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Introduct ion  

There has been a recent explosion in the number of mathematical publications due to the discovery of a 
certain duality between some families of Calabi-Yau threefolds made by a group of theoretical physicists (see 
[11, 26] for references). Roughly speaking, this duality, called mirror symmetry, pairs two families ~-and .T'* 
of Calabi-Yau threefolds in such a way that  the following properties are satisfied: 

MS1 The choice of the mirror family ~*  involves the choice of a boundary point c~ of a compactification ~" 
of the moduli space for ~" at which the monodromy is "maximally unipotent." 

MS2 For each V E ~" and W E .T* the H0dge numbers satisfy 

h l , l ( V )  = h2, (V) = 

MS3 For some open subset U of oo, for any V E U n 5 ~-, the Laurent expansion of the canonical symmetric 
trilinear form S3(HI(V, e v ) )  --4 H~ | (the Griffiths-Yukawa cubic) at oo can be identified, 
after some special choice of local parameters and a basis of H~ with the quantum intersection 
form on H2(V'), V I E :7 c*. 

MS4 The period map induces a holomorphic multivalued mapping from the subset Uft5 v to the tube domain 
H2(V ', R) + ilCv, where/Cv, is the Ks cone of V ~ E 5 v* (the mirror mapping). 

Although known to some experts but never stated explicitly, it is a fact that mirror symmetry is a very 
beautiful and nontrivial (in many respects still hypothetical) generalization to the next dimension of the du- 
ality for K3 surfaces discovered almost 20 years ago by H. Pinkham [34] and independently by the author 
and V. Nikulin [8, 9, 31]. This duality was used to explain Arnold's Strange Duality for exceptional unimodal 
critical points [1]. There are repeated hints on the relationship between the latter duality and mirror symme- 
try in the physics ([2, 14, 23]) and mathematics literature ([6, 19, 35, 41]). Some of the results of this paper 
were independently obtained in [3, 19, 21, 27, 35] and some must be known to V. Batyrev and V. Nikulin. 
The paper [40] of Todorov is probably most relevant. Nevertheless I believe that it is worthwhile to give a 
detailed account of how the ideas of Arnold's strange duality allow one to state (and prove) precise analogs 
of properties MS1-MS4 for K3 surfaces. 

Note that property MS2 says that the local moduli number of V E ~" is equal to the second Betti number 
of V ~ E 5 v*. In the case of K3 surfaces, the first number is always equal to 20, and the second number is equal 
to 22. The key observation is that in the three-dimensional case the second Betti number is equal to the rank 
of the Picard group of algebraic cycles. This suggests that one create different moduli families of K3 surfaces 
with a condition on the Picard group. The simplest realization of this idea is based on the notion of a polarized 
K3 surface. This is a pair (X, h), where X is a K3 surface and h E Pic(X) is an ample (or pseudo-ample) 
divisor class. A generalization of this notion, due to V. Nikulin [30], is the notion of a lattice polarized K3 
surface. We fix a lattice M (a free abelian group equipped with an integral quadratic form) and consider a 
pair (X, j ) ,  where X is a t(3 surface, and j : M -+ Pic(X) is a primitive embedding of lattices such that 
j (M)  contains a pseudo-ample divisor class. One can construct a coarse moduli space KM of M-polarized 
K3 surfaces. An obvious condition for its nonemptiness is that M be isomorpic to a sublattice of an even 
unimodulax lattice L of signature (3, 19) isomorphic to the second cohomology group of a K3 surface eo~uipped 
with the cup-product. 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematikai Ee Prilozheniya. Tematicheskie Obzory. Vol. 33, 
Algebraic Geometry-4, 1996. 
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To define the mirror family, we choose an isotropic primitive vector f in the orthogonal complement 
v 

M a- of M in L, and consider the lattice M = (Z f )~a . /Z f ,  Under certain arithmetic conditions on M, the 
v 

lattice M admits a primitive embedding in M • and we can define the mirror moduli space K v.  Additional 
M 

conditions on M ensure that  the moduli spaces KM and K v are defined uniquely up to isomorphism, and 
M 

v 
v 

M = M. Now if we have any complete family ~" of pseudo-ample M-polarized K3 surfaces its mirror family 
v 

is any complete family of pseudo-ample M-polarized K3 surfaces. 
It turns out that the choice of the isotropic vector f is an analog of MS1. Property  MS2 becomes 

MS2 ~ The dimension of the family .~ is equal to the rank of the Picard group of a general member  from the 

mirror family ~'*. 

In the case of K3 surfaces, the Griffiths-Yukawa cubic becomes a quadratic map 

S2(H*(V, Or)) H~ | 

and we have the following analog of MS3: 

MS3 ~ For some open subset U of ~- near the boundary point (determined by the choice of isotropic vector f ) ,  
for any V E U, the Griffiths-Yukawa quadratic map can be canonically identified, after some choice 

v 
of basis of H~ with the quadratic form on M | C. 

Note that in our case the Grifl~ths-Yukawa quadratic map becomes the "constant" quantum intersection 
form and does not carry any information about rational curves on the mirror surfaces. This agrees with the 
fact that the quantum cohomology ring of a K3 surface coincides with the usual cohomology ring [36]. 

The next property is a very close analog of MS4: 

MS4! The period map induces a holomorphic multivalued mapping from the subset U from MS3 t to the tube 
domain Pic(Y')R + v/-Z~C(X) + C Pic(V' )c ,  where C(X) + is the ample cone of V' E .F*. It is called 

the mirror map. 

We also produce some computational evidence to support our point. The mirror candidates for a family 
of Calabi-Yau three-dimensional hypersurfaces in toric Fano varieties are obtained by Batyrev's construction 
from [5]. When this construction applies to K3 surfaces it "often," but not always, gives our mirror family. 
This was first noticed by Batyrev in a preprint version of [5]. For example, in the case where ~ is the moduli 
family of quartic surfaces (M = Ze, (e, e) = 4) the mirror family ~'* is the one-dimensional family of K3 
surfaces obtained by dividing the surfaces 

 x0xl :x3 + + Xl + + = 0 

by a symplectic action of the group (Z/4) 2. Note the analogy with Greene--Plesser's initially discovered exam- 
ple of mirror symmetry for qnintic hypersurfaces (see [11, pp. 1-30]). In this case, assertion MS3' was verified 

in [271. 
Other examples of our computations include the mirror families for the families of polarized K3 surfaces 

of degree 2n, for K3-covers of Enriques surfaces and Kummer surfaces, and the fourteen families coming from 
exceptional unimodal surface singularites. In the case of polarized K3 surfaces of degree n, we compute the 
monodromy group of the period and mirror mappings. By other methods this computation was done in [27] 
(n = 4) and [21] (n = 2, 4, 6). We prove that the mirror moduli space is isomorphic to the modular curve 
Xo(n) + = H/ to(n)  +, where r0(n)  + is the Fricke double extension of the modular group F0(n). We relate 
the surfaces from this family to the Kummer surfaces Kum(E • E'), where (E, E') is a pair of isogenous 

elliptic curves. 
There is another view of mirror symmetry more relevant to string theory. Here one considers the moduli 

space of pairs (V, a), where V is a Calabi-Yau manifold and a = B + iK E H2(V, R / Z )  q- i]Cv with K 
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equal to a K/ihler form on V with respect to the complex structure of V. Then the mirror mapping extends 
to a map of this space to itself defined on pairs (V, a) such that V is close to a boundary point of the moduli 
space of complex structures and the imaginary part of a can be represented by an Einstein-K~hler metric 
of sufficiently large volume. The work of P. Aspinwall and D. Morrison [2, 3] treats mirror symmetry for K3 
surfaces from this point of view. 

My acknowledgments go to V. BaWrev, D. Morrison, V. Nikulin, and A. Todorov who shared my belief 
that Arnold's strange duality must be the pre-history of mirror symmetry and left it up to me to elaborate on 
this subject. I axa also grateful to V. Batyrev, A. Greenspoon, and D. Morrison for providing some references 
to the relevant literature. 

This research is supported in part by a grant from the National Science Foundation. 

1. Latt ice Polarized K3 Surfaces 

Let X be a complex algebraic K3 surface, a nonsingulax projective algebraic surface over C with vanish- 
ing canonical class and first Betti number. Via the intersection form, the second cohomology group//2 (X, Z) 
is equipped with the structure of a lattice (= a free abelian group together with an integral symmetric bilin- 
ear form on it). It is isomorphic to the lattice L equal to the orthogonal sum of three copies of the standard 
hyperbolic plane U (= an even unimodular indefinite lattice of rank 2) and two copies of the lattice Es (= an 
even unimodular negative-definite lattice of rank 8). The lattice L is called the K3-1attice. The Picaxd group 
Pie(X) of divisor classes of X is naturally identified with the sublattice of algebraic cycles of tt2(X, Z). The 
unimodularity of H2(X, Z) (= Poincar~ duality) allows one to identify I12(X, Z) with the second cohomology 
group H2(X, Z) = Hom(Hu(X, Z), Z) equipped with the lattice structure by means of the cup-product. Let 

c: Pie(x) H (X, z) 

be the corresponding injection. If one uses the interpretation of Pie(X) as the group of isomorphism classes of 
line bundles on X, the map c corresponds to the first Chern class map. By virtue of the Hodge index theorem, 
the lattice Pie(X) is of signature (t+, t_ )  = (1, t), where 1 + t is the rank of Pie(X). 

The complex structure on X defines the Hodge decomposition 

H2(x, c )  =  1,1(x) �9 

where ttP'q(X) ~ Hq(X, f~Px)" It is known that complex conjugation sends H2'~ to H~ and 

Px = (//2 '~ @ H~ N tt2(X, R) 

is a positive-deflnite 2-plane in H~(X, R). The subspace 

zc  (x) = n 

has signature (1, 19). The cone 

v ( x )  = {x =) > 0} 

consists of two connected components. We denote by V(X) + the component which contains the class of some 
K~iahler form on X with respect to the complex structure of X. Let 

A(X) = {6 E Pie(X):  (6,6) = -2}.  

By Riemann-Roeh, A(X) = A(X)+ I_I A ( X ) - ,  where A(X) + consists of effective classes and A ( X ) -  = 
- A ( X )  +. Let W(X) be the subgroup of the orthogonal group of tt2(X, Z) generated by reflections-in ele- 
ments from A(X). This group acts properly discontinuously on V(X) + with fundamental domain 

C ( X ) =  {xE V ( X ) + : ( x , 5 )  >0 ,  for a n y S E & ( X ) + } .  

The set C(X) + of its interior points is the K~thler cone of X ([13, Expos4 X]). 
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By the Lefschetz theorem, 
Pie(X) = / / ~ l ( X )  O H2(X,  Z). 

We set 

Pie(X) + = C(X) N H~(X, Z), Pie(X) ++ = C(X) + N H2(X, Z). 

The elements of Pie(X) + are pseudo-ample divisor classes, i.e., numerically effective divisor classes with pos- 
itive self-intersection. Elements of Pie(X) ++ are ample divisor classes, Elements from V(X) + n H2(X, Z) 
are just  effective divisor classes with positive self-intersection. 

Now let M be  an even non-degenerate lattice of signature (1, t). The cone 

V(M) = {x 6 M R :  (x, x) > O} C MR 

consists of two connected components. We fix one of them and denote it by V(M) +. 
Let 

s = {6 6 M :  (6, 6) = -2} .  

We fix a subset A(M)  + such that  

(i) A(M)  = A(M)  + I.I A ( M ) - ,  where A ( M ) -  = { - 6 : 6  6 A(M)+};  
(ii) if 6 1 , . . . ,  ~k 6 A(M)  + and 6 = ~ ni6i with ni _> 0, then 6 6 A(M) +. 

The choice of subset A(M) + as above defines the subset 

C(M) + = {h 6 V(M) + O M :  (h, 6) > 0 for all 6 �9 A(M)+} .  

Def in i t ion .  An M-polarized K3 surface is a pair (X, j ) ,  where X is a K3 surface and j : M ~+ Pie(X) is 
a primitive lattice embedding. We say that  (X,j) is pseudo-ample (resp. ample) M-polarized if 

j(C(M) +) n Pie(X) + ~ 

(resp. 

j(C(M) +) n Pie(X) ++ ~ ~). 

Two M-polarized K3 surfaces (X, j )  and (X' ,  j ' )  are called isomorphic if there exists an isomorphism of 
K3 surfaces f : X -+ X '  such that  j = f* oj'. 

R e m a r k  1.1. Note that  for any pseudo-ample M-polarized K3 surface (X,j) we have 

(i) j(V(M) +) C V(X)+;  
(ii) j(A(M) +) = j(M) O A(X) +. 

Conversely, if these conditions are satisfied, and j(M) = Pic(X),  then (X,j) is ample M-polarized. 

Finally observe that  a pseudo-ample M-polarized K3 surface is algebraic. 

E x a m p l e  1.2. Let M = (2n) := Ze, (e, e) = 2n. Assume n > 0. Choose V(M) + to be one of the two 
rays in MR \ {0}. A pseudo-ample M-polarized K3 surface (X,j) is called a degree-2n pseudo-polarized K3 
surface. Consider the complete linear system lj(e)l and let f be a rational map defined by this linear system. 
Then one of the following three possible cases occurs: 

(i) (Vnigonal case) [j(e)[ has a base curve C ~ p1,  [j(e) - C[ = I(n + 1)El, where E is an elliptic curve. 
The map  f is a regular map from X to p ~ + l  whose image is a normal rational curve of degree n + 1. 

(ii) (Hyperelliptic case) [j(e)[ has no base points and f is a morphism of degree 2 onto a normal  surface of 
degree n in p n + l .  Its singular points (if any) are rational double points. 

(iii) [j(e)[ has no base points and f is a morphism of degree I onto a normal surface of degree 2n in p , + t .  
Its singular points (if any) are rational double points. 

Moreover, if j (e)  is ample, the unigonal case may occur only if n = 1. Also, in cases (ii) and (iii), the 
morphism f is finite and its image is nonsingular (see [13, Expos4 IV]). 
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2. Local Deformat ions  

Fix an M-polarized K3 surface (X0, jo)- Let S be the local moduli space for X0. It is smooth of dimension 
20 with all Kodaira-Spencer mappings 

p, : T,(S) ~ HI(X,,  e x , )  

being isomorphisms. Let 

~l (Xo,  Oxo) ~ Hl(Xo, ~Xo) -* H2(Xo, Oxo) (1) 
be the natural pairing induced by the duality map Ox0 | ~x0 -~ Oxo. As was explained in the previous 
section, we can view Pic(X0) as a subgroup of Hl't(Xo). We denote by 

H l(Xo,Ox0)j0 
the orthogonal complement of jo(M) with respect to the pairing (1). Let 

Hz(X0,121xo )io "= HI(Xo, i'llXo )/jo(M). 

In view of the canonical pairing 

Hl,l(Zo) | Hl,~(Zo) -+ H2'~(Zo) ~- C 

we may identify HI(Xo, l ~ 0 ) j  0 with. 

Hl'l(Xo)io := (jo(M)c)~,,,(x~). 

The pairing (1) induces the map 

d~ : H~(Xo, Oxo)So ~ Hom(H~(Xo, ~Xobo, H'(Xo, Oxo)). (1') 

Proposi t ion  2.1. There is a local moduli space SM of isomorphism classes of M-polarized K3 surfaces. It 
is smooth of dimension 19-  t. Its tangent space at each point s G S is naturally isomorphic to HI( Xo, O xo) Jo. 

Proof. In the case t --- 0, this is a theorem from [15]. The general case is proved similarly. 

Let 

H~(Xo, Oxo) @ H~ ~ 0 )  -* H~( xo,  aXo) (2) 
be the natural pairing induced by the contraction map O x Q |  -+ fix0" Composing (2) with the projection 
Hi( Xo, ~lXo) "+ Hi( Xo, ~ 0 ) J o  and restricting the composition to HI(Xo, @xo)Jo, we get the map 

do: HZ(Xo, @xo)jo -'+ Hom(H~ (2') 

Let 

(all, d2): Hl(xo, OXo)Jo -Y Hom(Ht'l(Xo)i~ H~ @ Hom(H2'~ Hl ' t  (Xo)j,) - 

The formula 

(e~, 0~) = dl(e2) o d2(e~): H~'~ -+ ~r~ 
defines the bilinear form 

The canonical pairing 

Hi (x0 ,  OXo)~o 2 --)- Hom(H2,~ g~ 

n~,~ | u~ -~ u~,2(Xo) = u4(Xo, c )  --_- c 
allows one to identify the space of values of the bilinear form with the space H~174 One can check that 
this pairing is symmetric [16] and hence defines the linear map 

Yu: S2(Hl(Xo,OXo)Jo) ~ H~ | 

which we call the Grijfiths- Yukawa quadratic map for M-polarized K3 surfaces. The choice of an isomorphism 

H~ ~- C 
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allows one to identify the map Yu with a quadratic form on the space Hi(X0,  Ox0)j0- 
The Griffiths-Yukawa quadratic map can also be expressed in terms of the intersection form on H i' 1 (Xo) 

as follows. First observe that the map 

d2 : Hl(Xo, ex0)J0 - ,  Hom(1-Z2'~ H~ |  l'l(x0)jo (3) 
is bijective (since i t  is injective and both spaces have the same dimension). The pairing 

Hl'l(Xo)jo | Hl'l(Xo)jo --+ C 

defines the symmetric bilinear map 

(f'lr2'0(X0)* | Hl'l(Xo)jo) | (H2'~ * | Hl'i(Xo)jo) "+ H~174 (4) 

Then it follows from the definition of the Griffiths-Yukawa quadratic map that 

Yu = Yu t o dl, 

where 
Yu' : H2'~ @ Hl'l(Xo)jo ~ H~ | 

is the quadratic map defined by (4). 

3. The  Period Map 

The map (3) can be naturally interpreted as the differential of the period mapping for M-polarized K3 
surfaces. Let M be a lattice of signature (1, t) embeddable into the K3-1attice L. Fix a lattice embedding 
iM : M -~ L. We shall often identify M with the image iM(M). Let 

N = M~ 

be the orthogonal complement of M in L. It is a lattice of signature (2, 19 - t). 

Defini t ion.  A marked M-polarized K3 ~urface is a pair (X, r where X is a K3 surface together with an 
isomorphism of lattices r  H2(X, Z) -~ L such that r  C Pie(X). The pair (X,jr with j~ = r  
M --+ Pie(X) is an M-polarized K3 surface. In this way we can Speak about pseudo-ample and ample marked 
M-polarized K3 surfaces. Two marked surfaces (X, r and (X t, r are called isomorphic if there exists an 
isomorphism of surfaces f : X -+ X t such that Ct = r o f*. 

Given a marked M-polarized K3 surface (X, r the Hodge decomposition of H2(X, C) defines the point 
r176 in P ( L c ) .  Since H2,~ is orthogonal to H I ' I ( x )  (with respect to the cup-product in H2), the 
line r  2,~ is always orthogonal to r = M. Therefore 

r176 E P ( N c )  C P(Lc) .  

Let Q be the quadric in P ( N c )  corresponding to the quadratic form on Arc defined by the lattice N. For any 
w E H2'~ we have 

(w,w) e H4'~ = {0}. 

This shows that r  2'~ E Q. Also 

(w,~) E R+ C H2'2(X)N/' /4(X, R) ~- R. 

Therefore, r176 is contained in an open (in the usual topology) subset DM of the quadric Q defined 
by the inequality (w, ~) > 0. By assigning to H2'~ the positive-definite 2-plane Px C NR together with 
the orientation defined by the choice of the isotropic line H2'~ C Px | C, we can identify DM with 
the symmetric homogeneous space 0(2, 19 - t)/SO(2) x O(19 - t) of oriented positive-definite 2-planes in 
/YR. The space consists of two connected components, each isomorphic to a bounded Hermitian domain of 
type fV19-~. The involution which switches the two components is induced by the complex conjugation map 
Q --~ Q. We shall call the point r  2,~ E DM the period point of (X, r 
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Let SM be the local moduli  space of an M-polarized K3 surface (X0, j0). Since SM is contractible, we can 
choose a marking ~b : H2(X~, C) -r L for all As,  s 6 SM. We fix this marking and identify H2(X~, C) with 
L c .  The complex structure on X ,  defines the Hodge decomposition and hence the period point  H2,~ E 
DM. By the local Torelli theorem ([t3, Expos4 V]) the resulting period map  

p : SM ~ DM 

is a holomorphic map  which is locally an isomorphism in a neighborhood of the origin 0 = (Xo, j0). Let 
IJ = p(O) 6 DM be the period point of (Xo,jo). We shall identify it with the subspace H 2,~ of Nc .  Then 

T (DM) Hom( , = Hom(H2'~ HI'I(X0)j0)  ---- H~ | HI'I(X0)j0.  

The differential of the period map  

dpo : TO(SM) --+ T.(DM) 

is the bijective map  d2 from (3). 
Let ]CM be the fine moduli  space of marked M-polarized K3 surfaces. It is obtained by gluing local moduli 

spaces of marked M-polarized K3 surfaces and is a (nonseparated) analytic space (see [13, Expos4 XIII; 30]). 
The local period maps are glued together to give a holomorphic map 

p : ]CM --+ DM. 

This map is the restriction of the period map P : .M -~ D D DM for marked Ks K3 surfaces. According 
to the global Torelli theorem of Burns-Rappopor t  and the surjectivity theorem of Todorov, the latter map  is 
dtale and surjective (see Ioc. cit). The  former theorem also describes the fibres of the period map.  

Let (X, r be a marked M-polarized K3 surface. Then the image of the data  

(Px, v(x) +, a(x) +, c(x)) 
under the map r defines the data  (~r, V + ,  A+, C,~), where 

(i) ~r is a positive-oriented 2-plane in NI~; 
(ii) V + is a connected component  of the cone {x 6 ~r• (x, x) > 0}; 

(iii) A+ is a subset of A,~ = {e E 7r • fq L :  (e, e) -2}  such that  A~ = A+ I_I _ A + ;  
(iv) c .  = {2 e v + :  (x, e) > 0 for any e e a + } .  

Note that  V~ is uniquely determined by 7r (since V(M) + is fixed) and C~ is determined by A~.  

T h e o r e m  3.1. The restriction of the period map p : ]CM --+ DM to the subset ]C~I of isomorphism classes 
of marked pseudo-ample M-polarized K3 surfaces is surjective. There is a natural bijection between the fibre 
of the map 

pl : , ~  __+ DM 

over a point 7r E DM and the subgroup W~(N) of isometrics of L generated by reflections in vectors from 
A ~ N N .  

P roof .  It follows from the global Torelli theorem that  the fibre p -1  (~) is bijective with the set of possible 
pairs (V$,  A+). The group W~(L) • {+1}, where W,r(L) is generated by reflections in elements from A~., acts 
transitively on the fibre. Pick a point (X, 4) in p- l ( I r )  corresponding to (V~, A~ +) such that  V(M) + C V~. 
Let h 6 C(M)+;  we may choose (X, r such that  h 6 C,~. This is possible because C,r is a fundamental  domain 
for the action of Wr(L) in V + .  Since 7r 6 DM, r  C Pic(X) and jr E Pic(X) +. Composing r with 
some reflections from A(M),  we may assume that  h E jr Thus (X, 4) is a marked pseudo-ample 
M-polarized K3 surface with p((X, r = 7r. This proves the surjectivity. 

pa pm Let (X, r E K:M; then the fibre ofp '  : tC M --+ DM over r = p((X, r is bijective with the set of subsets 
A + such that A+ N M = C(M) +. The stabilizer G of this set in W,~(L) is the subgroup W~(N). In fact, 
it follows from the properties of reflection groups that G is generated by reflections in vectors 5 E A~ such 
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that (5, h) = 0, where h E C(M) +. Since C(M) + linearly spans MR we must have 6 E N. This proves the 
theorem. 

For any 6 e A(N)  = {x 6 N :  (x, x) = -2} ,  set 

= N o :  5 ) =  0}, 

D~ \ ( UEA(N)HSNDM). 

Let (X, r be an ample marked M-polarized K3 surface. Then (j4,(M)) l OH 1,1 cannot contain vectors v with 
(v, v) = -2 .  This shows that the period point ~r = r satisfies A~ N N = 0. This implies the following: 

Coro l l a ry  3.2. Let lC~v I denote the subset of ]CM which consists of isomorphism classes of marked ample 
M-polarized K3 surfaces. The period map induces a bijective map 

p: 

Next we want to get rid of markings of M-polarized K3 surfaces. For any lattice S we denote by O(S) 
its orthogonal group. The group 

F ( i ) = { a ~ O ( L ) : a ( m ) = m  for a n y m e i }  

acts on the moduli space K~M transforming (X, ~b) to (X, r o ~r) without changing the isomorphism class of 

the M-polarized K3 surface (X,j~) .  
Let FM be the image of F(M) under the natural  injective homomorphism 

F(M) ~ O(Y). 

P r o p o s i t i o n  3.3. Let A( N) = N* /N be the discriminant group of the lattice N, and let O( N) -4 Aut(A(N))  
be the natural homomorphism. Denote its kernel by O(N)*. Then 

FM = O(N)*.  

In particular, FM is a subgroup o/finite index in O(N). 

Proof .  This follows from Corollary 1.5.2 in [31]. 

The group O(N) is an arithmetic subgroup of 0(2, 19- t ) ,  and by the previous proposition so is FM. Since 
DM is the union of two copies of a Hermitian homogeneous domain, the quotient DM/FM is a quasi-projective 
algebraic variety with at most two irreducible components. Obviously F(M) contains the subgroup of O(L) 

p a  
generated by reflections in vectors 6 E N with (5, 5) = -2 .  Thus each fibre of the map p' : ~M "+ DM is 
mapped to the same orbit in KM/F(M). Applying Theorem 3.1, we obtain that the period mapping descends 
to a bijection 

](.M/F(M) = DM/FM. 
p a  Since the elements of the quotient set ~M/F(M) are isomorphism classes of pseudo-ample M-polarized K3 
p a  surfaces, we are able to endow the set tCM/F(M ) with the structure of a quasi-projective algebraic variety. 

We denote this variety by KM. 
Assume that M satisfies the following condition: 

(U) For any two primitive embeddings il,  i2 : M ~ L, there exists an isometry cr : L --+ L such that 

il 0 o" = i2. 

Let (X, j )  be a pseudo-ample M-polarized K3 surface. Take any marking r : H2(X, Z) --+ L. Composing 
it with j : M -+ H2(X, Z), we obtain a primitive embedding i' : M -+ L. Replacing r with r o ~r for 
appropriate isometry a of L, we obtain a new marking qt' : H2(X, Z) --+ L such that j -- i t , .  This shows 
that any isomorphism class of (X, j )  is represented by a point of KM. Thus, we may view KM as the moduli 

space of M-polarized K3 surfaces. 
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Similarly, we can define the variety K ~  of isomorphism classes of ample M-polarized K3 surfaces. We 

have 

K~M = D~ / F M . 

Observe that O(N) has only finitely many orbits in the set of primitive vectors with given value of the qua- 
dratic form (for example, this follows from Proposition 1.15.1 of [31]). This shows that  the complement of 
D ~ / F M  in DM/FM is the union of finitely many hypersurfaces. In particular, D~j/F M is an open Zariski 

subset of D(M)/FM. 

R e m a r k  3.4. In fact, following [13, Expos6 XIII], one can show that DM/FM is a coarse moduli space of 
pseudo-ample M-polarized K3 surfaces. First we define a family of M-polarized K3 surfaces. This is a family 
f : X --> S of K3 surfaces together with a homomorphism of sheaves Ms --+ P i c x / s '  where P i c x / s  C 
R2f , (Z)  is the relative Picard sheaf. We can define a family of pseudo-ample M-polarized K3 surfaces by 
requiring additionally that each ( f - 1  (s), js)  be a pseudo-ample M-polarized K3 surface. Since KM is a fine 
moduli space for marked M-polarized K3 surfaces, a family ( f  : cY ~ S, r of marked M-polarized K3 
surfaces is equivalent to a holomorphic map a : S --~ KM. Composing this map with the period we obtain 
that ( f  : A" --+ S , r  defines a holomorphic map "~ : S --+ DM/FM. Given a family ( f  : Pt" --+ S, j )  of 
pseudo-ample M-polarized K3 surfaces, after localizing S, we equip it with a marking and define the map 
-~ : S --r DM/FM which does not depend on the choice of the marking. When S is a point, we get a bijection 

p a  EM/F(M ) ~- DM/FM. This proves that DM/FM is a coarse moduli space. Similarly we prove that D ~ / F M  
is a coarse moduli space for ample M-polarized K3 surfaces. 

I do not know of any algebraic construction for KM except when M is of rank 1. 

4. T u b e  D o m a i n  Rea l i za t ion  o f  t h e  P e r i o d  Space  

Let b : V x V -+ C be a nondegenerate symmetric bilinear form on a complex vector space and let 
Q : b(x, x) = 0 be the corresponding nondegenerate quadric in the projective space P(V)  associated with V. 
For any nonzero vector v E V, we denote by [v] the line Cv �9 P(V). For any v �9 V \ {0} the hyperplane 
I-I,, = {w �9 V :  b(w, v) = 0} intersects Q along the quadric 

Q(v) = Q N H,, = {z �9 Q: v �9 PT~(Q)} c H~,, 

where PT~(Q) is the projective tangent space of Q at the point Iv]. If b(v, v) = O, i.e., [v] �9 Q, the hyperplane 
Hv coincides with PT[v](Q) and Q(v) is the cone over the quadric "Q(v) c P( t tv /Cv)  with vertex at [v]. In 
other words, the projection map Q \ {[v]} --+ P(V/Cv) is an isomorphism outside Q(v), and blows down 
Q(v) \ {Iv]} to the quadric Q(v). 

We shall apply the previous remarks to our situation, where V = No  C L c  with the symmetric bilinear 
form defined by the lattice N = M • The period space DM is a subset of the quadric Q defined by the 

inequality (#, ~) > 0. 

L e m m a  4.1. Let f �9 (M•  = O. Then 

DM N Q([f]) = O. 

Proof .  Suppose there exists # E DM N O([f]). Since f is a real vector, and the bilinear form originates 
from the lattice structure, we have (g, f )  = (#, f )  = 0. This implies that f E P •  where P C NR is the 
positive-definite 2-plane spanned by the real and imaginary part  of #. However, the signature (t+, t_ ) of the 
space (M• satisfies t+ = 2. Therefore, P •  is negative definite and does not contain isotropic vectors. This 

contradiction proves the assertion. 
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From now on we assume that t < 18, i.e., rank(M) < 19. This ensures that  the lattice N = M -l- is 
indefinite: Let us fix an isotropic vector f E/YR. We set 

w s  = {x e NR : ( x , f )  = 1 } / R f ,  

D = e N R :  = O} /Rf .  

By Lemma (4.1), the projection map ~r: Q \ Q([f]) ~ P ( Y c / C f )  maps DM JsomorphicaJ]y onto a subset of 
the affme space 

A I  = P ( N c / C f )  \ P ( ( V I ) c )  ~- {z E N o :  ( z , f )  = 1 } / C f  

= W I  + iVf  = {z = x + iy E N c / C f  = ( N R / F t f )  + i ( N R / R f ) :  (x, f )  = 1, (y, f )  = 0}. 

T h e o r e m  4.2. The projection map Q \ Q([f]) -~ P ( N c / C  f )  defines an analytic isomorphism 

DM ~ {x + iy �9 A f  : (y,y) >0}.  

P roof .  This is just the translation of the condition (/~, g)  > 0 in terms of the projection map. We write any 
tt �9 DM in the form p = A f  + z + iy, where x + R f  �9 WI, y + R f  �9 Vy. We have 

0 - (#, #) = [2 Re(A) + (x, z ) -  (y, y)] + i[2 Ira(A) + 2(x, y)], 

hence (x, x) - (y, y) + 2 Re(A) = 0. This implies that 

0 < (u, = 2 ae( ) + x) + (u, = 2(u, u )  

This proves the assertion. 

Recall that  for any real a ~ n e  space W with translation space V and an open connected cone C C V 
which does not contain an a ~ n e  line, the set 

~2(W, V,C)  = {z = x + iy : z �9 W,y  �9 C} C W c  

is called the tube domain associated with the cone C in V. In the special case where V is equipped with a 
nondegenerate quadratic form with signature (1, n) and the cone V + is one of the two connected components 
of the cone {x e V : (x, x) > 0}, the tube domain ~2(W, V, C) i s a  bounded Hermitian symmetric domain of 
type [Vs. This can be applied to our situation where V = Vf. Fix a connected component V?  of the cone 

(x e Vf : (x, x) > 0). Restricting the period map to a connected component D~. t of DM,  we obtain 

Coro l l a ry  4.3. The choice of an isotropic vector f �9 NI~ defines an isomorphism 

D+M ~- ~2(Wf, Vf,  V~).  

For any # �9 DM the choice of a representative g �9 L of # with (g, f )  = 1 defines a canonical Coro l l a ry  4.4. 
isomorphism 

e~, : T , ( D M )  -4 (Vf)c .  

ff  [(Z, r E ]~,M i3 the isomorphism class of a marked M-polarized K3  surface with period point #, then the 
pre-image of the quadratic form on (Vf)c  under the map 

a. odp[(x,~)] : H I ( X ,  O x )  --+ (V i ) c  

coincides with the Griffiths- Yukawa quadratic form with respect to the normalization H ~  defined by the 
linear function r  1(~) e H 2'~ 

Proof .  The map 

~ , :  Tu(DM) = H o m ( # ,  -+ (Vs)c 

is the composition of the differential of the map DM --+ A I at the point # and the differential of the translation 
map g I ~ ( V f ) c , z  ~+ z - #. Explicitly, it sends r  # -+ #• to r - (r f )g rood C f ,  where r 
is a representative of r in #• 
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R e m a r k  4.5. In general, there is no canonical trivialization of the affine space W I. However, the choice of 
an  isotropic vector g E NR with (f ,  g) = 1 defines the trivialization 

ws-+(vs), 
If we choose to identify V I with ( R f  + R g ) ~  R , then the explicit isomorphism cr : 1~% --+ DM is given by the 
formula 

5. S o m e  A r i t h m e t i c a l  C o n d i t i o n s  on  M 

We are going to place some arithmetical conditions on our lattice M to ensure, for example, condition 

(U) in See. 3. 
For each nondegenerate even lattice S, we denote by A(S) = S* /S  the discriminant group of S equipped 

with the quadratic map 

qs : A(S) -~ Q/2Z,  qM(x + S) = (x,x) + 2Z, 

where the bilinear form of S is extended to a Q-valued bilinear form on S*. 
For example, for any integer m ~ 0, let U(m) denote the lattice of rank 2 with a basis (e, e') such that 

(e, e') = m, (e, e) = (e', e t) = 0. Then A(U(m)) = ( Z / m Z )  2 with qu(m) defined by the formula 

2ab 
q((a + mZ, b + mZ)) = �9 + 2Z. 

rn 

It is clear that for any isometry a E O(L), we have a canonical isomorphism DM ~ D~,(M) which defines 
a canonical isomorphism of the moduli spaces 

" ~ / g (  K:M = ~ M), 

where we choose (V(M) +, A(a (M) )  +) to be equal to ( a (V(M)+) ,  cr(A(M)+). The next result of Nikulin 
gives a condition implying that any two primitive embeddings i " M --+ L, i' : M --+ L differ by an isometry 

of L. 

P r o p o s i t i o n  5.1. Ze~ S be an even lattice of signature (1, t) with t < 19. Assume thai the minimal number 
of generators l( A( S) ) of the discriminant group A( S) is less than or equal to 20 - t or t < 10. Then there exists 
a primitive embedding S ~-+ L. Moreover, such an embedding is unique up to an isometry of L if for each prime 
p • 2 the p-primary component A(S)p of A(S) satisfies l(A(S)p) < 1 9 -  t and, ifl(A(S)2) -= 21 - t ,  A(S)2 
contains as a direct summand the discriminant form of the lattice U(2). 

P roof .  See [31, Corollary 1.12.3, Theorems 1.12.4, 1.14.4]. 

Co ro l l a ry  5.2. Any even lattice M of signature (1,t) with t < 9 admits a unique primitive embedding in 
the K3-lattice L. In particular, the moduli space K ~  of ample M-polarized K3 surfaces is not empty (and of 
dimension 19 - t). 

P roof .  In fact, K~t  is a Zariski-open nonempty subset in the (19-t)-dimensional algebraic variety DM/FM.  

Next we want to s tudy primitive isotropic vectors f in a nondegenerate even lattice S. Consider f as 
an element of S* and let d iv(f)  be the positive generator of the image of the linear map f : S --+ Z. Let 

t 
f * = ~  S*. f* div(f)  f + S E Clearly is an isotropic element of the discriminant quadratic form A(S). Let I(S) 

denote the set of primitive isotropic vectors in S, and I(A(S)).be the same for A(S). The map f -+ ' f*  + S 
defines a map I(S) ~ I(A(S)). The orthogonal group O(S) acts naturally on the source and the target of 

this map, and the map is compatible with this action. Let 

O(S)* = Ker(O(S) -+ O(A(S))): 
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This group acts on the fibres of the map I(S) -~ I(A(S)).  

P r o p o s i t i o n  5.3. The map 

Z(S)IO(S)" -+ Z(A(S)), / ~ .f* + S 

is surjeetive if S admits the lattice U = U(1) as an orthogonal summand. The map ia bijective if S admits the 
lattice U 3_ U as an orthogonal summand. 

P r o o f  See [37, Lemmas 4.1.1 and 4.1.2]. 

Def ini t ion.  An isotropic vector f 6 I (S)  is called m-admissible if div(f)  = m and there exists g E I (S)  
with (f ,  g) = m, div(g) = m. 

L e m m a  5.4. The following condition~ are equivalent: 

(i) f 6 I(S)  is m-admissible; 
(ii) there exists a primitive lattice embedding i : U(m) -+ S such that S = i(U(m)) ~ i(U(m)) • and 

f 6 i(U(M)). 

Proof .  (i) =~ (ii). Let g 6 I(S)  such that (f ,  g) = m. The sublattice U' spanned by f and g is primitive, 

contains f ,  and is isomorphic to U(M). Since for any s 6 S, m divides (s, f )  and ( , ,  g), we obtain s - (s, g) f _  
D2 

(s, f )  g 6 U~. This shows that S = U' • U a-. 
m 

(i) ~= (ii). Obvious. 

P r o p o s i t i o n  5.5. Let S be an even indefinite nondegenerate lattice of signature (t+, t - ) .  Then S admits 
the lattice U(m) as an orthogonal 3ummand if the following conditions are satisfied: 

(i) A(U(m)) is isomorphic to an orthogonal summand of A(S) with respect to the bilinear form defined by 

qs; 
(ii) l(A(S)) <_ t+ + t_  - 3. 

Proof .  Let A' be the orthogonal complement of A(U(m)) in A(S). Then l(A') <_ l(A(S)) <_ rank S - 3 < 
(t+ - 1) + (t_ - 1). By Corollary 1.10.2 from [31], there exists a lattice S' with signature (t+ - 1, t_  - 1) and 
A(S')  ~ A'. Thus the lattice U(m) 3- S' has the same signature and the same discriminant quadratic form 
as the lattice S. By Corollary 1.13.3 from [31], we obtain S ~ U(m) 3- S'. 

P r o p o s i t i o n  5.6. Suppose that M • contains an m-admiasible isotropie vector with m < 2. Then the moduli 
space K M  i3 irreducible. 

Proof .  Let M -l- = U(m) 3- M'.  The isometry - idu(m)  @ idM, of M -t- acts identically on the discriminant 
group of M • hence extends to an isometry of ~ E F(M) of L (see Proposition 3.3). Obviously a switches 
the orientation of a positive-definite 2-plane 7r C (Ma-)rt spanned by a vector x E U(m) with (x, x) > 0 and 
a vector y E M'  with (y, y) > 0. Hence a switches the two connected components of DM. This implies that 
DM/F(M)  = DM/FM is irreducible. 
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6. M i r r o r  S y m m e t r y  

Now we are ready to define the mirror family. Pick an m-admissible isotropic vector f in N = M "L 
V 

(Proposition 5.3 gives some sufficient conditions for its existence). Then M -L = U I Z M,  where U t ~- U(m) 
V 

and f E U'. The sublattice M is of signature (1, 18 - t). We have 

V 

(Zf)~j./Zf"~M.= 

V V 
So, as an abstract lattice, M does not depend on the choice of U' ~ U(m) containing f .  Let us fix (V(M) +, 

V V V V 

A(M) +-, C(M) +) and use the embedding i : M '--+ M • C L to introduce the moduli space K v of M-polarized 
M 

K3 surfaces. 

Definit ion.  The moduli space K v is called the mirror moduli space of K v �9 
M M 

v 
The definition obviously depends on the choice of U' which determines the embedding M ~ L. If we 

replace i with the composition i' = a o i, where c, E O(L), then i'(M) C ~'(M • = ~r(M) • Thus the new 

K v will be equal to the mirror of K~(M) ~ KM. Thus, if we put conditions on M which ensure the 
i t ( M )  

v 
uniqueness of a primitive embedding of M in L, we obtain that the isomorphism class of the mirror moduli 

v 
space depends only on the choice of f E M • Since the signature and the discriminant group of M can be read 
off from the signature and discriminant of M, we can apply Proposition 5.1 to get some sufficient conditions 
on M which guarantee that our construction is well-defined. 

Note the obvious relations 

d i m K v  + d i m K M = 2 0 ,  
M 

dim K v = rank M = rank Pie(X), 
M 

where for any mazking ~b of X E KM the period of (X, r does not belong to a subvariety of the form DMJ 
for some sublattice M '  of L with M C M' .  

Note that KM is not a fine moduli space, so there is no universal family of pseudo-ample M-polarized K3 
surfaces. We shall usually replace it with a family f : X -+ S of pseudo-ample M-polarized K3 surfaces (in 
the sense of Remark 3.4) such that the period map S -+ KM is of finite degree. A similar family f l  : A,I ~ St 

v 
of M-polarized K3 surfaces will be called a mirror family. 

The mirror correspondence works especially nicely when m = 1. This is true if and only if M • contains 

an isotropic vector with div(f)  = 1. Choose U' ~ U containing f .  Then M • = U' _L 2~/and ~r•  = U' _L M. - 
Thus, we can use f E U' to define the mirror family for both KM and K v �9 Since 

M 
V 
V 

M = M ,  

we obtain that the mirror correspondence is a duality. Note that additional assumptions on M guaran- 
tee that this duality is independent of the choice of U'. For example, suppose I(A(M)) < t - 3." Then 

V V 

A(M) -~ A(M • ~- A(M) and by Corollary 1.13.3 of [31] M is determined uniquely by its signature and 
the discriminant form. Proposition 1.15.1 of Ioe. cit. implies that the U-splitting of M • is unique up to. an 
isometry o f M  a-. Applying Proposition 5.1 to M • we obtain that M • admits a unique primitive embedding 
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in L. Thus any isometry of M "  lifts to an isometry of L. This shows that the moduli space K v is independent 
M 

V 

of the choice of splitting M • = U • M. 

R e m a r k  6.1. One of the main motivations of Nikulin's paper [31] was to find some conditions ensuring that 
v 

two lattices 5" and S l are K3-dual,  i.e., can be realized as the lattices M and M from above. For example, he 
proves in [31, Corollary 1.13.5] that two hyperbolic lattices S and S t are K3-dual  if rank S + rank S' = 20 
and A(S) ~- A(S') as abelian groups and the values of the discriminant quadratic forms differ by a sign. 
The notion of K3-dual lattices plays an important role in the explanation of Arnold's strange duality where 
M occurs as the lattice generated by algebraic cycles supported at infinity for a K3-smoothing of one of the 

V 

fourteen unimodal exceptional singularities and M l U is realized as the Milnor lattice of vanishing cycles for 
V 

the same singularity. The strange duality switches the rote of the lattices M and M. In [31], Nikulin proves 
that the Milnor lattice of a hypersurface surface singularity contains a 1-admissible isotropic vector whenever 

it is indefinite. 

For any K3 surface X we can introduce the tube domain (the Picard ~ube domain) 

P t d ( Z )  = Pic(X)R + iC(X) +. 

Now let (X, j )  be an M-polarized K3 surface and f E M • be an m-admissible isotropic vector. Fix a splitting 
V 

M • = U' I M,  where U' -~ U(rn) and f E U'. Let us consider the tube domain f~% = V% + iV?. Observe 

that 
V 

V f = ((Zf)/~/•  ~- MR C LR. 

Let us choose the component 1//+ such that under the above isomorphism 

V v?= V(M)+ 
Let 

V V V 

V~ + =  C(M) + = {y e v (M)+ : (y,6) > O for a l l & c A ( M ) ) ,  

V V 

f~-~ = V I + iV? + = MR + C(M) +. 

V 

Let (X, r be an ample M-polarized surface. Then 

V 

A(M) + = j21(A(X)+). 

v 
The map J4 : M --+ Pic(X) defines an open subset 

v~+(X, r = j21(C(X) +) 

of V?  +, and a holomorphic embedding 

V s + iV~-+(X, r '-+ Ptd(X).  

Note that, if J4 is an isomorphism we get V?+(X, r = V? + and the previous embedding becomes an iso- 

morphism. 
Let g E U~. be an isotropic vector with (f, g) = 1. By Remark 4.8, it defines an isomorphism from 

each connected component of DM onto the tube domain flY" Let D + be the pre-image of ft~: under this 

isomorphism and let K + be the pre-image of D + under the period map from Theorem 4.2. For any ample 
V V 

M-polarized marked K3 surface (X, r with bijective j4  : M --+ Pic(X), the period map defines a holomorphic 

2612 



isomorphism: 

d(X) = P t  

V 

Note that its definition depends on the choice of splitting M • = U ~ 3_ M,  the choice of an isotropic vector 
f E U(rn), and the choice of matldng r 

Recall that the period space DM admits a compaetification D ~  which is isomorphic to the quadric in 
P ( N c )  defined by the lattice N. The topological boundary of DM in D ~  is equal to the disjoint union 
of locally closed analytic subsets F ,  called the boundary components. Each boundary component is of the 
form P(2"c) V~ DM for some isotropic subspace _r of NR. Since N is of signature (2, 19 - t), we have either 
dim I = 1 ( F  is a point) or dim I = 9. ( F  is isomorphic to the upper half plane). The stabilizer group 
N(F) = {g �9 O ( N r t ) :  g(F) = F}  of F is a maximal parabolic subgroup of G = O(Nrt). Conversely, 
each such subgroup occurs as N(F)  for some boundary component F.  A boundary component F is called 
rational if the corresponding isotropic subspace can be defined over Q. It is clear that we can identify the 
set of isotropic subspaces of NQ with the set of primitive isotropic sublattices of N.  In particular we have a 
bijective correspondence 

{0-dimensional rational boundary components of DM) ~ ~ I(N).  

Let F C G(Q) = O(NQ) be an arithmetic subgroup of G (e.g., a subgroup of finite index in O(Yz)) .  
It acts on the set TKB(DM) of rational boundary components of DM, and for each such component F ,  the 
stabilizer group N r ( F )  = F fl N(F)  acts discretely on F with algebraic quotient F/Nr(F) .  The same is true 
for D/F. We have 

is a normal projective algebraic variety (Baily-Borel-Satake compactification). 
We shall apply it to our situation when I" = FM, Let f �9 I (N)  and let F be the corresponding ze- 

ro-dimensional rational boundary component of DM. We set 

Z M ( f )  : {g  �9 N r M ( F )  : g(f) = f}.  
V 

Now let us assume that f �9 I (N)  is m-admissible and fix a splitting M • = U' 3_ M,  where U' ~ U(rn), 
f �9 U I. Let g �9 U r be an isotropic vector with (g, f )  = rn. 

V V V 

P r o p o s i t i o n  6.2. Let O(M)* = Ker(O(M) --+ O(A(M)). Then there is a canonical split extension of groups 
V V 

0 --+ rnM --~ ZM(f)  --+ O(M)* ~ 1. 

V 
Proof .  We can write any n �9 M • in the form n = af  + bg + z, where a, b �9 Z, z �9 M. Any cr E ZM( f )  is 
defined by the formula 

a ( f ) = f ,  ( r ( g ) = - ( v ' r ' v " ) f  +g+v~.,  a ( z ) =  (v~"~(z))f  +'~(z), 
2rn rn 

V V 

for some va, ~(z) �9 M. It is easy to check that ~ :  z --+ ~(z) is an element of O(M). Setting A(~) = (~, v~) 
we verify that 

A(a I o a) = ('if' o ~,~'(vr + vr 
V V 

Let G be the group of pairs (s, v) e O(M) x M with the composition law (s', v') o (s, v) = (s' o s, s'(v) + v'). 
V V 

The homomorphism (s, v) ~ s makes it an extension of O(M) with the help of M. It splits by the section 
s ~ (s, 0). The homomorphism ~r ~+ A(a) is an injective homomorphism from ZM(f)  to G. To find its image 
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we have to decide which pairs (~,v~) correspond to isometries ~r E O(M a') which lift to isometrics from 
r(M). By Proposition 3.3, the condition for this is that ~r E Ker(O(M a') ~ O(A(M• It is easy to check 

V 

that any a with A(a) = (1, v,,) satisfies this condition if and only if v--5# E M. Each a with A(a) = (~, O) 
m 

v v v 

satifies this condition if and only if ~ E O(M)*. Since G is the semi-direct product of M and O(M), we get 
V �9 V 

that the image of ZM(f)  is the semi.direct product of mM and O(M)*. This proves the lemma. 

V V 

Let ZM(f) + be the subgroup of ZM(f)  whose image in O(M)* consists of elements preserving C(M) +. 
V V 

The group ZM(f) acts naturally on ~f  = MR. + iM + by the formula 

(~, v,,)(x + iv) = ~: + v~, + i~(v). 

V V 

The subgroup ZM(f) + preserves the tube domain fl~ = V I + iV? + = Mrt + iC(M)+R �9 It follows from the 
theory of compactification of homogeneous symmetric domains that there exists Nr(F)-invariant neighbor- 
hood U* of F in D ~  such that the map U*/Nr(F)-+ Db/r is an analytic isomorphism to a neighborhood 
U* of the boundary point F/Nr(F) of DM/r. Restricting this isomorphism to U =  ~r* f112}', we obtain an 
isomorphism 

~ : ~ / Z M ( / )  + -~ UF c r1~. 

The multivalued map 

~ - 1 :  uF -~ ~F c ~ -~ Vtd(X') 

with the monodromy group ZM(f) + is the mirror map MS4 ~ mentioned in the introduction. 

V 

R e m a r k  6.3. By the global Torelli theorem for algebraic K3 surfaces, the group ZM(f)+/M contains a 
V 

subgroup of finite index isomorphic to the automorphism group of any surface with Pic(X) ~ M. 

Let (X,j)  be an M-polarized K3 surface such that its isomorphism class [(X,j)] belongs to the open 
subset UF from above. The pre-image of UF in DM is equal to the disjoint union of F-translates of UF- So, 
we can choose a marking r of (Z, j )  such that the period point P(X, r belongs to UF. Let w be a holomorphic 
2-form on X; the function 

r = f 
6-1(f) 

is a single-valued holomorphic function on UF (because the 2-cycle r  does not depend on the marking 
modulo the action of the group ZM(f)+). Thus, if we normalize w by replacing it with w' = w~ f4,_l(l)w, 
we will be able to choose a representative e of P(X, r with the property (g, f )  = 1. By Corollary 4.4 to 
Theorem 4.2, we obtain that this normalization allows us to identify the Griffiths-Yukawa quadratic form on 

V 

H 1 (X, Ox)  with the complex quadratic form Mr  In particular, it gives an integral structure on H 1 (X, @x ) 
compatible with the quadratic forms. This gives MS3 ~ from the introduction. 
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7. Mirrors for the  Family of  Degree  2n Polarized K3 Surfaces 

Here we consider the mirror construction in the case M = (2n). It is known (see [17, Theorem 1.1.2]) 
that M admits a primitive embedding in L, which is unique modulo O(L). Since the lattice U represents 
any even integer, we may assume that M C U, where L -- U -L3 .I_ E8 "k2. This immediately implies that 
M • ~ U _k U • Es _k Es _k ( -2n) .  Write 

n = ~k 2, 

where H is square-free. Then the group FM has exactly [-k 2+-~2] orbits in the set of primitive isotropic vectors 

in the lattice M • (see [37, Theorem 4.01]). Each orbit is represented by a vector f with d ivf  = d, d[k, and 

(Z f) 'k / Z  f ~ U • Es • Es • ( -2N)  := MN , 

where N n/d.  So we have 1k--2+--~2 [ mirror families, and each one is isomorphic to KM,/g for some d[k. 
k - - J  

Since the lattice MN admits a unique embedding into L up to isometry of L, the number of nonisomorphic 
mirror moduli spaces for KM is equal to the number of divisors of k. To study the mirror moduli spaces we 
may assume that d = 1 by replacing n with n ~ = n/k.  The corresponding isotropic vector can be taken from 
a copy of U. The mirror family K v is one-dimensional and is isomorphic to DM, /FM~.  We have (Mn).L = 

M 
U k (2n). So if we choose a standard basis (f,  g) of U, then we can find a representative ~ of a point from 
D +  in the form 

# = - n t 2 f  + g +  re, t E C. 

The map # -+ t defines an isomorphism from D +  to f~ ' .  The latter can be identified with the upper 
half-plane H = {t = x + iy E C : y > 0}. The group Zr(M,)(F)  + is isomorphic to (2n) ~ Z. Let T be 

V 

a generator of ZF(M,)(F) + corresponding to the generator e of (2n). Then T ( v )  = v for v E M = Mn, 
T ( f )  = f ,  T(g) = g - n f + e, T(e) = e - 2n f (see the proof of Proposition 6.2). Then T - l ( e )  = e + 2n f and 

( # , f ) = l ,  2~ ( / z , e )=  t. 

From this it follows that T acts on H by the formula T(t) = t - 1. We can choose the open set UF to be equal 
to {t = x + iy : y > r} for sufficiently large r. The map t ~ q = e 2'tit defines an isomorphism 

UF/ZF(M,)(F) + -~ UF = {q E C*:  Iql < 1/r}. 

Choose any marking r : H2(X,  Z) --4 L of an Mn-polarized K3 surface ( X , j )  E UF such that the period 
Cr of (X, r belongs to D+M, and is equal to C ( - n t 2 f  + g + te). Then 

1 
t - ~ f , - l ( o )  w 

f~s-~(f) w 

This is analogous to the situation in mirror symmetry for quintic 3-folds (see [26]). 
Let us now compute the global monodromy group 1`M,,. Let 

The element 

F =  v~ 

is of order 2 and belongs to the normalizer of F0(n) in PSL(2 ,  R). It is called the Fricke involution. If we add 
it to 1"0(2) we obtain a subgroup of PSL(2,  R) denoted by 1"0(n) +. It is called the Fricke modular group of 
level n. 
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T h e o r e m  7.1. Le t  FtM. be the subgroup of index 2 o f r  M .  which stabilizes the connected component D~.t, _~- 
H olOM,.  Up to a conjugation in PSL(2,R) = Aut(H), we have 

= r 0 ( n ) + .  

In particular, 

KM,  "" H/ro(n) +. 

P r o o f .  The group FM, is isomorphic to the group O(U _L (2n))*. Since - 1  does not belong to O(U _L 
(2n))*, the canonical homomorphism O(U 2_ (2n))*--~ PSO(1, 2) is injective. It is known that the groups 
PSL(2, R)  - ,  A u t ( H )  and PSO( i ,  2) are isomorphic. For example, we can establish such an isomorphism 
by considering a natural  representation of SL(2, R )  in the space E of binary forms az 2 + 2flx/-~xy § 7y 2 
equipped with the  quadratic form Q(a,  fl, v) -- 2(nil 2 - a T ) ( =  twice the discriminant). This allows us to 

view any g =  ( a  d )  E SL(2, R ) a s  an isometry of (U • (2n))rt defined by the matrix 
t 

A(g) = + bc -bd /n  e 
c ~ -2x/~cd d 2 

Here the basis ( y 2  2,r z 2) of E corresponds to the basis (f ,  e, g) of U _l_ (2n). The kernel of the map 
A " S L ( 2 , R )  -+ SO(1,2) ,9  --+ A(g), is equal to {4-1}. The image of the map A is the subgroup SO(1,2) '  
of index 2 of SO(l,  2) which preserves a connected component of DM,.  Note that  - 1  acts as the identity on 
DM, ,so when we extend F'M, by adding --1M~ and take the intersection with S O ( l ,  2), we obtain a subgroup 
F" of SO(l,  2)' isomorphic to F'  So we may assume now that F' = F"  Let F'  be the pre-image of M~ M,L' M,~ M,~" 
F ~ ,  under the map A. Let us describe its elements. First of all, we use the fact that, for any matrix g E F', 

the coefficients of the matrix A(g) are integers. 
Write 

a = al v f~ ,  b = bl v /~ ,  c = cl v /~,  d = dl v~2,  

where a2, b2, c2, d2 are square free. We have 

abvfn = kalbl nX/r~2b2 E Z '.- a2b2n E Z ?. a262 = s2n 

2 2 for some integer z. Since s divides as, b I and abv~ ~ it must divide the first row of the matrix A(g). This 

implies that s = 4-1 and hence 

a2b2 = n.  

Similarly, we obtain 

c2d2 -~ "n. 

Now, in view of the above, a c / v ~  e Z gives ~ ,  ViVid2 E Z. This implies that 

C2 = b2, d2 = a2, klalcl, lClbldl. 

Let us rewrite the matrix A(g) using the previous information: 

a~a2 -2ala2blb2k 
A(g) = - a l c l / k  aldla2 + blclb2 

c2162 -2cldlc2b2k 
- b i d l / k  

d21a2 

Next we use the fact that the discriminant group A(U _1_ (2n)) is generated by the coset of A--e modulo 2n 
U I (2n/, where e generates (2n). Thus elements of O(U 3_ (2n))* send e to e + nv for some v E U. This 
implies that ad + bc - 4-1 rood 2n. Assume that ad + bc _= 1 mod 2n. Together with ad - bc = i this implies 
that n lbc , and hence k2a2 I cl bl. If a prime p divides as, it must divide cl since PIb~ implies that p divides the 
first row of A(g). On the other hand, ptc~ implies that p divides the third row of A(g). Thus a2 = 1, hence 

a2 -- d2 = 1, b2 = c2 = ~, k21blCl . 
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Let p be a prime dividing k. It divides alCl and bid1. Assume plbl; then p[cl since otherwise p divides 
the whole first row of A(g). Conversely, ifplcl then p]bx. Thus k]cl and k]b~, and we get 

g= kc~C-g ,~I ] =  c'v~ ' 
(,) 

where a', b', d, d t E Z. If ad + bc - - 1  rood 2n, we obtain similarly that  

g =  ~' d ' v ~  " (**) 

Thus, we obtain that  P' is equal to the subgroup of PSL(2 ,  R) of matrices of the form (*) and (**). Obviously 
matrices of the form (*) form a subgroup of index 2 in P'. The whole group is generated by this subgroup and 

the matrix g0 = ( 0  1) 1 0  .Now 

J nd d' / ' 

0 " 

This proves the theorem. 

R e m a r k s T . 2 .  1. Le tususe the i somorph i sm~:H-+D~, t -+-n t2 f  +g+te .  Theng = ( :  fl~) e 

SE(2, R) acts on H by the Moebius transformation ~ ~ (at  + ~)/(7t + 6), and 

r = - = ( a t  + ~)=f + (Tt + 6)=g + (at + ~)(Tt + ~)~ 
72 

= -nt=(agf - - -g - a t e )  + (-nfl=f + 62g + j35e)+ t(-2naflf  + 276g + (a5 + fiT)e). 
n n 

This shows that  the transformation �9 o g o q~-I of D +  is defined, in the basis (f ,  e, - g ) ,  by the matrix 

( a2 -2nail nfl 2)  
A'(g)= -~7/~ ~ + ~  ~ 

\ 72/n --27g 52 

Now if g E r0(n) + we observe that  A'(g) E F' This shows that  M n "  
I 

r o r0 (n )  + o r  = FM,~" 

2. It is known that  the orthogonal group of the discriminant group of the lattice U .L (2n) is isomorphic to 
the group (Z/2Z) s, where s is the number  of distinct prime divisors o fn  (see [37, Lemma 3.6.1]). I f n  = k2~ as 
above with (k, ~) = 1, this group is isomorphic to F0(n)/F0 (n), where F0(n) is the abelian normalizer of F0(n) 
in SL(2, R) (see [20, Theorem 3]). Using Nikulin's results from [31], one can show that  the homomorphism 
O(U _L (2n>) ~ O(A(U k (2n))) is surjective. Since r o F0(n) o r  is equal to FM, N SO(U k (2n)), this 
easily implies that  

o r-0(n) o @-i = O(U _1_ (2n>). 
The group O(A(U i (2n>)) acts on KM,  with kernel isomorphic to {+l}.  The quotient is the moduli  space 
of K3 surfaces admiting a pseudo-ample M,-polarization.  

Let us now find the subset K=M= C H/Fo (n) + of isomorphism classes of ample M,-polar ized K3 surfaces. 

c b 
T h e o r e m  7.3. Let S C H/Fo(n) + be ~he se~ of orbits of ~he point~ ~ + i~,~ where c E Z and b[cn 2 + 1. 

Then 
K ~  --- H / r0 (~ )  + \ S. 
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Moreover, 
1 / fn  < 4, 

2h ( -4 n )  i fn  ~ 7 rood 8, 

# S  = 4h(-4n) /3  if n -- 3 rood 8, n _> 4, 

h ( - 4 n )  otherwise. 
Here h( k ) denotes the number of classes of primitive binary quadratic forms of discriminant k. 

Proof .  Recall from See. 3 that KM,, \ K~t ,  is equal to the set of FM,,-orbits in DM, of hyperplanes 
H,, = {z E DM,  : (z, v) = 0},v E U .1_ (2n), (v, v) = - 2 .  Let us use the isomorphism ~ : H ---r D + ,  t -~ 
-n t2 f+g+te .  Let v = af+bg+ce with (v, v) = 2ab+2nc 2 = -2 ,  Then ( - t2 f+g+te ,  v) = -nbt2+a+2nct = 
0 implies 

t = g +  v -b (*) 
This proves our first assertion. Let t E H such that if(t) E H(v)for some hyperplane H(v) as above. Since 
h(v) is fixed by an automorphism of order 2 corresponding to the reflection isometry x -~ x + (x, v)v, we see 

that t is fixed by someinvolution g E Fo(n)+. Let g be representedby amatrix "ff = ( : db). We have either 

~-2 = 1 or ~ = - 1 .  Since the characteristic polynomial of ~" is equal to X z - (a + d)X + 1, we see that only 

the second case occurs, and a + d = O, If g E Fo(n), then ~ = ( :c  -ab ) ,  where a, b,c, d E Z. The fixed 

a i 
points t of g can be computed, and we find that t = - -  + - - .  This differs from the points ( . )  unless n = 1. 

a n  Cn 

If n = 1 P0(1) + = P, and there is only one orbit of such points. If n > 1, and g is an involution from the 
coset F-  F0(n) of the Fricke involution F ,  we find that its fixed points look like ( .) .  Consider the double cover 
p:  Xo(n) ~ Xo(n) + = Xo(n)/(T),  where Xo(n) (resp. Xo(n) +) is a nonsingular projective model of the 
quotient///r0(n) (resp. H/r0 (n)+). We have a bijective correspondence between the ramification points of 
this cover and F0(n)-orbits in H = H U {0o} U Q whose stabilizer belongs to the coset F -  r0(n), When n > 5 
one checks that F-  F0 (n) does not have parabolic elements (i.e., elements which fix t E Q u {oo}) and elements 
of finite order greater than 2. This shows that # S  is equal to the number of ramification points of the double 
cover p. This number was computed by R' Fricke in [12], and it is equal to the number which we gave in the 
statement of the theorem. Now, it is known that the modular curve Xo(n) is of genus 0 when n = 2, 3, 4. Thus 
there are only 2 ramification points. One of them is an orbit with stabilizer of order 2 contained in F0 (2). The 
other one is an orbit with stabilizer of order 2 whose generator belongs to F .  F0(n). This proves the assertion. 

Assume now that the curve Xo(n) + = H/Fo(n)+ is rational. All such n can be listed (see [18]) (as was 
observed by A. Ogg, the primes from this list are just those which divide the order of the Fischer-Griess 

monster group). Let 

C(n) = H/ro(n)+ \ (/-//r0(n) +) 
be the set of cusp points. 

P r o p o s i t i o n  7.3. s r be the Euler function. Then 

�89 ~ r i fn ~k 4 
#C(n) = d l - , a > 0  

2 if n = 4 .  

Proof .  The number of cusps for the modular curve Xo(n) is equal to ~ r n/d)) (see [38, Proposition 
dln,d>O 

1.4.1]). It is known that the Fricke involution acts on this set without fixed points if n r 4 (see [18]) and has 
one fixed point if n = 4. From this the result follows. 

2618 



Corollary 7.4. 

Theorem 7.5. 
Hauptmodul) 

Let n = p be a prime number, M = (2p). Assume that Xo(p) + is rational. Then 

K "" v = A  1. 
M 

Assume that Xo(n) + in rational. There exists a unique holomorphic function (called the 

satisfying the following conditions: 
(i) jn is invariant with respect to Fo(n)+; 

(ii) jr, has a Fourier expansion 

(iii) 
(iv) 

j , : H - + C  

o o  

jn(t) = q,1 + ~ cmq,~, q = e2~it; 
r n ~  l 

the coeJ~cients of the Fourier expansion are all integers; 
considered as a meromorphic function on Xo (n) +, the function jn has a simple pole at the cusp Fo (n) +-cr  

and generates the field of meromorphic functions on Xo(n) -+. 

Proof. See [18]. 

Let us restrict the meromorphic function j ~ l  to a neighborhood UF = {t = x + iy E H : y > r} 
for sufficiently large r chosen so that j~" 1 is holomorphic on UF. Then the properties of jn assure that j~- 1 
defines an isomorphism from UF/(F0(n)+)oo to a neighborhood of the cusp F0(n) + - co. Comparing it with 
the discussion in the beginning of the section, we find that the mirror map at the cusp can be given by the 
inverse of the Hauptmodul  function j~-l. This should be compared to [21]. 

It is well-known that H/Fo(n) is a coarse moduli space for the isomorphism classes of pairs (E, A), where 
E is an  elliptic curve and A is a cyclic subgroup of order n of E. The Fricke involution acts on H/Fo(n) by 
sending the pair (E, A) to the pair (E/A,  E , /A ) .  Let us give an explicit geometric relationship between the 
isomorphism class of ari M,~-polarized K3  surface respesented by a point z E H/Fo(n) + and the isomorphism 
class of the pair of isogenous elliptic curves (E, E' = E/A)  represented by the same point z. This can be used 
to explain the observation of B. Lian and S. Yau that the periods of certain one-dimensional families of K3 
surfaces can be expressed as the products of periods of some family of elliptic curves (see [22]). I am grateful 
to Dan Burns, who suggested that our K3 surfaces should be related to g u m m e r  surfaces Kum(E  • E ' ) .  

T h e o r e m  7.6. Let M = (2n) and X be an M,~-polarized K3 surface with period t E H. Let Et = C / Z  + tZ 
and E~ = C /Z  + ( - 1 / n t  )Z be the corresponding pair of isogenous elliptic curves. Then there exists a canonical 
involution r on X such that X / ( r )  is birationally isomorphic to the gummer surface Et • E I / ( + I ) .  

P r o o f .  The fact that there exists an involution r on X such that X / ( r )  is birationally isomorphic to some 
gummer  surface A/{+I  } follows from the property that rank Mn = 19 [25]. As is explained in loc. cir. and in 
[30] such an involution corresponds to a primitive embedding i : Es(2) -+ M,~ (the image is the sublattice of 
r-anti-invariant divisor classes). Here Es(2) denotes the lattice obtained from the lattice Es  by multiplying 
its quadratic form by 2. We define this embedding to be the canonical one: i : Es(2) -4 Es 3_ Es 3_ U 3_ 
( -2n) ,  x -4 (z, x, 0, 0). Then it is shown that Z/ ( r )  ~- gum(A)  --- A / {+ I} ,  where g is an abelian surface. Let 
Y be a minimal non.singular model of Kum(A). The rational map r : X --+ Y induces an embedding of lattices 
of transcendental cycles ~'* : Ty(2)  -4 Tx.  It is also known [32] that ~'*(Ty(2)) = 2S, where S C Tx | Q 
with S /Tx  Z (Z/2Z)  ~ C A(Tx) .  I f X  satisfies Pic(X) = Ms,  then TX = V 3_ (2n), and it is easy to see that 
Ty -~ U(2) 3_ (4n) = Tx(2).  Also, it is known that TA(2) ~- Ty (see [4, Chapter VIII, Sec. 5]). Let p :  A --+ Y 
be the rational map of degree 2 defined by the canonical map A --4 Kum(A). It follows from loc. cit. that the 
homomorphism p* : H2(Y, (3) --+ H2(A, C) preserves the Hodge structures, i.e., p*(HV"~ = H2'~ 
The same property is true for ~v~ : (TY)c -+ ( T x ) c .  Thus the isomorphism p* o (rc*)- l (Tx)c  -~ (TA) C 
preserves the Hodge structures. So let us compute the period of the abelian surface A, knowing that the period 
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of X is equal to/~ = - n t 2 f  Jr g + te E D + .  Recall that  for any complex torus T, we have an isomorphism of 
lattices H2(T, Z) ~ U 2. U 2. U = U J-3. Fix a primitive embedding i : U 2. (2n) ~-~ U • To be more precise, 
let A = Zet + Ze2 + Zes + Ze4 with a fixed isomorphism d : A 4 A ~ Z such that  d(el ^ e2 A ea A e4) = 1. 
Then A 2 A has the  s tructure of a lattice with respect to the bilinear form (a,  8)  = d(tr A 8)- Consider the 
following basis of A 2 A: 

f l - - ~ e l A e 2 ,  gl----eaAe4, f 2 " - e l A e a ,  g2----e4Ae2, fa----elAe4,  g3 = e 2 A e a -  

Then Zfi  + Z g i ~  U, and Z f i  + Zgi is orthogonal to Zf l  + Zgi for i ~ j .  Our embedding i : U 2. (2n) -~ U a 
can be chosen as follows: i ( f )  = f l ,  i(g) = gx, i(e) = f2 + rig2. For simplicity of notation, we denote by 
i : (U 2. (2n))c  -~ (U~'a)c the extension of the embedding i to the injective map  of the complexified spaces. 
We have 

i(#) = - n t 2  f l  + 91 + t ( A  + ng2) = - n t ~ e l  A e2 + e3 A e4 + t(el A e3 + ne4 A e2). 

We immediately verify that  

i (u)  = ( - t e l  + e4) ^ (nte  - e3). 

Using [13, Expos~ VIII], we can interpret it as follows. Let 

E,  = C / Z  + tZ, E~ = C / Z  + ( - 1 / n t ) Z  

be the pair ofisogenous elliptic curves. Then under a certain marking r : H2(Et  x E~, Z) -+ U • r  2'~ (Et x 
E~)) = i(#). Now the assertion follows from the global Worelli theorem. 

Let us exhibit explicitly some mirror families of the family of polarized K3 surfaces of degree 2n. We 
shall use the notat ion A , ,  D,~, E,~ to denote the negative-definite even lattice defined by the negative of the 
Cartan matr ix of the root system of a simple Lie algebra of type An, D,~, En, respectively. We shall use the 
following well-known description of the Picard lattice of an elliptic surface f : X --+ S with a section: 

L e m m a  7.7 (Shioda-Tate).  Jbe~ Pic(X) '  be the subgroup of Pic(X) generated by irreducible componenU 
of fibren and by a section. Then the quotient group P i c ( X ) / P i c ( X ) '  i~ isomorphic to the Mordell-Weil group 
MW(X/S) o/  . tio.s o/ the  br tio.. 

Proof .  See, for example, [7, Proposition 5.3.4]. 

This lemma is applied as follows. We exhibit an elliptic fibration such that  Pic(X) '  is a subgroup of finite 
index in Pic(X).  The lemma implies that  the MordeU-Weil group is finite. Then we show tha t  it is in fact 
trivial. Now it is easy to find the structure of the lattice Pic(X) ' .  Its sublattice generated by a section and 
a fibre is isomorphic to the lattice U. Its orthogonal complement is isomorphic to the sum of lattices of type 
An, D,~, E,,, each spanned by the irreducible components of a fibre which do not intersect the chosen section. 

E x a m p l e  7.8 (n = 1). We have 

Mn ~ U -LEa 2 .Es  2. ( -2) .  

Using the previous remark suggests that  one look for a K3 surface with an elliptic fibration f : X --+ p1 
w i t h a  section and two reducible fibres of types/~s (or I I*  in Kodaira's notation),  and one reducible fibre of 
type -41 (Kodaira 's /2  or I I I ) .  Since the group F ~ of nonsingular points of a fibre F of type ~'s is isomorphic 
to the additive group C, and the restriction homomorphism M W ( X / P  x) -+ F ~ is known to be injective on 
the torsion subgroup ([7, Proposition 5.3.41/, we obtain that  Wors(MW(Z/P1))  is trivial. Hence, if Pic(X) is 
known to be of rank 19, it must  be isomorphic to M,~. 

To construct such a surface X,  we take a nonsingular plane cubic C and the tangent line L at its inflection 
point. The pencil of plane cubics spanned by C and 3L defines a rational map p2  _..+ p1.  In an appropriate 
coordinate system we can represent the pencil in the form: 

,~(Y2Z + X 3 + a X Z  2) + # Z  3 = O. 
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After resolving its nine base points (infinitely near the point (0,1, 0)) we arrive at a rational elliptic surface 
f : V(a) --+ p1. It contains a degenerate fibre of type Es corresponding to (,k,/~) = (0, 1). The irreducible 
singular fibres correspond to (,k,/~) = (1, b), where 4a 3 + 27b 2 = 0. If a ~ 0, we have two irreducible singular 
fibres with ordinary double points. If a = 0, we have one irreducible singular fibre with a cusp singularity. 
Let Fa(b) denote the fibre of f corresponding to (~,/J) = (1, b). Let F1 = Fa(b), where 4a 3 + 27b 2 = 0, be 
an irreducible singular fibre, and le t / '2  = Fa(b + 1). Consider the  double cover X(a ,  b)' of V(a) branched 
along the union F1 U F2. After resolving its singularities we obtain a K3 surface X(a ,  b) with two reducible 
fibres of type Es. It has additional reducible fibres: one fibre of type A1 if F1 has a node, F2 is nonsingular 
(a # 0, b # --�89 two fibres of type A1 if F1,/'2 have nodes (b = -�89 one fibre of type A-'~ (godaira 's  IV) if 

FI has a cusp (a = 0). 
We have a one-parameter family Pc" ~ C of singular surfaces X(a,  b) t parametrized by the afflne curve 

C : 4A 3 + 27B 2 = 0. The map X'  ~ C is equivariant with respect to the natural  action of the group 
#3 of cube roots of unity. Its generator p = e 2~i/3 acts on C by (a, b) -+ (pa, b) and on X'  via its action 
on p2 by the formula X ~ pX, Y -+ Y, Z --+ Z. After dividing X'  by this action, we obtain a family 

a 1 zd : y = X'/I.z3 --+ A 1 = C/#3. Let 0 E A 1 be the orbit of (0,0) E C and 1 E A 1 be the orbit of ( , - 3 ) .  
For any t E A 1 \ {0, 1}, the fibre Y~ = r ' - l ( t )  has one ordinary double point. The fibre y~ ~ X(0,0)//~3 is a 
rational singular surface. The fibre 3;1 = X ( a , - � 8 9  It has two ordinary double points. Let 

: y-,A  \ {0,1} 

be the composition of 7r' and the blowing up Y -+ r ' -  1 (A ~ \ { 0, 1 }) of the locus of singular points of the fibres 
y~, t ~ 0,1. We have constructed a family of pseudo-ample Ml-polarized K3 surfaces. The period map for 
the family y - +  A 1 \ {0, 1} defines a regular map: 

p : A  I \ { 0 , 1 ) - + K M 1  ~ - H / r  ~ - A  1. 

One can show that the period mapping p can be extended to an isomorphism A 1 -+ H/F  which sends 
the point 0 to the orbit of e 2 r i / 3  and 1 to the orbit of i. The first point is a period of the surface X(0, 0), the 
second point is a period of the surface X(a,  - �89 The latter surface is a nonample pseudo-ample M-polarized 
surface. The monodromy group of our family is generated by the local monodromies at 0, 1, and co. They are 
isomorphic to the subgroups of F which stabilize e 2vi/3,  i, and 0% respectively. Thus the global monodromy 

of our family is isomorphic to F. 
Since not all fibres are isomorphic, the period map is not constant. Hence there exists a dense subset U 

of A ~ \ {0, 1) such that the Picard number of Yt, t E U, is equal to 19, and hence Pic(3;t) --- M1. 
Observe that X(0, 0) --- X0 has Picard lattice of rank 20 isomorphic to U 3- Es 3- Es 3- A2, and X(a ,  , � 89  

has Picard lattice of rank 20 isomorphic to U l Es _L Es I ( -2)  _L (-2) .  

E x a m p l e  7.9 (n = 2). Here we want to describe a mirr, or family for quartic surfaces. One can show, for 

example, using the uniqueness results from [31], that 

M~ = U 3- Es 3- Es _L (--4) ~ U 3_ Es _L Dg. 

Similar to the previous example, we should construct a one-dimensional family of elliptic K3 surfaces X with 
a section, one reducible fibre of type/ )9  (Kodaira's I~), and one reducible fibre of type/~s.  To construct the 
family ~" of such elliptic surfaces we use the same idea as in the previous example. Consider the pencil of cubic 

C u r v e s :  

F(.~, #) = AX 3 + # Z ( Y  2 - X Z  + a X  2) = O. 

Let V -+ pX be the associated rational ellipticsurface. It has a degenerate fibre of type/~7 (Kodaira's III*) 
and a reducible fibre F1 of type Al(a  # 0) or A~(a = 0). Let Z be the double cover of Y branched along the 
union of F1 and another irreducible fibre F2. X is an elliptic surface with two reducible fibres of type/~7 and 
a reducible fibre of type -43 (or/)4)- If F2 is singular (this happens when #a 2 = 4A), it has an additional fibre 
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of type A1. The elliptic flbra..tion also has two sections. We claim that X has another elliptic fibration with 
two reducible fibres of type Es and Dg. To see this we assume for simplicity that  F is of type A3. Let 

D = 2Ro + Rx + 2R2 + 3R3 + 4-P~t q- 3Rs q- 2_P~ -}- R7 

be the reducible fibres of type/~r ,  and let F = Eo + E1 + E2 + E3 be the Other reducible fibre. Without loss 
of generality we may assume that the two sections $1 and 5'2 intersect the fibre D at RI and R7, respectively, 
and the fibre D' at Ri  and R~, respectively. Also $1 intersects F at E0 and $2 intersects F at E2. Now 
consider the following disjoint curves with self-intersection 0: 

= R t D1 3Ro + 2R2 + 3R3 + 6R4 + 5Rs + 4R6 + 3R7 + 25'2 + 7, 

= + + 9.a  + + + + 9.S  + 2Eo + E, + E3. 

By Hodge's index theorem, the divisors D1 and D2 axe linearly equivalent. They span a pencil which defines 
an elliptic fibration with fibre D1 of type/~8 and fibre D2 of type D9. 

Let X(t; a) be the elliptic surface obtained by the above construction when we take F2 = F(A,/~) with 
t = A//~ # 0, r The linear substitution X -~ cX, Y -~ Y, Z --~ c - l Z  extends to an isomorphism X(t; a) -~ 
X(c4t, cea). Let the group C* act on C* x C* \ {(t, a) : a 2 = t} by the formula (t, a) -+ (c4~, c2a). The orbit 
space is isomorphic to p l  \ {0,1, co}. When we vary (t, a) E (2* x C, we obtain a family y --+ C* x C of 
Me-polarized K3 surfaces with X(t;  a) ~ Y(t,=) for a 2 # 4t, 0. When a 2 = 4t, 0, the fibre Y(t,=) is singular but 

birationally isomorphic to X(t; a). The surface X(t; 0) has a fibre of type/94 and its Picard number equals 
20. The surface X(a2/4, a), a # 0, has a reducible fibre of type A~ and its Picard lattice is isomorphic to 
U _l_ E8.1_ D9 • ( -2) .  Let f : C* x C --+ C given by the formula (t, a) -~ ae/4t. As in the previous example, 
we can descend the family J) --r C* x C to a family Y ~ C of pseudo-ample Me-polarized K3 surfaces with 
singular fibres over 0 = f(t,  O) and 1 = f(a2/4, a). The period map extends to an isomorphism A I - r  KM2 
which sends 0 to the isomorphism class of the surface X(0) and sends 4 to the isomorphism class of the surface 
X(2). The latter surface is a pseudo-ample but not ample M-polarized K3 surface. 

E x a m p l e  7.10 (n = 3). We skip the details. We have 

M3 ~ - U I E s  • Es I (-S>. 

We consider a rational elliptic surface V with a section, one reducible fibre FI of type E6, and one reducible 
fibre F2 of type -42. To construct such a surface we take a plane nonsingu/ar cubic C and three inflection points 
on it lying on a line (this means that they add up to 0 in the group law on the cubic with an inflection point 
taken as the origin). Then we take the pencil of cubic curves spanned by C and the union of the tangent lines at 
the three inflection points. After resolving the base points of this pencil we arrive at the surface V. The surface 
X is obtained as a minimal nonsingular model of the double cover of V branched over F2 and a nonsingular 
fibre. The surface X is an elliptic K3 surface with a section, two reducible fibres of type E6 (Kodaira's IV), 
and one reducible fibre of type As (Kodaira's Is), Its Mordell-Weil group is Z/3  and the sublattice of Pic(X) 
spanned by the section and components of the reducible fibres is isomorphic to Es _1_ E6 • As. By Lemma 7.4, 
we get that Pic(X) is a hyperboliclattice of discriminant 6. One can find another pencil on this surface with 
three reducible fibres of type Es, E7, and Ae. Since its discriminant equals 6, it must coincide with Pic(X). 
On the other hand, it has the same discriminant group as the lattice M3. By Nikulin's uniqueness results, we 

conclude that Pic(X) ~ M3. 

R e m a r k  7.11. The following remark may be appropriate. As we have already noticed in the previous 
section, the rational one-dimensional boundary components of DM correspond to rank 2 primitive isotropic 
sublattices S of N = M • Each component contains in its closure the 0-dimensional boundary component 
defined by an isotropic vector f E S. If N = U 2_ M,, and f E U, then S is determined by a primitive isotropic 
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vector in M , .  Now if we identify Mn with Pic(X ~) for some ample Mn-polarized K3sur face  X '  from the 
mirror moduli  space, we find a bijection between one-dimensional rational boundary components of DM/FM 
containing the given 0-dimensional boundary component and isomorphism classes of elliptic fibrations on 
X' .  When M = (2) or (4) the list of FM-orbits of two-dimensional isotropic sublattices of N containing a 
given primitive isotropic vector is given in [37]. We find that  S ~ / S  can be isomorphic to one of the following 
lattices: 

A1 • E8 _L Es,  A1 • Dis,  E7 .L D10, A17 (M = (2)), 

Es 2 • ( -4) ,  O16 _L ( -4) ,  Es .L 99 ,  E 2 J_ A3, 917, O12 • Ds, 

Ds 2 • ( -4) ,  A15 • A12, E6 • Al l  (M = (4)). 

In our interpretation, we obtain that  the mirror surfaces contain elliptic fibrations with reducible fibres of 
type 

A1, Es, Es; Dis; ET, 51o; A17 (M = (2)), 
Es, J 8; 516;  E8,/ 9; ET, ET,A3; /'917; 

D12,/ s; Als, A1,-41; All (M-- (4)). 

We have already seen a pencil of type/~s +/~s +,4~ on surfaces from the mirror family of K(2) and the pencils 

of type -41 + -41 + Als and/~'s q- D9 on surfaces from the mirror family of K(4). 
A similar computat ion is known for the case M --- (6) (see [39]). We have the following types of elliptic 

fibrations on surfaces from KM3: 

~'s, L's; /~16; Es, Ez, A2; 514, 2~2,2~1 ; /~10, 56; 
AlS ; E6, E6, A5 ; A11, Ds, A1 ; A-0,/97. 

In Example 7.10 we have seen an elliptic fibration of type E6, E6, As. 

Ds, E7, A1; 

8. Tor ic  H y p e r s u r f a c e s  

Recall the following mirror construction of Batyrev [5], which generalizes the original construction of 
Greene-Ptesser. Let A C R. n be a convex n-dimensional lattice polytope given by inequalities: 

~-~aijxj _~ 1, { -- 1 , . . .  , k, 
j ~ l  

where aij E Z (a reflexive polytope). Let A* be the polytope equal to the convex hull of the vectors li = 
(a i l , . . . ,  ain). It is also a reflexive polytope. Let PA (resp. PA*) be the corresponding toric variety, and  
5r(A) (resp. St(A*)) be the family of hypersurfaces in P,x (resp. PA*) defined by A-nondegenerate (resp. 
A*-nondegenerate) Laurent polynomials. For n < 4 there exists a map  f : PA --+ PA such that  the proper 
transform of a general member  of the family St(A) is a Calabi-Yau manifold. A similar construction with A* 
defines another family of Calabi-Yau manifolds. In the case n = 4, the two families of Calabi-Yau 3-folds 
satisfy the first at tr ibute of mirror symmetry: the dimension of the local moduli  space for a member  of the 
first family is equal to the Picard number  of a member of the second family [5]. 

Consider the special case of Batyrev's construction when A is a 3-dimensional simplex: 

A(w) = (to,tl,t2,ta) E R 4: witi = O, ti >_ - l ,  i = 0 , . . . , 3  , 
i=0 
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where w = (w0, Wl, w2, w3) is a collection of four positive integers with greatest common divisor equal to I and 
3 

such that d = wo +wl  +w2-t-wa is divisible by each wl. Here we identify R 3 with the hyperplane ~ witl = O. 
i=0  

The  toric space PA is the weighted projective space P(w) = P(w0, t/)l, tO2, ttt3). The  family ~'(A) is the family 
of quasi-smooth hypersurfaces of degree d in P(w). One of its representatives is the surface 

=go + =11 + + 0, 

where di -- d/wi, { --- 0 , . . .  , 3. Let H be the finite abelian group of order dodld2d3/d 2 equal to the kernel of 
the homomorphism 

ao an g tooao-~'-...-~-w3a 3 , 
(Pdo • ftdl X ftd2 X #da)/FZd "-Y # d ,  go "" "g3 -'+ 

where #di denotes the group of dith roots of unity with generator gi; the subgroup #d of the product is 
generated by g = goglg2g3. Then, by Corollary 5.5.6 of [5], the dual family ~'(A*) consists of quotients by H 
of the family of H-invariant hypersurfaces of degree d in P(w) 

. zO z l  ~2 t3 
a i0 t l /2 i3x  0 X I 2:2 .T 3 ~ O. 

tuoio+wz iz + w 2 i ~ + w a i a : d  

E x a m p l e  8.1. Let  us consider the special case where w = (1, 1,1, 1), d = 4. The family ~'(A(w)) is the 
family of quartic hypersurfaces in p3. Modulo projective transformation this family defines an open subset 
of the moduli space K(4 ) . The group 1I is isomorphic to (Z/4) 2 and its two generators act by the formula 

gl : (xo, x l ,  22, 23) -~ (20, r  2=, C3~a), 

g=: (~0, ~1 ,~2 ,23 )  -~ (r ~1, r 2a), 

where ( is a primitive fourth root of unity. The II-invariant family of quartics is the one-dimensional family 

v(~):  ~0 ~ + ~ + 21 + ~ + 4~ox~=~2a =0 .  

The quotient V(A)/H is isomorphic to the surface in p4 given by the equations 

u o u l u 2 u a  - u 4 = 0, u0 + u l  + u2 + ua + 4),u4 = 0. (*) 
If A 4 ~ 1, the surface V(A)/II has six rational double points of type Aa. Let VA be the family of K3 surfaces 
obtained by simultaneous resolution of singularities of the surfaces V(A)/H, A 4 r 1. 

T h e o r e m  8.2. The family of surfaces VA is a family of M2-polarized surfaces. 

Proof .  Consider the following four tines on the surface: 

l i : u i = u a = O ,  i = 0,1,2, l a : u o + u l + u 2 = u a = O .  

It is easy to check that the six points Pij = li t3 lj', 0 <_ i < j < 3, are the singular points of type Aa of V()~)/H. 
Let Dij be the 6 exceptional divisors coming from a minimal resolution of singularities V~ -+ V(A)/II, and let 
Ri, i = 0 , . . .  , 3, be the proper inverse transforms of the lines. Each divisor Dij consists of three irreducible 
(-2)-curves with the intersection graph isomorphic to the Dynkin diagram of type Aa. Let S be the sublattice 
of Pic(V~) spanned by the curves Ri and the irreducible components of the divisors Dij '  We shall show that 
S ~ M2. Consider the divisor 

D = R0 + R1 + R2 + Ra + R4 + D01 + D19_ + D2a + D03. 

The linear system ID[ defines an elliptic fibration on V~ with reducible fibre D of type A15 (Kodaira's I16). 
Let E02 and E13 be the irreducible components of the divisors D02 and D13 which are disjoint from the.divisor 
D. They must be components of some reducible fibres of the elliptic fibration. Since the sublattice of Pic(VA) 
generated by irreducible components of fibres is of rank at most 19, we have only two possibilities. Either 
E02, Ela are components of one fibre of type A3, or there exist irreducible curves E~I and E~2 such that 
E02 + E~2 and Eta + E~3 are two fibres of type At. In the first case we find that Pic(V~) is of rank 20. Since 
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the family ( , )  admits a degeneration (A = oo) with infinite local monodromy, its image in the moduli space 
K s  is not a point. Thus for generic A, Pic(V~) is of rank 19, and we have the second possibility: Let E0 be 
the component of Do2 which intersects Ro. Then Eo is a section of our fibration, and as such it must intersect 
the fibre E13 + El3 at one point. Since it does not intersect El3, it intersects E~3 with multiplicity 1. Now we 
leave it to the reader to verify that Vx admits another elliptic fibration which contains E02 + E0 + E~3 + D01 
in its fibre of type D9 and D23 in its fibre of type E's- Arguing as in Example 7.8, we deduce from this that 

Pic(V~) = S " M2 ~ 

Notice also that the period map 

p : A 1 \ = 1} -+ KM , -*  

is of degree 4. Indeed, the group #4 of 4th roots of unity acts on .T by the formula .k --+ pA so that p factors 
through a map p' : A I \ {1} --+ A 1. The map p' can also be extended to a map ~ : A 1 -+ A I by sending 
1 to the period of a minimal nonsingular model of the surface V(1)/II. This surface represents the unique 
isomorphism class of pseudo-ample but not ample M2-polarized K3 surfaces. One can show by computing 
the monodromy at infinity that ~' is an isomorphism. 

E x a m p l e  8.3. Let w = (3, 1, 1, 1), d = 6. The dual polyhedron A* can be identified with the convex hull 
of the vectors (1,0, 0), (0, 1, 0), (0, 0, 1), and ( -1 ,  -1 ,  -3) .  The toric hypersurfaces defining the family 5r(A *) 

axe given by the Laurent polynomials 

aT1 + bT2 + cT3 + d T I - I T ~ I T 3  3 + e = O. 

Multiplying both sides by TI T2T 3 and homogenizing, we obtain a projective model of V E 9r(A *) defined by 

the equation 

aT~T2T 3 + bT1T~T 3 +cT1T2T 4 + d T  6 +cToT1T2T 3 = 0 .  

This model is not normal. To normalize it, we introduce a new variable T4 = To2/T3. Then a normal projective 

model can be given by the equations 

T1T2(aT1 + bT2 + cT3 + eTo) + dT 3 O, To 2 = T4T3. 

After some obvious linear transformation of the variables, we may assume that the generic member of 
9t"(A(w) *) is isomorphic to the surface X~ in p4 given by the equations 

, l u , = , - = , z  = 0, + = 1  = 0 .  

This is a double cover of the cubic surface ulu2u3 - u 3 = 0 in p3 branched along the union of two curves C1 
and C2 cut out by the planes u4 = 0 and 4(ul + u2 + u3) - A2u4 = 0, respectively. The cubic surface has 
three singular points which are cyclic singularities of type A2. After we resolve them, and then resolve the 
base points of the pencil of elliptic curves spanned by the inverse transforms of the curves C1 and C2, we find 
a rational elliptic surface V;~ with a singular fibre of type As (originating from the curve C1). Its double cover 
branched over this fibre and another fibre (originating from C2) is birationally isomorphic to X~. After we 
resolve its singular points, we obtain an elliptic t(3 surface X~ with a reducible fibre of type .417. The elliptic 
fibration also has three disjoint sections. They come from the three exceptional curves on V;~ obtained from 
the resolution of the base points of the elliptic pencil on the nonsingular model of the cubic surface. Applying 
Lemma 7.7, we obtain that Pic(X~) is a hyperbolic lattice of rank 19 and discriminant 2. There is only one 
such lattice, up to isomorphism. This is the lattice U 2- Es 2- E8 2_ (-2) .  Thus, the mirror family for K(2 ) 
considered in Example 7.8 can be represented by the surfaces from the family 5~(A(w) *). Also observe that we 
have demonstrated the existence of two different elliptic fibrations on X from the list given in Remaxk 7.11. 

E x a m p l e  8.4. In our next example, we take 

w = ( 1 , 6 , 1 4 , 2 6 ) ,  d = 4 2 ,  (dl,d2, d3,d4)=(42,7,3 ,2) .  
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In this case the group H is trivial, and according to Batyrev we should have the self-mirror family. This is 
true for our mirrors too. The family is KM, where 

V 

M ~- M = U .L Es.  

We shall see the latter family again in the next example. 

E x a m p l e  8.5. Consider the afflne surface 

+ + = 0, di + 1 + d r  1 < 1. 

According to [24], the link space/5 of the singular point 0 is diffeomorphic to the quotient G/[F, F], where 
G is the universal cover of P S L ( 2 , R )  and [F, F] is the commutator subgroup of the discrete group F of G 
isomorphic to an extension 

1 --,'. Z --.+ r --~ r ( d l , d 2 , d 3 )  -4 1. 

Here r(d~, d2, d3) is the Fuchsian subgroup of PS/5(2 ,  I t )  of signature (0; dE, d2,d3). Let g = F/IF, F]. Its 
order is dld2d3/d ,  where d = 1. c. m.(dl, d2, d3). The quot ient /5 /K = a/r(dl, d2, d3) is the link space of 
a quasi-homogeneous triangle singularity Da~ ,d~,d3(see [10, 29]). There exist exactly 14 triples d~, d2, d3 for 
which the singularity Dd~ ,d2,d3 is isomorphic to the singularity at  the origin of the a/Free surface P ( x ,  y, z)  = O, 
where P is a quasi-homogeneous polynomial of degree N with weights (ql, qg, q3), given in the following table: 

name (d l ,d2 ,d3)  (ql ,q2,q3)  N (d~,d'2, d'3) do P ( x , y , z )  

Q10 (2, 3, 9) (6, 8, 9) 24 (3, 3, 4) 18 Z2X "4- y3 q_ X4 
Qll  (2,4,7) (4,6,7) 18 (3,3,5) - z 2 x + y  3 + y x  3 
Q12 (3, 3, 6) (3, 5, 6) '15 (3, 3, 6) 6 z2x + y3 + :rs 
Zl l  (2, 3, 8) (6, 8, 15) 30 (2, 4, 5) 24 y3z + x s + z 2 
Z12 (2,4,6) (4,6, 11) 22 (2,4,6) 12 yax 4- yx  4 4- z 2 

Z13 (3, 3, 5) (3, 5, 9) 18 (2, 4, 7) -- y3x  4- X 6 4- Z 2 
$11 (2, 5, 6) (4, 5, 6) 16 (3, 4, 4) - z2x  4- zy  2 -4- z 4 
$I2 (3, 4, 5) (3, 4, 5) 13 (3, 4, 5) - y2z + x z  2 + x3y 

W12 (2, 5, 5) (4, 5, 10) 20 (2, 5, 5) 10 x5 4- y4 + z 2 
W13 (3, 4, 4) (3, 4, 8) 16 (2, 5, 6) - y4 + yx4 + z 2 

K12 (2, 3, 7) (6, 14, 21) 42 (2, 3, 7) 42 x7 + y3 + z 2 
K13 (2, 4, 5) (4, 10, 15) 30 (2, 3, S) 20 y3 4- yxS + z 2 
K14 (3, 3, 4) (3, 8, 12) 24 (2, 3,9) 12 xs + y3 + z 2 
U12 (4,4,4) (3,4,4) 12 (4,4,4) 4 x4 4- y3 + z 3 

For each of the fourteen triples (dl, d2, d3) 
q2, q3) given by the equation 

consider the family of hypersurfaces of degree N in P(1, ql, 

O(w, x, y, z) = P(x ,  y, z) + a skw N- ql-sq -kq3 / sz k = 0 

where the monomials x il yi2 z/3 form a basis of the Jacobian algebra C[x, y, z]/(paxtials of P)  of the polynomial 
P. There exists a morphism Y -4 P(1, ql, q2, q3) such that the proper inverse transforms of the quasi-smooth 
hypersurfaces Q = 0 form a family ~'(dl, d2, d3) of M-polarized K3 surfaces, where M is the lattice of rank 
dl + d2 + d3 - 2 generated by vectors ei with (ei, ei) = - 2  and (ei, ej)  E {0, 1},i ~ j ,  determined by the 
incidence graph Tdl,d:,d3 of Dynkin type (for example, T2,3,5 corresponds to Es). Note that  the dimension of 
the family is equal to dim K M .  It is equal to the subscript in the first column minus 2. The family 5r-(d~, d~, d~) 
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corresponds to the mirror moduli  space K v �9 The involution on the set of fourteen triples 
M 

(dl,d2,da) ~ ) (d~,d~,d~3) 

is the so-called Arnold strange duality (see [1, 9]). If we take the triple (2, 3, 7) corresponding to the singularity 
K12 we obtain that  ~'(2, 3, 7) coincides with the family Jr(A(w)), where w -- (1, 6, 14, 21). It is self-dual with 
respect to Batyrev's duality and mirror duality. 

On the other hand, let us consider the 12-dimensional family 5r(3, 3, 4) corresponding to the singularity 
Ki4. It coincides with the family 9V(A(w)), where w = (1, 3, 8, 12). The group II is of order 2. The Batyrev 
dual is the 6-dimensional family 5r(A(w) *) obtained by dividing II-invariant members of 9r(A(w)) by II. The 
mirror family of ~'(A(w)) is the 8-dimensional family ~-(2, 3, 9) corresponding to the singularity Q10- 

Suppose (dl, d2, da) is such that  there exists an integer do such that  

1 1 I 1 
= 1 .  

This happens for 9 triples from the above list. Then we can consider the family ~'(A(w)),  where w~ = 
d/d~, d = g. c. d. (do, di, d2, d3). The group II is isomorphic to the group K from above. The If.quotients of sur- 
faces from 5r(A(w)) are smoothings of the singularity Ddl ,g2,da and hence belong to the family 9V(dl, d2, d3). 
This shows that  the Batyrev dual family 5r(A(w) *) is a subfamily of 9r(di, d2, d3). 

For example, ~-(A(1, 3, 8, 12)*) is a subfamily of jr(2, 3, 8) of dimension 9 corresponding to the singularity 
Zi l .  Also, •(A(1, 4, 5, 10)*) is a subfamily of ~'(2, 4, 5) of dimension 11 corresponding to the singularity Ki3. 

The exact relationship between the two mirror constructions seems to be as follows. Let X be a member  
of the family 9V(A). Then Pic(X) contains the primitive sublattice generated by the image of the restriction 
homomorphism P i c ( P a )  --+ Pic(X). Let MA be the abstract lattice isomorphic to this lattice. One can show 
that Mzx ~ Pic(X) for a general member ~ ( A )  if and only if A satisfies the following condition: for any 
1-dimensional face F of A, 

!*(r) = r ( r * )  = o, ( .)  

where F* is the dual one-dimensional face of A*, and l*(F) denotes the number  of integral points in the 
interior of a face F (see [2]). 

C o n j e c t u r e  8.6. The lattice MA always contains a 1-admissible i~otropic vector such that there exist~ a 
primitive embedding 

V 

MA* C M A .  

Moreover, the equality holds if and only if  condition (*) is satisfied. 

This conjecture is confirmed by a result of Batyrev (unpublished) and Kobayashi [19] implying that  

rank MA + rank MA* < 20. 
V 

Also, Kobayashi shows that  rank MA* = rank MA if (*) is satisfied. Finally, the conjecture is consistent with 
the examples from above. If A = A(1,3, 8, 12), we have MA ~ T3,3,4. Since .T-(A*) is a subfamily of ~-(2, 3, 8) 

V 

we have MA* ~ T2,3,8. On the other hand MA = T2,a,9 and obviously T2,3,s embeds naturally in T2,s,9. In 
V 

the second example where A = A(1,4, 5, 10), we have MA* ~ T~,4,s and M = T2,5,s. 
In some cases when (*) is not satisfied, it is still possible to find a polyhedron A' satisfying (*) and such 

that 5r(A ') is a subfamily of 9r(A). For example, it is always possible in the case of the fourteen families from 
V 

Example 8.5 [191. In this case, one can verify that  Mix,* = MA, .  

R e m a r k  8.7. There is a list of weighted projective K3-hypersurfaces with Gorenstein singularities first 
derived by Miles Reid (unpublished) and later rediscovered by Yonemura (see [42]). It consists of 95 families. 
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It contains the family of quartic hypersurfaces and its mirror family represented by surfaces of degree 36 in 
P(7,  8, 9,12) (number 52 in the list of Vonemura). 

9. O t h e r  Examples 

Here we consider the examples related to Enriques and Kummer surfaces. 

E x a m p l e  9.1. Let F be an Enriques surface, and p : X --+ F be its K3-cover (see [4, 7]). We have 

H2(F, Z)/Tors ~ Pic(F)/Tors  ~ Es 3- g. 

Thus p*(Pic(F)) is a sublattice of Pic(X) isomorphic to M = Es(2) A_ U(2) and X acquires the canonical 
structure of an M-polarized K3 surface. Since M does not contain vectors $ with ($, $) = - 2 ,  we can choose 
C(M) + to be equal to V(M) +. Replacing j :  M -+ Pic(X) by - j ,  if needed, we may  assume that  j ( V ( M )  +) 
contains the class of an ample divisor p*(D), where D is an ample divisor on F.  Thus, any marked Enriques 
surface (F, r  H2(F, •  --+ Es • U) defines an ample M-polarized K3 surface (X, j ) .  Conversely, given 
such (X, j ) ,  it defines an involution ~ on H2(X, Z) by setting a(v) = z, for any v e j (M) ,  and o'(v) = - v ,  
for any v E ( j (M))  J'. One can show that may two primitive embeddings of the lattice M on L differ by an 
isometry of L (see [28]). Thus, we can choose a marking of $ : H2(X, Z) --+ L such that  j~  = j .  Since the 
involution a leaves the period H2'~ of X unchanged, by the global Torelli theorem (Corollary 3.2), there 
is a unique involution 7" of X such that cr = 7"*. By using the the Lefschetz fixed-point formula, it is not 
difficult to show that  the set of fixed points of r is empty (see [28, p. 221]). Thus X = F/ ( r )  is an Em'iques 
surface together with a marking defined by descending the isomorphism j : E8(2) _l_ U(2) -~ Pic(F) to 
t he  isomorphism Es 3- U -~ Pic(X) = Pic(F) ~'. This establishes a bijective correspondence between the 
isomorphism classes of marked Enriques surfaces and isomorphism classes of ample M,  polarized K3 surfaces. 
In particular, K~a(2)• can be viewed as the moduli space of marked Enriques surfaces. 

We may embed Es(2) A_ U(2) diagonally into Es A_ Ea 3_ U 3- U to obtain that  

(Es(2) 3- --_- E8(2) • v(2) • v. 

In particular, if we define the mirror lattice by taking f E U, we obtaan 
V 

M ' ~ M .  

Thus the moduli space KM is its own mirror. If we take f from U(2) instead, we obtain 

V 

M = U • Es (2). 

One can show that the moduli space KU• ) can be represented by the family of double covers of the plane 

branched along the union of two cubics. 

E x a m p l e  9.2. The mirror family for the family of nonsingular minimal models of the Kummer  surfaces 
X = Kum(A) associated with principally polarized abel• surfaces A is the family KM,  where M • = U(2) • 
U(2) 3- ( -4) .  This must be well known but let me give a proof due to J. Keum. By Theorem 1.4.14 from [31], 
the embedding (2) ~ U _l_ U • U is unique. Therefore, we may assume that the class h of the polarization of 
A is mapped to e + f ,  where e , f  E U,(e,e) = ( f , f )  = 0, (e, f )  = 1. Therefore, TA = P ic (A)~(A,Z  ) ~ U 3- 

U 3_ (-2}. On the other hand, it follows from [4, Chapter VIII, Sec. 5] that Tx = P ic (X)~2(x ,z  ) ~ TA(2) 

U(2) • U(2) • (-4). 

Now if we take f from a copy of U(2) we get 

M = U(2) 3- ( -4)  ~ 0 . 
2 
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The mirror family is the moduli space of hypersurfaces of degree (2, 2, 2) in p1 x p1 x p1. This family is 
equal to the family .F(A), where A -- [-1, 1] 3 C R 3. As was shown by Batyrev, the dual family ~-(A') is 

V 

the family KM, , where M '-L -- U .L M. This family of K3 surfaces was studied by C. Peters and J. Stienstra 
in [33]. If we take f E U, the dual moduli space of KM, is equal to K v �9 So the Kumrner family and the 

M 
Peters-Stienstra family share the same mirror family. 
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