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Introduction

There has been a recent explosion in the number of mathematical publications due to the discovery of a
certain duality between some families of Calabi-Yau threefolds made by a group of theoretical physicists (see
[11, 26) for references). Roughly speaking, this duality, called mirror symmetry, pairs two families F and F*
of Calabi-Yau threefolds in such a way that the following properties are satisfied:

MS1 The choice of the mirror family F* involves the choice of a boundary point co of a compactification F
of the moduli space for F at which the monodromy is “maximally unipotent.”

MS2 For each V € F and V' € F* the Hodge numbers satisfy

hl,l(v) = h2’1(VI), h2’l(V) — hl’l(V,).

MS3 For some open subset U of oo, for any V € U N F, the Laurent expansion of the canonical symmetric
trilinear form S3(H(V,0v)) - H%3(V)®? (the Griffiths-Yukawa cubic) at co can be identified,
after some special choice of local parameters and a basis of H%3(V), with the quantum intersection
form on H(V'), V' € F*.

MS4 The period map induces a holomorphic multivalued mapping from the subset UNF to the tube domain
H?(V',R) + iKy where Ky is the Kahler cone of V' € F* (the mirror mapping).

Although known to some experts but never stated explicitly, it is a fact that mirror symmetry is a very
beautiful and nontrivial (in many respects still hypothetical) generalization to the next dimension of the du-
ality for K3 surfaces discovered almost 20 years ago by H. Pinkham [34] and independently by the author
and V. Nikulin [8, 9, 31]. This duality was used to explain Arnold’s Strange Duality for exceptional unimodal
critical points [1]. There are repeated hints on the relationship between the latter duality and mirror symme-
try in the physics ([2, 14, 23]) and mathematics literature ([6, 19, 35, 41]). Some of the results of this paper
were independently obtained in [3, 19, 21, 27, 35] and some must be known to V. Batyrev and V. Nikulin.
The paper [40] of Todorov is probably most relevant. Nevertheless I believe that it is worthwhile to give a
detailed account of how the ideas of Arnold’s strange duality allow one to state (and prove) precise analogs
of properties MS1-MS4 for K3 surfaces.

Note that property MS2 says that the local moduli number of V' € F is equal to the second Betti number
of V! € F*. In the case of K3 surfaces, the first number is always equal to 20, and the second number is equal
to 22. The key observation is that in the three-dimensional case the second Betti number is equal to the rank
of the Picard group of algebraic cycles. This suggests that one create different moduli families of K3 surfaces
with a condition on the Picard group. The simplest realization of this idea is based on the notion of a polarized
K3 surface. This is a pair (X, k), where X is a K3 surface and h € Pic(X) is an ample {or pseudo-ample)
divisor class. A generalization of this notion, due to V. Nikulin [30], is the notion of a lattice polarized K3
surface. We fix a lattice M (a free abelian group equipped with an integral quadratic form) and consider a
pair (X, j), where X is a K3 surface, and j : M — Pic(X) is a primitive embedding of lattices such that
J(M) contains a pseudo-ample divisor class. One can construct a coarse moduli space K s of M-polarized
K3 surfaces. An obvious condition for its nonemptiness is that M be isomorpic to a sublattice of an even
unimodular lattice L of signature (3, 19) isomorphic to the second cohomology group of a K 3 surface equipped
with the cup-product.
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To define the mirror family, we choose an isotropic primitive vector f in the orthogonal complement

v
M+ of M in L, and consider the lattice M = (Z f)}::, /Zf. Under certain arithmetic conditions on M, the

lattice AVJ admits a primitive embedding in M+, and we can define the mirror moduli space K v Additional

conditions on M ensure that the moduli spaces Ky and K A are defined uniquely up to isomorphism, and

v

}\vl = M. Now if we have any complete family F of pseudo-ample M-polarized K3 surfaces its mirror family
v

is any complete family of pseudo-ample M-polarized K3 surfaces.
It turns out that the choice of the isotropic vector f is an analog of MS1. Property MS2 becomes
MS2’ The dimension of the family F is equal to the rank of the Picard group of a general member from the
mirror family F™.
In the case of K3 surfaces, the Griffiths—Yukawa cubic becomes a quadratic map
S} HY(V,0v)) - HY*(V)®?
and we have the following analog of MS3:

MS3’ For some open subset U of F near the boundary point (determined by the choice of isotropic vector f),
for any V € U, the Griffiths—Yukawa quadratic map can be canonically identified, after some choice

of basis of H%?(V), with the quadratic form on M ®C.

Note that in our case the Grifiths—Yukawa quadratic map becomes the “constant” quantum intersection
form and does not carry any information about rational curves on the mirror surfaces. This agrees with the
fact that the quantum cohomology ring of a K3 surface coincides with the usual cohomology ring {36].

The next property is a very close analog of MS4:

MS4' The period map induces a holomorphic multivalued mapping from the subset U from MS3’ to the tube
domain Pic(V’)r + v=1C(X)* C Pic(V')c, where C(X)* is the ample cone of V/ € F*. It is called
the mirror map.

We also produce some computational evidence to support our point. The mirror candidates for a family
of Calabi-Yau three-dimensional hypersurfaces in toric Fano varieties are obtained by Batyrev’s construction
from [5]. When this construction appiies to K3 surfaces it “often,” but not always, gives our mirror family.
This was first noticed by Batyrev in a preprint version of [5]. For example, in the case where F is the moduli
family of quartic surfaces (M = Ze,(e,e) = 4) the mirror family ™ is the one-dimensional family of K3
surfaces obtained by dividing the surfaces

4, 4 4
Azoz1z0z3 +Th+ 2 + 2o 4+25=0

by a symplectic action of the group (Z/4)?. Note the analogy with Greene—Plesser’s initially discovered exam-
ple of mirror symmetry for quintic hypersurfaces (see [11, pp. 1-30]). In this case, assertion MS3' was verified
in [27].

Other examples of our computations include the mirror families for the families of polarized K3 surfaces
of degree 2n, for K 3-covers of Enriques surfaces and Kummer surfaces, and the fourteen families coming from
exceptional unimodal surface singularites. In the case of polarized K3 surfaces of degree n, we compute the
monodromy group of the period and mirror mappings. By other methods this computation was done in [27]
(n = 4) and [21] (n = 2,4,6). We prove that the mirror moduli space is isomorphic to the modular curve
Xo(n)t = H/To(n)*, where I'g(n)* is the Fricke double extension of the modular group I'o(n). We relate
the surfaces from this family to the Kummer surfaces Kum(E x E’), where (E, E’) is a pair of isogenous
elliptic curves.

There is another view of mirror symmetry more relevant to string theory. Here one considers the moduli

space of pairs (V, @), where V is a Calabi-Yau manifold and & = B + K € H%(V,R/Z) + Ky with K
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equal to a Kahler form on V with respect to the complex structure of V. Then the mirror mapping extends
to a map of this space to itself defined on pairs (V, a) such that V is close to a boundary point of the moduli
space of complex structures and the imaginary part of o can be represented by an Einstein-Kahler metric
of sufficiently large volume. The work of P. Aspinwall and D. Morrison {2, 3] treats mirror symmetry for K3
surfaces from this point of view.

My acknowledgments go to V. Batyrev, D. Morrison, V. Nikulin, and A. Todorov who shared my belief
that Arnold’s strange duality must be the pre-history of mirror symmetry and left it up to me to elaborate on
this subject. I am also grateful to V. Batyrev, A. Greenspoon, and D. Morrison for providing some references

to the relevant literature.
This research is supported in part by a grant from the National Science Foundation.

1. Lattice Polarized K3 Surfaces

Let X be a complex algebraic K3 surface, a nonsingular projective algebraic surface over C with vanish-
ing canonical class and first Betti number. Via the intersection form, the second cohomology group H2(X, Z)
is equipped with the structure of a lattice (= a free abelian group together with an integral symmetric bilin-
ear form on it). It is isomorphic to the lattice L equal to the orthogonal sum of three copies of the standard
hyperbolic plane U (= an even unimodular indefinite lattice of rank 2) and two copies of the lattice Es (= an
even unimodular negative-definite lattice of rank 8). The lattice L is called the K3-lattice. The Picard group
Pic(X) of divisor classes of X is naturally identified with the sublattice of algebraic cycles of H2(X,Z). The
unimodularity of H2(X,Z) (= Poincaré duality) allows one to identify H2(X,Z) with the second cohomology
group H%(X,Z) = Hom(H(X, Z), Z) equipped with the lattice structure by means of the cup-product. Let

c¢: Pie(X) - H*(X,Z)

be the corresponding injection. If one uses the interpretation of Pic(X') as the group of isomorphism classes of
line bundles on X, the map ¢ corresponds to the first Chern class map. By virtue of the Hodge index theorem,
the lattice Pic(X) is of signature (¢4,t—) = (1,t), where 1 + ¢ is the rank of Pic(X).

The complex structure on X defines the Hodge decomposition

H*(X,C) = H»°(X)® H" (X))@ H*?(X),
where HP9(X) = HI(X, Q% ). It is known that complex conjugation sends H20%(X) to H%%(X) and
Px = (H*°(X)® H**(X))n H*(X,R)
is a positive-definite 2-plane in H2(X,R). The subspace
HRMNX)=H"Y(X)nH*(X,R)

has signature (1,19). The cone

VX)={z € H}lil(X) : (z,z) > 0}
consists of two connected components. We denote by V(X)* the component which contains the class of some
Kzhler form on X with respect to the complex structure of X. Let

A(X) = {6 € Pic(X) : (6,6) = —2}.

By Riemann-Roch, A(X) = A(X)* [[A(X)~, where A(X)* consists of effective classes and A(X)™ =
—A(X)*. Let W(X) be the subgroup of the orthogonal group of H?(X,Z) generated by reflections-in ele-
ments from A(X). This group acts properly discontinuously on V(X)* with fundamental domain

C(X)={z¢ V(X)t :(z,6) >0, foranyd € AX)T}.
The set C(X)* of its interior points is the Kahler cone of X ([13, Exposé X}).
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By the Lefschetz theorem,
Pic(X) = HR'(X) n H¥(X, 2).
We set
Pic(X)* = C(X)n H*(X,Z), Pi(X)** =C(X)* nHX(X,Z).
The elements of Pic(X )" are pseudo-ample divisor classes, i.e., numerically effective divisor classes with pos-
itive self-intersection. Elements of Pic(X)** are ample divisor classes. Elements from V(X)* n H2(X,Z)
are just effective divisor classes with positive self-intersection.
Now let M be an even non-degenerate lattice of signature (1,t). The cone
V(M)={z € Mp : (z,z) >0} C Mr
consists of two connected components. We fix one of them and denote it by V(M)*.
Let
AM)={6€ M:(538) = -2}
We fix a subset A(M)™T such that
(i) A(M) = AM)T [ A(M)~, where A(M)~™ = {-§:8 € A(M)T};
(ii) if 81,... , 0k € A(M)"' and § = ) n;é; withn; > 0,thend € A(M)*T.
The choice of subset A(M)* as above defines the subset
CM)T ={he V(M) NM:(h,38 >0 forall§ € A(M)*+}.

Definition. An M-polarized K3 surface is a pair (X, j), where X is a K3 surface and j : M < Pic(X) is
a primitive lattice embedding. We say that (X, j) is pseudo-ample (resp. ample) M-polarized if

FHCM)*) N Pic(X)T # 6
(resp.
J(CM)*) O Pic(X)FH £ 0).
Two M-polarized K3 surfaces (X, j) and (X', ;') are called isomorphic if there exists an isomorphism of
K3 surfaces f : X — X' such that j = f* o j'.

Remark 1.1. Note that for any pseudo-ample M-polarized K3 surface (X, j) we have
@) J(V(M)F) c V(X
(i) J(AM)T) = j(M) N A(X)*F.
Conversely, if these conditions are satisfied, and j(M) = Pic(X), then (X, ;) is ample M-polarized.
Finally observe that a pseudo-ample M-polarized K3 surface is algebraic.

Example 1.2. Let M = (2n) := Ze, (e,¢) = 2n. Assume n > 0. Choose V(M)* to be one of the two
rays in Mg \ {0}. A pseudo-ample M-polarized K3 surface (X, j) is called a degree-2n pseudo-polarized K3
surface. Consider the complete linear system |j(e)| and let f be a rational map defined by this linear system.
Then one of the following three possible cases occurs:
(i) (Unigonal case) |j(e)| has a base curve C = P!, [j(e) — C| = |(n + 1)E|, where E is an elliptic curve.
The map f is a regular map from X to P™** whose image is a normal rational curve of degree n + 1.
(i1) (Hyperelliptic case) |j(e)| has no base points and f is a morphism of degree 2 onto a normal surface of
degree n in P™ 11, Its singular points (if any) are rational double points.
(iii) |7(e)| has no base points and f is a morphism of degree 1 onto a normal surface of degree 2n in P™**.
Its singular points (if any) are rational double points.
Moreover, if j(e) is ample, the unigonal case may occur only if n = 1. Also, in cases (ii) and (iii), the
morphism f is finite and its image is nonsingular (see [13, Exposé IV]).
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2. Local Deformations

Fix an M-polarized K3 surface (Xp, jo). Let S be the local moduli space for Xj. It is smooth of dimension
20 with all Kodaira~Spencer mappings

ps : Ts(S) - HY(X,,0x,)
being isomorphisms. Let
H*(Xo,0x,) ® H' (X0, Xx,) —~ H*(Xo0,0x,) (1)

be the natural pairing induced by the duality map O x, ® Q&o — Ox,. As was explained in the previous
section, we can view Pic(Xp) as a subgroup of H'}(Xo). We denote by

H'(Xo0,0x,)jo

the orthogonal complement of jo(M) with respect to the pairing (1). Let

H(Xo,x, )io = H' (X0, 2, )/jo(M)-
In view of the canonical pairing

HYY(Xo)® HV(Xo) - H**(Xo) 2 C
we may identify H'(Xo, QY )j, with .

H"!(Xo0)jo = (jo(M)c) 11 (x,)-
The pairing (1) induces the map
di : HY(Xo0,0x,)jo = Hom(H' (X0, %, )je, H*(X0,0x,)). (1"

Proposition 2.1.  There is a local moduli space Spr of 1somorphism classes of M -polarized K3 surfaces. It
is smooth of dimension 19 —t. Its tangent space at each point s € S is naturally isomorphic to H'(Xo,0x,);,-

Proof. Inthecaset =: 0, this is a theorem from [15]. The general case is proved similarly.
Let

H'(Xo,0x,) ® H(X0,0%,) - H'(Xo,0%,) (2)
be the natural pairing induced by the contraction map © x,®2% s Q&o. Composing (2) with the projection
H'(Xo0,0%,) = H'(Xo, Q}{o );, and restricting the composition to H*(Xo, ©x,)j,, we get the map

da: HI(XO: Oxa)jo = Hom(HO(XO) Q%(o)? HI(XO) ng)j(} )- (2")
Let
(d1,d2) : H'(X0,©x,)jo = Hom(H " (Xo)j,, H*?*(Xa)) ® Hom(H™*(Xo), H'(Xo)5,)-
The formula
(81,82) = d1(82) 0 da(61) : H°(Xo) — H**(Xo)

defines the bilinear form

H'(Xo0,0x,)%? + Hom(H*°(Xo), H>*(Xo)).
The canonical pairing

H20(Xo) ® H*?(Xo) = H*?(Xo) = H*(Xo,C) 2 C

allows one to identify the space of values of the bilinear form with the space H%2(X)®2. One can check that
this pairing is symmetric [16] and hence defines the linear map

Yu: SH(H(Xo,8x,)50) = H**(X0)®?,
which we call the Griffiths- Yukawa quadratic map for M-polarized K3 surfaces. The choice of an isomorphism
HO’Q(X()) =C
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allows one to identify the map Yu with a quadratic form on the space H(Xo,©0x,);,-
The Griffiths~Yukawa quadratic map can also be expressed in terms of the intersection form on H11(X;)

as follows. First observe that the map

d2 : H}(X0,0x,)j, = Hom(H?*°(Xo), H'}(Xo);,) & H**(Xo0) ® HY(X0);, (3)
is bijective (since it is injective and both spaces have the same dimension). The pairing

HY!(Xo0)jo ® H"(Xo0)j, = C
defines the symmetric bilinear map
(H*(Xo)* ® H"!(X0)jo) ® (H*°(Xo0)* ® H"!(Xo0)jo) - H*?(X0)®>. (4)
Then it follows from the definition of the Griffiths—Yukawa quadratic map-that
Yu = Yu' od,
where
Yu' : H*%(X,) @ H1Y(Xo)j, = H%*(X0)®?

is the quadratic map defined by (4).

3. The Period Map

The map (3) can be naturally interpreted as the differential of the period mapping for M-polarized K3
surfaces. Let M be a lattice of signature (1,¢) embeddable into the K3-lattice L. Fix a lattice embedding
irm i M — L. We shall often identify M with the image ipr(M). Let

N = M
be the orthogonal complement of M in L. It is a lattice of signature (2,19 — ¢).

Definition. A marked M-polarized K3 surface is a pair (X, ¢), where X is a K3 surface together with an
isomorphism of lattices ¢ : H2(X, Z) — L such that 4~1(M) C Pic(X). The pair (X, j4) with jg = ¢1|M :
M — Pic(X) is an M-polarized K3 surface. In this way we can speak about pseudo-ample and ample marked
M-polarized K3 surfaces. Two marked surfaces (X, ) and (X', ¢) are called isomorphic if there exists an
isomorphism of surfaces f : X — X' such that ¢’ = ¢ o f*.

Given a marked M-polarized K3 surface (X, §), the Hodge decomposition of H2(X, C) defines the point
$(H?>°(X)) in P(Lg). Since H?9(X) is orthogonal to H1'!(X) (with respect to the cup-product in H?2), the
line $(H2?) is always orthogonal to #(j(M)) = M. Therefore

$(H>%(X)) € P(Nc) C P(Lg).
Let Q be the quadric in P(N¢) corresponding to the quadratic form on N¢ defined by the lattice V. For any
w € H2%(X) we have
(w,w) € H¥°(X) = {0}.
This shows that ¢(H20) € Q. Also
(w,@) € Ry C H**(X)NnHY(X,R) = R.
Therefore, $(H?9(X)) is contained in an open (in the usual topology) subset Dps of the quadric Q defined
by the inequality (w,@) > 0. By assigning to H9(Xj) the positive-definite 2-plane Px C Nr together with
the orientation defined by the choice of the isotropic line H2%(X,) C Px ® C, we can identify Das with
the symmetric homogeneous space O(2,19 — t)/SO(2) x O(19 — t) of oriented positive-definite 2-planes in
Nr. The space consists of two connected components, each isomorphic to a bounded Hermitian domain of
type I'Vig_;. The involution which switches the two components is induced by the complex conjugation map
Q — Q. We shall call the point ¢(H?°) € Das the period point of (X, ¢).
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Let S be the local moduli space of an M-polarized K3 surface (X, jo). Since Sas is contractible, we can
choose a marking ¢ : H2(X,,C) = L for all X,,s € Sp. We fix this marking and identify H2(X,, C) with
L¢. The complex structure on X, defines the Hodge decomposition and hence the period point H%%(X,) €
Dys. By the local Torelli theorem ([13, Exposé V]) the resulting period map

p: Sy — Dy

is a holomorphic map which is locally an isomorphism in a neighborhood of the origin 0 = (Xo, jo). Let
= p(0) € Dy be the period point of (Xo, jo). We shall identify it with the subspace H%'? of N¢. Then

T,.(Dar) & Hom(p, u*/ 1) = Hom(H*(Xo), Y (Xo)j) = HO*(X0) ® H(Xo)s,.
The differential of the period map
dpo : To(Sm) = Tu(Dp)
is the bijective map ds from (3).
Let K s be the fine moduli space of marked M-polarized K 3 surfaces. It is obtained by gluing local moduli

spaces of marked M-polarized K3 surfaces and is a (nonseparated) analytic space (see [13, Exposé XIII; 30]).
The local period maps are glued together to give a holomorphic map

p:Ka — Dy

This map is the restriction of the period map P : M — D D Dy for marked Kéhler K3 surfaces. According
to the global Torelli theorem of Burns—-Rappoport and the surjectivity theorem of Todorov, the latter map is
étale and surjective (see loc. cit). The former theorem also describes the fibres of the period map.

Let (X, #) be a marked M-polarized K3 surface. Then the image of the data

(Px,V(X)*,A(X)F, C(X))
under the map ¢ defines the data (r, V,}, AT, Cx), where
(1) 7 is a positive-oriented 2-plane in Ngr;
(ii) V;F is a connected component of the cone {z € 7+ : (z,z) > 0};
(iii) A7 is a subset of Ay = {e € 7~ N L : (e,e) = —2} such that A, = AT ][ -A};
(iv) Cr = {z € Vi : (z,€) > O forany e € A}}.
Note that VF is uniquely determined by 7 (since V(M)7 is fixed) and Cy is determined by A}.

Theorem 3.1.  The restriction of the period map p : Kpr — Dy to the subset KRy of isomorphism classes
of marked pseudo-ample M-polarized K3 surfaces is surjective. There is a natural bijection between the fibre
of the map

p K% - Dy
over a point # € Dpg and the subgroup Wo(N) of isometries of L generated by reflections in vectors from
ANN.

Proof. It follows from the global Torelli theorem that the fibre p~!(r) is bijective with the set of possible
pairs (V;F, At). The group W (L) x {£1}, where W(L) is generated by reflections in elements from A, acts
transitively on the fibre. Pick a point (X, ¢) in p~!(r) corresponding to (V,F, A¥) such that V(M)* c V;}.
Let h € C(M)*; we may choose (X, ¢) such that o € Cr. This is possible because Cr is 2 fundamental domain
for the action of W, (L) in V. Since # € D, ¢~ (M) C Pic(X) and j4(k) € Pic(X)¥. Composing ¢ with
some reflections from A(M), we may assume that h € j4(C(M)¥). Thus (X, 4) is a marked pseudo-ample
M-polarized K3 surface with p((X, ¢)) = m. This proves the surjectivity.

Let (X, ¢) € K&7; then the fibre of p’ : K" — Das over m = p((X, $)) is bijective with the set of subsets
AF such that AT N M = C(M)*. The stabilizer G of this set in W (L) is the subgroup Wr(N). In fact,
it follows from the properties of reflection groups that G is generated by reflections in vectors § € A, such
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that (4, k) = 0, where h € C(M)*. Since C(M)* linearly spans Mr we must have § € N. This proves the
theorem.

Forany § € A(N) = {z € N : (z,z) = —2}, set
Hs = {z € No: (2,8) = 0},

D3y =Dm \ U HsN Dy }.
SEA(N)

Let (X, ¢) be an ample marked M-polarized K3 surface. Then (j4(M))LNH? cannot contain vectors v with
(v,v) = —2. This shows that the period point 7 = ¢(Px ) satisfies Ar N N = . This implies the following:

Corollary 3.2.  Let K3, denote the subset of Ky which consists of isomorphism classes of marked ample
M -polarized K3 surfaces. The period map induces a bijective map
p: Kyy=>Djy.
Next we want to get rid of markings of M-polarized K3 surfaces. For any lattice S we denote by O(S)
its orthogonal group. The group

(M) ={c € O(L) : o(m) =m foranym € M}
acts on the moduli space Kps transforming (X, ¢) to (X, ¢ o o) without changing the isomorphism class of
the M-polarized K3 surface (X, j4).
Let "5z be the image of I'(M) under the natural injective homomorphism
I'(M) — O(N).

Proposition 3.3. Let A(N) = N*/N be the discriminant group of the lattice N, and let O(N) — Aut(A(N))
be the natural homomorphism. Denote its kernel by O(N)*. Then

Ty = O(N)*.
In particular, Ty is a subgroup of finite indez in O(N).
Proof. This follows from Corollary 1.5.2 in [31].

The group O(N) is an arithmetic subgroup of O(2,19—t), and by the previous proposition sois I'as. Since
D)y is the union of two copies of a Hermitian homogeneous domain, the quotient Dps /T as is a quasi-projective
algebraic variety with at most two irreducible components. Obviously I'(M) contains the subgroup of O(L)
generated by reflections in vectors § € N with (4,d) = —2. Thus each fibre of the map p' : K5y — Das is
mapped to the same orbit in K s /T'(M). Applying Theorem 3.1, we obtain that the period mapping descends
to a bijection

K52/T(M) = Dpg [T
Since the elements of the quotient set X5;/T(M) are isomorphism classes of pseudo-ample M-polarized K3
surfaces, we are able to endow the set Xh7/T'(M) with the structure of a quasi-projective algebraic variety.
‘We denote this variety by Kjs.

Assume that M satisfies the following condition:

(U) For any two primitive embeddings 71,22 : M — L, there exists an isometry ¢ : L — L such that
z 100 = iz.

Let (X, j) be a pseudo-ample M-polarized K3 surface. Take any marking ¢ : H?(X,Z) — L. Composing
it with j : M — H2?(X,Z), we obtain a primitive embedding ' : M — L. Replacing ¢ with ¢ o ¢ for
appropriate isometry o of L, we obtain a new marking ¢’ : H%(X,Z) — L such that j = j, . This shows
that any isomorphism class of (X, ) is represented by a point of K. Thus, we may view Ks as the moduli
space of M-polarized K3 surfaces.
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Similarly, we can define the variety K%, of isomorphism classes of ample M-polarized K3 surfaces. We
have

K% = D3 /T .

Observe that O(N) has only finitely many orbits in the set of primitive vectors with given value of the qua-
dratic form (for example, this follows from Proposition 1.15.1 of [31]). This shows that the complement of
D$;/Tar in D /T is the union of finitely many hypersurfaces. In particular, D3, /T'a is an open Zariski
subset of D(M)/Tar.

Remark 3.4. In fact, following {13, Exposé XIII], one can show that Dps/I'as is a coarse moduli space of
pseudo-ample M-polarized K3 surfaces. First we define a family of M-polarized K3 surfaces. This is a family
f : & = S of K3 surfaces together with a homomorphism of sheaves Ms — Picy s, where Picy,;s C
R%f.(Z) is the relative Picard sheaf. We can define a family of pseudo-ample M-polarized K3 surfaces by
requiring additionally that each (f~!(s),j,) be a pseudo-ample M-polarized K3 surface. Since Ky is a fine
moduli space for marked M-polarized K3 surfaces, a family (f : X — S, ¢) of marked M-polarized K3
surfaces is equivalent to a holomorphic map « : S = Kas. Composing this map with the period we obtain
that (f : X — S,¢) defines a holomorphic map @ : § — Dap/Ta. Given a family (f : & = S,5) of
pseudo-ample M-polarized K3 surfaces, after localizing .S, we equip it with a marking and define the map
@ : S = D /T ar which does not depend on the choice of the marking. When § is a point, we get a bijection
KE2 /T(M) = Dag /T pr. This proves that Das/T'a is a coarse moduli space. Similarly we prove that D3, /T
is a coarse moduli space for ample M-polarized K3 surfaces.

I do not know of any algebraic construction for Kps except when M is of rank 1.

4. Tube Domain Realization of the Period Space

Let b : V x V = C be a nondegenerate symmetric bilinear form on a complex vector space and let
Q : b(z,z) = 0 be the corresponding nondegenerate quadric in the projective space P(V') associated with V.
For any nonzero vector v € V, we denote by [v] the line Cv € P(V). For any v € V' \ {0} the hyperplane
H, = {w € V : b(w,v) = 0} intersects Q along the quadric

Q) =QNH,={r€Q:vePI(Q)} C Hy,
where PT.(Q) is the projective tangent space of Q) at the point [v]. I b(v,v) = 0, i.e., [v] € @, the hyperplane

H, coincides with PTj,j(Q) and Q(v) is the cone over the quadric Q(v) Cc P(H,/Cv) with vertex at [v]. In
other words, the projection map @ \ {[v]} = P(V/Cv) is an isomorphism outside Q(v), and blows down

Q(v) \ {[v]} to the quadric Q(v).

We shall apply the previous remarks to our situation, where V = N¢ C Lc¢ with the symmetric bilinear
form defined by the lattice N = M. The period space Dy is a subset of the quadric @ defined by the
inequality (¢, %) > 0.

Lemma 4.1. Let f € (M1)Rr,(f,f) =0. Then
Dy N Q([f]) = 0.

Proof. Suppose there exists p € Das N Q([f]). Since f is a real vector, and the bilinear form originates
from the lattice structure, we have (&, f) = (g, f) = 0. This implies that f € P+, where P C Ng is the
positive-definite 2-plane spanned by the real and imaginary part of u. However, the signature (¢4+,t_) of the
space (M1)g satisfies t4. = 2. Therefore, P is negative definite and does not contain isotropic vectors. This
contradiction proves the assertion.
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From now on we assume that ¢ < 18, i.e., rank(M) < 19. This ensures that the lattice N = ML is
indefinite. Let us fix an isotropic vector f € Ng. We set

Wy = {z € Nr : (z,f) = 1}/Rf,
Vi ={z € Nr : (z, f) = 0}/Rf.
By Lemma (4.1), the projection map = : @\ Q([f]) = P(Nc/Cf) maps Dys isomorphically onto a subset of
the affine space
Af =P(Nc/Cf)\P((Vf)c) = {z € Nc: (2 f) =1}/Cf
= W, +iVy = {z =2 +iy € No/Cf = (Nr/Rf) + N /Rf): (z.f) = 1, (3, f) = 0}.
Theorem 4.2.  The projection map Q \ Q([f]) & P(Nc/Cf) defines an analytic isomorphism
Dy = {z+iy € Af:(y,y) >0}
Proof. This is just the translation of the condition (i, %) > 0 in terms of the projection map. We write any
p € Dpgintheform p = Af + z + iy, wherez + Rf € Wy, y+ Rf € V5. We have
0 = (g, p) = [2Re(A) + (z,7) — (v, )] +42Im(A) + 2(=, )],
hence (z,z) — (y,y) + 2Re(}) = 0. This implies that
0 < (4, B) =2Re(A) + (z,2) + (v, %) = 2(y,v)-
This proves the assertion.
Recall that for any real affine space W with translation space V and an open connected cone C C V
which does not contain an affine line, the set
QW,V,C)={z=z+ty:z2€ Wy C} CWc

is called the tube domain associated with the cone C in V. In the special case where V is equipped with a
nondegenerate quadratic form with signature (1,n) and the cone V¥ is one of the two connected components
of the cone {z € V : (z,z) > 0}, the tube domain Q(W,V, C) is'a bounded Hermitian symmetric domain of
type IV;,. This can be applied to our situation where V' = V¢. Fix a connected component V)Z'" of the cone

{z € Vs : (z,z) > 0}. Restricting the period map to a connected component D7 of Dps, we obtain

Corollary 4.3.  The choice of an isotropic vector f € NRr defines an isomorphism
Df, =~ Q(Wf, Vf, Vf+)

Corollary 4.4. For any u € Djg the choice of a representative £ € L of p with (£, f) = 1 defines a canonical
isomorphism
ay, T“(DM) - (Vf)c.
If[(X, 4)] € K is the isomorphism class of a marked M-polarized K3 surface with period point u, then the
pre-image of the quadratic form on (V) under the map
a0 dP[(X,qb)] : HI(X, ex) — (Vf)c
coincides with the Griffiths—Yukawa quadratic form with respect to the normalization H%?I3C defined by the
linear function ¢~ 1(£) € H%°.
Proof. Themap
ay : Tu(Du) = Hom(p, u* /1) = (Vi)e
is the composition of the differential of the map Dpr — Ay at the point y and the differential of the translation
map A = (V5)c, z — z — p. Explicitly, it sends 3 : p — pt/u to p(8) — (¥(£), )¢ mod Cf, where 1(£)
is a representative of ¥ (£) in ut.
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Remark 4.5. In general, there is no canonical trivialization of the affine space Wy. However, the choice of
-an isotropic vector ¢ € Nr with (f, g) = 1 defines the trivialization
Ws—(Vy), zoz—g.

If we choose to identify V¢ with (Rf + Rg);{',n, then the explicit isomorphism a : 5 — D)y is given by the
formula

a(z)=C <—-%(z,z)f+g+z) .

5. Some Arithmetical Conditions on M

We are going to place some arithmetical conditions on our lattice M to ensure, for example, condition
(U) in Sec. 3.

For each nondegenerate even lattice S, we denote by A(S) = §*/S the discriminant group of S equipped
with the quadratic map

gs : A(S) = Q/2Z, qu(z +S5) =(z,z)+ 22,

where the bilinear form of S is extended to a Q-valued bilinear form on S*.

For example, for any integer m # 0, let U(m) denote the lattice of rank 2 with a basis (e, e’) such that
(e,e') =m, (e,e) = (¢/,¢') = 0. Then A(U(m)) = (Z/mZ)? with gy () defined by the formula

2ab
¢((a +mZ,b+ mZ)) = Tf? +2Z.

It is clear that for any isometry ¢ € O(L), we have a canonical isomorphism Dps — D, (pr) which defines

a canonical isomorphism of the moduli spaces
Km= Ka(M)a

where we choose (V(M)*, A(oc(M))) to be equal to (o(V(M)1),s(A(M)*). The next result of Nikulin
gives a condition implying that any two primitive embeddings i : M — L,i’ : M — L differ by an isometry
of L.
Proposition 5.1.  Let S be an even lattice of signature (1,t) with t < 19. Assume that the minimal number
of generators l(A(S)) of the discriminant group A(S) s less than or equal t0 20—t ort < 10. Then there ezists
a primitive embedding S < L. Moreover, such an embedding is unigue up to an isomeiry of L if for each prime
p # 2 the p-primary component A(S), of A(S) satisfies I(A(S),) < 19 — ¢t and, if I(A(S)2) = 21 — ¢, A(S)2

contains as a direct summand the discriminant form of the lattice U(2).
Proof.  See [31, Corollary 1.12.3, Theorems 1.12.4, 1.14.4].

Corollary 5.2. Any even lattice M of signature (1,t) witht < 9 admits a unique primitive embedding in
the K3-lattice L. In particular, the moduli space K%, of ample M-polarized K3 surfaces is not empty (and of
dimension 19 — ).

Proof. Infact, K§, is a Zariski-open nonempty subset in the (19—t)-dimensional algebraic variety Dps /T ar-

Next we want to study primitive isotropic vectors f in a nondegenerate even lattice S. Consider f as
an element of S* and let div(f) be the positive generator of the image of the linear map f : § — Z. Let

f* = a—l(}—) f+S € S*. Clearly f* is an isotropic element of the discriminant quadratic form A(S). Let I(S)
iv _ .

denote the set of primitive isotropic vectors in S, and I(A(S)).be the same for A(S). Themap f = f* + S

defines a map I(S) — I(A(S)). The orthogonal group O(S) acts naturally on the source and the target of

this map, and the map is compatible with this action. Let

O(S)* = Ker(0(S) = O(A(S))).
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This group acts on the fibres of the map I(S) — I(A(S)).

Proposition 5.3. The map
I(S)/0(S)" = I(A(S)), frf"+S

18 surjective if S admits the lattice U = U(1) as an orthogonal summand. The map is bijective if S admits the
lattice U L U as an orthogonal summand.

Proof. See [37, Lemmas 4.1.1 and 4.1.2].

Definition.  An isotropic vector f € I(S) is called m-admaissible if div(f) = m and there exists g € I(S)
with (£, g) = m,div(g) = m.

Lemma 5.4. The follounng conditions are equivalent:
(1) f € I(S) is m-admissible;
(ii) there ezists a primitive lattice embedding i : U(m) — S such that S = {(U(m)) @ i(U(m))* and
f e(U(M)).

Proof. (i) = (ii). Let g € I(S) such that (f,g) = m. The sublattice U’ spanned by f and g is primitive,
(s,9) fo
m

contains f, and is isomorphic to U(M). Since for any s € S, m divides (s, f) and (s, g), we obtain s—

E;;'Qg € UZ. This shows that S=U" L U™
(i) « (ii). Obvious.

Proposition 5.5. Let S be an even indefinite nondegenerate lattice of signature (t4.,t—). Then S admits
the lattice U(m) as an orthogonal summand if the following conditions are satisfied:

(1) A(U(m)) is isomorphic to an orthogonal summand of A(S) with respect to the bilinear form defined by

qs;
(i) (A(S)) Sty +t- -3

Proof. Let A’ be the orthogonal complement of A(U(m)) in A(S). Then I(A’) < I(A(S)) <rank S -3 <
(t+ —1)+ (t= = 1). By Corollary 1.10.2 from [31], there exists a lattice S’ with signature ({4 — 1,{— — 1) and
A(S") = A'. Thus the lattice U(m) L S’ has the same signature and the same discriminant quadratic form
as the lattice S. By Corollary 1.13.3 from [31], we obtain S = U(m) L S'.

Proposition 5.6. Suppose that M L contains an m-admissible isotropic vector with m < 2. Then the moduli

space Kz 13 irreducible.

Proof. Let ML =U(m) L M’'. The isometry —idy(m) @ idpg of M L acts identically on the discriminant
group of M, hence extends to an isometry of o € I'(M) of L (see Proposition 3.3). Obviously o switches
the orientation of a positive-definite 2-plane 7 C (M1 )R spanned by a vector z € U(m) with (z,z) > 0 and
a vector y € M’ with (y,y) > 0. Hence o switches the two connected components of Dys. This implies that

D /T(M) = Dpag /T pr is irreducible.
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6. Mirror Symmetry

Now we are ready to define the mirror family. Pick an m-admissible isotropic vector f in N = M+
v
(Proposition 5.3 gives some sufficient conditions for its existence). Then ML = U’ L M, where U’ = U(m)

v
and f € U’. The sublattice M is of signature (1,18 — t). We have
L v
(2L /Zf =M.

v v
So, as an abstract lattice, M does not depend on the choice of U’ = U(m) containing f. Let us fix (V(M)*,
\'4 \'4 \'2 \2
A(M)*, C(M)*) and use the embedding i : M < M+ C L tointroduce the moduli space K M of M-polarized
K3 surfaces.

Definition. The moduli space K v is called the mirror moduli space of K A

\4
The definition obviously depends on the choice of U’ which determines the embedding M — L. If we
replace ¢ with the composition i’ = ¢ o1, where ¢ € O(L), then i/(M) C o(M1) = o(M)*. Thus the new
K"( M will be equal to the mirror of K,(pry & Kasr. Thus, if we put conditions on M which ensure the

v
uniqueness of a primitive embedding of M in L, we obtain that the isomorphism class of the mirror moduli

: v
space depends only on the choice of f € M. Since the signature and the discriminant group of M can be read
off from the signature and discriminant of M, we can apply Proposition 5.1 to get some sufficient conditions
on M which guarantee that our construction is well-defined.

Note the obvious relations
dim KA\} + dim Kjs = 20,
dim KA\:I = rank M = rank Pic(X),

where for any marking ¢ of X € Kz the period of (X, ¢) does not belong to a subvariety of the form Dy
for some sublattice M’ of L with M C M'.

Note that Kas is not a fine moduli space, so there is no universal family of pseudo-ample M-polarized K3
surfaces. We shall usually replace it with a family f : X — § of pseudo-ample M-polarized K3 surfaces (in
the sense of Remark 3.4) such that the period map S — Ky is of finite degree. A similar family f' : X’ — S’

v
of M-polarized K3 surfaces will be called a mirror family.
The mirror correspondence works especially nicely when m = 1. This is true if and only if M+ contains

v Y
an isotropic vector with div(f) = 1. Choose U’ 2 U containing f. Then M+ = U’ L M and M+ =U' 1L M.
Thus, we can use f € U’ to define the mirror family for both Kjs and K v Since

\
\Z

M =M,

we obtain that the mirror correspondence is a duality. Note that additional assumptions on M guaran-

tee that this duality is independent of the choice of U’. For example, suppose {(A(M)) < t — 3. Then
v v

A(M) = A(M1) = A(M) and by Corollary 1.13.3 of [31] M is determined uniquely by its signature and

the discriminant form. Proposition 1.15.1 of loc. cit. implies that the U-splitting of M+ is unique up to.an

isometry of M 1. Applying Proposition 5.1 to M+, we obtain that M admits a unique primitive embedding
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in L. Thus any isometry of M~ lifts to an isometry of L. This shows that the moduli space K v is independent
M

v
of the choice of splitting M+ =U L M.
Remark 6.1. One of the main motivations of Nikulin’s paper [31] was to find some conditions ensuring that

two lattices S and §' are K3-dual, i.e., can be realized as the lattices M and ]\\;[ from above. For example, he

proves in [31, Corollary 1.13.5] that two hyperbolic lattices S and S’ are K3-dual if rank S + rank S’ = 20

and A(S) = A(S’) as abelian groups and the values of the discriminant quadratic forms differ by a sign.

The notion of K'3-dual lattices plays an important role in the explanation of Arnold’s strange duality where

M occurs as the lattice generated by algebraic cycles supported at infinity for a K 3-smoothing of one of the
\2

fourteen unimodal exceptional singularities and M L U is realized as the Milnor lattice of vanishing cycles for

\4
the same singularity. The strange duality switches the role of the lattices M and M. In [31], Nikulin proves
that the Milnor lattice of a hypersurface surface singularity contains a 1-admissible isotropic vector whenever
it is indefinite.
For any K3 surface X we can introduce the tube domain (the Picard tube domain)
Ptd(X) = Pic(X)r +:iC(X)T.
Now let (X, j) be an M-polarized K 3 surface and f € M1 be an m-admissible isotropic vector. Fix a splitting

v
MLt =U' L M, where U’ = U(m) and f € U’. Let us consider the tube domain Q5 = Vy + iV;'. Observe
that

v
Vi = ((Zf)j‘/!_L/Zf)R X“MgrpClLn.
Let us choose the component V]Z*' such that under the above isomorphism
v
vi=v(M)*
Let
\% \2 \4
VJ;H' =C(M)% ={ye V(M)* : (y,6) >0 forall§ € A(M)},
v Y
Qf = Ve +iV T = Mr + C(M)E.
v
Let (X, ¢) be an ample M-polarized surface. Then
\4
AM)* = AX)).
v
The map jg : M — Pic(X) defines an open subset
VX, 8) = i3 C(X)")
of V;' *, and a holomorphic embedding
Vs + iV (X, ¢) < Ptd(X).

Note that, if j4 is an isomorphism we get Vf'l~ (X, 9) = V;’ + and the previous embedding becomes an iso-
morphism.

Let g € Ug be an isotropic vector with (f,¢) = 1. By Remark 4.5, it defines an isomorphism from
each connected component of Dps onto the tube domain Q. Let D,tr be the pre-image of Q'}; under this

isomorphism and let }C'It, be the pre-image of D}, under the period map from Theorem 4.2. For any ample

\4 \Z
M-polarized marked K3 surface (X, ¢) with bijective 75 : M — Pic(X), the period map defines a holomorphic
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isomorphism:
Kt = Ptd(X).

Note that its definition depends on the choice of splitting M+ = U’ L M the choice of an isotropic vector
f € U(m), and the choice of marking ¢.

Recall that the period space Dps admits a compactification D}, which is isomorphic to the quadric in
P(Nc) defined by the lattice N. The topological boundary of Das in D}, is equal to the disjoint union
of locally closed analytic subsets F', called the boundary components. Each boundary component is of the
form P(Ic) N D for some isotropic subspace I of Nr. Since N is of signature (2,19 — t), we have either
dim I = 1 (F is a point) or dim I = 2 (F is isomorphic to the upper half plane). The stabilizer group
N(F) = {g € O(NR) : g(F) = F} of F is a maximal parabolic subgroup of G = O(Ngr). Conversely,
each such subgroup occurs as N(F') for some boundary component F. A boundary component F is called
rational if the corresponding isotropic subspace can be defined over Q. It is clear that we can identify the
set, of isotropic subspaces of Nq with the set of primitive isotropic sublattices of N. In particular we have a

bijective correspondence
{0-dimensional rational boundary components of Dps} +— I(N).
Let I' C G(Q) = O(Nq) be an arithmetic subgroup of G (e.g., a subgroup of finite index in O(Nz)).
It acts on the set RB(Dyr) of rational boundary components of Dys, and for each such component F, the
stabilizer group Np(F) =I' N N(F') acts discretely on F' with algebraic quotient F//Ny(F'). The same is true
for D/T". We have

BM—/f=D/FH( U F)/F=D/FH< U F/NF(F)>

FERB(Dyy) FERB(Dp)/T

1s a normal projective algebraic variety (Baily—Borel-Satake compactification).
We shall apply it to our situation when I' = T'pr. Let f € I(N) and let F be the corresponding ze-
ro-dimensional rational boundary component of Dys. We set

Zm(f) =A{9 € Ny, (F) : 9(f) = f}

v
Now let us assume that f € I(N) is m-admissible and fix a splitting M+ = U’ L M, where U’ = U(m),
f €U’ Let g € U’ be an isotropic vector with (g, f) =

\4 N4 \2
Proposition 6.2. Let O(M)* = Ker(O(M) — O(A(M)). Then there is a canonical split extension of groups

\4 \4
0 mM — Zp(f) = O(M)* — 1.

\'2
Proof. We can write any n € M~ in the form n = af + bg + 2, where a,b € Z,z € M. Any o € Zm(f)is
defined by the formula
_(ve, U(Z))

(vcr, 'Ua')

o(f)=1f o(9)= ——Q-Tn—'f+g+vm 0(z) = ———f +35(2),

v
for some v,,5(z) € M. It is easy to check that & : 2 — &(z) is an element of O(M) Setting A(c) = (7,vs)
we verify that

A(o' 00) = (' 07,5 (Vo) + vor).
\2 \4
Let G be the group of pairs (s,v) € O(M) x M with the composition law (s',v") o (s,v) = (s’ 0 5,5'(v) + v').
v v
The homomorphism (s,v) — s makes it an extension of O(M) with the help of M. It splits by the section
s — (s,0). The homomorphism ¢ = A(c) is an injective homomorphism from Zas(f) to G. To find its image
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we have to decide which pairs (&, v,) correspond to isometries ¢ € O(M1) which lift to isometries from
T(M). By Proposition 3.3, the condition for this is that & € Ker(O(M1) = O(A(M™1)). 1t is easy to check

v
that any o with A(0) = (1,v,) satisfies this condition if and only if _v_n% € M. Each o with A(o) = (7,0)

v v
satifies this condition if and only if & € O(M)*. Since G is the semi-direct product of M and O(A\/if ), we get
\2 \4
that the image of Zps(f) is the semi-direct product of mM and O(M)*. This proves the lemma.

v
Let Zas(f) be the subgroup of Zas(f) whose image in O(M)* consists of elements preserving C(AVJ )t
\4 \4
The group Zar(f) acts naturally on Q5 = Mg + M -I{;. by the formula

(G,v0)(z +1y) =z + vy + 15 (y).

The subgroup Zar(f)*+ preserves the tube domain Q}' =Vi+ iV;' + = l\\zf R+ iC(A\:! )& It follows from the
theory of compactification of homogeneous symmetric domains that there exists Np(F')-invariant neighbor-
hood U* of Fin D; 3 such that the map U* p U” /[Np(F) = D} /T is an analytic isomorphism to a neighborhood
U* of the boundary point F/Np(F) of Das/T. Restricting this isomorphism to T=0U*n Q"‘ we obtain an
isomorphism

a:U/Zm(f)T = Up CUp.
The multivalued map
~1.Up - Ur C Q} 2 Ptd(X’)

with the monodromy group Zas(f)* is the mirror map MS4' mentioned in the introduction.

\"4

Remark 6.3. By the global Torelli theorem for algebraic K3 surfaces, the group Zas(f)*/M contains a
Vv

subgroup of finite index isomorphic to the automorphism group of any surface with Pic(X) = M

Let (X,7) be an M-polarized K3 surface such that its isomorphism class [(X, 7)] belongs to the open
subset Ur from above. The pre-image of Ur in Dy is equal to the disjoint union of I-translates of Up. So,
we can choose a marking ¢ of (X, j) such that the period point P(X, #) belongs to Ur. Letwbea holomorphic
2-form on X; the function

wxiM= [ o
=1(f)
is a single-valued holomorphic function on Ur (because the 2-cycle #~1(f) does not depend on the marking
modulo the action of the group Zas(f)1). Thus, if we normalize w by replacing it with w’ = w/ [ $=1(f) W

we will be able to choose a representative £ of P(X, ¢) with the property (4, f) = 1. By Corollary 4.4 to
Theorem 4.2, we obtain that this normalization allows us to identify the Griffiths-Yukawa quadratic form on

\4
H'(X,0x) with the complex quadratic form M¢. In particular, it gives an integral structure on H!(X,0x)
compatible with the quadratic forms. This gives MS3’ from the introduction.
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7. Mirrors for the Family of Degree 2n Polarized K3 Surfaces

Here we consider the mirror construction in the case M = (2n). It is known (see [17, Theorem 1.1.2])
that M admits a primitive embedding in L, which is unique modulo O(L). Since the lattice U represents
any even integer, we may assume that M C U, where L = UL3 L Eg2. This immediately implies that
Mi=UJLULEs1Es1L (—271). Write

n = nk?,

- k+2 _ e .
where 71 is square-free. Then the group I'as has exactly [ + } orbits in the set of primitive isotropic vectors

in the lattice ML (see [37, Theorem 4.01]). Each orbit is represented by a vector f with divf = d, d|k, and
(Zf)*/2f=U L Es L Es L (~2N) := My,

where N = n/d. So we have [k+

Since the lattice My admits a unique embedding into L up to isometry of L, the number of nonisomorphic
mirror moduli spaces for Kz is equal to the number of divisors of k. To study the mirror moduli spaces we
may assume that d = 1 by replacing n with n’ = n/k. The corresponding isotropic vector can be taken from
a copy of U. The mirror family K v is one-dimensional and is isomorphic to Das, /T, . We have (M, )+ =

2 - - .
] mirror families, and each one is isomorphic to Ky, , for some dlk.

U L (2n). So if we choose a standard basis (f, g) of U, then we can find a representative u of a point from
DLn in the form

p=-—-nt>f+g+te, teC.
The map u — t defines an isomorphism from DX',I” to Q'f*'. The latter can be identified with the upper
half-plane H = {t = z + iy € C : y > 0}. The group Zp,)(F)* is isomorphic to (2n) = Z. Let T be

v
a generator of Zp(pr,)(F) corresponding to the generator e of (2n). Then T(r\rlz) =mforme M= M,,
T(f) = f,T(g9) = g —nf +e,T(e) = e — 2nf (see the proof of Proposition 6.2). Then T~1(e) = e + 2n f and

1
(w:f)=1, %(/‘16) =t.
From this it follows that T acts on H by the formula T(¢) = t — 1. We can choose the open set UF to be equal
to {t =z + iy : y > r} for sufficiently large r. The map t — ¢ = ™! defines an isomorphism
Ur/Zr)(F)T 2 Up = {g€ C" :|¢) < 1/r}.
Choose any marking ¢ : Ho(X,Z) — L of an M,-polarized K3 surface (X,j) € Ur such that the period
Co(w) of (X, ¢) belongs to DX;!" and is equal to C(—nt2f + g + te). Then

1
2 dsY
Joren @
This is analogous to the situation in mirror symmetry for quintic 3-folds (see [26]).
Let us now compute the global monodromy group I'pz,. Let

To(n) = {(‘Z ;) € SL(2,2) : n[c} J(21) C T = PSL(2, 7).

The element

F= (\35 ‘lé‘/ﬁ) € PSL(2,R)

is of order 2 and belongs to the normalizer of ['g(n) in PSL(2, R). It is called the Fricke involution. If we add
it to I'p(2) we obtain a subgroup of PSL(2, R) denoted by I'o(n)*. It is called the Fricke modular group of

level n.
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Theorem 7.1. LetT"y, be the subgroup of indez 2 of T'ny, which stabilizes the connected component DI,,“
H of Dpg,. Up to a conjugation in PSL(2,R) = Aut(H), we have
I‘ﬁwﬂ =T o(n)+.

In particular,
Ky, & H/To(n)t.

Proof.  The group sy, is isomorphic to the group O(U L (2n})*. Since —1 does not belong to O(U L
(2n}))*, the canonical homomorphism O(U L (2n))* — PSO(1,2) is injective. It is known that the groups
PSL(2,R) = Aut(H) and PS 0(1,2) are isomorphic. For example, we can establish such an isomorphism
by considering a natural representation of SL(2,R) in the space E of binary forms az? + 28\/nzy + vy°
equipped with the quadratic form Q(a, 3,7) = 2(nf? — ay) (= twice the discriminant). This allows us to

view any g = (z 2) € SL(2,R) as an isometry of (U L (2n))r defined by the matrix

2 —2y/ncd

Here the basis (y2, 2\/nzy, z2) of E corresponds to the basis (f,e,g) of U 1 (2n). The kernel of the map
A: SL(2,R) = S0O(1,2),9g = A(g), is equal to {1}. The image of the map A is the subgroup SO(1, 2)’
of index 2 of SO(1, 2) which preserves a connected component of Dyr, . Note that —1 acts as the identity on
Dhr, , so when we extend Iy, by adding —17.1 and take the intersection with SO(1, 2), we obtain a subgroup
Iy, of SO(1,2)" isomorphic to Iy, . So we may assume now that Iy, = Tz, - Let I' be the pre-image of

u,, under the map A. Let us describe its elements. First of all, we use the fact that, for any matrixg € T !
the coefficients of the matrix A(g) are integers.

Write

a®>  —2ab/n b
A(g)= | —ac/n ad+bc —bd/n | € SO(1,2).

a=ai/az, b= bl\/bz—_, c=ci/cz, d= dl\/cg,
where ag, by, ¢a, d2 are square free. We have
aby/n = kaiby\/Tazbs € Z ==> asbo®s € Z = azby = s°7
for some integer s. Since s divides a?,4? and aby/n, it must divide the first row of the matrix A(g). This

implies that s = +1 and hence
azby = 1.

Similarly, we obtain
Czdz = 5

Now, in view of the above, ac/+/n € Z gives \/E/Tz, \/(?/d; € Z. This implies that
c2 = by, dy = a2, klaycr, k{b1ds.
Let us rewrite the matrix A(g) using the previous information:
( a?ay —2aya2b1 b2k b2b; )
A(g) = | —are1/k aidiag +bicibs ~bidi/k
C%bg —2¢1dycabok d%ag

Next we use the fact that the discriminant group A(U L (2n)) is generated by the coset of ;e modulo
U L (2n), where e generates (2n). Thus elements of O(U L (2n))* send e to e 4 nv for some v € U. This
implies that ad + bc = +1 mod 2n. Assume that ad + bc = 1 mod 2n. Together with ad — bc = 1 this implies
that n|bc, and hence k2az|c1b;. If a prime p divides ag, it must divide ¢; since p|b; implies that p divides the
first row of A(g). On the other hand, plc; implies that p divides the third row of A(g). Thus a2 = 1, hence

ag=d2 =l,bp=c2 =7, k?|bjcy.
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Let p be a prime dividing k. It divides ajc; and b;d;. Assume p|by; then plc; since otherwise p divides
the whole first row of A(g). Conversely, if p|c; then p|by. Thus ke, and k|b;, and we get

= (uiin ) - (5 ) .

where a’,b',c',d' € Z. If ad + be = —1 mod 2n, we obtain similarly that

() -

Thus, we obtain that I is equal to the subgroup of PSL(2, R) of matrices of the form (*) and (*). Obviously
matrices of the form (+) form a subgroup of index 2 in I''. The whole group is generated by this subgroup and

the matrix ¢gg = (2 —01 ) Now

(5 ) (% ) (0 ) = (2 &),

(5 -3 2)-(18° 5= v

This proves the theorem.

Remarks 7.2. 1. Let us use the isomorphism & : H — D}\*',[n,t — —nt2f + g+ te. Theng = (: g) e

SL(2,R) acts on H by the Moebius transformation ¢t — (at + §)/(yt + ), and

8(g(t)) = —n(at + B)*f + (vt + 8)%g + (at + B)(7t + §)e
2
= —nt*(a*f — j;—g - %e) + (—nB%f 4 §%g + Bde) + t(—2naff + 2v6g + (ab + B7)e).
This shows that the transformation ® o g 0 =% of D-’A;I,.,‘ is defined, in the basis (f, e, ~¢), by the matrix

a? —2nafi np?
Allg)=| —av/n ad+48 P& |.
v2n  —296 &2
Now if g € To(n)t we observe that A’(g) € I}, . This shows that
BoTo(n)t 0@ ! =T, .

2. It is known that the orthogonal group of the discriminant group of the lattice U L (2n) is isomorphic to
the group (Z/2Z)°, where s is the number of distinct prime divisors of n (see [37, Lemma 3.6.1]). If n = k%7 as
above with (k,7) = 1, this group is isomorphic to To(n)/To(n), where To(n) is the abelian normalizer of I'g(n)
in SL(2,R) (see [20, Theorem 3]). Using Nikulin’s results from (31}, one can show that the homomorphism
O(U L (2n)) — O(A(U L (2n))) is surjective. Since ® o ['g(n) o ®~! is equal to I'ar, N SO(U L (2n)), this
easily implies that

B oTo(n)o @1 =O(U L (2n)).
The group O(A(U 1L (2n))) acts on Kz, with kernel isomorphic to {£1}. The quotient is the moduli space

of K3 surfaces admiting a pseudo-ample M, -polarization.
Let us now find the subset K}, C H/T'o(rn)" of isomorphism classes of ample M, -polarized K3 surfaces.

b
Theorem 7.3. Let S C H/To(n) be the set of orbits of the points g— + i—ﬁ’ where ¢ € Z and blen? + 1.

Then
%1, = H/To(n)*\ S.
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Moreover,
1 ifn < 4,
2h(~4n) ifn=7 mod 8,
4h(—4n)/3 ifn=3 mod 8,n >4,
h(—4n) otherwise.

Here h(k) denotes the number of classes of primitive binary quadratic forms of discriminant k.

45 =

Proof.  Recall from Sec. 3 that K, \ Kjy, is equal to the set of I'pr,, -orbits in Day, of hyperplanes
H, = {2 € Du,, : (2,v) = 0},v € U L (2n),(v,v) = —2. Let us use the isomorphism & : H — D'*A:In,t -
—nt2f+g+te. Let v = af+bg+ce with (v,v) = 2ab+2nc? = —2. Then (~t2f+g+te,v) = —nbt2+a+2nct =

0 implies
c [¢2  a /nc2 + ab
t= - :{: 2 -+ — = R (%)

This proves our first assertion. Let te H such tha.t <I>(t) € H(v) for some hyperpla.ne H{(v) as above. Since

h(v) is fixed by an automorphism of order 2 corresponding to the reflection isometry z — z + (z, v)v, we see

that ¢ is fixed by some involution g € [g(n)*. Let g be represented by a matrix § = ( Z Z) . We have either

32 =1 or §2 = —1. Since the characteristic polynomial of § is equal to X? — (a 4+ d)X + 1, we see that only
¢ _ba), where a,b,c,d € Z. The fixed

the second case occurs, and a +d = 0. If ¢ € [o(n), then § = (nc

i
points ¢ of g can be computed, and we find that ¢ = c—ar-l- + ot This differs from the points (*) unless n = 1.

Ifn = 1To(1)" =T, and there is only one orbit of such points. If n» > 1, and g is an involution from the
coset F'-T'o(n) of the Fricke involution F, we find that its fixed points look like (*). Consider the double cover
p: Xo(n) = Xo(n)t = Xo(n)/(T), where Xo(n) (resp. Xo(n)¥) is a nonsingular projective model of the
quotient H/To(n) (resp. H/To(n)*). We have a bijective correspondence between the ramification points of
this cover and I'g(n)-orbits in H = H U {co} U Q whose stabilizer belongs to the coset F'-I'g(n). Whenn > 5
one checks that F'-T'g(n) does not have parabolic elements (i.e., elements which fix t € QU{oo}) and elements
of finite order greater than 2. This shows that #5 is equal to the number of ramification points of the double
cover p. This number was computed by R. Fricke in [12], and it is equal to the number which we gave in the
statement of the theorem. Now, it is known that the modular curve Xo(n) is of genus 0 when n = 2,3, 4. Thus
there are only 2 ramification points. One of them is an orbit with stabilizer of order 2 contained in I'g(2). The
other one is an orbit with stabilizer of order 2 whose generator belongs to F'-I'g(n). This proves the assertion.

Assume now that the curve Xo(n)* = H/To(n)¥ is rational. All such n can be listed (see [18]) (as was
observed by A. Ogg, the primes from this list are just those which divide the order of the Fischer—Griess
monster group). Let

C(n) = H/To(n)* \ (H/To(n)¥)
be the set of cusp points.

Proposition 7.3.  Let ¢ be the Euler function. Then

3 2 #((dn/d) ifn#4
4CO(n)={ dInd>0
2 ifn=4
Proof. The number of cusps for the modular curve Xo(n)isequalto 5.  ¢((d,n/d)) (see [38, Proposition
din,d>0
1.4.1]). It is known that the Fricke involution acts on this set without fixed points if n # 4 (see [18]) and has
one fixed point if n = 4. From this the result follows.
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Corollary 7.4. Letn = p be a prime number, M = (2p). Assume that Xo(p)™* is rational. Then
Ky = Al
M

Theorem 7.5.  Assume that Xo(n)t is rational. There ezists a unique holomorphic function (called the
Hauptmodul)
jn: H—=C
satisfying the following conditions:
(i) jn is invariant with respect to Io(n)™;
(i1) ja has a Fourier expansion

oo
In@® =07+ Y emg™, g=e
m=1
(iii) the coefficients of the Fourier ezpansion are all integers;
(iv) considered as @ meromorphic function on Xo(n)t, the function j, has a simple pole at the cusp To(n)*-00

and generates the field of meromorphic functions on Xo(n)*.

Proof. See[18].

Let us restrict the meromorphic function j ! to a neighborhood Up = {t=z+iye H:y>r}
for sufficiently large r chosen so that j;7! is holomorphic on Ur. Then the properties of j, assure that ;71
defines an isomorphism from Up/ (To(n))eo to a neighborhood of the cusp I'g(n)* - co. Comparing it with
the discussion in the beginning of the section, we find that the mirror map at the cusp can be given by the
inverse of the Hauptmodul function 5 1. This should be compared to [21].

It is well-known that H/T'o(n) is a coarse moduli space for the isomorphism classes of pairs (E, A), where
E is an elliptic curve and A is a cyclic subgroup of order n of E. The Fricke involution acts on H/T¢(n) by
sending the pair (E, A) to the pair (E/A, Fn/A). Let us give an explicit geometric relationship between the
isomorphism class of an M,,-polarized K3 surface respesented by a point z € H/To(n)* and the isomorphism
class of the pair of isogenous elliptic curves (E, E' = E/A) represented by the same point z. This can be used
to explain the observation of B. Lian and S. Yau that the periods of certain one-dimensional families of K3
surfaces can be expressed as the products of periods of some family of elliptic curves (see [22]). I am grateful
to Dan Burns, who suggested that our K3 surfaces should be related to Kummer surfaces Kum(E x E’).

Theorem 7.6. Let M = (2n) and X be an My -polarized K3 surface with periodt € H. Let E; = C/Z +tZ
and E} = C/Z+(—1/nt)Z be the corresponding pair of isogenous elliptic curves. Then there ezists a canonical
involution T on X such that X/(r) is birationally isomorphic to the Kummer surface Ey x E;/(+1).

Proof. The fact that there exists an involution 7 on X such that X/(7) is birationally isomorphic to some
Kummer surface A/{£1} follows from the property that rank M, = 19 [25]. Asis explained in loc. cit. and in
[30] such an involution corresponds to a primitive embedding i : Eg(2) — My, (the image is the sublattice of
r-anti-invariant divisor classes). Here Eg(2) denotes the lattice obtained from the lattice Eg by multiplying
its quadratic form by 2. We define this embedding to be the canonical one: 7 : Eg(2) —» Eg L Eg L U L
(=2n),z — (z,z,0,0). Then it is shown that X/(7) = Kum(A) = A/{£1}, where A is an abelian surface. Let
Y be a minimal nonsingular model of Kum(A). The rational map 7 : X — Y induces an embedding of lattices
of transcendental cycles 7* : Ty (2) — T'x. It is also known [32] that #*(Ty (2)) = 25, where S C Tx ® Q
with S/Tx = (Z/22)* C A(Tx). If X satisfies Pic(X) = My, then Tx = U L (2n), and it is easy to see that
Ty = U(2) L (4n) = Tx(2). Also, it is known that T4(2) = Ty (see [4, Chapter VIIL, Sec. 5]). Let p: A = Y
be the rational map of degree 2 defined by the canonical map A - Kum(A). It follows from loc. cit. that the
homomorphism p* : H2(Y,C) — H2(A,C) preserves the Hodge structures, i.e., p*(H?(Y)) = H*°(A).
The same property is true for 7& : (Ty)c — (Tx)c. Thus the isomorphism p* o (7*) "N Tx)e = (Ta)c
preserves the Hodge structures. So let us compute the period of the abelian surface 4, knowing that the period
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of X isequal to u = —nt?f +g+te € D+ Recall that for any complex torus T', we have an isomorphism of
lattices HX(T,Z) = U LU LU =U*3. Fxx a primitive embeddmg i:U L (2n) & U+3. To be more precise,
let A = Zey + Zea + Zes + Zey with a fixed isomorphism d : /\ A = Z such that d(e; Aez Aez Aes) = 1.
Then A2 A has the structure of a lattice with respect to the bilinear form (&, 8) = d(a A 8). Consider the
following basis of A% A:

fi=e1Nex, g1 =e3Neq, fo=e;Ae3, g2=eqNez, f3=¢e1ANeq, g3=e€2Ae3.

Then Zf; + Zg; = U, and Zf; + Zg; is orthogonal to Z f; + Zg; for ¢ # j. Our embedding i : U L (2n) — U3
can be chosen as follows: i(f) = f1,i(g9) = g1,i(e) = f2 + ngs. For simplicity of notation, we denote by
i:(U L (2n))c — (UL3)c the extension of the embedding ¢ to the injective map of the complexified spaces.

We have
i(p) = —nt?fy + g1 + t(f2 + ng2) = —nte; Aeg +e3 Aeg +t(er Aea +neg Ae).
We immediately verify that
i(p) = (—tey + eq4) A (ntez — e3).
Using [13, Exposé VIII], we can interpret it as follows. Let
=C/Z +1Z, E,=C/Z +(-1/nt)Z
be the pair of isogenous elliptic curves. Then under a certain marking ¢ : H2(E;x E}, Z) —» UL3, $( H2°(Ey x
E!)) = i(u). Now-the assertion follows from the global Torelli theorem.
Let us exhibit explicitly some mirror families of the family of polarized K3 surfaces of degree 2n. We
shall use the notation A, , D, B, to denote the negative-definite even lattice defined by the negative of the

Cartan matrix of the root system of a simple Lie algebra of type A, Dn, E,, respectively. We shall use the
following well-known description of the Picard lattice of an elliptic surface f : X — S with a section:

Lemma 7.7 (Shioda-Tate).  Let Pic(X)' be the subgroup of Pic(X) generated by irreducible components
of fibres and by a section. Then the quotient group Pic(X)/ Pic(X)' is isomorphic to the Mordell-Weil group

MW(X/S) of sections of the fibration.

Proof.  See, for example, 7, Proposition 5.3.4].

This lemma is applied as follows. We exhibit an elliptic fibration such that Pic(X)’ is a subgroup of finite
index in Pic(X). The lemma implies that the Mordell-Weil group is finite. Then we show that it is in fact
trivial. Now it is easy to find the structure of the lattice Pic(X)’. Its sublattice generated by a section and
a fibre is isomorphic to the lattice U. Its orthogonal complement is isomorphic to the sum of lattices of type
An, Dy, E., each spanned by the irreducible components of a fibre which do not intersect the chosen section.

Example 7.8 (n =1). We have

M,=2U1Eg L EgL ( )
Using the previous remark suggests that one look for a K3 surface with an elliptic fibration f : X — P!
with a section and two reducible fibres of types Es (or IT* in Kodaira’s notation), and one reducible fibre of
type A1 (Kodaira’s I or III). Since the group F of nonsingular points of a fibre F of type Egis isomorphic
to the additive group C, and the restriction homomorphism MW(X/P!) — F* is known to be injective on
the torsion subgroup ([7, Proposition 5.3.4}), we obtain that Tors(MW(X/ P1)) is trivial. Hence, if Pic(X) is

known to be of rank 19, it must be isomorphic to M.

To construct such a surface X, we take a nonsingular plane cubic C and the tangent line L at its inflection
point. The pencil of plane cubics spanned by C and 3L defines a rational map P? — P!. In an appropriate
coordinate system we can represent the pencil in the form:

AY2Z+ X3 +aXZ%)+pZ% =0
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After resolving its nine base points (infinitely near the point (0,1,0)) we arrive at a rational elliptic surface
f : V(a) - PL. It contains a degenerate fibre of type Eg corresponding to (A, ) = (0,1). The irreducible
singular fibres correspond to (), i) = (1,b), where 4a® + 27b? = 0. If a # 0, we have two irreducible singular
fibres with ordinary double points. If @ = 0, we have one irreducible singular fibre with a cusp singularity.
Let F,(b) denote the fibre of f corresponding to (A, ) = (1,b). Let Fy = F(b), where 4a® + 27b% = 0, be
an irreducible singular fibre, and let F» = F,(b + 1). Consider the double cover X(a,b)’ of V(a) branched
along the union Fy U F3. After resolving its singularities we obtain a K3 surface X (a, b) with two reducible
fibres of type Es It has additional reducxble fibres: one fibre of type A1 if F; has a node F, is nonsingular
(a #0,b# -——) two fibres of type A, if Fy, Fp have nodes (b= ; one fibre of type A2 (Kodaira's IV) if
F has a cusp (a = 0).

We have a one-parameter family X’ — C of singular surfaces X(a, )’ parametrized by the affine curve
C : 443 + 27B%? = 0. The map X’ — C is equivariant with respect to the natural action of the group
y13 of cube roots of unity. Its generator p = €2"*/3 acts on C by (a,b) = (pa,b) and on X’ via its action
on P2 by the formula X — pX,Y — Y,Z — Z. After dividing X’ by this action, we obtain a family
7 Y =X'[us - A' = C/p3. Let 0 € A! be the orbit of (0,0) € C and 1 € A be the orbit of (a, -1
For any t € A'\ {0, 1}, the fibre V} = 7' ~1(%) has one ordinary double point. The fibre Jj 2 X (0,0)/pu3 isa
rational singular surface. The fibre }) & X(a, —-%) It has two ordinary double points. Let

m:Y = A\ {0,1}

be the composition of 7/ and the blowing up Y — n'~1(A\ {0, 1}) of the locus of singular points of the fibres
Vi, t # 0,1. We have constructed a family of pseudo-ample M;-polarized K3 surfaces. The period map for

the family Y — A\ {0,1} defines a regular map:
p: AN\ {0,1} - Kpr, @ H/T 2 AL

One can show that the period mapping p can be extended to an isomorphism Al — H/T which sends
the point 0 to the orbit of €2™*/3 and 1 to the orbit of ¢. The first point is a period of the surface X(0,0), the
second point is a period of the surface X (a, —%) The latter surface is a nonample pseudo-ample M-polarized
surface. The monodromy group of our family is generated by the local monodromies at 0, 1, and co. They are
isomorphic to the subgroups of I which stabilize e271/3 i and oo, respectively. Thus the global monodromy
of our family is isomorphic to T'.

Since not all fibres are isomorphic, the period map is not constant. Hence there exists a dense subset U
of A\ {0,1} such that the Picard number of };,t € U, is equal to 19, and hence Pic(J:) = M;.

Observe that X(0,0) 2 X, has Picard lattice of rank 20 isomorphic to U L Eg L Es L A3, and X(a,—3)
has Picard lattice of rank 20 isomorphic to U L Eg L Eg 1 (—2) L (—2).

Example 7.9 (n = 2). Here we want to describe a mirror family for quartic surfaces. One can show, for

example, using the uniqueness results from [31], that
MnZUJ.EglEsL(—‘i)EUJ_EgJ_DQ.

Similar to the previous example, we should construct a one-dimensional family of elliptic K3 surfaces X with
a section, one reducible fibre of type Dy (Kodaira’s I), and one reducible fibre of type Es. To construct the
family F of such elliptic surfaces we use the same idea as in the previous example. Consider the pencil of cubic
curves:
FOup) =AX3+pZ(Y?-XZ +aX?) =0.

Let V — P! be the associated rational elliptic surface. It has a degenerate fibre of type Eq (Koda.ira: s III*)
and a reducible fibre Fy of type A)(a # 0) or A(a = 0). Let X be the double cover of V branched along the
union of F} and another 1rreduc1b1e fibre F,. X is an elliptic surface with two reducible fibres of type E; and
a reducible fibre of type A; {or D). If Fy is singular (this happens when pa? = 4), it has an additional fibre
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of type A;. The elliptic fibration also has two sections. We claim that X has another elliptic fibration with
two reducible fibres of type Eg and Dg To see this we assume for simplicity that F is of type A3 Let

D=2Ry+ Ry +2R2+3R3+4R4+ 3R5 + 2R + Ry

D' = 2Ry + Ry + 2R, + 3Ry + 4R, + 3R, + 2R + R}
be the reducible fibres of type E-,, and let F = Ey + E; + E5 + E3 be the other reducible fibre. Without loss
of generality we may assume that the two sections S} and S intersect the fibre D at R; and Ry, respectively,
and the fibre D' at R} and R%, respectively.- Also S; intersects F' at Eq and S intersects F' at E;. Now
consider the following disjoint curves with self-intersection 0:

Dy, =3Ry +2R> + 3R3 +6R4 +5R5 +4Rs + 3R7 + 252 +R'I7,

Dy =R,5+R6 +2R;+2RI +2RI +2R, +251+2Ey+ E; + E;.
By Hodge’s index theorem, the divisors D1 and D5 are linearly eqmva.lent They span a pencil which defines
an elliptic fibration with fibre D of type Es and fibre D5 of type Dg

Let X(t; a) be the elliptic surface obtained by the above construction when we take F; = F(), u) with
t = A/p # 0, co. The linear substitution X — ¢X,Y = Y, Z — ¢~1Z extends to an isomorphism X (¢; a) =
X(c*,c%a). Let the group C* act on C* x C* \ {(¢,a) : a® =t} by the formula (¢, a) — (¢*, c?a). The orbit
space is isomorphic to P1 \ {0,1,00}. When we vary (t,a) € C* x C, we obtain a family ¥ - C* x C of
M;-polarized K3 surfaces with X(; @) = J4,q) for a? # 4t,0. When a? = 4t,0, the fibre Y(t,a) is singular but
birationally isomorphic to X (; a). The surface X(t;0) has a fibre of type D, and its Picard number equals
20. The surface X(a%2/4,a),a # 0, has a reducible fibre of type A; and its Picard lattice is isomorphic to
UL Eg LDy L (~2).Let f: C* x C — C given by the formula (¢,a) — a?/4t. Asin the previous example,
we can descend the family ) — C* x C to-a family Y — C of pseudo-ample Mp-polarized K3 surfaces with
singular fibres over 0 = f(¢,0) and 1 = f(a?/4,a). The period map extends to an isomorphism Al 5 Ky,
which sends 0 to the isomorphism class of the surface X(0) and sends 4 to the isomorphism class of the surface
X(2). The latter surface is a pseudo-ample but not ample M-polarized K3 surface.

Example 7.10 (n = 3). We skip the details. We have
Ma_”—-:U_LEg_LEgJ_(-6>.

We consider a rational elliptic surface V with a section, one reducible fibre F} of type Es, and one reducible
fibre F3 of type A, . To construct such a surface we take a plane nonsingular cubic C and three inflection points
on it lying on a line (this means that they add up to 0 in the group law on the cubic with an inflection point
taken as the origin). Then we take the pencil of cubic curves spanned by C and the union of the tangent lines at
the three inflection points. After resolving the base points of this pencil we arrive at the surface V. The surface
X is obtained as a minimal nonsingular model of the double cover of V' branched over F and a nonsingular
fibre. The surface X is an elliptic K3 surface with a section, two reducible fibres of type Eg (Kodaira’s I'V),
and one reducible fibre of type As (Kodaira’s I5). Its Mordell-Weil group is Z/3 and the sublattice of Pic(X)
spanned by the section and components of the reducible fibres is isomorphic to Es 1. Fg L As. By Lemma 7.4,

we get that Pic(X) is a hyperbolic lattice of discriminant 6. One can find another pencil on this surface with
three reducible fibres of type Eg, Fr, and A,. Since its discriminant equals 6, it must coincide with Pic(X).

On the other hand, it has the same discriminant group as the lattice M3. By Nikulin’s uniqueness results, we

conclude that Pic(X) = Mj.

Remark 7.11.  The following remark may be appropriate. As we have already noticed in the previous
section, the rational one-dimensional boundary components of Dy correspond to rank 2 primitive isotropic
sublattices S of N = M+. Each component contains in its closure the 0-dimensional boundary component
defined by an isotropic vector f € S. If N =U L M, and f € U, then S is determined by a primitive isotropic
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vector in M,,. Now if we identify M,, with Pic(X’) for some ample M, -polarized K3 surface X' from the
mirror moduli space, we find a bijection between one-dimensional rational boundary components of Dy /T ay
containing the given 0-dimensional boundary component and isomorphism classes of elliptic fibrations on
X'. When M = (2) or (4) the list of I"ps-orbits of two-dimensional isotropic sublattices of NV containing a
given primitive isotropic vector is given in [37]. We find that S7 /S can be isomorphic to one of the following
lattices:

Ay L FEg L Eg, Ay 1 Dis, E7LlDy, A7 (M = (2)),
E? 1 (-4), DysL(-4), EslDy, E?1As, D17, DLl Ds,
D? L (—4), Ais LA}, EelAn (M = (4)).

In our interpretation, we obtain that the mirror surfaces contain elliptic fibrations with reducible fibres of
type
El,ﬁa,ig; 21,515; Ehfjlo; JZIT (M = (2>)7
EBvﬁs; -516; E87-59; E7va77‘:{3; -517;
Di2,Ds; Ds,Ds; A1s,A1,41;  Ee,Any (M = (4)).

We have already seen a pencil of type Es + Eg + A; on surfaces from the mirror family of K5y and the pencils
of type ;{1 + .Zl + ;1'15 and E’g + f)g on surfaces from the mirror family of K<4) .

A similar computation is known for the case M = (6) (see [39]). We have the following types of elliptic
fibrations on surfaces from Ky,:

Ea,Es; 516; E’s,EnAV% 514,;1’2,;1'1; 510,56; EB:ET,ZU
Z15; 567557;{5; 2117‘551;{1; 29,57.

In Example 7.10 we have seen an elliptic fibration of type Es, Es, As.

8. Toric Hypersurfaces

Recall the following mirror construction of Batyrev [5], which generalizes the original construction of
Greene—Plesser. Let A C R™ be a convex n-dimensional lattice polytope given by inequalities:
Zaija:jgl, 1=1,...,k,
1=1
where a;; € Z (a reflexive polytope). Let A* be the polytope equal to the convex hull of the vectors I; =
(@:1,.-- ,@in). It is also a reflexive polytope. Let Pa (resp. Pa+) be the corresponding toric variety, and
F(A) (resp. F(A*)) be the family of hypersurfaces in Pa (resp. Pa+) defined by A-nondegenerate (resp.
A*-nondegenerate) Laurent polynomials. For n < 4 there exists a map f : Pa — P such that the proper
transform of a general member of the family F(A) is a Calabi-Yau manifold. A similar construction with A*
defines another family of Calabi~Yau manifolds. In the case n = 4, the two families of Calabi~Yau 3-folds
satisfy the first attribute of mirror symmetry: the dimension of the local moduli space for a member of the
first family is equal to the Picard number of a member of the second family [5].
Consider the special case of Batyrev’s construction when A is a 3-dimensional simplex:

3
Aw) = {(io,tl,tz,t:;) e R?: Zwiti =0, ¢>-1, 1=0,... ,3} ,
=0
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where w = (wo, w1, w2, w3) is a collection of four positive integers with greatest common divisor equal to 1 and

3
such that d = wo +w; +wa + w3 is divisible by each w;. Here we identify R3 with the hyperplane > wit; =0.
=0
The toric space P4 is the weighted projective space P(w) = P(wo, w1, w2, w3). The family F(A) is the family
of quasi-smooth hypersurfaces of degree d in P(w). One of its representatives is the surface
:z:go + :z:fl + z;” + xg3 =0,

where d; = d/w;,i = 0,...,3. Let II be the finite abelian group of order dod;d2d3/d? equal to the kernel of
the homomorphism

(fdg X frdy X fidy X Bdg)/pd = pd, 9o°---g3™ — gwosottwsds

where pq, denotes the group of d;th roots of unity with generator g;; the subgroup pq of the product is
generated by g = gog19293- Then, by Corollary 5.5.6 of (5], the dual family F(A*) consists of quotients by I
of the family of II-invariant hypersurfaces of degree d in P(w)
Z ato*wzlsxo '7"'11 13233 =0.
woig+wiiy+waigtwiiz=d

Example 8.1. Let us consider the special case where w = (1,1,1,1),d = 4. The family F(A(w)) is the
family of quartic hypersurfaces in P3. Modulo projective transformation this family defines an open subset
of the moduli space K (4). The group II is isomorphic to (Z/4)? and its two generators act by the formula

g1 : (20, 71,72, 73) = (20, {z1,22,(%z3),

g2 : (0,71, 22, 23) = ({0, 21,{ 22, 73),
where ( is a primitive fourth root of unity. The Il-invariant family of quartics is the one-dimensional family

V(A): 2§ + 2} + 23 + 25 + 4hzoz12223 = 0.
The quotient V(A)/II is isomorphic to the surface in P* given by the equations
UgUIULUZ — u:i =0, ug+uy+ux+uzt4iug=0. (*)

If A* # 1, the surface V())/II has six rational double points of type A3. Let V) be the family of K3 surfaces
obtained by simultaneous resolution of singularities of the surfaces V(A)/II, A* # 1.
Theorem 8.2.  The family of surfaces Vy i3 a family of My-polarized surfaces.

Proof. Consider the following four lines on the surface:
L:uj=u3=0, 1{=0,1,2, I3:ug+u;+uy=u3=0.

It is easy to check that the six points P;; = [;N{;,0 <1 < j < 3, are the singular points of type A3 of V(A)/IL
Let D;; be the 6 exceptional divisors coming from a minimal resolution of singularities V3 — V(A)/IL, and let
R;,i =0,...,3, be the proper inverse transforms of the lines. Each divisor D;; consists of three irreducible
(—2)-curves with the intersection graph isomorphic to the Dynkin diagram of type A;. Let § be the sublattice
of Pic(Vy) spanned by the curves R; and the irreducible components of the divisors D;;. We shall show that
S = M,. Consider the divisor

D =Ro+ R1+ Rz + Rz + R4 + Doy + D12 + Daz + Dos.

The linear system |D| defines an elliptic fibration on V) with reducible fibre D of type le (Kodaira’s Ijg).
Let Eg, and E;3 be the irreducible components of the divisors Doz and D3 which are disjoint from the divisor
D. They must be components of some reducible fibres of the elliptic fibration. Since the sublattice of Pic(Vy)
generated by irreducible components of fibres is of rank at most 19, we have only two possibilities. Either
Eg2, E;3 are components of one fibre of type A3, or there exist irreducible curves Ej, and Ej, such that
Eo2 + Ejy and E\3 + E{; are two fibres of type A;. In the first case we find that Pic(Vy) is of rank 20. Since
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the family (*) admits a degeneration (A = oo) with infinite local monodromy, its image in the moduli space
Ks is not a point. Thus for generic A, Pic(V}) is of rank 19, and we have the second possibility. Let Eg be
the component of Dgs which intersects Ry. Then Ej is a section of our fibration, and as such it must intersect
the fibre E13 + E3 at one point. Since it does not intersect E13, it intersects E}; with multiplicity 1. Now we
leave it to the rea.de;-}" to verify that V) admits anotlfr elliptic fibration which contains Eqgz + Eg + E13 + Doy
in its fibre of type Dg and Da3 in its fibre of type Es. Arguing as in Example 7.8, we deduce from this that
Pic(Vy) = § = M,.
Notice also that the period map

p: AN\ {A: 2 =1} =2 Kar,, Ao [W]

is of degree 4. Indeed, the group u4 of 4th roots of unity acts on F by the formula X — pA so that p factors
through a map p’ : A'\ {1} = Al. The map p’ can also be extended to a map p’' : A’ - A! by sending
1 to the period of a minimal nonsingular model of the surface V(1)/II. This surface represents the unique
isomorphism class of pseudo-ample but not ample M2-polarized K3 surfaces. One can show by computing
the monodromy at infinity that 7’ is an isomorphism.

Example 8.3. Let w = (3,1,1,1),d = 6. The dual polyhedron A* can be identified with the convex hull
of the vectors (1,0,0),(0,1,0),(0,0,1), and (-1, —1, —3). The toric hypersurfaces defining the family F(A*)
are given by the Laurent polynomials

aTy + bTp + ¢T3 +dIT T ' T3 +e=0.
Multiplying both sides by T1 T2 T and homogenizing, we obtain a projective model of V' € F(A*) defined by

the equation
2 3 23 4 6 3 __
aTl T2T3 + bT1T2 T3 + CT1T2T3 + dTO -+ 6TOT1T2T3 = 0.
This model is not normal. To normalize it, we introduce a new variable Ty = T2/T5. Then a normal projective
model can be given by the equations

Ty To(aTy + 8Ty + cTs + eTo) + dTs =0, Tg = T4Ts.

After some obvious linear transformation of the variables, we may assume that the generic member of
F(A(w)*) is isomorphic to the surface X in P* given by the equations

uiuguz —ul =0, (Aug +u1 +uz + uz)ug +ud = 0.

This is a double cover of the cubic surface ujususz — u3 = 0 in P3 branched along the union of two curves Cy
and Ca cut out by the planes ug = 0 and 4(u; + uv2 + u3) — A2u4q = 0, respectively. The cubic surface has
three singular points which are cyclic singularities of type A;. After we resolve them, and then resolve the
base points of the pencil of elliptic curves spanned by the inverse transforms of the curves C; and C», we find
a rational elliptic surface V) with a singular fibre of type Ag (originating from the curve Cy). Its double cover
branched over this fibre and another fibre (originating from C3) is birationally isomorphic to X. After we
resolve its singular points, we obtain an elliptic K3 surface X, with a reducible fibre of type A17. The eiliptic
fibration also has three disjoint sections. They come from the three exceptional curves on V) obtained from
the resolution of the base points of the elliptic pencil on the nonsingular model of the cubic surface. Applying
Lemma 7.7, we obtain that Pic(X ) is a hyperbolic lattice of rank 19 and discriminant 2. There is only one
such lattice, up to isomorphism. This is the lattice U L Eg L Fg L (—2). Thus, the mirror family for K,
considered in Example 7.8 can be represented by the surfaces from the family F(A(w)*). Also observe that we
have demonstrated the existence of two different elliptic fibrations on X from the list given in Remark 7.11.

Example 8.4. In our next example, we take

w=(1,6,14,26), d =42, (di,d2,ds,ds) = (42,7,3,2).
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In this case the group II is trivial, and according to Batyrev we should have the self-mirror family. This is
true for our mirrors too. The family is Kps, where

\4
M=M=U LE;g.
We shall see the latter family again in the next example.

Example 8.5. Consider the affine surface
+:r: +1123 = 0, d"l-\‘-d;{1 d"1 <1.

According to [24], the link space L of the singular point 0 is diffeomorphic to the quotient G/ [T, T, _where
G is the universal cover of PSL(2,R) and [1" I‘] is the commutator subgroup of the discrete group Tof G
isomorphic to an extension

1= 2Z 5T — I{d,dz,d3) = 1.

Here T'(d1, d2, d3) is the Fuchsian subgroup of PSL(2,R) of signature (0;d;,d2,d3). Let K = f/[f, f] Its
order is dydads/d, where d = l.c.m.(d1,d2,d3). The quotient L/K = G/f(dl,dz,d3) is the link space of
a quasi-homogeneous triangle singularity Dg, 4, d4;(see [10, 29]). There exist exactly 14 triples dy,da, d3 for
which the singularity Dg, 4, ,4, is isomorphic to the singularity at the origin of the affine surface P(z,y,2) =0,
where P is a quasi-homogeneous polynomial of degree N with weights (41, ¢2, ¢3), given in the following table:

name (di,dz,d3) (91,92,93) N (dy,dp,d3) do P(z,y,z)
Q1o (2,3,9) (6,8,9) 24 (3,3,4) 18 22z + ¢ + 2t
Q11 (2,4,7) (4,6,7) 18 (3,3,5) — 22z +y®+yzd
Q12 (3,3,6) (3,5,6) 15 (3,3,6) 6 22z 4+ 4% + 28
Zu (2,3,8) (6,8,15) 30 (2,4,5) 24 y3z + 25 + 22
Z12 (2,4,6) (4,6,11) 22 (2,4,6) 12 y3z 4 yz* + 22
Z13 (3,3,5) (3,5,9) 18 (2,4,7) - v3z + 26 + 22
Si1 (2,5,6) (4,5,6) 16 (3,4,4) — 2’z 4zy® 4zt
Stz (3,4,5) (3,4,5) 13 (3,4,5) — y?z+z2®2+z3y
Wi2 (2,5,5)  (4,5,10) 20 (2,5,5) 10 5 4+ yt + 22
W13 (3,4,4) (3,4,8) 16 (2,5,6) — yt + yzt + 22
K12 (2,3,7) (6,14,21) 42 (2,3,7) 42 7+ 9%+ 22
K13 (2,4,5) (4,10,15) 30 (2,3,8) 20 y® + yzd + 22
K4 (3,3,4) (3,8,12) 24 (2,3,9) 12 z8 + y3 + 22
Uiz (4,4,4) (3,4,4) 12 (4,4,4) 4 zt4 3+ 28

For each of the fourteen triples (d;, d2, d3) consider the family of hypersurfaces of degree N in P(1, ¢,
g2, q3) given by the equation

Q(w, z,Y, Z) = P(:L': Y, z) + Z aijk:wN_iq1 -—jqz—-kq;;xiyjzk =0

where the monomials z'1y2z*3 form a basis of the Jacobian algebra C{z, y, z]/(partials of P) of the polynomial
P. There exists a morphism Y — P(1, g1, g2, ¢3) such that the proper inverse transforms of the quasi-smooth
hypersurfaces Q = 0 form a family F(d1, d2, d3) of M-polarized K3 surfaces, where M is the lattice of rank
dy + da + d3 — 2 generated by vectors e; with (e;,ei) = —2 and (ei, e;) € {0,1},¢ # j, determined by the
incidence graph Ty, 4,,4, of Dynkin type (for example, T5 3,5 corresponds to Eg). Note that the dimension of
the family is equal to dim Ks. It is equal to the subscript in the first column minus 2. The family F(d}, dj, d3)
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corresponds to the mirror moduli space K A The involution on the set of fourteen triples

(dhd?’d"i) — (d,h ,27 {3)
is the so-called Arnold strange duality (see [1, 9]). If we take the triple (2,3, 7) corresponding to the singularity
K12 we obtain that F(2,3,7) coincides with the family F(A(w)), where w = (1,6, 14, 21). It is self-dual with
respect to Batyrev’s duality and mirror duality.

On the other hand, let us consider the 12-dimensional family F(3, 3,4) corresponding to the singularity
K14. It coincides with the family F(A(w)), where w = (1,3, 8,12). The group II is of order 2. The Batyrev
dual is the 6-dimensional family F(A(w)*) obtained by dividing II-invariant members of F(A(w)) by II. The
mirror family of F(A(w)) is the 8-dimensional family F(2, 3,9) corresponding to the singularity Gho-

Suppose (d1,d2,d3) is such that there exists an integer do such that

1,11 1

P SR
This happens for 9 triples from the above list. Then we can consider the family F(A(w)), where w; =
d/d;,d = g.c.d.(do, d1,dz,ds). The group Il is isomorphic to the group K from above. The II-quotients of sur-
faces from F(A(w)) are smoothings of the singularity Dy, 4, 4, and hence belong to the family F(dy, da, d3).
This shows that the Batyrev dual family F(A(w)*) is a subfamily of F(dy, dz, d3).

For example, F(A(1, 3,8,12)*) is a subfamily of F(2, 3, 8) of dimension 9 corresponding to the singularity
Zy;. Also, F(A(1,4,5,10)*) is a subfamily of F(2, 4, 5) of dimension 11 corresponding to the singularity K;3.

The exact relationship between the two mirror constructions seems to be as follows. Let X be a member
of the family F(A). Then Pic(X) contains the primitive sublattice generated by the image of the restriction
homomorphism Pic(P ) = Pic(X ). Let Ma be the abstract lattice isomorphic to this lattice. One can show
that Ma = Pic(X) for a general member F(A) if and only if A satisfies the following condition: for any
1-dimensional face I" of A,

MIr)=rT)=0, (*)
where I'* is the dual one-dimensional face of A*, and {*(F') denotes the number of integral points in the
interior of a face F (see [2]).

Conjecture 8.6.  The lattice Ma always contains a 1-admissible isotropic vector such that there ezists a
primitive embedding
Y

Ma+s C M.

Moreover, the equality holds if and only if condition () is satisfied.
This conjecture is confirmed by a result of Batyrev (unpublished) and Kobayashi [19] implying that
rank Ma + rank Ma» < 20.

Y
Also, Kobayashi shows that rank Ma» = rank M 4 if (*) is satisfied. Finally, the conjecture is consistent with
the examples from above. If A = A(1, 3,8,12), we have M = T3 3 4. Since F(A™) is a subfamily of 7(2, 3, 8)

v

we have Ma+ = T3 3,5. On the other hand M a = T» 3,9 and obviously T2 38 embeds naturally in 73,3 9. In

v

the second example where A = A(1,4,5,10), we have Ma» 2Tz 45and M =Ty 55.
In some cases when (*) is not satisfied, it is still possible to find a polyhedron A’ satisfying (*) and such
that F(A') is a subfamily of F(A). For example, it is always possible in the case of the fourteen families from

v
Example 8.5 [19]. In this case, one can verify that Masm = Mar.
Remark 8.7.  There is a list of weighted projective K 3-hypersurfaces with Gorenstein singularities first
derived by Miles Reid (unpublished) and later rediscovered by Yonemura (see [42]). It consists of 95 families.

2627



It contains the family of quartic hypersurfaces and its mirror family represented by surfaces of degree 36 in
P(7,8,9,12) (number 52 in the list of Yonemura).

9, Other Examples

Here we consider the examples related to Enriques and Kummer surfaces.

Example 9.1. Let F be an Enriques surface, and p : X — F be its K3-cover (see [4, 7]). We have
H2(F,Z)/Tors = Pic(F)/Tors = Es L U.

Thus p*(Pic(F)) is a sublattice of Pic(X) isomorphic to M = Eg(2) L U(2) and X acquires the canonical
structure of an M-polarized K3 surface. Since M does not contain vectors § with (4,d) = —2, we can choose
C(M)* to be equal to V(M)*. Replacing j : M — Pic(X) by —j, if needed, we may assume that j(V(M)t)
contains the class of an ample divisor p*(D), where D is an ample divisor on F. Thus, any marked Enriques
surface (F, ¢ : H2(F,Z)/Tors — Eg L U) defines an ample M-polarized K3 surface (X, j). Conversely, given
such (X, 7), it defines an involution ¢ on H%(X,Z) by setting o(v) = z, for any v € j(M), and o(v) = —v,
for any v € (j(M))L. One can show that any two primitive embeddings of the lattice M on L differ by an
isometry of L (see [28]). Thus, we can choose a marking of ¢ : H*(X,Z) - L such that j, = j. Since the
involution o leaves the period H29(X) of X unchanged, by the global Torelli theorem (Corollary 3.2), there
is 2 unique involution 7 of X such that ¢ = r*. By using the the Lefschetz fixed-point formula, it is not
difficult to show that the set of fixed points of 7 is empty (see [28, p. 221]). Thus X = F/(r) is an Enriques
surface together with a marking defined by descending the isomorphism j : Es(2) L U(2) — Pic(F) to
the isomorphism Eg L U — Pic(X) = Pic(F)". This establishes a bijective correspondence between the
isomorphism classes of marked Enriques surfaces and isomorphism classes of ample M-polarized K3 surfaces.
In particular, K§, (2)LU(2) CA0 be viewed as the moduli space of marked Enriques surfaces.
We may embed Eg(2) L U(2) diagonally into Eg L Eg L U L U to obtain that

(Es(2) LU2))L 2 Es(2) LU(2) LU.

In particular, if we define the mirror lattice by taking f € U, we obtamn
v

M=M.

Thus the moduli space Kz is its own mirror. If we take f from U(2) instead, we obtain

\2
M =U L Es(2).

One can show that the moduli space Ky | gy(2) can be represented by the family of double covers of the plane
branched along the union of two cubics.

Example 9.2.  The mirror family for the family of nonsingular minimal models of the Kummer surfaces
X = Kum(A4) associated with principally polarized abelian surfaces A is the family K s, where M L=U@2) 1L
U(2) L (—4). This must be well known but let me give a proof due to J. Keum. By Theorem 1.4.14 from [31],
the embedding (2) < U L U L U is unique. Therefore, we may assume that the class % of the polarization of
A is mapped to e + f, where e, f € U,(e,e) = (f, f) = 0,(e, f) = 1. Therefore, T4 = Pic(A)}L{z(A,Z) >0 L
U L (—2). On the other hand, it follows from [4, Chapter VIII, Sec. 5] that Tx = Pic(X)f'Ln(X’z) = Ta(2) =
U(2) LU(2) L (—4).
Now if we take f from a copy of U(2) we get

NN O
N O N

O NN
SN———

ﬁ=mee@%(
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The mirror family is the moduli space of hypersurfaces of degree (2,2,2) in P! x P! x P!, This family is

equal to the family F(A), where A = [-1,1]> C R?. As was shown by Batyrev, the dual family F(A®) is
v

the family K s+, where M'+ = U L M. This family of K3 surfaces was studied by C. Peters and J. Stienstra

in [33]. If we take f € U, the dual moduli space of Ky is equal to K pA So the Kummer family and the

Peters-Stienstra family share the same mirror family.
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