 

and 

for all m E Z~o· When m ~ 1, let 
m 

[m]i! = ITlik 
j=l 

Set [O]i! = 1 and define 
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Then U = Uq(g) is the unital associative algebra over C(q) with generators 
Ei, Fi, Ki, Ki- 1 (i = 1, ... , n) subject to the relations 

(Q1) KiKi 1 = Ki- 1 Ki, 

(Q2) KiEiKi- 1 = q:'·; Ei 

( ) -1 -a;,; Q3 KiFiKi = qi Fi 

Ki- Ki- 1 
(Q4) EiFi - FiEi = 6i,j _1 Qi- qi 

1-a· · 

(Q5) tJ ( -l)k [ 1 -kai,i]. E;-a,,;-k EiEf = 0 
k=O ' 

1-a· · 

(Q6) tJ ( -1)k [ 1 -kai,i]. F/-a,,;-k FiFik = 0 
k=O ' 

for i ::/= j 

for i ::/= j. 

Suppose ai,j = -1 = aj,i for some i ::/= j, and consider the subalgebra Ui,j 
generated by Ei, Ei. In this special case, the quantum Serre relation ( Q5) reduces 
to 

Ef Ei - [2]iEiEiEi + EiEf = 0 and 
EJEi- [2]iEiEiEi + EiEJ = 0. 

Since -ii = iiai,j = iiai,i = -ii, the coefficients [2]i and [2Ji are equal. The 
algebra Ui,j (with q is specialized to a complex number which is not a root of 
unity) is isomorphic to A([2]i, -1,0) by the mapping Ei ~ d, Ei ~ u. The same 
result is true if the corresponding F's are used in place of the E's. In particular, 
when g = s£3, the algebra Ui,j is just the subalgebra of Uq(.5l3) generated by the 
E's. 

§2. Witten's Deformations of U(s£2) 

To provide an explanation of the existence of quantum groups, Witten ([W1], 
[W2]) introduced a 7-parameter deformation of the universal enveloping algebra 
U(s£2). Witten's deformation is a unital associative algebra over a field K (which 
is algebraically closed of characteristic zero and which could be assumed to be C) 
and depends on a 7-tuple e = (6, ... , 6) of elements of K. It has a presentation 
by generators x, y, z and defining relations 

(2.1) 
(2.2) 
(2.3) 

xz -6zx = 6x 
zy- 6yz = e4Y 
yx- esxy = e6z2 + 6z. 

We denote the resulting algebra by 2D'(e). 
Let us assume e6 = 0 and 6 ::/= 0. T-hen substituting expression {2.3) into {2.1) 

and (2.2) and rearranging we have 
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34 GEORGIA BENKART 

- esx2y + {1 + 6es)xyx- 6yx2 = 66x 
- esxy2 + {1 + e3es)yxy- 6y2x = e46Y· 

{2.4) 

In particular, when es =f= 0, 6 = 6, and 6 = e4 we obtain 

2 1 +6es 6 2 66 x y = xyx - -yx - -x 
es es es 

2 1 + 6es 6 2 6e1 xy = yxy- -y x - -y. 
es es es 

From this it is easy to see that a Witten deformation algebra !W{e) with e6 = 0, 
es6 =I= 0, el = 6, and 6 = e4 is a homomorphic image of the down-up algebra 
A(a,,8,')') with 

(2.5) 

This is the initial step of the proof of the following result. 

THEOREM 2.6. A Witten deformation algebra !W{{) with 

{2.7) 

is isomorphic to the down-up algebra A(a,,B,'Y) with a,,8,')' given by {2.5). Con-
versely, any down-up algebra A( a, ,8, 'Y) with not both a and ,8 equal to 0 is isomor-
phic to a Witten deformation algebra !W{{) whose parameters satisfy {2. 7). 

PROOF. Observe first that any deformation algebra !ro{e) with e6 = 0 and 
6 =1- 0 is isomorphic to the algebra !ro'(e), which has generators x, y and defining 
relations -

- esx2y + {1 + 6es)xyx - 6yx2 = e2e7x 
- esxy2 + {1 + 6es)yxy- 6y2x = e46Y· 

(2.8) 

When e6 = 0 and 6 =f= 0 we will identify these two algebras. 
We have argued above that a deformation algebra !W{e) whose parameters 

satisfy {2.7) is a homomorphic image of A( a, ,8, 'Y) for a, ,8, 'Y given by {2.5) via the 
map that sends d to x and u toy. Now consider the map K(x,y) -+ A(a,,8,')') 
from the free associative algebra K(x, y) generated by x, y to the down-up algebra 
A(a,,8,')') (with a,,8,')' as in (2.5)) given by x ~---+ dandy ~---+ u. By (2.8), the 
elements 

2 1 + eles + 6 2 + 6e7 x y - xyx -yx -x 
es es es 

2 1 + 6es + el 2 + 66 xy - yxy -y x -y es es es 
are in the kernel, and so there is an induced homomorphism !ro{e) -+ A( a, ,8, 'Y)· 
Thus, the two algebras can be seen to be isomorphic. Observe that 6 =I= 0 if and 
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only if (3 =1- 0. If 6 = 0 then 0: = es- 1 =1- 0, so either 0: or (3 is nonzero for the 
down-up algebras that are obtained. 

Conversely, consider an arbitrary down-up algebra A( a, (3, 'Y) with not both a: 
and (3 equal to 0. Suppose first (3 =1- 0, and let e1 be a solution to e? - o:e1 - (3 = 0. 
Set 

(2.9) 
0 =1- 6 E K (arbitrary) 

'Yes 6=e4=--. 6 
(Note that (3 =f. 0 implies a: =f. e1.) The relations in (2.9) imply the ones in (2.5). 
Consequently, if e = (ei. ... , 6) where the parameters satisfy (2.9), then !ID(e) 9:! 
A(a,(3,-y) where a,(3,-y are as in (2.5). -

Finally suppose for the down-up algebra A(o:, (3, -y) that (3 = 0 and a: =f. 0. Set 
6 = 6 = 0, and define the remainder of the parameters in e = ( e1' ... 'e7) as in 
(2.9). The corresponding deformation algebra !ID({) is isomorphic to A(a, 0, -y). 0 

A deformation algebra !ID(e) has a filtration, and 1e Bruyn ([11], [12]) inves-
tigated the algebras !ID(e) whose associated graded algebras are Auslander regular. 
They determine a 3-parameter family of deformation algebras which are called con-
formal 5[2 algebras and whose defining relations are 

xz- azx = x 
(2.10) zy- ayz = y 

yx - cxy = bz2 + z 

When c =f. 0 and b = 0, the conformal 5[2 algebra with defining relations given by 
(2.10) is isomorphic to the down-up algebra A(a,(3,-y) with a:= c-1(1 + ac),(3 = 
-ac-1 and 'Y = -c-1. If c = b = 0 and a =f. 0, then the conformal 5[2 algebra is 
isomorphic to the down-up algebra A(a,(3,-y) with a:= a-1, (3 = 0 and 'Y = -a-1. 

In a recent paper Kulkarni [K] has shown that under certain assumptions on the 
parameters, a Witten deformation algebra is isomorphic to a conformal 5[2 algebra 
or to a double skew polynomial extension. The precise statement of the result is 

THEOREM 2.11. {[K, Thm. 3.0.3}} lf66ese2 =f. 0 or6eaese4 =f. 0, then !ID(e) 
is isomorphic to one of the following algebras: -

(a) A conformal5[2 algebra with generators x, y, z and relations given by {2.10} 
for some a, b, c E K. 

(b) A double skew polynomial extension (that is, a skew polynomial extension 
of a skew polynomial ring) whose generators satisfy 
(i) xz - zx = x, zy- yz = (y, yx- TJXY = 0 or 

(ii) xw = Owx, wy = K-yw, yx = >..xy 
for parameters(, TJ, (}, K., >.. E K. 

Kulkarni studies the simple representations of the conformal sl2 algebras and 
of the skew polynomial algebras in (b). Essential to the investigations in [K] is the 
observation that the conformal5[2 algebra of (2.10) can be realized as a hyperbolic 
ring R{ 1/>, r }, where R is the polynomial ring K[z, r] and 4> is the automorphism 
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36 GEORGIA BENKART 

of R sending f(z, r) to f(az + 1, c-1(r- t(az + 1)), where t = bz2 + z. Kulkarni 
then applies results of Rosenberg [R] to describe the left ideals in the left spectrum 
of R{ ¢>, T} and to determine the maximal left ideals for the conformal sl2 algebras. 
Further applications of results of [R] give the left spectrum of the double skew 
polynomial extensions in (b) of Theorem 2.11. 

§3. Representations of down-up algebras 

Down-up algebras have a rich representation theory. In this section we con-
struct highest weight modules for A( a, {3, -y) and discuss more general weight mod-
ules. Further details of the results can be found in [BR, Sec. 2]. 

Highest weight modules. 

A module V for A= A( a, {3, -y) is said to be a highest weight module of weight 
>. if V has a vector Yo such that d ·Yo = 0, (du) ·Yo = >.yo, and V = Ayo. The 
vector Yo is a maximal vector or highest weight vector of V. 

PROPOSITION 3.1. (See {BR, Sec. 2]} Set A-1 = 0 and let >.o = ). E C be 
arbitrary. For n ~ 1, define An inductively by the recurrence relation, 

{3.2) 

The C-vector space V(>.) with basis {vn In= 0, 1, 2, ... } and with A( a, /3, -y)-action 
given by 

{3.3) 
d · Vn = An-1 Vn-b n ~ 1, and d · vo = 0 
U • Vn = Vn+1· 

is a highest weight module for A( a, /3, -y). Every A( a, /3, -y)-module of highest weight 
>. is a homomorphic image of V { >.). 

Because it shares the same universal property and many of the same features as 
Verma modules for finite-dimensional semisimple complex Lie algebras, the module 
V(>.) is said to be the Verma module for A( a, /3, -y). 

PROPOSITION 3.4. 
(a) V(>.) is simple if and only if An =I 0 for any n. 

(b) If m is minimal with the property that Am = 0, then M(>.) = spanc{v; I 
j ~ m + 1} is a maximal submodule ofV(>.). 

(c) Suppose N is a submodule ofV(>.) such that N ~ spanc{v; I j ~ 1}. Then 
N ~ M(>.). 

When V(>.) is simple, we set M(>.) = {0). 
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DOWN-UP ALGEBRAS AND DEFORMATIONS OF U(s1 2) 37 

Weight modules. 

If we multiply the relation d?u - a:dud - (3ud2 = "fd on the left by u and the 
relation du2 - a:udu- (3u2d = "fU on the right by d and subtract the second from 
the first, the resulting equation is 

(3.5) or (du)(ud) = (ud)(du). 

Therefore, the elements du and ud commute in A = A( a:, (3, "f). For any basis 
element Vn E V(.>.), we have du · Vn = AnVn and ud · Vn = An-1Vn. Using that with 
n = 0 and .>. -:/; 0, it is easy to see that du and ud are linearly independent. Let 
~ = Cdu EB Cud. 

We say an A-module V is a weight module if V = I:vE~· V,.,, where V,., = { v E 
V I h · v = v(h)v for all h E ~}, and the sum is over elements in the dual space ~· 
of~ (necessarily the sum is direct). Any submodule of a weight module is a weight 
module. If V,., -:/; (0), then v is a weight and V,., is the corresponding weight space. 
Each weight v is determined by the pair ( v', v") of complex numbers, v' = v( du) 
and v" = v( ud), and often it is convenient to identify v with (v', v"). In particular, 
highest weight modules are weight modules in this sense. The basis vector Vn of 
V(.>.) is a weight vector whose weight is given by the pair (.>.n, An-1). Finding these 
weights explicitly involves solving the linear recurrence relation in (3.3), which can 
be done by standard methods as in (Br, Chap. 7] for example. 

PROPOSITION 3.6. Assume A-1 = 0, .>.o = .>., and An for n 2:: 1 is given by the 
recurrence relation An- O:An-1- fJ.>.n-2 = "f· Fix t E C such that 

(i) If a:2 + 4(3 -:/; 0, then 

where 

a: a: 
r1 = 2 + t, r2 = 2 - t, 
Xn = { (1- 0:- (3)- 1"1 if 0: + {3-:/; 1 

(2- a:)-1"fn if a:+ (3 = 1 (necessarily a:-:/; 2), 

and ( ~~ ) = r 2 ~ r 1 ( ~~1 ~ 1 ) (a:.>.~~ x~ X1 ) · 

(ii) If a:2 + 4(3 = 0 and a: -:/; 0, then 
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Xn = { (1- a- ,B)-1-y if a+ ,B i= 1 
2- 1n 2-y if a+ ,B = 1 i.e. if a= 2, ,B = -1, 

and (~~) = ( !1 2:-1) (a/~~x~x 1 ) · 
(iii) If a 2 + 4,8 = 0 and a= 0, then ,B = 0 and An = 'Y for all n ~ 1. 

If a, ,B are real, then it is natural to take t = J a 2 
2 + 4,8 in the above calcula-

tions. 

Let us consider several special cases. 

EXAMPLE (1). Recall that the universal enveloping algebra U(5l2) of 5[2 is 
isomorphic to the algebra A(2, -1, -2), and the universal enveloping algebra U(jj) 
of the Heisenberg Lie algebra .fj is isomorphic to A(2, -1, 0). For any algebra 
A(2, -1,-y), applying (ii) with s = a/2 = 1 and Xn = n2-y/2 we have that 

Therefore 

'Y -yn2 
An = A+ (A+ 2 )n + T 

= (n + 1)(A + 7;). 
In the 5[2-case, the operator h = du-ud is used rather than du. The eigenvalues 

of h are An - An-1 = A + n-y = A - 2n, n = 0, 1, ... , (as is customary in the 
representation theory of 5b), and V(A) is simple if and only if A ~ Z~o· The 
analogous computation in the Heisenberg Lie algebra shows that the central element 
z = du - ud has constant eigenvalue An = A. 

EXAMPLE (n). Recall that the quantum case discussed in Sec. 1 involves 
the down-up algebra A((2)i, -1, 0). To compute the values of An in this case, we 
adopt the shorthand 

p= qi, 
p2- p-2 

andl note that a= (2)i = 1 = p + p- 1 , ,B = -1, and 'Y = 0 so that 
p-p-

a2 + 4,a = P2 + 2 + p-2 _ 4 = (p _ P-1 )2. 

Thus 
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DOWN-UP ALGEBRAS AND DEFORMATIONS OF U(sl 2 ) 39 

p + p-1 + p- p-1 
r1 = =p 

2 
+ -1 (p -1) p p - - p -1 

r2 = = p , 2 

( c1) 1 (p-1 -1)( A ) 
c2 = p-1 _ p -p 1 (p + p-1 )A 

1 ( -pA ) 1 ( pA ) 
= p-1-p p-1A = p-p-1 -p-1A . 

Therefore 

pA n p-1A 
An= p- p-1p p- p-1p-n 

= (pn+1 _ p-(n+1) )A 
p- p-1 

= [n+ l]iA· 

In the particular case of Uq(.sl3), the subalgebra generated by the Ei's is isomor-
q2 _ q-2 (qn+l __ q-(n+l)) 

phictoA([2],-l,O)where[2]= _1 ,andAn=[n+l]A= _1 A q-q q-q 
in that case. 

ExAMPLE (111). For the algebra A(l, 1, 0), the solutions to the associated 
linear recurrence An= An-1 + An-2, Ao =A, A-1 = 0, (hence the eigenvalues of du 
and ud on V(A)) are given by the Fibonacci sequence Ao = A, A1 = A, A2 = 2A, 
A3 = 3A, A4 = 5A, .... In this case, the equations in Proposition 3.6 reduce to 

EXAMPLE (1v). When f3 = 0, we may assume t = o:/2 so that r1 = o: and 
r2 = 0. Solving for An from Proposition 3.6 we obtain 

{ (A- -"~-)an+ _'Y_ 
An = 1 - 0: 1 - 0: 

A+"(n if o:=l. 

if o:#l 

Weights and submodules. 

In [BR] we investigated in detail the weight space and submodule structure 
of the Verma module V(A). Roots of unity play a critical role in determining the 
dimension of a weight space. For example if f3 = 0, it is easy to see from the 
expressions in Example (iv) that weight spaces are either !-dimensional or infinite-
dimensional. (The latter occurs when o: # 1 and A = 'Y / ( 1 - o:) or o: is a root of 
unity, or when o: = 1 and 'Y = 0). This dichotomy is a general phenomenon. We 
briefly summarize some of the main results. 
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40 GEORGIA BENKART 

PROPOSITION 3. 7. 
(a) In V(>.) each weight space is either one-dimensional or infinite-dimensional. 

If an infinite-dimensional weight space occurs, there are only finitely many 
weights. 

(b) If each weight space ofV(>.) is one-dimensional, then the proper submodules 
of V(>.) have the form N = spanc{ Vj I j ~ n} for some n > 0 with >-n-1 = 
0, and hence they are contained in M(>.). 

(c) If"'( = 0 = >., then V(>.) has infinitely many maximal proper submodules, 
each of the form N(r) = spanc{ Vn - TVn-1 I n = 1, 2, ... } for some r E C, 
and infinitely many one-dimensional simple quotients, L(O, r) = V(O)jN(r). 
In all other cases, M(>.) is the unique maximal submodule ofV(>.), and there 
is a unique simple highest weight module, L(>.) = V(>.)jM(>.), of weight>. 
up to isomorphism. 

In a weight module the weight spaces are translated by the operators d and u. 
If rn E M is a vector of weight v = (v', v"), where v' = v(du) and v" = v(ud), in 
an .A(o:, (3, "')-module M, then 

(i) u · rn has weight 

(3.8) J.L(v) = (J.L(v)', J.L(v)") where 
J.L(v)' = o:v' + (3v" + "Y and J.L(v )" = v', and 

(ii) when (3 -:/= 0, d · rn has weight 

8(v) = (8(v)', 8(v)") where 
(3.9) 

8(v)' = v" and 8( v )" = (3- 1 (v' - o:v" - "Y), 

An easy direct computation shows that 8(J.L(v)) = v and J.L(8(v)) = v. 

Starting with v0 = (>., 0) for >. E C, and defining Vn inductively by Vn 
J.L(lln- 1) = J.Ln(v0 ), we have Vn = (>.n, An-1), where An is as in (3.2). Thus the set 
{v0 , v1 , ..• } is just the set of weights of the Verma module V(>.). 

Lowest weight modules. 

Lowest weight modules W for A= A(o:,{3,"'f) can be created by reversing the 
roles of d and u. Thus, there is a vector wo such that u · wo = 0, ud · Wo = K,Wo, 
and W = Aw0 . When (3-:/= 0, the eigenvalues of du are given by the sequence which 
has "'-I = 0, "'o = "'' an arbitrary complex number, and 

(3.10) 

for all n ~ 1. 

f3"'n + O:"'n-1- "'n-2 = -"'(, or equivalently 
K,n = {3-l (- 0:/l',n-1 + "'n-2- "Y) 
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PROPOSITION 3.11. Let W(~~:) be the C-vector space having basis {wn I n = 
0, 1, 2, ... }. 

(a) Assume (3 =f. 0, ~~:_ 1 = 0, and Ko = ~~:, an arbitrary element of C. Suppose 
Kn for n ~ 1 is as in (3.10}, and define 

(3.12) 
U • Wn = Kn-1Wn-1, n ~ 1, and U • Wo = Q 

d· Wn = Wn+1· 

Then this action gives W(~~:) the structure of a lowest weight A(o:,(3,-y)-
module. 

(b) When (3 = 0 and o: =f. 0, set 

n+1 
Kn = --y L 0:-j 

j=1 

for all n ~ 0. Then W( --yo:-1) with the action given by (3.12} is a lowest 
weight A(o:, (3, -y)-module. 

(c) When 'Y =f. 0, the only lowest weight A(O,O,-y)-module is the 1-dimensional 
module W = Cwo with d · Wo = 0 = u · wo. When 'Y = 0, set Kn = 0 
for all n. Then W(O) with the action given by (3.12} is a lowest weight 
A(O, 0, D)-module. 

When (3 =f. 0, the set of weights of the lowest weight module W(~~:) is just 
{on(w) In= 0, 1, ... }, where w = (0, ~~:). 

Category 0 modules. 

Bernstein, Gelfand, and Gelfand (BGG] introduced an important category of 
weight modules for finite-dimensional complex semisimple Lie algebras, the so-called 
category 0 modules. There is analogous category that can be defined for a down-up 
algebra A= A(o:,(3,-y). 

(3.13) The category 0 consists of all A-modules M satisfying the following condi-
tions: 

(a) M is a weight module relative to I) = spanc{du, ud}, i.e. M = Lv M.., 
where M.., ={mE M I h · m = v(h)m for all hE I)}; 

(b) d acts locally nil potently on M, so that for each m E M, dnm = 0 for some 
n. 

(c) M is a finitely generated A-module. 

The category 0 is closed under taking submodules and quotients. It contains 
all the Verma modules V(.A) and their simple quotient modules L(.A) = V(.A)/M(.A) 
(and in the case that 'Y = 0 and .A = 0, the one-dimensional quotients L(O, r) = 
V(O)jN<,.l). 
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PROPOSITION 3.14. Suppose (3 =/- 0. If M is an simple object in the category 
0, then either M ~ L(A) for some A, or else"'= 0 and M ~ V(O)/N(r) = L(O, r) 
for some T E C. 

There is more general category of modules that can be defined for the down-up 
algebra A= A(a,(J,"f). Here we require that (3 =/- 0. 

(3.15) The category 0' consists of all A-modules M satisfying the following condi-
tions: 

(a) M is a weight module relative to ~ = spanc { du, ud}. 
(b) C(d]m is finite-dimensional for each mE M. 
(c) M is a finitely generated A-module. 

The modules in 0 clearly belong to 0', but 0' is larger than 0 which can be 
seen from examining the simple modules in 0'. 

PROPOSITION 3.16. Suppose F is a set of weights such that 8(w), J.L(w) E F 
whenever wE F. Suppose p E C is nonzero, and let N(F, p) be the C-vector space 
with basis {vw I wE F}. 

(a) Define 

d · Vw = PVo(w) 

-1 ( )" U • Vw = p J.L W VJL(w)· 

Then this action extends to give an A(a,{J,"f)-module action on N(F,p). 

(b) IfF is generated by any weight v = (v',v") E F under the action of8, and 
ifv' =/- 0 for any v E F, then N(F,p) is a simple A(a,(J,"f)-module. 

THEOREM 3.17. Assume M is a simple module in the category 0'. Then there 
are three possibilities: 

(a) M is a highest weight module, that is, M is isomorphic to L(A) for some A 
or to L(O,r) for some T E C (when"'= 0}. 

(b) M is a finite-dimensional lowest weight module with weights v, b(v), ... , 
bn-1(v) such that bn(v) = v for some n?: 1. 

(c) M is isomorphic to N ( F, p) for some p =/- 0 and some finite set F = 
{v, 8(v), ... , 8n- 1(v)} such that 8n(v) = v for some n?: 1. 

§4. The structure of down-up algebras 

It is apparent from the defining relations that the monomials u i ( du )J dk, i, j, k = 
0,1, ... in a down-up algebra A= A(a,(J,"f) determine a spanning set. In [BR, 
Thm. 3.1] we apply the Diamond Lemma (see [Be]) to prove a Poincare-Birkhoff-
Witt type result for down-up algebras. There is one essential ambiguity, (d2u)u = 
d(du2 ), and the result of resolving the ambiguity in the two possible ways is the 
same. Arguing in this manner we prove 
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THEOREM 4.1. (Poincare-Birkhoff-Witt Theorem) Assume A= A(a,,B,'Y) is 
a down-up algebra over C. Then {ui(du)Jdk I i,j, k = 0, 1, ... } is a basis of A. 

The Gelfand-Kirillov dimension is a natural dimension to assign to an algebra 
A, and many cases (such as when A is a domain), it provides important struc-
tural information (see for example, [AS]). Theorem 4.1 enables us to compute 
the GK-dimension of any down-up algebra A = A(a,,B,'Y)· The spaces A(n) = 
spanc{ui(du)Jdk I i + 2j + k ~ n} afford a filtration (0) C A(o) C A(l} C · · · C 
UnA(n) = A(a,,B,'Y) of the down-up algebra, and A(m)A(n) ~ A(m+n) since the 
defining relations replace the words d2u and du2 by words of the same or lower to-
tal degree. The number of monomials ui(du)Jdk with i+2j+k = f is (m+1)(m+l) 
iff= 2m and is (m + l)(m + 2) iff= 2m+ 1. Thus, dimA(n} is a polynomial inn 
with positive coefficients of degree 3, and the Gelfand-Kirillov dimension is given 
by 

GKdim(A(a,,B,'Y)) = limsuplogn(dimA(n)) 
n->oo 

(4.2) . ln ( dimA(n}) 
= hm 

n-->00 ln n 
=3. 

In [BR, Sec. 3] we show 

PROPOSITION 4.3. If A( a, ,B, 'Y) has infinitely many simple Verma modules 
V(>.), then the intersection of the annihilators of the simple Verma modules is 
zero. 

As an immediate consequence, for such a down-up algebra A( a, ,B, 'Y) the Jacob-
son radical, which is the intersection of the annihilators of all the simple modules, 
is zero. 

Conditions for A(a,,B,'Y) to have infinitely many simple Verma modules are 
(4.4) 

(1) a 2 + 4,6-# 0 and a 2 -# -4,Bcos2 (0/2) where ei8 is a root of unity, or 
(2) a 2 + 4,6 = 0 and a-# 0 or 
(3) a = 0 = ,B and 'Y -# 0. 

Gradation and the center. 

The free associative algebra over C generated by d and u can be graded by 
assigning deg(d) = -1 and deg(u) = 1 and extending this by using deg(ab) = 
deg(a)+deg(b). The relations ~u = adud+,Bud2 +'Yd and du2 = audu+,Bu2d+'Yu 
are homogeneous, so the down-up algebra A= A( a, ,B, 'Y) inherits the grading and 
decomposes into homogeneous components A= ffinEZ An· In [BR, Sec. 3] we show 
that the subalgebra Ao = spanc{ui(du)Jdi I i,j = 0, 1, ... } is commutative. 
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PROPOSITION 4.5. Assume A has infinitely many simple Verma modules. Let 
A= ffijEZ Ai be the Z-grading of A= A(a,,B,'Y)· Then: 

(a) The center Z(A) of A is contained in Ao = spanc{ ui(du)idi I i,j = 0, 1, ... }. 

(b) Suppose z E Z(A) and V(.A) is any Verma module of A. Then z acts as 
a scalar, say x,x(z), on V(.A). The mapping x.x : Z(A) ---+ C is an algebra 
homomorphism. 

(c) A scalar 1r E C is linked to .A if 1r = .An+l for some n ? 0 with An = 0, 
where the sequence .A1, .A2, ... is constructed using the recurrence relation in 
(3.2} starting with .A-1 = 0 and .Ao =.A. If 1r is linked to .A, then Krr = x,x. 

Open Problems.* We conclude by mentioning several open questions con-
cerning down-up algebras. 

(a) The down-up algebras A(2, -1,'Y) are Noetherian because they are univer-
sal enveloping algebras of finite-dimensional Lie algebras. Determine when 
A( a, ,B, 'Y) is Noetherian. 

(b) Determine conditions on a, ,B, 'Y for A( a, ,B, 'Y) to be a domain. When ,B = 0, 
then d(du- aud- 'Y1) = 0 so that A(a, ,B, 'Y) has zero divisors for any choice 
of a,'Y E C. The universal enveloping algebra examples A(2, -1,'Y), as well 
as the quantum examples A([2]i, -1,0), show that some down-up algebras 
are domains. 

(c) What is the center of A(a,,B,'Y)? The center can be nontrivial as the en-
veloping algebra examples A(2, -1, 'Y) show. The down-up algebra A(O, 1, 0) 
has the elements d2 and u2 in its center. 

(d) When is A(a,,B,'Y) a Hopf algebra? 

(e) Relate Kulkarni's presentation of the maximal left ideals in conformal sl2 
algebras to the simple modules in category 0 and category 0'. The approach 
in [K] using noncommutative algebraic geometry is quite different from the 
one in [BR] and so is the description of the simple modules. 

(f) Study the homogenization A[t] of the down-up algebra A= A( a, ,B, 'Y), which 
is the graded algebra generated by d, u, t subject to the relations 

d2u = adud + ,Bud2 + 'Ydt2, du2 = audu + ,Bu2d + 'Yut2 , 

dt = td, ut = tu. 
Homogenized s(2 is a positively graded Noetherian domain and a maximal 
order, which is Auslander-regular of dimension 4 and satisfies the Cohen-
Macaulay property. Le Bruyn and Smith [LS] have determined the point, 
line, and plane modules of homogenized s(2 and shown the line modules are 
homogenizations of the Verma modules. 
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Localizations of Grothendieck Groups and Galois Structure 

Ted Chinburg, Boas Erez, Georgios Pappas, and Martin Taylor 

ABSTRACT. In this paper we describe how the theory of ordinary and modular 
characters may be localized at the prime ideals of certain commutative rings 
acting on the representation ring of a finite group over a field. This localized 
character theory, and a Lefschetz Riemann Roch Theorem, are applied to 
study the Galois module structure of the cohomology of the structure sheaves 
of semi-stable curves over rings of algebraic integers. 

1. Introduction 

Two basic techniques in studying modules for a finite group are character theory 
and localization. The first part of this paper concerns how character theory may 
itself be localized, in the following sense. Suppose T is a subgroup of a finite group 
G, and that F is a field. The Grothendieck group G~(ZG) of all finitely generated 
ZG-lattices becomes a commutative ring via the tensor product of lattices over Z. 
Via the restriction of operators from G toT and the tensor product ofT-modules 
over Z, G~(ZG) acts on the Grothendieck group Go(FT) of all finitely generated 
FT-modules. Brauer (c.f. §2) determined the prime ideals p of G~(ZG), while 
the theory of ordinary and modular characters (c.f. §3) provides a description 
of Go(FT) by means of functions on T. Our main result concerning G0 (FT) is 
a character theoretic description ( c.f. Theorem 3.8) of the localization Go ( FT) P 

by means of functions on a subset Tl,p ofT, where f is the characteristic of F. 
This description allows one to readily compute the rank of Go(FT)p as a finitely 
generated module over the localization Zq of Z at the ideal q generated by the 
residue characteristic of p. Theorem 3.8 is also useful in analyzing the ring structure 
on Go(FT)p resulting from the tensor product of FT-modules over F. We illustrate 
some applications of Theorem 3.8 in §4. 

The above localization of character theory can be used to study the coherent 
Galois module structure of schemes. Suppose X is a projective scheme over the 
ring of integers 0 N of a number field N, with a right action of a finite group G 
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over ON. Let G0 (G,X) be the Grothendieck group of all coherent Ox-modules 
:F having an action of G compatible with the action of G on 0 x. If f : X -+ 
Spec( 0 N) is the structure morphism, one has an Euler characteristic map f* : 
G0 (G, X)-+ G0 (0NG). This map, and a more refined Euler characteristic for tame 
G-aetions, are recalled in §5; in the following discussion we identify Go(ONG) with 
the Grothendieck group G~N(ONG) of ONG-lattices. Coherent Galois structure 
theory has to do with methods for determining f*(:F), and with connections between 
such Euler characteristics and other invariants of the G action on X. For a survey 
of some results in this subject, see [6]. 

The ring G~(ZG) acts on Go(G, X) and Go(ONG) via the tensor product over 
Z. In §5 we recall a Lefschetz Riemann Roch Theorem from [2] concerning the image 
f*(:F)p of f*(:F) in the localization of G0 (0NG) at a prime ideal p of G~(ZG). (If 
the action of G is tame one may prove a more refined result.) The interest of this 
theorem is that it provides a way of determining f*(:F)p from calculations of Euler 
characteristics on a G-stable closed subset Xp,red of X which may be much smaller 
than X. The localized character theory developed in §3 is useful in carrying out 
these calculations. 

To illustrate the results of §3 - §5, we consider in §6 the following situation. Let 
G = T be a group of prime order r acting on a curve X over 0 N. Let 11. ( 0 N, G) 
be the subgroup of Go(ONG) generated by r-torsion classes and classes induced up 
to G from the trivial subgroup. We will suppose the fixed point set X 0 is zero-
dimensional, and that the fibers of X over ON are reduced with at most ordinary 
double points having tangent directions defined over ON. Under these conditions, 
we show in Theorem 6.3 a formula for the image of !*(Ox) in Go(ONG)/11. in terms 
of the action of G on the tangent spaces of the points of X 0 which do not lie over 
r. The first and second Stickelb.erger elements e and e2 of Z[Aut(G)] enter into 
this formula. From it one may deduce ( c.f. Corollary 6.5) that f* ( 0 x) lies in the 
subgroup of Go(ONG) generated by 11.(0N, G) and the images of e and 82 acting 
on Go(ONG). This provides an upper bound for the set of classes in Go(ONG) 
which are of the form f*(Ox) for some X as above. One can view Corollary 6.5 
as a step towards a counterpart for two-dimensional schemes of McCulloh's results 
in [10] and [11] concerning classes coming from the Galois structure of rings of 
integers. When the action of G on X is tame, we prove analogous results concerning 
a refined Euler characteristic ffT ( 0 x) in K 0 ( 0 NG). If instead of assuming X 0 

is zero-dimensional, one assumes X 0 is empty or purely !-dimensional, a more 
precise result which completely determines f*(Ox) in Go(ONG) can be obtained 
by a different method [8]. 

In §3 we have allowed T to be a proper subgroup of G. This case arises from 
studying coherent Galois structure on G-schemes X for which the inertia group T 
of a point x E X is strictly between G and the identity subgroup. In later papers 
we plan to return to this topic in greater generality by studying both lower and 
upper bounds on the set of classes in G0 (0NG) or K 0 (0NG) which are of the form 
f*(Ox) or ffT(Ox) for G-schemes X over ON of various kinds. 

2. Prime ideals of G~(ZG) 

Let G be a finite group. Define G~(ZG) to be the Grothendieck group of all 
finitely generated ZG-lattices. Then G~(ZG) is a commutative ring via the tensor 
product of lattices over z. By [5, Th. 39.12] and [4, Th. 24.1], G~(ZG) is finite 
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over Z. In this section we recall a description of the prime ideals of G~(ZG) due 
to Brauer. 

PROPOSITION 2.1. Tensoring ZG-lattices with Q over Z induces a surjective 
ring homomorphism G~(ZG) -+ G0 (QG) having nilpotent kernel. As a conse-
quence, the prime ideals of G~(ZG) correspond bijectively to those of Go(QG). 

PROOF. This is [5, Thm. 39.16]. D 

Let ( be a root of unity in an algebraic closure Q of Q which has order divisible 
by the order of each element. of G. We define an action of rq = Gal(Q/Q) on G by 
letting a E rq send g E G to a(g) = gt, where tis any integer such that a(()= (t. 
Two elements g, g' E G are said to be rq-conjugate if g' is conjugate to a(g) for 
some a E rq. 

PROPOSITION 2.2. Let Xc be the character of c E Go(QG). The map c-+ Xc 
identifies Go ( QG) with the ring Rq (G) of characters of representations of G which 
are realizable over Q. 

a. Let£ be a prime ideal of Z. Suppose g is an £-regular element of G, i.e. an 
element of order prime to£. The kernel Qe,9 of the homomorphism Rq(G)-+ 
Z/f defined by x-+ x(g) mod£ is a prime ideal of Rq(G), and all primes of 
Rq(G) arise in this way. 

b. Suppose g' E G is £'-regular for some prime ideal £' of Z. One has Q t' ,g' = 
Qe,9 if and only if£'= f and g is rq-conjugate tog'. 

c. For g' and£' as above, one has Qe' ,g' C Qe,9 if and only if£' C £ and g' = g" ·h 
for some g", h E G having the following properties: 

(i) g" is rq-conjugate tog and commutes with h; 
(ii) h is the identity if£= {0}; 

(iii) h has order a power of the residue characteristic of£ if£ =I= {0}. 

PROOF. Define A= Z[(]. Since A ®z RK(G) is finite over RK(G), the map 
which identifies a prime of RK(G) with the set of primes over it in A ®z RK(G) 
defines a bijection. From [12, Ex. 12.7, p. 101] one finds that the prime ideals of 
A ®z RK(G) may be described in the the following way. Let q be a prime ideal of 
A, and let g be a q-regular element of G. The kernel Pq,g of the homomorphism 
A®zRq(G)-+ Afq defined by a®x-+ ax(g) mod q is a prime ideal of A®zRq(G), 
and each prime ideal of this ring arises in this way. One has Pq' ,g' c Pq,g if and 
only if q' C q and g' = g" · h where g" is r q-conjugate to g and commutes with h, 
h is the identity if q = {0}, and h has order a power of the residue characteristic 
of q if q =/= 0. One has Pq',g' = Pq,g and only if q' = q and g is conjugate tog'. 

For hE H = Gal(Q(()/Q) one sees that h sends Pq,g to Ph(q),g• since H acts 
trivially on Rq(G). Since Rq(G) is flat over Z we have (A ®z Rq(G))H = AH ®z 
Rq (G) = Rq (G). Therefore H permutes transitively the primes of A ®z Rq (G) 
over a given prime of Rq(G). From the definition of Pq,g we see that Pq,9 nRq(G) = 
Qe,9 if q n Z = £. Thus the primes over Qe,g in A ®z Rq(G) are exactly those of 
the form Pq' ,9 for q' a prime of A over £. The description of the primes of Rq (G) 
given in Proposition 2.2 now follows from the above description of the primes of 
A®zRq(G). D 

DEFINITION 2.3. Suppose f is a prime of Z and g is an £-regular element of 
G. Let Pe,9 be the prime ideal of G~(ZG) corresponding to the the prime Qe,9 of 
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Proposition 2.2{a) under the bijection Spec(RQ(G)) ~ Spec(G~(ZG)) of Proposi-
tion 2.1. 

3. Localized character theory 

In this section we will use character theory to find explicit expressions for the 
localizations of certain Grothendieck groups. We begin with a general result which 
will darify the structure of modules for G~(ZG). 

PROPOSITION 3.1. Suppose n is a commutative ring finite over Z such that 
the algebra Q ®z n is the direct sum of a finite number of copies of Q. Let M be 
an R-module. Suppose q ( resp. p ) is a prime ideal of Z ( resp. n ). Let Mq 
{ resp. Mp } be the localization of M at q ( resp. p ). Define P(q) to be the set of 
primes ofR over q. Then the natural Rq-module homomorphism 

(3.1) Mq ~ EB Mp 
pEP(q) 

is an isomorphism. Here Mq = Zq ®z M = Rq ®n M and Mp = Rp ®n M. 

PROOF. Consider the natural Rq-algebra homomorphism 

(3.2) h : Rq ~ EB Rp. 
pEP(q) 

By the definition of localization and tensor products, one has Mq = Zq ®z M = 
Rq ®n M and Mp = Rp ®n M. Thus the desired direct decomposition (3.1) will 
follow from h being an isomorphism. If q = 0, we have assumed that Rq = Q ®z n 
is isomorphic as a Q-algebra to the direct sum of copies of Q; therefore h defines 
such an isomorphism. Hence for the rest of the proof we may assume that q is a 
maximal ideal of Z. Then h is the natural homomorphism from ~he ring Rq into 
the (finite) product of its localizations at the maximal ideals of Rq, so h is injective. 
It will thus suffice to show h is surjective. 

Let R' be the normalization of the image of R in R®z Q. Since R is finite over 
Z, the natural ring homomorphism n ~ R' has finite kernel and cokernel. Since 
n ®z Q is algebra isomorphic a direct sum of copies of Q, n' must be isomorphic 
to a direct sum of copies of Z. Consider now the diagram of morphisms 

h 
Rq ~ ffipEP(q) Rp 

(3.3) 1 1 
R~ 7 ffipEP(q) R~ 7 ffip'EP'(q) R~, 

Here R~ is the localization of R' at p when one considers R' as an R-module. The 
set P' ( q) is the set of prime ideals p' of R' over q. The injective homomorphism a 
in the second row of (3.3) comes from viewing R' as an R-module. The injective 
homomorphism {3 comes from the natural map n~ ~ E9 p' IP n~,, where the direct 
sum is over the primes p' over p in R'. The composition {3 o a is the natural map 
R~ ~ ffip'EP'(q) R~,, which is an isomorphism since R' is the algebra direct SUm 
of a finite number of copies of Z. Thus a and {3 are isomorphisms. Now because 
n --- n' has finite kernel and cokernel, the vertical homomorphisms in diagram 
(3.3) also have finite kernel and cokernel because localization is exact. It follows 
that h must have finite cokernel, and we have already shown the kernel of his {0}. 
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Since q is a maximal ideal of Z, the finiteness of coker(h) implies 

(3.4) E9 qtRp c h(Rq) 
pEP(q) 

for some integer t ;::: 0. On localizing the surjection R ---+ RlqtR at p we obtain 
an isomorphism RplqtRP ---+ (RiqtR)p· Now RlqtR is a finite R-module since 
R is finite over Z, so this module is supported on finitely many prime ideals of 
R. It follows from the structure theorem for commutative Artinian rings [9, Thm. 
VI.9.7] that the natural map 

(3.5) RlqtR---+ E9 RplqtRp 
pEP(q) 

is an isomorphism. Combining (3.4) and (3.5), we see his surjective, and by what 
has already been shown this completes the proof. D 

DEFINITION 3.2. Let F be a field of characteristic l ;::: 0 and letT be a subgroup 
of a finite group G which acts trivially on F. The Grothendieck group Go(FT) is 
a G~(ZT)-module via the tensor product over Z of ZT-lattices. We may regard 
G0 (FT) as a G~(ZG)-module via the ring homomorphism G~(ZG) ---+ G~(ZT) 
induced by the restriction of operators from G toT. 

COROLLARY 3.3. When R = G~(ZG) the hypothesis of Proposition 3.1 is sat-
isfied. Thus in particular, 

(3.6) Zq ®z Go(FT) = G0 (FT)q = E9 Go(FT)p 
pEP(q) 

for all fields F and subgroups T C G. Since Go(FG) is a free finitely generated 
Z-module on the classes of simple FT -modules, each of the modules appearing in 
(3.6) is a free finitely generated Zq-module. 

We now recall how Go(FT) may be described by character theory. 

DEFINITION 3.4. Let l = char(F). If l = 0, let W(F) = F and let T 1 = T. If 
l > 0, let W(F) be the ring of Witt vectors over F, and let T 1 be the set of l-regular 
elements ofT. Define K(F) to be the fraction field ofW(F). Let n be the exponent 
ofT. Define n1 be the part of n which is prime to l, so that n = zan! for some 
integer a ;::: 0. Let (n, be a primitive n1-th root of unity in a fixed separable closure 
Fsep of F. Then L = F((n,) is a finite seperable extension ofF, and there is a 
unique root of unity (n, E W(L) which reduces to (n, modulo the maximal ideal 
of W(L). Let A' be the subring Z[(nzl of W(L). The action of the Galois group 
Gal ( L I F) on L extends in a unique way to an action on W ( L), and we let A be 
the subring of A' fixed by Gal(LI F) 

Note that K ( L) I K (F) is an unramified Galois extension of fields, with Galois 
group Gal(LI F). We have an injective homomorphism Gal(LI F) ---+ (Zin1)* de-
fined by a---+ t if a((n,) = ((n,)t. Let In1(F) be the image of Gal(LIF) under this 
homomorphism. We will say two elements x, y E T 1 are F-conjugate in T if x is 
conjugate in T to yt for some t E In1 (F). 

DEFINITION 3.5. Suppose T' is a union of conjugacy classes in T 1 and that R is 
a commutative ring. Define Hom~(T', R) to be the set of functions f: T'---+ R such 
that f(t) = f(t') ift,t' E T' are F-conjugate in T. Then Hom~(T',R) becomes 
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a ring via the ring operations of R. We define a G~(ZG)-module structure on 
Hom~(T', R) in the following way. Suppose a E G~(ZG) and f E Hom~(T', R). 
The restriction of the character Xa of a toT' is an element of Hom~(T', Z) C 
Hom~(T', Z). We let a· f be Xa ·f. 

Suppose s E T 1 and that M is an FT-module of dimension m. Since s has 
order prime to l = char(F), the action of s on Fsep ®F M is diagonalizable. The 
eigenvalues {p1 , ... , Pm} of s are roots of unity in L C F of order dividing the 
l-primary part n1 of the exponent n ofT. Let /-Li E A' C W(L) be the unique root 
of unity of order equal to that of Pi which has image Pi in L. Define the (Brauer) 
character of M to be the function XM : T 1 -t A' defined by 

m 

i=l 

Since M is an FT-module, the action of an automorphism of Gal(L/ F) must per-
mute the eigenvalues {Pt. ... , Pm}· Recall that elements of Gal(L/ F) extend in a 
unique way to automorphisms of W(L) over W(F). It follows that XM takes values 
in A= A'Gal(L/F) C W(F) = W(Fsep)Gal(F••v;F). Suppose a E Gal(L/F) has 
image t E In1 (F) and that x = st in T. Then the action of a takes the eigenvalues 
of s on M to those for x = st, so by what we have already shown, these sets of 
eigenvalues are permutations of one another. It follows that XM is an element of 
Hom~(T 1 ,A). 

THEOREM 3.6. ([4, p. 508- 511 and Thm. 21.25]) The function M -t XM 
extends additively to an injective G~(ZG)-algebra homomorphism x : Go(FT) -t 

Hom~(T 1 , A). This homomorphism and the inclusion of A into K(F) induce an 
isomorphism of K(F)-vector spaces 

X® 1: Go(FT) ®z K(F) -t Hom~(T 1 , K(F)) 

where Go(FT) is a free finitely generated abelian group. It follows that the rank 
of G0(FT) as a free abelian group equals the dimension of Hom~(T 1 , K(F)) over 
K (F), which is the number of distinct F -conjuga9y classes in T 1• 

We now state our main result concerning localizations of Go(FT) at prime 
ideals of G~ ( ZG). 

DEFINITION 3.7. Let q be a prime ideal ofZ, and suppose g EGis q-regular. 
a. For c E G~ ( ZG), the character Xc takes values in Z. Let p = pq,g be the 

prime ideal of all c E G~(ZG) such that Xc(g) = 0 mod q. By Propositions 
2.2 and 2.1, all prime ideals of G~(ZG) have this form for some q and g. 

b. If q = {0}, let T 1·P be the set oft E T 1 which are conjugate in G to a generator 
of < g >. Suppose now that q = pZ for some rational prime number p. Let 
T 1·P be the set oft E T 1 which are conjugate in G to a product of the form 
g' · g", where g' is a generator of < g >, g" is of p-power order, and g' and 
g" commute. 

THEOREM 3.8 .. With the notations of Definitions 3.4, 3.5 and 3. 7, let p = Pq,g 
be a prime ideal of G~(ZG) over q. 

a. !fa E G~(ZG)-p, then Xa(g) E Z-q. Let Aq ( resp. Zq) be the localization 
of A = Z[(] ( resp. Z ) at the multiplicative set Z- q. We then have an 
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isomorphism of G~(ZG)p algebras 

z: Hom~(T 1 ,A)p --t Hom~(T 1 ·P,Aq) 

induced by o:- 1 · f --t h, where h(t) = Xa(t)- 1 · f(t) fortE T 1·P. 
b. The character map in Theorem 3. 6 together with the isomorphism in (a) 

induces an injection of G~(ZG)p-algebras 

Xp : Go(FT)p --t Hom~(T 1 ·P, Aq)· 

c. On viewing Zq and Aq as subrings of K(F), the homomorphism Xp induces 
an isomorphism K (F) -vector spaces 

Xp ® 1: Go(FT)p ®zq K(F) --t Hom~(T 1 ·P,K(F)). 

Thus r = rankzq(G0 (FT)p) = dimK(F)Hom~(T 1 ·P,K(F)) is the number 
of F -conjugacy classes in T 1·P, where conjugation is taken with respect to 
elements ofT. 

d. Via Xp, the algebra Hom~(T 1 ·P,Aq) is finite over the ring Go(FT)p· An 
element (3 E G0 (FT)p is a unit if and only ifXp(/3) E Hom~(T 1 ·P, A~), where 
A~ is the unit group of Aq. 

PROOF. Suppose, as in (a), that p = pq,g and a E G~(ZG) - p. Let t be an 
element of T 1·P. By definition, tis conjugate tog'· g" in G, where < g' >=< g >, 
g" is the identity if q = {0}, and g" is an element of p-power order which commutes 
with g' if q = pZ =1- 0. The character Xa is the character of a rational representation 
of G. Hence Xa takes values in Z. As in [4, Lemma 21.12] we have 

Xa(t) Xa(g' · g") 
(3.7) = Xa(g') mod q 

= Xa(g) 
Since a rJ. p, we have Xa (g) :f. 0 mod q. Therefore X a ( t) E Z - q, as claimed. We 
see from this that the map z in (a) is well defined. The fact that z is a G~(:ZG)p-
algebra map follows from the definitions of the algebra structures on the domain 
and range. The map 

Hom~(T 1 ,A) --t Hom~(T 1 ·P,A) 
induced by restriction of functions from T 1 to T 1·P is surjective. Since Zq injects 
into G~(ZG)p and Aq = Zq ·A, we deduce from this that z is surjective. To show 
that z is injective, it will suffice to show that iff E Hom~(T 1 , A) and f has trivial 
image in Hom~(T 1 ·P,Aq), then there is an a E G~(ZG)- p such that a· f = 0. 
Since A injects into Aq, we know that f vanishes on the elements of T 1·P. Suppose 
t E T 1 - T 1·P. Let p' be the prime ideal of P{o},t of G~(ZG). Thus p' is the ideal 
of all (3 E G~(ZG) such that x,a(t) = 0. In view of Definition 3.4 and Proposition 
2.2, the assumption that t rf. T 1·P implies p = pq,g does not contain p'. Thus there 
is an element O:t E p' which is not in p. The product 

a= II O:t 

tET1-T1·P 

does not lie in p, and Xa(t) = 0 for all t E T 1 - T 1·P. Thus a· f vanishes on all 
elements of T 1 since f vanishes on the elements of T 1·P. This proves z is injective. 
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The existence of the injective character map Xp in part (b) now follows from 
(a) on localizing at p the injection x: G0(FT)-+ Hom~(T 1 , A) of Theorem 3.6. 

To prove (c), recall from Corollary 3.3 that we have a direct sum decomposition 

Go(FT) ®z Zq = E9 Go(FT)p 
p 

where the summands on the right are finitely generated free Zq-modules. On ten-
soring with K (F) over Zq we get an isomorphism 

(3.8) Go(FT) ®z K(F) -+ E9 Go(FT)p ®zq K(F). 
p 

Consider now the homomorphism 

(3.9) 

which results from Xp and the embedding of Aq into K(F). Taking the direct 
sum of these maps over the summands on the right hand side of (3.8) gives a 
homomorphism 

G0(FT) ®z K(F)-+ $Hom~(T 1 ·P,K(F)) = Hom~(T 1 ,K(F)) 
p 

in which the second equality follows from 

T 1 = UpT1·P. 

This is exactly the isomorphism appearing in Theorem 3.6. Since (3) is an iso-
morphism, we conclude that each of the homomorphisms in (3.9) must be as well, 
which proves (c). 

We finally prove (d). By (b), (c) and Corollary 3.3, Xp induces an injection 
'R = G0 (FT)p <.......t 'R' = Hom~(T 1 ·P,Aq) of Zq-algebras. These algebras are finite 
and flat over Zq because Aq is finite and flat over Zq, so 'R' is finite over 'R. The 
unit group 'R'* is Hom~(T 1 ·P,A~). Thus to show the last assertion in (d), it will 
suffice to show 'R* = 'Rn'R'*. Clearly 'R* c 'Rn'R'*. Suppose a E 'Rn'R'*. Since 
'R' is a finite flat Zq-module, the characteristic polynomial over Zq of multiplication 
by a on 'R' has unit constant coefficient. Since a is a root of this polynomial, it 
follows that a E 'R*, which completes the proof. 0 

4. Inverses of classes in Go ( FT) P 

In this section we assume the notations of Theorem 3.8. We illustrate how this 
result can be used to calculate inverses of certain classes in Go(FT)p which arise 
in the study of coherent Euler characteristics (c.f. §5 and §6). 

Let M be an FT-module of dimension d ~ 0 over F. For i ~ 0, the i-th 
lambda operator on G0(FT) is defined by the ith exterior power >,i(M) = AiM 
over F. Define 

d 

(4.1) A-l(M) = :~:)-l)iAiM 
i=O 

in G0 (FT). Suppose p,1 (h), ... , Jld(h) are the eigenvalues in F of an l-regular 
element h of T acting on M. The value of the virtual character of ),_1 ( M) on h is 
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then 
d 

(4.2) XLl(M)(h) =II (1- J.li(h)) 
i=l 

where J.li(h) is the unique root of unity in W(F) of the same order as Jti(h) which 
has image Jti(h) in F. 

As in Theorem 3.8, let G be a group containing T. Let q be a prime ideal of 
Z and suppose g is a q-regular element of G. Let p = Pq,g be the prime ideal of 
G~(ZG) specified in Definition 3.7(a). 

PROPOSITION 4.1. The class .L1 (M) is invertible in Go(FT)p if and only if 
Jli(h) #1 for all hE T 1·P and all i = 1, ... , d. If q = pZ for some rational prime 
p, this implies Jli(h) is not a p-power root of unity. 

PROOF. With the notations of Definition 3.4, we have an inclusion of finite flat 
Zq algebras Aq C A~. FUrthermore, J.li(h) E A~ for hE T 1·P, and XL 1 (M)(h) E Aq. 
By ( 4.2) and the argument at the end of the proof of Theorem 3.8, one sees that 
XL 1 (M)(h) E A~ if and only if the element 1 - J.li(h) is a unit in the algebra 
Z[J.Li(h)]q C A~ for all i. Hence by Theorem 3.8(d), it will suffice to show that 
1- J.li(h) is a unit for all hE T 1·P if and only if J.li(h) #1 for all such h. If q = 0 
this is clear since then Z[J.Li(h)]q is a field. So suppose q = pZ for some prime p and 
that J.li(h) #1 for all hE T 1·P. If p = l then h must be p regular, so 1- J.li(h) is a 
unit in Z[J.Li(h)]q· Suppose now that p #l. It will suffice to show that J.li(h) is not 
a p-power root of unity. But l =I p and the element g in Definition 3. 7 is a p-regular 
element. Therefore Definition 3.7 implies hP E T 1·P if hE T 1·P. Hence J.li(h) #1 
for h E T 1·P implies no J.li(h) can be a p-power root of unity; this completes the 
proof. 0 

We now compute an explicit inverse for )._ 1 (M) in G0 (FT)p when this class is 
invertible. 

Write the exponent n ofT as n = n' · n", where n" = 1 if q = 0, and where n" is 
the power of p dividing n if q = pZ =I 0. Let x 1 , ... , Xd be independent commuting 
indeterminates, and let s1, ... sd be the elementary symmetric functions in the Xi· 
Let Pd,n,q(s1, ... , sd) be the polynomial with integer coefficients such that 

(4.3) 

PROPOSITION 4.2. Suppose >--1(M) is invertible in G0 (FT)p· The inverse of 
>--1(M) in Go(FT)p is 

( -n')-d · Pd,n,q(>.1(M), ... , >.d(M)) 

where -n' is a unit in Zq. 

PROOF. With the notations of Proposition 4.1, the value of the character of 
).J(M) on hE T 1·P is Sj = sj(J.Ll(h), ... ,J.ld(h)), where Sj is the ih symmetric 
function. Thus by Theorem 3.8, to prove Proposition 4.2 it will suffice to show 

(4.4) 
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for h E T 1·P. We have an identity 
n"-l n'-1 

(4.5) (1- Xi)· ( L x1) · ( L k · x7n') = (1- x() · CE~~ 1 k · xfn") 
j=l k=l 

(4.6) _ '""n' kn" 1 n'n" 
- L....k=l xi - n xi 

Suppose now that we substitute J.Li(h) for Xi in this identity. By Proposition 4.1, 
x( = J.Li(h)n" is a nontrivial n'th root of unity, so the right hand side of (4.6) 
equals -n'. Substituting this back into the right hand side of ( 4.3) and using ( 4.2) 
proves (4.4). D 

We now discuss a special case of Proposition 4.2. 

DEFINITION 4.3. Suppose T is cyclic of prime order r. For a E Z, let aa be 
the element of the automorphism group Aut(T) ofT for which aa(t) = ta for all 
t E T. We define the Stickelberger element of Z(Aut(T)] to be 

(4.7) 6= L a·a;1 . 
O<a<r 

Define a quadratic Stickelberger element of Z(Aut(T)] by 

(4.8) e2 = L a( a:; 1) . a;1. 
O<a<r 

Suppose M is aT-module and that a E Aut(T). Define aT-module a(M) by 
letting a(M) have the same underlying group as M, and by letting t E Tact on 
m E a(M) by t . m = a- 1 (t) · m. When we discuss the action of a on various a 
Grothendieck groups g ofT-modules M, we will mean the action which sends the 
class ( M) of M to (a( M)). We will use exponential notation for the induced left 
action of the group ring Z(Aut(T)] on Q. 

LEMMA 4.4. Suppose T has prime orderr, Go(FT)p =f:. 0, M is a non-zero FT-
module and that >._ 1 ( M) is invertible in Go ( FT) P. Then the residue characteristic 
of p is different from r, and so is the characteristic l of F. Suppose further that 
M = ~ EB ~- 1 for some non-trivial one-dimensional character~ : T---+ F*. Then 

(4.9) 

in the torsion-free group G0 (F[T])p, where 1r denotes the trivial character of the 
group T. 

PROOF. Since G0 (FT)p =f:. 0, we see from Theorem 3.8(c) that T 1·P is not 
empty. Thus if l = r, T 1·P must be {e}, since T 1·P consists of l-regular elements. 
However, every eigenvalue of e acting on M is the identity, so >--1(M) cannot be 
invertible by Proposition 4.1. This proves l =f:. r. The residue characteristic of p 
cannot equal r by Proposition 4.1. 

Suppose now that M = ~ EB ~- 1 . The eigenvalues in F of an ([-regular) element 
hE: T 1·P are ~(h) and ~(h)- 1 . By Proposition 4.1, if (is the unique root of unity in 
W(F) of the same order as ~(h) which has image ~(h) in F, then ( =f:. 1. Thus (is 
a primitive r-th root of unity. By the definition of the action of automorphisms of 
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Ton T-modules, we have ~a a -l (h) = ~(ha) = ~(h)a for a E Z prime to r. In view 
of (4:2), the first equality in (4.9) will follow if we can show 

(4.10) 1 = i!..=_d. ""' a(a + 1. ""' a( a- 1) (a 
(1- () . (1 - ( 1) 2r ~ r ~ 2 O<a<r O<a<r 

whenever ( is a primitive r-th root of unity. It is straightforward to check this 
identity by multiplying both sides by 2r( 1 - () ( 1 - (-1) and by then using that fact 
that L:o<a<r (a = 0. The second equality in (4.9) is proved by adding the right 
side of (4.10) to the result of replacing (in (4.10) by (-1 , and by then simplifying 
using L:o<a<r a((a +(-a)= L:o<a<r(a + r- a)(a = -r. D 

5. Lefschetz Riemann Roch Theorems 

Let G be a finite group. By a G-scheme X we will mean a flat equidimensional 
projective scheme over Spec(Z) with a right action of G. A G- X sheaf F is a 
quasi-coherent sheaf of Ox-modules such that the action of G is compatible with 
the action of G on Ox (see [13, §1.2]). We will call F coherent (resp. locally free) 
ifF is coherent (resp. locally free) as an Ox-module. 

Define Ko(G,X) (resp. Go(G,X)) to be the Grothendieck group of coherent 
locally free G -.X sheaves (resp. coherent G- X sheaves). The operation of 
taking exterior products over Ox makes Ko(G,X) into a >.-ring, in the sense of [7], 
and Go(G,X) is a Ko(G,X)-module. If X is regular, (5.8) in [13] shows that the 
natural inclusion of categories induces an isomorphism 

(5.1) Ko( G, X) 2:! Go( G, X) 
Given a G-morphism rr: X~ Y of G-schemes, we have a pull-back homomor-

phism 
rr*: Ko(G, Y) ~ Ko(G,X) 

and if rr is flat, a homomorphism 

rr*: Go(G, Y) ~ Go(G, X). 

If rr is proper, there is a direct image homomorphism 

rr* : Go(G, X)~ Go(G, Y). 

Via tensor products over Z, K0 (G,X) and G0 (G,X) are modules for the ring 
G~(ZG), 

Suppose f : X ~ Y is a proper G-morphism between G-schemes X and Y, 
and that G acts trivially on Y. Suppose :FE K 0 (G, X). We will refer to f*(:F) E 
Ko(G, Y) as the equivariant Euler characterisic of :F. A prime ideal of G~(ZG) is 
called I-adic if it contains the kernel of the homomomorphism G~(ZG) ~ Z induced 
by taking ranks over Z of finitely generated Z-modules. The Lefschetz Riemann 
Roch Theorem concerns the image of f*(:F) in the localizations of K 0 (G, Y) at non 
I -adic primes p of G~ ( ZG). 

By Propositions 2.1 and 2.2, there is a prime ideal f of Z and an £-regular 
element g E G such that p is the prime ideal Pt,g of Definition 2.3. The prime f 
and the conjugacy class C(g) of g are uniquely determined by p. Let XP be the 
minimal closed G-subscheme of X containing the fixed point subscheme X9. Then 
XP is the union of the fixed point schemes Xg' as g' ranges over C(g), and XP 
depends only on p. Let xp,red be the reduction of XP. 
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THEOREM 5.1. (Lefschetz Riemann Roch [2, Thm 3.1]). Suppose p is a non 
1-adic prime of G~(ZG), and that X and Xp,red are regular. The natural closed 
immersion i = ip : Xp,red --t X is a regular embedding. The conormal bundle N* 
of this embedding is a locally free G- Xp,red module. Therefore we can define 

>._l(N*) = ~) -1)i>.i(N*) 
i~O 

in Ko(G, Xp,red), where the i-th >. operator >.i is induced by taking i-th exterior 
powers. The class ).._ 1 (N*) is invertible in the localization K 0 (G,XP,red)p of the 
G~(ZG) algebra Ko(G, Xp,red) at p. Finally, we have a commutative square 

Ko(G,X) 

J. 1 
Ko(G, Y) 

where G acts trivially on Y by assumption. 

Ko(G, Xp,red)p 

1 (foi).,p 

Ko(G, Y)p 

REMARK 5.2. For all G-schemes W, let tw : K 0 (G, W) --t G0 (G, W) be the 
natural forgetful homomorphism. Suppose flxp.red : Xp,red --t Y factors as the 
composition of a proper morphism g : xp,red --t z followed by a closed immersion h : 
Z --t Y. Then tv o flxp,red,* : Ko(G, Xp,red) --t Go(G, Y) factors as the composition 
of g*: Ko(G,Xp,red) --t Go(G,Z) followed by h*: Go(G,Z) --t G0 (G,Y). By the 
localization sequence, j* o h* = 0 if j* : G0 (G, Y) --t Go(G, U) is the restriction 
homomorphism associated to the open immersion j : U = Y - Z --t Y. Thus 
j* oty o flxp,red = 0. Hence under the hypotheses of Theorem 5.1, we have J; oty o 
f* = 0, where J; : Go(G, Y)p --t Go(G, U)p is the homomorphism induced by j. 

REMARK 5.3. Suppose that the action of G on the generic fiber of X is etale. 
For each non-1-adic prime p of G~(ZG), the subset Xp,red is then supported off of 
the generic fiber YQ = Y ®z Q of Y. Therefore, Remark 5.2 shows f*(Ko(G, X)) C 
K 0 (G, Y) has trivial image in Go(G, YQ)p· Suppose in particular that YQ = 
Spec(F) for some field F of characteristic 0. Then G0 (G, YQ) = Rp(G), and a 
character x E Rp(G) has trivial image in Rp(G)p for all non-1-adic primes if and 
only if x(g) = 0 for all non-trivial elements g E G. Thus x must be a multiple of 
the regular representation FG. 

Following [3], the action of G on X over Y will be said to be tame if for 
each x E X, the order of the inertia group of x in G is relatively prime to the 
residue characteristic of x. Suppose Y = Spec(A) is affine. Let CT(AG) be the 
Grothendieck group of all finitely generated AG-modules which are cohomologically 
trivial as G-modules. It is shown in [1] and [3, §8] that when the action of G on X 
is tame, one has a refined Euler characteristic homomorphism ffT : Ko(G, X) --t 

CT(AG). In [2, Thm. 6.7], the following counterpart of Theorem 5.1 is shown. 

THEOREM 5.4. With the hypotheses of Theorem 5.1 , suppose Y = Spec( ON) 
where ON is the ring of integers of a number field N. The forgetful homomorphism 
K 0 (0NG) --t CT(ONG) is then an isomorphism. Suppose that the action of G on 
X is tame, and that for x E X, two elements of the inertia group of x which are 
conjugate in G generate the same subgroup of the inertia group. We then have a 
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commutative square 
Ko(G, Xp,red)p 

l(foi}CT •,p 

CT(ONG)p 
where G acts trivially on 0 N by assumption. 

REMARK 5.5. In [2], more general versions of Theorems 5.1 and 5.4 are proved 
in which X and Y are assumed to be projective schemes over Spec( 0 K) = S when 
K is a number field. In these versions, one localizes at primes p of K 0 (G, S) rather 
than at primes of G~(ZG). A version of ffT when Y is not affine is discussed in 
(3]. 

6. Curves over rings of integers 

In this section we will suppose 0 N is the ring of integers of a number field N and 
Y = Spec( 0 N). We will let f : X ---+ Y be the structure morphism of a flat regular 
projective curve X over Y. We will assume the fibers of X over closed fibers of Y 
are reduced with at most ordinary double points having tangent directions defined 
over Y. We will assume that G = T is a group of prime order r acting on X over 
Y, and that the fixed point set X 0 is zero-dimensional. If X E X 0 , the conormal 
bundle Ni:;x on. x of the embedding of x into X is the sheaf associated to the 
two-dimensional k(x) vector space Ix/I'f:, where Ix is the ideal sheaf of x in X and 
k(x) is the residue field of x. Here Ix/ I'f, is just the cotangent space to X at x. Let 
Xf be the subset of X 0 not lying over the prime r of Z. 

LEMMA 6.1. Suppose x E Xf and that y = f(x) is the point ofY below x. 
a. The natural map k(y) ---+ k(x) is an isomorphism. 
b. Let p = pq,g be the prime of G~(ZG) specified in Definition 2.3 for a prime 

ideal q =f. rZ of Z and a non-identity element g of G. The class >--1 (Ni: 1 x) 
is invertible in the (non-zero) localization Go(k(x)G)p· 

c. The point x is an ordinary double point on the fiber of X over y. 
d. The k(x)G-module Ni:;x is isomorphic to ex E8 e; 1 , where e: G---+ k(x)* is 

a non-trivial character of G. 

PROOF. Statement (a) follows from the fact that the inertia group of x E Xf C 
X 0 is G. In part (b), since g generates G, the fixed point set XY equals X 0 as well 
as the minimal closed G-stable subset XP of X containing XY. Since X 0 is zero 
dimensional, the reduction xp,red of XP is the union of G-stable closed points, one 
of which is x. By Theorem 5.1, the class >._ 1 (N*) is invertible in the localization 
K 0 (G, Xp,red)p of the G~(ZG)-algebra K 0 (G, Xp,red) at p. Here 

(6.1) Ko(G, xp,red)p = EB Ko(G, Spec(k(x')))p = EB Go(k(x')G)p 

where G acts trivially on k(x') for x' E X 0 , and x is one of these x'. One has 
Go(k(x)G)p =f. {0} by Theorem 3.8 since q =f. rZ and k(x) has characteristic differ-
ent from r. Part (b) of Lemma 6.1 now follows from the fact that relative to the 
isomorphism (6.1) we have 

(6.2) N* = EB Ni:/x' · 
x'EX 0 
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To prove (c), let 1r be a uniformizing parameter of the local ring Oy, y. Since we have 
assumed the fiber f- 1(y) is reduced, if xis non-singular on f- 1(y) then 1r defines 
a non-zero element of N'X;x fixed by G. However, no such element can exist by 
Proposition 4.1 because we have shown (b). Finally, to prove (d), we have assumed 
that the (distinct) tangent directions at the ordinary double point x are defined 
over Y. Thus in the completion Ox,x of the local ring Ox,x, one has 7r = h · h 
where {!1, h} is a set of generators for the maximal ideal ix of Ox,x· Since Ox,x 
is regular, it is a U.F.D .. The action of g E G on Ox,x fixes 1r and takes irreducible 
elements of Ox,x to irreducible elements. If r > 2, then g2 also generates G, and 
g2 must take fi to udi for some unit ui E Ox,x· Since ixf(ix)2 is isomorphic 
to N'X; x = Ix / t;, this shows N'X; x is the direct sum of one-dimensional G-stable 
k(x)-subspaces spanned by the images of h and /2. This proves (d) when r > 2. 
If r = 2, then part (b) and Proposition 4.1 imply that both eigenvalues of g acting 
on the (semi-simple) k(x)G-module N'X;x are equal to -1. Hence (d) holds in this 
case as well. 0 

DEFINITION 6.2. Identify Ko(G, Y) with the Grothendieck group G~N (ONG) 
of ONG-lattices. Let Indfe}Ko(ON) be the subgroup of G~N (ONG) generated by 
classes of modules of the form Indfe}p = ONG ®oN P for some finitely generated 
projective 0 N -module P. Let 

. ( Go(ONG) ) 1 t:Ko(G,X)--+ 0 ®zZ[rl = M(G,ON) 
lnd{e}Ko(ON) def 

be the homomorphism induced by the direct image map f*: Ko(G,X)--+ Ko(G, Y) 
together with the forgetful isomorphism Ko(G, Y) = G~N (ONG) --+ Go(ONG). 
Suppose the action of G on X is tame. Define Indfe}Go(ON) to be the subgroup 
of classes in CT(ONG) generated by classes of modules of the form Indfe}M = 
ONG ®oN M for some finitely generated ON-module M. Let 

be the homomorphism induced by the Euler characteristic map fCT: K 0 (G,X)--+ 
CT(ONG) defined just prior to Theorem 5.4. 

THEOREM 6.3. For X E x;;' the character ex of Lemma 6.1 defines a finite co-
homologically trivial ONG-module via the natural homomorphism ONG--+ k(x)G. 
In this way, ex defines a class in Go(ONG) as well as a class in Cl(ONG); we 
will denote each of these classes also by ex· Let 1a,x be the one-dimensional k(x)-
module with trivial G-action, which we will regard as an ONG-module. With the 
notations of Definition 6.2, one has 

xEXf 

(6.3) "" 1. ((r-1) . 1 + 1. (N* )e2) L....J 2 2 G,x r Xfx 
xEXf 
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in M(G, ON) where e and e2 are the elements of the integral group ring of Aut(T) 
defined in Definition 4.3. If the action of G on X is tame, then 

tCT(Ox) = L e1 ;r). ~~ + ~. ~~2) 
xEXf 

(6.4) ""1.((r-1). 1 +l.(N* )e2 ) L....J 2 2 G,x r Xfx 
xEXf 

in M(G,ON) 0 T. 

REMARK 6.4. The proof of the Theorem will show that for x E Xf, the class 

~ . 1 + 1. (N* )e2 2 G,x r Xfx 

in G0 (k(x)G) ®z z[¥J is uniquely divisible by 2, which explains the meaning of the 
summands on the far right sides of (6.3) and (6.4). 

PROOF. Let p = pq,g be the prime ideal of G~(ZG) specified in Definition 2.3 
for the prime ideal q of Z and the q-regular element g E G. Let 1H be the one-
dimensional trivial representation of the subgroup H of G. Suppose .9 = e. The 
element z = r · 1a- Ind?e}1{e} of G~(ZG) then lies in p, since the character of z 
vanishes on g = e. However, 

z · L = r · L- Ind?e}1{e} · L = r · L- Ind?e}(resg} L) 

for all 0 N G-lattices L, and Ind?e} (res g} L) E Ind?e} K o ( 0 N). Since the classes of 
ONG-lattices generate M(G, ON), and the multiplication action of ron M(G, ON) 
is invertible, we conclude that the multiplication action of z on M(G, ON) is invert-
ible. Since z lies in p if g = e, and M(G,ON)p is finitely generated over the local 
ring G~(ZG)p®zZ[l], we conclude from Nakayama's Lemma that M(G,ON)p = 0 r 
if g =e. 

Suppose now that p is a prime ideal for which g -::/:- e. In the notation of Theorem 
5.1, the set Xp,red is the reduction of the fixed point set X9 = X 0 , which is the 
union of finitely many closed points. By Theorem 5.1, the image of f*(Ox) in 
Ko(G, Y)p = G~N (ONG)p is 

(6.5) f*(Ox)p = L >--I(Nx;x)-1 . 
xEXp,red 

By Lemma 4.4, only the X in the subset x;: of X 0 == XP which do not lie over r 
contribute to the right hand side of (6.5), since x E X 0 -X;! implies G0 (k(x)G)p = 
0. In view of Lemmas 6.1 and 4.4, the contribution to the right hand side of (6.5) 
from a point x E X;! corresponds to the the term associated to x in the sums 
appearing in (6.3). Hence the two sides of each equality in (6.3) have the same 
image in the localization of M(G, ON) at each prime p of G~(ZG) for which g -:f. e, 
while the same is true for those p for which g = e because M ( G, 0 N) P = 0 for 
such p. Hence the equalities in (6.3) must hold in M(G, ON). One proves (6.4) 
similarly. 0 

COROLLARY 6.5. Let g = Go(G,ON)(tor) {resp. Q[r00 ] = G0 (G,ON)[r00 ]) be 
the subgroup of classes of Go(G, ON) of finite (resp. of r-power) order. Then g 
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contains the subgroupS= S(G, ON) of classes of finite ON modules of order prime 
to r having trivial G-action. One has 

f*(Ox) E Q8 + Q82 + Q[r00 ] + Indfe}Ko(ON) 

and 
2 ·!*(Ox) E S + Q82 + Q[r00 ] + Indfe}Go(ON) 

Proof: By the localization sequence, the torsion subgroup of G0 (0NG) is gener-
ated by the classes of modules of finite order. Therefore Corollary 6.5 follows from 
Theorem 6.3. 

In a similar way one can prove: 

COROLLARY 6.6. The classgroup Cl(ONG) may be defined to be the torsion 
subgroup of CT(ONG), where the forgetful map Ko(ONG) -t CT(ONG) is an 
isomorphism. Let Cl(ONG)[r00 ] be the r-Sylow subgroup of Cl(ONG). The Swan 
subgroup Scr of Cl(ONG) is the subgroup of CT(ONG) generated by classes of 
finite ON-modules of order prime tor which have trivial action by G. If the action 
of G on X is tame, then 

and 

ffr(Ox) E Cl(ONG) 8 + Cl(ONG) 82 + Cl(ONG)[r00 ] + Indfe}Go(ON) 

2 · f*(Ox) E Scr + Cl(ONG) 82 + Cl(ONG)[r00 ] + Indfe}Go(ON) 

REMARK 6.7. The first Stickelberger ideal of Z[Aut(G)] is defined to be 

S = Z[Aut(G)] n (~) · Z[Aut(G)]. 

Define Cl0 (0NG) to be the kernel of the homomorphism Cl(ONG) -t Cl(ON) 
which is induced by restriction from G to the trivial subgroup of G. In [10], Mc-
Culloh shows that if N contains a primitive r-th root of unity, then Cl0 (0NG) 8 

is the subgroup of classes of Cl(ONG) of the form [OL] - [N : Q][ONG], were 
L ranges over all finite cyclic tamely ramified degree r-extensions of N together 
with a choice of isomorphism between G and Gal(L/N). (See [11] for the gen-
erall.zation of this result to all number fields N and all abelian groups G.) Here 
[OL] = hfT(Ow) if h: W = Spec(OL) -t Spec(ON) = Y is the structure mor-
phism. Thus Corollary 6.6 is a partial counterpart of McCulloh's result for dimen-
sion two schemes. However, McCulloh's resolvent theoretic methods yield stronger 
results for dimension 1 schemes than those which can be obtained by Theorem 
5.1. For example, Theorem 5.1 would imply only that for Las above, [OL]lies in 
Cl(ONG)8 + Cl(ONG)[r00 ] + Indfe}Go(ON ). 

COROLLARY 6.8. Suppose N = Q, so ON = Z. Let< ZG > be the subgroup 
of Go(ZG) (resp. CT(ZG)) generated by the class of ZG. Let Q (resp. Q[r00]} be 
the subgroup of classes in Go(ZG) of finite (resp. finite r-power) order. We have 

!*(Ox) E Q82 + Q[r00]+ < ZG > 
on identifying K 0 (G, Y) = K 0 (G, Spec(Z)) with G~(ZG) = Go(ZG). The class 
group Cl(ZG) may be defined as the torsion subgroup ofCT(ZG). Let Cl(ZG)[r00] 

be the r-Sylow subgroup of Cl(ZG). If the action of G on X is tame, then 

ffr(Ox) E Cl(ZG)82 + Cl(ZG)[r00]+ < ZG >. 
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PROOF. By [5, Thm. 39.21 and Th 50.2], the groups g and Cl(ZG) may be 
identified with the ideal class group of the field Q( (r) when (r is a primitive r-th 
root of unity. The first Stickelberger element 8 annihilates this ideal class group 
by [14, Thm. 6.10]. Corollary 6.8 follows from this and Corollary 6.5. D 

REMARK 6.9. Suppose r > 3. In a later paper we will show that modulo 
Cl(ZG)[r00]+ < ZG > each class in Cl(ZG)82 arises as JfT(Ox) for some X 
having a tame action of G. We will also show that there are primes r for which 
Cl(ZG)82 has a non-trivial element of order prime tor. This will show there are 
X having a tame action of G for which JfT ( 0 x) is not in < ZG >. 
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INVARIANT STABLE BUNDLES 
OVER MODULAR CURVES X(p) 

Igor V. Dolgachev 

Introduction. 

Let X be a smooth projective algebraic curve of genus g > 1 and G be the 
group of its automorphisms. The problem is to describe vector bundles on X which 
are invariant with respect to the action of G on X. In this paper we address this 
problem in the case when the curve X is the modular curve X (p) obtained as a 
compactification of the quotient of the upper-half plane H = {z E C: ~z > 0} by 

the action of the principal congruence subgroup r(p) ={A= ( ~ ~) E SL(2,Z): 

A = I mod p}. We shall assume that p is a prime number > 5 although some 
of our results are true for any p not divisible by 2 and 3. Here the group G is 
isomorphic to the group PSL(2, lFv)· Also we restrict ourselves with stable bundles. 
In other words, we are trying to describe the set of fixed points for the natural 
action of G on the moduli space of rank r stable vector bundles on X(p). The 
case of rank 1 bundles is rather easy and the answer can be found in [AR). The 
group of G-invariant line bundles on X(p) is generated by a line bundle>. of degree 
P~~~ which is a (2p - 12)-th root of the canonical bundle. For the future use 
we generalize this result to any Riemann surface X with a finite group G of its 
automorphisms such that X/G ~ IP'1. This result must be known to experts but I 
could not find a reference. When the determinant of the bundle is trivial, we are 
able to relate our problem to the problem of classifying unitary representations of 
the fundamental group of the Brieskorn sphere E(2, 3, p), that is, the link of the 
singularity x2+y3+zP = 0. Applying some known results from differential topology 
we prove that there exist exactly 2n rank 2 G-invariant stable bundles with trivial 
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66 I. V. DOLGACHEV 

determinant and 3n2 ± n rank 3 (if p -:f. 7) G-invariant stable bundles with trivial 
determinant on X(p), where p = 6n ± 1. Note that the determinant of a stable 
G-invariant rank 2 bundle is an even multiple of >.. So, after twisting by a line 
bundle, we obtain a G-invariant bundle with trivial determinant. 

Even in the case of rank 2 and 3 our results are still unsatisfactory since we 
were able to give a geometric construction of all of these bundles only in the case 
p = 7. Some of the bundles we discuss are intrinsically related to the beautiful 
geometry of modular curves which goes back to Felix Klein. 

I would like to thank the organizers of the conference for giving me the op-
portunity to revisit Korea. This paper owes much to the work of Allan Adler and 
correspondence with him. The book [AR] was a great inspiration for writing this 
paper. Finally I would like to thank Hans Boden and Nikolai Saveliev for coaching 
me in the theory of Casson invariant of 3-dimensional manifolds. 

1. G-invariant and G-linearized stable vector bundles. 

Let X be a compact Riemann surface of genus g. For each r > 0 there is 
the moduli space Mx(r) of semi-stable rank r vector bundles over X. Assume 
that a finite group G acts holomorphically on X (not necessary faithfully). By 
functoriality G acts holomorphically on Mx(r) and we denote by Mx(r) 0 the 
subvariety of fixed points of this action. If [E] E Mx(r) is the isomorphism class 
of a stable bundle, then [E] E Mx(r) 0 if and only if E is G-invariant, i.e. for any 
g E G, there is an isomorphism of vector bundles 

¢9 : g*(E)---+ E. 

If [E] E Mx(r) is the point representing the equivalence class of a semi-stable 
but not stable bundle E, then it is known that E is equivalent to a decomposable 
bundle E' = E 1 EB ... EB Ek (in the sense [E] = [E']), where all Ei are stable of the 
same slope J.L(Ei) = d:ff.i as E (see [Se]). Then [E] E Mx(r) 0 if and only if E' 
is G-invariant. In the following we will always assume that E is either stable or is 
decomposable as above. Assume that the collection ¢ = { ¢9 }gEe can be chosen in 
such a way that for any g, g' E G 

Then we say that E admits a G-linearization, and the pair (E, ¢) is called a G-
linearized vector bundle. Of course, in down-to-earth terms this means that the 
action of G on X lifts to an action on the total space of E which is linear on each 
fibre and a G-linearization is such a lift. One naturally defines the notion of a 
morphism of G-linearized vector bundles, and, in particular, one defines the set 
Mx(G; r) of isomorphism classes of G-linearized semi-stable rank r vector bundles 
over G. There is a natural forgetting map 

e: Mx(G; r)---+ Mx(r) 0 . 

Proposition 1.1. Let E be a stable G-invariant rank r bundle on X. One can 
assign to E an element 
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such that E belongs to the image of the map e if and only if c( E) = 1. Here the 
cohomology group is taken with respect to the trivial action of G on the group C*. 

Proof. This is of course rather standard. Let ¢>9 : g*(E)-+ E,g E G, be some 
set of isomorphisms defined by E. We have 

c/>gg' = Cg,g'c/>g' o g'*(cf>9 ) 

for some cg,g' E Aut(E). Since E is stable, Aut(E) consists only of homotheties, 
so that Aut(E) = C*. It is easy to check that { Cg,g' }g,g'EG defines a 2-cocycle of 
G with coefficients in the group C*. Its cohomology class c(E) does not depend on 
the choice of { ¢>9 } gEG. It is trivial if and only if c9 ,g' == c9 , o g'* ( c9 ) for some map 
c: G-+ Aut( E), g-+ c9 . Replacing ¢>9 with '¢9 = c9 o ¢>9 , we get 

'1/Jgg' = '1/Jg' 0 g'*('¢g)· 

The set { '¢9 } gEG defines a G-linearization on E. Clearly for any E in the image of 
e, we have c(E) = 1. This checks the assertion. 

Corollary 1.2. Assume G is a perfect group (i.e. coincides with its commutator 
subgroup). Let 

1 - H 2 ( G, C*) - G - G - 1 
be the universal central extension of the group G defined by the group of Schur 
multipliers H 2 (G,C*). Consider the action ofG on X defined by the action ofG 
on X. Then each stable G-invariant bundle E admits a G-linearization. 

Proof. Use that 

Now let us describe the fibres of the map e. Let (E, ¢>)beaG-linearized semi-
stable bundle. Consider the direct product G x Aut(E) which acts on X via the 
action of G on X and the trivial action of Aut(E) on X. Obviously 

E E Mx(r)GxAut(E). 

Proposition 1.3. Let E beaG-linearized vector bundle and let {¢>9 }gEG be the 
family of isomorphisms ¢>9 : g* (E) -+ E defining its linearization. For each (g, a) E 
G x Aut(E) set 

c/>(g,a) = a- 1 o ¢>9 : (g, a)*(E) = g*(E)-+ E-+ E. 

Then the set of isomorphisms of vector bundles ¢>(g,a) defines a G x Aut(E)-
linearization of E if and only if, for any g E G and any a E Aut( E), 

¢>9 o g*(a) =a o ¢>9 . (1.1) 

Proof. It is immediately verified that 

c/>(g',a') o g'*(c/>(g,a)) = a'- 1 o c/>g' o g'*(a-1 ) o g'*(¢>9 ). 

This is equal to 

""' /-1 -1 ""' /-1 -1 ""' '*(""' ) 'fJ(gg' ,aoa') = a o a o o/gg' = a o a o 'fJg' o g o/g 

if and only if, for any g', a, 

-1 ""' ""' '* ( -1) a o 'fJg' = 'fJg' o g a . 
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This is of course equivalent to the assertion of the proposition. 

Definition A G-linearization ¢ = {¢9 }gEG onE E Mx(G; r) is called distinguished 
if¢ satisfies the condition (1.1) from Proposition 1.3. 

Theorem 1.4. Let (E, ¢) E Mx ( G; r) beaG-linearized bundle with distinguished 
linearization. Then any G-linearization '¢ on E is equal to 

where 
..\ : G --+ Aut(E) 

is a homomorphism of groups. 

Proof. First we check that for any homomorphism of groups ..\: G--+ Aut(E) 
the collection {'¢9 = ¢9 o ..\(g)}gEG defines a G-linearization of E. This is straight-
forward: 

'1/Jgg' = ..\((gg')-1)</Jgg' = ..\(g'-1) 0 ..\(g-1) 0 </Jg' 0 g'*(¢g) = 

..\(g'-1) 0 </Jg' 0 g'*(..\(g-1)) 0 g'*(¢g) = '1/Jg' 0 g'*('l/Jg)· 
So it is checked. Now suppose we have another G-linearization '¢ = {'¢9 }gEG on E. 
Then 

¢9 o¢;1 : E--+ g*(E)--+ E 

is an automorphism of E. Thus '¢9 = ..\(g-1) o ¢9 for some automorphism ..\(g-1) 

of E. Now reversing the previous computations we check that the map g--+ ..\(g) is 
a homomorphism of groups. 

Example 1.5. Every G-linearization on a stable bundle is distinguished and there 
is a natural bijection 

e- 1(e((E,¢)))--+ Hom(G,C*). 

Example 1.6. Let E = Ox be the trivial bundle. It is semi-stable but not stable. 
Consider the trivial G-linearization onE by setting for each (x, v) E g*(E)x = E9 .x 

¢9 (x,v) = (g·x,v). 

Obviously it is distinguished, and 

e- 1(0x) = Hom(G,GL(r,C)). 

2. Line bundles 

Let us consider the special case of line bundles. Here we can say much more. 
First let us denote by Pic(X)0 the group of G-invariant line bundles and by 
Pic( G; X) the group of G-linearized line bundles. The latter group has the fol-
lowing simple interpretation in terms of G-invariant divisors: 
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Proposition 2.1. The group Pic( G; X) is isomorphic to the group of G-invariant 
divisors on X modulo the subgroup of divisors of G-invariant meromorphic func-
tions. 

Proof. Let D = ExEX nxx beaG-invariant divisor. This means that, for any 
g E G, 

D = g*(D) = L nxg-1(x). 
xEX 

Let Lv be the line bundle whose sheaf of sections is the invertible sheaf Ox(D) 
whose set of sections over an open subset U is equal to {! E C(X) : div(f) + 
D ~ 0 after restriction to U }. The group G acts naturally on the field C(X) 
of meromorphic functions on X. If I E C(X) is considered as a holomorphic 
map I --+ JP>1 then the image 9 I of I under g E G is equal to the composition 
I o g-1. Since (9 f) = g* ((f)) we have a natural isomorphism of invertible sheaves 
Ox(D)--+ Ox(g*(D)). It defines an isomorphism ofline bundles ¢9 : g*(Lv)--+ Lv 
which satisfies ¢9, 09 = ¢9 o g*(¢9, ). This makes Lv a G-linearized line bundle. 
If Lv is equal to zero in Pic(X) then D = (f) for some I E C(X) with the 
property (9 f) = (f) for all g E G. The ratio x9 = 9 I/ I is a nonzero constant, 
and the map G --+ C* defined by x9 is a homomorphism of groups. It defines a 
linearization 01.1 Ln. It is trivial if and only if I E C(X)0 . This shows that the 
group Div(X)0 jdiv(C(X)0 ) of G-invariant divisors modulo principal divisors of 
the form (f), IE C(X)0 , is mapped isomorphically onto a subgroup of Pic(G; X). 
I claim that the image is the whole group. In fact, let L beaG-linearized line bundle 
and ¢9 : g* ( L) --+ L be the set of isomorphisms satisfying ¢99, = ¢9 o g* ( ¢9,) which 
define the linearization. Then ¢9 is defined by a meromorphic function 19 such 
that g*(D) = D + (!9 ). We have 19 ,09 = 919,19 so that (f9 ) 9Ec is a one-cocycle 
of G with values in C(X)*. By Hilbert's Theorem 90 this cocycle must be trivial. 
Hence we can write 19 = 9aja for some a E C(X). Replacing D with D' = D- (a) 

we obtain g*(D') = D' for any g E G. This shows that Lv ~ Lv' arises from a 
G-invariant divisor. This proves the assertion. 

Proposition 2.2. There is an exact sequence of abelian groups 

0--+ Hom(G,C*)--+ Pic(G;X)--+ Pic(X) 0 --+ H 2 (G,C*)--+ 0. 

Proof. The only non-trivial assertion here is the surjectivity of the map 

e: Pic(X)0 --+ H 2 (G,C*). 

To prove it we need a cohomological interpretation of the exact sequence. We use 
the following two spectral sequences with the same limit (see [Gr], p. 200): 

1 Epq = HP(G Hq(X 0* )) :::} Hn(G· X 0* ) 
2 ' ' X ' ' X' 

"E~q = HP(Y,Rqtr~(OX:)):::} Hn(G;X,OX:). 
Here 1r: X--+ Y = X/G is the canonical projection and the group H 1(G;X,OX:) 
is isomorphic to Pic( G; X). The first spectral sequence gives the exact sequence 

0--+ Hom(G,C*)--+ Pic(G;X)--+ Pic(X) 0 --+ H 2 (G,C*)--+ H 2(G;X,OX:). 

In order to show that H 2 (G;X,OX:) = 0 we use the second spectral sequence. We 
have 

'E~ 0 = H 2 (Y,tr~(Ox)) = H 2(Y,Ox) = 0, 
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as it follows from the exponential exact sequence 0 --+ Z --+ Oy --+ Oy --+ 0. 

'Ei 1 = H 1(Y,R17rf(Ox)) = 0 

since R11rf(Ox) is concentrated at a finite set of branch points of 1r. 

'Eg2 = H 0 (Y,R21rf(Ox)) = 0 

since R 27rf(Ox )y ~ H 2 (Gx, C*), where Gx is the isotropy group of a point x E 
1r-1(y), and the latter group is trivial because Gx is a cyclic group. All of this 
shows that H 2 (G;X,Ox) = 0. 

Corollary 2.3. Let Div(X)0 be the group of G-invariant divisors and P(X)0 be 
its subgroup of principal G-invariant divisors. Then Div0 (X)/ P(X)0 is isomorphic 
to a subgroup ofPic(X)0 and the quotient group is isomorphic to H 2 (G, C*). 

Now let us use the second spectral sequence for the map 1r : X --+ X/ G to 
compute Pic(G; X) more explicitly. Let y1 , ... , Yn be the branch points of 1r and 
e1, ... ,en be the corresponding ramification indices. For each point x E 7r-1(yi) 
the stabilizer subgroup Gx is a cyclic group of order ei. The exact sequence arising 
from the second spectral sequence looks as follows: 

0 --+ Pic(Y) --+ Pic( G; X) --+ EBi=1 Z/ eiZ --+ 0. (2.1) 

Here the composition of the first homomorphism with the forgetting map e : 
Pic(G;X) --+ Pic(X) is the natural map 7r* : Pic(Y) --+ Pic(X). The second 
homomorphism is defined by the local isotropy representation Px; : Gx; --+ C* de-
fined by the G-linearized bundle L. Here we fix some Xi in each fibre 7r-1 (yi)· Let 
Di = 7r-1(yi) considered as a reduced G-invariant divisor on X. Let us assume 
that 

y = J!Dl. 
Then the isomorphism classes si of Li = Lv;, i = 1, ... , n, generate Pic( G; X) and 
satisfy the relations e 1s1 = ... = ensn. This easily implies that 

where 

To define a generator of the free part of Pic( G; X) we use the Hurwitz formula for 
the canonical line bundle of X: 

Kx = 1r*(Ky) ® ( ®i=1 L~;- 1 ). 

We know that Pic(Y) is generated by the isomorphism class a: of the line bundle 
Ly corresponding to the divisor D = 1 · y where y E Y. Then 7r* (a:) = N "Y, where 
N is a positive integer and "Y generates Pic( G; X) modulo the torsion subgroup. 
Applying (2.1) we obtain that 

Z/N EB Tors(Pic(G; X))~ EBi=1Z/eiZ, 

and hence el ... en 
N = ( ) = l.c.m.(e1, ... , en)· 

el ... en-1, ... , e2 ... en 
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Now, switching to the additive notation, 
n 

e1 .. . enKx = e1 ... en7r*(-2a) + I)ei -1)e1 .. . enLi = 
i=1 

n n 
= -2e1 ... enN'Y + ~)ei- 1) e1 ··.·en N"( = e1 ... en(n- 2- L ei1)N"f. 

i=1 ~ i=1 
This implies that 

K (n- 2)e1 ... en- e1 · · · en-1 - ... e2 ···en 
x= "f= (e1 ... en-1• ... 'e2 ... en) 

n 1 
l.c.m(e1. ... , en)(n- 2- L- )'Y. (2.3) 

i=1 ei 
Now we are ready to compute Pic(X(p))c, where X(p) is the modular curve of 
level p and G = PSL(2, 1Fp)· 

The following result is contained in [AR], Corollaries 24.3 and 24.4. However, 
keeping in mind some possible applications to more general situations, we shall give 
it another proof which is based on the previous discussion. 

Theorem 2.4. Assume p ~ 5 is prime. Let G = PSL(2,1Fp)· Then 

Pic(X(p))c = Pic(SL(2,1Fp); X(p)) = Z>., 

where 

and 

,2p-12 _ K 
A - X(p) 

p2 -1 
deg >.= 24. 

Moreover, Pic(G; X(p)) is the subgroup ofPic(X(p))G generated by >.2. 

Proof. We use that the map 1r: X(p)-+ X(p)/PSL(2, 1Fp) is ramified over three 
points with ramification indices 2, 3 and p. It follows from the previous computa-
tion that Pic(G; X(p)) is a free cyclic group generated by a (p- 6)-th root of the 
canonical class. We use Proposition 2.1 and well-known facts that Hom(G,C*) = 
{1}, H 2(G, C*) ~ Z/2. This gives us that Pic(X(p))G = Pic(G; X(p)) is a subgroup 
of index 2 in Pic(X(p))c. It remains to show that Pic(X(p))G does not contain 
2-torsion elements. Let L E Pic(X)~ be a torsion element of order n in Pic(X)c. 
Let J.tn be the constant sheaf of n-th roots of unity. The Kummer sequence 

0 -+ J.tn -+ ox- -+ ox- -+ 0 

implies that Pic( X)~ = H 1 (X, J.tn)c. Replacing Ox with J.tn in the proof of Propo-
sition 2.2, we obtain that all arguments extend to this situation except that we 
cannot use that H 2 (Gx,J.tn) = 0. As a result we obtain an exact sequence 

0-+ Pic(G;X)2-+ Pic(X)¥-+ H 2(G,J.t2)-+ H 2(Gxp/-t2)· 

The last homomorphism here is the restriction homomorphism for group cohomol-
ogy. Here X1 is a ramification point of index 2. The exact sequence 

0 -+ 1-t2 -+ C* -+ C* -+ 0 
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shows that H 2(G,J.L2) = H 2(G,C*)2 = Z/2 (because Hom(G,C*) = 1) and also 
H2(Gx 1 ,J.L2) = Z/2 (because H 1(GxpC*) = Z/2). I claim that the restriction 
homomorphism is bijective. Let a be the non-trivial element of H 2 ( G, J.L2). It is 
represented by the extension 

1---+ J.L2---+ SL(2,1Fv)---+ PSL(2,1Fv)---+ 1. 

Let g E SL(2, Z) be a lift of the generator g of Gx1 • Then g2 = -1 has order 4 and 
therefore the exact sequence restricts to the nontrivial extension 

1 ---+ J.L2 ---+ J.L4 ---+ Gx1 ---+ 1 

representing the nontrivial element of H 2 ( G xp J.L2). 
The last assertion follows from the known genus, and hence the degree of the 

canonical class, of a modular curve (see [Sh], p. 23). 

Remark 2.5 The previous result implies that the group of PSL(2, 1Fp)-invariant 
divisors on X(p) modulo principal divisors is generated by a divisor of degree (p2 -

1)/12. This result can be also found in ([AR], Corollary 24.3) together with an 
explicit representative of this class · 

D = E(D2 - D3 -pDp), 

where f. = ±1 and p = 6n + f.. Here Dk denote the G-orbit of points with isotropy 
subgroup of order k. 

The tensor powers of the line bundle>. generating the group Pic(X(p))G allows 
one to embed X(p) SL(2,1Fp)-equivariantly in projective space. We state without 
the proof the following result (see [AR], Corollary 24.5): 

Theorem 2.6. Assume pis prime~ 5. Denote by V_ (resp. V+) one of the two 
irreducible representations of SL(2, !Fv) of dimension 9 (resp. ~ ). Then 

1. a base-point free linear subsystem of I>.(P-3)121 maps X(p) in JP(V_) = 
JP(P- 3)/2 onto a curve of degree (p- 3)(p2 - 1)/48; 

2. a base-point-free linear subsystem of I>.(P-1)121 maps X(p) in JP(V+) = 
JP(P- 1)12 onto a curve of degree (p- 1)(p2 -1)/48. 

It is conjectured that the linear systems embedding X (p) in JP(V_) and in JP(V+) 
are complete (see [AR], p.106). This is known to be true only for p = 7. 

Remark 2.7 As was shown in [AR], Corollary 24.5, the image of X(p) in JP(V+) 
(resp. lP'(V_) ) described in the previous theorem is the z-curve (resp. A-curve) 
of Klein. From the modern point of view these embeddings can be described as 
follows. Recall that X (p) is a compactification of the moduli space of isomorphism 
classes of pairs ( E, ¢), where E is an elliptic curve and ( e1, e2) is a basis of its group 
Ev ~ (1Fp)2 of p-torsion points. Let 0 be the origin of E. There is a special basis 
(X0 , ... , Xv-d in the space f(E, OE(pO)) which defines a map 

f: E---+ JP>P- 1, x---+ (Xo(x), ... , Xp-1(x)) 

satisfying the following properties: 
1. (Xo(x-ei), ... ,Xp-1(x-e1)) = (X1(x),X2(x), ... ,Xp-1(x),Xo(x)); 
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2. (Xo(x+e2), ... ,Xp-1(x+e2)) = (Xo(x),(X1(x), ... ,(P-1 Xp-1(x)), where 
( = e21Tifp; 

3. (X0(-x), ... ,Xp-1(-x)) = (Xp-1(x),Xp-2(x), ... ,X1(x),Xo(x)). 
Let 1r : X(p) -+ X(p) be the universal family of elliptic curves (E, ell e2) (its fibres 
over cusps are certain degenerate curves, p-gons of lines). The p-torsion points of 
the fibres determine p2 sections of the elliptic surface X(p). The functions Xm 
define a morphism X(p)-+ JP'P-1 whose restriction to the fibre (E, ell e2) is equal to 
the map f. The functions Zm = Xm -Xp-1-m, m = 0, ... , ~,define a projection 
of the image of X(p) in JP>(P-3)f2 (C). The image of the section of rr defined by the 
0-point is the z-curve of Klein. On the other hand if we consider the functions 
Ym = Xm + Xp-1-m we get the projection of X(p) in JP>(P-1)f2(C). The center of 
this projection contains the 0-section so that the restriction of the projection map 
to each curve f(E) is the projection from the origin /(0) and still defines the image 
of /(0). The set of these images forms the A-curve of Klein. There are certain 
modular forms Ao, ... , A=! defined on the upper-half plane which define the map 

2 

from X (p) to the A-curve. 
It is proven in [Ve), Thm. 10.6, that the z-curve is always nonsingular. 

Example 2.8. Let p = 7. Then deg A= 2, Kx = A2 is of degree 4 so that X(7) is a 
curve of genus 3. The divisor class A is an even theta-characteristic on X(7). It is the 
unique theta characteristic invariant with respect to the group of automorphisms 
G = PSL(2, IF7) of X(7) (see other proofs of this fact in [Bu), pp. 22-25, [DK), 
pp.292-294). The z-curve is a canonical model of X(7), a plane quartic. This is 
the famous Klein's quartic with 168 automorphisms. In an appropriate coordinate 
system it is given by the equation 

3 3 3 0 XoX1 + X1X2 + X2Xo = . 
The A-curve is a space sextic with equations 

t2x + ../2ty3 + 2yz2 = t2y + htz2 + 2zx2 = t2 z + htx2 + 2xy2 = 2../2xyz- t3 = 0 

(see [El), p. 163). 
It is well-known (see, for example, [Tj), p. 95 and p.104) that a theta char-

acteristic 0 with H 0 (X, 0) = 0 on a plane nonsingular curve X of degree n with 
equation F = 0 gives rise to a representation of F as the determinant of a symmet-
ric n x n matrix with linear forms as its entries. In other words, 0 defines a net 
of quadrics in ]pm- 1 and X parametrizes the set of singular quadrics from the net. 
The pair (X, 0) is called the Hesse invariant of the net. It follows from Table 2 in 
Appendix 1 that S2 (V+) contains v_ as a direct summand (as representations of 
SL(2, IF 7)). This defines a SL(2, Z)-invariant net of quadrics in IP'(V+) with the Hes-
sian invariant (X, A). The corresponding representation of X as the determinant 
of a symmetric matrix of linear forms is known since Klein (see [El), p. 161): 

(
-xo 

3 3 3 0 x0x 1 + X 1 X2 + X2Xo = det Q 

-X1 

0 0 
0 (2.4) 

Example 2.9. Let p = 11. Then deg A = 5, Kx = A10 is of degree 50 so that 
X ( 11) is a curve of genus 26. The z-curve is a curve of degree 20 in JP>4. According 
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to F. Klein [Kll], pp. 153-156 (cf. [AR], Lemma 37.4, p.128) it is equal to the 
locus 

{(v, w,x, y, z) E II" ork G v 0 0 z) 
X W 0 0 
W y X 0 ::::; 3}. 
0 X Z y 
0 0 y v 

The matrix in above is the Hessian matrix of a G-invariant cubic hypersurface W 
given by the equation 

v2w + w2x + x 2y + y2 z + z2v = 0. 

This hypersurface has the group of automorphisms isomorphic to PSL(2, IF 11 ). The 
A-curve is a curve of degree 25 in IP'5 . It is the curve of singularities of a unique 
quartic ruled hypersurface in IP'(V+) (see Appendix V in [AR] which contains the 
results of the first author). We refer for these and other beautiful facts about the 
geometry of X(ll) to [AR] and [E2]. 

3. Rank 2 bundles 

We shall use the following result of S. Ramanan which is a special case of 
Proposition 24.6 from [AR]: 

Theorem 3.1.. Let G be a finite subgroup of the group of automorphisms of a 
curve X and E be a G-linearized rank r vector bundle over X. Then there exists 
a flag 

0 c E1 c E2 c ... c Er-1 c E 
of G-invariant subbundles, where each Ei is of rank i and all inclusions are G-
equivariant. 

Because of the importance of this result for the sequel we shall sketch a proof. 
Choose an ample G-linearized line bundle L with trivial isotropy representations. 
This is always possible by taking products and powers of the translates of an ample 
line bundle by elements from G. Then we apply the Lefschetz Fixed Point Formula 
for coherent sheaves: 

tr(giHO(X, E ® Ln))- tr(giH1(X, E ® Ln)) = L tr(~l~; d~xEx). 
g(x)=x 

Since g acts identically on Lx, the right-hand side is independent of n. Taking n 
sufficiently large, we get rid of H 1 . Since the dimension of H 0 will grow with n 
and the trace of g f- 1 on H 0 does not change with n we easily obtain that H 0 

contains the trivial irreducible representation for large n. This implies that there 
exists a G-invariant section of E ®Ln. It gives a G-invariant embedding of L -n in 
E. It generates a G-invariant subbundle of E. Now we take the quotient and apply 
induction on the rank. 

Corollary 3.2. Let E be a PSL(2, 1Fp)-invariant rank r vector bundle over X(p). 
Then there is a PSL(2, IF p)-equivariant flag 

0 c E1 c E2 c ... c Er-1 c E (3.1) 
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ofPSL(2,lFp)-invariant rank i vector bundles Ei. 

Proof. To see that the previous theorem applies, we use Corollary 1.2 that shows 
that E admits an SL(2,lFp)-linearization. If the center C = {±1} of SL(2,lFp) does 
not act identically on E, hence acts as -1 on each fibre, we replace E by E' = E Q9 >... 
Since >.. is SL(2, lFp)-linearized but not PSL(2, lFp)-linearized the center C acts as 
-1 on >... So E' is PSL(2, lF p)-linearized and the theorem applies. 

We shall call a flag (3.1) a Ramanan flag of E. Let Li =Ed Ei-1, i = 1, ... , r, 
where Eo = 0, Er = E, be the factors of a Ramanan flag of E. We know that each 
Li is equal to >.a; for some integer ai. We shall call the sequence (a1, ... ,ar) a 
sequence of exponents of E. Clearly the sequence (-an ... , -a1) is a sequence of 
exponents of the dual bundle E*. Note that the same bundle may have different 
sequences of exponents. 

Proposition 3.3. Let (a1, ... ,ar) be a sequence of exponents of a PSL(2,lFp)-
invariant stable rank r bundle over X (p). Let a = a 1 + ... + ar. Then, for any 
s < r, 

s 
a1 + ... +as < -a. r 

Proof. This follows immediately from the definition of stability. 

In the case r = 2 we will be able to say more about sequences of exponents of 
a rank 2 bundle (see Corollary 4.3) but now let us note the following result (see 
[AR], Lemma 24.6): 

Proposition 3.4. Assume r = 2 and let (a1, a2) be a sequence of exponents of a 
G-stable bundle E. Then a1 + a2 is even. 

This follows from the fact that any G-invariant extension 

has obstruction class for splitting in 
H1(X, )..a1 -a2)SL(2,lF'v) = (HO(X, )..a2 -a1 +2p-12)*)SL(2,lF'p). 

Since -1 acts as -1 in H0 (X, )..odd)* the latter space is trivial. 

Corollary 3.5. Each PSL(2, lFp)-invariant stable bundle of rank 2 over X(p) has 
determinant isomorphic to ).. a, where a is even. 

By tensoring E with E Q9).. -a/2 we may assume now that det E is trivial. This 
allows us to invoke some results from topology. Recall the following fundamental 
result from [NS], pp. 556-558: 

Theorem 3.6. Let E be a degree 0 stable vector bundle on a compact Riemann 
surface X. Then there exists an irreducible unitary representation 

p: 1r1(X)---+ U(r) 

such that E is isomorphic to the vector bundle H x cr /rr1(X)---+ X= Hjrr1(X), 
where H is the universal cover of X with the natural action of rr1 (X) on it, and the 
fundamental group rr1 acts on the product by the formula "Y : ( z, v) ---+ ("Y · z, p("Y) · v). 
This construction defines a bijective correspondence between the set of isomorphism 
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classes of stable rank r bundles of degree zero and the set of irreducible unitary rep-
resentations of 1r1 (X) of dimension r up to conjugation by a unitary transformation 
of cr. In this correspondence stable bundles with trivial determinant correspond 
to irreducible representations p: 1r1 (X)--+ SU(r). 

Note that this theorem also gives a representation theoretical description of 
points of the moduli space Mx(r,O) of semi-stable rank r vector bundles over X 
representated by semi-stable but not stable bundles of degree 0. They correspond 
to reducible unitary representations. 

We shall apply this theorem to our situation. First we need the following: 

Definition. A G-linearized vector bundle is called G-stable if for any G-linearized 
subbundle F of E one has 11-(F) < 11-(E) (see 1.1 for the definition of ~J.). 

Notice that a G-stable bundle is always semi-stable since it is known that any 
bundle always contains a unique, hence G-invariant, maximal semi-stable subbundle 
(see [Se], Proposition 2, p. 15). Obviously a stable bundle is G-stable. However, a 
semi-stable bundle could be also G-stable. For example, the trivial bundle defined 
by an irreducible representation of G is G-stable but not stable. Recall from section 
1 that we always assume that a semi-stable G-linearized bundle is a direct sum of 
stable bundles. 

Theorem 3.7. Let E be a G-linearized semi-stable vector bundle of degree 0 
given by a unitary representation p : 1r1(X) --+ U(r). Let II be the group of 
automorphisms of the universal cover H of X generated by lifts of elements of G. 
In other words, II is the subgroup of G x Aut(H) consisting of pairs (g, g) such 
that g is a lifting to H of the automorphisms of X determined by g. Then p can 
be extended to a unitary representation p : II --+ U(r). Moreover this defines a 
bijective correspondence between the set of isomorphism classes of G-stable rank r 
bundles of degree 0 and the set of irreducible unitary representations II--+ U(r) up 
to conjugation by a unitary transformation of cr. 

Proof. First we fix the trivial coo bundle £ of rank r over X, and a G-invariant 
Hermitian metric on E. We can always do it since X is compact. Let A be the 
set of unitary connections on £ whose curvature form has type (1, 1) with trivial 
cohomology class. Any A E A defines a holomorphic structure E A on £ of degree 0; 
its sheaf of holomorphic sections is equal to the set of local solutions of the equation 
[)A = 0, where [)A is the (0, 1) component of the covariant derivative of A. Any 
holomorphic structure E on £ of degree 0 is defined in this way by a unique unitary 
connection A E A ([DoK], Proposition 2.1.56, p. 46). The natural action of the 
unitary gauge group g on A extends to an action of the complexified gauge group 
gc and the set of orbits of gc in A can be identified with the set of isomorphism 
classes of holomorphic structures on E of degree 0 (loc. cit., p. 210). A proof 
of Theorem 3.6 given by S. Donaldson [Don] consists of showing that the gc_ 
orbit corresponding to the isomorphism class of a semi-stable holomorphic bundle 
E of degree 0 contains a unique Q-orbit of flat unitary connections. In particular, 
replacing E by an isomorphic bundle, we may assume that E is defined by a unique 
flat unitary connection AE. Now the isomorphism ¢9 : g*(E) --+ E defined by the 
G-linearization of E sends the flat unitary connection g*(AE) on g*(E) to a flat 
unitary connection onE which must coincide with AE. Considered as a horizontal 
distribution on the total space V(E) of E the connection g*(AE) is equal to AE. 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



INVARIANT STABLE BUNDLES OVER MODULAR CURVES X(p) 77 

This shows that AE is preserved under the G-linearization, considered as an action 
on V(E). Let V be the sheaf of horizontal sections of E with respect to AE. It is a 
sheaf of complex unitary vector spaces of dimension equal to the rank of E. If we are 
willing to identify a vector bundle with the corresponding sheaf £ of holomorphic 
sections, then V is a subsheaf of £. In fact we have an isomorphism of C-sheaves 
£ ~ V ®Ox. It follows from above that V admits a G-linearization, the restriction 
of the G-linearization of£. This G-linearization preserves the unitary structure on 
fibres. The group II acts on the pull-back V of V on H via a representation p of 
II in U(r). Conversely given such a representation p , we consider the semi-stable 
vector bundle Ep = H X cr ;r, where r = 7rl(X) acts on H X cr via the restriction 
p of p, (z,v) t-t (g · z,p(g)(v)). The group G = II/f acts naturally on Ep and 
defines a G-linearization. 

Now, if p is irreducible, then Ep is G-stable since otherwise it contains a G-
invariant semi-stable subbundle of degree 0, and by the above construction it will 
define a unitary subrepresentation of p. Conversely, if Ep is G-stable, the represen-
tation pis irreducible, since otherwise its direct summand will define a G-invariant 
semi-stable subbundle of Ep of degree 0. 

Let II be as above. It is given by an extension of groups 

1 ---. r ---. II - G - 1, 

where r ~ 1r1(X). Assume that X/G = H/II = IP'1. Then II, as an abstract group, 
is given by the genetic code: 

II=< 'Yl, • · • ,'Yni'Y~ 1 = · · · = 'Y~n = 1'1 · · "'Yn = 1 >, 
where I: e;1 < n- 2. As a group of transformations of H, II is isomorphic to 
a discrete subgroup of PSL(2, JR) which acts on H as a subgroup generated by 
even products of reflections in sides of a geodesic n-gon with angles 1r j ei. Such 
a subgroup of PSL(2,JR) is called a Dyck group (or a triangle group if n = 3) of 
signature (e1, ... , en)· Conversely, let II be an abstract group as above and r be a 
normal torsion-free subgroup of finite index. Choose an isomorphism from II to a 
Dyck group (if n = 3 it is defined uniquely, up to a conjugation). Let us identify II 
with its image. The group r acts freely on H and the quotient H jr is a compact 
Riemann surface Xr with 1r1(X) ~ r. The factor group G = II/f acts on Xr by 
holomorphic automorphisms. The projection 1r: Xr---> Xr/G = IP'1 ramifies over n 
points with ramification indices e1, ... , en. 

The modular curve X (p) is a special case of this construction. One takes 
(ell ... , en) = (2, 3,p) and r = 1r1 (X(p)). 

Let fr be the group with the genetic code 

fr =< .:h, ... , .:Yn, hih central, 1'~ 1 = ... = .:Y~n = 1'1 ... .:Yn = h > . 
It is a central extension of II with infinite cyclic center generated by h: 

1 - (h) - fr---. II---. 1. (3.2) 

We shall assume that II is perfect, i.e. coincides with its commutator II' = 
[II, II]. This happens if and only if the ei 's are pairwise prime. In this case the 
commutator group fr' = [fr, fr] is a universal central extension of II (see [Mi], §5): 

1 - (t) ---. [fr, fr] ---.II- 1. (3.3) 
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Its center ( t) is a subgroup of (h) generated by h8 , where 
n 

s = e1 · · · en(n- 2- :L:>i1). 
i=l 

The genetic code of IT' is 

n- I - - tit t 1 -el - tbl -en tbn - - tb =< gr, ... , Yn, cen ra, g1 - , ••. , Yn = , 91 · · · 9n = >, 
where 

sbi = 1 mod ei, 0 < bi < ei, 

b-tbi_ 1 
i=l ei e1 ···en 

(3.4) 

All of this is well-known in 3-dimensional topology (see for example, [S], §10 and 
§12). We have 

IT' = 11"1 (:E( e1, ... , en)), 
where E(e1, ... , en) is a Seifert-fibred 3-dimensional homology sphere given explic-
itly as theintersection of a sphere S 2n-l with center at the origin in en and the 
algebraic surface given by the equations 

z~ 1 + z~i + z~n = 0, i = 2, ... , n - 1. 

The group TI is the fundamental group of the link of a canonical Gorenstein singu-
larity admitting a good C*-action (see [Do]). 

Corollary 3.8. Keep the notation of Theorem 3. 7. Assume that the group TI is 
perfect. Let 1 ~ H 2 ( G, C*) ~ G ~ G ~ 1 be the universal central extension of 
G and let d = IH2 (G, C*)l. Then IT' is mapped surjectively on G and there is a bi-
jective correspondence between irreducible unitary representations p: IT'~ SU(r) 
with p(h)d = 1 which restrict to an irreducible representation off'= Ker(IT' ~G) 
and G-invariant stable rank r bundles over Xr with trivial determinant. 

Proof. Let n ~ FIR where F is a free group. It is known that the universal 
central extension IT' is isomorphic to [F, F]/[R, F] (see [Mi], §5). Since G ~ F/ R', 
where R C R' we obtain that G ~ [F, F]/[R', F] and there is a surjective homo-
morphism IT'~ G. Let f' be the kernel of this homomorphism. We have a central 
extension for f': 

1 ~ (td') ~ t ~ r ~ 1, 
where d'ld. Given an irreducible representation p : IT' ~ SU(r) with p(h)d = 1 
we define {3 : r ~ SU(r) by first restricting p to f' and then factoring it through 
the quotient f' j(td) ~ r. Since, by the assumption, the restriction of p to f' is 
irreducible, {3 is irreducible. This defines a stable rank r bundle Eon Xr with trivial 
determinant. Since t is normal in IT', the group G acts on E = H X cr ;t and makes 
E a G-invariant bundle. Conversely, by Corollary 1.2, any G-invariant stable bundle 
E with trivial determinant admits a G-linearizati.on. This linearization defines a a-
linearization on the local coefficient system V defined by the flat unitary connection 
on E. The group f' acts on the pull-back V = V Xx H of Von H via the action of 
r on H and the trivial action on V. Since V trivializes on H, it coincides with the 
universal covering of V. Thus the action of G lifts to an action of V and defines an 
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action of II' on v = H X cr. This defines a unitary representation of the group TI' 
in SU(r). 

Remark 3.9 If r = 2 we do not need the assumption that the restriction (3 of 
p : TI' ~ SU(2) to r is irreducible. Assume it is not. Then it decomposes into 
sum of one-dimensional unitary representations V1 + V2. By Theorem 3.6 they 
define two line bundles on Xr with determinants of degree 0. These bundles are 
invariant with respect to the group G = IIjr. However, the computations from 
the first section show that Pic(Xr) is generated by an element of positive degree. 
This shows that (3 must be the trivial representation. Thus p factors through a 
representation p: G ~ SU(2). However, it is easy to see using the classification of 
finite subgroups of SU(2) that G does not admit non-trivial 2-dimensional unitary 
representations. This gives us that p is the trivial representation which contradicts 
the assumption that p is irreducible. 

Corollary 3.10. Let (all a2) be a sequence of exponents of a stable G-invariant 
rank 2 vector bundle over X(p). Then (a1 - a2)/2 is an odd number. 

Proof. We already know from Proposition 3.4 that a1 +a2 is even. By tensoring 
with>. a 2 ; 41 we may assume that E has trivial determinant, i.e. a1 +a2 = 0. Assume 
a1 is even. Then the extension 

shows that the center of SL(2, 1Fp) acts identically on E. Hence the bundle E admits 
a PSL(2, lFp)-linearization. By Theorem 3. 7, this defines a unitary representation 
p: II~ SU(2). Let 91 be a generator of II of order 2. Then p(g1)2 = 1 and hence 
p(gl) = ±1. This implies that p(g2)3 = p(g3)P = 1 and p(9293) = p(gl) = ±1. This 
gives that p(gi) = 1, i = 1, 2, 3, i.e. p is trivial. This contradicts the assumption 
that E is stable. 

Theorem 3.11. Let p = 6n± 1. Then there exist exactly 2n non-isomorphic rank 
2 stable G-invariant vector bundles over X(p) with trivial determinant. 

Proof. This is an immediate corollary of Theorem 3.7, Remark 3.9, and the 
known computation of the number of irreducible unitary representation of the fun-
damental group of the Brieskorn sphere E(el. e2, e3) (see [FS], Proposition 2.8, 
p.116). 

We will give an independent verification of this result for the case p = 7 in §6. 
We shall aiso say more about how to use the results of [FS] when we sketch the 
proof of Theorem 4.2. 

4. Isotropy representation 

Let us return to the general situation of a finite group G acting on a compact 
Riemann surface X. Let C (X; G) be the set of pairs ( C, g), where C is a connected 
component of the fixed locus of g E G, modulo the natural action of G on these 
pairs by 

g' · (C,g) = (g'(C),g'gg'- 1). 

Since X is a curve, C is either a single point or all of X. In the latter case the 
element g belongs to the kernel A of the action of G on X. Let C (X; G) denote 
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the set of complex valued functions on the set C(X; G). We define the isotropy 
representation map: 

p: Mx(G;r) -t C(X;G) 
as follows. For each E E Mx(G; r) defined by isomorphisms ¢9 : g*(E) -t E and 
for each (C, g) E C(X; G) we let 

p(E)(C,g) = Trace(¢9 ,x: g*(E)x =Ex-t Ex), 

where x E C. 
Consider the quotient 

Y=X/G 
and let p : X -t Y be the natural orbit map. There is a finite set of G-orbits 
in X with non-trivial isotropy subgroup. They correspond to the set S of points 
Y1, ... , Yn in Y such that p is ramified over any point x E p-1 ( S). For any g E 
G, we have gGxg- 1 = Gg·x· In each fibre p-1(yi) pick a point Xi and denote 
the corresponding isotropy subgroup Gxi by Gi. This is an extension of a cyclic 
subgroup Gi of G of order ei and the group A. It is clear that each (C,g) E C(X; G) 
can be represented by a pair (xi, gi), gi E Gi, or by a pair (X, a), a E A. Assume A 
is central in G (as it will be in our case). Then this representation is unique since 
Gx, is cyclic. Thus we have 

n 

IC(X; G) I= L(ei- 1) + IAI. 
i=1 

The representatives of C(X; G) can be chosen as follows: 

(x1,g1), ... ,(x1,g~ 1 - 1 ), ... ,(Xn,gn), ... ,(xn,g~n- 1 ),(X,a),aEA, 

where each gi EGis a representative of a generator of (G/A)xi· 

Now we place ourselves in the situation discussed in the previous section and 
assume that X= Xr, where r is a torsion free normal subgroup of a Dyck group 
II of signature (e17 ... , en)· Also we assume that II is perfect. In this case we 
can choose representatives of C(Xr; G) taking for gi the images of the standard 
generators i'i of ii'. 
Theorem 4.1. Keep the notation ofCorollary3.8. Let E be astable vector bundle 
on Xr arising from a unitary representation p: ii' -t SU(r). Then, for any integer 
k, 

Trace(p(gf}) = Trace((¢9f)x,: Ex, -t Ex.), i = 1, ... ,n. 

Proof. This follows easily from the construction of E by means of a unitary 
representation of ii'. 

In the case r = 2 an algorithm for computations of the traces Trace(p(gf)) of 
a unitary representation p of the group ii' of signature (e17 e2, e3) is described in 
[FS], p. 111-112. In our case (e1, e2, e3) = (2, 3,p = 6n + t:) we can use the values 
b = 1, b1 = 1, b2 = 1, b3 = n iff= 1 and b = 2, b1 = 1, b2 = 2, b3 = 5n- 1 iff= -1 
in the presentation (3.4) of the group ii'. Following the example from loc. cit. on 
p. 112, we get the following 
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Theorem 4.2. Let (et, e2, e3) = (2, 3,p) and let p: TI'---+ SU(2) be an irreducible 
representation. Write p = 6n + f, where f = ±1. Then 

[Trace(p('h)), Trace(p(,:Y2)), Trace(p(,:Y3))] = [0,E,2costk)], p 

where k is an integer with ( -1)k+n = f between n + 1 and 5n iff= 1 and between 
n and 5n - 1 iff = -1. 

Recall that we have 2n unitary irreducible representations p: TI' ---+ SU(2) and 
this agrees with the number of all possible triples of the characters. 

The conjugation classes of the unitary matrices p('Yi) are represented accord-
ingly by 

[ ( ~ ~i) , ( e<3-~7ri/6 e-(3~)7ri/6) , ( ek~i/p e-k~i/p) ] . 

So raising the corresponding matrices in powers and computing the traces, we get 
the expression for the traces of powers of the generators 'Yi and of the central element 
t. 

In fact, following A. Adler, we can easily write down actual matrices defining 
the representation p: 

p(gl) = ( ~i ~) , 

- ( ! - i cos( k;) v,-i---c-o-s2-( :-k;-) ) 
p(g2) = f , -Ji -cos2(k;) ! +icos(~) 

p(g3) = 2 p v 4 p • ( 
- i + cos( k1r) -i I !1 - cos2 ( k1r)) 

-iJi -cos2(k;) ~ +cos(k;) 

Corollary 4.3. Let E be a stable rank 2 SL(2, 1Fp)-linearized bundle on X(p) with 
trivial determinant. Let [0, f, 2 cos( 1rPk)] define its isotropy representations and let 
(a, -a) be a sequence of exponents of E. Then a is an odd negative integer, and 

an = ±k mod p, a = ±1 mod 6. 

Proof. Let 
0---+ _xa---+ E---+ _x-a---+ 0 

be the extension defined by the sequence of exponents (a, -a). Since E is stable 
of degree 0, a must be negative. From Corollary 3.10 we know that a is odd. 
Clearly the isotropy representation of E is determined in terms of the isotropy 
representation of .xa. We know that .X2P-12 = Kx(p)· The isotropy representation 
of the cotangent line bundle K x is easy to find. Any generator gi of the isotropy 
group Gx, acts as a primitive ei-th root of unity. Let us take it to be e21rije;. Then 
the isotropy representation of .X at (xi, gi) is given by some 2ei-th root of unity 
e8 '1ri/e;, 0 ~ si < 2ei, which satisfies (p- 6)si = 1 mod ei. We easily find 

Si = { 

1, 3 if i = 1 
32<, 32< + 3 if i = 2 
n, n + p if i = 3, f = 1 
p - n, 2p - n if i = 3, f = -1. 

(4.1) 
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This shows that [2 cos(a811r /2), 2 cos(a8211" /3), 2 cos(a8311" fp)] = [0, t:, 2 cos(k1r fp)]. 
We check that the first entries coincide automatically because a is odd (this also 
gives another proof of the fact that a is odd). The equality 2 cos(a8211" /3) = t: easily 
gives a = ±1 mod 6 and 82 = 32<. Here we use that a must be odd. To satisfy 
cos(a831rjp) = cos(k1rjp) we must have a83 = ±k mod 2p. If t: = 1, we have k + n 
is even. This easily gives 83 = n and an = ±k mod 2p. Since an = ±k mod 2 when 
t: = 1, we get the condition an= ±k mod p. If t: = -1, we have k + n is odd. This 
gives 83 = p - n and a(p - n) = ±k mod 2p. Again a(p - n) = ±k mod 2 when 
t: = -1. This gives again an = ±k mod p. This proves the assertion. 

The proof also gives the following information about the isotropy representation 
of the line bundle..\ (proven by other methods in [AR]): 

Corollary 4.4. Let (8t, 82, 83) be the triple of integers defining the isotropy rep-
resentation of..\ as in (4.1). Then 

{ ;~~ 
8i = 

n 
p-n 

iii= 1 
iii= 2 
iii= 3, € = 1 
if i = 3, € = -1. 

5. The Adler-Ramanan-Klein bundle 

It was introduced by A. Adler and S. Ramanan ([AR], §24). It arises from 
an interpretation of Klein's quartic equations defining the z-curve X(p) (see [KF], 
p.268). We refer to [AR] and [Ve] for a modern treatment of these equations. We 
shall prove that this bundle is stable when p = 7 and find its sequence of exponents. 

Recall that 81(2, 1Fp) has two non-isomorphic irreducible representations of di-
mension ~ and two non-isomorphic representations of dimension E:}!. When 
p = 3 modulo 4 the two representations from each pair are dual to each other. One 
can combine one representation from each pair to form the sum isomorphic to a Weil 
representation V of 81(2, 1Fp) of dimension p (see, forexample, [AR], Appendix 1). 
The nontrivial central element -1 of S1(2,1Fp) decomposes this representation in 
even and odd part of dimension (p + 1)/2 and (p- 1)/2, respectively. We denote 
these representations by V+ and V_. The z curve X(p) lies in the projectivization 
of V_. The A-curve X (p) lies in the projectivization of V_. 

Combining the interpretation of Klein's equations ([Kl2], p.195) from [AR], 
Theorem 19.7, p. 56, together with a result from [Ve], Theoreme 10.6, p. 145, we 
obtain the following result: 

Theorem 5.1. There is an isomorphism of representations ofS1(2,1Fp): 

Let v2 : JP>(V_) --+ JP>(S2 (V_)) be the Veronese embedding given by the complete 
linear system of quadrics in JP>(V_). Identifying JP>(S2(V_)) with JP>(A2 (V+)) by means 
ofr, we have 

X(p) = v2 1 (G(2, V+)), 
where G(2, V+) is the Grassmann variety of 2-dimensional linear subspaces in V+· 
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Definition. The Adler-Ramanan-Klein bundle (the ARK bundle for brevity) over 
X(p) is the inverse image of the tautological rank 2 bundle over G(2, V+) under the 
map 112: X(p)---+ G(2, V+)· 

Theorem 5.2. The determinant of the ARK bundle E is equal to >.3-P. It is 
stable provided the following condition is satisfied: 

H 0 (X (p), ). a) does not contain V-t as in irreducible summand if a ~ 9 ( *) 

Proof. Since the dual bundle E* embeds X(p) in G(2, V+) and the correspond-
ing Pliicker embedding of X (p) is given by quadrics we obtain that the determinant 
of E* is equal to ).P-3 . Assume E is not stable. Then E* is unstable too and con-
tains a destabilizing subbundle of degree 2:: 9deg >.. By [Se], Proposition 2, p. 
15, one can always choose a unique maximal destabilizing subbundle. This implies 
that E* contains a G-invariant subbundle isomorphic to ;.a with a 2:: 9. Then 
E* has a quotient of the form >.a, where a ~ 9. Since E* defines an embbeding 
in G(2, V+) it is spanned by the subspace V-t of its space of global sections. This 
shows that ;.a is spanned by V-t too. This implies that there is a SL(2, lFp)-invariant 
non-trivial linear map v_; ---+ H 0 (X(p), >.a). This contradicts the assumption of the 
theorem. 

Remark 5.3 It is conjectured (see [AR], p.106) that 

v_: = H 0 (X(p), ).(P-3)12), V-t = H 0 (X(p), ).(P+l)/2). 

This makes plausible that (*) is always satisfied. In fact, together with Adler and 
Ramanan, I believe that H 0 (X(p), >.a)= 0 for a< 9 and H 0 (X(p), >.~) ~ V_ 
(see the "WYSIWYG" Hypothesis in [AR], p.106). 

6. Example: p = 7, r = 2 

To simplify notation X will denote in this section the modular curve X(7). We 
know from Theorem 3.11 that there exist exactly two non-isomorphic stable rank 
2 bundles with trivial determinant. Let us prove it without using topology. We 
use the following well-known description of the moduli space of semi-stable rank 2 
bundles over a compact Riemann surface of genus 3 (see [NR]): 

Theorem 6.1. Let SU x (2) be the moduli space of semi-stable rank 2 bundles with 
trivial determinant over a compact Riemann surface of genus 3. Then there is an 
embedding <P: SUx(2) <---+ IP'(H0 (J2 (X), 0(28))) ~ IP'7 , where J 2 (X) is the Picard 
variety of divisor classes of degree 2 and e is the hypersurface of effective divisor 
classes. For every E E SUx(2) its image is a divisor in IP'(H0 (J2 (X),0(28))) = 
1281 whose support is equal to the set of L E J 2 (X) such that H 0 (X, E ® L) =f. 0. 

Lemma 6.2. Let V6 be the unique irreducible 6-dimensional representation of 
PSL(2; lF7 ). Then there are isomorphisms ofPSL(2, JF7 )-representations 

V6 ~ V6* ~ S2 (v_) ~ A2(V+), 

S2 (V6) ~ v6 EB S4(v_:). 

Proof. The last isomorphism in the first line was observed already in Theorem 
5.1. The Veronese map IP'(V_) ---+ IP'(S2 (V_)) ~ IP'(V6 ) is obviously PSL(2,JF7)-
equivariant. The isomorphism in the second line is obtained by considering the 
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restriction of the linear system of quadrics in IP'(V6) to the Veronese surface, the 
image of the Veronese map. The subspace V6 is the subspace of quadrics vanishing 
on the Veronese surface. The quotient space is isomorphic to the space of quartics 
in JP>(V_ ). 

Corollary 6.3. Let X = X(7) be the Klein quartic. Then the group G = 
PSL(2, lF7) acts naturally on SUx(2) and has exactly three fixed points represented 
by the trivial bundle and two stable bundles. 

Proof. By construction the map~ from Theorem 6.1 is PSL(2, lF7 )-invariant. So 
the group SL(2, lF7) acts linearly in H 0 (J2 (X), 0(28)). Consider the embedding 
of X in IP'5 given by the linear system I2Kxl· Since H 0 (X,0(2Kx)) = S 2 (V~) 
we see from Lemma 6.2 that X is embedded equivariantly in IP'(V6) where % is 
the unique irreducible 6-dimensional representation of PSL(2, lF7 ). We have the 
restriction map 

r: H 0 (J2 (X), 0(28))- H 0 (8, Oe(28)) 
whose kernel is one-dimensional and is spanned by a section with the divisor of 
zeroes equal to 28. This gives the decomposition of representations 

(6.1) 

Now one can show that there is a canonical isomorphism of representations 

H 0 (8, 0 8 (28)) ~ H 0 (1P'(V6),Ix(2)), 

where Ix is the ideal sheaf of X embedded in the space JP>(V6) (see (BV], 4.12) 
and H 0 (1P'(V6),Ix(2)) is accordingly the space of quadrics vanishing on X. Since 
X c JP>5 is projectively normal the restriction map 

H 0 (1P'(V6), 0(2))- H 0 (X, Ox(4Kx)) 

is surjective and its kernel is isomorphic to H 0 (1P'(%),Ix(2)). This gives an iso-
morphism of representations 

S2 (V6) ~ H 0 (1P'(V6),Ix(2)) EB H 0 (X, Ox(4Kx )). 

Since S 4 (V~) ~ H 0 (X, Ox(4Kx )) EB C, we obtain from Lemma 6.2 

H 0 (1P'(V6),Ix(2)) ~ V6 EB C. 

Collecting everything together we get an isomorphism of SL(2, IF7 )-representations 

(6.2) 

This shows that the set of fixed points of PGL(2, lF7) in the linear system 1291 = 
JP>(H0 (J2 (X), 0(28))) is equal to the line f = IP'(C EB C). It remains to see that 
it intersects SU x (2) at 3 points. One point corresponds to the trivial bundle and 
the other two to stable bundles. Let C be one of the trivial one-dimensional sum-
mands in H 0 (J2(X), 0(28)) which corresponds to Ker(r). It follows from the 
construction of~ that the corresponding point in 1281 is equal to the divisor 28 
which is the value of ~ at the trivial bundle. The map r defines a projection map 
1281 \ {28} - IP'(H0 (1P'(V6),Ix(2))) with the center at the point defined by the 
divisor 28 E 1281. The line f is the closure of the fibre of this projection over the 
PSL(2, 1Fp)-invariant quadric containing the curve X. This quadric can be identified 
with the Grassmanian G(2, 4) in the Plucker space JP>5. By Proposition 1.19 and 
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Theorem 3.3 of [BV] the intersection (f \ {26}) n SUx(2) consists of two stable 
bundles. One is the the restriction to X of the universal quotient bundle twisted 
by>. - 1 and another is the dual of the restriction of the universal subbundle twisted 
by >.. This proves the assertion. 

So we know how to construct the two stable G-invariant bundles on X(7) 
with trivial determinant. We embed X(7) in IP'(S2(V_)*) = IP'5 by I2Kxl· Then 
identify the representations S2(V_) and A2(V+), consider the Grassmanian G(2, V+) 
embedded by the Plucker map, and then restrict to X(7) the universal bundle and 
the universal subbundle and twist them to get the trivial determinant. The ARK 
bundle corresponds to the universal subbundle. 

The next lemma must be a special case of computations from [AR], pp. 101-
105, however some typographical errors make it an unsuitable reference. We refer 
to [A3] for the corrections and more general results. 

Lemma 6.4. There is an isomorphism of representations of SL(2, lF 7): 
ifk = 3 
ifk = 5 

ifk = 7 
ifk = 9 

where V8 and VJ are the 8-dimensional and the 6-dimensional irreducible represen-
tations of the group SL(2, lF 7) on which -1 does not act identically. 

Proof. By a theorem of H. Hopf (cf. [ACGH], p.108), given any linear map 

f:A®B-+C 

where A, B, C are complex linear spaces and f is injective on each factor separately, 
then 

dimf(A ®B) 2:: dim A+ dimB- 1. 
We apply it to the map 

Ho(X, >.2) ® Ho(X, >.3) = v_: ® V~ -+ Ho(X, >.5). 

Using Table 3, Appendix 2, we find that V~ ® V~ ~ V+ ~ VS, Thus H 0 (X, >.5) 
must contain V8 as its direct summand. By Riemann-Roch, it must be equal to V8. 
Similarly, considering the map 

H0 (X, >.2) ® H0 (X, >.5) = V~ ® V8-+ H0 (X, >.7 ) 

we get that its image is of dimension 2:: 10. Since, by Riemann-Roch, H0 (X, >.7) 
is of dimension 12, and H0 (X, >.5) does not have vectors invariant with respect to 
SL(2, lF 7) (use that -1 acts non-trivially) , we obtain that the multiplication map 
is surjective. Using Table 4, Appendix 2, we find that 

v_: ® V8 = V+ ~ V~ ~ V~* ~ V8. 

This gives us two possibilities: H 0 (X,>.7 ) = V+ ~ V8 or H 0 (X,>.7 ) = V~ ~ V~*. If 
the second case occurs, we consider the map H0 (X, >.5) ®H0 (X, >.7)-+ H0 (X, >.12). 
Here, we find that the image is of dimension 2:: 19. We know the direct sum decom-
position for the 22-dimensional SL(2, JF7 )-module H0 (X, >.12) (see Appendix 1). It 
tells us that it contains exactly one one-dimensional summand. However, Tables 3 
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and 4 from Appendix 2 tell us that H 0 (X, .X 5 )®(V~EBV~*) = V8®(V~EBV~*) does not 
contain one-dimensional summands. Hence the one-dimensional summand must be 
in the cokernel of the multiplication map. But since the cokernel is of dimension 
S 3 and 81(2, lF7) does not have two-dimensional irreducible representations, we 
get a contradiction. Therefore H0 (X, .X7 ) = V+ EB V{ 

Finally I.X9 1 is cut out by the linear system of cubics in IP(V+)· We know from 
Table 2, Appendix 1, that S3 (V+)* = V+ EB V-f' EB V~ EB V~*. The linear system 
of cubics spanned by the polars of the unique invariant quartic in IP(V+) realizes 
the summand V+. The A-curve X(7) is contained in a linear system of cubics 
isomorphic to V_f'. This implies that H0 (X, .X9 ) ~ V+ EB V~ EB V~*. 

The next lemma concerns the even powers of .X: 

Lemma 6.5. Let 'R be the representation ring of 81(2, lF7 ). Then we have the 
following identity in the ring R[[t]]: 

00 00 

n=O n=O 

Proof. It suffices to remark that the ring E:::"=o H0 (X(7), .X2n) is the coordinate 
ring of the Klein quartic, and the ring E:::"=o sn(V_)* is the coordinate ring of the 
projective plane. 

Theorem 6.6. The ARK bundle E over X(7) is stable and is isomorphic toN*® 
.X 5 , where N is the normal bundle of the A-curve X (7) in .IP(V+) = IP3 • 

Proof. The stability of E immediately follows from Theorem 5.2 since we have 
H0 (X(7), .X2 ) = V_. By definition of the normal bundle we have the following exact 
sequences of 81(2, lF7 )-linearized bundles over X 

0 --t .X - 2 --t T --t N --t 0, 

0 --t Ox' --tV+® .X3 --t T --t 0, 
where T is the tangent bundle of p3. Combining them together we get an exact 
sequence 

(6.3) 
where 

(6.4) 
First we see that 

det(N) = _xl2 ® det p-1 = _xl2 ® _x2 = _xl4. 

Twisting (6.3) by .x-5 , we get 

0 --t F ® .x-5 --tV+® .x-2 --t N' --t 0, (6.5) 

where N' = N ® .X - 5 with det N' = .X 4 = K,k. I claim that N' = E*. Taking the 
exact sequence of cohomology for (6.5) we get 

H0 (X, N') = Ker(H1 (X, F ®.X - 5 ) --t H 1 (X, V+ ®.X - 2 ). (6.6) 

Tensoring (6.4) with .x-5 and taking cohomology we obtain 

0 --t H 1 (X, .X - 5 ) --t H 1 (X, F ®.X - 5 ) --t H 1 (X, .X - 7 ) --t 0. (6. 7) 
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Everything here is in the category of SL(2, IF7 )-modules. By Serre's duality 

H 1 (X,).. - 5 ) ~ H0 (X,).. 7)*, H 1 (X,).. - 7 ) ~ H0 (X, )..9 )*. (6.8) 

Applying Lemma 6.4 to (6.8) and using (6.7), we get 

H 1(X,F ® )..-5 ) ~ v.;: ffi v.;: ffi v~ ffi v~ ffi v~*. 

Now, using Table 3 from Appendix 2 and Lemma 6.5, we obtain 

H 1(X, V+ ® )..- 2 ) = V+ ® H 1(X, )..- 2 ) = 

(6.9) 

v+ ® H 0 (X, )..4)* = v+ ® v6 = v.;: ffi v~ ffi v~ ffi v~*. (6.10) 
The sequence (6.6) and a comparison of (6.9) and (6.10) gives us a summand v.; 
in H0 (X, N') and defines a nonzero map of vector bundles 

'¢ : Vf: ® Ox --+ N'. 

Assume the image of '¢ spans a line subbundle. Then N' contains a line subbundle 
L of the form )..a. Since V+ is irreducible, it maps injectively into H0 (X,Aa), hence 
a ~ 3. In fact, using Lemmas 6.4 we find that a = 3 or a ~ 11. Using the 
exact sequences (6.3) and (6.4) it is easy to see that dimH0 (X, N) = 24. Since 
).. a+5 C N, we see that the case a ~ 11 is impossible. So a = 3. This also gives 
that L is saturated in N', i.e. the quotient NIL is torsion free (otherwise we find 
a G-invariant line subbundle of N' strictly containing )..3 ). Since det N' = )..4, we 
obtain that N' I L ~ )... But then we have an extension 

0--+ )..8 --+ N --+ )..6 --+ 0. 

This easily gives, using Lemma 6.5 and Table 2 from Appendix 1, that H0 (X, N)0 = 
h0 (X, )..6 ) 0 ~C. The exact sequence (6.4) gives H 0 (X, F)0 = C, H 1(X, F)0 = 0, 
and the exact sequence (6.3), together with the decomposition V+ ® H 0 (X, )..3 ) = 
V+ ® V_; = C ffi V1 ffi Vs from Table 3 of Appendix 2, gives that H0 (X, N) 0 = 0. 

This contradiction proves that the image of '¢ generates a rank 2 subbundle 
of N'. Thus the cokernel of '¢ is concentrated over a finite set of points in X (7) 
contained in the set S of zeroes of s 1\ s' for some sections of A2 (N'). However, 
A2 (N') = K~ and hence S consists of at most 8 points. Since Sis obviously G-
invariant, this is impossible. So '¢ is surjective. This implies that N' defines an 
equivariant embedding of X(7) in G(2, V+)· The composition of this embedding 
with the Plucker map is given by I2Kxl and, hence is defined uniquely (since there 
is only one equivariant isomorphism S 2(V_)* ~ A2 (V+)*). This shows that the 
restriction of the universal subbundle on the Grassmannian to the image of X(7) 
coincides with the ARK bundle. Hence N'* is this bundle. 

Remark 6. 7 Since the condition of stability is open we get a curious fact that the 
normal bundle of a general sextic curve of genus 3 in JP3 is stable. I do not know 
whether it was previously known. 

Theorem 6.8. Let E be the ARK bundle over X(7). Then there is an exact 
sequences of SL ( 2, IF 7) -linearized bundles: 

0--+ E ® )..-3 --+ V_ ®Ox--+ ).. 10 --+ 0, 

0 --+ ).. - 11 --+ E ® ).. --+ ).. 11 --+ 0. 

(6.11) 

(6.12) 
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Proo£ Let N be the normal bundle of the A-curve X(7). Tensoring (6.3) with 
A - 2 we find the exact sequence 

0 --+ F ® A - 2 --+ V+ ® A --+ N ® A - 2 --+ 0. 

Taking cohomology we easily get 

H 0 (X, N ® A- 2 ) = H 1 (X, F ® A-2 ) = H 1 (X, A- 2 ) EB H 1 (X, A-4 ) = 

H0 (X, A4)* EB H0 (X, A6 )* = V6 EB v_: EB V7. 

(6.13) 

(6.14) 
This defines a map of sheaves 'lj; : V..:': ® Ox --+ N ® A - 2 • Assume that its image 
generates a line subbundle. Using the same argument as in the proof of Theorem 
6.6 we get that N ® A - 2 fits in the exact sequence 

0--+ A2 --+ N ® A-2 --+ As--+ 0. 

Taking the global sections and using (6.14) we obtain that the representation V6EBV7 
is a direct summand of H 0 (X, As) ~ V6 EB V8 . This is impossible. Thus the image 
of 'lj; generates a sub bundle of rank 2 of det N ® A - 2 = A 10 • Since there are no 
G-invariant subsets in X(7) of cardinality ~ deg A10 = 20, we conclude that this 
map is surjective. Thus we have an exact sequence 

0--+ A- 10 --+ v_: ®Ox--+ N ® A-2 --+ 0. 

After dualizing and using Theorem 6.6, we obtain the sequence (6.11). 
To get (6.12), we twist (6.13) by A6 to obtain 

0 --+ F ® A 4 --+ V+ ® A 7 --+ N ® A 4 --+ 0. (6.15) 

The exact sequence 

gives 
H 1(X, F ® A4 ) = H 1(X, A2 ) = C, H0 (X, F ® A4 ) = V6 EB v_:. 

Since H 1 (X, V+ ® A7 ) = 0, we obtain that H0 (X,N ® A4 ) is mapped surjectively 
onto H 1(X, F® A4 ), and hence contains a G-invariant section. This section defines 
a non-trivial (and hence injective) map of sheaves Ox --+ N ® A4 and hence an 
injective map 

A-ll--+N®A-7 =E®A. 
The cokernel of this map does not have torsion since otherwise its support will be 
a G-invariant subset of cardinality ~ deg All = 22. The smallest cardinality of a 
G-invariant set on X(7) is 24. Thus the cokernel is isomorphic to All. 

Remark 6.9 The exact sequence (6.11) can be defined as follows. We have a 
linear system of curves of degree 5 which are polars of a unique G-invariant sextic 
in JP'(V_). This defines a map v_ --+ H 0 (X, Ox(K]c)) = H 0 (X, A10) and also a 
surjective map V_ ®Ox--+ A10 • 

Remark 6.10 Let E be the ARK bundle over X(7). The ruled surface IP'(E) can 
be projected to IP'(V+) with the image equal to the tri-secant scroll S of the A-curve 
X(7). Recall that any even-theta characteristic () on a canonical curve X of genus 
3 defines a (3-3)-correspondence Ron X (see, for example, [DK], p.277): 

R = {(x, y) EX x X : JO + x- Yi =F 0}. 
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The set R(x) consists of points in the unique positive divisor equivalent to 0 + x. 
Let X' be the image of X in JP3 under the map given by the complete linear system 
i30i. Since i30- (0 + x)i = i20- xi = iKx -xi is a pencil, we obtain that the 
image of R(x) lies on a line< R(x) >. This is a tri-secant line of X'. When x runs 
over the set of points of X, the tri-secant lines form a scroll S containing X' as a 
singular curve of multiplicity 3. The map x --t< R(x) > defines an embedding of 
X in G(2,4). This scroll also can be described as follows (see (SR], pp. 179-180, 
or (Hu], pp. 294-306). The linear system of cubics through X' is of dimension 3 
and defines a birational transformation of JP3 to JP3 . It factors through the blow-up 
Y --t JP3 of X' and the blow-down of the proper inverse transform S' of S to X' in 
another copy of JP3 . This shows that S' is isomorphic to the projectivization of the 
normal bundle of X'. In our case the tri-secant scroll S is a surface in JP(V+) defined 
by an invariant polynomial of degree 8 (see (El], pp.202-205). Also in our case the 
correspondence Ron X(7) is a modular correspondence T2. This was discovered 
by F. Klein (Kl3], footnote 16, pp.177-178 (see also (A2]). 

What is the second stable G-invariant bundle with trivial determinant over 
X(7)? It is very well-known. It can be described, for example, as follows. Embed 
X(7) into the Jacobian Jac1(X) and take the normal bundle tensored with .x-1 . In 
other words, consider a natural bijective map V~ --t H 0 (X, 0 x ( K x)). It defines 
an exact sequence 

0 --t E' --t V~ ®Ox --t >.2 --t 0. (6.16) 
Then E = E' ® >. is a G-invariant rank 2 bundle with trivial determinant. 

Another way to see it is to restrict the tangent bundle of JP(V_) to the Klein 
quartic. This bundle is E ® >.3 • 

Theorem 6.11. Let E = E' ®>.,where E' is defined by the exact sequence (6.16). 
Then Eisa stable rank 2 G-invariant bundle over X(7) which admits a non-split 
G-invariant extension 

0 --t .x-5 --t E --t >.5 --t 0. (6.17) 

Proo£ Twisting (6.11) by >.6 we obtain the exact sequence 

o- E ® >.5 - v_: ® >.6 - >.8 - o. (6.18) 

This gives 

~(X, E ® >.5) = Ker(V_:" ® H0 (X, >.6) --t H0 (X, >.8 )) = 
Ker(V_:" ® (V_ EEl V1) --t V6 EEl Vs), 

where v7 and Vs are the 6-dimensional and the 8-dimensional irreducible representa-
tions of the group PSL(2, JF7 ). Since V~ ® V_ contains a one-dimensional summand, 
we find a G-invariant section of E ® >.5 • This gives a G-invariant inclusion >. - 5 in 
E, and hence the extension (6.17). 

Now let us check the stability of E. Assume that E is not stable. Then it must 
contain a G-invariant destabilizing subbundle .xa for some a ;::: 0. Twisting (6.16) 
by >.1-a we obtain an extension 

o --t E ® .x-a --t y_ ® .x1-a --t .x3-a --tO, 

where H0 (X, E ® .x-a) =I 0. However H0 (X, V_ ® >.1-a) does not have SL(2, JF7 )-
invariant sections when a ;::: 0. This proves that E is stable. 
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We denote by E(-5,5) and E(-11 ,11 ) the two non-isomorphic stable G-invariant 
rank 2 bundles with trivial determinant over X(7) with corresponding exponential 
sequences. Notice that the exponential sequences agree with Theorem 4.2 and 
Corollary 4.3. As we know from the proof of Corollary 6.3 the bundles E(-11 ,11) 

and E( _5,5) arise as the restrictions of the universal subbundle and the universal 
quotient bundle on the Grassmanian G(2, V+)· In other words they are dual in the 
following sense: there exists an exact sequence 

(6.19) 

We have seen already that E(- 11 ,11 ) ®>.-2 is the ARK bundle and its projectiviza-
tion is a non-singular model of the tri-secant scroll of the A-curve X(7). The 
projectivization of the bundle E(-5,5) ® >.-2 = (E(-5,5) ® >.2)* is a nonsingular 
model of a scroll S* in the dual space v_;. We can change the roles of V+ and v_; 
by changing the action of PSL(2,1F7 ) on X(7) via an outer automorphism of the 
group. Then we consider S* as a scroll of degree 8 in the A-space invariant with 
respect to PSL(2, IF 7 ). It is equal to the Hessian of the quartic G-invariant surface 
in Jlll(V+) (see [El], pp.202-205). 

Remark 6.12 There are some natural non-stable G-invariant rank 2 bundles over 
X(7). For example, the bundle F which is defined by the (non-split) exact sequence 
(6.4). Tensoring with>. we see that F is unstable. A sequence of exponents ofF®>. 
is equal to (1, -1). The same bundle can be obtained by a construction similar to 
the construction of E(-5,5) and E(-11 ,11). Using the polar linear system of the Klein 
quartic we realize V3 as a submodule of S3(V3)* and obtain an exact sequence 

0--+ E'--+ V_ ®Ox--+ >.6 --+ 0. 

The bundle E = E' ® >.3 is a G-invariant rank 2 bundle with trivial determinant. 
To see that it is unstable we use that 

Ker(V_ ® V~--+ V6 EB Vs) = Ker(C EB Vs--+ V6 EB Vs) :::>C. 
This shows that E contains >. as its subbundle. It is easy to see that the quo-
tient is the line bundle >. - 1 and the corresponding extension does not split. Since 
Ext1(>.- 1 , >.) = H 1 (X, >.2 ) = C, we obtain that E is isomorphic to F ® >.. 

1. Example: p = 7, r = 3 

We use the following result from [Bo], p. 214 (cf. Fig.3 on p.213): 

Theorem 7.1. Let p = 6n ± 1. The number of irreducible 3-dimensional unitary 
representation of the Brieskorn sphere E(2, 3,p) is equal to 3n2 ± n. All these 
representations are trivial on the center of 1r1 (E(2, 3, p)). 

Applying Theorem 3.7, we obtain 

Corollary 7.2. Letp = 6n±1 and G = PSL(2,1Fp)· There are exactly3n2 ±n non-
isomorphic G-stable rank 3 bundles with trivial determinant over X(p). Moreover 
each such a bundle admits a unique G-linearization. If p -:/:- 7 each G-stable bundle 
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of rank 3 and trivial determinant decomposable as the direct sum of stable bundles 
is stable (and hence indecomposable). 

Proo£ Only the last assertion does not follow immediately from Theorem 7.1 
and Theorem 3.7. Let us prove it. Suppose that E = tBEi is G-stable but not 
stable. Since E is G-stable we see immediately that each summand must be of 
rank 1 and of degree 0. Since there are no nontrivial G-invariant line bundles of 
degree 0 on X (p) we obtain that either E is trivial, and hence is defined by a 3-
dimensional representation of SL(2, 1Fp)· It is possible only for p = 7. In this case 
E must be trivial. 

Remark 7.3. As was pointed out to me by A. Adler the previous argument shows 
more: If G = SL(2,1Fp) has no nontrivial permutation representation of prime 
degree r then there is a bijection between the set of strictly semistable points in 
SUx(p)(r)0 and the set of irreducible representations of degree r of G. 

Let us assume p = 7. We need to exhibit four rank 3 G-stable vector bun-
dles with trivial determinant over X(7). This is easy. First of all we take the 
two rank 2 bundles E(-5,5) and E{-11 ,11 ) and consider their second symmetric 
powers S2(E(-5,5)), S2(E{-11,11))· The other two are obtained by considering the 
trivial bundles V_ ®Ox, V~ ®Ox with linearizations defined by two irreducible 
3-dimensional representations of G. It is easy to compute their sequences of expo-
nents (a1,a2,a3): 

Theorem 7.4. We have 

(a, a,, aa) ~ { 

(-10,0,10) 
( -22, 0, 22) 
(-2, -4,6) 
( -6, 4, 2) 

if E = S2(E{-5,5)) 

if E = S2(E{-n,n)) 
if E = v_ ®Ox 
if E= v~ ®Ox. 

Proo£ The first two sequences can be immediately computed from the known 
sequences of exponents of the rank 2 bundles. To compute the third sequence we 
use that H 0 (X, V_ ® >.2 ) = V_ ® V~ contains a trivial summand. This implies that 
E contains a G-linearized subbundle isomorphic to >.-2 . Using Theorem 6.11 and 
the dual of the exact sequence (6.16) we see that the quotient F is isomorphic to 
E( _ 5,5) ® >.. Now we use that ( -4, 6) is a sequence of exponents for E( _ 5,5) ® >.. By 
the sentence preceding Proposition 3.3, ( -6, 4, 2) is then a sequence of exponents 
for v~ ®Ox. 

Remark 7.5 The first two bundles correspond to unitary representations of the 
group 1r1 (E(2, 3, 7)) which arise from a representation p: 1r1 ---. S0(3) C SU(3). The 
remaining two bundles correspond to "additional" ([Bo], p.211) irreducible repre-
sentations. The new information here is that the additional representations factor 
through an irreducible representation of PSL(2, lF7 ). This was verified directly by 
H. Boden. 

We have a canonical exact sequence corresponding to the embedding of X(7) 
as the A-curve: 

0 ---> E' ---> v_; ® 0 x ---> >. 3 ---> 0 (7.1) 
Twisting by>. we obtain a rank 3 G-invariant bundle E with trivial determinant. 
One can show that E ~ S2 (E(-11 ,11))· 
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Similarly, the exact sequence 

0 ~ E' ~ V~ ®Ox~ )...9 ~ 0 

defined by the polar linear system of the SL(2, lF7 )-invariant quartic surface in the 
A-space defines the G-invariant rank 3 bundle E = E' ®)...3 with trivial determinant. 
Once can show that it is isomorphic to S2 (E(-5,5))· 

8. Example: p = 11, r = 2 

By Theorem 3.11 we expect to find four non-isomorphic PSL(2,1Fu)-invariant 
stable bundles of rank 2 with trivial determinant. Here we have of course the 
ARK bundle which is stable if one checks that v_; ¢. H 0 (X(11), )..a) for a ~ 4. 
Assume H 0 (X(11), )...4 ) contains V+. Since it contains already v_: we would have 
dim H 0 (X(11), )...4 ) ~ 11. This contradicts the Clifford theorem (see [ACGH), 
p. 107). The same theorem implies that v_; ¢. H 0 (X(11), )..a) for a ~ 2. So, it 
remains to verify that v_; ¢. H 0 (X(11), )...3 ). We use the following fact from the 
theory of algebraic curves (cf. [ACGH), Exercise E-1, p.198, there is a misprint in 
the formula, and I think some assumptions must be added too): 

Lemma 8.1. Let C be a compact Riemann surface of genus g and L be a line 
bundle on C of degree d ~ g- 1. Assume that the complete linear system ILl is of 
dimension r > 0 and base-point-free. Then 

2d ~ g + 2r- dimH0 (C,Kc ® L-2). 

Proo£ Let W,? denote the subvariety of Jacd(C) whose support is the set of 
line bundles M of degree d with dim H0 (M, L) ~ r + 1. By Proposition 4.2 of 
[ACGH], p. 189, we have the following formula for the dimension of the tangent 
space of WJ: 

dimTL(Wd) = g- dim Image J.Lo, (8.1) 
where 

J.Lo: H0 (C,L) ® H0 (C,Kc ® L- 1 ) ~ H 0 (C,Kc) 
is the natural map. Let V C H 0 (C,L) corresponding to a base-point-free subpencil 
of ILl. Applying the base-point-free pencil trick (loc. cit., p.126), we obtain that 
the kernel of the restriction of the map J.Lo to V ® H 0 ( C, Kc ® L - 1) is isomorphic 
toH0 (C,Kc®L- 2 ). Thus 

dim Image J.Lo ~ 2dimH0 (C,Kc ® L- 1)- dimH0 (C,Kc ® L-2 ). 

Using (8.1) and the Riemann-Roch Theorem we get 

0 ~ dimTL(Wd) ~ g- (2dimH0 (C,Kc ® L-1)- dimH0 (C,Kc ® L-2 ) = 

g- 2(dimH0 (C,L)- d -1 +g)+ dimH0 (C,Kc ® L-2 ) = 

-g- 2r + 2d + dimH0 (C,Kc ® L-2). 

This is the asserted inequality. 

Theorem 8.2. The ARK-bundle on X(11) is stable. 

Proo£ As we have noticed before we have to check that H0 (X ( 11), )... 3 ) does 
not contain v_; as a direct summand. Assume this is not true. Since deg )...3 = 15, 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



INVARlANT STABLE BUNDLES OVER MODULAR CURVES X(p) 93 

the complete linear system 1>-31 has no base points (otherwise we find a G-invariant 
subset of X(11) of cardinality ::::; 15). Applying the previous Lemma we have 

30 ~ 26 + 2dimH0 (X(11), >.3)- 2- dimH0 (X(11), >.4 ) ~ 36- dimH0 (X(11), ).4). 

This implies that dim H0 (X ( 11), >. 4 ) ~ 6. Since H 0 (X ( 11), >. 4 ) already contains V_ 
of dimension 5 we have dimH0 (X(11), >.4) ~ 10 (notice that H 0 (X(11), >.4)G = {0} 
since otherwise X contains a G-invariant subset of cardinality 20 which as is easy 
to see does not exist on X(11)). By Clifford's theorem dim 1>.4 1 < ~deg ).4 = 10. 
Thus dimH0 (X(11); >.4 ) = 10. The complete linear system l>-4 1 maps X(11) onto 
a curve C in IP9 . Its projection to JP4 given by the linear subsystem IV-I of 1>.4 1 is 
the Klein z-curve X(11) of degree 20 and genus 26. This implies that Cis also of 
degree 20 and genus 26. This contradicts the Castelnuovo bound for the genus of 
a curve of degree din pr([ACGH], p. 116): 

m(m -1) g:=; 2 (r-1)+me, 

where d- 1 = m(r- 1) + e for some positive integers m and e with 0::::; e < r- 1. 

Note that the assertion that H0 (X ( 11), ). 3 ) does not contain v_; was indepen-
dently checked by A. Adler by the methods of [AR], App. III (see [A4]). In fact he 
also shows that this assertion follows from the equality dim H 0 (X(11), >.4 ) = 5 and 
the latter is equivalent to the fact that there is only one G-equivariant morphism 
of X(11) onto a curve of degree 20 in JP4. 

Another potential candidate is the vector bundle defined by using the fact that 
the z-curve X ( 11) parametrizes polar quadrics of co rank 2 of the invariant cubic 
hypersurface W (see Example 2.9). This defines a bundle with determinant >.6 

which embeds X(11) in G(2, V_). The corresponding ruled surface in IP(V_) is the 
four-secant scroll of the z-curve X(11) of degree 30 (see [E2], p. 65). Similar to the 
tri-secant scroll of X(7) it is defined by a modular (4,4)-correspondence on X(11) 
(see [A2], Theorem 1, p.433). 

To introduce the third candidate, we use that the cubic hypersurface W admits 
a G-invariant representation as the Pfaffian hypersurface (see [AR], p.._ 164): 

0 v w X y z 
-v 0 0 z -X 0 

v2w + w2x + x 2y + y2 z + z2v = P f -w 0 0 0 v -y (8.1) 
-X -z 0 0 0 w 
-y X -v 0 0 0 
-z 0 y -w 0 0 

This representation is obtained by considering a linear map v _ __... S2 (V..:':) defined 
by the polar linear system of W and then identifying the representations 8 2 (V..:':) and 
A2 (V+)* (see Theorem 5.1). The cubic hypersurface W is equal to the pre-image of 
the cubic hypersurface in IP(A2 (V+)*) which coincides with the chordal variety C 
of the Grassmanian G(2, v_;). The latter carries a canonical rank 2 bundle whose 
fibre over a point t E C is equal to the null-space Lt c V+ of the corresponding 
skew-symmetric matrix. To get a bundle over X(11) we use the decomposition of 
PSL ( 2, IF 11 )-representations 

(8.2) 
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where V10 and V11 are 10-dimensional and 11-dimensional irreducible representa-
tions of PSL(2,1Fu) (see [He]). This decomposition allows us to project X(11) to 
IP'(V_) as a curve of degree 50. It turns out that the image of the projection is 
contained in the cubic W. This result is due to F. Klein [KF], p. 413, and is repro-
duced by A. Adler (see [AR], Appendix 3). This allows us to restrict the bundle E 
to obtain a G-invariant bundle over X(11). This bundles embeds X(11) in G(2, V+) 
by the linear system of quadrics spanned by the Pfaffians of order four principal 
submatrices of the skew-symmetric matrix from (8.1). So, the determinant of the 
bundle is equal to >. 8 . 

Note a beautiful result of M. Gross and S. Popescu [GP] who show that the 
cubic Wwhich establishes a natural birational isomorphism between the cubic W 
and a compactification of the moduli space of abelian surfaces with polarization of 
type (1, 11). Using this one could probably see in another way how X(11) embeds 
in IP'(V_) as a curve of degree 50. 

Finally one may try to consider the normal bundle of X(11) in the cubic W. 
I do not know yet whether any of the last three bundles is stable, nor do I know 
their sequence of exponents. I also do not know the sequence of exponents of the 
ARK-bundle. 

Appendix 1. Decompositions of sn(V_) and sn(V+) for p = 7 

It follows from the character table of the groups SL(2,1Fp) (see, for example, 
[D), vol. B, pp. 498-499) that SL(2, IF7) has eleven non-isomorphic irreducible 
representations. In the following we denote by Vk the irreducible representation of 
SL(2, IF 7) of dimension k and by V~ another representation of the same dimension 
which does not factor through PSL(2,1F7). We assume that 

v_ = v3, v+ = l/4. 

The following generating function was computed in [BI]): 

We have 

00 

Qv(t) = L dime HomPSL(2,1F7 )(V, sn(V_))tn. 
t=O 

1 + t21 

Qvl (t) = (1- t4)(1- t6)(1- tl4)' 
t + t1 + t11 + tl3 

Qv3 (t) = (1- t4)(1- t7)(1- tB)' 
t3 + t5 + t9 + tl5 

Qv3· (t) = (1- t4)(1- t7)(1- t8)' 
t2 +t8 

Qve(t) = (1- t2)(1- t4)(1- t7)' 
t3 

Qv7(t) = (1- t2)(1- t3)(1- t4)' 
t4 

Qvs(t) = (1- t)(1- t3)(1- t7) · 
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INVARIANT STABLE BUNDLES OVER MODULAR CURVES X(p) 95 

Using the similar arguments one can compute the generating function 

We have 

00 

Pv(t) = LdimcHomSL(2,1F7 )(V,Sn(V+))tn. 
t=O 

1 + t8 + tlO + t12 + t16 + t18 + t20 + t28 
Pvl (t) = (1- t4)(1- t6)(1- t8)(1- t14) ' 

t2 - t4 + t6 + 2t8 + t12 + 2t14 + 2t18 
Pva(t) = (1- t2)(1- t4)(1- t8)(1- t14) ' 

2t6 + 2t10 + t12 + 2t16 + t18 - t20 + t22 
Pva· (t) = (1- t2)(1- t4)(1- t8)(1- t14) ' 

2t4 + t8 + 2t10 + t12 + 2t16 
Pv6(t) = (1- t2)(1- t4)2(1- t14) ' 

t2 + t4 + 2t6 + 2t10 + t12 + t14 
Pvr(t) = (1- t2)(1- t4)(1- t6)(1- t8)' 

t4 + t6 + 2t8 + 2t12 + t14 + t16 
Pva(t) = (1- t2)2(1- t6)(1- t14) ' 

t - t3 + t5 + 2t9 - tll + t13 + t11 
Pv4(t) = (1- t2)2(1- t6)(1- t14) ' 

t3 + e - t9 + 2tll + es - t17 + t19 
Pv4·(t) = (1- t2)2(1- t6)(1- t14) ' 

t3 + 2t9 + t15 
Pv~(t) = Pv~· (t) = (1- t2)2(1- t4)(1- t14)' 

2t5 + e + t9 + t11 + t13 + 2t15 
Pv~(t) = (1- t2)2(1- t6)(1- t14) . 

A suspicious reader may check (for example using Maple) that 

Pv1 (t) + 3Pv3 (t) + 3Pv3• (t) + 6Pv6(t) + 7Pv7 (t) + 8Pv8 (t) + 4Pv4(t)+ 

4Pv4•(t) + 12Pv~(t) + 8Pv~(t) = f: dimSn(V+)tn = (1 ~ t4). 
n=O 

The generating functions Pv(t) and Qv(t) allows one, in principle, decompose 
any symmetric power sn(V~) or sn(V_;) in irreducible representations of SL(2, IF1 ). 
We give,a few examples: 

S2(Va)* = v6 
S3(Va)* = v3 + V1 
S4(V3)* = V1 +VB + Vs 
S5(V3)* = V3 + V3* + V1 + Vs 
S6(V3)* = V1 + 2 · v6 + V1 + Vs 
S7(Va)* Va+V3*+2·V7+2·Vs 
S8(Va)* = V1 + Vj* + 3 · V6 + V1 + 2 · Vs 
S9(V3)* = 2. v3 + 2. V3* + v6 + 3 . v1 + 2 . Vs 
S 10(V3)* = V1 + V3 + 4 · v6 + 2 · V1 + 3 · Vs 
S11 (V3)* = 2 · V3 + 2 · V3* + V6 + 4 · V1 + 4 · Vs 

Table 1: Decomposition of sn(vn 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



96 I. V. DOLGACHEV 

S 2 (V4)* = V3+ v1 
S3(V4)* = v4 + V,t + V6, + v;;': 
S4(V4)* V1+2·V6+2·V7+Vs 
ss(V4)* = 2 · V4 + 2 . V4* + 2 . v6' + 2 · V 6~ + 2 · Vs' 
S6(V4)* V1 + 2 · V3 + 2 · V3* + 2 · v6 + 5 · V1 + 3 · Vs 

Table 2: Decomposition of sn(vn 

To deduce from this the decompositions for H 0 (X(7), >.2n) = H 0 (X(7), Kx(7)) 
we have to use Lemma 6.5 which gives 

00 00 

n=O n=O 

Appendix 2. Tables for tensor products of representations of SL(2,1F7) 

We use the notation from Appendix 1. For brevity we skip V in the notation Vn. 
The following tables give the decompositions for the tensor products of irreducible 
representations of SL(2, lF 7). This was computed by hand from the known character 
table of the group SL(2, lF7) (see for example, [D], vol. B, pp. 498-499). However, 
one can also check these computations using one of the standard computer algebra 
programs (for example,GAP). 

v3 V3* v6 
v3 3* +6 1+8 3* + 7+8 
V3* 1+8 3+6 3+7+8 
v6 3* + 7 + 8 3+7+8 1+2·6+7+2·8 
v1 6+7+8 6+7+8 3 + 3* + 6 + 2 . 7 + 2 . 8 
Vs 3+6+7+8 3* +6+7+8 3 + 3* + 2 . 6 + 2 . 7 + 2 . 8 
V4 4* + 8' 6' + 6'* 4* + 61 + 6'* + 8' 
V4* 6' +6'* 4+8' 4 + 6' + 6'* + 8' 
v~ 4+6' +8' 4* + 6' + 8' 4 + 4* + 6' + 6'* + 2. 8' 
VJ* 4+6'* +8' 4* + 6'* + 8' 4 + 4 * + 6' + 6'* + 2 . 8' 
v~ 4* + 6' + 6'* + 8' 4 + 6' + 6'* + 8' 4 + 4* + 2. 6' + 2. 6'* + 2. 8' 

Table 1 
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v1 Vs 
v3 6+7+8 3+6+7+8 
V:* 3 6+7+8 3* +6+7+8 
v6 3 + 3* + 6 + 2 . 7 + 2 . 8 3 + 3* + 2 . 6 + 2 . 7 + 2 . 8 
v1 1 + 3 + 3* + 2 . 6 + 2 . 7 + 2 . 8 3 + 3* + 2 . 6 + 2 . 7 + 3 . 8 
Vs 3 + 3* + 2 . 6 + 2 . 7 + 3 . 8 1 + 3 + 3* + 2 . 6 + 3 . 7 + 3 . 8 
v4 4+4* +6' +6'* +8' 4 + 6' + 6'* + 2. 8' 
V4* 4+4* +6' +6'* +8' 4* + 6' + 6'* + 2. 8' 
V6 4 + 4* + 2. 6' + 6'* + 2. 8' 4 + 4* + 2. 6' + 2. 6'* + 2. 8' 
V6* 4 + 4* + 6' + 2. 6'* + 2. 8' 4 + 4* + 2. 6' + 2. 6'* + 2. 8' 
V/ 8 4 + 4* + 2. 6' + 2. 6'* + 3. 8' 2. 4 + 2. 4* + 2. 6' + 2. 6'* + 3. 8' 

Table 2 

V4 V4* V6 
v3 4* +8' 6' +6'* 4 + 6' + 8' 
V3* 6' + 6'* 4+8' 4* + 6' + 8' 
v6 4* +6' +6'* +8' 4+6' +6'* +8' 4+4* +6' +6'*+ 

2. 8' 
v1 4 + 4 * + 6' + 6'* + 8' 4 + 4* + 6' + 6'* + 8' 4 + 4* + 2. 6' + 6'* 

+2. 8' 
Vs 4 + 6' + 6'* + 2 . 8' 4 * + 6' + 6'* + 2 . 8' 4 + 4* + 2. 6' + 2. 6'* 

+2. 8' 
V4 3* +6+ 7 1+7+8 3+6+7+8 
V4* 1+7+8 3+6+7 3* +6+7 +8 
V6 3+6+7+8 3* +6+7+8 6+2·7+2·8 
V6* 3+6+7+8 3* +6+7+8 1+3+3*+6+7+ 

2·8 
V8 3* +6+ 7 + 2. 8 3+6+7+2·8 3 + 3* + 2. 6 + 2. 7+ 

2·8 

Table 3 

V6* V8* 
v3 4+6' +8' 4* +6' +6'* +8' 
V3* 4*+6'+8' 4 + 6' + 6'* + 8' 
v6 4 + 4* + 61 + 6'* + 2. 8' 4 + 4 * + 2 . 6' + 2 . 6'* + 2 . 81 

v1 4 + 4* + 6' + 2. 6'* + 2. 8' 4 + 4 * + 2 . 6' + 2 . 6'* + 3 . 8' 
Vs 4 + 4* + 2. 6' + 2. 6'* + 2. 8' 2. 4 + 2. 4* + 2. 6' + 2. 6'* + 3. 8' 
V4 3* +6+7+8 3* + 6+ 7 + 2. 8 
V4* 3+6+7+8 3+6+7+2·8 
V6 6+2·7+2·8 3 + 3* + 2 . 6 + 2 . 7 + 2 . 8 
V6* 1 + 3 + 3* + 6 + 7 + 2 . 8 3 + 3* + 2 . 6 + 2 . 7 + 2 . 8 
V8 3 + 3* + 2 . 6 + 2 . 7 + 2 . 8 3 + 3* + 2 . 6 + 3 . 7 + 3 . 8 

Table 4 
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ABSTRACT. Okubo algebras form a class of nonunital composition algebras 
with very interesting properties. The classification of these algebras was com-
pleted recently and presents a quite different behavior over fields of character-
istic three. The aim of this work is to show that this is not really so, since the 
construction of the Okubo algebras in characteristic three is a kind of limit of 
the one in other characteristics. 

1. Introduction 

On the set of trace zero 3 x 3 matrices over a field F containing a cubic primitive 
root w of 1 (hence the characteristic of F is supposed to be =F 3), Okubo [0] 
considered the new multiplication 

(1) 1 
x * y = JLXY + (1 - JL)yx- 3T(xy)1 

1-w 
where JL = - 3-, xy denotes the usual product of matrices and T denotes the trace. 
He realized that the algebra thus obtained, denoted by Ps(F), verifies 

(2) 

for any x, y, where n(x) = !T(x2 ) (which has sense even in characteristic 2 since 
T(x2 ) "can be divided by 2" for any x E sl(3, F)). Moreover, n is a strictly 
nondegenerate quadratic form on Ps(F) (i.e. the symmetric bilinear form obtained 
by polarization, given by n(x,y) = n(x+y) -n(x) -n(y), is nondegenerate), which 
permits composition: 

(3) n(xy) = n(x)n(y), 
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102 ALBERTO ELDUQUE 

for any x, y E Ps(F), so that Ps(F) is a nonunital composition algebra. Besides, 
the norm n is invariant ([001, Lemma II.2.3]): 

(4) n(x * y,z) = n(x,y * z) 

for any x, y, z E Ps(F). 
The algebra Ps (F) satisfies some very interesting properties. It is flexible ( ( x * 

y) * x = x * (y * x) 'Vx, y), Lie-admissible (that is, it becomes a Lie algebra with 
the commutator product [x, y]* = x * y- y * x, namely, the Lie algebra sl(3, F)) 
and simple, since so is the attached Lie algebra. It was termed the pseudo-octonion 
algebra in [OJ and its forms (that is, those algebras B over a field F such that the 
algebra obtained by extending scalars up to the algebraic closure F ofF, fJ = F®B, 
is isomorphic to Ps (F)) were called Okubo algebras [EM1]. 

Over fields F of characteristic 3, the pseudo-octonion algebra Ps(F) was defined 
in [002] by means of its multiplication table. A more conceptual, but equivalent, 
definition was given in [EP], borrowing ideas from [Pe], as follows: let C = C(F) 
be the algebra of Zorn's vector matrices 

C(F) = { ( ~ ~) : a,,B E F,u,v E F x F x F} 
with multiplication 

( a u ) (a' u' ) ( aa' + u · v' au' + ,B' u - v x v' ) 
v ,B v' ,B' = a'v+,Bv'+uxu' ,B,B'+v·u' 

where u · v and u x v denote the usual dot and vector product in V = F x F x F, 
let us take the endomorphism cp of V which permutes cyclically the canonical basis 
of V and define 

( ~ ~) r = ( v(~~)-1 u;) ' 
where cp* is the adjoint relative to th~ dot product. Then T is an automorphism of 
C(F) of order 3 and the algebra C(F) with the new multiplication given by 

is called the pseudo-octonion algebra and denoted too by Ps(F). Again the forms 
of P8 (F) are called Okubo algebras. This definition is actually valid in any charac-
teristic. 

Apart from Okubo algebras, there is just another family of nonunital compo-
sition algebras with invariant associated quadratic norm. They are obtained as 
follows: let C be any unital composition algebra (also termed Hurwitz algebra) 
of dimension ~ 2 (see [ZSSS, Chapter 2]) with norm n over a field F and let 
x ~---+ x = n(x, 1)1- x its standard involution. Then define a new multiplication on 
C by means of 

x *Y = xy 
for any x, y E C. The new algebra (C, *) thus obtained is called the para-Hurwitz 
algebra associated to C. Relations (2), (3) and (4) are easily verified for (C, *). 

Okubo algebras, together with para-Hurwitz algebras and some forms of two-
dimensional para-Hurwitz algebras comprise all the symmetric composition alge-
bras, that is, all the composition algebras with invariant norm (see [001], [002], 
[EP] and [E]). 
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OKUBO ALGEBRAS AND TWISTED POLYNOMIALS 103 

This property of the invariance of the norm makes it possible to study very 
nicely the classical phenomenon of triality by using the eight-dimensional symmetric 
composition algebras instead of the Hurwitz algebras (see (KMRT]). 

The last step in the classification of the symmetric composition algebras was 
given recently in (E], where the Okubo algebras over fields of characteristic 3 were 
determined, but in a completely different way to the path followed in other char-
acteristics. 

The next two results (Theorems 1 and 2) present the classification of the Okubo 
algebras. The first one shows the classification obtained in (EM3] over fields of 
characteristic :f. 2, 3, which was inspired in (F] and extended previous results in 
(EM2]. Actually, as remarked in (E], the arguments in (EM3], with some minor 
changes, are valid in characteristic 2 as well. Also, the result will be stated following 
(KMRT, (36.38)]. The second result will state the classification in characteristic 3 
obtained in (E], extending previous results in (EP]. 

In order to state Theorem 1, some notation is needed. Given a central simple 
associative algebra A of degree 3 over a field K, any element x E A satisfies its 
generic minimum polynomial: 

(5) Px(-X) = -\3 - T(x)-\2 + S(x)-\- N(x)l, 

for a linear form T (the trace), a quadratic form S, with 2S(x) = T(x) 2 - T(x2 ) 

(something that can be checked just for the algebra of 3 x 3-matrices over the alge-
braic closure and only for the diagonal elements, since the diagonalizable matrices 
form a Zariski dense subset), and a cubic form N over K. The set of trace zero 
elements will be denoted by Ao. Besides, if A is equipped with an involution J 
of the second kind, so that the subfield F of fixed elements of K by J satisfies 
that KIF is a separable field extension of degree two, then J will be said to be a 
Kl F-involution and H(A, J)o will denote the set of fixed elements of A by J with 
zero trace (which is an F-subspace, but not a K-subspace). Then: 

THEOREM 1. Let F be a field of characteristic :f. 3 and let w be a cubic primitive 
root of 1 (in an algebraic closure ofF). 

(i) If w E F then the Okubo algebras over F are, up to isomorphism, exactly 
the algebras ( Ao, *), where A is a central simple associative algebra over F 
of degree 3 and* is the multiplication given by (1). 
Two Okubo algebras over F are isomorphic if and only if so are the corre-
sponding central simple associative algebras. 

(ii) If w ~ F and K = F[w] then the Okubo algebras over F are, up to iso-
morphism, exactly the algebras ( H (A, J)o, *), where A is a central simple 
associative algebra over K of degree 3 equipped with a KIF -involution J 
and where * is again given by formula ( 1). 
Two Okubo algebras over F are isomorphic if and only if so are the corre-
sponding central simple associative algebras as algebras with involution. 

In both items of this Theorem, the norm n of the Okubo algebra is the re-
striction, either to Ao or to H(A, J)o, of -!S(x) (which equals ~T(x 2 ) if the 
characteristic is not 2). 

In order to state Theorem 2 (characteristic 3) some extra notation is needed 
too. Let a and {3 be two nonzero scalars in a field F of characteristic 3 and let 
pa,f3[x, y] be the (commutative and associative) algebra obtained as the quotient 
of the algebra F[X, Y] of polynomials in two variables by the ideal generated by 
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104 ALBERTO ELDUQUE 

X 3 - o: and Y 3 - /3. Here x and y denote the classes of the variables X and Y 
modulo this ideal. On pa,l3[x, y] consider the new multiplication determined by 
(see [E]): 

(6) 

Then for any u,v E pa,i3[x,y]0 ~r span(xiyj : 0 S i,j S 2, (i,j) =f. (0,0)), the 
product u o v decomposes as 

(7) u o v = n(u, v) + u * v 

with n(u, v) E F and u * v E pa,l3[x, y] 0 . Then 

THEOREM 2. Up to isomorphism, the Okubo algebras over a field F of char-
acteristic 3 are exactly the algebras (F"·i3[x,y]o,*) for nonzero scalars o: and f3 in 
F. 

The norm in the Okubo algebra (F"•I3[x,y]0 ,*) is given by n(u) = ~n(u,u) = 
-n(u,u), where n(,) is given by (7). The conditions for isomorphisms between 
two such algebras (Fa,/3 [x, y] 0 , *) and (F"' ,/3' [x, y]0 , *) are given in [E] in terms of 
the scalars o:, /3, o:' and /3'. It also turns out that all the Okubo algebras over fields 
of characteristic 3 have isotropic norm or, equivalently, there are no division Okubo 
algebras over these fields. 

In spite of the big difference in the results and methods of proof of both Theo-
rems above, it will be shown in the next section that the Okubo algebras over fields 
of characteristic =f. 3 with isotropic norm can be built starting with algebras of 
twisted polynomials and in that respect, the situation in characteristic 3 is a "kind 
of limit" of the isotropic case in other characteristics. This will allow us to give 
in section 3 a common multiplication table for the Okubo algebras with isotropic 
norm, depending on two parameters and valid over any field. 

2. Okubo algebras and twisted polynomials 

The idea behind the results in this section grew out of a conversation with 
professor M.A. Knus, to whom the author wants to express his appreciation, during 
a visit to the ETH at Ziirich. 

It consists of expressing the central simple associative algebras which appear 
in Theorem 1, giving rise to the Okubo algebras with isotropic norm, as quotients 
of a twisted polynomial ring. To begin with, let K be a field of characteristic 
=f. 3 containing a cubic primitive root w of 1 and consider the twisted polynomial 
ring Kw[X, Y], which is the usual polynomial ring but where the variables do not 
commute, but satisfy instead the relation 

YX =wXY. 

The center of Kw[X, Y] is the subring generated by X 3 and Y3 : K[X3 , Y3 ]. Now, 
given two nonzero scalars o: and f3 in K, let I a,/3 be the ideal generated by the central 
elements X 3 - o: and Y3 - /3, so that Ia,/3 = Kw[X, Y](X3 -a:) +Kw[X, Y](Y3 - /3). 
Let x andy denote the classes of X andY modulo Ia,/3 and denote by K~·i3[x,y] 
the quotient Kw[X, Y]j Ia,/3· 
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OKUBO ALGEBRAS AND TWISTED POLYNOMIALS 105 

Therefore, K~,f3 [x, y] is the unital associative K -algebra generated by x and y 
and subject to the relations x 3 = a:, y3 = (3 and yx = wxy (see for instance [Pi, 

Chapter 15], where this algebra is denoted by ( ;, ~) ) . 

In order to describe the central simple associative algebras in Theorem 1 which 
are related to the Okubo algebras with isotropic norm a Lemma is needed: 

LEMMA 3. Let (A,*) be any Okubo algebra with nonzero idempotents and 
isotropic norm n over a field F of characteristic =I 3. Then there is an element 
x E A such that n(x) = 0 and n(x, x * x) = 1. 

PROOF. By [EP, Theorem 3.5], there is a Cayley-Dickson algebra Cover F, 
with standard involution x f---t x and multiplication that will be denoted by juxtapo-
sition, equipped with an automorphism T of order 3 such that H = {a E C : a7 = a} 
is a quaternion subalgebra of C and A is isomorphic to the algebra 0 7 defined on 
C but with the new product: 

-1 
x * Y = xrflr . 

Moreover, under the isomorphism the norm of A corresponds to the norm of C as a 
composition algebra, which will also be denoted by n. In case H is a split quaternion 
subalgebra, that is, His isomorphic to Mat2(F) as composition algebras (the norm 
of the algebra of 2 x 2-matrices is the determinant), the element that corresponds 

to ( ~ ~) verifies n(x) = 0 and 

n(x, x * x) = n(x, x2) = n ( ( ~ ~) , ( ~ ~)) = I~ ~I = 1, 

as required. Otherwise H is a division algebra but C is split since the norm is 
isotropic. Then we may find an element v E H.l.. with 0 = n(1 + v) = 1 + n(v). 
Since T fixes elementwise Hand H.l.. = Hv, v7 = wv for some w E H such that 
w2 + w + 1 = 0 (because r 3 = 1). Hence the element x = -1- v verifies n(x) = 0 
and computing in C = H EB H v we get 

and 

x * x = ( -1 + wv)( -1 + w 2v) = 1- (w + w 2 )v + (w2w)v2 

= 1 + v + w2 = -w + v 

n(x,x*x) = n(-1- v,-w+v) = n(1,w)- n(v,v) = -1 + 2 = 1, 

as required. 

Now, the announced description: 

0 

THEOREM 4. Let F be a field of characteristic =I 3 and let w be a cubic primitive 
root of 1 (in an algebraic closure ofF): 

(i) If w E F and A is a central simple associative algebra of degree 3 over F then 
there are nonzero scalars a:, (3 E F such that A is isomorphic to F~,f3 [x, y]. 

(ii) If w rl. F, K = F[w] and (A, J) is a central simple associative K-algebra of 
degree 3, equipped with a K / F -involution J of the second kind, such that the 
norm of the associated Okubo algebra (H(A, J) 0 , *) is isotropic, then there 
are nonzero scalars a:, (3 E F such that (A, J) is isomorphic (as an algebra 
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106 ALBERTO ELDUQUE 

with involution) to (K~,.B[x,y],I), where I is the unique KIF-involution of 
the second kind on K~,,a [x, y] which fixes x and y. 

Conversely, the norm of the Okubo algebras associated to F~,.B[x, y] in item (i) and 
to (K~,.B[x,y],I) in item (ii) are isotropic. 

PROOF. If w E F, the element x in F~,.B[x, y] verifies T(x) = S(x) = 0 (and 
N(x) = o:). Hence x E F~,.B[x,y] 0 and n(x) = -!S(x) = 0. The same happens to 
the element x E H(K~,.B[x, y], I)o in case w f/. F. Hence the converse is clear. 

Assume now that w E F, then item (i) follows from standard results in asso-
ciative algebras (see [Pi, Chapter 15]). For completeness we include the argument: 
either A= Mat3(F) (up to isomorphism), and then A is the algebra generated by 
the elements 

(8) and 

which satisfy x3 = y3 = 1 and yx = wxy, so that A is isomorphic to F~' 1 [x,y], or 
A is a central division algebra and hence cyclic. Since w E F, there are elements 
x E A\ F with x3 = o: E F and, by the Skolem-Noether theorem another element 
y can be found with yxy- 1 = wx. Hence y3 centralizes x andy, which generate A 
and hence y3 = (3 E F and A is isomorphic to F~,,a [x, y]. 

Finally, assume that w f/. F and (A, J) is an algebra as in the statement of item 
(ii). By hypothesis there is an element 0 # x E H(A, J) 0 with S(x) = 0, so that 
its generic minimum polynomial (5) is >.3 - o: for some o: E F (since x E H(A, J), 
o: = N(x) is fixed by J). If A is a division algebra o: # 0, K[x] is a cyclic field 
extension of K and by the Skolem-Noether theorem there is an invertible element 
z E A with zxz- 1 = wx. Then y = (zJ(z)) 2 also verifies yx = wxy and belongs to 
H(A, J). Besides y3 centralizes A and belongs to H(A, J), so y3 = (3 E F and it 
follows that (A, J) is isomorphic to (K~,.B[x, y], I). 

But even in case A = Mat3(K), so that the associated Okubo algebra has 
nonzero idempotents by [EM3, Proposition 7.4], for any x E H(A, J) 0 with n(x) = 
0 and n(x,x * x) = 1 as in the Lemma above, one has 0 = 2n(x) = -~S(x) = 
!T(x2 ), so that X* X= x 2 and 1 = n(x,x*x) = -!S(x,x2 ) = !T(x3 ); hence it fol-
lows from (5) and from T(x) = 0 = S(x) and T(x3 ) = 3 that x3 = 1. Besides, from 
T(x) = T(x2 ) = 0 it follows that 1, x and x 2 are linearly independent. Therefore 
x is similar to the diagonal matrix in (8) and there is another invertible element 
z E A= Mat3(K) with zx = wxz. As above, the element y = (zJ(z)) 2 also verifies 
yx = wxy, it is invertible and fixed by J. It then follows 0 # y3 = (3 E F, that 
y E H(A, J) 0 and that (A, J) is isomorphic to (K~,.B[x, y], I). D 

CoROLLARY 5 ([EM3, Proposition 7.3]). There do not exist division Okubo 
algebras over fields containing the cubic primitive roots of 1. 

A general result can be given in case w f/. F about the central simple associative 
algebras of degree 3 over K = F[w] equipped with a Kl F-involution: 

PROPOSITION 6. Let (A, J) be a central simple associative algebra of degree 3 
over K = F[w], where F is a field of characteristic # 3 and w a cubic primitive 
root of1, w f/. F, equipped with a KIF-involution (of second kind). Then there are 
nonzero scalars o:, (3 E F such that (A, J) is isomorphic to (K~,.B[x, y],la), where I 
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OKUBO ALGEBRAS AND TWISTED POLYNOMIALS 107 

is the Kl F-involution of K~·.B[x, y] that fixes x andy, a is an invertible element in 
K~·i3[x,y] fixed by I and Ia is the KIF-involution given by Ia(u) = ai(u)a-1 for 
any u. 

PROOF. In case A= Mat3(K), then the elements x andy in (8) satisfy x3 = 
y3 = 1, yx = wxy an(d1 th~y ~r)e fixed by the KIF-involution I given by I(u) = 

gu*g-1, where g = 0 0 1 and (uij)* = (uji), with 'Y ~---+ "f the nontrivial 
0 1 0 

F-automorphism of K. Then (see [J, p.192]) there is an invertible element a fixed 
by I such that J(u) = ai(u)a-1 for any u and (A, J) ~ (K~· 1 [x, y], Ia)· 

In case A is a division algebra, by (HK, Proposition 1] there are elements 
0 # x E Ao with x3 = o: E F and x fixed by a KIF-involution I. Then K[x]j K is a 
cyclic field extension and by the Skolem-Noether theorem there is a 0 # z E A with 
zx = wxz. Then, as before, the element y = (zi(z)) 2 is fixed by I and also satisfies 
yx = wxy. Besides y3 = {3 E F and again (A, J) is isomorphic to (K~·i3[x, y], Ia) 
for a suitable element a. 0 

Theorem 4 tells us that in case the associated Okubo algebra has isotropic 
norm, then the element a in Proposition 6 can be taken to be 1. 

3. Common multiplication table 

The results in the previous section make clear the similarities in the construction 
of the Okubo algebras in characteristic 3 and # 3. First, let us assume for a while 
that F is a field of characteristic # 3 containing the cubic roots of 1 (w E F) and 
o: and {3 are nonzero scalars in F. The set of trace zero elements in F::·.B[x, y] is 

F~·.B[x, y]o = span(xiyi : 0:::; i,j:::; 2, (i,j) # (0, 0)). 

1-w 
With J.t = - 3-, define on F::·i3[x,y] a new product by 

u <> v = J.tUV + (1- J.t)vu. 

Then for any u, v E F::·i3[x, y]o 

u <> v = n( u, v) + u * v 

where U*V is given by (1) and n(u,v) = ~T(uv) = -~S(u,v). This is completely 
analogous to (7). 

(9) 

Besides, the elements w-ij xiyi ( i, j E Z) of F::·i3 [x, y] multiply according to 

w-ij xiyi <> w-i'j' xi' yi' = w-(ii+i'j') (~txiyixi' yi' + (1 - J.t)xi' yi' xiyi) 

= w-(ii+i'j') (J.tWi'j + (1 _ J.t)wi'i) xi+i' yi+i' 

= (J.tW~ + (1- J.t)w-~) ( w-(i+i')(j+i')xi+i' yi+i') 
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where Ll = I ;, ~,,. Also notice that since 11 = 1-3 w =~and 1- 11 = ~: J ,.., w -w ,.., w-w 

{ 
1 if Ll = 0 (mod 3), 

J.LWD. + (1 - f..L)w-D. = 0 if Ll = 1 (mod 3), 
-1 if Ll = 2 (mod 3). 

Therefore, 

(10) 

which shows how close (6) and (9) are. 
On the other hand, 

and one can think that w collapses to 1 if the characteristic is 3. However, for real 
numbers (think of q as w) 

1-D. -(1-D..) 
limq -q =1-Ll. 
q--+1 q- q-1 

Therefore, (6) can be though of as a limit of (9) when w collapses to 1, as commented 
in the Introduction; 

In case F is a field of characteristic =/; 3 but w ~ F and a: and (3 are nonzero 
scalars in F, according to Theorem 4 we consider the algebra with involution 
(K~·.B[x,y],I), where K = F[w], x3 =a:, y3 = (3, yx = wxy and I is the KIF-
involution fixing x andy. Then the elements w-ijxiyj verify that 

I(w-ijxiyl) = w-2ijy3xi = w-ijxiy3' 

so that the set of trace zero elements fixed by I is 

H(K~·.B[x,y],I)o = F-span(w-ijxiyj: 0 ~ i,j ~ 2, (i,j) =/; (0,0)). 

And the o multiplication of these elements is given again by (9). 
As a consequence of (6), (9) and (10), the basis 

{xij ~f -xiy3: -1 ~ i,j ~ 1, (i,j) =I (0,0)} 

of the Okubo algebra (F<>,.B [x, y]0 , *) in case the characteristic of F is 3 and the 
basis 

{xij ~f -wijxiy3: -1 ~ i,j ~ 1, (i,j) =I (0,0)} 
of either (F~·.B[x,y]o,*) or (H(K~·.B[x,y],I)o,*) in case the characteristic ofF is 
not 3 share the same multiplication table (which is exactly Table 1 in (E), with 
different name for the parameters). That is: 

THEOREM 7. For any Okubo algebra with isotropic norm over an arbitrary field 
(in particular any Okubo algebra over any field of characteristic 3 or of character-
istic =/; 3 but containing the cubic roots of 1}, there are nonzero scalars a:, (3 E F 
and a basis {Xij: -1 ~ i,j ~ 1, (i,j) =/; (0,0)} such that the multiplication table is: 
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Xl,O X-1,0 XO,l xo,-1 Xl,l X-1,-1 X-1,1 Xl,-1 

Xl,O -CtX-1,0 0 0 Xl,-1 0 X0,-1 0 CtX-1,-1 

X-1,0 0 -Ct-lXl,O X-1,1 0 xo,1 0 a- 1 x1,1 0 

XO,l Xl,l 0 -{3xo,-I 0 {3x1,-1 0 0 Xl,O 

X0,-1 0 X-1,-1 0 -{3- 1xo,I 0 {3-lX-1,1 X-1,0 0 
r----- -- -------

X1,1 

X-1,-1 

X-1,1 

X1,-1 

[E] 
[EM1] 

[EM2] 

[EM3] 
[EP] 

[F] 

[HK] 

[J] 

[KMRT] 

[OJ 

[001] 

[002] 

[Pe] 

[Pi] 
[ZSSS] 

CtX-1,1 0 0 Xl,O -(et{3)X-1,-1 0 f3xo,-I 0 

0 a-lxl,-1 X-1,0 0 0 - ( et{3) -l XI, 1 0 {3- 1 xo,1 

xo,1 0 f3x-1,-1 0 0 a- 1x1,o -a- 1f3xl,-1 0 

0 xo,-1 0 {3-1 x1,1 CtX-1,0 0 0 -et{3- 1X-1,1 

0 
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Some new results on modular forms for GL(2,1Fq[T]) 

Ernst-Ulrich Gekeler 

Introduction. 

The modular forms in question, i.e., Drinfeld modular forms, are analogues in 
positive characteristics of classical elliptic modular forms. They are rigid ana-
lytic functions defined on Drinfeld's upper half-place n = C- KXJ, where Cis 
the completed algebraic closure of K 00 , the completion of a global function field 
Kat some fixed place oo. 

In the present paper, we restrict to the simplest and most important case where 
K = lFq(T) is a rational function field and "oo" is the usual place at infinity, 
although most of the theory can be developed for general function fields in one 
variable over finite constant fields. 

Let A be the subring of elements of K regular away from oo, i.e., A is the poly-
nomial ring IFq[T]. It embeds discretely into K 00 with compact quotient. There-
fore, the sextuple (A, K, K 00 , C, n, GL(2, A)) shares many properties (more than 
visible at a first sight) with (Z, Q, JR., C, H± = C -JR., GL(2, Z)). The most basic 
modular forms in the present context are the Eisenstein series 

I 1 
Ek(z) = L (az + b)k 

a,bEA 

introduced by D. Goss in the seventies (13] (14]. In fact, Ek is a modular form 
of weight k for r = GL(2, A), non-zero if 0 < k = 0 (mod q- 1), and the 
two algebraically independent forms Eq- 1 and Eq2 _1 generate the ring of all 
modular forms (with trivial type) for r. As in the classical case, such forms, their 
zeroes, relations, expansions around cusps, congruence properties etc. encode 
important parts of the arithmetic of K. They are directly related to Drinfeld 
modules (in particular, there exist analogues of the classical discriminant and 
invariant functions ~ and j) and, in a less obvious fashion, to elliptic curves 
over K (through some kind of Shimura-Taniyama-Weil correspondence (9]). 

In the first part of this article (sect. 1-5, largely based on (6]), we expose 
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112 ERNST-ULRICH GEKELER 

known results about modular forms for r and introduce some technical tools. 
Here we omit most of the proofs and restrict to explaining the definitions and 
constructions. This part also provides the necessary background for the second 
part (sect. 6-8), whose results are new. In the second part, we investigate the 
zeroes of the Eisenstein series Ek. Such a series is called special if k has the form 
qJ- 1 for some j. The main results are (precise definitions are given below): 

(A) (Prop. 6.7): If the zero z of Ek lies in the "fundamental domain" :F = 
{zEn I lzl = 14 2: 1} for r then lzl = 1. Equivalently, the j-invariant 
j ( z) of each zero of E k satisfies IJ ( z) I :::; qq. 
This is similar to a result of Rankin and Swinnerton-Dyer [16] in the 
classical case. 

(B) (Thm. 8.5): For each zo E 1Fqk+l -lFq, there exists a unique zero z E :F of 
the special Eisenstein series Eqk_ 1 that satisfies lz- zol < 1, and these are 
all the zeroes of EqL 1 in :F. They are all simple, and their j-invariants 
are zero or of absolute value qq. 

(C) (Thm. 7.14, Thm. 8.12): Let Lk/ K be the subfield of C generated by the 
j(z), where Eqk_ 1(z) = 0. Then Lk · Koo is the unramified extension of 
degree k + 1, 2, 1 of Koo if k 2: 4, k = 3, k :::; 2, respectively. Further, 
Lk/ K is unramified at finite primes of K of degree d 2: k. 

Here (A) is rather simple and stated for completeness only, whereas (B) and 
(C) are deep. We also have similar results on the forms 8Eqk_ 1 of weight qk + 1 
and type 1, where a : f ~-----+ f' + k~ f is the "Serre derivative" of a modular 
form of weight k. 

Let 'Pk E A[X] be the polynomial 

'Pk(X) =II (X- j(z)), 

where z runs through a system of r-representatives of zeroes z of Eqk_ 1 with 
j(z) -=f. 0. Then Lk is the splitting field of c.pk, and it is conjectured that 
Gal(Lk/ K) is the full symmetric group on the zeroes of c.pk, provided that k 2: 4. 
(For k :::; 3, the Galois group is smaller for trivial reasons.) Gunther Cornelissen 
has proved that 'Pk is always irreducible, and he was also able to show that its 
Galois group is as conjectured at least if q is odd and k is even. 

These results/conjectures shed new light on the classical situation, too. In the 
above-mentioned analogy, special Eisenstein series E qk _ 1 ought to correspond 
to classical Eisenstein series Ep- 1 with a prime p > 3 and Lk to the field gener-
ated by the j-invariants of its zeroes. Numerical evidence (for p:::; 89) suggests 
that the polynomial 

II 
j a zero of Ep-1 

j,.<O,l728 

(X- j(z)) 
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is always irreducible with the full symmetric group as its Galois group. Fur-
thermore, the numerator of its discriminant is highly divisible by (almost: the 
prime l = 11 seems to play a special role) all primes l ~ ~, but also by some 
unpredictable larger primes l. Hence a flat analogy of e.g. (C) fails to hold in 
the classical case, and more work has to be done to understand i.fJp· 

It is a pleasure for me to thank the organizers of the KAIST conference for 
the invitation to lecture on the present material. I would also like to thank G. 
Cornelissen for extensive discussions as well as for help with some numerical 
calculations. 

1. Notations. 

The following notation will be used throughout. 

(1.1) 

lF q finite field with q elements, of characteristic p 
A lF q [T] the plynomial ring over lF q with 

quotient field K = lFq(T) 
Koo lFq((n)) the completion of Kat the infinite place oo, 

with uniformizer n = r- 1 , ring of integers Ooo = lFq[[n]J, 
normalized valuation v : Koo ----+ Z U { oo} and absolute 
value lxl = q-v(x) 

C completed algebraic closure of K 00 , provided with 
the unique extension of "I . I", ring of integers 
Oc = {x E C I lxl ~ 1} and 
maximal ideal me= {x E C I lxl < 1} 

n C- Koo the Drinfeld upper half-plane, acted upon by 
r GL(2,A). 

Recall that C is algebraically closed with iF q, the algebraic closure of lF q, as its 
residue class field. For z E C we define the imaginary part 14 := infxEKoo lz - xi 
= minxEKoo lz- xJ. It satisfies 

(1.2) I az + b I = lad- bcllzl, (a b) -:------:.,-:::-2 • for cd E GL(2, K 00 ). 
cz + d i Jcz + dl 

The "upper half-plane" n is the set of C-points of a rigid analytic space defined 
over K 00 • In particular, the notion of holomorphic or meromorphic functions 
on n is defined. Typical admissible open subsets of n are the sets (in fact, 
affinoids) 

(1.3) 

which together with their shifts Dn,x := Dn +X (n E Z, X E Koo) cover n. 
Typical holomorphic functions on n are rational functions in z E n ~ IP'1 (C) 
without poles on n, or locally uniform (i.e., uniform on the Dn,x) limits of such. 
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114 ERNST-ULRICH GEKELER 

We will adapt a naive point of view and simply write n, Dn,x etc., the analytic 
structure being understood. More details can be found e.g. in [9], sect. 1. 

2. Lattices [5] [15] [10]. 

A subset S of Cis discrete if its intersection with each ball Br ={ z E C I lzl ~ r} 
is finite. An lF'q-lattice inC is a discrete lFq-subspace, an A-lattice a discrete A-
submodule. With each lattice A C C, we associate its exponential function 

(2.1) 

Here the TI' denotes the product over the non-zero elements of A; similar nota-
tion will be used for sums over A. The discreteness condition on A implies that 
the product (in arbitrary order) converges, uniformly on each Br, to an entire 
function eA : C - C. It is surjective, lFq-linear, A-periodic, has constant 
derivative e~(z) = 1, and satisfies the identity of meromorphic functions on C: 

(2.2) 1 e~(z)."' 1 tA(z) := -- = -- = L...t --. eA(z) eA(z) z- .A 
>.EA 

(2.3) The above properties of eA imply that it has an everywhere convergent se-
ries expansion eA(z) = L:i>O o:izq;. We call such functions lFq-linear. It is imme-
diately verified that the set-of these is stable under composition. Let T : C - C 
be the Frobenius map z ~ zq. Then eA may be written as eA = L:o:iri, and 
composition of entire lF q-linear functions corresponds to multiplication in the 
non-commutative power series ring C{{ T}} = {formal series L: O:iTi I o:i E C}, 
where the usual rule rc = cr for constants cis replaced by rc = cqr. Actually, eA 
belongs to the subring Cent { { T}} of series L: O:iTi that satisfy lo:i lrq; ---t 0 for all 
r > 0. Note that eA is even a "polynomial" in T if and only if d := dimrq A< oo, 
in which case deg'T(eA) =d. 

(2.4) For each lFq-lattice A and kEN, we put 

the k-th Eisenstein series of A. It converges always, but vanishes identically if 
k '¥= 0 (mod q - 1). For further use, we note the identity 

(2.5) z "' k -(-) = - L...t Ek(A)z , 
€A z k<::O 

which follows from (2.2) by an easy calculation. (Here and in the sequel, we use 
the convention Eo(A) = -1.) The function eA = 1+o:1r+· ··has a composition 
inverse 

logA = L,8iTi 
i<::O 
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in C { { T}}, whose radius of convergence, regarded as a series I:; f3i zqi in z, equals 
the diameter of A, diam(A) := min{/A/ / 0 =f. A E A}. It is an amusing exercise 
to show 

(2.6) 

2. 7 Proposition. Let A be an IF q -lattice in C. There exists a uniquely deter-
mined series Gk(X) = Gk,A(X) of polynomials over C (kEN) that satisfy the 
identity of meromorphic functions 

(i) 

The Gk have the following properties (putting Gk = 0 forks; 0): 

(ii) Gk = X(Gk-1 + a1Gk-q + a2Gk-q2 + · · ·) 
(iii) Gk is monic of degree k 

(iv) Gk(O) = 0 

(v) Gk = Xk if 1 s; k s; q 

(vi) Gpk = ( Gk)P 

(vii) X 2 G~(X) = kGk+l 

(viii) L Gk(X)uk = ~X ( ) in C[[X, u]] 
k:2:0 1- eA u 

(ix) Gk(X) = L f3iXqj-qi, if k = qj- 1. 
O:'Oi<j 

Here the O:i ((3i) are the coefficients of eA (logA), respectively. The Gk are called 
the Goss polynomials of A. Items (i)-(vii) are due to David Goss ([14], ch. VI), 
the remaining appear in [6] sect. 3. 

2.8 Remark. All the assertions made in the present section remain valid in an 
arbitrary field L containing IF q as long as only finite-dimensional IF q-subspaces 
A of L are considered. 

3. Drinfeld modules [15] [10]. 

In this section, A is an A-lattice of finite rank r E N. For a E A, consider the 
commutative diagram with exact rows 

0 ----+ A ----+ C c ----+ 0 

(3.1) l a l a 

0 ----+ A ----+ C c ----+ 0 ' 
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where the left hand vertical maps are multiplication by a and ¢~ is defined by 
the diagram, i.e., by the functional equation 

(3.2) 

Then ¢~ belongs to C { T}, the ring of "polynomials" in T, and, for a ::J. 0 of 
degree d, has the form 

(3.3) ¢~ =a+ h (a, A)r + · · ·lrd(a, A)rr·d 

with lrd(a, A) ::J. 0, as we see by comparing coefficients in (3.2). The various¢~ 
commute in C{r}, and a 1--t ¢~ defines a homomorphism ¢A of IFq-algebras 
from A to C{r}. Now since C{r} acts on C = Ga(C), we get a new structure 
of A-module on the additive group scheme Ga/C, given by 

a * z = ¢~(z) (z E C). 

Each structure of A-module on Ga/C given by an IFq-algebra homomorphism 
¢: a 1--t ¢a from A to C{r} subject to (3.3) is called a Drinfeld A-module of 
rank r over C. Note that an IF q-algebra homomorphism from A = IF q [T] to C { T} 
is given through the image of T, which can be prescribed arbitrarily. Drinfeld 
modules may be defined over arbitrary fields provided with a structure as A-
algebra. There are obvious notions of morphisms and isomorphisms of Drinfeld 
modules, and we have the following "Weierstrafi uniformization" result due to 
Drinfeld [3]. 

3.4 Theorem. Each Drinfeld A-module¢ over C arises from an A-lattice A as 
above, and A 1--t q;A induces an equivalence between the category of A-lattices 
of rank r inC (morphisms c: A --+A' are multipliers c E C such that cA C A') 
and the category of Drinfeld A-modules of rank r over C. 

Between the coefficients li(a, A) of¢~ and the Eisenstein series Ej(A) associated 
to A, the following relation holds (see e.g. [6] 2.10): 

(3.5) a EqL1 (A) = L Eq;_ 1(A)lj(a,A)q;, 
i+j=k 

where as in (2.5), the convention E0 (A) = -1 is in force. It allows to recursively 
determine the EqLl from the lj and vice versa. As a consequence, the function 
lj(a, ?) on A-lattices has weight qJ- 1, i.e., forcE C*, 

(3.6) 

holds. 

(3.7) We first consider in detail the case I r = 11. Each rank-one A-lattice has 
the form A = c · A with some constant c. Correspondingly, a rank-one Drinfeld 
module¢= q;A is given by¢~= T + h(T,A)r. As results from (3.6), we can 
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find a unique lattice A = 7f A such that its associated Drinfeld module p := ¢A, 
the so-called Garlitz module, satisfies PT = T + T. Here the period 7f is uniquely 
determined up to a (q- 1)-th root of unity. We choose one such 7f and fix it 
once for all. We refer to [15] ch. 3 for a detailed study of p and the role it plays 
e.g. in the class field theory of K (which is similar to cyclotomic theory over 
the rationals Q). 

In order to describe eA and logA for A = 7f A, we introduce some A-valued 
arithmetic functions. 

[i] .- Tqi - T (i ~ 0) 
(3.8) Di := [i][i- 1]q ... [1]qi-l 

Li := [i][i- 1]· · · [1] (i ~ 1) and Do= Lo = 1. 

(The symbol Li appears twice: as a field extension of K and as the above 
element of A. We are confident that no confusion occurs.) As is easily verified, 

[i] = TI/ (! E A monic prime of degree dJi) 
Di = TI/ (! monic of degree i) 
Li = l.c.m.{f} (!monic of degree i). 

Furthermore, for A = 7f A, 

(3.9) and 

holds. The (q- 1)-th power of the period 7f may be expressed as 

wq- 1 = [1]Eq-1{A) = (Tq- T) L' a1-q 
aEA 

(3.10) -[1J II (1-~ )q-1 
i2::1 [z+1] 

-Tq lim 
N-+oo 

II '( a )q-1 
Tdeg a ' 

aEA 
deg a'5.N 

which are similar to well-known formulae for the classical counterpart 2rri of 7f. 
(The first of these follows immediately from (3.5), the others are proven in [12] 
and [5] IV .4, respectively.) In particular, 

lrrl = ITI~ = q~. 
(3.11) We finally define for 0 =1- a E A the a-th inverse cyclotomic polynomial 

_ 1 qdeg a 
fa(X) := Pa(X )X E A[X]. 

Here Pa(X) is the (commutative) polynomial obtained from Pa by replacing Ti 

through Xq;. Then !a(X) has degree Jal- 1, leading coefficient a and absolute 
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term fa(O) =leading coefficient of a as a polynomial in T. For example, ft(X) = 
1, fr(X) = T xq-l + 1, fr2 (X) = T 2 Xq2 - 1 + (Tq + T)Xq2-q + 1. Writing 

Pa(X) = L li(a, A)Xq; 
O~i~d 

with d = deg a, we have li E A and deg li = (d- i)qi. Using the Newton 
polygon, we get the uniform bound 1>·1 :=::; qq:_ 1 for zeroes>. of Pa(X). If now a 
is monic, !a(X) = IT (1- >.X), and finally by an easy estimate, 

Pa(>.)=O 

(3.12) 
1 

for all x E C with lxl $ 6 · q- q- 1 , 0 < 6 < 1. 

(3.13) Next, we consider the case I r = 21. A rank-two A-lattice A has the form 
A= Aw1 + Aw2, where w1,w2 E Care K 00-linearly independent. Multiplying 
by a suitable constant, we can assume A = Aw +A, where w E n is determined 
up to the action of r = GL(2, A). On the other hand, a rank-two Drinfeld 
A-module¢= ¢A over Cis given by ¢T = T+h(T,A)r+l2(T,A)r2 , which we 
write as 

¢T = T + g(A)r + a(A)r2 • 

Two pairs (g, a) and (g', A') give rise to isomorphic Drinfeld modules¢ and¢' 
q+1 tq+1 

if and only if~ = fiji-. We therefore define the j-invariant of¢ as 

Putting r \ 0 for the set of orbits of r on 0, we obtain bijections 
(3.14) 

{ 
classes of rank-two } { isomorphism classes 

r \ 0 ~ A-lattices in C, ~ of rank-two Drinfeld 
up to scaling A-modules over C 

} -.:'.. c, 

given by z 1-------+ Az := Az +A, A 1-------+ ¢A, and¢~-------+ j(¢), respectively. We thus 
think of j : r \ n ~ C as a moduli space for rank-two Drinfeld A-modules 
over C. Of course, the above reminds of the setting of (elliptic) modular forms 
for the group SL(2, Z), and the notation chosen is intended to underline the 
analogy. 

4. Modular forms [14] [4] [5] [6]. 

Before formally defining modular forms for r, we describe the moduli space 
r \0 ~ C <--+ IP'1 (C) and a uniformizer around the "cusp" oo. (Although the 
symbol "oo" is used twice for the infinite place of K and for the cusp, i.e., the 
point at infinity of IP'1 (C), the context will always distinguish the two meanings.) 
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(4.1) First note that "'( permutes the subsets Dn,x of n and acts with finite 
stabilizers. Therefore, the quotient of n by r exists in the category of analytic 
spaces, and has as C-points the point set r \ n. We define an elliptic point of 
r as some z E n such that r z := h E r I "'(Z = z} is strictly larger than the 
generic stabilizer { (~ ~) I a E IF~}. We have: 

(4.2) There is precisely one f-orbit of elliptic points, namely the orbit of1Fq2 -IFq 
<----> n. For each elliptic point z, the stabilizer r z is isomorphic with IF;2, a cyclic 
group of order q2 - 1. 

In other words, the projection n ----. r \ n is unramified off elliptic points, and 
is ramified with index q + 1 = q:~ 1 1 at the elliptic points. Going through the 
constructions of (3.14), we see that z is elliptic if and only if j(z) = 0. 

(4.3) Next, let c > 1 and nc = {z E c I 14 2: c}. If c lies in the value group 
{l of C (which we always assume), De is an admissible open subspace of 0. It 
follows from (1.2) that "'f(Oc) n nc :f- 0 implies "'( E r <Xl = { "'( E r I "'(00 = 00} = 
{ (~ ~) E r}. Hence f = \ De injects into f \ 0 as an admissible open subspace. 
We put 

(4.4) 1 1 1 t(z) := = 7f- --, 
e1fA(7rz) eA(z) 

which is holomorphic on 0 and invariant under shifts z f-----t z + b, b E A. 

4.5 Lemma. (i) Let z E n be such that lzl = lzli = qd-€ with 0 ~ E < 1, dE z. 
Then 

logq lt(z)l (d 2: 1) 
(d ~ 0). 

(ii) If z E 0 has imaginary part lzli 2: 1, the absolute value lt(z)l depends only 
on lzli and satisfies 

14 ~ -logq lt(z)l ~ eolzli 

with some constant eo > 1 independent of z. Therefore t induces an isomor-
phism of A\ Oc with some pointed ball Br- {0} of radius r = r(c). 

Proof. [6] 5.5 + 5.6. D 

Now the transformations on n and Oc induced by r = are products of shifts 
z f-----t z + b (b E A) and multiplications z f-----t az (a E IF~). Furthermore, 
t(az) = a- 1t(z), whence tq- 1 : r = \ Oc ~ Br'- {0} with r' = r(c)q- 1 . Clue-
ing the cusp 00 to r \ n ~ c therefore corresponds to filling in the missing 
point in our pointed balls, and s = tq- 1 may serve as a uniformizer around oo. 
Here is the picture. 
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Br' - {0} ~ roo \Oc <--+ r\O c 
(4.6) 1 

JP>1 (C) 

We may now make the following 

4. 7 Definition. A modular form of weight k and type m for r = GL(2, A) is a 
function f : n ---t c that satisfies 

(i) f(-yz) = (~c~+~l: f(z) ('y = (~~) E r); 

(ii) f is holomorphic on n; 
(iii) f is holomorphic at infinity. That is, for lzli large enough, 

f may be expanded as a convergent power series f(z) = L: aiti(z). 

We define the order of f at oo as v00 (!) = vanishing order of the power series 
in t. We further let Mk,m be the C-vector space of modular forms of weight 
k and type m. Then Mo := ffiMk,o and M = ffiMk,m are C-algebras 

k?:O k?:O, m( mod q-1) 
graded by No and No x Z/(q- 1), respectively. 

4.8 Remarks. (i) Since det 'Y E A* = IF~, the type m depends only on 
m (mod q -1). 
(ii) If m = 0 (mod q - 1), any f subject to condition (i) is invariant under 
r 00 and therefore has an expansion with respect to s = tq-1 • This is not so in 
general. 
(iii) The existence of a non-trivial modular form of weight k and type m implies 
that k =2m (mod q- 1), as result~ from looking at 'Y = (~~). 
(iv) In general, the expansion L: ait' off will not converge on all of n. Nonethe-
less, the coefficients ai determine f uniquely since n is connected as an analytic 
space. By abuse of language, we often write f = L: aiti. 

Some examples of forms of type 0 have already appeared. 

4.9 Examples. (i) Let 0 < k = 0 (m0d q - 1). The Eisenstein series 
I 1 

Ek : z 1---+ Ek(Az + A) = L (az + b)k is a non-zero element of Mk,O· 
a, bE A 

Conditions (i) and (ii) of (4.7) are easily verified, and the series expansions are 
given e.g. in [13] sect. 2 and [6] 6.3. 
(ii) Let 0 I- a E A and i > 0. The function li,a : z 1---+ li(a, Az +A) is a 
modular form of weight qi - 1 and type zero. In particular, g = h,T E Mq-1,0 

and ~ = l2,r E Mq2- 1,0. This may be seen, modulo (i), by expressing li,a via 
(3.5) as an isobaric polynomial in the Eisenstein series Eqi_ 1 . E.g., g = [1]Eq-1, 
~ = [2]Eq2_1 + [1]qE:!:. 
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(iii) It is less easy to find examples of forms with non-trivial types. Here is one. 
Let H be the subgroup { (~ ~)} of r, and consider the Poincare series 

p, '"' (cz + d)k m( ) ( (a b)) k,m = ~ (det -y)m t 'YZ 'Y = cd . 
')'EH\r 

The sum is well-defined, since the -y-th term depends only on the class of 'Y in 
H \ r. It converges and gives rise to some 0 =/= Pk,m E Mk,m provided that 
k > 0, k =2m (mod q- 1) and m $ q!1 . 

For a modular form 0 =I= f and z E 0, we let vz(f) be the vanishing order off at 
z, which depends only on the orbit of z. The next result is similar to Theoreme 
3 in ch. II of [17] and may be proved by a rigid analytic analogue of contour 
integration [11] pp. 93-95; a different proof is given in [5] V.5. 

4.10 Theorem. For 0 =I= f E Mk,m, the following relation holds: 

where the left hand sum E* is over the non-elliptic r -orbits in n and e is some 
fixed elliptic point. 

Putting h := Pq+1,1. we obtain the vanishing orders given in the table 

(4.11) 
1/e Vz, z non-elliptic 1/oo 

g 1 0 0 
h 0 0 1 
~ 0 0 q-1 

Also, EqL 1 has precisely one zero z mod r, which is non-elliptic, and corre-
sponds to j(z) = [1]. Further, Mo,o = C, hq-1 = const.~, and the next result 
is an easy consequence. 

4.12 Corollary. (i) (D. Goss [14]) M0 = C[g, ~], 
(ii) M = C[g, h], 
where {g, ~} resp. {g, h} are algebraically independent. 

The t-expansions of these forms and also of the Eisenstein series may be effec-
tively calculated and turn out to be A-valued after a trivial normalization. We 
first state the result for ~. 

4.13 Theorem. ~(z) has the product expansion, which converges locally uni-
1 

formly for iti < q- q-1: 

7i'1-q2 ~(z) = -tq-1 IT fa(t)Cq2-1)(q-1). 

aEA monic 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



122 ERNST-ULRICH GEKELER 

The formula is proved in [4). It is similar to the product q f1(1 - qn)24 for the 
elliptic discriminant: even the exponents (q2 -1)(q -1) and 24 have a common 
interpretation through values of the zeta functions of K and Q, respectively ([5) 
VI.4). The radius of convergence comes out from (3.12). Note that, in view of 
fa(t) = 1 + o(tqdeg a-l(q- 1)), the product converges formally in the power series 
ring A[[t)J. Hence the coefficients of w1-q2 ~(z) lie in A. A similar assertion is 
true for the Eisenstein series. 

4.14 Theorem. Let k E N be divisible by q - 1. Then 

w-k Ek = L aiti with certain ai E A (i ~ 1) and 0 # a0 E K. 
i~O 

A more precise description of the t-expansion of Ek is given in [6) 6.3. In 
particular 

w1-qg = 7f1-q[1)Eq-1 E A[[t)). 

This motivates to rescale our basic modular forms g, ~by putting 

(4.15) -1-q A -1-q2 A 
9new := 7r 9old, ~new := 7r ~old· 

Only this new normalization will be used from now on. 

5. Integrality and congruence properties. 

(5.1) Let f be a holomorphic A-invariant function on n, e.g. a modular form. We 
define the differential operator (} as f ~----+ (} f := w- 1 1z, which on t-expansions 
is -t2 ft, as results from (2.2). We further put 

(}~ 
E :=~and okf :=Of+ kEf (! E Mk,m)· 

The relevant properties of E and {)k are collected as follows. Proofs are given 
in [6) sect. 8. 

5.2 Proposition. (i) E satisfies the functional equation 

(ii) 

(cz+d) 2 c 
E("yz) = d E(z)- d (cz +d) under 'Y = (~~) E r. 

et 'Y rr et 'Y 

E(z) = 
1 L at(az)=w-1 L aLaz+b' 

aEA monic a monic bEA 

5.3 Proposition. (i) f E Mk,m =? Okf E Mk+2,m+l 

(ii) fi E Mk;,m; (i = 1, 2) =? Ok1 +k2 (!I ·h) = Ok1 (fl)h + !18k2 (h) 

We therefore regard {) = ( Ok) as a differential operator of weight two on the 
graded C-algebra M. Now the spaces of f E Mq+1,1 (resp. f E MqL1,o) 
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MODULAR FORMS FOR GL(2,JF9 [T]) 123 

with V00 (/) > 0 have dimension one, which gives the following identities up to 
multiplicative constants. These constants are determined by comparing leading 
terms. 

5.4 Theorem ((6] Thm. 9.1). 8g = h and hq-1 = -A. 

In the next table, extracted from (6] sect. 10, we give the first few terms of 
these functions. 

5.5 Table. 

expansion with respect to s = tq -1 

g 1- (1]s + (1]sq'-q+l- (1]sq'- [1j2sq·+1 + o(s2q•-2q+1 ) 

hjt -1- sq -l + (1]sq- s~q -~ + 2(1]s~q -I- (1]~s~q + o(saq -a) 
A -s + sq - (1]sq+1 - sq"-q+l + sq" + o(sq"+l) 

Eft 1 + sq -1 + s:t.q -:t. - (1]s:t.q -1 + o(s;jq -;j) 

We define Mk,m(A), Mo(A), M(A) to be the respective A-modules of modular 
forms having t-expansions with A-coefficients. By the above, h E Mq+1, 1 (A), 
and from (4.12)-(4.14) we derive: 

5.6 Corollary. Mk,m(A) is an A-structure on the C-vector space Mk,m· Fur-
thermore, M0 (A) = A[g, A] and M(A) = A[g, h]. 

It is convenient to also scale the special Eisenstein series of weight qk - 1 as 
follows. For k 2:: 0 define 

(5.7) 

Combining some of the preceding material ((2.6), (3.5), (3.9), 4.14)), we arrive 
at the following description of 9k. 

5.8 Proposition. 9k has absolute term 1 and coefficients in A, and satisfies 
the recursion 

with Yo = 1, 91 = g · 

For what follows, we fix a prime p of A of degree d and with residue class field 
lFp = Ajp. Reduction (mod p) and everything derived from it will be denoted 
by (-). We consider congruences (mod p) of modular forms, i.e., of their t-
expansions. 

5.9 Proposition ((6] 6.11). Fork 2:: 0, we have 
d 

9k+d(t) = 9k(tq ) (mod p). 

In particular, 9d = 1 (mod p). 
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124 ERNST-ULRICH GEKELER 

Next, we let A(p) be the (non-completed) localization of A at p and M(p) the 
subring of M(A) ®K of forms with p-integral coefficients. We want to determine 
the image M of the canonical map 

M(p) <--t A(p) [[t]] ---t IF p [[t]] 
J~f. 

In order to do so, we need the polynomials Ak(X, Y), Ak(X, Z) over A well-
defined through the conditions 

(5.10) Ak(g, ~) = gk = Ak(g, h). 

Let 4> be the generic Drinfeld module over A[g, ~] defined by 

4>r = T + gr + ~r 2 , 

where g and ~ are considered as indeterminates. If for the moment p is the 
monic generator of p, we write 

4>p = :L: li,p'Ti, 
O~i~2d 

where li,p = Fi,p(g, ~) with some polynomial Fi = Fi,p E A[X, Y]. The proper-
ties of Ak, Ak, Fk given below are consequences from (5.4), (5.8), (5.9) and the 
commutation rule 4>P o 4>r = 4>r o 4>P in A[g, ~]{ r }. 

5.11 Proposition. (i) Ak(X, Y), Ak(X, Z) and Fk(X, Y) are isobaric of weight 
qk -1, where the variables X, Y, Z have weights q-1, q2 -1, q+l, respectively. 
(ii) Ak(X, -zq-t) = Ak(X, Z) 

(iii) Ao = 1, At =X, Ak = Ak-tXqk-l - [k- 1]Ak_2Yqk- 2 (k 2::: 2) 

(iv) Fo = p, Ft = P~~PX, 

d 
5.12 Proposition. Ak+d = Ak ·Ad (mod p) 

We are especially interested in the polynomial Fd(X, Y) and its reduction 
Fd(X, Y) (essentially the "Hasse invariant of rank-two Drinfeld modules in char-
acteristic p"), whose meaning we briefly describe. Recall that C) is reduction 
(mod p). Regarding g, ~still as indeterminates, but now over 1Fp, 

¢r = T + gr + ~r 2 E 1Fp(g, ~){r} 

defines a rank-two Drinfeld module ¢ on the A-field 1Fp(g, ~) of characteris-
tic p. Inserting specific values g0 , ~ 0 for g, ~ yields a Drinfeld module, say 
4>(go,Ll.o), over the field they generate. The fact that Fd(go, ~o) = 0 now says 

q+l 
that 4>(go,Ll.o) is supersingular [7]. This implies e.g. that j(4J(9o,Ll.o)) = 9! 0 lies 
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MODULAR FORMS FOR GL(2,1Fq[T]) 125 

in the quadratic extension of IF p. 

Let f: 1Fp[X, Y)----t IFp[[t]) and f*: 1Fp[X, Z] ----t 1Fp[[t)) be the homomorphisms 
that map X, Y, Z to the expansions (mod p) g, .&, h of g, ~. h respectively. 
We can now answer the question about M asked above. 

5.13 Theorem ([6)12.1). (i) Ad= Fd,p, i.e., Ad= Fd,p (mod p). 
(ii) The kernel off is the principal ideal in IF p [X, Y) generated by Ad(X, Y)- 1. 
Similarly, kerf* = (A;t(X, Z)- 1). Hence Mo = IFp[X, Y]j(Ad(X, Y)- 1) and 
M = 1Fp[X,Z)/(A;t(X,Z) -1). 

5.14 Remark. Assertion (i) states a certain relation between the special Eisen-
stein series gd and supersingular j-invariants for rank-two Drinfeld A-modules 
in characteristic p, where p is a prime of degree d. Checking supersingularity is 
most easily performed using the polynomial Ad, whose calculation is consider-
ably simpler than the one of Pd,p, and depends only on d but not on p itself. 

Note also that Fd,p(X, Y)- 1 E kerf means that the t-expansion of ld,p is con-
gruent to the constant 1 (mod p). 

The rings Mo and M are further discussed in [6) sect. 12. These rings are 
normal, i.e., Dedekind rings, and their spectra are p-fibers of certain modular 
curves. 

6. Zeroes of Eisenstein series. 

(6.1) In this section, we consider the set {z E 0 I Ek(z) = 0} of zeroes of Ek on 
n, where k is divisible by q - 1. It is stable under the action of r' and consists 
therefore of the full reciprocal image of a subset of C under j : 0 ----t C. Such 
z E 0 or their j-invariants j(z) are referred to as z-zeroes or j-zeroes of Ek, 
respectively. From (4.10) we see that the set of j-zeroes is finite. 

6.2 Lemma. Let e E 0 be an elliptic point. Then Ek vanishes in e if and only 
if k is not divisible by q2 - 1. 

Proof. The "if" part follows from (4.10) and v00 (Ek) = 0 (or directly from the 
automorphy condition applied to a suitable 'Y E r e). Suppose k = 0 (mod q2 -

1). Without restriction, e E 1Fq2· Then Ek(e) = L a-k = Ek(A(2)) with 
aEA( 2 ) 

A (2) = IF q2 [T), and the assertion follows from the next lemma upon replacing q 
by q2 . 0 

6.3 Lemma. Let kEN be divisible by q- 1. Then Ek(A) =I= 0. 

Proof. In K 00 , we have (mod 1r): Ek(A) = L a-k = L 1 = -1. 0 
aEIF~ aEIF~ 
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126 ERNST-ULRICH GEKELER 

We next put 

(6.4) F ={zEn I lzl = lzli ~ 1} and Fo ={zEn I lzl = 14 = 1}, 

which are admissible open subsets of n. We further define a sequence of sub-
groups r i of r as follows: 

ro = GL(2,1Fq), ri = {(~~) E r 1 a,d E IF~, deg b:::; i}, i ~ 1. 

Then roo =stabilizer of oo E lP'1(K) = Uri. 
i~1 

F is as close to a fundamental domain for r on n as is possible in our situation. 

6.5 Proposition. (i) Each element of 0 is r -equivalent to some element of F. 
(ii) Let z, z' = 'yz ('y E r} be r -equivalent in F, k := (logq lzl] the greatest integer 
less or equal to logq lzl. Then 'Y E rk. In particular, lz'l = lzl = lzli = lz'li· 

Proof. (i) Let z E n be given, and suppose that lzli < 1. Applying some 
(~~) E roo, we can achieve that also lzl < J. If logq lzl ¢ Z then lzl = lzli, 
hence lz-1 li = lz-1 1 = lzl- 1 = lzli1 > 1 and z- 1 = \~~)z E F. If logq lzl E Z, 
the formula lz- 1 li = lzl- 2 lzli shows that lz-1 1 ~ lz- li ~ q2 lzli· After a finite 
number of steps we thus arrive at some z' = "fZ with lz'li ~ 1. Again applying 
some (~~) E r 00 if necessary, we get lz'l = lz'li ~ 1. 
(ii) This is a consequence of (1.2) and lcz + dl = max{lcllzl, ldl} for (~~) E r. 
0 

The next result is proved in (8] Thm. 2.17. 

6.6 Theorem. For z E F, we have 

logq lj(z)l = qd(q- E(q- 1)) 
:::; q 

if lzl = lzli > 1 
if lzl = lzli = 1, 

wh~re, as in (4.5), lzl = lzli = qd-e with dEN and 0:::; f < 1. 

Note that logq lj(z)l only depends on lzli as long as lzli > 1; Further, logq lj(z)l = 
qlzli if logq lzli E N, and its values for non-integrallogq lzli interpolate linearly. 

6. 7 Proposition. Let k E N be divisible by q - 1. The Eisenstein series Ek 
satisfies IEk(z)l :::; 1 for z E F with equality if z ¢ Fo. In particular, the set of 
z-zeroes of Ek is contained inFo. Each j-zero j(t) satisfies lj(z)l :5 qq. 

Proof. For a, b E A and z E F, we have laz + bl = max{lazl, lbl} ~ 1, from 
which IEk(z)l :::; 1 results. If moreover z ¢ Fo, laz + bl > 1 for (a, b) =/= (0, c) 
with c E IF q. Hence 

1 1 
IEk(z)l =I L (az+b)kl = l L ckl = 1. 

a,bEA cElF; 
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The last statement follows from {6.6). 0 

6.8 Remark. The zeroes of Eisenstein series in general fail to be simple, for 
essentially trivial reasons. Let for example k = a(q- 1) with 1 ::5 a ::5 q. From 
dim Mk,o = 1, Ek = const. E:_ 1 {in fact, Ek = {-1)a+lE:_1 ), and thus has 
an a-fold zero at elliptic points. Other multiple zeroes arise, of course, from 
Epk = Ef (p = char{lFq)). A less trivial example is given in {6.12). 

{6.9) We next discuss how to calculate the Ek. Recall that Ek(z) = Ek(Az) with 
Az = Az +A, and so the identities of sect. 2 may be applied. Write ez for the 
exponential function eA. associated to Az by {2.1) and logz for its composition 
inverse. They have expansions 

ez(w) = .L:C:¥i(z)wqi, logz(w) = L,Bi(z)wqi, 
i~O 

where the coefficients O:i, ,Bi are holomorphic in z (actually, modular forms of 
weight qi- 1 and type 0). From 

w = -hez(w) = (- LEi(z)wi)(La:3(z)wq;), 
ez w i~O j~O 

we get the relation, valid for k ~ 1: 

(6.10) 

where as usual, Eo = -1 and Ek = 0 if k < 0. It allows recursive calculation of 
the Ek from the a:3, which in turn are determined through the ,83, i.e., special 
Eisenstein series. Viz., 

(6.11) 
i+j=k 

We illustrate this by the following example. 

6.12 Example. Let k < q3 - 1 be divisible by q- 1. From {6.10), 

Further 

thus 
Ek = -Eq-1Ek+l-q- Eq2_1Ek+l-q2- E:~~Ek+1-q2· 

Similar recurrence formulae may be written down for larger k. More specifically, 
consider k = 2(q2 - 1). We have 
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128 ERNST-ULRICH GEKELER 

using Eqi = E'/ and E2( q-1) = - E~_ 1 . This somewhat mysterious identity is not 
forced by dimension reasons since dim M2(qL 1),o = 3. It would be interesting 
to know which subscripts k give rise to similar identities, i.e., for which tuples 
k1, ... , ks, h, ... , lt subject to L ki = L lj, we have a relation II Ek; = II E1i 
up to sign. 

7. The polynomials cpk and '1/Jk· 

In the present section, strongly influenced from [1], we study in more detail the 
special Eisenstein series Eqk_ 1 or rather the 9k = (-1)k+1w1-qk LkEqk_1 . 

We first define the one-variable version of the polynomial Ak(X, Y) of (5.10). 
7.1 Lemma. Ak, considered as a polynomial in X, is monic of degree 
( qk - 1) / ( q - 1). It is not divisible by X if k is even, and exactly once divisible 
by X if k is odd. 

Proof. Obvious from (5.11). 0 

For what follows, we let x, >., J.L : N--+ N0 be defined by 

(7.2) 

We further put 

x(k) 

>.(k) 

J.L(k) = 

0 for even and x(k) = 1 for odd k 
qk-1 + (-1)k 

q+1 
qk _ qX(k) 

q2 -1 . 

Ak(X, Y) 
cpk = Xx(k)Y~L(k). 

By the lemma, cpk is a monic polynomial of degree J.L(k) in x~+ 1 • By abuse 
of notation, we also use "X" as the indeterminate of cpk = cpk(X). Its crucial 
property (which follows directly from its construction) is 

(7.3) 9k = gx(k) A~-'(k)cpk(j). 

Further, for non-elliptic z E 0, we have the equivalence 

cpk(j(z)) = 0 <=> 9k(z) = 0. 

7.4 Proposition. We have cpo = cp1 = 1 and fork~ 2 

Proof. Translation of (5.11) (iii). 0 

Note that the quantity >.(k) is strictly larger than J.L(k - 2) = deg cpk-2, and 
therefore no cancellation takes place in the formula. 
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7.5 Example. The first few <{)k are <po = tp1 = 1, <p2 =X- [1], 

IP3 = xq- [1]xq-l- [2] 

tp4 = Xq2 +1 - [1]Xq2 - [2]Xq2 -q+l - [3]X + [1][3] 

<p5 = Xq3 +q - [1]Xq3 +q-l - [2]Xq3 - [3]Xq3 -q2 +q 

+[1][3]Xq3 -q2 +q-l - [4]Xq + [1][4]Xq-l + [2][4]. 

129 

As in section 5, we let p be a prime of A of degree d with residue field lF p and 
reduction map x ~ x. Translating {5.12) (or directly using induction from 
(7.4)) yields 

7.6 Proposition. Fork~ 0, <{)k satisfies the congruence 

IPk+d(X) = xx.(k)>..(d+l)tp'( tpd (mod p). D 

7.7 Theorem. (i) The polynomial <{)d is square-free. Hence tpd(X) = TI(X- j), 
where j runs over the non-elliptic j-zeroes of 9d· 
(ii) All the z-zeroes of 9d (and thus of EqL 1} are simple. 

Proof. {i) It is shown in [6] 11.7 that the polynomial Fd,p of (5.10) is square-
free, hence also its dehomogenized version Pd,p{X, Y)/Ym xdeg -m(q2 - 1))/(q-l)' 
which is a polynomial f( x~+ 1 ) in x~+ 1 • Here deg = deg Fd,p = qd - 1 and 
m = max{i I i{q2 - 1):::; deg}. But Fd,p =Ad {5.13), and so rh(X) = f(X) is 
square-free, too, as well as tpd(X) itself. 
{ii) Let zo E 0 be non-elliptic. Since the j-invariant j : 0 ---+ C is unramified 
in zo, we have ordzo9d(z) = ordj(zo)IPd(j), which is :::; 1 by (i). Let now e be 
an elliptic point. From {6.2) we see that 9d(e) = 0 if and only if dis odd. The 
precise vanishing order ve(9d) = 1 {ford odd) results from (i) and (4.10), since 
#{j =f. 0 I j a j-zero of 9d} = deg <{)d = J.L(d) = weigq~t-~f Yet - q!l. D 

7.8 Remarks. (i) As the proof shows, <h(X) = TI(X - j), where j runs 
through the supersingular invariants j =f. 0 of rank-two Drinfeld modules in 
characteristic p. Hence the j-zeroes of 9d provide a canonical lift of these to 
the generic characteristic. This also gives a canonical way of identifying the sets 
E(P) of supersingular invariants in different characteristics p of the same degree 
d. 
(ii) An alternative proof of the theorem, which avoids the above congruence 
and supersingularity considerations, may be given as follows {[5] VII.3, [1] I 
3.4): Suppose zoE :F is a zero of EqLl· Then we know from (6.7) that lzol = 
lzoli = 1. Hence for a, bE A, lazo + bl = max{lal, lbl}, and we can estimate the 
terms in d~ EqLl (zo) = :L::' (azo:b)•ct , which eventually yields fz Eqct_ 1 (zo) =f. 0. 

a,b 

We already know from (6.7) and {7.3) that the roots of tpk(X), i.e., the non-zero 
j-roots of gk, are :::; qq in absolute value. In fact, equality holds. 
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130 ERNST-ULRICH GEKELER 

7.9 Proposition. All the roots x of Cf'k(X) satisfy lxl =qq. 

Proof. It suffices to verify that the Newton polygon of C{)k over Koo is a straight 
line with slope q. More explicitly, write 

Cf'k = L ak,iXI-'(k)-i. 
o::;i::;l-'(k} 

Then it is straightforward from (7.4) that 

(i) -v(cpk(O)) = deg(cpk(O)) = q · deg C{)k and 

(ii) -v(ak,i) = deg(ak,i) $ qi for all i, 

which yields the result. 0 

7.10 Questions/Remarks. Concerning the polynomials Cf'k and their splitting 
fields Lk over K, several natural questions arise, which have obvious analogues 
for classical Eisenstein series over Q. 
(i) Is C{)k always irreducible? 
(ii) Is the Galois group Gal(cpk) the full symmetric group? 
(iii) Which places of K are ramified in Lk, and what is the discriminant 

DLk/K? 

The "classical" counterpart for C{)k is (for a natural prime p > 3) 

C{)p(X) = II (X - j), 

where j runs through the non-elliptic (i.e., j =f. 0, 1728) j-zeroes of Ep-l(z) = 
I L (az+~)P r. For p < 89 (for all p?), C{)p is irreducible over Q with the full sym-

a,bEZ 
metric group Scteg '{Jp as its Galois group, as has been checked by G. Cornelissen, 
using MAPLE. In our function field situation, we have: C{)k is irreducible over 
K. Furthermore, Gal(cpk) = Scteg '{Jk at least if k ;::: 4 is even and q is odd [2]. 
The case k = 3 is degenerate and yields the affine group { (~ ~) I a E IF;, b E IF q} 
over IFq as Galois group of cp3 ([1] !.6.2). Fork$ 2, deg C{)k $ 1. Question (iii) 
will be dealed with below; see also (8.11) and (8.12). 

7.11 Definition. Fork EN, put 
vk = II [iJI-'(k}-1-'(i}-x(k-i}. 

O<i<k 

Based on numerical calculations, G. Cornelissen conjectured that, up to a con-
stant in IF;, Vk = disc(cpk)· A first step into this direction is 

7.12 Proposition. ldisc(cpk)l $ IVkl· 

Proof ([1] !.7.3; beware of misprints!). We have 

(*) ldisc(cpk)l = II lx- Yl $II qq = qql-'(k)(~L(k)-1). 
x#y x#y 

<pk(x)=O=<pk(Y) 
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After a lengthy but elementary calculation, 

I'Dkl = II qq;(f..L(k)-f..L(i)-x(k-i)) 

O<i<k 

evaluates to the right hand side of ( * ), which gives the result. 0 

7.13 Example (loc. cit. 7.2). ±disc(cp3) = V3 

Proof. cp3(X) = Xq- (1]Xq-l- (2], hence the equalities up to sign 

disc(cp3) = II cp;(x) = IIr1Jxq-2 = (1Jq[2Jq-2 = v3. o 
<pa(x)=O x 

We next show that disc(cpk) and Vk have the same finite prime divisors. 

131 

7.14 Theorem. Let p be a prime of A of degree d and k ~ 3. The reduction 
tpk ofcpk (modp} has multiple roots ifk > d (except for (q,d,k) = (2,2,3)} and 
is square-free fork ::::; d. 

Proof. The assertion follows fork > d from (7.6) and fork= d from the proof 
of (7.7), i.e., the fact that tpd is the square-free supersingular polynomial. For 
the case k < d (actually, k ::::; d: we therefore get a second proof for k = d), we 
use a variant of the argument given in (6] Thm. 12.6. 

It suffices to show that the plane affine curve over lFp defined by Ak(X, Y) = 0 
is non-singular off (X, Y) = (0, 0), as long as k ::::; d. Here and in the remainder 
of the proof, we suppress the C) for "reduction mod p". This is checked directly 
fork= 1 or 2. (A1 =X, A 2 = xq+l- (1]Y.) Fork~ 3, we have 

a~Ak(X, Y) = a~Ak-t · Xqk- 1 - [k- 1] a~Ak_ 2 . yqk-2 

a a k-1 a k-2 ayAk(X, Y) ayAk-t · Xq - [k -1] ayAk-2 · yq . 

Hence 

is equivalent with the matrix equation 

If Vk denotes the 2 X 2-determinant in ( ** ), an elementary calculation left to 
the reader yields 

k-2 v3 = (1], vk+l = [k- 1]Yq . vk (k ~ 3). 

Taking into account that "Ak(X, 0) = 0 =>X= 0" (7.1), we now use induction 
to prove the statement 

S(k) : "( *) implies (X, Y) = (0, 0)". 
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132 ERNST-ULRICH GEKELER 

This turns out to hold as long as [k- 1] ¢ 0 (mod p), i.e., as long as k :::; d 
(3.8). The proof is finished. 0 

Comparing with the definition ofVk, we see that Vk and disc(cpk) have the same 
finite prime divisors. In particular, the splitting field Lk of IPk is unramified at 
places p of A of degree d ~ k. 

Similar considerations that led us to the properties of the zeroes of gk may also 
be applied to the functions 

(7.15) 

7.16 Proposition. (i) The two series (hk) and (thk) {where 1hk := ~) satisfy 
the same recursion 

as the series (gk), with initial conditions ho = 0, h1 = h and 1ho = 0, 1h1 = 1, 
respectively. 
(ii) 1h1 = 2h'fc with some 2hk E MqLl,o that satisfies 

2hk = 2hk-19qk- 2 - [k- 1]f1 hk-2/j.qk- 3 (k ~ 2) 
2ho = 0, 2h1 = 1. 

Proof. Immediate from applying the differential operator {) to (5.8), and using 
the fact that taking q-th roots is well-defined and additive. 0 

Note that 2hk has its coefficients in A[Tq- 1 ] = lFq[Tq- 1 ]. 

Let now Bk(X, Z) E A[X, Z] be the unique polynomial such that Bk(g, h) = hk. 
From (5.10) and {)h = 0, we have 

Bk(X, Z) = 0~Aic(X, Z)Z = 0~Ak(X, -zq-1)Z, 

where a~ Ak (X, - zq-l) is homogeneous of weight qk - q. (As usual, the weights 
of X and Z are q - 1 and q + 1, respectively.) The largest power of Y := - zq-l 
of weight :::; qk- q is Y~L(k)-x(k+l), and 

_ft_Ak(X Y) xq+l 
ax ' = polynomial in -- times xqx(k+l). 
Y~L(k)-x(k+l) y 

We therefore define the polynomial 1/Jk by 

(7.17) 
xq+l Bk(X, Z) 

1/Jk( ---y-) = YIL(k)-x(k+l) . xqx(k+l) . z' 
which is similar to the polynomial IPk of (7.2). It has the properties analogous 
to (7.3) and (7.4): 

(7.18) 
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MODULAR FORMS FOR GL(2,1Fq[T]) 133 

and for non-elliptic z E f!, 
1/Jk(j(z)) = 0 <=> hk(z) = 0; 

1/Jo = 1/J1 = 1, and for k ~ 2, 
1/Jk(X) = X-'(k)-(-t)k'I/Jk-t(X)- [k -1]1/Jk-2(X). (7.19) 

The first few of them are 1/J2 = 1, 1{J3 = Xq- [2], 

1/J4 = Xq2 - [2]Xq2 -q - [3] 
1/Js = Xq3+q- [2]Xq3 - [3]Xq3 -q2+q- [4]Xq + [2][4]. 

Also, one shows without difficulty: 

(7.20) 1/Jk is monic of degree deg 1/Jk = deg ¢k - x(k + 1) = J.t(k) - x(k + 1) 
and deg('I/Jk(O)) = q · deg 1/Jk· Further, writing 1/Jk(X) = Eak,ixdeg 1/Jk-i with 
ai E A, we have deg ak,i :S: qi. Hence again the Newton polygon of 1/Jk is a 
straight line of slope q, and the next result follows. 

7.21 Proposition. All the roots x of 1/Jk(X) and hence all the j-zeroes x =f. 0 
of hk = ogk satisfy ixi = qq. 0 

7.22 Remark. The 1/Jk are q-th powers of polynomials with coefficients in 
IFq[Tq-1 ]. Since for non-elliptic z, Vz(hk) = ordj(z)'I/Jk(j), this is in keeping with 
the fact that all the Vz(hk) are divisible by q. We shall see later (8.14) that Vz(hk) 
actually equals q for all zeroes z of hk. We also note that the present 1/Jk slightly 
differ from those 1/Jf defined in [1]; the relation is 1/Jf(X) = xx(k+t)'I/Jk(X). 

8. Location of zeroes of special Eisenstein series and of their Serre 
derivatives. 

We already know that all the zeroes z E F of 9k and hk satisfy z E Fo, i.e., 
izi = izii = 1, with lj(z)l = 0 or qq. Here we investigate how the zeroes are 
distributed in F0 • First note that C has Fq, the algebraic closure of IFq, as its 
residue class field. For z E Oc = {z E C I izl :S: 1}, we have 

(8.1) z E Fo <=> 3 zoE Fq -lFq such that iz- zoi < 1 
<=> red(z) ¢ IFq, 

where red Oc --+ Oc/mc = Fq is the reduction map. The idea is to 
approximate Ek(z) by the truncated series 

(8.2) 

I 1 
"" and L...J (az + b)k 

a,bElFq 

1ft( z) 

by 
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134 ERNST-ULRICH GEKELER 

- -1 L 1 t(z) =elF (z) = --, • z-a 
aElF0 

which at the same time may be considered as reductions mod me of Ek, e:A 1, 

respectively. We therefore deal first with these "finite Eisenstein series", i.e., 
lattice sums over finite-dimensional lF q-lattices. 

8.3 Proposition. Let k be divisible by q - 1. Then as rational functions, 

where Gk(X) is the k-th Goss polynomial attached to the lFq-lattice lFq. We have 

Gk(X) = L ( k- 1 -/(q- 1) ) ( -1)ixk-i(q-1)' 

O:Si:S(k-1)/q 

and in particular, 

Proof. 

""I -k ""I "" 1 "I"" 1 L....J b + L....J L....J (az + b)k = - 1 + L....J L....J (z + bja)k 
bEIF0 aEIF0 bEF0 a b 

= -1- ~ (z ~ b)k = -1- Gk(t) by (2.7) (i). 

Furthermore, 

which yields the stated Gk(X) upon expanding the geometric series. Analyzing 
the binomial coefficients in G1(X) for l of the special form l = qk -1 (or applying 
(2.7) (ix), combined with logJF0 (z) = LZq;) gives the last formula. 0 

i~O 

8.4 Proposition. For z E Fo we have: 

Eqk_1(z) = 0 <=? z E 1Fqk+l -lFq, 

and all the roots are simple. 

Proof. Let z E Fo. Then 

Eqk-1 (z) = 0 <=? 1 + L t(z)qk-qi = 0 
O:Si<k 

<=? L 4: (z) = 0 (since z ¢ lFq and therefore t(z) is finite and non-zero) 
O:Si:Sk 
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k+l {:} z = zq , as elF • ( z) = z - zq. 

Using again (2.7), parts (vi) and (vii), and d~t(z) = -?(z), we have for 
zoE 1Fqk+l -IFq, to= t(zo): 

d - - ' - L2 - - - -qk dzEqk-l(z)- -Gqk+1(to)t0 - Gqk(to)- t0 =/:- 0, 

i.e., the simplicity of the roots. 0 

' 1 We now come back to Eqk-l = ""' ( ) k 1 itself. Let z E Fo be a zero. ~ az+b q-
a,bEA 

If at least one of a, b is non-constant, the term (az + b) 1-qk is less than 1 in 
absolute value. Hence, modulo me, 

i.e., z = z0 E 1Fqk+l - IFq. On the other hand, given z0 E 1Fqk+l - IFq, we 
d d -have Eqk_ 1(zo)l < 1 and ldzEqk_ 1(zo)l = ldzEqk_ 1(zo)l = 1, hence by Hensel's 

lemma, there exists a unique zero z of Eqk-l congruent to z0 . We have therefore 
proved the following theorem. 

8.5 Theorem. For each z0 E 1Fqk+l -IFq, there exists a unique zero z E Fo of 
Eqk-l that satisfies lz- zol < 1, and these are all the zeroes of Eqk-l in F. 0 

Note that the above also gives an independent proof of the simplicity of zeroes 
of special Eisenstein series. 

8.6 Corollary. Let z E F0 have red(z) = zo E Fq -IFq. Then 

l9k(z)l 1, 
< 1, 

if z0 rf. IF qk+l 

if ZoE 1Fqk+l. 

Proof. The constant comparing Eqk-l and 9k = ( -1)k+1w1-qk Lk · Eqk_l has 
absolute value 1. The result now follows from 1Eqk_ 1 (z)l :=:; 1 and IEqk_l (z)l < 1 
{:}Eqk_ 1(zo)=O. 0 

8. 7 Corollary. In the same situation, 

lj(z)l = qq, 
< qq, 

if z0 rt_ IF q2 

if zo E IF q2. 

Proof. This follows from j = 9 : 1 and 1~1 = q-q uniformly on Fo ((8] 2.13, 
where the equivalent formula logq l~oldl = q2 is given). 0 

For the convenience of the reader, we give a list with the logarithms of absolute 
values of the relevant functions on Fo. 
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8.8. Table 

I f llogq 1/1 on :Fo llogq 1/(z)l depending on zo = red(z) I 
7f' __!L_ 

q-1 
t --1 -1 h _ _!L =rr eA' q-1 1 - 0 <4 't 
Ek ~0 < 0 iff Ek(zo) = 0 
gk, Eqk-1, Eqk-1 ~0 < 0 iff ZoE 1Fqk+t 
~ -q 
~old q2 
g ~0 < 0 iff z0 E IF q2 
j ~q < q iff Zo E 1Fq_2 

8. 9 Proposition. Let z be the coordinate on JID1 /IF q, and consider l = """' ~ L...J z-a aElFq 
1 - (1 + [q-1 )q+1 -

= -::;-----:;-- and j := _ 1 as rational functions on JID1 . Then j is invari-z- zq tq-
ant under the action of r 0 = G L ( 2, IF q) on JID1 and identifies the quotient r 0 \ JID1 

with JID1 . 

Proof. It is immediate that 3 is invariant under matrices of the form (~~) since 
t(az) = a- 1l(z). A small calculation gives the invariance under (~~),hence 3 is 
invariant under ro, which is generated by matrices of that shape. As a function 
in z, 3 has degree q3 - q = #PGL(2,1Fq), thus IFq{]) is the fixed field of r 0 in 
IFq(z). Therefore, 3 defines a birational morphism from r 0 \ JID1 to JID1, which is 
an isomorphism since the target JID1 is normal. D 

8.10 Theorem. Let z, w be zeroes of gk in :Fo, zo = red(z), Wo = red(w). 
Then 

lj(z)- j(w)l if zo,Wo are equivalent under ro = GL(2,1Fq) 
otherwise. 

Proof. In the first case, also z and ware ro-equivalent by Theorem 8.5, whence 
j(z) = j(w). 
For the second case, we take a closer look on the behavior of jon :Fo. We have 
j = 9 : 1 , where ~ = -tq-1 II fa(t)Cq2- 1)(q-1). Now the infinite product 

aEA monic 

P(z) =II··· converges and satisfies IP(z)-11 < 1 on :Fo, as follows from (3.12) 
and (4.5). Hence on :F0 , the following congruences mod me hold: 

1i'q- 1 ~(z) e~-q(z)P(z) = elFq(z)1-q = t(z)q-t, 
g 1i'1-q[1)Eq_1(z) = Eq_1(z) (since 1i'1-q[1) is a 1-unit) 

= Eq_ 1 (z) = -(1 + t(z)q- 1) by (8.3), and further 
1i'1-q j(z) (1 + t(z)q- 1 )q+lf(z)1-q = (1 + t(zo)q- 1 )q+1t(zo)1-q = 3(zo). 

We see from (8.9) that ro-inequivalent points zo, Wo give rise to different 3(zo) =i 
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](wo). Thus finally IW1-qj(z) -1i'1-qj(w)l = 1 and lj(z)- j(w)l = ~~- 1 1 =qq. 
0 

8.11 Corollary. The inequality of Proposition 7.12 is in fact an equality, i.e., 
ldisc(<pk)l = IVkl· 

Proof. Immediate from (8.10) and the proof of (7.12). 0 

8.12 Theorem. Let Lk/ K be the splitting field of <pk, that is, the field exten-
sion generated by the j-zeroes of 9k· Then Lk · Koo is the unramified extension 
of Koo of degree k + 1, 2, 1 if k 2:: 4, k = 3, k = 1, 2, respectively. 

Proof. The assertion is trivial if k = 1, 2, thus suppose k 2:: 3. We have 
Lk · Koo = Koo(j(z) I EqL1(z) = 0). Let zo E 1Fqk+l -IFq and K~+ 1 ) = 
K 00 ( wo I wo E IF qk+l ) be the unramified extension of degree k + 1. The expan-
sion of Eqk_1 around zo has coefficients in K~H), as follows from developing 

1 - 1 into a geometric series in z - zo [ lqk-1 

(az + b)qk-1 - (az0 + b)(1 + a~~~:~>) 
and rearranging terms. Hence the zero z of Eqk_1 close to z0 actually lies in 
K~+ 1 ). For the same reason, t(z)q- 1 = w1-qeA(z)1-q and j(z) = convergent 
Laurent series in t(z)q-1 with coefficients in A C Koo lie in K~H). In view of 
w1-qj(z) = ](z) (see (8.9)), it now suffices to show: 

k 2:: 4: The field extension IFq(S) generated over IFq by the value set 
S = ](1Fqk+l -IFq) of]: Fqk+l -IFq ~ 1Fqk+l equals 1Fqk+li 

k = 3: <p3(X) = Xq- [1]Xq- 1 - [2] has K~) as its splitting field. 
- k+l Now j, being of degree q3- q, has imageS of cardinality #(S) 2:: q qL~q > qk-2 . 

For k > 4, #(8)2 > #IF qk+l, hence IF q(S) = IF qk+l, and this also holds for k = 4 
since k + 1 = 5 is prime. If k = 3, 

2 Tq 2 
-T-q Xq<p3( X) = (1- T 1-q )Xq + (1- T 1-q)X- 1 := Xq +X- 1 =: 7J(X) 

has the same splitting field as <p3(X). But 77(X) = 0(X - e), where e runs 
through the elements of IF q2 with trace 1. Its splitting field over IF q therefore 
equals IF q2, which gives K~) for the splitting field of <p3 over K 00 • 0 

The present result, together with (8.11) and Theorem 7.14 strongly suggests 
that in fact disc(<pk) = Vk, possibly up to a constant in IF;. We cannot resist 
here to present the following table, suitable to catalyse some meditation. It 
contains the numerators of the discriminants of the polynomials <pp (see (7.10)) 
in the range 29 :$ p :$ 79, i.e., those p ::/= 83 where 2 ::; deg <pp ::; 6. 

Note that, in contrast with our <pk E A[X], <pp E Q[X], and denominators 
actually occur. So its discriminant is in general not an integer. The numbers 
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138 ERNST-ULRICH GEKELER 

Ck are k-digit integers without small prime factors, which we didn't attempt to 
further factorize. 

8.13 Table (G. Cornelissen/MAPLE). 

p deg cpp num( disc( cpp)) 
29 2 214 ·39 -55 ·73 ·132 ·281827873 
31 2 221 . 39 . 55 . 74 . 132 . 39468318601 
37 3 246 · 330 · 515 · 712 · 112 · 136 · 172 · 192 · C13 · C21 
41 3 247 · 325 · 519 · 79 ·114 ·136 ·172 ·192 · 2137 · C34 
43 3 248 · 324 · 515 · 714 · 136 · 172 · 192 · 97 · 223 · C15 · C23 
47 3 248 · 327 · 515 · 79 · 112 · 136 · 172 · 192 · C48 
53 4 292 . 353 . 530 . 721 . 114 . 139 . 176 . 192 . 232 . 67 . 73 

·127 · 1481 · c81 
59 4 2107.351.531.721 ·116. 1312 ·1~. 196.232. c102 
61 5 2156 . 386 . 555 . 735 . 1118 . 1320 . 176 . 199 . 232 . 294 . 314 

·3037 · C160 
67 5 2160 . 385 . 551 . 735 . 1113 . 1320 . 176 . 196 . 236 . 294 . 314 

·79 · 1987 · 21467 · C175 
71 5 2160 . 386 . 551 . 733 . 1119 . 1320 . 1712 . 196 . 236 . 294 . 314 

·127 · 313 · 6311 · 29837 · C180 
73 6 2242 . 3136 . 570 . 753 . 1118 . 1330 . 1715 . 1916 . 238 . 294 . 316 

·376 · 1867 · C272 
79 6 2240 . 3129 . 577 . 753 . 1122 . 1325 . 1714 . 1914 . 236 . 294 . 314 

·376 · 53 · 3319 · C283 

The reader will observe that all the primes l ~ ~ (with the possible exception 
of l = 11) occur to a high power in num(disc(cpp)), which is a weak analogy of 
the behavior of disc(cpk) EA. However, we can neither prove this fact (?), nor 
do we understand the larger prime divisors l that appear. 

Some of the results about zeroes of 9k have analogues for hk resp. 8EqL1. 

8.14 Theorem. For each zo E !Fqk -lFq, there exists a unique zero z E Fo of 
hk that satisfies lz- zol < 1, these are all the zeroes of hk in F, and they have 
multiplicity q. 

Proof. We start with two simple estimates. 

Let z E Fo, a, b E A. Then 

(i) deg a> 0 =? lrrat(az)l < 1 

(ii) max{deg a,deg b} > 0 =?I (az:b)qk I< 1. 

The second of these is trivial, and the first follows from (4.5). 
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For z E Fo, 

- d ""I 1 - ""I 1 1r8EqL1(z) = dz L....., (az + b)qk-1 -TrE L....., (az + b)qL1 
a,bEA a,bEA 

""'I a ""' I 1 
= L....., (az + b)qk -1f L....., . at(az) L (az + b)qk_1' 

a,b aEA momc a,b 

which has absolute value :::; 1. Modulo me, 

1f L at(az) = 1ft(z) by (8.15) (i)) 
a monic 

-1 L: 1 _ L: 1 -=eA (z) = -- = -- =t(z), z-a z-a 
aEA aEIFq 

I 

and in the double sums L , only terms with (a, b) E IF q x IF q contribute to the 
a,b 

congruence. Hence 

L 1 
( a ) k - i(z)Eqk-1(z) 

b IF az + b q 
a, E q 

= L 1 ai(az)qk - i(z)Eqk_1 (z). 
aEIFq 

Now i(az) = a- 1i(z), hence by the formula for Gqk_ 1 given in (8.3), the above 
equals 

if zo = red(z) E IFq. 

On the other hand, red(z) = zo E 1Fqk implies that l1f8Eqk_1(zo)l < 1, from 
which we will derive the existence of a q-fold zero z with z = zo. Since Iii = 1 
onFo, 

- k-1 i tq -q has zeroes at z = zo E 1Fqk - IFq, in fact, simple 
O$i<k 

zeroes, as follows from the proof of (8.4). Up to a suitable scaling, 2hk is the 
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reduction of the function 2hk of (7.16). Hence the simple zeroes of 2hk may be 
uniquely lifted to simple zeroes of 2hk in :Fo, i.e., to zeroes of multiplicity q of 
hk = const. 8Eqk_1 . This finishes the proof. D. 

Using similar methods, we get the following analogues of results (8.6), (8.10) 
and (8.12) for the zeroes of hk. We leave details to the reader. 

(8.15) For z E :Fo with red(z) =zoE Fq -IFq, 

ihk(z)l 1, if zo It' IF qk 

if z0 E IF qk. < 1, 

(8.16) Let z, w be zeroes of hk in :Fo with reductions zo, wo. Then 

lj(z)- j(w)l = 0, 
qq 

if z0 ,wo are equivalent under r 0 = GL(2,1Fq) 
otherwise. 

(8.17) Let Mk/ K be the splitting field of 1/Jk· Then Mk · KXJ is the unramified 
extension of degree k of Koo(Tq- 1

) if k ~ 5, of degree 2 if k = 4, it equals 
K00 (Tq- 1 ) if k = 3, and Koo if k = 1, 2. 

8.18 Remark. As is apparent from the preceding, the functions t, Ek,] etc., 
as rational functions of 0/IFq := Fq -IF <.......t IP'1(Fq), may be regarded as the 
reductions (up to scaling) of the functions t, Ek, j, ... on 0. They are modular 
with respect to the action of ro on 0/IFq. Proposition (8.3) describes the t-
expansion of the Eisenstein series Ek, and (8.9) gives the modular uniformization 
of ro \ (0/IFq). In fact, an important part of our present results on Drinfeld 
modular forms evolves from the investigation of functions on the "finite upper 
half-plane" 0/IFq. Hence the theory of such "finite modular forms" is at least 
not empty. A systematic study of them will be given elsewhere. 
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Counting jump optimal linear extensions of some posets 

Hyung Chan Jung 

1. Introduction 

Let P be a finite poset and let IPI be the number of vertices in P. A subposet 
of Pis a subset of P with the induced order. A chain C in Pis a subposet of P 
which is a linear order. The length of the chain C is ICI - 1. A poset is ranked 
if every maximal chain has the same length. A linear extension of a poset P is a 
linear order L = X1, x2, ... , Xn of the elements of P such that Xi < Xj in P implies 
i < j. Let .C(P) be the set of all linear extensions of P. Szpilrajn [13] showed that 
.C(P) is not empty. 

Let P, Q be two disjoint posets. The disjoint sum P + Q of P and Q is the 
poset on P U Q such that x < y if and only if x, y E P and x < y in P or x, y E Q 
and x < y in Q. The linear sum P E9 Q of P and Q is obtained from P + Q by 
adding the relation x < y for all x E P and y E Q. 

Throughout this section, L denotes an arbitrary linear extension of P. Let 
a, bE P with a< b. Then b covers a, denoted a-< b, provided that for any c E P, 
a< c :5 b implies that c =b. A (P,L)-chain is a maximal sequence of elements 
z1, z2, ••. , Zk such that z1 -< z2 -< · · · -< Zk in both L and P. Let c(L) be the 
number of ( P, L )-chains in L. 

A consecutive pair (Xi, xi+!) of elements in L is a jump (or setup) of P in L if Xi 

is not comparable to Xi+l in P. The jumps induce a decomposition L = C1Ee· · ·E9Cm 
of L into (P,L)-chains C1. ... ,Cm where m = c(L) and (maxCi,minCi+1) is a 
jump of P in L for i = 1, ... , m - 1. Let s(L, P) be the number of jumps of P 
in L and let s(P) be the minimum of s(L, P) over all linear extensions L of P. 
The number s(P) is called the jump number of P. If s(L, P) = s(P) then L is 
called a (jump) optimal linear extension of P. We denote the set of all optimal 
linear extensions of P by O(P). The width w(P) of Pis the maximal number of 
elements of an antichain (mutually incomparable elements) of P. Chein and Habib 
[2] introduced several aspects of jump number. Dilworth [3] showed that w(P) 
equals the minimum number of chains in a partition of P into chains. Since for 
any linear extension L of P the number of ( P, L )-chains is at least as large as the 
minimum number of chains in a chain partition of P, it follows from Dilworth's 
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144 H. C. JUNG 

theorem that 

(1) s(P) ;::: w(P) - 1. 

If equality holds in (1), then Pis called a Dilworth poset or simply a D-poset. More 
discussion about D-posets is given in [12]. 

A poset P is cover N-free if P does not contain cover N = { x1 < Y1, x2 ~ 
y1,x2 < Y2} as a subposet. A cycle (on 2n elements) is a partially ordered set 
{a2n > an,a2n > a1,an+i > ai,an+i > ai+l fori= 1, ... ,n -1}. A poset Pis 
cycle-free if P does not contain cycle as a subposet. Proposition 1.1 and Lemma 
1.2 give properties of cycle-free posets and cover N-free posets. 

PROPOSITION 1.1 (DUFFUS, RIVAL AND WINKLER [4]). If P is cycle-free, 
then 

s(P) = w(P) - 1. 

LEMMA 1.2 (EL-ZAHAR AND RIVAL [6]). If P is cover N-free, then for any 
antichain {a1, ... , an} in P there isLE O(P) such that a1 <···<an in L. 

In this paper, we will count the number of optimal linear extensions of some 
finite posets. It is clear that IO(P)I ~ j.C(P)j. 

2. Direct Counting 

By direct counting, Jung [8] counted optimal linear extensions of some basic 
posets: 

A k-chain k is a chain of length k- 1. We get easily s(a1 +···+an) = n- 1 
and 

IO(al +···+an) I= n!. 

Let Im = 1 + · · · + 1 (m times). We define a complete multipartite poset to 
be a poset M(mi. ... , mn) = Im 1 EB · · · EB Imn. Then we get (M(m1, ... , mn)) = 
m1 + · · · + mn - n and 

(2) 

Especially, Km,n = M(m, n) is called a complete bipartite poset. Then from 
(2), we get 

IO(Km,n)l = m!n!. 

An upward [downward] rooted tree Tu [Td] is a poset whose diagram is an upward 
[downward] rooted tree. LetT= Tu or Td. Then we get s(T) = w(T) -1 and 

(3) IO(T)I = w(T)!. 

A fence (or zigzag) on n elements is a poset Fn = { a1 < a2, a2 > a3, ... }. We 
get s(Fn) = f~l- 1 and 

{ 1, if n = 1 or even 
IO(Fn)l = 2(n-l)/2 , otherwise. 

For intergers n, k with n ;::: 0 and k ;::: 0, the general crown S~ is the poset of 
unit length with n + k minimal elements x1 , ... , Xn+k and n + k maximal elements 
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Yl, ... ,Yn+k· The order on S~ is defined by Xi < Yi iff j tj. {i,i + 1, ... ,i + k}, 
where addition is modulo n + k. Then we get s(S~) = 2n + k- 3 and 

(4) 

A standard poset on n elements Sn is defined to be S~. From ( 4), we get 

IO(Sn)i = n!(n- 1)!. 

Let N = {x1 < Yt,X2 < y1,x2 < Y2} be a poset. The linear orders £1 = 
X1X2Y1Y2, L2 = X1X2Y2Yb £3 = X2X1Y1Y2, L4 = X2X1Y2Y1, £5 = X2Y2X1Y1 are all 
the possible linear extensions of N. Thus I.C(N)I=5. Also, s(N)=1 and only £5 is 
the optimal linear extension of N, that is, 

(5) IO(N)i = 1. 

Let C2n be a cycle on 2n elements. By direct counting, we get IO(C2n)i = 
2n-1 n· . 

El-Zahar and Rival [5] shows that s(P1 +P2) = s(Pl)+s(P2)+1 and s(P1EBP2) = 
s(Pl) + s(P2) for finite posets P1,P2. This motivates the following theorem: 

THEOREM 2.1. Let Pt, P2 be finite posets. Then 
(a) IO(P1 + P2)i = cscc;.~f~ 11,:~~(1~n'l)! IO(Pl)i ·IO(P2)i, 
(b) IO(Pl EB P2)1 = IO(Pl)i·IO(P2)i. 

PROOF. (a) Let £1 E O(P1) and £2 E O(P2). Then c(£1) = s(Pl) + 1 and 
c(L2) = s(P2) + 1. Let L be a linear sums of (P1, £1)-chains and (P2, £2)-chains 
such that L[Pl] = £ 1 and L[P2] = L2. Then L E O(P1 + P2). All the possible 
number of the above L is 

( c(Ll) + c(L2)) = (s(Pl) + s(P2) + 2). 
c(£1) s(P1) + 1 

This holds for every £1 E O(P1) and for every £2 E O(P2). Thus 

IO(P1 + P2)i ~ (s(P 1 ;(; 1~(= 2 { + 2) IO(Pl)I·IO(P2)i. 

On the other hand, if L E O(P1 +P2) then L[P1] E O(P1) and L[P2] E O(P2). Thus 
L is a linear sums of (Pt, L[Pl])-chains and (P2, L[P2])-chains. This completes the 
proof of (a). 
(b) Let Li E O(Pi) fori= 1, 2. Since £1 EB £2 E O(P1 EB P2), we get IO(P1 EB P2)i ~ 
IO(Pl)l · IO(P2)I. For any L E O(P1 EB P2), every elements of P1 precedes every 
elements of P2. Also, L[Pi] E O(Pi) for i = 1, 2. Thus L = L[P1] EB L[P2], and so 
IO(P1 EB P2)l ~ IO(Pl)I·IO(P2)1. This proves (b). 

Let V = {Yl > x1,Y2 > x1}. Then IO(V)I = 2 and we get IO(N)I = 1 from 
(5), and we get IO(V + N)l = 12 by Theorem 2.1 (a). Also, by applying Theorem 
2.1, we get (2). 

A poset P is called series parallel if it can be constructed from singletons using 
the operations of disjoint sum(+) and linear sum (EB). By Theorem 2.1, we can 
easily count the number of optimal linear extensions of any series parallel posets. 
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146 H. C. JUNG 

Note the difference between Nand cover N. Rival[10] showed that a finite poset is 
series parallel if and only if it contains no subset isomorphic to N. 

Thus if a finite poset P contains no subset isomorphic to N then we can count 
the number of optimal linear extensions of P. 

For example, let Po= 1 EB ((1 EB (1 + 1)) + (1 EB (1 + 1 + 1))). Then we can get 
IO(Po)l = 120 by Theorem 2.1. 

3. Structure Counting 

Let P be a poset, and Q be a subposet of P. For any L E .C(P) we let L[Q] be 
a subposet of L which is also a linear extension of Q. 

THEOREM 3.1. lf P is cycle-free, then 

(6) IO(P)I ~ w(P)!. 

Moreover, equality holds in (6} if P is cycle-free and cover N-free. 

PROOF. Let n = w(P), and A= {x1, ... ,xn} be a maximum size antichain. 
Assume that the following (7) is true: 

(7) if Pis cycle-free and £1 :f. L2 where £1, L2 E O(P) then Ll[A] :f. L2[A]. 

Then IO(P)I = I{L[A]: L E O(P)}I ~ IAI! = n! and we get (6). 
To prove (7) we will show that if Ll[A] = L2[A] then £1 = L2. 
Suppose £1 :f. L2. Choose the first different elements Y1 E £1 and Y2 E £2. Since 
Y1, Y2 are the first different elements, Yl < Y2 in £1 and Y2 < Yl in L2. So Yl and 
Y2 are incomparable in P. Now choose a (P, £1)-chain Cl which contains Yb and 
a (P, £2)-chain CJ which contains Y2· Since Pis cycle-free, c(L) = w(P) for any 
L E O(P) by Proposition 1.1, and so any (P, £)-chain contains exactly one Xi for 
some i. Thus we can choose Xi E Cl and Xj E CJ. Now since L1[A] = L2[A], we 
get Xi= Xj, and so i = j. 
In P since Yl and Y2 are incomparable either Yl < Xi and Y2 < Xi or Yl > Xi and 
Y2 >Xi· If Y1 <Xi and Y2 <Xi hold, Y2 <Xi implies that Cl follows Y2 in £1. and 
thus Y2 < Yl in £1. which is a contradiction. So Yl >Xi and Y2 >Xi in P. 
Now consider (P, £!)-chains. Since Y1 >Xi in Cl, there exists a (P, £1)-chain Cl1 

which contains Y2 and X! 1 • But Xi and X! 1 are incomparable, thus Y2 > X! 1 • Since 
Y2 > Xi, Cl precedes Cl1 in £1. Thus Xi < X1 1 in Ll[A]. Similarly, consider (P, £2)-
chains. Since y2 >Xi in Cf, there exists a (P, £2)-chain C[2 which contains Y1 and 
X1 2 • But Xi and x1 2 are incomparable, thus Yl > X1 2 • Since Yl > Xi, Cf precedes 
c~ in £2. Thus Xi < X!a in L2[A]. 
Since pis cycle-free, h :f. l2. Now Yl > X!a in p implies Cl follows (P, Ll)-chain cl~ 
which contains X1 2 in £ 1. Thus x12 <Xi < X1 1 in Ll[A]. Also, Y2 > xh in P implies c; follows (P, £2)-chain Cl which contains X!l in £2. So we get X!l < Xi < X!a in 
L2[A]. Hence L1[A] :f. L2[A], which is a contradiction. Thus (7) holds, and (6) is 
proved. 

Assume that P is cover N-free and cycle-free. Since P is cover N-free, by 
Lemma 1.2, for any Xi1 ••• Xi,. there is L E O(P) such that Xi1 < ... < Xi,. in L. 
Thus IAI! ~ IO(P)I. Since Pis also cycle-free, (6) holds. Hence IO(P)I = w(P)!. 

For n ~ 5, IO(C2n)l = n · 2n-l < n! = w(C2n)! Since C2n is a cycle, this 
shows that the converse of Theorem 3.1 is false. A poset K = {x1 < x2 < X3, Yl < 
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Y2 < y3, Y1 < x2 < y3, Y2 < X3, Yl < X3, X1 < y3} contains cycle and cover N. But 
IO(K)I = w(K)I = 2 holds. This shows that Theorem 3.1 is the best possible result. 
By applying Theorem 3.1 we get (3) easily, and (5) is an example of inequality in 
(6). 

Let N. = {x1 < y1,x2 < z < y1,x2 < Y2} be a poset. Then since N. contains 
Nasa subset, it is not series parallel. Thus we cannot apply Theorem 2.1 to get 
IO(N.)I. But by Theorem 3.1, we get IO(N.)I = 6. 

Let P, Q be two posets. The direct product P x Q of P and Q is the poset on 
{(p, q): pEP, q E Q} where (a, b) ~ (c, d) if and only if a~ c in P and b ~din Q. 
Let pn be P x · · · x P (n times). 

PROPOSITION 3.2. Let P be a finite poset. Then every (P, L)-chain has length 
at most k- 1 for all linear extension L of P if and only if s(P x If)= IPI- 1. 

PROOF. Suppose that every (P, L)-chain has length at most k -1 for all linear 
extension L of P. Let L. be any optimal linear extension of P x If. Then any 
(P x If, L.)-chain has length at most k -1. Otherwise, let C be a (P x If, L.)-chain 
which has length at least k. Let (p2,l2) = maxC and (p1,h) = minC. Then 
P2 ~ P1 and l2 ~ h. If P2 = P1 or l2 = l1 then ICI ~ k, which contradicts the 
fact that the length of ICI is at least k. Thus P2 > P1 and l2 > l1. Note that 
(p1, l2) and (p2, h) are incomparable. So one of the (Pb l2) and (p2, h) is not inC, 
say (Pb l2). In L., since (Pb h) < (Pb l2), C precedes (p1, l2), which contradicts 
(p1,h) < (p2,l2). Thus in L., since (p1,h) < (p2,h), (p1,l2) precedes C, which 
also contradicts (p1, ll) < (Pb l2). Hence every (P x If, L.)-chain has length at most 
k- 1. Now we get s(P x If) ~ ~~~fl£1 -1 = IPI-1. Let L* = EB( {p} x If: p ordered 
as in some linear extension l of P). Since s(L *, P x If) = IPI-1, s(P x If) = IPI-1. 

Conversely, suppose that s(P x If) = IPI - 1 holds. If there exists a linear 
extension L such that some ( P, L )-chain C has length at least k, without loss of 
generality we may assume L = C1 E9 · · · E9 Ci-1 E9 C E9 Ci+l E9 · · · E9 Cn. Now 
construct a linear extension l. as follows: l. = ( EB( {p} x If : p ordered as in C1 E9 
· · ·EBCi-d)EB(E9~= 1 (Cx {i})EB(EB({p} xlf: p ordered as in Ci+1 EB· · ·EBCn)). Since 
s(l.,P x If)< IPI-1, we get a contradiction. This completes the proof. 

COROLLARY 3.3 (JUNG [7]). Let the maximum size of a chain in a ranked poset 
P be at most k. Let C(a) = {(a,i): i = 1, ... ,k} for all a E P. Choose a linear 
extension L of P, and let L. = EBC(a) where C(a) is arranged just like the order of 
a in L. Then L. is an optimal linear extension of P x If, and s(P x If)= IPI- 1. 

We consider the poset a1 x · · · x an where a1, ... , an are positive integers. We 
assume that ai ~ 2 fori= 1, ... ,nand let a*= max{a1, ... ,an}· Without loss of 
generality, we assume that a* =an. Define C(bb ... , bn-d = {(b1, ... , bn-1, i) : 
1 ~ i ~·a*}. Then C(bb··· ,bn-d is a chain of length a* -1 for any b1, ... ,bn-1 
where 1 ~ bi ~ ai for j = 1, ... , n- 1. 

COROLLARY 3.4 (JUNG [7]). Let L* = EBC(b1, ... , bn-1) where the (b1, ... , 
bn-d are in lexicographic order. Then L* E O(a1 x · · · x an) and 

s(a1 X··· X an)= (rr:1ai)ja* -1. 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



148 H. C. JUNG 

PROPOSITION 3.5. Let P be a finite poset. Then every (P, L)-chain has length 
less thank- 1 for all linear extension L of P if and only if O(P x k) = {L: L = 
EB( {p} x k : p ordered as in a linear extension l of P )} . 

PROOF. If every (P, L)-chain has length less thank -1 for all linear extension 
L of P, then we get easily 

O(P x k) = {L: L = EB({p} x k: p ordered as in a linear extension l of P )}. 

Suppose converse is not true. Then there exists a linear extension L = C1 EB 
· · · EB Ci-1 EB Ci EB Ci+1 EB · · · EB Cn of P such that the length of Ci is at least k- 1. 
Now define L* = [EB( {p} X k: p ordered as in c1 EB ... EB Ci-1)) EB [EB(Ci X {j}: j = 
1, ... , k)] EB [EB( {p} x If : p ordered as in Ci+1 EB · · · EB Cn)). If the length of Ci is 
at least k, then s(L*,P x k) = I:~:i ICjl + k + I:j=i+11Cjl-1 < IPI-1, which 
contradict Proposition 3.2. If the length of ci equals k- 1, then s(L*,P X k) = 
I:~:i ICjl +k+ I:j=i+11Cjl-1 = IPI-1. Thus L* E O(P x k), which contradicts 
O(P x k) = {L: L = EB({p} x k: p ordered as in a linear extension l of P )}. 

THEOREM 3.6. Let P be a finite poset. Then every (P, L)-chain has length less 
thank- 1 for all linear extension L of P if and only if IO(P x k)l = I£(P)I. 

PROOF. Let L1 E O(P x If). Since s(P x k) = IPI- 1, every (P x If, Ll)-chain 
has length k - 1. Thus L1 = EB( {p} x k : p ordered as in some linear extension 
h of P). So IO(P x k)l :::; I£(P)I. On the other hand, for any linear extension 
L of P we get an optimal linear extension EB( {p} x k : p ordered as in L). Hence 
IO(P X k)l::::: I£(P)I-

CoROLLARY 3.7. Suppose P is either (i) a poset whose maximum size of a 
chain is less than k or (ii} products of chains each of which has length less than 
k-1. Then 

IO(P X k)l = I£(P)I. 

4. Concluding Remarks 

There are some unsolved problems in counting optimal linear extensions. 

PROBLEM 4.1. Characterize P where P is not bipartite if IO(P)i = k for 
k = 1,2,3. 

PROBLEM 4.2. Count the number of optimal linear extensions of products of 
finite chains. 

We denote the set of maximal [minimal) elements of a poset P by Max(P) 
[Min(P)]. Let :F2n be the family of bipartite posets P such that if Max(P) = 
{a1,a2, ... ,an} and Min(P)={b1.b2, ... ,bn}, then b1 < a1,a1 > b2,b2 < a2, ... ,bn 
< an with possible comparabilities ai > bj for some i, j where 1 :::; i < j - 1 :::; n- 1. 
Note that for bipartite posets Problem 4.1 is partially solved by Y.J. Yoon [14): A 
bipartite poset P has a unique optimal linear extension if and only if P E :F2n for 
some n. Later H.C. Jung [9] extends this idea and characterized bipartite posets 
with two optimal linear extensions. 
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COUNTING JUMP OPTIMAL LINEAR EXTENSIONS OF SOME POSETS 149 

Also, Problem 4.2 is partially solved by H. C. Jung [8]: JO(mn)l ~ fl~=l kmn-k, 
and let a1 = ... = ai > ai+l ~ ai+2 ~ · · · ~ an, then IO(al X · · · x an) I ~ 
IO(a1 x .. · x aiWi+1 ···anJ.C(ai+l x .. · x an)l. - -
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The Irreducible Representations of Categories 

Masashi Kosuda 

ABSTRACT. The author constructs the irreducible representations of the Heeke 
category and the Jones category using the irreducible representations of the 
centralizers of the mixed tensor representations of quantum groups Uq (gln (C) 
and using the irreducible representations of the Jones algebra respectively. The 
irreducible representations of the former category give the HOMFLY invariants 
of oriented tangles and those of the latter category give the Jones invariants of 
non oriented tangles. In this article, the author will explain how an irreducible 
representation of a category becomes completely reducible and apply this to 
the Heeke category and the Jones category. 

Introduction 

In this article, we construct irreducible representations of two categories. One 
is the Heeke category which is obtained from the category of oriented arcs and 
circles in R 2 x [0, 1). The other is the Jones category which is obtained from the 
category of disjoint arcs in R x [0, 1). These categories are defined in Section 1. 

The composition of morphisms is regarded as a product of a category. However, 
we cannot necessarily define the product between every two elements of the category 
unlike the case of groups. Nevertheless, some categories have presentations by their 
generators and relations [T) just like groups. The Heeke category and the Jones 
category have such a property. In other words, we can define these categories by 
their generators and relations. 

A linear representation of a category is a functor from the category to the 
category of linear maps. Since the Heeke category and the Jones category are 
defined by the generators and the relations, to define the representations of these 
two categories, we have only to define functors so that they preserve the relations 
of each category. 

The purpose of this article is to construct the irreducible representations of 
these two categories. An irreducible representation of category is a functor which 
has no proper subfunctors. (See Section 2.) 

The following are the main results. (Theorem 0.3 and Theorem 0.4 are due to 
his paper [Y).) 
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152 MASASHI KOSUDA 

THEOREM 0.1. Let q E C be a non zero parameter which is not a root of 
unity and let a E C be another non zero parameter which is not a power of q. Then 
arbitrary representation of the Heeke category 1t = 1t(C; a- 1, q-q-1 ) is completely 
reducible. 

THEOREM 0.2. Let Ak,l be a set of pairs of partitions defined by 
min(k,l) 

Ak,l = II {[a, ,B]; a, ,B partitions, Ia I = k - m, I,BI = l - m} 
m=O 

and put 
00 00 

A= u ( u Ak,l) = II ( u Ak,l)· 
r=O k>O, l>O p=-oo k?:O, l?:O 

k+l=r k-l=v 

We fix parameters q, a E C so that they satisfy the conditions in Theorem 0.1. Then 
for the Heeke category 1t = 1t(C; a, q- q-1) the following hold. 

1. For any pair of partitions 'Y E A, there exists an irreducible representation 
P 7 of1t. 

2. For 'Y1, 'Y2 E A, the irreducible representations P 71 and P 72 of 1t are equiv-
alent if and only if 'Y1 = 'Y2. 

3. Conversely, for any irreducible representation P of1t, there exists a pair of 
partition 'Y E A such that P and PI' are equivalent. 

THEOREM 0.3. (Yoshioka) Let q E C be a non zero parameter which is not a 
root of unity. Then arbitrary representation of the Jones category :T = :T(C; q) is 
completely reducible. 

THEOREM 0.4. (Yoshioka) Let q E C be a non zero parameter which is not a 
root of unity. Then for the Jones category :T = :T(C; q) the following hold. 

1. For any non negative integer l, there exists an irreducible representation 
Rep1 of :T. 

2. For non negative integers h and l2, the irreducible representations Rep11 
and Rep12 of :T are equivalent if and only if h = l2. 

3. Conversely, for any irreducible representation Rep of :1, there exists an 
integer l such that Rep and Rep1 are equivalent. 

In order to prove Theorem 0.1 and Theorem 0.3, we use Theorem 2.8. (The 
papers [K, Y] give full details of the proof.) 

We will define the above representations {P7 } and {Rep1} in Section 3 using a 
family of Bratteli diagrams. The fact that these families of representations satisfy 
Theorem 0.2 and Theorem 0.4 respectively is proved using Theorem 2. 7. (The 
details are also in the papers [K, Y].) 

The notion of the irreducible representation was introduced by Neretin [N] and 
formulated by Yoshioka in his Master's thesis [Y]. 

This article is organized as follows. In Section 1 we give the definitions of the 
Heeke category and the Jones category. In Section 2 we introduce the notion of the 
irreducible representations of (small) categories according to the papers [K, N, Y] 
and show conditions for a category to be completely reducible. In Section 3 we 
define a complete set of irreducible representations {P7 } of the Heeke category and 
in Section 4 we define a complete set of irreducible representations {Rep1} of the 
Jones category. 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



THE IRREDUCIBLE REPRESENTATIONS OF CATEGORIES 153 

s 
~ 

FIGURE 1. An oriented tangle 

1. The Heeke category and the Jones category 

Let rands be non-negative integers. An oriented (r, s)-tangle Tis a finite set 
of disjoint oriented arcs and circles properly embedded (up to isotopy) in R 2 x [0, 1] 
such that 

8T = {(i,O,O)Ii = 1,2, ... , r} u {(j,O, 1)lj = 1, 2, ... , s}, 

and such that Tis perpendicular to R 2 x {0} and R 2 x {1} at every boundary 
point of 8T. (See Figure 1.) With each (r, s)-tangle T, we associate two sequences, 
a_T = (t:1(T), t:2 (T), ... , t:r(T)) and a+T = (t:1(T), t:2(T), ... , t:8 (T)), consisting of 
±1. Here fi(T) = +1 if the tangent vector ofT at (i, 0, 0) is outward with respect to 
R 2 x [0, 1] and fi(T) = -1 otherwise. Similarly t:i(T) = -1 if the tangent vector of 
Tat (j, 0, 1) is outward and t:i (T) = +1 otherwise. If r = 0 (resp. s = 0), then 8_T 
(resp. a+T) is the empty set 0. We can easily find that if E~ fi(T) # E~ t:i(T) 
then there exist no (r, s)-tangles. 

Before defining the Heeke category, we define the category OT A of oriented 
tangles. The objects of OT A are defined as the sequences {(t:t, ... fr)lr = 0, 1, ... } 
with fi = ±1 including the empty sequence and denoted by Ob(OT A). A morphism 
from f = ( fl, ... , fr) to t:' = ( f~, ... , f~) is a C-linear combination of oriented 
(r,s)-tangles in which each tangle T satisfies a_T = t: and a+T = t:'. The set of 
morphisms from f tot:' is denoted by MoroT A(t:,t:'). We define the composition 
product T1 o T2 of tangles T1 and T2 by placing T1 on T2, gluing the corresponding 
boundaries and shrinking half along the vertical axis. (Figure 2.) The composition 
T1 o T2 is defined only when 8_Tl = a+T2. The composition product will be 
extended C-linearly. 

Slightly changing the argument in Thraev's paper [T], we will find that every 
oriented tangle T can be presented by a composition product of special tangles as 
in Figure 3. In other words, these special tangles are generators of OT A. We also 
find that there are relations as in Figure 4 together with the "commuting relations" 
as in Figure 5 among the generators. (See their paper [ADO, 0, T].) Conversely, 
we can define OT A by these generators and relations. 

Keeping the above fact in mind, we define the Heeke category. 
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FIGURE 2. Product of tangles 

[I e: x+1 e: ·l 1-~ I X 1£ .. ·1 [I e: x-I e: •l I~ I X I ~--'1 
[I e: u~ e: ·l I ~-I u 1-~ ·I 

[I e: u 11 e: •] I ~1 u I e:--'1 

[I e: TI~ e: ·l 
I ~-In l-~·1 [I e: Till e: ·l I ~1 n I e:--'1 

[I e: ] I e: I 

FIGURE 3. Special tangles (generators of the Heeke category) 

DEFINITION 1.1. Let 0b(1t(C; a-1, q- q-1 )) = {(~: 1 , ... fr )Jr = 0, 1, ... } with 
fi = +1 or -1 including the empty sequence be the objects of 1t(C; a-1, q- q-1 ). 

Let [I,] be the identity morphism on«: E Ob(1t(C; a-1, q- q-1 )). Then the Heeke 
category 1t = 1t(C; a- I, q- q-1 ) corresponding to the field C and the parameters 
a, q E C is defined by the generators: 

[I,x+I,,],[I,x-I,,] (~:,+1,+1,~:') - (~:,+1,+1,~:'), 
[I,Uri,,],[I,Uli,,] (~:,~:') - (~:,±1,=F1,~:'), 
[I, Uri,,], [I,U1I,,] ( ~:, =F1, ±1, ~:') - ( ~:, ~:'), 

[I,] «: 
and the commuting relations: 

(~:, ~:' E Ob(1t)), 
(~:, ~:' E Ob(1t)), 
(~:,~:' E Ob(1t)), 
(~: E Ob(1t)) 

[Iaf I(b,w,c)] 0 [I(a,x,b)9Ic] = [I(a,y,b)gic] 0 [Iaf I(b,z,c)] 
for f: X- y, g: z- w, J,g E {x+,x-,Ur, ul,On Ul} and a,b,c E Ob(1t), 
and the following relations: 

1. [I,UII(+Vll o [I(e,+1)UII,,] = [I(<,+Vll = [I(<,+l)Uri,,] o [I,Uri(+V)], 
[Ice,-1)0!I,,] o [I,UIIC-vll = [Ic,,-vll = [I,Uric-vll o [I(e,-l)Uri,,], 

2. (I(<,-1,-l)lf!I,,] o (I(<,-1,-1,+1)UII(-1,E')] o (I(<,-1,-1)X±I(-1,-1,<')] 
o[Ice,-1jU!I(+l,-1,-V)] o (I,UII(-1,-1,<')] 
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D1 ru =! =lfl lfl =t =ru 
D2 

D5 = 

= f(~ 
D4Q=ll=Q 
~~=~ 

FIGURE 4. Relations 

a y b w c a y b w c = = c::::> = = c::::> l I I I I I 

f g 
---- - ........ - - -- - -- - - - - -- - --

g f 
I I 

FIGURE 5. Commuting relations 

= [I,Url(-1,-V)] o [I(•,-l)Url(+l,-1,-V)] o [J{,,-1,-1)x± J{-1,-Vll 
o(J{<,-1,-1,+1)Url{-1,<')] 0 (J{<,-1,-1)Urf,,], 

3. [I(,,+1)0lJ,,] o [J,X+J<-v>] o [I(,,+1)Urf,,] 
= (J{•,+V)J 
= [I(,,+1)Ulf,,] o [I,x- I<-v>l o [I(,,+1)Urf,,], 

4. [J,x+ J,,J o [I,x- J,,J = [1<•.+1,+1,•'>1 = [I,x- J,,J o [J,x+ J,,J, 
5. [I,T- J,,] o [J,Y+ J,,] = [J(•,+1,-V)J, 

where [I,T- J,,] = [I,Url(+l,-V)] o [J(,,- 1)X-J(-V)l o [I(,,-1,+1)Urf,,] 
and [J,Y+J,,] = [I(,,-1,+1)0lJ,,] o [J(,,-1)X+J<-v>l o [I,U1I(+l,-V)], 
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·-{X] -·[X]=(q-q-'{) C] 
FIGURE 6. The skein relation 

FIGURE 7. (m, n)-diagram 

6. [J,x+ J(+l,E')l 0 [J(E,+l)x+ J,,] 0 [J,x+ J(+l,E')] 
= [J(,,+l)x+ J,,J o [J,x+ J(+vll o [J(,,+l)x+ J,,J, 

together with the following skein relation (pictured in Figure 6): 

a- 1 [J,x+ J,,]- a[I,x-J,,] = (q- q)-1[J(,,+I,+I,,')], 

for any pair of objects f, f 1 E Ob('H). 

Note that the restriction of the Heeke category on an object f makes an algebra 
'H(f, f)= Marrt(f, f). The algebra structure of 'H(f, f) is intensively studied in the 
papers[BCHLLS, KM]. 

Next we define the Jones category. Let m and n be non-negative integers. We 
suppose that m + n is divisible by 2. An (m, n)-diagram Dis defined as a finite set 
of disjoint arcs properly embedded (up to isotopy) in R x [0, 1] such that 

aD={(i,O)Ii=1,2, ... ,m}U{(j,1)lj=1,2, ... ,n}, 
and such that Dis perpendicular toR x {0} and R x {1} at every boundary point 
of aD. (See Figure 7.) 

The objects of :1 are defined as the set of non negative integers and denoted by 
Ob(:f). A morphism from m ton is defined as a C-linear combination of (m, n)-
diagrams. The set of morphisms from m to n is denoted by Mar :1 ( m, n). If m + n 
is not divisible by 2, we understand that Mar:~(m,n) = {0}. Let q E C be a non 
zero parameter. We define the composition product Dt o D2 of ( m, n )-diagrams 
D 1 and D2 just like the composition product of tangles. However, if we have p 
closed circles in the picture D 1 o D2, then we remove the circles and multiply by 
(JP. Here (3 = q + q-1. (See Figure 8.) The composition D 1 o D2 is defined only 
when a_D1 =a+ D2. It will be extended C-linearly. 

Similarly to the case of the Heeke category, we can define the Jones category 
by generators and relations. (See Figure 9.) 

DEFINITION 1.2. Let Ob(:J(C; q)) = {0, 1, 2, · · ·} be the objects of :J(C; q). 
Namely, Ob(:J(C; q)) is a set of non negative integers. Let [In] E Mor :I(C;q)(n, n) 
be the identity morphism on n E Ob(:J(C; q)). Then the Jones category :1 = 
:J(C; q) corresponding to the field C and the parameter q E C is defined by the 
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= 

FIGURE 8. Product of (m, n)-diagram 

FIGURE 9. Generators and relations of the Jones category 

generators: 

[lm1'lm 1 ] 

[JmHm'] 
[Im] 

m + m' ---+ m + m' + 2 
m + m' + 2 ---+ m + m' 

m m 

and the commuting relations: 

(m,m' E Ob(.J)), 
(m, m' E Ob(.J)), 
(mE Ob(.J)) 

[Iaf h+w+c] 0 [Ia+x+b9lc] = [Ia+y+bglc] 0 [Iaf l(b+z+c)] 
for f : x ---+ y, g : z ---+ w, J, g E { r, f} and a, b, c, E Ob(.J), and the following 
relations: 

1. [Imfll+m'] 0 [Im+l7'/m'] = [Im+l+m'] = [Im+lflm'] 0 [lm1'll+m1 ], 

2. [Jmflm'] 0 [lm1'lm'] = ,B[Im+m'], 
for any pair of objects m, m' E Ob(.J). 

2. Representations of categories 

In this section, we introduce the notion of irreducible representations of cate-
gories according to the papers [N] and [Y]. Throughout this section, we consider 
the following category A. Let K be a field. Suppose that a category A has the 
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set of objects Ob(A) which is non empty. This means we only consider small cat-
egories. For any pair of objects x, y E Ob(A), the set of morphisms MorA (x, y) is 
a finite dimensional K-vector space. For any triple of objects x,y,z E Ob(A), the 
composition of morphisms MorA (y, z) x MorA (x, y) ---t MorA (x, z) are bilinear. 

In the following we denote MorA (x, y) by A(x, y). By the definition of the 
category A, we find that A(x, x) is a K-algebra for any object x E Ob(A). We use 
the notation Vect to denote the category of finite dimensional K-vector spaces. 

DEFINITION 2.1. Let F be a covariant functor from a category A to thecate-
gory Vect· For a pair of objects x, y E Ob(A), if the correspondence a E A(x, y) to 
F(a) E Vect is K-linear, then we call Fa (linear) representation of the category A. 

For the above functor F, we put V = {Vx = F(x)lx E Ob(A)}. The represen-
tation F is sometimes denoted by (F, V). The zero representation 0 is one of the 
representations of the category A. It is defined by the functor which maps each 
object x E Ob(A) to {0}. 

Two representations F = (F, V = {Vx}) and G = (G, W = {Wx}) of A are 
equivalent, if they are natural equivalent. In other words, there exists a family of 
K-isomorphisms { ¢x : Vx ---t Wx} such that G( a) o ¢x = ¢y o F( a) for each pair of 
objects x, y and for each morphism a E A(x, y). 

These representations are extensions of the notion of those of K-algebras. In 
fact, for x E Ob(A) and a E A(x, x), the correspondence a 1--4 F(a) defines a 
K-linear map A(x,x) ---t HomK(Vx, Vx) which preserves the composition of mor-
phisms. We denote the representation (asK-algebra) of A(x,x) by Fx = (Fx, Vx) 
and call it the restriction ofF on A(x, x) or restriction ofF on x. 

DEFINITION 2.2. Let F = (F, V) and G = (G, W) be representations of a 
category A. If there exists a family of injective K -linear maps { Lx : Wx ---t Vx} such 
that F(a) o tx = Ly o G(a) holds for each pair of objects x, y and for each morphism 
a E A(x, y), then we call G a subrepresentation of F. 

DEFINITION 2.3. If a representation F has no subrepresentations except F it-
self and 0, we call it irreducible. (The zero representation 0 is, by definition, not 
irreducible.) If a representation F can be decomposed into a direct sum of irre-
ducible representations, we call it completely reducible. Here a direct sum EBiEJFi 
of representations Fi = (Fi, Vi= {Vi,xlx E Ob(A)}) is defined as follows: 

L dimK Vi,x < oo, for x E Ob(A), 
iE/ 

(~Fi) (x) = 

(~Fi) (a) 

E9 Vi,x for x E Ob(A), 
iE/ 

iE/ i,x iE/ 
for x,y E Ob(A) and a E A(x,y). 

LEMMA 2.4. Let F = (F, V) be a representation of a category A. If a represen-
tation G = (G, W) of the algebra A(x,x) is a subrepresentation of Fx = (Fx, Vx), 
then there exists a subrepresentation G = (G, W) ofF such that the restriction of 
G on A( x, x) is equivalent to G. 

PROOF. Define a functor G = (G, W) as follows: 
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1. G(x)=Wx=W, 
2. G(y) = Wy = F(A(x, y))W for y E Ob(A), 
3. G(a) = F(a)iw.,, for x',y' E Ob(A),a E A(x',y'). 

Then we have 

G(a)(Wx') G(a)(F(A(x, x'))W) 
= F(aoA(x,x'))W 
c F(A(x, y'))W 

Wy'· 

D 

We call the functor G which is defined as above the cyclic hull of G with respect 
to F. 

LEMMA 2.5. Let F be an irreducible representation of a category A. For an ob-
ject x E Ob(A), the restriction Fx = (Fx, Vx) ofF on A(x, x) defines an irreducible 
representation or the zero representation of A(x, x). 

PROOF. Suppose that we have Vx =f:. {0}. If there exists a proper non zero 
subrepresentation F~ = (F~, v;) of Fx, the cyclic hull F' ofF~ with respect to F is 
not equivalent to F nor 0. This contradicts that F is irreducible . D 

For an irreducible representation we have the following lemma. 

LEMMA 2.6. Let F be an irreducible representation of a category A. For a pair 
of objects x, y E Ob(A), if Vx =/:- {0} and Vy =/:- {0}, then there exists a morphism 
a E A(x, y) such that F(a) : Vx ---+ Vy is non zero. 

PROOF. Suppose that F(A(x,y)) = {0}. Define (F', V' = {V;}) as follows: 
• v; = F(A(x, z))Vx for each object z E Ob(A), 
• F'(a) = F(a)iv;: v;---+ V~ for z,w E Ob(A) and for a E A(z,w). 

Since Vy =/:- {0} and v; = {0} by the definition, (F', V') becomes a proper subrep-
resentation of F. This contradicts that F is irreducible. D 

THEOREM 2.7. Let F = (F, V) and G = (G, W) be irreducible representations 
of a category A. If Vx and Wx are equivalent as A( x, x) -module for some object 
x E Ob(A) and if they are not equal to {0}, then F and G are equivalent as 
representations of the category. 

THEOREM 2.8. Suppose that a category A satisfies the following further condi-
tions. 

1. Ob(A) is a well-ordered set. 
2. For any object x E Ob(A), all the finite dimensional representations of the 

K -algebra A( x, x) are completely reducible. 
3. If objects x, y E Ob(A) satisfy x :5 y and A(x, y) =f:. {0}, then A(y, x) =f:. {0} 

and there exist morphisms Ty E A(y,x) and T~ E A(x,y) such that lx = 
Ty o T~, where lx is the unit of A(x, x). 

Then an arbitrary representation F = (F, V) of A is completely reducible. 

For the proof of the above two theorems, see the papers [K, N, Y]. 
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3. Irreducible representations of the Heeke category 

In this section we define linear maps {P"~ = (P7 , £ 7 )} from 1t to categories of 
linear spaces {£7 }. These linear maps define all the irreducible representations of 
the Heeke category 11. Let q E C be a non zero parameter which is not a root of 
unity and let a E C be another non zero parameter which is not a power of q. (See 
the condition in Theorem 0.1.) Let 1t = 1t(C; a-1, q- q-1) be the Heeke category 
corresponding to C, a-1 and q- q-1. 

Categories {£7 } are defined over C. The objects of £ 7 are C-vector spaces 
{C0(€)7 J€ E Ob('H)} and the morphisms of £ 7 are the linear maps between two 
objects of £ 7 . 

We define the set 0(€)1' according to the paper [SJ by Stembridge. 
Let >. = (>.1. >.2, ... , >.n) be an integer sequence, and define J>.J = >.1 + >.2 + 

· · · + >.n. We call that >. is a staircase if the sequence is weakly decreasing. In 
particular we call that >. is a partition of N if the sequence is non negative, weakly 
decreasing, and J>.J = N. Two partitions (>.1. >.2, · · · , >.n) and (>.1. >.2, · · · , >.n, 0) 
are considered to be the same. The length l(>.) of>. is the number of nonzero terms 
in >.. Let 0 be the null partition (the partition of 0). Every partition >. has the 
dual partition).* = (>.~, ... >.~J, where>.~ = Card{jJ>.j 2': i}. For a partition>., 
the Young diagram of >. is the arrangement of J>.J squares; the first row >.1. the 
second row >.2, · · ·, the last row >.n parts, and line up to the left. We denote the 
coordinates of boxes in a Young diagram in matrix style. For example, if a box 
is in the i-th row and in the j-th column of a Young diagram >., it is denoted by 
(i,j) E >.. Each box in a Young diagram>. has its hook length h>. defined by 

h>. ( i, j) = >.i - j + >.j - i + 1. 

Let 'Y = [a:, ,B] be a pair of partitions. For a fixed n such that n 2': l(o:) + l(,B), 
we can give a correspondence between staircases and pairs of partitions by 

( 0:1, 0:2, ... , -,62, -,61) E zn {=:::::> [a:, ,B). 
In the following, we suppose that n is large enough comparing to l(o:) + l(,B) and 
we fix this n. So we can identify a staircase with a pair of partitions by the above 
correspondence. For a staircase 'Y = [a:, ,B], if we take a negative integer s so that 
s ::::; -,61, then there exists a partition >. = (>.1, >.2, ... , >.n) such that 

(>.1 + s, >.2 + s, ... , >.n + s) = ('YI. "/2, ... , 'Yn)· 
Staircases are partially ordered by defining 

'Y = ("/1, "/2, ... , 'Yn) C "f1 = ("!~, "/~, ... , 'Y~) 
if and only if 

"/1 ::=; "/~, "/2 ::=; "/~, ..• , 'Yn ::=; "/~. 
With the language of pairs of partitions, we may define [a:, ,B] c [a:', ,B'] by 0:1 ::::; 
a:~ , o:2 ::::; a:~, · · . and ,B~ ::::; ,61 , ,B~ ::::; ,62, · · · . If we consider a staircase as a pair of 
Young diagrams, and consider it as two sets of coordinates in matrix style, then 
'Y c 'Y' means a: c a:' and ,B' c ,B. Under this preparation, for an object f E Ob('H), 
we shall associate a set of tableaux 0( f). A tableau is a sequence of staircases which 
is defined as follows. 

DEFINITION 3.1. Let 'Y(o) be the staircase defined by the pair of the null par-
titions [0, 0]. A tableau~ of length r and shape 'Y is a sequence ("1(1), ... , 'Y(r) = 'Y) 
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e · = -1 1 

FIGURE 10. The branching rule 

of staircases in which either -y(i) ~ -y(i-1), I'Y(i)l- I'Y(i-1)1 = 1 or -y(i) c -y(i-1), 
I'Y(i)l - I'Y(i-1)1 = -1 for 1 :::; i :::; r. The tableau e is said to be of type f = 
( ) h -I (ill I (i-1)1 f1, ... , fr , w ere fi- 'Y - 'Y . 

Figure 10 shows how -y(i) is generated from 'Y(i-1) according to the signature fi 
in making a tableau. We call this generation rule the branching rule. 

We denote the number of ones in f by Pos( f), and the number of minus ones 
in f by Neg{t:). 

All the tableaux of type f are conveniently described using the graph r, as 
follows. Let Pos{t:) = k and Neg{t:) = l. Vertices of r, are classified to k + l + 1 
floors. Let 

min(k,l) 
Ak,l = II {[a, ,B]; a, ,B partitions, Ia I = k- m, I.BI = l- m} 

m=O 

be a set of pairs of partitions. The top floor (the k + l-th floor) of r, has IAk,d 
vertices which are labeled by the elements of Ak,l one by one. The bottom floor 
{the 0-th floor) has a unique vertex labeled by the pair of the null partitions -y(O) = 
[0,0] E Ao,O· The io-th floor {1:::; io < k + l) of r, has IAko,lol vertices which are 
labeled by staircases in Ako,lo one by one. Here ko = I{ fi > 0; i = 1, 2, ... , io}l and 
lo = I { fi < 0; i = 1, 2, . . . , io} I· Two vertices labeled by 'Y and -y' respectively are 
joined by an edge if and only if they are different each other only by one box as 
pairs of partitions. 

EXAMPLE 3.2. Iff= ( +1, -1, +1, -1, +1), r, is pictured in Figure 11. 

We can get any tableau of shape 'Y and of type f from the graph r, as an 
ascending path from the bottom vertex [0, 0] to the top vertex 'Y· Conversely, any 
ascending path from the bottom vertex to a top vertex 'Y expresses some tableau. 
We identify each of these paths with the corresponding tableau. 

As it defined in [GHJ, KM], each vertex of r, has its weight. These weights 
are defined by the indices { 'Y} which are assigned to the vertices. Let A be the set 
of all the pairs of partitions: 

00 

A= U( u Ak,l)· 
r=O k:;::o, 1:;::o 

k+l=r 
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162 MASASHI KOSUDA 

FIGURE 11. r(+1,-1,+1,-1,+1) 

By the definition of Ak,l it is easy to see that Ak+1,l+l ::) Ak,l· On the other hand, 
if k - l =/- k' - l', then Ak,l n Ak' ,l' = 0. Hence we have 

00 

A = II ( u Ak,l). 
p=-00 k<;:O, l<;:O 

k-l=p 

Let"(= [.A,JL] such that A= (.AI..A2, ... ) and JL = (JL1,JL2, ... ). Then the weight 
s["Y] of "Y is defined by 

(3.3) 
I1 ([ . · · l(.A)] Til(..\) [a;j-i+..\k-k+1]) IJ [ . . '] s[ ] = (i,j)EJ.L a, J - z - k=1 [a;j i+..\k k] (i,j)E..\ a, J - z 

"Y TI(i,j)E..\[h,\(i,j)] TI(i,j)EJ.L[hJ.L(i,j)] ' 

where 
a-1qm- aq-m qm- q-m 

[a;m] = and [m] = [l;m] = . q- q-1 q- q-1 

In the following we fix a staircase "Y E A. For the fixed staircase "Y, n( t: )1' is the 
set of all the tableaux whose shapes are "Y and whose types are t:. The objects of 
.C1 are the C-vector spaces {C!l(t:)1 lt: E Ob('H)}. If!l(t:)1 = 0, then C!l(t:)1 = {0}. 
We denote the natural basis of C!l(t:)' defined by the tableaux {ele E !1(t:)1 } by 
{ve}. The morphisms of .C1 are the linear maps between two objects of .C1 and the 
composition is the composition of linear maps. 

An object t: = (t:17 •.. ,t:k) of'H is mapped by P' to an object P1 (t:) = C!l(t:)1 

of .C1 . If either C!l(t:)' or C!l(t:')'Y is the 0 space, then Morcr(t:, t:') = {0}. Hence 
if either !1(t:)1 = 0 or !l(t:')' = 0, then P'(t(T)) = 0 for any tangle T such that 
8_T = t: and a+T = t:'. 

In the following we define the linear map P1 assigning each generator of the 
Heeke category 'H to a morphism of .C1 . 

Definition of P'(t([J.x+ J.,])) and P1 (t([I.x- J.,])) 
Let x = (t:,+l,+l,t:') be an object on which t([J.X+J.,]) is defined. Suppose 

that Pos(x) = k, Neg(x) =land t: = (t:1,t:2, ... ,t:i_l), t:' = (t:i+2,€i+3•··· ,t:k+t). 
If "Y fl. Ak,l, then define P 1 (t([J.x+ J.,])) = 0. 
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n>>O 

FIGURE 12. Tableaux e and e' 

Otherwise, each of the generators of the form {t([J,x+ J,,))} is mapped to a 
morphism from the object Cn(x)" to itself. Let 

e= (-p>, ... ,1 (i-1), 1 (i), 1 (i+1), ... ,-y(k+l) =-y) 

be a tableau of shape 'Y and of type x. Then according to the branching rule as in 
Figure 10, the staircase -y(i+1) is obtained from 'Y(i- 1) one of three ways. 

1. By adding two boxes to the same row of -y(i- 1). 
2. By adding two boxes to the same column of -y(i- 1). 
3. By adding boxes in different rows and columns of -y(i- 1). 

(Here we regard the staircases 'Y(i- 1) and -y(i+l) as Young diagrams defined by 
partitions and a negative integer.) In case (c), there exists exactly one tableau 

e' = ('Y(1)' ... ''Y(i-1)' (-y(il)', 'Y(i+1)' ... ''Y(k+l)), 

which differs from e in its i-th coordinate only. Further in this case, the two boxes 
-y(i+1) \ 'Y(i) and 'Y(i) \ -y(i- 1) make a hook as pictured in Figure 12. Write h for the 
hook length (including the added two boxes). The axis distance d(e, i) is defined 
as follows: 

d(e, i) = { ~ = ~: if the lower left box was added first, 
if the upper right box was added first. 

We note that axis distance may be negative. If -y(i- 1) and 'Y(i) are both partitions 
and if the first box is added to ( r i, Ci) and the second box is added to ( r i+ 1 , ci+ 1), 
then we have 
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Using this axis distanced and q-integers (i] which is defined in (3.3), we define 
P'Y(~((J,x+ J,,])) and P'Y(~((J,x- J,,]))as follows: 

case (a), 
case (b), 
case (c). 

case (a), 
case (b), 
case (c), 

If the axis distance involves the depth of staircases n, then we replace qn by a-1. 
For example if d = i + n, then 

qi+n- q-i-n a-1qi- aq-i 
[dj = (i + n] = q _ q_1 = q _ q_1 = (a; i]. 

Definition of P'Y(~((I,Urf,,])) and P'Y(~((I,UlJ,,])) 
Let x = (€,€1), Xr = (€,+1,-1,€1) XL= (€,-1,+1,€') be objects such that 

~((I,Urf,,]) : x--+ Xr and ~((I,UlJ,,]): x--+ XL are defined. Suppose that Pos(x) = 
k,Neg(x) =land € = (€1,€2, ... ,Ei), €1 = (€HI.fi+2•··· ,Ek+z). 

If"( fl. Ak,l, then define P'Y(~([I,Urf,,])) = 0 and P'Y(~([I,UlJ,,])) = 0. 
A generator ~((I,Urf,,]) (resp. ~((I,UlJ,,])) is mapped by p-r to a morphism 

from the object cn(x)'Y to the object cn(xrP (resp. cn(xl)'Y). For each tableau 

~ = ("1(1)' ... ''Y(i-1)' J.L, 'Y(i+1)' ... ''Y(k+l) = 'Y) 

of shape 'Y and of type x, we define the tableau ~(j) (resp. e(j')) of shape 'Y and 
of type Xr (resp. XL) as follows: 

~(j) = ('Y(1l, ... ,"f(i-1l,J.L,.>.(j),J.L,"f(i+l), ... ,"f(k+l) ="f), 
(resp. ((j') = ('Y(1l, ... ,"f(i-1l,J.L,v(j'),J.L,"f(i+1), ... ,"f(k+l) ="f),) 

where {A(j)} (j = 1, 2, ... ,p(J.L)) (resp. {v(j')} (j' = 1, 2, ... ,p'(J.L)) are all the 
staircases such that .>.(j) ::) J.L and i.>.(j)l - IJ.LI = 1 (resp. v(j') C J.L and lv(j')l -
IJ.LI = -1). See the branching rule pictured in Figure 10. Under these notation 
P'Y(~((I,Urf,,])) (resp. P'Y(~([I,UlJ,,]))) is defined as follows: 

P(~-t) 

P'Y(~((I,Urf,,]))ve = L vw)· 
j 

Definition of P'Y(~((I,Urf,,])) and P'Y(~([I,UlJ,,])) 
Let Xr = (€,-1,+1,€1), XL= (€,+1,-1,€1), x = (€,€1) be objects such that 

~((I,Urf,,]): Xr--+ x and ~((I,UlJ,,]): Xl--+ X are defined. Suppose that Pos(xr) = 
Pos(xl) = k,Neg(xr) = Neg(xl) =land 
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A generator t([I,Urf,,]) (resp. t([I,Ulf,,))) is mapped by P"'~ to a morphism 
from the object CO(xr )"'! (resp. CO( xi)"'~) to the object CO(x)"Y. For each tableau 

(: = ('"11(1) '"1/(i-1) = V '"1/(i) = II '"ll(i+1) '"V(k+l) _ '"~~) 
~ I , ••• 'I 'I ,_,I , ••• 'I -I 

where f. is a tableau of shape 'Y and of type i; which is obtained from the tableau ~ 
by removing the i-th coordinate 'Y(i) = J.L and the (i + 1)-st coordinate 'Y(i+1). 

4. Irreducible representations of the Jones category 

In this section we define linear maps {Rep1 = (Rep1, C1)} from 3 to the 
categories of linear spaces {C1}. These linear maps define all the irreducible repre-
sentations of the Jones category 3. Let q E C be a non zero parameter which is 
not a root of unity. (See the condition in Theorem 0.3.) Let 3 = 3(C; q) be the 
Jones category corresponding to the complex field C and the parameter q. 

In this section, a tableau is a sequence of partitions which is defined as follows. 

DEFINITION 4.1. Let a<0l be the null partition. A tableau~ of length n and 
shape a is a sequence ( a(l l, ... , a< n l = a) of partitions in which satisfies l ( a(il) ~ 2, 
a(i) ::> a<i-1) and la(il 1- la(i-1) I = 1. fori= 1, 2, ... , n. 

In the above definition, since the lengths of the shapes are at most 2, each shape 
a has a presentation by two non negative integers (at, a2). It is also characterized 
by two non negative integers l = a1 - a2 and n = a1 + a2. 

Let VI ( n) be a set of tableaux whose shapes are a = (at, a2) such that l = 
a1 - a2 and n = a1 + a2. Now we define categories {C1}. The objects of the 
categories {C1} are C-vector spaces {CVI(n)ln E Ob(3)} and the morphisms of C1 
are the linear maps between two objects of cl. 

All the tableaux are described using the graph r n as follows. Vertices of r n 

are classified to n + 1 floors. Put 
P2(n) ={a= (at. a2)la partition, l(a) ~ 2, a1 + a2 = n} 

The top floor (the n-th floor) of r n has IP2(n)l vertices which are labeled by the 
elements of P2(n) one by one. The bottom floor (the 0-th floor) has a unique vertex 
labeled by the null partition a<0l = 0 E P2(0). The io-th floor (1 ~ io < n) of r n 

has IP2(io)l vertices which are labeled by partitions in P2(io) one by one. Two 
vertices labeled by a and a' respectively are joined by an edge if and only if they 
are different each other only by one box. 

EXAMPLE 4.2. r5 is pictured in Figure 13. 

We can get any tableau of shape a from the graph r n as an ascending path 
from the bottom vertex 0 to the top vertex a. Conversely, any ascending path from 
the bottom vertex to a top vertex a expresses some tableau. We identify each of 
these paths with the corresponding tableau. 
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FIGURE 13. f5 

As it defined in [GHJ, KM], each vertex of r n has its weight. These weights 
are defined by the partitions {A} which are assigned to the vertices. Let A = (AI. A2) 
be a partition of the length at most 2. Put l = A1- A2 and n = A1 + A2. Then the 
weight s[A] of A is defined by 

[j- i + 2] 
s[A] = IT [h (i ")] = [l + 1]. 

(i,j)E>. >. 'J 

In the following we fix a partition a= (a1, a2) of the length at most 2. Suppose 
that a1 - a2 = l and a1 + a2 = n. For the fixed partition a, V!(n) is the set of 
all the tableaux whose shapes are a. The objects of Cz are the C-vector spaces 
{CVI(n)ln E Ob(.J)}. If V!(n) = 0, then CV!(n) = {0}. We denote the natural 
basis of CV!(n) defined by the tableaux {ele E V!(n)} by {ve}. The morphisms 
of Cz are the linear maps between two objects of Cz and the composition is the 
composition of linear maps. 

An object n of .J is mapped by Rep1 to an object Rep1(n) = CV!(n) of Cz. If 
either CV!(n) or CV!(n') is the 0 space, then Morc,(n,n') = {0}. Hence if either 
V!(n) = 0 or V!(n') = 0, then Rep1(D) = 0 for any diagram D such that 8_D = n 
and a+D = n'. 

In the following we define the linear map Rep1 assigning each generator of the 
Jones category .J to a morphism of Cz. 

Definition of Rep1([InTin']) 
If l 2: n + n' or n + n' ¢.lmod2, then define Rep1([InTin']) = 0. 
A generator [In TIn'] is mapped by Rep1 to a morphism from the object CV! ( n+ 

n') to the object CV!(n + 2 + n'). For each tableau 

e = (aCll' ... 'a<n-1)' aCn) =A, a<n+1)' ... 'a<n+n') =a) 

of shape a, we define the tableau e(j) (j = 1, 2) of shape a as follows: 
c( ") _ ( (1) (n-1) , '( ") , (n+1) (n+n') _ ) ., J - a , ... , a , "'" J , "+• a+ , ... , a+ - a+ , 

where {A(j)} (j = 1, 2) are partitions such that l(A(j)) ~ 2, A(j) ::::>A and IA(j)I-
IAI = 1 and a~) is the partition of length 2 which is made from aCi) by adding one 
box to each row. Under these notation Rep1([InTin']) is defined as follows: 

{ vl(1) + vw) if n = 2m, 
Repz([InT In' ])ve = s[>.J (s[A(1)]vwl + s[A(2)]vec2l) if n =2m+ 1. 

Definition of Rep1([Infin']) 
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If l > n + n' or n + n' ¢.lmod2, then define Rep1([Infln')) = 0. 
A generator [In fin'] is mapped by Rep1 to a morphism from the object CVi(n+ 

2 + n') to the object CVi(n + n'). For each tableau 
~ = (aPl, ... , a<n-1J = v, a<nl = J.L, a<n+1l, ... , a<n+n'l =a) 

of shape a, if a<n+1l is not the partition obtained from v by adding one box to each 
row, then we define 

Otherwise, we put 
~ = (a(1), ... , a<n-1) = v, a~+1), ... , a~+n') =a_), 

where a~) is the partition obtained from a(i) by removing one box from each row. 
Under these notation, we define Rep 1 ([Infln,])v~ as follows. 

{ 
~v-

Rep1([Infln,])ve = SlvT ~· ve, 
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Prounipotent Prolongation of Algebraic Groups 

Andy R. Magid 

ABSTRACT. G is a linear algebraic group (scheme) over the algebraically closed 
characteristic zero field k. The kernel UG of the natural map from points of 
G in one variable formal powers series over k to the k points of G is an inverse 
limit of unipotent algebraic groups; that is, a prounipotent group. This paper 
considers to what extent G can be recovered from UG. It is shown that the 
related question for Lie algebras can be answered when the Lie algebra is semi-
simple, and from this an answer is derived when G is semi-simple and a linear 
representation of G over k is specified. 

Introduction 

In the study of finite p groups, a number of topics become easier to investigate, 
and some new and intriguing questions arise, through passage to inverse limits to 
the study of pro-p groups. For example, the existence of free pro-p groups makes 
possible the study of combinatorial group theory entirely in the (pro) "p" category; 
free objects like this make cohomology more convenient to study and use; and the 
new and interesting question about characterizing the (continuously) linear (over 
Qp) pro-p groups arises. 

Unipotent algebraic groups over an algebraically closed field k of characteristic 
zero (which will henceforth be assumed to be the complex numbers C) share some 
formal properties with finite p groups in characteristic p, most notably that k is 
their unique simple module, and so it should not be surprising that prounipotent 
groups naturally arise both as a tool and as a source of interesting new questions 
in the unipotent context also. 

A unipotent k group G (remember that k =C) is also a complex analytic group 
whose Lie algebra Lie( G) is nilpotent and whose exponential map exp : Lie( G) --+ G 
is an analytic bijection whose inverse is denoted log. Because Lie( G) is nilpotent 
the Campbell- Baker-Hausdorff formula for Lie( G) is actually a polynomial map, 
which means that the algebraic group structure on G, as well as the maps expand 
log are canonically algebraic (polynomial). Moreover any analytic homomorphism 
between unipotent groups is automatically algebraic for the same reason. There are 
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170 A. R. MAGID 

analytic but not algebraic maps from a unipotent group G to GLn(k) (for example, 
C---> GL1 (C) by t f-+ et), but any analytic map from G to a unipotent subgroup of 
GLn is necessarily algebraic. A finite dimensional (algebraic) G module Vis a finite 
dimensional k vector space such that the corresponding representation G---> GL(V) 
is analytic and has range in a unipotent subgroup; in general, a G module is a k 
vector space which is a direct limit of finite dimensional modules. If V is a G 
module and if V =f. 0 then yc =f. 0. 

Prounipotent groups. 
A prounipotent group G is the limit of an inverse system of unipotent groups 

with surjective algebraic transition morphisms: G = lim(Gi) where Gi is unipotent 
+-

and the maps Gi---> G3 are surjective analytic homomorphisms. 

Here are some examples: 

EXAMPLE 1. Any unipotent group G is prounuipotent. 

EXAMPLE 2. An infinite direct product niEJ Gi, where each Gi is unipotent, 
is a prounipotent group, such as 

00 

ExAMPLE 3. Let R = k << t 1 , ..• , td >> be the non-commutative formal 
power series algebra, let Xr = 1 + tr. 1 ~ r ~ d, and let M be the maximal ideal of 
R generated by the tr. Then R = lim(R/Mi). Let Gibe the subgroup of the group 

+-

of units of R/ Mi generated by the images of the Xri Gi is unipotent and the inverse 
limit lim(Gi) is a prounipotent subgroup of the group of units of R. We denote 

+-

the inverse limit F = F(x1, ... ,xd)i it is a free prounipotent group on X1, ... ,xd. 
There is a direct construction of F also, which in addition makes sense for infinite 
sets of generators. 

EXAMPLE 4. Proalgebraic groups are inverse limits of algebraic groups, and 
they have pronuipotent radicals which are prounuipotent groups. For instance, let 
r be a finitely generated group. Take all representations p : r ---> G L(W) on a finite 
dimensional k spaces, and form the product and map 

P: r ___.II GL(W). 
p 

The Zariski closure A(r) of the image of Pis a proalgebraic group, and its prounipo-
tent radical RuA(r) is a prounipotent group. When r is free, RuA(r) is a free 
prounipotent group (on an infinite set). 

EXAMPLE 5. GLn(k[[t]]) = n::i>O Aitt I Ao E GLn(k)}. 
Let UGLn = Ker(GLn(k[[t]])---> GL-n(k)). If UGLn,i = Ker(GLn(k[[t]]jti+1 )---> 
GLn(k)) then it is clear that UGLn = lim(UGLn, i). We will see in the next section 

+-
why UGLn, i is unipotent and hence why UGLn is unipotent. 

The groups in Example 5 are a model for a general class of prounipotent groups 
associated to affine (eventually semisimple) algebraic groups which will be discussed 
at length below. 
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Because of Example 3 (free prounipotent groups), we can construct a combina-
torial group theory for prounipotent groups, including presentations by generators 
and relations. In particular we can talk about the (minimal) number of generators 
and relations for a prounipotent group, usually denoted d and r, respectively as 
the minimal number of generators of a free prounipotent group mapping onto the 
given prounipotent group. Modules for a prounipotent group G = lim(Gi) are di-_. 
rect limits of Gi modules. Thus k is the only simple G module. The category of 
G modules has enough injectives (in fact, the coordinate ring k[G] is the injective 
hull of k) and so one can construct injective resolutions and cohomology, in partic-
ular Exth(V, W) for any G modules V, W, using an injective resolution of W. We 
define Hi(G, W) = Exti(k, W) and then talk about the cohomological dimension 
of G (the smallest integer n for which Hi(G, W) = 0 for all W and all i > n), 
and it turns out that the prounipotent groups of cohomological dimension one are 
precisely the free ones. From this it follows that subgroups of free prounipotent 
groups are free and that we can calculate the number of generators d of G as the 
dimension of H 1 ( G, k) and the number of relations r as the dimension of H 2 ( G, k). 
For unipotent groups it even turns out that r > ~ , except for the special cases 
when G = Ga (d = 1 and r = 0) and when G = Ga X Ga (d = 2 and r = 1). 

For any prounipotent group G, we define the closed lower central series by: 
1. G1G = G 

~,.......-:=,.,....,,-

2. Gi+1G = (G, GiG) (Zariski closure) fori> 1 
G is finitely generated if and only if the abelian prounipotent group G1G/G2G 

is finite dimensional, and if it is then Gi+1G = (G, GiG) for all i. In other words, 
the closed lower central series conincides with the lower central series. 

We define the Lie algebra of the prounipotent group G to be the left G invariant 
derivations of the coordinate ring: Lie(G) = Dera(k[G]). It follows that if G = 
lim(Gi) then Lie( G)= lim(Lie(Gi)). In particular, Lie( G) is pronilpotent. -- --

For any pronilpotent Lie algebra L, we define the closed lower central series by: 
1. C1L = L 

...-=----~:-. 2. Ci+l L = [L, Ci L] (Zariski closure) fori > 1 
If G is finitely generated, then so is L (in the pronilpotent category) and for 

all i CiL = [L,ci-l L] =Lie( GiG). 
Continue to assume that G is finitely generated. As with any group, the direct 

sum 
EBi>1GiG/Gi+1G 

is a Lie algebra, the Lie bracket coming from the commutator in G. 
Here, we will want to look at the direct product 

gr(G, GiG)= II GiG/Gi+lG 
i;?: 1 

which is a pronilpotent Lie algebra. 
Similarly, for any finitely generated ptonilpotent Lie algebra L we have the 

associated graded pronilpotent Lie algebra 

gr(L,CiL) =II CiL/Ci+1L. 
i;?:l 

Then it turns out that there is an isomorphism gr(L,CiL) ~ gr(G,GiG). 
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More generally, if G = G1 ~ G2 ~ • • • is a normal series (of closed subgroups 
of G) with ( Gi, Gi) $ Gi+i for all i, j then we can form the Lie algebra 

gr(G,Gi) =II Gi/Gi+1 

i~l 

using the commutator for bracket. If £i = Lie(Gi) then we also have an associated 
graded pronilpotent Lie algebra 

gr(L, Li) =II Li / £i+l 
i~l 

and an isomorphism gr(L, Li) ~ gr(G, Gi). 

For the material in this section, see the references [LMl, LM2,LM3,LM4] 
and [M3]. 

Linearity. 
A pro-p group G is linear if it can be continuously embedded in GLn(Zp)· 

If it has a linear subgroup H of finite index then representation can be induced 
from H toG to see that G is linear; a "virtually linear" group is linear. A pro-p 
group is powerful if the (closed) subgroup GP generated by pth powers contains the 
commutator subgroup; that is GP ~ (G, G). [DDMS] proved that powerful pro-p 
groups are linear, ·more precisely, that virtually powerful pro-p groups are linear 
(everything here is finitely generated in the pro-p category). 

One can consider a similar question for prounipotent groups, or equivalently for 
a pronilpotent Lie algebra L, with k[[t]] taking the place of Zp. There is no natural 
analogue of the p power operation, so something like the following is required: 

Suppose that L is finitely generated in the pronilpotent category and that there 
is T E Endk(L) such that: 

1. T[x, y] = [x, TY] for all x, y E L; 
2. ni~oTi L = 0; 
3. TL 2 [£,£]. 
Then [N] there is an ideal I of finite codimension in L and an embedding 

I~ gln(k[[t]]). 

The embedding takes values in the pronilpotent subalgebra tMn(k[[t]]). 
Thus pronilpotent Lie algebras with a suitable "t" operator are virtually (in 

the sense of finite codimension) linear. On the other hand, it is known that there 
are pronilpotent Lie algebras L which have finite codimemsion ideals I such that 
I is linear and L is not [Ml]. (Note that this is much stronger than saying that 
there is a representation of I finite dimensional over k[[t]] which does not induce to 
a representation of L finite dimensional over k[[t]].) 

Linearity for prounipotent groups, or equivalently for pronilpotent Lie algebras, 
is thus more complicated than for pro-p groups. We turn then to the apparently 
simpler question of starting with known linear prounipotent groups. We have an 
obvious construction of such groups analogous to Example 5 above, to which we 
now turn. 
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Prounipotent prolongations of groups and Lie algebras 

In this section, we are going to define some generalizations of Example 5 above. 

DEFINITION 1. Let H be an affine algebraic group over k. The prounipotent 
prolongation UH of His the kernel of H(k[[t]])--+ H(k) induced from k[[t]]--+ k by 
t~o. 

We will check below that U H is indeed prounipotent. H is not, of course, 
a homomorphic image of U H (for example H could be reductive, and all finite 
dimensional images of U H are unipotent). The main point of this work is to 
investigate the question of to what extent U H determines H. 

If a faithful representation H :5 G Ln is selected then there is a commutative 
diagram: 

1 -----+ UGLn -----+ GLn(k[[t]]) -----+ GLn(k) -----+ 1 

(*) r r r 
1 -----+ UH -----+ H(k[[t]]) -----+ H(k) -----+ 1 

There is also a related construction for Lie algebras. 

DEFINITION 2. Let L0 be a finite dimensional Lie algebra over k. Then ULo 
denotes the k Lie algebra II~ Loti where Lie product is definied by [xti, yti] = 
[x, y]ti+i for x, y E Lo. 

We will see that U L0 is pronilpotent and, for H affine, discuss the relation 
between U H and ULie( H) below. 

As with the groups, L is not, of course, a homomorphic image of ULo (for 
example Lo could be simple, and all finite dimensional images ofULo are nilpotent). 
We will investigate the question of to what extent ULo determines Lo. 

We intend to address the basic questions: 
1. Does U H and the representation U H --+ U G Ln determine H? 
2. Does U H determine H? 
3. Does U Lo determine Lo? 

The first step will be to set up the foundations for the construction of U H. 

Higher codual numbers. 
Let B be any commutative k algebra. We want to consider the functor from 

commutative k algebras to sets given by 

If this functor is representable, we denote the representing algebra B[m) (so 
Algk(B[m), A) = Algk(B, A[tJ!tm+l) for all A). If m = 1 then A[tJ!t2 is the dual 
numbers over A, so we call B[1) the codual numbers over Band in general refer to 
the algebras B[m) as higher codual numbers. Of course B ~ B[m) is, technically 
speaking, the adjoint to the functor A~ A[t]/tm+l, so that B[1) is adjoint to the 
dual numbers functor. 

A k algebra homomorphism 

¢ : B --+ A[tJ!tm+l = A + At+ At2 + · · · + AF 
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where 
¢{!) = ¢o {f) + ¢1 {f)t + · · · + cP1 {f)t"' 

has the properties that 
1. cPi : B -t A is k linear; and 
2. cPi(bc) = Ep+q=i ¢p(b)¢q(c). 
Thus to define B[m] we need an object universal for maps meeting the above 

two conditions. Note that the condition on ¢0 is that it beak algebra morphism. 
The symmetric algebra Sk(B) is universal for k linear maps from B and thus 

B ® Sk(B)®m is universal for one algebra and m k linear maps: explicitly, there is 
a bijection 

by 

where 
cPi(b) = CI>(1 ® · · · ® bei ® · · · ® 1). 

Here we write bei to denote bE S"k(B) C Sk(B) for fori~ 1 and we let e0 = 1 E B. 
Then 

cPi(bc) = CI>(1 ® · · · ® bcei ® · · · ® 1) 
and 

p+q=i p+q=i 
= CI>( L (1 ® · · · ® bep ®···®ceq®···® 1). 

p+q=i 

We let Im be the ideal of B ® Sk(B)®m generated by all 

1 ® · · · ® bcei ® · · · ® 1- L (1 ® · · · ® bep ®···®ceq®···® 1) 
p+q=i 

for all b, c E B. 
Then we have 

PROPOSITION 3. B[m] = B ® sk (B)®m I Im represents the functor 

A~--+ Algk(B, A[t]!tm+l ). 

where CI> : B -t A[t]/tm+1 by Cl>(b) = E cPi(b)f corresponds to F : B[m] -t A 
defined by F(boeo ® · · · ® bmem) = TI cPi(bi) and G : B[m] -t A corresponds to 
111 : B -t A[t]/tm+1 by w(b) = E G(1 ® ... ® bei ® ... ® 1)f 

Of course the association B 1--+ B[m] is functorial: if I: B -t Cis a k algebra 
homomorphism then the corresponding map B[m] -t C[m] is induced from box 
b1e1 ® · · · ® bmem 1--+ l(bo) x l(b1)e1 ® · · · ® l(bm)em. Note that this implies that 
if I is surjective then so is f[m]. 

For any B, we have B[O] =Band fork we have k[m] = k for all m. 

We have been using ei to denote 1 E B = S"k(B) in the ith tensor factor 
in B ® Sk(B)®m = B ®k S(Bei) ®k · · · ®k S(Bem)· Using the fact that tensor 
products of symmetric algebras of modules are symmetric algebras of the direct 
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sums of the modules, and that scalar extensions of symmetric algebras of modules 
are symmetric algebras of the scalar extension of the module, we have 

and we write this latter in the notation B[Be1, ... , Bern]· Then we write B[m] = 
B[Be1, ... , Bern]/ Irn = B[xt(B), ... , Xrn(B)], writing Xi(b) for bei + Irn (including 
i = 0), so that 

1. Xi(ab) = axi(b) for a E k and bE B; 
2. Xi(b +c) = Xi(b) + Xi(c) for b, c E B; and 
3. xi(bc) = L:p+q=i xp(b)xq(c) forb, c E B. 
We are going to retain the notation xo(b), even though we can identify xo(b) 

and b. (More formally, this would be the identification of B and B[O], which can 
be made consistently for all m via the obvious maps B[O]--+ B[m].) 

From Proposition 3, the identity map B[m] --+ B[m] corresponds to the map 
B[m] --+ B[m][t]/trn+l by b ~---+ 2::(1 ® · · · ® bei ® · · · ® 1)t, which we can now 
translate as b 1-+ L: Xi(b)t. Similarly, a map f : B--+ A[t]/trn+l by f(b) = L: fi(b)t 
corresponds to the map F: B[m]--+ A determined by F(xi(b)) = fi(b). 

We will use this notation to establish two other basic facts about the higher 
codual number construction. 

PROPOSITION 4. Suppose t1, ... , t 8 generate B as a k algebra. Then {Xi ( ti) I 
0 ~ i ~ m, 1 ~ j ~ s} generates B[m] as a k algebra. 

PROOF. Clearly {xi(b) I bE B, 0 ~ i ~ m} generates B[m] as a k algebra. 
By the k linearity of the Xi, it will be sufficient to prove that for any monomial 
M in the ti's, xi(M) belongs to the subalgebra B' of B[m] generated over k by 
all xi(tj)· This is seen by induction on the length l(M) of the monomial M: for 
l(M) = 1 (that is, M = ti some j) xi(M) E B' by definition. Suppose Xi(M) E B' 
for all all monomials of length r, and let M have length r + 1. Then M = Motj 
for some j and some Mo with l(Mo) = r, and then Xi(M) = L:p+q=i Xp(Mo)xq(tj) 
belongs to B' by induction. 

As an example of Proposition 4, w can consider the case of a polynomial ring 
B[y]. It follows from the proposition that B[y][m] is generated over B[m] by Xi(y), 
0 ~ i ~ m. And it is clear that the Xi (y) are algebraically independent over 
B[m] by considering the B algebra homomorphism B[y] 1-+ B[y0 , . .• , Yrn][t]/trn+l 
by y ~---+ L: Yi. Thus we have 

COROLLARY. For polynomial rings, B[y][m] = B[x0 (y), ... xrn(Y)]. 

We also record here the situation with localization by a single element: iff is a 
non-zero divisor in B then mapping B[f-1] to A[t]/trn+l means mapping B in such 
a way that f goes to a unit. If Cf? : B[m] --+ A corresponds to ¢ : B --+ A[m]/trn+l 
and¢(!)= L:¢i(f)t then Cf?(xi(f)) = ¢i(f) and in A[t]/trn+l ¢(!)is a unit if and 
only if ¢o(f) is a unit of A. Thus we have the following formula: 
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PROPOSITION 5. Let J be an ideal of B and suppose J is generated by {ba I 
a: E A}. Let J[m] be the ideal of B[m] generated by {xi(ba) I 0 ~ i ~ m, a: E A}. 
Then 

(B/J)[m] = B[m]/J[m]. 

PROOF. Let A beak algebra. Algk((B/J)[m],A) = Algk(BjJ,A[t]/tm+l) = 
{! E Algk(B,A[t]jtm+l) I f(J) = 0}. Now f: B-+ A[t]/tm+l is given by F: 
B[m]-+ A where f(b) = l:F(xi(b))t so that f(J) = 0 if and only if F(xi(b)) = 0 
for all bE J and 0 ~ i ~ m. Thus the kernel ofF must contain {xi(ba) I 0 ~ i ~ 
m, a: E A}. And if it does contain this set, and if b =I: aaba belongs to J then 
since 

F(xi(b)) = 0. It follows that f(J) = 0 if and only if F(J[m]) = 0, and hence that 
B[m]/J[m] represents the same functor as (B/J)[m], and the proposition follows. 

As noted above, the higher codual numbers functors are adjoint functors, from 
which it follows trivially that they preserve algebra coproducts, and that iterations 
may be done in any order, facts which we now record: 

PROPOSITION 6. Let B1 and B2 be k algebras and m1 and m2 positive integers. 
Then 

1. (Bt ®k B2)[m] is naturally isomorphic to Bt[m] ®k B2[m]; and 
2. (B[mt])[m2] is naturally isomorphic to (B[m2])[m1]. 

PROOF. 

Algk((Bt ®k B2)[m], A)= Algk(Bt ®k B2, A[t]/tm+l) 
= Algk(Bt. A[t]jtm+l) x Algk(B2, A[t]jtm+l) 
= Algk(Bt [m], A) x Algk(B2[m], A) 
= Algk(Bt[m] ®k B2[m],A), 

which proves the first assertion. 
(A[t]jtm 1 +l )[s]/ sm2 +1 is naturally isomorphic to (A[s]/ sm2 +1 )[t]jtm1 +1 so that 

Algk((B[mt])[m2], A) = Algk((B, (A[t]/tm1+1 )[s]/ sm2 +1) 
= Algk((B, (A[s]/sm2 +1)[t]/tm1 +1) 
= Algk ( (B[m2]) [mt], A). 

We can be explict about the isomorphism (Bt ®k B2)[m]-+ Bt[m] ®k B2[m]: 
in terms of elements, we have xi(b ®c) ~--+ l:p+q=i Xp(b) ® xq(c). 

Finally, we consider the relation among the higher codual numbers B[m] for 
different values of m. If m1 > m2 there is a canonical homomorphism, natural in 
A, A[t]/tm1 +1 -+ A[t]/tm2 +1 and hence a map, natural in A, 

Algk(B[mtJ, A)= Algk(B, A[t]/tm1 +1)-+ 
Algk(B,A[t]/tm2 +1) = Algk(B[m2],A) 
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which must come from a unique k algebra map B[m2] --t B[mt]. It follows that 
{B[iJI i 2:: 0} forms a direct system. Using these, we can define the infinitely high 
codual numbers as B[oo] = lim(B[m]), and we then have 

--+ 

PROPOSITION 7. B[oo] represents the functor 

A f--+ Algk(B, A[[t]]). 

PROOF. Since A[[t)) = lim(A[t]/tm+l ), ·-
Algk(B, A[[t]]) = limAlgk(B, A[t]/tm+l) 

+--

= limAlgk(B[m], A) 
+--

= Algk(limB[m], A) 
--+ 

= Algk(B[oo], A). 

Jet bundle schemes. 

DEFINITION. Let X = Spec(B) be an affine k scheme. We let X[m], 0 ~ m ~ 
oo denote the affine k scheme Spec(B[m]). We call X[m] them jet bundle of X. If 
X is an affine k variety we let X[m] denote Spec(k[X])[m](k), calling it them jet 
bundle also. If cf> : X - Y is a morphism of schemes, then there is a corresponding 
morphism cf>[m] : X[m] --t Y[m] and iff: X- Y is a morphism of varieties, then 
there is a corresponding morphism cf>[m] : X[m] - Y[m] 

Note that X[O] =X, and that X[l] is the tangent bundle of X. If X is an affine 
variety (so that k[X] is finitely generated over k) then for finite m, by Proposition 
4, X[m] is an affine variety with k[X[m]J = k[X][m]/v'o. 

Now suppose G is an affine algebraic group over k. A f--+ Algk(k[G], A[t]jtm+l) 
is a group valued functor, and it follows that k[G][m] is a (cocommutative) Hopf 
algebra over k, and in particular reduced, from which it follows that G[m] is an 
affine algebraic group over k (proaffine if m = oo) with k[G[m]] = k[GJ[m]. As in 
the remarks following Proposition 6, we can be explicit about the comultiplication 
in k[G[m]J: if 'Y: k[G] - k[G] ®k[G] is the comultiplication, and "f(b) = E b(l) ®bc2) 
then k[G][m] --t k[G][m] ® k[G][m] is given by 

Xi(b) f--+ E E Xp(b(l)) ® Xq(b(2))· 
p+q=i 

If c : k[G] - k is the augmentation, then the augmentation c[m] : k[G][m] --t 

k[m] = k is given by c[m](xi(b)) = Xi(c(b)), and this latter is 0 fori > 0. Thus 
it follows that the augmentation ideal J(G[m]) = Ker(c[m]) contains {xi(b) I b E 
I(G) = Ker(c),O ~ i ~ m}. So J(G[m]) ;;;:? J(G)[m]; since by Proposition 5 
k[G][m]/J(G)[m] = (k[G]/I(G))[m] and this latter is k[m] = k we have J(G[m]) = 
J(G)[m]. 

It is instructive to look more closely at the examples of G = GLn and G = SLn 
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EXAMPLE GL. Fix n, and let k[GLn] = k[tij][det-1]. As noted in the corollary 
to and discussion before Proposition 4, it follows that 

k[GLn[m]] = k[{xp(tij) I 0 :$ p :$ m, 1 :$ i,j :$ n}][xo(det)-1]. 

Here {xp(tij) I 0 :$ p :$ m, 1 :$ i,j :$ n} is a set of mn2 indeterminates over k. 

If we interpret k points as morphisms k[GLn[m]] ---+ k, we can identify k points 
as follows: 

GLn[m](k)---+ GLn(k[t]/tm+l), a~ (E a(xp(tij))]. 
p 

Since comultiplication in k[GLn] is given by tij ~ Lk tik ®tkj, we have comul-
tiplication in k[GLn][m] given by 

Xp(tij) ~ L L Xr(tik) ® Xs(tkj) 
k r+s=p 

and xo(det)-1 ~ xo(det)-1 ® xo(det)-1. 
Augmentation maps Xp(tij) to OopOij (and therefore xo(det) to 1). Antipode 

formulas may also be determined (which we omit here). 

ExAMPLE SL. Fix n, and let k[SLn] = k[GLnJ/(det- 1). By Proposition 
5, k[SLn][m] = k[GLn][m]/(xo(det- 1), ... ,xm(det- 1)). Fori > 0, we have 
xi(det- 1) = xi(det), and xo(det- 1) = xo(det) - 1. The image of k[SLn] = 
k[SLn][O] in k[SLn][m] is k[GLn][O]/(xo(det)- 1), so we end up with 

k[SLn][m] = k[SLn][{xp(tij) 11 :$ p :$ m, 1 :$ i,j :$ n}]/(x1(det), ... ,xm(det)). 

We further recall that to construct the kernel of a morphism f : G ---+ H of 
affine algebraic groups, we identify Ker(f) and G XH {e}, so that k[Ker(f)] = 
k[G]/ f*(I(H))k[G], where I(H) is the augmentation ideal of k[H]. We can use this 
to see Lie algebras. 

EXAMPLE LIE(G[m]). If His any affine k group, we have the group Lie(H) as 
the kernel of H[1]---+ H[O] =H. Thus 

k[Lie(H)] = k[H[1]]/xo(I(H))k[H[1]]. 

Since k[H[1]] = k[H][1] is generated over k by {xo(b),x1(b) I bE k[H]}, and xo(b)-
b(e) E xo(I(H))k[H[1]], it follows that the images y(b) = x1(b) + xo(I(H))k[H[1]] 
generate k[Lie(H)]. Since x1(bc) = xo(b)x1(c) + x1(b)xo(c), we also have y(bc) = 
b( e )y( c) + y( b )c( e). Moreover, these are the only relations, so if b1. ... , b8 give a 
basis of I(H)/ I(H) 2 , then k[Lie(H)] is the polynomial algebra on y(bl) ... y(bs) 

Applying these formulas to H = G[m] we have that k[Lie( G[m])] is gener-
ated over k by elements y(xp(b)); as above, if we select elements giving a ba-
sis of J(G[m])/I(G[m])2 we get polynomial generators over k. In addition, since 
J(G[m]) = J(G)[m], if b1. ... , br generate the ideal I( G) then {y(xp(bi)) 11 :$ i :$ 
r,O :$ p :$ m} generate k[Lie(G[m])]. 

Applied toG= GLn, this gives that 

k[Lie(GLn[m])] = k[{y(xp(tij)) 11 :$ i,j :$ n,O :$ p :$ m}] 
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PROUNIPOTENT PROLONGATION OF ALGEBRAIC GROUPS 179 

and hence an identification 

Lie(GLn[m))(k) ~ Mn(k[t]jtm+l) (3 ~ [Lf3(y(xp(tij)]. 
p 

Computing Lie(SLn[m))(k) is a bit more complicated: it follows from the cal-
culation of k[SLn[m]] above that 

k[Lie(SLn[m])] = 
k[{y(xp(tij)) II$ i,j $ n, 0 $ p $ m}]/(y(xo(det)), ... y(xm(det))). 

To compute y(xp(det)), we first consider a permutation a and the monomial 

m = tla(l) ... tna(n)· 
and apply Xp to get 

Xp(m) = LXq1 (tla(l)) ... Xqn(tna(n)) 

and then apply y and use the fact that tij(e) = 8ij to see that y(xp(m)) = 0 unless 
a(i) = i 'Vi, in which case 

We conclude that 

k[Lie(SLn[m])] 

y(xp(xu ... Xnn)) = LY(Xp(tii)). 
i 

= k[{y(xp(tij)) II $ i,j $ n, 0 $ p $ m}]f(Ly(xo(tii), · · · LY(Xm(tii)). 
i i 

Above, we identified Lie(GLn)(k) and Mn(k[t]jtm+l). We can write this latter 
as {L Ai I Ai E Mn(k)}. We these identifications, we can then write the above 
as 

In the above calculations and examples, the case m = oo follows from the case 
of finite m by passage to the direct limit. 

Finally, we have the relation between infinite jet bundle groups and prounipo-
tent prolongations: 

LEMMA 8. Let G be an affine algebraic group over k. Then there is an isomor-
phism 

Lie( G)= Ker(G[I] ~G)~ Ker(G[m +I]~ G[m)) 
for all finite m. 

PROOF. Let a E Ker(G[m +I] ~ G[m)) = G[m +I] Xa[m] {e}. With the 
identification G[i] = G[i](k) = Algk(k[G], k[t]/tm+l ), we have the commutative 
diagram 

k[G] ~ k[t]/tm+2 

1 f 1 
k -------> k[t]jtm+l 
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so that a: is given by b ~---+ o:0 {b) + O:m+l {b)r"+1 . Define K(o:) : k(G] --+ k[t]/t2 by 
b ~---+ o:o{b) + O:m+l{b)t. Then a:~---+ K{o:) is the desired isomorphism. 

Of course the vector group Lie( G) is unipotent. By repeated application of 
Lemma 8, we then conclude the following: 

COROLLARY 9. Let G be an affine algebraic group over k. Then Ker(G[i] --+ 
G(j]) (fori ~ j) is unipotent for all finite i, j and prounipotent fori = oo, j finite. 

Combining most of the results of this section, we have the following description 
of prounipotent prolongations: 

THEOREM 10. Let H be an affine algebraic group over k. Then the prounipo-
tent prolongation U H = Ker(H[oo] --+ H(O]) of H is prounipotent and has coor-
dinate ring k (H](oo]/ I { H)k(H](oo ]. If a representation H --+ G Ln is given, and if 
{fa I a E A} generates the kernel of restriction k[GLn] --+ k[H] then 

k[UH] = k[{xp(td) \1 ~ i,j ~ ~·.P = 0, 1, 2, ... }](deC1] 

{ {xo(tij)- bij• Xp{fa) \1 ~ ~.J ~ n, a E A,p = 0, 1, 2, ... }) 

Shift Structures 

We are concerned in this section with Lie algebras L = TI:1 Li where each Li is 
finite dimensional and all "isomorphic"; a typical example being U(Lo) = TI:1 Loti 
(Definition 2). For a E Li we will let a E L denote the infinite tuple whose ith entry 
is a and all other entries 0. We assume that L is prograded, in the sense that if 
a ELi and bE Lj then (a, b] E Li+j: in terms of infinite tuples, the Lie product is 
thus 

i+j=p 
We begin by making clear what is meant by saying that the Li are "isomorphic": 

DEFINITION 11. Let L = n:l Li where each Li is a finite dimensional vector 
space. A shift structure on L is a set of linear ismorphims ¢i : L1 --+ Li, Vi such 
that 

1. ¢I is the identity. 
2. For all a, b E L1 and all i, j ~ 1 

On U(L0 ), we have a shift structure defined where ¢i : Lot--+ Loti is given by 
multiplication by ti-l. 

We can use a shift structure to construct a Lie structure on L1. 

LEMMA 12. Let¢= { ¢i} be a shift structure on L = TI:1 Li, Define a product 
on L 1 by a "c/> b = ¢21 [a, b]. Then L1 is a Lie algebra under this product. 
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PROOF. The product is clearly k bilinear and skew symmetric. For the Jacobi 
identity, we need to verify that for a, b, c E L1 , 

a· (b ·c) = (a· b) · c + b · (a· c). 

First, we have, by the Jacobi identity for L, that 

From the definition of the product, 

and then by the definition of shift structure this latter is 

Similarly, 
[[¢1(a), ¢1(b)], ¢1(c)] = ¢3((a ·b)· c) 

and 
[¢1 (b), [¢1 (a), ¢1 (c)]] = ¢3(b ·(a· c). 

Since ¢3 is a linear isomorphism, the result now follows. 

Since (L 17 ·) is a finite dimensional Lie algebra, we can form its pronilpotent 
prolongation; as we now note, the shift structure makes this isomorphic to L. 

PROPOSITION 13. Let L = n Li have a shift structure ¢ = { cPi I i = 1, 2, ... } 
and let Lo = L 1 with the product ·,p. Then 

00 

U(Lo)-+ L by L:aiti ~ (¢i(ai))~ 1 
i=1 

is a Lie algebra isomorphism 

PROOF. The map is a linear bijection. To check that it is a Lie homomorphism, 
we note that [aiti, a1t1] = ( ai · a1 )ti+1 ~ <Pi+j ( ai · a1) and by the definition of the 
Lie product in Lo this latter is ¢H1(¢21[ai, b1]) which, by the definition of shift 
structure is [¢i(ai),¢j(aj)]. 

Because of Proposition 13, in the presence of a shift struture we can assume 
that L = U(Lo). As we now see, in case Lo is its own commutator, the graded 
structure on U(Lo) is determined by the Lie structure. 

PROPOSITION 14. Let Lo be a finite dimensional k Lie algebra and assume that 
Lo = [Lo,Lo]. Then 

Conversely, if C2 (U(Lo)) = Li'2: 2 Loti then Lo = [Lo, Lo]. 
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PROOF. Let L = U(Lo) and let Ln = ili>n Loti. We want to prove that enL = 
Ln. We begin by showing en L ~ Ln by induction on n. The case n = 1 follows 
since both sides are L. Suppose it holds for some m. Then em+I L = [L, em L] ~ 
[L, Lm]. If a = Ei~l aiti E L and b = L:i~m Mi E Lm then [a, b] = EP CptP 
where Cp = L:i+j=p[ai, bil· Clearly min(i + j) = 1 + m = m + 1 sop 2: m + 1 and 
[a, b] E Lm+l. (Notice that this part of the proof does not require the hypothesis 
on Lo.) 

Next we show that en L 2 Ln' also by induction on n. Fix a basis { Xl' ... 'Xr} 
for L0 . The case n = 1 again follows since both sides equal L. Suppose the 
inclusion holds for m. Let c = Ep~m+l CptP E Lm+l. Let Ai = Xit and for 
each p 2: m + 1 select elements Bjp E kxi such that L:i,j[xj,Bjp] = Cp (this is 
possible because Lo = [Lo,Lo] = Ei[xi,Lo]. Let Bi = Ep~m+l Bjptp-l ELm. 
Then L:i,j[Ai,Bi] = L:i,j L:p[xi,Bjp]tP = L:pL:i,j[xi,Bjp]tP = L:PeptP =c. Since 
Ai E L and Bi E Lm, we have c E [L, Lm] ~ [L, em L] = em+l L, completing the 
proof. 

Finally, suppose that e 2 (U(Lo)) = Ei>2 Loti, and let a E Lo. Since x = at2 E 
L:i>2 Loti = [U(Lo),U(Lo)], we have Yi ~L:biiti and Zi = L:Ciiti, 1 ::=; i ::=; N 
such that x = L:[xi,Yi] which implies that a= L:[bil,cil] E [Lo,Lo]. 

We retain the notation of the proof of Proposition 14 (Ln = Tii>n Loti) for 
later use. -

Since it is clear that the Lie algebras Li C U(Lo) are finitely generated, in the 
pronilpotent sense, Proposition 14 implies the same for the lower central series: 

COROLLARY. Let Lo be a finite dimensional Lie algebra that coincides with its 
commutator subalgebra, and let L = U ( Lo). Then, for all i ei L is finitely generated 
as a pronilpotent Lie algebra. 

Note that Propositions 13 and 14 actually characterize pronilpotent prolonga-
tions, at least in the case of trivial abelianization: 

COROLLARY. Let L0 be a finite dimensional Lie algebra that coincides with its 
commutator subalgebra, and let L = U(Lo). Then: 

1. L = gr(L,eiL); and 
2. en(U(Lo)) = Ln for all n; and 
3. L has a shift structure. 
Conversely, any Lie algebra L satisfying (1), (2}, (3) is of the form U(Lo) for 

some Lo satisfying Lo = [Lo, Lo]. 

The preceding corollary does not assert that the Lie algebra Lo is uniquely 
determined by L = U(L0 ). It is to that question that we now turn. In the corollary 
above, the first two conditions are independent of Lo, so we will continue to assume 
that L = TI Li with ei L = Li. If L = U(Lo) = U(L~), then it will have shift 
structures rp and 1/J coming from Lo and L~, respectively. Here's how rp and 1/J are 
related: 

LEMMA 15. Let rp = { r/Ji} and 1/J = {1/Ji} be shift structures on L = TI Li. 
Define Ai: L1--+ L1 by 1/Ji(x) = r/Ji(Ai(x)). Then 

Ai(a) ·q, Ai(b) = Ai+i(a ·,p b). 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



PROUNIPOTENT PROLONGATION OF ALGEBRAIC GROUPS 183 

In particular, 

and in the ¢> product on L 1, 

a· Ar(b) = Ar(a) · b 

PROOF. ¢>Hj(Ai+j(a ·..p b))= 1/Ji+j(a ·..p b)= 1/Ji+i1/J21([a, b]) = [1/Ji(a), 1/Jj(b)] = 
[¢>i(Ai(a)), ¢>i(Aj(b))] = ¢>Hi¢>21([Ai(a), Ai(b)]) = ¢>Hi(Ai(a) ·q,Aj(b)) so Ai+i(a·..p 
b)= Ai(a) ·q, Aj(b). Since A1 =I, applying this last equation to the case i = j = 1 
gives A2(a ·..p b)= a ·q, band the cases (i,j) = (1,r) and (i,j) = (r, 1) show that 
both a ·q, Ar(b) and Ar(a) ·q, b coincide with Al+r(a ·..p b). 

NOTATION. To use the results of Lemma 15, we will fix the following notation: 
L0 denotes the vector space L1 regarded as a Lie algebra with bracket the ¢> multi-
plication. We let P, Q, R E GL(Lo) be the invertible linear transformations P = A2 
, Q = A3A2 1 amd R =p-l. We denote the 1/J Lie multiplication by a center dot. 
Thus on Lo we have the formulas 

1. [a, Pb] = Q[a, b] = [Pa, b] and 
2. a· b = R[a, b]. 
We are also going to assume that Lo is semisimple. 

We are going to investigate the implications for Lo of the existence of P and 
Q, and we will use these to analyze the relations of the two Lie products. 

First, we fix a Cartan subalgebra 1t in Lo and we let x E 1t be a regular element 
so that 1t ={a E Lo I [a,x] = 0}. If a E 1t then 0 = [a,x] so 0 = Q[a,x] = [Pa,x] 
so P(a) E 'H.. It follows that P(1t) = 1t. Let B C 1t* be the set of (non-zero) roots 
and for a E B let Xa E Lo be a corresponding root vector. Any x E Lo can be 
uniquely written as x = h(x) + Ei3EB >.13(x)x13 where h(x) E 1t and >.13(x) E k. For 
a E 'H., [a, Xa] = a(a)xa, so that 

[P(a), Xa] = a(Pa)xa. 

Let x = P(xa)· Then [a, x] = [a, h(x)] + E >.13(x),8(a)x13 so that 

[a, P(xa)] = L >.!3(P(xa).8(a)x!3· 

Now [P(a), Xa] = [a, P(xa)], so choosing an a E 1t such that ,8(a) =f:. 0 all ,8 and 
comparing the above equations shows that P(xa) = ka + "faXa for ka E 1t and 
scalar "fa· Now we compute [xa, P(x13)] = [P(xa), x13] for a=/:- ,8 

[P(xa), x13] = [ka + "faXa, Xbeta] = ,B(ka)Xbeta + "fa[Xa, x13]. 
If a+ ,8 E B (which entails that a+ ,8 =f:. a, ,8) [xa, x13] is a scalar multiple 

of Xa+/3· Otherwise, [xa, x13] E 'H.. Thus comparing the above two expressions for 
[xa, P(x13)] = [P(xa), x13] shows that ,8(ka) = 0 for all ,8 =/:-a. Since [P(xa), Xa] = 
Q[xa,Xa] = 0, 0 = [ka+"faXa,Xa] = a(ka)xa+'Ya[Xa,Xa] so a(ka) = 0 also. Since 
B spans 'H.*, we have that ka = 0. Thus we have shown that 

P(xa) = "faXa "fa =/:- 0 '<Ia E B. 
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('Yo # 0 since P is invertible.) 

If L(a:) C L0 denotes the root space corresponding to a:, (which is spanned by 
x 01 ), then the above formula shows that L(a:) is P stable, with 'Yo the eigenvalue of 
P on L(a:). 

Now we consider the Lie structure from 1/J. Recall that z · w = R[z, w] where 
R = p-l. It follows that for z, x E £ 0 , z · x = 0 if and only if [z, x] = 0. Thus 
an abelian subalgebra in one product is an abelian subalgebra in the other and the 
centralizer of x in either product is the same. Taking x to be a regular element of 
'H shows that 'H is a Cartan subalgebra in either product. Since R(x01 ) = 'Y;; 1x01 

for a: E B and for a E 'H we have 

which shows that X 01 is a root vector for 'H in the 1/J product with root a:' = 'Y;; 1a:. 
Suppose a: # f3 but a:' = {3'. Then 'Yo'Y~ 1 a: = f3 which implies that 'Yo'Y~ 1 = 
-1, so that f3 = -a: and 'Y-o = -'Yo· Now [xa,X-o] # 0, but 'Yo[Xo,X-o] = 
boXo, X-ol = [P(xa), X-ol = [xo, P(x-a)] = [xa, -"foX-a] = -'Yo[Xo, X-o], which 
is a contradiction. Thus a:' # {3'. 

Let B' ={a:' I a: E B}, and let L(a:') be the corresponding root space. We have 
L(a) ~ L(a:'), and since B ~ B' is bijective we have equality, so the B' root spaces 
are all one dimensional. Moreover, 

Lo = 'H EBB' L(a:') 

is a root space decomposition in the 1/J product. 

Furthermore, if a:, {3, a+/3 E B, so that L(a:), L(/3), and L(a:+/3) = [L(a:), L(/3)] 
are all one dimensional, then L(a:') · L(/3') = R([L(a:), L(/3)]) = L(a + /3) is one 
dimensional, proving that a:'+ {3' = (a:+ {3)' E B. Thus the bijection B ~ B' 
carries sums to sums. Of course it readily follows from this that the two root 
systems Band B' for the Lie algebras (Lo, [a, b]) and (Lo, a· b) are equivalent. 

We summarize this discussion with the following theorem: 

THEOREM 16. Let L be a Lie algebra over k. For n;?: 1 let Ln =en Ljcn+l L 
and let Ln = TI i ;?: nLi. Assume that 

1. L1 is finite dimensional. 
2. L = gr(L,CiL). 
3. cnL = Ln for all n. 
4. L has a shift structure. 
5. L1 is semisimple in the Lie bracket determined by the shift structure. 
Then the isomorphism class of the semisimple Lie algebra L1 is independent of 

the choice of shift structure. 

Of course the Theorem applies notably to the case of pronilpotent prolonga-
tions: 

COROLLARY. Let L0 be a finite dimensional semisimple Lie algebra. Then Lo 
is determined up to isomorphism by the pro nilpotent prolongation U Lo . 
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Prolongation of groups 

Now we turn to the study of the prounipotent prolongation U H = Ker(H[oo) --+ 

H[O)) of an algebraic group H. Our goal is to find to what extent the group H 
can be recovered from U H. Since if H' --+ H is an isogeny then U H' --+ U H is an 
isomorphism, we will concentrate on simply connected H, so the goal then becomes 
to recover Lie(H) from UH. Our plan is to relate the Lie algebras Lie(UH) and 
ULie(U), since (at least for semi-simple H) the latter determines Lie(U). 

The corollary to Theorem 16 implies that for (semi-simple) algebraic groups 
H if Lie(U H) = ULie(U) then U H determines Lie( H). We recall the calculations 
preceding Lemma 8 above, which show that we have this equality for H = SLn: 
those calucations showed that 

00 

Lie(GLn[oo)) =II glnti 
i=O 

and 
00 

Lie(SLn[oo)) =II .slnti; 
i=O 

since Lie(UGLn) = Ker(Lie(GLn[oo) --+ Lie(GLn)) and the map on Lie algebras 
amounts to projection on the first factor, we see that Lie(UGLn) = ULie(GLn) 
and Lie(USLn) = ULie(SLn)· (For later use, we note that this implies that 
Ci(UGLn) = Ci(ULie(GLn) = Tii~j Lie(GLn)tJ.) 

Thus we can recover SLn from its prounipotent prolongation: 

COROLLARY. Let U be a prounipotent group and let L = Lie(U). For n ~ 1 
let Ln =en Ljcn+l L and let Ln = TI i ~ nLi. 

Then U is isomorphic to US Ln if and only if 
1. £1 is finite dimensional. 
2. L = gr(L,CiL). 
3. cnL = Ln for all n. 
4. L has a shift structure. 
5. £1 is isomorphic to sln in the Lie bracket determined by the shift structure. 

Note that the corollary implies that CmLie(USLn) = lli>mslnti, a property 
that we do not expect for general H. -

One of the key points in the characterization of Theorem 16 is that L is the 
(complete) associated graded Lie algebra of its natural filtration by its lower central 
series, and that this filtration coincides with the t filtration. The two filtrations 
are always present on Lie(UH), but as noted there is no reason to expect them to 
coincide in general. It turns out to be convenient, conceptually and notationally, 
to consider the filtrations already on the prounipotent group U H. 

DEFINITION. On UH we can define t filtration as follows: fori~ 1, let UHi = 
Ker(H[oo) --+ H[i- 1)). 

Note that the t filtration on U H, unlike the lower central series, is not intrinsic. 

For the t filtration, we have that U H 1 = U H, U Hi > U Hi+1, and U Hi jU Hi+1 

is the kernel of H[i + 1) --+ H[i) which, by Lemma 8, is Lie(H), hence abelian, so 
(UHi,UHJ) ~ UHi+J. Moreover, because the succesive quotients are the Lie 
algebra of H, we also have shown the following: 
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LEMMA 17. Let H be an algebraic group. Then the associated graded Lie alge-
bra gr(UH, UHi) is isomorphic to ULie(H). 

It follows from Lemma 17 that, for semisimple H, U H, with its t filtration, 
determines Lie(H). 

Although the t filtration is not intrinsic in general, it is for G Ln since, as we 
noted above, we have shown that it coincides with the lower central series for G Ln 
(so that UGL~ = CiUGLn)· If His a subgroup of GLn, the t filtration of U His the 
restriction to U H of that of GLn, so that U Hi = U H n UGL~ = U H n CiUGLn. 
In other words, the t filtration on U H as a subgroup of UGLn is intrinsic. Using 
this, we can recover Lie(H) from UH < UGLn in the following sense: 

THEOREM 18. Let H1 and H2 be semisimple subgroups ofGLn. Suppose there 
is an automorphism of UGLn carrying UH1 to UH2. Then Lie(Hl) and Lie(H2) 
are isomorphic. 

PROOF. The autoomorphism induces an isomorphism between the filtrations 
U HJ = U Hj n GiG Ln and hence between their complete associated graded Lie 
algebras. By Lemma 17, these are U (Lie( Hj). Now the corollary to Theorem 16 
provides the result. 

Lemma 17 also provides additional information about the group U H: the Lie 
algebra U (Lie( H)) is finitely generated by degree one as a pronilpotent Lie algebra, 
hence gr(U H, U Hi) is finitely generated in the same sense. We have a natural map 

gr(U H, CiU H) ---+ gr(U H, U Hi) 

surjective in degree one. If U ---+ U H is a surjection of prounipotent groups we have 
a corresponding surjective map 

and we can select U to be finitely generated free prounipotent so that the composite 

gr(U,CiU)---+ gr(UH,UHi) 

is surjective in degree 1, and hence surjective. This means that the corresponding 
group map U ---+ U H is also surjective, and hence that U H is finitely generated as 
a prounipotent group, a fact we now record: 

PROPOSITION 19. Let H be an affine algebraic group such that H = (H, H). 
Then U H is finitely generated as a prounipotent group. 

In [M2], it was shown how to construct differential field extensions of the 
rational function field C( x) with given prounipotent group as differential Galois 
group. That means that it is possible to produce such an extension with group 
U H, where H is a given linear group. It is also known [TT] that every linear 
group is a differential Galois group over C(x). It is conceivable that the methods 
leading to the recovery of H from U H, at least in the semisimple case, will yield 
a construction of extensions with group H from those with group U H; that was 
part of the motivation for the investigation reported on here, although that project 
remains uncompleted. (A construction of differential Galois extensions of C(x) with 
given linear algebraic group as differential Galois group is given in [MS].) 
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Graded Simple Jordan Algebras and Superalgebras 
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Dedicated to Professor Hyo Chul Myung on the occasion of his sixtieth birthday. 

ABSTRACT. Superconformal algebras, superalgebras that are extensions of the 
Virasoro algebra, play an important role in Physics. Here we give an approach 
to their classification through Jordan theory 

1. Introduction 

A superconformal algebra is a Z-graded simple Lie superalgebra that contains 
the Virasoro algebra in the even part and such that the dimensions of all the 
homogeneous components, dimLi, are uniformely bounded. 

Let V be a homogeneous variety of algebras, that is, a class of F -algebras 
satisfying a certain set of homogeneous identities (see [ZSSS]). Let A E V. 

Let's introduce the definition of a superalgebra corresponding to a variety V. 
In general, by a superalgebra we mean just a Z/2Z-graded algebra, A = A0 + A1. 

Example Let V be a vector space. The Grassmann (or exterior) algebra G(V) 
is the quotient of the tensor algebra T(V) modulo the ideal generated by symmetric 
tensors v ® w + w ® v; v, w E V. Clearly G(V) = G0 + G1, where G0 (resp. G1 ) 
is spanned by products of elements of V of even {resp. odd) length. 

Suppose that V is infinite dimensional. By the Grassmann envelope of a su-
peralgebra A = A0 + A1 we mean the subalgebra G(A) = A0 ® G0 + A1 ® G1 of 
the tensor product A® G. 

DEFINITION 1. A superalgebra A = A0 + A1 is called a V-superalgebra if the 
Grassmann envelope G(A) lies in V. 

In particular, if A = A0 + A1 is a V- superalgebra, then A0 E V and A1 is a 
module over A0 . 

In this way one can define Lie superalgebras, Jordan superalgebras, etc. Clearly, 
associative superalgebras are just Z/2Z-graded associative algebras and a commu-
tative superalgebra is more often called a supercommutative (super) algebra. 
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190 CONSUELO MARTINEZ 

In [KvL] V. Kac and J. W. van de Leur conjectured that superconformal al-
gebras over an algebraically closed field of zero characteristic admit a classification 
that is similar to the one obtained by Mathieu in [M2] for graded simple algebras. 
To be more precise, let F[t-1, t, 6, ... , en] be the associative supercommutative 
algebra of polynomials in one Laurent variable t and n odd variables 6, ... ,en· 
The Lie superalgebra W(l, n) of superderivations of F(r1, t, ell ... , en], graded by 
degrees oft, is a graded simple Lie superalgebra containing the Virasoro algebra Vir 
in the even part and having dimensions of all homogeneous components uniformely 
bounded. V. Kac and Van de Leur conjectured that an arbitrary graded simple Lie 
superalgebra containing Vir in the even part and having dimensions of all homoge-
neous components uniformely bounded is isomorphic to W(l, n) (for some n) or to 
one of known subsuperalgebras of W(l, n). 

Without the assumption of the existence of a Virasoro subalgebra also loop 
algebras and superalgebras of Cartan type appear. 

The above conjecture about superalgebras, as it has been mentioned before, is 
inspired by the results known for graded simple algebras. 

The study of graded simple Lie algebras with restrictions on dimensions of 
graded components was initiated by V. Kac in (Kl]. In this work he formulated 
the following 

Conjecture: Let L be a graded simple Lie algebra such that the function 
n --+ dim(Ln) is bounded by some polynomial in n. Then L is either a simple 
finite dimensional Lie algebra or a loop algebra or an algebra of Cartan type or the 
Virasoro algebra. 

Let us look through the list of algebras that appear in Kac's conjecture. 

Loop algebras. Let n be a natural number, g be a Z/nZ-graded finite di-
mensional algebra, g = 9o + 91 + · · · + 9n-1· For an arbitrary integer i, let 
I, 0 ~ I ~ n- 1, denote the residue of i modulo n. By a loop algebra corre-
sponding to g we mean the subalgebra .C( G) = EiEZ (h ® ti of the tensor product 
g ® F(r1, t]. If g is a simple finite dimensional Lie (Jordan) algebra then .C(G) 
is a graded simple Lie (Jordan) algebra and the dimensions of all homogeneous 
components are uniformely bounded. 

Equivalently, we can define loop algebras in the following way: 
A Z/nZ-graded algebra is an algebra with an automorphism w of order n. 

Then w can be extended to an automorphism w : g ® F(r1, t] ----+ g ® F(r1, t], 
a® ti --+ 17iw(a) ® ti, where 'f/ is a primitive nth-root of the unit in F. 

So .C(G) is the set of fixed points of w. 

Virasoro algebra, Vir, is the Lie algebra of derivations of the Laurent poly-
nomial ring F(r 1, t]. It is well known that elements en = tn+l/t form a basis that 
satisfies (ei, ej] = (j- i)ei+j· 

The subalgebra Vir1, derivation algebra of F(t], has the basis {ejh~-1· 

Cartan algebras. Let Wn be the algebra of derivations of F[t1, ... , tn]· Car-
tan algebras are Wn and the subalgebras Sn < Wn, H2m < W2m, K2m+1 < W2m+1 
(see (Kl] or (M2]). 

In (Ml,M2] 0. Mathiew proved the conjecture ofV. Kac, proving the following: 
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GRADED SIMPLE JORDAN ALGEBRAS AND SUPERALGEBRAS 191 

THEOREM 2. (0. Mathieu) Let L be a graded simple Lie algebra over an al-
gebraically closed field of zero characterisitic with the dimensions of the graded 
components Li uniformely bounded (growth one). Then L is isomorphic to one 
of the following algebras: 

(1} a simple finite dimensional Lie algebra, or 
(2} a loop algebra, or 
(3} Vir, or 
(4) Vir1. 
If we only assume that the function n ---+ dim(Ln) is bounded by some polyno-

mial inn (finite growth} then other Cartan algebras can appear in (4) (not only 
Vir1). 

2. Lie-Jordan relations 

DEFINITION 3. A (linear) Jordan algebra is a vector space J with a binary 
operation (x, y) ---+ xy satisfying the following identities: 

(J1} xy = yx 
(J2} (x2y)x = x 2(yx). 

EXAMPLES (see [J]) 
1) If A is an associative algebra over F, ( ~ E F) we then can define a new 

product · in A by : a · b = ~ ( ab + ba). Denote as A C + l the new algebra obtained in 
this way. It is easy to check that (AC+), ·) is a Jordan algebra. 

A Jordan algebra J is called special if it is a subalgebra of the Jordan algebra 
(A C + l, ·) for some associative algebra A. In the other case A is called exceptional. 

2) If (A,*) is an associative algebra with involution, H(A, *) = {a E Ala* =a} 
is a Jordan subalgebra of (A C + l, ·). 

3) Let 0 be the octonions, H3(0, *) denotes the algebra of 3x3 hermitians 
matrices over the octonions. It is an exceptional Jordan algebra. 

4) Let V be a vector space over F with a symmetric bilinear form <, >. Then 
J = F1 + V with the product (ad+ v)(,81 + w) = (o:.B+ < v, w > )1 + ,Bv + o:w is a 
(special) Jordan algebra, called the Jordan algebra of a bilinear form. 

Every simple finite-dimensional Jordan algebra over an algebraically closed field 
F is either special or isomorphic to H3(0, *) (see [J]). 

Let L be a Lie algebra containing a subalgebra Fe+Fh+F f which is isomorphic 
to sl2(F), that is, [e, f] = h, [f, h] = 2f, [e, h] = -2e. 

Suppose that the operator ad(h) : L ---+ L is diagonalizable and that the only 
eigenvalues of ad(h) are -2,0,2. Let L = Lc- 2) +Leo)+ Lc2J be the decomposition 
of L into a sum of eigenspaces. Following J. Tits [T] we will define a structure of 
a Jordan algebra on J = Lc -2) via xc -2) * Y( - 2) = [[xc -2) ,J], Y( _ 2)] for arbitrary 
elements xc-2), Y(- 2) E Lc-2). The algebra L can be recovered (up to central 
extensions) from J. 

On the other hand, for an arbitrary Jordan algebra J with 1 there exists the 
unique (up to isomorphism) pair L ;:2 sh(F) with these properties such that Lc _2) ~ 
J and L has zero center. We will call such a Lie algebra the Tits-Kantor-Koecher 
construction of J and denote it K(J) = J- + p-, J+] + J+ (see [J]). 
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192 CONSUELO MARTINEZ 

Let L = L0 + LI be a graded Lie super algebra such that dimensions dimLi, Li = 
Lio + Lii, are uniformely bounded. Then the zero component Lo is a finite dimen-
sional Lie superalgebra, Lo = L00 + Loi· It is known (see [Kl]) that a finite 
dimensional Lie superalgebra is solvable if and only if its even part is solvable. 
Suppose that the Lie algebra £ 00 is not solvable. Then (see [Kl]) £ 00 contains 
a subalgebra sl2(F) =Fe+ Fh + Ff with [e,f) = h, [f,h] = 2f, [e,h] = -2e. 
An arbitrary homogeneous component Li is a module over sh(F). Since there is 
only one irreducible sl2(F)-module in each dimension and dimensions of Li are uni-
formely bounded it follows that only finitely many irreducible sl2(F)-modules can 
occur in decompositions of Li, i E Z. This implies that ad( h) : L ---+ L, x ---+ [x, h] 
is diagonalizable and has finitely many eigenvalues. In [Zl) it was shown that such 
Lie algebras can be studied by means of Jordan theory. 

The classification of Z-graded simple Jordan superalgebras with the dimensions 
of homogeneous components uniformely bounded appears now as a natural task. 

EXAMPLES 

1) Let g denote now a Z/nZ-graded finite dimensional superalgebra, g = Qo + 
gl + · · · + gn-1· The loop superalgebra corresponding to g is .C( G) = EiEZ {h ® ti. 

If g is a simple Jordan ( Lie ) superalgebra then .C( G) is a graded simple Jordan 
(Lie) superalgebra and dimensions of the graded components, dim.C(G)i, i E Z, are 
uniformely bounded. 

2) A graded simple Jordan superalgebra J is of Cartan type if J contains a 
graded subsuperalgebra B of finite codimension such that the corresponding sub-
space n- + [B-, J+] + (J-, B+] + B+ of the Tits-Kantor-Koecher Lie superalgebra 
K(J) is a subsuperalgebra of K(J) of finite codimension. Thus K(J) is a Lie 
superalgebra of Cartan type. 

3) Let V be a direct sum of two vector spaces, both Vo = EBiEZ Voi and Vj: = 
EBiEZ VIi are represented as direct sums of finite dimensional vectors spaces such 
that dimensions of subspaces Vi = Voi +VIi, i E Z are uniformely bounded. Suppose 
further that the space V is equipped with a nondegenerate supersymmetric form 
<, >: V x V---+ F. That is, <, > is symmetric on V0, skew-symmetric on Vj: and 
< Vo, VI >=< VI, V0 >=< Vi, Vj >= (0) if i + j =f. 0. Then the direct sum of 
vector spaces J = F1 + V = J0 + JI, J0 = F1 + V0, JI =VI becomes a Jordan 
superalgebra under multiplication vw =< v, w > 1 for v, wE V. The superalgebra 
J is graded simple, Ji =Vi fori =f. 0, Jo = F1 + Vo. 

4) Let A = A0 +AI be an associative supercommutative algebra. If a E A.-
then we denote Ia I = i. A bracket [,) : A x A ---+ A is called a contact bracket 
("generalized Poisson bracket" in [KvL,Ki]). Compare also to "Jordan bracket" 
in [Ki]) if: 

(i) (A,[,]) is a Lie superalgebra, 
(ii) D :a---+ [a, 1) is a derivation of A, 
(iii) D(a)[b,c] + (-1)iai(lbl+lci)D(b)[c,a) + (-1)1ci(ial+lbi)D(c)[a,b) = 0, 
(iv) [a, be] = [a, b]c + ( -1) I alibi b[a, c) - D( a )be, 
(v) for a E AI we have D(a)[a, a] = 0. 
Starting with an associative supercommutative superalgebra A with a contact 

bracket [, J : A x A ---+ A consider a direct sum of vector spaces J = J(A, [,]) = 
A+ Ax. We shall define a multiplication on J. For arbitrary elements a, b E A their 
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GRADED SIMPLE JORDAN ALGEBRAS AND SUPERALGEBRAS 193 

product in J is the product ab in A, a(bx) = (ab)x, (bx)a = ( -1)1al (ba)x, (ax)(bx) = 
(-1)lbl[a,b]. 

The Z/2Z-gradation on A can be extended to a Z/2Z-gradation on J via J0 = 
A0 + A1x, JI =AI+ A0x. The superalgebra J is a Jordan superalgebra (see [Kn] 
and [KM]). We call it the Kantor Double of (A,[,]). 

Let n 2:: 1, V = V0 + ... + Vn-l a finite dimensional Z/nZ-graded vector space 
over F. The gradation on V can be uniquely extended to a Z/nZ-gradation on the 
Grassmann algebra, G(V) = E:-01 G(V)i. 

Let A= LiEZ G(Vh ® ti = .C(G(V)). If[,] :Ax A-+ A is a contact bracket, 
the element x in the Kantor Double construction is given degree i such that 2i E nZ 
and [Aj,Ak] ~ AJ+k+2i for arbitrary j,k E Z, then the Kantor Double J = A+Ax 
is a Z-graded Jordan superalgebra having all dimensions dim(Ji), i E Z, uniformely 
bounded. 

It has been proved in [KMZ] that the examples given before "nearly" cover 
the collection of graded simple Jordan superalgebras having dimensions of graded 
component uniformely bounded. 

3. Previous Results 

Before formulating the main result of [KMZ], we will discuss some results that 
are used in the proof. 

A) GK-dimension in Jordan algebras 

DEFINITION 4. Let A be a finitely generated {no necessarily associative) alge-
bra. Let V be a finite dimensional F -vector space generating A and let vn denote 
the linear span of all product of lenght ::=:; n in elements of V. The Gelfand-Kirillov 
dimension of A (denoted GK dim{A) for short) is defined by: 

GKd . (A) 1. ln[dimVn] zm = tmsup 1 
n-HXl nn 

If the algebra A is not necessarily finitely generated then GK dim{ A) = sup GK 
dim{ C), where C runs over all finitely generated subalgebras of A. 

It is known that the above definition does not depend on the particular finite 
dimensional vector space generating A (see [BK], [GK] and [KL]). 

If A is associative, Lie, Jordan or alternative, then GK dimA = 0 if and only 
if dimFA < oo and there are no algebras with 0 < GKdimA< 1 (see [KL]). In 
the associative case G. Bergman proved (see [KL]) that there are no associative 
algebras with 1 < GKdimA< 2. But there are algebras having dimension s for 
every real number 2 ::=:; s. 

The structure of associative algebras having GK dim = 1 was determined in 
a series of papers by Small, Stafford and Warfield Jr. They proved that a finitely 
generated associative algebra having GK dimension 1 is PI. If it is prime, then it 
is a finite module over its center. The prime radical is nilpotent. 

Some general properties of Gelfand Kirillov dimension in Jordan algebras were 
studied in [M]. Then in [MZl] the result of Small, Stafford and Warfield Jr. has 
been extended to Jordan algebras. 
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194 CONSUELO MARTINEZ 

THEOREM 5. Let A be a finitely generated linear Jordan algebra of GK dimen-
sion 1. Then: 

(a) if A is semiprime, then A is a finite module over a finitely generated central 
subalgebra of the associative center of A, 

{b) the radical of A is nilpotent. 

In the same paper we proved that there are no Jordan algebras having GK 
dimension strictly between 1 and 2. 

Notice that the even part A of a Jordan superalgebra of the type that we are 
interested in is a Z-graded Jordan algebra in which dimensions of all homogeneous 
components are uniformely bounded. So either A is finite dimensional or it has GK 
dim= 1. 

B) Simple graded and prime graded Jordan algebras 

For graded algebras we can get more precise information. The following result 
is an analog from the theorem of 0. Mathieu in (M2). 

THEOREM 6. Let A = EiEZ Ai be a graded simple Jordan algebra of finite 
growth, that is, dimJi < IW + d, where c, d are constants. If we assume that A is 
infinite dimensional, then A is isomorphic to one of the following Jordan algebras: 

(a) The simple Jordan algebra associated to a symmetric nondegenerate bilinear 
form over an infinite dimensional vector space V, or 

{b) A loop algebra. 

Recall that a (nonassociative) algebra A is said to be prime if for any two 
nonzero ideals I and L of A their product I L is nonzero. A Jordan algebra A 
is said to be nondegenerate if, for an arbitrary element a from A, a2 = 0 and 
(Aa)a = (0) imply a= 0. 

In the proof of Theorem 6 the following facts are used: 
- The algebra A is non-degenerate if and only if is graded non-degenerate. 
- The algebra A is prime non-degenerate if and only if it is graded prime non-

degenerate. 
Consequently, the structure of prime nondegenerate algebras, studied in (Zl) 

plays a very important role. Also Mathieu's result is used. In a concrete way, it is 
used that fact that a graded simple Lie algebra of finite growth is Pl. 

Once the structure of simple graded Jordan algebras of finite growth (that is, 
finite GK dimension) is known, we can study the structure of graded prime algebras. 
The change of simple by prime forces the change of finite growth by growth one 
(GK-dimension 1). Now the structure of this algebras is given by the following: 

THEOREM 7. Let A = EiEZ Ai be a prime nondegenerate graded Jordan al-
gebra. Suppose that there exists d > 0 such that dimAi < d, for all i. Then A 
is: 

(a) either a graded simple algebra ( so known by the previous theorem) or 
{b) only finitely many negative (resp. finitely many positive) components of 

A are nonzero, that is, there exists s ~ 1 such that Ai = 0 for all i < -s ( or 
A = 0 for all i > s). Moreover, there exists a simple finite dimensional Z/nZ-
graded algebra g and a monomorphism of graded algebras 4> : A --+ £(G) such that 
¢(Ak) = C(Gh for all k greater than a certain number m ~ 1 (resp. less than 
-m). 
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GRADED SIMPLE JORDAN ALGEBRAS AND SUPERALGEBRAS 195 

Remark. We will refer to algebras of type (b) as "one-sided graded algebras". 

4. The main result. General ideas of its proof 

The aim of [KMZ] is to prove the following result 

THEOREM 8. Let J = EiEZ Ji be an infinite dimensional graded simple Jor-
dan superalgebra over an arbitrarily closed field F of zero characteristic such that 
dimensions dim( Ji) are uniformely bounded. Then J is isomorphic to one of the 
following superalgebras: 

1) a loop superalgebra .C( G), where g = go + gl + · · · + gn-1 is a finite dimen-
sional simple Z/nZ- graded superalgebra, 

2} a Jordan superalgebra Fl + V of a nondegenerate supersymmetric form in 
a Z-graded vector space V = V0 + VI, 

3} a Kantor Double J = A+ Ax of an associative supercommutative algebra 
A = EiEZ G(V)"t ® ti with a contact bracket, where V = Vo + · · · + Vn-1 is a 
Z/nZ- graded finite dimensional vector space. If n is odd then there is one (up 
to isomorphism} Jordan superalgebra of this type with x being of degree 0. If n is 
even then there are two contact brackets on A leading to two nonisomorphic Jordan 
superalgebras, one with x having degree 0 and one with x having degree -2n, 

4) a Jordan superalgebra of Cartan type, 
5} an exceptional Jordan superalgebra Js whose Tits-Kantor Koecher construc-

tion is isomorphic to the exceptional Cheng-Kac superalgebra CK(6) (see [CK]). 

Let us denote A and M the even and odd part respectively of J. For every 
element x EM the operator R(x)2 : J-+ J, y-+ (yx)x is a derivation. 

Let V be the linear span of {R(x) 2 1x E M} and let I be maximal graded 
'D-invariant ideal of A such that Io is nilpotent. 

It can be proved that ALI is a direc~ sum of prime nondegenerate 'D-invariant 
graded ideals: A= A/I= ACll EB. ·. EB ACrl. 

According to the previous section the structure of each of these A(i) is known 
to be of one of the following types: 

(a) finite dimensional, or 
(b) a loop algebra, or 
(c) an infinite dimensional Jordan algebra associated to a bilinear form, or 
(d) a one sided graded algebra. 

More precise information on the structure of A is given by the following propo-
sition: 

PROPOSITION 9. If a superalgebra J satisfies the assumptions of the Theorem 
and A denotes its even part, then one of the following assertions holds: 

1} A/I~ .C(G) a loop algebra of a simple finite dimensional Jordan algebra of 
a bilinear form, the ideal I is nilpotent and I =I (0), 

2} A/ I is a one-sided graded algebra commensurable with a loop algebra .C( G) 
of a simple finite dimensional Jordan algebra of a bilinear form, 

3} A/ I is a finite dimensional simple Jordan algebra of a bilinear form, I =I (0), 
4) A= A(1lEBA(2l, where A(i) are algebras of the types (a}, (b), (c) or (d) that 

we have mentioned above, 
5} A ~ .C( G), where g is a simple finite dimensional Jordan algebra of a bilinear 

form, 
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196 CONSUELO MARTINEZ 

6) A is a finite dimensional simple algebra, 
7} A/ I is a simple infinite dimensional Jordan algebra, I =f. (0), 
8} A is a simple infinite dimensional Jordan algebra of a bilinear form. 

The Jordan superalgebra J is of Cartan type in the following cases: 
i) If I= (0), A= A(1) EB A(2), A(1) is one sided graded and A(2 ) is either finite 

dimensional or one sided graded of the same type as A(1) (that is, both positively 
or both negatively graded). 

ii) If A/ I is one sided graded (I can be (0) or not). 

If I =f. (0) and A/ I is finite dimensional, then J is finite dimensional. 
If I= (0) and A is either finite dimensional or infinite dimensional of a bilinear 

form, then J is either finite dimensional or the Jordan algebra of a superform. 

The following cases are shown to be impossible: 
a) A= A(1) EB A(2) with A( 1) finite dimensional and A(2) a loop algebra. 
b) A = A (1) EB A (2), with A (1) and A (2) one-sided graded, one of them positively 

graded and the other one negatively graded. 
c) A= A(1) EBA(2) with A(l} an infinite dimensional Jordan algebra of a bilinear 

form. 
d) A(l} EB A(2) with A(l} a loop algebra and A(2) one sided graded. 
e) (0) =f. I and A/ I infinite dimensional of a bilinear form. 

If A is a sum of two loop algebras then J is either a loop superalgebra or an 
algebra obtained by the Kantor double process. 

If I= (0) and A is a loop algebra associated to a simple finite dimensional Jor-
dan algebra g, then J is either a loop superalgebra or, in case when A is associated 
to the algebra of 2 x 2 matrices, the exceptional algebra Js. The Tits-Kantor-
Koecher construction of J8 is the exceptional Lie superalgebra CK(6) discovered 
by Cheng and Kac (see [CK]). 

Finally, the main case corresponds to A/ I ~ .C( G) the loop algebra associated 
to a Jordan algebra of a bilinear form g, In this case, (0) =f. I= Mc(A) is nilpotent. 

First it is proved that the algebra A splits over its McCrimmon radical I, that 
is, there is a subalgebra B of A with B ~ .C( G) and A = I + B. in this case J is a 
Kantor double superalgebra. 
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The Centralizer Algebra of the Lie Superalgebra p(n) and 
the Decomposition of V®k as a p(n)-module 

Dongho Moon 

ABSTRACT. We construct an associative algebra Ak and show that there is a 
representation of Ak on V®k where V is the natural 2n-dimensional represen-
tation of the Lie superalgebra p(n). We show that Ak is the full centralizer of 
p(n) on V®k. Using Ak, we decompose the tensor space V®k, fork= 2 or 3, 
and show that V®k is not completely reducible for any k 2': 2. 

0. Introduction 

In his papers (16] (17], I. Schur showed that the action of the symmetric group 
Sk on the tensor product space V 181 k by place permutations and the natural action 
of the general linear group GL(V) on V 181k commute with each other. Moreover he 
proved that those two actions determine the full centralizers of each other. This 
result, which is often quoted as Schur- Weyl duality, connects the combinatorial 
theory and the representation theory of GL(V) and Sk· For example, the decom-
position of the GL(V)-module V 181k into irreducible summands can be obtained 
from the decomposition of the group algebra csk into minimal left ideals which are 
labeled by standard Young tableaux. 

After Schur's initial results, there have been various attempts to obtain ana-
logues of Schur-Weyl duality (or to determine the full centralizer algebras) in 
other settings. In (5], R. Brauer described the centralizer of the orthogonal Lie 
group O(n), and the symplectic Lie group Sp(n) (for n even) using what are 
now called Brauer algebras. An analogue of Schur-Weyl duality for the general 
linear Lie superalgebra gl(m,n) was obtained by A. Berele and A. Regev (3]. 
A.N. Sergeev [18] obtained the same result for gl(m, n) independently. In the 
same paper [18], Sergeev also determined the full centralizer of the almost sim-
ple Lie superalgebra .sq(n). The orthosymplectic Lie superalgebras spo(m, n) were 
studied by G. Benkart, C. Lee Shader and A. Ram in (2] (see also [9] and [10]). The 
centralizer algebras for Lie color algebras, which are Lie algebras graded by a finite 
abelian group, and their relation with the Lie superalgebra case were studied by the 
author in [11] [13]. The general linear Lie color algebra case was also investigated 
by S. Montgomery and D. Fischman using Hopf algebra methods in [6]. 
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200 DONGHOMOON 

In this paper we will discuss the Lie superalgebras p(n). The algebras sp(n) = 
p(n)nsl(n, n) are the only ones in Kac's list [7] of classical simple Lie superalgebras 
whose centralizer algebras are not known (excluding the exceptional algebras F(4), 
G(3) and D(2, 1; a)). We obtain the full centralizer algebra of p(n) in End (V 181k). 
We also construct maximal vectors of p(n). Then we use the centralizer algebra 
of p(n) to decompose the tensor space V1812 and V1813 . This decomposition enables 
us to find dimension formulas for some highest weight p(n)-modules. It will follow 
that V®k is not completely reducible for every k ~ 2. The author hopes that the 
technique developed to decompose V®2 and V1813 could be used for higher values of 
k. 

This paper is based on the presentation given at the conference on Recent 
Progress in Algebra held at KAIST, Taejon, Korea. But there are few new results 
after the conference. For example Theorem 2. 7 (b) was not announced at the 
conference. More details with complete proofs of the results in this paper will 
appear elsewhere (see for example, [12] or [13]). 

The author wishes to express his sincere gratitude to Professor G. Benkart, 
under whose guidance the work presented here was done. 

1. The Lie superalgebra p(n) 

Let V = em+n be a Z2-graded ( m + n )-dimensional vector space over e, with 
V = V0 EB VI, where V0 = em and VI = en. The general linear Lie superalgebra 
gl(m, n) = gl(m, n)0 EB gl(m, n)I is the set of all (m + n) x (m + n) matrices over 
e, which is Z2-graded by 

gl(m, n)o = { ( ~ ~) jA E Mmxm(C), 

gl(m, n)I = { ( ~ ~) IB E Mmxn(C), 

together with the super bracket 

[x,y] = xy- (-l)abyx 

for x E gl(n, n)a., y E gl(n, n)b a, b = 0, 1. 

BE Mnxn(C)}, 

C E Mnxm(C)}, 

Let 'Y : V ----+ V be the linear mapping which satisfies 

'Y(v) = (-l)iv for v E v,;. 
We define the supertrace str on gl(m, n) by, 

str(x) = Tr('Yx) = TrA- TrD, 

for x = ( ~ ~) E gl(m, n), where Tr is the usual matrix trace. The special linear 

Lie superalgebra sl(m, n) is the subalgebra, 

sl(m, n) = {x E gl(m, n)Jstr(x) = 0}, 

of gl(m, n) of matrices of supertrace zero. 
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THE CENTRALIZER ALGEBRAS OF p (n) 201 

There is a natural action of gl(m, n) on V by matrix multiplication, which 
extends to an action on the k-fold tensor product V 0 k of V. More precisely, 

X · (Vi ®V2 ® · · · ® Vk) 

k 

=I) -1)ab1 +··+abi-l Vi®···® Vi-i® XVi ® Vi+i ® · · · ® Vk, 

i=i 
where X E gl(n, n)a, and Vi E Vb;, a, bi = 0 or 1. 

The symmetric group Sk on k-letters acts on V 0 k by graded place permutation. 
So for (i i + 1) E Sk, 

(i i + 1)Vi ® · · · ® Vk = ( -1)a;a;+1Vi ®···®Vi-i® Vi+i ®Vi®···® Vk, 

where Vj E Vai" The actions of Sk and gl(m, n) on V®k commute with each other 
(see for example, [3] or [18]). 

For the rest of this paper we restrict our considerations to the case dim V0 = 
dim Vy = n. Let ( , ) be a nondegenerate bilinear form on V x V such that 

(i) (v, w) = ( -1)ab(w, v) for v EVa, and wE Vj;. 
(ii) (v, w) = 0 if v, w E V0 or v, w E Vy. 
Then we define the homogeneous spaces of the Lie superalgebra p(n) as follows. 

For a= 0 or 1, 

p(n)a = {x E gl(n,n)a I (xv,w) + (-1)ab(v,xw) = 0 

'Vv E Vj;,b = 0, or 1, 'Vw E V }· 

Then p(n) = p(n)0 EB p(nh is a subsuperalgebra of gl(n, n). 
Since the bilinear form is nondegenerate on V, there exists a basis B = Bo UBi 

for V such that Bo = { e1, ... , en} is a basis for V0 and Bi = { en+l, ... , en+n} is 
a basis for Vy, and 

(en+i,ej) = (ej,en+i) = 8i,j, (ei,ej) = (en+i,en+j) = 0, 

for i,j = 1, 2, ... , n. In other words ei and en+i are dual to each other with respect 
to the bilinear form. So we will use the notation ei* := en+i and en+/ := ei, for 
i = 1, ... ,n. 

The matrix of the bilinear form relative to the basis B is given by 

FB = ((ei,ej))i:s;i,j 9 n = (~ ~). 
Using FB, we can see that p(n) can be represented as 

P(n) = { ( ~ -~T) E M2nx2n(C) I A,;,~;, gl~} = -C } 

Here AT denotes the usual matrix transpose of A. 
In [7] Kac showed that 

sp(n) = p(n) n sl(n, n) 

{(A B ) I A E sl(n) 
= C -AT E M2nx2n{C) BT = B, 

is a simple Lie superalgebra provided n ;::: 3. 

B, C E gl(n), } 
CT=-C 
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202 DONGHOMOON 

Let Est denote the standard matrix unit which has 1 in the (s, t)-position and 
0 elsewhere. We will denote homogeneous basis elements aii, bii, C;j of p( n) by 

aij := Eij- Ei+n i+n E { ( ~ -~T) I A E gl(n)} for 1:::; i,j:::; n 

bij := Ei j+n + Ej i+n E { (~ ~) I B E gl(n), BT = B} for 1 :::; i :::; j :::; n 

Cij := Ei+n j - Ej+n i E { ( ~ ~) I c E gl(n), cT = -C} for 1 :::; i < j :::; n. 

For a semisimple Lie algebra, the Killing form, which is nondegenerate, plays an 
essential role in the theory of highest weight modules. A classical Lie superalgebra 
L is called basic when L has an even nondegenerate invariant bilinear form. The 
basic classical Lie superalgebras are close to the ordinary classical Lie algebras in 
many respects (for more information, see [8]). But it can be shown that there does 
not exist any nonzero invariant bilinear form on p(n) if n ~ 3 (see for example [7] 
or [15]). Therefore we need a more general theory to construct the highest weight 
modules for Lie superalgebras which are not basic classical. 

I. Penkov and V. Serganova developed a general way to construct highest weight 
modules of arbitrary finite-dimensional Lie superalgebras [14]. We fix ~. the set of 
all the diagonal matrices in p ( n), as a Cart an subalgebra of p ( n). A linear functional 
a: E ~* is a root of p(n) if and only if p(n) 0 = { x E p(n)j[h, x] = a(h)x, Vh E ~} =f:. 
(0). Then p(n) has the root space decomposition relative to ~. 

p(n) = ~ E9 E9 p(n) 0 

oE~* 

The set a = {a: E ~* \ Ojp(n) 0 =f:. (0)} is the set of roots of p(n). Penkov and 
Serganova developed a way to construct generalized triangular decompositions of 
p(n), even though we cannot define simple roots of p(n). From [14] we have the 
following triangular decomposition of p(n); 

THEOREM 1.1. [14] There is a decomposition of a= a+ U a_ such that 

p(n) = p(n)_ E9 ~ E9 p(n)+, 

p(n)+ = EB p(n)" is the C.-span of {aiil1:::; i < j:::; n} U {bijl1:::; i:::; j:::; n}, 
oE~+ 

~ is the set of diagonal matrices in p ( n) which is the C -span of { aii I i = 1, ... n} 
and 
p(n)_ = EB p(n)0 is the C.-span of {aijl1:::; j < i:::; n} U {cijl1:::; i < j:::; n}. 

oE~-

Here we note that there is no automorphism T of p(n) so that r(p(n)+) = p(n)_ 
and r(p(n)_) = p(n)+. In fact these spaces have different dimensions. 

DEFINITION 1.2. A p(n)-module Vis a highest weight module if and only if V 
is generated over p(n) by a weight vector v+ E V such that p(n)+ · v+ = (0). We 
say .A E ~* is the weight of v+ if h · v+ = .A(h)v+, for all hE ~-

From now on we will adopt the convention on parities that p(x) =a if 0 =f:. x E 
p(n)a, and p(v) = b if 0 =f:. v E VIi· 
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THE CENTRALIZER ALGEBRAS OF p (n) 203 

2. The centralizer algebra of p(n) on V®k 

We describe the full centralizer algebra of p(n) on V®k in this section. 
Consider V*, the dual vector space of V. Then V* is also Z2-graded so V* = 

(V*)0 EB (V*h, where (V*h = (lq)*, and V* is a p(n)-module by 

(x · g)(w) = -( -l)p(x)p(g)g(x · w), Vw E V, 

for x E p(n) and g E V*. 
Define a linear map f: V---+ V*, v f---t fv by fv(w) = (v,w), for v,w E V. 

Then f is p(n)-module isomorphism i.e., 

X· fv = ( -l)a·1 fx·v• X E p(n)a, 
Moreover we see f : V0 ---+ (V*h, and VI ---+ (V*) 0, i.e., f is a p(n)-module 
isomorphism of parity 1. 

There is also a p(n)-module structure on End(V) defined by 

(x · cp)(w) = x · cp(w)- ( -l)p(x)p(cp)cp(x · w), 

for x E p(n) and cp E End(V). Also we have that V 0 V* is isomorphic to End(V) 
by 

V 0 V* ---+ End(V), v 0 g ~---+ 'Pv, 9 , 

where for all wE V, 'Pv, 9 (w) = g(w)v. By this series of p(n)-module isomorphisms, 
V 0 Vis isomorphic to End(V): 

V0V 10! V0V* End(V) ---+ ---+ 

ei 0e/ f---t ( -l)P(e;)ei 0 fe~ f---t ( -1 )p(e;) Eij 
1 

2n I: ( -1 )P( e;) ei 0 ei * f---t ---+ Iv 
i=1 

2n 
Because the identity map Iv on Vis a p(n) invariant, I: ( -l)P(e;)ei 0 ei* is a p(n) 

i=1 
invariant. 

Define the contraction map c E End(V®2) by 
2n 

c(v1 0 v2) = (v1, v2) ,L) -l)p(e;)ei 0 ei. 
i=1 

Since a p(n)-module invariant is killed by p(n), it's easy to show 

x · c(v1 0 v2) = 0 = c · x(v1 0 v2). 

Soc E Endp(n)(V02) and c(V02) is !-dimensional submodule of V 0 V. 
Let s be the action of (12) E 82 on V02, so 

s(v10v2) = (-l)p(vl)p(v2 )V2 0v1. 

Then s E Endp(n)(V02) since the action of 82 commutes with the action of p(n) on 
v02. 

Define ei,si, E Endp(n)(V0k), i = 1, 2, ... , k- 1, by 

ei = Iv®(i- 1) 0 c 0 fv®(k-i- 1) 

Si = Iv®(i- 1) 0 s 0 fv®(k-i- 1) 
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PROPOSITION 2.1. ei and Si satisfy the following relations: 

si2 = 1, ei2 = 0, eisi = -ei, Siei = ei, 

SiSj = SjSi, siej = ejsi, eiej = ejei, 

SiSi+tSi = Si+tSiSi+t. ei+l eiei+l = -ei+l, eiei+l ei = -ei, 

siei+l ei = -si+l ei, ei+l eiSi+t = -ei+tSi 

1:::::; i:::::; k- 1, 

li - il 2:: 2, 
1:::::; i:::::; k- 2, 
1:::::; i:::::; k- 2. 

DEFINITION 2.2. Let Ak be the unital associative algebras generated by ~1, ... , 

~k-t. t)1, ... , tJk-1 with defining relations 

~? = 1, t)i 2 = 0, t)i~i = -t)i, ~it)i = tJi, 

~i~j = ~j~i. ~it)j = t)j~i. t)it)j = t)jt)i, 

~i~i+l~i = ~i+l~i~i+l' tJi+l t)itJi+l = -tJi+t. tJitJi+l tJi = -t)i, 

~itJi+ltJi = -~i+ltJi, tJi+ltJi~i+l = -tJi+l~i 

1:::::; i:::::; k- 1, 

li- il 2:: 2, 
1:::::; i:::::; k- 2, 
1:::::; i:::::; k- 2. 

Note that the defining relations for ~i, i = 1, ... , k - 1 in Definition 2.2 are 
those of the symmetric group Sk. Hence we see that there is a copy of CSk in Ak. 

PROPOSITION 2.3. There is a representation \11: Ak --t Endp(n)(V®k) of Ak 
given by "IJI(~i) = Si and W(tJi) = ei. 

A k-diagram is a graph with two rows of k vertices each, one above the other, 
and k edges such that each vertex is incident to precisely one edge. The k-diagrams 
form a basis for the Brauer algebra Bk(7J). Because the relations in Ak are very 
similar to the relations for the Brauer algebra Bk(O) (with 7J = 0), we guess that 
there should be a close relation between these two algebras. In particular, we would 
hope to represent the basis elements of Ak using k-diagrams, as in the case of the 
Brauer algebra. 

Let :F denote the free associative algebra with 1 on a set Xt, x2, ... , Xm over a 
field k. Give the set X of all monomials in Xt, ... , Xm the lexicographic ordering:::::;. 
LetS be a set of pairs of the form (j = (wu.Ju), where Wu EX and fu E :F being 
a linear combination of monomials < Wu· For any (j E Sand A, B EX, let rAuB 
denote the linear map sending AwuB to AfuB and fixing all other monomials. Let 
R denote the semigroup generated by the {r MBI(j E S, A, B E X}. Call x E X 
reduced if r(x) = x for all r E R. Let us call a 5-tuple ((j, r; A, B, C) E 8 2 x X 3 for 
which Wu = AB, Wr = BC, an ambiguity of S. An ambiguity is resolvable if there 
exists r, r' E R such that r(fuC) = r'(Afr ). 

LEMMA 2.4. {The Diamond Lemma}[4] 
All ambiguities of S are resolvable if and only if the reduced elements under R form 
a k-basis for the quotient algebra :F/(wu- fu: (j E S). 

Generally it is not true that two algebras, which have the same generating 
elements and similar generating relations, have similar structures. However, in our 
case, we use Lemma 2.4 to prove 

THEOREM 2.5. 

dime Ak = (2k- 1)!! = (2k- 1)(2k- 3) · · · 3 · 1 =dime Bk(O). 

Moreover the k-diagrams form a basis for Bk(O) and for Ak, and the product of 
two k-diagrams in Ak can be found using their product in Bk(O). More precisely, 
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let d1 , d2 be any two k-diagrams. Then the product d1 * d2 in Ak can be written 
as 

where d1 o d2 is the multiplication in Bk(O). We have not succeeded yet in deter-
mining a closed form formula for the sign. But there is a way to figure out the sign 
for any two of k-diagrams given to us. We present an example below. 

Assume 'fJ E C. The product of two k-diagrams d1 and d2 in the Brauer algebra 
Bk(TJ) is obtained by placing d 1 above d2 and identifying the vertices in the bottom 
row of d1 with the corresponding vertices in the top row of d2 . 

EXAMPLE 2.6. If 

then 

The power on 'fJ records the number of closed cycles in the middle, which in 
this example is 2. The algebra Bk(O) has the parameter 'fJ specialized to 0. Thus 
in Bk(O), d1 o d2 = 0 in this example. 

Now let's consider A3. The dimension of A3 is 3!! = 5 · 3 ·1 = 15. We assign to 
each basis element of A3 with a 3-diagram: 

Applying the procedure described in [4], we obtain a reduction system S on the 
generators 1,~1,~2, 1)1, 1J2 so that all ambiguities of S are resolvable. (For more 
detailed information, see [4].) In this case the reduction system S consists of the 
following relations: 

~~ = ~~ = 1, IJ~ = IJ~ = 0, IJi~i = -IJi, ~iiJi = IJi, fori = 1, 2 
~2~1~1 = ~1~2~1, IJ11J21J1 = -1)1, IJ21J11J2 = -1)2, ~11J21J1 = -~21J1 

IJ21J1~2 = -1)2~1, 

~2~11J2 = IJ11J2, 

~1~21J1 = -1)21)1, IJ2~1~2 = -IJ21J1, IJ1~21J1 = -1)1 

~21J11J2 = ~11)2, IJ2~11J2 = IJ2, IJ1~2~1 = ~1~2 
IJ11J2~1 = IJ1~2, ~21)1~2 = ~11)2~1· 

Licensed to Univ of Michigan.  Prepared on Fri Jul  5 15:22:04 EDT 2013 for download from IP 68.40.185.65/141.213.236.110.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



206 DONGHOMOON 

Using this reduction system, we easily get the products of 3-diagrams in A3. For 
example, 

)K * ;;< =(hiJ2~1)(1J1~2) = ~11J2(~11J1)~2 
=~1 (IJ21J1~2) = -~11J2~1 

=-)K. 
Note that the even part p(n)0 of p(n) is isomorphic to the general Lie algebra 

gl(n), and as a p(n)0-module Vis isomorphic to the direct sum TffiU, where T =en 
is the n-dimensional natural representation of gl(n) and U = T* is the dual ofT. 
The gl(n)-invariants of the mixed tensor space T®k ® (T*)®l are determined in 
[1]. Using their results, we can prove a result which could count as an analogue of 
Schur- Weyl duality for the Lie superalgebra p(n). 

THEOREM 2.7. 
(a) w: Ak ~ Endp(n)(V®k) is a faithful representation of Ak if n ~ k. 
(b) w ( Ak) is the full centralizer of p ( n), if n ~ k. In other words, 

Endp(n)(V0 k) = w(Ak)· 

If the centralizer algebra on V 0 k is semisimple, then V 0 k decomposes into a 
sum of indecomposable submodules using minimal idempotents of the centralizer 
algebra. Therefore it is interesting to know whether Ak is semisimple. 

THEOREM 2.8. Ak is not semisimple for all k ~ 2. 

3. Maximal vectors of p(n) in V 0 k 

In this section we construct maximal vectors of p(n) in the tensor space V 0 k 

using the centralizer algebra Ak. Note that we regard CSk as a subalgebra of Ak 
Define the contraction mapping Cp,q on the (p, q)-tensor slot by 

-1 
Cp,q :=a 1)1a. 

where a E CSk is such that a(1) = p, and a(2) = q. It is not difficult to show that 
cp,q is well-defined. 

LEMMA 3.1. Cp,q is independent of the choice of a. 

If p = {P1, ... , P3} and q = { Q1, ... , Qj} are two disjoint ordered subsets of 
{1, ... ~k} such that Pi< Qi, for all i = 1, .. . j, then we set 

Cl!_,'l_ : = Cp1 ,q1 • • • Cpi ,qi , i = 1, ... , l ~ J 
c0,0 : = identity. 

Let (E, ~) = { (P1, ql), ... , (Pj, Qj)}, and denote by p(j) the set of all such (E, ~). 
L~J 

Also we set P = U p(j). 
j=O 

Let 'H be the set of all diagonal matrices in gl(n, n). Note the Cartan subalgebra 
~ of p(n) is contained in 'H. For i = 1, 2, ... , 2n, define a linear functional ei : 
'H ~ C, by ei(E33 ) = Dij· Let >. be a partition of l ::::; k. Then we denote by 
£(>.) the length of>., which is the number of nonzero parts of>.. For each partition 
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>. = (>.t. >.2, >.3, ... , A2n) with length £(>.) :::; 2n, we associate a weight of p(n) in 
the following way; 

A= A1E'1 + · · · + A2nE'2n· 
A standard tableau T of shape >. is obtained by filling in the frame of >. with 

elements of 1, ... , k so that the entries increase across the rows from left to right 
and down the columns. We set i(T) := £(>.). We associate two subgroups in the 
symmetric group sk to T. The row group RT consists of all permutations which 
permute the entries within each row. Similarly, the column group CT is the group 
consisting of all permutations permuting the entries within the columns. Define ST, 
an element of the group algebra C(Sk), by 

ST '= c~T ¢) c~T sgn(¢)¢) • 

Then sT has the property that there is some h(>.) E z+ that only depends on 
the shape ofT such that sT2 = h(>.)sT (See [19]). Now the Young symmetrizer 
determined by T is the idempotent defined by 

1 
YT := h(>.) ST. 

EXAMPLE 3.2. Assume n = 8, k = 14, and >. I- 10. Then 

>.= 

AI =4 
A2 = 2 
A3 = 2 . 
A4 = 1 
As= 1 

LetT= 
1\ 

Then >. = 4el + 2e2 + 2£'3 + E'4 + E'5, and >.6 = · · · = >.16 = 0. 

< 

1 6 111141 
2 8 
4 9 

J_ 
1Q_ 

Let >. = (>.t. ... , A2n) I- l, a partition of l, where l = k- 2j for j = 0, ... , l ~ J. 
Let ST>. ( (E U q_)c) denote the set of standard tableaux of shape >. with entries in 
(E U q_) c, where (E, q_) E p(j). Fix T E ST >. ( (E U q_) c) . Define the associated simple 
tensor WT,E.>!l. = w1 ® · · · ® wk by 

{
el ifiEE, 

Wi = ei = en+l if i E q_, 
ej if i E (E U q_)c and i is in jth row of T. 

Now define a tensor () by () := YTCp,qWT,p,q , where YT is the Young symmetrizer 
determined by T. Then we can show() is a maximal vector of weight>.= >.1e1 + 
· · · + A2nE'2n, which means 

h · () = >.(h)O, 'Vh E (). 

THEOREM 3.3. If n 2: k, then 

{ YTC!!.•!l.WT,E.>!l. I (E, q_) E P, T E ST ( (E U q_)c), i(T) :::; n} 
is a linearly independent set of maximal vectors. 
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4. The decomposition of V®k 

In this section we obtain the decomposition of the p(n)-module V®k fork= 2 
and 3 into indecomposable modules using the centralizer algebra Ak of p(n). For 
larger values of k, we also hope that this kind of decomposition can be obtained 
using Ak. We use the decompositions of V®2 and V®3 to conclude that V®k is not 
completely reducible for any k ~ 2. 

4.1. Decomposition of V®2 • 

We note that the centralizer algebra A2 is not semisimple. In fact the radical 
Rad(A2) of A2 is equal to (th)· In this case it follows from Theorem 3.3 that 

fh = y~ e1 ® e1 = e1 ® e1 
1 

()2 = y~e1 ® e2 = 2(e1 ® e2- e2 ® ei) 
2n 

()3 = c1,2e1 ® e1 * = L( -1)p(e;)ei ® e/ 
i=1 

are linearly independent maximal vectors of p(n) in V02 . By direct computation 
we can show there are no more maximal vectors. 

As a module for gl(n,n) (and hence for p(n)), 

V®2 = y~ (V®2) EB YBJ (V®2). 

Note that ()1 E y~(V 02 ) and ()2, ()3 E y~(V 02 ). These modules are irreducible for 
gl(n, n), but not for p(n). In fact we have the following: 

4.1.1. y~ (Vi812) is an indecomposable p(n)-module which is not irreducible. 

()1 is the unique maximal vector (up to scalar multiples) in the submodule 
y~ (V02) and U(L)()1 is the unique p(n)-submodule. It has codimension 1. Here 
U(L) is the universal enveloping algebra of the Lie superalgebra L = p(n). So we 
have that U(L)()1 S::! V(2e1) is the irreducible £-module of highest weight 2e1· We 
have the following diagram of submodules. 

y~\~®2) 

U(L)()1 = Y[!J]J (V02) n kerc 

l2n2 - 1 
(0) 

Therefore we obtain the dimension formula for V(2e1)· 

dim V(2e1) = dimy~ (V02 ) -1 
= 2n2 -1. 
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THE CENTRALIZER ALGEBRAS OF p (n) 209 

4.1.2. y~ (V1812 ) is an indecomposable p(n)-module which is not irreducible. 

In this case, U(L )82 is the same as y~ (V1812 ). And U(L )83 is a one-dimensional 

trivial submodule. Soy~ (V1812 ) jco3 8::! V(c1 +c2), the irreducible p(n)-module of 
highest weight c1 + c2. 

y~ (V1812 ) = U(L)02 

j2n2 -1 
U(L)03 = imc 

11 
(0) 

From this we can determine the dimension of the irreducible highest weight module 
V(c1 + c2), 

dim V(c1 + c2) = dimy~ (V1812)- 1 

= 2n2 -1. 

4.2. Decomposition of V®3• Note that A3 is not semisimple. The radical 
Rad(A3) of A3 is the C-span of 

~-~+;;<. 
~+~+~. 

Note the dimension of Rad(A3) is 5, so the dimension of A3jRad(A3) is 10. 
In this case we can show that all the linearly independent maximal vectors in 

V®3 can be listed as 

81 = C1,2e1 ® e1 * ® e1 
82 = c1,3e1 ® e1 ® e1 * 
83 = c2,3e1 ® e1 ® e1 * 
84 = YI:!J]J]] e1 ® e1 ® e1 
85 = y~ e1 ® e1 ® e2 

06 = y~ e1 ® e2 ® e1 

81 = y~ e1 ® e2 ® e3. 

As a p(n)-module, V1813 decomposes as 
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210 DONGHO MOON 

Also we know how these seven maximal vectors spread over V1813 : 

84 E Y[!]]J]] (V1813 ) 

(h, 81 + 202 + 83 E y~ (V1813 ) 

83, 201 + 82 - 83 E Yffi21 (V1813 ) 

-81 + 82 - 83 E Y~ (V1813). 

4.2.1. Y[!]]J]] (V1813 ) is an indecomposable p(n)-module which is not irreducible. 

84 is the only maximal vector in this submodule and U(L)04 is the only sub-
module of Y[!]]J]] (V1813). Therefore U(L)04 is the unique irreducible p(n)-module 
with highest weight 3c1· 

Moreover 
y~ (V1813 ) ju(L)04 ~ V(c1) ~ cn+n. 

So we have the dimension of the irreducible highest weight module V(3c1). 

dim V(3c1) = dimy[!]]J]) (V1813)- 2n 

_ 8n(2n2 + 1) _ 2 - 3 n. 

4.2.2. y~ (V®3 ) is a completely reducible p(n)-module. 

We have the irreducible decomposition of y~ (V1813 ) in this case, 

y~ (V1813 ) = U(L)05 EB U(L)(01 + 202 + 83), 

U(L)05 ~ V(2c1 + c2) and U(L)(01 + 202 + 83) ~ V(c1) ~ V 

So we obtain the dimension of the irreducible highest weight module V(2c1 + c2), 

dim V(2c1 + c2) = dimU(L )85 = dim y~ (V1813 ) - 2n 

= 2n(2n + 1)(2n- 1) _ 2n. 
3 

4.2.3. Yffi2! (V1813). 

Yffi2! (V1813 ) is isomorphic toy~ (V1813 ) as p(n)-modules. So Yffi2! (V1813 ) is com-
pletely reducible. 
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4.2.4. y~ (V®3 ) is an indecomposable p(n)-module which is not irreducible. 

There are two maximal vectors in this submodule, fh and -(h + 02- Oa. The 
vector fh will generate the whole module y~ (V1813), and -01 + 02 - Oa is a maximal 

vector of weight £1. So U(L)(-01 + 02- Oa) is an irreducible module which is 
isomorphic to V = cn+n. There are no other submodules in y~ (V1813 ). Therefore, 

we obtain the following diagram. 

y~ (V1813 ) = U(L)01 

I 
U(L )( -01 + 02 - Oa) 

j2n 
(0) 

U(L)( -01 + 02- Oa) ~ V(t:1) ~ V, 

y~ (V1813 ) / C( -01 + 02 - Oa) ~ V(c1 + £2 + ca). 

And we may compute the dimension of the irreducible highest weight module V ( £1 + 
£2 + ca), 

dim V(£1 + £2 + ca) = dimy~ (V1813)- 2n 

_ 8n(2n2 + 1) _ 2n 
- 3 . 

For any contraction map c E Endp(n)(V181k), c maps V 181k onto V®k- 2 • So for 
each k, V 181 k has a submodule M, which is isomorphic to V 1812 if k is even, or to 
V1813 if k is odd. Since V1812 and Vi813 are not completely reducible from our previous 
arguments, we have the following corollary. 

COROLLARY 4.1. V®k is not completely reducible as a p(n)-module for any 
k ~ 2. 
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Drinfeld-Anderson Motives and Multicomponent KP 
Hierarchy 

Igor Yu. Potemine 

ABSTRACT. We define Drinfeld-Anderson motives and sheaves generalizing 
Drinfeld modules, Anderson t-motives and Laumon-Rapoport-Stuhler 'D-ellip-
tic sheaves. The first main result is a proof of an anti-equivalence of the 
category of Drinfeld-Anderson motives of T-rank n over L and a certain sub-
category of the category of commutative subrings of the matrix ring Mn (L[T]) 
where T is the Frobenius morphism. The second main result is a classification 
of Drinfeld-Anderson motives over finite fields. Analogies with (generalizations 
of) the Burchnall-Chaundy-Krichever theorem as well as the multicomponent 
KP hierarchy are given. 

Introduction 

It turns out that commutative subrings of certain non-commutative rings of 
operators are very important for the arithmetic algebraic geometry, the class field 
theory as well as integrable systems. Such subrings correspond to algebro-geometric 
data consisting of torsion-free sheaves on marked algebraic curves with some addi-
tional structures (including a sort of local or formal trivialization at marked points). 
We consider the case of ordinary differential operators in characteristic zero and 
the case of twisted polynomials of a Frobenius morphism in positive characteristic. 

The structure of this paper is the following. The first four sections give a 
general survey of Burchnall-Chaundy, Krichever-Mulase and Drinfeld results about 
commutative subrings of non-commutative rings of operators. The next three sec-
tions is the original core of this paper. In section 5 Drinfeld-Anderson motives are 
defined and the first main theorem is proved (theorem 5.3). After that the phe-
nomenon of existence of non-pure commutative subrings is described. We define a 
notion of pure Drinfeld-Anderson motives and extend it to a geometric definition of 
pure Drinfeld-Anderson sheaves over an arbitrary lFq-scheme S. Further, a classifi-
cation of Drinfeld-Anderson motives over finite fields is given (theorem 7.1). It is 
analogous to the classification of "usual" motives over finite fields in many ways ( cf. 
[Mi]) although our motives are with "values in positive characteristic". In section 
8 we discuss analogies between the category of Drinfeld-Anderson motives and the 
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214 I. YU. POTEMINE 

multicomponent KP hierarchy. Finally, we mention further generalizations in the 
differential case. 

David Goss underlined to the author the importance of an analytic uniformiza-
tion of Drinfeld-Anderson motives. We do not discuss this topic in the paper only 
because it could lead us too far from our main purpose. The construction of such 
an uniformization does not seem to present any additional difficulties with respect 
to the case oft-motives ([Anl), §2). 

The notion of Drinfeld-Anderson motive seems to be new. Although this pa-
per is self-contained, an interested reader can extract more background from the 
author's Ph.D. thesis ([Po), ch. 1). 

Acknowledgments. I am very thankful to the organizers of the conference "Recent Progress 
in Algebra" for presenting me an opportunity to give a talk on the topic of this article. It is a 
pleasure for me to thank my colleagues and all members of KIAS for their help and for creating 
excellent atmosphere in the institute. I would like to thank also David Goss for his stimulating 
questions concerning analogies between (the category of) Drinfeld modules and KP hierarchy. 

1. Krichever modules of rank 1 

Let L be a field of characteristic zero and denote L[[t)) [d/ dt] the ring of ordinary 
differential operators. The systematic study of commutative subrings of this ring 
was done for the first time in twenties in the series of papers by Burchnall and 
Chaundy [BCh) .. Although some results goes back at least to Wallenberg and 
Schur (see the introduction to the article [Mull). Half of century later Krichever 
[Kr) rediscovered the construction of Burchnall and Chaundy and related it to 
the integration of nonlinear partial differential equations of Korteweg-de Vries and 
Kadomtsev-Petviashvili type. 

Let X be a projective curve over a field L and fix a smooth closed point P on 
it. 

THEOREM 1.1. (Burchnall-Chaundy-Krichever, [Mum)) The category of com-
mutative subrings A of R = L[[t))[d/dt) of rank 1 containing L (called Krichever 
modules of rank 1) up to the conjugation by invertible elements of L[[t)) is anti-
equivalent to the category of quadruples (X, P, :F, ry) where :F is a torsion-free sheaf 
on X of rank 1 such that 

(1.1) 

and 'r/ : Tx,P =+ L. 

The consideration of torsion-free sheaves as well as the present version of the 
Burchnall-Chaundy-Krichever result is due to Mumford [Mum). 

2. Drinfeld modules of rank 1 

Let L be a field over IFq, Xo a projective curve and X = Xo ®lFq L. We fix a 
smooth closed point P on X. Denote T : c ~ cq the Frobenius morphism of L. We 
consider the ring L[r) of twisted polynomials with the commutation rule rc = cqT 
for any c E L. The simplest Drinfeld module1 of rank 1 : 

<p: T ~ T + T (2.1) 

1see theorem 2.1 below and (4.2) for the definition 
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for X = JP>i = Proj L[T] called the Garlitz module was studied by L. Carlitz in 
thirties (Carl). Drinfeld (Drl) discovered more general objects which he called 
elliptic modules while trying to prove the Langlands conjecture (for global function 
fields). 

THEOREM 2.1. (Drinfeld ; (Dr2), (Mum)) The category of commutative sub-
rings A of R = L[r] of rank 1 containing IF q (called Drinfeld modules of rank 1) up 
to the conjugation by elements of L * is anti-equivalent to the category of quadruples 
(X, P, F, TJ) where F is a torsion-free sheaf on X of rank 1 such that x(F) = 0 and 

TJ: (Idx0 X r)* F -::::::::.F(P- Q) 
for a smooth closed point Q =I= P. 

(2.2) 

As Drinfeld remarked ((Dr2), (Mum, §3), (An3, 3.3)) the condition x(F) = 0 
implies h0 (F) = h1 (F) = 0. 

3. Commentaries 

The rank of a commutative subring A C R is defined as the g.c.d. of degrees 
of its elements. If X is smooth curve then any torsion-free sheaf F of rank 1 is a 
line bundle and by the Riemann-Roch formula we have : 

0 = h0(F)- h1(F) = x(F) = 1- g + deg(F) ===? deg(F) = g- 1. (3.1) 
Any element C E Jac(X) = Pic0 (X) acts by the tensor product on Pic9 - 1 (X) and 
on the moduli space M 1 of Drinfeld (Krichever) modules of rank 1. In this way we 
obtain what is called a Jacobian flow. For example (in the differential case), if X 
is a hyperelliptic curve of genus 2 and P is a Weierstrass point then the Jacobian 
flow is given (up to a constant) by the Korteweg-de Vries equation : 

au- a3u 6 au as - at3 + u at (3.2) 

We would like to say few words about the proofs of the theorems quoted above. 
It is remarkable that the proofs essentially coincide. On the one hand, if A C R 
is a commutative subring as above then formally X - P = Spec A and the degree 
map D t-+ deg D defines a valuation corresponding toP. Moreover, for any DE A 
the "eigenspaces" of D glue into a torsion-free sheaf of rank 1. 

On the other hand, a quadruple (X, P, F, TJ) defines an isospectral deformation 
ofF (see (Mum, §2, 3) for more details). This deformation is trivial outside (of a 
small neighborhood) of P and defines an injection A= H0(X- P, Ox)<--+ R. 

4. Krichever modules of arbitrary rank and elliptic sheaves 

There are several problems arising when one tries to give an analogous descrip-
tion in the case of commutative subrings of arbitrary rank. See (Mum, §2) and 
(PW) fot discussions of these problems. However, in the case of twisted polynomi-
als, Drinfeld introduced a notion of elliptic sheaf and generalized theorem 2.1 above. 
The definition of an elliptic sheaf will be given later in more general context. 

THEOREM 4.1. (Drinfeld; (Dr2), (Dr3)) The category of commutative subrings 
A of R = L[r] of rank r containing IFq (called Drinfeld modules ofrankr) up to the 
conjugation by elements of L * is anti-equivalent to the category of triples (X, P, F) 
where F is an elliptic sheaf. 
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Any Drinfeld module is given, in fact, by an injection 

<p : A= r(Xo -Po, Ox0 ) t.......t L[r] 
In particular, if Xo = JP>i then it is given by the image ofT : 

q 

r 

<p: T ~--+ Lairi. 
i=O 

(4.1) 

(4.2) 

for some elements ai E L. See, for instance, the definition of the Carlitz module in 
section 2. 

It is certainly possible to define also Krichever sheaves and to prove an anal-
ogous theorem in the differential case (cf. [Lau2]). There exists also an another 
approach due to Mulase. 

THEOREM 4.2. (Mulase, [Mull) There is a natural bijective correspondence 
between the set of commutative subrings A of R = L[[t]][djdt] of rank r containing 
L (called Krichever modules of rank r) considered up to the conjugation by invertible 
elements of L[[t]] and the set of quintuples (X, P, :F, TJ, 1r) where :F is a semi-stable 
torsion-free sheaf on X of rank r and of degree d = r(g- 1) having no non-trivial 
holomorphic global sections, "' is a local trivialization of :F near P and 1r is a local 
r-sheet covering ramified at P. 

It is remarkable in the both cases that the commutativity of a subring A force 
it to be elliptic, that is, consisting of operators with invertible leading coefficients. 

5. Drinfeld-Anderson motives 

Let L be a perfect field over IFq. We would like to go further and describe 
commutative subrings of the matrix ring Mn(L[r]). For this purpose we introduce 
a notion of Drinfeld-Anderson motives generalizing elliptic sheaves [Dr3], Anderson 
t-motives [Ant] and Laumon-Rapoport-Stuhler V-elliptic sheaves [LRS] over L. 

Let Xo/IFq be a projective curve and Po a smooth closed point on X 0 • We 
denote 

(5.1) 
the ring of functions on Xo regular outside of Po. We suppose that Lis equipped 
with a non-zero morphism o:L :A---+ L. 

DEFINITION 5.1. A Drinfeld-Anderson A-motif M of rank rand r-rank n is a 
left (A ®IFq L[r])-module verifying the following conditions : 

1. M is a free L[r]-module of rank n 
2. M is a torsion-free (A ®IFq L)-module of rank r 
3. (a- o:da)) is nilpotent on MjrM for any a EA. 

A morphism of Drinfeld-Anderson motives is an (A ®IFq L[r])-linear map. 

REMARK 5.2. On the one hand, if n = 1, our definition of M is equivalent to 
the Drinfeld definition of an elliptic sheaf of rank r over L ([Dr3], [Cara, sect. 2]). 
On the other hand, if X 0 = JP>i and, consequently, A = IF q [t] then M is nothing else 

q 

but an Anderson t-motive [Ant]. Furthermore, if M is a V-elliptic sheaf of rank r 
over L (cf. [LRS]) then the underlying (A®IFq L[r])-module is a Drinfeld-Anderson 
motive of rank r 2 and r-rank r. 
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We denote Mn(L[r]) the ring of square matrices of order n over L[r] with the 
commutation rule rB = B(q)T where B(q) is the "naive" qth power of B E Mn(L) 
(with respect to each component). Since L[r] is both left and right euclidian any 
matrix D E Mn(L[r]) is equivalent to a diagonal matrix. We say that D is non-
degenerate if it is equivalent to a diagonal matrix without zeros on the principal 
diagonal. Any D defines an endomorphism uv of the additive group scheme G~ L· 
If, in addition, Dis non-degenerate then the kernel Hv of this endomorphism i~ a 
finite group scheme over IFq. We define the degree of D by 

deg(D) = logq (U(Ker(DI£))) +ht(Hv) (5.2) 
where ht(Hv) is the height of Hv (cf. [Laul, (2.1)] in the case n = 1). For any 
element D E Mn(L[r]) we have a decomposition : 

k 

D= LDiTi. (5.3) 
i=O 

where Di belong to Mn(L). We would like to consider non-degenerate commutative 
subrings A C Mn(L[r]) verifying for any DE A the following condition : 

Do = Do. + nilpotent matrix 
where Do. is proportional to the identity matrix Idn. If Do. is not equal to zero 
then ht(Hv)=O in the formula (5.2). We also assume that A satisfies the following 
condition of finite generation2 : 

Hom(G~,L,Ga,L) = L Vo a (**) 
aEA 

for a certain finite-dimensional £-subspace V C Hom(G~,L• Ga,d (cf. [Anl], 
(1.1.3)). Finally, we suppose that A contains IFq via the diagonal injection a ~--+ 
Diag(a, ... , a) for any a E IFq. 

THEOREM 5.3. The category of commutative subrings of Mn(L[r]) containing 
IF q and verifying the conditions ( *) and ( **) up to the conjugation by elements 
of GL(n, L) is anti-equivalent to the category of Drinfeld-Anderson motives ofT-
rank n. 

PROOF. First of all, we would like to prove that any commutative non-degene-
rate subring A C Mn(L[r]) verifying the conditions above corresponds to a certain 
pair (Xo, P0 ) by formula (5.1). Consider the graded ring 

A= E9 At (5.4) 
e;:::o 

where 
At= {DE A I deg(D):::; f} (5.5) 

and put Xo = Proj A. Let K be the quotient field of A. Then the function 
D ~--+ deg(D) defines a valuation of K, that is, a point Po on X 0 . It is clear now 
that our commutative subring is given by an injection 

r.p: f(Xo -Po, Ox0 ) t.......t Mn(L[r]) 
and the map aL is defined by a~--+ Do. where D = r.p(a). 

(5.6) 

2the author is very grateful to a referee for pointing out that in the higher-dimensional case 
such a condition can not be avoided even if we suppose that the rank of A (as g.c.d. of degrees of 
its elements) is finite 
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Further, the group M = Hom(IG~ L• IGa d has a natural structure, denoted 
M(<p), of a left (A ®IF. L(Tj)-module gi~en by the following rules : 

(xm)(e) = x(m(e)) 
(Tm)(e) = m(e)q 
(am)(e) = m(D(e)) where D = <p(a) 

(5.7) 
(5.8) 
{5.9) 

for any a E A, x E L, e E IG~ L and mE M. The condition (**) above implies that 
M is finitely generated as (.A ®IF• £)-module. 

A left (A ®IF. L(Tj)-module, finitely generated as an (A ®IF• L )-module and as a 
left L(T]-module, is torsion-free over A®IF. L if and only if it is torsion-free over L[T] 
{cf. (Anl], Lemma 1.4.5). As a consequence we obtain that M(<p) satisfies proper-
ties {i) and (ii) in the definition of Drinfeld-Anderson motives. Indeed, M(<p) is a 
free L(T]-module of finite type by construction and all the more torsion-free. Thus, 
by the lemma just mentioned, M(<p) is also torsion-free over A ®IF• L. Moreover, 
the property(*) of a ring A implies the condition (iii) in definition 5.1. 

Reciprocally, if M is a Drinfeld-Anderson motive ofT-rank n then its structure 
of (A ®IF• £)-module defines a morphism : 

<p(M): A---+ EndL[rJM ~ End{IG~,L)· {5.10) 
The image of this morphism is a commutative subring of Mn(L[T]) satisfying obvi-
ously all required properties. 

Finally, it is easy to see that the functors 

A~ <p ~ M(<p) and M ~ Im{<p(M)) (5.11) 
define the anti-equivalences of the considered categories {cf. (Anl], th. 1) D 

As corollaries we obtain theorems 2.1 and 4.1 in the case where Lis a perfect 
field. The key point in the proof is to show that our notion of Drinfeld-Anderson 
motive in those particular cases coincides with the notion of elliptic sheaf over L. In 
general, elliptic sheaves and V-elliptic sheaves may be defined over any lF q-scheme 
S. We shall return to this question in the next section while defining a notion of 
pure Drinfeld-Anderson sheaf. 

A morphism <p in the theorem above is called a Drinfeld-Anderson module 
of rank r and T-rank n by analogy with Drinfeld modules and Anderson abelian 
t-modules {(Anl], §1). 

EXAMPLE 5.4. If <pis a Drinfeld module then M(<p) is called a Drinfeld motive. 
It can be described by generators and relations in the following way : 

M(<p) =(A ®IF• L[T])j(c1 - <p{c1), ... , (ck- <p(ck)) 
where { c1 , ... , ck} is a system of generators of A over lF q. 

6. Pure Drinfeld-Anderson motives and sheaves 

(5.12) 

There is a new phenomenon of existence of "non-pure" commutative subrings3 

of Mn(L[T]) when n > 1. In this section we define what is a pure Drinfeld-Anderson 
motive following Anderson's ideas. It turns out that the definition may be extended 

3this is, in particular, related to the existence of non-multisoliton solutions of the multicom-
ponent KP hierarchy (see [KvdL, (0.4)]) 
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to a more general situation where a perfect field L is replaced by an arbitrary IF q-
scheme S. In particular, elliptic sheaves of rank rand 'D-elliptic sheaves of rank r 2 

are pure of weight 1/ r. 

6.1. Pure DA motives. We use henceforward the traditional notation oo for 
a fixed closed point Po on Xo and V00 for the corresponding additive valuation of 
the function field K of Xo. This notation is a little misleading since any closed 
point on Xo corresponds to a finite place of K. 

Let K 00 be the completion of K at oo, 0 00 the valuation ring of K 00 , tv00 

an uniformizer and K-00 the residue field. Consider a Drinfeld-Anderson A-motif 
M and denote K 00 (L) = K 00 ®r L. If the degree d00 of oo is equal to 1 we have 

q 

K 00 (L) = L((w00 )). Moreover, we shall use the following notations : 

-V(M) = M ® (K ®r. L) et V(M)oo = M ® K00 (L). (6.1.1) 

We put a = Td""' and we shall equip V(M)oo with an unique structure of left 
(A ®r L[a])-module extending its structure of (A ®r £)-module by the formula 

q q 

(6.1.2) 

for any mE M. 

DEFINITION 6.1.1. A Drinfeld-Anderson A-motif M of over Lis called pure of 
weight w = ujv if there exists an (000®r £)-lattice Moo C V(M)oo such that 

q 

(6.1.3) 

for certain relatively prime natural integers u et v. 

If M is a pure Drinfeld-Anderson motive then 

w = ujv = njr (6.1.4) 

(cf. [Anl], (1.9.1)). 

PROPOSITION 6.1.2. The category of pure Drinfeld-Anderson A-motives over 
L is equivalent to the category of (A ®r L[T])-modules equipped with an exhaustive 

q 
filtration : 

M0 c M1 c .. · c Mi c .. · c M 

verifying the following condition : 

Proof. See ([Anl], prop. 1.9.2) 

(6.1.5) 

(6.1.6) 
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6.2. Pure DA sheaves. In this subsection we intend to show that the con-
ception of Drinfeld-Anderson motive is, in fact, geometric. All schemes considered 
here are lF q-schemes. We suppose in addition that n < r and that u, v are relatively 
prime integers. 

DEFINITION 6.2.1. A pure Drinfeld-Anderson sheaf of pole oo, of rang r, of 
r-rang n and of weight w = njr = ujv over a scheme S, consists of the following 
commutative diagram : 

(6.2.1) 
Tj Tj Tj Tj 
'--+ T Ci-1 '--+ T Ci '--+ T Ci+ 1 '--+ 

where for any i E Z, £i is a locally free Oxxs-module of rang rand 
7 Ci = (idx x Frobs;JFq)*£i (6.2.2) 

is the pull-back of £i with respect to the Frobenius morphism of S, and where j and 
cp are Oxxs-linear injections. In addition, these data should satisfy the following 
conditions : 

[Pole]: £;fj(£i_1) is the direct image (r =)*A of a locally free 0 8 -module of 
rang n by the section oo : 

roo:S-XxS, Sf--+(oo,s). (6.2.3) 
[Zero]: £;/cp('~" £i-1) is the direct image (r a)*l3i of a locally free 0 8 -module of 

rang n by a section r"' : S - X x S given by the graph of a morphism 
a:: S- X- {oo}. 

[Purity]: ei+v·d"" = £i ( { uoo} x S) where the composition of v consecutive mor-
phisms is a natural injection. 

[Normalization]: the Euler characteristic x(£olxxs) E [0, n[ for any geometric 
point s of S. 

By the condition [Pole], an injection j identifies £i+1 and £i over 

(X X S) - r 00 ~ Spec A X s (6.2.4) 
and cp defines a semi-linear morphism. It implies that the union £ U£i is a 
locally free Ospec(A)xs-module equipped with a semi-linear Frobenius morphism 
cp: £- £. Such an object is called a cp-sheaf(cf. [TW], sect. 1). In the case where 
S =Lis a field, this cp-sheaf is clearly an (A ®IFq L[r])-module. Moreover, diagram 
(6.2.1) defines filtration (6.1.5), and the purity condition implies (6.1.6). If S = L 
then cp-sheaves are called cp-modules and was studied by Drinfeld [Dr4] (see also 
the proof of theorem 7.1 (iii)). 

7. Classification over finite fields 

In this section we give a partial motivation for the word "motive" applied to 
the objects defined above. Indeed, the category of Drinfeld-Anderson motives over 
a finite field lF (or its algebraic closure iF) is similar to the category of "usual" 
motives over lF (cf. [Mi]). There is a fundamental difference nonetheless between 
these two categories since our motives are with "values in positive characteristic". 

It means that their £-functions are with values in the functional Tate field Coo =K 00 
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corresponding to a point oo on a curve Xo with the function field K (see [Gol] or 
[TW] for detailed analysis of these £-functions). 

Let IF be a finite field over IFq equipped with a morphism aL :A-+ L. Denote 
IJIF the place of K (and the prime ideal of A) corresponding to the kernel of a L. 

This place will be called "divisorial" characteristic of L. Furthermore, consider 
a Drinfeld-Anderson A-motive M of r-rank n and a corresponding commutative 
subring given by an injection 

cp(M) : A<-+ Mn{IF[r]). {7.1) 
Such a motive has the natural Frobenius endomorphism F = rliF:IF•J. Since 

the image of cp(M) consists of non-degenerate matrices it extends to an injection 
K <-+ Mn{IF{r)) where K = Quot{A) and IF{r) is the quotient skew field of IF[r] 
(well-defined because IF is perfect). 

Two Drinfeld-Anderson motives M1 and M2 of r-rank n are isogenous if there 
exists a surjective endomorphism u of G~,L with a finite kernel such that 

{7.2) 
for any a E A. As we are going to prove now, the category VA(IF) of Drinfeld-
Anderson motives over IF (considered up to isogenies) is semi-simple. It makes 
sense therefore to speak about simple Drinfeld-Anderson motives. 

THEOREM 7.1. {i) The category of Drinfeld-Anderson motives (up to isogeny) 
over IF is abelian, tensor and semi-simple. 
{ii) ("Riemann hypothesis") If M is a pure Drinfeld-Anderson A-motive of weight 
w over IF then 

deg(w) =[IF: IFq]· w (7.3) 
for any root w of the characteristic polynomial PM(x) of M. 
(iii) If M is a pure simple Drinfeld-Anderson A-motive of rang r, of weight w and 
of "divisorial" characteristic IJIF over IF then : 

(a) K(F) is a field such that [K(F) : K] divider ; 
{b) there exist an unique place ooJoo and an unique place ~IFIPIF of K(F) ; 
(c) End{M) ®A K is a central simple algebra of dimension (r/[K(F) : K]) 2 

over K(F) with invariants : 

{ 
w · [K(F) : K] if ~ = ~IF 

inv'll = -w · [K(F) : K] if ~ = oo . 
0 otherwise 

{7.4) 

PROOF. (i) A Drinfeld-Anderson motive has a natural structure of a cp-module 
as was remarked in the end of the previous section (see also the proof of (7.4) below). 
Drinfeld proved that the category of cp-motives over IF is abelian and semi-simple 
[Dr4, prop. 2.1.1]. It implies that the analogous assertions for the category VA(IF) 
also hold. Moreover, for any two Drinfeld-Anderson motives M and M', we define 
the tensor product M ® M' as a left (A ®IF L[r])-module coinciding with M ® M' 

q 

as an (A ®IF £)-module and such that : 
q 

r(m ® m') ~f(rm) ® (rm') {7.5) 
for any mE M and m' EM' (cf. [Anl, 1.11]). 
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(ii) Since any Drinfeld-Anderson motive Mover IF is semi-simple there is a decom-
position (by the Wedderburn theorem) : 

End(M) ®A K = Mn1 (D1) EB · · · EB Mn, (Dl), (7.6) 
where Dk, 1 ~ k ~ l, are division algebras with centers Ck. The characteristic 
polynomial may be defined by the following formula : 

PM(x) = ITN~k onrk(x- F) (7.7) 
where nrk : Mnk (Dk)---+ Ck denotes the reduced norm. It is easy to see that 

PM(O) = p;·[IF:IFp] (7.8) 
where 1Fp = AjpiF (cf. [Ge, th. 5.1 (ii)] when n = 1). Since M is pure the oo-adic 
valuations of all its roots are the same ([Gol], Lemma 2.2.9). Consequently, we 
have: 

( ) _ (P (O))j _ ( n·(IF:IFp])/ __ n ·[IF: IFq] __ [IF: IFq]· w v 00 w - v 00 M r - v 00 piF r - d - · r. 00 doc 

(iii) First of all, K(F) is a field since F commutes with elements of A. The algebra 
Mn(IF(r)) is central simple over lFq(F) and splits neither at oo nor at l'IF· By the 
centralizer theorem, 

End(M) ®A K = CentMn(IF(r))(K) = CentMn(IF(r))(K(F)) (7.9) 
is a simple algebra over K(F). Since K(F) contains the center lFq(F) of Mn(IF(r)) 
we have that K(F) is exactly the center of End(M) ®A K and 

[K(F): IFq(F)] = [Mn(IF(r)): (End(M) ®A K)] (7.10) 
divides 

([Mn(IF(r)): IFq(F)J) 112 = n ·[IF: IFq]· (7.11) 
and the quotient is [(End(M)®AK): K(F)] (cf. [Laul], proof of prop. 2.2.2). On 
the other hand, since 

(7.12) 
we have 

[K(F) : IFq(F)] = -v00 (F) deg(oo) = n. [IF: IFq] · [K(F) : K]. (7.13) 
r 

(cf. [Ge], (2.7)). It implies that 

[(End(M) ®A K): K(F)] = (n ·[IF: IFq]/[K(F): 1Fq(F)])2 = (rj[K(F): K]) 2 • 

(cf. [Ge], sect. 2, [Laul], prop. 2.2.2). As a result we proved (a), (b) and a part 
of (c). 

Finally, we shall prove the formula (7.4) using general Drinfeld results on <p-
modules, <p-pairs and Dieudonne modules ([Dr4, sect. 2], [LRS, App. A,B]). A 
<p-module (V, <p) over IF is, by definition, a (K ®IF !F)-vector space V equipped with 

q 

a (K ®IF r)-semi-linear map <p: V---+ V. If M is a Drinfeld-Anderson motive over 
q 

IF then the pair 

(V(M), <p) ~\M ® (K ®IFq IF), T) 
A®FqiF 

(7.14) 

is called the <p-module associated to M. Drinfeld proved that there is a bijection 
(V,<p) ~---+ (K(V,<p),IT(V,<p)) between isomorphism classes of <p-modules and <p-pairs 
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(see loc. cit. for the definition of cp-pairs an for the proof of this statement). In the 
considered case we simply have : 

(7.15) 

In addition, the invariants of (K(V,<p), II(V,,.,)) are given by the following formula : 

(7.16) 

Let p be a place of K. A Dieudonne KP-module (Vp, rpp) is a (Kp®IF)F)-module 
Vp together with a (Kp®!Fq r)-semi-linear map rp : Vp --t Vp. We fix an embed-
ding ~~:(p) = Ajp ~ iF and for integers u, v (v ~ 1) we denote (Vp,v,u• IPp,v,u) an 
irreducible Dieudonne module such that 

(7.17) 

and 

{ roue for i = 1 e. = P v IPp,v,u( t) e. otherwise t-1 
(7.18) 

where (el, ... ,ev) is the standard basis of vp,v,u· 

Let (V,rp) be an irreducible rp-module, (K,IT) = (K(V,<p)'II(v,,.,)) the corre-
sponding cp-pair and 

(Vp, IPp) = Kp®K(V, rp), (V<.p, IP<.p) = K<.p®R(V, rp) (7.19) 

the induced Dieudonne modules. Then, always due to Drinfeld results (loc. cit.), 
there is a decomposition 

(Vp,fPp) = ffi(V<.p,fP<.p) = ffi(N'.JJ,v'P,u'P,rp'.JJ,v'P,u\llr\ll (7.20) 
'.PIP '.PIP 

where integers u'.P, v'.P, s'.P are uniquely defined by the following relations : 

{ 
u'.P,s'.P ~ 1 
gcd(u<.p, v<.p) = 1 
u'.Pjv'.P = d~g(I+Jlv<.p(fi:)/[K'.P: K'.P] 
V'.JJS'.P = d(II)/[K<.p: K'.P] 

(7.21) 

Here d(IT) denotes the g.c.d. of denominators of rational numbers deg(I+J)v<.p (IT) for 
all places 1+J of K. In view of equations (7.16) and (7.21) we obtain 

inv<.p(End(M) ®A K) = inv<.p(End(V(M),rp)) = -(u<.p/v<.p)·[K'.P: K<.p]· 

which implies (7.4) since, in particular, fi = F, K = K(F) and u00 /v00 = w D 
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8. Multicomponent KP hierarchy 

One can interpret Jacobian flows defined in section 3 as flows on (quotients of) 
the Sato's infinite-dimensional Grassmanian. Moreover, there exists a dynamical 
system on this Grassmanian (called KP hierarchy) such that any Jacobian flow as 
above is induced by a restriction of this system on a finite-dimensional subspace. 
From this point of view, Krichever (Drinfeld) modules are solutions of KP hierarchy 
whose orbits are finite-dimensional. In the differential case, the KP hierarchy is a 
collection of commuting vector fields given by an infinite set of partial differential 
equations of Korteweg-de Vries and Kadomtsev-Petviashvili type. In this section 
we define a multicomponent KP hierarchy whose solutions with finite-dimensional 
orbits are analogous to Drinfeld-Anderson motives. 

We say that a map (of vector spaces) is Fredholm if it has both finite kernel 
and cokernel. For any natural integer k the Sato's infinite-dimensional Grassmanian 
Grk is defined as : 

Grk ={ subspaces W C L((t))Eilk I projection 
'Yw: W ~ (L((t))/L[[t]]t)Eilk is Fredholm} 

(8.1) 

In other words, Grk is the set of subspaces W c L((t))Eilk comparable to L[r1]Eilk 
(cf. [Sa], [Mul, sect. 1], [AB, 6.1], [An3, 2.1]). The index of a Fredholm map 1' 
is defined by : 

ind 1' = dimLKer 1'- dim£ Coker 1'· (8.2) 
Denote Grk(O) the (sub)Grassmanian of subspaces of index zero. Then 

Grt(o) ~f {WE Grk(O) I dimLKer 'Yw = dimLCoker 'Yw = 0} (8.3) 
is called the big cell of Grk(O). 

Consider a quintuple (X,{Pi},F,ti,7J = {7Ji}) where {Pi}, 1 ::::; i::::; k, are 
distinct smooth closed points on X, ti are local coordinates at Pi and 7Ji are formal 
trivializations of a torsion-free sheaf F at Pi. Then a multicomponent Krichever 
map from the moduli space of quintuples as above to the Sato Grassmanian Grk is 
defined by the formula : 

(X,{Pi},F,ti,7J = {7Ji}) t-+ U 7J(H0 (X,F(EBliPi)) c L((t))Eilk. (8.4) 
{!;} 

Finally, the k-component KP hierarchy consists of commuting vector fields arising 
from the natural action of (L(r1]r1 )Eilk on the quotient Grk/(L[[t]]*)k (see [DM, 
6.1] for more details). 

The precise description of the "usual" Krichever map is given by the following 
functorial version of theorem 4.2. 

THEOREM 8.1. ([Mul, th. 3.5]) The Krichever map defines the anti-equivalen-
ce of the category of quintuples as in theorem 4.2 and the category of Schur pairs 
(A, W) where W is a point of the big cell Gr+(o) of the Sato Grassmanian and A 
is a subring of L((t)) stabilizing W. 

A similar description in the multicomponent case certainly exists ( cf. [LMl]) 
and is closely related to our main theorem 5.3. 
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9. Generalizations 

Finally, we would like to mention some generalizations in the differential case : 
• super Krichever modules and super KP hierarchy ([MR], [Mu2)) 
• Drinfeld-Sokolov hierarchies associated to Kac-Moody algebras ([DSl] and 

[DS2]) 
• Beilinson-Drinfeld G-opers where G is a semi-simple Lie algebra over L [BD] 

To the best of the author's knowledge, the construction of analogous objects in 
positive characteristic is still an open problem4 . 
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Weil classes and Rosati involutions on complex abelian 
varieties 

Yu.G. Zarhin* and B.J.J. Moonen 

1. Abelian varieties, polarizations and divisor classes 

Consider a complex torus X= tjr, where t ~ (:9 is a complex vector space of 
finite dimension g and r ~ Z29 a discrete lattice in t of (maximal) rank 2g. We 
say that X is an abelian variety if it admits a polarization, by which we mean a 
positive definite Hermitian form 

H:txt--tC 
whose imaginary part 

L = ~(H) : t X t --t lR 
takes integral values on r. Clearly, a sum of two polarizations is also a polarization. 
In particular, we can multiply a polarization by a positive integer to obtain another 
one. 

There exists a polarization on X if and only if X (as a complex-analytic man-
ifold) is algebraizable, which condition in turn is equivalent to the existence of a 
projective embedding X<----+ pm for some m. We refer to Mumford's book [11] for 
the basic theory of abelian varieties. 

ExAMPLE 1.1 (elliptic curves). Every !-dimensional complex torus X = Cjr 
admits a polarization. Namely, if r = z. WI+ z. W2 with wtfw2 f/.IR then for each 
positive integer n the Hermitian form 

zw 
(z,w) ~---+ n. I ~(w1w2) I 

defines a polarization on X. One can check that all polarizations on X are of this 
form. 

It should be mentioned that, for g ~ 2, "most" complex tori do not admit a 
polarization. 

From now on, assume that X is an abelian variety and that H is a polarization. 
The form L = LH :=~(H) is a non-degenerate skew-symmetric IR-bilinear form on 
t such that 

L(zx,zy) = L(x,y) Vx,y E t;z E §, 
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230 YU. G. ZARHIN AND B. J. J. MOONEN 

where 
§ = { z E C* I zz = 1} . 

In other words, Lis §..invariant. Conversely, if <pis an §..invariant skew-symmetric 
JR.-bilinear form on t, then H'P(x, y) = <p(ix, y) + i · <p(x, y) defines a Hermitian form 
on t with S}(H'P) = <p. If in addition <p(r, r) ~ Z then there are polarizations H 1 

and H 2 such that 
<p = S}(Hl) - S}(H2) . 

Indeed, one may take H1 = nH + H'P and H2 = nH for a sufficiently large positive 
integer n. 

The natural map r ® JR. ---+ t is an isomorphism of real vector spaces, which we 
will take as an identification. Now consider the Q-vector space V = Vx := r ® Q. 
One may view v as a Q-lattice in VIR := v ®IQIJR. = r ® JR. = t. We have 

r c v c viR= t. 
We will consider t = VIR as a real vector space provided with a Q-lattice V and an 
action of § which gives it the structure of a complex vector space. 

Let 
<p:VxV---+Q 

be a skew-symmetric Q-bilinear form on V. Let us extend <p by JR.-linearity to the 
skew-symmetric JR.-bilinear form 

<pJR : V X V ---t JR. . 

We call <p a divisor class if </)IRis §..invariant. Clearly, the set V(X) of divisor classes 
is a Q-vector subspace of HomiQI(/\~ V, Q); in particular it is finite-dimensional. By 
what was said before, if <p is a divisor class then <p = S}(Hcp) for some Hermitian 
form Hcp on t = VIR. It readily follows that <p is a divisor class if and only if it can 
be presented as a Q-linear combination of imaginary parts of polarizations. 

There is another way to describe the divisor classes, which involves the endo-
morphism algebra and Rosati involutions. First, notice that the endomorphism ring 
End( X) of the complex torus X is the ring of all C-linear maps u: t---+ t such that 
u(r) ~ r. Here is an obvious alternative description: the ring End(X) consists of 
the homomorphisms v : r ---t r whose JR.-linear extensions VJR : t ---t t (identifying 
r ®JR. and t) commute with the action of §. This last description allows us to 
identify the endomorphism algebra. End0 (X) := End(X) ® Q with a Q-subalgebra 
of EndiQI(V). It is known (see [11], p. 178, for example) that if X is an abelian 
variety, then End0 (X) is a semi-simple Q-algebra. 

Associated to H, there is an involution v ~-t v' on End0 (X), called the Rosati 
involution and characterized by 

L(vx,y) = L(x,v'y) Vv E End0(X) ;x,y E VIR. 

Since H(x, y) = L(ix, y) + i · L(x, y), and since the v E End0 (X) commute with the 
action of §, we also have 

H(vx,y) = H(x,v'y) \/v E End0(X) ;x,y E VIR. 
This implies that the Rosati involution is a positive involution. In particular, the 
center of End0 (X) is a product of totally real number fields and of CM-fields. 
(Recall that a CM-field is a totally imaginary quadratic extension of a totally real 
number field). 
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WElL CLASSES 231 

For example, assume that End0 (X) is a number field. Then there are two 
possibilities: 

• F = End0 (X) is a totally real number field. The only positive involution on 
F is the identity map. Therefore, the Rosati involution on End0 (X) is the 
identity map. 

• F = End0 (X) is a totally imaginary quadratic extension of a totally real 
number field F0 . The only positive involution on F is the "complex conju-
gation" (the non-trivial automorphism ofF over F0 ). Therefore, the Rosati 
involution is the complex conjugation. 

Now the description of the divisor classes in terms of a Rosati involution on the 
endomorphism algebra goes as follows. Start with one polarization form H, with 
imaginary part L and associated Rosati involution v f4 v' on End0 (X). Then one 
can show that the map which sends u E End0 (X) to the Q-bilinear form 

(x, y) f4 L(ux, y) 

on V induces a bijection 

{u E End0 (X) I u' = u} ~ V(X). 

2. Hodge classes and Weil classes 

DEFINITION 2.1. Let n be a positive integer, and consider a skew-symmetric 
Q-multilinear form'¢ E HolllQ(A~nv, Q). Extend'¢ by IR-linearity to a form '1/JJR. E 
HomJR(Ai_nvJR, JR). We call'¢ a Hodge class (in degree 2n) if '1/JJR. is §..invariant. 

REMARK 2.2. Clearly, a skew-symmetric Q-bilinear form on V (with n = 1) 
is a Hodge class if and only if it is a divisor class. It is also clear that a linear 
combination of Hodge classes of the same degree 2n is a Hodge class of degree 2n 
and that the exterior product of Hodge classes '¢1 , ... , '1/Jk of degrees 2n1 , ... , 2nk 
is again a Hodge class, of degree 2(nl + · · · + nk)· 

DEFINITION 2.3. A Hodge class is called decomposable if it can be written as a 
Q-linear combination of exterior products of divisor classes. Otherwise, it is called 
exceptional. 

Easy linear algebra arguments imply that if dim( X) :::; 3 then all Hodge classes 
are decomposable. For instance, assume dim(X) = 3. Then every form '¢ E 
Hoii1Q(A6 V, Q) can be uniquely written as the exterior product of L and a skew-
symmetric Q-bilinear form on V, since dim(V) = 6 and L : V x V - Q is non-
degenerate. This implies that every Hodge class in degree 4 is of the form L A cp 
where cp is a divisor class. 

It was Mumford who first gave an example of an abelian fourfold X with an 
exceptional Hodge class of degree 4; see [13). In his examples End0 (X) is a OM-
field of degree 8 over Q (i.e., X is an abelian fourfold of CM-type) which contains 
an imaginary quadratic subfield k. The action of k on V must satisfy the following 
condition: it gives rise to the natural action of k ®Q C on VIR = t and this action 
makes t a free k ®Q C = C EB C-module of rank 2. This condition may be restated 
as follows: if k = Q(a) where a 2 = -d E Z<o, and if H is a polarization on X, 
then the Hermitian form 

( ) H(ax,y) 
x,y f4 rJ 

v-d 
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232 YU. G. ZARHIN AND B. J. J. MOONEN 

on t has signature (2, 2). (This does not depend on the choice of R E C.) 
In [22], A. Weil proposed a different approach to the construction of exceptional 

Hodge classes. His construction and its natural generalization proved to be useful in 
various aspects of arithmetic and geometry of abelian varieties; see for example [1], 
[2], [4], [6], [8], [15], (19], (18], (23]. Weil's construction from [4], in its generalized 
form, works as follows. 

Suppose E is a CM-field, and that there is a given ring homomorphism E '-+ 

End0 (X). Then V becomes a E-vector space of dimension m = 2gj[E: Q]. The 
trace map TrE/Q: E---+ Q gives rise to an isomorphism 

TrE/Q 
HomE(AEJV, E) ~ HoiDQ(AEJV, Q), 

which yields an embedding 
TrE/Q 

HomE(AEJV, E) ~ HomQ(AEJV, Q) C HoiDQ(A;ijV, Q). 

Let W =WE C HomQ(A;QV, Q) be the image of this embedding; it is the set of all 
skew-symmetric m-linear forms¢ on the Q-vector space V such that 

¢(ex1, x2, ... , Xm) =¢(xi. ex2, ... , Xm) =···=¢(xi. X2, ... , exm) 
for all e E E and XI, X2, ... , Xm E V. 

REMARK 2.4. The [E:Q]-dimensional Q-vector space WE has a natural struc-
ture of one-dimensional E-vector space, given by 

(e¢)(XI.X2, ... ,xm) := ¢(ex1,x2, ... ,xm). 
Note also that 

(em¢)(xt,X2,··· ,xm) =¢(exbex2,··· ,exm)· 
REMARKS 2.5. (i) Let r be a positive integer and let 

.,P:VX···XV-+Q 
be an r-linear form on V which is x;tot identically zero and such that 

.,P(ext,X2,··· ,xr)=.,P(xt,eX2,··· ,xr)=···=.,P(xbx2,··· ,exr) 
for all e E E and x1, x2, ... , Xr E V. If e E E* is not an rth root of unity then 
there exist Yl, Y2, ... , Yr E V such that 

.,P( ey1, ey2,. · · , eyr) =/= </J(Yb Y2, · · · , Ym)· 
To see this, first remark that 

.,P(er x1, x2, ... , Xr) = .,P(ex1, ey2, ... , exm) 
for all Xt, x2, ... , Xr E V. Now, choosing Xt, x2, ... , Xr E V such that 
.,P(xt,X2, · · · ,xr) =/= 0, and putting 

Yl = (er -1)-1xl,Y2 = X2, · · · ,yr = Xr, 
we have 

.,P(ey1,ey2,··· ,eyr)-1P(YI.Y2•··· ,yr)=.,P(eryl,Y2,··· ,yr)-.,P(yl,Y2,··· ,yr)= 
= .,P((er -l)YI.Y2, ... ,yr) = .,P(XI.X2,. · · ,xr) =/= 0. 

(ii) Applying Remark 2.4, we obtain that if¢ is a non-zero element of WE and 
e E E* is not a root of unity, then there exist X1, x2 ... , Xm E V such that 

¢(ex1,ex2,··· ,exm) =/= ¢(x1,x2,··· ,xm)· 
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We call the (non-zero) elements of W =WE Weil classes, or Weil classes w.r.t. 
E. One easily checks that WIR = W ®Q lR is an §..stable subspace of 

HomQ(AQ'V, Q) ®Q lR = HomiR(A[rVIR,JR). 

It is shown in [4] that WIR consists of §..invariant elements (which, by definition, 
means that all elements of W are Hodge classes) if and only if the following condition 
holds: The action of E on V gives rise to the natural action of E ®Q C on VIR = t 
and under this action t becomes a free E ®Q C-module. If this holds then, since t 
has rank n = m/2 over E ®Q C, the number m must be even and n divides g. 

It seems that most (but not all!) known examples of exceptional Hodge classes 
on abelian varieties, e.g. those discussed in [12], [13], [15], and [17], are Weil 
classes. For instance, if X is an abelian fourfold then each Hodge class can be 
presented as a linear combination of decomposable classes and Weil classes (if there 
are any), see [8], [10]. In Mumford's example mentioned above, the exceptional 
Hodge classes are Weil classes w.r.t. the imaginary quadratic field k C E. 

It is natural to ask when Weil's construction leads to exceptional classes. (It is 
easy to see that if some non-zero element of WE is exceptional then in fact all non-
zero elements of WE are exceptional.) Weil himself considered the case of (imagi-
nary) quadratic fields E and proved that in this case Weil classes are exceptional 
for "generic" X (where the genericness includes the condition that E = End0 (X)). 
In a recent paper [9] the authors have given an explicit necessary and sufficient 
condition for (non-zero) Weil classes to be exceptional. This condition is formu-
lated in terms of the endomorphism algebra of X and uses Albert's classification 
of semi-simple finite-dimensional Q-algebras with a positive involution. 

3. Cohomological interpretation 

Let us now explain the relevance of the above considerations in slightly different 
terminology. First, the lattice r is the first integral homology group H1 (X, Z) of 
X, and also we have natural isomorphisms V = H1(X,Q) and VIR = H1(X,IR). 
The fact that X is a torus then implies that HomQ ( t\Q V, Q) ~ Hr (X, Q) and 
HomiR(AiR.VIR, !R) ~ Hr(X, JR). The exterior product offorms corresponds to the cup-
product of cohomology classes. The forms L = LH E HomQ(A~ V, Q) = H2 (X, Q) 
are rational multiples of the cohomology classes of hyperplane sections of X and 
each class of a hyperplane section coincide with LH for some polarization H. The 
subspace 

V(X) c HomQ(A~V,Q) = H2 (X,Q) 
is the set of rational multiples of cohomology classes of divisors on X. 

For even r the identification 

HomQ(AQV,Q) = W(X,Q) 

identifies Hodge classes as defined here with conventional ones [3],[4],[11]. A cel-
ebrated conjecture of Hodge [20] asserts that all Hodge classes are algebraic (the 
converse is known to be true). For decomposable classes this is a consequence of 
Lefschetz' theorem on (1, I)-classes (see e.g. [5], Ch. 1, Sect. 2), and Weil suggested 
his construction as a source of possible counterexamples to the Hodge conjecture. 
See [17], [15], [16] and [21] for some rare examples where the algebraicity of ex-
ceptional Weil classes is proven. 
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4. Main results 

The motivation of the present paper is to give an explanation, in completely 
elementary terms, why in the examples of Mumford and Weil one gets exceptional 
Weil classes. Namely, we prove the following statement. 

THEOREM 4.1. Consider a complex abelian variety X with a given inclusion 
E Co....+ End0 (X) of a CM-field E in its endomorphism algebra (sending 1 E E to the 
identity on X). Assume that E is stable under all Rosati involutions on End0 (X) 
and that t is a free E 1811Q C.-module. Then all non-zero elements of W = WE are 
exceptional Hodge classes. 

REMARK 4.2. If Rosati involution leaves E stable then it acts on E as the 
complex conjugation. 

REMARK 4.3. IfEnd0 (X) is a CM-field then there is only one Rosati involution, 
namely the complex conjugation. In particular, if End0 (X) contains an imaginary 
quadratic subfield k (e.g., End0 (X) = k) then the Rosati involution leaves k stable 
and, assuming that t = VIR is a free E I8!1Q C.-module, we get the exceptionality of all 
non-zero Weil classes. This explains the examples of Mumford and Weil. In fact, in 
the situation considered by Weil we slightly improve the result, since we only need 
the equality End0 (X) = k. 

Theorem 4.1 is an immediate corollary of the following statement. 

THEOREM 4.4. Let PolE be set of all polarizations H on X such that E is stable 
under the associated Rosati involution. Let 

VE :={~(H) E V(X) C Hom!Q(/\~V,Q) I HE PolE} 

be the set of their imaginary parts, viewed as divisor classes. Let r be an even 
positive integer and let 1/J E Hom!Q(/\Q V, Q) be a non-zero skew-symmetric form 
with 

'lj;(ex1,x2,··· ,xr) =1/J(x1,ex2,··· ,xr) = ··· =1/J(X!,X2,··· ,exr) 

for all e E E and all X1, x2 ... , Xr E V. (This is the case, for example, if r = 
m := dimE(V) and 1/J E WE is a non-zero Weil class). Then 1/J is not a Q-linear 
combination of exterior products of bilinear forms LH (HE PolE}. 

REMARK 4.5. It is shown in [7], Lemma 9.2, that the set PolE is always non-
empty. 

PROOF OF THEOREM 4.4. Choose a polarization HE PolE and let 

LH = ~(H) : v X v --+ Q 

be its imaginary part, viewed as a skew-symmetric Q-bilinear form on V. The 
assumption that E is stable under the Rosati involution u ~ u' attached to H 
means that u' = u is the complex conjugate of u and 

LH(ux, y) = LH(x, uy) VuE E; x, y E V. 

Consider the multiplicative subgroup 

1U E = { u E E* I uu = 1} . 
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Since E is a OM-field, 1lJ E is infinite. Since E contains only finitely many roots of 
unity, 1lJ E contains an element e which is not a root of unity. Since e E 1lJ E, we 
have 

LH(ex,ey) = LH(x,eey) = LH(x,y) Vx,y E V. 
This implies that if an alternating r-linear form w on V can be presented as a linear 
combination of exterior products of bilinear forms LH (HE PolE) then 

Since e is not a root of unity, it follows from Remark 2.5(i) that there exist 
Y1, Y2, · · · , Yr E V such that 

'1/J( ey1, ey2, ... eyr) =I '1/J(Yl, Y2, .. · Yr) · 
D 
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In this short survey I will try to review some recently found connections between 
the Restricted Burnside Problem and some still open problems in Algebra and 
Geometry. 

An element g of a group G is called periodic if there exists n 2:: 1 such that 
gn = 1. The smallest number n with this property is called the order of g. A group 
G is periodic if every element of G is periodic. 

A group G is said to be periodic of bounded exponent if orders of all elements are 
uniformly bounded from above. In other words, G is periodic of bounded exponent 
if there exists n 2:: 1 such that gn = 1 for an arbitrary element g E G. The smallest 
number n with this property is called the exponent of G, n = exp(G). 

In 1902 W. Burnside formulated the following problem. 

The Burnside Problem. Is it true that a finitely generated group of bounded 
exponent is finite? 

Clearly, a finite group is finitely generated and of bounded exponent. The ques-
tion is if the reverse is true, that is, if these two properties are enough to make a 
group finite? R. Bruck put the question in more general terms: 

What makes a group finite? 

1 Partially supported by NSF Grant DMS-9704132 
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238 EFIM ZELMANOV 

If exp( G) = 2 then the group G is abelian and the problem is trivial. 
W. Burnside [6], LN. Sanov [23] and M. Hall [9] solved The Burnside Problem 

positively for groups of exponents 3, 4, 6 respectively. However, in 1968 P.S. Novikov 
and S.l. Adian [21] constructed for an arbitrary odd number n 2: 4381 an infinite 
2-generated group of exponent n. This was the negative solution of The Burnside 
Problem. 

In 1994, S. Ivanov [11] constructed infinite 2-generated groups of exponent n = 2k 
for sufficiently large k (for improved bounds see also I. Lysenok [16]). Hence, now we 
can say that the Burnside Problem has negative solution for groups of a sufficiently 
large exponent n whether odd or even. 

In the late 30's a somewhat weaker version of The Burnside Problem was for-
mulated (see [8, 20, 28]). It became known as the Restricted Burnside Problem. 

The Restricted Burnside Problem. Is it true that for given m 2: 1, n 2: 1 there 
are only finitely many finite m generated groups of exponent n? 

Let us discuss how these two problems are related. 
Let F m denote the free group on m free generators x1 , ... , Xm. Let F~ be the 

subgroup of Fm generated by all n-th powers an, a E Fm. The quotient group 
B(m, n) = Fm/ F~ is the universal m generated group of exponent nand all other 
m generated groups of exponent n are homomorphic images of B(m, n). Thus The 
Burnside Problem is the problem whether groups B(m, n) are finite or infinite. 

The Restricted Burnside Problem asks if the group B(m, n) (whether finite or 
infinite) has finitely many finite homomorphic images or, equivalently, if B(m, n) 
has finitely many subgroups of finite index. If the answer is "yes" then the in-
tersection Ho = n{H I [B(m,n) : H] < oo} is a subgroup of finite index. Then 
Bo(m, n) = B(m, n)/ Ho is the universal m generated finite group of exponent n. 
All other finite m generated groups of exponent n are homomorphic images of 
Bo(m, n). Thus the Restricted Burnside Problem is the problem whether there 
exists a universal m generated finite group of exponent n. 

In 1956 P. Hall and G. Higman [10] proved the Reduction Theorem: let n = 
p~ 1 • • • p~r be a product of powers of distinct prime numbers. If (1) for every factor 
p~' the Restricted Burnside Problem for groups of exponent p~' has positive solu-
tion, (2) there are finitely many finite m generated simple groups of exponent n, (3) 
for each of these simple groups the Schreier Conjecture is valid, then the Restricted 
Burnside Problem for groups of exponent n also has positive solution. 

From the announced classification of Finite Simple Groups it follows that (2) 
and (3) are always true. Thus the problem gets reduced top-power exponents. 

In 1958 A.I. Kostrikin [12,13] solved the Restricted Burnside Problem for groups 
of prime exponent. Let G be a finite p-group, let G = G1 > G2 > · · · be its 
lower central series. The abelian group L(G) = ffiGi/Gi+l with the bracket 

i2':1 
[aiGi+1 ,bjGj+I] = (ai,bj)Gi+Hl (here (ai,bj) is the group commutator of the 
elements ai, bj) is a Lie ring. If the group G has exponent p then Gi/Gi+l are 
elementary abelian p-groups and therefore L(G) is an algebra over the field Z/pZ. 
Moreover, under this assumption the Lie algebra L(G) satisfies the Engel identity 
[ ... [x, y], y], ... , y] = O(Ep_I). 

'------v-------
p-1 
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OPEN PROBLEMS ON THE RESTRICTED BURNSIDE PROBLEM 239 

If a1, ... ,am generate G then L(G) is generated by a1G2, ... ,amG2 E Gl/G2. 
A.I. Kostrikin proved that an m generated Lie algebra over a field of characteristic 
p (or 0) satisfying the Engel identity (Ep-1) is nilpotent. This implied a positive 
solution of The Restricted Burnside Problem for groups of prime exponent. 

In (29, 30] this theorem was generalized to arbitrary Lie rings satisfying an Engel 
identity which implied (though in a less straightforward way than in the case of 
groups of prime exponent) a positive solution of The Restricted Burnside Problem 
for groups of prime-power exponent. Together with the Reduction Theorem it 
settles the general case. 

Now let us look at this problem from a different point of view. A group G is 
said to be residually finite if there exists a system of homomorphisms i.{)i : G-+ Gi, 
such that all groups Gi are finite and (1 ker i.{)i = (1). The system of subgroups of 

' finite index ker i.{)i can be taken for a basis of neighborhoods of 1 thus making G a 
topological group. If G is complete in this topology then G is said to be a profinite 
group. A profinite group can be defined also as an inverse limit of finite groups. 
Clearly, any residually finite group can be embedded into its profinite completion. 
For an arbitrary group G the quotient group G / n { H I (G : H] < oo} is residually 
finite. Its completion is called the profinite completion of G. We will denote it as c. 

It is easy to see that 

The Restricted Burnside Problem 
<=> The Burnside Problem for residually finite groups 
<=> The Burnside Problem for profinite groups. 

The free group Fm is residually finite. Its profinite completion Fm is called the 
free profinite group. It deserves this name because an arbitrary mapping of the 
free generators x1, ... , Xm into a profinite group G can be uniquely extended to a 
continuous homomorphism Fm -+ G. 

As above, let i'::;_ be the (abstract) subgroup of Fm generated by all n-th powers 
an, a E Fm. Let c£(F:;;,) be the closure of i'::;_ in Fm. It is not difficult to see that 

Bo(m, n) ~ Fm/cf(F;:.). 

1. PRIMITIVE ELEMENTS 

A number of open problems related to The Restricted Burnside Problem can be 
formulated as follows: what happens if we impose periodicity not on all elements 
of a group but on some of them? 

To be more precise, let M be a subset of the free group Fm. Let H(Mn) denote 
the closed normal subgroup generated by the subset {an,a EM} in Fm. 

The first subset M that we will discuss is the set of all primitive elements of Fm. 

Definition. An element v E Fm is said to be primitive if there exists an automor-
phism <p E Aut Fm such that v = <p(x1). 

In other words, v is a primitive element if it can be included into a system of m 
free generators of Fm. 
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240 EFIM ZELMANOV 

Problem 1. Let m 2::3. Is the group Fm/H(Mn) solvable-by-finite? 
The finitary version of this problem is 

Problem 1'. Do there exist functions N(m,n),S(m,n) such that, if G is a finite 
group generated by m 2:: 3 elements a1 , ... , am and for an arbitrary primitive 
element v(xb ... , Xm) E Fm we have v(ab ... , am)n = 1, then G contains a normal 
subgroup of index ::; N(m, n) which is solvable of degree ::; S(m, n)? 

The group Fm/ H(Mn) does not have, however, to be finite. 

Example (see [4]). Let V be a vector space over a field F of zero characteristic 
and let G be a finite subgroup of GL(V) which acts fixed-point-freely, i.e. for 
arbitrary elements a E V, g E G ag = a implies a = 0 or g = 1. This means that 
G can be realized as a Frobenius complement and so its structure is determined by 
classical works of W. Burnside and H. Zassenhaus (see [6], [27]). 

For an element a E V let Ta : V---. V denote the translation Ta :b---. b+a, bE V. 
Consider the semidirect product TvG. Let IGI = n. For arbitrary elements a E V, 
1 =I- g E G we have (Tag)n = Ta+ag+·+agn-1T9 n = To1 = 1, because the element 
a(1 + g + · · · + gn-l) is fixed by g. 

Now suppose that G is generated by elements g1 , .•. ,gk and no k -1 elements 
generate G. Then for an arbitrary primitive element v E M v(g1 , ... , 9k) =I- 1. 
Hence, for arbitrary elements a1, ... , ak E V we have v(Ta19b ... , Tak9k)n = 1. It 
is easy to see that there exist elements a1, ... , ak E V such that (Ta1 91, ... , Tak9k)n 
Tv =/:- (1). Hence the group H = (Ta1 9b ... , Tak9k) is infinite. H, however, is 
abelian-by-finite, hence linear, hence residually finite. The profinite completion fi 
is a homomorphic image of the group Fm/ H(Mn). 

Theorems ofW. Burnside, H. Zassenhause, J. Thompson, and G. Higman do not 
allow to develop this construction into a counterexample to Problem 1. 

Let Tm = (x1, ... , Xm, Yl, ... , Ym I (x1, Yl) · · · (xm, Ym) = 1) be a surface group. 
An element v E r m is said to be primitive if there exists an automorphism 
cp E Aut r m such that v = cp(xl). Let M be the set of all primitive elements of 
r m. Let f' m be the pro finite completion of r m and let H ( Mn) be the closed normal 
subgroup of f' m generated by Mn = { vn, v E M}. 

Problem 2. Let m 2::3. Is the group i"jH(Mn) soluble-by-finite? 
In the work [4], F. Bogomolov and L. Katzarkov interpreted Burnside groups 

in the fundamental groups of smooth complex projective surfaces. If Problem 2 
has positive solution then the Bogomolov-Katzarkov construction yields examples 
of smooth projective complex surfaces with rather wild fundamental groups. 

The same construction (see [4]) establishes an interesting connection between 
The Shafarevich Conjecture and The Burnside Problem. The Shafarevich Conjec-
ture states that the universal covering X of a smooth complex projective variety is 
holomorphically convex, meaning that for every infinite sequence of points without 
limit points in X there exists a holomorphic function unbounded on this sequence. 

In [4] it is shown that if The Shafarevich Conjecture is valid then for an arbi-
trary n 2:: 1 all groups B(m, n), m 2:: 2, are simultaneously finite or simultaneously 
infinite. Thus, if for some exponent n the group B(2, n) were finite while a group 
B(m, n) on larger number of generators were infinite, that would provide a coun-
terexample to The Shafarevich Conjecture. 
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There is another reason to be interested in Problems 1,2. 
In 1990 E. Formanek and C. Procesi [7] proved that form~ 3 the automorphism 

group Aut(Fm) is not linear. The problem of linearity of the group Aut(F2) is open, 
as it is open for braid groups and mapping class groups. 

Let p: Aut(Fm) ---+ GL(n, F) be a linear representation. The group Fm is embed-
ded into Aut(Fm) via inner automorphisms. Since an arbitrary primitive element 
v E Fm is conjugate to x1 in Aut(Fm) it follows that p(v) = v(p(x1), ... ,p(xm)) is 
conjugate to p(x1) in GL(n, F). Let f(t) be the characteristic polynomial of p(xn)· 
For an arbitrary primitive element v E Fm we have f(v(p(xl), ... ,p(xn ) = 0. 

Problem 3. Let G be a subgroup of GL(n, F) generated by m elements 
91> ... , Ym, m ~ 3. Suppose that there exists a polynomial f ( t) such that for an 
arbitrary primitive element v E F m we have f ( v(gl> ... , Ym)) = 0. Is it true that 
the group G is solvable-by-finite? 

If there exists a polynomial f(t) such that for an arbitrary element g E G :::; 
GL(n, F) there holds f(g) = 0 then the original argument of W. Burnside [6] 
implies that G is unipotent-by-finite. 

2. FINITELY PRESENTED PROFINITE GROUPS 

A. Yu. Ol'Shansky [15] (and independently E. Rips) raised the following ques-
tion. 

Problem 4. Does there exist a finite subset M ~ Fm such that the group 
Fm/H(Mn) is finite? 

The finitary version of this problem is 

Problem 4'. Does there exist a function N(m,n) such that, if G is a finite group 
generated by m elements a1, ... , am and for an arbitrary product at1 · · · at1 of 
length k :::; N(m, n); 1 :::; i1, ... , ik :::; m; we have (at1 .. · at1 )n = 1, then gn = 1 
for an arbitrary element g E G? 

The existence of such a function N ( m, p) for a sufficiently large prime number 
p would imply the existence of a nonresidually finite hyperbolic group which was 
conjectured by M. Gromov. Indeed, S.I. Adian and I. Lysenok [2] proved that for 
a sufficiently large prime number p and m ~ 2 a group that has a presentation 
(x1, ... ,xm I vf = 1, ... ,v~ = 1), where v1, ... ,vr are arbitrary elements from 
F m, is hyperbolic. Suppose that the number N ( m, p) exists and let v1, ... , Vr be 
all words of length:::; N(m,p). Let G = (xi. ... ,xmlvf = 1, ... ,v~ = 1). Let 
cp : G ---+ G' be a homomorphism onto a finite group. The group G' is generated 
by cp(xi), ... , cp(xm) and for an arbitrary word v of length :::; N(m,p) we have 
v(cp(xi), ... , cp(xm))P = 1. Hence, the whole grop G' has exponent p. In view of 
the positive solution of the Restricted Burnside Problem there are finitely many 
finite m generated groups of exponent p. Hence, G has only finitely many finite 
homomorphic images. Hence, the profinite completion G is finite. On the other 
hand for p > 665 the group G is infinite by the results of P.S. Novikov and S.I. 
Adian ([21], [1]). 

If The Burnside group B(m, n) = Fm/ F:;:, is finite then the Problem 4 has 
positive solution as well. Indeed, the subgroup of finite index F:;:, in Fm is finitely 
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generated. It is sufficient to let N(m, n) be the maximum of lengths of these 
generators. 

C. Martinez [17] proved the existence of such a function N 8 (m, n) for solvable 
groups. 

Theorem (C. Martinez, [17]. There exists a function N 8 (m, n) such that if e 
is a finite solvable group generated by m elements a1, ... , am and for an arbitrary 
product a~ 1 ···at 1 ,k $ N 8 (m,n) we have (a~ 1 ···at 1 )n = 1 then en= (1). 

The Proglem 4' has been reduced in [17] to the question if there exists such a 
function Nsi(m, n) for finite simple groups. However, it is open even for alternating 
groups. I will risk formulating the following question for exponent 5, since 5 is the 
smallest number for which The Burnside Problem is open. 

Problem 4". Does there exist a number N with the following property: for any 
two generators a1, a2 of an alternating group An, n ~ 2, there exists a product 
b = a~ 1 · · ·at\k $ N, 1 $it, ... ,ik $2 such that b5 =f-1? 

3. PRODUCTS OF POWERS 

In our discussion of the Restricted Burnside Problem we stressed that B0 ( m, n) = 
Fmld(F;:,). What happens if we forget to take the closure of ft;:,? 

Problem 5. Let e be a (topologically) finitely generated profinite group. Is the 
group en which is (abstractly) generated by all n-th powers an, a E e, closed? 

Here is the finitary version of the problem. 

Problem 5'. Does there exist a function N ( m, n) such that if e is a finite m 
generated group then en = { af· .. aRr(m,n) I al, ... , aN(m,n) E e}? 

It has been known for some time (see, for example, [25]) that a positive answer 
to this question would imply the positive answer to the following question of J.-P. 
Serre: is it true that in a finitely generated profinite group every subgroup of finite 
index is closed? 

Suppose that Problem 5 has positive solution. Let e be a finitely generated 
profinite group, let H be a subgroup of finite index, let n = le: HI! Then en ~H. 
If the subgroup en is closed in e then it is legal to consider the quotient group 
e I en which is a profinite group. As The Restricted Burnside Problem is The 
Burnside Problem for profinite groups and it has positive solution we conclude that 
the group e I en is finite. Hence, H is a finite union of cosets of en and thus is 
closed. 

J.-P. Serre proved the conjecture for pro-p groups [24]. For further generalizations 
see [3, 22]. 

Speaking of problems 5, 5', in the already mentioned work [17] of C. Martinez 
the existence of a funciton Ni ( m, n) was proved for all nilpotent groups. In [18] 
this result was extended to solvable groups of bounded Fitting height. Finally, in 
[19] the existence of a bound was established for finite simple groups. The problem, 
however, is still open for solvable groups. 
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