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Abstract. We review the classical definition of the dual homogeneous
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1. Introduction

A well-known theorem from linear algebra asserts that a nondegenerate
quadratic form F2 on a complex vector space V of dimension n + 1 can be
written as a sum of n + 1 squares of linear forms li. The linear forms li’s
considered as vectors in the dual space V ∗ are mutually orthogonal with
respect to the dual quadratic form F̌2 on the space V ∗. For more than hun-
dred years it has been a popular problem for algebraists and geometers to
search for a generalization of this construction to homogeneous forms Fd on
V of arbitrary degree. It is known as the Waring problem or the canonical
forms problem for homogeneous forms. The main object of the study is the
variety of sums of powers VSP(Fd; N)o parametrizing all representations
of Fd as a sum of powers of N linear forms. According to the traditional
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definition, VSP(Fd; N)o is the subset of the projective space PSNV ∗ of ho-
mogeneous polynomials of degree N on V equal to the product of linear
forms l1 · . . . lN such that Fd =

∑
ldi . The zero sets V (li) of the forms li’s

are hyperplanes in PV , and the set V (l1), . . . , V (lN ) was classically known
as the polar polyhedron of Fd. Its faces V (li) can be viewed as points in
the dual space PV ∗, and the variety VSP(Fd; N)o is the subvariety of the
symmetric power PV ∗(N) of PV ∗ parametrizing the polar polyhedra of Fd.
The varietes VSP(Fd; N)o were intensively studied in the classical algebraic
geometry and the invariant theory in the works of A. Dixon, F. Palatini, T.
Reye, H. Richmond, J. Rosanes, G. Scorza, A. Terracini, and others. How-
ever, the lack of techniques of higher dimensional algebraic geometry did not
allow them to give any explicit construction of the varieties VSP(Fd; N)o or
to study a possible compactification VSP(Fd; N) of VSP(Fd; N)o (except in
the case n = 1 and a few cases where VSP(F2, N)o is a finite set of points).
The first explicit construction of VSP(Fd; N)o was given by S. Mukai in
the cases (n, d, N) = (2, 2, 3), (2, 4, 6), (2, 6, 10) for a general polynomial Fd.
He also constructed a smooth compactification VSP(Fd; N) which turned
out to be a Fano threefold in the first two cases and a K3 surface in the
third case. By a different method, this result was proven later by K. Ranes-
tad and F.-O. Schreyer [12]. Other explicit smooth compactifications of
VSP(F ; N) are known only for general cubic polynomials in n + 1 ≤ 6
variables. If n = 2, VSP(F ; 4) is isomorphic to the projective plane [3], if
n = 3, VSP(F ; 5) is the one-point set (this a classical result of Sylvester,
see [14]), if n = 4, VSP(F, 8) is a smooth 5-dimensional Fano variety and,
if n = 5, VSP(F, 10) is a holomorphic symplectic 4-fold (see [8]). The con-
struction of S. Mukai is very beautiful and employs a generalization of the
notion of the dual quadratic form to forms of arbitrary even degree d = 2k.
This generalization emerges from the classical theory of apolarity, a nowa-
days almost forgotten chapter in multilinear algebra. One associates to Fd

a quadratic form ΩF on the symmetric power SkV of V and, if this form
is non-degenerate, the dual quadratic form Ω̌F ∈ S2(SkV ∗). The multipli-
cation map S2SkV ∗ → S2kV ∗ defines the dual form F̌ of degree d on V ∗.
A representation F2k = l2k

1 + . . . + l2k
N can be viewed as a representation of

ΩF as a sum of squares of linear forms from SkV ∗ which happen to be kth
powers of linear forms. It follows from this that the minimal N for which
VSP(F2k, N)o �= ∅ (which we call the Waring rank of Fd) is greater or equal
to the rank of ΩF . The cases considered by Mukai are the cases where the
equality takes place.



Vol. 72 (2004) Dual Homogeneous Forms 165

The main goal of this paper is to fill in some of the details of Mukai’s
construction sketched in [10]. We make an effort to use the techniques of
algebraic geometry as less as possible. A few original results can be found
in the last section.

I am grateful to Kristian Ranestad for some comments on the paper
and Michael Sagranoff for sending me his diploma paper.

2. The apolarity pairing

2.1. Apolar forms

Let V be a complex vector space of dimension n + 1 and V ∗ be its dual
vector space. We have a canonical duality pairing

V × V ∗ → C, 〈v, l〉 = l(v). (2.1)

This can be naturally extended to a canonical perfect bilinear pairings

SkV × SdV ∗ → Sd−kV ∗, (Φ, F ) �→ 〈Φ, F 〉 (2.2)

between the symmetric powers of V ∗ and V (by definition, Sd−kV ∗ = 0
if d < k). The easiest way to do this is via coordinates. Choose coordi-
nates t0, . . . , tn in V and the dual coordinates ξ0, . . . , ξn in V ∗ to iden-
tify the symmetric algebra S•V ∗ (resp. S•V ) with the polynomial algebra
R = C[t0, . . . , tn] (resp. U = C[ξ0, . . . , ξn]). Then SdV ∗ is identified with
the space Rk of degree k homogeneous polynomials and we have a similar
identification for SkV . For any homogeneous polynomial Φ(ξ0, . . . , ξn) ∈ Uk

consider the linear differential operator

DΦ = Φ(∂0, . . . , ∂n).

by replacing the variable ξi with the operator ∂i = ∂
∂ti

. Now set, for any
Φ ∈ SkV and Φ ∈ SdV ∗,

〈Φ, F 〉 = DΦ(F ). (2.3)

We call this pairing the apolarity paring.
Taking k = d, we obtain the duality isomorphisms

SdV ∗ ∼= (SdV )∗, SdV ∼= (SkV ∗)∗. (2.4)

The following properties of the apolarity pairing follow easily from the
definition.

(P1) 〈ΦΦ′, F 〉 = 〈Φ, 〈Φ′, F 〉〉;
(P2) 〈vd, F 〉 = F (v), for any v ∈ V .
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Fixing F ∈ SdV ∗ we get a linear map

apk
F : SkV → Sd−kV ∗, Φ �→ DΦ(F ). (2.5)

It is called the apolarity map.

Definition 2.1. A homogeneous form Φ ∈ Sk(V ) is called apolar to a homo-
geneous form F ∈ Sd(V ∗) if DΦ(F ) = 0, or, in other words, Φ ∈ Ker(apk

F ).
The linear space of apolar forms of degree k is denoted by APk(F ).

Lemma 2.1. Let us identify SkV with (SkV ∗)∗ by means of the apolarity
paring. Then

apk
F (SkV )⊥ = APd−k(F ).

Proof. By Property (P1), for any Φk ∈ SkV and any Φ′
d−k ∈ Sd−kV , we

have
〈Φ′

d−k, apk
F (Φk)〉 = 〈Φ′

d−k, 〈Φk, F 〉〉 = 〈Φ′
d−kΦk, F 〉

= 〈Φk, 〈Φ′
d−k, F 〉〉 = apd−k

F (Φ′
d−k)(Φk).

Thus, if 〈Φ′
d−k, apk

F (Φk)〉 = 0 for all Φk we get apd−k
F (Φ′

d−k)(Φk) = 0 for
all Φk. By nondegeneracy of the apolarity pairing we get apd−k

F (Φ′
d−k) = 0,

i.e. Φ′
d−k ∈ APd−k(F ). The converse is proven in the same way. �

2.2. Quadratic forms

If d = 2, the space S2V ∗ is the space of quadratic forms on V . In coordi-
nates, Q ∈ S2V ∗ is given by a symmetric matrix A = (aij)

Q(t0, . . . , tn) =
n∑

i,j=0

aijtitj .

The apolarity map is

ap1
Q : V → V ∗, v �→ Dv(Q) = 2

∑

0≤i≤j=n

aijvitj =
n∑

j=0

∂Q

∂tj
(v)tj. (2.6)

Considered as a bilinear form V × V → C, this is the polar symmetric
bilinear form bQ associated to Q. We shall identify ap1

Q with bQ via the
equality

bQ(v, w) = 〈w, ap1
Q(v)〉. (2.7)

The quadratic form Q is nondegenerate if and only if ap1
Q is an invert-

ible linear map. In this case, there exists a unique quadratic form Q̌ on V ∗

such that
bQ̌ = b−1

Q .
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This quadratic form is called the dual quadratic form of Q. By solving the
linear system of equations

n∑

i=0

aijxi = yj , j = 0, . . . , n,

we obtain that

Q̌ =
n∑

i,j=0

a∗ijξiξj ,

where (a∗ij) = adj(A) is the matrix of complementary minors of A.
Applying (2.7), we get

bQ̌(bQ(v), bQ(v)) = 〈bQ(v), bQ̌(bQ(v)〉 = 〈bQ(v), v〉 = bQ(v, v).

This shows that
Q(v) = 0 ⇐⇒ Q̌(bQ(v)).

Thus the map bQ : V → V ∗ sends the zero locus of the quadric Q to the
zero locus of the dual quadric. It follows from (2.6) that, for any nonzero
v ∈ Q−1(0) the hyperplane bQ(v)⊥ is the tangent hyperplane of Q−1(0) at
v. Thus the dual quadric Q̌ ⊂ PV ∗ is the locus of tangent hyperplanes of
the quadric V (Q) ⊂ PV.

2.3. Dual homogeneous forms of higher degree

We would like to generalize the notion of the dual quadratic form to the
case d > 2. Such a generalization is known for even d = 2k. Let F ∈ S2kV ∗

and
apk

F : SkV → SkV ∗

be the apolarity map (2.5). Using (2.4), we can view this map as a sym-
metric bilinear form

ΩF : SkV × SkV → C, ΩF (Φ1, Φ2) = apk
F (Φ1)(Φ2) = 〈Φ2, apk

F (Φ1)〉.
(2.8)

Let us identify ΩF with the associated quadratic form on SkV (the restric-
tion of ΩF to the diagonal). This defines a linear map

Ω : S2kV ∗ → S2SkV ∗, F �→ ΩF .

There is also a natural left inverse map of Ω

P : S2SkV ∗ → S2kV ∗
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defined by multiplication SkV ∗ × SkV ∗ → S2kV ∗. All these maps are
GL(V )-equivariant and realize the linear representation S2kV ∗ as a direct
summand in the representation S2SkV ∗.

To see the expression of ΩF in terms of coordinates, let us write F in
the form

F =
∑

|i|=d

d!
i!

ait
i.

Consider a basis in Sk(V ) formed by monomials ξi and a basis in SkV ∗

formed by monomials ti ordered lexigraphically. The matrix of apk
F with

respect to these bases is called the kth catalecticant matrix of F and is
denoted by Catk(F ). Its entries cuv are parametrized by pairs (u,v) ∈
N

k × N
k with |u| = |v| = k. We have

cuv = au+v.

Considering ai as independent variables Ti, we obtain the definition of a
general catalecticant matrix Catk(n + 1). This is a square matrix of size
dimSkV =

(
n+k

k

)
. For n = 1 this matrix is known as a Hankel matrix.

Similarly one can define a non-square catalecticant matrix which defines
the apolarity map SkV → Sd−kV ∗.

As in the case of quadratic forms, the quadratic form ΩF on the space
SkV is defined by the symmetric matrix Catk(F ). In particular, ΩF is a
non-degenerate quadratic form if and only if det Catk(F ) �= 0.

Definition 2.2. A homogeneous form F ∈ S2kV ∗ is called nondegenerate if
ΩF is a nondegenerate quadratic form on SkV .

Theorem 2.3. Assume that F ∈ S2kV ∗ is nondegenerate. There exists a
unique homogeneous form F̌ ∈ S2kV such that

ΩF̌ = Ω̌F .

Proof. We know that Ω̌(F ) is defined by the cofactor matrix adj(Catk(F )) =
(c∗uv) so that

Ω̌F =
∑

c∗uvξuξv.

Let

F̌ =
∑

|u+v|=2k

d!
(u+v)!c

∗
uvξu+v.
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Recall that the entries cuv of the catalecticant matrix depend only on the
sum of the indices. Thus the entries of the cofactor matrix adj(Catk(F )) =
(c∗uv) depend only on the sum of the indices. For any ti ∈ SkV ∗, we have

Dti(F̌ ) =
∑

u,v,u+v≥i

d!
(u+v)!c

∗
uv

(u+v)!
(u+v−i)!ξ

u+v−i =
∑

j,|j|=k

d!
j! c

∗
ijξ

j

This checks that the matrix of the linear map SkV ∗ → SkV defined by ΩF̌

is equal to the matrix adj(Catk(F )). Thus the quadratic form ΩF̌ is the
dual of the quadratic form ΩF . �

Recall that the locus of zeroes of the quadric Q̌ in V ∗ is equal to the
set of linear functions of the form l = bQ(v) such that 〈v, l〉 = 0. The same
is true for the dual form F̌ . Its locus of zeroes consists of linear forms l
such that Ω−1

F (lk) ∈ SkV vanishes on l. The degree k homogeneous form
Ω−1

F (lk) is classically known as the anti-polar of l (with respect to F ).

3. Sums of powers

3.1. The variety VSP(F ; N) of sums of powers

For any F ∈ SmV ∗ we denote by V (F ) the zero locus of F in the projective
space PV ∼= P

n. For any nonzero v ∈ V we denote by [v] the corresponding
point Cv in PV . The same notation is used for the dual space PV ∗. Thus
any linear form l ∈ V ∗ defines a hyperplane V (l) in PV and at the same
time a point [l] in PV ∗.

For any finite set of points p1, . . . , pN in PV we denote by
Ld(PV, p1, . . . , pN ) the linear space of homogeneous forms F of degree d in
PV such that V (F ) contains the points p1, . . . , pN .

Definition 3.1. An unordered set of points [l1], . . . , [lN ] in PV ∗ is called
a polar N -polyhedron of F ∈ SdV ∗ if there exist some nonzero scalars
λ1, . . . , λN such that

F = λ1l
d
1 + . . . + λN ldN ,

and moreover the powers ldi are linearly independent in SdV ∗.

Lemma 3.1. A set P = {[l1], . . . , [lN ]} is a polar polyhedron of F if and only
if

Ld(PV ∗, [l1], . . . , [lN ]) ⊂ APd(F ) (3.1)

and the above inclusion is not true anymore if we delete any [li] from P.
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Proof. Observe that vanishing of Φ ∈ SdV at li ∈ V ∗ is equivalent to
〈Φ, ldi 〉 = 0. Therefore

〈ld1, . . . , ldN 〉⊥ = Ld(PV ∗, [l1], . . . , [lN ]).

The forms ldi are linearly independent in SdV ∗ if and only if

dim〈ld1, . . . , ldN 〉⊥ = codim(〈ld1, . . . , ldN 〉, SdV ∗) = dimSdV ∗ − N.

Since passing through a point impose one linear condition on the coefficients
of a form, we see that the forms ldi are linearly independent if and only if
the points [li] impose independent conditions on hypersurfaces of degree d.

Suppose the conditions of the lemma are satisfied. Then

F ∈ APd(F )⊥ ⊂ Ld(PV ∗, [l1], . . . , [lN ])⊥ = 〈ld1, . . . , ldN 〉.
Thus F is a linear combination of the powers ldi . If ld1, . . . , l

d
N are linearly

dependent, 〈P〉 = 〈P ′〉 for some proper subset P ′ of P. Then

APd(F )⊥ ⊂ Ld(PV ∗, [l1], . . . , [lN ])⊥ = 〈P ′〉
and hence 〈P ′〉 ⊂ APd(F ) contradicting the assumption. Thus P is a polar
polyhedron of F .

Conversely, suppose P is a polar polyhedron of F . Then F ∈ 〈P〉 and
hence 〈P〉⊥ ⊂ 〈F 〉⊥ = APd(F ). We have seen already that the second
condition follows from the linear independence of the powers ldi . �

We denote by VSP(F ; N)o the subset of the symmetric power

(PV ∗)(N) = (PV ∗)N/SN

which consists of polar N -polyhedra of F . By a standard argument from
algebraic geometry, Lemma 3.1 implies that VSP(F ; N)o is a locally closed
subset of (PV ∗)(N).

One can consider different compactifications of the set VSP(F ; N)o.
For example, we can view a polar polyhedron P as a reducible hypersur-
face V (l1 · · · lN ) of degree N . Then VSP(F ; N)o becomes a locally closed
subset of P(SNV ∗) and we define VSP(F ; N) to be its closure in the projec-
tive space. Another approach is to view (PV ∗)(N) as the locus of reduced
subschemes in the Hilbert scheme (PV ∗)[N ] of 0-dimensional closed sub-
schemes of PV ∗ of length N . Then we define VSP(F ; N) to be the closure
of VSP(F ; N)o in the Hilbert scheme. Points in the complementary set
VSP(F ; N)\VSP(F ; N)o can be called generalized polar polyhedra of F . In
the case n = 1, the two compactifications coincide and generalized polar
polyhedra admit the following interpretation. Let P ∈ SNV ∗ be a binary
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form such that V (P ) ∈ VSP(F ; N). Write P as the product of linear forms
P = lk1

1 · · · lks
s with k1 + . . . + ks = N . Then

F = A1l
d−k1+1
1 + · · · + Asl

d−ks+1
s

for some binary forms Ai of degree ki − 1.
In the case when F is a sufficiently general form, the assertion of

Lemma 3.1 can be extended to the case of generalized polar polyhedra: a
closed subscheme Z ∈ (PV ∗)[N ] belongs to VSP(F ; N) if and only if the
linear space Ld(PV ∗, Z) of degree d forms vanishing on Z belongs to APd(F )
and this is not true anymore for any proper closed subscheme of Z. This
can be easily deduced from the fact that the limit ideal of the homogeneous
ideal defining Z is saturated (see [7], 5.2).

Proposition 3.2. Assume n = 2. For general F ∈ SdV ∗ the variety
VSP(F ; N) is either empty or a smooth irreducible variety of dimension
N(n + 1) − (n+d

d

)
.

Proof. We consider the closure of VSP(F ; N)o in the Hilbert scheme
(PV ∗)[N ]. Recall that Z ∈ (PV )[N ] is a generalized polar polyhedron of
F if and only if F ∈ Ld(PV ∗, Z)⊥ but this is not true for any proper closed
subscheme Z ′ of Z. Consider the incidence variety

X = {(Z, F ) ∈ (PV ∗)[N ] × SdV ∗ : Z ∈ VSP(F ; N)}.
It is known that the Hilbert scheme of 0-cycles of a nonsingular surface is
nonsingular ([5]). Thus (PV ∗)[N ] is nonsingular. Let U be the open sub-
set of the first factor such that for any point Z ∈ U , dim Ld(PV ∗, Z) =
dimSdV − N. The fibre of the first projection over Z ∈ U is an open
Zariski subset of the linear space Ld(PV ∗, Z)⊥. This shows that X is ir-
reducible and nonsingular. The fibres of the second projection are the va-
rieties VSP(F ; N). Thus for an open Zariski subset of SdV ∗ the varieties
VSP(F ; N) are nonsingular or empty.

�

3.2. The Waring rank of a homogeneous form

Since any quadratic form Q can be reduced to a sum of squares, one can
characterize its rank as the smallest number r such that

Q = l21 + . . . + l2r

for some linear forms l1, . . . , lr.
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Definition 3.3. Let F ∈ SdV ∗. Its Waring rank wrk(F ) is the smallest
number r such that

F = ld1 + . . . + ldr (3.2)

for some linear forms l1, . . . , lr.

Proposition 3.4. Let ΩF be the quadratic form on SkV associated to F ∈
S2kV ∗. Then the Waring rank of F is greater or equal than the rank of ΩF .

Proof. Suppose (3.2) holds with d = 2k. Since ΩF is linear with respect
to F , we have ΩF =

∑
Ωl2k

i
. If we choose coordinates such that li is a

coordinate function t0, we easily compute the catalecticant matrix of l2k
i .

It is equal to the matrix with 1 at the upper left corner and zero elsewhere.
The corresponding quadratic form is equal to (tk0)

2. Thus Ωl2k
i

= (lki )2 and
we obtain

ΩF =
r∑

i=1

Ωl2k
i

=
r∑

i=1

(lki )2.

Thus the Waring rank of F is greater or equal than the rank of ΩF . �

Corollary 3.5. Suppose F is a nondegenerate form of even degree 2k, then

wrk(F ) ≥ (
k+n

n

)
.

A naive way to compute the Waring rank is by counting constants.
Consider the map

s : (V ∗)r → C

(
d+n

n

)

, (l1, . . . , lr) �→
∑

ldi . (3.3)

If r(n + 1) ≥ (
d+n

n

)
one expects that this map is surjective and hence

wrk(F ) ≤ r for general F . Here “general” means that the coefficients of

F belong to an open Zariski subset of the affine space C

(d+n
n

)

. It is a
remarkable result of J. Alexander and A. Hirschowitz [1] that this is “almost
always” true. The only exceptional cases when it is false and the map s fails
to be surjective are the following cases:

• n = 2, d = 2, r = 2, wrk(F ) = 3;
• n = 2, d = 4, r = 5, wrk(F ) = 6;
• n = 3, d = 4, r = 9, wrk(F ) = 10;
• n = 4, d = 3, r = 7, wrk(F ) = 8;
• n = 4, d = 4, r = 14, wrk(F ) = 15;

Here we assume that F is a general form.
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Proposition 3.6. Let F be a general homogeneous form of even degree 2k.
Then

wrk(F ) > rank ΩF

except in the following cases, where the equality takes place.

• k = 1;
• n = 1;
• n = 2, k ≤ 4;
• n = 3, k = 2.

Proof. The first case is obvious. It follows from considering the map (3.3)
that wrk(F ) ≥ (n+2k

n

)
/(n+1). On the other hand the rank of ΩF for general

F is equal to dimSkV =
(n+k

n

)
.

We know that the case n = 1 is not exceptional so that we can compute
the Waring rank of F by counting constants and get wrk(F ) = k + 1 =
rank ΩF .

If n = 2, we get wrk(F ) ≥ (2k + 2)(2k + 1)/6 = (k + 1)(2k + 1)/3
and rank ΩF =

(k+2
2

)
= (k + 2)(k + 1)/2. We have (k + 1)(2k + 1)/3 >

(k + 2)(k + 1)/2 if k > 4. By Alexander-Hirschowitz’s result,

wrk(F ) =






6 if k = 2,

10 if k = 3,

15 if k = 3.

This shows that wrk(F ) = rank ΩF in all these cases.
If n = 3, we get

wrk(F ) ≥ (2k + 3)(2k + 2)(2k + 1)/24 >
(
k+3
3

)
= (k + 3)(k + 2)(k + 1)/6

unless k = 2.
Finally, it is easy to see that for n > 3

wrk(F ) ≥ (
2k+n

n

)
/(n + 1) >

(
k+n

n

)

for k > 1. �

Definition 3.7. Two linear forms l, m ∈ V ∗ are called conjugate with respect
to a nondegenerate form F ∈ S2kV ∗ if

ΩF̌ (lk, mk) = F̌ (lkmk) = 0.

The next result can be found in [9] (certainly used by classics, see, for
example, [13]).



174 Igor V. Dolgachev Vol. 72 (2004)

Proposition 3.8. Suppose F is given by (3.2), where the powers lki are lin-
early independent in SkV ∗. Then each pair li, lj is conjugate with respect
to F .

Proof. It follows from computation of ΩF in the proof of Proposition 3.4
that it suffices to check the assertion for quadratic forms. Choose a coor-
dinate system such that li = t0, lj = t1 and F = t20 + t22 + . . . + t2n. Then
F̌ = ξ2

0 + . . . + ξ2
n, where ξ0, . . . , ξn are dual coordinates. Now the assertion

is easily checked. �

3.3. Mukai’s skew-symmetric form

Let ω ∈ Λ2V be a skew-symmetric bilinear form on V ∗. It admits a unique
extension to a Poisson bracket {, }ω on S•V ∗ which restricts to a skew-
symmetric bilinear form

{, }ω : Sk+1V ∗ × Sk+1V ∗ → S2kV ∗.

Recall that a Poisson bracket on a commutative algebra A is a skew-
symmetric bilinear map A × A → A, (f, g) �→ {f, g} such that its left
and right partial maps A → A are derivations.

Let F ∈ S2kV ∗ be a nondegenerate form and F̌ ∈ S2kV = (S2kV ∗)∗

be its dual form. For each ω as above define σω,F ∈ Λ2(Sk+1V )∗ by

σω,F (f, g) = F̌ ({f, g}ω).

Theorem 3.9 (S. Mukai). Let F be a nondegenerate form in S2kV ∗.For any
P = {[l1], . . . , [lN ]} ∈ VSP(F ; N)o let E(P) be the linear span of the powers
lk+1
i in Sk+1V ∗. Then

(i) E(P) is isotropic with respect to each form σω,F ;
(ii) apk−1

F (Sk−1V ) ⊂ E(P);
(iii) apk−1

F (Sk−1V ) is contained in the radical of each σω,F .

Proof. To prove the first assertion it is enough to check that σω,F (lk+1
i , lk+1

j )
= 0 for all i, j. We have

σω,F (lk+1
i , lk+1

j ) = F̌ ({lki , lkj }ω) = F̌ (lki lkj )ω(li, lj).

By Proposition 3.8, F̌ (lki lkj ) = ΩF̌ (lki , lkj ) = 0. This checks the first assertion.
For any Φ ∈ Sk−1V ,

DΦ(F ) = DΦ(
N∑

i=1

l2k
i ) =

∑
DΦ(l2k

i ) = (2k)!
(k+1)!

N∑

i=1

DΦ(lk−1)lk+1
i .
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This shows that apk−1
F (Sk−1V ) is contained in E(P). It remains to check

that for any Φ ∈ Sk−1V, G ∈ Sk+1V ∗ and any ω ∈ Λ2V , one has
σω,F (DΦ(F ), G) = 0. Choose coordinates t0, . . . , tn in V and the dual coor-
dinates ξ0, . . . , ξn in V ∗. The space Λ2V is spanned by the forms ωij = ξi∧ξj .
We have

{DΦ(F ), G}ωij = Dξi
(DΦ(F ))Dξj

(G) − Dξj
(DΦ(F ))Dξi

(G)

= DξiΦ(F )Dξj
(G) − DξjΦ(F )Dξi

(G) = DΦξi
(F )Dξj

(G) − DΦξj
(F )Dξi

(G).

For any A, B ∈ SkV ∗,

F̌ (AB) = ΩF̌ (A, B) = 〈Ω−1
F (A), B〉.

Thus

σωij ,F (DΦ(F ), G) = F̌ (DΦξi
(F )Dξj

(G) − DΦξj
(F )Dξi

(G))

= 〈Φξi, Dξj
(G)〉 − 〈Φξj, Dξi

(G)〉 = DΦ(Dξiξj
(G) − Dξjξi

(G)) = DΦ(0) = 0.

�

3.4. The Mukai map

Let F ∈ S2kV ∗ be a nondegenerate form. We assume that (k, n) is one of
the exceptional cases from Proposition 3.6.

Let

Nk = rank ΩF =
(

n + k

n

)

. (3.4)

We know that VSP(F ; Nk)o �= ∅ for general enough F .
Let P ∈ VSP(F ; Nk)o and

Ē(P) = 〈lk+1
1 , . . . , lk+1

Nk
〉/apk−1

F (Sk−1V ).

It is a subspace of W = Sk+1V ∗/apk−1
F (Sk−1V ). By Lemma 2.1,

W ∗ = apk−1
F (Sk−1V )⊥ ∼= APk+1(F ),

hence
W ∼= APk+1(F )∗

and
Ē(P) ⊂ APk+1(F )∗.

Lemma 3.2. (i) dimAPk+1(F )∗ =
(
n+k
n−1

)
+

(
n+k−1

n−1

)
;

(ii) dimE(P) = Nk;
(iii) dim Ē(P) =

(
n+k−1

n−1

)
.
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Proof. (i) Since F is nondegenerate, Ker(apk
F ) = {0}, hence Ker(apk−1

F ) =
{0} and

dimapk−1
F (Sk−1V ) = dimSk−1V ∗ =

(k−1+n
n

)
.

This gives

dimAPk+1(F )∗ = dimSk+1V − dimapk−1
F (Sk−1V ) =

(
n+k+1

n

) − (
n+k−1

n

)

=
(n+k
n−1

)
+

(n+k−1
n−1

)
.

(ii) Let P = {[l1], . . . , [lNk
]}. We have to show that the forms lk+1

1 , . . . ,

lk+1
Nk

are linearly independent. This is equivalent to the equality

dim Lk+1(PV ∗, [l1], . . . , [lNk
]) =

(k+1+n
n

) − Nk =
(k+n
n−1

)
.

This is obvious in the case n = 1. If k = 1, the space L2(PV ∗, [l1], . . . , [lNk
])

is of expected dimension unless l21, . . . , l
2
Nk

are linearly dependent. In our
case this is impossible because F is nodegenerate.

Assume n = 2, k = 2 and dim L3(PV ∗, [l1], . . . , [l6]) > 4. Since AP2(F )
= {0}, no conic passes through the 6 points. In particular, no 4 points are
collinear. Take a conic C = V (Q) through 5 points [l1], . . . , [l5] and 2 points
x1, x2 such that each component of C contains ≥ 4 points (if C is reducible
we take x1 to be the intersection point of the two line components). Since

dimL3(PV ∗, [l1], . . . , [l6], x1, x2) > 2,

there exist 3 linearly independent cubic forms Φi such that V (Φ) has 7
common points with C. Applying Bézout’s Theorem, we see that the cubics
contain C, hence we get a 2-dimensional space of lines passing through [l6].
This is impossible.

Assume n = 2, k = 3 and dim L4(PV ∗, [l1], . . . , [l10]) > 5. Again there
are no cubics through the ten points. In particular, no 5 points are collinear,
and no 8 points are on a conic. We argue as before. Choose a cubic C
through the points [li], i �= 10, and 3 points x1, x2, x3 such that at least 5
points lie on each irreducible component of C. Since dimL4(PV ∗, [l1], . . . ,
[l10], x1, x2, x3) > 2, there exist 3 linearly independent quartic forms Φi such
that V (Φ) has 13 common points with C. Applying Bézout’s Theorem, we
see that the quartics contain C, hence we get a 2-dimensional space of lines
passing through [l10]. This is impossible.

A similar argument checks the assertion in the case n = 2, k = 4.
The last case n = 3, k = 2 needs to apply more techniques from

algebraic geometry which we allow ourselves to use here. So, we skip the
proof.
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(iii) We have

dim Ē(P) = Nk − dim apk−1
F (Sk−1V ) =

(n+k
n

)− (n+k−1
k

)
=

(n+k−1
n−1

)
. (3.5)

�

We denote by G(a, E) the Grassmannian of a-dimensional subspaces
of a linear space E. Consider the regular map (we call it the Mukai map)

Mu : VSP(F ; Nk)o → G(
(
n+k−1

k

)
, APk+1(F )∗), P �→ Ē(P). (3.6)

Proposition 3.10. The Mukai map is injective.

Proof. Suppose Mu([l1], . . . , [lNk
]) = Mu([m1], . . . , [mNk

]). Then

〈lk+1
1 , . . . , lk+1

Nk
〉 = 〈mk+1

1 , . . . , mk+1
Nk

〉,
hence

Lk+1(PV ∗, [l1], . . . , [lNk
]) = Lk+1(PV ∗, [m1], . . . , [mNk

]). (3.7)

Without loss of generality we may assume that [l1] is not equal to any
[mi]. Since dimLk(PV ∗, [l2], . . . , [lNk

]) > 0 we can find a degree k form
Φ vanishing at the last Nk − 1 points. Let L ∈ V be a linear form on V ∗

which vanishes at [l1] but does not contain any of the points [m1], . . . , [mNk
].

Since LΦ ∈ Lk+1(PV ∗, [l1], . . . , [lNk
]), we obtain that LΦ vanishes at any

[mi], hence Φ vanishes at any [mi]. Thus APk(F ) �= {0} which contradicts
the nondegeneracy of F .

Therefore we may assume that [l1] = [m1]. Now if [l2] �= [mi] for any i ≥
2, we repeat the argument replacing l1 with l2 and obtain a contradiction.
Proceeding in this way we show that the sets P and P ′ coincide. �

Remark 3.11. The same proof works for generalized polar polyhedra and
general polynomial F . The analog of equality (3.7) is the equality
Lk+1(PV ∗, Z) = Lk+1(PV ∗, Z ′) of the spaces of polynomials of degree k +1
vanishing on Z and Z ′. Suppose Z �= Z ′. Choose a subscheme Z0 of Z of
length Nk − 1 which is not a subscheme of Z ′. Since dimLk(PV ∗, Z0) ≥(
n+k

k

) − Nk + 1 > 0, we can find a nonzero Φ ∈ Lk(PV ∗, Z0). The sheaf
IZ/IZ0 is concentrated at one point x and is annihilated by the maximal
ideal mx. Thus mxIZ0 ⊂ IZ . Let L be a linear form vanishing at x but not
vanishing at any subscheme of Z ′. This implies that LΦ ∈ Lk+1(PV ∗, Z) =
Lk+1(PV ∗, Z ′) and hence Φ ∈ Lk(PV ∗, Z ′) contradicting the nondegeneracy
of F . Using more techniques from algebraic geometry one can also prove
that the Mukai map is a closed embedding.
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Recall that we have a linear map

Λ2V → Λ2Sk+1V = (Λ2Sk+1V ∗)∗, ω �→ σω,F .

Since, apk−1
F (Sk−1) is contained in the radical of each σω,F this map defines

an injective map
Λ2V → Λ2APk+1(F ). (3.8)

Let N ⊂ Λ2APk+1(F ) be the image of this map. This is a linear subspace
of the space of 2-forms on APk+1(F )∗. For each P ∈ VSP(F ; Nk), the
subspace Ē(P) is isotropic with respect to any σω,F . Let

G(
(n+k−1

k

)
, APk+1(F )∗)N ⊂ G(

(n+k−1
k

)
, APk+1(F )∗)

be the subvariety of the Grassmannian which consists of isotropic sub-
spaces with respect to all 2-forms from N . Recall that a Grassmannian
G = G(s, E) admits a tautological exact sequence of vector bundles

0 → SG → EG → QG → 0, (3.9)

where EG is the trivial bundle with fibre E, and SG is the universal subbun-
dle whose fibre at a point x ∈ G is the linear s-dimensional subspace of E
corresponding to x. A 2-form α on E defines, by restriction, a section σα of
of Λ2SG. Its set of zeroes Z(σα) is a closed subvariety of G of codimension
≤ (

s
2

)
and the equality holds for a Zariski open subset (maybe empty) of

sections (see [6]). It follows that for any t-dimensional subspace L of sec-
tions, the set of common zeroes is of codimension ≤ t

(s
2

)
, and the equality

holds for a Zariski open subset of the Grassmann variety of t-dimensional
spaces of sections.

Returning to our case, we see that

Mu(VSP(F ; Nk)) ⊂ G(
(n+k−1

k

)
, APk+1(F )∗)N .

The dimension of the left-hand side is equal to

dimVSP(F ; Nk) = (n + 1)
(n+k

n

) − (n+2k
n

)

=






1 if n = 1,
(n+1

2

)
if k = 1,

3 if n = 2, k = 2,

2 if n = 2, k = 3,

0 if n = 2, k = 4,

5 if n = 3, k = 2.
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It is known that dim G(a, E) = a(dimE − a). In our case

dimG(
(
n+k−1

k

)
, APk+1(F )∗) =

(
n+k−1

n−1

)(
n+k
n−1

)
.

It follows from above that the expected dimension of G(
(n+k−1

k

)
, AP∗

k+1)N
is equal to dim V SP (F ; Nk) in the cases n = 1 and n = 2. In all other
cases, it is strictly less than dim V SP (F ; Nk).

We already know that in the case n = 1,

VSP(F, k + 1) = P
1 ∼= G(1, APk+1(F ))N = G(1, APk+1(F )).

The following theorem of Mukai says that the same is true for n = 2, k ≤ 4.

Theorem 3.12. (S. Mukai) Let Fd ∈ SdV ∗ be a general polynomial of degree
d = 2k. Assume that n = 2, k ≤ 4. Then

VSP(F ;
(
k+2
2

)
) ∼= G(k + 1, APk+1(F )∗)N .

(i) The variety VSP(F2; 3) is a smooth Fano 3-fold (of genus 21 and index
2);

(ii) The variety VSP(F4; 6) is a smooth Fano 3-fold (of genus 12 and index
1);

(iii) The variety VSP(F6; 10) is a smooth K3 surface;
(iv) The variety VSP(F8; 15) is a set of 16 points.

Proof. By Proposition 3.2 the varieties VSP(F ;
(k+2

2

)
) are smooth of the

asserted dimension. Let SG be the tautological vector bundle of rank k + 1
on

G(k + 1, APk+1(F )∗) ∼=






G(2, 5) if k = 1 ,

G(3, 7) if k = 2 ,

G(4, 9) if k = 3 ,

G(5, 11) if k = 4 .

A basis of a 3-dimensional space N of sections of E = Λ2S∗
G defines a

section s of the vector bundle E⊕3. It is known that the vector bundle E is
generated by global sections. By Bertini’s Theorem for sections of vector
bundles (see [11]) the zero locus Z(s) of its general section s is a smooth
and of the expected codimension equal to 3

(
k+1
2

)
. One can also show, using

vanishing of cohomology of exterior powers of S∗
G that Z(s) is connected

if it is of positive dimension. Assume that k < 4 so that dimZ(s) > 0. It
is known that the determinant of the tangent bundle of the Grassmannian
G = G(s, n) is equal to c1(G) = nc1(S∗

G). The determinant of Λ2S∗
G is equal
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to (s − 1)c1(S∗
G). The normal bundle of Z(s) in G is isomorphic to E⊕3.

Thus, in our case,

c1(E⊕3) = 3kc1(S∗
G), c1(G) = (2k + 3)c1(S∗

G).

By adjunction formula,

c1(Z(s)) = (3 − k)c1

(OZ(s)(1)
)
,

where OZ(s)(1) is equal to the restriction of detS∗
G to Z(s). Its sections are

hyperplane sections of Z(s) in the Plücker embedding of the Grassmannian.
Thus Z(s) is a Fano 3-fold if k = 1 or 2 and a K3 surface if k = 3. If
k = 4, dimZ(s) = 0. The rank of E⊕3 is equal to 30 = dimG(5, 11). Its
general section vanishes at the number of points equal to the Chern number
c30(E⊕3). Easy computation shows that this number is equal to 16.

We know that, for general F , the image of VSP(F ; Nk) in G(k +
1, APk+1 (F )∗) is smooth, irreducible, and of codimension 3

(k+1
2

)
. It is

also contained in Z(s), where s is a section of E⊕3. We finish the proof if
we can show that for a general F the equality takes place. Unfortunately, I
don’t know how to do this for k = 3, 4 (a proof using sysygies can be found
in [12]). So let us assume that k = 1 or 2.

Fix a linear space E of dimension 2k + 3. Suppose we have a 3-
dimensional linear subspace L of Λ2E. We have a natural linear map

γ : Sk+1L → Λ2k+2E, (v1, . . . , vk+1) �→ v1 ∧ . . . ∧ vk+1.

Let K be the kernel of γ. For a general L ∈ G(3, Λ2E), the dimension of K
is equal to 1

2(k + 3)(k + 2) − (2k + 3) = 1
2k(k + 1). Let

α : V → L, β : Sk−1V → K

be some linear isomorphisms such that the injection homomorphism K ↪→
Sk+1L is isomorphic to the injective homomorphism ι : Sk−1V ↪→ Sk+1V ∗.
Suppose we can choose α and β such that this inclusion corresponds to a
totally symmetric tensor

t ∈ Sk−1V ∗ ⊗ Sk+1V ∗.

Let F ∈ S2kV ∗ be the corresponding homogeneous form on V . It is easy
to see that the homomorphsism ι coincides with the homomorphism apk−1

F .
Then the space Λ2k+2E ∼= E∗ (after a choice of a volume form) and can be
identified with the space APk+1(F )∗ = Sk+1V ∗/apk−1

F (Sk−1V ). Moreover,
the subspace L of Λ2E is identified with the subspace N defined by the
Mukai 2-forms. This can be directly verified by choosing appropriate bases.
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Thus G(k+1, APk+1(F )∗)N is isomorphic to a general subscheme Z(s) and
hence the assertion is verified for F , hence for any general F .

It remains to find α and β such that the tensor t is symmetric. This
can be done by counting constants. The pairs (α, β) are parametrized by
GL(3) × GL(1

2k(k + 1)), so depend on a = 9 + k2(k + 1)2/4 parameters.
The condition that a tensor t is symmetric is given by

b = dimSk−1V ∗ ⊗ Sk+1V ∗ − dimS2kV ∗

=
(k + 3)(k + 2)(k + 1)k

4
− (k + 1)(2k + 1)

linear equations. Thus if a > b we can always choose (α, β). If k = 1, there
are no conditions at all. If k = 2 we have a = 18, b = 15 and it works too.
If k > 3, a < b and we are in trouble.

�

4. Reconstructing a polar polyhedron from its side

4.1. The variety of conjugate pairs

Let F ∈ S2kV be a nondegenerate form. Consider the variety of conjugate
pairs

CP(F ) = {([l], [m]) ∈ PV ∗ × PV ∗ : ΩF̌ (lk, mk) = 0}.
For any ([l], [m]) ∈ CP(F ) we can find a unique (up to a scalar factor) pair
(Φ, Φ′) ∈ SkV × SkV of anti-polars, i.e.,

DΦ(F ) = lk, DΦ′(F ) = mk. (4.1)

It follows from (2.8) that

Φ(m) = Φ′(l) = 0.

The equation ΩF̌ (lk, mk) = 0 is bi-homogeneous of degree (k, k) in
coefficients of l, m. For F general enough, it is a smooth (2n−1)-fold Y . By
adjunction formula, its canonical class KY is a divisor class corresponding
to a hypersurface of bi-degree (k−n−1, k−n−1). So, Y is a Fano variety
(i.e., the minus of the canonical class is ample) for k ≤ n, it is a Calabi-Yau
variety if k = n + 1 (i.e. the canonical class is trivial) and a variety of
general type (i.e. the canonical class is ample) if k > 3.

Consider the projections to the first and the second factor

q : CP(F ) → PV ∗, q′ : CP(F ) → PV ∗.



182 Igor V. Dolgachev Vol. 72 (2004)

For any [l] ∈ PV ∗ the fibre q−1([l]) is a hypersurface of degree k given
by the equation V (Φ) = 0, where DΦ(F ) = lk. The set of points [l] such
that ([l], [l]) ∈ CP(F ) is a hypersurface D of degree 2k, it is given by the
equation V (F̌ ) = 0.

Let

ṼSP(F ; N) = {([l],P) ∈ PV ∗ × VSP(F ; N) : [l] ∈ P}.
The projection to the second factors is a finite map of degree N ramified
over the complement of VSP(F ; N)o. If we choose the Hilbert scheme com-
pactification VSP(F ; N), then ṼSP(F ; N) is the restriction of the universal
scheme over VSP(F ; N).

Consider the first projection

p : ṼSP(F ; N) → PV ∗.

Its fibre over a line V (l) is the set of (generalized) polar polyhedra with the
line V (l) as its side.

4.2. The case (n, d, N) = (2, 2, 3).

Let ([l], [m]) ∈ CP(F ), [l] �= [m], and (Φ, Φ′) be the corresponding pair of
anti-polars (4.1). Let [n] be the the intersection point of the corresponding
lines V (Φ) and V (Φ′). Obvioulsy [n] �= [l], [n] �= [m] since [l] and [m] are not
self-conjugate. For any linear forms L1, L2 such that L1(l) = L2(m) = 0,
the conic L1Φ1 + L2Φ2 vanishes at the points [l], [m], [n] and obviously
belongs to AP2(F ). The dimension of the space of such conics is equal to 3.
By Lemma 3.1, we obtain that {[l], [m], [n]} is a polar triangle of F . Thus
we obtain a regular map

f : CP(F )o → ṼSP(F ; 3), ([l], [m]) �→ ([n], {[l], [m], [n]})
where

CP(F )o = CP(F ) \ (CP(F ) ∩ diagonal).

One can show that this map extends to the blow-up ĈP(F ) of CP(F ) along
its intersection with the diagonal. It defines a regular map of degree 3

ĈP(F ) → ṼSP(F ; 3).

The involution ι : ([l], [m]) �→ ([m], [l]) extends to ĈP(F ) and the quotient
ĈP(F )/ι is a nonsingular hypersurface in the Hilbert scheme (PV )[2]. The
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composition of the map f with the projection ṼSP(F ; 3) → VSP(F ; 3)
defines a regular map of degree 2

ĈP(F )/ι → VSP(F ; 3). (4.2)

It is unramified over VSP(F ; 3)o. In particular, we see that any polar tri-
angle of F is uniquely reconstructed from its two sides, and any line occurs
as a side of one of polar triangles.

Remark 4.1. It is easy to see that the universal cover of VSP(F, 3)o is
isomorphic to the algebraic group SO(3). The fundamental group is iso-
morphic to its Weyl group G = 22

� S3 of order 24. The quotient by the
normal subgroup 22 = (Z/2)2 is the variety of ordered polar triangles of F .
The quotient by the group 22

� 2 is isomorphic to CP(F )o.

4.3. The case (n, d, N) = (2, 4, 6).

Let ([l], [m]) ∈ CP(F )o and Φ, Φ′ be their anti-polars of degree 2. Assume
that Φ, Φ′ have no common irreducible components. Consider the linear
subspace L of S4V formed by forms AΦ + A′Φ′, where A, A′ ∈ S2V and
A(l) = 0, A′(m) = 0. Since

DAΦ+A′Φ′(F ) = DA(DΦ(F )) + DA′(DΦ′(F )) = DA(l2) + DA′(m2) = 0

we see that
L ⊂ AP4(F ).

Consider the map (A, A′) �→ AΦ+A′Φ′. The kernel of this map consists
of pairs (A, A′) such that AΦ = −A′Φ′. Since no irreducible component of Φ′

divides Φ, we obtain that Φ′ divides A and hence A = cΦ′, A = −cΦ. Thus
the kernel of the map is one-dimensional and is spanned by (Φ′,−Φ). From
this we obtain that dimL = 9 and hence coincides with dimL4(PV ∗, Z),
where Z is the closed subscheme formed by the points [l], [m] and the
common zeroes of the conics V (Φ), V (Φ′). Thus, by Lemma 3.1, Z is a polar
hexagon of F (a generalized one if V (Φ) does not intersect transversally
V (Φ′)).

Thus, as in the previous case we obtain a rational map.

ĈP(F )/ι− → VSP(F ; 6). (4.3)

It is of degree 15 =
(6
2

)
. Thus any polar hexagon of F is uniquely recon-

structed from its two sides, and any line occurs as a side of one of polar
hexagons.
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Remark 4.2. Under the regular map f : CP(F )o → ṼSP(F ; N) the fibres
of any of the two projections CP(F )o → PV ∗ are mapped isomorphically to
the fibres of the projection ṼSP(F ; 6) → PV ∗. This implies that a general
point of VSP(F ; 6) lies on 6 rational curves. It can be shown that these
curves are conics in the anti-canonical embedding VSP(F ; 6) ⊂ G(3, 7) ⊂
P

20 (see [9]). It is known that the variety of conics on the Fano variety
VSP(F ; 6) is isomorphic to the projective plane. According to [10], this
plane can be identified with PV ∗ and the six conics through a point x
represent the sides of the polar hexagon corresponding to the point x.

4.4. The case (n, d, N) = (2, 6, 10).
The situation here is a little different from the previous cases.

Theorem 4.3. Let F be a general homogeneous polynomial of degree 6 in 3
variables. Any line in P

2 can be realized as a side of a polar polyhedron of
F . For a general line, there are at most two polyhedra with the same side.
For a general pair of lines there are at most one polyhedron which has these
lines as its sides.

Proof. We have to show that the projection ṼSP(F ; 10) → P
2 is surjective

and of degree 2. Note that it cannot be of degree 1 since VSP(F ; 10) is a K3
surface and hence is not unirational. The assertion follows from the follow-
ing fact which can be found in [2]: There are at most two polar polyhedra of
F which share a common side [l]. Since I do not understand Dixon’s proof
I suggest my own proof of the statement. Suppose

F = l6 + l61 + . . . + l69 = λl6 + m6
1 + . . . + m6

9.

Choose Φ, Φ′ ∈ S3V such that V (Φ) vanishes at the points [li] and V (Φ′)
vanishes at the points [mi]. We can normalize them to assume that Φ(l) =
λΦ′(l). Then

DΦ(F ) = DΦ′(F ) = 120Φ(l)l3,
hence DΦ−Φ′(F ) = 0. Since F is nondegenerate, AP3(F ) = {0}, and thus
Φ = Φ′. The equality

(λ − 1)l6 = (l61 + . . . + l69) − (m6
1 + . . . + m6

9),

implies that (λ − 1)DΦ(l6) = 0. If λ �= 1 we get DΦ(l) = 0 and hence
DΦ(F ) = 0 contradicting the nondegeneracy of F . Thus λ = 1, and

l61 + . . . + l69 = m6
1 + . . . + m6

9.

Since l61, . . . , l
6
9, m

6
1, . . . , m

6
9 span a subspace L ⊂ S6V ∗ of dimension ≤ 17,

the dimension of the orthogonal complement of L in S6V is of dimension
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≥ 28− 17 = 11. The space of forms divisible by Φ is of dimension 10. Thus
there exists a form G ∈ S6V not vanishing on the cubic curve V (Φ) but
vanishing at the 18 points [li], [mi] on V (Φ). Assume there is a third polar
polyhedron of F with a side [l]. We have

F = l6 + n6
1 + . . . + n6

9 = l6 + l61 + . . . + l69 = l6 + m6
1 + . . . + m6

9,

and all 27 points [li], [mi], [ni]’s lie on the cubic V (Φ). Similar to above we
get a form G′ of degree 6 vanishing at [mi], [ni]’s and a form G′′ of degree
6 vanishing at [li], [ni]’s. This easily implies that the divisors

∑
[li],

∑
[mi],∑

[ni] of degree 9 on the cubic V (Φ) are linear equivalent. Also we see
that the divisor

∑
2[li] is cut out by a sextic C. It can be chosen to have

at least double points at [li]’s (see [4], Lemma 4.4). The pencil of sextics
formed by C and V (Φ2) is an Halphen pencil of elliptic sextics. Choose a
member V (K) of this pencil passing through the point [l]. Then we obtain
that DK(F ) = 0, hence AP6(F ) contains a sextic with 9 double points.

To summarize, we obtain that for a general point [l] ∈ PV ∗, the variety
VSP(F ; 10) contains a polar polyhedron [l], [l1], . . . , [l9] such that the 9
points [li] form the set of base points of an Halphen pencil of curves of
degree 6. We call such a polyhedron an Halphen polyhedron. It is easy to
see that the locus of such sets in (PV ∗)(9) is of codimension 1. Thus, for
general F , the surface VSP(F ; 10) intersects this divisor along a variety of
dimension ≤ 1 (an easy count of constants shows that it cannot be contained
in the divisor). Its pre-image in ṼSP(F ; 10) is of dimension ≤ 1. Its image
under the projection q : ṼSP(F ; 10) → PV ∗ is of dimension ≤ 1. Thus for
a general [l], the fibre q−1([l]) cannot not contain an Halphen polyhedron.
This contradiction proves the first assertion.

Let us prove the second assertion. Assume that

F = l6 + m6 + l61 + . . . + l68 = λl6 + µm6 + m6
1 + . . . + m6

8.

Let Φ be the cubic anti-polar of l, i.e. DΦ(F ) = l3 and similarly let Φ be
the cubic anti-polar of m. By the nondegeneracy of F , the anti-polars are
unique, hence V (Φ) is the cubic containing the points [m], [l1], . . . , [l8] and
V (Φ′) is the cubic containing the points [l], [l1], . . . , [l8]. Thus the points
[l1], . . . , [l8] are among 9 intersection points of the cubics V (Φ) and V (Φ′).
Using the second polar polyhedron, we obtain that the points [m1], . . . , [m8]
are in the same set of 9 points. This implies that either the sets [l1], . . . , [l8]
and [m1], . . . , [m8] coincide or have a common set of 7 points. In the first
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case we are done. In the second case we may assume that

F = l6 + m6 + l61 + . . . + l67 + l68 = λl6 + µm6 + λ1l
6
1 + . . . + λ7l

6
7 + m6

8.

Let V (G) be a cubic passing through the points [l], [m], [l1], . . . , [l7]. We
have DG(F ) = 120G(l8)l38 = 120G(m8)m3

8. This implies [l8] = [m8] and
proves the assertion. �

Remark 4.4. Let F be a general form of degree 6 in 3 variables. It follows
from the proof of the previous theorem that the variety ṼSP(F, 10) is bi-
rationally isomorphic to a double cover of projective plane. It would be
interesting to find the degree of the branch curve.

4.5. The case (n, d, N) = (3, 4, 10).

Let F be a general quartic form in 4 variables. We have already remarked
that this is one of the cases where the Waring rank reaches its mini-
mum equal to 10. It is not even known the birational type of the variety
VSP(F ; 10). The arguments similar to ones used in the previous section
show that a polar polyhedron of F can be reconstructed in at most two
ways from a pair of its two faces (i.e. a pair of conjugate planes). Using the
method of syzygies from [12], Michael Sagraloff [15] proves that it is exactly
two ways. Note that this result was claimed by A. Dixon [2] and Reye [13]
erroneously claimed that the reconstruction can be done in one way.
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