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INTRODUCTION

The Kummer surface Kum(𝐴) of an abelian surface 𝐴 over an algebraically closed field of char-
acteristic 𝑝 is defined to be the quotient of 𝐴 by the negation involution 𝜄 ∶ 𝑎 ↦ −𝑎. If 𝑝 ≠ 2, the
abelian surface𝐴 has 24 two-torsion points that give rise to 16 ordinary double points onKum(𝐴).
Aminimal resolution of singularities𝑋 ofKum(𝐴) is a K3 surface containing a set of 16 disjoint
smooth rational curves on it ((−2)-curves for short because their self-intersection is equal to −2).
Conversely, if 𝑘 = ℂ, the field of complex numbers, a theorem of Nikulin asserts that a K3 surface
containing a set of 16 disjoint (−2)-curves arises in this way from the Kummer surface of some
complex abelian surface.†
Let 𝐴 be a simple principally polarized abelian surface, hence isomorphic to the Jacobian vari-

ety Jac(𝐶) of a curve of genus 2. The embedding of 𝐶 into Jac(𝐶) can be chosen in such a way
that its image Θ is invariant under the involution 𝜄. The linear system |2Θ| defines a regular map
𝜙 ∶ 𝐴 → |2Θ|∗ ≅ ℙ3 that factors throughKum(𝐴). This map embedsKum(𝐴) into ℙ3 as a quartic
surface with 16 ordinary double points. These surfaces have been studied for 200 years; we refer to

† This fact usually assumes that the ground field is the field of complex numbers, but, as shown to me by the anonymous
referee, it is true if 𝑝 ≠ 2.
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2 DOLGACHEV

[8] for the history. The restriction of the map 𝜙 to a translate of Θ by a 2-torsion point is a degree
two map to a conic in Kum(𝐴) ramified over six points. The set  of proper transforms of the
16 conics in 𝑋 also consists of disjoint (−2)-curves. The incidence relation between the two sets
defines an abstract symmetric configuration (166), the Kummer configuration.
If 𝐴 is a nonsimple abelian surface, that is, 𝐴 is isomorphic to the product 𝐸1 × 𝐸2 of elliptic

curves, the symmetric principal polarizationΘ can be chosen to be equal to (𝐸1 × {0}) ∪ ({0} × 𝐸2).
The map 𝜙 ∶ 𝐴 → ℙ3 defined by |2Θ| is of degree 4 onto a smooth quadric 𝑄. The union of the
images of the translates of Θ is the union of eight lines 𝐿𝑖,𝑀𝑖 on 𝑄, four from each of the two
rulings. The double cover𝑋′ of𝑄 branched along these eight lines has 16 ordinary points, and it is
birationally isomorphic to a K3 surface 𝑋. The surface contains a set of 16 disjoint (−2)-curves
equal to the exceptional curves 𝐸𝑖𝑗, 1 ⩽ 𝑖, 𝑗 ⩽ 4, of a minimal resolution of singularities of 𝑋′.
Another set of 16 disjoint (−2)-curves consists of reducible (−2)-curves�̄�𝑖 + 𝐸𝑖𝑗 + �̄�𝑗, where �̄�𝑖 , �̄�𝑗
are reduced preimages of the lines 𝐿𝑖,𝑀𝑗 . The two sets (,) form the Kummer configuration
(166).
A beautiful aspect of the geometry of the Kummer surfaces of Jacobians of curves of genus 2

is their relationship with the classical geometry of quadratic line complexes [7, 10.3]. A Kummer
surface appears as the singular surface of a quadratic line complex ℭ, the locus of points 𝑥 ∈
ℙ3 such that the plane Ω(𝑥) of lines containing 𝑥 intersects ℭ along a singular conic. The set
of irreducible components of these conics (which are lines in ℭ) is isomorphic to the Jacobian
variety of a curve 𝐶 of genus 2. The curve 𝐶 is isomorphic to the double cover of the pencil of
quadrics containing ℭ ramified over the set of six singular quadrics. The set of singular points
of Ω(𝑥) ∩ ℭ, 𝑥 ∈ ℙ3, is an octic surface in the Plücker space ℙ5 birationally isomorphic to the
Kummer surface. It is nonsingular if the characteristic is different from 2.
A less-known construction, due to Kummer himself, relates the Kummer surfaceKum(Jac(𝐶))

to the theory of congruences of lines in ℙ3, irreducible surfaces in the Grassmannian 𝐺1(ℙ3). The
Kummer surface appears as the focal surface of a smooth congruence of lines 𝑆 of order 2 and class
2. The congruence 𝑆 is a quartic del Pezzo surface anticanonically embedded in a hyperplane in
the Plücker space ℙ5. Its realization as a congruence of lines chooses a smooth anti-bicanonical
curve 𝐵 ∈ | − 2𝐾𝑆| that touches all 16 lines on 𝑆. The double cover 𝑋 of 𝑆 branched along 𝐵 is a
K3 surface birationally isomorphic to the Kummer surface Kum(Jac(𝐶)) for some genus 2 curve
𝐶. The 16 lines on 𝑆 split into the union of two sets, of disjoint (−2)-curves, which form the
Kummer configuration.
Let us see what is going wrong if we assume that 𝑝 = 2. First of all, there are no normal quartic

surfaces with 16 nodes [3]. An abelian surface 𝐴 has four, two, or one 2-torsion points depending
on its 𝑝-rank 𝑟 equal to 2,1,0, respectively. If 𝑟 = 2 (resp. 𝑟 = 1, resp. 𝑟 = 0), the singular points
of Kum(𝐴) ∶= 𝐴∕(𝜄) are four rational double points of type 𝐷4 (resp. two rational double point
of type 𝐷8, resp. one elliptic double point) [19]. In the first two cases, the Kummer surface is
birationally isomorphic to a K3 surface, in the third case, it is a rational surface. The linear system|2Θ| still defines a degree two map onto a quartic surface in ℙ3. The equations of these surfaces
can be found in [22] if 𝑟 = 2 and in [12] for arbitrary 2-rank.
The relationshipwith the quadratic line complexes is studied in a recent paper of T. Katsura and

S. Kondō [20]. In characteristic 2, a pencil of quadrics in ℙ5 with smooth base locus 𝑌 has three
(instead of six) singular quadrics. The variety of lines in 𝑌 is isomorphic to the Jacobian variety
of a genus 2 curve with an Artin–Schreier cover of ℙ1 of the form 𝑦2 + 𝑎3(𝑡0, 𝑡1)𝑦 + 𝑎6(𝑡0, 𝑡1) = 0,
where the zeros of the binary cubic𝑎3 correspond to singular quadrics in the pencil [2]. Identifying
one of the smooth members of the pencil with the Grassmannian 𝐺1(ℙ3), one can consider, as in
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K3 SURFACES OF KUMMER TYPE 3

the case 𝑝 ≠ 2, the base locus of the pencil as a quadratic line complex ℭ. The singular surface of
the quadratic line complex is a Kummer quartic surface and the surface in ℙ5 of singular points
of the conicsΩ(𝑥) ∩ 𝑌 is a singular octic surface birationally isomorphic to the Kummer surface.
The equations of the quartic and the octic surfaces are provided in [2].
The main drawback of this nice extension of the theory of Kummer surfaces to characteristic 2

is that the Kummer configuration and the relationship between six points in ℙ1 gets lost. In the
present paper, we will present another approach whose goal is to reconstruct these relationships.
Although we lose the relationship to curves of genus two, we will restore the relationships with
the Kummer configuration (166), sets of six points in ℙ1, and the theory of congruences of lines
in ℙ3. The situation is very similar to what happens with del Pezzo surfaces of degree two (resp
one). The Geiser (resp. Bertini) involution defines a separable Artin–Schreier double cover whose
branch curve is a smooth conic (resp. a rational quartic curve) instead of a plane quartic curve
(resp. a standard genus 4 curve on a singular quadric). The connection to these curves is lost, but
their attributes such as 28 bitangents (resp. 120 tritangent planes) survive (see [11]).
The paper should be considered as a lengthy footnote to [20]. I am thankful to the authors for

a helpful discussion. I am also grateful to the anonymous referee for valuable comments and for
detecting computational errors.

1 K3 SURFACES OF KUMMER TYPE

Let 𝑘 be an algebraically closed field of characteristic 𝑝 ⩾ 0. We define a K3 surface of Kummer
type to be a K3 surface𝑋 that contains two sets and of 16 disjoint (−2)-curves (or their degen-
erations), such that any 𝐴 ∈ 𝐴 intersects 𝑛 curves from , and vice versa, every curve 𝐵 from
 intersects 𝑛 curves 𝐴 from . In other words, the two sets (,) form a symmetric abstract
configuration (16𝑛). We call the number 𝑛 the index of 𝑋.
A classical example of a K3 surface of Kummer type of index 6 is a minimal smooth model of

the Kummer surface Kum(𝐴) of a principally polarized abelian surface in characteristic 𝑝 ≠ 2.
As we discussed in the introduction, in characteristic 2, the Kummer surfaces are still defined

but they are not of Kummer type. We also explained how the geometry of the Kummer surface of
a principally polarized abelian surface 𝐴 in characteristic 𝑝 ≠ 2 is related to the geometry of the
sets of six points in ℙ1. Namely, the double cover of ℙ1 ramified over a set of six points is a smooth
genus two curve 𝐶, and one can associate to 𝐶 the Kummer surface Kum(Jac(𝐶)) of the Jacobian
variety Jac(𝐶).When𝐴 is not a simple abelian surface but rather the product𝐸1 × 𝐸2 of two elliptic
curves, we replace six points on ℙ1 with six points on a stable rational curve 𝐶 consisting of two
irreducible components with three points on each component. The double cover of 𝐶 of degree
2 ramified over six points (and the intersection point of the components) is isomorphic to the
union of two elliptic curves 𝐸1 and 𝐸2 intersecting at one point. Its generalized Jacobian variety
is isomorphic to 𝐸1 × 𝐸2.
The following example of a K3 surface of Kummer type of index 10 is less known.

Example 1.1. A Traynard surface is a quartic surface in ℙ3 over an algebraically closed field 𝑘 of
characteristic 𝑝 ≠ 2 with two sets of disjoint lines and  that form a symmetric configuration
(1610). These surfaces were constructed by Traynard [28] (see [13], where the surfaces are named
after Traynard). Not being aware of Traynard’s work, W. Barth and I. Nieto rediscovered the Tray-
nard surfaces in [1]. The surfaces are embedded Kummer surfaces of simple abelian surfaces 𝐴
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4 DOLGACHEV

with polarization of type (1,3). The negation involution acts on the linear space 𝐻0(𝐴,𝐴(2Θ)),
where Θ is a symmetric polarization divisor. The eigensubspace 𝑉 with eigenvalue equal to −1
is of dimension 4. The linear system |𝑉| ⊂ |2Θ| has base points at all 2-torsion points of 𝐴 and
defines a finite map of degree 2 of the blow-up of these points to ℙ3 with image a smooth quartic
surface 𝑋. The images of the exceptional curves over the torsion points form a set of 16 lines on
𝑋. The unique symmetric theta divisorΘ is a curve of genus 4, it passes through 10 torsion points,
and the images of the translates of Θ by 2-torsion points provide another set  of 16 disjoint lines
on 𝑋.

The next proposition is due to N. Shepherd–Barron [26, Corollary 13].

Proposition 1.2. Let𝑋 be a K3 surface over a field of characteristic 2. Suppose that𝑋 contains ⩾ 13
disjoint (−2)-curves. Then, it is unirational, and, in particular, a supersingular surface.

The following is an example of a supersingular K3 surface of Kummer type of index 4 in
characteristic 2 [6].

Example 1.3. Let 𝑋 be a supersingular K3 surface with the Artin invariant 𝜎0 equal to 1. The
isomorphism class of 𝑋 is unique. The surface contains a quasi-elliptic pencil with five reducible
fibers of type �̃�4 and 16 disjoint sections. The union of nonmultiple irreducible components of
four reducible fibers is a set of 16 disjoint (−2)-curves. Another set is formed by the 16 sections.
Each section intersects one nonmultiple component in each fiber, and this easily gives that the
sets, form a symmetric configuration of type (164). So, the surface is of K3 type of index 4 in
five different ways.

In the next sections, we give three different constructions of a three-dimensional family of
supersingular K3 surfaces of Kummer type and index 6 in characteristic 2. Its general member
is a supersingular K3 surface with Artin invariant 𝜎0 equal to 4.

2 WEDDLE SURFACES

There is an explicit relationship between sets of six points in ℙ1 and Kummer surfaces. One uses
the Veronese map to put the six points 𝑝1, … , 𝑝6 on a twisted cubic 𝑅3 in ℙ3. The discriminant
surface of the web 𝐿 of quadric surfaces through this set of six points is isomorphic (if 𝑝 ≠ 2) to
Kum(Jac(𝐶)). The curve 𝐶 is isomorphic to the double cover of 𝑅3 branched over the six points
𝑝1, … , 𝑝6.
In the case 𝑝 ≠ 2, theWeddle surface𝑊 is defined to be the locus of singular points of quadrics

from the web 𝐿. Equivalently, it can be defined as the closure of the locus of points 𝑥 ∈ ℙ3 such
the projections of the points 𝑝1, … , 𝑝6 from 𝑥 lie on a conic.
We may choose the projective coordinates to assume that

𝑝1 = [1, 0, 0, 0], 𝑝2 = [0, 1, 0, 0], 𝑝3 = [0, 0, 1, 0],

𝑝4 = [0, 0, 0, 1], 𝑝5 = [1, 1, 1, 1], 𝑝6 = [𝑎, 𝑏, 𝑐, 𝑑],
(1)
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K3 SURFACES OF KUMMER TYPE 5

where the point 𝑝6 does not lie in any plane spanned by three of the points 𝑝𝑖, 𝑖 < 6. Then, the
equation of the Weddle surface is

det

⎛⎜⎜⎜⎜⎝
𝑎𝑦𝑧𝑤 𝑥 1 𝑎

𝑏𝑥𝑧𝑤 𝑦 1 𝑏

𝑐𝑥𝑦𝑤 𝑧 1 𝑐

𝑑𝑥𝑦𝑧 𝑤 1 𝑑

⎞⎟⎟⎟⎟⎠
= 0 (2)

[15, §97]. One checks that, in all characteristics, a quartic surface 𝑊 given by this equation has
ordinary double points 𝑝1, … , 𝑝6. The surface𝑊 contains the lines ⟨𝑝𝑖, 𝑝𝑗⟩ and the twisted cubic
𝑅3 through 𝑝1, … , 𝑝6, all with multiplicity 1.
Conversely, counting parameters, we obtain that a general quartic surface in ℙ3 containing six

lines ⟨𝑝𝑖, 𝑝𝑗⟩ and the twisted cubic 𝑅3 passing through the points 𝑝1, … , 𝑝6 is given by (2)
If 𝑝 = 2, the symmetric matrix of the polar bilinear form of quadrics from the web 𝐿 is an

alternating form, so the discriminant surface is given by the pfaffian; hence, it is a quadric sur-
face. However, a quadric with polar bilinear form of corank 2 can still have an isolated singular
point. In fact, one checks that the geometric description of the Weddle surface still holds in
characteristic 2.
Another peculiarity of the case 𝑝 = 2 is that𝑊 has an additional singular point

𝑃 ∶= [
√
𝑎,
√
𝑏,
√
𝑐,
√
𝑑].

A direct computation of the resolution of this singular point shows that it is a rational double
point of type 𝐷4.

Proposition 2.1. Aminimal nonsingular model of theWeddle surface is a supersingular K3 surface
of Kummer type and index 6.

Proof. Since singular points of 𝑊 are rational double points, its minimal nonsingular model 𝑋
is a K3 surface. The proper transforms 𝐸𝑖𝑗 of the lines 𝓁𝑖𝑗 = ⟨𝑝𝑖, 𝑝𝑗⟩ and the proper transform 𝐸0
of the twisted cubic 𝑅3 are a set of 16 disjoint smooth rational curves on 𝑋. Let 𝐸𝑖, 𝑖 = 1, … , 6, be
the exceptional curves over the nodes of 𝑊, and 𝓁𝑖𝑗𝑘 be the residual line in the intersection of
𝑊 with the plane Π𝑖𝑗𝑘 = ⟨𝑝𝑖, 𝑝𝑗, 𝑝𝑘⟩. The plane Π𝑙𝑚𝑛 with {𝑖, 𝑗, 𝑘} ∩ {𝑙,𝑚, 𝑛} = ∅ intersects Π𝑖𝑗𝑘
along a line 𝓁. It intersects𝑊 at three points on lines 𝓁𝑖𝑗,𝓁𝑖𝑘,𝓁𝑗𝑘 and 𝓁𝑙𝑚,𝓁𝑙𝑛,𝓁𝑚𝑛. It follows that
𝓁 coincides with the line 𝓁𝑖𝑗𝑘. Thus, we find another set of disjoint (−2)-curves 𝐸𝑖𝑗𝑘, the proper
transforms of the lines 𝓁𝑖𝑗𝑘. It is immediate to check that the set  of 16 (−2)-curves 𝐸0, 𝐸𝑖𝑗 and
the set of (−2)-curves 𝐸𝑖, 𝐸𝑖𝑗𝑘 form an abstract symmetric configuration (166) isomorphic to the
Kummer configuration. The surface 𝑋 has 20 (−2)-curves; 16 of them come from the Kummer
configuration, and four come from the resolution of 𝑃. This implies that the Picard number of 𝑋
is equal to 22, and hence, 𝑋 is a supersingular K3 surface. □

It was noticed by Hutchinson [16] that the Weddle surface admits a cubic Cremona involution:

𝑇 ∶ [𝑥, 𝑦, 𝑧, 𝑤] ↦

[
𝑎

𝑥
,
𝑏

𝑦
,
𝑐

𝑧
,
𝑑

𝑤

]
.
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6 DOLGACHEV

This works also in characteristic 2, but instead of eight fixed points of 𝑇 outside 𝑊, there is a
unique fixed point lying on𝑊. This is the singular point 𝑃. Under the involution 𝑇, the curves 𝑅3
and the line 𝓁56 interchange. This allows us to find the parametric form of 𝑅3:

[𝑠, 𝑡] ↦

[
𝑎

𝑠 + 𝑡𝑎
,
𝑏

𝑠 + 𝑡𝑏
,
𝑐

𝑠 + 𝑡𝑐
,
𝑑

𝑠 + 𝑡𝑑

]
.

We identify 𝑇 with its biregular lift to the nonsingular model𝑋 of𝑊. Then 𝑇(𝐸1) = 𝐸234, 𝑇(𝐸2) =
𝐸134, 𝑇(𝐸3) = 𝐸124, 𝑇(𝐸4) = 𝐸123. Any other line 𝓁𝑖𝑗𝑘 intersects two opposite edges of the
coordinate tetrahedron, hence they form three orbits with respect to 𝑇.

Lemma 2.2. The surface 𝑋 contains a quasi-elliptic pencil invariant with respect to 𝑇. It has three
reducible fibers of type �̃�4 and eight reducible fibers of type �̃�∗1 . The involution𝑇 fixes one of the fibers
of type �̃�4 and switches other fibers in pairs.

Proof. Let 𝐹 = 2𝐸0 + 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4. It is immediate to check that 𝐹 is an effective nef divisor
of arithmetic genus one and type �̃�4 (type 𝐼∗0 in Kodaira’s notation), hence |𝐹| is a genus one pencil
on 𝑋. The image of 𝐹 under the involution 𝑇 is equal to 𝐺 = 2𝐸56 + 𝐸234 + 𝐸123 + 𝐸124 + 𝐸134.
Since 𝐺 ⋅ 𝐹 = 0, 𝐺 is another fiber of type �̃�4 and the pencil |𝐹| is 𝑇-invariant. The invariant fiber
is the unique member of |𝐹| that contains the singular point 𝑃. It is of type �̃�4. We also have six
more reducible fibers 𝐸𝑖𝑗𝑘 + 𝐸′𝑖𝑗𝑘, where 𝐸𝑖𝑗𝑘 is different from the components of 𝐺. Suppose that
the pencil |𝐹| is an elliptic pencil. Adding up the Euler–Poincaré characteristics of the reducible
fibers, we see that the sum is greater or equal than to 3 × 6 + 2 × 6 = 30 > 24. This contradiction
shows that the genus one pencil |𝐹|must be quasi-elliptic, also that theremust be twomore fibers
of types �̃�∗

1
(of type III in Kodaira’s notation) [17]. □

Since our family of supersingular K3 surfaces depends on three parameters (the projective
equivalence classes of six points 𝑝1, … , 𝑝6), the Local Torelli Theorem for supersingular K3 sur-
faces [25, §10, Theorem 2] suggests that the Artin invariant 𝜎0 of 𝑋 is equal to four. The previous
lemma can be used to confirm this.

Proposition 2.3. The Artin invariant 𝜎0 of a general 𝑋 is equal to 4.

Proof. Recall that the Artin invariant 𝜎0 of a supersingular K3 surface is equal to half of the rank
of the elementary abelian 2-group equal to the discriminant group of the Picard lattice.We use the
pencil |𝐹| fromLemma 2.2. The sublattice𝑀 spanned by irreducible components of fibersmodulo
the divisor class of a fiber is isomorphic to the orthogonal sumof three copies of the root lattices𝐷4
and eight copies of the root lattice of type 𝐴1. The pencil has eight disjoint sections 𝐸𝑘5, 𝐸𝑘6, 𝑘 =
1, 2, 3, 4; hence, the Mordell–Weil group MW(|𝐹|) of the quasi-elliptic fibration |𝐹| contains a
subgroup isomorphic to (ℤ∕2ℤ)⊕3. The Shioda–Tate determinant formula [27, 6.6.1]

|discr(Pic(𝑋)| ⋅ #MW(|𝐹|)2 = |discr(𝑀)|
gives 𝜎0 ⩽ 4. Since our family is three-dimensional, we get 𝜎0 ⩾ 4. This proves the assertion. □

Remark 2.4. It is known that the sum of 16 disjoint (−2)-curves on a K3 surface in characteris-
tic 𝑝 ≠ 2 is divisible by 2, and the corresponding 𝜇2-cover is birationally isomorphic to an abelian
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K3 SURFACES OF KUMMER TYPE 7

surface. I believe that in our case, the sum Σ of 16 disjoint curves 𝑅, 𝐸𝑖𝑗 or𝐸𝑖, 𝐸𝑖𝑗𝑘 is not divisible by
2 if𝑋 is a generalmember of the family.† If it were, theKummer𝜇2-cover of𝑋with the branch divi-
sor Σ is a nonnormal surface (since 𝑐2(Ω𝑋(Σ)) = −8). It is known that every supersingular surface
of Artin invariant 𝜎0 ⩽ 3 is birationally isomorphic to the quotient of the self-product of a rational
cuspidal curve by the infinitesimal group scheme 𝝁2 [21]. The action depends on two parameters
and the quotient surface has 16 rational double points of type 𝐴1 and one point of type 𝐷4. I do
not know whether the surfaces can be realized as degenerations of Weddle quartic surfaces.

As in the case where 𝑝 ≠ 2, we can consider a rational map 𝜏 ∶ ℙ3 ⤏ 𝐿∗ = ℙ3 given by the web
of quadrics 𝐿. The map factors through a separable Artin–Schreier cover of degree 2, the covering
involution is defined by an element of order 2 in the normal subgroup 𝐺 ≅ (ℤ∕2ℤ)5 of the Weyl
group𝑊(𝐷6) that leaves invariant the projective orbit of the ordered point set (𝑝1, … , 𝑝6) in the
Coble–Cremona action of𝑊(𝐷6) on the GIT-quotient 𝑃63 of six ordered points in ℙ

3 (see [4, §36],
[5]). It follows that the cover ℙ3 is birationally isomorphic to a hypersurface

𝑦24 + 𝑞2(𝑦0, 𝑦1, 𝑦2, 𝑦3)𝑦4 + 𝑞4(𝑦0, 𝑦1, 𝑦2, 𝑦3) = 0

in the weighted projective space ℙ(1, 1, 1, 1, 2), where 𝑄 ∶= 𝑉(𝑞2) is the pfaffian hypersurface of
the linear system 𝐿. TheWeddle surface is the ramification locus of this cover, and it is birationally
isomorphic to an inseparable 𝜇2-cover of the quadric𝑉(𝑞2) defined by the invertible sheaf𝑄(𝐵),
where 𝐵 = 𝑉(𝑞2, 𝑞4).
The rational map 𝜏 lifts to a separable regular degree 2 map �̃� ∶ Bl𝑝1,…,𝑝6(ℙ

3) → ℙ3. Its Stein
factorization consists of a birational morphism Bl𝑝1,…,𝑝6(ℙ

3) → 𝑌 that blows down the proper
transforms of 𝑅3,𝓁𝑖𝑗 and an Artin–Schreier finite map 𝑓 ∶ 𝑌 → ℙ3. The known formula for the
canonical sheaf of an Artin–Schreier cover gives that the branch divisor of 𝑓 is the union of the
quadric 𝑄 and six planes, the images of the exceptional divisors of the blow-up. It follows that
the branch divisor of the inseparable double cover 𝑋 → 𝑄 is equal to the union of six conics, the
images of the curves 𝐸1, … , 𝐸6. They intersect at one point 𝑥0, the image of 𝐸0.
Let 𝜋𝑥0 ∶ 𝑄 ⤏ ℙ2 be the projection of𝑄 to a plane with center at 𝑥0. The projections of the con-

ics are six lines 𝑉(𝑙1), … , 𝑉(𝑙6) in general linear position. The projections of the conics 𝜏(𝓁𝑖𝑗𝑘) are
conics, each passing through six of the 15 intersection points 𝑞𝑖𝑗 = 𝑉(𝑙𝑖) ∩ 𝑉(𝑙𝑗). The differential
𝑑Φ of the curveΦ = 𝑉(𝑙1⋯ 𝑙6) has 21 zeros counted with multiplicities and each two conics inter-
sect at two zeros outside the curve Φ [29]. In fact, the 10 conics intersect at two of these points,
the projections of the lines on 𝑄 passing through 𝑥0.
The additional zero of 𝑑Φ comes withmultiplicity four. It is equal to the projection of the image

on 𝑄 of the singular point of the Weddle surface𝑊.
By choosing projective coordinates in the plane such that

𝑙1 = 𝑥, 𝑙2 = 𝑦, 𝑙3 = 𝑧, 𝑙4 = 𝑥 + 𝑦 + 𝑧, 𝑙5 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧, 𝑙6 = 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧,

one directly checks that the condition that there exists a conic through the intersection points
𝑃𝑖𝑗 = 𝑉(𝑙𝑖, 𝑙𝑗), 1 ⩽ 𝑖 < 𝑗 ⩽ 3 and𝑃𝑚𝑛 = 𝑉(𝑙𝑚, 𝑙𝑛), 4 ⩽ 𝑚 < 𝑛 ⩽ 6 is equivalent to the condition that
the six lines are dual to six points lying on a smooth conic 𝐶 in the dual plane. Also, an explicit
computation shows that the line joining the two common points of the 10 conics coincides with

† In a recent preprint of Yuya Matsumoto [24, Theorem 4.8], it has been proven that my belief is wrong. In fact, any K3
surface of Kummer type admits an inseprable double cover ramified over 16 disjoint (−2)-curves.

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13033, W

iley O
nline L

ibrary on [27/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 DOLGACHEV

the line 𝓁 dual to the conic 𝐶. So, the double plane model of 𝑋:

𝑤2 + 𝑙1⋯ 𝑙6 = 0

is an analog in characteristic 2 of the double plane model of a Kummer quartic surface, where
instead of the dual line 𝓁, we have a contact conic to the lines.

Remark 2.5. In [29] I. Shimada gave a classification of supersingular K3 surfaces birationally
isomorphic to an inseparable double plane with the branch curve 𝑉(Φ) of degree 6. In this classi-
fication, it is assumed that the differential 𝑑Φ has 21 simple zeros. Our surface does not appear in
his list because 𝑑Φ has a multiple zero corresponding to the singular point 𝑃 of𝑊 of type 𝐷4.

3 SIX POINTS IN ℙ𝟏

We learned that a set of six points in ℙ1 in arbitrary characteristic leads to a K3 surface of Kum-
mer type of index 6 birationally isomorphic to aWeddle surface.We see the projective equivalence
class of six points in different ways: the six points 𝑝1, … , 𝑝6 on a twisted cubic 𝑅3, the six points
dual to the lines𝑉(𝑙𝑖) in its double plane birational model, six intersection points of the lines lying
on a conic, and six intersection points of the lines𝑉(𝑙𝑖)with the line 𝓁. It is classically known that
the GIT-quotient 𝑃6

1
∶= (ℙ1)6∕∕PGL2(𝑘) with respect to the democratic linearization is isomor-

phic to the Segre cubic primal Σ3 representing the unique projective isomorphism class of a cubic
hypersurface in ℙ4 with 10 ordinary nodes [5, Chapter 1, §3], [7, Theorem 9.4.10]. An equation of
Σ3 in all characteristics can be chosen to be the following:

𝑥1𝑥2𝑥4 − 𝑥0𝑥3𝑥4 − 𝑥1𝑥2𝑥3 + 𝑥0𝑥1𝑥3 + 𝑥0𝑥2𝑥3 − 𝑥
2
0𝑥3 = 0. (3)

The 10 singular points of Σ3 are:

[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 1, 1],

[0, 0, 1, 1, 1], [1, 1, 0, 0, 0], [1, 0, 1, 0, 0], [1, 0, 0, 0, 1], [1, 1, 1, 1, 0].
(4)

If 𝑝 ≠ 2, one can transform equation (3) to the familiar form

𝑥30 +⋯ + 𝑥34 − (𝑥0 +⋯ + 𝑥4)
3 = 0,

which exhibits obvious𝔖6-symmetry of the equation.
If 𝑝 = 2, the symmetry is not obvious. Fix the set of reference points 𝑝1, … , 𝑝5 in ℙ3 from (1).

An explicit rational parameterization

𝜙 ∶ ℙ3 ⤏ Σ3 ⊂ ℙ
4 (5)

is given by quadrics through the reference points:

[𝑡0, 𝑡1, 𝑡2, 𝑡3] = [𝑡3(𝑡0 + 𝑡1), 𝑡3(𝑡1 + 𝑡3), 𝑡2(𝑡0 + 𝑡1), 𝑡2(𝑡1 + 𝑡3), (𝑡0 + 𝑡2)(𝑡1 + 𝑡3)].
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K3 SURFACES OF KUMMER TYPE 9

The action of the symmetric group𝔖6 on Σ3 is induced by its rational action on ℙ3. The transposi-
tions (12),(23),(34),(45) of𝔖6 are realized by projective transformations of ℙ3 that leave invariant
the set of five reference points. The transposition (56) acts by the standard Cremona involu-
tion [𝑡0, 𝑡1, 𝑡2, 𝑡3] ↦ [ 1

𝑡0
, 1
𝑡1
, 1
𝑡2
, 1
𝑡3
]. The action of𝔖6 on Σ3 is induced by a five-dimensional linear

representation of𝔖6:

(12) ∶ [𝑥0, … , 𝑥4)] ↦ [𝑥0, 𝑥0 + 𝑥1, 𝑥2, 𝑥2 + 𝑥3, 𝑥0 + 𝑥2 + 𝑥4],

(23) ∶ [𝑥0, … , 𝑥4] ↦ [𝑥0 + 𝑥1, 𝑥1, 𝑥0 + 𝑥1 + 𝑥4, 𝑥1 + 𝑥3, 𝑥0 + 𝑥2],

(34) ∶ [𝑥0, … , 𝑥4] ↦ [𝑥2, 𝑥3, 𝑥0, 𝑥1, 𝑥0 + 𝑥2 + 𝑥4],

(45) ∶ [𝑥0, … , 𝑥4] ↦ [𝑥0, 𝑥1, 𝑥0 + 𝑥2, 𝑥1 + 𝑥3, 𝑥0 + 𝑥1 + 𝑥4],

(56) ∶ [𝑥0, … , 𝑥4] ↦ [𝑥2, 𝑥0 + 𝑥1 + 𝑥2 + 𝑥4, 𝑥0, 𝑥3 + 𝑥4, 𝑥4].

As in the case 𝑝 ≠ 2, the linear representation is an irreducible representation of𝔖6 correspond-
ing to the partition 𝜆 = (3, 3).
If 𝑝 ≠ 2, the dual hypersurface Σ∗

3
is a quartic hypersurface. The group𝔖6 acts linearly in the

dual projective space via its action on the partial derivatives of Σ3. It defines an irreducible linear
representation of 𝔖6 corresponding to the partition (2,2,2). In appropriate dual coordinates, Σ∗3 ,
can be given by the following equations in ℙ5:(

5∑
𝑖=0

𝑦2
𝑖

)2
− 4

5∑
𝑖=0

𝑦4
𝑖
=

5∑
𝑖=0

𝑦𝑖 = 0, (6)

which exhibit obvious𝔖6-symmetry. The quartic hypersurface Σ∗3 is isomorphic to the Igusa com-
pactification of the moduli space2(2) of principally polarized abelian surfaces with a level two
structure. For this reason, inmodern literature, the quarticΣ∗ is called the Igusa quartic, although,
in classical literature, it was known as the Castelnuovo quartic. For any smooth point 𝑥 ∈ Σ∗

3
, the

tangent hyperplane at 𝑥 cuts out Σ∗
3
along a quartic surface with 16 ordinary nodes. This is the

Kummer surface of the Jacobian variety of the genus two curve associated to the corresponding
point from Σ3 [4, p. 141].
The double cover of ℙ4 branched along Σ∗

3
admits a modular interpretation as the GIT-quotient

𝑃6
2
∶= (ℙ2)6∕∕PGL3(𝑘) [4, 5, Chapter 1]. Its equation in ℙ(1, 1, 1, 1, 2) is

𝑤2 + 𝐹4(𝑦0, … , 𝑦4) = 0, (7)

where we rewrite equations (6) by eliminating 𝑦5.† The involution 𝑤 ↦ −𝑤 corresponds to the
association involution, and its locus of fixed points is the GIT-quotient of the subvariety of (ℙ2)6
of ordered sets of points lying on a conic.
If 𝑝 = 2, the GIT-quotient 𝑃6

2
is still defined. It is isomorphic to a hypersurface  in

ℙ(1, 1, 1, 1, 1, 2) given by equation:

𝑤2 + 𝑤(𝑦2𝑦3 + 𝑦1𝑦4 + 𝑦0(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)) + 𝑦0𝑦1𝑦4(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4) = 0. (8)

† In modern literature, the fourfold given by (7) is known as the Coble fourfold.
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10 DOLGACHEV

The projection to the 𝑦-coordinates defines a separable double cover  → ℙ4 branched over the
quadric 𝑄 = 𝑉(𝑞), where

𝑞 = 𝑦2𝑦3 + 𝑦1𝑦4 + 𝑦0(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4).

The involution 𝑤 ↦ 𝑤 + 𝑞 has the same geometric meaning as in the case 𝑝 ≠ 2. The locus of
fixed points 𝐹 of the involution is isomorphic to the inseparable double cover of 𝑄 ⊂ ℙ4. As in
the case 𝑝 ≠ 2, 𝐹 is singular over the preimages of 15-lines. They represent the closed semistable
orbits of point sets of the form (𝑎, 𝑎, 𝑏1, 𝑏2, 𝑏3, 𝑏4). Each line contains three points representing
the closed semistable orbits of point sets (𝑎, 𝑎, 𝑏, 𝑏, 𝑐, 𝑐). The incidence relation between the lines
and the points is the famous Cremona–Richmond symmetric configuration (153).
The duality fails if 𝑝 = 2: the Hessian of the cubic polynomial defining Σ3 is identically zero.

The group𝔖6 still acts on  via its action on 𝑃6
2
defining a linear representation in the dual space

ℙ4 corresponding to the partition (2,2,2):

(12) ∶ (𝑦0, … , 𝑦4) ↦ (𝑦0, 𝑦1, 𝑦2, 𝑦0 + 𝑦1 + 𝑦3, 𝑦0 + 𝑦2 + 𝑦4),

(23) ∶ (𝑦0, … , 𝑦4) ↦ (𝑦0, 𝑦3, 𝑦4, 𝑦1, 𝑦2),

(34) ∶ (𝑦0, … , 𝑦4) ↦ (𝑦1, 𝑦0, 𝑦2, 𝑦3, 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4),

(45) ∶ (𝑦0, … , 𝑦4) ↦ (𝑦0, 𝑦2, 𝑦1, 𝑦4, 𝑦3),

(56) ∶ (𝑦0, … , 𝑦4) ↦ (𝑦0, 𝑦1, 𝑦0 + 𝑦1 + 𝑦2, 𝑦3, 𝑦0 + 𝑦3 + 𝑦4).

The quadric 𝑄 is invariant with respect to the representation. Since the partition (2,2,2) is not 2-
regular, the linear representation is reducible [18]. In fact, one observes that the vector (1,1,1,1,1)
is invariant.

Theorem 3.1. Let 𝑥 ∈ Σ3 ⊂ ℙ4 be a nonsingular point, and 𝑄𝑥 be the polar quadric of Σ3 with
pole at 𝑥. The preimage 𝑋 of 𝑄𝑥 under the map 𝜙 ∶ ℙ3 ⤏ ℙ4 is isomorphic to the Weddle surface
associated with six points (𝑝1, … , 𝑝5, 𝑝6 = 𝜙−1(𝑥)).

Proof. Since the map 𝜙 from (5) is given by the web of quadrics 𝐿, the pre-image of 𝑄𝑥 is a quartic
surface𝑊 in ℙ3 with double points at 𝑝1, … , 𝑝5. Since 𝑄𝑥 is tangent to Σ3 at the point 𝑥, the quar-
tic acquires an additional double point at 𝑝6 = 𝜙−1(𝑥). The images of the lines 𝓁𝑖 = ⟨𝑝𝑖, 𝑝6⟩, 𝑖 =
1, … , 5, are lines on Σ3 passing through 𝑥. It is known that the polar quadric 𝑄𝑥 intersects Σ3 at
points 𝑦 such that the tangent hyperplane of Σ3 at 𝑦 contains 𝑥 [7, Theorem 1.1.5]. This implies
that the five lines 𝜙(𝓁𝑖) are contained in 𝑄𝑥, and hence, the lines 𝓁𝑖 are contained in𝑊. Since 𝑄𝑥
passes through singular points of Σ3, the lines ⟨𝑝𝑖, 𝑝𝑗⟩, 1 ⩽ 𝑖 < 𝑗 ⩽ 5 are also contained in𝑊.
Let 𝑅3 be the unique twisted cubic through the six points 𝑝1, … , 𝑝6. Its image in Σ3 is the sixth

line in Σ3 passing through 𝑥. By above, it is also contained in 𝑄𝑥, and hence 𝑊 contains 𝑅3. It
follows from Section 2 that𝑊 is a Weddle surface. □

4 CONGRUENCES OF LINES ANDQUARTIC DEL PEZZO SURFACES

A congruence of lines in ℙ3 is an irreducible surface 𝑆 in the Grassmannian 𝔾 ∶= 𝐺1(ℙ3) of lines
inℙ3. A line 𝓁𝑠 inℙ3 corresponding to a point 𝑠 ∈ 𝑆 is called a ray of the congruence. The algebraic
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K3 SURFACES OF KUMMER TYPE 11

cycle class [𝑆] of 𝑆 in the Chow ring 𝐴∗(𝔾) is determined by two numbers, the order 𝑚 and the
class 𝑛. The order 𝑚 (resp. the class 𝑛) is equal to the number of rays passing through a general
point 𝑥 in ℙ3 (resp. contained in a general plane Π ⊂ ℙ3). We have [𝑆] = 𝑚𝜎𝑥 + 𝑛𝜎Π, where 𝜎𝑥
(resp. 𝜎Π) is the algebraic cycle class of an 𝛼-plane Ω(𝑥) of lines through a point 𝑥 ∈ ℙ3 (resp.
of a 𝛽-plane Ω(Π) of lines contained in a plane Π). The degree of the surface 𝑆 in the Plücker
embedding 𝔾 ↪ ℙ5 is equal to𝑚 + 𝑛.
The universal family of rays 𝑍𝑆 = {(𝑥, 𝑠) ∈ ℙ3 × 𝑆 ∶ 𝑥 ∈ 𝓁𝑠} comes with two projections 𝑝𝑆 ∶

𝑍𝑆 → ℙ3 and 𝑞𝑆 ∶ 𝑍𝑆 → 𝑆.
We assume that𝑚 = 𝑛 = 2 and 𝑆 is smooth. Then 𝑆 is a quartic del Pezzo surface in its Plücker

embedding that coincides with its anticanonical embedding. It follows that 𝑆 is contained in a
hyperplane section𝐻 ∩ 𝔾, a linear complex of lines.
By the definition of the order of a congruence, the cover𝑝𝑆 ∶ 𝑍𝑆 → ℙ3 is of degree 2. It is known

that 𝑆 does not contain fundamental curves, that is, curves in ℙ3 over which the fibers are one-
dimensional. Thus, the cover 𝑝𝑆 is a finite cover over the complement of a finite set of points.
Let us assume now that 𝑝 ≠ 2 and see later what happens in the case 𝑝 = 2. Although the clas-

sical theory of congruences of lines assumes that the ground field is the field of complex numbers,
all the facts are true only assuming that 𝑝 does not divide the order and the class (see a brief expo-
sition of the theory of congruences in [9, §2]). The cover 𝑝𝑆 ∶ 𝑍𝑆 → ℙ3 is a Kummer-type double
cover branched along the focal surface Foc(𝑆) of 𝑆. The focal surface is a quartic Kummer surface
with 16 nodes. The congruence is one of the six irreducible components of order 2 of the surface of
bitangent lines to Foc(𝑆). If the Plücker equation of 𝔾 is taken to be

∑6
𝑖=1 𝑥

2
𝑖
= 0, the equations of

the six congruences of bitangents are 𝑥𝑖 = 0.
The preimage of a ray 𝓁𝑠 under 𝑝𝑆 in 𝑍𝑆 is equal to the union of the fiber 𝑞−1𝑆 (𝑠) (which can be

identifiedwith𝓁𝑠) and a curve 𝐿𝑠 that is projected to𝐶(𝑠) = 𝑆 ∩ 𝕋𝑠(𝔾)under themap 𝑞𝑆 ∶ 𝑍𝑆 → 𝑆.
The intersection points 𝐿𝑠 ∩ 𝑞−1𝑆 (𝑠) are the preimages of the tangency points of𝓁𝑠 withFoc(𝑆). The
map 𝐿𝑠 → 𝐶(𝑠) is the normalizationmap, and the points in 𝐿𝑠 ∩ 𝑞−1𝑆 (𝑠) correspond to the branches
of 𝐶(𝑠) at the singular point 𝑠 ∈ 𝐶(𝑠). The locus of the pairs of points 𝐿𝑠 ∩ 𝑞−1𝑆 (𝑠) defines a double
cover 𝑞′

𝑆
∶ 𝑋 → 𝑆 of the ramification divisor 𝑋 of 𝑝𝑆 . The ramification curve 𝑅 of 𝑞′𝑆 is the locus

of the preimages in 𝑍𝑆 of points in Foc(𝑆), where a ray 𝓁𝑠 is tangent to Foc(𝑆) with multiplicity
4. The branch curve 𝐵 of 𝑞′

𝑆
is the locus of points 𝑠 ∈ 𝑆 such that the curve 𝐶(𝑠) has a cusp at 𝑠. It

is known that 𝐵 ∈ | − 2𝐾𝑆| [9, (2.9)]. It is a special canonical curve of genus 5, a Humbert curve.
The curve 𝐵 is cut out by a quadric in ℙ5. The adjunction formula shows that 𝑋 is a K3 surface.
The first projection 𝑝𝑆 ∶ 𝑋 → Foc(𝑆) is a minimal resolution of singularities. The fibers 𝐸(𝑥𝑖)

over the singular points 𝑥𝑖 of Foc(𝑆) form a set  of 16 disjoint (−2)-curves. Another set  of 16
disjoint (−2)-curves is obtained as the intersection of the planeΠ(𝑥𝑖) swept by the rays fromΩ(𝑥𝑖)
with Foc(𝑆). The plane Π(𝑥𝑖) is tangent to Foc(𝑆) along a conic. In classical terminology, such a
plane is a trope and the corresponding conic is a trope-conic. The map 𝑇(𝑥𝑖) → 𝐸(𝑥𝑖) is defined by
the deck transformation of the cover 𝑞𝑆 ∶ 𝑋 → 𝑆. It follows that each line on 𝑆 splits under the
cover 𝑞𝑆 ∶ 𝑋 → 𝑆. This is a remarkable property of the curve 𝐵: it is a curve in | − 2𝐾𝑆|, which is
tangent to all lines contained in 𝑆. Assume now that 𝑝 = 2. We still have a realization of a quartic
del Pezzo surface 𝑆 as a congruence of lines in ℙ3 of order 2. It is equal to a hyperplane section of
a quadratic line complex ℭ which we may assume to be smooth. It follows that the order and the
class of 𝑆 is equal to 2.
By definition of the order of a congruence, the projection 𝑝𝑆 ∶ 𝑍𝑆 → ℙ3 is a map of degree

2. Its general fiber is equal to the intersection of the smooth conic Ω(𝑥) ∩ ℭ with a hyperplane
section of 𝔾. Since 𝑆 is smooth, it consists of two points. This shows that the map 𝑝𝑆 is separable.
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12 DOLGACHEV

Let 𝑍𝑆 → 𝑍′
𝑆
→ ℙ3 be its Stein factorization, where the first map is a birational morphism and the

secondmap is a separable finite morphism of degree 2. Since𝐻1(ℙ3,ℙ3(𝑛)) = 0, 𝑛 ⩾ 0, the cover
𝑍′
𝑆
→ ℙ3 is an Artin–Schreier cover. The known formula for the canonical class of the universal

family of lines 𝑍𝔾 over 𝔾 [7, 10.1.1] easily gives that 𝜔𝑍𝑆 ≅ 𝑝
∗
𝑆
ℙ3(−2) ⊗ 𝑞

∗
𝑆
𝜔𝑆(1). The formula for

the canonical sheaf of an Artin–Schreier cover shows that 𝑍′
𝑆
is given by an equation:

𝑥24 + 𝐹2(𝑥0, 𝑥1, 𝑥2, 𝑥3)𝑥4 + 𝐹4(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 0, (9)

where𝑄 = 𝑉(𝐹2) is a quadric and𝑉(𝐹4) is a quartic surface. The quartic polynomial 𝐹4 is defined
up to a replacement of 𝐹4 with 𝐴2 + 𝐴𝐹2 + 𝐹4, where 𝐴 is a quadratic form.

Remark 4.1. As communicated to me by T. Katsura, one can give an explicit equation of the
quadric 𝑉(𝐹2) in terms of the equation of a congruence of lines 𝑆 of order 2 and class 2. If
𝔾1(ℙ

3) = 𝑉(𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3) ⊂ ℙ
5 and 𝑆 is given by equations

𝑎1𝑥1𝑦1 + 𝑎2𝑥2𝑦2 + 𝑎3𝑥3𝑦3 + 𝑐1𝑦
2
1 + 𝑐2𝑦

2
2 + 𝑐3𝑦

2
3 = 0,

𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛽1𝑦1 + 𝛽2𝑦2 + 𝛽3𝑦3 = 0,

then

𝐹2 = (𝑎1 + 𝑎3)(𝛼2𝑥0𝑥2 + 𝛽2𝑥1𝑥3) + (𝑎2 + 𝑎3)(𝛼1𝑥0𝑥1 + 𝛽1𝑥2𝑥3)

+ (𝑎1 + 𝑎2)(𝛼3𝑥0𝑥3 + 𝛽3𝑥1𝑥2).
(10)

The following proposition is an analog of the description of 𝑆 as an irreducible component of
the surface of bitangent lines to Foc(𝑆).

Proposition 4.2. The congruence 𝑆 is an irreducible component of the locus of points in 𝔾
parametrizing lines in ℙ3 that split under the cover 𝑝𝑆 ∶ 𝑍𝑆 → ℙ3 into two irreducible components.
In particular, no ray of the congruence is contained in the quadric 𝑄 = 𝑉(𝐹2).

Proof. The fiber 𝑞−1
𝑆
(𝑠) maps isomorphically to the ray 𝓁𝑠 under the projection 𝑝𝑆 ∶ 𝑍𝑆 → ℙ3.

Thus, the preimage 𝑝−1
𝑆
(𝓁𝑠) is equal to the union of 𝑞−1𝑆 (𝑠) and a curve 𝐿𝑠 whose points are the

preimages of rays intersecting 𝓁𝑠. The image of 𝐿𝑠 in 𝑆 under the projection 𝑞𝑆 ∶ 𝑍𝑆 → 𝑆 is equal
to the hyperplane section 𝐶(𝑠) ∶= 𝕋𝑠 ∩ 𝑆. If 𝓁𝑠 ⊂ 𝑄, then the restriction of 𝑝𝑆 over 𝓁𝑠 is a purely
inseparable cover, so the preimage of 𝓁𝑠 does not split. □

Note the last assertion is an analog of the fact that Foc(𝑆) does not contain lines.
I do not know how to describe explicitly the locus of splitting lines under a separable double

cover. However, the condition for splitting of a line is clear. A separable cover 𝑦2 + 𝑎𝑘(𝑡0, 𝑡1)𝑦 +
𝑏2𝑘(𝑡0, 𝑡1) = 0 of a line with coordinates 𝑡0, 𝑡1 is reducible if and only if 𝑏2𝑘 = 𝑎𝑘𝑐𝑘 + 𝑐2𝑘 for some
binary form 𝑐𝑘 of degree 𝑘.
The preimage of a general planeΠ in 𝑍𝑆 under the map 𝑝𝑆 is a separable double cover given by

the equation

𝑤2 + 𝑎2(𝑡0, 𝑡1, 𝑡2)𝑤 + 𝑏4(𝑡0, 𝑡1, 𝑡2) = 0,
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K3 SURFACES OF KUMMER TYPE 13

where (𝑡0, 𝑡1, 𝑡2) are coordinates in Π. The double cover is isomorphic to a del Pezzo surface of
degree 2. It is known that it has 28 lines that are split under the cover. They correspond to 56
(−1)-curves on the del Pezzo surface. The splitting lines are discussed in [11], where they are called
fake bitangent lines. The variety of splitting lines is a congruence in 𝔾 of class equal to 28. It is an
analog in characteristic 2 of the congruence of bitangents of a Kummer surface. Its order is known
to be equal to 12, and its class is equal to 28. Also is known that the congruence of bitangents of
a Kummer surface consists of six irreducible congruences of order 2 and class 2, and 16 𝛽-planes
Ω(𝑇), where 𝑇 is a trope. It is natural to conjecture that the congruence of splitting lines is also of
degree 12 and 𝑆 is one of its six irreducible components of order 2.
A general ray 𝓁𝑠 intersects the quadric 𝑄 at two points, and the preimages of these two points

in 𝑍𝑆 correspond to the branches of the singular point 𝑠 ∈ 𝐶(𝑠). Let 𝑋 ⊂ 𝑍𝑆 be the closure of the
set of the branches of the curves 𝐶(𝑠). By Proposition 4.2, no ray is contained in 𝑋. This shows
that the projection 𝑞′

𝑆
∶ 𝑋 → 𝑆 is a separable Artin–Schreier finite cover of degree 2. This is the

analog in characteristic 2 of the fact that the cover 𝑞′
𝑆
∶ 𝑋 → 𝑆 is a finite cover of smooth surfaces

of degree 2. In the blow-up plane model of 𝑆, 𝑋 is isomorphic to a surface of degree 6 in the
weighted projective space ℙ(1, 1, 1, 3) given by equation:

𝑥23 + 𝐹3(𝑥0, 𝑥1, 𝑥2)𝑥3 + 𝐹6(𝑥0, 𝑥1, 𝑥2) = 0. (11)

By the adjunction formula,𝜔𝑋 ≅ 𝑋 . A ray𝓁𝑠 defines a cusp of𝐶(𝑠) at 𝑠 if and only if it is tangent to
the quadric𝑄. It is known that the lines inℙ3 tangent to a smooth quadric surface are parametrized
by the tangential quadratic line complex  (𝑄). It is singular along the locus of lines contained in
𝑄 [7, Proposition 10.3.23]. Since  (𝑄) ∩ 𝑆 ∈ | − 2𝐾𝑆|, we see that  (𝑄) is tangent to 𝑆 along the
curve 𝐵 = 𝑉(𝐹3) ∈ | − 𝐾𝑆|. This differs from the case 𝑝 ≠ 2, where the branch curve 𝐵 belongs to| − 2𝐾𝑆|.
Let 𝐿𝑖 be one of 16 lines on the del Pezzo surface 𝑆 ⊂ 𝔾. A line in 𝔾 is a pencil of rays contained

in a plane, that is, 𝐿𝑖 = Ω(𝑥𝑖) ∩ Ω(Π𝑖) for some 𝑥𝑖 in a plane Π𝑖 . All rays 𝓁𝑠, 𝑠 ∈ 𝐿𝑖 , pass through
𝑥𝑖 , hence the fiber 𝐸(𝑥𝑖) of 𝑍𝑆 → ℙ3 over 𝑥𝑖 is equal to the fiber of the projections 𝑝𝑆 ∶ 𝑋 → ℙ3.
This implies that 𝑋 is singular over the point 𝑥𝑖 . So, we have 16 points 𝑥𝑖 ∈ 𝑄, over which the
map 𝑝𝑆 is not a finite morphism. The points are analogs of singular points of Foc(𝑆). We have
also 16 planes Π(𝑥𝑖), they are swept by the rays 𝓁𝑠, 𝑠 ∈ 𝐿𝑖 . Each plane Π(𝑥𝑖) intersects 𝑄 along a
conic 𝑇(𝑥𝑖). They are characteristic two analogs of trope-conics of Foc(𝑆). Both curves 𝐸(𝑥𝑖) and
the proper transforms of 𝑇(𝑥𝑖)’s in 𝑋 are mapped to the line 𝐿𝑖 , so the line 𝐿𝑖 splits under the
separable cover 𝑞𝑆 ∶ 𝑋 → 𝑆. This defines two sets  (of curves 𝐸(𝑥𝑖)) and  (of curves 𝑇(𝑥𝑖)) of
disjoint (−2)-curves on 𝑋.

Theorem4.3. Let �̃� be aminimal resolution of singularities of𝑋. Then �̃� is a K3 surface of Kummer
type of index 6 birationally isomorphic to a Weddle quartic surface.

Proof. The known formula for the canonical class of a separable double cover 𝑋 → 𝑆 gives 𝜔𝑋 ≅
𝑞∗𝜔𝑆(−𝐾𝑆) ≅ 𝑋 . Let us look at the singularities of 𝑋.
The surface 𝑋 is an inseparable Kummer cover of the quadric 𝑄 defined by a section of ⊗2,

where ≅ 𝑄(2). It is known that its set of singular points is equal to the support of the scheme of
zeros of a section ∇ ofΩ1

𝑄
⊗ ⊗2. This well-known fact follows from local computations: locally,

the cover is given by 𝑧2 + 𝑓(𝑥, 𝑦) = 0, and local sections ∇ = 𝑑𝑓(𝑥, 𝑦) glue together to a global
section ofΩ1

𝑄
⊗ ⊗2. An ordinary node is locally given by equation 𝑧2 + 𝑥𝑦 = 0, hence the local∇
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14 DOLGACHEV

is equal to 𝑦𝑑𝑥 + 𝑥𝑑𝑦; hence, it has a simple zero at the node. Any other singular point contributes
more than one to 𝑐2.
We have

𝑐2(Ω
1
𝑄
⊗ ⊗2) = 𝑐2(Ω

1
𝑄
) + 𝑐1(Ω

1
𝑄
)𝑐1(

2) + 𝑐1(
2)2 = 20.

We skip the proof that 𝑋 is normal (the direct proof is rather elaborate but the fact follows from
the argument in the last paragraph of the proof). It has 16 singular points over the 16 points 𝑥𝑖 . It
is known that the automorphism groupAut(𝑆) contains a subgroup isomorphic to (ℤ∕2ℤ)⊕4, and
that group acts transitively on the set of 16 lines [10, Theorem 3.1]. This implies that the 16 points
are ordinary nodes. Since the total sum of themultiplicities of the remaining zeros of∇ is equal to
4, 𝑋 has only rational double points. This proves that a minimal resolution �̃� of 𝑋 is a K3 surface.
The sum of 16 lines on 𝑆 is a divisor in the linear system | − 4𝐾𝑆|. The images on 𝑆 of extra

singular points of𝑋 lie outside the union of 16 lines. Thus, the self-intersection of its preimage on �̃�
is equal to 128. If 𝑛 is the index of the configuration, of (−2)-curves, then this self-intersection
must be equal to −64 + 32𝑛. This implies that 𝑛 = 6.
We have a Kummer configuration of 16 points and 16 conics on the quadric𝑄. Projecting𝑄 from

one of the points, we get six lines 𝑉(𝑙𝑖), the projections of the six conics containing the center of
the projection map. The projections of the other 10 conics are conics in the plane passing through
six intersection points of the lines. So, the surface𝑋 is birationally isomorphic to the double plane
𝑉(𝑤2 + 𝑙1⋯ 𝑙6) as in the case of a Weddle surface. The 10 conics intersect at the projections of the
rulings of 𝑄 containing the center of the projection map. We also get, as a bonus, that 𝑋 contains
a rational double point of type 𝐷4.† □

5 ROSENHAIN AND GÖPEL TETRADS

A Rosenhain tetrad of a quartic Kummer surface in characteristic 𝑝 ≠ 2 is a subset of four nodes
such that the planes containing three of the nodes are tropes [15, §50]. If one equips the set of
2-torsion points of Jac(𝐶) with a structure of a symplectic four-dimensional linear space over 𝔽2,
then a Rosenhein tetrad is the image of a translate of a nonisotropic plane. There are 80 Rosen-
hain tetrads. Each Rosenhain tetrad defines a symmetric configuration (43) between the sets of
tropes and nodes. The union of two Rosenhain tetrads without common points forms a symmetric
configuration (84). This configuration is realized by eight vertices of a cube and eight faces of two
tetrahedra inscribed in the cube.
The union of two Rosemhain tetrads can be illustrated by the following figure (see [23, 7.3]):

◦ ⋆ | ◦ ⋆

◦ ⋆ | ◦ ⋆

◦ ⋆ | ◦ ⋆

◦ ⋆ | ◦ ⋆

(12)

Here, circles correspond to the nodes, and the stars correspond to tropes. Each side of the diagram
represents a Rosenhain tetrad. A point in a row 𝑖 lies in the plane in the same row on the other

† I believe that the image of the singular point under the projection 𝑞𝑆 is the strange point on the del Pezzo surface 𝑆
defined in [10].
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K3 SURFACES OF KUMMER TYPE 15

side of the diagram, and it also lies in the three planes on the same side of the diagram from
different rows.
Let us see how to get this configuration with the absence of the Kummer surface. A quartic del

Pezzo surface 𝑆 contains 20 pairs of tetrads of disjoint lines with the intersection relation of each
pair forming an abstract configuration (43). We use a birational model of 𝑆 as the blow-up of five
points 𝑞1, … , 𝑞5 in the plane, and denote by 𝐿𝑖 the lines on 𝑆 coming from the exceptional curves
over the points 𝑝𝑖 , 10 lines 𝐿𝑖𝑗 coming from the lines ⟨𝑞𝑖, 𝑞𝑗⟩, and one line 𝐿0 coming from the
conic through the five points. Then the 20 pairs are the following:

∙ 10 pairs

{𝐿0, 𝐿𝑖𝑗, 𝐿𝑖𝑘, 𝐿𝑗𝑘}, {𝐿𝑖, 𝐿𝑗, 𝐿𝑘, 𝐿𝑙𝑚},

∙ 10 pairs

{𝐿𝑖, 𝐿𝑖𝑗, 𝐿𝑖𝑘, 𝐿𝑖𝑙}, {𝐿𝑚, 𝐿𝑗𝑚, 𝐿𝑘𝑚, 𝐿𝑙𝑚}.

Each tetrad of lines on 𝑆 from above splits in 𝑋 into eight disjoint (−2)-curves. The curves
correspond to the first two columns in the diagram, and the other tetrad in the pair defines the
third and the fourth columns. We get only 40 Rosenhain tetrads in this way. If 𝑝 ≠ 2, other 40
Rosenhain tetrads arise from different congruences of lines, which define different irreducible
components of the surface of bitangent lines of the Kummer surface. I believe that the same is
true if 𝑝 = 2: other 40 tetrads arise from different components of the surface of splitting lines of
the double cover (9).
Note that a configuration of type (43) is realized by two sets of lines among 20 lines on an octic

model of the Kummer surface in characteristic two [20, Figure 2].
A Göpel tetrad is a subset of four nodes such that no three of them lie on a trope. There are

60 Göpel tetrads. They correspond to the translated isotropic planes in 𝔽4
2
. To get them from a

quartic del Pezzo surface 𝑆, one considers 30 subsets of four skew lines (𝐿𝑖, 𝐿𝑗, 𝐿𝑘𝑙, 𝐿𝑘𝑚), where
{𝑖, 𝑗} ∩ {𝑘, 𝑙,𝑚} = ∅. The preimage of each subset in 𝑋 defines a set of four tropes and four points
𝑥𝑖 forming a Göpel tetrad. There will be 30 Göpel tetrads arising in this way. As in the case of
Rosenhain tetrads, other 30 Göpel tetrads should arise from other irreducible components of the
surface of splitting lines of (9).
Recall from [14, Theorem 1.20] that there are three abstract configurations of type (166). The

Kummer one is nondegenerate in the sense that any pair of trope-conics has two common vertices.
It follows from our construction of Kummer configurations that they are nondegenerate. If 𝑝 ≠

2, any nondegenerate Kummer configuration of points and planes of type (166) is realized on a
Kummer quartic surface. As we see, in characteristic 2 this is not true anymore, and the Kummer
surface should be replaced by a quadric surface.
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16 DOLGACHEV
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