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Introduction 

Let S be an Enriques surface over an algebraically closed field k of arbitrary 
characteristic p. Recall that this means that S is a connected smooth projective 
surface whose canonical class is numerically trivial and second Betti number 
equal to 10 [4]. It is well-known that, generically over k=(E, an Enriques surface 
does not contain nonsingular rational curves. This can be seen, for example, by 
considering the period space for such surfaces I-3]. Also, it is known that if S 
contains such a curve, then, again generically, it contains infinitely many of them. 
This can be seen, for example, by viewing an Enriques surface as an elliptic surface 
whose jacobian surface is a rational elliptic surface. Assuming that the latter is 
general enough, its translation group is infinite and acts on S by automorphisms. 
Thus, the existence of one such curve implies the existence of infinitely many. In 
this paper we prove the following rather surprising result: 

Theorem. Let S be an Enriques surface of  degree d in a projective space F n. Assume 
that S contains a smooth rational curve, then it contains such a curve of degree less or 
equal to d. 

This result (Theorem 2.5 and its corollary) immediately implies that the subset 
of the Hilbert scheme parametrizing Enriques surfaces of degree d in Pn containing 
Smooth rational curves is a constructible subset. In fact, we prove a stronger result: 
this set is closed and its complement is dense if we assume that char(k)~:2 
(Theorems 3.4 and 3.6). 

The result of the theorem above does not give the best estimate of the minimal 
degree of a smooth rational curve on a polarized Enriques surface. For example, by 
other means, we prove that an Enriques surface of degree 10 in ~,5 with a smooth 
rational curve must contain such a curve of degree less or equal to 4. In one case 
this result was known: there exist a 9-parameter family of Enriques surfaces 
parametrizing lines in F 3 included in at least two quadrics from a web of quadrics 
in [73 (Reye congruences). Every surface from this family embeds into p5 by 
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Plucker coordinates as a surface of degree 10 and contains smooth rational curves 
of degree less or equal to 4. 

The main technical tool in the proof of Theorem 2.5 is a lattice-theoretical 
result on the lattice T2, 3, 7 isomorphic to the Neron-Severi lattice of an Enriques 
surface (Theorem 1.5). 

All the results of these paper have analogues in the case where S is a Coble 
rational surface, a surface obtained by blowing up 10 points on •2 which occur as 
the nodes of a rational irreducible plane curve of degree 6. In fact, the study of these 
surface [6, 71 was one of the main sources of the ideas for this paper. 

1. A Lattice-Theoretical Result 

Here, by a lattice we mean an integral quadratic form, i.e. a free E-module L 
equipped with a symmetric bilinear form L • L ~ Z .  The value of this form on a 
pair (x, y) will be denoted by x.  y. 

We denote by @ the orthogonal sum of two lattices and by Lo the set of 
isotropic vectors in L (i.e. vectors x e L such that x 2: = x.  x = 0). 

We will be concerned with the two special lattices 

L= T2,3, 7 or T2,4, 5 . 

Recall the definition of the lattices Tp,~,,, where p, q, r are arbitrary integers _-> 2 

where Tp, q,, = Z~o~Z0q ~ . . .  OZ~,_  1 , n = p + q + r - 2 ,  

0 t 2 = - 2 ,  cti.c~i=l or 0 

according to whether 0q is joined to ~j or not in the following graph 

~p-1 C~p+ q-2 C~n-I 

1 
:C~p- 2 

[oo 
Let 

where 

L=Zeo@Zel @...@Ze,, 

e2=q_2,e2=... _ e  n -  2 = _ 1. 

Then, the lattice T2,~,, can be identified with the sublattice of L of all vectors 
orthogonal to the vector 

K = -qeo + ( q - 2 )  (el + ... +e , ) .  

To  see this it suffices to consider the vectors 

�9 o=eo--el--...--eq,~i=ei-ei+~, i=1 ,  . . . , n = q + r - 1  
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and to check that all of them are orthogonal to K and form a basis in the 
orthogonal complement of K. 

From now on L = T2,q., with (q, r) = (3, 7) or (4, 5). 

Lemma 1.1. Let E7(-1  ) and Es ( -1 )  denote the lattices T2,4, 3 and T2,3. s 
respectively and U = Z v l • Z v  2, where v 2 = v~ = 0 and Vl-V 2 = 1. Then 

T2, 3, 7 ='~ U O E s ( -  1) 

T2,,,5 ~- U @ E 4 -  I). 

Proof. Clearly, the lattices T2,4, 3 and T2.3, 5 can be identified with the sublattices of 
T:.4. s and T2, 3, 7 respectively which are spanned by the vectors % . . . . .  Ctk (k = 6 or 
7). 

Let 

f = 2 % + 2 ~ t  +2ct2+3a3+4cq+3cts+2%+ctT,  if L =  T2,,, 5 

f=3%+2c~t+4~tz+6~3+5ct4+4cts+3%+2c~v+ct 8, if L---T2,3,  7. 

Then, we can identify the lattice U with the sublattice of L spanned by the vectors 
f, f + ~,- 1 and verify the lemma. 

For every lattice L and integer m we let 

L m = { x e L : x  2 = - m } .  

In particular, Lo is the set of isotropic vectors in L as above. 
We denote the set L2 by R(L) (or simply R if no confusion arise) and call the 

elements of R(L) roots in L. 
Let W(L) be the subgroup of the orthogonal group O(L) of the lattice L which 

is generated by the transformations 

s~:x~x+(x .~)~ ,  

where = E R(L) (called reflections). We call W(L) the reflection (or Weft) group of L. 

l-emma 1.2. Let L = Tp, ~,,, where p-  ~ + q - 1 + r-  1 >= 1 or (p, q, r) = (2, 3, 7), (2, 4, 5), 
(3, 3, 4). Then 

(i) W(L).  R(L) = W(L) .  ct, for any o~ ~ R(L). 
(ii) W(L) is a Coxeter group with respect to the set of generators 

s =  {S~o, ...,s~,_,}. 

(iii) W(L) is a normal subgroup of finite index in O(L). 

[O(L)=W(L)x{+_I}  for L=T2,~.7 or T2,,,5.] 
(iv) Let 

C = { x E l _ ~ = L |  i=0  . . . . .  n - l } .  

Then for any x e L t  (x 2 > 0 / f  (p, q, r) = (2, 3, 7), (2, 4, 5), (3, 3, 4)) 

O(L) . xc~C 4:0. 

l~toof. This is well-known. In the case p-  t + q-  1 + r-  1 > 1, the lattice L can be 
identified with the root lattice of a simple root system of type D., E6, ET, or E8 
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equipped with the quadratic form given by the negative of the corresponding 
Cartan matrix. Then, all the assertions can be found in [5] [use the tables to check 
(i)]. 

In the ease p -  1 + q-  1 + r -  1 = 1, i.e. (p, q, r) = (2, 4, 4), (2, 3, 6) or (3, 3, 3), the 
lattice L_~ I Z ~ Z f ,  where E = T2, a, 4, T2.3, s, and T2, 3, 3 respectively and f2  = 0 (f 
can be taken as in the proof of Lemma 1.1 in the first two cases and f = a0 +2al 
+ a2 + 2a3 + 3a4 + 2~5 + a6 in the case T3, 3, 3). It is easy to see ttiat W(L) coincides 
with the affine Weyl group W~, where W = W(L:) [5, Chap. 6, Sect. 2]. All the 
assertions can be found again in [5]. 

The eases (p, q, r) = (2, 3, 7), (2, 4, 5), and (3, 3, 4) are more delicate. The groups 
W(L) are crystallographic reflection groups in a Lobachevski space. All the 
assertions are verified by constructing the corresponding fundamental polyhedron 
following Vinberg's algorithm [18]. 

Corollary 1.3. Let ~ be a root in T2, 3, 7. Then the orthooonal complement of the 
sublattice Zot is isomorphic to the lattice T2,4,5. 

Proof. The lattice T2,4, 5 embeds naturally into T2, a, 7 by embedding E 7 (  - -  l )  into 
E s ( -  1) and using Lemma 1.1. Its orthogonal complement in T2,3,  7 is a lattice of 
rank I and discriminant - 2. Thus, T2,4, s is the orthogonal complement of Zct for 
some root a. The result follows by applying Lemma 1.2(i). 

Lemma 1.4. Let L = T2,3, 7. Define 

f~= - K + e ~ ,  i=  1 . . . . .  10; 

A = - 3 K + e o = ( f  1 + ... + flo)/3. 

Then the above vectors belon9 to L and satisfy 

f~z = 0, f~ . f i =  1, i* j , f~ .  A =3,  A 2 = 10. 

Moreover, the vectors 

w o = A , w l = A - f a , w 2 = 2 A - f l - f 2 , w i = f ~ + t + . . . + f l o ,  i = 3 , . . . ,  10 

form the dual basis to the root basis ao . . . . .  a9 in L* = L. 

Proof. Direct verification. 

Let L be any indefinite lattice. Following [8] we can introduce the function 

by putting 

~L : L ~ Z _  o 

~bL(X)= min Ix ' f [ .  
f ~Lo-  {0) 

Obviously, this function is constant on O(L)-orbits. If L is hyperbolic [i.e. 
sign(/_~) = (1, r k ( L ) -  l)], then q~L(X)> 0 for every x with x2> O. 

Also, for every cteL 2 we define ~:L--*Z_~ o by 

r  rain Ix ' f [ .  
f r Lo - 10} 

f - ~ = 0  
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Theorem 1.5. Let ~ be a root in L = Tz, 3.7 and x e L with x.  x > O. Then 

3 2 ~ ( x ) < x . ~  or x.~<=~(~jx. 

Proof. Obviously,  we may  assume that  x .  ~ > 0. By Corol lary 1.3, we know that  L~ 
is isomorphic to the lattice T2,4, 5- Without  loss of generality, we may  assume that  
~=~9. Then an explicit root  basis in L~ can be given by 

~ = %, o~i = eo - el - e9 - el o = ao + a2 + 20~3 + 2~4 + 2~5 + 2% + 2a 7 + 2~ 8 + % ,  

�9 ~ = ~ ,  i = 2  . . . .  , 8 .  

Its dual basis in L~C�89 is {co~ . . . . .  co~}, where 

. , o = ~ O o _ ~ o 8 ,  , 1 , , _ � 8 9  , r O~1 = ~ (-D8~ O)2 = (-01, (-03 = 092 (.08, 60i = ( .Oi_ 1 - -  (D8 ,  i=4,...,8. 

Let y be a vector  f rom L~ defined by 

2x + (x .  a)~ = y .  

Note that  y .  y = 4x .  x + 2(x.  ~)2 > 0. 
Applying t ransformat ions  f rom the Weyl group of L~, we may  assume that y 

belongs to the set C ' =  1(__> oCO~)+... + R>__ ocoa (a fundamental  chamber),  that  is, y 
can be writ ten in the form 

y = aoco~) + . . .  + aaco~, 

where a~ are nonnegat ive  integers. 
Next, recalling the nota t ion  of L e m m a  1.4, we observe that  

t 3 3 1 1 3 3 
090=(c00-  ~ a ) +  ~ = ( A  - ~ f g - - ~ f ~ o - ~ f 9 + ~ f ~ o ) + ~ a  

= ( A - - 2 f 9 + f l o ) + 3 0 C = g o + { ~ ,  

t 1 1 1 1 1 1 
601 = (~ O98-- ~ (1) + ~ ~ = ~ (f9 + f lo ) - -  ~ (f9--  f lo)  + ~'(~ 

= f , o + � 8 9 1 8 9  

09~ =(09~ -- a) + 0~= (A - - f l  -f9)+fto+~ +a, 

o3~ = 2A --f~ - f2 - -  � 8 9  + f l 0 )  = f r o  + (A - - f l  -- f9) + (A -- f2  --fg)  

+ ~ ( f ~ - A o )  = ~  +a~ +a~ + ~ ,  

~ok = (A + ... +Ao)-(fg+Ao)=f.+ .., +f~ 
= ( A  + f s - a ) + ( A  + f T - ~ ) +  fs + 2~=o,  +gs +o6 + 2a, 

~o; = A  + ... +A=(f~+f6-~)+(f~+A-~)+2.=o~+os+2~, 

o ;  = A  + f ~  +A=(A+f~-~)+f~ = a ~  + a ~ +  ~,  

co'~=f~+A = (f~ + A  - ~ )  + . = 0 ~ + ~ ,  

where go . . . .  , g8 are  isotropic vectors in L. 
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Plugging these expressions in, we obtain 

y = b o # o +  ... + b999 +b~ ,  

where all bi and b are nonnegative integers. 
Since y-0~ = 0, we have 

2b = 3b o + b 1 + b z + b 3 + 264 + 2b5 + 2b7 + 2bs. 

Assume that x .  ~ > b. Then, 

2~,(x) = ~,(y) < y "fs = 2bo + bl + b2 + b3 + 2b4 + 2b5 + 2b 7 + b 8 = 2 b -  bo - ha. 

Thus, in this case 

~ ( x )  < x .  ~.  

Assume that x .  0~<b. Then, 

2x  = Z biyi + (b - (x  . oO)ot , 

hence, 
2x 2 = ~ br " x)  + ( b -  (x  . o0) (x . o 0 > ~L(x) ~ hi, 

i i 

2x. 0e = ~ b~(g i �9 ct)-  2 ( b -  (x.  0t)) ~ 3 ~ b i . 
i i 

This, obviously, proves what we want. 

R e m a r k  1.6. For  an indefinite lattice L it would be interesting to find an estimate of 
the function ~bL. It was proven by E. Looijenga (unpublished) that 

~ L ( x ) ~ < a x  2 , 

where a = 1,2, 3/2 for the lattices T2, 3, 7, T2,4, 5, T3, 3,4 respectively. Applying this 
result to the vector y = 2 x + ( x ,  oO0~ from the proof of the previous theorem, we 
obtain 

4~,(x) 2 = ~b~(,Y) 2 = ~r2,4,s(Y) 2 < 2Y 2 = 8x2 + 4(x- a)2, 

that is, 

~ ( x )  2 =< 2x ~ + (x. ~)2. 

This is rather close to our result, but, unfortunately, is not enough for the 
applications of the next section. 

2. Rational Curves on an Enriques Surface 

Recall [4] that an Enriques surface is a nonsingular projective surface S such that 

K s =- O, Bz (S )  = dim H~(S ,  ~ t )  = 10. 

If char(k) = p ~ 2, then the above definition is equivalent to the classical one: 

Ks#:O,  2Ks = 0, H I ( S ,  d?s) = 0. 
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Let Pic(S) be the Picard group of S and 

Hs = Pic(S)/numerical equivalence. 

The intersection form on Pic(F) equips Hs with a lattice structure. 

l_emma 2.1. 

H s  ~- T 2 , 3 ,  7 . 

Proof. See ['13, Theorem 0.4] and apply Lemma 1.1 (cf. also [10, 2.1]). 
For every divisor D on S we denote by ['D] its class in Hs. Let H~- denote the set 

of classes of effective divisors on S. 

Lemma 2.2. Let h E H s be the class of an ample divisor on S. Let x ~ Hs be such that 
x2>O and x .h>O.  Then x e H ~ .  

Proof. Let x = [D]. By Riemann-Roch 

h~ + h~  D) > �89 D 2 + Z(l~s) . 

It is known [4, p. 25] that X(60s)= 1. Thus, [D] or I - D ]  belongs to H~. The 
assumption x.  h > 0 implies x = [D] e H~. 

Let R~ be the set of the classes [El  ofnonsingular rational curves E on S. Since 
K s = 0, E 2 = - 2 and, hence, 

R~ C R(Hs). 

Definition. An Enriques surface S is called nodal (resp. unnodal) if R~ :k 0 (resp. 
R; =0). 

Lemma 2.3. An Enriques surface S is nodal if and only if 

R(Hs)c~H~ # O. 

Proof. Obviously, R~CH~.  Conversely, assume that xEH~nR(Hs) .  Write 
x=[D]  for some effective divisor D =  ~.niEi, where Ei are its irreducible 
components. Clearly, Ei 2 => - 2. Since D 2 = - 2, we must have E~ = - 2 for at least 
one component E i of D. By the genus formula, Ei is a nonsingular rational curve. 
Hence, S is nodal. 

Since IEI = {E} for every nonsingular rational curve E on S, we may identify the 
set of such curves with the set R~-. 

Recall that an elliptic (resp. a quasi-elliptic) pencil on S is a morphism f :  S ~ F  1 
whose general fibre is a smooth elliptic curve (resp. geometrically irreducible curve 
of arithmetical genus 1). 

Lemma 2.4. Let x ~ (Hs)oc~H~. Assume that x is primitive (i.e. is not divisible by 
any integer m > 1) and x . e > 0 for all e ~ R~. Then 2x is the class of a fibre of an 
elliptic or a quasi-elliptic fibration on S. Conversely, the class of such a fibre is equal 
to 2x, where x is a primitive isotropic vector in H s. 

Proof. This is well-known (see, for example, [13]). 
Now we can prove the main result of this paper. 
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Theorem 2.5. Let S be a nodal Enriques surface and H be an ample divisor on S. 
Then, there exists a smooth rational curve on S such that 

E.  n < 3H2/~Hs(EH]). 

Proof. Let % e R~- be the class of a smooth rational curve on S and h = I-HI be the 
class of H. Assume that 

~o " h > 3h2/q~ns(h). 

Then, it follows from Theorem 1.5 that one can find an isotropic vector f iri//s 
such that 

O< f .h<h.c t  o, f . ~ o = 0 .  

Clearly, we may assume that f is primitive. Let ~o = leo],  where E0 is a 
nonsingular rational curve. By Lemma 2.2, f = [D] for some positive divisor D. 
Since f . h < h . ~ o ,  Eo is not a component of D. Since D . E o = 0 ,  Eo does not 
intersect any irreducible component of D. In particular, for every e e R~- such that 
f .  e < 0, we must have e. ~o = 0. Assume that f .  e < 0 for some e ~ R~. Then 

f ' = s , ( f )  = f  + ( f -e )e  

satisfies 

f "  ct - 0  C ' . h < f . h .  " O - -  , J  

Also, f ' e  H~-, otherwise, by Lemma 2.2 

- f ' =  - ( f . e ) e - f  

is effective. This contradicts the obvious fact that ImEI is isolated for any 
nonsingular rational curve E on S and m > 0. Thus, replacing f by f ' ,  we may 
assume that f .  e > 0 for all e ~ R~-. Applying Lemma 2.4, we obtain that 12DI defines 
an elliptic or a quasi-elliptic pencil on S. Since Eo- D = 0, E0 must be an irreducible 
component of a member of 12DI. Let El be another component of the same fibre 
(necessarily a nonsingular rational curve). We have 

h. El < [2D - Eo]- h = 2 f .  h -  h. ~o < h. %.  

Proceeding in this way, we find a nonsingular rational curve satisfying the 
inequality. 

Remark 2.6. Notice that typically a nodal Enriques surface has infinitely many 
nonsingular rational curves. If k = C, then a nodal Enriques surface has finitely 
many nonsingular rational curves if and only if its automorphism group is finite 
[15]. Notice that the latter happens very rarely. In fact, all Enriques surfaces with 
finite automorphism group have been explicitly classified recently by S. Kond6. 

Corollary 2.7. In the notation of  Theorem 2.5, assume that H is a very ample divisor. 
Then there exists a nonsingular rational curve E on S such that 

E . H < H  2 . 



Smooth Rational Curves on Enriques Surfaces 377 

Proof. It suffices to show that ~brrs(H) > 3. Let f be a primitive isotropic vector in 
Hs. We may assume that f = I-D], where D is a positive divisor. Write D = ~ niC~, 
where C~ are irreducible. Since H is very ample, H- C~ > 0 for all i. Thus, either 
D. H >_- 3, or D = Ct + C2, where C 1 �9 H = C2" H = 1, or D is irreducible, D. H < 2. 
The linear system Inl embeds S into a projective space, and the image of D is a 
curve of degree D- H. In the first case, we obtain that D is the union of two lines, 
hence C1- C2 < 1. This is impossible, because D 2 = C~ 2 + C 2 + 2C 1 �9 C2 < - 2. In the 
second case, D is a conic or a line, again this is impossible. 

Remark 2.8. With substantially more effort one can show that the assertion of the 
corollary is still true for any ample divisor H. 

3. Polarized Enriques Surfaces 

Let S be an Enriques surface embedded into a projective space F". If deg(S)= d, 
then the Hilbert polynomial 

Ps(m) = X((-gs(m)) = �89 m2d + 1. 

Lemma 3.1. Let S be a nonsingular connected surface of deoree d in F" with the 
Hilbert polynomial Ps(m)= t m2d + 1. Then S is an Enriques surface or a rational 
surface. 

Proof. We have a) K s  H = 0 ,  b) Z(d~s)= 1, 

where H is a hyperplane section of S. 
It follows from a) that either Ks is numerically trivial, or ImKsl=O for all 

integers m:~0. In the second case, together with b), we get by Castelnuovo's 
criterion that S is rational. Suppose the first case occurs. Then, pg(S) = 0 or pg(S) = 1 
and Ks=0.  It follows from b) that hl((_gs)=0 or 1 respectively. If hi(S)=0,  then 
BI(S) = 0 and by Noether's formula c2(S) = 12. This shows that B2(S) = 10 and S is 
an Enriques surface. If hl(Os)= 1, then we get similarly that Bz(S) = 10+2B1(S). If 
B I(S) = 0, then S is an Enriques surface. If B1 (S) = 2 [clearly, B 1 (S) = 2 dim Alb (S) 
-_<_2ht(d~s)], then B2(S) = 14. However, Theorem 5 of E4] shows that no surfaces 
with Ks=0 ,  B2(S)= 14 exist. 

Remark 3.2. If S is embedded in F n by a complete linear system and H~(S, t~s)= 0 
[e.g. char(k) :l: 2], then deg(S)=2n. This follows from Ramanujan's vanishing 
theorem [13, Theorem 0.8]. 

Let Hilbert, m) be the Hilbert scheme parameterizing surfaces in ~'n with the 
Flilbert polynomial P(m)= �89 + 1. Let H~ be the open subset of this Hilbert 
scheme parametrizing Enriques surfaces embedded into F ~ by a complete linear 
system. By the previous Remark, n=  �89 if H~(S, r  

Lemma 3.3. Assume that char(k)4:2. Then H~ is a smooth scheme of dimension 
4dZ+4d+ 10 at each of its points. 

Proof. We know that 

H~ Os) = H2(S, Os) = n2(  S, dPs) = Hi( S, 6s(1))= 0, 

dimHl(S, Os)= 10, 
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where 0 s is the tangent sheaf of an Enriques surface S C P~ of degree d [13]. Using 
this, the proof is standard [16, Sect. 2]. 

Theorem 3.4. Let ~HaE be the subset of H a parametrizing nodal Enriques surfaces. 
Then ~H a is a closed subset of H a. 

Proof. By Theorem 2.5, we know that every Enriques surface of degree d in ~* is 
either unnodal or contains a rational curve of degree < d. 

Let p: X ~ H  d be the universal family of Enriques surfaces over Ha. For each 
positive integer t < d, we may consider the Hilbert scheme 

Hiib~n~,  

where Pt(m) =mt + 1. By Grothendieck, this is a quasi-projective scheme over H~. 
Its fibre over a geometric point a ofH~ parametrizes nonsingular rational curves of 
degree t lying on the Enriques surface Su=p-l(u)(~k(u).  It follows from 
Chevalley's theorem that the set k(u) 

~Ha = {u E H~ : (Hilb~n~)~ ~: 0 for some t < N} 

is a constructible subset of H~. To prove that it is a closed sub___set, it suffices to show 
this set is stable under specializations. Let r/~ ~H d /~, and t ~ {~/} be its specialization. 
Since f is proper and smooth, we have a specialization homomorphism (SGA VI, 
Exp. X, 7.17.3.2): 

sp: H s ~  H ~, 

where S~, Stare geometric fibres o f f  over r/and t respectively. It follows from the 
construction of sp that sp(H~~) ( H~v Also, it is known that sp is a homomorphism 
of the lattices. Thus, if S~is nodal, Srhas an'effective divisor D with D 2 = - 2. Then, 
one of the irreducible components of D is a nonsingular rational curve 
(Lemma 2.3), i.e. ST is nodal. This proves the theorem. 

Remark 3.5. In general, H~ is not connected. The number of its connected 
components is related to the number of the orbits of vectors x ~ T2.3, 7 with x 2 = d 
and ~b(x)> 3 under the action of the Weyl group W. 

We also do not know, whether nHa E is a proper subset of HaE. We show below 
that this is true in the case char(k):~ 2. 

Theorem 3.6. Assume char(k) :~ 2. Then 

unl-ld __ l i d  nlLld 
JtJt E ~ , t ~  E -  ~ z  E 

is an open dense subset of H~. 

Proof. Let U be a connected component of Ha and nU = ~H~n U. By Theorem 3.5, 
it suffices to show that U ~= nU. Assume U = -U. The restriction ofp '  X ~ H [  over U 
is a deformation of one of its fibres, Xuo=So . Since H~ Os~)=H2(Cso) =0 
(char(k)=~ 2), we have a universal deformation space for So, pro-represented by 

O = Spf(k[[T, . . . . .  Tlo]] ) . 

Since H2(So, r =0, this deformation is effective, and by Artin's theorem [1] is 
algebraizable. Thus, there exists a smooth connected k-scheme T of finite type, a 
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smooth proper m orphismf: Y ~  T and a closed point to ~ T such that Yto = So and 
Y x (gr,~o--,Spec(gT.to ffectively pro-represents deformations of S o. 

Suppose that the generic geometric fibre Y~ o f f  is a nodal Enriques surface. By 
a Theorem 6.1 of [8], Y~ is of special type. This means that there exist a rational 
nonsingular curve C~ and an irreducible elliptic or a quasi-elliptic pencil [F~ on Y~ 
such that Cv. F~ = 2. 

Let us show that the curves C~ and FV can be defined over a finite separable 
extension K" of the field K = k(q). Indeed, lifting the very ample sheaf (9So(1) to Y, 
we may assume that f is a family of polarized Enriques surfaces in ~n (of course, we 
replace T by an open neighborhood of to if needed). Let a = deg(C~), b = deg(F~), 
P(m) = am + 1, P'(m) = bin, and 

U C Hilb~/T, U" C Hilb~r 

be the open subsets of the corresponding Hilbert schemes whose geometric generic 
fibres contain the points associated to the curves C~ and F~ respectively. Since 

H~ (9c(C)) = 0 [resp. dimH~ (~e(F)) =dim IFI] 

for any rational nonsingular curve C (resp. irreducible curve F of arithmetic genus 
i) on an Enriques surface S, the schemes U and U' are smooth over T. In particular, 
C~- is defined over the residue field of a point of U, which must be a separable 
extension of K. Similarly, replacing F by a linear equivalent curve, we may assume 
that F is defined over a residue field of the smooth curve U~ which is a separable 
extension of K. 

Let T' be a normalization of T in K'. Since K' is a separable extension of K, T" 
is etale over a certain open neighborhood of t o. Thus, we may replace T by an etale 
neighborhood of to to assume that C~ and F~ are defined over k(t/). Now, by a 
standard specialization argument, we can find an open subset U of T such that Cs 
and F~ extend to a family C and F over U with Ct (resp. Ft) a nonsingular rational 
curve (resp. F t is an irreducible elliptic or a quasi-elliptic pencil) on Y,, Ct ~ Ft = 2, 
for all t e U. The pair (C, F) defines a structure of a family of U-marked Enriques 
surfaces on the family f :  Yv--,U [10]. Replacing U by a smaller set, we may 
assume that the system ]2C+F[ defines a morphism g:Yv--,lPt~ which is 
generically 2:1 to its image and the ramification subscheme is a family W - ,  U of 
curves of arithmetical genus 5 with at most an, dn, en-points as singularities which 
are canonically embedded into F 4. Each curve W~ from this family can be given as 
an intersection of three quadrics, two of them, up to a projective transformation 
can be chosen in the form: 

2 2 2 XO.-~-XI.4-X2-~-O, )COX4 "{- X2 = 0 

The coarse moduli space of such curves is a 9-dimensional variety M. The fibres of 
the canonical map #: U-oM represent isomorphic Enriques surfaces (loc. cit.). 
Since the property of formal versality is an open condition [2, 4.4], we can replace 
U by a smaller open set to assume that Y~Or , ,  is a versal deformation of Y, for all 
closed points t ~ U. However, the deformation of Y, along the tangent vector to the 
fibre of the map ~ : U ~ M  is trivial. This contradiction shows that the generic 
geometric fibre Y~ of f is an unnodal Enriques surface (cf. [13, p. 63], where this 
fact is proven in the case char(k) = 0). Now, since Y x ~T.,o is a versal deformation 
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of Xuo = So, we obtain that the geometric generic fibre of X x ~ V, uo ~ Spec d3 v, u0 is 
an unnodal Enriques surface. Obviously, this implies that the geometric generic 
fibre of Xv--*U is an unnodal Enriques surface. Thus, nH~ is a proper closed 
subset in every connected component of H d and the theorem is proven. 

Remark 3.7. In the case k = r  one can easily prove Theorem 3.6 by using the 
periods of Enriques surfaces [3, 2.5]. In fact, one can prove a little more. Recall that 
by Horikawa's result [11], the isomorphism classes of Enriques surfaces are 
parametrized by a quasi-projective variety Mr  = D~ where D O is the comple- 
ment of a certain analytic set in the union of two copies of a bounded symmetric 
domain of dimension 10 and of type IV, and F is a certain arithmetic group of 
automorphisms of D ~ As is explained in [3], the set of unnodal surfaces is 
parametrized by the set Dgen/F, where Dge n = D ~  U De. Here L is the lattice 

e E R ( L )  

T2,3,7, and De is a certain irreducible hypersurface in D. It was shown by 
Namikawa [,15, Theorem 6.4] that all Djs are F-equivalent and define an 
irreducible hypersurface nMr in Mr. Another proof of irreducibility of the image 
"Mr of uDc in M follows easily from Theorem 5.4.5 of [-8], which shows that "M~ 
= P(M~) in the notation of [10], Sect. 2. Now, if U is a connected component of the 
Hilbert scheme l-I~, then one can define the period mapping 

P : U~ME 

which assigns to a polarized Enriques surface of degree d in ~" the corresponding 
point in D/F. This map is a map of algebraic varieties, hence, 

U ~ = p -  1 (,Me) 

is a closed Zariski subset in U. To prove that U" ~ U we can argue as follows. The 
group SL(2d + 1) acts naturally on H~ leaving U invariant (because the group is 
connected). The quotient space U/SL(2d+ 1) exists as an algebraic space [17, 
p. 54]. Its dimension is equal to 10 by Lemma 3.3. Obviously, the period mapping 
factors through the quotient and defines a map of algebraic spaces 

P: U/SL(2d+ 1)-OME. 

Since the Picard group of an Enriques surface is discrete, there are only countably 
many projective isomorphism classes of polarized Enriques surfaces in any 
isomorphism class of Enriques surfaces. This shows that the fibres of/~ are discrete, 
hence finite, and P is a generically surjective map of 10-dimensional algebraic 
spaces. This proves that P is genetically surjective. Hence, U 4 = U n. 

4. Enriques Surfaces of Degree 10 in F s 

As follows from Corollary 2.6, every such surface is either unnodal or contains a 
smooth rational curve of degree at most I0. In this section we will prove that, in 
fact, a nodal Enriques surface of degree 10 in F s contains a smooth rational curve 
of degree less or equal to 4. 

Proposition 4.1. An Enriques surface cannot be embedded into F" as a surface of 
deoree less than 10. I f  S is an Enriques surface of degree 10 in F n not lying in a proper 
subspace and char(k) 4= 2, then n = 5. 
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Proof. Let ~b = ~bHs. It follows from the proof of Corollary 2.6, that ~b(h) > 3 for the 
class h of a very ample divisor on S. Fix an isometry cr: H s ~  T2. a. 7. Applying 
transformations from the Weyl group W, we may assume that ~r(h) belongs to the 
fundamental chamber, i.e. can be written as 

if(h) = a009 o + . . .  -I- a9(/}9, 

where a~ are nonnegative integers and the r are defined in Lemma 1.4. It is 
directly verified that if h2= 8, then 

a(h) = r x + 099, 2cos, or 098 + 3099 . 

However, since ~9 is an isotropic vector, we find that q~(a(h))<2. The same 
computation can be made for the cases h 2 < 8. However, if char(k) :t: 2, these cases 
can be excluded by other reason. Indeed, it is known that for any ample divisor H 
on S, HI(S, Gs(H))= 0 (cf. Remark 3.2). Thus, dimH~ (gs(H))= � 8 9  - 1. Obvi- 
ously, S cannot be a nonsingular sextic surface in pa. Also, we see why the last 
statement of the proposition is true. 

Proposition 4.2. Let S be an Enriques surface of degree 10 in ps.  Then there exists 
an isometry r Hs-"~ T2,3, 7 such that a(h)=A, where h is the class of a hyperplane 
section and A = r as defined in Lemma 1.4. 

Proof. In the notation of the proof of the previous proposition, we may assume 
that a(h) = a0co 0 + . . .  + a9r where 

(ao09o + . . .  + a9(.09) 2 = 10. 

By direct computation, we find that 

tr(h)=ogo, fO7+o)9, or r162 9. 

Only in the first case, ~b(h)> 3 (in fact, = 3), the condition which is necessary for 
very ampleness. 

Remark 4.3. It is proven in 1-8] that every Enriques surface admits a birationai 
rnorphism onto a surface of degree I0 in •5 with at most double rational 
singularities. In particular, every unnodal surface can be embedded into ps  as a 
surface of degree 10 (char(k) :t: 2). 

Theorem 4.4. Let S be a nodaI Enriques surface of  degree l O in a projective space Fn. 
Then S contains a smooth rational curve of degree < 4. 

Proof. As before, we fix an isometry between H s and the lattice T2, a, 7 which sends 
the class h of a hyperplane section of S to the vector A. Let f be an isotropic vector 
in Hs. We call it irreducible if it represents an effective divisor D on S such that 12DI 
is an irreducible elliptic or quasi-elliptic pencil with no reducible fibres. Applying 
Lemrna 1.4, we can write 

3h= f l  +.. .  + fxo, 

where f~ are isotropic vectors with f~. f~ = 1, i #:j, h. f~ = 3. Let f~j = h -  f~ -  fi, i 4:j. 
These are isotropic vectors with h-f~j = 4. 
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Assume now that S does not contain smooth rational curves of degree <4, i.e. 
for every class a of such curve ct. h > 4. Then, taking an effective representative of 
the vectors f~ or  f~i, we see that they cannot contain smooth rational components. 
Thus, the vectors fi and f~j are irreducible. 

Let us show that for every s from the Weyl group W of  H s, s(h) is the class of an 
ample divisor and for every class 0~ of a smooth rational curve s(h) .  ct > 4. The proof 
is by induction on the length lg(s) ofs as a word in simple reflections si = s~, where 
o q = f i - f j ,  j4 :0  and O t o = h - f l - f 2 - f 3 .  

Clearly, h is not changed after applying s i, i 4: 0. If s = so, 

3s(h) =f2,3 + f l . 3  +.1"1,2 + f 4 +  ... + f~o  = s(f~) + ... + s(f~o ) . 

Since all the summands are irreducible vectors, s(h) intersects positively every 
effective class. Hence, it is the class of an ample divisor. Let ~ ~ R § (Hs) such that 
s(h).  ,t <4.  We know that ot intersects every irreducible vector positively, thus, 
3s(h). 0~> 10, i.e. s(h) .  ot=4. 

There are two possibilities: either ot intersects one s(fi) at 3 and others at 1, or 
ct intersects two s(f~)'s at 2 and the remaining ones at 1. If c~- s(f/) = 3, then 

2s(f3. 

This is seen by comparing the intersection of the both sides with the vectors s(f~). If 
i>3 ,  then s(f~)=f~ and we easily get that ~ . f ~ , = s ( h ) . f l , ~ - 2 f ~ . f l . ~ = O .  This 
contradicts the irreducibility of the vector fl,~. If i<  3, say s(f~)= fa, z, then we 
repeat the argument by taking f2 instead of f~,~. 

Assume that 0~. s(f/) = ~- s(fj) = 2 for some i 4:j. Then 

s(h)-  s(y,)- , 

again, by comparing the intersections with the s(f~)'s. However, this implies that 
ot = s ( h -  f ~ -  f j )  = s(fi ,j) is an isotropic vector. 

If s =si ~ s', where lg(s')< lg(s), then replacing h by s'(h) and repeating the 
argument by using the induction, we obtain that s(h) is the class of an ample divisor 
and s(h) .  ~ > 4 for any o~ ~ R + (Hs). Taking s = s,, we get s(h) .  ct = h . s(a) = - h.  ~ < 0 
which is absurd. 

R e m a r k  4.5. Another proof of Theorem 4.5 proceeds as follows. One can directly 
compute the coordinates of roots �9 e T2, 3.7 with respect to the basis e0, . . . ,  e~0 for 
which 4 < ~. A < 10. This is done by solving the diophantine equations 

2 2 = m o - m l - . . . - m ~ o  - 2  

3 m o - m l  ... m~0=0 

with nonnegative m~'s, i4: 0, and 4 <mo < 10. Then, one checks that for each such 
root there exists an isotropic vector f with 0 < f .  0t < too, f '  0t = 0. After this, the 
argument from the proof of Theorem 2.5 shows, that we can always replace a 
smooth rational curve on S of degree > 4 by a curve of smaller degree. 

R e m a r k  4.6. Let  V be a rational surface obtained by blowing up 10 points on the 
projective plane p2. Then 

Pic (lO = ~,e0 @... ~)Zelo,  
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where eo is the class of the inverse transform of a line in F 2 and ei is the class of an 
exceptional curve blown up from one of the ten points. Since K v = - 3 e o  
+el + ... +elo,  the orthogonal complement of Kv is isomorphic to the lattice 
T2, 3.7- Thus, every nodal curve on K i.e. a smooth rational curve E with E. Kv = 0, 
defines a root in T2, 3, 7- The projection of such a curve to p2 is a plane irreducible 
curve of degree mo with mi-multiple points at the ten points which we have blown 
up. The numbers m 0 . . . .  , rnlo satisfy the diophantine equations from Remark 4.7. 
The existence of such a curve is a "discriminant condition" on the ten points [-6, 9]. 
In general, it is impossible to lower the degree mo of a discriminant condition. 
However, if we additionally assume that I -2Kv[ is non-empty and represented by 
an irreducible curve (a plane sextic with 10 double points), then we can obtain 
analogues of all results of this paper. For example, we can prove that every 
discriminant condition reduces to a condition of degree at most 4. The reason of 
imposing the above condition on [-2Kvl  is simple. In this case one can prove an 
analogue of Lemma 2.4 [where H s is replaced by (Kv)~icv ] and repeat the 
argument of the proof of Theorem 2.5. 

Note that the surfaces V from above (Coble surfaces) can be realized as 
certain degenerations of Enriques surfaces. They can be birationally mapped onto 
a surface of degree i0 in p5 with double rational singularities and one quadruple 
point. 

The reduction of discriminant conditions on Coble surfaces to the conditions 
of degree at most 4 was stated with a wrong proof by Coble [7]. The right idea of 
the proof belongs to Hilda Hudson 1-12] whose proof is incomplete also. 

Remark 4.7. It is easy to see that any root in L = T2, 3, 7 is equivalent modulo 2L to 
one of the following 496 (=24(25-1)) roots: 

(10) oftype e i -e j ,  

(130) of type eo--ei--ej--ek, 

(140) of type 2eo--ei--e~--ek--em--en--er, 

(13) of type 3eo-- 2e,--e~--ek--e,--en--e,--e,--e~, 

1 of type 4eo-- 3el --e2--.. .  --elo, 

where all indices are distinct. 
Let us fix a divisor H on an Enriques surface S such that the linear system IH[ 

defines a birational morphism onto a surface of degree 10 with at most double 
rational singularities (cf. Remark 4.3). Let h be the class of H in Hs and a : Hs ~ L  be 
an isometry which maps h to the class A. It follows from Theorem 4.6 that S 
contains smooth rational curves whose classes are represented by a vector 
•oeo-mlel - . . .  -mloelo in L o with m 0 <4. Solving the corresponding diophan- 
tine equations (cf. Remark 4.5), we find that such a vector must be one of the 496 
vectors above or equal to a vector 0t = 4e0-  2e~- 2e j -  2ek-  era- e , -  e t -  e, 

e~-ep. However, the latter type can be reduced to the vector ~ '=  2e0-  era-e~ 
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--et--er-e~--ep by  the a lgor i thm of the p roof  of  Theorem 2.5. To  see this, one 
considers the isotropic vector f = 3 e o -  e i -  e~- ek-- era-- e,-- e,-- el-- e~-- ep and 
notice that  f .  ~ = 0, 2 f - -  ~t = ~'. 

Observe that  the curves of  the first type represent the curves blown down to 
double  rat ional  points by the m a p  given by the linear system IHI. The curves of the 
remaining types represent lines, conics, cubic and quart ic  rational curves on the 
image. 

Fo r  a "generic" nodal  rat ional  surface S any  smooth  rational curve can be 
reduced by an  au tomorph i sm of  S to a curve of  one of  the 496 types and this class 
depends only on the choice of  h. Here, a generic nodal  surface can be defined as a 
nodal  surface which admits  an embedding into IP 5 as a surface of degree 10 lying on 
a nonsingular  quadric  and not  containing smooth  rational curves of  degree less 
than 4. This condi t ion implies that  S is i somorphic  to a Reye congruence of  lines in 
p3. The p roof  of  the above result will be published in a future paper. 
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